

Frank W. Zammetti

Practical Dojo Projects

Practical Dojo Projects

Copyright © 2008 by Frank W. Zammetti

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1066-5

ISBN-13 (electronic): 978-1-4302-1065-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Herman van Rosmalen
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Sofia Marchant
Copy Editor: Sharon Wilkey
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Carol Burbo and Ron Strauss
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

I’ve written four books now, including this one, and I’ve thanked a lot of people. From the
usual suspects such as my wife, children, parents, and friends, to the unusual: fictional

characters, various food, alien species, and even myself! At one point I said I had dedicated
a book to everyone who matters, but it was my mother-in-law who pointed out I hadn’t
dedicated anything to her and thus hadn’t dedicated a book to everyone who matters.

That got me to thinking. I’ve actually left out a few important people along the way,
so let me try to cover all the bases this time around:

Albert Einstein, Babe Ruth, George Washington, Francis Ford Coppola, Jean-Luc Picard,
Rick Wakeman, John Adams, Galileo Galilei, Lenny Bruce, Les Paul, Leonard Nimoy,

Mickey Mantle, Steve Wozniak, Karl Schwarzschild, Lee Majors, Bruce Campbell,
Robert Kennedy, Wicket the Ewok, Rodney Dangerfield, Ric Flair, Lee and Bill Adama,

Scott Baio, Christian Troy, Wally Schirra, Wilton Parmenter, Rod Serling, Nikolai Volkoff,
the two old men on The Muppet Show, and of course Davros and The Doctor.

Oh yes . . . and my mother-in-law.
Now stop bugging me! ☺

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

About the Illustrator . xvii

Acknowledgments . xix

Introduction. xxi

PART 1 ■ ■ ■ Setting the Table
■CHAPTER 1 Introduction to Dojo. 3

■CHAPTER 2 Dojo Core. 41

■CHAPTER 3 Dijit . 115

■CHAPTER 4 DojoX . 157

PART 2 ■ ■ ■ The Projects
■CHAPTER 5 That Human Touch: Contact Manager and

Client-Side Persistence . 215

■CHAPTER 6 A Place for Your Stuff: Dojo Code Cabinet . 265

■CHAPTER 7 Idiot Blob: The Game! . 329

■CHAPTER 8 When the Yellow Pages Just Isn’t Cool Enough:
Local Business Search . 379

■INDEX . 441

v

Contents

About the Author . xiii

About the Technical Reviewer. xv

About the Illustrator . xvii

Acknowledgments . xix

Introduction. xxi

PART 1 ■ ■ ■ Setting the Table

■CHAPTER 1 Introduction to Dojo. 3

JavaScript: A Study in Evolution . 3

Birth of a Language . 3

Reasons for JavaScript’s Early Rise . 5

Something Is Rotten in the State of JavaScript 5

The Unarguable Problems with JavaScript . 6

As Ballmer Said: “Developers! Developers! Developers!...”. 7

Standardization: The Beginning of Sanity . 9

The Times They Are a Changin’: The Experienced
Come to Bear. 10

What’s Old Is New Again: JavaScript in the Present 11

The White Knight Arrives: JavaScript Libraries. 12

The Cream of the Crop: Introducing Dojo!. 13

Let’s Take It from the Top: A Brief History of Dojo 13

The Philosophy of Dojo . 15

The Holy Trinity: The Three Components of Dojo. 16

Core . 17

Dijit . 20

DojoX . 25

Dojo in Action: What Else? Hello World (Sort Of) . 30

Getting Dojo onto the Page. 32

Importing Style Sheets . 33

Configuring Dojo . 34

Importing Other Parts of Dojo . 35

Finally: Dijits! . 35 vii

Getting Help and Information. 36

Summary. 39

■CHAPTER 2 Dojo Core . 41

Core vs. Base . 41

The Dojo “Include” Mechanism . 42

“Trimming the Fat”: Creating a Custom Dojo Build. 43

Come Fly with Me: Core in Detail . 45

dojo . 46

dojo.back. 90

dojo.behavior . 92

dojo.cldr. 94

dojo.colors. 96

dojo.currency . 96

dojo.data . 98

dojo.date . 98

dojo.fx . 101

dojo.i18n . 104

dojo.io . 105

dojo.number . 107

dojo.regexp . 110

dojo.string . 111

Summary. 114

■CHAPTER 3 Dijit . 115

Dijit at a Glance . 115

Getting Started with Dijit. 116

Declarative vs. Programmatic Dijits . 116

Common Dijit Methods and Attributes . 118

Dijits Directly Under the Dijit Namespace . 119

ColorPalette. 120

Dialog. 121

Editor . 122

InlineEditBox . 123

Menu, MenuItem, and MenuSeparator . 125

ProgressBar . 126

TitlePane . 127

Toolbar. 128

Tooltip . 130

Tree . 131

■CONTENTSviii

The dijit.form Package . 132

Button . 132

CheckBox . 133

ComboBox. 135

ComboButton . 136

CurrencyTextBox, DateTextBox, NumberTextBox,
and TimeTextBox . 137

DropDownButton . 140

HorizontalSlider and VerticalSlider . 141

NumberSpinner . 142

RadioButton . 143

TextBox . 144

Textarea. 145

ToggleButton . 146

ValidationTextBox . 147

The dijit.layout Package . 148

AccordionContainer and AccordionPane . 148

ContentPane . 150

LayoutContainer . 151

StackContainer and StackController. 152

TabContainer . 154

Summary. 156

■CHAPTER 4 DojoX . 157

dojox.charting . 158

Line Chart . 159

Area Chart . 160

Fancy-Pants Line Chart (StackedLines Chart) 161

Bar Chart . 161

dojox.collections . 162

ArrayList . 162

Dictionary . 166

Stack . 169

dojox.fx . 171

addClass() and removeClass() . 171

crossFade() . 173

highlight() . 175

sizeTo() . 177

slideBy() . 178

■CONTENTS ix

dojox.gfx . 179

Surface . 182

Line . 182

Polyline . 183

Rect . 183

Circle . 183

Ellipse . 184

Text . 184

applyTransform() . 184

dojox.grid . 185

dojox.math . 188

degreesToRadians() and radiansToDegrees() 190

distance(). 190

factoral() . 191

gaussian() . 191

midpoint() . 191

range() . 192

sd(), or Standard Deviation. 192

dojox.string. 192

Builder . 194

sprintf() . 195

dojox.timing . 195

Timer . 195

Sequence . 197

dojox.uuid . 199

dojox.validate . 202

isEmailAddress(). 204

isInRange() . 205

isIpAddress() . 205

isNumberFormat() . 205

isValidCreditCardNumber() . 205

isValidIsbn(). 206

isValidLuhn() . 206

dojox.widget . 206

Fisheye List . 206

TimeSpinner . 206

Toaster. 208

Summary . 211

■CONTENTSx

PART 2 ■ ■ ■ The Projects

■CHAPTER 5 That Human Touch: Contact Manager and
Client-Side Persistence . 215

Requirements and Goals . 215

How We Will Pull It Off . 216

Dojo and Cookies . 217

The Dojo Storage System. 218

Gears . 220

Dissecting the Solution. 223

Writing styles.css. 226

Writing dojoStyles.css. 229

Writing index.htm. 230

Writing goodbye.htm. 240

Writing EventHandlers.js. 240

Writing Contact.js. 245

Writing ContactManager.js. 250

Writing DataManager.js . 256

Suggested Exercises. 262

Summary. 263

■CHAPTER 6 A Place for Your Stuff: Dojo Code Cabinet. 265

Requirements and Goals . 265

How We Will Pull It Off . 266

The dojo.data Namespace . 266

Gears Database Component . 268

Dissecting the Solution. 270

Writing index.htm. 271

Writing styles.css. 293

Writing CodeCabinet.js . 295

Suggested Exercises. 327

Summary. 328

■CHAPTER 7 Idiot Blob: The Game! . 329

Requirements and Goals . 329

How We Will Pull It Off . 331

Revenge of the Demented Video Game Designer. 332

■CONTENTS xi

Dissecting the Solution. 333

Writing index.htm. 335

Writing styles.css. 342

Writing LevelMaps.js . 346

Writing GraphicsSubsystem.js. 348

Writing GameClass.js . 365

Suggested Exercises. 376

Summary. 377

■CHAPTER 8 When the Yellow Pages Just Isn’t Cool Enough:
Local Business Search . 379

Application Requirements and Goals . 380

The Yahoo APIs and the Dynamic <script> Tag Trick. 381

JSON-P and Dojo . 384

Yahoo Web Services Registration . 385

Yahoo Local Search Service. 386

Yahoo Maps Map Image Service. 389

Dissecting the Solution. 391

Writing index.htm. 392

Writing styles.css. 408

Writing App.js . 411

Suggested Exercises. 439

Summary. 440

■INDEX . 441

■CONTENTSxii

About the Author

■FRANK W. ZAMMETTI is a Sun worshipper who never really got over the cancellation of The
Greatest American Hero in the ’80s. He is an avid indoorsman who spends his time contem-
plating all the possible ways he may one day depart this mortal coil involving tomatoes, giant
foam fingers, and/or caterpillars. In addition, Frank is a developer of software applications for
a large, global bank. He is a father, husband, and walker of the family dog. He lives, works, but
mostly plays in the northeastern United States (although clearly not all of his mind inhabits
that same location). Frank has now written four books, including this one, covering a wide
range of topics from JavaScript, DOM Scripting, and Ajax to DWR (an Ajax library) to Ajax with
Java technologies, and of course Dojo, which includes Ajax functionality. He continues to work
on various world-changing technological advancements on the side that will likely be released
as finished products by real companies some time next week, as is usually the case with every
good idea he’s ever had. He is a contributor to a number of open source projects (even some
that probably would prefer he wasn’t!) and is leader/founder of a couple, too.

Frank also rarely takes anything seriously, in case you hadn’t figured that out by now!

xiii

About the Technical Reviewer

■HERMAN VAN ROSMALEN works as a developer/software architect for De Nederlandsche Bank
N.V., the central bank of the Netherlands. He has more than 20 years of experience in develop-
ing software applications in a variety of programming languages. Herman has been involved
in building mainframe, PC, and client/server applications. Since 2000, however, he has been
involved mainly in building all sorts of Java EE web-based applications. After working with
Struts for years (pre-1.0), he got interested in Ajax and joined the Java Web Parts open source
project in 2005. Herman also served as technical editor for the Apress titles Practical Ajax
Projects with Java Technology; Practical JavaScript, DOM Scripting, and Ajax Projects; and
Practical DWR 2 Projects. Herman lives in a small town, Pijnacker, in the Netherlands with his
wife Liesbeth and their children, Barbara, Leonie, and Ramon. You can reach him via e-mail at
herros@gmail.com.

xv

About the Illustrator

■ANTHONY VOLPE is the name of the dude who did the illustrations for this book. He has worked
on several video games for various platforms with author Frank Zammetti, including Invasion:
Trivia!, IO Lander, K&G Arcade, Spinshot, and Ajax Warrior. Anthony lives in Collegeville,
Pennsylvania, and works as a graphic designer and front-end web developer. His hobbies
include recording music, writing fiction, making video games, and going to karaoke bars to
make a spectacle of himself. To check out all the madness, go here: www.planetvolpe.com.
You’ll find that Anthony is a supremely multitalented guy and also a little . . . off-kilter . . . but
in a very good way!

xvii

Acknowledgments

This is actually one of the few places in this book where I’m (err, mostly) serious, not my
usual tongue-in-cheek self.

I quickly came to realize, upon writing the acknowledgments for my first book a few years
ago, that a project of this nature doesn’t get done without a lot of help from a lot of folks. Sure,
the author is effectively the engine driving things, but an engine without wheels, or a steering
wheel, or headlights, or a real good stereo system doesn’t make a car on its own, and such is
the case with writing a book.

So, I’d like to take this opportunity to thank all those who helped get this one out the door:
Steve Anglin, editor, for getting this thing going in the first place. Sofia Marchant, project
manager, who kept me on schedule throughout. Sharon Wilkey, copy editor, who made my
gibberish (somewhat) coherent. Laura Cheu, production editor, for making it all look good.
Herman van Rosmalen, technical reviewer extraordinaire, for making me pay attention to IE7.
Anthony Volpe, illustrator, for saving me from having to draw stick figures colored with
crayons. And also Joohn Choe, Jimi Browne, and Dominic Shakeshaft for making my experi-
ence with Apress what I’ve come to expect it to be: a very pleasant experience all around.

I’d also like to thank all the fine programmers contributing to the Dojo project itself.
Not only did your efforts enable me to write this book (and by extension to make some extra
money!), but you’ve also helped me get things done at my regular day job that would have
otherwise taken months of effort to do myself. I think I can safely speak for everyone using
Dojo when I say thank you very much; your efforts are most definitely appreciated.

Last but most definitely not least, I’d like to thank you, dear reader, for purchasing this
book. It’s cliché for sports figures to say they couldn’t do it without the fans, but there’s truth
in it, just as there’s truth in an author saying I couldn’t do it without the readers. You are very
much appreciated by this author!

Oh yeah, I almost forgot: thank you to the Higgs boson. None of us could’ve done any of it
without you! See you later!

xix

Introduction

I’ve been developing software for a long time, by anyone’s count: over 25 years, about 15 or so
of that “professionally” (meaning 15 years or so I’ve been getting paid to pretend I know what
I’m doing). I’ve been doing web development specifically for something like 10 or so of those
years. I can say, with all honesty, that I was ahead of the curve a number of times. I was writing
what we all now call RIAs back around 1998 (two of the apps I wrote in that time frame are still
in production, amazingly). I was one of those people who invented Ajax way back then, but
didn’t think it was anything special and didn’t come up with a cute name for it, and hence I am
not the one rich and famous for coining an acronym!

None of this is especially important, and I’m not even trying to impress you by saying any
of it. I’m just setting the foundation for being able to honestly say this: I’ve seen a lot. I’ve done
a lot of client-side development. I’ve seen the evolution from doing absolutely everything
yourself, dealing with all the complexities and cross-browser issues, to where we are today,
where you basically don’t write anything from scratch anymore, you find a good library (or
combination of libraries) and proceed from there. This is the same evolution that every other
programming language and/or platform has taken; it’s just the natural way of things. People
over time figure out what works, encapsulate it in some generic, reusable code (a library), and
everyone is the better for their efforts.

I’ve used a large number of libraries over the years too. Some have been very good; some
have been very bad; some, of course, were somewhere in the middle. One of the biggest today
also happens to be one of the best ever: Dojo.

However, Dojo in a way suffers from its own goodness: it’s a bit difficult to wrap your brain
around. It’s capable of doing so much that understanding what it can do, and understanding
how to use it, can be a challenge.

That’s why I’ve written this book. You see, I’ve used Dojo in a highly complex application
on the job, and I’ve seen the power it offers, but I’ve also faced the challenge I’m talking about
here. My hope is that this book saves you some of the effort I went through and gets you to the
point of using Dojo to its full (and considerable) potential quickly.

I also wrote this book because I believe many developers want and really need a “practi-
cal” way to learn something like Dojo. We’ve all seen the articles on the Net that purport to
teach you something but do so by showing you simplistic, contrived, limited examples. This
sometimes works, but often you hear people saying, “I wish I had a real application so I could
see what this article is talking about in a larger context.” Many developers like to have code
they can rip apart and comprehend on their own, and that’s what I’m trying to offer with this
book.

I think you’re going to like Dojo a lot. In fact, I know you will because it will make some
very complex things amazingly simple. It will save you a ton of time and effort and enable you
to impress your boss in short order! It is without question one of the most forward-looking
libraries out there today. There are always very cool new features being explored in Dojo, stuff
that you often wouldn’t even think is possible in a browser. It’s just plain fun to play with
sometimes!

xxi

Now, if you like and have even half as much fun with this book as you do with Dojo, then
we’re in good shape . . . but that’s my job, isn’t it?

Overview of This Book
This book is divided into two parts. The first is more “introductory” in nature:

• Chapter 1 is an introduction to Dojo. We’ll start by looking at client-side development
more generically, talk about JavaScript’s evolution a bit, and finally the evolution of
libraries. We’ll look at Dojo’s philosophy, its overall structure, and some of what it offers.

• Chapter 2 is where we’ll delve into the first major component of Dojo: Core. We’ll see
many of the functions it has to offer, and see examples of each. (Yes, these are small,
contrived examples, contrary to what I’ve said elsewhere, but that’s what’s needed in
this section.)

• Chapter 3 is a detailed look at Dijit, which is where the Dojo GUI widgets are housed.

• Chapter 4 takes a look at DojoX, where the eXperimental components in Dojo live (and,
in my opinion, where some of the very coolest parts of Dojo can be found).

In Part 2 we’ll jump into the four applications:

• Chapter 5 is where we’ll build a contact management application that uses the Dojo
storage system to store contacts client-side. We’ll get a look at our first dijit too, as well
as an introduction to Google’s Gears project.

• Chapter 6 presents the code cabinet, an application where you can store code snippets,
categorize them, and search for them. We’ll get into Dijit a great deal more and see
Dojo’s data abstraction layer.

• Chapter 7 gives you a break from the more serious applications and shows you how to
create a game using Dojo. You’ll see Dojo’s extensive graphics capabilities in action
here.

• Chapter 8 is where you’ll find a mashup that uses some publicly available web services
to look for businesses around a given area, and show a map of that business. You’ll be
able to store favorites client-side with this application. You’ll see much more of Dijit,
the storage system, and lots of Core functionality.

There’s lots to cover, but by the end I believe you’ll have a good feel for Dojo and will be
able to leap ahead in your own projects with it.

Obtaining This Book’s Source Code
I remember the days when programming books came with a CD containing all the source
code presented in the book. These days, with the advent of the Internet, publishers can frankly
save some money, and ultimately generate more profit, by using the Internet to provide that
source code, and that’s precisely the case with this book.

■INTRODUCTIONxxii

To obtain the source code for this book, hop on over to www.apress.com and click the
Source Code/Download link. Find this book in the list and you’ll be able to pull down a (fairly
large) archive with all the code.

Please note that this book is written with the assumption that you have done this, and
have the code ready to look at. Unfortunately, when writing a book you sometimes have to
make compromises in the interest of keeping the page count down (and also of not having 50
pages of code in a row, which no one would want to read!). This compromise often means that
some of the code isn’t printed in the book, and such is the case here. I have a personal philoso-
phy that you should be able to read a programming book in the bathroom, gross as that may
seem! Therefore, I’ve tried very hard to show as much code as possible, and to always show the
truly pertinent parts when I couldn’t show something in its entirety. Still, it is assumed that
you have the code, can (or already have) played with the applications when you begin each
chapter, and can refer to the full code as needed. This will all enhance your ability to under-
stand things as you progress through the chapters.

Besides that, the applications are fun to play with, so if for no other reason than that,
download the source bundle and have it available before you go too much further.

Obtaining Updates for This Book
No expense has been spared to ensure the accuracy and correctness of everything in this
book. We’ve sacrificed goats to the gods, paid off politicians, tossed salt over our shoulders,
and otherwise worked very hard to do our best.

All of that likely won’t matter, though, because we’re human, and mistakes unfortunately
happen.

Because of this, a current errata list is available on the home page for this book on the
Apress web site. You can, and I thank you in advance if you do, submit errata for anything you
find. Hopefully you won’t need to, but few books of this nature get through unscathed. Every-
one on the team that made this book happen has done their best to make this one of those few
books, but you never know.

I personally apologize unreservedly in advance. I know that I’ll rue the day mistakes are
found. (Rue the day? Who talks like that?) If you find any, I’ll buy you a car. I don’t have a car;
it’s my dad’s. But then again, didn’t anyone ever tell you to make sure your optics are clean?

Contacting the Author
Like most authors, I despise people and like to interact with them as little as possible. I’m a
hermit who lives beyond the Dune Sea, content to make Sand People run trembling in fear
from my ability to throw weird sounds wherever I choose.

But, if you’d like to contact me anyway (perhaps you have some droids you believe may be
mine?), you can contact me at fzammetti@omnytex.com.

(That was of course sarcastic. I don’t despise people. Well, some of them, but that’s for
another book. Feel free to contact me about anything you want. Sending money would be
better, but I’ll take a “hello, how you doin’” too!)

■INTRODUCTION xxiii

Setting the Table

There are two ways to write error-free programs; only the third one works.
—Alan J. Perlis

Computer programming is tremendous fun. Like music, it is a skill that derives from an

unknown blend of innate talent and constant practice. Like drawing, it can be shaped to

a variety of ends—commercial, artistic, and pure entertainment. Programmers have a

well-deserved reputation for working long hours but are rarely credited with being

driven by creative fevers. Programmers talk about software development on weekends,

vacations, and over meals not because they lack imagination, but because their imagi-

nation reveals worlds that others cannot see.
—Bruce Eckel and Larry O’Brien

No matter how slick the demo is in rehearsal, when you do it in front of a live audience

the probability of a flawless presentation is inversely proportional to the number of peo-

ple watching, raised to the power of the amount of money involved.
—Mark Gibbs

Most software today is very much like an Egyptian pyramid with millions of bricks piled

on top of each other, with no structural integrity, but just done by brute force and thou-

sands of slaves.
—Alan Kay

I would be delighted to offer any advice I can on understanding women. When I have

some, I’ll let you know.
—Captain Jean-Luc Picard

There comes a time when you look into the mirror and realize that what you see is all

that you will ever be. Then you accept it, or you kill yourself. Or you stop looking into

mirrors.
—Londo Mollari

P A R T 1

Introduction to Dojo

The evolution of client-side development has been a remarkable journey spread out over a
very short period of time. From the early days, which were only ten years or so ago, to the
present, we have seen a huge change in the way things are done, the expectations placed upon
those doing the work, and the results they generate. No longer is it acceptable for someone
lacking a real programming background to churn out code for a web page in his or her spare
time. No, there’s a certain degree of professionalism now asked of us developers, and it’s our
job to figure out how to deliver the required results in what is usually a very compressed time
frame.

Fortunately, because of this evolution, delivering powerful, good-looking, professional-
quality web-based applications is far easier than ever before. You are no longer on your own,
required to write every last bit of code, or at least to find snippets here and there and cobble it
all together into some sort of coherent whole. No, those days are, for the most part, long gone,
and it’s thanks to things like Dojo that I can say that.

Before we get to Dojo, though, and all the wonderfulness it brings us, let’s look back for a
little bit of a history lesson, because only then can you fully appreciate what Dojo brings to the
table.

JavaScript: A Study in Evolution
In honor of Charles Darwin, let’s now take a brief tour of JavaScript and how it’s evolved over
time. This is in no way meant to be a detailed history lesson, but I think it’ll give you a good
overview of the past decade or so of client-side web development involving JavaScript.

Birth of a Language
The year was 1995, and the Web was still very much in its infancy. It’s fair to say that the vast
majority of computer users couldn’t tell you what a web site was at that point, and most devel-
opers couldn’t build one without doing a lot of research and on-the-job learning. Microsoft
was really just beginning to realize that the Internet was going to matter. And Google was still
just a made-up term from an old The Little Rascals episode.1

3

C H A P T E R 1

1. The word google was first used in the 1927 Little Rascals silent film Dog Heaven, to refer to having a
drink of water. See http://experts.about.com/e/g/go/Google.htm. Although this reference does not
state it was the first use of the word, numerous other sources on the Web indicate it was. I wouldn’t bet
all my money on this if I ever made it to the finals of Jeopardy, but it should be good enough for polite
party conversation!

Netscape ruled the roost at that point, with its Navigator browser as the primary method
for most people to get on the Web. A new feature at the time, Java applets, was making people
stand up and take notice. However, one of the things they were noticing was that Java wasn’t as
accessible to many developers as some (specifically, Sun Microsystems, the creator of Java)
had hoped. Netscape needed something simpler and more accessible to the masses of devel-
opers it hoped to win over.

Enter Brendan Eich, formerly of MicroUnity Systems Engineering, a new hire at Netscape.
Brendan was given the task of leading development of a new, simple, lightweight language for
non-Java developers to use. Many of the growing legions of web developers, who often didn’t
have a full programming background, found Java’s object-oriented nature, compilation
requirements, and package and deployment requirements a little too much to tackle. Brendan
quickly realized that to make a language accessible to these developers, he would need to
make certain decisions, certain trade-offs. Among them, he decided that this new language
should be loosely typed and very dynamic by virtue of it being interpreted.

The language he created was initially called LiveWire, but its name was pretty quickly
changed to LiveScript, owing to its dynamic nature. However, as is all too often the case, some
marketing drones got hold of it and decided to call it JavaScript, to ride the coattails of Java.
This change was actually implemented before the end of the Navigator 2.0 beta cycle.2 So, for
all intents and purposes, JavaScript was known as JavaScript from the beginning. At least the
marketing folks were smart enough to get Sun involved. On December 4, 1995, both Netscape
and Sun jointly announced JavaScript, terming it “complementary” to both Hypertext Markup
Language (HTML) and Java (one of the initial reasons for its creation was to help web design-
ers manipulate Java applets easier, so this actually made some sense). The shame of all this is
that for years to come, JavaScript and Java would be continually confused on mailing lists,
message forums, and in general by developers and the web-surfing public alike!

It didn’t take long for JavaScript to become something of a phenomenon, although
tellingly on its own, rather than in the context of controlling applets. Web designers were just
beginning to take the formerly static Web and make it more dynamic, more reactive to the
user, and more multimedia. People were starting to try to create interactive and sophisticated
(relatively speaking) user interfaces, and JavaScript was seen as a way to do that. Seemingly
simple things like swapping images on mouse events, which before then would have required
a bulky browser plug-in of some sort, became commonplace. In fact, this single application of
JavaScript, flipping images in response to user mouse events, was probably the most popular
usage of JavaScript for a long time. Manipulating forms, and, most usually, validating them,
was a close second in terms of early JavaScript usage. Document Object Model (DOM) manip-
ulation took a little bit longer to catch on for the most part, mostly because the early DOM
level 0, as it came to be known, was relatively simplistic, with form, link, and anchor manipu-
lation as the primary goals.

CHAPTER 1 ■ INTRODUCTION TO DOJO4

2. As a historical aside, you might be interested to know that version 2.0 of Netscape Navigator intro-
duced not one but two noteworthy features. Aside from JavaScript, frames were also introduced. Of
course, one of these has gained popularity, while the other tends to be shunned by the web developer
community at large, but that’s a story for another book!

Reasons for JavaScript’s Early Rise
What made JavaScript so popular so fast? Probably most important was the very low barrier to
entry. All you had to do was open any text editor, type in some code, save it, load that file in a
browser, and it worked! You didn’t need to go through a compilation cycle or package and
deploy it, none of that complex “programming” stuff. And no complicated integrated develop-
ment environment (IDE) was involved. It was really just as easy as saving a quick note to
yourself.

Tying in with the theme of a low barrier to entry was JavaScript’s apparent simplicity. You
didn’t have to worry about data types, because it was (and still is) a loosely typed language. It
wasn’t object-oriented, so you didn’t have to think about class hierarchies and the like. In fact,
you didn’t even have to deal with functions if you didn’t want to (and wanted your script to
execute immediately upon page loading). There was no multithreading to worry about or
generic collections classes to learn. In fact, the intrinsic JavaScript objects were very limited,
and thus quickly picked up by anyone with even just an inkling of programming ability. It was
precisely this seeming simplicity that led to a great many of the early problems.

Something Is Rotten in the State of JavaScript
Unfortunately, JavaScript’s infancy wasn’t all roses by any stretch, as you can see in Figure 1-1.
A number of highly publicized security flaws hurt its early reputation considerably. A flood of
books aimed squarely at nonprogrammers had the effect of getting a lot of people involved in
writing code who probably shouldn’t have been (at least, not as publicly as for a web site).

Figure 1-1. JavaScript: The ugly ducking of the programming world?

CHAPTER 1 ■ INTRODUCTION TO DOJO 5

Probably the biggest problem, however, was the frankly elitist attitude of many “real” pro-
grammers. They saw JavaScript’s lack of development tools (IDEs, debuggers, and so on), its
inability to be developed outside a browser (in some sort of test environment), and apparent
simplicity as indications that it was a script-kiddie language, something that would be used
only by amateurs, beginners, and hacks. For a long time, JavaScript was very much the ugly
duckling of the programming world. It was the Christina Crawford3 of the programming
world, forever being berated by her metaphorical mother, the “real” programmers of
the world.

■Note Script-kiddie is a term from the hacker underground that refers to a hacker who has no real ability
and instead relies on programs and existing scripts to perform his exploits. The term is now used in a more
generic sense to describe someone who relies on the ingenuity of others to get things done—for example,
coders who can Google real well and copy the code they find rather than writing it themselves. Make no
mistake, copying existing code is generally a good thing, but someone who isn’t ultimately capable of writing
the code if they had to is a script-kiddie.

The Unarguable Problems with JavaScript
Although it’s true that JavaScript wasn’t given a fair shake early on by programmers, some of
their criticisms were, without question, true. JavaScript was far from perfect in its first few iter-
ations, a fact I doubt that Netscape or Brendan Eich would dispute! As you’ll see, some of it
was a simple consequence of being a new technology that needed a few revisions to get it right
(the same problem Microsoft is so often accused of having), and some of it was, well, some-
thing else.

So, what were the issues that plagued early JavaScript? Several of them tend to stand out
above the rest: browser incompatibilities, memory usage, and performance.

Browsers for a long time implemented JavaScript in a myriad of different ways. Very sim-
ple things such as methods of the String object would frequently not work the same way in
one browser vs. another. (Anyone who remembers trying to do simple substring() calls on a
string around the 1996 time frame will know all too well about this!) Today, the differences in
JavaScript implementations are generally few and far between and tend to be rather easy to
work around. That’s certainly not to say you won’t occasionally be burned by differences, but
typically you’ll find that JavaScript itself is probably 99 percent or better compatible between
all the major browsers. It’s usually differences in the DOM, which there are still plenty of, that
can bite you from time to time.

CHAPTER 1 ■ INTRODUCTION TO DOJO6

3. Christina Crawford was the daughter of Joan Crawford, and her story is told in the classic movie
Mommy Dearest (www.imdb.com/title/tt0082766). Even if you don’t remember the movie, you almost
certainly remember the phrase “No more wire hangers!” uttered by Joan to Christina in what was
probably the most memorable scene in the movie.

Memory usage with early implementations also left a lot to be desired. JavaScript, being
an automatic garbage-collected language, leaves all the memory allocation/deallocation in
the hands of the browser and the JavaScript interpreter. It used to be common to find objects
gumming up the works long after they should have been destroyed. This is rightly considered
an outright bug in the JavaScript engine, but thankfully these types of things rarely occur
anymore. To be sure, you can have memory leaks in JavaScript, but they are a result of more-
sophisticated techniques being employed; it’s rarely the engine itself misbehaving.

Performance was a big problem for a very long time, and even today continues to be an
issue. In the early days, it was rare to see an arcade-type game written in JavaScript because
the performance of the JavaScript engines was just nowhere near good enough for that. Today,
games like that can be found with little problem. Performance problems definitely still exist,
and worse still they aren’t always consistent. String concatenation is known to be much slower
in Microsoft Internet Explorer today than in Mozilla Firefox, and it’s probably not even as fast
as it could be in Firefox. Still, overall, performance is hugely improved over what it once was.

As Ballmer Said: “Developers! Developers! Developers!...”
All that being said, though, there was one true reason JavaScript wasn’t embraced by everyone
from the get-go, and that’s developers themselves!

Early JavaScript developers discovered that they could do all sorts of whiz-bang tricks—
from fading the background color of a page when it loaded to having a colorful trail follow the
cursor around the page. You could see various types of scrolling text all over the place, as well
as different page-transition effects, such as wipes and the like. Although some of these effects
may look rather cool, they serve virtually no purpose other than as eye candy for the user.
Now, don’t get me wrong here, eye candy is great! There’s nothing I like more than checking
out a new screen saver or a new utility that adds effects to my Windows shell. It’s fun! But I
always find myself removing those things later, not only because they hurt system perform-
ance, but also because they quickly become annoying and distracting.

Here’s a quick test: if you are using Microsoft Windows, take a look at the Performance
options for your PC (accessed by right-clicking My Computer, selecting Properties, clicking
the Advanced tab, and clicking the Settings button under the Performance group). Did you
turn off the expanding and collapsing of windows when minimized and maximized? Did you
turn off shadows under the cursor? Did you disable the growing and shrinking of taskbar but-
tons when applications close? Many of us make it a habit to turn off this stuff, not only
because it makes our systems snappier (or at least gives that perception), but also because
some of it just gets in the way. Seeing my windows fly down to the taskbar when I minimize
them is pretty pointless. Now, you may argue that it depends on the implementation. On a
Macintosh, the effects that come into play when windows are minimized and maximized are
better and not as annoying—at least most people seem think that, and to a certain extent I
agree. But you still have to ask yourself whether the effect is helping you get work done. Is it
making you more productive? I dare say the answer is no for virtually anyone. So although
there may be degrees of annoyance and obtrusiveness, certain things are still generally annoy-
ing, obtrusive, and pointless. Unfortunately, this is what the term Dynamic HTML (DHTML)
means to many people, and while I wish it weren’t so, it isn’t at all an undeserved connotation
to carry. Some people even go so far as to say DHTML is the Devil’s buzzword!

CHAPTER 1 ■ INTRODUCTION TO DOJO 7

Early JavaScript developers were huge purveyors of such muck, and it got old pretty fast. I
don’t think it is going too far to say that some people began to question whether the Web was
worth it, based entirely on the perception that it was a playground and not something for seri-
ous business.4 A web site that annoys visitors with visual spam is not one they will likely use
again. And if you’re trying to make a living with that site and your company’s revenues depend
on it, that’s going to lead to bad news real fast!

This obviously was not a failing of the technology. Just because we have nuclear weapons
doesn’t mean we should be flinging them all over the place! I suppose equating nuclear war to
an annoying flashing thing on a web page is a bit of hyperbole, but the parallel is that just
because a technology exists and enables you to do something doesn’t necessarily mean you
should go off and do it.

ARE EFFECTS JUST THE DEANNA TROI OF THE ENTERPRISE BRIDGE CREW?
(READ: JUST FOR LOOKS)

Let’s tackle one question that often comes to mind first: why do we need effects at all? Isn’t it just a bunch of
superfluous eye candy that doesn’t serve much purpose other than to make people go “ooh” and “aah”?
Well, first off, if you’ve ever designed an application for someone else, you know that presentation is an
important part of the mix. The more people like how your application looks, the more they’ll like how it works,
whether it works well or not. It’s a relative measure. That’s the lesser reason, although one that should not be
quickly dismissed.

The much more important reason has do with how we perceive things. Look around you right now. Pick
up any object you want and move it somewhere else. Did the object just pop out from the starting point and
appear at the new location? No, of course not! It moved smoothly and deliberately from one place to another.
Guess what? This is how the world works! And furthermore, this is how our brains are wired to expect things
to work. When things don’t work that way, it’s jarring, confusing, and frustrating.

People use movement as a visual cue as to what’s going on. This is why modern operating systems are
beginning to add all sorts of whiz-bang features, such as windows collapsing and expanding. They aren’t just
eye candy. They do, in fact, serve a purpose: they help our brains maintain their focus where it should be and
on what interests us.

In a web application, the same is true. If you can slide something out of view and something else into
view, it tends to be more pleasant for the users, and more important, helps them be more productive by not
making them lose focus for even a small measure of time.

And seriously, how exactly does the ship’s shrink manage to always be around on the bridge? Is she
necessary personnel for running the Enterprise? I know, I know, she finally passed the bridge crew test and
was promoted to commander in the episode “Thine Own Self,” but still, she was always floating around the
bridge long before then. I suppose she was on the lookout for space madness or something, who knows.

CHAPTER 1 ■ INTRODUCTION TO DOJO8

4. I remember a television commercial of a bunch of web developers showing their newly created site to
their boss. The boss says there needs to be more flash, like a flaming logo. The developers look at him
a little funny and proceed to put a flaming logo on the page. It was pretty obvious to anyone watching
the commercial that the flaming logo served no useful purpose, and in fact, had the opposite effect as
was intended in that it made the site look amateurish. It’s so easy to abuse eye candy that it’s not even
funny!

So, when you hear DHTML, don’t automatically recoil in fear, as some do. This term still
accurately describes what we’re doing today from a purely technical definition. However, you
should, at the same time, recognize that the term does have a well-earned negative connota-
tion, brought on by the evils of early JavaScript developers,5 not the technology they were
using. And at the end of the day, that was the underlying source of the problems people saw
back then (and still today, although thankfully to a lesser extent).

Part of the evolution of the JavaScript developer was in starting to recognize when the
super-cool, neat-o, whiz-bang eye candy should be put aside. Developers began to realize that
what they were doing was actually counterproductive, because it was distracting and annoy-
ing in many cases. Instead, a wave of responsibility has been spreading over the past few
years. Some will say this is the single most important part of JavaScript’s overall evolution
toward acceptance.

You can still find just as many nifty-keen effects out there today as in the past, perhaps
even more so. But they tend to truly enhance the experience for the user. For example, with
the yellow fade effect (originated by 37signals, www.37signals.com), changes on a page are
highlighted briefly upon page reload and then quickly fade to their usual state. Spotting
changes after a page reload is often difficult, and this technique helps focus users on those
changes. It enhances users’ ability to work effectively. This is the type of responsible eye candy
that is in vogue today, and to virtually everyone, it is better than what came before.

■Note To see an example of the positive usage of the yellow fade effect, take a peek at the contact form
for Clearleft at http://clearleft.com/contact. Just click the Submit button without entering anything
and see what happens. You can also see the effect all over the place in the 37signals Basecamp product, at
www.basecamphq.com/ (you’ll need to sign up for a free account to play around). You can get a good sense
of where and why this seemingly minor (and relatively simple technically) technique has gained a great deal
of attention. Other 37signals products use this technique, too, so by all means explore; it’s always good to
learn from those near the top! And if you would like to go straight to the source, check Matthew Linderman’s
blog entry at www.37signals.com/svn/archives/000558.php.

Standardization: The Beginning of Sanity
In early 1996, shortly after its creation, JavaScript was submitted to the European Computer
Manufacturers Association (ECMA) for standardization. ECMA (www.ecma-international.org)
produced the specification called ECMAScript, which covered the core JavaScript syntax, and
a subset of DOM level 0. ECMAScript still exists today, and most browsers implement that
specification in one form or another. However, it is rare to hear people talk about ECMAScript
in place of JavaScript. The name has simply stuck in the collective consciousness for too long
to be replaced, but do be clear about it: they are describing the same thing, at least as far as
the thought process of most developers goes!

CHAPTER 1 ■ INTRODUCTION TO DOJO 9

5. I’m not only the hair club president, but I’m also a client. I have some old web sites in my archives
(thankfully, none are still live) with some really horrendous things on them! I certainly was not
immune to the DHTML whiz-bang disease. I had my share of flaming logos, believe me. I like to
think I’ve learned from my mistakes (and so would my boss).

The reason this standardization is so important is because it finally gave the browser ven-
dors a common target to shoot for, something they hadn’t had before. It was no longer about
Microsoft having its vision of what JavaScript should be, and Netscape of course knowing
what it should be, having created it and all. Now it was about hitting a well-defined target, and
only then building on top of it (think enhanced feature sets that one browser might provide
that another might not). At least if the underlying language implementation was based on a
common specification, we developers would no longer have to hit a moving target (well, to
be fair, not quite as active a moving target anyway). Without standardization, it’s likely that
JavaScript would never have become what it is today, wouldn’t be used as much as it is today.
Either that or we’d have settled on one browser over another just to make our lives as develop-
ers easier, and that’s no more a desirable outcome than no JavaScript at all.

The Times They Are a Changin’: The Experienced Come to Bear
After the initial wave of relatively inexperienced developers using JavaScript, and many times
doing so poorly, the next iteration began to emerge. Certain common mistakes were recog-
nized and began to be rectified.

Perhaps most important of all, the more-experienced programmers who had initially
shunned JavaScript began to see its power and brought their talents to bear on it. Those with
true computer science backgrounds began to take a look and point out the mistakes and ways
to fix them. With that input came something akin to the Renaissance. Ideas began to flow, and
improvements started to be made. It wasn’t the final destination, but an important port of call
along the way.

Although a lot of the early problems with JavaScript undoubtedly did come from less-
experienced programmers getting into the mix, certainly that didn’t account for everything.
Overnight, thousands of otherwise good, experienced programmers got stupid all at once!

As I mentioned earlier, working on JavaScript was almost too easy in a sense: throw some
code in a file, fire up a browser, and off you go! In most other languages, you have a compile
cycle, which tends to ferret out a lot of problems. Then you often have static code-analysis
tools, which find even more things to fix. You may even have a code formatter to enforce the
appropriate coding standards. None of this is (typically) present when working with
JavaScript. I put typically in parentheses because modern development tools now exist to give
you all of these features, save for the compile part at least.

Maybe “the bubble” had something to do with it, too. I’m referring to that period when
everyone thought they had the surefire way to make a buck off the Web, and when the public
was just starting to get online and figure out how cool a place the Web was. There were 80-
hour work weeks, powered by Jolt Cola, jelly donuts, and the incessant chant of some flower
shirt–wearing, Segway-riding (okay, Segway wasn’t out then, but work with me here!) recent
college grad with an MBA, who promised us that all those stock options would be worth more
than we could count. Maybe that caused everyone to just slap the code together so it at least
appeared to work, in a pointless attempt to implement the business plan, and is really what
caused all the trouble.

Yeah, you’re right, probably not. Ahem.
The good habits that developers had learned over time, such as code formatting,

commenting, and logical code structure, had to essentially be relearned in the context of
JavaScript. And, of course, those who hadn’t done much programming before had to learn it
all anew. But learn they did, and from that point, JavaScript started to become something

CHAPTER 1 ■ INTRODUCTION TO DOJO10

“professional” developers didn’t thumb their noses at as a reflex act. It could start to become
a first-class citizen, now that developers had the knowledge of how to do it right.

Of course, the last step was yet to come.

What’s Old Is New Again: JavaScript in the Present
We’ve arrived at the present time, meaning the past three to four years. JavaScript has really
come into its own.

The whole Ajax movement has certainly been the biggest catalyst for getting JavaScript
on a more solid footing, but even a bit before then, things were starting to come around. The
desire to build fancier, more-reactive, user-friendly, and ultimately fat-client-like web appli-
cations drove the need and desire to do more on the client. Performance considerations
certainly played a role, too, but I suspect a lot smaller one than many people tend to think.

The bottom line is that JavaScript has moved pretty quickly into the realm of first-class
citizen, the realm of “professional” development, as Figure 1-2 demonstrates. Perhaps the best
evidence of this is that you can now find terms such as JavaScript Engineer, JavaScript Lead,
and Senior JavaScript Developer used to describe job offerings on most job search sites. And
people now say them with a straight face during an interview!

Figure 1-2. No longer the object of scorn, JavaScript now gets the respect it deserves.

So, aside from Ajax, what are the reasons for this relatively current trend toward
respectability that JavaScript seems to have earned? Let’s have a look.

Browser compatibility isn’t so much of an issue anymore, at least when it comes to
JavaScript itself (DOM differences are still prevalent, though). Object-oriented design has
found its way into JavaScript, leading to much better overall code structure. Graceful degra-
dation is commonplace nowadays, so web sites continue to work even when JavaScript isn’t
available. Even internationalization and accessibility for those with disabilities is often fac-
tored into the design of the code. In fact, this is all a way of saying that JavaScript developers
have learned enough that they can be far more responsible with what they design than they

CHAPTER 1 ■ INTRODUCTION TO DOJO 11

ever could before. JavaScript is no longer something for script-kiddies to mess with but now
provides a respectable vocation for a developer to be in!

The White Knight Arrives: JavaScript Libraries
JavaScript libraries have grown leaps and bounds over just the past few years, and this is
perhaps one of the biggest reasons JavaScript has gone from pariah to accepted tool in the
toolbox of good web developers. It used to be that you could spend a few hours scouring the
Web looking for a particular piece of code, and you would eventually find it. Often, you might
have to, ahem, “appropriate” it from some web site. Many times, you could find it on one of a
handful of “script sites” that were there expressly to supply developers with JavaScript snip-
pets for their own use. If you were fortunate enough to find a true library rather than some
stand-alone snippets of code, you couldn’t count on its quality or support down the road.

Using libraries is a Good Thing™, as Ogar from Figure 1-3 can attest (and which Tor is
finding out the hard way).

Larger libraries that provide all sorts of bells and whistles, as exist in the big-brother
world of Java, C++, PHP, and other languages, are a more recent development in the world of
JavaScript. In many ways, we are now in a golden age, and you can find almost more options
than you would want! While some libraries out there focus on one area or another (graphical
user interface, or GUI; widgets; Ajax; effects; and so on), other libraries try to be the proverbial
jack-of-all-trades, covering a wide variety of areas such as client-side storage, widgets, Ajax,
collections, basic JavaScript enhancements, and security.

Figure 1-3. Be like Ogar, not Tor: use those libraries; don’t always reinvent the wheel!

The one thing all these libraries have in common is that their quality is light-years beyond
what came before, and they all will make your life considerably easier! Not only are they more
solid, but they are better supported than ever before with real organizations, both commercial
and otherwise, backing them up.

There’s usually no sense in reinventing the wheel, so libraries are indeed a good thing. If
you are implementing an application using Ajax techniques, unless you need absolute control
over every detail, I can’t think of a good reason not to use a library for it. If you know that your
UI design requires some more-advanced widgets that the browser doesn’t natively provide,
these libraries can be invaluable.

There are oodles of libraries out there today, all with their own pluses and minuses. Most
of the bigger names out there—jQuery, the Yahoo! UI Library (YUI), Direct Web Remoting

CHAPTER 1 ■ INTRODUCTION TO DOJO12

(DWR), Prototype, script.aculo.us, MooTools, and Rico, just to name a few—are all top-notch,
and you can hardly go wrong picking one or the other. However, they all have a somewhat
narrow focus, for the most part. jQuery is about accessing parts of the DOM as efficiently as
possible. YUI is about widgets. DWR is about Ajax. Script.aculo.us is about effects, as is Rico.
Prototype and MooTools are both a bit more general-purpose in nature, which is closer in
philosophy to the library we’re here to discuss, that of course being Dojo.

Without further ado, let’s meet the star of the show, the Dojo Toolkit!

The Cream of the Crop: Introducing Dojo!
Dojo, or more precisely, the Dojo Toolkit (but from here on out it’ll be just Dojo for short) is an
open source JavaScript library. No surprise there! Dojo is licensed under either the Academic
Free License (AFL) or the BSD license. The AFL is the more liberal of the two and is favored by
the Dojo Foundation, which is the parent foundation under which Dojo lives. However, the
Free Software Foundation (FSF) has created some ambiguity between the AFL and the two
licenses that the FSF is famous for concocting: the GNU General Public License (GPL) and
Lesser General Public License (LGPL). So, the fine folks at Dojo give you the choice to use
the BSD license or the AFL, the BSD license being compatible with both the GPL and LGPL
licenses, as the FSF says.

Dojo seeks to be your “one-stop shop” for all your JavaScript needs. Many libraries out
there focus on just one or two areas, which means that you as a developer will usually have to
combine two or more libraries to get everything you need done. With Dojo, that’s not the case.
Dojo covers all the bases, from core JavaScript enhancements to UI widgets, from browser-
independent drawing functions to offline storage capabilities.

The kicker to it all, though, is that Dojo does this well! I bet you’ve seen libraries that
purport to do it all, and in fact they do pretty much cover all the bases, yet they fail in one
important regard: they’re not very good! They tend to have lots of bugs, incomplete function-
ality, and no support for any of it. Dojo turns that idea upside-down and not only gives you
virtually everything you’d need to create rich modern web applications, but enables you to get
everything from the same source, and that’s definitely a plus.

There’s an underlying philosophy to Dojo, and a big part of it is what I just talked about.
But before I get any further into that, let’s step back and take a quick look at how Dojo came to
be in the first place.

Let’s Take It from the Top: A Brief History of Dojo
The year was 2004. The air was musky. Oh wait, sorry, I thought I was writing a novel for a
moment. Anyway, the year was 2004, early 2004 to be precise. A gentleman by the name of
Alex Russell was working for a company named Informatica doing DHTML development. Alex
was the creator of a library called netWindows that allowed for creation of a windowed inter-
face (much like the Windows operating system, which was unfortunate as you’ll see!). He
began looking to hire someone to help him in that work, and so some prominent members of
the DHTML programming community on the Web were contacted. This need led to a more
generalized discussion among the DHTML community about the future of DHTML, and web
development overall.

Ultimately, the job (one of them as it turns out) went to Dylan Schiemann (the other job
went to David Schontzler, who worked at Informatica for the summer). As the job progressed,

CHAPTER 1 ■ INTRODUCTION TO DOJO 13

Alex and Dylan, along with some others, started to have discussions about developing what
would be a “standard” library for JavaScript, much like the standard libraries that exist for
most other languages, such as C for instance.

A new mailing list (ng-html, which later became the dojo-developer list) was created, ini-
tially with folks including Aaron Boodman, Dylan Schiemann, Tom Trenka, Simon Willison,
Joyce Park, Mark Anderson, and Leonard Lin on it. Discussions on licensing, intellectual prop-
erty (IP) rights, coding standards, and such began in earnest. After not too long a time, the
really difficult job began.

That job, of course, being what the heck to name the whole thing!
A while earlier, Alex had received a cease-and-desist letter from Microsoft over his use of

the word windows in his netWindows project. Seriously! I mean, I like to think I’m a pretty cre-
ative guy, but even I couldn’t make up something that wacky! Which reminds me, I need to go
trademark the terms sock, sky, person, and water. But I digress. The folks on the mailing list
tossed around a bunch of ideas with one of the stated goals (I’d be willing to guess one of the
top one or two goals!) to make it something that wouldn’t get them sued. Leonard Lin pro-
posed the name Dojo, and the rest was history.

The first early code was committed by Alex and Dylan, with the support of Informatica.
Soon after, two companies, JotSpot and Renkoo, got behind the project and provided early
support. By this point, good momentum was starting to build on the mailing list, with every-
one starting to contribute bits and pieces they had lying around, and a JavaScript library was
born!

The Dojo Foundation was founded in 2005 to house the copyrights for the Dojo code. The
foundation is a 501(c)(6) organization, which is a type of tax-exempt nonprofit organization
under the United States Internal Revenue Service code. Alex serves as the president of the
foundation, and Dylan is the Secretary/Treasurer.

None of this is terribly important to us code monkeys, I know! But it’s interesting to know
the history nonetheless, and with those details embedded in our brains, we can move on to
more-interesting things, starting with the underlying philosophy behind Dojo.

CODE MONKEY? WHAT DID YOU JUST CALL ME?!?

Some people consider the term code monkey to be derogatory, but I never have. To me, a code monkey is
someone who programs for a living and enjoys writing code. I suppose by that definition you wouldn’t even
have to earn a living from programming, so long as you love hacking bits. Either way, it’s all about the code!

By the way, just because someone is a code monkey doesn’t mean they can’t do architecture, and vice
versa. If you like all of the facets of building software, if you like being up ’til all hours of the night trying to
figure out why your custom-built double-linked list is corrupting elements when you modify them, if you like
playing with that new open source library for no other reason than you’re curious, if you like the feeling you
get from seeing a working application come spewing out the back end of a development cycle (even if it’s
some otherwise dull business application), then you’re a code monkey, plain and simple, and you should
never take offense to being called that name.

Of course, some people do mean it in a derogatory way, and you’ll know who they are, in which case
you should be a good little code monkey and throw feces at them. (Frank Zammetti and Apress cannot be
held liable if you actually follow this advice!)

CHAPTER 1 ■ INTRODUCTION TO DOJO14

Oh yes, and no discussion of the term code monkey would be complete with referencing the fantastic
parody song “Code Monkey” by one Jonathan Coulton. His web site is here: www.jonathancoulton.com.
Sadly, at the time I wrote this, it appeared to be having problems. Hopefully they are just temporary, but in
any case, if you like Weird Al–style funny songs and want to hear a good one about us code monkeys, of
which I am proudly one, try that site, and failing that, spend a few minutes with Google trying to find it. (I
don’t even think the Recording Industry Association of America, or RIAA, the American organization famous
for suing grandmothers, children, and even dead people for illegally downloading pirated music, will have a
problem with it, but you never can tell, so I’m not suggesting any file-sharing networks you might try!)

The Philosophy of Dojo
Dojo’s development has been driven by a core philosophy instilled in the project by those
founding members mentioned earlier, and nurtured since by additional contributors who
have taken part in making Dojo what it is today. The underlying philosophy is an important
aspect of any open source project for us, consumers of the project, to understand. Why is that?

Well, to begin with, understanding the philosophy can give you a feeling of comfort with
the project. When you use open source, you are essentially counting on two things: support of
those who wrote the code, and the code itself. Being open source means you can get in there
and maintain the code as necessary, which is great if the original authors go away. Still, espe-
cially if you work in a corporate environment where you may well be betting the future of your
company on an open source project, you really want to have some “warm fuzzies” with regard
to the prospect of the original authors sticking around to help you when you run into trouble.

More than that, you want to have some understanding of what they’re thinking, what
they plan to do, and how they plan to do it. An all-volunteer open source project has no real
obligation to provide any of that, yet most do because they recognize a certain degree of civil
responsibility, so to speak. They recognize that just dumping code into the wild, no matter
how good or well-intentioned the motives are, isn’t all there is to it. Those involved in most
projects feel they have some degree of responsibility to support those who choose to use their
code. I’m not talking about coming to their houses and helping them use the code, nor am I
talking about reacting to every last issue or feature suggestion everyone makes. It’s volunteer
work after all. But there’s a certain “something” there, for most people, a certain degree of
responsibility that they feel obligated to meet.

The Dojo team clearly has that sense of responsibility because they’ve gone so far as to
clearly spell out the philosophy that drives them. Because I’ve seen it written in a couple of
places in a couple of different ways, I’ll paraphrase the tenets of the philosophy, try to synthe-
size it into my own words:

• People should want to use your code. I’ve seen this stated as “minimize the barrier to
entry.” This covers quite a bit of ground, from how the code is packaged, how it’s
licensed, how it’s designed, how easy it is to get started with, how well it’s documented,
and so on. The point is, the Dojo team tries to reduce the number of reasons anyone
would have for not choosing Dojo. You could probably sum it up concisely by simply
saying this: produce the best possible code in the best possible way, given the talents
of those involved. That’s a great motivation and a great guiding principle for any
community-driven project.

CHAPTER 1 ■ INTRODUCTION TO DOJO 15

• Performance is a secondary concern to ease of use. Let me head off a negative thought
at the pass here: this in no way, shape, or form implies that Dojo isn’t high performance,
nor does it imply that the Dojo team doesn’t care about performance and strive for it.
Quite the opposite, in fact! What it means is that their primary concern is ensuring that
the consumers of the library have as easy a time consuming it as possible (and some-
times at the expense of it being more difficult and complex for the library developers
themselves). When that goal has been satisfactorily met, only then is it time to kick per-
formance up a notch. You may well have heard the saying about never prematurely
optimizing code and all the evils that can lead to. This is a variation on that theme.

• Write code that is as simple as possible, but no simpler. Conversely, write code that is
only as complex as it needs to be. Don’t try to do more than necessary. This is all a way
of saying that if the environment the code is running in (read: the browser) can do
something, there’s no need to do a bunch of heavy lifting to duplicate that functionality
in JavaScript. Fill in the gaps between JavaScript and the browser, but don’t introduce
more pieces than are truly necessary.

• Try to be a “full-stack” library. Dojo tries to be everything to everyone, and tries to do so
with a high level of quality, and by and large it succeeds. While other libraries may pick
an area or two and focus on them, Dojo tries to do it all so you don’t have to worry
about the potential difficulties of meshing two or more libraries together to meet all
your needs. Much like Java/Java Platform, Enterprise Edition (Java EE) or .NET tries to
cover all the bases, so too does Dojo for the JavaScript/web-client world.

• Collaboration is the way. Dojo has, from the outset, been all about talented individuals
with similar goals coming together to make something better then they likely could
have on their own. This is true of any good community-driven project, and Dojo is cer-
tainly no exception.

The Dojo team has also clearly indicated in their own documentation that although these
are the goals the project strives for, they may not all be met, or met as fully as the team would
like, all the time. The point is, as developers who may look to use Dojo, we know what guides
them, we know their underlying thought process, and that’s extremely valuable. We can also
clearly see that the members of the team, all of whom one presumes buys into these guiding
principles, share that sense of civic responsibility and are trying to do right by everyone, to put
it in simplest terms. This has to give you a good feeling, a feeling of confidence, in your choice
to use Dojo. Indeed, any community-driven/open source project that doesn’t seem to share
these same goals is likely one you’d be better off avoiding!

The Holy Trinity: The Three Components of Dojo
A long time ago, finding what you needed in Dojo was quite a challenge. There didn’t seem to
be as much rhyme or reason to the overall structure as you might like. In the end, Dojo users
spent a lot of time hunting things down.

That, I’m happy to say, is no longer the case! The Dojo team has now organized the project
into three high-level conceptual components, each with a specific focus. Figure 1-4 shows the
breakdown.

CHAPTER 1 ■ INTRODUCTION TO DOJO16

Figure 1-4. Dojo’s three conceptual components. (Note: These are not necessarily scaled to reflect
their real sizes in terms of their percentage of the overall Dojo pie.)

The Holy Trinity, as I like to call it, consists of Core, Dijit, and DojoX. Let’s look at each part
in turn, at a high level, to see what they’re all about.

Core
Like the solid foundation home builders strive to build on, Core provides everything else in
Dojo a great foundation to build on. More than that, though, Core offers you, as a JavaScript
developer, a whole host of functionality to build your own applications on top of.

As you’ll see shortly, using Dojo begins with importing dojo.js. What this does for you, in
a small amount of space (23KB of code at the time of this writing) is automatically give you a
ton of functionality. Beyond that, you’ll use the Dojo include() mechanism (again, you’ll see
this in action very shortly), which enables you to “pull in” other parts of Dojo. As far as Core
goes, this gives you the ability to bring in more “base” functionality, which is possible because
Dojo is designed with a modular approach. Don’t worry, this will all make sense very soon. The
point for now is simply that Core is, in a sense, split in half: those things you get automatically
all the time when using Dojo, and those things that are still part of Core but which you have to
explicitly “bring in” to your page.

There’s a ton of stuff in Core, and you frankly won’t even see all of it in this book. There’s
simply too much to cover, unless the entire book were about Core. Still, I’ll do my best to cover
and then use in the projects those things you’re likely to use most, and as much other stuff as
I can. In the meantime, let’s run down what’s in Core, at a very high level. As you dissect the
projects later in the book, you’ll see a lot of this in more detail. Table 1-1 and Table 1-2 provide
this high-level look. Table 1-1 lists the stuff you can access immediately just by virtue of
including dojo.js on your page, and Table 1-2 shows the “extra” stuff that’s part of Core but
that you have to include() in your page explicitly.

Table 1-1. “Automatic” Dojo Core Functionality

Core Functionality Group Description

Browser detection Dojo can tell you whether your application is running in Internet
Explorer, Firefox, Opera, Konquerer, and even whether the client
is a web browser!

JSON encoding/decoding Dojo provides functions to turn any object into JavaScript Object
Notation (JSON) string, a standard way to represent JavaScript
objects, and to turn a JSON string into a JavaScript object.

Continued

CHAPTER 1 ■ INTRODUCTION TO DOJO 17

Table 1-1. Continued

Core Functionality Group Description

Package loading The Dojo include() mechanism enables modular components
to be loaded in a way similar to how packages are handled in
languages such as Java and C#.

Powerful Ajax support No modern JavaScript library that purports to be general-
purpose would be worth its salt if it didn’t include Ajax
functionality, and Dojo’s is top-notch. You can quickly and easily
make remote calls for content from your client code, all without
having to worry about all the potentially sticky issues that can
sometimes come into play.

Unified events Dojo provides a way to hook events to objects of virtually any
kind in a consistent manner, allowing for aspect-oriented
programming (AOP) techniques in JavaScript. I’m not just talking
about the typical UI events you deal with all the time, such as
mouse click events, but events in a much broader sense. For
instance, when one function calls another, that’s an event you
can hook into.

Animation/effects Dojo provides all the nifty-keen UI animation effects that are all
the rage in the Web 2.0 world. Your UI will be flying, fading,
pulsing, sliding, expanding, and shrinking in no time with Dojo!

Asynchronous programming I think quoting the Dojo application programming interface
support (API) documentation here is not only the best bet in terms of

accuracy, but frankly it made me chuckle, and I think you will
too: “JavaScript has no threads, and even if it did, threads are
hard. Deferreds are a way of abstracting nonblocking events, such
as the final response to an XMLHttpRequest. Deferreds create a
promise to return a response at some point in the future and an
easy way to register your interest in receiving that response.” Or, to
paraphrase: Dojo provides publish-and-subscribe functionality
to JavaScript.

High-performance Cascading The ability to look up objects in the DOM of a page is the bread
Style Sheets (CSS) revision 3 and butter of modern JavaScript programmers, and having a
query engine way (or multiple ways even better!) to look up objects quickly

and efficiently is of paramount performance. Dojo has you
covered!

Language utilities Dojo supports all kinds of “enhancements” to JavaScript itself,
things like collections, array utilities, string manipulation
functions, and so on.

CSS style and positioning The ability to manipulate elements on a page, specifically their
utilities style and position attributes, is again a fundamental thing to

have to do, and Dojo has all sorts of goodies to help here. This in
many ways goes hand in hand with the query engine mentioned
previously because usually you’ll look up an element, and then
manipulate it, and Dojo can make it all a lot easier.

CHAPTER 1 ■ INTRODUCTION TO DOJO18

Core Functionality Group Description

Object-oriented programming When people first learn that they can do object-oriented
(OOP) support development in JavaScript, it’s something of an epiphany. Then,

especially if they’re more familiar with OOP in more-traditional
languages such as Java, they quickly begin to realize the
limitations. Inheritance, for instance, isn’t quite the same as in
Java, and there are some things you simply can’t do in JavaScript
(overloading methods, for instance, isn’t possible, at least not in
the accepted way). Dojo seeks to overcome most of these
limitations by implementing OOP capabilities outside the
language in a sense, giving you back all those neat tricks you’re
used to using elsewhere.

Memory leak protection Dojo provides some extra event handler hooks that enable you to
do some extra cleanup work when your page environment is
being destroyed, with the intent, of course, of avoiding memory
leaks that can happen in JavaScript sometimes.

Firebug integration Dojo includes built-in debugging support in the form of integra-
tion with the very popular Firebug extension to Firefox. More
than that, as you’ll see in the next section, it provides a way to get
at least some of what Firebug gives you in browsers that don’t
have Firebug, such as Internet Explorer, without you having to
think about it.

Table 1-2. Functionality in Dojo Core That You Have to Manually Add to the Mix

Core Functionality Group Description

Unified data access Provides functions to read and write data independent of the
underlying mechanism

Universal debugging tools Provides Firebug Lite, which is a much slimmed-down port
(really just console logging) of the Firebug plug-in for Firefox to
Internet Explorer

Drag and drop Gives you the ability to implement drag-and-drop functions with
little effort

i18n support Internationalization of text strings on the client

Localizations More internationalization support

Date formatting Functions for formatting dates in various ways

Number formatting Functions for formatting numbers in various ways

String utilities Additional string functions including trim(), pad(), and
substitute()

Advanced Ajax transport layers Provides ways to execute Ajax requests without using the typical
XMLHttpRequest object, such as IFrames and JSON with Padding
(JSON-P)

Continued

CHAPTER 1 ■ INTRODUCTION TO DOJO 19

Table 1-2. Continued

Core Functionality Group Description

Cookie handling Provides functions for reading, writing, and otherwise
manipulating cookies

Extended animations Provides animations and effects built on top of the baseline
animations and effects you get automatically

Remote procedure calling Provides functions for executing remote procedure calls,
including JSON-P based services

Back button handling Provides functions for working with browser history

Baseline CSS styling Provides functionality for setting uniform font and element sizes

As you can see, there’s more variety in Dojo Core than there are alien species represented
in the cantina scene of Star Wars! It’s just the beginning, though, as the Dojo developers have
gone on to create two great sequels to Core: Dijit and DojoX. (Unlike George Lucas, who man-
aged only one great sequel with The Empire Strikes Back, plus one decent one with Return of
the Jedi. Of course, the less said about the three prequels the better, although I kind of like
Revenge of the Sith—the final fight scene was pretty intense—even though it still burns me
how quickly and easily Anakin turned; it just didn’t make sense.)

Oops, slight tangent there, sorry about that. Let’s move on to Dijit, shall we?

Dijit
Perhaps the number one thing that first draws people to Dojo is the widgets, and for good rea-
son: they are overall a very good batch of highly functional and good-looking UI components.
What’s more, they tend to be quite easy to work with, to get into your application.

What used to be a fairly disorganized collection of widgets is now a lot clearer because
they are all grouped together in one place, namely Dijit. (Get it? Dojo widget = Dijit.)

What makes Dojo widgets attractive? A few key points, which most people latch on to
pretty quickly, are summarized here:

• Theme support. All of the dijits are skinnable, meaning you can rather easily change
the look and feel of them just by writing some CSS. Dojo also comes with two built-in
themes: Tundra and Soria. Tundra especially is rather nice looking and is designed to
blend in well with existing color palettes. Although it may not be a perfect match to
your existing application, chances are it will blend decently and not look like an eyesore
out of the box.

• Dijits provide a common programming interface. Because all dijits are created from a
common set of templates, and because they all extend some baseline classes, they
share a basic API. This means that a function that exists for one will often exist for
another, at least as far as the basic types of behaviors and features you’d expect any UI
widget to have (naturally, each widget will have its own specific features and require-
ments). This not only means you’ll have an easy time picking up widgets, but it also
means...

CHAPTER 1 ■ INTRODUCTION TO DOJO20

• Creating your own dijit isn’t terribly difficult, and it’ll automatically, by virtue of having
the same basic structure as the rest, work well with Dojo-based applications. Dijit isn’t
just a collection of ready-to-use UI widgets, although that’s the part that you notice
first. It’s also a complete, powerful, and fully extensible widget architecture that you
can build on top of with confidence.

• Dijits are fully accessible by providing keyboard navigation and high-contrast modes
built in. Dijits are also built with screen readers in mind, further expanding their acces-
sibility to those with disabilities.

• Dojo exposes a markup-based way of working with dijits, and this leads to graceful
degradation by enabling you to have fallback markup present easily.

• Dijits inherently support internationalization and localization, with more than a dozen
languages supported right now and more on the way.

I know, I know: that’s all well and good; you’re excited, but what does Dijit actually look
like? Well, in the following figures I’ll show you examples of Dijit in action, beginning with
Figure 1-5, which is the mail reader application you can find on the Dojo web site.

Figure 1-5. The Dijit mail reader application

In Figure 1-6, you can see an example of many of the form dijits that are available for
building more-complex, powerful, and frankly prettier forms than is possible with basic
HTML form elements.

CHAPTER 1 ■ INTRODUCTION TO DOJO 21

Figure 1-6. The Dijit form elements in all their glory

In Figure 1-7, you can see an example of Dijit’s support for internationalization, usually,
and quite cleverly, abbreviated as i18n. You can see that I’ve selected a new locale from the list,
which changes how the form field values are displayed.

Figure 1-7. An example of i18n support in Dijit

CHAPTER 1 ■ INTRODUCTION TO DOJO22

Figure 1-8 shows some of the various toolbars Dijit provides. You can also see a tool tip
pop-up that is quite a bit more than the usual tool tip: it includes form elements embedded
in it.

Figure 1-8. Toolbars in Dijit

The next few figures are all taken from the Theme Tester application, which comes with
the Dojo download bundle. For example, in Figure 1-9, you can see this application with a
modal dialog box popped open. This figure is showing the default Tundra theme in action.
Unfortunately, this not being a computer screen, you can’t get the full effect from the black-
and-white pages of a book. Not to worry, though: The examples in this book will use the
Tundra scheme quite a bit, so you’ll have a chance to see it in all its color and graphical glory
as you play with the projects.

CHAPTER 1 ■ INTRODUCTION TO DOJO 23

Figure 1-9. The Theme Tester application, with modal dialog opened up

Figure 1-10 is another view of this application, but this time you can see a whole slew of
dijits! You can also see that I’ve switched to the Soria theme, and the difference is quite appar-
ent. Note the tabs along the top and bottom. Also note how the right side is an accordion
widget, and this time I’m showing a calendar in it.

Figure 1-10. Theme Tester, part 2

CHAPTER 1 ■ INTRODUCTION TO DOJO24

Figure 1-11 provides our final look at the Theme Tester application, this time showing a
few more dijits, buttons mostly, plus a color picker on the left. This is again the Soria theme.

Figure 1-11. Theme Tester, part 3

As you can plainly see, Dijit has a lot to offer! There are a whole bunch of other widgets
that you haven’t seen here, and many of those won’t be used in this book. I’ll try to use as
many as possible, but I’ll most definitely miss some because there are so many. I encourage
you to download Dojo and have a look through it. You’ll find numerous example and test
HTML files that show all Dijit has to offer.

Now, we have only one stop remaining, and that’s DojoX, where we’ll walk on the wild
side and look at the future of Dojo.

DojoX
The final component of the Dojo project is DojoX (component being my way of stating the
organizational structure, not a reference to a component in the software design or the GUI
component sense of the word). In short, DojoX is a playground for new features in Dojo. It’s
similar to the Incubator at Apache, where new projects are developed before being moved into
the main project itself. (In the case of the Incubator, they may become projects themselves
rather than additions to existing projects; DojoX stuff is obviously all going to land in Dojo.)

This makes it sound like the code in DojoX is highly experimental, and indeed in some
cases that’s true. However, that’s not a completely accurate picture. Much of the code found
there has been around for quite a while and is rather stable and completely usable; it’s just not
“final” yet and hasn’t graduated into Dojo completely. You should in no way hesitate using
DojoX stuff in my estimation because with few exceptions, it’s likely to be quite good.

CHAPTER 1 ■ INTRODUCTION TO DOJO 25

So, what kind of “stuff” is there in DojoX? Let’s have a look, shall we? Once again, I need to
point out that there’s too much to cover every last bit, but I’ll hit the big ones that you’ll likely
find most interesting. You should definitely spend some time exploring outside this book to
get the full breadth of what DojoX has to offer.

Charting
Generating charts on a web site is usually an exercise in either (a) some fancy graphics-based
client-side code or (b) the more time-tested approach of generating the chart on the server
and returning a dynamically-rendered graphic of it. With the charting support in DojoX, you
can do what you see in Figure 1-12 entirely on the client dynamically. You won’t even need
static graphic resources to build this up; it’s drawn 100 percent on the fly, so to speak.

Figure 1-12. A cylindrical bar chart rendered entirely client-side by DojoX charting support

And because I’m a big fan of pie, as my ample midsection would likely clue you in on,
here’s an example in Figure 1-13 of a pie chart, courtesy of DojoX.

Figure 1-13. A pie chart (as Homer Simpson would say, “mmmmmm, pie...agh-agh-agh-aga”)

The benefit of not having graphics to download and of not having server processing time
involved to generate these charts is a great benefit in many situations. The charting support in
DojoX can generate numerous types of charts, including line, pie, bar, area, and so on, with all
sorts of options, so it likely has everything you need for any occasion. Better still, the charts
are updatable on the fly, which means, mixed in with some Ajax, you can have a bar chart

CHAPTER 1 ■ INTRODUCTION TO DOJO26

showing stock values in real time as one example. And of course, because Dojo gives you all
the pieces you need to build such a thing, you have just a single library to learn and work with.

Drawing
Typically, showing graphics in a browser means downloading static images that are, at best,
generated dynamically on the server (but they’re still static in the browser). There are ani-
mated GIFs too, which are dynamic in the sense that they are animated and move, but still
static in the sense that the file retrieved from the server doesn’t actually change at all. You can
get into things like Adobe Flash and Microsoft Silverlight if you need to draw graphics from
primitive components such as line and circles, but doing that from pure HTML and JavaScript
is a hopeless cause.

Or is it?
As it happens, DojoX has just the ticket! The dojo.gfx package provides a vector-based

drawing API that is cross-browser and 100 percent client-side. If you’re familiar with Scalable
Vector Graphics (SVG), you have a good idea of what dojo.gfx is all about.

Want to see it in action? Your wish is my command; see Figure 1-14.

Figure 1-14. Oooh, how pretty! Better still, it’s drawn in real time on the client!

What’s more, there’s even a dojo.gfx3d package to let you create three-dimensional
graphics! Obviously, I can’t show you on the printed page, but with the Dojo download comes
a boatload of examples of both packages, and a number of them actually perform animation
by using this drawing API. (The animation occurs from rapidly redrawing the image.)

This type of capability is something that simply wasn’t possible a short time ago, and
really, Dojo is beginning to bring it to the masses for the first time.

DojoX Offline
DojoX Offline is, for all intents and purposes, a more robust API wrapped around Google
Gears, which is now simply called Gears. (Gears, which you’ll see more of in Chapter 5, is a

CHAPTER 1 ■ INTRODUCTION TO DOJO 27

browser extension that provides capabilities typically needed for running a web app without
a network.) In short, DojoX Offline enables you to ensure that the resources (images, HTML
files, and so on) that make up your application are available even when the network, or server,
is down. This enables you to run your application in an “offline” mode.

This API provides many capabilities that Gears by itself doesn’t—encryption, for instance.
You may well want to ensure that the resources that are saved client-side for use when the
application is offline are encrypted if they are sensitive in nature. DojoX Offline provides this
capability on top of Gears, which is a really nice addition.

DojoX Widgets
As if Dijit by itself wasn’t enough to fill all your GUI widgets desires, there are even more
widgets in DojoX!

One example is the DojoX Grid, shown in Figure 1-15. This is a very good grid implemen-
tation that rivals any others out there. What’s more, this particular widget integrates with other
parts of Dojo, such as dojo.data (which is a package for, what else, data access, enabling you
to share data between widgets).

Figure 1-15. The DojoX Grid widget

The Grid widget is much more powerful than it seems at first blush because it can essen-
tially host other dijits. For instance, in Figure 1-16, you can see a rich Text Editor dijit in the
field I’ve selected, enabling me to edit the value of that field in place.

Figure 1-16. The DojoX Grid hosting other dijits

CHAPTER 1 ■ INTRODUCTION TO DOJO28

The Date fields show a pop-up calendar, and many of the other fields show a drop-down
selection dijit when clicked.

But the grid isn’t the only widget in DojoX. No, there are plenty more. For instance, the
ColorPicker is shown in Figure 1-17.

Figure 1-17. The DojoX ColorPicker widget

Then there’s the ImageGallery widget, as seen in Figure 1-18, which enables you to show a
bunch of images in a graphically pleasing way.

Figure 1-18. The DojoX ImageGallery widget

Another good one is the (now) standard Lightbox, which you can see in Figure 1-19. It can
contain text, graphics, and quite a bit more.

CHAPTER 1 ■ INTRODUCTION TO DOJO 29

Figure 1-19. Dojo’s take on the typical lightbox pop-up

Another one worth mentioning, indeed the best of the bunch for many, is the Fisheye List
widget. I won’t show that here because I want to keep you in suspense until Chapter 5 when
you see it in action for the first time. Rest assured, though, it’s a very impressive widget!

The Rest of the Bunch
As I mentioned before, DojoX has quite a bit more. Some of the other things you can find
include the following:

• Implementations of many well-known cryptographic algorithms, including Blowfish
and MD5

• A set of validation functions for validating things like form input in a variety of common
ways such as phone numbers, e-mail addresses, and so on

• A package of XML functionality including, for example, a DOM parser

• Advanced math functions

• A batch of collection classes such as ArrayLists and Dictionaries

You’ll see a fair bit of this stuff throughout the projects in this book. Indeed, I’ll strive to
use as much of it as possible so you can see it in action.

Dojo in Action: What Else? Hello World (Sort Of)
At this point, you’ve had a decent overview of what Dojo is, how it came to be, its philosophy,
and of course what it has to offer. What you’ve yet to see is an example of it in action. Well, I’m
about to remedy that right now!

CHAPTER 1 ■ INTRODUCTION TO DOJO30

Listing 1-1 provides your very first (presumably) exposure to Dojo. Take a look at it, and
then we’ll proceed to rip it apart so you can understand exactly what’s going on.

Listing 1-1. Fisher Price’s My First Dojo App!

<html>

<head>

<title>My First Dojo App</title>

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/tundra/tundra.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true,
extraLocale: ['en-us', 'zh-cn']

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script language="JavaScript" type="text/javascript">
dojo.require("dojo.parser");
dojo.require("dijit.form.Button");
dojo.require("dijit._Calendar");

</script>

</head>

<body class="tundra">

<div style="position:relative;top:10px;left:10px;width:80%;">
<button dojoType="dijit.form.Button" id="myButton">
Press me, NOW!
<script type="dojo/method" event="onClick">
alert('You pressed the button');

</script>
</button>

<table border="0"><tr>
<td valign="top">
<input id="calEnglish" dojoType="dijit._Calendar" lang="en-us" />

</td>
<td width="25"> </td>
<td valign="top"

CHAPTER 1 ■ INTRODUCTION TO DOJO 31

<input id="calChinese" dojoType="dijit._Calendar" lang="zh-cn" />
</td>

</table>
</div>

</body>

</html>

As you can see, there’s not a whole lot of code involved. Before we tear it apart, though,
let’s have a quick look at the “application,” such as it is! I admit it’s not going to rival Adobe
Photoshop in terms of complexity, but I think it’s a good introduction to Dojo. You can be the
judge by looking at Figure 1-20.

Figure 1-20. Look, ma, my very first Dojo application!

Clicking the button results in a simple alert() pop-up. As you can see, the two calendars
use different locales, showing how Dojo can simply provide internationalization of its dijits.

So, what’s the code all about, you ask? Let’s get to that now!

Getting Dojo onto the Page
The way Dojo is brought onto a page, an HTML document here, is simple. First, you access the
Dojo web site and download Dojo. Then you decompress the archives you download. This
results in the directory structure shown in Figure 1-21.

Figure 1-21. The directory structure of Dojo, as it is when you downlad it

Next, you add the following to your HTML document:

<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

CHAPTER 1 ■ INTRODUCTION TO DOJO32

That’s the absolute simplest permutation of using Dojo. This will get you all the stuff in
Core that isn’t optional. The path itself is as you see it because the dojo directory is located in
the js directory, which is in the root of this mini-application. Under the dojo directory is
another directory named dojo, which could have just as easily been named core, because that’s
really what it is, all the Dojo Core code.

There is also another approach that saves you from having to download and host any-
thing on your own web server: the Content Distribution Network. CDN is essentially a simple
way of saying that someone has hosted shared content on servers that are designed to handle
high levels of traffic from clients all around the world. The Dojo team has partnered with AOL
to provide Dojo via CDN, which means you can use Dojo without having to have any of its
code present on your own server. This saves you bandwidth and makes setting up your appli-
cation easier because there are less resources you need to get deployed on your own servers;
you just need to point your code at the appropriate URLs and you’re off to the races. If you
wanted to use this approach, you could use the following line in place of the previous one:

<script type="text/javascript"
src="http://o.aolcdn.com/dojo/1.0.2/dojo/dojo.xd.js "></script>

This is indeed handy, and efficient in terms of your own server infrastructure and the traf-
fic it’ll have to handle. Even still, I’ve chosen to not use this approach throughout this book for
no other reason than when you write a book, you naturally try to make all the code in it as
likely to work as possible. I didn’t want to have one more potential point of failure—for exam-
ple, what if the network is down, or AOL’s servers are unavailable, or something like that?
Better to have all the Dojo code local so I can be assured (as assured as possible anyway!) that
things Just Work as expected.

Importing Style Sheets
Moving on, as you can see from the code in Listing 1-1, there’s more to it than just dojo.js
being imported. Another important piece, which typically matters when you’re using Dijit
(although it can come into play elsewhere) is to import the appropriate style sheets. This is
accomplished thusly (Thusly? Who talks like that?):

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/tundra/tundra.css">

The first style sheet, dojo.css, is a baseline style sheet that Dojo needs to do many things.
In this example app, if this style sheet is not present, you’ll find that fonts aren’t sized quite as
they should be. Omitting the style sheet is not a drastic thing here; arguably you could call it
optional in this case, but in general you will likely want to import this style sheet and not have
to worry about what its absence might do.

The next import is far more critical. Recall earlier that I talked about dijits being fully
skinnable and supporting various themes? Well, here’s one part of the formula for selecting a
theme. Here, I’m using the Tundra theme, which, to my eyes, is somewhat Apple Mac-ish in
appearance.

CHAPTER 1 ■ INTRODUCTION TO DOJO 33

The other part of the formula, which you can see in the <body> tag, is to set the class on
the body of the document to the theme you wish to use, like so:

<body class="tundra">

That’s all you need to do! From that point on, all dijits you use will use that same theme
automatically. Sweeeeeeet, as Eric Cartman6 would say!

Configuring Dojo
The next step in using Dojo, which is optional although very typical, is configuring Dojo. This
is done via the djConfig object. This is a JavaScript object that you define before the dojo.js
file is imported. The object contains options you can set, but here we’re using only three of
them:

var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true,
extraLocale: ['en-us', 'zh-cn']

};

The first option, baseScriptUri, defines a relative path to the base directory where Dojo is
located. All other resources that Dojo loads automatically will use this value when URIs are
dynamically written by the Dojo code.

The parseOnLoad option tells Dojo to parse the entire document when loaded for Dijit def-
initions (we’ll get to that shortly!), to create those dijits automatically. Alternatively, you can
set up an onLoad handler to tell Dojo specifically which page elements to parse for dijits, or
you can create all your dijits programmatically. This approach, however, is by far the simplest
approach.

Finally, extraLocale tells Dojo to load additional localizations, other than your own, so
that translations can be performed. Here, we’re telling Dojo that we want to support English
and Chinese. Interestingly, if your system locale is English or Chinese, that language does not
need to be specified here. For example, on my PC, which is English-based, I can remove the
en-us value and things still work as expected. As the name of the option implies, only extra
locales need to be loaded. But there’s no harm in specifying a locale that is the default, so this
works just fine, and it also means that if someone happens to run this on a Chinese system,
they’ll see the English version of the calendar as well.

CHAPTER 1 ■ INTRODUCTION TO DOJO34

6. I doubt that many readers don’t know who Eric Cartman is. He’s almost on the level of Captain Kirk in
terms of being in the public psyche worldwide. But, on the off chance that you lead a sheltered life:
Eric Cartman is the fat kid on the Comedy Central television show South Park. He’s neurotic, self-
centered, spoiled, and extremely funny. If you want to wet yourself laughing (and really, who doesn’t
want that?), I highly suggest digging up a copy of “Cartman Gets an Anal Probe,” which was the pilot
episode. I’m sure you’ll have no problem finding it on The Internets, and I have every confidence
you’ll love it.

Importing Other Parts of Dojo
As I mentioned earlier, importing dojo.js gets you all the non-optional Dojo Core stuff—and
if that’s all you need, you’re all set. But what if you want to use some of the optional stuff in
Core, or you want to use some dijits or something from DojoX? In those situations, you need
to get into one of the neatest things about Dojo in my opinion, and that’s the include mecha-
nism. This mechanism is on display in this snippet of code:

<script language="JavaScript" type="text/javascript">
dojo.require("dojo.parser");
dojo.require("dijit.form.Button");
dojo.require("dijit._Calendar");

</script>

With this code, we’re telling dojo that we want to use three optional components: the
parser, the Button dijit, and the Calendar dijit.

The parser component is what creates dijits for us. (I promise, we’re getting to that very
thing next!) The dijits are, I think, self-explanatory. The nice thing to note here is that you
aren’t specifying all the resources that might be required, that is, graphics, extra style sheets, or
even other JavaScript files. Dojo takes care of those dependencies for you! You just specify the
high-level part you want to include, write the appropriate dojo.require() statement, and
you’re off to the races!

Just as a way of teasing something you’ll read about in later chapters, you also have the
capability of creating a custom build of Dojo, which essentially allows you to get away without
even using dojo.require(). Basically, everything gets rolled into dojo.js and then that’s all
you need to deal with. But, using dojo.require() means that you can keep Dojo modular and
then dynamically add pieces as you need them. This will, however, increase the number of
requests needed to build your page, so there are some performance considerations, which is
where custom builds come into play. As I said, though, you’ll look at that in more detail in later
chapters. For now, dojo.require() is the way to go, and the way you’ll see most often through-
out this book.

Finally: Dijits!
Okay, okay, I’ve put you off long enough—let’s see how those dijits are created! You’ve already
seen the code, of course, but just to focus you in on the appropriate snippet:

<div style="position:relative;top:10px;left:10px;width:80%;">
<button dojoType="dijit.form.Button" id="myButton">
Press me, NOW!
<script type="dojo/method" event="onClick">
alert('You pressed the button');

</script>
</button>

<table border="0"><tr>
<td valign="top">
<input id="calEnglish" dojoType="dijit._Calendar" lang="en-us" />

</td>

CHAPTER 1 ■ INTRODUCTION TO DOJO 35

<td width="25"> </td>
<td valign="top"
<input id="calChinese" dojoType="dijit._Calendar" lang="zh-cn" />

</td>
</table>

</div>

Whoa, wait a minute, that’s just plain old HTML; where’s the code? In this case, there is
none! Remember that parseOnLoad option in djConfig? Well, this is what Dojo will be looking
for when that option is set to true, as it is here.

The parser component, which we imported via dojo.require() earlier, scans the page
looking for elements with an expando attribute of dojoType. This tells Dojo that the element is
to be transformed from plain old HTML markup to Dijit, including all the markup and
JavaScript that entails. You don’t have to write a lick of code yourself to get these dijits on the
page. You simply have to tell Dojo to parse the page for dijit definitions and create said defini-
tion as done here. Would could be easier? And best of all, from an author’s perspective, there’s
really nothing here for me to explain! Even the lang attribute on the <input> tags for the calen-
dars is standard HTML, although it’s not used too often. Here, it tells Dojo what locality to use
to translate the string in the dijit. That’s neat, right?

■Note An expando attribute, which might be a term you haven’t heard, is when you add an attribute that
didn’t exist before to an object. This term is usually used in the context of HTML tags (which are ultimately
objects in the DOM, remember) when you have an attribute on the tag that isn’t strictly allowed given the
definition of that tag. Remember that browsers simply ignore things they don’t understand, so doing this
doesn’t break anything (although it does make your HTML invalid and it will thus fail strict validation, which
some people complain about when it comes to the dojoType attribute). Expando attributes are also fre-
quently added to the document object, and can in fact be added to virtually any object in the DOM.

You’ll be seeing a lot more examples of this markup-based approach to dijit creation as
you progress through this book. I think you’ll agree that this is a fantastic way to create GUI
widgets—although it’s not the only way, as you’ll also see later.

Getting Help and Information
For all the benefits Dojo has to offer (and as you’ll see throughout this book, Dojo has plenty),
many times you’ll need to get a little help with it. Aside from help, you’ll clearly want docu-
mentation and examples.

Then again, this book should give you everything you need, so really, you may never need
to look elsewhere.

Ahem.

CHAPTER 1 ■ INTRODUCTION TO DOJO36

I kid, I kid. In all seriousness, one of the biggest benefits of Dojo is that it has a thriving,
helpful community to back it up, and by that I don’t just mean the development team,
although they certainly count. Tons of fellow users will come to your aid at a moment’s notice.
Documentation is constantly evolving and getting better for you to refer to. There are message
forums and mailing lists and all that good stuff that we’ve all come to expect and love about
open source projects.

You just have to know where to look!
Fortunately, Dojo has a great web site. In fact, have a look for yourself, in Figure 1-22.

Figure 1-22. The Dojo web site—’nough said!

From this site (www.dojotoolkit.org) you can reach the message forums, through which
most support and discussion takes place. You can also find mailing list archives and subscrip-
tion information. There is even information on frequently visited Internet Relay Chat (IRC)
channels. All of this is available from the Community link on the menu bar up top.

Naturally enough, you can also download pages and issue trackers and even a time line
for planned upcoming releases. Not every open source project does this, but it’s a really nice
thing to do for the community.

One other thing I feel is worth pointing out is the online API documentation, which is
generated directly from the Dojo source code and the comments within it. This reference
material is one area of the web site you should definitely become acquainted with in a hurry.
To access it, visit the Documentation link under the menu bar. Figure 1-23 shows an example
of this documentation.

CHAPTER 1 ■ INTRODUCTION TO DOJO 37

Figure 1-23. The Dojo online API documentation

Note that this isn’t simple static text: it’s all nicely hyperlinked and even uses some cool
Dojo effects and widgets, making it a dynamic, interactive bit of reference. This can be very,
very helpful when you’re trying to figure out what something in the library does (and believe
me, I visited it frequently during the course of writing this book!).

THE GOOD...AND THE POSSIBLY NOT SO GOOD

For all the good things about Dojo, and of that there’s plenty, one thing that has historically lagged a bit,
in my opinion anyway, is documentation and examples. My experience with Dojo started early on, with the
very early beta releases. Back then, you had to spend most of your time simply looking at the code to under-
stand how things worked, or how to use this function or that. It was rather difficult, and the fact that Dojo
was changing rapidly (which is of course something you accept when using early release code) didn’t help
matters.

The situation has improved leaps and bounds, especially with the recent 1.0 release (as of the writing of
this text). The APIs, outside DojoX anyway, have all stabilized, and documentation has been seriously beefed
up. I can also say with complete confidence that the Dojo team is aware that this area needs some work
even still and they are diligently putting in effort in this regard.

All of this being said, I feel it’s still fair to issue the same caution I’ve issued in the past about Dojo:
if you plan to use it, do yourself a favor and also plan some extra time to find information you need, to
research, and to figure things out. The Dojo community is top-notch in terms of extending a helping hand,
and that’ll likely be your primary resource, not any documentation or examples that you may find on the Web.
I’ve never failed to get an answer to a question I had in short order, and it’s always been from polite and help-
ful people, both Dojo developers and plain old users like me.

CHAPTER 1 ■ INTRODUCTION TO DOJO38

Still, if you go to the Dojo web site expecting to find documentation of every last thing, or examples of
everything, I believe you will be disappointed. Looking through the source code is often still your best bet.
But that’s part of the reason I’m writing this book, after all! Hopefully, I will save you a lot of that research
time and will answer a lot of the questions you may have, all in one place. You’ll certainly have a lot of well-
documented example code to look at in these pages; that much I can promise! If I didn’t think Dojo was
worth all this effort, I wouldn’t have written this book, nor would I ever counsel someone to use Dojo.

The fact is, you get out of it a lot more than the effort you put into it, and that’s ultimately what you’d
want from a good library or toolkit, so don’t be put off if you can’t immediately find the exact bit of informa-
tion you need when working with Dojo. Crack open the actual Dojo code, join the community (the forums
most especially), ask questions, and I guarantee that you’ll get the information you need and Dojo will prove
to be an invaluable tool for you. And by the way, I know the Dojo team will thank you very much if you con-
tribute some documentation, so don’t be shy! If you’ve ever wanted to get involved in an open source project,
documentation is always an easy inroad into a community.

Summary
In this chapter, we discussed the history and evolution of JavaScript and how it has been
applied to client-side development. We looked at the causes of its early, somewhat negative
impression and how it came from those humble beginnings to something any good web
developer today has to know to some extent. We then took a quick look at Dojo, got a high-
level feel for what it’s all about, its history, its philosophy, and its structure. We moved on from
there to see a basic example of it in action and saw the basics of how to add it to an applica-
tion. Finally, we saw how to get further help and information about Dojo.

In the next chapter, we’ll begin to peel back the layers of the onion and get into detail
about what Dojo has to offer, starting with the Core component. Hold on to your hats; you’re
in for a wild ride from here on out!

CHAPTER 1 ■ INTRODUCTION TO DOJO 39

Dojo Core

The Core component of the Dojo Toolkit is the foundation on top of which everything else
is built, and on top of which you can build your own applications. Core contains all of the
basics—string manipulations, collection classes, debugging functions, and so on.

In this chapter, we’ll take an in-depth look at what Core has to offer. We’ll see plenty of
examples of it in action so that as we move into the projects a few chapters down the road,
they will all make sense quickly and easily.

We’ll also take a look at Dojo’s custom build capabilities, which enable us to create our
own tailored version of Dojo with just the parts we want in it. We’ll examine the include mech-
anism Dojo provides in detail (as much detail as something so relatively simple, from our
perspective at least, deserves!) and we’ll look at the configuration options available to control
Dojo more precisely to our needs.

Core vs. Base
We’re here to talk about Dojo Core, but there’s another concept very closely related to this
lurking just below the surface that we need to discuss at the same time, and that’s Base. Con-
ceptually, you can think of Base as a layer below Core. If you go to the Dojo web site, you’ll see
that it talks about the three parts I discussed in Chapter 1: Core, Dijit, and DojoX. If you click
the link to delve into the Core details a bit, though, you’ll see that Core in a sense has a split
personality—half of it called Base, and the other half of it, paradoxically, called Core!

Base is the part you can more or less think of as you do the kernel of an operating system.
It’s contained within a single JavaScript file, the aptly-named dojo.js, and it’s very tiny on its
own. Some of the tasks Base handles are bootstrapping (loading and starting) the toolkit.
Base includes a number of basic functions and language extension-type functions, and also
includes simple Ajax functions. It has within it a mechanism for simulating client-side object-
oriented techniques such as class-based inheritance, something JavaScript itself doesn’t by
itself provide. It also includes the packaging mechanism that you’ll look at next, which keeps
Dojo from polluting the global namespace with its own junk.

Core sits on top of Base, or maybe alongside it is really the more apt mental picture. It
extends Base in numerous ways and provides many of the neat functions you’ll see here and
beyond. Dijit and DojoX sit clearly on top of the foundation of Base and Core combined.
There’s also a Util grouping, architecturally speaking, which includes utilities that are, by and
large, used during Dojo builds, testing, and so on.

The key differentiation point between Base and Core is that what’s contained within Base
is always available to your code 100 percent of the time. Simply by importing the dojo.js file,

41

C H A P T E R 2

which you always have to do, you have access to everything in Base. Then there are optional
components that you explicitly have to import onto a page, and this is the other half of Core.

It’s a little bit confusing certainly, and I’m not sure the Dojo web site does as good a job as
it could in explaining it, but hopefully I have!

For those who enjoy a pretty picture, take a gander at Figure 2-1, which seeks to explain
this architecture graphically. Any resemblance to any famous cartoon mouse, living or dead, is
strictly coincidental!

Figure 2-1. The overall architecture of Dojo, at a high level

The bottom line is pretty much this: the Core component of Dojo is composed of some
capabilities that are required for you to use Dojo at all, and that stuff is called Base. There
are also optional parts of Core, sort of sitting “around” the stuff in Base, or on top of it if you
prefer.

From this point on, I’ll generally be talking about Core as it is represented on the Dojo
web site, meaning the combination of what’s in Base and what’s in the rest of Core. I’ll simply
refer to Core and not make the differentiation, unless it’s really necessary. In general, it’s not
necessary to differentiate when using Dojo; there’s simply Core, and that’s that.

The Dojo “Include” Mechanism
One of the really neat features that Dojo provides is the include mechanism, or dojo.require()
function. In short, this enables you to include parts of Dojo outside the Base code that comes
in dojo.js (including the optional stuff in Core). This is conceptually just like the import state-
ments in Java or the using statement in C# that allow you to “include” references to external
code in your own programs. In fact, most high-level languages have a similar concept, and
with Dojo, JavaScript is no longer an exception!

You will always do a standard JavaScript import of the dojo.js file, like so:

<script type="text/javascript" src="dojo/dojo/dojo.js"></script>

This gets all of Dojo Base on your page, ready for you to use. When you need to do a little
more, though, that’s where the require mechanism comes into play.

The modules that you add to your page with this mechanism correspond, roughly at least,
to .js files under the Dojo root directory. You’ll also find later when you look at Dijit and
DojoX in detail that there are subdirectories (dijit and dojox) under the Dojo root, and you
will use this mechanism there as well.

CHAPTER 2 ■ DOJO CORE42

As is typical these days in most languages, modules (or packages, as they are often called)
are specified by constructing a path to the component or module you wish to import by use of
the typical dot notation. For instance, in Java, you can import a HashMap class via the following:

import java.util.HashMap;

In Dojo, you do much the same. For example, if you want to use the AdapterRegistry
class, something you’ll look at shortly, you would do this:

dojo.require("dojo.AdapterRegistry");

The Java import statement and the dojo.require() function are conceptually equivalent
in this way. This syntax is a little shorter to type than the usual <script> tags. (Compare the
preceding <script> tag to the dojo.require() statement—it’s not night and day, but
dojo.require() is clearly shorter, and perhaps more important, doesn’t include any hard-
coded path information.) The other big benefit is that there’s no chance of importing a script
twice, as there is with a simple <script> tag. Dojo ensures that the code gets imported only
once.

The dojo.require() function also includes wildcard support, enabling you to pull off
amazing feats like this:

dojo.require("dojo.lfx.html.*");

This does precisely what you’d expect: all classes within the dojo.lfx.html package are
added to your page, ready for your code to use. It should be noted that packages here can also
be referred to as namespaces, because that’s what they represent, JavaScript namespaces.

You will see numerous examples of dojo.require() from here on out, but in general I
won’t say much more about it unless there’s something unusual to point out. Otherwise,
what’s been described here should give you the understanding you need to parse the imports
pretty easily in the code to come.

“Trimming the Fat”: Creating a Custom Dojo Build
Dojo allows you to do something that for a long time was fairly unique to Dojo. As they say,
imitation is the sincerest form of flattery, and this capability is implemented in other libraries
now. Still, Dojo’s take on it is still somewhat unique. I’m talking here about the ability to build
a custom version of Dojo.

The dojo.js file that you always import in your page includes a bunch of stuff, but how
can you know for sure what’s in it? As it turns out, the dojo/dojo directory includes a build.txt
file that you can read to see what’s included. For example, for the version of Dojo that was
used for this book, build.txt tells me this:

dojo.js:
./jslib/dojoGuardStart.jsfrag
./../../dojo/_base/_loader/bootstrap.js
./../../dojo/_base/_loader/loader.js
./../../dojo/_base/_loader/hostenv_browser.js
./jslib/dojoGuardEnd.jsfrag
./../../release/dojo-release-1.0.2/dojo/_base/lang.js

CHAPTER 2 ■ DOJO CORE 43

./../../release/dojo-release-1.0.2/dojo/_base/declare.js

./../../release/dojo-release-1.0.2/dojo/_base/connect.js

./../../release/dojo-release-1.0.2/dojo/_base/Deferred.js

./../../release/dojo-release-1.0.2/dojo/_base/json.js

./../../release/dojo-release-1.0.2/dojo/_base/array.js

./../../release/dojo-release-1.0.2/dojo/_base/Color.js

./../../release/dojo-release-1.0.2/dojo/_base.js

./../../release/dojo-release-1.0.2/dojo/_base/window.js

./../../release/dojo-release-1.0.2/dojo/_base/event.js

./../../release/dojo-release-1.0.2/dojo/_base/html.js

./../../release/dojo-release-1.0.2/dojo/_base/NodeList.js

./../../release/dojo-release-1.0.2/dojo/_base/query.js

./../../release/dojo-release-1.0.2/dojo/_base/xhr.js

./../../release/dojo-release-1.0.2/dojo/_base/fx.js

Now, in and of itself, that’s pretty useful information. What’s more useful, though, is that
if I go to http://download.dojotoolkit.org/release-1.0.2, which is on the Dojo web site
and is a repository for all the 1.0.2 releases, I can grab dojo-release-1.0.2-src.zip (or
dojo-release-1.0.2-src.tar.gz if you prefer that archive format), which in either case is the
Dojo 1.0.2 source tree. The reason this is useful is that contained within it is, obviously, the
full source for Dojo, but more important, the ability to build your own version of Dojo with
just what you want!

To do this, you will need to have Java version 1.4.2 or later installed on your system.
To actually do a custom build, all you do is navigate to <dojo_source_directory>/util/
buildscripts and execute build.bat (or build.sh for you *nix guys out there). Passing no
options gives you some help and shows you the available options. (You may want to step
away now, grab that archive, unzip it, and do this so you can see the help text yourself.)

In short, the command to do a build is basically like this:

java -jar ../shrinksafe/custom_rhino.jar build.js profile=base action=release

This tells Dojo what JavaScript interpreter to use (Rhino in this case), what build script to
use to run the build (build.js), what profile to use (base), and what action to perform (build a
release).

Now, you typically wouldn’t touch the build script; it should pretty well suit your needs all
the time. The profile, however, is a different story. The profile describes what you want your
custom build to look like. As an example, assume we had a file named test.profile.js in the
<dojo_source_directory>/util/buildscripts directory:

dependencies ={
layers : [{
name : "customDOJO.js",
dependencies : [
"dijit.Button",
"dojox.encoding.crypto.Blowfish"

]
}],
prefixes: [
["dijit", "../dijit"],

CHAPTER 2 ■ DOJO CORE44

["dojox", "../dojox"]
]

};

Dojo custom builds work off the concept of a layer, which is a fancy way of saying a bunch
of JavaScript smashed together into a single .js file. Inside each layer you specify dependen-
cies, which are all the modules you will be calling upon. The Dojo build system is smart
enough to figure out dependencies of these modules for you, so you don’t have to traipse
through the Dojo source to figure out what dependencies you have. Sweet! Also note that all
the Dojo Base stuff is included by default, but code in Core (generally, those namespaces you
need to use dojo.require() to gain access to) are not.

The prefixes section lists the modules that need to be included. Here, because we’re
building in the Button dijit, and the Blowfish encryption from DojoX, we’ll need to include
those.

After this is done, all it takes is a command line to produce customDOJO.js:

java -jar ../shrinksafe/custom_rhino.jar build.js profile=test action=release

What you get is not just customDOJO.js, but also a complete tree of Dojo “stuff” that you
can drop into your web app. This is just like what you get when you download the standard
Dojo distribution, except this has not only what you want it to have, but also the “extra” mod-
ules that aren’t necessarily part of customDOJO.js but that are available for you to use if you
decide you need to via require() statements.

A couple of notes are important to understand here. First, Dojo uses ShrinkSafe, a
JavaScript compressor, on the layer files, to make them as small and efficient as possible
(efficient in terms of network transit time). Second, part of the build process is interning of
certain external resources. For instance, with dijits, you have an HTML template for each dijit.
Interning that template, that is, turning it into a string and including it in the JavaScript file,
makes it more efficient because that’s one less resource that has to be fetched during loading.

Lots of options are available during a build: changing the version number, changing the
name of the release, telling the build how to optimize the layer files, setting log verbosity set-
tings, and more. But, what I’ve described here are the basics that you’d need to know to do a
custom build.

Come Fly with Me: Core in Detail
As you explore this section, you’ll discover that there are essentially three things we’ll be look-
ing at within each namespace. The first are constructors, or classes as I’ll frequently call them,
and they are exactly what their name implies: functions that are called to instantiate a given
object. The second are functions, which really are methods of a given class, and they are the
main thing we’ll be concerned with because that’s where the majority of the features you’ll be
interested in live. Last are properties, just data fields you can access to get at certain informa-
tion Dojo has to offer.

Also note that I’ve flattened the namespaces out here a bit. For instance, dojo.cldr.
monetary is actually a namespace, monetary, under another namespace, cldr, which is itself
under the dojo namespace. I’ve done this simply to be able to present everything as one con-
solidated list. Of course in JavaScript, dojo.cldr.monetary.getData() is a perfectly valid
function call. You can think of the entire thing as simply the name of a function (which of

CHAPTER 2 ■ DOJO CORE 45

course it is) that just happens to have periods in the name. Under the covers, though, what
we’re really dealing with are functions within functions within functions (and so on).

Yet another note: Unless stated otherwise, each constructor, function, or property is
available to you by virtue of importing dojo.js only. As you’ll recall, these represent the
“nonoptional” pieces of Dojo Core. Other items that are optional will state which dojo.
require() call is, err, required, to get at that functionality.

One final note before we rock and roll: Although I tried to include virtually every member
that appears in the Dojo API documentation, I left out all hidden members, and I also
dropped a few members that were more or less used internally (for example, toJsonIndentStr
is the character used when using the toJson() function, and telling you it’s just a tab escape
string is kind of pointless—aside from telling you about it here just to tell you it’s pointless,
that is!). In the same vein, you may find a few items listed here for which I couldn’t find any
documentation and couldn’t reasonably figure out the purpose. Such is the difficulty with
Dojo and documentation that you sometimes come across. I don’t believe there are any major
omissions, and I’ve been able to get at least some description for nearly everything, so in
many ways this is a step up from the API documentation itself.

Anyway, with all that out of the way, let’s get to it, dig in and see what Dojo Core has to
offer. There’s definitely plenty of meat on them bones!

dojo
It all starts with the dojo object! Everything that follows is a namespace underneath this one,
which means Dojo will nicely coexist with most any other JavaScript library out there.

Constructors
The following is the list of constructors available directly under the dojo namespace.

dojo.AdapterRegistry()

dojo.require("dojo.AdapterRegistry");

An AdapterRegistry object enables you to set up processing rules for a given data type
such that the adapter will examine an argument, determine what type it is, and call the appro-
priate function that you previously registered with it. For instance:

var ar = new dojo.AdapterRegistry();
ar.register("stringRule", dojo.isString, function(inString) {
return inString.toLowerCase();

});
ar.register("arrayRule", dojo.isArray, function(inArray) {
return inArray.toString();

});
alert(ar.match("HeLlO"));
alert(ar.match(["John", "Connor"]));
ar.unregister("arrayRule");

CHAPTER 2 ■ DOJO CORE46

Here, we’re instantiating a new AdapterRegistry and then registering two rules with it:
one for processing strings and the other for processing arrays. Using the dojo.isString() and
dojo.isArray() functions (passed as arguments to the register() function) lets us determine
whether the rule should fire. Then we call the match() method of the AdapterRegistry object
twice and show the results via an alert() pop-up. The AdapterRegistry then finds the match-
ing registered rule, if any, and calls the specified function. This results in the first pop-up,
shown in Figure 2-2.

Figure 2-2. ch2_AdapterRegistry.htm first result

The second alert() pop-up that follows is shown in Figure 2-3.

Figure 2-3. ch2_AdapterRegistry.htm second result

Last, we can unregister rules by using the unregister() method of the AdapterRegistry
object.

The benefit of using this class is the ability to handle various incoming data types without
having to explicitly know what that type is at runtime. This is an especially important capabil-
ity given the dynamic, loosely typed nature of JavaScript.

dojo.Color()

This nifty little object enables you to pass in various forms of colors and get various forms out
of it, without having to worry about the details of how to do such conversions. With it, you can
do things like this:

var c = new dojo.Color("red");
alert("toCss = " + c.toCss() + "\n" +
"toHex = " + c.toHex() + "\n" +
"toRgb = " + c.toRgb() + "\n" +
"toRgba = " + c.toRgba());

c.setColor([0,255,0]);
alert(c.toHex());

The first alert() that appears can be seen in Figure 2-4.

CHAPTER 2 ■ DOJO CORE 47

Figure 2-4. ch2_Color.htm first result

The second alert() occurs after the call to setColor() has been done, which changes the
color the Color object represents. This alert() is shown in Figure 2-5.

Figure 2-5. ch2_Color.htm second result

Note that all the function call results represent the color red in a valid way in other forms.
Not only can you pass in a string such as red, but you can pass in any of the values shown by
the alerts to get the other forms. For instance, the fifth alert() shows #00ff00, which is green,
corresponding to the array of values 0,255,0. You can also see how the setColor() method can
be called to change the color that the Color object currently holds.

dojo.loaded()

This function is called when the initial Dojo environment is loaded, and when all loading of
Dojo packages is complete. This is internally what you’re “hooking into,” so to speak, when
you use dojo.addOnLoad(), which is described shortly. When running within a browser, all
dijits created declaratively will be instantiated by the end of this method (and before any
you connect to this are called). There’s no need to demonstrate anything here because dojo.
addOnLoad() is really what you should use (or dojo.connect() alternatively, also described
later), and there is a demonstration of that to come.

Functions
You’ll now look at the functions exposed through the dojo namespace. These are, by and large,
what you’ll be using, and they constitute the real core of Dojo because everything else
depends on these functions to varying degrees.

dojo.addClass() and dojo.removeClass()

The dojo.addClass() function enables you to add a style class to a given DOM node. For
example:

CHAPTER 2 ■ DOJO CORE48

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<style>.myClass { color : #ff0000; }</style>
<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

</head>
<body onLoad="dojo.addClass('myDiv', 'myClass');">
<div id="myDiv">Testing, 1...2...3!</div>

</body>
</html>

The result of loading this document is that the text in the <body> is turned red when the
page loads.

There is also dojo.removeClass(), which of course does the exact opposite. If we were to
call that after the dojo.addClass() call here, the text would again be the default color, black
usually, because the style setting it to red would no longer be applied.

dojo.addOnLoad()

Typically, when you want something to fire when the page loads, you use the onLoad event.
The problem with this is that the browser waits for all resources to be loaded, meaning all
images, all CSS, all JavaScript files, and so on, before that event fires. It also builds the entire
DOM and puts everything on the screen before it fires the onLoad event and executes your
code. Sometimes this is exactly what you want (even need) to happen, but sometimes you
need to do some work before that time, if for no other reason than to make your application
appear faster to load than it is.

Dojo provides a mechanism to do this. Calling dojo.addOnLoad() and passing it a function
reference results in Dojo calling that function as soon as the DOM has loaded, and after all
dijits declared in markup are instantiated. Although the dijit markup and CSS are guaranteed
to have been loaded, other resources on the page may not be.

To use dojo.addOnLoad(), you simply do this:

dojo.addOnLoad(function() {
alert("DOM loaded");

});

Alternatively, you can use this syntax if you prefer:

function onLoadHandler() {
alert("DOM loaded");

}
dojo.addOnLoad(onLoadHandler);

CHAPTER 2 ■ DOJO CORE 49

dojo.addOnUnload()

Similar to dojo.addOnLoad() is dojo.addOnUnload(), which does the same thing but at page
unload time. Syntactically it is identical to dojo.addOnLoad().

dojo.blendColors()

This function enables you to blend two dojo.Color objects together by using a given weight
(indicating which color has dominance over the other). This is easy to demonstrate with a
weight of 0.5 (0–1 being the valid range of weights), as follows:

alert(dojo.blendColors(new dojo.Color([100, 100, 100]),
new dojo.Color([200, 200, 200]), .5));

The resultant pop-up is shown in Figure 2-6. In the case of a weight of 0.5, where all the
color component values are 100 for one color and 200 for the other, blending essentially
means averaging them, so 150 in this case. Play with the weight factor to see different results
if you have any doubt about how this works.

Figure 2-6. ch2_blendColors.htm result

dojo.body()

This function simply returns the body element of the current document to you. Keep in mind
that Dojo likes to provide functionality that mimics what you can do easily with standard
JavaScript and DOM manipulation so that you can always be working with the Dojo API and
have to learn only that. This is a nice philosophy for a lot of people who would prefer not to
have to know how to get a reference to the body element themselves, for instance, and would
prefer to just look to Dojo to handle the details. This also allows Dojo to add value around
such relatively simple things should the need arise. For example, the dojo.body() function
could conceivably return a reference to a DOM in memory rather than the actual DOM of the
page so that Dojo can have control over when the screen gets updated instead of the browser.

dojo.byId()

You’ve no doubt heard of document.getElementById(), right? Are you sick of typing it? I know I
am! Other libraries, such as Prototype, offer the $() function, which is roughly equivalent (I
say roughly only because $() provides extra functionality that document.getElementById()
does not).

CHAPTER 2 ■ DOJO CORE50

Dojo’s version accepts a string that is the ID of a DOM node, or a DOM node itself (the lat-
ter representing a no-operation condition (in other words, you’ll get the node you passed in
back; dojo.byId() doesn’t really do anything in that case). Optionally, you can also pass a ref-
erence to a document element, enabling you to search other documents. By default, the value
of dojo.doc, which is an alias for the current document (that is, window.document) is used.

I haven’t shown an example here because this function is used in many other examples
throughout this chapter, so it would be a little redundant (more so than writing this sentence
was in the first place!).

dojo.clone()

The dojo.clone() function enables you to clone an object, which—most interesting, I think—
can be a DOM node. So, this function enables you to do things like this:

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script>
function doOnLoad() {
var originalNode = dojo.byId("originalNode");
var clonedNode = dojo.clone(originalNode);
clonedNode.innerHTML = "I am the cloned node";
dojo.body().appendChild(clonedNode);

}
</script>

</head>
<body onLoad="doOnLoad();">
<div id="originalNode">I am the original node</div>

</body>
</html>

This results in the browser display shown in Figure 2-7. Cloning an object is clearly a
pretty handy thing to be able to do. Keep in mind that dojo.clone() doesn’t apply just to DOM
nodes; it applies to virtually any object you throw at it.

CHAPTER 2 ■ DOJO CORE 51

Figure 2-7. ch2_clone.htm result

dojo.colorFromArray()

This function enables you to convert an array of RGB(A) values to a dojo.Color object. You can
either get a new object from it or update an existing one. For instance:

var c1 = new dojo.Color([100, 100, 100]);
var c2 = dojo.colorFromArray([150, 150, 150]);
var c3 = dojo.clone(c1);
dojo.colorFromArray([200, 200, 200], c3);
alert("c1 = " + c1 + "\nc2 = " + c2 + "\nc3 = " + c3);

Executing this produces the pop-up seen in Figure 2-8.

Figure 2-8. ch2_colorFromArray.htm result

dojo.colorFromHex()

Similar in concept to dojo.colorFromArray() is dojo.colorFromHex(), which takes a hex string
prefixed with a # character (12-bit RGB shorthand format) and converts it to a dojo.Color
object. So, for example, you can do this:

var c1 = new dojo.Color([255, 0, 0]);
var c2 = dojo.colorFromHex("#00ff00");
var c3 = dojo.clone(c1);
dojo.colorFromHex("#0000ff", c3);
alert("c1 = " + c1 + "\nc2 = " + c2 + "\nc3 = " + c3);

CHAPTER 2 ■ DOJO CORE52

That gets you the pop-up shown in Figure 2-9.

Figure 2-9. ch2_colorHex.htm result

dojo.colorFromRgb()

This function works much like dojo.colorFromHex(), except that it is capable of handling the
four current Color Module formats specified by CSS3: Red/Green/Blue (RGB), Red/Green/
Blue/Alpha (RGBA), Hue/Saturation/Lightness (HSL), and Hue/Saturation/Lightness/Alpha
(HSLA). It can also handle the optional percentage values that can be specified with the RGBA
format.

I’ll skip demonstrating this function because it is, by and large, similar to
dojo.colorFromHex() and dojo.colorFromArray() in terms of syntax and arguments
accepted.

dojo.colorFromString()

The dojo.colorFromString() function rounds out the dojo.colorFrom*() functions, and it’s in
many ways a jack-of-all-trades. It can accept values in any form that dojo.colorFromArray()
accepts, hex strings in the form #rrggbb, or rgb()/rgba() strings such as rgb(10,20,30) or
rgba(10,20,30,40).

Once again, I’ll skip the demonstration because you’ve already more or less seen this in
action. It’s just like the previous couple of functions; it just does more!

dojo.connect()

The dojo.connect() function is the entry into the Dojo aspect-oriented programming (AOP)
world. This function enables you to do something seemingly simple but incredibly powerful: it
allows you to set up a call to a given function whenever another is called. If that doesn’t sound
like a big deal, give it a second to sink in and take a peek at the following sidebar.

A BRIEF ASIDE ON ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming (AOP), sometimes called aspect-oriented software development (AOSD), is the
technique whereby you identify so-called cross-cutting concerns and externalize them from the code in
question.

A commonly used example is that of logging. Frequently, you want to output a log statement every time
a given function is called. Typically, you would include some sort of log statement directly in the function. This
works well enough, but the problem you quickly see is that you have logging code strewn all over the code
because in all likelihood you want to do this in many functions.

CHAPTER 2 ■ DOJO CORE 53

AOP enables you to do the equivalent of telling your runtime environment, “Hey, do me a favor, buddy;
output a log statement every time function A is called,” without you having to specifically include the code to
do so in the function. This is also an example of separation of concerns because what your function actually
does is separated from the logging concern.

How this AOP approach is accomplished depends on the AOP implementation you use. Some work by
modifying your code at compile time; others do so at runtime. Some truly work at the environment level,
meaning your code is not modified and the function calls are instead intercepted somehow. The implementa-
tion isn’t terribly important; the underlying concept is.

So, to give you a concrete example of the types of magic you can achieve, have a look at
this bit of code:

function MyClass() {
this.sayHello = function(inName) {
alert("Hello, " + inName);

}
}
function interceptor(inName) {
alert("Just said hello to " + inName);

}
var myObject = new MyClass();
dojo.connect(myObject, "sayHello", null, interceptor);
myObject.sayHello("Hayden");

The result is two consecutive alert() pop-ups, shown in Figure 2-10. I hope you’ll notice
that there’s something a little amiss with these.

Figure 2-10. ch2_connect.htm result

The thing that’s a bit amiss is that the interceptor() function didn’t intercept anything; it
was called after the original call. Now that’s still plenty cool, but it isn’t quite what I explained
previously. Unfortunately, the ability to intercept methods (as well as the ability to have
around advice, AOP parlance for calling some function or functions both before and after an
event) has been removed from Dojo. At this point, there is no concrete plan to bring it back.
This is disappointing certainly, but it shouldn’t take away from the utility of this function. The
ability to call a series of methods based on a triggering event without having to explicitly code
all the calls is still extremely useful. (The event can be a DOM event, by the way, such as
onClick, not just method calls as in this example.)

CHAPTER 2 ■ DOJO CORE54

Also note that there is a dojo.disconnect() function that removes a given connected
function. This is something you’ll want to keep in mind because you can cause memory leaks
if you connect things and then don’t disconnect them later under some circumstances. Simply
put, always use dojo.disconnect() when you no longer need the functions to be triggered,
and all should remain right with the world!

dojo.publish(), dojo.subscribe(), dojo.unsubscribe(), and dojo.connectPublisher()

Here is a group of four functions that I’ve chosen to describe all as one group because they
are intimately linked. These all deal with the concept of publish/subscribe, which is just a
computer science term meaning that one object sends a message while one (or more) other
objects gets the message and reacts to it, without the sender having explicitly called any of the
listeners.

Using this group of functions is remarkably simple, as you can see for yourself:

var s = "";
function MyClass() {
this.myFunction1 = function() {
s += "myFunction1 called\n";

}
this.myFunction2 = function() {
s += "myFunction2 called\n";
dojo.publish("myMessage", ["Hello!"]);

}
}
function callback(inMsg) {
s += "Message received: " + inMsg + "\n";

}
var o = new MyClass();
o.myFunction1();
s + "----------\n";
var hndl = dojo.subscribe("myMessage", null, callback);
o.myFunction2();
s + "----------\n";
dojo.unsubscribe(hndl);
o.myFunction2();
s + "----------\n";
var hndl = dojo.subscribe("myMessage", null, callback);
dojo.connectPublisher("myMessage", o, "myFunction1");
o.myFunction1();
alert(s);

The resultant pop-up is shown in Figure 2-11.

CHAPTER 2 ■ DOJO CORE 55

Figure 2-11. ch2_connectPublisher.htm result

The first line of the alert() is a result of calling myFunction1() on the instance of MyClass
named o. This is just a straight method call—no publish/subscribe going on just yet. After that
is executed, we subscribe to the myMessage event, and we are saying that callback() will be
called whenever that message is published. Next, we call o.myFunction2(), generating the
second line of the alert(), and which then does a dojo.publish() to publish a myMessage
event. We also pass a message via the array, the second argument to the call. This results in
callback() being called, and the array passed into it, and that’s where the third line in the
alert() comes from. Next, we use dojo.unsubscribe() to stop listening for that myMessage
event. Note that the call to dojo.subscribe() returns a handle that you then pass to dojo.
unsubscribe() to stop listening for that message. But remember, you can listen for the same
message more than once, so there still may be something that happens if that message is
published again. Following that dojo.unsubscribe(), we again call o.myFunction2(), and the
fourth line of the alert() occurs, just to prove there’s nothing happening as a result of the
dojo.publish() call within it. Finally, we make a call to dojo.connectPublisher(), which basi-
cally says that every time o.myFunction1() is called, we want to publish a myMessage event. This
is nice because you’ll note that o.myFunction1() does not explicitly publish myMessage, but it
will act as if it did as a result of the dojo.connectPublisher() call. So, when we again call
o.myFunction1(), we get line 5 of the alert(), and then line 6 as a result of myMessage being
published and callback() being called a result.

■Note All this publish/subscribe stuff may seem a bit pointless if this is your first exposure to it. Why not
just call these methods directly and not bother with all this? The point to it all is that it keeps your code
decoupled. For instance, MyClass does not have to know about callback()—and even better with
connectPublisher(), it doesn’t even have to explicitly know to publish a given message. All of this
behavior can be “wired up” externally, keeping low coupling between your code. So long as your code still
publishes and subscribes to the correct messages, things should continue to work as you planned regard-
less of implementation. It’s a really good design paradigm to get comfortable with and use.

dojo.cookie()

dojo.require("dojo.cookie");

CHAPTER 2 ■ DOJO CORE56

Dojo makes dealing with cookies very, very easy, and the dojo.cookie() function is the
singular way to do so. This nifty little function works like so: it can accept three parameters.
The first is the name of the cookie. The second, which is optional, is the value of the cookie.
The third, which is also optional, is an object with various options for the cookie.

In other words, say you want to set a cookie that expires in five days. All you have to do is
this:

dojo.cookie("myCookie", "This is my cookie", { expires : 5 });

To read that cookie back, you simply do this:

dojo.cookie("myCookie");

It couldn’t be simpler! The other options you can specify in that third argument object are
domain, which sets the cookie for the specified domain (by default the domain of the page is
used), path, which is the path the cookie should be set for (by default the path of the page is
used), and secure (true or false), which will set the cookie only under a secure connection.
Note that for the expires option you can also send a date, after which the cookie will expire; or
zero, which means the cookie will expire when the browser closes; or a negative number or
past date, which will delete the cookie.

dojo.coords()

This function returns to you an object that contains a number of attributes, namely l (left),
t (top), w (width), h (height), x (essentially left again), and y (essentially top again). This
describes the size and position of a given element on the page. It technically gives you infor-
mation about the margin box model of the element.

For example, given the following <div>:

<div style="width:200px;height:100px;position:absolute;left:20px;top:30px;"
id="myDiv">
I am myDiv

</div>

. . . and then the following code:

function doCoords() {
alert(dojo.toJson(dojo.coords("myDiv")));

}

. . . results in the alert() pop-up seen in Figure 2-12.

Figure 2-12. ch2_coords.htm result

CHAPTER 2 ■ DOJO CORE 57

dojo.declare()

The dojo.declare() function is what I’d call wickedly cool in that it gives you a powerful
mechanism to do some cool object-oriented development in JavaScript.

Let’s say you want to create a new class and you want it to be a subclass of two others.
We’re talking C++-like multiple inheritance here! Let’s further say that you want to add some
additional properties and methods, as is typical in such cases. You could pull this off with
plain JavaScript if you tried hard enough, but I suspect you’d prefer to do the following
instead:

function MyClass1() {
var firstName = "Mick";
this.getFirstName = function() {
return firstName;

}
}
function MyClass2() {
var lastName = "Foley";
this.getLastName = function() {
return lastName;

}
}
dojo.declare("com.omnytex.AnotherClass", [MyClass1, MyClass2],
{ middleName : "William",
getMiddleName : function() {
return this.middleName;
}

}
);
var o = new com.omnytex.AnotherClass();
alert(o.getFirstName() + " " + o.getMiddleName() + " " +

o.getLastName());

Running this code nets you the pop-up in Figure 2-13.

Figure 2-13. ch2_declare.htm result

Yes indeed, the class com.omnytex.AnotherClass is created, and it has all the properties
and methods of MyClass1 and MyClass2, as well as some new ones, namely middleName and
getMiddleName(). The dojo.declare() method accepts as its first argument the name of the
class to create. The second argument is null if you don’t wish to inherit anything, or the name
of an existing function, or an array of existing functions as seen here. The last argument, which

CHAPTER 2 ■ DOJO CORE58

is optional, is an object that specifies the unique properties and methods this class will have in
a nice, neat, compact object notation. Nifty indeed!

dojo.eval()

This is another example of Dojo wrapping something relatively simple so you can stay within
the Dojo API. This is a wrapper around the usual eval() function in JavaScript. Use this
instead of using eval() directly. I assume here that you know all about eval(), in which case
you know all about dojo.eval() too, so let’s move on, shall we?

dojo.every()

This is an interesting little utility function that enables you to take a list of values in array form
and determine whether every element in that array meets some criteria as defined by a func-
tion you provide. JavaScript 1.6 provides this all by its self, so Dojo’s version will be used only
when JavaScript 1.6 isn’t being used.

Here’s a simple example to determine whether all numbers in an array are greater than 10:

function checkFunc(inVal) {
return (inVal > 10);

}
alert(dojo.every([23, 15, 71, 19, 99], checkFunc) + ", " +
dojo.every([23, 15, 71, 19, 9], checkFunc));

This nets us the amazingly thrilling pop-up in Figure 2-14. Seriously, though, it’s a pretty
useful little function, and because you can do arbitrarily complex things in the check function,
and you can pass any type of value in the array, I’m sure you can see the potential uses for this
dancing around in your head already.

Figure 2-14. ch2_every.htm result

dojo.exists()

This is a nice function that can tell you whether an object supports a given method. For
example:

var myObj = {
myProp : 123,
myFunc : { }

};
alert(dojo.exists("myObj.myFunc") + ", " +
dojo.exists("myFunc", myObj) + ", " +
dojo.exists("myObj.myFunc2") + ", " +
dojo.exists("myProp", myObj));

CHAPTER 2 ■ DOJO CORE 59

The pop-up shown in Figure 2-15 is the outcome.

Figure 2-15. ch2_exists.htm result

Although the Dojo documentation doesn’t say so, you can see here that you can test
for properties as well as methods. In other words, any member of a given object can be
checked for.

You will also note that you can specify the check in two ways. One is simply a complete
path to the member you want to check for (myObj.myFunc, for example). The other way is to
specify a scope. In the case of dojo.exists("myFunc", myObj), this makes myObj the scope of
the check. This is nice because you can set a variable equal to the scope and make multiple
calls to dojo.exists() without having to specify the complete path for every call.

dojo.extend()

This is a really neat function that allows you to add all the properties and methods of a given
object or objects to another’s prototype, thereby making them available to all subsequent
instances of the constructor.

In more-concrete terms, it enables you to do things like the following:

function MyClass1() {
var firstName = "Mick";
this.getFirstName = function() {
return firstName;

}
}
function MyClass2() {
var lastName = "Foley";
this.getLastName = function() {
return lastName;

}
}
function MyClass3() {
this.sayName = function() {
alert("I am " + this.getFirstName() + " " + this.getLastName());

}
}
dojo.extend(MyClass3, new MyClass1(), new MyClass2());
var mc3 = new MyClass3();
mc3.sayName();

CHAPTER 2 ■ DOJO CORE60

Running this code gives you the pop-up shown in Figure 2-16. As you can see, the
instance of MyClass3 includes the methods and properties from MyClass1 and MyClass2. As you
can also see, the dojo.extend() method enables you to pass multiple objects to inherit from at
one time, or just one if you like, or even inline object definitions.

Figure 2-16. ch2_extend.htm result

dojo.fadeIn() and dojo.fadeOut()

I’m covering both of these functions together because they’re identical except in the direction
they do something, namely fade a given DOM element. Let’s me first show you the example
code for this and then I’ll explain it a bit:

dojo.fadeOut({node : "myDiv", duration : 2000, onEnd : function() {
dojo.fadeIn({node : "myDiv", duration : 2000}).play();

}}).play();

Because this is an animation, it wouldn’t make a whole lot of sense to put a static image
here, so you’ll just have to take my word for it (or try it, because the example is included in
the source download for this book) when I tell you this will fade some text out, and then fade
it back in over a period of about 4 seconds. First, we kick off the fade-out by calling dojo.
fadeOut(). As you can see, this function accepts an object with some properties in it, namely
node, which is the ID of the DOM node to fade, and duration, which is in milliseconds, stating
how long the effect will take. Also included is onEnd, which is a function to execute when the
animation completes. In this case, it’s simply a call to dojo.fadeIn() to get our text back to
being visible. You get back a Dojo Animation object from these calls, so calling the play()
method on them is required to make things go.

dojo.filter()

This is another of those nifty little utility functions that you’ll probably find yourself using fre-
quently now that you know about it. This function enables you to take a list of values in array
form and filter it, returning an array with only those items matching the filter in it. This too is
something built natively in JavaScript in version 1.6 and thus the native version is delegated to
by Dojo when appropriate and available.

Here’s a simple example that will return only those values greater than 10:

function checkFunc(inItem, inIndex, inArray) {
return (inItem > 10);

}
alert(dojo.filter([2, 5, 71, 19, 99], checkFunc));

CHAPTER 2 ■ DOJO CORE 61

What gets spewed forth onto the screen is Figure 2-17.

Figure 2-17. ch2_filter.htm result

dojo.forEach()

In the same vein as dojo.every() and dojo.filter() comes dojo.forEach()! This function
iterates over an array and executes the specified callback method. The callback does not
return a value as the other two do. Instead, this function is meant for when you want to do
something for every element of the array. As in previous cases, Dojo was ahead of its time a
little: JavaScript 1.6 includes this natively as well!

Here’s a simple example that will alert() each element of the array:

dojo.forEach(["Star Wars", "Stargate"], function(inVal) {
alert(inVal);

});

This function is not terribly exciting in action, but nonetheless, Figure 2-18 shows the two
pop-ups you’ll see when this code is run.

Figure 2-18. ch2_forEach.htm result

dojo.formToObject(), dojo.formToQuery(), and dojo.formToJson()

For the sake of brevity, I am describing these three functions together because they all do
essentially the same thing, just varying in their output. As their names imply, they take an
HTML form and convert it to some format, be it an object, a query string, or JSON, respec-
tively.

So, given a form like so:

<form name="myForm">
<input type="text" name="firstName" value="Steve">
<input type="text" name="lastName" value="Austin">

</form>

. . . and given the following bit of code:

alert("formToJson(): \n" +dojo.formToJson("myForm", true) + "\n\n" +

CHAPTER 2 ■ DOJO CORE62

"formToObject(): \n" +dojo.formToObject("myForm") + "\n\n" +
"formToQuery(): \n" +dojo.formToQuery("myForm")

);

. . . you get Figure 2-19.

Figure 2-19. ch2_formToJsonQueryObject.htm result

The dojo.formToJson() function differs just slightly from the other two in that you can
pass an optional second argument that tells Dojo to print the JSON in a “pretty” way. Now per-
sonally, I find it to be less pretty, but that comes down to the classic debate on whether to put
braces opening a block of code on the end of a line or on a line by themselves. I prefer the for-
mer, many people prefer the latter, and the latter is more like what passing true for this
argument does. So, whatever floats your boat, Dojo provides!

dojo.getComputedStyle()

This function will return to you a computed style object, which is a fancy way of saying it’s like
the style object you can get at by using dojo.byId("nodeID").style—only it’s the current ren-
dered state of the node, not necessarily as it was declared. For example, assuming you have
this <div> defined:

<div id="myDiv">I am myDiv</div>

. . . then this code:

var o = dojo.byId("myDiv");
alert(dojo.getComputedStyle(o).borderWidth);

. . . yields the alert() in Figure 2-20.

Figure 2-20. ch2_getComputedStyle.htm result

CHAPTER 2 ■ DOJO CORE 63

Now, the interesting thing to note is that this is an IE pop-up. If you run this code in Fire-
fox, you’ll get a blank alert() message. The results of dojo.getComputedStyle() can vary from
browser to browser, and from platform to platform.

dojo.getObject()

This handy function lets you quickly traverse an object hierarchy to get at exactly the object
you need. In addition, it allows you to add expandos to an object.

As an example, check this out:

function com() { }
com.omnytex = function() { };
com.omnytex.method1 = function() { return "method1 called"; }
alert(dojo.getObject("com.omnytex.method1")() + ", " +
dojo.getObject("com.omnytex.method2", true) + ", " +
dojo.getObject("com.omnytex.method2", false));

This code begins by creating a function named com and then adding a new function
named omnytex to it. Next, it adds a method to com.omnytex named method1, which returns a
string. This is all done just so we can test dojo.getObject(), as seen in the alert() function.
The first call to dojo.getObject() gets us a reference to method1, which we then execute, and it
returns the string for us. The next call to dojo.getObject() uses the optional second parame-
ter, which by default is false, but here is true. What this does is add method2 to com.omnytex
automatically. It’s an empty function at this point, but it’s there, as you can see in the dialog
box in Figure 2-21.

Figure 2-21. ch2_getObject.htm result

Just to prove that point, I added the third call to dojo.getObject(), specifically telling it
not to create the requested object if it doesn’t exist. Yet, as you can see in the figure, in both of
the last two calls it returns us an object, proving it is in fact there.

dojo.hasClass()

This is a simple but useful function that returns true if a given DOM node has a given style
class applied, false if not. So, if you have this markup on a page:

<div class="myClass" id="myDiv">myDiv</div>

. . . and assuming you have MyClass defined in your style sheet, then doing this:

alert(dojo.hasClass('myDiv', 'myClass'));

. . . will spit out the alert() dialog box shown in Figure 2-22.

CHAPTER 2 ■ DOJO CORE64

Figure 2-22. ch2_hasClass.htm result

dojo.indexOf()

This function mimics indexOf() in the standard Array object, but with a little more functional-
ity. Here’s a quick example:

var a = ["Shatner", "Nimoy", "Kelley", "Spiner", "Nimoy"];
alert(dojo.indexOf(a, "Nimoy") + ", " + dojo.indexOf(a, "Stewart") +
", " + dojo.indexOf(a, "Nimoy", 0, true));

And for the stunning outcome, look no further than Figure 2-23!

Figure 2-23. ch2_indexOf.htm result

The first call to dojo.indexOf() results in 1 because that’s the index of the first occurrence
of Nimoy in the array. The second call results in –1 because Stewart does not appear in the
array. Finally, the third call yields 4 because that’s the index of the last occurrence of Nimoy.
The first argument is obviously the array to search, while the second argument is the element
to search for. The third argument, which is optional, is where to begin the search. I specified it
only here, in the third call, and it’s 0, which is the default and equates to the start of the array.
The fourth argument, also optional, defaults to false, but when true tells the function to
search for the last occurrence of the given element.

dojo.isArray()

I’m going to go out on a limb here and bet you can figure out precisely what this function does
without having to be told. If you imagine that the following code:

var s = new String("I am a string");
var a = new Array();
var i = 5;
alert(dojo.isArray(s) + "\n" + dojo.isArray(a) + "\n" + dojo.isArray(i));

. . . results in the pop-up seen in Figure 2-24:

CHAPTER 2 ■ DOJO CORE 65

Figure 2-24. ch2_isArray.htm result

. . . then you must also have deduced that isArray() tells you whether its argument is an array.
And if you think that’s neat, check out the next one.

dojo.isArrayLike()

The dojo.isArrayLike() function is just like dojo.isArray(), but what it checks for is that its
argument isn’t a string or a number, and that is has a length property. So, for example, assum-
ing you have the following markup on the page:

<body onLoad="doOnLoad();"><div id="myDiv">I am myDiv</div></body>

. . . then the code in doOnLoad(), like so:

function doOnLoad() {
alert(dojo.isArray(document.body.childNodes) + ", " +
dojo.isArrayLike(document.body.childNodes));

}

. . . gives you the oh-so-amazing pop-up shown in Figure 2-25.

Figure 2-25. ch2_isArrayLike.htm result

dojo.isDescendant()

If you need a way to determine whether a given DOM node is a child of another, dojo.
isDescendant() is just the ticket. With it, you can, for example, examine this markup:

. . . with this code:

alert(dojo.isDescendant(dojo.byId("div3"), dojo.byId("div1")) + "\n" +
dojo.isDescendant("div3", "div2"));

. . . and the result will be Figure 2-26.

CHAPTER 2 ■ DOJO CORE66

Figure 2-26. ch2_isDescendant.htm result

The first argument is a reference, or the ID of the node to examine. The second argument
is the possible parent node, or ID of said node. If the first node descends from, or is a child of,
the second, then this function returns true; otherwise, it returns false.

dojo.isFunction()

This is another identity function, meaning it tells you whether a given argument is a type of
something, and in this case it tells you whether the argument is a function. This enables you to
do things like this:

var f1 = function() { };
var f2 = new Function();
function func() {
}
var f3 = func;
var f4 = "test";
var f5 = 1;
alert(dojo.isFunction(f1) + "\n" + dojo.isFunction(f2) + "\n" +
dojo.isFunction(f3) + "\n" + dojo.isFunction(f4) + "\n" +
dojo.isFunction(f5));

When executed, you get the alert() in Figure 2-27.

Figure 2-27. ch2_isFunction.htm result

dojo.isObject()

The dojo.isObject() function returns true if the argument passed to it is an object, false
otherwise. It enables you to do all the nifty-keen checks in this code snippet:

var s1 = "string";
var s2 = new String("string object");
var i = 1;
var o = new Object();

CHAPTER 2 ■ DOJO CORE 67

var a = new Array();
alert(dojo.isObject(s1) + "\n" + dojo.isObject(s2) + "\n" +
dojo.isObject(i) + "\n" + dojo.isObject(o) + "\n" +
dojo.isObject(a));

The outcome is shown in Figure 2-28.

Figure 2-28. ch2_isObject.htm result

The only surprise may be that the variables s1 and s2 are not both true. Remember that
there is a difference between string literals and strings constructed using new String(). Also
remember that arrays are objects in JavaScript, hence the true returned for the variable a.

dojo.isString()

The last identity-type function is dojo.isString(). It’s I think pretty self-explanatory, but for
the sake of completeness, here’s an example:

var s1 = new String("I am a string");
var s2 = "I too am a string";
var s3 = 100;
alert(dojo.isString(s1) + ", " + dojo.isString(s2) + ", " +
dojo.isString(s3));

This tells you whether each of the variables is a string, as you can plainly see by looking at
Figure 2-29.

Figure 2-29. ch2_isString.htm result

dojo.lastIndexOf()

This function mimics lastIndexOf() in the standard Array object, but with a little more func-
tionality. Here’s a quick example:

var a = ["Boxleitner", "Jurasik", "Katsulas", "Jurasik", "Biggs"];
alert(dojo.indexOf(a, "Jurasik") + ", " + dojo.indexOf(a, "Furlan"));

CHAPTER 2 ■ DOJO CORE68

And for the stunning outcome, look no further than Figure 2-30!

Figure 2-30. ch2_lastIndexOf.htm result

The first call to dojo.indexOf() results in 1 because that’s the index of the first occurrence
of Jurasik in the array. The second call results in –1 because Furlan does not appear in the
array (no offense to Delenn!1). The first argument is obviously the array to search, while the
second argument is the element to search for. The third argument, which is optional, is where
to begin the search.

dojo.map()

This is another of the functions Dojo provides for dealing with arrays. With this one, you pass
it an array as the first argument, and then a function (or reference to a function) as the second.
For each element in the array, the function will be called and passed the next item in the array.
The function can do something with the item if it wishes, return it, and dojo.map() will return
the array, with any changes the function has made.

To put this in concrete terms, check out the following bit of code:

var a = [2, 4, 6, 8, 10];
a = dojo.map(a, function(item) {
return item * 2;

});
alert(a);

What you’ll see on your monitor is what you see in Figure 2-31.

Figure 2-31. ch2_map.htm result

CHAPTER 2 ■ DOJO CORE 69

1. In case you don’t recognize the reference, Delenn in a character from the television show Babylon 5. In
my opinion, Babylon 5 is the best sci-fi television series of all time, bar none. Some people agree with
me very strongly; others disagree just as strongly. If you’ve seen the show, you have your own opinion
already. If you haven’t seen it, I highly recommend doing so, if for no other reason than to understand
many of my references! For info, the Internet Movie Database (IMDb) shall provide: www.imdb.com/
title/tt0105946/.

dojo.mixin()

The dojo.mixin() function always reminds me of that ice cream store, Cold Stone Creamery.2

You see, aside from pumping you full of calories and saturated fat (mmmm, saturated fat!),
this place lets you have mix-ins, which are all sorts of candy and other stuff that you can mix
into the ice cream of your choice. You can come up with some crazy concoctions this way, and
Dojo gives you the digital equivalent of that here (err, without the heart disease at a young
age!).

Seeing is believing, so here you go:

function Class1() {
this.firstName = "Robert";

}
function Class2() {
this.lastName = "Redford";

}
var o = dojo.mixin(new Class1(), new Class2());
alert(dojo.toJson(o));

Simply put, all the properties of the second argument, an instance of Class2 here, are
added to the first argument, an instance of Class1, and the new object is returned. (Note that
neither of the arguments—the objects, I mean—are affected by this. The returned object is a
whole new animal.)

What, you don’t believe me? Well, have a look at Figure 2-32 for proof.

Figure 2-32. ch2_mixin.htm result

dojo.objectToQuery()

If you need to construct a query string from an array of name/value pairs, this is just the func-
tion you want. It takes care of URL encoding for you too, so there’s little you have to worry
about other than providing the data.

Here it is in action, both the code and Figure 2-33 showing what the function spits out
for you:

CHAPTER 2 ■ DOJO CORE70

2. For more information—most important, where one of these stores is near you because, believe me,
you haven’t had ice cream until you’ve had some Cold Stone—go here: www.coldstonecreamery.com.
But, I am in no way, shape, or form responsible for your gym bill or doctor bill after you down tubs of
this stuff!

alert(dojo.objectToQuery({
chipmunk1 : "Alvin Chipmunk",
chipmunk2 : "Simon Chipmunk",
chipmunk3 : "Theodore Chipmunk"

}));

By the way, I have absolutely zero clue what the last names of the chipmunks actually are,
and I’m frankly too lazy (and too scared how it might impact my macho persona) to look it up.
In any case, I simply wanted to demonstrate how spaces get encoded properly to a value of
%20; that’s the important bit.

Figure 2-33. ch2_objectToQuery.htm result

dojo.place()

The dojo.place() function enables you to move DOM nodes around, if they already exist, or
place new ones where you want.

Let’s say we have three <div>s on our page, two of them together and another off on its
own. Let’s say we want take that loner <div> and stick it in-between the other two. The markup
might look something like this:

<div id="node1">Node1</div>
<div id="node3">Node3</div>

<div id="node2">Node2</div>

Then, to move node2 in-between node1 and node3, we could do this:

dojo.place("node2", "node1", "after");

The display on the screen after that would be as follows:

Node1
Node2
Node3

The first argument is the node to move, the second is a node to position relative to, and
the third is the position relative to the second argument. This third argument can also be a
number that specifies the location in the second node’s childNodes collection to insert the first
node into. Other valid text values for this third argument include before, after, first, and
last (first and last indicate that the node should be the first or the last, respectively, in the
childNodes collection).

CHAPTER 2 ■ DOJO CORE 71

dojo.platformRequire()

The dojo.platformRequire() function is a brethren of the dojo.require() function that
enables you to optionally include modules depending on what environment or platform the
code is running in.

The dojo.platformRequire() function takes as an argument a “map” of arrays, where each
element in the map is a value known to Dojo corresponding to a specific platform, plus two
additional ones: common, which are modules that will always be loaded regardless of platform,
and default, which will be loaded if none of the platform-specific lists are used.

By way of example, you could do this:

dojo.platformRequire({
browser : ["dojox.Button"],
common: ["dojo.behavior", "dojo.currency"],
default: ["dojo.AdapterRegistry"],

});

This would load the DojoX button widget only when the code is running within a web
browser. It would always load both dojo.behavior and dojo.currency, and would additionally
load dojo.AdapterRegistry when not running in a browser.

dojo.query()

If you need to look up DOM nodes on your page by using CSS node selector support, and you
need to do it efficiently, this function will be right up your alley. This function is similar to the
$$() function in Prototype or $() in jQuery, if you happen to be familiar with either of those.
It enables you to search the entire DOM tree, or just a subsection of it that you specify.

The dojo.query() function supports a large set of CSS3 selectors:

• Simple class selectors, such as .myStyleClass

• Selection by node type, such as span or div

• Descendant selectors

• Child element selectors (>)

• Style ID selectors, such as #someID

• Universal selector (*)

• Immediate predecessor sibling selector (~)

• Preceded-by-sibling selector (+)

• Attribute queries, including the following:

• [xxx]: Check for existence of a selector

• [xxx='yyy']: Find attribute with a given value

• [xxx~='yyy']: Find attribute with matching value from list

CHAPTER 2 ■ DOJO CORE72

• [xxx^='yyy']: Find attribute with a value starting with a specified value

• [xxx$='yyy']: Find attribute with a value ending with a specified value

• [xxx*='yyy'] Find attribute with value matching substring

• Positional selection for first and last child (:first-child, :last-child)

• Empty content selector (:empty)

• Positional style calculations (:nth-child(n), :nth-child(2n+1))

• Positional selectors (:nth-child(even), :nth-child(odd))

• Negation pseudo-selectors (:not(...))

Moreover, you can combine these selectors in many varied and complex ways to get at
just the elements you need.

As a simple example, take the following markup:

<body onLoad="testIt();">
<div id="div1" class="myStyle"> </div>
<div id="div2"> </div>
<div id="parentDiv">
<div id="div3" class="myStyle"> </div>

</div>
</body>

Say we want to find all elements with a style class of myStyle. We can do this:

alert(dojo.query(".myStyle") + "\n" + dojo.query(".myStyle", "parentDiv"));

The result is the pop-up shown in Figure 2-34.

Figure 2-34. ch2_query.htm result

Here, I show the ability to scope the search to a specified sub-branch of the page’s DOM
tree, as shown with the second line of the alert().

dojo.queryToObject()

The dojo.queryToObject() function is the bizarro universe’s evil twin of the dojo.
objectToQuery() function. This one takes a string in the form of a query string and converts
it to an object. With it, you can do things like this:

CHAPTER 2 ■ DOJO CORE 73

var s = dojo.objectToQuery({
chipmunk1 : "Alvin Chipmunk",
chipmunk2 : "Simon Chipmunk",
chipmunk3 : "Theodore Chipmunk"

});
alert(dojo.toJson(dojo.queryToObject(s)));

Here I’ve used dojo.objectToQuery() to build the query string from an anonymous object.
Then I take the resultant string and convert it to an object by using dojo.queryToObject(),
and finally use our friendly neighborhood dojo.toJson() function to display the object in an
alert(). The resultant alert() can be seen in Figure 2-35.

Figure 2-35. ch2_queryToObject.htm result

dojo.registerModulePath()

You didn’t think all this packaging hotness was just for Dojo, did you? Well, guess what? It’s not!
You can in fact create your own packages and make them available via dojo.require() calls
just the same as any part of Dojo!

How do you pull this off? Well, it begins with creating a file along the lines seen in
Listing 2-1.

Listing 2-1. myFunc.js

if(!dojo._hasResource["dojo.customPackage.myFunc"]) {
dojo._hasResource["dojo.customPackage,myFunc"] = true;
dojo.provide("dojo.customPackage.myFunc");
dojo.customPackage.myFunc = function() {
alert("Thank you for calling myFunc!");

}
}

Each JavaScript file that will be loaded via the dojo.require() mechanism must contain a
dojo.provide() call. This registers with Dojo that the resource, the JavaScript file, has been
loaded. Wrapped around this call is a check of the _hasResource collection that is a member of
the dojo namespace. This is an object that each resource gets recorded in when it is loaded. So,
we check to see whether my custom package has been loaded yet, and if not, we go ahead and
register it having been loaded so that Dojo is aware of it.

After that, I add a new customPackage namespace to the dojo namespace, and within it
add a function myFunc().

Now, I can use this as shown in Listing 2-2.

CHAPTER 2 ■ DOJO CORE74

Listing 2-2. ch2_customPackageTest.htm

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script language="JavaScript" type="text/javascript">
dojo.registerModulePath("dojo.customPackage", "../../..");
dojo.require("dojo.customPackage.myFunc");
dojo.customPackage.myFunc();

</script>
</head>
<body></body>

</html>

Now you can see the call to dojo.registerModulePath(). The purpose of this call is to tell
Dojo where to find the resource, the JavaScript file, for the dojo.customPackage code. The value
you pass as the second argument is a path relative to the Dojo root. So here it’s simply bring-
ing us back up three levels to get us in the same directory as the HTML file, assuming you run
this code from the directory structure provided in the download bundle.

After that I make a test call to dojo.customPackage.myFunc(), resulting in an alert() pop-
up, just to prove everything worked as expected.

I should mention that if you put your source files in the directory structure of Dojo, you
shouldn’t even need to use dojo.registerModulePath(). This example is slightly contrived in
that I wanted to demonstrate the function, so I put the JavaScript file alongside the HTML file,
which you most likely wouldn’t want to do. Keeping it in the same structure as all the Dojo
packages that already exist probably makes more sense in “real life,” so to speak.

dojo.requireIf()

Remember dojo.require()? Well, dojo.requireIf() is just an extended version that enables
you to do conditional loading of modules. You pass into this function two arguments. The first
is some expression that evaluates to a Boolean, and the second is the module name, just like
you pass to dojo.require(). If the expression evaluates to true, the module will be loaded;
otherwise, it won’t be.

■Note Of course, Dojo isn’t responsible if your downstream code assumes that something is loaded that
conditionally was not when using this function! In other words, be careful using dojo.requireIf()

because you could relatively easily cause code to break if a module doesn’t get loaded that your code
otherwise expects to be.

CHAPTER 2 ■ DOJO CORE 75

dojo.setContext()

You should probably have noticed by now that most of the functions that do various lookups
in the DOM work in global context by default. In other words, they reference the DOM and the
global namespace of the page that contains them, depending on what they’re looking up. You
should also have noticed that many of those functions, maybe even most of them, allow you
to optionally specify another scope, be it a subsection of the DOM, alternate namespace, or
the context of an entirely different page (that is, in an IFrame).

With dojo.setContext(), you can globally set a new context for these lookups, saving you
from having to specify it per call. The dojo.global and dojo.doc fields are modified as a result
of using this function, and dojo.body() will get you a different object as well.

dojo.setObject()

With dojo.setObject(), you no longer need code like this:

if (!o) { o = { }; }
if (!o.names) { o.names = { }; }
o.names.firstName = "Mitch";

Instead, you can now do this:

dojo.setObject("person.names.firstName", "Mitch");
alert(dojo.toJson(person));

What you’ll get from that is what you see in Figure 2-36.

Figure 2-36. ch2_setObject.htm result

The dojo.setObject() function will add any intermediary objects to an existing object (if
person was already an instance of some class) or will create the entire thing, as shown in this
example. It doesn’t get any handier than that!

dojo.setSelectable()

You know, this is an interesting one because, I have to admit, I wasn’t even aware you could do
this before I saw this function! As it turns out, elements on the page can be made unselectable,
meaning you can’t highlight them to copy the text. With this function, using

dojo.setSelectable('myDiv', false);

makes <myDiv> unselectable. This function deals with the cross-browser differences, and a
quick glance at the source code of this function indicates that each browser pretty much
handles things differently than the others, so I’m quite happy to not have to deal with those
concerns!

CHAPTER 2 ■ DOJO CORE76

dojo.some()

Let’s say you have an array:

[1, 3, 5, 7, 9, 15]

Let’s further say you want to check whether at least some of the elements in that array are
greater than 6:

function isGreaterThanSix(val) {
return val > 6;

}

You could then iterate over the array, calling isGreaterThanSix() for each element. If you
get true back for any of them, the condition is met. But, that wouldn’t be very Dojo-ish now
would it? Well, try dojo.some() on for size:

alert(dojo.some(a, function(val) { return val > 6; }));

This nets you a true result, as seen in Figure 2-37.

Figure 2-37. ch2_some.htm result

Change the value checked for in the function to, say, 22, and you get false.

dojo.stopEvent()

Event bubbling is the mechanism in a browser whereby a UI event “bubbles up” from the ele-
ment that received the event until it is stopped.

Imagine a <div> inside another <div>. If both register an onClick handler, and the inner
<div> is clicked, the onClick handler for that <div> will fire, and then the one for the contain-
ing <div> will fire, and so on through all the containing elements, until the top is reached, or
the event is stopped.

So, how do you stop an event? Well, if you’re guessing dojo.stopEvent() does so, you’d be
100 percent right!

You pass this function either the event object passed to the event handler, or nothing in
the case of IE, where it automatically grabs the event object off the window object.

To see it in action, imagine taking this markup:

<body onLoad="setup();">
<div id="outerDiv" style="background-color:#ff0000;width:100px;height:100px;">

<div id="innerDiv" style="background-color:#00ff00;width:50px;height:40px;">

</div>

CHAPTER 2 ■ DOJO CORE 77

</div>

<div id="divOutput" style="width:200px;height:200px;"> </div>

</body>

Then imagine this code:

function setup() {
dojo.byId("outerDiv").onclick = doOuterClick;
dojo.byId("innerDiv").onclick = doInnerClick;

}
function doOuterClick(e) {
dojo.byId("divOutput").innerHTML += "doOuterClick()
";

}
function doInnerClick(e) {
dojo.byId("divOutput").innerHTML += "doInnerClick()
";
dojo.stopEvent(e);

}

The setup() function is called onLoad to attach the event handlers (needed to be able to
pass the event object into the event handler functions in non-IE browsers). Each event han-
dler just writes some content out to the screen to indicate when each of the corresponding
events fire. Click the inner green <div> and you’ll see that only the string doInnerClick() is
written out. Now, go comment out the dojo.stopEvent() call and you’ll see that now when the
green <div> is clicked, doInnerClick() is written out, followed immediately by doOuterClick().
Note that in the case of IE, no event object is passed in, so passing the argument e is the same
as passing null, so the functions work cross-browser with no change.

dojo.style()

This function enables you to both get and set style attributes on a DOM node in a clean,
concise way. The first argument is always the DOM node (or ID of the node) to work with.
Following that is either one or two arguments. If only one, it is the name of the attribute to
retrieve. If two, then the first is the attribute to set, and the second is the value to set.

If you want to see it in action, here you go:

alert(dojo.style("myDiv", "color"));
dojo.style("myDiv", "color", "#0000ff");

Say you had this markup on the page:

<div id="myDiv" style="color:#ff0000;">I am myDiv</div>

Executing that code gives you the pop-up in Figure 2-38, and the color of the test in the <div>
changes to blue after the second line executes.

CHAPTER 2 ■ DOJO CORE78

Figure 2-38. ch2_style.htm result

dojo.toggleClass()

The dojo.toggleClass() function does exactly what it says: it toggles whether a style class is
applied to a specified DOM node or not. You pass it a reference to the DOM node, or the ID
of the node, and then the name of a style class. If the node already has the style applied, it is
removed, and if the node doesn’t yet have the style applied, it is applied. Optionally you can
pass a third argument that when true will apply the style either way, and when false will
remove it either way.

So, for example:

dojo.toggleClass("myDiv", "myClass");
alert("Should now be red");
dojo.toggleClass("myDiv", "myClass");
alert("Should now NOT be red");
dojo.toggleClass("myDiv", "myClass", true);
alert("Should now be red");
dojo.toggleClass("myDiv", "myClass", false);
alert("Should now NOT be red");

This yields four alert() pop-ups (which I’m going to forego showing here to save a little
space). The text on the page changes from red to black, to red again, and then to black again,
with the pop-ups in-between each change so you can see it. Because the target <div> starts off
with no style, the first call to dojo.toggleClass() applies it, the second removes it, the third
forcibly applies it, and the fourth forcibly removes it.

dojo.toJson()

The dojo.toJson() function is a very handy function, especially during debugging. Very sim-
ply, it takes a given object and spits out JSON representing the object. It optionally can print
the JSON in “pretty” format. (I personally find the non-pretty format to be prettier; your
mileage may vary). Check out this code:

function MyClass() {
this.salary = 10000000;
this.age = 34;
this.isReality = false;

}
alert(dojo.toJson(new MyClass(), true));

CHAPTER 2 ■ DOJO CORE 79

The second parameter (true here) tells Dojo to “pretty-print” the JSON, and you can see
the results in Figure 2-39.

Figure 2-39. ch2_toJson.htm result

The only real difference between pretty-printing and, err, ugly-printing, I suppose, is the
indenting of objects, arrays, and the placement of brackets.

You will recognize that this is very similar to the dojo.formToJson() function you saw ear-
lier, but this works generically for virtually any object.

dojo.trim()

This function trims whitespace from the beginning and end of a string. Later I describe the
dojo.string.trim() function, which is identical. (I’m frankly not sure why there are two ver-
sions of the same thing, but be that as it may.)

dojo.unloaded()

This function is what’s called when the environment is being destroyed, usually correspon-
ding to the browser being closed, or the page being navigated away from. This is internally
what you’re “hooking into,” so to speak, when you use dojo.addOnUnload() as described previ-
ously. There’s no need to demonstrate anything here because dojo.addOnUnload() is really
what you should use (or dojo.connect() alternatively, also described previously).

dojo.xhrDelete(), dojo.xhrGet(), dojo.xhrPost(), and dojo.xhrPut()

What we have here is a batch of functions that are the gateway to the world of Ajax in Dojo. All
of them do the same basic thing, but they differ in what HTTP method will be used to make
the Ajax request.

FOR THOSE WHOSE HOME IS UNDER A ROCK

Ajax is a programming technique that allows for partial-page refreshes, meaning portions of the web page
that a user is viewing in a browser can be updated without having to ask the server for a whole new page
to display. This enables you to have a much richer client-like application because you can begin to make
service-oriented requests to your server, which then returns just data, not markup, and your client-side code
is then completely responsible for the presentation of that data. You can do all of that without the typical web
application paradigm of page ➤ request ➤ next page, which tends to be a lesser user experience in terms
of speed, look, feel, and functionality.

CHAPTER 2 ■ DOJO CORE80

Ajax leads to the “single-page” architecture, where a single JSP, PHP, ASP, or plain HTML page provides
the full code of your application. (You’re of course pulling in a bunch of resources when that page is served,
such as JavaScript, images, and style sheets, but it’s essentially a single page.) Everything that happens from
that point on is controlled (to some extent) by that client-side code, with the server just providing updated
data when needed.

Ajax, which stands for Asynchronous JavaScript and XML, doesn’t have to be asynchronous at all (but
nearly always is), doesn’t have to use JavaScript (but nearly always does), and doesn’t have to use XML (fre-
quently, maybe even mostly nowadays, it doesn’t). Ajax has been around for a while now, not even counting
how long it’s been around before it was even called Ajax (it’s nothing new, it’s just a new name and a refine-
ment of some techniques that have been around for a while). Ajax is the basis for what we now call rich
Internet applications (RIAs). Or, as I like to put it, web applications that don’t suck!

Each of these functions accepts a single argument that is an object specifying several
optional elements (and one required) that tell Dojo what it needs to make the call for you. A
rundown of those elements is presented in Table 2-1.

Table 2-1. Elements within the Second Argument Object to the dojo.xhr() Function

Attribute Description

content This is an object that will be turned into a name/value pair string.

error The callback function to call when an error occurs.

form A reference to a <form> element, which will be serialized much as the object for
the content element is.

handleAs This specifies what to handle the response as. Valid values are text (this the
default), json, json-comment-optional, json-comment-filtered, javascript,
and xml.

headers This is an object, just like for the content element, that specifies headers to set on
the request.

load This is a reference to the callback function to call when the response returns. This
function will be passed the response from the server.

preventCache If set to true, a dojo.preventCache parameter is sent in the request with a value,
a timestamp to be more precise, that therefore changes with each request. This
attribute is most relevant with GET requests because they can be cached by the
browser; without setting preventCache to true, your Ajax requests wouldn’t
always go to the server and would instead be serviced out of the local cache,
which is almost certainly not what you want. (Note that this is never a problem
for POST requests, which are never cached.)

sync Set to true to make the call synchronously, which means all activity in the
browser, including JavaScript execution, is blocked until the call returns. This
defaults to false, making the call asynchronously.

timeout This is the number of milliseconds to wait for the response. If the time elapses
with no response, the error callback is called.

url This is the only required element, and it is the URL to contact.

CHAPTER 2 ■ DOJO CORE 81

As you can see, only the url element is required. Everything else is completely optional.
So, how do you use these functions? Well, take a look at Listing 2-3.

Listing 2-3. ch2_xhr.htm

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script>
function doAjax() {
dojo.xhrGet({ url : "ch2_xhrMockServer.htm",
content : { var1 : "val1", var2 : "val2" },
load : function(resp) {
var o = dojo.fromJson(resp);
dojo.byId("ajaxResponse").innerHTML = "response1 = " +
o.response1 + "
response2 = " + o.response2;

}
});

}
</script>

</head>
<body onLoad="">
<input type="button" value="Click for Ajax" onClick="doAjax();">

<div id="ajaxResponse"></div>

</body>
</html>

When you load this code in your browser, you’ll have a plain page with nothing but a but-
ton on it. After resisting the urge to press the shiny button for a few seconds, click it, and you
will see what you see here in Figure 2-40.

CHAPTER 2 ■ DOJO CORE82

Figure 2-40. ch2_xhr.htm result

As you can see, some response text has been inserted into the DOM and is now visible.
This was done without refreshing the whole page, so Ajax and Dojo have done their jobs nicely
for us.

Now, you may be wondering where the response came from. There doesn’t appear to be
any server here to have served the response, and that is accurate. What I’ve done is used a
technique known as the mock server technique. Basically, this is a fancy way of saying we have
an HTML document in the same directory as the HTML document making the Ajax request,
playing the part of the server. Assuming you’ve downloaded the source code for this book,
you’ll find a file named ch2_xhrMockServer.htm, and it’s nothing but the following:

{ response1 : "Hello from the mock server", response2 : "Dojo is cool" }

Yes, that’s literally all there is in that file. So, Dojo makes the Ajax request for us, and as
you can see from the code, the URL specified is our mock server HTML file. The browser
retrieves that file, and it becomes the response to the Ajax request. We then use the dojo.
fromJson() function to get an object from the response from our “server” and then just pull
out the values we’re interested in and display them on the page.

The other interesting thing to note here is what the request going across the wire looks
like. For that, let’s see what Firebug shows us when we click the button, which you can see for
yourself in Figure 2-41.

CHAPTER 2 ■ DOJO CORE 83

Figure 2-41. The request, as seen in Firebug

You can plainly see the two values, var1 and var2, which were added as query string
parameters. You can also see the response as it was presented to Dojo.

I could have saved a step here, by the way, if I had passed handleAs:"json" in the call. I
then would not have had to make the dojo.fromJson() call myself because the argument
passed to my load callback would have been an object equivalent to that returned by dojo.
fromJson(). You would also note in that case a message in Firebug saying I should probably
use the appropriate Multipurpose Internet Mail Extension (MIME) type to avoid security
considerations. My, now, isn’t Dojo just so helpful?

Now, even though I’ve used dojo.xhrGet() here, I could have chosen to use any of the
other methods; dojo.xhrPost() would have made some sense. This becomes useful especially
in RESTful applications where the HTTP method itself has specific meaning to the server
process. The point, though, is that the function call is pretty much identical for all of them.

GETTING GOOD REST IS HEALTHY!

REST, which stands for Representational State Transfer, is a software architect approach specifically
designed for systems that are based around the concept of distributed hypermedia (which is a complicated
way of saying the World Wide Web: a collection of documents hyperlinked together).

A RESTful application takes the tact that every single thing that can be retrieved from a server is a
resource that is uniquely addressable via a Universal Resource Identifier, or URI. You can do only a few key
things with resources: write them, read them, delete them, update them. In other words, you can CRUD them,
which means Create, Read, Update, or Delete them. The HTTP methods themselves tells the server what
you’re doing: PUT means you are creating, GET means you are reading, POST means you are updating, and
DELETE literally means you are deleting. (There’s some room for using these a little differently in some
implementations, and other methods are sometimes employed too, but we’re talking high-level concepts
here, not implementation-level specific details.)

If this sounds like it’s nothing new, that’s because it really isn’t: the web itself is an example of such an
architecture. Some argue that REST as we know it today is an extension of that for various reasons (the use
of the HTTP methods specifically is a big one), but it’s still an architecture based around URIs, so fundamen-
tally it’s really not anything too new.

CHAPTER 2 ■ DOJO CORE84

Properties
Through the dojo namespace, you have access to a wealth of information about Dojo, the
environment the script is running in, and many other things, all provided by default by Dojo
without you having to do any extra work. In this section, I’ll go through them so you can get a
good feel for what’s available. I provide only some limited example code here because these
are pretty much “read ’em and go” kinds of things, as all data fields of an object are.

dojo.baseUrl

The dojo.baseUrl property tells you the relative path to the root where Dojo is located. This
should match the value you set in djConfig, if any, or the default otherwise.

dojo.config

The dojo.config property is the djConfig object that you created before importing dojo.js
onto the page, or a default version if you’ve provided no options.

dojo.doc

The dojo.doc property is simply an alias for the document object that you already know
and love. The API documentation for this states, “Refer to dojo.doc rather than referring to
window.document to ensure that your code runs correctly in managed contexts.” I admit I’m not
completely sure what that means, but my read on it is that in some situations, perhaps when
your code isn’t running within the context of a browser, using dojo.doc will ensure that your
code still works, even if the document object isn’t defined. I admit that’s largely a guess on my
part, however. The bottom line is that dojo.doc and window.document (or just plain document)
should generally be equivalent, and if using dojo.doc provides some sort of additional safety
net in some circumstance down the road, that seems like a good idea to me and shouldn’t hurt
anything in any case.

dojo.global

The dojo.global property is an alias for the global namespace, otherwise known as the window
object when running inside a browser environment. As is the case with many of the aliases
Dojo provides for various standard browser objects, this one enables you to stay entirely
within the Dojo API when writing your code.

dojo.isBrowser

This property is set to true if the application is running within a web browser and the window
object is defined. You might see this set to false if, for instance, you rendered the HTML in
memory with the intent of outputting it to a PDF—in which case it wouldn’t be rendered in a
browser (although it seems a reasonable assumption that JavaScript wouldn’t be available in
such a case, so this property wouldn’t even be set to check—but I assume this serves a purpose
in some cases for some people and I further assume there are in fact cases where JavaScript
would be available too!).

CHAPTER 2 ■ DOJO CORE 85

dojo.isFF

The dojo.isFF property is set to a numeric value greater than zero if the application is running
Firefox. The value indicates which version of Firefox it’s running in. For instance:

if (dojo.isFF == 1.5 || dojo.isFF == 2 || dojo.isFF = 3) {
alert("Running in FF 1.5, 2 or 3");

}

dojo.isGears

This property will be set to true if the client has Gears installed, false if not. This is nice
because it keeps you from having to do the check yourself; it’s already done for you and the
answer is available here.

dojo.isIE

This property is set to a numeric value greater than zero if the application is running in Inter-
net Explorer on a PC. The value indicates which version of IE the application is running in. For
instance:

if (dojo.isIE == 7) {
alert("Running in IE 7");

}

dojo.isKhtml

This property is set to a numeric value greater than zero if the application is running in a
browser using the KHTML render engine. The value returned corresponds to a major version
number.

The KHTML engine is an HTML layout engine developed by the KDE Linux desktop proj-
ect. It is the engine that powers the Konquerer web browser. It is also the basis for the WebKit
render engine, which is a fork of KHTML developed by Apple and used in the Safari browser.
As such, this property is set to a nonzero value for current versions of Safari (one could imag-
ine this not being the case in the future, but for now it is the case).

As an example, you could do this:

if (dojo.isKhtml != 0) {
alert("Browser uses KHTML layout engine (or derived engine)");

}

dojo.isMozilla

This property will tell you whether you’re running in a Mozilla-based browser, including Fire-
fox and SeaMonkey. Like all the others, it returns a value greater than zero corresponding to
the major version number of the browser, or zero if not running within Mozilla. Note that Fire-
fox will return a nonzero value here, in addition to the value set in dojo.isFF.

At this point, I’m going to stop showing examples of these is* functions because, frankly, I
think you get the idea!

CHAPTER 2 ■ DOJO CORE86

dojo.isOpera

If you aren’t seeing a pattern yet, you aren’t paying attention! Like all the other browser identi-
fication properties, this one returns zero if the browser isn’t Opera, or a value greater than zero
if it is, with that value indicating the major version number detected.

dojo.isQuirks

This property tells you whether the browser is currently in quirks mode.

■Note Quirks mode is a special mode that most browsers support that is for maintaining backward
compatibility of older pages. Most modern browsers can render pages adhering to the World Wide Web Con-
sortium (W3C) and Internet Engineering Task Force (IETF) standards, and that’s generally what you want to
develop to. Older pages, however, frequently aren’t standards-compliant. To ensure that these pages render
properly, you can tell the browser to render them in quirks mode, which attempts to emulate the behavior of
older browsers (in which, presumably, the older page renders fine).

dojo.isRhino

This property indicates whether the JavaScript is executing in the Rhino environment. (Rhino
is a JavaScript interpreter in Java.)

dojo.isSafari

This is another browser detection property. This one is interesting because it detects Safari,
which includes the popular iPhone browser. Once again, zero indicates that the browser is not
Safari; nonzero indicates it is and what version is being used.

dojo.isSpidermonkey

SpiderMonkey is Mozilla’s implementation of JavaScript in the C language, and the dojo.
isSpidermonkey property enables you to determine whether your code is running in such an
environment. This is useful if you have reason to suspect that your application is running in
some sort of embedded environment using SpiderMonkey, in which case you may need to
branch to some alternate code in some situations. This property provides a mechanism to
determine that.

dojo.jaxer

This property will tell you whether your code is running in Jaxer. Jaxer is a product by Aptana
that bills itself as the “world’s first true Ajax server.” In short, Jaxer takes Firefox and makes it
“headless” and runs it on the server, on top of Apache. The idea is to enable you to write your
server-side code in JavaScript by using the same techniques, libraries, and so forth as you do
on the client. It’s not simply a matter of replacing your server-side code with JavaScript,
although that’s an attractive proposition to many on its own. No, what Jaxer does is takes the
next step by providing the mechanism to serialize the DOM created server-side and hand it
back to the client.

CHAPTER 2 ■ DOJO CORE 87

This enables you to write code that runs on both sides of the network connection, and do
so seamlessly. You can do things like manipulate the client DOM from the server side, for
example. The key point is that it doesn’t stop you from using Dojo, or any other library you
like, but now you can use it on the server side too. This dojo.jaxer property enables you to
know whether that’s the case, and possibly branch your code accordingly.

■Note For more information on Jaxer, check out www.aptana.com/jaxer. You also might want to have a
look at this blog entry from John Resig, famous creator of the jQuery library: http://ejohn.org/blog/
server-side-javascript-with-jaxer.

dojo.keys

The dojo.keys property has within it a set of constants that represent key values. For instance,
say you have a text field and you want to stop the user from using Backspace. (Why you’d want
to do that, I’m not sure, but let’s assume you hate your users for just a moment!) You could
do this:

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script language="JavaScript" type="text/javascript">
function noBackspace(e) {
var keyNum = null;
if (dojo.isIE != 0) {
keyNum = window.event.keyCode;

} else {
keyNum = e.which;

}
if (keyNum == dojo.keys.BACKSPACE) {
return false;

} else {
return true;

}
}

</script>
</head>
<body>

CHAPTER 2 ■ DOJO CORE88

<input type="text" id="theField" onKeyDown="return noBackspace(event);">
</body>

</html>

When this code is run, your user will not be able to hit Backspace. You can see a couple of
things in play here. First, the use of isIE can be seen, used to branch the code to get access to
the event information, because IE differs from virtually every other browser out there in this
regard (the event information is carried in the window.event object, whereas most other
browsers pass the object into the method, and the actual attribute is different, keyCode for IE
and which for others). Then, the dojo.keys.BACKSPACE value is used to determine when that
key is pressed.

dojo.locale

This is simply the locale, as defined by Dojo. This is a read-only value and should match the
locale as set by the browser, barring any weird goings-on!

dojo.OpenAjax

dojo.require("dojo.OpenAjax");

Unlike most of the other properties here, this one doesn’t tell you something; it provides
you something: an instance of the OpenAjax hub.

The OpenAjax hub is a product of the OpenAjax Alliance, which seeks to, among other
things, help ensure interoperability of the various client-side libraries out there. The hub is
their first concrete product and it is a publish-subscribe bus that libraries (and your own
code!) can use to communicate with one another in an event-driven, low-coupling manner.
For instance, you can do the following:

OpenAjax.hub.subscribe("myMessage", SomeFunction);

Then, later on, you can do this:

OpenAjax.hub.publish("myMessage", anObject);

When that publish() function is called, SomeFunction will be called and it will be passed
the object anObject. What’s more, any function subscribed in such a way will be called. This
means, for instance, that if you make an Ajax call, you can publish a message in the Ajax call-
back function. If there were ten widgets on the screen, all with an update() method that was
subscribed to the message (which you can name anything you wish by the way; it’s an identi-
fier that’s meaningful to your code), then those ten update() methods would be called, and
passed the return from the Ajax call, assuming that was the object you passed to the publish()
function.

In short, dojo.OpenAjax gives you the equivalent of OpenAjax seen in those two lines of
code. You don’t have to worry about instantiating it yourself; it’s just there for you to use. Note
that you must have a dojo.require() statement to make use of this because there is external
code Dojo needs to pull in (external in this case meaning code outside dojo.js, not code from
the Internet or anything like that).

CHAPTER 2 ■ DOJO CORE 89

dojo.version

As you probably quite reasonably assume, this property gives you the version of Dojo that is
running. For instance, in Figure 2-42 you can see the value in the alert() pop-up for the ver-
sion of Dojo that was used for the code throughout this book.

Figure 2-42. Displaying the dojo.version property via alert()

dojo.back
One of the biggest problems when writing RIAs that are constructed of a single page and then
dynamically load new content via Ajax is that the typical function of the browser’s Back and
Forward buttons is broken. For example, if you load page A, which happens to be a single
HTML page, and you never leave that page but instead reload parts of it (perhaps even the
whole content as seen by the user) via Ajax, then when the user clicks back, she will be trans-
ported to the last page she visited. The problem is that the user likely expects Back to take her
to some previous state of the current application, which is more logical and certainly more
user-friendly.

Usually, implementing this functionality isn’t the most trivial JavaScript coding one can
do, but Dojo provides an elegant mechanism for dealing with this, and all of it is housed
within the dojo.back namespace.

Functions
Three functions are pretty much all you need to use this powerful feature of Dojo. I’m going to
demonstrate them all at once because it’s much easier to understand them seen as a single
unit in a single example.

dojo.back.addToHistory(), dojo.back.init(), and dojo.back.setInitialState()

dojo.require("dojo.back");

Okay, so here’s the basic premise: to begin with, you call dojo.back.init() to get some
internal data structures ready. This, interestingly enough, has to be done within the <body> of
the document to get around some bug in IE. (I couldn’t find information on what the bug was,
but I’m just as happy to not know!)

Each time your application enters a new state that the user might want to use the Back or
Forward buttons to get to again, you make a call to the dojo.back.addToHistory() method.
This function call takes a single argument, an object with a couple of possible members. One,
back, is a function that is to be called when the Back button is clicked. Another, forward, is the
same thing but for the Forward button. Finally is changeUrl, which is a Boolean. When true,
the URL seen in the address box of the browser will have a special code appended to it. More
precisely, a unique hash of the URL is created and appended as an internal link location. This

CHAPTER 2 ■ DOJO CORE90

is important because it means the user can now bookmark that particular state in your appli-
cation. When he chooses the bookmark later, assuming your application is smart enough to
look for that location value and restore the application to that state, he will be right back
where he left off.

Last is the dojo.back.setInitialState() function, which takes the same sort of argument
as dojo.back.addToHistory(), but applies specifically to the initial state of the application. My
own personal expectation is that this is typically used to deal with that situation where the
Back button will cause the user to leave your site, so you may want to alert your users about
losing information, or take the opportunity to save it (whatever you need to do).

Now, that explanation is all fine and dandy, but it may not make a ton of sense, so have a
look at some code to bring it all into focus, specifically that seen in Listing 2-4.

Listing 2-4. ch2_back.htm Example

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script>
dojo.require("dojo.back");
dojo.back.setInitialState({
back : function() { alert("about to leave application") }

});
var content = [
"I am some content (app state 1)",
"I am some other content (app state 2)",
"I am yet other content (app state 3)"

];
function gotoContent(inNum) {
var dc = dojo.byId("divContent");
dc.innerHTML = content[inNum - 1];
dojo.back.addToHistory({
num : inNum, changeUrl : true, back : function() {
dojo.byId("divContent").innerHTML = content[this.num - 1];

}
});

}
</script>

</head>
<body>
<script>dojo.back.init();</script>
<div id="divContent"

CHAPTER 2 ■ DOJO CORE 91

style="width:300px;height:100px;border:1px solid #000000">
Hello, welcome to my application!

</div>

<input type="button" value="Goto Content 1" onClick="gotoContent(1);">
<input type="button" value="Goto Content 2" onClick="gotoContent(2);">
<input type="button" value="Goto Content 3" onClick="gotoContent(3);">

</body>
</html>

It will be especially important for you to see this in action, so if you haven’t already done
so, please download the source code bundle for this book as described previously. Open the
directory for Chapter 2 and then locate the ch2_back.htm file in the code directory.

When you load this file in your browser, you’ll see a simple display with a box and three
buttons below it. Clicking any of the buttons will display different content in the box. This
changing content corresponds to different states of the application. Now, click the buttons a
couple of times and notice that the page isn’t reloading. However, notice that after each button
click, the URL is different, specifically the value after the hash mark. Now, click back a few
times. You should notice that the content changes to the previous content each time, but the
page still does not reload. When you get to the point where you hit the initial state again, you
should see an alert() saying you are about to leave the application.

Now, to explain how this code works: You’ll notice the dojo.back.init() in the <body> as
previously mentioned. Up in the <head>, in the last <script> block specifically, you’ll see a call
to dojo.back.setInitialState(), and you can plainly see the alert() assigned to the back
attribute of the object.

Now, every time one of the three buttons is clicked, gotoContent() is called with a number
passed into it that is used as an index into the content array to retrieve from that array the
content to be displayed. The gotoContent() function simply updated the innerHTML of the
divContent <div>. In addition, it makes a call to dojo.back.addToHistory(). The object passed
contains a back element, which is a function that sets the content of the <div> once again, but
this time it sets it to the content corresponding to the num value stored within it.

In other words, each time the content changes (each time the application state changes),
a history record is added to the stack of history records maintained by the dojo.back code.
This record contains the content that applies to that state. Each time Back is clicked, the last
item on the stack is popped off and the function referenced by the back element is called, and
this function restores the appropriate content.

You can do whatever you like when Back is clicked; that’s up to you. Handling Forward
would work in much the same way, but I chose to leave the example a little simpler and just
handle Back.

As you can see, it’s a powerful mechanism that is extremely easy to use.

dojo.behavior
The dojo.behavior namespace is concerned with attaching behaviors, which you can for the
most part think of as event handlers, to elements. It enables you to do this by creating a collec-
tion of behaviors to attach, and then attaching them all in one shot.

CHAPTER 2 ■ DOJO CORE92

Functions
The dojo.behavior namespace is quite sparse and contains only two functions, dojo.
behavior.add() and dojo.behavior.apply().

dojo.behavior.add()

dojo.require("dojo.behavior");

You begin by creating a behavior object, which describes the behavior you wish to attach.
These can come in a variety of forms, based on element ID, class name, and so forth. This
object also includes a special found handler, which is called immediately when a matching
element in the DOM is found to attach behaviors to.

So, to use this function, you write code along these lines:

dojo.behavior.add({
"#myDiv" : {
found : function (elem) {
alert("Found the div: " + elem);

},
onmouseover: function (evt) {
alert("onMouseOver fired");

},
onmouseout: function (evt) {
alert("onMouseOut fired");

}
}

});

You can call this function as many times as you want. The behaviors are added to the col-
lection each time. When the time is right, dojo.behavior.apply() is used.

dojo.behavior.apply()

dojo.require("dojo.behavior");

After you’ve used dojo.behavior.add() to “collect” one or more behaviors, you use this
method to add them to the elements in the DOM, like so:

dojo.behavior.apply();

After this is done, the events fire and are handled just like any other. For instance, in
Figure 2-43 you can see the result of executing a test of this with the preceding code.

Figure 2-43. ch2_behavior.htm result

CHAPTER 2 ■ DOJO CORE 93

The first alert() you see fires as soon as dojo.behavior.apply() is called, or more pre-
cisely, when the <div> with the ID of myDiv is found. The second alert() occurs when you
hover over the red <div> that the example shows, and the third occurs when the mouse
pointer leaves the <div>.

dojo.cldr
CLDR stands for Common Locale Data Repository, and this namespace, so named, is a trans-
formation of some components from the Unicode CLDR project, which describes itself as
“. . . (providing) key building blocks for software to support the world’s languages. CLDR is by
far the largest and most extensive standard repository of locale data. This data is used by a
wide spectrum of companies for their software internationalization and localization: adapting
software to the conventions of different languages for such common software tasks as format-
ting of dates, times, time zones, numbers, and currency values; sorting text; choosing
languages or countries by name; and many others.”

Functions
Three functions are available to us in this namespace, all tying into the theme of dealing with
the world’s languages.

dojo.cldr.monetary.getData()

dojo.require("dojo.cldr.monetary");

The getData() method provides a way to get formatting information about a given ISO
42173 currency code. This method returns an object with two properties: places indicates the
number of decimal places present in the currency format, and round indicates the number of
places the currency should be rounded to.

For example, to get information about the Yen, Japan’s currency, call the following:

var o = dojo.cldr.monetary.getData("JPY");
var s = "";
for (var f in o) {
s += f + "=" + o[f] + ",";

}
alert(s);

The result of executing this code is seen in Figure 2-44.

CHAPTER 2 ■ DOJO CORE94

3. ISO 4217 is the international standard describing three-letter codes (also known as the currency code)
to define the names of currencies established by the International Organization for Standardization
(ISO).

Figure 2-44. ch2_monetaryGetData.htm result

dojo.cldr.supplemental.getFirstDayOfWeek()

dojo.require("dojo.cldr.supplemental");

The getFirstDayOfWeek() method can tell you what the first day of the week is, as used by
the machine’s local Gregorian calendar. The value it gives you is a zero-based index value, 0 for
Sunday, 1 for Monday. You can optionally supply this method with a locale to get information
for a locale other than that of the machine.

To see it in action you can do this:

alert(dojo.cldr.supplemental.getFirstDayOfWeek("us");

The pop-up in Figure 2-45 is the result.

Figure 2-45. ch2_supplementalGetFirstDayOfWeek.htm result

dojo.cldr.supplemental.getWeekend()

dojo.require("dojo.cldr.supplemental");

The getWeekend() method returns an object with two properties: start, which is the zero-
based index of the first day of the weekend, and end, which is the zero-based index of the last
day of the weekend. Like getFirstDayOfWeek(), you can optionally feed this method a locale to
get information for.

The following shows how to use getWeekend():

var o = dojo.cldr.supplemental.getWeekend("us");
var s = "";
for (var f in o) {
s += f + "=" + o[f] + ",";

}
alert(s);

And of course, Figure 2-46 shows what you see when this code is run.

CHAPTER 2 ■ DOJO CORE 95

Figure 2-46. ch2_supplementalGetWeekend.htm result

dojo.colors
The dojo.colors namespace contains a utility functional for working with. . . wait for it. . .
colors!

Functions
There isn’t a whole lot of functionality currently in this namespace. In fact, there is only a
single function as of this writing.

dojo.colors.makeGrey()

dojo.require("dojo.colors");

This function returns a dojo.Color object, which is always a grayscale color based on the
value you pass in, optionally using an alpha value. This is definitely easier to comprehend in
code, so here’s an example:

alert(dojo.colors.makeGrey(150));

The dojo.Color object that is returned can be shown via alert(), and what you see on the
screen is what you see in Figure 2-47.

Figure 2-47. ch2_colorsMakeGrey.htm result

As you can see, the value passed in simply becomes the red, green, and blue value of the
color, which is how it becomes a shade of gray.

dojo.currency
This namespace includes functionality for formatting and parsing currency values with inter-
nationalization support built in.

CHAPTER 2 ■ DOJO CORE96

Functions
This namespace consists of nothing but a couple of functions, so it won’t take too long to
examine.

dojo.currency.format()

dojo.require("dojo.currency");

When you have a number, and you want to format it with a localized pattern and produce
a string from it, this is the function you want to use.

Here’s a simple example:

alert(dojo.currency.format(123456789.536, null));

On my system, which is an English version of Windows, the result is the pop-up shown in
Figure 2-48.

Figure 2-48. ch2_currencyFormat.htm result

As you can see, the call to that function has resulted in commas being inserted in the
appropriate place. The call has also rounded the fractional portion to two digits as per my sys-
tem’s settings. Running this function on another system with different localization settings
might result in a different display.

The null that is passed is an object that sets options for the format. Passing null simply
uses the system settings. If you want to do something more explicit, the options that are avail-
able to you are the same as those described in the dojo.number.format() function a little later,
so please refer to that to see what’s available here.

dojo.currency.parse()

dojo.require("dojo.currency");

This function takes in a string, and optionally some currency formatting options, and
returns a number. For example:

alert("13,873.125 + 1 = " + (dojo.number.parse("13,873.125", null) + 1));

The alert() you get from this is shown in Figure 2-49.

CHAPTER 2 ■ DOJO CORE 97

Figure 2-49. ch2_currencyParse.htm result

I specifically did a bit of math on the output of the function just to prove it’s actually a
number.

Just as with dojo.currency.format(), you can pass a second argument that specifies
options for the parsing. These options are the same as described for dojo.number.parse(),
with the addition of three new ones here: symbol, which overrides the default currency sym-
bol, places, which is the number of decimal places to accept, and fractional, which enables
you to set options with regard to implied decimal places.

dojo.data
The dojo.data namespace houses a powerful data access layer that provides a uniform API for
working with data in a variety of formats. I’m going to skip going into detail on this name-
space, as I’ve done with a handful of others, because you’ll be seeing this in action in depth in
at least one of the coming examples and I feel you will be better served being introduced to it
there. Rest assured, it’s a really cool facility that I think you’re going to appreciate. Until then,
there’s plenty more to feed your hunger for knowledge right here, right now!

dojo.date
The dojo.date namespace has quite a few functions for dealing with dates in various ways.

Functions
First we’ll take a look at the functions directly below dojo.date. I’ll combine a few of these
examples to save a little time and space on the printed page.

dojo.date.add(), dojo.date.compare(), and dojo.date.difference()

dojo.require("dojo.date");

If you want to manipulate a given Date object in terms of doing date arithmetic on it,
dojo.date.add() is the way to go. And if you want to be able to compare two Date objects, or
determine the difference between them, then dojo.date.compare() and dojo.date.differ-
ence() are here for you. Let’s go to the code:

var d1 = new Date();
var s = "d1 (before) = " + d1 + "\n";
d1 = dojo.date.add(d1, "month", 2);
s += "d1 (after) = " + d1 + "\n";
var d2 = new Date();
s += "d2 = " + d2 + "\n";

CHAPTER 2 ■ DOJO CORE98

s += "d1 > d2 = " + dojo.date.compare(d1, d2) + "\n";
s += dojo.date.difference(d1, d2, "week");
alert(s);

When you run this code, you get the alert() seen in Figure 2-50.

Figure 2-50. ch2_date1.htm result

The first line is the Date object before I manipulate it. This Date is created with a simple
new Date(); statement, so it’s the current date. The second line is that Date object after using
the dojo.date.add() function on it. This function accepts three arguments, the first being the
Date object to operate on. The second is a string specifying what part of the Date to modify,
such as day, week, month, year, and so forth. The third is the amount to change the Date by, and
yes, it can be a negative value if you wish. Here, I’ve added 2 to the month portion, making
March become May. The third line is just a new Date object, again set to the current day. The
third line is a call to the dojo.date.compare() function. This accepts two Date objects, as well
as an optional argument with a value of either date or time, which can be used to compare
only the date or time portion of the Date objects (by default it compares both). This function
returns zero if the Date objects are equal, a positive number if the first Date is greater than the
second, or a negative number if the first Date is less than the second. The final line is the result
of a call to dojo.date.difference(), which again accepts two Date objects, plus an optional
third string argument that specifies what unit you want the difference in (weeks in this code,
for example). Note that for both dojo.date.compare() and dojo.date.difference(), if the sec-
ond Date object argument is null, the current date will automatically be used.

dojo.date.getDaysInMonth(), dojo.date.getTimezoneName(), and dojo.date.isLeapYear()

dojo.require("dojo.date");

The next three functions in dojo.date are for getting pieces of information from a given
Date object. They all accept a single argument, a Date object, and return some bit of informa-
tion about it (or by extension, the browser environment). Without further delay, here’s some
example code:

var d = new Date();
alert(dojo.date.getDaysInMonth(d) + "\n" +
dojo.date.getTimezoneName(d) + "\n" +
dojo.date.isLeapYear(d));

Also without further delay, here’s the resultant display on the screen in Figure 2-51.

CHAPTER 2 ■ DOJO CORE 99

Figure 2-51. ch2_date2.htm result

As you can see, the call to dojo.date.getDaysInMonth(), when the month is March, as it
was at the time I ran this example, returns 31, which is indeed the number of days in March.
The call to dojo.date.getTimezoneName() results in Eastern Daylight Time being displayed on
my system, but it could be any valid time zone name on your system. Finally, 2008 is indeed a
leap year, as indicated by the call to dojo.date.isLeapYear().

dojo.date.stamp.fromISOString() and dojo.date.stamp.toISOString()

dojo.require("dojo.date.stamp");

These two functions enable you to convert from Date objects to string and from string to
Date objects, where the strings are in a form according to ISO standard 8601 (RFC 3339).4

For example, to convert from a string to a date, you might do this:

alert(dojo.date.stamp.fromISOString("2005-06-30T08:05:00-07:00"));

This code yields Figure 2-52.

Figure 2-52. ch2_date3.htm result

Alternatively, to go the other way, you might do this:

alert(dojo.date.stamp.toISOString(new Date()));

And that gives you Figure 2-53.

CHAPTER 2 ■ DOJO CORE100

4. For all the gory details on ISO 8601 (RFC 3339), go straight to the source here: www.ietf.org/rfc/
rfc3339.txt.

Figure 2-53. ch2_date4.htm result

The dojo.date.stamp.fromISOString() function accepts two arguments. The first is the
string to convert to a Date object, and the second, which is optional, is used to supply defaults
for values omitted in the first argument. The dojo.date.stamp.toISOString() function also
accepts two arguments, the first being a Date object, and the second being an object that
specifies some options. The options available are milliseconds, which when true outputs mil-
liseconds in the resultant string; selector, which can have a value of date or time and which
indicates whether you want just the date or time portion of the Date object (both by default);
and finally zulu, which is a Boolean that when true means to use Coordinated Universal Time
(UTC, believe it or not!)/Greenwich Mean Time (GMT). UTC and GMT are basically equivalent
in most cases for the output time zone.

dojo.fx
The dojo.fx namespace houses a few useful animation-related bits of functionality.

Constructors
There is only a single constructor in this namespace, and it’s really just a shortcut way of doing
something pretty common. We’ll have a look at that first.

dojo.fx.Toggler()

Toggling elements on a page between a visible and nonvisible state in some visually pleasing
way is a common thing to do, and that’s exactly what dojo.fx.Toggler() is all about.

Let’s check out some code to see how it works. Listing 2-5 is that code.

Listing 2-5. ch2_fxToggler.htm

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script>
dojo.require("dojo.fx");

CHAPTER 2 ■ DOJO CORE 101

var toggler = null;
function fxTest() {
toggler = new dojo.fx.Toggler({
node : "myDiv",
showFunc : dojo.fx.wipeIn,
hideFunc : dojo.fx.wipeOut

});
toggler.hide();

}
</script>

</head>
<body onLoad="fxTest();">
<div id="myDiv"
style="background-color:#ff0000;width:40px;top:5px;left:5px;➥

position:absolute;">
Hello
from
myDiv</div>

<input type="button" value="Click to show" onClick="toggler.show();">

</body>
</html>

Upon loading, fxTest() is called, which instantiates a new Toggler. Passed into the con-
structor is an object with a number of elements. The first is node, which is just the ID of the
node this Toggler will work on. Next is showFunc, which is what animation will be used to show
the element, and hideFunc, which is what animation will be used to hide the element. This all
pretty much just encapsulates two animations and gives you an easy way to execute them,
namely calling the hide() or show() method of the Toggler. Here, the element is hidden imme-
diately by calling toggler.hide(). Then, when you click the button, toggler.show() is called,
putting the element back on the screen. All of this is done with the dojo.fx.wipeIn() and
dojo.fx.wipeOut() animations, which we’re about to look at!

Functions
As I’ve done a few times before, I’ve chosen to come up with a single example that demon-
strates all the functions available in this namespace at one time.

dojo.fx.chain(), dojo.fx.combine(), dojo.fx.slideTo(), dojo.fx.wipeIn(), and dojo.fx.wipeOut()

Strictly speaking, there are only three effects here: dojo.fx.slideTo(), which simply moves an
element from one location to another smoothly; dojo.fx.wipeIn(), which takes a given ele-
ment and makes it appear in a sort of window blind–type effect (it rolls down from no height
to the element’s natural height); and dojo.fx.wipeOut(), which does exactly the opposite as
dojo.fx.wipeIn().

The dojo.fx.chain() function enables you to create a chain of animations and run them
sequentially without having to worry about the details of how to start one when the previous
one ends. The dojo.fx.combine() function enables you to take a bunch of animations and run
them simultaneously in parallel. Once again, Dojo handles the details for you as with dojo.fx.
chain(); you just feed either one an array of animations and you’re off to the races.

CHAPTER 2 ■ DOJO CORE102

Let’s see this all in action, shall we? Listing 2-6 is what we’re after.

Listing 2-6. ch2_fx.htm Example

<html>
<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script>
dojo.require("dojo.fx");
function fxTest() {
dojo.fx.chain([
dojo.fx.wipeOut({node:"myDiv"}),
dojo.fx.combine([
dojo.fx.slideTo({node:"myDiv",left:"40",top:"40",unit:"px"}),
dojo.fx.wipeIn({node:"myDiv"})

])
]).play();

}
</script>

</head>
<body onLoad="fxTest();">
<div id="myDiv"
style="background-color:#ff0000;width:40px;top:5px;left:5px;➥

position:absolute;">
Hello
from
myDiv</div>

</body>
</html>

What happens here, when you load this file in your browser, is that a red square appears
on the screen with some text in it. Immediately, it will “roll up” by using the dojo.fx.wipeOut()
function. That is the first animation in a chain constructed by using dojo.fx.chain(). The sec-
ond animation in the chain is created by using dojo.fx.combine(). The two animations being
combined are a dojo.fx.slideTo() and a dojo.fx.wipeIn(). So, the net effect on the screen is
that the red box disappears when the page loads, and then immediately begins to expand back
to full size, while at the same time moving down and to the right. Give it a shot to see it in
action, and maybe play with some combinations of animations for yourself to see what’s
possible.

CHAPTER 2 ■ DOJO CORE 103

dojo.i18n
The dojo.i18n namespace (i18n being an abbreviated form of internationalization, that is,
replace the 18 letters between i and n with 18) is where you can find functionality for interna-
tionalizing an application, that is, making it available in different locales. A locale, for the
purposes of this discussion, means different languages.

Functions
A stunning two whole functions are available in this namespace, plus one that I’ll describe
that’s actually from the dojo namespace, but they are all you need!

dojo.requireLocalization(), dojo.i18n.getLocalization(), and dojo.i18n.normalizeLocale()

dojo.require("dojo.i18n");

Strictly speaking, the first function, dojo.requireLocalization(), is part of the dojo
namespace, and thus is available without the dojo.require() shown earlier. (I felt it made
more sense to describe that function here rather than when you looked at the dojo namespace
earlier.)

This is much like the dojo.require() function except that it’s for importing international-
ized resource bundles. It accepts three parameters, two of which are required. The first is the
name of the module (read: namespace) the bundle belongs to. The second is the name of the
bundle to load.

You create a resource bundle, which is just a .js file with JSON in it where each from:to
pair is a string to translate, in a directory named nls under the module’s directory. For
instance, taking one that exists already, in the dijit namespace there is a bundle named
common in the nls directory.

Optionally, under the nls directory, you can have directories named for language codes—
for example, en for English or fr for French. This leads to the optional third parameter, which
is the language to load. If you don’t specify this, the locale of the requesting user will be used.
So for instance, on my American English PC, Dojo would attempt to load the bundle under
the dijit/nls/en and dijit/nls/en-us directories. It also attempts to load dijit/nls/
<bundle_name>.js.

The next step to using a bundle is to call dojo.i18n.getLocalization(), passing it the
name of the module as well as the bundle name, and optionally the language. This returns an
object that has all the from:to values as members of it. You can then use simple object access
code to get a particular translation. The following code demonstrates all of this:

dojo.requireLocalization("dijit", "common",
dojo.i18n.normalizeLocale("fr"));

alert("buttonCancel = " +
dojo.i18n.getLocalization("dijit", "common",
dojo.i18n.normalizeLocale("fr")).buttonCancel);

You can see here how the common bundle in the dijit module is first imported. You can
also see here usage of the dojo.i18n.localizeLocale() function, which returns the canonical
form of a given locale. This ensures that the locale value is one suited for use by the Dojo i18n
functions. Next, the dojo.i18n.getLocalization() function is used to retrieve the list of strings

CHAPTER 2 ■ DOJO CORE104

from the bundle. The value of the buttonCancel string is then displayed via the alert(), which
can be seen in Figure 2-54.

Figure 2-54. ch2_requireLocalization.htm result

Not being French-speaking myself, I can only assume Annuler is indeed the correct trans-
lation of buttonCancel. Assuming it is, Dojo has done the job for us!

dojo.io
The dojo.io namespace includes a few bits of functionality related to Ajax, but in a tangential
sort of way in the sense that it represents alternate transport mechanisms, that is, ways to do
Ajax other than the typical XmlHttpRequest object.

Functions
There are five genuinely useful functions to explore here, none of which are terribly complex.

You may be aware that Ajax with XmlHttpRequest must adhere to the same domain secu-
rity policy, that is, you cannot make an Ajax request to a domain that differs from the domain
that served the page. Future versions of the object are planned to allow for this, but current
implementations do not. In the meantime, people have devised some neat tricks to get
around this policy; one deals with IFrames, and another uses something called the dynamic
<script> tag trick. The following functions enable you to use these techniques without sweat-
ing the details!

dojo.io.iframe.create()

dojo.require("dojo.io.script");

Sometimes an IFrame is a good mechanism for making remote calls: create an IFrame
dynamically, set on it the appropriate URL, insert it into the DOM, and off you go. This is
much like the dynamic <script> tag trick, but it’s arguably more flexible because now you
have a (potentially) full HTML document coming back to work with, including all the life cycle
events that come with that. With this function, you don’t have to worry about how mechani-
cally to do all that; you just do it!

This function creates a hidden IFrame and provides a way to execute some specified
JavaScript when the page loads. Optionally, you can specify a URL to load (if you don’t specify
it, a blank document provided by Dojo is put into it).

So, for example, you might do this:

dojo.io.iframe.create("if1", "alert('loaded');",
"ch2_iFrameIOResponse1.htm");

CHAPTER 2 ■ DOJO CORE 105

If the ch2_iFrameIOResponse1.htm file contains this:

<html><head><title></title></head><body onLoad="alert('hello');"></body></html>

. . . then what you’ll see are two alert() messages, the first saying hello, and the second
saying loaded.

dojo.io.iframe.setSrc()

dojo.require("dojo.io.script");

As mentioned in dojo.io.iframe.create(), you can create an IFrame but not set its
source. If you do that and later want to load content into the IFrame, all you need to do is
call dojo.io.iframe.setSrc() and thy will be done!

dojo.io.script.attach()

dojo.require("dojo.io.script");

Using the dynamic <script> tag trick is not too complex: you construct a new <script>
tag pointing to a resource that typically is in a different domain, and insert the tag into the
DOM. The browser dutifully goes off and retrieves the resource, and because it’s a <script>
tag, the browser treats it like a JavaScript resource and interprets it immediately. If the
response is constructed properly, magic happens!

For instance, if the response from the server is nothing but this:

myFunction("hello");

. . . and if on your page you already had this:

function myFunction(inMsg) {
alert(inMsg);

}

. . . then what will happen is that as soon as you insert the <script> tag and the browser
retrieves that content, you’ll get an alert() on the screen saying hello. This is the basis of
what is commonly referred to as JSON-P, or JSON-based web services (or probably a host of
other names that all basically refer to this underlying concept).

All of this doesn’t help you know how to insert a <script> tag dynamically, though. Fortu-
nately, with Dojo, you don’t ever have to know! All you need to do is this:

dojo.io.script.attach("scriptTag1", "ch2_ scriptIOResponse1.htm");

You feed this function an ID for the tag, and the URL to go after. You can optionally, as the
third argument, specify the document object of an IFrame. When you execute this, you’ll see a
button on the screen, and after you click it, you’ll get Figure 2-55.

CHAPTER 2 ■ DOJO CORE106

Figure 2-55. ch2_scriptIO.htm result

dojo.io.script.get()

dojo.require("dojo.io.script");

This function is, for all intents and purposes, the same as dojo.io.script.attach()
except that it provides a few extra options. With this version, you send an object that passes
some option attributes. These attributes are the same as those specified in the dojo.xhr*
functions,5 with the addition of the following:

• callbackParamName: This is the name of the parameter that identifies the JSON-P call-
back string. In other words, it tells the remote service the name of the callback you wish
to be called, and the name of which will be the function call wrapping the JSON
response.

• checkString: This is a string of JavaScript that is used to verify the response. It performs
this check: if(typeof("+checkString+")!='undefined). Note that you should not use
this when doing a JSON-P request.

• frameDoc: This is the document object of an IFrame you want the <script> tag
attached to.

dojo.io.script.remove()

dojo.require("dojo.io.script");

It’s always nice to clean up after oneself, and that’s what this function is for. Recall that
when you call dojo.io.script.attach(), you pass an ID value to it. Well, if you pass that ID to
dojo.io.script.remove(), it will remove the dynamically added <script> tag (interestingly, it
does not appear to remove all the code that was retrieved, though).

dojo.number
This namespace provides functions for formatting and parsing numbers with localization
capabilities included.

CHAPTER 2 ■ DOJO CORE 107

5. The handleAs attribute does not apply when using dojo.io.script.get(). That attribute is implied by
the usage of callbackParamName.

Functions
Only four functions are present in this namespace, but they provide some useful functionality
for us to explore.

dojo.number.format()

dojo.require("dojo.number");

As the name implies, this function formats a numeric value. It accepts two arguments.
The first is the number to format; the second is an object containing several options. The first
option that can be present in that object, currency, is an ISO 4217 currency code and can be
used to format money. The locale option overrides the default locale setting, which deter-
mines default formatting rules. The pattern option enables you to specify a format mask that
will be applied to the number by using the format specification laid out in the Unicode Locale
Data Markup Language (LDML) specification.6 The places option specifies how many decimal
places to show (the number will be padded out to this many places). The round option can be
used to round the number (a value of 5 means round to the nearest 0.5; 0 rounds to the near-
est whole number, which is the default; and 1 means don’t round). The symbol option sets the
localized currency symbol explicitly. Finally, the type option tells the function what type of
number this is (decimal, scientific, percent, or currency—decimal being the default).

Here’s a simple example of formatting a dollar amount:

alert("1234.56 = " +
dojo.number.format(new Number(1234.56),
{ pattern : "$#,###.##", places : 4 }));

The alert() shown in Figure 2-56 is the result.

Figure 2-56. ch2_numberFormat.htm result

dojo.number.parse()

dojo.require("dojo.number");

The dojo.number.parse() method accepts a string and converts it to a number, using
localization information. Like dojo.number.format(), it accepts two arguments, and the first is
the string to convert. The second is an option object with five possible elements. The first is
currency, which is itself an object that contains currency information. The locale option is
next, and it enables you to override the default locale. Next is pattern, which indicates the

CHAPTER 2 ■ DOJO CORE108

6. The LDML specification can be seen here: www.unicode.org/reports/tr35/#Number_Format_Patterns.

format specification that will be used to format the user; the default is based on the locale. The
type option is exactly like that described in dojo.number.format(). The final option, strict, is
not currently documented and I frankly could not determine its function. I can tell you, how-
ever, that it defaults to false.

Here’s a simple example of formatting a dollar amount:

alert("3873.12 + 1 = " + (dojo.number.parse("3873.12") + 1));

Note that you get back a Number object, which you can then use to do some simple math
on, as I’ve demonstrated here and shown in Figure 2-57.

Figure 2-57. ch2_numberParse.htm result

dojo.number.regexp()

dojo.require("dojo.number");

The dojo.number.regexp() function returns a regular expression with both a positive and
negative match, and group and decimal separators in it. This function accepts an object with
options in it, including the now-usual locale option to override the default locale, the also
previously seen pattern option for setting the format mask, places and strict, as we’ve also
seen before, and type as well.

I haven’t demonstrated this method here because it isn’t terribly exciting or easy to show,
so let’s just move along, shall we?

dojo.number.round()

The final function in this namespace is dojo.number.round(), and as its name implies, it
enables us to round numbers. You will need to pass it two parameters, and optionally a third.
The first is simply the number to round. The second is the number of decimal places to round
to. The third optional parameter specifies that you want to round the next place to the nearest
multiple.

As a simple example, have a look at this snippet:

alert("1234.56733, 2 = " +
dojo.number.round(new Number(1234.56733), 2));

This results in the display in Figure 2-58. Not exactly the invention of fire, but useful
nonetheless!

CHAPTER 2 ■ DOJO CORE 109

Figure 2-58. ch2_numberRound.htm result

dojo.regexp
The dojo.regexp namespace provides some functionality for dealing with regular expressions
in JavaScript a little easier than you might otherwise be able to.

Functions
There are only three functions coming at you from this namespace: dojo.regexp.
buildGroupRE(), dojo.regexp.escapeString(), and dojo.regexp.group().

dojo.regexp.buildGroupRE()

dojo.require("dojo.regexp");

This function is used to take an array of values and construct regex subexpressions from
each by using a given function. It takes three arguments. The first is the array of values. The
second is the function to call for each element to construct the subexpressions. The third,
which is optional, uses a noncapturing match when true. When it is false, matches are
retained by regular expression (it defaults to false).

Take the following code as an example:

alert(dojo.regexp.buildGroupRE([true, false], function (item) {
return "(http?|gopher?)\\://";

}));

(Five points if you know what the gopher protocol is, ten points if you’ve actually used it—
but minus several million points if you’ve used it recently!)

This is part of a larger piece of code that constructs a regex for dealing with URLs. The
output from running this code can be seen in Figure 2-59.

Figure 2-59. ch2_regex.htm first result

CHAPTER 2 ■ DOJO CORE110

dojo.regexp.escapeString()

dojo.require("dojo.regexp");

This function adds escape sequences for special characters in regular expressions. This is
simple to demonstrate:

alert(dojo.regexp.escapeString("/[]{}"));

Run that bit of code and you get the alert() shown in Figure 2-60.

Figure 2-60. ch2_regex.htm second result

As you can plainly see, each of the characters in the string has been prefixed with a back-
slash to escape them for proper use in a regex.

dojo.regexp.group()

dojo.require("dojo.regexp");

The final function in this namespace is dojo.regexp.group(), and its job is to add group
match to an expression. To see it in action, try this code:

alert(dojo.regexp.group("test"));

It’s nothing to write home about, but in Figure 2-61 you can see how it has grouped the
string test with parentheses.

Figure 2-61. ch2_regex.htm third result

dojo.string
The dojo.string namespace is, pretty much as you’d expect, where you can find various string
utility functions. There’s not a whole lot here at present, but I expect that to change pretty
rapidly.

CHAPTER 2 ■ DOJO CORE 111

Functions
This namespace currently has only three functions underneath it, no constructors or proper-
ties to deal with.

dojo.string.pad()

dojo.require("dojo.string");

The pad() function is your standard “pad my string out to a specified size” function. It
accepts four arguments. The first is the string to pad. The second is the length to pad it out to.
The third, which is optional, is the character to pad with (this defaults to 0). Finally, the fourth
argument, which is optional, is a flag that says to pad at the end of the string, rather than the
default of the beginning of the string.

So, to see this in action:

alert("dojo.string.pad('frank', 20, '*') = " +
dojo.string.pad('frank', 20, '*'));

This results in the alert() pop-up shown in Figure 2-62.

Figure 2-62. ch2_stringPad.htm result

dojo.string.substitute()

dojo.require("dojo.string");

The substitute() function makes replacing tokens in a string with values child’s play.
With it, you can do things like this:

var template = "Hello, ${0}! I hope you are having a wonderful ${1}!";
var tokenValues = ["Jason Vorhees", "Friday the 13th"];
alert(dojo.string.substitute(template, tokenValues));
template = "${name} will see you in your dreams!";
tokenValues = { name : "Freddy Krueger" };
alert(dojo.string.substitute(template, tokenValues));

This will result in two alert() pop-ups. The first is shown in Figure 2-63.

Figure 2-63. ch2_stringSubstitute.htm first result

CHAPTER 2 ■ DOJO CORE112

The second alert() pop-up is likewise shown in Figure 2-64.

Figure 2-64. ch2_stringSubstitute.htm second result

As you can see, you can do the replacements positionally or by name. You can also pass an
optional third parameter, which is a function that will be called for each token to do any sort
of processing on the values you would like. Finally, there is a fourth parameter, also optional,
that tells the substitute() function where to look for an optional format function, the default
being the global namespace.

dojo.string.trim()

dojo.require("dojo.string");

The final function in dojo.string enables you to trim whitespace from both sides of a
string. Amazingly, JavaScript does not by default have this feature! It’s a pretty obvious func-
tion, frankly, and often needed, so things like this can be done:

var s = " I am an untrimmed string";
if (s == "I am an untrimmed string") {
alert("Matched without trim");

}
if (dojo.string.trim(s) == "I am an untrimmed string") {
alert("Matched with trim");

}

The only alert() pop-up you see is the one shown in Figure 2-65.

Figure 2-65. ch2_stringTrim.htm result

This proves that trim() is doing it’s job. The first if statement doesn’t match the string
because of the leading spaces. After trim() has been called on it, though, it matches the test
string that doesn’t have spaces on the front. If trim() didn’t do its job, we wouldn’t have seen
either alert() pop-up.

CHAPTER 2 ■ DOJO CORE 113

Summary
In this chapter, we spent a good deal of time looking at the Core component of Dojo. We saw
all the nifty-keen functions available to us and our JavaScript applications courtesy of Dojo.
We saw how we can use the include mechanism Dojo provides to get just the bits we want on
our page. We also saw how Dojo’s custom build capabilities allow us to “trim the fat,” as it
were, and get a version of Dojo on our page that has only what we need it to have and nothing
more. At this point, you should have a good feel for what Core offers, and can almost certainly
see its value in your own applications. In later chapters, as we explore the projects, you’ll see a
great deal of what you saw here used in real applications, as opposed to the small example
chunks you saw in this chapter.

In the next chapter, we’ll delve into Dijit and the Dojo Widgets, and see what UI magic
Dojo enables us to perform with little heavy lifting on our parts (just the way we good lazy
developers like it!).

CHAPTER 2 ■ DOJO CORE114

Dijit

In the first chapter, we took a fairly high-level look at Dojo, what it is, what it has to offer, and
so forth. The second chapter delved into Dojo Base and Core in detail, providing a pretty good
idea of what’s in there.

In this chapter, we’ll examine Dijit in some detail. We’ll look at the components that are
available, see examples of them, learn about the features they expose to us, and so on. We’ll
see how to create them declaratively and programmatically, and we’ll see how we can interact
with them after they are on the page during the course of our application’s execution.

This chapter is organized similarly to Chapter 2 in that each component has is own sub-
section, but I will once again take my cues from the Dojo API documentation and organize the
material into higher-level groupings above the components themselves. These groups, if you
check out the API documentation, roughly match the namespaces available in the Dijit pack-
age, which include dijit.form (for form-related dijits—things like check boxes and combos)
and dijit.layout (for layout-delayed dijits—things like accordions and stack layouts). There
are some other namespaces, but they do not typically house dijits, so I will simply discuss
them as necessary during the course of the chapter.

You’ll also find that there are a number of dijits directly within the dijit namespace, so
that will become the third general grouping here (it’s in fact the first group we’ll look at).

So, without further ado, let’s get right into the thick of things and talk about some Dijit
basics before we proceed to look at the individual dijits themselves.

Dijit at a Glance
Dijit, simply stated, is a widget framework that sits on top of Dojo Core and Dojo Base. On top
of this framework are built individual dijits. In other words, Dijit is a framework for building
widgets, but it’s also the general term to describe those widgets.

Dijit as a framework is designed to deal with the problems typically associated with Web
2.0 development—things such as internationalization, currency, number and date formatting
in localized ways, keyboard accessibility, and accessibility concerns for people with disabili-
ties. These capabilities are baked into the Dijit framework itself, as well as the individual dijits.

Dijit is fully skinnable, or theme-able, depending on which term you prefer. This means
that you can achieve a consistent look and feel across all dijits by the simple flip of a switch,
more specifically, by specifying the theme you wish to use. Dijit comes packaged with a num-
ber of themes, Tundra being probably the most popular (and the one I’ll be using in this
chapter and most of this book). Tundra is a fairly nice-looking theme that enables you to get

115

C H A P T E R 3

off the ground quickly and easily and to have a nice-looking UI without any hassle. You can of
course tweak this theme to your liking, or obtain or even create one yourself.

To switch themes, all you need to do is import the appropriate style sheet, and set a class
on the <body> tag, like so:

<body class="tundra">

Any dijits in the <body> of that document will automatically use that theme. You can also
set the theme on a per-dijit basis, but this is less convenient and less flexible ironically, in the
sense that you’ll have a lot more to change when your boss no longer likes your chosen theme!
I highly recommend setting the theme on the <body> tag and nowhere else—unless you feel
the “job security” (ahem) of having all those places to change is somehow valuable to you.

Dijits can be created in one of two ways: declaratively or programmatically. That means
you can create your UI with very little, if any, JavaScript coding. All it takes is the appropriate
markup, and your UI can spring to life more or less automatically.

Because all dijits are built on top of a common framework, they expose many functions in
a consistent manner, enabling you to work with dijits, even those you have no real experience
with, quickly and easily. To be sure, you’ll need to refer to the documentation often, but you
will frequently be able to “guess” what the right answer is without that documentation, which
saves a lot of time.

Getting Started with Dijit
To get Dijit onto a page and ready for use requires just a few things. First, you’ll need to import
some style sheets:

<link rel="StyleSheet" type="text/css" href="dojo/resources/dojo.css">
<link rel="StyleSheet" type="text/css" href="dojo/dijit/themes/tundra/tundra.css">

In fact, the first one isn’t required. However, I’ve found that it gives you some styles for
page margins and such that simply make it all work better and with less thought, so I generally
import it unless I have a specific reason not to.

The remaining steps are 100 percent optional. If you want to use the declarative approach
to creating dijits, you need to include a new element, parseOnLoad, set to true, in your djCon-
fig object. This instructs Dijit to parse the page when it loads, looking for dijit declarations in
markup, and creating dijits from that markup. Finally, and again only if you intend to use the
declarative approach, you’ll also need to do this:

dojo.require("dojo.parser");

This is the Dijit code that is responsible for parsing the page upon load. Without this, your
dijits will not be created from markup.

Okay, I sort of lied there a bit. There is in fact another step, but it’s dependent on which
dijits you want to use. You will also need to use dojo.require()s for the dijits you want to use.
You’ll see this as you look at the dijits themselves in just a moment.

Declarative vs. Programmatic Dijits
I’ve so far mentioned a few times that you can create a dijit declaratively or programmatically,
but what does this really mean? The best answer I think is simply to show you! Let’s say you

CHAPTER 3 ■ DIJ IT116

want to put a Button dijit on a page, and you want to do so declaratively. All you do is write
this in your page:

<button dojoType="dijit.form.Button" type="button">I am a button</button>

Assuming you’ve done all the previous steps, including importing the dijit.form.Button
class via dojo.require(), then when this page is loaded, Dijit will go off and create a Button
dijit and replace this markup with it. That means it will replace this markup with the markup
necessary to display a Button dijit, and will add the applicable JavaScript, if any, to go along
with it.

Alternatively, you can do this completely through code. The equivalent button could be
created like so:

var myDijit = new dijit.form.Button({ label : "I am a button" });
dojo.byId("divButton").appendChild(myDijit.domNode);

Now, assuming there is a <div> with the ID divButton on the page, a new Button dijit will
be created and inserted into it.

■Note Parsing the page can be a fairly slow thing to do. The Dojo team has done an amazing job optimiz-
ing this process over the past few releases, and the difference between the current versions of Dojo and
previous versions is night and day in this regard. Still, if you’re finding that the declarative approach is caus-
ing a large performance hit, spend a few minutes in the Dojo support forums because you’ll find some
tweaks you can do to speed it all up, such as telling the parser what DOM nodes to parse, instead of allow-
ing it to parse the entire DOM. Telling it what sub-branch of the DOM tree to inspect can save a lot of
processing time.

Now, which you choose is entirely up to you. I think it comes down to a matter of what
you’re doing. If your UI is known at the time the page loads, declarative is probably the way to
go. If, however, you have to build the UI dynamically, perhaps fetching some data from the
server before deciding how many buttons to show as an example, that pretty much screams
out for doing it programmatically. At the end of the day, Dijit provides for both approaches
equally.

■Note If you are told to write 100 percent valid HTML, that is, HTML that will always pass through a val-
idator successfully, Dijit can present a problem for you. Just look at the previous markup: what exactly is
dojoType? It’s not a valid HTML attribute, and therefore a validator (which isn’t aware of Dojo anyway)
would puke over that. Thankfully, most people seem to be concerned these days with HTML being well
formed, which is a completely valid concern, but custom attributes such as dojoType seem to be less of a
concern. Still, it’s something you’ll want to be aware of for sure.

CHAPTER 3 ■ DIJ IT 117

Common Dijit Methods and Attributes
Because all dijits extend from a common widget class, they all share some common methods,
properties, and behaviors. Table 3-1 lists the common methods. Note that many of them are
life-cycle event handlers that you wouldn’t typically call as a developer, but you could if you
wanted or needed to for some reason.

Table 3-1. Common Dijit Methods

Method Description

buildRendering Called to construct the visual part representation of a dijit.

connect Connects the specified object/event to the specified method of the dijit
and registers for disconnect() on dijit destroy.

create Begins the life cycle of a dijit.

destroy Destroys the dijit, but leaves its descendants alone.

destroyDescendants Recursively destroys the descendants of the dijit, as well as the
descendant’s descendants (and so on...hence the term recursively!).

destroyRecursive For all intents and purposes, this is synonymous with
destroyDescendants, but this is the one you should call if needed.

destroyRendering Destroys the DOM nodes associated with this dijit.

disconnect Disconnects a handle created by the connect() method. This will also
remove the handle from the list of connects maintained by this dijit.

getDescendants Returns all the dijits that are descendants of the dijit.

isFocusable Returns true if this dijit can currently be focused, false if it can’t.

isLeftToRight Checks the DOM for the text direction for bidirectional support.

onBlur Called when the dijit loses focus.

onClose Called when the dijit is being destroyed.

onFocus Called when the dijit gains focus.

postCreate Called after a dijit’s DOM has been fully created.

postMixInProperties Called after the parameters to the dijit have been processed, but before
the dijit’s markup template is processed. This is a handy place to set
properties that are referenced in the template itself.

setAttribute Sets a native HTML attribute.

startup Called after a dijit’s children, and other dijits on the page, have been
created. This provides an opportunity to manipulate any children before
they are displayed. This is useful for composite dijits (such as layout
dijits) that need to control or lay out subdijits.

In Table 3-2, you can see the common attributes. Of these, the domNode attribute is by far
the most commonly used attribute in my experience, even more so than style and class,
which you might reasonably expect to be the most commonly used attributes.

CHAPTER 3 ■ DIJ IT118

Table 3-2. Common Dijit Attributes

Attribute Description

attributeMap A map of attributes, standard HTML attributes usually, to set on the dijit’s DOM
elements once created.

class HTML class attribute.

domNode This is the visible representation of the dijit. There may be DOM elements that are
created for a given dijit, but this is the “top-level” element that all others are
nested under.

id This is a unique string identifier that can be assigned by the developer (or by the
dijit component manager if not specified).

lang This is not used often, but when it is, its purpose is to override the default Dojo
locale used to render the dijit, as typical in the HTML LANG attribute.

srcNodeRef This is a pointer to the original DOM node, that is, the element that has the
dojoType attribute on it. In many cases, this element will be replaced when the
dijit is created, so you should take care when using this attribute.

style This is the HTML style attribute value.

You may find other methods and attributes that most dijits share, but these are the most
commons ones you’ll use, and the ones directly descendant from the base widget class.

GETTING A REFERENCE TO AN EXISTING DIJIT

One other important fact to know is that every dijit created, whether declaratively or programmatically, is
controlled by a widget manager. Now, generally you won’t care much about that, except for one commonly
needed thing: getting a reference to an existing dijit.

Every dijit will have an ID, whether you set it or not. (Of course, if you don’t set it, getting a reference to
it later will be kind of difficult!) There is a simple function to get a reference to a dijit:

dijit.byId(<someID>);

Feed dijit.byId() the ID of a dijit and back will come a reference to the dijit that you can then inter-
act with. You’ll see this in action all over the place in this book, but it’s important to realize that it’s not the
same as dojo.byId(), which gives you back a reference to an arbitrary DOM element. The dijit.byId()
method is a function of the widget manager and deals with dijits, not DOM elements.

Dijits Directly Under the Dijit Namespace
If you look at the Dojo API documentation, you’ll find constructors listed in the dijit name-
space. Most of them represent dijits that you can create and use. That’s where we’ll begin our
exploration, beginning with ColorPalette.

CHAPTER 3 ■ DIJ IT 119

ColorPalette

dojo.require("dijit.ColorPalette");

The ColorPalette dijit enables the user to choose a color from a palette of existing colors.
This is like virtually any color palette you’ve ever seen in any program you are familiar with.

The ColorPalette dijit is shown in Figure 3-1.

Figure 3-1. The ColorPalette dijit (using the default 7 ✕ 10 size)

Naturally, that would be considerably more impressive if it were in color! Such is the prob-
lem with the printed page. (I still say type will never die, but this is a good example that says
otherwise.)

Anyway, to create this dijit declaratively, you can do this:

<div dojoType="dijit.ColorPalette"></div>

Yes, it’s really that easy!
To create this dijit programmatically, you could do this:

var myDijit = new dijit.ColorPalette({
palette : "3x4", onChange : function(selectedColor) {
alert(selectedColor);

}
});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

This code creates what you see in Figure 3-2.

Figure 3-2. The ColorPalette dijit (specifying the 3 ✕ 4 size)

You’ll of course notice that this ColorPalette dijit is quite a bit smaller. That’s thanks to the
palette attribute. This accepts two values, 3x4 and 7x10. You can set it declaratively too, of
course.

There are two other attributes you can set. The defaultTimeout attribute is the number
of milliseconds before a held key or button becomes typematic (before it repeats, in other
words). The timeoutChangeRate attribute is the fraction of time used to change the typematic

CHAPTER 3 ■ DIJ IT120

timer between events. A value of 1 means that each typematic event fires at defaultTimeout
intervals, while a value less than 1 means that each typematic event fires at an increasingly
faster rate.

You’ll also see in the programmatic example that I’ve attached an onChange handler to
take care of when the user clicks a color. When the user does so, the function is passed a color
value in the typical #rrggbb form.

Dialog

dojo.require("dijit.Dialog");

The Dialog dijit enables you to pop up windows, or dialog boxes as they are usually called,
anytime you wish. These are not the same types of windows you open with document.open()
but are instead much prettier and cooler. You can see what I mean by looking at Figure 3-3.

Figure 3-3. The Dialog dijit

The Dialog dijit is the part in the middle, but it’s interesting to note that the content of the
page is grayed out when the Dialog is shown. This is often called the Lightbox effect. What you
unfortunately can’t see by just looking at this book is that this Dialog fades in and out of exis-
tence nice and smooth-like; it doesn’t just appear out of nowhere.

So, how do we go about creating a Dialog dijit? Declaratively, it looks like this:

<div dojoType="dijit.Dialog" id="dialog1"
href="ch3_layout_ContentPane_content1.htm"></div>

Interestingly, the Dialog dijit is not shown at this point; it is only created and ready for you
to use. To show it, you need to make this call:

dijit.byId("dialog1").show();

Note that until this Dialog is dismissed, nothing other than the Dialog can be interacted
with. If there were a button on the page, the user could not click it until after closing the Dia-
log.

The Dialog can be moved by clicking on its title bar and holding, and then dragging it
around.

CHAPTER 3 ■ DIJ IT 121

Now, what about creating a Dialog via code? Easy enough:

var myDijit = new dijit.Dialog();
myDijit.setContent("Dialogs are fun!");
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
myDijit.show();

In addition to the title attribute, you can also set the duration attribute, which is the
amount of time in milliseconds that it takes the Dialog to fade in and out. Also, because the
Dialog dijit extends from the ContentPane dijit, you can specify things such as href to load
content from another location, and virtually anything else the ContentPane dijit supports.

Note that in order for this to work in Internet Explorer, you can’t use the usual onLoad
event handler. Instead, use the dojo.addOnLoad() function. In this case, the code is as follows:

dojo.addOnLoad(showDialogs);

The reason you have to use this approach has to do with the timing of when things occur
during page loading in relation to Dojo’s own code loading. It’s in fact a good habit to forget
about the onLoad attribute on the <body> tag when using Dojo—although you’ll see me break
this rule in this book because, frankly, sometimes it doesn’t matter either way. Still, you should
learn from my bad example and instead always use dojo.addOnLoad().

Editor

dojo.require("dijit.Editor");

The Editor dijit provides a rich-edit capability. You’ve certainly seen on various web sites
those fancy editors that are trying their best to be Microsoft Word, and frequently not doing
too bad a job—you know, the ones where you can make text bold, colored, different sizes, and
so forth? Well, with Dojo you can have that very same editor on your site too.

You can see what this editor looks like by taking a look at Figure 3-4.

Figure 3-4. The Editor dijit

Of course, you can see only some simple text, nothing fancy. So, in Figure 3-5 you can see
where I’ve made some text bold, some italic, and also created an unordered list in the editor.

CHAPTER 3 ■ DIJ IT122

Figure 3-5. The Editor dijit with some text modified

So, how do you create this beast? The declarative approach is dirt simple:

<textarea name="field" width="200px" height="100px"
dojoType="dijit.Editor">
Buy more books by Frank W. Zammetti, he has a six-bag a day
Gummi Bear habit.

</textarea>

The text there is naturally optional. To accomplish the same basic thing from the coding
perspective, it looks like this:

var descField = document.createElement("textarea");
descField.cols = 42;
dojo.byId("divProgrammatic").appendChild(descField);
var descEditor = new dijit.Editor({id : "description"}, descField);

This code is only slightly more complex. As it turns out, you need a <textarea> to trans-
form into an Editor dijit, so we have to begin by creating that element. Then we append it to
the DOM, and then instantiate our Editor dijit, handing it a reference to the <textarea> we
created.

InlineEditBox

dojo.require("dijit.InlineEditBox");

Let’s say you have a <div> on your page. Let’s further say that you want to allow the user to
edit the contents of that <div> just by clicking it. Interesting thought, no? Well, guess what?
That’s precisely what the InlineEditBox dijit allows you to do.

It’s not too visually impressive, I admit, but Figure 3-6 shows this dijit in action. Here you
can see where I’ve created two versions of the dijit, one declaratively and one programmati-
cally.

Figure 3-6. The InlineEditBox dijit

CHAPTER 3 ■ DIJ IT 123

Clicking either <div> flips it into editor mode. You can see what this looks like in Figure 3-7,
where I’ve clicked the second <div>.

Figure 3-7. The InlineEditBox dijit in editor mode

So, creating an InlineEditBox declaratively just requires the following:

<div style="border:1px solid #000000;width:100px"
dojoType="dijit.InlineEditBox" title="test">
Edit me

</div>

You can see where I’ve added the style for the border, which doesn’t happen automatically
with this dijit. It’s not exactly rocket science to create one of these, and doing so programmati-
cally isn’t much more difficult, but don’t take my word for it:

var descEditor = new dijit.InlineEditBox({
id : "description", autoSave : false, buttonSave : "Save it",
buttonCancel : "Forget it", width : "100%"},
dojo.byId("divProgrammatic")

);

I have done two things here that I didn’t need to do. First, the id attribute is completely
optional. Second, there’s no requirement that I hold onto a reference to this dijit, but no harm
in doing so (and of course, if you know you will need it later—for example, to get the value out
of it, better to avoid a call to the dijit manager).

The autoSave attribute ties in with the buttonSave and buttonCancel attributes. As you can
see, when the second <div> is being edited, there is a Cancel and a Save button. If autoSave is
set to true, which is the default, those buttons are not present, which means the values of
buttonSave and buttonCancel will be ignored. This also means the editing is essentially real-
time, that is, the value is set in the <div> when the field loses focus (or the user presses Enter).

You’ll also notice in the first screenshot that there is a nice little icon in the editor. This is
by virtue of the noValueIndicator attribute, which you can set. This is what will appear in the
editor if there is no value. What you see in that screenshot is the default, but you can put in
anything you like.

You can also set the renderAsHtml attribute to true or false. When true, it means that the
editor’s value should be interpreted as HTML instead of plain text. You can set the value attrib-
ute to set the value of the editor.

You can hook into the onChange event handler by setting the onChange attribute to point to
a function that is called whenever the value changes.

CHAPTER 3 ■ DIJ IT124

Finally, the width attribute naturally can be used to set the size of the editor. The default
value is actually 100 percent, making my preceding code slightly redundant—but no harm, no
foul, I figure.

Menu, MenuItem, and MenuSeparator

dojo.require("dijit.Menu");

Okay, look, you know what a menu is, right? Of course you do! Well, thanks to Dojo, you
can have menus on your web page too! Let’s say you want to have a context menu that appears
when the user right-clicks a given <div>. You can do that. You can also have a menu bar that
runs across the top of the page, which is really just a variation on a theme.

Take a gander at Figure 3-8 to see what all the fuss is about.

Figure 3-8. The Menu dijit

Here, my mouse is hovering over the first item, ready for me to click it. To create such a
menu via markup, you have only to do the following:

<div dojoType="dijit.Menu" contextMenuForWindow="true"
style="display:none;">
<span dojoType="dijit.MenuItem"
onClick="alert('Item 1')">Item 1

<span dojoType="dijit.MenuItem"
onClick="alert('Item 2')">Item 2

</div>

In this case, I’ve told this dijit, via the contextMenuForWindow attribute being set to true,
that it is a context menu for the entire page, so I can right-click anywhere to have it appear. I
could limit it to a given DOM node by setting the targetNodeIds attribute to the ID or multiple
IDs I want to attach it to. As you can see, each item can have an onClick handler attached,
because there would have to be for this to be worth anything!

Note the style attribute setting of display:none, which is required or else the menu will be
present all the time, which clearly is not what we want.

There are actually three dijits in play here: the Menu itself, the MenuItem dijit, and the
MenuSeparator dijit. The Menu dijit hosts the MenuItem and MenuSeparator dijits, which in
markup terms means they are nested under the element with the dojoType of dijit.Menu. The
MenuSeparator dijit just draws a line across the menu to, well, separate items!

CHAPTER 3 ■ DIJ IT 125

ProgressBar

dojo.require("dijit.ProgressBar");

Do you know when you drive on a long trip, and the kids are in the back seat asking “are
we there yet?” a million times? Well, imagine that you could put up something in front of them
that would give them a constant status report on the progress of the trip. They could at a
glance see how close they were to their destination without bugging the heck out of you.

Users of software are much like your children in their desire to know the progress of
things, but fortunately Dojo enables you to be a better “parent” to your users with the Pro-
gressBar dijit. You’ve of course seen a progress bar before, unless this is your first time using a
graphical operating system, in which case I’d have to ask what basement you’ve been stuck in
and what VAX1 you’ve been using all this time.

Let’s take a look first, Figure 3-9 representing said look.

Figure 3-9. The ProgressBar dijit

If I had some sort of paper from Hogwart’s,2 you could see that the percentage is gradually
increasing in each, and the bar is gradually filling up with a blue color. (Someday I’ll convince
Apress to let me publish a book with color pictures so you can see what I’m really talking
about!)

Creating a ProgressBar dijit is easy:

<div dojoType="dijit.ProgressBar" id="pb1"
places="0" progress="0" maximum="100">

</div>

Or:

var myDijit = new dijit.ProgressBar({
id : "pb2", places : 0, progress : "50%", maximum : 100

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

CHAPTER 3 ■ DIJ IT126

1. VAX is technically an operating system, but it’s more or less become synonymous with mainframe
systems that run it and that typically use a text-based interface paradigm.

2. What, you don’t read or watch Harry Potter? Hogwart’s School of Witchcraft and Wizardry is the school
Harry Potter attends in the books (and movies based on the books) by J.K. Rowling. I have to assume
you’ve at least heard of Harry Potter because otherwise I’d fear for your sanity! Whether you like them
or not is entirely up to you. I happen to like them, and I’m secure in my manhood enough to admit it!

The places attribute indicates the number of decimal places to show in the value.
Although 0 is the default, I felt the need to set it explicitly because, well, I’m pedantic that way!
The progress attribute is a string that can be in two forms. If there is a percent sign, the value
is a percentage. If there’s no percent sign, the value is an absolute numeric value. In either
case, this attribute is the current value of the ProgressBar. The maximum attribute is the highest
value that the ProgressBar can achieve, this being an actual numeric value. There is also an
indeterminate attribute, which defaults to false, but when true is used to indicate that the
operation the ProgressBar is meant to track has started, but the current progress value is not
yet known.

Now, creating a ProgressBar is only half the equation. It won’t just move and fill up on its
own. No, you have to periodically update it. To do this, you call the update() method of the
ProgressBar dijit. You pass to it a single argument, an object, which contains a progress attrib-
ute that is the new progress value of the dijit. Typically, you would have an interval set that
would periodically call update(), using some value that may (or may not) be updated with
each iteration of the interval. That way, as you perform some work and reach milestones in the
progress of that work, you change the value of the variable that the interval passes to update()
to reflect the current progress, and the next iteration of the interval will update the Progress-
Bar automatically.

TitlePane

dojo.require("dijit.TitlePane");

Before you read this section, I suggest jumping ahead a few pages and reading the section
on the ContentPane because, in many ways, you can view the TitlePane as an even more
juiced-up ContentPane. (There’s a joke in there. Hopefully, it registers after you read about the
ContentPane!)

Go ahead, I’ll wait.
Okay, all done. Good.
The TitlePane dijit enables you to have a section of a page, as you would typically use a

<div> for, and allow it to have a title (hence the name TitlePane!), and also be able to “roll it
up.” Want to see? Absolutely: Figure 3-10 is just the ticket for you.

Figure 3-10. The TitlePane dijit

CHAPTER 3 ■ DIJ IT 127

We have one created declaratively and one created programmatically, as you’ve seen
before. You can clearly see a title bar and then the actual content. Notice the little icon in the
upper-right corner? Figure 3-11 shows what happens when you click one of those bad boys.

Figure 3-11. The TitlePane dijit, rolled up

The first one has “rolled up” so that only the title bar is still visible. It does this with a very
satisfying, smooth animation no less, so it’s even better than it appears here.

So, what’s the markup look like? It looks like this:

<div dojoType="dijit.TitlePane" title="My Title #1">
I Am Legend was a vastly overrated movie!

</div>

Yep, that’s all there is! And the code you ask? Here you go:

var myDijit = new dijit.TitlePane({
href : "ch3_layout_ContentPane_content1.htm", title : "My Title #2"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
myDijit.startup();

The call to startup() is required only if you’re loading content via Ajax. If instead you
were to do this:

var myDijit = new dijit.TitlePane({
title : "My Title #2"

});
myDijit.setContent("test");
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

...then that method does not need to be called.

Toolbar

dojo.require("dijit.Toolbar");

Toolbars are another common user interface metaphor in modern GUI operating sys-
tems. Wanting one in web applications is common, and Dojo gives it to you.

CHAPTER 3 ■ DIJ IT128

A Toolbar dijit looks something like what you see in Figure 3-12.

Figure 3-12. The Toolbar dijit

A toolbar in and of itself is pretty much just a box. To make the box a toolbar requires
adding elements to it, typically various types of buttons. Here you can see two toolbars I’ve
created, one declaratively, the other programmatically. They both have the same buttons on
them. The button on the far right, which has the typical icon for making text bold, is a toggle
button, which means you click it once and it stays “clicked” until you click it again. You can see
what I mean in the second toolbar, where I’ve clicked it once already. You can also see what a
button looks like when it’s hovered over (the Cut button on the bottom).

Let’s see how to create a toolbar without writing a bit of code first:

<div dojoType="dijit.Toolbar">
<div dojoType="dijit.form.Button"
iconClass="dijitEditorIcon dijitEditorIconCut"
showLabel="true">Cut</div>

<div dojoType="dijit.form.Button"
iconClass="dijitEditorIcon dijitEditorIconCopy"
showLabel="true">Copy</div>

<div dojoType="dijit.form.Button"
iconClass="dijitEditorIcon dijitEditorIconPaste"
showLabel="false">Paste</div>

<div dojoType="dijit.form.ToggleButton"
iconClass="dijitEditorIcon dijitEditorIconBold"
showLabel="false">Bold</div>

</div>

As you can see, it’s just a <div> with the appropriate dojoType (dijit.Toolbar). Nested
underneath that is some other <div> elements, and one element. Most of the <div> ele-
ments use a dojoType of dijit.form.Button, which is basically just a plain old button you can
click. Notice the use of the iconClass attribute, which is used to set the icon of the button (a
button doesn’t have to have an icon at all if you don’t want it to). I also set the text of the but-
tons by using the showLabel attribute (well, no, that in fact tells the button to show a textual
label—the actual text is the content of the <div> element). Just like an icon, a button doesn’t
have to have text; that’s up to you.

You can also see the use of the dijit.ToolbarSeparator dijit, which is just a line drawn
vertically on the Toolbar dijit to separate logically grouped buttons. Finally, the
dijit.form.ToggleButton is used for that bold button to enable us to have a “sticky” button, so
to speak, to set bold on and off.

CHAPTER 3 ■ DIJ IT 129

Now, what about the code-centric approach? Sure, here you go:

var myDijit = new dijit.Toolbar({});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
myDijit.addChild(new dijit.form.Button({
iconClass : "dijitEditorIcon dijitEditorIconCut",
showLabel : "true", label : "Cut"

}));
myDijit.addChild(new dijit.form.Button({
iconClass : "dijitEditorIcon dijitEditorIconCopy",
showLabel : "true", label : "Copy"

}));
myDijit.addChild(new dijit.form.Button({
iconClass : "dijitEditorIcon dijitEditorIconPaste"

}));
myDijit.addChild(new dijit.ToolbarSeparator({}));
myDijit.addChild(new dijit.form.ToggleButton({
iconClass : "dijitEditorIcon dijitEditorIconBold"

}));
myDijit.startup();

I think this is probably self-explanatory, given that it’s very much like other dijits we have
looked at. The only difference worth mentioning is that the label for a button is set via the
label attribute during construction of a given button.

Tooltip

dojo.require("dijit.Tooltip");

A tool tip is that little piece of text that appears, usually in some sort of cartoon-like
“speech” bubble, when you hover over something in a GUI. The Tooltip dijit provides this
functionality for your web pages.

Figure 3-13 shows a visual of a Tooltip dijit.

Figure 3-13. The Tooltip dijit

As with many dijits, there is nice animation that you get automatically. The Tooltip you
see here gently fades in and out of existence when you hover over the text, or stop hovering
over it.

What you do is “attach” a Tooltip dijit to a given DOM node. To do this with pure markup
requires just this little snippet:

CHAPTER 3 ■ DIJ IT130

<div dojoType="dijit.Tooltip"
connectId="targetDiv1"
label="Thank you, I needed that!">

</div>

The connectId attribute is the ID of the DOM node to attach the Tooltip to. That’s all there
is to it; all the functionality of the Tooltip is automatic.

What about code you say? Here it is:

<span id="divProgrammatic" style="cursor:pointer;"
onMouseOver="dijit.showTooltip('That too!', dojo.byId('divProgrammatic'));"
onMouseOut="dijit.hideTooltip(dojo.byId('divProgrammatic'));">
Me too, me too!

Whoa, that’s a little different from what you’ve seen before. As it turns out, you don’t
explicitly create a Tooltip programmatically. Instead, a call to dijit.showTooltip(), passing it
the text for the Tooltip and a reference to the DOM node to attach to, gets it onto the screen.
Then you call dijit.hideTooltip() later, again passing a reference to the DOM node, to hide
it. You still get the nice animation too. I suppose you don’t have to do this from onMouseOver
and onMouseOut event handlers, but being as those are the events a Tooltip usually appears on,
it only makes sense.

Incidentally, you can also set a duration attribute, which is the amount of time that the
fade-in and fade-out takes. The default value is 200 milliseconds.

Tree

dojo.require("dijit.Tree"); and optionally➥

dojo.require("dojo.data.ItemFileReadStore");

A Tree dijit is a great way to show hierarchical information. It enables the user to focus
attention on a small subset of a larger group of data, to make choices or see relationships. It’s
another common UI design paradigm that you’ve no doubt seen plenty before. But just in
case, Figure 3-14 is here to offer a first glimpse of a Tree, if it happens to be a new concept for
you.

Figure 3-14. The Tree dijit

CHAPTER 3 ■ DIJ IT 131

And the magic markup that created this? Here you go:

<div dojoType="dojo.data.ItemFileReadStore"
url="ch3_Tree_data.txt" jsid="bandStore" />

<div dojoType="dijit.Tree" store="bandStore" labelAttr="name"
label="Ultimate Bands"></div>

Okay, wait just a minute—I can see a bunch of band names in that Tree, but I don’t see
them here in the markup. What gives? Well, what gives is that <div> with the dojoType of
dojo.data.ItemFileReadStore.

You see, you can populate a Tree from a file that looks like this:

{ label : "name",
identifier : "name",
items : [

{ name : "Dream Theater", type :"category" },
{ name : "Shadow Gallery", type : "category" },
{ name : "Enchant", type : "category" },
{ name : "Fates Warning", type : "category" },
{ name : "Queensryche", type : "category" }

]
}

After you have this file sitting on a server somewhere (or in the same directory as the
HTML file, as in this example), you can create a dojo.data.ItemFileReadStore thingamajig,
and then “bind” a dijit to it. You can think of that <div> with the dojoType of dojo.data.Item-
FileReadStore as basically an invisible dijit. Dojo will in fact parse it, because of the dojoType
attribute, and will create a dijit out of it, but it’s one with no visual representation on the
screen. You will notice, however, the jsid attribute on that same <div>. This is an ID for this
particular data store, for the data structure created from the file with the data in it.

Now, later you’ll see that the second <div> with the dojoType of dijit.Tree, which has of
course our actual Tree dijit, references the ID of the data store through the store attribute. The
only other detail is to tell the Tree which element in the array of data is the test label, name in
this case as specified by the labelAttr attribute, and to give the tree a root label via the label
attribute, and we’re all set. Dojo takes care of doing an Ajax request to get the data file speci-
fied by the url attribute of the first <div> and of populating the Tree for us from the resultant
data store.

The dijit.form Package
The dijit.form package is where you’ll find dijits typically used to build up forms for users
performing data entry.

Button

dojo.require("dijit.form.Button");

CHAPTER 3 ■ DIJ IT132

The Button dijit creates a button, just like the <button> or <input type="button"> HTML
tags, but it does so with a bit more pizzazz! Figure 3-15 shows you what I mean.

Figure 3-15. The Button dijit

Here you can obviously see two buttons, one created declaratively and one created pro-
grammatically. The declarative version was created with this markup:

<button dojoType="dijit.form.Button"
iconClass="dijitEditorIcon dijitEditorIconRedo"
onClick="alert('Stop that!');">
Click me

</button>

You can see a couple of initialize attributes coming into play. The first, iconClass, speci-
fies a CSS style element to put an icon on the button. There are two classes specified, both are
which are required for the icon to appear because of the way they are declared in the style
sheet. Here I’ve used one of the icons that ships with the Editor dijit, just because they are
there! You can also see the onClick handler attached for when the user clicks the button.

Creating a button programmatically is similarly easy:

var myDijit = new dijit.form.Button({
label : "I was created programmatically",
onClick : function() { alert("That tickles!"); },
iconClass : "dijitEditorIcon dijitEditorIconSave"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

The label attribute does the same job as the text does when created declaratively. Other-
wise, the attributes map pretty directly. Keep in mind that having an icon is completely
optional, and so too is having text on the button. If you just want an icon (or, I suppose, a
blank button), you can set the showLabel attribute to false and you’re all set. Note that when
creating a button declaratively and setting showLabel to false, any text present will simply be
ignored. There is no harm to text being there in that case.

CheckBox

dojo.require("dijit.form.CheckBox");

The CheckBox dijit provides a somewhat prettier version of the standard check box form
element. In Figure 3-16 you can see this prettiness (relatively speaking at least).

CHAPTER 3 ■ DIJ IT 133

Figure 3-16. The CheckBox dijit

Getting one of these bad boys onto the page via straight markup is a trivial exercise, as
this code demonstrates:

<input type="checkbox" id="cb1"
dojoType="dijit.form.CheckBox"

/> <label for="cb1">Check me if you like Dojo</label>

The <label> element is optional, but a check box without text next to it isn’t necessary too
often, so in all probability you’ll want a label. Interestingly, there doesn’t seem to be a way to
combine the two, that is, there doesn’t seem to be something like a label attribute to the dijit
itself. No biggie, we can cope. You’ll want to be sure to assign an ID to the check box so that
later you can retrieve its value, like so:

alert(dijit.byId("cb1").checked);

This returns true or false, depending on whether the check box is selected.
To create a check box the hard way, in JavaScript code, you have only to do the following,

which isn’t much harder:

var myDijit = new dijit.form.CheckBox({
id : "cb2", onClick : function(val) { alert("SUCKER!"); },
label : "I was created programmatically"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
dojo.byId("cb2Label").style.display = "";

As mentioned before, a label is generally something you’ll want, and you could try to
build one on the fly, but I found it was easier to simply hide and show it as appropriate. In
other words, although the check box is built dynamically, the label is always there; it’s just
being shown or hidden depending on whether the check box is displayed. Also note that the
label is not generated by Dojo; it’s simply a page element that I put in the markup itself. As you
can see here, you can register an onClick callback function if you wish. Note that I in fact did
put a label attribute in, but also notice that it’s essentially ignored. That’s just to prove the
point about the labels that I’ve been talking about.

■Note One more interesting point: you’ll find there is a value attribute associated with the check box.
This, however, is not the true or false value you see by looking at the checked property directly. The
value attribute is instead the value that will be submitted for the check box, if selected, when its parent
form is submitted. I found this a little weird at first, frankly because I expected it to be true or false.
Hopefully, being told this saves you a few moments’ thought!

CHAPTER 3 ■ DIJ IT134

ComboBox

dojo.require("dijit.form.ComboBox"); and optionally➥

dojo.require("dojo.data.ItemFileWriteStore");

A combo box is kind of a chimera, a mixture of two different components. It’s a <select>
element, but it’s also a text box. This enables users to choose from a selection of options, as
well as giving them the opportunity to enter something else entirely.

The ComboBox dijit goes a step further and combines an autocomplete function. This
means that as the user begins typing, the first option in the list of options that matches that
entry will be shown so the user can select it quickly. This saves a lot of time for users and
makes the interface feel more reactive to their needs.

In Figure 3-17 you can see this dijit in action.

Figure 3-17. The ComboBox dijit

Here you can see I’ve selected one of the options in the first ComboBox. What you can’t
see, of course, is that all I typed was H, at which point the list popped up below the text box (as
shown in the select ComboBox), but only those names beginning with H were shown. I then
used the down-arrow key to highlight Herman Li and pressed Enter, at which point the full
name was inserted into the text box portion of the ComboBox.

To create the first ComboBox, all I had to do was this:

<select dojoType="dijit.form.ComboBox"
value=""
autocomplete="true" hasDownArrow="true">
<option></option>
<option>Eddie Van Halen</option>
<option>John Petrucci</option>
<option>Herman Li</option>

</select>

The hasDownArrow attribute is set to true, which means the arrow the user can click is
shown. You can hide this arrow by setting this attribute to false. This has the effect of allowing
users to start typing and still get the list of matching values below—but they can no longer
manually click something to open the drop-down list; the only way to see the list is to actually
start typing something.

The second ComboBox you see was created via code, which looks like this:

CHAPTER 3 ■ DIJ IT 135

var options = new dojo.data.ItemFileWriteStore({
data: {
identifier : "name", items : [
{name : "Mike Baker"},
{name : "Geoff Tate"},
{name : "James LaBrie"}

]
}

});
var myDijit = new dijit.form.ComboBox({
store : options

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

There are a couple of ways you could populate a ComboBox via code, but probably the
easiest is to use the Dojo data system. Here, you create a dojo.data.ItemFileWriteStore, and
in it you create a data structure in a predefined format. After you have that data store, you sim-
ply pass it along to a new instance of dijit.form.ComboBox, append the dijit to the DOM, and
it’s ready for use.

There is a neat attribute you can set on the ComboBox: the pageSize attribute. This indi-
cates the number of options to display at a time. For example, let’s say you had 100 items in
the drop-down portion. That’s a lot of items for the user to go through. If you set pageSize to
10, the user will see ten at a time, plus an option labeled More Choices. When this option is
selected, the user sees another ten, and so on. This is a nice way for the user to easily page
through a large number of items, and with no additional work on your part as a developer.

Usually, the ComboBox is case-insensitive when trying to match what the user typed to
what is in the drop-down list. If you set ignoreCase to false, however, case will then matter.

Another nifty configuration option is the query attribute, which enables you to specify a
query that will be used to filter the options used in the data store. Check the documentation
on the data store for how to write such a query.

ComboButton

dojo.require("dijit.form.Button");

The ComboButton dijit is very much along the lines of the ComboBox dijit, except that
there is no free-form data entry available.

Oh yes, and it’s a button.
In Figure 3-18, you can see this hybrid for yourself.

Figure 3-18. The ComboButton dijit

CHAPTER 3 ■ DIJ IT136

As you can see, it doesn’t look much different from your average button, except for one
thing: the arrow on the right-hand side. If you click the button, you get the normal onClick
event. If you click the arrow, you get what you see in Figure 3-19.

Figure 3-19. The ComboButton dijit after clicking the arrow

As you can see, you get a list of options, just as with the ComboBox.
So, how do you create one of these? Here you go:

<div dojoType="dijit.form.ComboButton">
All In The Family
<div dojoType="dijit.Menu" toggle="fade" style="display:none;">
<div dojoType="dijit.MenuItem">Edith</div>
<div dojoType="dijit.MenuItem">Archie</div>
<div dojoType="dijit.MenuItem">Gloria</div>
<div dojoType="dijit.MenuItem">Meathead</div>

</div>
</div>

Basically, you create a dijit.form.ComboButton object, and then attach a dijit.Menu
object to it for the selections. The dijit.Menu object has some number of dijit.MenuItem
children, one for each option available.

CurrencyTextBox, DateTextBox, NumberTextBox, and
TimeTextBox

dojo.require("dijit.form.CurrencyTextBox");➥

dojo.require("dijit.form.DateTextBox");➥

dojo.require("dijit.form.NumberTextBox");➥

dojo.require("dijit.form.TimeTextBox");

I grouped four dijits together here because they are all very much along the same lines
and so it makes sense to discuss them as one.

It’s not at all uncommon to have a text box that you want to mask, that is, to allow input of
only a certain type and format. Writing the code to do that yourself usually involves looking at
each keypress and accepting or rejecting it, or else hooking into the onChange event to do
much the same thing, or else doing some validation and/or modification to the entered value
after the fact. All of that sounds dangerously like a lot of work to me, so a simpler, lazier
approach would be nice, and Dojo provides just that!

CHAPTER 3 ■ DIJ IT 137

However, it wouldn’t be Dojo if it didn’t do a bit more than the basics! So, let’s begin by
looking at the CurrencyTextBox dijit, as seen in Figure 3-20.

Figure 3-20. The CurrencyTextBox dijit

The first thing to be aware of is that if you don’t enter the text in an appropriate format,
the dijit will be highlighted (in yellow, which you can’t see here, of course) and a message will
be displayed telling you that you messed up. Here I’ve entered a letter where only numbers are
expected. The message telling me I’ve borked my entry somehow of course fades in and out of
view nicely.

Creating this is a simple matter of using the following code:

<input type="textbox" dojoType="dijit.form.CurrencyTextBox">

Yes, that’s all there is to it! Via code, it’s this:

var myDijit = new dijit.form.CurrencyTextBox({
value : 12.34

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

The value attribute enables you to set an initial default value.
The DateTextBox dijit is even fancier still, as you can plainly see for yourself by looking at

Figure 3-21.

Figure 3-21. The DateTextBox dijit

CHAPTER 3 ■ DIJ IT138

Sure, you can just enter a date in a valid format, but why would you do that? Instead,
clicking the text box opens a calendar for you to select from! The same validation and report-
ing of invalid formats as you saw in the CurrencyTextBox applies here too. The markup to use
to create this dijit is this:

<input type="textbox" dojoType="dijit.form.DateTextBox">

As you can see, I don’t need to do anything to get the calendar; it’s automatic. The equiva-
lent code is this:

var myDijit = new dijit.form.DateTextBox({
value : new Date()

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

Note how the value is an actual JavaScript Date object, not some string. This is really nice
because dealing with the true data type is more flexible and less error-prone.

The next dijit in this general theme is the NumberTextBox. Although it’s in many ways
similar to the CurrencyTextBox, it’s a little bit different too, as you can see in Figure 3-22.

Figure 3-22. The NumberTextBox dijit

One nice thing this dijit does is insert commas as necessary for large numbers. This gives
your text box a polished feel. To create this dijit declaratively requires you to do only the fol-
lowing:

<input type="textbox" dojoType="dijit.form.NumberTextBox">

Via code, it’s not much more:

var myDijit = new dijit.form.NumberTextBox({
value : 42

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

The final dijit to look at in this section is the TimeTextBox, shown in Figure 3-23, and it’s
not your momma’s text box either!

CHAPTER 3 ■ DIJ IT 139

Figure 3-23. The TimeTextBox dijit

It’s not just a place to enter some numbers, a colon, and an AM/PM indicator! Instead,
clicking it gives you a drop-down where you can select the time. You’ll notice that the hours
show up as large gray bars, but as you scroll over this thing, it expands to reveal times down to
15-minute breakdowns.

Getting this thing onto the screen is a piece of cake, like all the rest:

<input type="textbox" dojoType="dijit.form.TimeTextBox">

Or, for those who prefer the more pedantic code approach:

var myDijit = new dijit.form.TimeTextBox({
value : new Date()

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

These four dijits together enable you to create powerful forms that limit what the user can
enter to valid values only. In most cases, these dijits also make it more convenient and easy for
the user to enter the data.

DropDownButton

dojo.require("dijit.form.Button");

A DropDownButton and a ComboButton are nearly identical, except for one key differ-
ence: a DropDownButton, when clicked anywhere, shows the drop-down portion. There is no
onClick event with a DropDownButton (well, there is, but it’s not what you think—it’s not typi-
cally an event for you to handle).

CHAPTER 3 ■ DIJ IT140

Figure 3-24 shows a DropDownButton dijit.

Figure 3-24. The DropDownButton dijit

As I mentioned, clicking anywhere on the button gets you the display you see in the
figure, not just on the arrow as with the ComboButton.

The markup for creating this dijit is just about identical to that of the ComboButton,
however:

<div dojoType="dijit.form.DropDownButton">
Functions
<div dojoType="dijit.Menu">
<div dojoType="dijit.MenuItem" label="Rename"
onclick="alert('Rename');"></div>

<div dojoType="dijit.MenuItem" label="Delete"
onclick="alert('Delete');"></div>

<div dojoType="dijit.MenuItem" label="Cancel"
onclick="alert('Cancel')"></div>

</div>
</div>

Although you don’t typically do anything in response to the onClick event of the button
itself, you often will want to do something in response to the onClick event of a particular
option, and you can see I’ve done that here.

HorizontalSlider and VerticalSlider

dojo.require("dijit.form.Slider");

Let’s say you need the user to choose a number between a maximum and a minimum
value. Let’s further say that the user will be allowed to choose amounts in discrete “steps.” Of
course, you want this selection to be done in a graphical, hopefully intuitive way. In such a
case, a slider might be the right UI metaphor to use.

A HorizontalSlider dijit allows such a selection in a horizontal orientation (the Vertical-
Slider dijit, as I’m sure you realize already, does so in a vertical orientation). Figure 3-25 shows
you what the HorizontalSlider looks like.

Figure 3-25. The HorizontalSlider dijit

CHAPTER 3 ■ DIJ IT 141

The VerticalSlider dijit looks the same, but running up and down the page instead of
across. As you can see, the user can select a value between (and including) 10 and 60, and can
do so in increments of 10. The user simply grabs the little handle that’s currently under the
number 30 and drags it left or right to make the selection.

The markup for this dijit is as follows:

<div dojoType="dijit.form.HorizontalSlider"
value="30"
minimum="10"
maximum="60"
discreteValues="6"
showButtons="true">
<div dojoType="dijit.form.HorizontalRuleLabels"
container="topDecoration"
labels="10,20,30,40,50,60"
style="height:1.2em;font-size:10pt;color:#000000;"></div>

</div>

Quite a few attributes are on display here, but they are mostly obvious, I suspect. The
value attribute is the current value the slider has when it is created. The minimum and maximum
attributes are simply the highest and lowest numbers that appear on the ends of the slider.
The discreteValues attribute tells the dijit how many “steps” there are between (and includ-
ing) the minimum and maximum values. This is in turn used to determine the increment that
each step has.

You’ll also notice there is a HorizontalRuleLabels dijit that goes along with the Horizontal-
Slider dijit. The HorizontalRuleLabels dijit is used for labeling the HorizontalSlider. The
container attribute on it determines where the labels will appear, on top here because of the
topDecoration value assigned to it. The labels attribute is just a comma-separated list of the
labels for each step on the slider. The style attribute is used to “pretty up” the labels a little bit.

By default, you not only can drag the handle to select a value but also can click anywhere
on the slider. If you don’t want that capability, set the clickSelect attribute to false. You’ll also
notice arrows on both ends of the slider. The user can click these to decrement and increment
the value, but if you’d prefer that users not be able to do this, set the showButtons attribute to
false.

NumberSpinner
When you want the user to enter a number but you want to do it with a little flair, a Number-
Spinner dijit can be just the way to go. You’ve seen these before, I’m sure: a text box with a
down and an up arrow next to it. The user clicks the arrows and increments or decrements the
value. Users can still hand-enter a number if they choose to, of course.

Not sure what I’m talking about? Figure 3-26 should clear it right up.

Figure 3-26. The NumberSpinner dijit

CHAPTER 3 ■ DIJ IT142

Here you can see two versions. The difference is that the second forces me to enter two
decimal places. In fact, you can see where I’ve entered only one so far, and I’m getting a valida-
tion error at this point. If I enter another number or click the arrow in either direction, that
error message goes away.

Interestingly, creating one of these with markup uses the <input> tag, as shown here:

<input dojoType="dijit.form.NumberSpinner"
value="1"
constraints="{min : 0, max : 10, places : 0}">

The value attribute does what it always does: gives an initial value to the field. The con-
straints attribute is how you tell the NumberSpinner what the maximum and minimum
allowed values are, as well as how many decimal places are required (in other words, setting a
value of 0 here means that if I enter 12.2, it’s an error).

Creating a NumberSpinner via code is trivial too:

var myDijit = new dijit.form.NumberSpinner({
value : 25, constraints : { min : 20, max : 40, places : 2 }

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

This code follows the same basic structure as the markup in terms of the attributes you
need to supply. Notice, though, that in both cases, both markup and code, you’re passing an
object definition as the value. This is a little unusual in Dijit land, but not terribly unusual in
Dojo as a whole.

RadioButton

dojo.require("dijit.form.CheckBox");

Radio buttons enable the user to choose from various options but to choose only one of
them at a time (as opposed to check boxes, which allow multiple items to be selected). In Fig-
ure 3-27, you can see Dojo’s take on the radio button.

Figure 3-27. The RadioButton dijit

To create a RadioButton dijit, you can do this:

<input type="radio" id="rb1"
dojoType="dijit.form.RadioButton"

/> <label for="rb1">Select me if you like Dojo</label>

CHAPTER 3 ■ DIJ IT 143

Or you can do this:

var myDijit = new dijit.form.RadioButton({
id : "cb2",
label : "I was created programmatically"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

Note that the <label> element is optional when creating a RadioButton declaratively, but
you’ll nearly always want text next to a RadioButton, so you’ll usually want a <label> element.
Also note that when creating a RadioButton via code, the label attribute is not used; the text
still comes from a <label> element (I have text here for the label attribute just to prove that it
is in fact not used).

TextBox

dojo.require("dijit.form.TextBox");

A text box is perhaps the most common UI element out there, save for maybe a button. (I
guess windows themselves are more common, but I think you know what I’m sayin’ here!) A
TextBox dijit gives you a text box as in plain HTML, but with more features.

Figure 3-28 shows an example of this dijit.

Figure 3-28. The TextBox dijit

This doesn’t look much different from a plain ole text box, save for the subtle gradient
(which you very likely can’t see in the screenshot—but trust me, it’s there). It’s when you look
at some of the available options for this dijit that you start to see it’s true worth. Before we get
to that, though, let’s see what it takes to create one declaratively:

<input type="textbox" dojoType="dijit.form.TextBox">

Programmatically is nearly as simple:

var myDijit = new dijit.form.TextBox({
value : 12.34

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

Here you can see one of the available options, value, which sets the initial value of the
TextBox. What are some of the other options? Well, to begin with, you have trim, which
defaults to false, but when set to true will trim trailing and leading spaces from the user’s
entry. The uppercase attribute, which defaults to false, will convert alphabetic characters to
uppercase when set to true. In the same vein as uppercase is lowercase, which converts to all

CHAPTER 3 ■ DIJ IT144

lowercase letters, and propercase, which converts the first character of each word to upper-
case and all the rest of the letters to lowercase. The maxLength attribute limits how much the
user can enter.

Textarea

dojo.require("dijit.form.Textarea");

A <textarea> is another common UI element, and a Textarea dijit extends its capabilities
much like TextBox extends a basic text box. One of the limitations of a plain <textarea> is that
it’s a static size (assuming you don’t resize it via code, I mean). This means that if the user
types more than the text area can hold (visually hold, I mean), you get scrollbars to account
for the overflow. The Textarea dijit, on the other hand, can expand as the user types, which is
often just what you want.

Figure 3-29 shows an example of this dijit.

Figure 3-29. The Textarea dijit

The second Textarea that you see started off the same size (heightwise at least) as the first
one. However, as I typed and pressed Enter a few times, it expanded to accommodate my
entry.

What does creating one of these look like? Very much like creating a plain <textarea>,
actually:

<textarea dojoType="dijit.form.Textarea"
style="width:200px;"></textarea>

Interestingly, you set the size of the Textarea dijit via the style attribute rather than the
typical rows and cols attributes on a plain <textarea>. This gives you better control over the
size of the text area because rows and cols is dependent on the font size and zoom factor of
the page, whereas width and height style attributes are absolute values (browser zoom fea-
tures still could resize these elements, though).

The code to create a Textarea dijit looks like this:

var myDijit = new dijit.form.Textarea({
value : "Hello, I am a textarea"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

CHAPTER 3 ■ DIJ IT 145

ToggleButton

dojo.require("dijit.form.Button"); (and dojo.require("dijit.Toolbar");)

A ToggleButton is like a regular button except that when it’s clicked, it stays clicked until
it’s clicked again. This is often used on toolbars for things that “turn on” and persist on, such
as turning on bold in your word processor.

A ToggleButton looks a little something like what you see in Figure 3-30.

Figure 3-30. The ToggleButton dijit

To create such a dijit, you use markup that looks like this:

<div id="toolbar1" dojoType="dijit.Toolbar"
style="width:26px;">
<div dojoType="dijit.form.ToggleButton"
iconClass="dijitEditorIcon dijitEditorIconBold"
showLabel="false"></div>

</div>

Note that the ToggleButton is nested inside a dijit.Toolbar dijit. I found that was neces-
sary for the toggling to work. If it’s not inside a Toolbar, the button doesn’t stay clicked as it
should. You’ll note the iconClass attribute, which you can optionally use to have an image on
the button, as I have here for both of them (I used the images that come with the Editor dijit,
just because they’re there). The showLabel attribute enables you to show text on the button
when set to true (it would be the content of the <div> element in that case).

To create a ToggleButton with code, write something along these lines:

var myDijit = new dijit.Toolbar({ style : "width:26px;" });
myDijit.addChild(new dijit.form.ToggleButton({
iconClass : "dijitEditorIcon dijitEditorIconItalic",
showLabel : false

}));
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

Once again, I had to create a Toolbar first and then create the ToggleButton and add it as a
child of the Toolbar. Otherwise, this is very likely as you’d expect it to look. Note that if you had
wanted the button to be depressed by default, you would pass true as the value of the checked
attribute when creating it.

CHAPTER 3 ■ DIJ IT146

ValidationTextBox

dojo.require("dijit.form.ValidationTextBox");

The ValidationTextBox is an extended TextBox dijit that enables you to validate user input
based on a regular expression. It provides feedback and hints about what format the entry
needs to be in. Let’s begin with a look at this dijit, shown in Figure 3-31.

Figure 3-31. The ValidationTextBox dijit

Here you can see where I’ve clicked on the first ValidationTextBox and then clicked away,
so it’s flagged it as an invalid input (the field requires an entry in the form 99999). The second
ValidationTextBox is also flagged as invalid because it’s a zip code entry field (at least the first
part of a zip code) and the entry also must be in the form 99999. The tool tip has appeared
(faded in, actually) to tell me what I need to enter.

To make the magic happen, drop this markup onto your page:

<input type="text"
dojoType="dijit.form.ValidationTextBox"
regExp="^(\d{5}-\d{4})|(\d{5})$"
required="true"
invalidMessage="Format must be 99999">

Or, if code is your thing:

var myDijit = new dijit.form.ValidationTextBox({
value : "12345", regExp : "^(\\d{5}-\\d{4})|(\\d{5})$",
required : false, invalidMessage : "Zip code, format must be 99999"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);

In either case, you can see how the regExp attribute supplies the regular expression used
to validate the field. The value attribute supplies the initial value, if any. The required attrib-
ute, when true, is what made the first dijit flag the entry as invalid after I clicked: if there is
no entry and the field is required, it gets flagged; otherwise, if the field were blank but not
required, it wouldn’t be flagged. The invalidMessage attribute provides the text to display in
the tool tip whenever the field is invalid—if that field has focus (the tool tip isn’t present if the
field doesn’t have focus). You can also set the prompt attribute, which will then display a tool
tip with that text whenever the field has focus, whether the current value is valid or not.

CHAPTER 3 ■ DIJ IT 147

The dijit.layout Package
The dijit.layout package contains a couple of dijits that are used to lay out a page or a sec-
tion of a page. This enables you to control the structure of the page programmatically, which
gives you more flexibility (theoretically at least) and more control (probably). For sure, though,
these dijits give you some layout possibilities that would be a lot of work to implement your-
self, which makes them well worth using in many situations, theoretical musings aside.

AccordionContainer and AccordionPane

dojo.require("dijit.layout.AccordionContainer");

Do you use Microsoft Outlook? If you do, then you know exactly what an accordion is: it’s
a set of bars (usually on the left side) that, when clicked, expand a selection of functions. For
instance, clicking the Mail bar “slides” into view all the mail folders. If you don’t use Outlook,
or aren’t otherwise familiar with the accordion, Figure 3-32 shows exactly what it is.

Figure 3-32. The Accordion (and the AccordionPane) dijits

Here you can see two accordions, one created with markup and the other created with
code. In the first, the first pane is selected. In the second, the second pane is.

The Accordion dijit is the top-level dijit, but underneath it can be any number of Accor-
dionPane dijits. These are the individual blades, represented by the gray bars with labels, that
contain the actual content for a given category, so to speak. To create an Accordion declara-
tively, you would write markup like so:

CHAPTER 3 ■ DIJ IT148

<div dojoType="dijit.layout.AccordionContainer" duration="200"
style=" width:300px;height:200px;">
<div dojoType="dijit.layout.AccordionPane"
selected="true" title="Accordion Pane 1">
I am the first pane's content

</div>
<div dojoType="dijit.layout.AccordionPane"
selected="false" title="Accordion Pane 2">
I am the second pane's content

</div>
<div dojoType="dijit.layout.AccordionPane"
selected="false" title="Accordion Pane 3">
I am the third pane's content

</div>
</div>

The duration attribute tells the dijit how much time it should take to slide one pane into
view. Yes, it’s nicely animated! Each AccordionPane can have a selected attribute to tell the
Accordion which pane is the current one initially. Each pane can have a title attribute as well,
which is the text displayed on its gray bar. The actual content for the pane is the content of the
<div>.

You can also load the content for a given pane via Ajax from a remote URL. I’ll show how
to do this at the same time as I show you how to create an Accordion via code:

var myDijit = new dijit.layout.AccordionContainer({
duration : 300

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
myDijit.domNode.style.width = "300px";
myDijit.domNode.style.height = "200px";
var myPane1 = new dijit.layout.AccordionPane({
selected : false, title : "Added Pane 1"

});
myPane1.setContent("I was added programmatically #1");
myDijit.addChild(myPane1);
var myPane2 = new dijit.layout.AccordionPane({
selected : true, title : "Added Pane 2"

});
myPane2.setContent("I was added programmatically #2");
myDijit.addChild(myPane2);
var myPane3 = new dijit.layout.AccordionPane({
selected : false, title : "Added Pane 3",
href : "ch3_layout_contentPane_content1.htm"

});
myDijit.addChild(myPane3);
myDijit.startup();

CHAPTER 3 ■ DIJ IT 149

After the Accordion itself is instantiated, it is appended to the DOM at the desired loca-
tion, here as a child of the divProgrammatic <div>. Some style attributes are set to determine
its size. Note that the duration of the pane slide animation is slightly longer here (300 millisec-
onds) than the 200 milliseconds shown in the declarative example.

The next step is to create some number of AccordionPane objects. For each, we pass in
whether it is selected (true) or not (false), and its title. Then for each we set its content via a
call to setContent(), passing in the text (or HTML) we want to set. The exception is the third
pane, which we pass in the href attribute. This is the URL to retrieve the content from. It’s just
a static HTML file here, but of course it could be anything on your server you wish.

Finally, after an AccordionPane is all set up, we call addChild() on the Accordion object
itself to add it. When all AccordionPanes have been added, we have to make a call to the
Accordian’s startup() method so that it can do the remaining setup work, initialization and
what have you, to get the final Accordion, complete with all its children, on the screen and
ready to go.

ContentPane

dojo.require("dijit.layout.ContentPane");

A ContentPane dijit is, for lack of a better description, a <div> tag on steroids! In fact, I’d
say it’s the Barry Bonds3 of dijits.

To see it in action is a little anticlimactic, but Figure 3-33 is exactly that.

Figure 3-33. The ContentPane dijit in...err...action

As I said, it’s not too exciting. It looks like two <div> elements with some styling so it has
a background color. However, notice the text, which does hint at something interesting. The
content you see, the text, was loaded via an Ajax request. This was done without having to
write a smidgen of code! Here’s the declarative version:

CHAPTER 3 ■ DIJ IT150

3. Barry Bonds is, depending on who you ask, either the greatest baseball player ever, or a cheat of epic
proportions. He is, at the time of this writing (and for a few more years it seems), the all-time leader in
home runs. He also holds the single-season home run record, has won multiple MVP awards, Gold
Glove awards (earlier in his career), but ironically has no World Series rings to his name. He is also
believed by many to have been a steroid user for the last couple of years, perhaps longer, and thus
most of his records (the home run records certainly) are invalid because they occurred at a point in his
career where his steroid use is believed to have been most prevalent. It should be noted that while
there is a ton of circumstantial and anecdotal evidence, there is at this point no hard evidence to prove
he ever did steroids.

<div dojoType="dijit.layout.ContentPane"
href="ch3_layout_ContentPane_content1.htm"
style="background-color:#e0e0e0;">
I'll be gone shortly...

</div>

See, I wasn’t lying! Setting the href attribute is all it takes. The dijit goes off, fetches that
document, and sticks it into the <div>.

But wait, there’s more!
What if the markup fetched contains dijit declarations? Well, that’s not a problem: ensure

that the parseOnLoad attribute is set to true and, magically, those dijits will be created as well!
Creating a ContentPane via code is just as easy:

var myDijit = new dijit.layout.ContentPane({
href : "ch3_layout_ContentPane_content2.htm",
style : "background-color:#e0e0e0;"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
myDijit.startup();

So, it’s the usual dijit instantiation, passing some attribute, this time including the href of
the content to fetch as well as the style to apply, and then it’s just appending it to some DOM
node where we want it to appear. We also need to call the startup() method; otherwise, that
Ajax request won’t occur.

If you are worried about remotely fetched content being stale, you can set the preventCache
attribute to true, which will ensure that caching doesn’t get in your way. You can also set the
loadingMessage and errorMessage attributes if you wish, which tell the dijit what to display
while the remote content is being fetched (loadingMessage) and what to display if some sort of
error occurs (errorMessage). Also, if you don’t wish to fetch content remotely, but do wish to
set it dynamically, you can always call setContent() to do just that.

LayoutContainer

dojo.require("dijit.layout.LayoutContainer");

A LayoutContainer is a dijit that provides for laying out the page by using a border para-
digm. In other words, it creates a box for content that has a specified size and that contains
child dijits in a specified region of the box. In yet other words, it lays out the child dijits along
the edges of the box, based on which edge you specify for display, and it then uses another
child marked in a specific way to fill up the remaining space in the middle of the box.

This is of course easier to understand by seeing it, so Figure 3-34 should help.

Figure 3-34. The LayoutContainer dijit

CHAPTER 3 ■ DIJ IT 151

Here I’ve created three child dijits (of type dijit.layout.ContentPane) and put one on the
top edge (the header), one on the left edge (the menu), and one that fills up the rest of the
space (the main content). The markup behind this is shown here:

<div dojoType="dijit.layout.LayoutContainer"
style="width:250px;height:100px;">
<div dojoType="dijit.layout.ContentPane" layoutAlign="top"
style="background-color:#e0e0e0;">Heading</div>

<div dojoType="dijit.layout.ContentPane" layoutAlign="left"
style="width:75px;background-color:#ffe0e0;">Side menu</div>

<div dojoType="dijit.layout.ContentPane" layoutAlign="client"
style="background-color:#ffffe0;">Main content</div>

</div>

The layoutAlign attribute on each <div> defines what region of the box that <div> will be
placed in. The simple style attributes width and height are used to specify the size of the ele-
ments.

Note that there’s no reason you have to use a ContentPane for each region. In fact, as a fun
little exercise, try using a TitlePane instead and see what happens. In short, it works just fine!

■Note There can be only a single element with a layoutAlign value of client, but there can be multiple
occurrences of each of the others. Try throwing an additional element in to see the effect.

StackContainer and StackController
The StackContainer is a simple dijit. Simply stated, it takes a bunch of elements, <div> ele-
ments for instance, and stacks them on top of each other so that only one can ever be visible.
It then enables you to flip between them programmatically, or more interestingly, use a Stack-
Controller in a more automated fashion.

Let’s begin by having a look at this thing, Figure 3-35 being that look.

CHAPTER 3 ■ DIJ IT152

Figure 3-35. The StackContainer dijit, along with the StackController dijit

The first box you see was added declaratively. The button above it enables the user to flip
to the next stacked element in sequence. Underneath the box, you’ll see three smaller boxes.
These represent the visual part of the StackController. What it does is automatically render a
small box for each stacked element. Then when those small boxes are clicked, the correspon-
ding stacked element is shown. All of the content for this StackContainer is fetched via Ajax,
which is fully supported.

The second box is a StackContainer created programmatically, including its content,
which is not fetched via Ajax. I also did not attach a StackController to this one just to demon-
strate that it’s not required to have one.

So, what does the declarative approach take? Not much, as this code shows:

<div id="stack" dojoType="dijit.layout.StackContainer"
style="width:200px;border:1px solid #000000;height:100px;padding:4px;">
<div id="Page1" dojoType="dijit.layout.ContentPane"
href="ch3_layout_ContentPane_content1.htm"></div>

<div id="Page2" dojoType="dijit.layout.ContentPane"
href="ch3_layout_ContentPane_content2.htm"></div>

<div id="Page3" dojoType="dijit.layout.ContentPane"
href="ch3_layout_ContentPane_content3.htm"></div>

</div>
<div dojoType="dijit.layout.StackController" containerId="stack"> </div>

As you can see, the href attribute is all it takes to make an Ajax request; the returned con-
tent is inserted automatically. You’ll notice that the ID attributes are important here because
that’s how we attach the StackController to the StackContainer.

CHAPTER 3 ■ DIJ IT 153

To create the second StackContainer, the following code was executed:

var myDijit = new dijit.layout.StackContainer({
id : "stack2",
style : "width:300px;border:1px solid #000000;height:200px;padding:4px;"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
var myPane1 = new dijit.layout.ContentPane();
myPane1.setContent("I was added programmatically #1");
myDijit.addChild(myPane1);
var myPane2 = new dijit.layout.ContentPane();
myPane2.setContent("I was added programmatically #2");
myDijit.addChild(myPane2);
var myPane3 = new dijit.layout.ContentPane();
myPane3.setContent("I was added programmatically #3");
myDijit.addChild(myPane3);
myDijit.startup();

It’s slightly more verbose than the markup version, which is typical of most dijits, but not
too complex. After we have an instance of a StackContainer, we insert it into the DOM, create
some number of dijit.layout.ContentPane objects, set some content on it, and add it to the
StackContainer. When we’re all finished adding children, a call to the startup() method of
the StackContainer is all it takes to get it all on the screen.

Oh yeah, what about those Next Pane buttons? Well, all it takes to make them work as
expected is an onClick event handler like this:

dijit.byId("stack").forward();

■Note Like the LayoutContainer before it, you can add children that aren’t just dijit.layout.Content-
Pane instances. A dijit.TitlePane will work just as well, for example.

TabContainer

dojo.require("dijit.layout.TabContainer");

The tabbed interface is one of the most common layout metaphors in user interfaces
today, and for good reason: tabs are a great way to present a large amount of information cate-
gorized in a way that users can easily understand and easily switch between. Dojo would be
less than stellar if it didn’t provide tabs, but it does, and does so quite well, as Figure 3-36
demonstrates.

CHAPTER 3 ■ DIJ IT154

Figure 3-36. The TabContainer dijit

Of course, Dojo takes things beyond the basics and gives you some really cool capabili-
ties. The capability to load tabs via Ajax? Check. The ability to have closable tabs? Check.
(Notice the little X on some of the tabs? Clicking one of those removes that tab.) The capability
to have tabs in different positions (top or bottom)? Check.

So, how do you create a set of tabs without writing any code? Simple! Here you go:

<div dojoType="dijit.layout.TabContainer"
style="width:400px;height:150px">
<div dojoType="dijit.layout.ContentPane" title="Mike Tyson">
Tyson would win because he'd devour his opponent...LITERALLY.

</div>
<div dojoType="dijit.layout.ContentPane" title="Ali" closable="true"
selected="true">
Ali would win because he would simply talk his opponent to death.

</div>
<div dojoType="dijit.layout.ContentPane" title="Joe Frazier">
Come on, is there really any doubt Frazier is the best? Err, ok,
you're right, Ali is. Sorry Joe!

</div>
</div>

A TabContainer has some number of ContentPanes underneath it. Each ContentPane has
a title attribute, which becomes the label on the tab. You can optionally have a selected
attribute set to true to indicate which tab should be selected at startup (by default, it’s the first
tab on the left). If you wanted to have the tabs on the bottom, you could set the tabPosition
attribute to bottom and you’re good to go.

CHAPTER 3 ■ DIJ IT 155

Coding up some tabs isn’t rocket science either:

var myDijit = new dijit.layout.TabContainer({
style : "width:500px;height:200px;"

});
dojo.byId("divProgrammatic").appendChild(myDijit.domNode);
var myPane1 = new dijit.layout.ContentPane({
title : "CreatedTab1", closable : true });

myPane1.setContent("I was added programmatically #1");
myDijit.addChild(myPane1);
var myPane2 = new dijit.layout.ContentPane({
title : "CreatedTab2" });

myPane2.setContent("I was added programmatically #2");
myDijit.addChild(myPane2);
var myPane3 = new dijit.layout.ContentPane({
title : "CreatedTab3", selected : true,
href : "ch3_layout_ContentPane_content1.htm" });

myDijit.addChild(myPane3);
myDijit.startup();

This is the same paradigm you’ve seen a number of times before. Start with an instance of
a TabContainer, passing in any attributes desired (just style in this case to set the width and
height of the TabContainer). Then append it to the DOM at the desired location. Follow that
by creating some number of ContentPanes and adding each one to the TabContainer. Notice
that the third pane uses Ajax to get its content via the href attribute that you’ve seen a bunch
of times before. At the end of all that, a quick call to the startup() method fires it all up and
gets it out onto the screen.

Summary
In this chapter, we took the grand tour of Dojo’s dijits. We saw them in action, saw how to cre-
ate them either programmatically or declaratively, saw how to manipulate them and how to
use them to an extent. This chapter wasn’t really meant to give you every last detail of each
dijit because a whole book could be dedicated to that single purpose. Instead, it was meant to
give you enough detail that when you see the dijits used in the projects to come, you’ll have a
good foundation on which to build.

In the next chapter, we’ll have a go with DojoX, the “experimental” region of Dojo. We’ll
see what it has to offer in much the same fashion as this chapter and the previous chapter did.

CHAPTER 3 ■ DIJ IT156

DojoX

How many times have you watched a movie where a freaky scientist is hacking away at an
experiment in his basement, and midway through the movie his creation turns out to embody
pure evil, attacks him, and then proceeds to kill his entire family, all his friends, his dog, and
his neighbors? Finally, the military shows up, somehow manages to make things worse by
blowing up everything in sight, killing a bunch of innocent people, and in the end winds up
nuking the town because that’s the only thing that can defeat the evil blob/mutant/zombie/
alien/robot/cyborg/evil killing thing?

Well, thankfully that happens only in movies (err, unless you visit one of the many tinfoil
hat1–enthusiast sites on the Internet) and has very little to do with DojoX. In fact, the only
thing DojoX has in common with the terribly contrived plots of many B sci-fi movie plots is
the idea of experimentation. And thankfully, it has nothing to do with chimpanzees or the
decline of Matthew Broderick’s career either! 2

DojoX is all about pushing the boundaries. Whenever one of the Dojo development team
has the next great idea, DojoX is the natural home for it. After the idea is fully fleshed out (and
the risk of it being taken over by a malevolent parasitic alien life form and used for evil is
determined to be negligible), it usually will find its way into Dojo proper. Or it will wind up
on the cutting room floor perhaps, but either way it won’t be the target of a military nuclear
strike!

Sometimes, things you find in DojoX are likely to stay there because DojoX isn’t strictly
about experimentation; it’s also about extensions. There may be things that aren’t used fre-
quently, in which case the Dojo team may elect to make DojoX their permanent home. Usually
you do, however, hear about DojoX being the cutting edge, stuff that’s “out there,” new, exciting,
and basically experimental to a large extent. None of this is meant to imply that what’s in
DojoX isn’t ready for prime-time or that you shouldn’t use it. Quite the opposite is true, actu-
ally: some of the best stuff is found in DojoX, and you shouldn’t be afraid to use it!

157

C H A P T E R 4

1. Wearing a tinfoil hat, or some variation of that phrase, is generally used to describe overly (or so we
think!) paranoid people who believe the government, or aliens, or some combination thereof, are
spying on them. In (their) theory, creating headgear from tinfoil stops “the rays” that the nefarious
members of society are using against them. I find that wax paper works better, paradoxically, but dif-
ferent strokes for different folks, I guess.

2. Project X was one of, if not the, lowlight of Matthew Broderick’s career. It was about chimpanzees,
Air Force science projects, and terrible acting. It’s even more depressing to think this was Matthew’s
follow-up to the iconic Ferris Bueller’s Day Off!

You should also be aware that because of the nature of DojoX, there’s no guarantee that
what you see in one version will still be there in the next, or that it won’t have changed sub-
stantially between versions, or that it even still works from one version to the next. I’m quite
sure the Dojo team isn’t going to release anything that’s outright broken, though; I don’t want
to imply that they would at all. I’m simply saying that you accept some minimal amount of risk
by using things in DojoX because you may sometimes have a porting job to do if you upgrade,
or you may even find that what you used is no longer present. Such is life on the bleeding edge!

Some of the most interesting stuff can be found in DojoX, as I hope you’ll see in this chap-
ter, and as we use some of this stuff to develop the projects to come (beginning with the next
chapter). Before we get to that, let’s take a look at what Dr. Frankenstein3 has sitting on his
shelves—that is, what DojoX has to offer! This won’t be an exhaustive look, although I’ll touch
on most of what’s in DojoX (at the time this chapter was written at least), and chances are
you’ll see more of it as we work through the projects too.

Unlike in the previous two chapters, there’s not a whole lot in the way of setup, not a
whole lot of general-purpose discussion to take place (aside from what you just read, that is).
We’re pretty much ready at this moment to jump right into DojoX, so . . .

dojox.charting
The dojox.charting namespace gives you the ability to generate vector-based charts on the
client, without the server rendering images and such. This is quite a big deal because up until
now the only good way to generate such things, and have them look good at the same time,
was to have images generated on the server, rendered as a GIF or JPG, and then download
the image on the client. Sure, you could resort to Flash and Java applets and other browser
extensions, but I’m talking native generation here, real-time generation on the client. The
dojox.charting namespace gives you that.

I’m going to cheat in this section and not write any example code myself because, to put it
bluntly, the tests that accompany this package as part of the Dojo download do a far better job
of it than I ever could. So, all credit goes to those who wrote these tests because they are excel-
lent and, frankly, allowed me to be really lazy here!

To get started with this namespace, you have to import some resources, beginning with
the base Dojo style sheet that you’ve previously seen. Next is the Chart2D class:

dojo.require("dojox.charting.Chart2D");

Depending on how you’d like your charts to look, you may also need to import some
theme classes, like so:

dojo.require("dojox.charting.themes.PlotKit.blue");
dojo.require("dojox.charting.themes.PlotKit.cyan");
dojo.require("dojox.charting.themes.PlotKit.green");
dojo.require("dojox.charting.themes.PlotKit.orange");
dojo.require("dojox.charting.themes.PlotKit.purple");
dojo.require("dojox.charting.themes.PlotKit.red");

CHAPTER 4 ■ DOJOX158

3. Many people mistakenly think the monster was called Frankenstein, but in fact that was the name of
the scientist (evil or otherwise—it’s debatable) who created the monster. Come to think of it, who am I
to call it a monster anyway? Talk about judging a book by its cover!

All of these are imported to make the following examples work, but you of course would
need to import only those you wanted to use, if any. After you have all this on your page, you’re
ready to go.

Line Chart
The first example I want to show you is a simple line chart. Well, you might not even consider
it a chart. Certainly it doesn’t look much like a typical chart, or at least what you think of when
you hear the term chart. This is more like a pretty picture based on some data, but whatever
the technical term for it, it’s important because it quite succinctly demonstrates the basics of
dojox.charting, so have a look at Figure 4-1 to start with.

Figure 4-1. A very simple line chart . . . err, pretty picture thingy

Now, let’s see what it takes to get this on the screen:

var chart1 = new dojox.charting.Chart2D("test1");
chart1.addSeries("Series A", [1, 2, 1, 2, 1, 2, 1]);
chart1.addSeries("Series B", [2, 1, 2, 1, 2, 1, 2]);
chart1.render();

So, it’s not a whole lot! You just instantiate yourself a Chart2D object and pass it the ID of a
<div>, or other suitable DOM node, to put it in. Then you call the addSeries() method one or
more times to feed it some data. The first argument is the name of the series, and the second is
an array of data points. The chart automatically handles all sizing and spacing concerns for
you. For example, trace the line that starts in the lower-left corner, which is actually red on the
screen (the other is blue). Starting at the lower-left end, count how many points it has (count-
ing the two ends as points). Note that there are seven of them. Now, look at the data for series
A. There are seven elements! As you trace the line, each wave crest represents the number 2,

CHAPTER 4 ■ DOJOX 159

and each trough is the number 1, which you can see matches the data. That’s what I mean
when I say that the chart automatically sizes and worries about spacing and such for you. You
simply supply the points, and the chart itself, based on the size of its containing <div>, deter-
mines how far apart the points are vertically and horizontally.

Area Chart
An area chart is pretty much just a line chart with the area underneath the lines filled in, as
you can see in Figure 4-2.

Figure 4-2. An area chart

The code for creating an area chart doesn’t look a whole lot different from what you saw
previously:

var chart3 = new dojox.charting.Chart2D("test3");
chart3.addPlot("default", {type: "Areas"});
chart3.setTheme(dojox.charting.themes.PlotKit.orange);
chart3.addSeries("Series A", [1, 2, 0.5, 1.5, 1, 2.8, 0.4]);
chart3.addSeries("Series B", [2.6, 1.8, 2, 1, 1.4, 0.7, 2]);
chart3.addSeries("Series C", [6.3, 1.8, 3, 0.5, 4.4, 2.7, 2]);
chart3.render();

The addPlot() method is used to specify the type of chart being drawn, and options
thereof. Using this method isn’t necessary for the basic line chart, but it is here. The set-
Theme() method enables you to use one of those themes I mentioned previously, and here
we’re using the orange theme. Beyond that, our work is just adding the series, like before, and
a final call to render() to get it on the screen.

CHAPTER 4 ■ DOJOX160

Fancy-Pants Line Chart (StackedLines Chart)
Let’s say all you need is a simple line chart, but you want it to look a little cooler than usual.
How’s Figure 4-3 work for ya?

Figure 4-3. A prettier line chart

This version has it all: shadows, custom colors on the stroke and fill of the lines, and data
markers. Accomplishing this doesn’t take much more than you’ve seen previously:

var chart11 = new dojox.charting.Chart2D("test11");
chart11.addPlot("default", {type: "StackedLines",➥

markers: true, shadows: {dx: 2, dy: 2, dw: 2}});
chart11.addSeries("Series A", [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6], {stroke: {➥

color: "red", width: 2}, fill: "lightpink",➥

marker: "m-3,-3 l0,6 6,0 0,-6 z"});
chart11.addSeries("Series B", [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6], {stroke: {➥

color: "blue", width: 2}, fill: "lightblue",➥

marker: "m-3,0 c0,-4 6,-4 6,0 m-6,0 c0,4 6,4 6,0"});
chart11.addSeries("Series C", [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6], {stroke: {➥

color: "green", width: 2}, fill: "lightgreen", ➥

marker: "m0,-3 l3,3 -3,3 -3,-3 z"});
chart11.render();

Here we’re calling the addPlot() method to add some options, namely telling dojox.
charting that we want a StackedLines chart, a variant on the typical line chart. We’re also
telling it that we want markers by setting the markers attribute to true. Finally, we specify
some information about shadows, here saying we want a shadow offset 2 pixels down and to
the right of the lines. Then, when constructing the series, we pass in attributes defining the
stroke, that is, the outline color of each data line, plus the color to fill the line with (because a
StackedLines chart variety makes thicker lines, not just single-pixel-wide lines). We also spec-
ify where to put our markers along each series’ line.

Bar Chart
So far we’ve talked only about line charts, which is nice—but what are bar charts, you ask?
Feast your eyes on Figure 4-4!

CHAPTER 4 ■ DOJOX 161

Figure 4-4. A bar chart example

The code for this is still very simple:

var chart17 = new dojox.charting.Chart2D("test17");
chart17.addPlot("default", {type: "StackedBars"});
chart17.addSeries("Series A", [1, 2, 3, 4, 5], {stroke: {color: "red"},➥

fill: "lightpink"});
chart17.addSeries("Series B", [2, 1, 2, 1, 2], {stroke: {color: "blue"},➥

fill: "lightblue"});
chart17.render();

In fact, it looks not much different from what you’ve seen before. That’s part of the beauty
of dojox.charting: a change to the type attribute passed into addPlot() is most times all you
need to transform your data into a different type of chart. Virtually everything else can stay the
same all the time. That’s a tremendous amount of flexibility right at your fingertips.

dojox.collections
Unless this book is your first foray into programming you almost certainly know what a collec-
tion is. But, just in case you just stepped off the Computer Science bus, a collection is a group
of related data items typically stored in some sort of standard data structure. Examples of such
structures include List, Dictionary, Stack, Queue, Map, Tree, Bag, Array, Set, and Vector.

In JavaScript there are really only two kinds of built-in collections: arrays and objects
(which can be made to function like maps). Generally, if you want the more advanced struc-
tures like those listed in the preceding paragraph, you’re off coding them yourself.

Or, if you’re smart, you’re looking at what Dojo has to offer! And thankfully, DojoX is home
to a number of useful data structures. The dojox.collections namespace is the place to look.

ArrayList
An ArrayList is just like an array in that it is a list of values, be it primitives or objects. But
unlike an array, an ArrayList can grow as elements are added to it. Now, that’s the general dif-
ference, but the observant reader will note that an array in JavaScript can in fact grow too. So,
in the case of JavaScript specifically, you can think of an ArrayList as an array on steroids!

CHAPTER 4 ■ DOJOX162

An ArrayList provides a host of useful methods that a basic array does not, because an
ArrayList is just an object that’s been defined. In Listing 4-1, you can see some of those meth-
ods on display.

Listing 4-1. ArrayList Example (ch4_collections_ArrayList.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.collections.ArrayList");

function testIt() {
var al = new dojox.collections.ArrayList();
al.add("Riggs");
al.add("Murtaugh");
al.add("Leo");
al.add("Mr. Joshua");
dojo.byId("divOutput").innerHTML +=
"
ArrayList via toString(): " + al;

dojo.byId("divOutput").innerHTML +=
"
ArrayList via iterator:
";

var it = al.getIterator();
while (!it.atEnd()) {
dojo.byId("divOutput").innerHTML += " - " + it.get() + "
";

}
dojo.byId("divOutput").innerHTML +=
"ArrayList contains Bill? " + al.contains("Bill");

dojo.byId("divOutput").innerHTML +=
"
ArrayList contains Leo? " + al.contains("Leo");

dojo.byId("divOutput").innerHTML +=
"
Index of Murtaugh: " + al.indexOf("Murtaugh");

dojo.byId("divOutput").innerHTML +=
"
Item at index 3: " + al.item(3);

al.reverse();
dojo.byId("divOutput").innerHTML +=
"
ArrayList after reversing: " + al;

al.insert(1, "Lorna");

CHAPTER 4 ■ DOJOX 163

dojo.byId("divOutput").innerHTML +=
"
ArrayList after inserting item at index 1: " + al;

al.setByIndex(2, "McCallister");
dojo.byId("divOutput").innerHTML +=
"
ArrayList after setByIndex(2): " + al;

var o = al.item(2);
al.remove(o);
dojo.byId("divOutput").innerHTML +=
"
ArrayList after removing McCallister: " + al;

al.sort();
dojo.byId("divOutput").innerHTML +=
"
ArrayList after sorting (default function): " + al;

al.clear();
dojo.byId("divOutput").innerHTML +=
"
ArrayList after clearing: " + al;

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.collections.ArrayList test:

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

Of course, what this example does isn’t all that exciting, but if you’re a Lethal Weapon fan,
you’ll certainly appreciate seeing it anyway. Figure 4-5 is your chance!

CHAPTER 4 ■ DOJOX164

Figure 4-5. Output of the ArrayList example

After an instance of dojox.collections.ArrayList has been created, a couple of calls to its
add() method gets some names into the ArrayList. Of course, you aren’t limited to strings. You
can throw any object or primitive in there you like. The toString() method is implemented
such that you get a comma-separated list of the values currently in the ArrayList as a result.
Of course, what you actually get as a value for each element depends on what its toString()
method gives you (for primitives, you’d get the value itself).

Iterating over the elements in the ArrayList is a common thing to want to do, and Dojo
gives you the Iterator pattern for doing that, which is a common enough approach to this
requirement in most languages:

var it = al.getIterator();
while (!it.atEnd()) {
dojo.byId("divOutput").innerHTML += " - " + it.get() + "
";

}

Here we’re getting an Iterator from the ArrayList, and then doing a while loop until it
tells us we’re at the end of the list. A call to the Iterator’s get() method gets us the next item
in the ArrayList.

Finding out what elements are in the ArrayList is also common, and although you could
always use the Iterator to check each element, that’s not terribly efficient. Instead, the
contains() method can be called to see whether the ArrayList contains a given object.
Likewise, you can use the indexOf() method to find the index of a given object.

If you’d like to retrieve a specific item and you know its place in the ArrayList (its index
in other words), the item() method is perfect. Just pass it the index to retrieve, and it will
return the corresponding object. Likewise, if you’d like to replace an existing object at a spe-
cific location, rather than simply adding on to the end of the list as add() does, you can use
the setByIndex() method. Just pass it the index to set and the object to put there. You can also
outright remove a given item from the ArrayList with the remove() method, which takes the
index to remove.

CHAPTER 4 ■ DOJOX 165

Sorting an ArrayList is also pretty common, and fortunately there’s a sort() method just
for that. The sort() method by default does your typical binary sort, which often won’t give
you the results you want (11 gets sorted before 2, for instance). So, you can optionally pass in a
reference to a function that will be used to compare each item. This uses the same approach
as you’ve seen in previous chapters for this sort of thing.

Last, clearing an ArrayList can be done with a simple call to the clear() method, not
surprisingly!

Dictionary
A Dictionary by any other name is essentially a Map, that is, a list of key values that each map
to a specific value. You can retrieve the value by looking up its key. This is probably the second
most common data structure in all of programming, right after lists. Here in Listing 4-2 you
can see an example of the dojox.collections.Dictionary class in action.

Listing 4-2. Dictionary Example (ch4_collections_Dictionary.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.collections.Dictionary");

function testIt() {
var dy = new dojox.collections.Dictionary();
dy.add("Bat Man", "Robin");
dy.add("Captain America", "Bucky");
dy.add("Blue Falcon", "Dynomutt");
dy.add("Scooby", "Scrappy");
dojo.byId("divOutput").innerHTML +=
"
Dictionary via iterator:
";

var it = dy.getIterator();
while (!it.atEnd()) {
dojo.byId("divOutput").innerHTML += " - " + it.get() + "
";

}
dojo.byId("divOutput").innerHTML +=
"Dictionary via keyList:
";

var keys = dy.getKeyList();

CHAPTER 4 ■ DOJOX166

for (var i = 0; i < keys.length; i++) {
dojo.byId("divOutput").innerHTML += " - " + keys[i] + "
";

}
dojo.byId("divOutput").innerHTML +=
"Dictionary via valueList:
";

var vals = dy.getValueList();
for (var i = 0; i < vals.length; i++) {
dojo.byId("divOutput").innerHTML += " - " + vals[i] + "
";

}
dojo.byId("divOutput").innerHTML +=
"Dictionary contains key Ralph? " + dy.containsKey("Ralph");

dojo.byId("divOutput").innerHTML +=
"
Dictionary contains key Scooby? " + dy.containsKey("Scooby");

dojo.byId("divOutput").innerHTML +=
"
Dictionary contains value Roger? " + dy.containsValue("Roger");

dojo.byId("divOutput").innerHTML +=
"
Dictionary contains value Bucky? " + dy.containsValue("Bucky");

dojo.byId("divOutput").innerHTML +=
"
Value of key Bat Man: " + dy.entry("Bat Man");

dy.remove("Blue Falcon");
dojo.byId("divOutput").innerHTML +=
"
Dictionary size after removing Blue Falcon: " + dy.count;

dy.clear();
dojo.byId("divOutput").innerHTML +=
"
Dictionary size after clearing: " + dy.count;

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.collections.Dictionary test:

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

As with the ArrayList, the output of the example isn’t all that exciting, but hopefully you
have an affinity for old Saturday-morning cartoons as I do, in which case Figure 4-6 will be
slightly more entertaining than it otherwise might have been.

CHAPTER 4 ■ DOJOX 167

Figure 4-6. Output of the Dictionary example

The code is pretty similar to the ArrayList example. After instantiating dojox.
collections.Dictionary, as with the ArrayList, the add() method is used to add elements to
the Dictionary. In this case, however, the method takes two values: the key and the value to
map to the key. We can again iterate over the Dictionary, which is actually iterating over the
values. If we’d instead prefer to iterate over the keys, we can do so by using the getKeyList()
method, which returns an array that we can then iterate through:

var keys = dy.getKeyList();
for (var i = 0; i < keys.length; i++) {
dojo.byId("divOutput").innerHTML += " - " + keys[i] + "
";

}

Similarly, the getValuesList() method gives us the same thing as getIterator() does, but
like getKeyList(), it gives us an array rather than an Iterator.

We can check whether a given key exists in the Dictionary by calling the containsKey()
method, passing it the key to check for. The containsValue() method works the same way but
checks the collection of values instead.

We can get the value for a given key by calling entry() and passing it the key to look up.
The remove() method, which is passed a key value, can be used to remove a given key/value
pair from the Dictionary. The clear() method will clear the Dictionary entirely, and we can
ensure that either worked by checking the count attribute, which gives us the number of items
currently in the Dictionary.

CHAPTER 4 ■ DOJOX168

Stack
A Stack is another extremely common data structure. Although there are other kinds, you’ll
usually deal with what’s known as a FILO stack, FILO standing for first in, last out. So, every
time you add an element to a Stack, it’s conceptually added to the front (unlike an ArrayList,
where the element is added at the end). With a Stack, however, you generally talk about the
top of the Stack because the Stack is pictured as being vertical. Each element added pushes
down all the other items lower into the Stack. That’s called pushing onto the Stack. Later you
do what’s called popping off the Stack, which means the item at the top is removed and the
next item now moves to the top.

All of that I suspect you already knew just fine, so let’s just move on to the code! Listing 4-3
shows an example of using Dojo’s Stack implementation.

Listing 4-3. Stack Example (ch4_collections_Stack.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.collections.Stack");

function testIt() {
var st = new dojox.collections.Stack();
st.push("Romeo");
st.push("Juliet");
st.push("Sam");
st.push("Diane");
dojo.byId("divOutput").innerHTML +=
"
Stack via toArray() after 4 push()'s: " + st.toArray();

dojo.byId("divOutput").innerHTML +=
"
Stack via iterator:
";

var it = st.getIterator();
while (!it.atEnd()) {
dojo.byId("divOutput").innerHTML += " - " + it.get() + "
";

}
var ret = st.pop();
dojo.byId("divOutput").innerHTML +=
"Stack after pop'ing: " + st.toArray();

CHAPTER 4 ■ DOJOX 169

dojo.byId("divOutput").innerHTML +=
"
Item returned from pop(): " + ret;

dojo.byId("divOutput").innerHTML +=
"
Item returned from peek(): " + st.peek();

dojo.byId("divOutput").innerHTML +=
"
Stack after peek'ing: " + st.toArray();

dojo.byId("divOutput").innerHTML +=
"
Stack contains Romeo? " + st.contains("Romeo");

dojo.byId("divOutput").innerHTML +=
"
Stack contains Cleopatra? " + st.contains("Cleopatra");

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.collections.Stack test:

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

Apparently I was in a romantic mood when I wrote this example because I chose to use
famous lovers to demonstrate the Stack. Ironically, I didn’t choose Sheridan and Delenn,4

Riker and Troi,5 or Han and Leia,6 which are the obvious choices for us sci-fi geeks! Anyway,
Figure 4-7 is proof for my wife that I can be romantic at times!

CHAPTER 4 ■ DOJOX170

4. Captain John Sheridan and Delenn are the two main characters for most of the run of the series Baby-
lon 5. They develop a rather strong loving relationship that even crosses species bounds. Talk about a
progressive civilization!

5. Will Riker, first officer of the Enterprise-D, and counselor Deanna Troi were of course the long-running
relationship on Star Trek: The Next Generation. Their relationship was on-again, off-again to say the
least, as they each slept with nearly as many people over the course of seven seasons as Captain Kirk
did over the entire run of Star Trek: The Original Series!

6. If you don’t know who Han and Leia are, I suggest you never go to a sci-fi convention because you
would very likely be putting your life in real peril!

Figure 4-7. Output of the Stack example

After we’ve gotten ourselves an instance of dojox.collections.Stack(), we can begin
making calls to push() to push objects onto the Stack (any kind of object will do, or primitives,
whatever floats your boat). We can call toArray() to get an array out of the Stack if that’s
something we need. The same getIterator() method is available that we’ve seen before if you
need to iterate over the Stack.

Calling pop() returns the item at the top of the Stack and removes that item. What if you
just want to see what’s at the top of the Stack without removing it? You could always pop() it,
examine it, and then push() it back on, but that’s just silly. Fortunately, the peek() method
does precisely all that work for you.

One nice thing about the Dojo Stack implementation is the contains() method, which
enables you to find out whether a given element is in the Stack, anywhere, not just at the top.
Not all Stack implementations can do that, and it’s a real handy function to have. Just pass it
the item you want to check for, and it will return true if the item is in the Stack somewhere,
false if not.

dojox.fx
We previously looked at some FX capabilities that Dojo offers, but as they say in those horrible
late-night infomercials: “But wait, there’s more!” DojoX is home to additional FX classes and
functions, some very interesting.

addClass() and removeClass()
These two functions do precisely what their names indicate: they add or remove a style class
from a given node. However, they don’t simply add or remove a style class. No, that would be
too simple for Dojo! Instead, they animate the addition or removal! For instance, say you have
a style class that specifies a height of 20 pixels, and another that specifies a height of 100 pixels.
If a given <div> has that first style applied, and you use the addClass() function to add the sec-
ond class, the <div> will indeed be 100 pixels tall at the end, but it will expand to that size over
some period of time.

Let’s see exactly how you use these things. Listing 4-4 demonstrates.

CHAPTER 4 ■ DOJOX 171

Listing 4-4. Add/Remove Class Example (ch4_fx_addClassRemoveClass.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<style>
.oldClass {
width : 200px;
height : 50px;
background-color : #eaeaea;

}
.newClass {
width : 300px;
height : 200px;

}
</style>

<script>

dojo.require("dojox.fx.style");

function testIt() {
dojox.fx.addClass({cssClass:"newClass", node:"div1"}).play();
dojox.fx.removeClass({cssClass:"newClass", node:"div2"}).play();

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.fx.addClass/RemoveClass test:

<div id="div1"
class="oldClass">

CHAPTER 4 ■ DOJOX172

Class will be added to me
</div>

<div id="div2"
class="newClass" style="background-color:#ffff00;">
Class will be removed from me

</div>
</td></tr>

</table>
</body>

</html>

I haven’t shown a screenshot here because there just wouldn’t be much point. This is defi-
nitely an example you need to execute for yourself. But you’ll note that the <div> with the id
of div1 initially has the oldClass style class applied, while div2 has newClass applied. Now,
onLoad we see the testIt() function being called, and we see the following code in it:

dojox.fx.addClass({cssClass:"newClass", node:"div1"}).play();
dojox.fx.removeClass({cssClass:"newClass", node:"div2"}).play();

So, here we’re simultaneously adding newClass to div1, and removing newClass from div2.
Yes, they can be done in parallel; there’s nothing that says otherwise. An Animation object is
returned, which we then call the play() method on. Otherwise, the addition or removal won’t
begin.

■Note This example does not seem to work in Internet Explorer, at least not in IE7. An error occurs down
in the bowels of the Dojo code. While I was researching, I noticed some comments in the code that was
checked in to the Dojo source tree talking about addClass() possibly breaking in IE. It seems here that
removeClass() is the problem, but I have little trouble believing that an IE issue is at the core of the prob-
lem in either case.

crossFade()
When you cross-fade two elements, you essentially are morphing one element into another. In
other words, you have an element, and you perform some style manipulation on it to get it out
of view, while at the same time performing some style manipulation on a second element that
happens to be located right on top of the first. The effect is a smooth transition from the first
object to the second.

Once again, showing a screenshot here wouldn’t do a whole lot of good (a common theme
in FX functions), so we’ll just jump right to the code again, here in Listing 4-5.

CHAPTER 4 ■ DOJOX 173

Listing 4-5. Cross-Fade Example (ch4_fx_crossFade.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.fx._base");

function testIt() {
dojox.fx.crossFade({ nodes : ["node1", "node2"], duration:1000}).play();

}

</script>

</head>

<body>

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.fx.crossFade test:

<input type="button" onclick="testIt()" value="Click to cross-fade">

<div style="width:200px;height:100px;position:relative;➥

border:1px solid #ff0000;">
<center>
<div id="node1"
style="width:100%;height:100%;position:absolute;top:0px;left:0px;➥

background-color:#e0e0e0;">

I am the first box

I have some content

Click button to cross-fade

</div>

CHAPTER 4 ■ DOJOX174

<div id="node2"
style="width:100%;height:100%;position:absolute;top:0px;left:0px;➥

opacity:0;background-color:#ffff00;">

I am the second box

I have some different content

Nice cross-fade, huh?!?

</div>
</center>

</div>
</td></tr>

</table>
</body>

</html>

Here we have two <div> elements, node1 and node2. Note that they are the same size and
occupy the same position. Also note that node2’s opacity is set to zero, which means it initially
is completely transparent. Thus what’s behind node2, which is node1, shows through because
node1, by virtue of appearing before node2 in the code, automatically has a lower z-index and is
thus behind node2. So, when we then call testIt(), the following line executes:

dojox.fx.crossFade({ nodes : ["node1", "node2"], duration:1000}).play();

That creates an Animation object, and hence we have to call play() on it to start the
animation. The arguments it accepts are an array of nodes to cross-fade and the duration
attribute, which is the number of milliseconds we want the cross-fade to take—1,000 milli-
seconds, or 1 second, in this case.

■Note This cross-fade example also does not seem to work in IE, and again I noticed some comments in
Dojo’s source tree talking about IE problems. I know IE has historically had issues with opacity in various
forms, and opacity is most certainly involved in doing a cross-fade, so it’s not too hard to believe that this
might not work as expected in IE. We can all hope IE8, which is supposed to be out shortly (it might be out
by the time you read this) helps matters a bit.

highlight()
The highlight() function is used to implement the yellow fade effect, as described in Chapter 1.
However, the highlight doesn’t have to be yellow, as the example code in Listing 4-6 shows.

CHAPTER 4 ■ DOJOX 175

Listing 4-6. Highlight Example (ch4_fx_highlight.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.fx._base");

function testIt() {
dojox.fx.highlight({ node : "divOutput", color : "#ff0000" }).play();

}

</script>

</head>

<body>

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.fx.highlight test:

<input type="button" onclick="testIt()" value="Click to highlight">

<div id="divOutput">I am a highlighted DIV</div>

</td></tr>
</table>

</body>

</html>

All it takes to do this effect is a single line of code:

dojox.fx.highlight({ node : "divOutput", color : "#ff0000" }).play();

This briefly highlights the <div> with the id divOutput in red. As you can see, you can
specify the color to use. You’re not required to use yellow, contrary to the name of the tech-
nique mentioned previously.

CHAPTER 4 ■ DOJOX176

sizeTo()
The sizeTo() function lets you resize a given element, but it does so in a nice, fancy, animated
way. For example, the code in Listing 4-7 when run (and when you click the button) shows a
square that gets larger, first vertically, then horizontally, and all gradually.

Listing 4-7. sizeTo Example (ch4_fx_sizeTo.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.fx._base");

function testIt() {
dojox.fx.sizeTo({
node:"divOutput", duration: 2000, width: 300, height: 300,
method: "chain"

}).play();
}

</script>

</head>

<body>

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.fx.sizeTo test:

<input type="button" onclick="testIt()" value="Click to sizeTo">

<div id="divOutput"
style="background-color:#f0f000;width:100px;height:100px;➥

position:relative;top:0px;left:0px;">
I am going to be sized

CHAPTER 4 ■ DOJOX 177

</div>
</td></tr>

</table>
</body>

</html>

The following code is responsible for performing the effect:

dojox.fx.sizeTo({
node:"divOutput", duration: 2000, width: 300, height: 300,
method: "chain"

}).play();

The node attribute tells the function what DOM node to change the size of. The duration
attribute indicates how long the change should take. The width and height attributes tell
what size the node should wind up being. Finally, the method attribute tells the function how
to do the resizing. The value chain tells it to first do the height and then the width. A value of
combine can be specified to grow the element both horizontally and vertically at the same
time.

slideBy()
The slideBy() function is similar in many ways to sizeTo(), except that its goal is to move a
DOM node, not resize it. Other than that, you use it in a similar way, as you can see in
Listing 4-8.

Listing 4-8. slideBy Example (ch4_fx_slideBy.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.fx._base");

function testIt() {
dojox.fx.slideBy({
node : "divOutput",
duration : 1000, top : 100, left: 100

CHAPTER 4 ■ DOJOX178

}).play();
}

</script>

</head>

<body>

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.fx.slideTo test:

<input type="button" onclick="testIt()" value="Click to slideBy">

<div id="divOutput"
style="background-color:#f0f000;width:80px;height:60px;">
I am going to be slid

</div>
</td></tr>

</table>
</body>

</html>

The following code is similar, as you can see, and is again the main engine driving this
example:

dojox.fx.slideBy({
node : "divOutput",
duration : 1000, top : 100, left: 100

}).play();

Here, instead of specifying width and height as in sizeTo(), we specify top and left to denote
the location we want the node to move to. The duration attribute is again used to determine
how long it should take the node to get where it’s going. There doesn’t appear to be a method
attribute as in sizeTo(), though. It seems the element always has to move both vertically and
horizontally at the same time.

dojox.gfx
Okay, I’m going to go ahead and say it right up front so there’s no confusion: dojo.gfx may be
the single coolest thing in all of Dojo!

For years now, displaying graphics in a browser has been limited to static images such as
JPGs, PNGs, and GIFs, or some browser extension such as Flash or Java applets. (Animated
GIFs aren’t really static of course—they move after all—but the file itself doesn’t change, so in
that sense it’s static.) One thing you couldn’t generally do without some sort of extension was

CHAPTER 4 ■ DOJOX 179

drawing graphic primitives such as lines, circles, and squares. Oh, to be sure, people came up
with clever ways of pulling it off anyway, although never with especially good results.

Now, enter dojo.gfx, which enables you to do exactly that and much more. For example,
check out Figure 4-8.

Figure 4-8. Output of the dojo.gfx example

What you can’t unfortunately see here is that everything except the red and blue lines and
the fancy shaded beach ball–looking circle on the right is moving around, rotating, and gener-
ally not sitting still. I admit this isn’t exactly a graphical tour de force or anything, but it’s
wickedly cool nonetheless, if you ask me!

So, what’s the code behind that look like? Listing 4-9 is your answer.

Listing 4-9. GFX Example (ch4_gfx.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.gfx");

function testIt() {
var tr1 = 130;
var tr2 = 80;
var trd1 = true;

CHAPTER 4 ■ DOJOX180

var trd2 = true;
var s = dojox.gfx.createSurface("divSurface", 320, 240);
s.createLine({x1:10,y1:10, x2:310,y2:230})
.setStroke({color : "#ff0000"});

s.createLine({x1:310,y1:10, x2:10,y2:230})
.setStroke({color : "#0000ff"});

var t = s.createPolyline([{x:160,y:15}, {x:110,y:65},
{x:210,y:65}, {x:160,y:15}])
.setFill([0, 255, 0, 1]);

var r = s.createRect({ x : 15, y : 80, width : 60, height : 80})
.setStroke({color : "green"});

var c = s.createCircle({ cx : 265, cy : 120, r : 40})
.setFill(dojo.mixin(
{ type : "radial", cx : 250, cy : 90},
{ colors: [
{ offset: 0, color: [255, 0, 0, 0] },
{ offset: 0.5, color: "orange" },
{ offset: 1, color: [0, 0, 255, 0] }

]}
));

var e = s.createEllipse({ cx : 160, cy : 190, rx : 30, ry : 40 })
.setFill([0, 255, 0, 0.5]);

var txt = s.createText({x: 90, y: 130, text: "DojoX GFX"});
txt.setFont({family : "Times", size : "20pt", weight : "bold"});
txt.setFill("yellow");
txt.setStroke("black");
window.setInterval(function() {
t.applyTransform(dojox.gfx.matrix.rotategAt(5, 155, 50));
r.applyTransform(dojox.gfx.matrix.rotategAt(-10, 45, 120));
e.applyTransform(dojox.gfx.matrix.rotategAt(25, 160, 190));
txt.applyTransform(dojox.gfx.matrix.rotategAt(-15, tr1, tr2));
if (trd1) {
tr1 = tr1 + 1;
if (tr1 > 280) { trd1 = false; }

} else {
tr1 = tr1 - 1;
if (tr1 < 40) { trd1 = true; }

}
if (trd2) {
tr2 = tr2 + 1;
if (tr2 > 200) { trd2 = false; }

} else {
tr2 = tr2 - 1;
if (tr2 < 40) { trd2 = true; }

}
}, 100);

}

CHAPTER 4 ■ DOJOX 181

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.gfx test:

<div id="divSurface" style="width:320px;height:240px;➥

border:4px solid #000000;"></div>
</td></tr>

</table>
</body>

</html>

Now, let’s look at some of this in more detail to see what dojo.gfx has to offer. This won’t
be an exhaustive look, but more than enough to whet your appetite (and you’ll see this, and
more, in some projects to come).

Surface
Everything begins with a surface.

A surface gives you something to draw on, simply put. Without it, the rest just wouldn’t
work. You create a surface like so:

var s = dojox.gfx.createSurface("divSurface", 320, 240);

You feed it the ID of an element, typically a <div>, to create the surface under. You also
specify its width and height, and that’s all it takes! You can then call the various methods of the
Surface object to draw things on it, such as a line.

Line
Drawing lines is the basis of just about everything you do with dojo.gfx, and the Surface.
createLine() method gives you that primitive to work with easily. For example, the two lines
in the previous screenshot were drawn with this code:

s.createLine({x1:10,y1:10, x2:310,y2:230})
.setStroke({color : "#ff0000"});

s.createLine({x1:310,y1:10, x2:10,y2:230})
.setStroke({color : "#0000ff"});

The first argument to this method is an object containing four attributes: x, y, x2, and y2.
The x and y attributes are the coordinates of one end of the line, and x2 and y2 are the coordi-
nates of the other end. At this point, it’s important to realize that the Surface is a grid of pixels

CHAPTER 4 ■ DOJOX182

with the upper-left corner being pixel 0,0, and the bottom right being 319,239 in the case of a
320 ✕ 240 Surface as we have here.

The setStroke() method is called on the object returned by Surface.createLine(). This
method is responsible for setting the color of the line: red for the first line (RGB value 255, 0, 0)
and blue for the second (RGB value 0, 0, 255). This is something common to many of these
functions, as the code shows.

Polyline
The Surface.createPolyline() method enables you to draw a polygon. It’s a collection of
points, between which lines will be drawn. You use it by passing it an array of points, like so:

var t = s.createPolyline([{x:160,y:15}, {x:110,y:65},
{x:210,y:65}, {x:160,y:15}])
.setFill([0, 255, 0, 1]);

This call to createPolyline() will draw a line between pixel 150,15, another between that
and 110,65, another between that and 210,65, and one more from that last pixel to the pixel at
location 160,15—which is the first one again; hence it’s drawing a closed figure. This is in fact
drawing the triangle at the top of the Surface.

You’ll also notice the use of the setFill() method. This is something you’ll see frequently.
This method enables you to fill the shape with a given color, green in this case (RGB value 0,
255, 0). The one on the end enables you to set an opacity level. This is value between 0 and 1,
where 1 is completely opaque and 0 is completely transparent.

Rect
Although you could certainly draw a rectangle by using createPolyline(), and although you
could draw a polygon by using createLine() too, there are far more convenient ways to do
both. In that same vein, Surface.createRect() exists to make drawing rectangles easier, as you
can see here:

var r = s.createRect({ x : 15, y : 80, width : 60, height : 80})
.setStroke({color : "green"});

All you need to do is specify the upper-left corner’s coordinates, tell the method how wide
and how tall the rectangle is, and off you go. Notice in the call to setStroke() here that I’ve
specified a color by using a word. You can do this for many common colors, which is nice if
you’re using the standard ones the method knows about. This applies for most, if not all, of the
setStroke() and setFill() calls you can make on any object.

Circle
Drawing circles is another common thing to want to do, and dojo.gfx provides that for you
as well:

var c = s.createCircle({ cx : 265, cy : 120, r : 40})
.setFill(dojo.mixin(
{ type : "radial", cx : 250, cy : 90},
{ colors: [

CHAPTER 4 ■ DOJOX 183

{ offset: 0, color: [255, 0, 0, 0] },
{ offset: 0.5, color: "orange" },
{ offset: 1, color: [0, 0, 255, 0] }

]}
));

All you need to do is specify the center of the circle, using the cx and cy attributes, and
specify the radius with the r attribute, and you’ll have yourself a circle! Here as well I show that
you can do some more-advanced things with setFill()—for instance, you can create gradi-
ents. In this case, I’m creating a radial gradient centered slightly off-center of the circle. I then
specify three colors—red (255, 0, 0), orange, and blue (0, 0, 255)—and specify some offset
values, which are used to create the gradient.

Ellipse
An ellipse is of course just a squashed circle, so you might think the createCircle() method
could do it, but you’d be wrong. There is a createEllipse() method just for drawing ellipses:

var e = s.createEllipse({ cx : 160, cy : 190, rx : 30, ry : 40 })
.setFill([0, 255, 0, 0.5]);

All you need to do is specify the center point of the ellipse with the cx and cy attributes,
and the horizontal and vertical radiuses with rx and ry, respectively. Then do whatever
setFill() and/or setStroke() you want, or none at all if the defaults suit you, and you’ve
got yourself an ellipse.

Text
The dojo.gfx namespace isn’t all about simple shapes. You can also create text! Sure, you
could always draw the text yourself with primitives, but that’s a whole lot of work for what
will probably not even wind up being as good of a result. Why not just do this instead:

var txt = s.createText({x: 90, y: 130, text: "DojoX GFX"});
txt.setFont({family : "Times", size : "20pt", weight : "bold"});
txt.setFill("yellow");
txt.setStroke("black");

You start by creating the text with a call to createText(), feeding it the location to put the
text at, and of course the text itself. You can then optionally set the font information, including
font family, size, and weight, just like style sheet attributes, and you can also set the outline
color of the text with setStroke() and/or the inner color of it with setFill(). At the end of the
day, text is just a polyline drawn very finely and automatically for you, but it’s still a vector-
based drawing.

applyTransform()
The last thing we need to look at is how the objects are animated (you have run the example,
right?). Doing so is all about transformations. For example, to rotate the triangle, this line of
code is used:

t.applyTransform(dojox.gfx.matrix.rotategAt(5, 155, 50));

CHAPTER 4 ■ DOJOX184

Note that when the triangle was created, I kept a reference to it in the variable t. That’s
specifically so I could manipulate it later. It’s just a matter of calling applyTransform() and
giving it a matrix (an instance of dojox.gfx.Matrix2D) that describes the transformation. An
explanation of transformation matrices is beyond the scope of this book (and I’m probably
not the right person to go into it anyway, to be honest, because math and I don’t generally get
along too well!). Suffice it to say that calling rotategAt() is a special case that gives us a matrix
suitable for rotating an object. You pass to it the number of degrees to rotate (5 here, a positive
number being clockwise, a negative number being counterclockwise) and the x and y location
of the point on the screen about which to rotate the object.

For contrast, rotating the rectangle is done with this line:

r.applyTransform(dojox.gfx.matrix.rotategAt(-10, 45, 120));

As you can see, this rotates counterclockwise and a little faster than the triangle because
the degrees value is larger.

Now, for the text rotation, I play some games to basically make it “oscillate” a little. In
other words, the point that the rectangle rotates around changes over time so that it moves
around a bit, rather than just rotating around a fixed point.

But wait, didn’t I gloss over something? I sure did! Each of these transformations will mod-
ify the object exactly once. How does the animation happen? Well, that’s a simple matter of
wrapping all the applyTransform() calls in an interval. Ten times a second, the transforms are
applied (100 milliseconds = 1/10 of a second). Note that dojo.gfx doesn’t say anything about
how you do animation; that’s up to you. It just gives you the facilities to modify vector objects,
which is the basics you need to create an animation.

You aren’t limited to rotations alone, of course. You can devise any sort of transformation
matrix you wish to do mirroring, for example, or making an object bigger, whatever you’re
mind can dream up (and that it can understand the mathematics for!).

dojox.grid
The dojox.grid namespace contains a whole widget, or future dijit, unto itself: the data grid.
This is such a common widget that I guess the team felt it deserved its own namespace!

In Figure 4-9 you can see a simple example of the grid in action.

Figure 4-9. The dojo.grid example

CHAPTER 4 ■ DOJOX 185

The grid supports row highlighting, column sorting, hover effects when mousing around
it, multiple rows of columns (that is, a column underneath Item in the screenshot), expand-
able and collapsible rows, subgrids (that is, a grid as the contents of a row in a grid), full styling
capability to your liking, editable cells, and much more.

But it all starts with the basics: creating a simple grid. Listing 4-10 shows you how to do
that.

Listing 4-10. GFX Example (ch4_grid.htm)

<html>

<head>
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojox/grid/_grid/grid.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.grid.Grid");
dojo.require("dojox.grid._data.model");
dojo.require("dojo.parser");

var data = [
["Car Alarm", "It's a nice gift idea", 99.95, true],
["Portable DVD Player", "Needed with kids in a car", 129.99, false],
["Bagpipes", "Does anyone actually like bagpipes?!?", 429.89, true],
["Cabbage Patch Kid", "Remember the lines?", 39.99, false],
["Trident Chewing Gum", "Is that still made?", .69, true],
["1Gb SD Card", "Too small, too small!", 8.99, false],
["Tooth Paste", "5 out of 10 dentists recommend it!", 2.96, true],
["Ice Cream", "Why can't prices be whole dollars?!?", 4, false]

];

var model = new dojox.grid.data.Table(null, data);

var view = {
cells: [
[
{ name : "Item", width : "150px"},

CHAPTER 4 ■ DOJOX186

{ name : "Description", width : "175px"},
{ name : "Price", width : "75px"},
{ name : "In Stock?", width : "75px"}

]]
};

var layout = [view];

</script>

</head>

<body>

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.grid test:

<div id="myGrid" dojoType="dojox.Grid"
structure="layout" model="model"
style="font-size:10pt;font-weight:bold;width:540px;height:200px;" />

</td></tr>
</table>

</body>

</html>

After you’ve imported the necessary style sheets and Dojo components, the next step is to
create a data model. This model is just a simple array in which each element is itself an array
representing a row in the table, and each element in the inner array is a cell value. After you
have populated the array (however it is that you do that in your particular case), you next turn
it into an actual data model that the grid understands by calling the following:

var model = new dojox.grid.data.Table(null, data);

After you have a model, the next step is to create a view for your grid, where a view is a
collection of columns. You do this by creating an object that contains a cells attribute. The
value of this attribute is an array, where each element is itself an array that represents a row of
column headers. Remember that a grid can have multiple rows of column headers, hence the
needs, potentially anyway, for a multidimensional array. So, in this case we have this:

var view = {
cells: [
[
{ name : "Item", width : "150px"},
{ name : "Description", width : "175px"},
{ name : "Price", width : "75px"},
{ name : "In Stock?", width : "75px"}

CHAPTER 4 ■ DOJOX 187

]]
};

The last step is to create a layout for the grid. A layout is a collection of views. So you cre-
ate another simple array with each of the view arrays you created as an element. The code for
that is this snippet here:

var layout = [view];

Note that in the listing all of this happens in a <script> section in the <head> of the docu-
ment. That’s because we’re going to create the grid declaratively, so we need the model, view,
and layout set up before the <body> is encountered (remember that the JavaScript in the
<head> will execute before anything in the <body> is processed). The markup for creating the
grid is simply this:

<div id="myGrid" dojoType="dojox.Grid"
structure="layout" model="model"
style="font-size:10pt;font-weight:bold;width:540px;height:200px;></div>

See how the data model and layout are referenced here? That’s really all the grid code
needs to construct itself. I also set some style attributes to size the grid itself at least roughly
to the data it contains, but it’s a little too small vertically so there’s scrolling. It’ll scroll horizon-
tally as well if you, for instance, increase your browser’s font size.

■Note The grid is clearly a very flexible, rich, and powerful component. Check out some of the tests that
are packaged with the Dojo download for even more examples. However, the grid is not documented very
well (at least not at the time I wrote this), which is to say I could find virtually no documentation. Now, that’s
not a criticism per se, because after all we’re in DojoX land, which we’ve previously established is largely
experimental in nature, and to expect top-notch documentation here isn’t exactly fair. Still, the lack of docu-
mentation makes it difficult to use the grid to its full potential, and certainly makes it difficult to cover in
depth in a book. I suggest that if you need the grid, the examples I mentioned here are most likely your best
bet at this moment.

dojox.math
The dojox.math namespace is home to more-advanced mathematical functions that let you go
beyond the basics of adding, subtracting, multiplying, and dividing. I’ll say right up front that
math was always my worst subject in school, so this namespace holds a little less interest for
me than many others. That doesn’t matter, though, because even someone as mathematically
challenged as I am can see that there’s a lot of good stuff here!

We’ll begin with an example that demonstrates several things all at the same time. Take a
peek at Listing 4-11.

CHAPTER 4 ■ DOJOX188

Listing 4-11. Math Example (ch4_math.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.math._base");

function testIt() {
dojo.byId("divOutput").innerHTML += "
90 degrees in radians = " +
dojox.math.degreesToRadians(90);

dojo.byId("divOutput").innerHTML += "
1.5707963267948966 radians " +
"in degrees = " + dojox.math.radiansToDegrees(1.5707963267948966);

dojo.byId("divOutput").innerHTML += "
Distance between " +
"2,2 & 4,2 = " + dojox.math.distance([2,2],[4,2]);

dojo.byId("divOutput").innerHTML += "
Distance between " +
"18,-23 & -9,4 = " + dojox.math.distance([18,-23],[-9,4]);

dojo.byId("divOutput").innerHTML += "
10 factoral = " +
dojox.math.factoral(10);

dojo.byId("divOutput").innerHTML += "
A Gaussian random number = " +
dojox.math.gaussian();

dojo.byId("divOutput").innerHTML += "
Midpoint between " +
"2,2 & 8,2 = " + dojox.math.midpoint([2,2],[8,2]);

dojo.byId("divOutput").innerHTML += "
A range from 10 to 100 by " +
"5's = " + dojox.math.range(10, 100, 5);

dojo.byId("divOutput").innerHTML += "
The standard deviation of " +
"99,45,-17,62 = " + dojox.math.sd([99,45,-17,62]);

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>

CHAPTER 4 ■ DOJOX 189

dojox.math test:

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

The accompanying screen output can be seen in Figure 4-10.

Figure 4-10. Output of the math example

So, what are some of the functions demonstrated in this example? Let’s look at them one
by one.

degreesToRadians() and radiansToDegrees()
I hear tell that in trigonometry, converting between degrees and radians in either direction is
an important thing. Being a horribly bad math student, my exposure to trig was pretty limited
and thus I have to take their word for it on the importance of such a thing.

In any case, it’s clearly easy to do: a call to dojox.math.degreesToRadians(), passing it the
degree value to convert, is all it takes to get radians. If you want to go the other way, it’s a call
to dojox.math.radiansToDegrees(). So, if you know what all that gibber-jabber means, it’s right
there for you!

distance()
Now, I have done a fair bit of game programming in my day, although I’m old-fashioned
(math-challenged, as we’ve already established), which means 3D games and I don’t generally
get along. I’m a fan of the old 2D world myself, and in that world it’s not at all uncommon to
need to determine the distance between two points—especially if you’re writing a game, say,
like Pac-Man, where you need to write a pursuit algorithm of some sort, then that’s valuable
information.

Dojo is right there to help in such a case. The method dojox.math.distance() accepts two
arrays with two elements each. The arrays are the coordinates of two points.

CHAPTER 4 ■ DOJOX190

So, for instance, in the example you see a call in this form:

dojox.math.distance([2,2],[4,2]);

The value returned from this call is 2 because that’s the distance between the two points.
It’s a simple method, but a valuable one in many instances.

factoral()
Factoral is a math concept I do know about because I’ve always had a bit of a fascination with
patterns, and that’s pretty much all a factoral is. It’s simply when you have a series of numbers,
say 1, 2, and 3, and you multiply the product of each by the next number. So for instance, 1 ✕ 2
✕ 3 is 3 factoral (it’s notated as 3! technically). Now, that’s just 6, which is kind of boring, but
what’s 10 factoral (10!) instead? Turns out that’s a much larger number!

We don’t have to do the work ourselves of course because Dojo can do it for us just fine. A
quick call to dojox.math.factoral(10) gives us the answer, which is 3,628,800 for those keep-
ing score at home.

gaussian()
Generating random numbers via computer is an interesting concept. I remember hearing in
my computer science classes that generating truly random numbers is not possible for a com-
puter. I also heard a story about how when US government spy agencies require a random
number to encrypt something, they use a telescope that spins around and snaps a picture of
the sky. The pixel map that is the resulting image is used as the random number seed, all
because that provides a truly random number and therefore better encryption.

I’ve never been a spook myself, so I don’t know if that story is true, and I don’t know the
current state of the art on computer-based random-number generation. What I do know is
that numerous algorithms have been devised over the years to try to get computers to gener-
ate better random numbers, and one of those is the Gaussian algorithm.

Without going into detail on how the algorithm works (which I couldn’t do anyway
because, remember, math weakling here!), I can show you how to generate such a random
number: dojox.math.gaussian(). Yep, just that simple call does the trick. You’ll get back a deci-
mal number between 0 and 1, which you can then use in performing the typical tricks of the
trade to get a number in the range you require.

midpoint()
Along with the idea of getting the distance between two points as described previously is the
notion of finding the point that is midway between two points. This is another quite common
task to have to do in game programming, among other things. And just as with getting the dis-
tance between two points, Dojo makes it easy:

dojox.math.midpoint([2,2],[8,2]);

As you can see, this code uses the same input parameters as dojox.math.distance(),
which makes sense because we’re again dealing with two points. However, dojox.math.
midpoint() enables you to specify multidimensional arrays as input, so it’s even a bit more
powerful than dojox.math.distance()n.

CHAPTER 4 ■ DOJOX 191

range()
Quick, how would you write the code to generate a range of numbers between 10 and 100,
counting by 5s? Did you envision a for loop of some sort? What if you wanted to be able to
change the step value? Thinking of a function with some inputs now? Well, that would all work
certainly, but if you’re lazy like me, you’d prefer to do this:

dojox.math.range(10, 100, 5);

What you’ll get back is an array of the values as specified. I guess the Dojo folks are a bit lazy,
like me, but I’m really thankful for it!

sd(), or Standard Deviation
A standard deviation is defined as a measure of the dispersion of outcomes around the mean
(or expected value), used to measure total risk. It is the square root of the variance . . .

Err, yeah, I don’t get it either.
But if a standard deviation is something you understand and need, then by all means,

have at it, and Dojo has you covered. For instance, to calculate the standard deviation of the
numbers 99, 45, –17, and 62, you have to do only this:

dojox.math.sd([99,45,-17,62]);

And of course you get back the obvious answer—41.91882035553959—which obviously
anyone would have known without executing the code (ha ha, yeah, right!).

dojox.string
Strings are of course part and parcel of what we as programmers do every day. JavaScript has a
String class, and it’s fairly powerful, giving you useful methods and attributes to play with. But,
it’s not always enough, and that’s where Dojo and the dojox.string namespace come into play.

The dojox.string namespace provides two useful items: the Builder class and the
sprintf() function. Let’s see them in action first and then look at each in a little more detail.
In truly backward form, Figure 4-11 shows you the output of the code that is in Listing 4-12.

Figure 4-11. Output of the string example

CHAPTER 4 ■ DOJOX192

Listing 4-12. String Example (ch4_String.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.string.Builder");
dojo.require("dojox.string.sprintf");

function testIt() {
var b = new dojox.string.Builder("Java");
var s = "Builder right after instantiation with "Java": " + b;
b.clear();
s += "
Builder after clearing: " + b;
b.append("Hello, world!");
s += "
Builder after appending "Hello, world!": " + b
b.append("--I like bunnies.");
s += "
Builder after appending "--I like bunnies": " + b
b.replace("bunnies", "frogs");
s += "
Builder after replacing "bunnies" with " +
""frogs": " + b;

b.remove(0, 15);
s += "
Builder after removing "Hello, world!--": " + b;
b.insert(2, "really ");
s += "
Builder after inserting "really" at index 2: " + b;
dojo.byId("divBuilderOutput").innerHTML = s;
s = "";
s += "dojox.string.sprintf("%.3e", 362525200) " +
"should be " +
""3.625e+08" : " +
dojox.string.sprintf("%.3e", 362525200);

s += "
dojox.string.sprintf("%04d-%02d-%02d", 95, 2, 3) " +
"should be " +
""0095-02-03" : " +
dojox.string.sprintf("%04d-%02d-%02d", 95, 2, 3);

s += "
dojox.string.sprintf("[%10s]", "goat") " +
"should be " +
""[goat]" : " +

CHAPTER 4 ■ DOJOX 193

dojox.string.sprintf("[%10s]", "goat");
s += "
dojox.string.sprintf("%c", 65) " +
"should be " +
""A" : " +
dojox.string.sprintf("%c", 65);

dojo.byId("divSPRINTFOutput").innerHTML = s;
}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.string.Builder test:

<div id="divBuilderOutput"> </div>

dojox.string.sprintf test:
<pre><div id="divSPRINTFOutput"> </div></pre>

</td></tr>
</table>

</body>

</html>

Let’s begin with the Builder class, which is akin to the StringBuilder class in the .NET
world, or the StringBuffer class in the Java world.

Builder
The Builder class enables you to construct a large string quicker than you could with the basic
JavaScript string functionality. It’s essentially a buffer of characters that you can manipulate.

To begin, you have to create an instance of the Builder class like so:

var b = new dojox.string.Builder("Java");

After that’s done, you can call its methods to manipulate it. For example, to display its
contents, you can call toString(). However, if you use something like alert(b);, then
toString() is called behind the scenes anyway, so you won’t typically call it explicitly.

You can call the clear() method on it at any time to clear its contents and start fresh,
without having to create a new instance.

Calling the append() method, and passing in some value, appends that value to the end
of the Builder. If you instead want to insert a value somewhere other than the end of the
string, the insert() method is just the ticket. It accepts two parameters, the first being the
index in the Builder to insert at, and the second being the value to insert.

CHAPTER 4 ■ DOJOX194

You can also replace strings within the Builder by using the aptly named replace()
method. The first parameter it accepts is the value to replace, and the second is the value to
replace the first with. All occurrences of the first value will be replaced with the second value.

If you instead want to remove a value, call the remove() method and pass it two values:
the start and end index to remove.

sprintf()
If you’ve ever done any C or C++ programming, sprintf is something you are all too familiar
with. Many other languages have taken their cue from C’s sprintf() function, and now, thanks
to Dojo and DojoX, JavaScript is no exception.

The sprintf() function enables you to format a value in a wide variety of ways by using
(relatively) standard formatting strings. For example, if you want to display the value
362525200 in scientific notation, that is, 3.625e+08, you can use this:

dojox.string.sprintf("%.3e", 362525200);

The string %.3e tells sprintf() how to format the second parameter. Getting into the
details of these formatting strings is beyond the scope of this book and could well be a whole
chapter all its own, but I will give you a few more examples at least!

Say you have three numbers: 95, 2, and 3. Further, say that they represent year, month,
and day values. Even further, say you want to display them as 0095-02-03. (Let’s assume that
you’re writing some sort of historical analysis program and you need to deal with events
that occurred not too long after the death of Jesus.) You could accomplish this by doing the
following:

dojox.string.sprintf("%04d-%02d-%02d", 95, 2, 3);

How about one final example? Let’s say you want to have an ASCII value, say 65, and you
want to see what character that corresponds to. Simple with sprintf():

dojox.string.sprintf("%c", 65);

That gives us A, which is indeed the character that corresponds to the ASCII value 65.

dojox.timing
The dojox.timing namespace is perhaps one of the more poorly named namespaces out there
because when you hear timing, you (if you’re like me, anyway) think of things to help you tell
how long something took. That’s not quite what it’s all about, although time certainly does
play a key role in at least part of it.

The central component in this namespace is the Timer object, which is where we’ll begin
our exploration.

Timer
The Timer class is in a sense a nice wrapper around the interval capability built into JavaScript.
Just like an interval, Timer enables you to fire a given function with each tick of a clock, the
interval of those ticks being settable by you, the programmer. The syntax is arguably a little
nicer with Timer, which seems to be the main attraction of it.

CHAPTER 4 ■ DOJOX 195

Listing 4-13 shows an example of its usage.

Listing 4-13. Timer Example (ch4_timing_Timer.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.timing._base");

var t = new dojox.timing.Timer();
function testIt() {
t.setInterval(1000);
t.onTick = function() {
dojo.byId("divOutput").innerHTML += "Next...";

}
t.start();

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.timing.Timer test:

<input type="button" onClick="t.stop();" value="Click to stop">

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

CHAPTER 4 ■ DOJOX196

Figure 4-12 is the result of viewing that file in your browser. In it you can see where four
ticks of the clock have already executed. The button there enables you to stop the Timer, which
is done with a simple call to its stop() method.

Figure 4-12. Output of the Timer example

Timer is a class, which means you have to instantiate it. After you do that, calling
setInterval() on it sets how frequently the clock will tick, measured in milliseconds. The
onTick attribute should be pointed to a function to be executed with each tick. After that’s
all done, a call to the start() method gets the ball rolling until stop() is called.

Sequence
The Sequence class is, in my opinion at least, the far more interesting component in the
dojox.timing namespace. It enables you to queue up a series of function calls and fire them
in order. That alone wouldn’t be too exciting, but what’s more interesting is that you can set
all sorts of delays before and after the execution of each!

For example, take a gander at Figure 4-13.

Figure 4-13. Output of the Sequence example

Each of the lines after the title line is a function that was called. After the first one, there is
a 2-second delay. There is no delay either before or after each of the next five. The sixth line
appears, and then there is a 1-second delay, and then the last two appear. All of these delays
are specified as part of the list of functions to execute.

Listing 4-14 shows the code behind this example.

CHAPTER 4 ■ DOJOX 197

Listing 4-14. Sequence Example (ch4_timing_Sequence.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.timing.Sequence");

function writeText(msg) {
dojo.byId("divOutput").innerHTML += "
" + msg;

}

function testIt() {
var s = new dojox.timing.Sequence({});
var funcs = [
{func : [writeText, this, "About to pause for 2 seconds (after)"],
pauseAfter : 2000},

{func : [writeText, this, "Ok, now going to repeat this 5 times"],
repeat : 5, pauseAfter : 500},

{func : [writeText, this, "About to pause for 1 second (before)"]},
{func : [writeText, this, "Alrighty then"], pauseBefore : 1000}

];
s.go(funcs, function() { writeText("Done"); });

}

</script>

</head>

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.timing.Sequence test:

CHAPTER 4 ■ DOJOX198

<div id="divOutput"> </div>
</td></tr>

</table>
</body>

</html>

As you can see, you instantiate a new Sequence object and then call its go() method, pass-
ing into it an array of objects that each define a function call. Each object in this array has at
least one element in it, namely the func element, which is itself an array consisting of three
elements. The first element is the name of the function to execute, writeText in this case. The
next is an object that will be the context for the function call (in this case, this, which means
writeText will execute within the context of the Sequence). The third (and actually, as many as
you like) is a parameter to pass to the function.

Each object that defines a function call can also optionally contain some elements that
speak to the delays around its execution. For instance, if you set a value for the pauseAfter ele-
ment, the value (in milliseconds) will specify how long to wait after the function is executed
before executing the next. Likewise, pauseBefore sets a delay before that particular function is
executed. There is also the repeat attribute, which enables you to execute a function more
than once.

Finally, you have the option of passing in one final function call that is called at the end of
processing, separate from the array of objects defining the function calls.

dojox.uuid
A Universally Unique Identifier, or UUID for short, is a standard method for constructing an ID
for a given thing in such a fashion that you can be reasonably sure (although not guaranteed)
that the UUID is unique to your thing. UUIDs are seen in computer applications all over the
place. Microsoft’s GUID is an implementation of the UUID standard as put forth by the Open
Software Foundation. A UUID comes in the form df7145b8-2a7c-41cc-82ea-95feba5cb654,
which, being as it’s a base-16 number (or hexadecimal, for the rest of us!) it clearly allows for
some truly huge numbers to be represented, which is one of the ways it ensures, to a large
extent at least, uniqueness.

And why shouldn’t you have the ability to use UUIDs in JavaScript? Well, now you do,
courtesy of Dojo and the dojox.uuid namespace! Listing 4-15 shows you an example of using
this namespace.

Listing 4-15. UUID Example (ch4_uuid.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",

CHAPTER 4 ■ DOJOX 199

parseOnLoad : true
};

</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.uuid._base");
dojo.require("dojox.uuid.Uuid");
dojo.require("dojox.uuid.generateRandomUuid");
dojo.require("dojox.uuid.generateTimeBasedUuid");

function testIt() {
var nuuid = dojox.uuid.generateNilUuid();
var ruuid = dojox.uuid.generateRandomUuid();
var tbuuid1 = dojox.uuid.generateTimeBasedUuid();
var tbuuid2 = dojox.uuid.generateTimeBasedUuid("0a023cffa8ea");
dojo.byId("divOutput").innerHTML += "
A nil UUID: " + nuuid;
dojo.byId("divOutput").innerHTML += "
A random UUID: " + ruuid;
dojo.byId("divOutput").innerHTML += "
A time-based (version 1) " +
"UUID with no node ID passed in: " + tbuuid1;

dojo.byId("divOutput").innerHTML += "
A time-based (version 1) " +
"UUID with node ID 0a023cffa8ea passed in: " + tbuuid2;

dojo.byId("divOutput").innerHTML += "
Node read back from 2nd " +
"time-based UUID: " + dojox.uuid.getNode(tbuuid2);

dojo.byId("divOutput").innerHTML += "
Timestamp read back from " +
"2nd time-based UUID: " + dojox.uuid.getTimestamp(tbuuid2);

dojo.byId("divOutput").innerHTML += "
Variant of 2nd " +
"time-based UUID: " + dojox.uuid.getVariant(tbuuid2);

dojo.byId("divOutput").innerHTML += "
Version of 2nd time-based" +
" UUID: " + dojox.uuid.getVersion(tbuuid2);

dojo.byId("divOutput").innerHTML += "
Is 2nd time-based UUID " +
"valid? " + dojox.uuid.isValid(tbuuid2);

dojo.byId("divOutput").innerHTML += "
Are 1st and 2nd time-based " +
"UUIDs equal? " + new dojox.uuid.Uuid(tbuuid1).isEqual(tbuuid2);

dojo.byId("divOutput").innerHTML += "
Is random UUID valid? " +
new dojox.uuid.Uuid(ruuid).isValid();

}

</script>

</head>

<body onLoad="testIt();">

CHAPTER 4 ■ DOJOX200

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.uuid test:

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

The following functions are available in the dojox.uuid namespace:

• dojox.uuid.generateNilUuid() generates a nil UUID. In other words, it returns the
value 00000000-0000-0000-0000-000000000000. This probably has some use some-
where, but I have to admit I’m not sure what it might be!

• dojox.uuid.generateRandomUuid() is probably the function you’d use most of the time
because it just spits out a random UUID for you. Random UUIDs are, by the way,
referred to as version 4 UUIDs.

• If you’d prefer to generate a UUID based on the current time, dojox.uuid.
generateTimeBasedUuid() does that for you. This function gives you what’s called a
version 2 UUID, for those keeping score at home. You can also optionally pass into this
function a 12-character hex string that ostensibly represents an identifier for the hard-
ware node. This theoretically enables you to tie a UUID to a particular hardware node,
so given the exact same time of day every time, you should get the same UUID each
time you call this with a given node ID.

• If you call generateTimeBasedUuid() and pass it a node ID, you can retrieve the node ID
from the UUID later by using the dojox.uuid.getNode() function (which also proves
there is a tie between the UUID and the node ID).

• You can also get the timestamp that was used to generate a version 2 UUID by using the
dojox.uuid.getTimestamp() function.

• UUIDs are always of a given variant, which is different from its version, and you can
always tell what variant was used to generate the UUID by using the dojox.uuid.
getVariant() function. This returns one of the enumerate values hanging off the
dojox.uuid.variant object, such as DCE.

• If it’s the version and not the variant you’re after, dojox.uuid.getVersion() will give that
to you.

• Being able to tell whether a given string, which presumably is a UUID, is a valid UUID,
is very common, and thankfully all it takes is a call to dojox.uuid.isValid(). Pass it the
value to test, and it returns true if it’s a valid UUID, false if not.

CHAPTER 4 ■ DOJOX 201

dojox.validate
Validating data is an all-too-common requirement in web development, indeed in any sort of
application development—for example, ensuring that an e-mail address or telephone number
is in a valid form or that a number entered by the user is within an acceptable range. Some
validations, such as the range check, are fairly easy to write. Others, such as validating that an
e-mail address is in a valid form, are not.7

Fortunately, Dojo is here to help with many of your validating needs in the form of the
dojox.validate namespace in DojoX. In Listing 4-16, you can see an example I threw together
that demonstrates some of the more interesting ones, to me at least.

Listing 4-16. Validation Example (ch4_validate.htm)

<html>

<head>

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojox.validate.web");
dojo.require("dojox.validate._base");
dojo.require("dojox.validate.creditCard");
dojo.require("dojox.validate.isbn");

function testIt() {
dojo.byId("divOutput").innerHTML += "
" +
"Is john.glenn@nasa.gov a valid eMail address? " +
dojox.validate.isEmailAddress("john.glenn@nasa.gov");

dojo.byId("divOutput").innerHTML += "
" +
"Is bert_and_ernie@sesame_street_com a valid eMail address? " +

CHAPTER 4 ■ DOJOX202

7. RFC 2822 defines what a valid e-mail address should look like. Following the spec, you come up with a
regex that looks like this: (?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-
]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*
")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-
5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z
0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\]) .
As it happens, that won’t even work 100 percent. A truly working one is apparently even longer than
this! The point is simply that something that seems relatively trivial isn’t necessarily at all!

dojox.validate.isEmailAddress("bert_and_ernie@sesame_street_com");
dojo.byId("divOutput").innerHTML += "
" +
"Is 6 within the range 3-9? " +
dojox.validate.isInRange(6, { min : 3, max : 9});

dojo.byId("divOutput").innerHTML += "
" +
"Is 5 within the range 10-20? " +
dojox.validate.isInRange(5, { min : 10, max : 20});

dojo.byId("divOutput").innerHTML += "
" +
"Is 127.0.0.63 a valid IP address? " +
dojox.validate.isIpAddress("127.0.0.63");

dojo.byId("divOutput").innerHTML += "
" +
"Is 256.1.1.10 a valid IP address? " +
dojox.validate.isIpAddress("256.1.1.10");

dojo.byId("divOutput").innerHTML += "
" +
"Is 901-21-3409 a valid Social Security Number? " +
dojox.validate.isNumberFormat("901-21-3409",
{ format : "###-##-####" });

dojo.byId("divOutput").innerHTML += "
" +
"Is (a12)/610-2838 a valid phone number? " +
dojox.validate.isNumberFormat("(a12)/610-2838",
{ format : "(###)/###-####" });

dojo.byId("divOutput").innerHTML += "
" +
"Is 4111-1111-1111-1111 a valid credit card number (Visa, should " +
"return 'vi')? " +
dojox.validate.isValidCreditCardNumber("4111-1111-1111-1111");

dojo.byId("divOutput").innerHTML += "
" +
"Is 1111-1111-1111-1114 a valid credit card number? " +
dojox.validate.isValidCreditCardNumber("1111-1111-1111-1114");

dojo.byId("divOutput").innerHTML += "
" +
"Is 978-1-4302-1066-5 a valid ISBN number? " +
dojox.validate.isValidIsbn("978-1-4302-1066-5");

dojo.byId("divOutput").innerHTML += "
" +
"Is 1-4302-1066-57 a valid ISBN number? " +
dojox.validate.isValidIsbn("1-4302-1066-57");

dojo.byId("divOutput").innerHTML += "
" +
"Is 4552 7204 1234 5677 a valid LUHN number? " +
dojox.validate.isValidLuhn("4552 7204 1234 5677");

dojo.byId("divOutput").innerHTML += "
" +
"Is 5353535353535353 a valid LUHN number? " +
dojox.validate.isValidLuhn("5353535353535353");

}

</script>

</head>

CHAPTER 4 ■ DOJOX 203

<body onLoad="testIt();">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.validate test:

<div id="divOutput"> </div>

</td></tr>
</table>

</body>

</html>

Any of these can be accessed via the dojox.validate namespace; each one is just a
method call with the appropriate arguments passed in. The result of executing this example
is seen in Figure 4-14.

Figure 4-14. The dojox.validate example in action

Now let’s take a peek at each of the validations demonstrated here.

isEmailAddress()
Validating an e-mail, as you’ve seen if you read the previous footnote, can be a tricky venture.
But with a simple call to dojox.validate.isEmailAddress(), you don’t have to bother with the
complex regex, or probably more-complex manual code. Just pass the method the e-mail
address you want to check, and it’ll return true if the address is in a valid form, false if not.
It doesn’t get much simpler than that (and that’s true of pretty much all these validations).

In the example code, john.glenn@nasa.gov is a valid address, while bert_and_ernie@
sesame_street_com is not because there is no domain specified after the at sign (it would
need to be in the form .com to be valid).

CHAPTER 4 ■ DOJOX204

isInRange()
The dojox.validate.isInRange() method enables you to determine whether a number is
within a given range. Its call takes this form:

dojox.validate.isInRange(5, { min : 10, max : 20})

The first argument is the number to check, and the second is an object with two attributes.
The min attribute defines the lower limit that is valid, and max defines the upper limit.

isIpAddress()
The dojox.validate.isIpAddress() method helps you validate that a string is a valid IP
address. Note that this function is more intelligent than just ensuring that the string is in the
form www.xxx.yyy.zzz, which would be a valid IP address in terms of form, but it also ensures
that the four octets are valid values. For instance:

dojox.validate.isIpAddress("256.1.1.10")

This returns false because the first octet cannot be greater than 255 (none of them can, as a
matter of fact). So even though that string is in the correct form for an IP address, it’s still not
valid because of that first octet’s value, and isIpAddress() is smart enough to tell you that.

isNumberFormat()
The dojox.validate.isNumberFormat() method enables you to validate whether a string
matches a given numeric format. This really handy method can be used to validate things
like telephone numbers, for example.

This code returns returns true because the value matches the format mask specified:

dojox.validate.isNumberFormat("901-21-3409",
{ format : "###-##-####" })

In contrast, this code returns false because of the letter a in the second position:

dojox.validate.isNumberFormat("(a12)/610-2838",
{ format : "(###)/###-####" });

….
The object you pass in as the second argument contains a single format attribute, which is

the format mask to validate against. The # symbol indicates a number, while the ? symbol can
be used to indicate an optional number. Any other character must appear literally in the input
string, which is of course the first argument to the method.

isValidCreditCardNumber()
If you’ve ever written an e-commerce application, especially if you’ve ever had to write code
to validate a credit card number (in fact, most types of account numbers in general), then
you know it can be a difficult task to account for every possibility. The dojox.validate.
isValidCreditCardNumber() method takes care of all of it for you. However, it does so in a
slightly more interesting way than a simple true or false return. For example:

CHAPTER 4 ■ DOJOX 205

dojox.validate.isValidCreditCardNumber("4111-1111-1111-1111")

This will return the string vi because this is a valid Visa card number. If you pass a Master-
Card number, you’ll get mc back, and so on. You’ll get false back only if the number is not any
sort of valid credit card number. Very handy indeed!

isValidIsbn()
To be honest, validating an International Standard Book Number (ISBN) is a fairly domain-
specific thing to do, but because I’m writing a book, I thought I’d mention it nonetheless! If
you need to do it, the dojox.validate.isValidIsbn() method accepts a single string argu-
ment, the ISBN (presumably) to validate, and it returns true if it’s valid, false if not, just as
you’d expect it to do!

isValidLuhn()
A Luhn number is a number generated by using a specific checksum algorithm (known, not
surprisingly, as a Luhn algorithm). Luhn is sometimes called modules 10 or mod 10, because
that’s the basis of its calculation. It shows up all over the place in all sorts of identification
numbers, including credit card numbers and social security numbers (Canadian ones at
least). The dojox.validate.isValidLuhn() method can tell you whether a given string repre-
senting a Luhn number is valid. It returns you a simple true or false based on the input value.

dojox.widget
The dojox.widget namespace contains a couple of new dijits that may someday migrate into
Dijit itself, but for now they sit here in DojoX.

Fisheye List
The Fisheye List is my personal favorite widget in all of Dojo. If you’ve ever seen the Apple
Macintosh interface, you know what a Fisheye List is: it’s that nifty-keen bar at the bottom
where the icons expand and contract in a wickedly cool fashion when you hover over them.
Imagine being able to do that in your web apps.

Well, imagine no more! The Fisheye List in Dojo is exactly that! I’m going to skip it here
because in the very next chapter we’re going to see it in action, and I think it’s even cooler
when you see it in a more real-world example. So let’s exercise a little bit of patience and we’ll
get to it in just a bit. Believe me, it’s worth the wait!

TimeSpinner
A TimeSpinner widget enables a user to easily select a time value. It’s not one of the more typi-
cal widgets out there, and Figure 4-15 may be your first look at one.

CHAPTER 4 ■ DOJOX206

Figure 4-15. The TimeSpinner widget

Err, wait a minute, that doesn’t look like much. In fact, it just looks like a text box with
some arrows on it. But it’s exactly those arrows that makes this a TimeSpinner. Clicking the
arrows makes the time go up or down in 1-minute intervals, and if you keep one pressed for a
while, the speed at which it changes gets faster.

To get one of these onto the page is pretty simple, as is the case with most dijits (of which
this is one). Listing 4-17 shows you what it takes.

Listing 4-17. TimeSpinner Example (ch4_widget_TimeSpinner.htm)

<html>

<head>

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/tundra/tundra.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>
dojo.require("dojo.parser");
dojo.require("dojox.widget.TimeSpinner");

</script>

</head>

<body class="tundra">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.widget.TimeSpinner test:

<input id="myTimeSpinner" dojoType="dojox.widget.TimeSpinner"

CHAPTER 4 ■ DOJOX 207

value="3:35 AM" smallDelta="1" />
</td></tr>

</table>
</body>

</html>

As with all dijits, you need to import dojo.parser, and in this case you also need to grab
dojox.widget.TimeSpinner. After those are in place, it’s a simple matter of adding a dojoType
with a value of dojox.widget.TimeSpinner to an <input> element. You can set the initial value
of the field by using the value attribute, and you can set by how much the arrows change the
time by setting the smallDelta attribute (a value of 1 here means 1 minute).

Toaster
The Toaster widget enables you to have little pop-up messages appear on the page. It’s like a
piece of toast popping out of a toaster, hence the name.

In Figure 4-16, you can see an example of a message that has popped up as a result of my
having clicked the first button.

Figure 4-16. The Toaster widget showing a pop-up message

The message is highlighted in green on the screen, a fact you can’t discern from seeing it
here. In any case, the code that produced this is shown in Listing 4-18.

CHAPTER 4 ■ DOJOX208

Listing 4-18. Toaster Widget Example (ch4_widget_Toaster.htm)

<html>

<head>

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/tundra/tundra.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojox/widget/Toaster/Toaster.css">

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

<script>

dojo.require("dojo.parser");
dojo.require("dojox.widget.Toaster");

function showMsg(inMsg, inType, inDuration) {
dojo.publish("toasterTopic", [{
message : inMsg, type : inType, duration : inDuration

}]);
}

</script>

</head>

<body class="tundra">

<table border="0" cellpadding="0" cellspacing="0"
width="800" align="center" style="border:1px solid #000000;padding:6px;">
<tr><td>
dojox.widget.Toaster test:

<div dojoType="dojox.widget.Toaster" id="myToaster"
separator="<hr>" positionDirection="bl-up"
messageTopic="toasterTopic"></div>

<button type="submit"
onClick="showMsg('Gus Gorman rules', 'message', 1000);">

CHAPTER 4 ■ DOJOX 209

Show message
</button>
<button type="submit"
onClick="showMsg('Ash is not a human', 'warning', 2000);">
Show warning

</button>
<button type="submit"
onClick="showMsg('AVP is a horrendous movie', 'error', 3000);">
Show error

</button>
</td></tr>

</table>
</body>

</html>

The markup is just some buttons mostly, but there’s also creation of the Toaster itself:

<div dojoType="dojox.widget.Toaster" id="myToaster"
separator="<hr>" positionDirection="bl-up"
messageTopic="toasterTopic"></div>

The Toaster uses a publish-subscribe model to do its thing, which is arguably a cleaner
approach than calling functions directly on it because it helps isolate the usage of the Toaster
from the code using it (that is, you might decide to use another method of showing messages
down the road, and so long as it subscribes to the toasterTopic message, it’ll work without
changing this “client” code). That’s why the messageTopic attribute is present: it’s the topic ID
that the Toaster will subscribe to in order to show messages. The separator attribute is used in
the case where more than one message is shown at a time, which the Toaster supports, and
which you can see in Figure 4-17. The positionDirection attribute tells the toaster where on
the page it should appear and in what direction the messages should pop up from. The value
bl-up in this case tells it to show the messages on the bottom left and to have the messages
pop upward.

Now, we know that the Toaster is subscribed to the toasterTopic message, but how do
we tell the Toaster to show a message? Simple enough, we publish the appropriate message,
which you can see here in the showMsg() function:

function showMsg(inMsg, inType, inDuration) {
dojo.publish("toasterTopic", [{
message : inMsg, type : inType, duration : inDuration

}]);
}

When publishing the message, you send in an object with a couple of attributes, the first
being message, which is literally the text of the message to display. The duration attribute tells
the Toaster how long to display the message before it fades it off the screen. The type attribute
tells the Toaster what type of message it is; some valid values are message, error, and warning.
This value affects what color the message is (message is green, warning is yellow, error is red,
well, more like orange-ish—try out the example code to see this for yourself).

CHAPTER 4 ■ DOJOX210

Figure 4-17. The Toaster widget showing multiple messages

Summary
If ever there was a convincing argument to be made to Congress to try to fund basic science,
DojoX is it because some of the coolest experimenting is going on right here! In this chapter,
we got a look at most of what DojoX has to offer. We saw things like some new widgets, effects,
basic data structures, collections, some functions for doing more-advanced mathematics,
chart creation, some timing-related functionality, and the ability to create vector-based
graphics purely on the client. I think there’s little doubt that DojoX offers some really wild
capabilities, things that just a few short years ago, even just months ago in some cases, you
would have swore just weren’t possible in JavaScript. We’ll be seeing more of DojoX as the
projects in the remainder of this book are developed because much of it is just so darned
useful!

Speaking of the upcoming projects, the next chapter is our first project-based chapter,
and in it we’ll see some of DojoX in practice, notably the Fisheye List that I said we should
have a little patience for. Well, no longer, it’s time to get into it now! Turn the page and off
we go!

CHAPTER 4 ■ DOJOX 211

The Projects

The universe is driven by the complex interaction between three ingredients: matter,

energy, and enlightened self-interest.

—G’Kar, Narn ambassador to Babylon 5

If you don’t push something beyond its boundary of usefulness, how do you find where

that boundary is?

—Martin Fowler

Rocket science has been mythologized all out of proportion to its true difficulty.

—John Carmack

I am so clever that sometimes I don’t understand a single word of what I am saying.

—Oscar Wilde

Have no fear of perfection—you’ll never reach it.

—Salvador Dali

Well, thanks to the Internet, I’m now bored with sex.

—Philip J. Fry, Futurama

Technology: the knack of so arranging the world that we don’t have to experience it.

—Max Frisch

Technology presumes there’s just one right way to do things, and there never is.

—Robert M. Pirsig

I’m sorry. It’s just . . . I react to certain doom in a certain way. It’s a bad habit.

—Dr. Rodney McKay, Stargate Atlantis

P A R T 2

That Human Touch: Contact
Manager and Client-Side
Persistence

We all know that storing information for any length of time in a relatively robust way will
usually lead to a database of some sort. In web applications, storing state on the server,
whether in a database or in a session, is pretty much expected of most applications. But what
happens when you don’t have a persistence mechanism on the server or possibly don’t want
one for some reason? What’s the alternative? You almost certainly know that storing nontran-
sient information on the client leads most usually to cookies. We’ll be looking at cookies in just
a little bit for sure. There is, however, another facility available (after a quick plug-in installa-
tion) in modern web browsers that is brought to us by our friends at Google, namely Gears.
This storage mechanism is pretty quickly gaining a lot of popularity for very good reason, as
we’ll soon see.

So, we’ll be having a look at that in a fair bit more detail, and we’ll put it to use in an appli-
cation, a simple contact manager to be precise. Perhaps most interesting, though, is that Dojo
provides a layer of abstraction above Gears that makes using it even easier than it is natively,
and more important, allows us to switch out Gears for an entirely different storage provider
with no real impact on our code.

Umm . . . okay, so what was I talking about again? Oh yes, persistence and memory. Okay,
on with the show.

Requirements and Goals
In this chapter, we will build ourselves a contact manager application that runs entirely on the
client side. This is handy because it means it can be run on virtually any PC without having to
have a network connection (although conversely it means that the contact data can’t easily be
shared between multiple machines). Clearly, persistence will come into play here because the
application would be quite useless if we couldn’t store contacts.

Let’s list some of the key things this project will accomplish and some of the features we’ll
seek to implement:

215

C H A P T E R 5

• Each contact should include a good amount of data. Not just the basics such as name,
phone number, and e-mail address, but a fair amount of extended information, such as
birthday, spouse’s name, children’s names, and so on. However, we want to make these
items as free-form as possible so users can use the different data fields however they
choose to.

• We’ll implement the typical alphabet selector tabs to make finding our contacts easier.

• As you can guess, we’ll store our contacts with Gears Database.

• We’ll use Dojo to provide some widgets coolness to make the interface fun and nice to
look at. We’ll also use Dojo to deal with the underlying details of working with the stor-
age provider of our choice, Gears in this case.

Now that we have some goals in mind, let’s start figuring out how to make it happen.

How We Will Pull It Off
When one discusses data storage generically, two types of storage are available: persistent and
nonpersistent, or transient. Persistent storage is any storage mechanism that provides a place
for data to be saved between program executions, and often for an indefinite period of time
(until explicitly removed from storage). Transient storage is any storage mechanism where the
data lives only as long as the program is executing (or for some short time thereafter). A data-
base is generally considered a persistent storage mechanism, whereas RAM clearly is not.
Writing to a hard drive is usually persistent as well, while session memory generally is not.
The term durable is also often used to describe persistent storage media.

When discussing persistence in a pure JavaScript-based client-side application, there is a
very short list of possible storage mechanisms. The ubiquitous cookie, small bits of informa-
tion stored on the client on a per-domain basis, is one. Another possibility is local shared
objects, sometimes called Flash cookies or Flash shared objects, depending on where you
read about this technology, provided by the Adobe Flash plug-in. These can be thought of as
“cookies on steroids.” With local shared objects, you can store a ton more information on the
client than you could with plain old cookies, and do so with an API that is a bit more powerful
than regular cookies.

■Note If you’d like more information on Flash shared objects, cruise on over to this address: http://
kb.adobe.com/selfservice/viewContent.do?externalId=tn_16194&sliceId=1. You could always
use a pre-1.0 version of Dojo to mess around with Flash shared objects because with the 1.0 release, the
code required to do so was not working (maybe not fully present, I’m really not sure). Hopefully this capabil-
ity is added back into Dojo soon because with the market penetration of Flash (something around 95+
percent of all computers out there have Flash installed), it’s a safe bet most people have this capability
available to them already.

Other options include things such as Java applets or ActiveX controls, but they are gener-
ally frowned upon these days for various reasons. ActiveX is something many people tend to

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE216

want to avoid, even more so than applets because of the security risks, whether those risks are
legitimate or just perceived. Applets have a bit of a bad reputation in terms of performance,
especially when it comes to startup time.

Whatever your feelings on the subject, it’s an aside at this point because we’ll be using
Gears and Dojo to get the job done. But before we get into those two areas, let’s see what Dojo
offers in the way of plain old cookie functionality, just to get a feel for a possible alternative,
and for comparison with what we’ll be using in this project.

Dojo and Cookies
We find the cookie functions in the dojo.cookie package. This contains a couple of functions
that pretty much do exactly as you’d expect. To use these functions, simply include the appro-
priate package:

dojo.require("dojo.cookie");

After that’s done, you can, as an example, set a cookie by doing the following:

dojo.cookie.cookie("myCookie", "someValue");

To read the value of a cookie, you use the same function, but passing only the name of the
cookie to read:

var cookieValue = dojo.cookie("myCookie");

You also have the capability to pass a third parameter when setting a cookie that enables
you to specify some extended options, which include the following:

• The first is expires, which determines the number of days this cookie will live before it
expires.

• The next is path, which sets the path the cookie is for (that is, for which paths within the
domain the cookie is valid and will be returned).

• After that comes domain, which sets the domain the cookie is for (that is, for which
domain the cookie will be returned).

• Last is secure, which determines whether the cookie is secure (that is, when true, the
cookie will be returned only over a Secure Sockets Layer, or SSL, channel).

If you’re wondering how you delete a cookie, it couldn’t be simpler:

dojo.cookie("myCookie", null, {expires: -1});

Yep, that’s it, that’s one whacked cookie! It’s interesting that there’s no explicit dojo.
cookie.delete() method. One function handles setting, getting, and deleting a cookie
based on parameters passed or not passed. A little weird perhaps, but effective once you
understand it.

Two other functions under dojo.cookie are isSupported() and useObject(). The
isSupported() function returns true if the browser supports cookies, false if not. That’s
always a handy thing to know before storing or reading cookies, no?

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 217

The useObject() function deserves a look. You use this just as you do dojo.cookie() to
read and write cookies, but instead of passing strings, you can pass whole objects that Dojo
will happily serialize and store for you. For example, you could do the following:

dojo.cookie.useObject("myCookie ", { field1 : "value1" });

If you want to read this cookie back and display the value of field1, all you need to do is
this:

var myObj = dojo.cookie.useObject("myCookie");
alert(myObj.field1);

Pretty nifty, isn’t it? If you’re going to do any work with cookies, clearly Dojo has you cov-
ered and will make it a much more pleasurable experience. Now, the application in this
chapter won’t be using cookies, as stated earlier. However, I felt it was important that you see
what Dojo has to offer with regard to cookies.

Cookies are of course rather ubiquitous and are used day in and day out in applications
all over the place. They are simple, quick, and quite sufficient for a great many tasks. They are,
however, not without their limitations:

• First, each domain is limited to a maximum of 20 cookies. You may find some browsers
that allow for more, but the HTTP spec states 20 as the required minimum, so it is best
to assume that is actually the maximum to ensure your code won’t break in browsers
that treat 20 as the upper limit.

• Second, each cookie is limited to a 4KB maximum size. So, some quick math tells us we
have a maximum of 80KB per domain on the client in cookies. Aside from 80KB not
being enough for many tasks, having to break that up between 20 cookies and having
to write that code yourself makes cookies less than desirable for many purposes.

Fortunately, the folks at Google have a ready solution for us to get around these limita-
tions, and as you might expect, Dojo is there to take advantage of it and make our lives as
developers better.

The Dojo Storage System
Dojo provides a storage package that is billed as a pluggable mechanism for client-side per-
sistence. Its architecture is based on the concept of a storage manager and any number of
storage providers. Each provider can store (that is, persist) data via any method it wants to, but
the client application writes to a common interface that all providers implement, thereby
allowing developers to swap between various storage mechanisms at the drop of a hat without
any change to their code. That’s very cool, to say the least!

At the time of this writing, the dojox.storage package provides only a single storage
provider, and that is one that interfaces with Gears. There is another provider that utilizes
Adobe Flash Player and its local shared object facility. However, comments in the readme file
for that provider indicate it does not currently function. Ironically, this provider was the only
one available in pre-1.0 versions of Dojo. I’m certain this provider will eventually be opera-
tional if you choose to use it.

Cookies would be a logical fit here too. There was at one time talk of such a provider, but
at this time it does not exist. One could also conceive of an ActiveX storage provider that

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE218

writes directly to a SQL Server database as another possible example, and yet the application
that utilized dojox.storage wouldn’t need to know about the details of that at all, and that’s
the main point to take away from all this.

The dojox.storage package is a wonderful creation that offers a great deal of power to
developers. It’s essentially a simple architecture (Figure 5-1) that again proves that simplicity
is usually the way to go.

Figure 5-1. The dojox.storage package architecture

As you’ll see in a bit when you examine the code behind the application in this chapter,
the primary interaction your code will have with the Dojo storage system is via dojox.storage.
The interface to the storage manager is shown in Figure 5-2. Once again, you can see there
isn’t a whole lot to it, and in fact, for the purposes of the application in this chapter, we won’t
use more than about half of what it offers.

Figure 5-2. The storage manager interface

The other important object that you’ll interact with is the storage provider. All providers
implement a known interface, which you can see in Figure 5-3. Again, this is really just for
overview purposes because your code shouldn’t typically use a provider directly, but if you had
a mind to write your own provider, this is the interface you would be coding to.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 219

Figure 5-3. The storage provider interface

You’ll look at the functions provided in dojox.storage itself as you dissect the code, and
you’ll see that except for one function, all your interaction with the Dojo storage system is in
fact via methods hanging directly off dojox.storage. But before you start that task, you need to
look at one last thing, and that’s Gears.

Gears
Gears (http://gears.google.com), in a nutshell, is a browser extension that provides function-
ality in three distinct groups: LocalServer, Database, and WorkerPool. Gears is available for
most major browsers and operating systems.

■Note Although Gears is still technically in beta, I think we all recognize Google’s MO here: release some-
thing solid as beta, call it that for a good, long time, and then finally “flip the switch” on it to make it a final,
gold release, even though it’s pretty much been that for a while. I suppose this is a lot better than the
Microsoft “just release it and we’ll fix it up later” approach, but be that as it may . . .

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE220

LocalServer
The LocalServer component of Gears enables you to cache and serve the resources that go
into rendering a web page from a local cache. This may not sound too exciting at first. In fact,
your initial thought may well be, “Browsers already have caches, so what’s the big deal?”

The big deal, my friend, is that this cache is under your programmatic control. You can tell
it what resources to cache and serve, and when. In other words, you can take an application
“offline,” assuming all its resources are in the cache, meaning a connection to the server is no
longer required.

There is obvious potential in terms of performance too, although interestingly, that’s a
secondary concern at best. It’s that ability to go offline and still have an application work that
LocalServer is there to address.

This application won’t be using LocalServer, so I won’t be going into any more detail on it
here. This is, after all, a book on Dojo! The address provided at the start of this section is where
you should go to learn more if LocalServer is something that interests you.

WorkerPool
The WorkerPool component is another piece of Gears that isn’t used in this application, but
it’s really cool nonetheless! You are no doubt familiar with how easy it is, owing to the single-
threaded nature of JavaScript, to lock up the browser with a while loop that never breaks, or
similar programming gaffs. You are also no doubt aware that JavaScript doesn’t provide
threads as a language like Java does. JavaScript has timers and time-outs, which at least
approximate threads, but a single thread of execution is still in the interpreter at any given
time; timers and time-outs are more an illusion than anything else.

With WorkerPool, Google has given us about as close to real threading as possible in
JavaScript. It’s especially useful if you have calculation-intensive operations to perform or
input/output (I/O) operations in the background to run. There is at least one significant limi-
tation to be aware of, however: threads in a WorkerPool, which are not surprisingly called
Workers, can’t access the DOM. This limits the Workers’ usefulness quite a bit, frankly, but
even with that limitation there’s still plenty you can do with them.

Once again, WorkerPool is not used in this application, but it’s definitely worth knowing
about, and the aforementioned web site has all the details if you want to explore it further.

Database
Now, we are using the Database component of Gears in this application, but indirectly, as
Dojo sits between us and it. However, let’s look at the Database component in a little detail
just so you have a clue about what Dojo must be doing under the covers.

The Database component of Gears provides a client-side relational database system
based on the SQLite (www.sqlite.org) engine, which is an open source database system. It
essentially boils down to two simple classes: Database and ResultSet.

The architecture that Google talks about is the ability to switch an application from
“online” state to “offline” state at the flip of a switch. They way Google recommends doing
this is shown in Figure 5-4.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 221

Figure 5-4. The architecture behind online/offline capabilties made possible by Gears

In this model, the Data Switch is some code in the client-side of your application that can
determine whether the application is online or offline and which is the API your application
reads and writes data to. In other words, you wouldn’t directly use the Gears Database API.
Instead, your application would use some API that you provide that sits between the applica-
tion code and the Gears Database API. Then, when you detect that your application is online,
you write those data reads and writes to your server-side data store, typically via the Internet.
When the application is offline, though, you use Gears API instead. When the application
goes back online, the Data Switch would be responsible for synchronizing the data in both
directions.

Now, all the details about how you detect online vs. offline status, and how data synchro-
nization is done, are left to your discretion. One could imagine this sort of functionality being
built into the Dojo storage system. Alas, it looks like the Dojo team is creating a Dojo Offline
Project instead, although I wouldn’t be surprised if the storage system and the offline project
are, or at some point become, tied together.

As an example of using Gears, and the Database component in particular, consider the
following HTML:

<html>
<head>
<script type="text/javascript" src="gears_init.js"></script>

<script>

db = google.gears.factory.create("beta.database", "1.0");
db.open();
db.execute(
"CREATE TABLE IF NOT EXISTS test_table (" +

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE222

"firstName TEXT, " +
"lastName TEXT, " +
"age INTEGER" +
");"

);
db.execute("INSERT INTO test_table " +
"(firstName, lastName, age) values (" +
"'Frank','Zammetti','35');");

db.execute("INSERT INTO test_table " +
"(firstName, lastName, age) values (" +
"'Amanda','Tapping','42');");

var rs = db.execute("select * from test_table");
while (rs.isValidRow()) {
alert(rs.field(0) + ", " + rs.field(1) + ", " + rs.field(2));
rs.next();

}
db.close();

</script>

</head>
<body></body>

</html>

Yep, that’s all it takes! Now, if you have Gears installed and you save that HTML to a file
and then load it in your browser, you should see two alert messages displaying the rows of the
table. Obviously not rocket science by any stretch! With Dojo on top of Gears, though, working
with the Database component becomes even easier because we don’t even have to worry
about writing SQL statements, or iterating over ResultSets, or any of that typical database
programming work. Let’s get to the application right now so I can stop talking about it and
you can see it in action!

■Note To install Gears, which you’ll need to do before you can play with the application in this chapter, or
the preceding example, go to http://gears.google.com and you should find a big button right there in
front of your face to install it. Follow the rather simple instructions and you’ll be good to go in no time!

Dissecting the Solution
As we typically do with the projects in this book, let’s first get a feel for the lay of the land, so
to speak, and see what the contact manager’s directory structure looks like. Take a look at
Figure 5-5.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 223

Figure 5-5. Contact manager’s directory structure

Let’s discuss these files and directories:

• In the root directory we find two files, index.htm and goodbye.htm:

• index.htm is really the heart and soul of the application, as you will soon see.

• goodbye.htm is a simple page that is shown when the user exits the application.

• Under the root we find a couple of directories, starting with the css directory. As is typi-
cal, the css directory is where we find our style sheets. In this case, we have two:

• The first is styles.css, which is the main style sheet for the application.

• Next is dojoStyles.css, which contains styles used specifically for Dojo widgets.

• The next directory we find is img, which, obviously enough, contains images used
throughout the application. The images are named in a pretty obvious way, so no need
to run through them all.

• Last is the js directory, which of course is where the JavaScript that composes the appli-
cation lives. There are four .js files present:

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE224

• First is Contact.js, which defines a class representing a contact.

• Next is ContactManager.js, which contains the main application code. It’s kind of a
traffic cop, more or less, calling the other classes as required.

• Next is DataManager.js, which contains the code that actually deals with storing
and retrieving our contacts.

• Last is EventHandlers.js, which contains the UI event handlers that make our UI
work.

Also in the js directory we find a subdirectory named dojo. This is obviously where the
Dojo library lives.

Within the dojo directory you will find a number of subdirectories containing other Dojo
package source files, as well as HTML and CSS resources, and anything else Dojo needs to
function. Although this application uses only a small portion of Dojo, having it all available
means that as you want to extend the application and use more of Dojo, it is there, all ready
for you. This will in fact be the case in all projects going forward.

And what does the application actually look like you ask? Well, Figure 5-6 gives you the
answer to that question.

Figure 5-6. Contact manager—Outlook may not have to worry, but it ain’t bad!

I certainly recommend spending a few minutes playing with the application before pro-
ceeding to tear it apart. I think you’ll find it to be a fairly clean and useful little contact

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 225

manager—probably not making anyone on the Microsoft Outlook team lose any sleep, but not
bad by any stretch, I think.

There is a good chance when you first run it that you will see a pop-up dialog box gener-
ated by Gears that looks like Figure 5-7.

Figure 5-7. Security warning dialog box seen when you first run the application

Naturally, the domain listed here won’t be omnytex.com, unless you’ve hacked my server, in
which case we’re now in a technical state of war!

Anyway, if you don’t get this pop-up, then great, consider yourself lucky and just move on.
If you see it, all you need to do is check off the box and click Allow. Gears treats each domain
as a separate security realm, so to speak, so the data you store for one domain is never accessi-
ble from any other domain, and you therefore have to give Gears permission on a domain-by-
domain basis, which means unless you’ve ever run an application that used Gears in the same
domain as this application, you’ll have to give permission now.

And now, without further delay, let’s get to some code.

Writing styles.css
Listing 5-1 shows the styles.css file, which is the main style sheet that defines, for the most
part, all of the visual styling of the application.

Listing 5-1. styles.css, the Main Style Sheet for the Application

/* Generic style applied to all elements */
* {
font-family : arial;
font-size : 10pt;
font-weight : bold;

}

/* Style for body of document */
body {
margin : 0px;

}

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE226

/* Style for spacer between data boxes */
.cssSpacer {
height : 64px;

}

/* Non-hover state of contacts in the contact list */
.cssContactListNormal {
background-color : #ffffff;

}

/* Non-hover state of contacts in the contact list, alternate row stripping */
.cssContactListAlternate {
background-color : #eaeaea;

}

/* Hover state of contacts in the contact list */
.cssContactListOver {
background-color : #ffffa0;
cursor : pointer;

}

/* Style for main container box */
.cssMain {
width : 100%;
height : 580px;
z-index : 0;

}

/* Style of the initializing message seen at startup */
.cssInitializing {
width : 100%;
height : 80px;
position : absolute;
left : 0px;
top : 150px;

}

/* Style for the main content area */
.cssContent {
display : none;

}

/* Style of selector tabs */
.cssTab {
position : relative;
left : 2px;

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 227

_left : 4px; /* Style for IE */
}

/* Style of the contact list container */
.cssContactList {
padding : 4px;
height : 480px;
border : 2px solid #000000;
overflow : scroll;

}

/* Style of the box surrounding the data boxes */
.cssMainOuter {
padding : 4px;
height : 480px;
border : 2px solid #000000;
overflow : scroll;

}

/* Style of a data box */
.cssDataBox {
width : 100%;
border : 1px solid #000000;

}

/* Style for the header of a data box */
.cssDataBoxHeader {
background-color : #e0e0f0;

}

/* Style for text boxes */
.cssTextbox {
border : 1px solid #7f9db9;

}

If you’re more of a visual person, Figure 5-8 shows a tree view of this style sheet, where
you can see the breakdown and classification of the style elements it contains.

The first style class is a neat trick that you may not be aware of. If you define a style by
using an asterisk, that style is applied to all elements on the page. The nice thing about this is
that it even applies to elements such as tables, which in some browsers often do not inherit
styles as you may expect. By using this wildcard, however, you can apply a style even to those
elements easily.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE228

Figure 5-8. A more visual representation of styles.css

I suspect most of the rest of the style sheet is pretty self-explanatory and really pretty
simple, but one other trick to point out is in the cssTab class. This style is used to position the
alphabetic selector tabs on the left side. As the visual representation of one of the tabs being
the current tab, it has to look different from the other tabs somehow, and that in part requires
that the tab overlap the border of the contact list box by a few pixels. Unfortunately, the num-
ber of pixels required doesn’t seem be consistent between IE and Firefox, so I used a little trick
to allow for the difference.

When Firefox encounters an attribute name that begins with an underscore character, it
ignores the name. IE, on the other hand, ignores just the underscore, acting as if it wasn’t
there. So, what essentially happens here is that in both browsers, the first value of 2px for the
left attribute is set. Then, when the _left attribute is encountered, Firefox ignores it, but IE
strips the underscore and treats it as if the left attribute was set again, overriding the 2px
value with 4px. In this way, you can deal with the style sheet differences that sometimes come
up between IE and FF without having to write branching code to deal with it, or have alternate
style sheets for each browser.

■Note If you find yourself using this trick a lot, you probably want to rethink the way you're styling ele-
ments on the page because you may be doing things in a way that is too browser-specific—but here and
there, every now and again, this is a good trick to know. Also be aware that in the future, one or both
browsers could change this behavior, effectively breaking any page that uses it. It’s just something to keep
in mind.

Writing dojoStyles.css
dojoStyles.css is a style sheet containing just a small number of classes that override default
styles in Dojo. Listing 5-2 shows this rather diminutive source.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 229

Listing 5-2. dojoStyles.css (Whoever Said Size Doesn’t Matter Must Have Been Talking About This
Style Sheet)

/* Style for the fisheye listbar */
.dojoxFisheyeListBar {
margin : 0 auto;
text-align : center;

}

/* Style for the fisheye container */
.outerbar {
text-align : center;
position : absolute;
left : 0px;
top : 0px;
width : 100%;

}

And once again, in Figure 5-9, you can see the tree representation of this style sheet file,
small though it may be:

Figure 5-9. A more visual representation of dojoStyles.css

Although small, this style sheet provides some important styling, and without it, the way-
cool Fisheye icons wouldn’t quite look right. The two styles apply to the container that the
Fisheye is a child of, and most important, ensure that the Fisheye List is centered on the page.

Writing index.htm
index.htm is where we find the bulk of the source that makes up the contact manager appli-
cation. It is mostly just markup, with just a sprinkle of script in it. Let’s begin by taking a look
at part of the <head> section where the style sheet and JavaScript imports are, as seen in
Listing 5-3.

Listing 5-3. Stylesheet and JavaScript Imports in index.htm

<link rel="StyleSheet" href="css/dojoStyles.css" type="text/css">
<link rel="StyleSheet" href="css/styles.css" type="text/css">
<link rel="StyleSheet"
href="js/dojo/dojox/widget/FisheyeList/FisheyeList.css"
type="text/css">

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE230

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/"

};
</script>
<script type="text/javascript" src="js/dojo/dojo.js"></script>
<script language="JavaScript" type="text/javascript">
dojo.require("dojo.parser");
dojo.require("dojox.widget.FisheyeList");
dojo.require("dojox.storage");
dojo.addOnLoad(function(){
dojo.parser.parse(dojo.byId("divMain"));

});
</script>

<script type="text/javascript" src="js/Contact.js"></script>
<script type="text/javascript" src="js/EventHandlers.js"></script>
<script type="text/javascript" src="js/DataManager.js"></script>
<script type="text/javascript" src="js/ContactManager.js"></script>

First we import our three style sheets, namely the two we’ve previously seen, as well as
one that Dojo supplies for styling the Fisheye List. Next comes a small block of JavaScript that
sets up some Dojo properties. The djConfig variable is an associative array that Dojo looks for
when it starts up (which means this code must come before the Dojo imports), and it contains
options for various Dojo settings. In this case, only one is important:

• baseScriptUri defines the beginning of the path where all Dojo resources can be found,
such as source files to be imported, images for widgets, style sheets, and so on. In this
case, we have Dojo installed in js/dojo, so that is the appropriate value for this attribute.

Other options are available in djConfig, and a few minutes looking at the online Dojo
docs will turn them up, but for our purposes here, only this one is important.

Following that block is the import of the main part of Dojo itself. Immediately following
that is a section with a series of dojo.require() function calls. Dojo is of course organized in a
package structure, much like in Java and other “grown-up” languages. Dojo also implements
the idea of importing small portions of it as required, and even offers wildcard (.*) import
capabilities, although they aren’t being used here.

The import of dojo.parser is needed to parse the DOM and create widgets, namely our
Fisheye List. The second import is obvious: it’s the Fisheye List widget itself. The third import
is of course the Dojo storage system. Note that there is no explicit import of the dojox.
storage.manager, nor any providers. Dojo takes care of those dependencies for us as a result
of us importing dojo.storage.

This line of code is what tells Dojo to parse the DOM for widgets:

dojo.addOnLoad(function(){
dojo.parser.parse(dojo.byId("divMain"));

});

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 231

Specifically, it parses the element with the ID divMain. Using the dojo.addOnLoad() function
starts the parsing as soon as the DOM loads, but not necessarily when all resources have
loaded. This is different from the typical onLoad event handler, which will fire only when all
resources have been loaded. Have no fear, though: Dojo ensures that all its resources have
loaded, so we won’t have errors due to widget code that hasn’t yet loaded.

Following the Dojo imports and the addOnLoad() call are four more plain JavaScript
imports bringing in the code that makes up the contact manager application. You will be
looking at each in detail shortly.

Before you look at the code further, though, let’s get one of those graphical representations
I’m apparently so fond of! In Figure 5-10, you can see a high-level tree view of index.htm—at
least, the elements nested directly under <body>. (There’s not much sense looking at what’s
under <head> in this way, and there’s way more under <body> indirectly than I could show in
such a diagram.)

Figure 5-10. A more visual representation of index.htm

Adding Bootstrap Code
The last thing we find in <head> is a <script> block that contains what is essentially bootstrap
code to get the application going. This code is seen in Listing 5-4.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE232

Listing 5-4. The Bootstrap JavaScript in <head> of index.htm

<script>

// The contactManager instance that is the core of this application.
var contactManager = new ContactManager();

</script>

Here we find the instantiation of the ContactManager class, which is basically the core
code of the application (you’ll see this in just a little bit). The ContactManager class has an
init() method, which will here be called onLoad of the page (the call is inlined on the <body>
tag). This method is what effectively starts the application, as you’ll see later.

In keeping with the idea of unobtrusive JavaScript, you’ll notice there is precious little on
the page so far in terms of executable code. Some would argue that even what I have here
should be in external .js files, but I personally think you can take that exercise a little too far
sometimes. I don’t feel it necessary to externalize every last bit of script, but certainly it should
be kept to a minimum, and I think you’ll agree that is the case here.

Initializing the Application
Now we come to the <body> of the page. The first content is this:

<div id="divInitializing" class="cssInitializing">
<center>...Initializing Contact Manager, please wait...</center>

</div>

When the page is first loaded, we don’t want the user to be able to fire UI events before the
UI has fully loaded (that is, clicking the Save button before the persisted contacts have been
fully restored might not be such a good thing). So, to start out, the user sees a message saying
the application is initializing. After everything is set to go, this <div> is hidden, and the main
content shown.

Adding the Fisheye List
Now we come to some UI fun. One of the things Dojo does really well, the thing it’s probably
most famous for, is widgets. One of the singularly most impressive widgets it contains (the
most impressive for my money) is the Fisheye List. Ever seen the launch bar in Mac OS? Do
you like how the icons expand and shrink as you mouse over them? Well, Dojo lets you do it
too in your own web apps, as you can see in Figure 5-11. Of course, seeing it statically in print
doesn’t quite do it justice, so fire up the app and just mouse over the icons a bit. I think you’ll
have fun doing nothing but that for a few minutes.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 233

Figure 5-11. The Dojo Fisheye widget—coolness, ’nough said.

So, is it difficult to use that widget? Heck no! Dojo allows you to define most, if not all, of
its widgets with nothing but HTML. (You can also do it programmatically, and I’ll bet in most
cases you’ll use a mixture of the two approaches.) Listing 5-5 shows the markup responsible
for the Fisheye List in this application.

Listing 5-5. The Fisheye Definition Markup

<div class="outerbar">
<div dojoType="dojox.widget.FisheyeList"
itemWidth="64" itemHeight="64"
itemMaxWidth="128" itemMaxHeight="128"
orientation="horizontal"
effectUnits="1"
itemPadding="10"
attachEdge="top"
labelEdge="bottom">
<div dojoType="dojox.widget.FisheyeListItem"
onclick="contactManager.doNewContact();"
label="New Contact"
iconSrc="img/icon_new.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE234

label=""
iconSrc="img/transPix.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="contactManager.doSaveContact();"
label="Save Contact"
iconSrc="img/icon_save.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
label=""
iconSrc="img/transPix.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="contactManager.doDeleteContact();"
label="Delete Contact"
iconSrc="img/icon_delete.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
label=""
iconSrc="img/transPix.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="contactManager.doClearContacts();"
label="Clear Contacts"
iconSrc="img/icon_clear.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
label=""
iconSrc="img/transPix.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="contactManager.doExit();"
label="Exit Contact Manager"
iconSrc="img/icon_exit.gif">

</div>
</div>

</div>

When the page loads, Dojo will parse the divMain element as we told it to earlier, looking
for tags that it recognizes as defining widgets. It then replaces them with the appropriate
markup to form the widget. In this case, adding a dojoType expando attribute to a <div> and
giving it the value dojox.widget.FisheyeList gets the job done. You’ll notice that this <div>
also contains a number of custom expando attributes, starting with dojoType. This is a hall-
mark of Dojo and is how you configure options for the widgets. Let’s look at each of those
attributes now, shown in Table 5-1.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 235

Table 5-1. The Attributes Available for the Fisheye List

Attribute Description

itemWidth This is the horizontal size of an icon when it is not hovered over.

itemHeight This is the vertical size of an icon when it is not hovered over.

itemMaxWidth This is the maximum horizontal size of an icon when it is being hovered over
and is expanded fully.

itemMaxHeight This is the maximum vertical size of an icon when it is being hovered over and is
expanded fully.

orientation This indicates whether the Fisheye List goes horizontally across the page or
vertically down it.

effectUnits I couldn’t find any definitive documentation of this attribute, but it seems to be
a measure of how close the cursor has to come to an icon before it begins to
expand.

itemPadding This too I could not find documentation of, but it seems to be, as you might
reasonably expect, the amount of space around each icon. The strange thing, to
me at least, is that the larger the number, the smaller the icon! So it looks like
what happens is that within the bounds of itemWidth and itemHeight, Dojo
will try to force there to be itemPadding pixels around the icon. So, if you have
itemWidth and itemHeight of 40, and itemPadding of 30, the icon will be resized
to 10 ✕ 10 regardless of how big it actually is.

attachEdge Geez, are you seeing a pattern? Again, I could find no true documentation, but
experimenting seems to indicate this is the edge of the icon that is “attached” to
the page, that is, the direction from which growth occurs. A value of left or
right seems to be roughly the same, but top and bottom give clearly different
effects (bottom being rather ugly).

labelEdge This is what edge of the icon the hover label appears on when you hover over
the icon. In practice, all but a value of bottom made the labels not appear. I don’t
know if this is a bug or a side effect of the other settings somehow, but in truth I
think bottom is how you’d generally want it to be anyway.

Each of the icons is simply another <div>, this time with a dojoType of dojox.widget.
FisheyeListItem. Note that I have put essentially blank icons between each real icon. There
may be another way that I am unaware of, but this is how I was able to space the icons out a
bit; otherwise, they looked a little cramped to me.

Feel free to play around with the attributes on the second <div>. By manipulating them,
you can alter the Fisheye List easily, such as making the expanded icons bigger, changing how
far away from an icon you have to be to activate it, and so forth. Experimentation is a great
way to learn Dojo. In fact, it’s often the only way to really figure things out because, to be frank,
the documentation isn’t always all you’d hope for, as was the case with these attributes. Exper-
imenting and digging through the source code and mailing list/message forum posts is
sometimes the best way forward. Dojo is almost always worth the effort, though, so I certainly
encourage you to spend some time fiddling with it, and messing with the Fisheye attributes is
a good, gentle start.

Continuing on, for each icon we define an onClick handler to do whatever it is the icon
represents. This is again a situation where completely unobtrusive JavaScript would say the
event handlers should not be placed inline. Two points there:

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE236

• First, if the event handler is just a call to some JavaScript function that does the actual
work, I see no real problem having the handlers inline. In fact, I think it makes more
sense for them to be there because they are attributes of the element and therefore
should probably be defined with the element. Also, this will aid performance because
no script has to process to hook up the event handlers during initial page load and
construction.

• Second, because Dojo is generating markup in place of these <div> elements, trying to
hook up the events after the fact would have been a bit more difficult than usual. The
dojo.event package may have helped, but it would still have not been straightforward.
These points mean I won’t lose any sleep tonight because of inline event handlers!

As always, don’t blindly follow any guideline, no matter how reasonable it generally seems
(and even if it’s me putting it forth). Instead, think about each situation and make an appro-
priate choice.

Okay, putting philosophy aside and getting back to concrete code . . .

Adding the Contact List
Following the Fisheye markup is a chunk of markup that defines the selector tabs on the left.
In the interest of brevity, let’s just look at the first one and note that the rest are virtually
identical:

<img src="img/sel_xx_over.gif" id="sel_XX" class="cssTab"
onClick="contactManager.eventHandlers.stClick(this);"
onMouseOver="contactManager.eventHandlers.stOver(this);"
onMouseOut="contactManager.eventHandlers.stOut(this);">

This is the All tab, meaning it shows all contacts. The id of the tab is used to determine the
image it should have, based on its current state (that is, if it’s the selected tab, or if it’s being
hovered over). For instance, in this case, the ID is sel_XX, and as you can see, that is the begin-
ning of the name of the image that is the initial source for this tab. When you look at the event
handlers (which are again called from inline handlers here), I think you will find that this all
makes more sense. As I mentioned, all the tabs that follow are the same, except that the ID is
different. For instance, the next tab’s ID is sel_09 because it is the tab for showing contacts
beginning with any character from 0 to 9.

Following this section of markup is a very small bit of code:

<td width="200" valign="top">
<div class="cssContactList" id="contactList">
</div>

</td>

The <div> contactList is, not surprisingly, where our list of contacts will be inserted. The
list is filtered by the selector tabs, and this <div>’s contents will be rewritten anytime a new tab
is selected, or when a contact is added or deleted.

Following this is the remainder of the markup for the data-entry boxes, where we fill in
the information for our contacts. This is a big bit of markup that all looks pretty similar, really,
so let’s just have a look at a representative snippet of it, in particular, the section for entering
contact identity (both personal and business) in Listing 5-6.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 237

Listing 5-6. A Section of the Data-Entry Markup

<tr>
<!-- Contact Identity -->
<td width="49%" valign="top">
<div class="cssDataBox">
<table border="0" cellpadding="1" cellspacing="1"
width="100%">
<tr>
<td colspan="2" class="cssDataBoxHeader">
Contact Identity

</td>
</tr>
<tr>
<td width="50%" valign="middle">Title:</td>
<td width="50%" valign="middle">
<input type="text" id="title"
maxlength="3" size="4" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">First Name:</td>
<td valign="middle">
<input type="text" id="firstName"
maxlength="15" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Middle Name:</td>
<td valign="middle">
<input type="text" id="middleName"
maxlength="15" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Last Name:</td>
<td valign="middle">
<input type="text" id="lastName"
maxlength="20" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Suffix:</td>
<td valign="middle">
<input type="text" id="suffix"
maxlength="3" size="4" class="cssTextbox">

</td>
</tr>

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE238

</table>
</div>

</td>
<!-- Divider -->
<td width="2%"> </td>
<!-- Work Identity -->
<td width="49%" valign="top">
<div class="cssDataBox">
<table border="0" cellpadding="1" cellspacing="1"
width="100%">
<tr>
<td colspan="2" class="cssDataBoxHeader">
Work Identity

</td>
</tr>
<tr>
<td width="50%" valign="middle">Job Title:</td>
<td width="50%" valign="middle">
<input type="text" id="jobTitle"
maxlength="24" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Company:</td>
<td valign="middle">
<input type="text" id="company"
maxlength="25" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Department:</td>
<td valign="middle">
<input type="text" id="department"
maxlength="25" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Manager's Name:</td>
<td valign="middle">
<input type="text" id="managerName"
maxlength="30" size="15" class="cssTextbox">

</td>
</tr>
<tr>
<td valign="middle">Assistant's Name:</td>
<td valign="middle">
<input type="text" id="assistantName"

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 239

maxlength="30" size="15" class="cssTextbox">
</td>

</tr>
</table>

</div>
</td>

</tr>

There is certainly nothing unusual here; it is perfectly typical HTML. Note that the sizes
of the fields have been limited such that each contact takes up just a hair under 1,024 bytes.
This is done so that if you wanted to modify the code to store contacts with plain old cookies
instead (hint, hint), you could do so and fit four contacts per cookie (remember, each cookie
is limited to 4KB). Also note the cssTextbox style class being applied. This is done to avoid a
browser quirk I saw that caused the border to not change back when the field loses focus.
Setting the border to what’s defined in the cssTextbox class takes care of it.

And with that, we have only one small bit of markup left to look at, and that’s the
goodbye.htm page.

Writing goodbye.htm
There isn’t a whole lot to this file, as Listing 5-7 clearly indicates.

Listing 5-7. goodbye.htm—Not Much to Look At

<html>
<head>
<title>Contact Manager</title>

</head>
<body>
Thanks for using the contact manager... goodbye!

</body>
</html>

This is a simple landing page that the user sees after clicking the Exit icon. It’s just always
good form to end on a polite, “thanks for stopping by” kind of note.

Writing EventHandlers.js
Let’s take a look at the EventHandlers class first, because this is something of a stand-alone
piece of code. As you looked at index.htm, you saw that the selector tabs called event handler
functions in this class. Also, as you shall soon see, all of the input fields actually do the same
thing (huh? I don’t remember seeing any event handlers on the input fields—you are right, but
be patient, my young Padawan!1). The contact list you see on the left uses some functions here

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE240

1. A Padawan is the chosen apprentice of a Jedi Knight in Star Wars lore. Probably the most famous
Padawan was Anakin Skywalker, who learned under Obi-Wan Kenobi. Obi-Wan was perhaps the
second-most famous Padawan, under Qui-Gon Jinn. (It should be noted that Luke Skywalker,
perhaps the most famous Jedi in history, was never technically a Padawan.)

as well, but these are all simply UI-related functions. In other words, if you took these func-
tions out, the application would still basically work, although the UI wouldn’t be as reactive as
it is—the selectors wouldn’t turn red when you hovered over them, the input fields wouldn’t be
highlighted when they gained focus, and the contact list wouldn’t have a hover effect at all.
These effects are all contained within the EventHandlers class, the class diagram of which is
shown in Figure 5-12.

Figure 5-12. UML class diagram of EventHandlers class

First, the EventHandlers class is instantiated in the ContactManager class, which we will
look at later, and the reference to it is one of the fields on ContactManager (hence the reason all
the event handlers in index.htm were in the form contactManager.xxxx()).

The first item we find in the EventHandlers class is the selectorImages field, which is an
array that will hold references to the preloaded images for the selector tabs. We next find
another array field, imageIDs. This is a list of the selector tab IDs. The filenames of the graphics
for each tab can be formed by using these IDs, and so can the ID of the elements on the page,
both of which we will need to be able to do.

So, as I mentioned, ContactManager will instantiate EventHandlers, and also initialize it by
calling init() on EventHandlers. This init() function is as follows:

this.init = function() {

this.selectorImages = new Array();

// Load images from the above array and store them in selectorImages.
for (var i = 0; i < this.imageIDs.length; i++) {
var sid = this.imageIDs[i];
this.selectorImages[sid] = new Image();
this.selectorImages[sid].src = "img/" +
sid + ".gif";

this.selectorImages[sid + "_over"] = new Image();
this.selectorImages[sid + "_over"].src = "img/" +
sid + "_over.gif";

}

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 241

// Get all input fields and attach onFocus and onBlur handlers.
var inputFields = document.getElementsByTagName("input");
for (i = 0; i < inputFields.length; i++) {
inputFields[i].onfocus = this.ifFocus;
inputFields[i].onblur = this.ifBlur;

}

} // End init().

So, the first task this function performs is preloading the images for the selector tabs. To
do so, it iterates over the elements of the imageIDs array. For each, it instantiates an Image
object and sets its src attribute to the filename of the image. Two images for each tab are
loaded, one in its nonhover state and the other in its hover state. These images are added to
the array, keyed by the ID taken from the imageIDs array.

What we wind up with is an associative array, selectorImages, which contains all the pre-
loaded images for the two states for each tab, and we can get at each image by using the ID as
the key (for the hover images, it’s the ID plus the string _over appended). This all saves us from
writing explicit code to load each image. If you wanted to add more tabs later, so long as they
follow the same naming scheme, you would have to add only the ID to the imageIDs array.

The next task this function performs is hooking up the event handlers to the input fields.
Ah yes, there we go, that’s how it works. We get the collection of <input> fields on the page by
using the handy-dandy document.getElementsByTagName() function. Then, for each of the
fields, we attach onFocus and onBlur events, pointing to the ifFocus() and ifBlur() functions
of the EventHandlers class. Nice to not have to specify these handlers on each input element,
huh?

This is another tenet of unobtrusiveness, the idea of attaching event handlers to plain old
markup. Although I’m not sure I like the idea of doing so for every event handler on a page, in
cases like this where there are a rather large number of elements that need the same event
handlers attached, this strikes me as better than having to put the handlers inline with each
element in the markup.

I suppose we should look at those ifFocus() and ifBlur() functions, shouldn’t we? Well,
here you go:

// ********** Input Field focus.
this.ifFocus = function() {

this.style.backgroundColor = "#ffffa0";

} // End ifFocus();

// ********** Input Field blur.
this.ifBlur = function() {

this.style.backgroundColor = "#ffffff";

} // End ifBlur().

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE242

Certainly this is nothing special, just changing the background color of the input field:
yellow when it has focus, white when it loses focus. While it’s a simple thing to implement,
highlighting the current field is something that goes over well with most users, so it’s a good
(and simple) thing to implement.

One thing to note that is of some interest, however, is the use of the keyword this, which
can be a bit confusing. Recall that the ifFocus() and ifBlur() functions are attached as event
handlers to elements on the page. When they are called, the keyword this in the line with
this.style.backgroundColor refers to the element firing the event because at runtime, the
keyword this is always evaluated in the context in which it executes. Contrast this to the
usage of this in the line with this.ifBlur. In that case, this refers to the EventHandlers class
because it is defined within that class. You can view this as static vs. dynamic interpretation of
the this keyword, static being the usage to attach the method to the EventHandler class, and
dynamic being the usage with the event handler. This is commonly referred to as early vs. late
binding. Late binding occurs at runtime, while early binding occurs at compile time. There is
of course no compile time with JavaScript, but it still means before the code actually runs.

After those functions, we find three that deal with the selector tabs:

// ********** Selector Tab mouseOver.
this.stOver = function(inTab) {

inTab.src = this.selectorImages[inTab.id + "_over"].src;

} // End stOver().

// ********** Selector Tab mouseOut.
this.stOut = function(inTab) {

// Only switch state if not the current tab.
if (contactManager.currentTab != inTab.id.substr(4, 2)) {
inTab.src = this.selectorImages[inTab.id].src;

}

} // End stOut().

// ********** Selector Tab click.
this.stClick = function(inTab) {

// Reset all tabs before setting the current one.
for (var i = 0; i < this.imageIDs.length; i++) {
var sid = this.imageIDs[i];
dojo.byId(sid).src = this.selectorImages[sid].src;

}

inTab.src = this.selectorImages[inTab.id + "_over"].src;

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 243

// Record the current tab, and redisplay the contact list.
contactManager.currentTab = inTab.id.substr(4, 2);
contactManager.displayContactList();

} // End stClick().

stOver() and stOut() handle the onMouseOver and onMouseOut events correspondingly.
They use the preloaded images stored in the selectorImages array discussed previously. It’s a
simple matter of changing the src attribute on the tab firing the event to the src of the appro-
priate image in the array. Of course, if we hover over the current selected tab and then mouse
off it, we don’t want to reset it to the nonhover state, hence the check in stOut() to be sure the
tab that fired the event isn’t the currently selected tab.

stClick() is just a little more interesting. When we click a tab, it becomes the current tab,
which means it remains in the hover state until another one is clicked. To accomplish this, we
first have to reset the currently selected tab to its nonhover state. I decided to do this by reset-
ting all the tabs, and then setting up the new current tab. Note that there wasn’t any particular
reason I did it this way; I could have just as easily reset only the current tab rather than all of
them. You can view it as simply seeing an alternative approach in action. Last, after the tabs
are taken care of, we call displayContactList() on the ContactManager object to update the
contact list to correspond to only those contacts that should show up on the new current tab.

Last up in this class are the two functions that deal with mouse events on the items in the
contact list on the left:

// ********** Contact List mouseOver.
this.clOver = function(inContact) {

inContact.className = "cssContactListOver";

} // End clOver().

// ********** Contact List mouseOut.
this.clOut = function(inContact) {

if (inContact.getAttribute("altRow") == "true") {
inContact.className = "cssContactListAlternate";

} else {
inContact.className = "cssContactListNormal";

}

} // End clOut().

For the sake of demonstrating a slightly different technique, I decided that unlike the
handlers for the input fields, which access style attributes of the target element directly, here
instead I would set the style class for the target element as appropriate. I think it is generally
better to do it this way, because the styles are abstracted out into style sheets as they probably
should be, but now you’ve seen that you can go the other way too if you feel it is more appro-
priate.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE244

Here, the only real complexity is in the clOut() function. The style to switch the element
to when the mouse leaves it can be one of two because the contacts in the contact list are dis-
played with alternate row stripping, typical of display lists like that. To determine which style
should be set, we interrogate the custom altRow attribute that each contact in the list carries.
When this attribute is set to true, we know it is an element with a gray background (meaning
the cssContactListAlternate style selector); otherwise, it is a white background (using the
cssContactListNormal selector). Other than that, it’s pretty straightforward.

Writing Contact.js
If you are familiar with the concept of a data transfer object (DTO) or value object, this source
will be nothing at all special to you because what is defined here is simply a DTO representing
a contact. Its class diagram is shown in Figure 5-13.

Figure 5-13. UML class diagram of Contact class

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 245

The first thing we find is a list of properties that represents a contact:

this.title = "";
this.firstName = "";
this.middleName = "";
this.lastName = "";
this.suffix = "";
this.jobTitle = "";
this.company = "";
this.department = "";
this.managerName = "";
this.assistantName = "";
this.homePhone = "";
this.homeCellPhone = "";
this.homeFAX = "";
this.homePager = "";
this.workPhone = "";
this.workCellPhone = "";
this.workFAX = "";
this.workPager = "";
this.homeEMail = "";
this.homeWebSite = "";
this.homeIMNickname = "";
this.workEMail = "";
this.workWebSite = "";
this.workIMNickname = "";
this.spouseName = "";
this.childrenName = "";
this.anniversary = "";
this.birthday = "";
this.highSchoolInfo = "";
this.collegeInfo = "";
this.custom1 = "";
this.custom2 = "";
this.homeAddressLine1 = "";
this.homeAddressLine2 = "";
this.homeCity = "";
this.homeState = "";
this.homeZipCode = "";
this.workAddressLine1 = "";
this.workAddressLine2 = "";
this.workCity = "";
this.workState = "";
this.workZipCode = "";

this.arrayIndex = -1;

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE246

Note that straggler at the end, arrayIndex. This is a field that you can think of as transient
and is the index into the array of contacts stored in the DataManager where this contact is
stored. This value will change as contacts are deleted, and will be dynamically calculated
when contacts are restored at app initialization. You should note that it does not appear in the
fieldsArray we will discuss next, which is the reason it is transient (the reason it isn’t in the
list should become apparent as we discuss fieldsArray further).

THE DATA TRANSFER OBJECT PATTERN

Say you find yourself making several remote calls in order to satisfy a single client request. Imagine that this
comes up rather often, because you have an Account object, and you also need a list of Fund objects and a
list of Address objects to display information for the user on a page. It’s not far-fetched to think that each of
these items is in its own database, and that there are three methods, one to get each type of data.

Instead, you might create a single AccountDTO object that has nested within it an array of Address
objects and an array of Fund objects. Then, you have a single method that aggregates the results of the three
separate calls (on the server this is), and returns a single AccountDTO object. This cuts down network traffic
and latency considerably and will nearly always result in better application performance.

That’s the idea behind the DTO pattern. It’s also a modeling technique because the Account object
with nested Address and Fund arrays logically makes a little more sense, although it’s not unreasonable
either that the data access façade originally provided the three separate methods in order to remain very
fine-grained and flexible.

After this we find an interesting bit of code that certainly requires some explanation. It is
the fieldsArray variable, which is an array containing the names of all the fields of this class,
like so:

this.fieldsArray = [
"title", "firstName", "middleName", "lastName", "suffix", "jobTitle",
"company", "department", "managerName", "assistantName", "homePhone",
"homeCellPhone", "homeFAX", "homePager", "workPhone", "workCellPhone",
"workFAX", "workPager", "homeEMail", "homeWebSite", "homeIMNickname",
"workEMail", "workWebSite", "workIMNickname", "spouseName", "childrenName",
"anniversary", "birthday", "highSchoolInfo", "collegeInfo", "custom1",
"custom2", "homeAddressLine1", "homeAddressLine2", "homeCity", "homeState",
"homeZipCode", "workAddressLine1", "workAddressLine2", "workCity",
"workState", "workZipCode"

];

If you look at the data fields described earlier, and then examine index.htm and look at the
IDs of the input fields, you’ll see that they match. This should be a clue as to what this array is
for, but don’t worry, we’re about to figure it out together!

At various points in the application, we will need to populate an instance of the Contact
class from the input fields, or populate the screen from the data fields within the Contact
instance. One could certainly imagine writing code along the lines of this:

this.firstName = dojo.byId("firstName").value;
this.lastName = dojo.byId("lastName").value;

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 247

One could also certainly imagine that by jumping off the Brooklyn Bridge on a hot day, a
person could possibly survive and get cooled off. But, just like jumping off the bridge, writing
code like that isn’t the best way to achieve the desired goal. Instead, it would be great if we
could write some generic code to populate the object, or the input fields, without that code
knowing precisely what fields are available. This is all the better when we want to add ele-
ments to a contact. That’s exactly the kind of code that is present in the Contact class, for
instance, in the populateContact() function:

this.populateContact = function() {

for (var i = 0; i < this.fieldsArray.length; i++) {
var fieldValue = dojo.byId(this.fieldsArray[i]).value;
this[this.fieldsArray[i]] = fieldValue;

}

} // End populateContact();

Now the purpose of that fieldsArray member is probably starting to make sense. We iter-
ate over the array, and because the members of the Contact class instance to populate are the
same as the IDs of the input fields, we can use the values of the array to access both, thereby
making this code agnostic about what fields are present in the class and on the screen. If we
want to add a field to record a contact’s blood type, we could do that by simply adding it to the
fieldsArray member, and none of the population code would need to change.

Populating the screen, by the way, is even simpler, but is precisely the same concept:

this.populateScreen = function() {

for (var i = 0; i < this.fieldsArray.length; i++) {
dojo.byId(this.fieldsArray[i]).value = this[this.fieldsArray[i]];

}

} // End populateScreen().

The next function we come to is toString(). Recall that as in Java, all JavaScript objects
implement a toString() function. The basic version inherited from the base Object class
(which, again like Java, all objects in JavaScript inherit from) may or may not be very useful.
However, we can override it simply and provide some output that is more useful. In this case,
the output is JSON representing the contact. Here’s the toString() function:

this.toString = function() {

return dojo.toJson(this);

} // End toString().

You may be wondering why I didn’t instead have something like a toJSON() function. That
would have worked perfectly well too, except that overriding toString() instead makes the
code to get the contact as JSON just a hair cleaner, as you’ll see later in the DataManager class.
Also, it makes debugging a little better because should you want to display a given Contact
instance, in an alert() pop-up for example, what you’ll get is something that is a bit more

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE248

helpful than the default toString() provides. Overriding toString() is usually better in my
opinion precisely because it makes debugging a little easier.

Dojo provides two simple functions: toJson() and fromJson(). Both hang off the dojo
instance variable, hence dojo.toJson() and dojo.fromJson() to use them. With these, the
toString() method becomes nothing but a one-line piece of code, which is very elegant. You
simply pass an object to toJson() and you’ll get a string of JSON back, or pass a string of JSON
to fromJson() and you’ll get an object back. It couldn’t be simpler!

WHAT’S THIS JSON YOU SPEAK OF?

Although I’m willing to bet most people reading this book know what JSON is already, if you aren’t familiar
with it, JSON, which as stated in previous chapters stands for JavaScript Object Notation, is a simple data
interchange format that is roughly similar to array notation in most C-like languages. JSON is technically a
subset of the object literal notation used in JavaScript to define objects.

A quick and simple example of JSON is this:

{ firstName:"frank", lastName:"Zammetti" }.

If you were to execute var p = eval(json); where json is the example JSON shown here, what
you would have is an object with the fields firstName and lastName present and pointed to by the vari-
able p such that doing alert(p.firstName); would result in a pop-up with the text frank in it. JSON has
quickly become very popular in Ajax development and is at this point perhaps the de facto standard for
client-to-server communication in web apps today. Its primary benefits are that it is simple in terms of cre-
ation and consuming, lightweight (as compared to the typical alternatives such as XML), and relatively
human-readable. It, like XML, is essentially self-describing, assuming the person or system generating it isn’t
brain-dead.

It allows for common structures needed such as arrays (lists) and maps, as well as arbitrarily complex
nesting depths to allow for object hierarchies.

Although it is popular in Ajax development, it is by no means limited to that domain. In fact, because
JSON is just a plain-text format, it can readily be used in many circumstances where you have data inter-
change needs. It’s worth noting that many, maybe even most, modern languages have JSON support built in,
or as an easily added addition, and this includes parsers, generators, and other general utility functions. As
always, Google is your friend! The combination of the language you’re working in and the term JSON should
be all the search terms you need to get what you want quickly. A good place to start is json.org.

The last function found in the Contact class is restoreFromJSON():

this.restoreFromJSON = function(inJSON) {

var o = dojo.fromJson(inJSON);
for (var i = 0; i < this.fieldsArray.length; i++) {
this[this.fieldsArray[i]] = o[this.fieldsArray[i]];

}

} // End restoreFromJSON().

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 249

The name says it all: this function populates the Contact class instance it is executed on
from an incoming string of JSON. I think the beauty of storing the contact as JSON should be
pretty apparent here: this code is amazingly simple and compact, especially given dojo.
fromJson(). We simply iterate over that handy fieldsArray again, and for each element, we set
the appropriate field in the class from the parsed JSON object. That’s a simple approach, and
simple is always a good thing!

By the way, remember arrayIndex field that I mentioned was transient? Do you see now
why that is? By virtue of not being listed in fieldsArray, it is neither included in the JSON gen-
erated by toString() nor is it reconstituted by restoreFromJSON().

Writing ContactManager.js
The ContactManager class, defined in the ContactManager.js file, is the main code behind this
application. Its class diagram is shown in Figure 5-14.

Figure 5-14. UML class diagram of ContactManager class

This class starts off with five data fields, described in Table 5-2.

Table 5-2. The Five Data Members of the ContactManager Class

Field Name Description

eventHandlers This is a reference to an instance of the EventHandlers class.

dataManager This is a reference to an instance of the DataManager class.

currentTab This is the ID of the currently selected tab.

currentContactIndex This is the index into the array of contacts (stored in the DataManager
class) of the specific contact currently being edited (or –1 if creating a
new contact).

initTimer This is a reference to the timer used during app initialization.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE250

Recall that in index.htm, we hooked up an onLoad event that calls the init() function of
the ContactManager class. Well, now it’s time to see what’s in that function:

this.init = function() {

contactManager.eventHandlers = new EventHandlers();
contactManager.eventHandlers.init();
contactManager.dataManager = new DataManager();
this.initTimer = setTimeout("contactManager.initStorage()", 500);

} // End init().

First, the EventHandlers class is instantiated and the reference to it stored in the
eventHandlers field as described in Table 5-1. Then init() is called on that class.

Next, you do the same thing for the DataManager class, but you don’t call init() on it right
away as you do the EventHandlers instance. Instead you start a timer that every 500 millisec-
onds calls the initStorage() function of the ContactManager. That function is as follows:

this.initStorage = function() {

if (dojox.storage.manager.isInitialized()) {
clearTimeout(this.initTimer);
contactManager.dataManager.init();
contactManager.displayContactList();
dojo.byId("divInitializing").style.display = "none";
dojo.byId("content").style.display = "block";
this.initTimer = null;

} else {
this.initTimer = setTimeout("contactManager.initStorage()", 500);

}

} // End initStorage().

What’s this all about, you ask? Simply, Bad Things™ will happen if we try to use Dojo’s
storage system before it has properly initialized. When we look at the DataManager class, you’ll
see that one of the things done in its init() function is to restore saved contacts from persist-
ent storage (read: Gears Database). Therefore, we can’t call that function straight away as we
did with the EventHandlers instance, and further, we can’t call it until the storage system has
fully initialized. Hence the reason for the time: every 500 milliseconds, we check with Dojo to
see whether the storage system has initialized yet. If not, we just keep firing the timer until it
does.

As soon as it initializes, we stop the timer and call init() on the DataManager instance. We
also at that point display the contact list so that any restored contacts will be available to the
user, and finally we hide the initializing message discussed earlier and show the main content,
which is contained within the content <div>. After the DataManager has been initialized, the
application is then ready for user interaction.

Recall that the list of contacts restored from persistent storage is displayed during this ini-
tialization cycle. The code that generates the list of contacts is this:

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 251

this.displayContactList = function() {

// Get a list of contacts for the current tab.
var contacts = this.dataManager.listContacts(this.currentTab);

// Generate the markup for the list.
var html = "";
var alt = false;
for (var i = 0; i < contacts.length; i++) {

html += "<div indexNum=\"" + contacts[i].arrayIndex + "\" ";
html += "onMouseOver=\"contactManager.eventHandlers.clOver(this);\" ";
html += "onMouseOut=\"contactManager.eventHandlers.clOut(this);\" ";
html += "onClick=\"contactManager.doEditContact(" +
"this.getAttribute('indexNum'));\" ";

if (alt) {
html += "class=\"cssContactListAlternate\" altRow=\"true\">";
alt = false;

} else {
html += "class=\"cssContactListNormal\" altRow=\"false\">";
alt = true;

}
html += contacts[i].lastName + ", " + contacts[i].firstName;
html += "</div>";

}

// Display it.
dojo.byId("contactList").innerHTML = html;

} // End displayContactList().

First, the list of contacts is retrieved from the DataManager. We pass the listContacts()
function of the DataManager class the currently selected tab so that the list can be filtered
accordingly. Next, we cycle through the returned contacts (each element of the returned array
is a Contact object) and construct the appropriate markup for the list. Each element in the list
has mouse events attached to highlight the contact when the user hovers over it, and it also
contains an onClick handler that calls doEditContact() in the ContactManager class, which
loads the contact into the input fields on the screen for editing. After the markup is fully con-
structed, it is inserted into the contactList <div>, which shows it to the user.

Speaking of the doEditContact() function, let’s see that now, shall we?

this.doEditContact = function(inIndex) {

// Record contact index, retrieve contact and populate screen.
this.currentContactIndex = inIndex;
var contact = this.dataManager.getContact(inIndex);
contact.populateScreen();

}

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE252

Wow, really, that’s it? Yes indeed. Note in the displayContactList() function that each
contact listed has an indexNum custom attribute attached to it. This value corresponds to the
value of the arrayIndex member of the Contact class; because we are viewing a subset of the
contacts array when a particular tab is set, using this value ensures that a contact’s indexNum
attribute is the correct index into the array so that when the user clicks on a contact to edit it,
we pull the correct data to display.

For instance, if we click the A-C tab, and we see three of ten stored contacts, the array
returned by listContacts() in the DataManager class will simply return an array with three ele-
ments. But, the index in that array (0, 1, or 2) may not match the index into the contacts array
for a given contact. In other words, the first contact returned by listContacts() is index 0 in
that returned array, but may actually be the contact at index 9 in the main contacts array.
Therefore, if we used the index number of the returned array as the value for indexNum, we
wouldn’t go after the correct element in the contacts array (that is, 0 instead of 9). We instead
need the arrayIndex field of the Contact object.

There are five more functions in the ContactManager class to look at, and each corre-
sponds to one of the five buttons at the top of the page. First up is doNewContact():

this.doNewContact = function() {

if (this.initTimer == null) {

if (confirm("Create New Contact\n\nYou will lose any unsaved changes. " +
"Are you sure?")) {
document.forms[0].reset();
this.currentContactIndex = -1;

}

}

} // End doNewContact().

Not really much going on there, I admit. One thing you will notice in the next five func-
tions is the check of initTimer being null. When the application starts, initTimer has a value
of –1. When the initialization cycle is complete, it is set to null. Because we don’t want the user
to be able to do anything until the application initializes fully, and because Dojo produces the
Fisheye icons before initialization completes, we need to ensure that initialization is finished
before we process any user events, hence the check that allows the code to execute only after
initTimer is null, meaning everything is ready to go.

Once that is the case, we simply make sure the user wants to create a new contact,
because if the user had any edits on the page, they would be lost. We then reset the form,
which clears all our input fields, and set the currentContactIndex to –1, which indicates to
the rest of the code that a new contact is being created.

Next up is the function called when the Save icon is clicked, appropriately named
doSaveContact():

this.doSaveContact = function() {

if (this.initTimer == null) {

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 253

// Make sure required fields are filled in.
if (dojo.byId("firstName").value == "" ||
dojo.byId("lastName").value == "") {
alert("First Name and Last Name are required fields");
return false;

}

// Create a new contact and populate it from the entry fields.
var contact = new Contact();
contact.arrayIndex = this.currentContactIndex;
contact.populateContact();

// Save the contact.
this.dataManager.saveContact(contact, this.currentContactIndex);

// Redisplay the updated contact list.
this.displayContactList();

// Reset the entry fields and currentContactIndex.
document.forms[0].reset();
this.currentContactIndex = -1;

}

} // End doSaveContact().

This function handles two different save situations: saving a new contact or saving edits
to an existing contact. So, after our check of initTimer as in doNewContact(), we first do a
quick edit to ensure that a first name and last name have been entered. These two fields are
the only required fields for a contact because they are used to generate the contact list, and
this is true whether it is a new contact or an existing one.

After that is done, we instantiate a new Contact object and tell it to populate itself from
the input fields by calling its populateContact() function. We also here set the arrayIndex field
based on the currentContactIndex value, which would be –1, as set in doNewContact() if this is
a new contact, or to the appropriate array index if editing an existing contact.

Next, we call saveContact() on the DataManager, passing it the contact and the index (we’ll
be looking at that code shortly). After that, we regenerate the contact list and show it because
we may have just added a contact that should be immediately visible (that is, either we’re on
the tab the contact would appear on naturally, or on the All tab). Last, we reset the input fields
and the currentContactIndex value (which is a little redundant, but does no harm), and that’s
how a contact is saved.

The next function to look at is doDeleteContact(), and I’ll give you just one guess what it
does:

this.doDeleteContact = function() {

if (this.initTimer == null) {

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE254

if (this.currentContactIndex != -1 &&
confirm("Are you sure you want to delete this contact?")) {

// Ask the data manager to do the deletion.
this.dataManager.deleteContact(this.currentContactIndex);

// Redisplay the updated contact list.
this.displayContactList();

// Reset the entry fields and currentContactIndex.
document.forms[0].reset();
this.currentContactIndex = -1;

}

}

} // End doDeleteContact().

After the usual check of initTimer, and a confirmation that the user really wants to delete
the current contact (which includes a check to be sure there is a contact selected to be
deleted), we ask the DataManager to do the delete for us, passing it the index of the contact to
delete. Once again we regenerate and display the contact list, and reset the input fields and
the currentContactIndex value. (Yes, it’s still a bit redundant here, but it still does no harm,
and I prefer variables that aren’t based on user input being in known states at any given time—
it makes for easier debugging sessions.)

The next function is doClearContacts(), which is a giant, shiny “push to destroy the uni-
verse” button.2 Well, maybe not quite, but it does delete all contacts from persistent storage, so
it isn’t something that you want the user pressing willy-nilly. For that reason, there is a double
verification required, as you can plainly see:

this.doClearContacts = function() {

if (this.initTimer == null) {

if (confirm("This will PERMANENTLY delete ALL contacts from " +
"persistent storage\n\nAre you sure??")) {
if (confirm("Sorry to be a nudge, but are you REALLY, REALLY SURE " +
"you want to lose ALL your contacts FOREVER??")) {
this.dataManager.clearContacts();
// Redisplay now empty contact list.
this.displayContactList();

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 255

2. In The Ren and Stimpy Show episode “Space Madness,” Stimpy is tasked with defending a shiny, red
button that the narrator tells us will “eradicate history” and basically ruin everyone’s day in the blink
of an eye. Needless to say, Stimpy cannot control himself and pushes the button, thereby ending the
episode in a hurry!

// Reset form for good measure.
document.forms[0].reset();
this.currentContactIndex = -1;
alert("Ok, it's done. Don't come cryin' to me later.");

}
}

}

} // End doClearContacts().

Only one function remains, and it’s a pretty trivial piece of code: doExit():

this.doExit = function() {

if (this.initTimer == null) {

if (confirm("Exit Contact Manager\n\nAre you sure?")) {
window.location = "goodbye.htm";

}

}

} // End doExit().

Nothing fancy here, just a quick confirmation and then the browser is redirected to the
goobye.htm page we looked at earlier.

Writing DataManager.js
Throughout the ContactManager code, we saw a number of calls out to the DataManager. Now
we come to the point in our show where we need to take a look at that class and see what’s
going on under the covers. This is the part where we start dealing with Dojo’s storage system
directly to a large extent. Its class diagram is shown in Figure 5-15.

Figure 5-15. UML class diagram of DataManager class

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE256

It should be noted that I wrote the DataManager with the idea in mind that you could swap
it out for another implementation, perhaps one that used an ActiveX control (as evil as those
are) to persist the contacts and deal with the underlying storage mechanism. You could in
theory not use Dojo at all if you chose not to. As such, its public API is pretty generic and con-
ducive to such a swap. Of course, with Dojo underneath, you’d probably never have to or want
to do that anyway because you could just have Dojo use a different persistence mechanism.
Still, I’m a Java programmer by day, which means I love abstractions and layers for “flexibility,”
so that’s what I’ve done here.

The first thing we see in the DataManager class is the contacts array. This is, not surpris-
ingly, the array in which our contacts are stored. This array is loaded from the database when
the application initializes, and until the user exits the application, it is essentially kept syn-
chronized with the persistent store. In other words, when we add a contact, it is added to this
array, and then the array is persisted to the database. When we delete a contact, it is deleted
from the array, and then the array is persisted to the database. When we edit an existing con-
tact, it is updated in the array, and then the array is persisted to the database. Are you seeing a
pattern here?

■Note The logical question to ask here is why the entire array is persisted each time. Why not just individ-
ual contacts? The answer is that I wrote this application originally to use a different storage mechanism, one
that didn’t have the necessary capabilities to store individual contacts. Another important reason is that I
wanted to allow for an exercise to use cookies instead, which winds up being a little easier if you do the
whole array at one time.

When the ContactManager class is instantiated during app initialization, it instantiates the
instance of DataManager and keeps a reference to it, as we saw earlier. Also as we saw earlier, it
initialized the DataManager by calling its init() function, which we can now look at:

this.init = function() {

// Read in existing contacts from the applicable storage mechanism.
this.contacts = new Array();
this.restoreContacts();

} // End init().

After the contacts array is initialized, we ask the DataManager to restore any contacts from
persistent storage by calling the restoreContacts() function, which is the following:

this.restoreContacts = function() {

// Retrieve stored contacts.
var storedContacts = dojox.storage.get("js_contact_manager_contacts");

// Only do work if there actually were any contacts stored.
if (storedContacts) {

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 257

// Tokenize the string that was stored.
var splitContacts = storedContacts.split("~>!<~");
// Each element in splitContacts is a contact.
for (var i = 0; i < splitContacts.length; i++) {

// Instantiate a new Contact instance and populate it.
var contact = new Contact();
contact.restoreFromJSON(splitContacts[i]);
contact.arrayIndex = i;
// Add it to the array of contacts.
this.contacts.push(contact);

}
}

} // End restoreContacts().

Restoring contacts is a pretty simple process. First, we ask Dojo to get our contacts from
the underlying storage system. We don’t even care what that means! We can imagine that
under the covers, there is a SQL query being executed against the SQLite database provided by
Gears, but we don’t have to worry about those details; we just know that we’re asking for some-
thing named js_contact_manager_contacts to be retrieved form persistent storage, and that
just happens to be a string representation of an array of contacts. The code then checks to be
sure we got something back: if this is the first time the application is run on this machine, for
instance, there would be no object under that name, and hence no contacts to restore.

Assuming there were contacts, what we get back from the dojox.storage.get() call is
basically a giant string consisting of contacts in JSON form separated by a sequence of charac-
ters (~>!<~ specifically). The reason I chose this sequence of characters is simply that any
single character, comma for instance, would not be suitable because it could appear naturally
in the data entered by the user, and therefore we would not tokenize the string properly. You
could always escape such characters of course, but it’s not necessarily as easy as that. So, I
wanted a delimiter to separate contacts that wasn’t likely to be entered by the user. This
seemed like a reasonably safe combination in the sense that it doesn’t seem likely that it would
naturally occur in real user input. However, it should be pointed out that entering it in any
field for a contact will in fact break the code.

■Note To be really bulletproof, the application should check all inputs to be sure that the ~>!<~ sequence
doesn’t appear. It seems pretty unlikely that it would be entered except by someone deliberately trying to
break the program, so I can live with the risk.

After the string is tokenized, we start iterating over the tokens, which I remind you are
contacts in JSON form. For each, all we need to do is instantiate a new Contact object, and
then pass the JSON string to the restoreFromJSON() function of the Contact, which we looked
at earlier. It uses the evaluated JSON and populates the Contact instance, effectively restoring
it. Only two things remain to do: set the arrayIndex field of the contact, and add it to the
contacts array. After all the tokens (read: contacts) have been processed in this way,

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE258

restoreContacts() has completed its work and we now have a contacts array that is identical
to how it was when it was last persisted.

The next function we encounter in our exploration of the DataManager class is the
saveContact() function, which is obviously the function called to save a contact, and it
looks like this:

this.saveContact = function(inContact, inIndex) {

// Save new contact.
if (inIndex == -1) {
inContact.arrayIndex = this.contacts.length;
this.contacts.push(inContact);

} else {
// Update existing contact.
this.contacts[inIndex] = inContact;

}
this.persistContacts();

} // End saveContact().

We first do some simple branching based on whether we are saving a new contact
(inIndex == -1) or updating an existing one (inIndex != -1). In the case of adding a new
index, all we really need to do is set the arrayIndex field of the inContact object, and push it
onto the contacts array. When we are updating a contact, we just need to set the appropriate
element of the contacts array to the inContact object. After one of those things happens, we
call persistContacts() to save the contacts array to the database.

So, what of this persistContacts() function? Let’s get to that now. Actually, with
persistContacts() goes saveHandler(), which works hand in hand with persistContacts()
to do the work of saving to the database:

this.persistContacts = function() {

// First, construct a giant string from our contact list, where each
// contact is separated by ~>!<~ (that delimiter isn't too likely to
// naturally appear in our data, I figure!)
var contactsString = "";
for (var i = 0; i < this.contacts.length; i++) {
if (contactsString != "") {
contactsString += "~>!<~";

}
contactsString += this.contacts[i];

}

try {
dojox.storage.put("js_contact_manager_contacts", contactsString,
this.saveHandler);

} catch(e) {
alert(e);

}

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 259

} // End persistContacts().

// ********** Callback function for storage.
this.saveHandler = function(status, keyName){

if (status == dojox.storage.FAILED) {
alert("A failure occurred saving contact to persistent storage");

}

} // End saveHandler().

First we construct that giant string from the contacts array that I talked about earlier
when discussing the restoreContacts() function. To do so, we simply iterate over the contacts
array and add each contact to a string, which fires its toString() function as described earlier
when we looked at the Contact class.

We then append our special delimiter character sequence, and continue that until the
whole contacts array has been processed into this string. After that’s done, we pass this string
to the dojox.storage.put() function, telling it to store it under the name js_contact_
manager_contacts. We also pass it a reference to the saveHandler() function. This function is a
callback that will be called by Dojo when the operation completes. We can examine the out-
come of the operation and act accordingly. In this case, all we really care about is a failure, in
which case we alert the user. There isn’t a whole lot to be done if a failure occurs, so that’s the
end of things. We could also alert the user if the operation succeeds, but I think the user can
surmise that if no error message is shown.

The getContact() function comes next, and it’s definitely a trivial piece of code—in fact,
it’s so trivial, I’m not even going to show it. All it does is take in an index number and return
that element from the contacts array. A single line of code, that’s it.

Following getContact() is deleteContact(), which has a little more meat to it:

// ********** Delete a contact.
this.deleteContact = function(inIndex) {

// Delete from contacts array.
this.contacts.splice(inIndex, 1);

// Store the updated contact list.
this.persistContacts();

// Finally, renumber all the remaining contacts.
for (var i = 0; i < this.contacts.length; i++) {
this.contacts[i].arrayIndex = i;

}

} // End deleteContact().

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE260

. . . although I admit, not a lot of meat! JavaScript arrays expose a splice() method, which
enables us to easily remove elements from an array. We simply specify what index to start
removing elements from, and then specify the number of elements to remove.

After the contact has been removed, we ask the DataManager to persist our contacts, effec-
tively updating the shared objects. One last bit of work remains at this point, and that is to
renumber the contacts. Recall that the arrayIndex field, which is not persisted with the con-
tact, indicates which element in the contacts array the contact is at. It is important that this be
accurate because if and when we click a selector tab and return only a subset of the contacts
array, each contact needs to know what position in the array it’s at so we can edit and/or
delete the appropriate contact if the user requests it.

However, let’s say we have three contacts in the contacts array, and we delete the second
one. The first contact still has an arrayIndex value of 0, and the second one now has a value
of 2, because that’s where it was at previously (we’re of course assuming they were numbered
correctly to begin with). So, if the user clicks that second contact to edit, we’ll get an error as
we try to access index 2 of the array, which no longer exists. As you can see, the arrayIndex val-
ues need to be updated when we delete a contact. Fortunately, this is a simple procedure: we
just need to iterate over the array and set the arrayIndex for each contact as we do so. This will
remove any gaps in the order left by a deletion, and everything will be set up properly again.

Following deleteContact() is listContacts(), which is called to get some subset of the
contacts array (or the entire thing in the case of the All tab). Although it serves an important
purpose, there isn’t really much to it:

this.listContacts = function(inCurrentTab) {

if (inCurrentTab == "XX") {
// ALL tab selected, return ALL contact.
return this.contacts;

} else {
// Filter contacts based on current tab.
var retArray = new Array();
var start = inCurrentTab.substr(0, 1).toUpperCase();
var end = inCurrentTab.substr(1, 1).toUpperCase();
for (var i = 0; i < this.contacts.length; i++) {

var firstLetter = this.contacts[i].lastName.substr(0, 1).toUpperCase();
if (firstLetter >= start && firstLetter <= end) {
retArray.push(this.contacts[i]);

}
}
return retArray;

}

} // End listContacts().

First, we check to see whether the inCurrentTab value is XX, which indicates that the All
tab has been selected. In that case, we just return the contacts array, and that’s that. For any
other tab, we have a little more work to do. First, we create a new array to hold the subset of
contacts we’ll be returning. Next, we take the first character of inCurrentTab, converted to

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 261

uppercase, which is the start of the range of characters we want to return contacts for. We do
the same for the second character, which is the end of the range.

So, let’s say the inCurrentTab value is AC: in that case, we want to return any contact whose
last name begins with A, B, or C. So, we iterate over the contacts and for each we grab the first
letter of the last name. After converting it to uppercase, we see whether it falls within the range
defined by start and end, and if so, we add it to the array. After we go through all the contacts,
we return the array, which is now some subset of the contacts appropriate for the currently
selected tab.

We’re just about done with the DataManager class now—only one function left to examine:

this.clearContacts = function() {

dojox.storage.clear("");
this.contacts = new Array();

} // End clearContacts().

If the user becomes depressed and wants to cut off all contact with the outside world, that
user may decide he no longer wants any contacts, and he may hit the Clear Contacts icon, in
which case, this function is called. Two things need to occur to clear contacts. First, we need to
clear our persistent storage. Dojo provides the dojox.storage.clear() function for this. This
function takes as an argument a namespace specification. The put() method from before
also accepts such an argument, allowing us to have data in multiple namespaces under one
domain (which is what the underlying storage provided, Gears, ultimately segregates by).
Here, however, because the namespace was not specified in any of the calls to put(), an empty
string is used by default, and hence that’s what we need to pass here to make things work.

After that, we have to clear the contacts array in DataManager, which is a simple matter of
setting it to a new, empty array. After this, the user can go seek professional psychiatric help to
deal with his problems.

Suggested Exercises
Although the primary goal of this chapter is to highlight the persistence aspect of the project,
that’s no reason not to make suggestions that tackle other areas as well. Here are just a few
ideas you could explore that would certainly prove to be good learning exercises:

1. Allow for searching on any field. For bonus points, use some Dojo transition effects
(which you’ll see in later projects) to have a search panel slide into view.

2. Allow for sending e-mails by clicking a contact’s e-mail address. I purposely left this
out because I wanted to leave you one relatively simple suggestion here. This addition
shouldn’t take much effort.

3. Sort the contacts listed on a given tab.

4. Change the code to not store the entire array each time. Instead, use individual contact
objects (well, strings describing a contact, really). This should give you good exposure
to the storage system.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE262

5. Implement persistence to cookies. I purposely limited the maximum size that a single
contact could take up to just a hair under 1,024 bytes. This should allow you to store
four contacts per cookie, so with the limit of 20 cookies per domain you can store 80
contacts. This would give you a chance to play with Dojo’s cookie support functions
too.

Summary
In this chapter, we explored a couple of mechanisms for storing data in a persistent manner
on the client. We took a more in-depth look at Gears and its Database component. We saw
how the Dojo library helps make all of this a bit easier by taking care of most of the details for
us. Last, we built ourselves a small contact manager application to demonstrate these tech-
niques and in the process saw some Dojo widget magic as well.

CHAPTER 5 ■ THAT HUMAN TOUCH: CONTACT MANAGER AND CLIENT-SIDE PERSISTENCE 263

A Place for Your Stuff: Dojo
Code Cabinet

In this chapter, we’ll fulfill the need of our obsessive-compulsive personalities and develop an
application to store our code snippets in.

As good developers, we quickly learn that “stealing” is better than creating. That is, the
more you can find code that does what you need rather than writing it yourself, the better.
This doesn’t always mean stealing from others (and stealing is just an attempt at humor—it’s
not actually stealing of course!). Especially after you do this programming thing for a while,
you begin to steal from yourself more and more because you remember that you wrote that
function to encrypt passwords a couple of projects ago, or you remember that algorithm you
put together for processing account numbers, or whatever else.

Being able to find those snippets of code is a challenge, but it’s a challenge we’re here to
meet! With the help of Dojo and Gears, we’ll create an application that lets us store our snip-
pets, organize them, and even search for them. That’s what this chapter is all about. In the
process, we’ll get some good experience with some dijits, and we’ll get a look at the dojo.data
namespace.

Let’s begin by looking at exactly what we want to accomplish, exactly what we want this
application to be able to do.

Requirements and Goals
A code cabinet, a virtual filing cabinet for our code snippets, should in many ways model an
actual file cabinet. But what does that mean? Here are the bullet points:

• Like a real file cabinet, ours needs drawers. We’ll call them categories here. We should
be able to create categories with any name so we then have a mechanism with which
to categorize our snippets. Being a virtual file cabinet, it will be allowed an unlimited
number of drawers. In terms of user interface, let’s use a Tree dijit to display the
categories (although we’ll use it essentially like a list in that we won’t allow for subcate-
gories—and if you think that sounds like a hint for a suggested enhancement, you’re
right!).

265

C H A P T E R 6

• Within each category, we can add snippets of code. Each snippet will have pieces of
information stored about it including name, description, author, e-mail address (of the
author, presumably!), and URL reference (that is, if we found the snippet online and
want to remember the site we got it from). We’ll also be able to store notes about the
snippet and associated keywords with the snippet to make searching possible. We
should also let the code and notes be entered in a rich way, not just in plain text.

• Speaking of searching, we want to be able to search for snippets based on several crite-
ria, and in any combination of criteria. We’ll include things like being able to search by
name, description, author, keywords, and actual code content.

• Clearly the snippets need to be stored in a persistent way, so let’s use Gears for this. I’ll
jump the gun a little and tell you now that we’ll use it directly rather than going through
Dojo simply because sometimes this is more natural and arguably easier (hopefully, I’ll
convince you of that as you look at the code!).

• We’ll need to be able to delete categories and snippets of course because, hey, we’re
human and we screw up sometimes!

• The entire user interface should be flexible, that is, we should be able to resize sections
of it as we wish. Speaking of sections, let’s create a toolbar up top, a list of categories
displayed in a Tree dijit on the left, a tabbed section on the upper right (with one tab
containing the list of snippets in a given category, and other tabs containing informa-
tion about the currently selected snippet), and finally a section for scrolling on the
lower right.

All right, I think we’ve got enough here to get going. Now let’s look at some of the key tech-
nologies that we’re going to need to build this.

How We Will Pull It Off
There are two new bits of technology that you’ll need to be familiar with to build this applica-
tion. Well, more precisely, one is new and one is being expanded upon. I’m talking here about
the dojo.data namespace and the Gears Database component.

The dojo.data Namespace
The goal of dojo.data is to provide a data access layer that is independent of the underlying
data format. It seeks to allow you to write code against a “database” without having to worry
about quaint concepts like drivers and even what format the data is stored in. It’s sort of like a
Relational Database Management System (RDBMS) in the sense that you deal with SQL, but
you don’t care how the data is stored underneath, whether as flat files or some sort of binary
representation.

The basis of dojo.data is the Item. An Item is, as far as you’re concerned when writing
code against it, a JavaScript object with fields. The fields are what you would generally think of
as columns in a database table, and an Item is therefore a record in the table. A data store is,
for all intents and purposes, equivalent to a database table.

In dojo.data you’ll find the ItemFileReadStore and ItemFileWriteStore classes. These are
types of data stores that take in JSON of a specified format and use that as the data. After the

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET266

JSON is fed into one of these classes, you can use all the data store methods, without any
regard for the fact that the data resides in JSON.

The difference between ItemFileReadStore and ItemFileWriteStore is that the first is
read-only, while the latter can be written to. The dojo.data API is broken out into a couple
of APIs that a given data store can optionally choose to implement. For example, the
ItemFileReadStore implements the dojo.data.api.Read interface, but not the dojo.data.api.
Write interface. This is done to allow stores to be as lightweight as they want to be, making it
more efficient to download the code.

One of the nice things about dojo.data is that some of the dijits are aware of it, meaning
you can essentially bind a dijit to a given data store. Then, changes to the data store are auto-
matically reflected in the dijit’s UI (usually—I’ll get into some exceptions later on as we dissect
the code). This is a really cool capability!

So, what does all of this look like in terms of code? It’s pretty simple, really. Let’s start with
some simple JSON:

var d = { "identifier" : "id",
"label" : "name",
"items" : [

{ id : 1, "name" : "Bill Gates", "richness" : "Unimaginable" },
{ id : 2, "name" : "Warren Buffet", "richness" : "Mind-boggling" },
{ id : 3, "name" : "Steve Jobs", "richness" : "Are you kidding me?!?" }

]
};

The identifier attribute will tell the data store that uses this JSON what field represents
the unique identifier of an Item. The label attribute tells certain dijits bound to the data store
which field is to be used for labels. The items array is the actual data. Each element of the
array is an object with whatever fields you wish to have, but it of course has to have the ones
named as identifier and name.

When you have that JSON, the next task is to create a data store and “wrap” it around the
JSON, like so:

var ds = new dojo.data.ItemFileReadStore({data:d});

We can now use all the methods provided by the ItemFileReadStore. For instance, to
retrieve a specific Item:

ds.fetchItemByIdentity({
identity : 1, onItem : function(item) {
alert(ds.getValue(item, "richness"));

}
});

Note the asynchronous nature of the call. You specify the function to execute when the
retrieval completes by passing it as the value of the onItem attribute; in this case, it’s an inline
function. Also note the way the richness attribute is retrieved. You shouldn’t even directly
access the fields of an Item (more on why later); you should instead use the getValue()
method of the data store.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 267

Let’s say you want to retrieve all the items in the store. You can do that with the fetch()
method:

ds.fetch({onComplete : function(items) {
for (var i = 0; i < items.length; i++) {
alert(ds.getValue(items[i], "name"));

}
}});

There are other methods available, but these are essentially all we’re going to need for this
application. I suggest reading through the “The Book of Dojo,” which can be found in the doc-
umentation section of the Dojo web site (http://dojotoolkit.org/book/dojo-book-1-0). The
entire API is described pretty well there. You’ll see some more capabilities as we go through
the application, but this is enough of an introduction to be prepared for it when it comes.

Gears Database Component
If you jumped around and haven’t read the previous chapter yet, now is the time to do so.
Gears was introduced there, and I’m going to go forward here assuming you’ve read that
already (or are already familiar with Gears). With that assumption in mind . . .

In this project, I thought about how I would likely implement this application if I was
dealing with a server component, and it seemed pretty obvious that a database would be the
natural storage mechanism. When I further thought about how I would choose to interact
with that database, given all the options available in various languages, I decided that straight
SQL would likely be my choice (as is, frankly, the case most of the time unless I have a require-
ment that makes me think otherwise). It’s kind of funny to think that nowadays straight SQL is
almost considered “bare metal” programming! In Java for instance, there’s no shortage of
object-relational mapping (ORM) tools available that hide the SQL from you. Those types of
abstractions are available in other languages and platforms as well.

In the previous chapter, you saw the Dojo storage system, which hides those details from
you in the JavaScript world as well. In fact, the preceding project also used Gears underneath,
but I don’t have any idea what the final SQL looked like. (I can take some good guesses of
course, but I didn’t write the SQL myself; that’s the important point.)

In this project, however, I wanted more control over how the underlying storage system
worked, how it was structured, and how I interacted with it. I therefore decided that going
directly against the Gears Database API was the best choice.

What does that API look like, you ask? It couldn’t be much simpler! You start by instantiat-
ing the database engine:

var db = google.gears.factory.create("beta.database");

Note that Gears is still technically beta, hence the name of the object being created from
the factory.

After you have that engine, you open a database:

db.open("myDatabase");

If that database doesn’t yet exist, Gears goes ahead and creates it for you.
After the database is opened, you can begin executing queries on it. That will, usually,

mean creating a new table, which you can do like this:

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET268

db.execute("CREATE TABLE IF NOT EXISTS people (" +
"age INT, " +
"first_name TEXT, " +
"last_name TEXT" +

")");

As you can see, we’re dealing in straight SQL here, nothing unusual. The exact dialect is
something you’ll need to consult the Gears documentation for, but in general it’s not too far
off standard SQL. (Every RDBMS has its own dialect peculiarities, and the underlying database
that Gears sits on top of, SQLite, is no different—but you won’t find any shocks here, I dare
say.)

After you have some tables, you then use the execute() method to execute updates,
whether they are deletes, inserts, updates, table drops, or whatever else.

Queries too are done the same way:

var rs = db.execute("SELECT age,name,type FROM people ORDER BY name");
while (rs.isValidRow()) {
alert("age = " + rs.field(0));
alert("name = " + rs.field(1));
alert("type = " + rs.field(2));
rs.next();

}

Here we get back a ResultSet, which isn’t too different from any ResultSet (or RecordSet
as it’s sometimes called) in most other languages. We can iterate over it, calling the
isValidRow() method each time, which will return false when we’ve moved past the last
record. We can grab the values of the fields with a simple call to the field() method, passing it
the index of the field we want back. There’s also a fieldByName() method we can call, which is
useful when doing “select all” statements.

For the execute() method, you can also pass an optional second parameter indicating
values to be inserted into the SQL. This allows for parametric variables in the SQL. For
example:

db.execute("INSERT INTO people VALUES (?, ?, ?)", [12, "Rick", "Melon"]);

An example like that isn’t all that logical because if you were inserting literals like that,
you’d probably simply make the values part of the SQL itself. But if you imagine those literals
as variable names, the usefulness is a lot more apparent.

On the Database object, you can also call close(), which is optional but does no harm if
the database is already closed. There’s also a lastInsertRowId() method which, as its name
implies, returns the ID of the last inserted row. The Gears documentation states that every row
has an ID value, even if you don’t explicitly set one up when you create the table, so you’ll
always get a valid value back from this.

On the ResultSet object, you can call fieldCount(), which tells you how many fields
(columns) were returned. This generally is useful only when you do a “select all” query,
because otherwise you’d already know the answer. You can also call fieldName(), which takes
a field index as field() does but gives you the name of the corresponding field.

So, as you can see for yourself, the Gears Database API is quite simple to use. It may not
have all the bells and whistles of Oracle, SQL Server, MySQL, or PostgreSQL, but we are talking

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 269

JavaScript and the client here! In the end, though, this gives us all we need to write this appli-
cation and to do a lot of things you otherwise probably couldn’t do on the client alone, not
without a lot of trouble at least. In fact, we’ll use only some of the functions I’ve described here
because we don’t need all of them anyway.

With the preliminaries now out of the way, let’s dive into the code of this application and
see what makes her tick!

Dissecting the Solution
Let’s begin our look at the implementation details of this project by having ourselves a peek at
the directory structure, as shown in Figure 6-1. There are maybe one or two interesting points
to be made about it, but otherwise it’s largely like most of the other projects.

Figure 6-1. The directory structure of the application

In the root directory, you’ll find index.htm, which is the only markup for this project. Nat-
urally, it’s the first file loaded, containing all our style sheet and JavaScript imports, some
initial “bootstrap” startup code, and of course the HTML making up the application’s visual
display.

The styles.css file lives in the css directory, as is my customary approach, and it con-
tains all the style sheet information for this application. You’ll find a few style attributes
floating around in index.htm, but this style sheet is very limited and almost entirely posi-
tional/visibility-related, which I feel is generally okay to do in markup.

Within the img directory are all the image resources for this application, which are simply
the button images for the toolbar and nothing more.

In the js directory are two files, CodeCabinet.js and gears_init.js. The CodeCabinet.js
file contains all the script for the application itself. The gears_init.js file contains some code
used to deal with Gears, specifically what happens when it isn’t installed. We won’t be looking
at this code here because it’s completely boilerplate and not code I wrote anyway. (This is a
file you get from Google, which simply includes it.)

There’s also the usual dojo directory nested under the js directory; it’s just Dojo itself in
all its glory, unmodified and ready to rock and roll.

And so are we! Let’s get into the code without further delay!

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET270

Writing index.htm
Essentially, the user interface is defined in one file: index.htm. There’s a little bit of scripting
here as well, but it’s pretty limited to largely bootstrap-type code.

Whoa, wait a minute. I think it may help to see the application before seeing the code
behind it—you know, put it all in perspective and that sort of thing. So, in Figure 6-2 you can
see what the application looks like when you first access it.

Figure 6-2. Dojo Code Cabinet, in all its (initial) glory!

So, we have ourselves a tree of categories on the left, a toolbar up top with some functions
we can perform, some tabs on the right, and some search-related stuff on the bottom. It all
pretty well matches up with the requirements and goals we laid out before, so we’re in good
shape so far!

It isn’t very exciting, though: we have no categories and no snippets! Take a look at
Figure 6-3 and you’ll see what the application looks like after we’ve added a single category
and a single snippet.

Yep, that’s a little better. Of course, if that’s all there was, it wouldn’t be a whole lot better,
but thankfully we have Figure 6-4, which is what you see after you click on that snippet.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 271

Figure 6-3. A category selected, snippets in it showing

Figure 6-4. The Info tab

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET272

Yes, now we can see some information about the snippet, which is all well and good of
course, but what about, you know, the actual code of the snippet? In other words, what does
that Code tab look like? Figure 6-5 answers that question.

Figure 6-5. The Code tab

The interesting thing to note here is how I have some text underlined, some bold, and
some italicized. This is a rich text editor, so we can do some basic syntax highlighting and such
to give a little more meaning to the code.

The Notes tab looks essentially the same, so I’ll skip showing that. It too has a rich text
editor, which is nice, especially when you consider that you can create bullet lists and such,
the type of thing that can come in handy when writing notes about a snippet.

The last tab is the Keywords tab, and Figure 6-6 shows you that.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 273

Figure 6-6. The Keywords tab

Yep, it’s just a bunch of text fields! But, it gets the job done.
Note that the Save button you see on each tab saves everything at once; it doesn’t apply

just to the tab you’re on. This arguably isn’t the best UI paradigm, and at first I considered hav-
ing a single Save button on the toolbar. But even with that little bit of doubt in mind, I still felt
it was more natural to have a Save button on each tab. I don’t claim it’s the best answer, but it’s
the one I chose! The implication this, err, implies, is that if you make a change on one tab, and
then switch to another tab and click Save, the changes on all tabs are saved. This might seem
unnatural in some ways, but I don’t think it’s unreasonable.

There are a few more screenshots to be seen but I’ll hold off and show them at later points
as we discuss the code that they are involved with. Now, finally, we’re ready for the code!

The Opening Shots
The index.htm file begins, as most HTML documents do, with a <head> section containing a
bunch of resource imports. Take a look at the code and then we’ll discuss it a bit:

<html>

<head>

<title>Dojo Code Cabinet</title>

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET274

<!-- Stylesheet imports. -->
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/tundra/tundra.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojox/grid/_grid/grid.css">

<link rel="StyleSheet" type="text/css" href="css/styles.css">

<!-- Import Google Gears. -->
<script src="js/gears_init.js"></script>

<!-- Configure and import Dojo. -->
<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>
<script>
// Import all require Dojo components.
dojo.require("dojo.parser");
dojo.require("dijit.layout.ContentPane");
dojo.require("dijit.layout.LayoutContainer");
dojo.require("dijit.layout.SplitContainer");
dojo.require("dijit.layout.TabContainer");
dojo.require("dijit.Editor");
dojo.require("dojo.data.ItemFileWriteStore");
dojo.require("dijit.Tree");
dojo.require("dijit.form.TextBox");
dojo.require("dijit.form.Button");
dojo.require("dojox.grid.Grid");
dojo.require("dijit.Toolbar");
dojo.require("dijit.Dialog");
dojo.require("dojo.string");

</script>

<!-- Import application JavaScript. -->
<script type="text/javascript" src="js/CodeCabinet.js"></script>

<script>
// Bootstrap initialization.
dojo.addOnLoad(function() {
codeCabinet.init();

});
</script>

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 275

</head>
<body class="tundra">

First up are a bunch of style sheets, namely the base Dojo style sheet and the style sheet
for the Tundra dijit theme. Then is styles.css, which is the style sheet specific to the applica-
tion. We’ll look at that shortly, and there are some interesting bits there, although it’s not too
large a file.

Following that is the first of a couple of <script> tags, this one importing gears_init.js.
This is what enables us to work with Gears; specifically, it allows us to deal with the case where
Gears isn’t installed in the browser. When we hit the real scripting for this application in Code-
Cabinet.js, we’ll come back to that in detail, but for now suffice it to say that this, plus some
code on our part, allows the application to gracefully handle Gears not being present.

Next up is the djConfig structure, none of which is new at this point, so we won’t dwell
on it.

Following djConfig is a batch of dojo.require() statements. Most of them you’ve seen in
previous chapters and are dijits, or Dijit-related. The dojo.string namespace is imported so
we can use the dojo.string.trim() method. There is also one new item that you haven’t seen
before: dojo.data.ItemFileWriteStore. This is primarily what we need to use the dojo.data
namespace and is the class that represents a data store. We need to use the write version
because in all cases we need to read and write the data in the store.

Following that is the import of CodeCabinet.js, which is the main script content of the
application. This is where all the interesting coding is, so we’ll be tearing that apart in just a bit.

The final bit is the call to dojo.addOnLoad(). Recall that using onLoad in a Dojo application
can often lead to problems and isn’t something you should typically do. Especially in IE7 this
can lead to an application, specifically using dijits, that just simply doesn’t work. So, we use
dojo.addOnLoad() to avoid those problems here. In this case, the function it executes is noth-
ing but a call to the init() method of the codeCabinet object, which is an instance of the
CodeCabinet class defined in CodeCabinet.js, which as I said we’ll be getting to pretty soon.

A Dialog for Every Occasion
In this application are a number of pop-up dialog boxes, all implemented by using the Dialog
dijit. This gives us a nice lightbox effect, and the dialog fading into view, all without lifting a
finger. Each of the following dialogs is fairly similar, and requires just simple markup, as you
can see here:

<!-- Add Category dialog. -->
<div dojoType="dijit.Dialog" id="AddCategoryDialog"
title="Add Category" style="display:none;">
Please enter the name of the category to add:

<input type="textbox" dojoType="dijit.form.TextBox"
id="AddCategoryName">

<button dojoType="dijit.form.Button"
iconClass="icons iconAddCategory"
onClick="codeCabinet.addCategory();">
Add

</button>
</div>

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET276

That’s the dialog you see when you click the Add Category button. It looks like what you
see in Figure 6-7.

Figure 6-7. The Add Category dialog box

This is of course just simple markup, with the additional usage of TextBox and Button
dijits rather than the standard HTML form elements. This keeps the UI theme consistent,
and they frankly just look better if you ask me! Note that the style attribute has a setting of
display:none, so that the dialog box is initially not visible, not until we tell the Dijit engine to
show it.

One interesting bit is the iconClass attribute on the button. This is what puts the little
green plus sign on the button. The style classes are applied here (two of them are being
applied, in case you’re unfamiliar with the syntax here):

.icons {
background-repeat : no-repeat;
background-position : 0px;
width : 20px;
height : 18px;
text-align : center;

}

. . . and . . .

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 277

.iconAddCategory {
background-image : url("../img/icon_category_add.gif");

}

The first class is common to all buttons (including the toolbar buttons). It sets up the style
for the icon, which is drawn on the button by making it the background image of the element.
The second class is the actual icon to use. By splitting these two up, we can abstract out the
common style settings and not repeat them in multiple classes. Then the part that actually dif-
fers, the image itself, can be set up in its own style class (when we look at styles.css, you’ll
see that there are a whole bunch more of these, one for each image, in fact).

The button makes a call to the addCategory() method of the codeCabinet object, which
is an instance of the CodeCabinet class, the JavaScript class that houses all the application
logic. That’s coming, don’t you worry! Notice that no information is passed at this point. The
addCategory() method will, as I’m sure you can guess, take responsibility for grabbing the
value out of the TextBox here.

The next dialog box we encounter is the Confirm Deletion dialog. This dialog serves a
dual purpose in that it enables us to confirm deletion of a category or a snippet, the difference
being nothing but some verbiage.

<!-- Confirm Delete dialog. -->
<div dojoType="dijit.Dialog" id="ConfirmDeleteDialog"
title="Confirm Deletion" style="display:none;">
Are you sure you want to delete the ?

<center>
<button dojoType="dijit.form.Button"
onClick="codeCabinet.confirmDelete(true);">
Yes

</button>

<button dojoType="dijit.form.Button"
onClick="codeCabinet.confirmDelete(false);">
No

</button>
</center>

</div>

The confirmDeleteType <div> is populated with the word snippet or category as appropri-
ate, and you’ll see the code that does that later. When the Yes button is clicked, a call is made
to the confirmDelete() method of the codeCabinet object, passing it a value of true. Similarly,
when No is clicked, that same method is called but false is passed in that case. The code is
smart enough to know what’s being deleted and act accordingly, as you’ll see.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET278

Next is a dialog that appears if, when adding a category, the name you enter is already
in use:

<!-- Duplicate Category dialog. -->
<div dojoType="dijit.Dialog" id="DuplicateCategoryDialog"
title="Duplicate Category" style="display:none;">
A category with that name already exists.

<center>
<button dojoType="dijit.form.Button"
onClick="dijit.byId('DuplicateCategoryDialog').hide();">
Ok

</button>
</center>

</div>

This is purely an informational dialog, so there are no entry fields or decision buttons,
just a single OK button. When clicked, it hides the dialog by asking the Dijit engine for a refer-
ence to the dialog and then calling the hide() method. We get that reference by calling
dijit.byId(), passing the ID of the dijit we want a reference to. This is just like dojo.byId(),
which gets a reference to a DOM node, but is specific to dijits.

The next dialog is the one you’ll see if Gears isn’t available, whether that means it isn’t
installed or is simply deactivated:

<!-- No Gears dialog. -->
<div dojoType="dijit.Dialog" id="NoGearsDialog"
title="No Gears" style="display:none;">
Google Gears does not appear to be installed.

Please go <a href="http://gears.google.com/➥

?action=install&message=Google Gears for Dojo Code Cabinet installation">HERE
to install it, then reload this application.

You can still use this application, but data WILL NOT
be saved between browser sessions!

<center>
<button dojoType="dijit.form.Button"
onClick="dijit.byId('NoGearsDialog').hide();">
Ok

</button>
</center>

</div>

This dialog appears as shown in Figure 6-8.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 279

Figure 6-8. The No Gears dialog box

This is another information-only dialog, more or less, but it does have a link you can click.
When you click it, you are transported to the Gears web page, which guides you through
installing Gears. Other than that, it’s just like the dialog seen when you try to add a category
with a name that already exists, in that it’s purely informational in nature.

The final dialog is one you’ll see if you enter invalid search criteria, that is, if you forget to
enter anything before you click the Search button:

<!-- Bad Search Criteria dialog. -->
<div dojoType="dijit.Dialog" id="BadSearchCriteriaDialog"
title="Bad Search Criteria" style="display:none;">
To perform a search you must specify at least one search criteria.

<center>
<button dojoType="dijit.form.Button"
onClick="dijit.byId('BadSearchCriteriaDialog').hide();">
Ok

</button>
</center>

</div>

It’s another simple informational dialog, much like you’ve seen a bunch of times already,
so I won’t go into it here.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET280

We’ll just move on to some new material: the beginning of the markup that makes up the
application as you see it, not counting the dialogs of course. This includes the beginning of
our layout container, and the construction of the toolbar along the top:

<!-- Main layout container. -->
<div dojoType="dijit.layout.LayoutContainer" id="mainDiv">

<!-- Toolbar. -->
<div dojoType="dijit.layout.ContentPane" layoutAlign="top"
class="cssToolbar">
<div dojoType="dijit.Toolbar">
<div dojoType="dijit.form.Button"
iconClass="icons iconAddCategory"
onClick="codeCabinet.addCategoryClicked();"
showLabel="true">Add Category</div>

<div dojoType="dijit.form.Button" id="toolbarDeleteCategory"
iconClass="icons iconDeleteCategory"
onClick="codeCabinet.deleteCategoryClicked();"
showLabel="true" disabled="true">Delete Category</div>

<div dojoType="dijit.form.Button" id="toolbarAddSnippet"
iconClass="icons iconAddSnippet"
onClick="codeCabinet.addSnippetClicked();"
showLabel="true" disabled="true">Add Snippet</div>

<div dojoType="dijit.form.Button" id="toolbarDeleteSnippet"
iconClass="icons iconDeleteSnippet"
onClick="codeCabinet.deleteSnippetClicked();"
showLabel="true" disabled="true">Delete Snippet</div>

</div>
</div>

First we have the beginning of our layout, the LayoutContainer dijit. This is going to
enable us to have a border-type layout, meaning we can define some ContentPane elements
as children of it and tell the LayoutContainer to display each on the top, left, right, or bottom.
Then, we see this in use on the very next tag: the ContentPane that will contain our Toolbar.
The layoutAlign attribute declares that this ContentPane should be displayed at the top of the
LayoutContainer, running entirely across it horizontally.

The Toolbar itself is easy to define: you nest a series of Button dijits within it and you get a
toolbar! Each Button uses the iconClass attribute to put images on them, and the styles for
these attributes have been discussed already. The content of the tag itself is the text label of
the Button. The showLabel attribute is set to true in order for the text to appear. Each button
has an onClick event handler defined, which simply calls the appropriate method of the
codeCabinet object that we’ll get to after we’re done with index.htm.

You can also see usage of the Separator dijit, which gives us a vertical line dividing the
buttons dealing with categories from the buttons dealing with snippets.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 281

The Main Content
The main content, simply put, is everything below the toolbar. At the highest level, we have
two sides: the left, where the tree of categories lives, and the right, where the snippet informa-
tion tabs and the search UI parts are. If you played with the application, you may have noticed
that you can resize the left and right all you like by dragging the sizer bar around (and likewise
between the tabbed area and the search area). This is accomplished by means of the SplitCon-
tainer dijit, which is created like this:

<!-- Main content. -->
<div dojoType="dijit.layout.SplitContainer" persist="true"
orientation="horizontal" sizerWidth="8" activeSizing="true"
layoutAlign="client">

The persist attribute is a really neat thing. Basically, when set to true, it tells Dojo to
remember, via a cookie, the split location. In other words, if you resize the tree area, the size
you choose will persist between browser sessions, for the life of that cookie at least. That’s a
really nifty feature to have available just by setting one lousy little attribute!

The orientation attribute tells the dijit whether the split runs vertically or horizontally. In
the horizontal orientation, as this one is, the sections of the container run across the screen.
We’ll see another SplitContainer later, the one the tabs and the search UI live in, that is split
vertically.

The sizerWidth attribute tells the SplitContainer how wide, in pixels, the bar you drag
around should be. A value of 8 seemed not too small and not too wide, so I think Little Red
Riding Hood would approve.

The activeSizing attribute tells the container to resize its contents as you drag the sizer
bar. When set to false, the container won’t resize until you release the mouse button. How you
set this will depend on the contents. In some cases, your UI may not look right or possibly
even work quite right when sized actively, but in this application neither is a concern, so active
sizing it is.

Finally, the layoutAlign attribute has more to do with the parent LayoutContainer than
the SplitContainer in a sense. It is saying here that this SplitContainer should fill all the
remaining space of the parent container, the LayoutContainer. This is exactly what we want
when you think about it: the Toolbar takes up 24 pixels at the top of the browser window, and
this SplitContainer, which is going to contain the tree, the tabs, and everything else, should
take up the rest, hence layoutAlign set to client.

Defining the Tree
Next up is the category Tree. Even before that, though, is the fact that the Tree itself is con-
tained within a ContentPane dijit:

<!-- Category tree. -->
<div dojoType="dijit.layout.ContentPane"
class="cssContentPane" sizeShare="3">
<div dojoType="dijit.Tree" store="codeCabinet.categoriesStore"
labelAttr="label" label="Snippet Categories">
<script type="dojo/method" event="onClick" args="item">
codeCabinet.categoryClicked(item);

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET282

</script>
</div>

</div>

This is where you get some exercise in visualization! Imagine the browser window and try
to picture the layout we have so far. We have a LayoutContainer. A LayoutContainer has some
number of other layout components within it, arranged with a border style. So, to start, we
have a Toolbar on the top border. Below that is a SplitContainer, which is a type of layout con-
tainer dijit, so it fits the bill nicely. A SplitContainer lays out some number of other container
dijits either vertical or horizontally. This one lays them out horizontally. So, in the preceding
snippet we have another container dijit, a ContentPane specifically. That means that the next
container dijit we add will simply sit next to this one, going left to right across the screen.

Do you have that layout hierarchy in your head so far? Good!
So, this ContentPane now is where our Tree dijit will be. But first we should talk about the

sizeShare attribute on the ContentPane itself. In simplest terms, this is the percentage of the
SplitContainer that this ContentPane will take up. But, there is no specific unit for this value,
so really what you’re dealing with is a ratio. In other words, two ContentPanes, one with a
sizeShare of 4 and the other with 6, will wind up occupying the same amount of space, relative
to each other, as if you used values of 40 and 60 because the ratio of 4 to 6 is the same as 40 to
60. So, if you’re right now guessing there’s another ContentPane after this one with a sizeShare
value of 7, you’d be right, which means you got it!

The Tree itself is a simple instantiation, except for the new store attribute that we talked
about briefly earlier. The data store that this Tree uses is an instance variable of the CodeCabinet
class. The labelAttr tells us which attribute of the Item from the data store provides the label
to be displayed in the Tree.

This is the first time you’re seeing the <script> tag usage on a dijit, though. It’s pretty sim-
ple: all dijits have events that you can react to, be they user-triggered, as is the case here, or
more lifecycle-type events. In either case, you can have a <script> tag nested inside the <div>
that the dijit is created from to handle these events. The type attribute should be set to
dojo/method in this case, and then the event attribute names the event you wish to handle,
onClick in this case. The args attribute tells us the name of the argument(s) that will be passed
into the code you write here, and the exact meaning is dependent on the event.

In this case, for example, the onClick event results in an Item object from the data
store being available. By setting args to the value item, we make a variable named item avail-
able to the code within the <script> tag, which in this case we simply pass along to the
categoryClicked() method of the codeCabinet object. You’ll see this event code paradigm a
few more times, but this is the basic idea behind it in all cases.

Splitting the Difference: SplitContainer
Now we’re inside the ContentPane that houses all the content to the right of the Tree, which
means the tabs and the search components. These two sections again use the resizable split
paradigm, which means another SplitContainer:

<!-- Content/search split container. -->
<div dojoType="dijit.layout.SplitContainer" persist="true"
orientation="vertical" sizerWidth="8" activeSizing="true"
sizeShare="7">

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 283

<!-- Content. -->
<div dojoType="dijit.layout.ContentPane" style="padding-top:5px;"
sizeShare="6">

As I hinted at earlier, this one lays out its children vertically, and the sizeShare is set to 7,
giving us a 30/70 split between the ContentPane the Tree is in and the SplitContainer every-
thing else is in. The actual content, which really means the tabbed section, is in a ContentPane
as well.

■Note Interestingly, I could have simply had the tabs themselves in place of the ContentPane because a
TabContainer is a type of container dijit too. However, I found that I couldn’t quite get the padding to work as
I wanted: the tabs themselves bumped up against the toolbar and the sizer bar between them and the tree
area, which I just didn’t think looked as good. By housing the TabContainer inside this TabContainer, I was
able to apply the cssContentPane style class to it and get that padding. I thought it was worth pointing out
the reason I took the approach I did and letting you know it would have been possible to do it the other way
too (aside from the padding issue, that is).

How the Tabs Are Defined
The tabs themselves are nothing but a TabContainer dijit:

<!-- Tabs. -->
<div dojoType="dijit.layout.TabContainer" id="tabs">

Each tab has a bit of markup to create it. I’m going to go through these relatively quickly
because they are for the most part simple HTML, and they all are kind of similar in many
ways. But I’ll point out the interesting bits for sure as we go.

■Note Not all of the dijits are assigned IDs, but the tabs are. This is because in order to interact with the
tabs later, which is something we’ll need to do, it has to be possible to get a reference to them. Because we
aren’t creating these programmatically, in which case we could just hold on to the reference we get when a
tab is created, we have to have a way to request a reference to them, and an ID allows that, just as an ID on
a DOM node does.

The Snippets tab is up first:

<!-- Snippets list tab. -->
<div dojoType="dijit.layout.ContentPane" title="Snippets"
class="cssContentPane" id="tabSnippets">
<div id="snippetsGrid" dojoType="dojox.Grid"
structure="codeCabinet.gridLayout"

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET284

class="cssSnippetsGrid">
<script type="dojo/method" event="onRowClick" args="e">
codeCabinet.snippetClicked(e.rowIndex);

</script>
</div>
<div id="noSnippetsInCategory" style="display:none;">
<center>

This category currently has no snippets in it.

</center>
</div>
<div id="noCategorySelected">
<center>

Select a category to view the snippets in it.

</center>
</div>

</div>

The content for each tab within the TabContainer is contained within a ContentPane. This
one is assigned an ID because we’ll need to be able to flip to it programmatically, so we’ll need
to be able to get a reference to it, which means it has to have an ID. (There are probably other
ways, such as iterating over the children of the TabContainer looking for the one we want, but
that sounds dangerously like effort to me!)

Within the ContentPane is a <div> with a dojoType of dojox.Grid, so this will become our
grid where the snippets in the current category are listed. The grid is told what columns it has
by assigning a structure to it with the structure attribute. Here, it’s referencing the gridLayout
field of the codeCabinet object, and you’ll see what that’s all about shortly.

Note that initially the grid is visible, but it will be immediately hidden when the applica-
tion starts up. This is important because if you look down, you’ll see two other <div>s, each
with a simple message as its content, and initially only the last one will be visible (because the
grid, and the <div> with the ID noSnippetsInCategory, has its display style attribute set to
none). That’s how the two messages are shown instead of the grid, or the grid is shown instead
of either of the messages: by manipulating which of the three has a display value other than
none. Unfortunately, in IE7, if the grid is hidden initially via a style setting, the grid itself does-
n’t work after that point. I’m frankly not sure why that is; in Firefox it works fine that way, so
chalk it up to an IE peculiarity (it’s not as if it’s the first one)!

You can again see how the event handler code is attached to the grid. This is to handle
clicking of a snippet in the grid. The args value of e is an event object specific to the grid,
which conveys some information about the state of the grid at the time the event fires. For this
case, we care only about the rowIndex value, which is the number of the row (0-based) that
was clicked. We’ll need this in the snippetClicked() method to relate it back to the data store
for the grid.

Speaking of which, note that the grid is not initially bound to a data store. This binding
will be done dynamically when a category is clicked, but that’s coming soon to a theater near
you!

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 285

For Your Information: The Info Tab
The Info tab’s markup is pretty straightforward, and here it is:

<!-- Info tab. -->
<div dojoType="dijit.layout.ContentPane" title="Info"
class="cssContentPane" id="tabInfo">
<form id="infoForm">
<table border="0" cellpadding="0" cellspacing="4">
<tr>
<td nowrap>Snippet Name: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="infoName">

</td>
</td>
<tr>
<td nowrap>Description </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="infoDescription">

</td>
</tr>
<tr>
<td nowrap>Author: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="infoAuthor">

</td>
</tr>
<tr>
<td nowrap>eMail </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="infoEMail">

</td>
</tr>
<tr>
<td nowrap>Web Link </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="infoWebLink">

</td>
</tr>
<tr>
<td nowrap> </td>
<td nowrap>
<button dojoType="dijit.form.Button" id="btnInfoSave"

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET286

iconClass="icons iconSave" disabled="true"
onClick="codeCabinet.saveSnippet();">
Save

</button>
</td>

</tr>
</table>

</form>
</div>

It’s just another ContentPane, with a <table> in it. Within the table are a bunch of text
labels next to TextBox dijits. Each TextBox has an ID so that we can reference them when the
Save button is clicked, which you can see calls the saveSnippet() method of the codeCabinet
object. Nothing needs to be passed. The method takes care of getting all the field values, so
that’s really all there is to it.

For Code Monkeys: The Code Tab
The Code tab is also very simple (this is a common theme for all of the tabs, frankly, but that’s
the beauty of Dijit: it saves you from having to write a bunch of complex code or markup):

<!-- Code tab. -->
<div dojoType="dijit.layout.ContentPane" title="Code"
class="cssContentPane">
<form id="codeForm">
<div class="cssEditor">
<textarea dojoType="dijit.Editor"
width="100%" height="90%" id="codeArea"></textarea>

</div>
<button dojoType="dijit.form.Button" id="btnCodeSave"
iconClass="icons iconSave" disabled="true"
onClick="codeCabinet.saveSnippet();">
Save

</button>
</form>

</div>

Another ContentPane, this time with a <textarea> in it that will be turned into an Editor
dijit by virtue of its dojoType setting of dijit.Editor. This gives us a nice rich-text editor for
entering code, so we can do some highlighting, listing, aligning, all that good stuff. A simple
Button is again present for saving, and it calls the same method as every other Save button
does, so I may well not mention it after this!

I Never Took Notes in School: The Notes Tab
For the sake of completeness, I’ll show the code for the Notes tab here, but it is essentially
identical to the Code tab, aside from some different IDs and such:

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 287

<!-- Notes tab. -->
<div dojoType="dijit.layout.ContentPane" title="Notes"
class="cssContentPane">
<form id="notesForm">
<div class="cssEditor">
<textarea dojoType="dijit.Editor"
width="100%" height="90%" id="notesArea"></textarea>

</div>
<button dojoType="dijit.form.Button" id="btnNotesSave"
iconClass="icons iconSave" disabled="true"
onClick="codeCabinet.saveSnippet();">
Save

</button>
</form>

</div>

One thing worth noting that I haven’t mentioned before, though, is that all of these tabs
have their fields enclosed in a <form> element. That’s so I can call reset() on that form later to
blank out all the fields. The dijits react properly to that method call, so it’s a simple way to
reset all the fields when entering a new code snippet.

The Keywords Tab
The Keywords tab is a pretty repetitive piece of HTML, as you can see for yourself:

<!-- Keywords tab. -->
<div dojoType="dijit.layout.ContentPane" title="Keywords"
class="cssContentPane">
<form id="keywordsForm">
<table border="0" cellpadding="0" cellspacing="4"
width="90%" align="center">
<tr><td colspan="2" align="center">
The following keywords are associated with this snippet:

</td></tr>
<tr>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword0">

</td>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword1">

</td>
</tr>
<tr>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET288

id="keyword2">
</td>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword3">

</td>
</tr>
<tr>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword4">

</td>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword5">

</td>
</tr>
<tr>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword6">

</td>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword7">

</td>
</tr>
<tr>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword8">

</td>
<td align="center">
<input type="textbox" dojoType="dijit.form.TextBox"
id="keyword9">

</td>
</tr>
<tr><td colspan="2" align="center">
<button dojoType="dijit.form.Button" id="btnKeywordsSave"
iconClass="icons iconSave" disabled="true"
onClick="codeCabinet.saveSnippet();">
Save

</button>
</td></tr>

</table>
</form>

</div>

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 289

It’s also not very interesting from the standpoint of understanding it here. It’s just some
TextBox dijits, one for each of the ten keywords we allow to be associated with a snippet, plus
the ubiquitous Save button at the bottom. There are probably different, and maybe even bet-
ter, ways of implementing these keywords in terms of UI design, but I felt this got the job done
just fine. I figured ten keywords should be sufficient for nearly any situation, but hey, if you
think more would be better, please do feel free to expand the UI and make it more dynamic
(maybe a button to add a new keywords field, enabling you to therefore have an unlimited
number of keywords?).

The Search Markup
We’re nearly done with index.htm now. Only one big chunk of markup remains, and that’s the
search-related markup:

<!-- Search. -->
<div dojoType="dijit.layout.ContentPane" sizeShare="6">

<div dojoType="dijit.layout.SplitContainer" persist="true"
orientation="horizontal" sizerWidth="8" activeSizing="true"
layoutAlign="client">

<!-- Search form. -->
<div dojoType="dijit.layout.ContentPane"
class="cssContentPane" sizeShare="6">
<form id="searchForm">
<table border="0" cellpadding="0" cellspacing="4">
<tr><td colspan="2" nowrap>
<u>Search</u>

</td></tr>
<tr>
<td nowrap>Keywords: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="searchKeywords" disabled="true">

</td>
</td>
<tr>
<td nowrap>Code: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="searchCode" disabled="true">

</td>
</tr>
<tr>
<td nowrap>Name: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET290

id="searchName" disabled="true">
</td>

</tr>
<tr>
<td nowrap>Description: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="searchDescription" disabled="true">

</td>
</tr>
<tr>
<td nowrap>Author: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="searchAuthor" disabled="true">

</td>
</tr>
<tr>
<td nowrap>Notes: </td>
<td nowrap>
<input type="textbox" dojoType="dijit.form.TextBox"
id="searchNotes" disabled="true">

</td>
</tr>
<tr>
<td nowrap> </td>
<td nowrap>
<button dojoType="dijit.form.Button" disabled="true"
iconClass="icons iconSearch" id="btnSearch"
onClick="codeCabinet.searchClicked();">
Search

</button>

<button dojoType="dijit.form.Button" disabled="true"
iconClass="icons iconDeleteSnippet" id="btnClear"
onClick="codeCabinet.searchClearClicked();">
Clear

</button>
</td>

</tr>
</table>

</form>
</div>

<!-- Search results. -->
<div dojoType="dijit.layout.ContentPane" class="cssContentPane"

sizeShare="4">

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 291

<div id="searchGrid" dojoType="dojox.Grid"
structure="codeCabinet.gridLayout">
<script type="dojo/method" event="onRowClick" args="e">
codeCabinet.searchResultClicked(e.rowIndex);

</script>
</div>
<div id="searchResultsMessage">
<center>

Search results will appear here

(Hint: select a category to do a search)

</center>
</div>
<div id="searchNoResults" style="display:none;">
<center>

No snippets were founding matching your search criteria

</center>
</div>

</div>

</div>

</div>

We start with a ContentPane with a sizeShare value of 6. This is the left side of the Split-
Container that contains all the search-related stuff. This way, the user can choose to expand
the area containing the search results, but by default it starts with 40 percent of the Split-
Container.

Next is a ContentPane that contains the actual search criteria form. This is pretty straight-
forward stuff now, especially given our look at the Info tab, so I will leave it to you to look it
over. Note that the disabled attribute is set to true initially for all the fields. This is because
they become active only after a category is selected, since searches are constrained to a single
category. (And if you think that sounds like an opportunity for a suggested exercise, give your-
self a cigar!)

The second ContentPane contains the search results grid. It looks an awful lot like the
snippets grid we saw earlier. The same sort of event handler code is also present, but the call
this time goes to codeCabinet.searchResultsClicked(). There are again two additional <div>s
that contain simple messages: one seen initially when no search has been performed, and the
other shown when a search is done that finds no matching snippets. They are hidden and
shown by manipulating the display style attribute, just like those we saw on the Snippets tab
earlier.

With the markup fully examined at this point, let’s have a quick look at the style sheet for
this application and then dive right into the real code behind this thing.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET292

Writing styles.css
The styles.css file is the style sheet for the application. The meat of it, the styles that deal
with the button icons, was already discussed. There’s not a whole lot more in it, frankly, but
let’s have a look just the same, in Listing 6-1.

Listing 6-1. styles.css, the Main Style Sheet for the Application

/* Size main DIV to take up the whole browser viewport. */
html, body, #mainDiv {
width : 100%;
height : 100%;
border : 0;
padding : 0;
margin : 0;
font-size : 10pt;

}

/* Styles for toolbar icons. */
.icons {
background-repeat : no-repeat;
background-position : 0px;
width : 20px;
height : 18px;
text-align : center;

}
.iconAddCategory {
background-image : url("../img/icon_category_add.gif");

}
.iconRenameCategory {
background-image : url("../img/icon_category_rename.gif");

}
.iconDeleteCategory {
background-image : url("../img/icon_category_delete.gif");

}
.iconAddSnippet {
background-image : url("../img/icon_snippet_add.gif");

}
.iconDeleteSnippet {
background-image : url("../img/icon_snippet_delete.gif");

}
.iconSearch {
background-image : url("../img/icon_search.gif");

}
.iconSave {
background-image : url("../img/icon_save.gif");

}

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 293

/* Styles for the content panes within the layout. */
.cssContentPane {
padding-top : 5px;
padding-left : 5px;

}

/* Style for the toolbar container. */
.cssToolbar {
height : 24px;

}

/* Style for the snippets grid. */
.cssSnippetsGrid {
width : 97%;
height : 90%;
border : 1px solid #000000;

}

/* Style for the code and notes editor. */
.cssEditor {
border : 1px solid #000000;
width : 97%;
height : 80%;
overflow : hidden;

}

/* Style for the search results grid. */
.cssSearchGrid {
width : 98%;
height : 96%;
border : 1px solid #000000;

}

The first bit of code sets the same style on the <html> and <body> tags, as well as the
mainDiv element. This code is responsible for ensuring that the UI takes up the entire area
available in the browser, removes all padding and margin space, and sets a default font size
across the entire UI.

After that are the styles for the toolbar buttons and buttons throughout the UI. Once
again, I think this has been explained well enough already, but note that there are a number of
styles, one for each button in fact, with a different icon image for each. That’s all there is to it:
just apply the correct style class, plus the icon class for all of them, and you get a nice picture
on the buttons. Pretty sweet, actually!

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET294

After that is the cssContentPane class, which is applied to nearly all the ContentPane dijits.
This class ensures that there is some padding space at the top and on the left. This is apparent
when you look at the UI on all the tabs. If this class wasn’t present, text would bump right up
against the tabs, and right up on the left of the screen and on the divider between the tree and
tabs, which just plain doesn’t look very good. This style class takes care of that.

The cssToolbar class is used simply to set the proper height on the ContentPane contain-
ing the toolbar.

The cssSnippetsGrid class is applied to the grid where the snippets in a category are
listed. I wanted the grid to take up most of the space available to it and to resize when the win-
dow was resized, so percentage-based values just slightly below 100 percent in each direction
were the answer. I simply eyed up what seemed to look pretty good to me; there’s no fancy
theory behind it! Note too that the grid by default doesn’t have a border, so I apply one with
this style. The cssSearchGrid class is almost identical, just with some slightly different per-
centage values, again pretty much arbitrary, and that class is of course applied to the search
results grid on the bottom.

Finally, the cssEditor class is applied to both the code and notes editors. As with the grid,
I felt these editors looked better with a border around them, so there is one applied there. I
also found that I had to set overflow to hidden to get things to display properly. Otherwise, the
editor wound up flowing down over the Save button, making it unclickable.

That’s the style sheet in its entirety. Nothing too unusual, I dare say. Now we move into the
JavaScript of the application, where all the really fun stuff is, in my opinion!

Writing CodeCabinet.js
Note that in some cases I discuss this code in an order different from its actual physical loca-
tion in the code. This makes it possible to discuss some parts of the code in relation to other
parts in a way that will make sense, even though those code segments aren’t necessarily
adjacent.

The CodeCabinet.js file contains, unsurprisingly, the CodeCabinet class, which is where
all the magic happens. It’s where all the client-side coding lives (aside from the event handler
script in index.htm of course, and the little bit of bootstrap code early on). A single instance of
the class, a reference to which is stored in the global codeCabinet variable, is created after the
class definition. The class diagram for CodeCabinet is shown in Figure 6-9.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 295

Figure 6-9. UML class diagram of CodeCabinet class

When we look at the code, we see that there are a bunch of instance fields at the top:

/**
* The main class that is the core code of the application.
*/
function CodeCabinet() {

/**
* Declare a custom store for categories so we can implement save.
*/
dojo.declare("CustomCategoriesItemFileWriteStore",
dojo.data.ItemFileWriteStore, {
_saveCustom: function(saveCompleteCallback, saveFailedCallback) {

// Abort if Gears isn't installed.
if (!window.google || !google.gears) {
saveCompleteCallback();

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET296

return;
}

// Gears is available, persist categories. Do this by iterating over
// the array of items in this store and inserting each into the
// Gears database. Note that this always starts with deleting all
// categories, so if this store is empty, we're good to go then.
// While this isn't efficient, it does make it easy: no worries about
// what got added, modified or deleted, it's just all written fresh.
var db = google.gears.factory.create("beta.database");
db.open("DojoCodeCabinet");
db.execute("DELETE FROM categories");
var items = this._getItemsArray();
if (items.length > 0) {
for (var i = 0; i < items.length; i++) {

db.execute("INSERT INTO categories VALUES (?, ?, ?)", [
items[i].id, items[i].name, items[i].type

]);
}

}

saveCompleteCallback();

}
}

);

The first instance field is a custom data store called CustomCategoriesItemFileWriteStore.
Recall that ItemFileWriteStore is a data store that allows modifications to its data. Also recall
that saving data isn’t something the existing data stores do for you by default; you have to pro-
vide that mechanism. The way you do that is to extend ItemFileWriteStore, and the way you
extend ItemFileWriteStore is to use the dojo.declare() function.

As part of that function call, we need to override the _saveCustom method, which is what
the store will call when we call the save() method. This gives us a hook into the store, to be
able to implement our save however we wish.

In this case, we’re working with Gears. So, the first thing we need to do is ensure that
Gears is available. We deal with this in the init() method, but recall that the dialog box said
the application should still work even without Gears; there just won’t be a way to persist data.
That’s exactly what the first if check does. If Gears isn’t defined, this method is essentially
complete, save for one small task: we need to call saveCompleteCallback(), a method of the
ItemFileWriteStore, in order for the lifecycle of the save() call to be completed properly. But
most important, we’re not doing a thing with Gears at this point. So in other words, the rest of
the application works exactly as it always does, but when save() is called and Gears is not
available, the application simply doesn’t save the data. Everything else works as usual, though,
so in effect the application works without Gears, just as the dialog promised it would!

Now, assuming Gears is available, we have to persist the categories, being as this is a cus-
tom ItemFileWriteStore for the categories. I took the simplest possible approach here and
decided that anytime a save is done, I will simply delete all the categories and save them all

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 297

again. This is also done for the snippets. This is in no way, shape, or form the best approach!
It’s of course inefficient. However, it’s also about the easiest way to implement things, and I
like simplicity whenever it’s possible.

As you can see, we execute a SQL delete query and then call this._getItemsArray() to get
the array of Items in the data store. We then iterate over that array and execute a SQL insert
query for each. When that iteration is complete, we call saveCompleteCallback() because
again, this completes the save lifecycle properly. And that’s it—our categories are now per-
sisted to our local database.

Following that is another custom data store, this time for the snippets. This is, by and
large, the same as the custom store for the categories:

/**
* Declare a custom store for snippets so we can implement save.
*/
dojo.declare("CustomSnippetsItemFileWriteStore",
dojo.data.ItemFileWriteStore, {
_saveCustom: function(saveCompleteCallback, saveFailedCallback) {

// Abort if Gears isn't installed.
if (!window.google || !google.gears) {
saveCompleteCallback();
return;

}

// Gears is available, persist snippets. Do this by iterating over
// the array of items in this store and inserting each into the
// Gears database. Note that this always starts with deleting all
// snippets in the current category, so if this store is empty, we're
// good to go then. While this isn't efficient, it does make it easy:
// no worries about what got added, modified or deleted, it's just all
// written fresh.
var db = google.gears.factory.create("beta.database");
db.open("DojoCodeCabinet");
db.execute("DELETE FROM snippets WHERE category=" +
codeCabinet.categoriesStore.getValue(
codeCabinet.currentCategory, "id")

);
var items = this._getItemsArray();
if (items.length > 0) {
for (var i = 0; i < items.length; i++) {
db.execute("INSERT INTO snippets VALUES " +
"(?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", [
items[i].id, items[i].category, items[i].name,
items[i].description, items[i].author, items[i].eMail,
items[i].webLink, items[i].code, items[i].notes,
items[i].keywords

]);

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET298

}
}

saveCompleteCallback();

}

}
);

In fact, the only substantive difference is the delete query, which has a where clause in
order to delete only the snippets for the current category. (Although I didn’t code this as effi-
ciently as I could have, this was one place I didn’t take the least efficient route: deleting all
snippets in all categories. I thought that would have just been overkill!). The other difference
is the insert query, which has more parameters to it.

One other thing worth mentioning, because this is the first time it’s coming up, is the way
I get the ID of the current category. Anytime you want to get the value of a field of an Item in a
data store, you need to use the getValue() method of the data store rather than access the
fields directly. This is because the data store can do anything it wants with the values inter-
nally; these values don’t have to look anything like the values you’d expect. Maybe they are
being compressed, or encoded, or anything else. By using getValue(), you will get back the
actual value you know is there, not the internal representation of the data as it might appear.
In fact, I found a couple of instances where things like simple ID integer values didn’t give me
an actual integer value back if I accessed the fields directly, and code would break with an
error because of it. Using getValue() keeps that from happening.

The getValue() method works in a way that might not be as intuitive as you’d like: you
call it on the store that contains the Item, you tell it what attribute of the Item you want, and
you actually have to pass it the Item itself! That might seem a little strange at first—it’s sort of
like saying, “Hey, mister bank teller, can you tell me how much money is in my wallet? And oh
yeah, here’s my wallet!” You mean to tell me you can’t just look in the wallet and see for your-
self? As it turns out, no you can’t, because maybe there’s some sort of foreign currency in there
that only the bank teller knows how to convert to a dollar value that you’ll understand.

I think it kinda makes sense, but it may seem a little off at first. I suppose it’s also kinda
irrelevant whether it makes sense to you: that’s the way it is! If it’s just a little bit of funky syn-
tax, I think we can cope. You’ll see this done a bunch of times throughout this code, and now
you should understand what it’s all about.

The category tree begins empty, so we need to have an empty data store to begin with. Of
course we know it’s going to be an instance of the CustomCategoriesItemFileWriteStore we
created earlier, and here it is:

/**
* The store for the category tree.
*/
this.categoriesStore = new CustomCategoriesItemFileWriteStore({data:{
label : "name", identifier : "id", items : [
]

}});

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 299

As you can see, the structure of the store is defined such that the name attribute of an Item
gives the Tree the label to display, and the unique identifier of an Item is the id field. The
items array is empty to begin with, just as you’d expect. You’ll see that the init() method will
take care of displaying any categories that were persisted to the Gears database.

For each category, there will also be a data store of snippets. These stores will be, err,
stored, in the snippetsStores array:

/**
* The stores for the snippets grid. Each category will be its own
* store within this collection.
*/
this.snippetsStores = new Array();

■Note If you’re wondering why I didn’t choose to have a single data store for all snippets, and just use the
data store query capabilities, the simple answer is I couldn’t get it to work! I spent quite a few hours on it,
asked some questions in various support forums and the Dojo IRC channel, but nothing was helpful. I still
don’t know whether I was doing something wrong, or there are simply bugs/limitations somewhere in Dojo
that made it not work. In the end, having separate stores was the only way I could get the code to work. So,
if you’re wondering architecturally why I made this choice, I didn’t; I had no real choice in the end! Such is
the danger of using DojoX components, though: when they work, they’re usually really good, but when they
don’t, it can be frustrating.

A grid also needs a model, essentially an interface between a data store and the data
model that the grid will use to be populated. We’re going to set this dynamically in code later,
but the grid will always reference the snippetsStoreModel, which is a field of the CodeCabinet
class as well:

/**
* The model for the snippets grid. This will wrap one of the stores in the
* snippetsStores collection.
*/
this.snippetsStoreModel = null;

/**
* The layout for the snippets and search grids.
*/
this.gridLayout = [{
cells: [[
{ name : "Snippet Name", field : "name", width : "auto" },
{ name : "Description", field : "description", width : "auto" }

]]
}];

In addition, the grid needs to know what its layout looks like, that is, what columns it has,
how they should be sized, that sort of thing. That’s where the gridLayout field comes in. This

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET300

layout is used by both the snippets grid and the search results grid. We have our array of cells,
or columns really, despite the attribute name. Each has a name, which is again maybe not the
best name for the attribute because that’s actually the label that will be shown in the column
header. The field attribute declares what field of an Item in the data store that column’s data
will come from. Finally, the width attribute, when set to auto, will allow the grid to size the col-
umn automatically, according to the size of the data contained within it.

The search results grid has its own data store and model, because those are necessarily
different from the ones for the snippets grid:

/**
* The store for the search grid.
*/
this.searchStore = new dojo.data.ItemFileWriteStore({data:{
label : "name", identifier : "id", items : []

}});

/**
* The model for the search grid.
*/
this.searchStoreModel = null;

We wrap up the instance fields of the CodeCabinet class with three fields that give us infor-
mation about what is currently going on:

/**
* The item of the currently selected category.
*/
this.currentCategory = null;

/**
* The currently selected catalog's snippets store.
*/
this.currentSnippetsStore = null;

/**
* The item of the currently selected code snippet.
*/
this.currentSnippet = null;

Every time a category is clicked in the Tree, a reference to the appropriate Item from
the categories data store is stored in currentCategory. At the same time, a reference to the
appropriate data store for that category’s snippets is stored in currentSnippetsStore.
Finally, when a snippet is selected from the snippets grid, a reference to the Item from the
currentSnippetStore is kept in currentSnippet. These fields allow us to write the rest of the
code in a fairly generic way: so long as we make sure these fields always have valid and correct
values based on what is current, be it a category or snippet, the rest of the code can reference
these fields and not have to worry about keeping track of anything else.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 301

Initialization at Startup
The addOnLoad() call in index.htm sets up a call to the init() method of the CodeCabinet class,
which we’ll now look at, little by little. The first part is this:

/**
* Initialize the application.
*/
this.init = function() {

// There doesn't appear to be a way to disable tabs, so we have to fake
// it. To do so, we connect to the selectChild event and do some work
// when it fires.
dojo.connect(dijit.byId("tabs"), "selectChild", null, function(inTab) {
// If there is no category selected, or if there is a category selected
// but no snippet selected...
if (codeCabinet.currentCategory == null ||
codeCabinet.currentSnippet == null) {
// And if the tab selected was NOT the snippets tab...
if (inTab.id != "tabSnippets") {
// Then we select the snippets tab. The user will see that when
// they click one of the other tabs, nothing happens, effectively
// disabling them.
dijit.byId("tabs").selectChild(dijit.byId("tabSnippets"));

}
}

});

There appears to be a limitation with the Dojo TabContainer dijit: you can’t disable a tab.
I did some research on this and I don’t appear to be the only person looking for this capability,
so my guess is we’ll see it pretty soon in a new version. For now, it appears to be true that you
can’t disable a tab. So, we have to essentially fake it. The way we can do that is to use the AOP
system in Dojo to connect to the selectChild event, which is fired anytime a tab is selected
(whether the user clicks it or we programmatically select it). So, we call dojo.connect(), pass-
ing it a reference to the object we want to “observe,” which is the TabContainer dijit in this
case. We can get a reference to this object by using the diji.byId() function. Then we send the
name of the event we want to monitor, selectChild in this case. Finally, we specify the func-
tion to call after that event fires, which is an inline function here.

Anytime that event fires, we check whether there’s a current category or snippet selected.
If there isn’t, the user can never access any tab; the UI will be showing the Snippets tab
(because it has to show some tab, and that one seemed best to me). In this situation, we select
the Snippets tab. So what the user sees is that clicking any of the tabs results in nothing hap-
pening; effectively, the tabs are disabled. We do this faux-tab disabling only when the clicked
tab was not the Snippets tab. (This disabling work would have worked without that inner if
check, but why do extra work if we don’t have to?)

Of course, if there is both a category and a snippet selected, the user is free to move
around, to select any tab desired. So we do nothing in that case, and we in essence have dis-
abled tabs. They don’t visually reflect the fact that they are disabled, which probably could

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET302

have been accomplished with some style sheet manipulation, but this achieves the basic goal,
so it’s good enough.

The next important step is to deal with the possibility of Gears not being available to us,
and to do something about it!

// See if Gears is installed.
if (!window.google || !google.gears) {

// It's not, so show the installation dialog.
dijit.byId("NoGearsDialog").show();

If window.google or google.gears is not defined, Gears is not available, in which case we
display the NoGearsDialog. This directs the user where to go to install Gears, and indicates that
the application will still work, aside from persistence, if the user chooses not to complete the
installation.

Now, assuming Gears is available, it’s time to get to some real work, which is to read any
saved categories and snippets into our data stores so we can let the user get to work:

} else {

// Read categories in and populate the store, creating the table if it
// doesn't yet exist.
var db = google.gears.factory.create("beta.database");
db.open("DojoCodeCabinet");

// Uncomment the following two lines to clear out the database. Good
// for when you're messing around with things and, well, mess up!
//db.execute("DROP TABLE categories");
//db.execute("DROP TABLE snippets");

We begin by getting a database engine to work with, and opening up the DojoCodeCabinet
database, which will of course be created for us if it doesn’t already exist. You can see where I
have two SQL drop statements commented out. This is useful if you want to clear out the data-
base and start from scratch, especially if you’re going to be hacking the code; this is a good
thing to be able to do to make sure your changes are working.

Whether or not the database was empty to start with, we now need to ensure that we have
a categories table to work with. We issue a SQL create table statement, but use the if not
exists clause so that we’ll do this bit only if the table…wait for it…doesn’t exist!

db.execute("CREATE TABLE IF NOT EXISTS categories (" +
"id INT, " +
"name TEXT, " +
"type TEXT" +

")");
var rs = db.execute("SELECT id,name,type FROM categories ORDER BY name");
while (rs.isValidRow()) {
// Add an item to the tree's store.
codeCabinet.categoriesStore.newItem({
id : rs.field(0),

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 303

name : rs.field(1),
type : rs.field(2)

});
// Also add a store for the snippets in this category.
codeCabinet.snippetsStores[rs.field(0)] =
new CustomSnippetsItemFileWriteStore({data:{
label : "name", identifier : "id", items : []

}}
);
rs.next();

}

The table is a simple one, with a grand total of three fields. The id field is an integer field
and will be the unique key of each field. The name field is of type text and stores the actual
name of the category, and is also what will be displayed in the Tree. The type field is also of
type text, is always the value category, and is needed by the Tree and nothing else. I really
didn’t need to store this in the database, but I decided to just in case I wanted to extend
things later and discovered that variable values come into play. This way, I’m all set for that
possibility.

After the table is created (if it had to be in the first place), we query the table for all records
so we have a list of all categories (if there are any). We then go through the ResultSet from that
query. For each record that we find, we use the newItem() method of the ItemFileWriteStore
class to add an item representing the category. For each category, we also add a new
CustomSnippetsItemFileWriteStore to the snippetsStores collection so that later, when
we read in the snippets, we are assured there is a data store for them to go into.

Speaking of the snippets, they are actually next:

// Read snippets in and populate the appropriate store, creating the
// table if it doesn't yet exist.
var db = google.gears.factory.create("beta.database");
db.open("DojoCodeCabinet");
db.execute("CREATE TABLE IF NOT EXISTS snippets (" +
"id INT, " +
"category INT, " +
"name TEXT, " +
"description TEXT, " +
"author TEXT, " +
"eMail TEXT, " +
"webLink TEXT, " +
"code TEXT, " +
"notes TEXT, " +
"keywords TEXT" +

")");
var rs = db.execute("SELECT id,category,name,description,author," +
"eMail,webLink,code,notes,keywords FROM snippets");

while (rs.isValidRow()) {
// Add item to the snippets store for the category associated with the
// next snippet in the result set.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET304

codeCabinet.snippetsStores[rs.field(1)].newItem({
id : rs.field(0),
category : rs.field(1),
name : rs.field(2),
description : rs.field(3),
author : rs.field(4),
eMail : rs.field(5),
webLink : rs.field(6),
code : rs.field(7),
notes : rs.field(8),
keywords : rs.field(9)

});
rs.next();

}

} // End if.

dijit.byId("snippetsGrid").domNode.style.display = "none";
dijit.byId("searchGrid").domNode.style.display = "none";

codeCabinet.searchClearClicked();

} // End init().

This code is exactly the same sort of thing as for the categories: create the table if it doesn’t
already exist, and then read in all the records from it, creating an Item for each record, and
adding it to the appropriate snippets data store. The collection of snippet stores is keyed by
the ID of a category, which is stored on each snippet record in the category field (so it’s a for-
eign key into the categories table, in other words). Otherwise, it’s the same sort of basic code
as we saw with the categories, just a few more fields to deal with is all. I think even the table
fields are pretty self-evident. Note that the keywords are stored as comma-separated values in
a single keywords field, rather than any sort of multitable schema where I would have had to
use joins to get what I needed. Once again, simplicity, unless there’s a good reason to go
around it, is usually a good answer, if not the best answer.

Note the two lines that hide the snippetsGrid and searchGrid. This is necessary to get
around the IE7 issue that kept the grids from working properly. Again, it would have been nice,
as I had originally coded, to hide them in the markup via style settings, but that just didn’t
work, so I had to go with this approach.

Only one piece remains to the init() puzzle, and that’s the call to the searchClearClicked()
method hanging out there by itself. Let’s get a quick look at that method now, even though it
appears physically a lot later in the CodeCabinet.js file:

/**
* Called when the Clear search button is clicked.
*/
this.searchClearClicked = function() {

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 305

dojo.byId("searchForm").reset();
dijit.byId("searchGrid").domNode.style.display = "none";
dojo.byId("searchNoResults").style.display = "none";
dojo.byId("searchResultsMessage").style.display = "";

} // End searchClearClicked().

There’s not much to it, but this method is called when the Clear button is clicked, and I
didn’t want to hang all this code off the inline event handler, and because it’s needed in init()
as well, it’s in its own method. All it does is call the clear() method on the form encapsulating
the search criteria entry fields to clear any entries that may be present in them, and then it
hides the Grid and message saying no search results were found. Finally, it shows the message
saying search results will appear here.

With the initialization code out of the way, we can now move on.

All Things Category
The following batch of methods that we’ll look at all deal with categories in some way. For
example, the first method, addCategoryClicked(), is the method called when the Add Category
toolbar button is clicked:

/**
* Called when the toolbar Add Category button is clicked.
*/
this.addCategoryClicked = function() {

// Show the Add Category dialog.
dijit.byId("AddCategoryName").setValue("");
dijit.byId("AddCategoryDialog").show();

} // End addCategoryClicked().

This code has a very simple job: clear the TextBox dijit in the Add Category dialog box and
show that same dialog.

Now, after the Add button in the dialog is clicked, the addCategory() method gets called,
and that’s next:

/**
* Called when the Add button on the Add Category dialog is clicked.
*/
this.addCategory = function() {

// Hide dialog and get entered value, if any.
dijit.byId("AddCategoryDialog").hide();
var categoryName = dijit.byId("AddCategoryName").getValue();

// If we got a category name...
if (categoryName != null) {
categoryName = dojo.string.trim(categoryName);

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET306

if (categoryName != "") {
// And if it's not a duplicate...
if (codeCabinet.snippetsStores[categoryName]) {
dijit.byId("DuplicateCategoryDialog").show();
return;

}
// Add it to the store for the categories tree.
var categoryID = new Date().getTime();
codeCabinet.categoriesStore.newItem({
id : categoryID,
name : categoryName,
type : "category"

});
// Also add a new store for its snippets.
codeCabinet.snippetsStores[categoryID] =
new CustomSnippetsItemFileWriteStore({data:{
label : "name", identifier : "id", items : []

}}
);
// Finally, persist to the underlying persistent store.
codeCabinet.categoriesStore.save();

}
}

} // End addCategory().

First, this code hides the dialog. Then, by getting a reference to the AddCategoryName
TextBox via a call to dijit.byId(), it calls getValue() to get what the user entered. If the user
entered nothing, the if block won’t be entered and nothing will happen.

If the user entered something, it’s time to add a category. Well, after a quick check, that is:
Would the category be a duplicate? In other words, is the name entered already in use? To be
sure, we trim what the user entered by using the dojo.string.trim() function. (The name is
always saved after it’s been trimmed, so we only have to worry about trimming the user input
here, to avoid a mismatch caused by whitespace on the ends of the string.) Then, if something
was entered, we try to retrieve the snippets store for that category. Anytime a category is
added, so too is a data store for the snippets, so this is a way of checking whether the category
is already in use. There are obviously other ways to do it, but this was perhaps the simplest
and most straightforward. If we find a data store, we show the DuplicateCategoryDialog to
inform the user.

Assuming the name is not a duplicate, though, we then get the current time in millisec-
onds. This is our unique ID for the category. With that in hand, we use the newItem() method
of the categoriesStore to add an Item for the category. Here you can see that hard-coded
category value I talked about earlier.

The next step is to add a data store for the snippets in this category, which is simply a
matter of instantiating the CustomSnippetsItemFileWriteStore and adding it to the
snippetsStores collection, under a key that is the ID of the category.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 307

Finally, a call to the save() method of the categoriesStore persists this to the Gears data-
base (assuming Gears is available), which we’ve already seen, so we’re done with adding a
category!

Next up is what happens when the user clicks a category in the tree, which results in a call
to the categoryClicked() method here:

/**
* Called when a category in the tree is clicked.
*
* @param inItem The item from the data store that was clicked.
*/

this.categoryClicked = function(inItem) {

// Ignore clicks on the top-level element.
if (!inItem) {
return;

}

// Clear any search results that might be present, and the search form.
codeCabinet.searchClearClicked();

// Set up category-related functionality.
codeCabinet.currentCategory = inItem;
codeCabinet.currentSnippetsStore =
codeCabinet.snippetsStores[
codeCabinet.categoriesStore.getValue(inItem, "id")];

dijit.byId("toolbarDeleteCategory").setDisabled(false);

// Set up snippet-related functionality.
codeCabinet.currentSnippet = null;
dijit.byId("toolbarAddSnippet").setDisabled(false);
dijit.byId("toolbarDeleteSnippet").setDisabled(true);
dijit.byId("btnSearch").setDisabled(false);
dijit.byId("btnClear").setDisabled(false);
dijit.byId("searchKeywords").setDisabled(false);
dijit.byId("searchCode").setDisabled(false);
dijit.byId("searchName").setDisabled(false);
dijit.byId("searchDescription").setDisabled(false);
dijit.byId("searchAuthor").setDisabled(false);
dijit.byId("searchNotes").setDisabled(false);

// Clear forms on all entry tabs.
dojo.byId("infoForm").reset();
dojo.byId("codeForm").reset();
dojo.byId("notesForm").reset();
dojo.byId("keywordsForm").reset();

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET308

// Update the grid.
codeCabinet.refreshSnippetsGrid();

} // End categoryClicked().

First is a check to see whether inItem is defined. If the user clicks the Snippet Categories
root element, inItem won’t be defined because it’s apparently not considered an item in the
tree, so to avoid errors this check is necessary.

After that’s done, a call to searchClearClicked() is made. When switching categories we
need to ensure that if there were search results displayed, they are hidden. If the user were to
click one of the search results at this point, an error would occur because the snippet belongs
to a category that is no longer current. The snippet would not exist in the underlying data
store, hence an error would occur, and hence the reason for the call to searchClearClicked().

Next, we store a reference to the Item passed to the function in the currentCategory field,
and set the currentSnippetStore field to point to the data store where the snippets for the
selected category are. The Delete Category toolbar button is then enabled, because that func-
tion is now valid to perform.

We then enable all the snippet-related UI elements, such as the Add Snippet button on
the toolbar and the search fields. Note that the Delete Snippet button is disabled at this
point because no snippet is selected, and that function is therefore not valid. We also set the
currentSnippet field to null to indicate that a snippet has not yet been selected.

Next, we call reset() on all the <form> elements, on the various tabs as well as the search
form. This ensures that everything else is set up properly from a UI perspective and is nice and
clear.

Finally, a call to refreshSnippetsGrid() is performed, which is responsible for displaying
the snippets in the selected category. Let’s jump ahead and look at that method now:

/**
* This function is called from multiple places to update the snippets grid
* for the current category whenever a change to a snippet takes place, or
* when the category is clicked.
*/
this.refreshSnippetsGrid = function() {

// Switch to the Snippets tab so updates to the grid show up.
dijit.byId("tabs").selectChild(dijit.byId("tabSnippets"));

// Retrieve all the items from the store for the current category.
codeCabinet.currentSnippetsStore.fetch({
onComplete : function(items, request) {
// If there are items, we can display them (this avoids an error with
// the grid... without this check, an empty store causes an error).
if (items.length > 0) {
dijit.byId("snippetsGrid").domNode.style.display = "";
dojo.byId("noSnippetsInCategory").style.display = "none";
dojo.byId("noCategorySelected").style.display = "none";
// Wrap the current store in a model and set it on the grid, update
// occurs automatically after that.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 309

codeCabinet.snippetsStoreModel = new dojox.grid.data.DojoData(
null, codeCabinet.currentSnippetsStore);

dijit.byId("snippetsGrid").setModel(codeCabinet.snippetsStoreModel);
dijit.byId("snippetsGrid").update();

} else {
dijit.byId("snippetsGrid").domNode.style.display = "none";
dojo.byId("noCategorySelected").style.display = "none";
dojo.byId("noSnippetsInCategory").style.display = "";

}
}

});

} // End refreshSnippetsGrid().

First, we get a reference to the Snippets tab by calling diji.byId("tabs") to get a refer-
ence to the TabContainer, and then calling selectChild("tabSnippets") to activate that tab.
This is necessary because when the grid is populated, I found that if it wasn’t visible at that
point, it would not get populated on the screen. Flipping to the tab takes care of that, and plus
it’s the more natural place to be when switching categories because the user will almost cer-
tainly be interested in seeing the snippets in that category at that point.

The next step is to fetch all the items in the data store associated with the selected cate-
gory. This is accomplished by calling the fetch() method of the store. This works in a callback
way, that is, asynchronously, so we have to set the onComplete attribute of the options object
passed into fetch() to the function we want to execute when the fetch is complete, which is
inlined in this case.

After the fetch completes, a check is first done to ensure that there were items returned.
This check is necessary because if you try to update the model of the grid with a model that
has no items, an error occurs, so this check takes care of it. This is the only reason for doing
the fetch at all: it’s the only way I could find to tell how many items were in the store. (I suspect
this is a case of me just missing something, to be honest, but I looked for a long time and
couldn’t find anything.) If there are no items, the else branch of the if statement executes,
which simply hides the Grid entirely and puts up the “no snippets in category” message by
showing the appropriate <div> while hiding the Grid.

Assuming there were items, though, we begin by hiding the message <div>s and showing
the Grid itself. Then, we need to create a model for the Grid to use based on the data store, so
we create a new dojox.grid.data.DojoData object, passing into it the currentSnippetsStore.
Next, we call the setModel() method on the Grid, passing in that DojoData object, and finally
call update() on the Grid to make it all show up on the screen.

Deleting a category is next, and that begins with a call to the deleteCategoryClicked()
method when the Delete Category toolbar button is clicked:

/**
* Called when the toolbar Delete Category button is clicked.
*/
this.deleteCategoryClicked = function() {

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET310

// Show the delete confirmation dialog.
dojo.byId("confirmDeleteType").innerHTML = "catalog";
dijit.byId("ConfirmDeleteDialog").show();

} // End deleteCategoryClicked().

This is a simple matter of showing the ConfirmDeleteDialog, which you can see here in
Figure 6-10.

Figure 6-10. The Confirm Deletion dialog box when deleting a catalog

This dialog is generic, meaning it works for deleting both categories and snippets, but it
will always state the correct one (that is, saying, “Are you sure you want to delete the catalog?”
here vs. “Are you sure you want to delete the snippet?” when deleting a snippet). How this hap-
pens is answered by this line:

dojo.byId("confirmDeleteType").innerHTML = "catalog";

The only thing different is the word snippet vs. the word category in the dialog; everything
else about it is the same.

Whichever button the user clicks, the codeCabinet.confirmDelete() method is called:

/**
* Called when either of the Yes or No buttons on the delete confirmation
* dialog is clicked.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 311

*
* @param inProceed True if Yes was clicked, false if No was clicked.
*/
this.confirmDelete = function(inProceed) {

// Hide the dialog.
dijit.byId("ConfirmDeleteDialog").hide();

// See if the deletion was confirmed.
if (inProceed) {
// Call deleteCategory() if confirmation was for a category deletion.
if (dojo.string.trim(dojo.byId("confirmDeleteType").innerHTML) ==
"catalog") {
codeCabinet.deleteCategory();

} else {
// The only other possibility is a snippet deletion.
codeCabinet.deleteSnippet();

}
}

} // End confirmDelete().

In the case of the Yes button being clicked, inProceed will be true, and it will be false if
No is clicked. So, we branch on that value first. The if statement looks only for true, meaning
the Yes button was clicked, so clicking No effectively ends this method execution. Because the
dialog box is hidden first thing in this method, that’s all we have to do.

If Yes was clicked, though, we go and grab the value of the confirmDeleteType <div>,
which has a value of either snippet or category. This tells us which thing we’re deleting, and
which method to call, either deleteSnippet() or deleteCategory().

Because we’re still ostensibly discussing category-related functionality, deleteCategory()
will be called, and here’s that code now:

/**
* Called to delete the currently selected catalog.
*/
this.deleteCategory = function() {

// Clear any search results that might be present, and the search form.
codeCabinet.searchClearClicked();

// Remove the snippets store and clear snippet-related fields.
delete codeCabinet.snippetsStores[
codeCabinet.categoriesStore.getValue(
codeCabinet.currentCategory, "id")];

codeCabinet.currentSnippetsSore = null;
codeCabinet.currentSnippet = null;

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET312

// Delete all snippets for this category from the Gears database. Note that
// this could have been (and some might argue should have been) done by
// iterating over all the items in the snippets store for this category,
// deleting each from the store, then calling save() on the store. But,
// since we're going to delete the store from the collection of snippet
// stores anyway, this saves a lot of time.
var db = google.gears.factory.create("beta.database");
db.open("DojoCodeCabinet");
db.execute("DELETE FROM snippets WHERE category=" +
codeCabinet.categoriesStore.getValue(
codeCabinet.currentCategory, "id")

);

// Update UI with regard to snippets.
codeCabinet.refreshSnippetsGrid();
dojo.byId("noSnippetsInCategory").style.display = "none";
dojo.byId("noCategorySelected").style.display = "";
dijit.byId("snippetsGrid").domNode.style.display = "none";
dijit.byId("toolbarAddSnippet").setDisabled(true);
dijit.byId("toolbarDeleteSnippet").setDisabled(true);
dijit.byId("btnSearch").setDisabled(true);
dijit.byId("btnClear").setDisabled(true);
dijit.byId("searchKeywords").setDisabled(true);
dijit.byId("searchCode").setDisabled(true);
dijit.byId("searchName").setDisabled(true);
dijit.byId("searchDescription").setDisabled(true);
dijit.byId("searchAuthor").setDisabled(true);
dijit.byId("searchNotes").setDisabled(true);

// Remove the Category item from the store. This automatically updates
// the tree. Also do other category-related UI setup.
codeCabinet.categoriesStore.deleteItem(codeCabinet.currentCategory);
codeCabinet.currentCategory = null;
dijit.byId("toolbarDeleteCategory").setDisabled(true);

// Finally, persist to the underlying persistent store.
codeCabinet.categoriesStore.save();

} // End deleteCategory().

Who would have thought that deleting a category would require so much work? But let’s
break it down little by little, and I think it’ll make a lot of sense.

First, searchClearClicked() is called, to clear all the search criteria fields as well as hide
the search results grid. This is necessary because at this point no category is selected, and as
we previously established, an error would result if the user then went and clicked a row in the
search results grid.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 313

Next, we delete the data store from the snippetsStores collection for the category. Yep,
deleting a category deletes the snippets too, which pretty much just makes sense! We also
ensure that currentSnippetStore and currentSnippet are set to null to avoid any potential
errors because of course you can’t have a data store for snippets that don’t exist, and you can’t
have a current snippet in a category that is being deleted.

Following that is some Gears code to delete the snippets from the database for this cate-
gory. Here again is an example of using the getValue() method of the data store to get the ID
of the category to delete.

After that is a whole bunch of UI manipulation calls, simply to enable and disable various
buttons and fields as appropriate, those fields dealing with snippets. We also at this point call
refreshSnippetsGrid(), which we saw earlier and which we now know will result in the grid
being hidden because there’s no data store for this category anymore.

Next we use the deleteItem() of the data store bound to the Tree to get rid of the category.
Unlike the Grid, which we need to manually do some work to refresh, the Tree is truly bound
to the data store, and “sees” the changes to it, and thus refreshes itself automatically. At this
point, we no longer need the currentCategory either, so we set it to null. We also disable the
Delete Category toolbar button, because clicking it is no longer a valid action (not until the
user selects a different category).

Finally, a call to the save() method of the categoriesStore persists the categories to the
database, effectively updating them for the next browser session.

All Things Snippet
Now that we’ve seen all the category-related functions, let’s get into the snippet-related func-
tions. A lot of these will look pretty familiar as they tend to have a lot in common with the
category code we’ve just looked at, but there are some differences too, beginning with the
addSnippetClicked() method:

/**
* Called when the toolbar Add Snippet button is clicked.
*/
this.addSnippetClicked = function() {

// Add the item to the store.
codeCabinet.currentSnippetsStore.newItem({
id : new Date().getTime(),
category : codeCabinet.categoriesStore.getValue(
codeCabinet.currentCategory, "id"),

name : "NewSnippet",
description : "A new snippet",
author : "",
eMail : "",
webLink : "",
code : "",
notes : "",
keywords : ""

});

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET314

// Update the grid.
codeCabinet.refreshSnippetsGrid();

// Finally, persist to the underlying persistent store.
codeCabinet.currentSnippetsStore.save();

} // End addSnippetClicked().

As opposed to adding a category, which is a two-step process (show the dialog and
then actually add the category), adding a snippet is done in one go. So, all it really takes is
adding a (mostly) empty snippet to the currentSnippetsStore. The name and description are
populated so you can tell which snippet is the new one in the grid. And speaking of the grid,
we have to refresh that as well so that the new snippet shows up, and all it takes is a call to
refreshSnippetsGrid(). Finally, a call to the save() method of the currentSnippetsStore is
made to get the new snippet saved right away. In retrospect, I think I could convince myself
that the new snippet shouldn’t be persisted until the user clicks the Save button somewhere,
but that’s not how I implemented it, for better or worse. (I expect you’ll get as much out of
what I didn’t do as what I did do throughout this book.)

Now that you see how snippets can be added, let’s take a look at what happens when we
click a snippet in the snippets grid, in effect putting the application into edit mode:

/**
* Called when a snippet in the snippets grid is clicked.
*
* @param inRowIndex The index of the row that was clicked.
*/
this.snippetClicked = function(inRowIndex) {

// Get all items in current snippets collection, then get the clicked
// item from it. This has to be done because all we know at this point
// is the row index from the grid, we can't uniquely identify the item
// that was clicked, so we have to fetch all the items in order to use
// that row index.
codeCabinet.currentSnippetsStore.fetch(
{ onComplete : function(items, request) {
// Record the clicked snippet as current and show its details.
codeCabinet.currentSnippet = items[inRowIndex];
codeCabinet.showSnippet();

}
});

} // End snippetClicked().

Not much to it, really: first we fetch all the snippets in the currentSnippetsStore. Why,
you ask? Because all we know at this point is what row in the grid was clicked, but we don’t
have the necessary information to relate that to an Item in the currentSnippetsStore directly,
that is, we don’t have an ID. So, by fetching all the snippets and getting all the Items in the

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 315

array, which just so happens to be populated in the same order as the grid, we can now access
the appropriate element from the array to get our snippet Item.

Then a call to showSnippet() is made, which does the work of putting all the details about
the snippet on the screen. And oh look, here comes that method now:

/**
* This function is called to show the current snippet's details.
*/
this.showSnippet = function() {

// Set up UI, start by clearing everything.
dojo.byId("infoForm").reset();
dojo.byId("codeForm").reset();
dojo.byId("notesForm").reset();
dojo.byId("keywordsForm").reset();
dijit.byId("toolbarDeleteSnippet").setDisabled(false);

// Populate Info edit fields.
dijit.byId("infoName").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "name"));

dijit.byId("infoDescription").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "description"));

dijit.byId("infoAuthor").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "author"));

dijit.byId("infoEMail").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "eMail"));

dijit.byId("infoWebLink").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "webLink"));

// Populate code and notes text areas.
// Have to add a space to the following two because if the value
// of either if "", an error occurs, it seems there has to be
// *something* being inserted, even if it's just a single space.
dijit.byId("codeArea").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "code") + " ");

dijit.byId("notesArea").setValue(
codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "notes") + " ");

// Populate keywords.
var kw = new String(codeCabinet.currentSnippetsStore.getValue(
codeCabinet.currentSnippet, "keywords")).split(",");

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET316

for (var i = 0; i < kw.length; i++) {
dijit.byId("keyword" + i).setValue(kw[i]);

}

// Enable all save buttons.
dijit.byId("btnInfoSave").setDisabled(false);
dijit.byId("btnCodeSave").setDisabled(false);
dijit.byId("btnNotesSave").setDisabled(false);
dijit.byId("btnKeywordsSave").setDisabled(false);

// Activate Info tab.
dijit.byId("tabs").selectChild(dijit.byId("tabInfo"));

} // End showSnippet().

I think virtually everything here is just basic UI setup and is pretty self-explanatory, so
I’m not going to spend a whole lot of time on it. The keywords, which are stored as a comma-
separated list, need to be split(), and then each keyword put into its own text box on the
Keywords tab. The Info tab is selected at the end because that’s probably the first place the
user will want to go (arguably the Code tab is, but again, that’s a design decision that you
could argue either way). Once again, you’ll see the use of the getValue() method all over the
place, but because we have the Item going into this method, or more precisely, referenced by
the currentSnippet field that was set in the snippetClicked() method earlier, getValue() is
easy enough to use.

■Note When the code and notes are inserted into the editors, I append a blank space on the end. I found
this was necessary to get the display to work properly. I’m still not sure what the problem was; I suspect it
may have been a bug in the editor, but I’m not at all sure. In any case, adding the space on the end takes
care of it. Because we trim the code and notes values when we save the snippet, as you’ll see shortly,
there’s no harm in adding the space.

The next thing we will look at is deleting a snippet. A snippet can be deleted only after
we’ve clicked one (because that’s when the toolbar button for deleting a snippet is enabled):

/**
* Called when the toolbar Delete Snippet button is clicked.
*/
this.deleteSnippetClicked = function() {

// Show the delete confirmation dialog.
dojo.byId("confirmDeleteType").innerHTML = "snippet";
dijit.byId("ConfirmDeleteDialog").show();

} // End deleteSnippetClicked().

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 317

The same sort of confirmation that was done with deleting a category is done here, as
shown in Figure 6-11. This confirmation is almost entirely the same, except for the text shown
in the dialog, which is snippet here.

Figure 6-11. The Confirm Deletion dialog box when deleting a snippet

So, when the user clicks Yes, confirmDelete() will be called, it’ll do its thing, and finally
the deleteSnippet() method will be called:

/**
* Called to delete the currently selected snippet.
*/
this.deleteSnippet = function() {

// Remove the item from the store. Note that unlike the tree, this doesn't
// automatically update the grid, so we'll handle that ourselves next.
codeCabinet.currentSnippetsStore.deleteItem(codeCabinet.currentSnippet);

// Set up snippet-related functionality.
codeCabinet.currentSnippet = null;
dijit.byId("toolbarDeleteSnippet").setDisabled(true);

// Update the grid.
codeCabinet.refreshSnippetsGrid();

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET318

// Finally, persist to the underlying persistent store.
codeCabinet.currentSnippetsStore.save();

} // End deleteSnippet().

Deleting a snippet is about as easy as deleting a category: call the deleteItem() method
of the currentSnippetsStore to actually delete the Item corresponding to the snippet, set
currentSnippet to null, disable the Delete Snippet toolbar button, call refreshSnippetsGrid()
to show that the snippet has been removed, and finally persist the snippets again by calling
currentSnippetsStore.save().

Only one bit of code is left, and that’s saveSnippet(), the method called anytime one of
the Save buttons is clicked:

/**
* Called when any of the Save buttons are clicked.
*/
this.saveSnippet = function() {

// Construct a CSV of entered keywords, if any.
var keywords = "";
for (var i = 0; i < 10; i++) {
var kw = dijit.byId("keyword" + i).getValue();
if (kw != null) {
kw = dojo.string.trim(kw);
if (kw != "") {
if (keywords != "") {
keywords = keywords + ",";

}
keywords = keywords + dojo.string.trim(kw);

}
}

}

// Update the snippets grid to reflect any changes. To do this, because
// there seems to be a bug in the grid, we have to delete the item from
// the store and then add it as a new item.
codeCabinet.currentSnippetsStore.deleteItem(codeCabinet.currentSnippet);
codeCabinet.currentSnippetsStore.newItem({
id : new Date().getTime(),
category : codeCabinet.categoriesStore.getValue(
codeCabinet.currentCategory, "id"),

name : dojo.string.trim((dijit.byId("infoName").getValue() || "")),
description :
dojo.string.trim(dijit.byId("infoDescription").getValue() || ""),

author : dojo.string.trim(dijit.byId("infoAuthor").getValue() || ""),
eMail : dojo.string.trim(dijit.byId("infoEMail").getValue() || ""),
webLink : dojo.string.trim(dijit.byId("infoWebLink").getValue() || ""),
code : dojo.string.trim(dijit.byId("codeArea").getValue() || ""),

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 319

notes : dojo.string.trim(dijit.byId("notesArea").getValue() || ""),
keywords : keywords

});

// Update the grid.
codeCabinet.refreshSnippetsGrid();

// Finally, persist to the underlying persistent store.
codeCabinet.currentSnippetsStore.save();

} // End saveSnippet().

The first task is to take all the keywords that have been entered, if any, and construct a
comma-separated string out of them, because that’s what is saved to the database. We take
care to trim all the strings by using dojo.string.trim(), and we also eliminate any empty
fields, meaning that if the user enters a keyword in the first field, the third field, and the sixth
field, while we can probably rightly ask what they’re smoking, the code will handle that just
fine; all the keywords will be saved.

Following that, we delete the Item for the snippet in the currentSnippetsStore, and then
use the newItem() method to add a new one. You may be wondering why I do this instead of
just modifying the existing Item from the store, and the simple answer is that this again gave
me all sorts of problems. Every time I tried doing that, when I refreshed the grid, the updated
data refused to display properly. It always showed a single character in each column. I was
unable to get an answer on the support forums about this, and because deadlines are a regular
part of writing a book, I simply had to drop back and punt, as it were. This approach works at
least, although it has the negative side effect that the “updated” snippet jumps to the bottom
of the snippets grid. I think this is acceptable given the alternative of it not working at all!

You’ll note that each field’s value is obtained by using getValue() on the object reference
returned by dijit.byId(). I handle the possibility of getting null back from that call by doing
an || ""on the end, so I’m always guaranteed a value.

Finally, a call to refreshSnippetsGrid() and a call to save() on the currentSnippetsStore
are done and we’re good to go. Our updates are now saved and displayed in the grid.

Searching for Snippets
The final batch of code we have to look at revolves around the search functionality. The first
method is the meatiest by far: searchClicked(), called when the Search button is, umm,
clicked! This is a fairly lengthy method, so I’ll break it down into chunks to describe it, starting
with this one:

/**
* Called when the Search button is clicked.
*/
this.searchClicked = function() {

// Get all search parameters. Trim them, make them lowercase, and make
// sure we never have nulls here.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET320

var searchKeywords = dijit.byId("searchKeywords").getValue();
if (searchKeywords == null) { searchKeywords = ""; }
searchKeywords = dojo.string.trim(searchKeywords);
searchKeywords = searchKeywords.toLowerCase();
var searchCode = dijit.byId("searchCode").getValue();
if (searchCode == null) { searchCode = ""; }
searchCode = dojo.string.trim(searchCode);
searchCode = searchCode.toLowerCase();
var searchName = dijit.byId("searchName").getValue();
if (searchName == null) { searchName = ""; }
searchName = dojo.string.trim(searchName);
searchName = searchName.toLowerCase();
var searchAuthor = dijit.byId("searchAuthor").getValue();
if (searchAuthor == null) { searchAuthor = ""; }
searchAuthor = dojo.string.trim(searchAuthor);
searchAuthor = searchAuthor.toLowerCase();
var searchDescription = dijit.byId("searchDescription").getValue();
if (searchDescription == null) { searchDescription = ""; }
searchDescription = dojo.string.trim(searchDescription);
searchDescription = searchDescription.toLowerCase();
var searchNotes = dijit.byId("searchNotes").getValue();
if (searchNotes == null) { searchNotes = ""; }
searchNotes = dojo.string.trim(searchNotes);
searchNotes = searchNotes.toLowerCase();

Here we’re getting the values of each of the search criteria TextBoxes. The values are
trimmed and converted to lowercase, so all our searches will be case-insensitive in effect
(assuming of course that when the search is performed, the fields of the snippet Items in the
currentSnippetsStore are likewise trimmed, which they will be). I also ensure that we are
never dealing with nulls in any situation by setting the variables to a blank string if null is
returned by a call to getValue().

After we have all those values, we begin to do some work with them, starting with a
validation:

// Ensure acceptable criteria are entered.
if (searchKeywords == "" && searchCode == "" & searchName == "" &&
searchAuthor == "" && searchDescription == "" && searchNotes == "") {
dijit.byId("BadSearchCriteriaDialog").show();
return;

}

We are simply ensuring that at least one of the search criteria has been entered, and if not,
we show the BadSearchCriteriaDialog, which just tells the user of the goof and the need to
enter something.

The next step is to clear the searchStore, which is the data store that will be used to popu-
late the search results grid:

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 321

// "Clear" the searchStore.
codeCabinet.searchStore = new dojo.data.ItemFileWriteStore({data:{
label : "name", identifier : "id", items : []

}});

Now we need to get the snippets we’ll be searching through, which is done via a call to
fetch(). It’s called on the currentSnippetsStore, because the search capability works against
the current category always:

// Fetch all the snippets from the store.
codeCabinet.currentSnippetsStore.fetch(
{ onComplete : function(items, request) {

// Cycle through them and find the matches.
var matchesFound = false;
for (var i = 0; i < items.length; i++) {

We then begin to iterate over the array of Items returned. We have a variable matchesFound
set to false initially. This will be set to true when we find that we have one or more matches.

So, the next step is to get all the data from the next Item, and do the same sort of trimming
and case conversion that we did with the search criteria to ensure that we’ll get matches, if
there legitimately are any:

// Get the data from the next snippet, trim it nice, and make it
// lowercase so searches are case-insensitive.
var itemKeywords = codeCabinet.currentSnippetsStore.getValue(
items[i], "keywords");

if (itemKeywords == null) { itemKeywords = ""; }
itemKeywords = dojo.string.trim(itemKeywords);
itemKeywords = itemKeywords.toLowerCase();
var itemCode = codeCabinet.currentSnippetsStore.getValue(
items[i], "code");

if (itemCode == null) { itemCode = ""; }
itemCode = dojo.string.trim(itemCode);
itemCode = itemCode.toLowerCase();
var itemName = codeCabinet.currentSnippetsStore.getValue(
items[i], "name");

if (itemName == null) { itemName = ""; }
itemName = dojo.string.trim(itemName);
itemName = itemName.toLowerCase();
var itemAuthor = codeCabinet.currentSnippetsStore.getValue(
items[i], "author");

if (itemAuthor == null) { itemAuthor = ""; }
itemAuthor = dojo.string.trim(itemAuthor);
itemAuthor = itemAuthor.toLowerCase();
var itemDescription = codeCabinet.currentSnippetsStore.getValue(
items[i], "description");

if (itemDescription == null) { itemDescription = ""; }

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET322

itemDescription = dojo.string.trim(itemDescription);
itemDescription = itemDescription.toLowerCase();
var itemNotes = codeCabinet.currentSnippetsStore.getValue(
items[i], "notes");

if (itemNotes == null) { itemNotes = ""; }
itemNotes = dojo.string.trim(itemNotes);
itemNotes = itemNotes.toLowerCase();

Because we can enter multiple search criteria, that means we need to look for matches
with whatever combination of criteria were entered. If the user enters a value in the Name
field and enters a value in the Keywords field, it means we’re looking for all snippets that have
the name value in its Name field as well as the keywords specified. In order to do that, we have
a variable named matched:

// This variable will have a T or F added to it for each search
// criteria that was entered. If we get to the end and there are any
// Fs in it, then this snippet didn't match one of the entered
// criteria and is therefore not a match.
var matched = "";

// Search includes name.
if (searchName != "") {
if (itemName.indexOf(searchName) != -1) {
matched += "T";

} else {
matched += "F";

}
}

We’ll then check each possible criteria in turn. Anytime a criteria is in play, and anytime
a match is found based on those criteria, we’ll add a T to matched. If a given criteria is in play
but there is no match, we’ll add an F. That way, when we get to the end, if we have no Fs in
the matched string, the Item is a match on all criteria requested. Not only is this a simple
approach, but it also enables us to extend the search facility, by adding new criteria, without
having to redesign the underlying matching mechanism.

You can see the first criteria being checked: the name. If searchName, which is the value
the user entered, is not a blank string, that criteria is in play. (Remember that we’re guaranteed
to see either the value entered or a blank string, never null.) So, we do a simple indexOf()
search to see whether the entered value appears anywhere in the Name field. If it does, we
consider that a match; otherwise, it’s not a match.

The code, author, description, and notes search criteria are all essentially identical to the
name code, so just have a look at them—I won’t bore you by describing them:

// Search includes code.
if (searchCode != "") {
if (itemCode.indexOf(searchCode) != -1) {
matched += "T";

} else {

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 323

matched += "F";
}

}

// Search includes author.
if (searchAuthor != "") {
if (itemAuthor.indexOf(searchAuthor) != -1) {
matched += "T";

} else {
matched += "F";

}
}

// Search includes description.
if (searchDescription != "") {
if (itemDescription.indexOf(searchDescription) != -1) {
matched += "T";

} else {
matched += "F";

}
}

// Search includes notes.
if (searchNotes != "") {
if (itemNotes.indexOf(searchNotes) != -1) {
matched += "T";

} else {
matched += "F";

}
}

Now, the keywords are just slightly different:

// Search includes keyword(s).
if (searchKeywords != "") {
var a = searchKeywords.split(",");
var foundAny = false;
for (var j = 0; j < a.length; j++) {

var nextKeyword = dojo.string.trim(a[j]);
if (nextKeyword != "") {
if (itemKeywords.indexOf(nextKeyword) != -1) {
foundAny = true;

}
}

}
if (foundAny) {
matched += "T";

} else {

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET324

matched += "F";
}

}

Here we split() the keywords the user entered. We then iterate over the resultant array.
The next token from the string is trimmed, and as long as it’s not blank, we see whether that
value appears anywhere in the keywords value on the Item. If so, we again have a match on this
criteria.

Finally, we check whether there are any Fs in the matched string. If there aren’t, we have
ourselves a match!

// If current snippet matches the search criteria, add it to the
// search store.
if (matched.indexOf("F") == -1) {
matchesFound = true;
codeCabinet.searchStore.newItem({
id : codeCabinet.currentSnippetsStore.getValue(items[i], "id"),
category :
codeCabinet.currentSnippetsStore.getValue(
items[i], "category"),

name :
codeCabinet.currentSnippetsStore.getValue(items[i], "name"),

description :
codeCabinet.currentSnippetsStore.getValue(
items[i], "description")

});
}

In the case of a match, matchesFound is set to true, and we add a newItem() to the
searchStore, populating it with the values from the Item that was found to be a match:

// Update the search results grid, if we found some matches; otherwise
// show the no matches found message.
if (matchesFound) {
dojo.byId("searchResultsMessage").style.display = "none";
dojo.byId("searchNoResults").style.display = "none";
codeCabinet.searchStoreModel = new dojox.grid.data.DojoData(
null, codeCabinet.searchStore);

var searchGrid = dijit.byId("searchGrid");
searchGrid.domNode.style.display = "";
searchGrid.setModel(codeCabinet.searchStoreModel);
searchGrid.update();

} else {
dojo.byId("searchResultsMessage").style.display = "none";
dojo.byId("searchNoResults").style.display = "";
dijit.byId("searchGrid").domNode.style.display = "none";

}

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 325

Then if matchesFound is true, it’s time to update the UI. First, the two message <div>s are
hidden. Next, we instantiate a new DojoData and wrap it around the searchStore. This gives us
a data model to bind to the search results grid. Following that, we show the grid by updating
its display style attribute to a blank string. This has to be done, or updating the model won’t
work, and updating the model is exactly what we do next via a call to setModel(), passing it a
reference to searchStoreModel. Finally, a call to the grid’s update() method gets the match on
the screen.

Now, if no matches were found, we just ensure that the grid isn’t showing, and we go
ahead and show the “no matches found” message <div>.

Assuming there were snippets that matched the search criteria, you’d be greeted with
search results, as seen in Figure 6-12.

Figure 6-12. Some search results displayed

Only one bit of search-related code is left, and that’s what is executed when a snippet is
clicked from the search results grid:

/**
* Called when a snippet in the search results grid is clicked.
*
* @param inRowIndex The index of the row that was clicked.
*/
this.searchResultClicked = function(inRowIndex) {

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET326

codeCabinet.searchStore.fetch(
{ onComplete : function(items, request) {
// Get the item from the store corresponding to the clicked row.
var searchItem = items[inRowIndex];
// Now find the item in the currentSnippetsStore.
var snippetID = codeCabinet.searchStore.getValue(searchItem, "id");
codeCabinet.currentSnippetsStore.fetchItemByIdentity({
identity : snippetID, onItem : function(item) {
// Set it as the current snippet.
codeCabinet.currentSnippet = item;

}
});
// Show all the snippet details.
codeCabinet.showSnippet();

}
});

} // End searchResultClicked().

We have to do the same sort of fetch() and matchup via inRowIndex as we saw in the code
that handles clicking on the snippets grid. Again, just having the row index that was clicked
isn’t sufficient. We need to relate it to the underlying data store, and the only way I could see
to do this was to fetch all the records and access the array of Items by using inRowIndex and
the index value. After that’s done, we get the id field of the Item. With that, we can use the
fetchItemByIdentity() method of the currentSnippetsStore to the Item of the snippet that
was clicked. We set currentSnippet to that Item, call showSnippet(), and we’re all done because
it will handle everything else, as we saw earlier.

Suggested Exercises
I think the code cabinet as it is presented in this chapter is pretty useful, but as usual I’ve left
some things out. Here are just a few suggestions, all of which would make it a more useful
application, not to mention giving you a lot of good experience working with Dojo:

1. Allow for subcategories. Say I want to have a Java category, and below that I want to
have a category for string-related snippets, one for math-related snippets, and one for
UI-related snippets. As it stands today, I’d have to create three separate Java categories,
all at the same level in the tree hierarchy. Allowing for subcategories would make the
organizational capabilities of the application that much more robust.

2. Allow for searching across categories. This would make the search capabilities a lot
more useful for sure. I originally intended to implement this, but because of time con-
straints I had to drop it. That’s probably fortuitous because now I offer it to you as a
suggestion!

3. How about adding a field to the Info tab for the date the snippet was added? For bonus
points, use the DateTextBox dijit, and for even more bonus points, add it to the search
function.

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET 327

4. This one’s a little bigger but would really make the application nice: history capabili-
ties. In other words, every time you make a change to a snippet, record the state of the
snippet before the change. Whether you simply duplicate the entire snippet record or
try to do a fancy-pants diff mechanism is up to you. Add a tab that lists all the history
records and allow one to be clicked so you can see the state of the snippet at that point.
This would almost give this application a source control system type of feel to it.

5. Add a Copy button below the code editor. This is just a minor enhancement but could
be a fairly significant convenience for the user. (To be honest, I thought of this only
after this chapter was nearly all wrapped up. I feel a little silly for not thinking of it ear-
lier, but hey, it gives me a chance to offer another suggested exercise to you, my dear
reader!)

6. Implement some sort of server-side persistence. This book is focused on Dojo and
client-side coding, so many of the projects almost scream out for some server inter-
action, and this one is no exception. Having the ability to save the snippets to a
server-side database, and thereby make them available on more than one PC and also
give you a backup mechanism, would be really nice but is outside the scope of this
book—mostly, at least: the server-side certainly is, but the client-side implementation
isn’t. Here’s a hint: it shouldn’t take more than modifying the _customSave methods of
the snippets and categories stores.

I suspect those suggestions will keep you busy for a while! They will not only make the
application more useful but will definitely sharpen your skills in the process, so a definite
win-win situation! What are you doing still reading? Get to work!

Summary
In this chapter, we developed an application for coding code snippets. We used a bunch of
dijits in the process, got some experience with the dojo.data package, and even played with
Gears more directly than in the last project. We dealt with a number of issues, including laying
out a page in a more programmatic way than usual, how to “save” data, and how to bind dijits
to data stores. In the process, we created an application that we can use for a real purpose!

CHAPTER 6 ■ A PLACE FOR YOUR STUFF: DOJO CODE CABINET328

Idiot Blob: The Game!

In the previous chapter, we wrote an application that provides us a place to store our snippets
of code, and to organize and find them as quickly as possible. In the chapter before that, we
wrote an application to keep track of our contacts and also to organize them in a manner that
made it easy to look them up when needed.

Both applications were useful, and both demonstrated some good usages of Dojo. The
one thing they clearly were not, though, was fun. When I say that, I mean fun in the sense that
they weren’t created explicitly to be fun to use. I certainly hope they are to some degree, and I
certainly hope they were fun to dissect and get into, but their purpose in life was fairly serious.
They had real needs they were trying to fulfill.

Well, fun is a need too, and nothing is more fun than a game! Well, nothing we can talk
about in mixed company at least (wink, wink). So, in this chapter we’ll set about the task of
writing a game by using Dojo. I wouldn’t expect EGM to be declaring this game of the year,
but it’ll have some element of enjoyment—at least, that’s the plan!1

Requirements and Goals
Let me tell you about my son Andrew. He’s a gamer. No, more specifically, to hear him tell it,
he’s a gaming god. Now, I’m all for self-confidence, and the fact is, he’s usually pretty darned
good. He bested me in a Guitar Hero tournament last year, and I’m no slouch at that game to
be sure!2

He also frequently declares his desire to be a video-game designer. Now, some parents
might decide that’s not a suitable vocation for a child to want to pursue, but those parents
haven’t looked at the numbers. We all used to say we wanted our kids to grow up to be doctors

329

C H A P T E R 7

1. EGM stands for Electronic Gaming Monthly, a popular gaming magazine here in the United States.

2. Guitar Hero is a series of games by Activision for various console video-game systems: you play a fake
guitar in time to popular songs. If that sounds stupid to you, I’d first ask where you’ve been lately, and
second I’d tell you to give it a try next time you’re in a store that has it on display. It’s considerably
more fun than it sounds! Many video game stores run tournaments, as did the one right up the street
from us last year when Guitar Hero III was released. My son and I entered and pretty well demolished
everyone else in it. The final match turned out to be me against my son, and he proceeded to whip my
butt pretty solidly! Since then he hasn’t beaten me nearly as often because I’ve been practicing my tail
off (yes, I’m a sore loser, especially when it’s to an obnoxious eight-year-old). But he’ll always have
those bragging rights from that one tournament win. I think all parents want their children to exceed
them; we just don’t want it to be so soon and perhaps not as public!

and lawyers, but why? With doctors there’s a certain chivalry there, so it’s fairly obvious. Why a
lawyer, though? Lawyers are generally not very highly regarded—not until you need one at
your side at least! I mean, there’s a whole web site dedicated to lawyer jokes (www.lawyer-jokes.
us), and that pretty much says it all right there.

No, the primary reason we tell our kids to be doctors or lawyers (even though we know
how the rest of the world will perceive them in the case of becoming a lawyer) is that they tend
to make a ton of money, and that ensures that our children will be able to get us into good
retirement homes when we reach our golden years!

But what about a video-game designer? Surely that’s a foolish goal that won’t meet our
needs of 24/7 bingo and all the Cream of Wheat we can eat, right? Absolutely not! The video
game industry is one of the most profitable sectors of the United States economy today,3 and I
suspect that’s a trend that is applicable in many other industrialized countries as well. There’s
clearly good money to be made in this field, so I’d rank it at least up there with lawyers in
terms of supporting us parents when we’re the ones in need of diapers again!

What does this have to do with the requirements and goals for this project, you ask?
Simple: My son provided many of the basics for this game. This is in fact his first foray into
video-game design! Now, look, he’s only eight years old, so you can’t exactly expect Halo or
Grand Theft Auto quality here, but it’ll suit our needs just fine:

• The game story: You are the proud owner of an idiot blob named Qwamp, not unlike
Gloop and Gleep4 but a lot less intelligent. Qwamp has wandered off into the Cave of
the Elements. Each chamber of the cave represents one of the four mythical founda-
tional elements of nature: fire, water, air, and earth. Your job will be to guide him
through the cave to safety because you see, being an idiot blob, he’s an idiot! This
means he can’t do it himself; you’ll have to tell him what to do each step of the way.
Now, although idiot blobs are idiots, they listen and obey well. A little too well as it hap-
pens: If you tell Qwamp to move forward, he will continue to move forward until you
tell him to do otherwise, even if that means he walks headlong into a burning fire! This
is a problem because the four chambers of the cave are maze-like with narrow bridges
going across them. Step off a bridge, and Qwamp plunges into fire, water, or air (which
we’ll assume is bad for some reason in this game!), or plunges hundreds of feet to the
ground below. There are also alien skulls littered across the cave that if touched kill
Qwamp dead. Dead ends and rocks can actually be helpful as they stop Qwamp but do
not kill him; they’re more of an inconvenience (or a help perhaps in some cases).

CHAPTER 7 ■ ID IOT BLOB: THE GAME!330

3. The video-game industry in recent years has rivaled the movie industry in overall income. Top game
designers can make a pretty penny, to say the least. Like most creative fields, it’s pretty hit-or-miss,
and there are probably just as many starving game designers as there are starving artists in the world,
but the upside is pretty far up there!

4. Gloop and Gleep are the two amoeba-like creatures from the old cartoon The Herculoids. If you
watched this cartoon on Saturday morning television, you’re likely laughing right now. If you’ve never
heard of it, this sounds pretty dumb! Check out Wikipedia for details: http://en.wikipedia.org/
wiki/The_Herculoids.

• So, based on the preceding story, we know we’ll have to draw four levels and enable the
user to control Qwamp to move through them. Each level will have a different back-
ground of the appropriate element with the bridge maze superimposed over it. There
will need to be alien skulls in spots, and control of Qwamp will have to work in the
manner described in the story. My son designed the four levels for us (and earned him-
self $50 in the process—he’s well on his way to getting me that nice suite in the Shady
Maple Retirement Home!).

• There’s no scoring. You either get Qwamp to the end of the fourth level or he dies, so
we’ll need a win and lose screen to be displayed when applicable.

• To make the game a little more interesting, we’ll implement three levels of difficulty.
The difference between each is the amount of time you have before Qwamp moves
again. Let’s say you tell Qwamp to move forward. Remember, he’ll keep doing that until
you tell him otherwise, or he runs into a dead end, or he dies. So on the hard level, for
instance, there will be 1 second between Qwamp moves, which means you’ll have just 1
second to decide what Qwamp’s next move should be and to click the appropriate but-
ton on the screen.

• Speaking of buttons, we’ll provide a simple four-way directional group of buttons for
controlling Qwamp, plus a button to start a new game.

• We’ll want to display the preceding story, plus some simple instructions as well.

So now that you know what my son has planned for you, let’s figure out how we as pro-
grammers are going to implement the vision of our lead game designer!

How We Will Pull It Off
If you’ve had occasion to read my previous three books, you’ll know that a chapter that
revolves around a game project has kind of become my signature. You would also probably
realize that I typically advocate a very low-level approach to developing games in the sense
that I tend to not want to use libraries for most things and do it all myself. The primary reason
is that game programming usually requires you to be in more control over the target environ-
ment than many libraries allow you to be. You need to know every instruction that is being
executed so you can optimize for performance, more so than you would in a typical business
application.

However, this being a book about a specific library, we’ll be using Dojo here obviously.
Thankfully, it’s not a forced usage because Dojo has the dojox.gfx namespace that you looked
at briefly earlier, and that turns out to be perfect for our needs here.

In Chapter 4, you took a look at dojox.gfx. There are only a few new parts of it that we’ll
be using in this project, and I’m going to introduce them as they are used in the code. With
Chapter 4 and this chapter, you should have a decent set of examples for that namespace.

Recall that one of the game’s requirements is to show the instructions and the back story
to the user. We could do this in any number of ways, but in keeping with the Dojo theme, I
decided to use the Dialog dijit for this. Not only does it give us a good solution for displaying
this information, but it also looks pretty good, especially if we use the Soria theme, instead of
the Tundra theme I’ve used in the other projects in this book. The Soria theme is a little more

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 331

“cartoonish” in a way, if for no other reason than it’s a bit more colorful, which fits the theme
of a game a bit better.

Revenge of the Demented Video Game Designer
One of the interesting problems I faced in this project was how to create the backgrounds. You
see, as cool as dojox.gfx is, speed isn’t one of its strong suits. Now, don’t take that to mean that
it’s slow. In fact, it’s surprisingly fast in a great many cases. All I mean is that for some things it’s
simply not fast enough, and doing complex animations is one of them.

Early on my son decided that the fire, water, and air caverns of the cave should have ani-
mated backgrounds. I agreed with him and then said to myself, “How the h**l am I going to
pull that off with dojox.gfx?” I knew that drawing the background over and over to animate
it just wasn’t going to work; it wouldn’t be nearly fast enough. So I had to figure something
else out.

What I discovered is that dojox.gfx respects z-indexing. This means that if you draw
something on the page, and then overlay a Surface on top of it, but don’t draw anything on the
Surface, that Surface is essentially transparent and you’ll still see what you put underneath it
(assuming the Surface has a higher z-index). This was a bit of luck because it meant I could
use our old friend, the animated GIF, to create a background tile. Then, all I’d really need to
draw on the Surface would be the bridge, dead ends, start and end markers for a given ele-
ment cave, and Qwamp himself. The Surface would overlay right on top of the animated GIFs
(GIFs, plural, because they are going to wind up being a grid of tiles, each tile being an ani-
mated GIF that when all put together give the illusion of one giant animated background
image). I haven’t seen this z-indexing information stated anywhere on the Internet, but I veri-
fied that it is the case on both Internet Explorer and Firefox, recent and near-recent versions.
It’s an extremely handy fact that opens up a lot of possibilities that otherwise wouldn’t be pos-
sible with just dojox.gfx alone.

Finally, we’re going to use the overlay “trick” for more than just the background: we’ll also
use it for Qwamp himself and for rocks. Once again, in the case of Qwamp, this is because of
an animation requirement, which dojox.gfx isn’t too well-suited for—well, setting aside trans-
formations, which it’s perfectly good at, but which wouldn’t have been much use here. (Tiling
the background by using transformations proved to be too slow, and trying to come up with a
suitable transformation matrix to get Qwamp to do what I wanted was, to be blunt, mathe-
matics way beyond my pay grade!) The rock is done this way because the shape of the rock
required a considerable amount of code to generate with dojox.gfx, more so than the alien
skulls which are done that way. I decided it was easier to use the overlay trick for the rocks as
well, even though they are not animated.

PROCEDURAL GRAPHICS: TAKING A CUE FROM THE XBOX 360

One of the things that makes Microsoft’s Xbox 360 so powerful is something called procedural graphics. This
is a fancy term for something pretty mundane: generating graphics via code.

Think of a typical game. Usually, all the graphics you see onscreen are drawn by an artist and then used
by a programmer to generate a given scene. There are usually elements created in real time on top of that,
such as smoke and sparks and those sorts of things, but elements such as cars, trees, and characters are

CHAPTER 7 ■ ID IOT BLOB: THE GAME!332

generally artwork drawn by a person (or previously generated by a computer, as in a Pixar movie, for exam-
ple).

With procedural graphics, though, some sort of programming algorithm is employed to generate the
graphics in real time rather than by an artist beforehand. Now, typically procedural graphics deals with things
that can be modeled by using fractal geometry—trees and clouds and such—and not typically for more-
complex and specific objects such as cars and spaceships. However, this isn’t always the case: if the
programmer is skilled enough, she can create just about anything.

Even if the programmer isn’t very skilled, or if the requirements aren’t that intense, you can generate
virtually any graphics procedurally, and that’s exactly what we’ll do in this game: the alien skulls, level-end
markers, and bridges will be drawn procedurally, while the rocks, Qwamp, and backgrounds are typical art-
work.

Dissecting the Solution
The directory structure of the application, shown in Figure 7-1, is once again perfectly typical
of most, if not all, of the applications throughout this book.

Figure 7-1. The directory structure of the application

In the styles directory, we find the usual styles.css file containing all the style sheet
information for the application. In the img directory are a bunch of image files. The air.gif,
fire.gif, earth.gif, and water.gif files are the animated (in the case of air, fire, and water)
GIF tiles for the cave chambers’ backgrounds. The blob.gif file is another animated GIF, this
time of Qwamp. The dead.gif and win.gif files are the images seen when you lose or win the
game, respectively. The left.gif, right.gif, up.gif, and down.gif files are the icons that will
be shown on the four directional control buttons. The rock.gif file is an image of a rock that
will be overlaid onto the cave. There’s also a marble.gif file that is a marble texture used for

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 333

the background of the control area of the screen (and cleverly, to make the bridge that Qwamp
must walk on).

Under the js directory, we find the dojo directory, as you’d expect, as well as three files:
GameClass.js, which is the main class and logic of the game; GraphicsSubsystem.js, which
contains generic graphics functionality used in the GameClass.js code; and LevelMaps.js,
which contains the data for the four levels of the game.

In the root directory is the usual index.htm that contains the markup for the project and is
what you load into your browser.

With that out of the way, let’s begin now by taking a quick look at the game itself, starting
with Figure 7-2.

Figure 7-2. The first level of the game during play

As you can see, there is the main play area on which you can see Qwamp down there near
the bottom, as well as a number of alien skulls, rocks, and dead ends on the bridge. The fire in
the background is moving, which obviously you wouldn’t know from a picture in a book (not
yet, although I hear those digital book readers are set to take off any day now, and you’d pre-
sume they could handle something like that!). On the right-hand side is the control area,
which houses the four directional control buttons and the New Game button, as well as some
information up top showing a countdown before Qwamp’s next move and the direction that
the move will be in.

In Figure 7-3, you can see the second level of the game, the water chamber of the cave.

CHAPTER 7 ■ ID IOT BLOB: THE GAME!334

Figure 7-3. The second level of the game during play

This isn’t much different from the first level, but I thought it would be a good idea to see
more than a single level.

Now let’s get to the code!

Writing index.htm
The natural place to start is index.htm, which can be thought of as the underlying scaffolding
that the application is built upon. It’s a plain old HTML document, so it begins with a <head>
section, and within it we find some pretty typical style sheet imports:

<!-- Stylesheets. -->
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/soria/soria.css">

<link rel="StyleSheet" type="text/css" href="css/styles.css">

The baseline dojo.css style sheet is of course imported, as well as the style sheet for the
Soria theme. Finally, the application-specific styles.css style sheet is imported. We’ve previ-
ously discussed dojo.css, and you know about the style sheet for the theme from past
experience as well. We’ll have a look at styles.css right after we’re done with index.htm.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 335

Following the style sheet imports is our usual starting Dojo configuration and Dojo core
import:

<!-- Dojo config and load. -->
<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

Because we’ll be using the Dialog dijit, and using it in a declarative fashion, we need to
make sure widget parsing is turned on, hence the parseOnLoad attribute set to true. Other than
that, this is exactly like what you’ve seen before.

Next are a couple of JavaScript imports to get the actual game code into the page:

<!-- Load application code. -->
<script type="text/javascript" src="js/GraphicsSubsystem.js"></script>
<script type="text/javascript" src="js/LevelMaps.js"></script>
<script type="text/javascript" src="js/GameClass.js"></script>

As previously mentioned, the core game logic is housed in the GameClass.js file, while
general graphics-related code is in GraphicsSubsystem.js, and LevelMaps.js contains the data
used to draw each of the four levels of the game.

After that in the code, we find a <script> section that contains what is essentially the
bootstrap, or startup code, as well as some Dojo require() statements:

<script>
// Import Dojo components.
dojo.require("dojox.gfx");
dojo.require("dojox.timing._base");
dojo.require("dijit.Dialog");
dojo.require("dijit.form.Button");
dojo.require("dijit.form.Slider");
dojo.require("dojo.parser");

// The one and only instance of the GameClass.
var game = new GameClass();

// Startup tasks.
dojo.addOnLoad(function() {
game.init();

});
</script>

We’ll of course be using dojox.gfx, so that entire namespace is imported. We’ll also be
using the dojox.timing.Timer class that we previously looked at, so we need to import
dojox.timing._base (that’s a little bit of an odd import, the only one I believe we’ve seen
with an underscore in its name, but it’s required). We also know we’ll need the Dialog dijit

CHAPTER 7 ■ ID IOT BLOB: THE GAME!336

imported, as well as the Button dijit. The selection of difficulty level will be done via slider, so
we use require() dijit.form.Slider. Finally, the declarative dijit facility doesn’t work without
loading in dojo.parser, so that’s done as well.

Then, an instance of the GameClass class is created. This is the JavaScript class contained
in the GameClass.js file, which we’ll look at later.

Finally, we use the dojo.addOnLoad() function to hook up some startup code, which is
nothing but a call to the init() method of the instance of GameClass we created.

■Note As I’ve mentioned in previous chapters, you can sometimes get away with using the usual page
onLoad event to do your startup tasks, but it’s pretty much just a matter of luck when that works. When
you’re using Dojo, and dijits specifically, dojo.addOnLoad() is the way to go. In this application, you would
definitely notice some things that fail to work related to dojox.gfx if you tried to use onLoad.

This <script> block is the last bit of content in the <head> section. Next begins the <body>
section:

<body class="soria">

The Soria theme will be used here because of its more “playful” nature, that is, it’s a bit
more colorful and therefore more appropriate for a game in my mind. Please don’t take that to
mean it can’t or shouldn’t be used in a serious application; that’s not what I’m saying at all! It’s
just that I felt its visual style better matched the theme of a game than did the Tundra theme
I’ve used in other projects.

Anyway, let’s move on to the start of the actual markup:

<div class="cssOuterBorder"></div>

As you play the game, you’ll notice a border around the entire gaming area. That border is
a result of this <div>. The interesting thing about it is that everything else is not a child of this
element, as you might expect. That was necessary because of the way everything has to lay
out; as children, some elements would have been more difficult to position relative to others
that I needed to. Besides that, the only point of this element is to provide for the border.
There’s no real need for any parent-child relationships in the first place.

After that <div>, we find the markup for the first of two dialog boxes that will be seen
whenever a new game is begun:

<!-- Welcome Dialog One. -->
<div dojoType="dijit.Dialog" id="WelcomeOneDialog" dragable="false"
title="Welcome - Page One" class="cssDialog1" style="display:none;">
<div id="divWelcomeOneSurface"></div>
<center>
<button dojoType="dijit.form.Button"
onClick="dijit.byId('WelcomeOneDialog').hide();➥

dijit.byId('WelcomeTwoDialog').show();">
Continue

</button>

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 337

</center>
</div>

The result of this markup can be seen in Figure 7-4.

Figure 7-4. The first “page” of the Welcome dialog

At this point, unless you’re completely asleep (which would mean I haven’t done my job
well at all!), you will be scratching your head going, “Err, where’s the text?” The answer is at
least hinted at a little bit by the divWelcomeOneSurface <div> element. The word surface in
there is a clue that this element will house a dojox.gfx Surface, and if that’s the case, it’s not
much of a stretch to imagine that the text itself is drawn on that Surface. The code that does
this drawing will be seen later when we look at the JavaScript files.

The next logical question is, “Why would we do it this way at all?” Why not just put the
text in the markup? Certainly that would be easier, but two considerations made me do it this
way. First, because this is a book with a goal of teaching you something, I thought this was a
good way to demonstrate some of the dojox.gfx text functionality a bit more. Second, and
really the more relevant reason (certainly the less contrived reason!) is that in the second dia-
log box there is a need to display graphics that are drawn with dojox.gfx. In fact, let’s look at
that markup right now:

<!-- Welcome Dialog Two. -->
<div dojoType="dijit.Dialog" id="WelcomeTwoDialog"
title="Welcome - Page Two" class="cssDialog2" style="display:none;">

CHAPTER 7 ■ ID IOT BLOB: THE GAME!338

<div id="divWelcomeTwoSurface"></div>
<center>
<div dojoType="dijit.form.HorizontalSlider" class="cssSlider"
value="2" minimum="1" maximum="3" discreteValues="3"
showButtons="true" id="sldDifficulty">
<div dojoType="dijit.form.HorizontalRuleLabels"
container="topDecoration" labels="Easy,Medium,Hard"
class="cssSliderLabels">

</div>
</div>

<button dojoType="dijit.form.Button"
onClick="dijit.byId('WelcomeTwoDialog').hide();game.startGame();">
Start Game

</button>
</center>

</div>

Once again you can see there’s no textual content here, just a Button dijit and a Slider
dijit, and again a <div> that we can surmise will be where the text is drawn. In Figure 7-5, you
can see what this markup, plus the text that is later drawn in the dialog box, looks like.

Figure 7-5. The second “page” of the Welcome dialog box

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 339

Both of these Dialog dijits have a style class applied, cssDialog1 for the first, and
cssDialog2 for the second. As you’ll see, this is responsible for sizing the dialog box, at least
for Internet Explorer. You can also see that the dialog box is initially hidden via the
style="display:none;" attribute. The first dialog box has a Button dijit that when clicked
hides that dialog box and then shows the second.

The second dialog box also has a Button dijit that when clicked hides that dialog box and
then calls the startGame() method of the GameClass instance referred to by the variable game.
This dialog box also has a Slider dijit that is used to select difficulty level. This has a Horizon-
talRuleLabels dijit associated with it for showing the text labels on it. The default difficulty
level of Medium, which is a value of 2, is set initially by virtue of the value attribute being set
to 2.

Following the markup for the dialogs is the markup for the actual play area of the page:

<!-- Play area. -->
<div id="divContainer" class="cssPlayArea">
<!-- Main surface. -->
<div id="divSurface" style="display:none;"></div>
<!-- Blob image. -->
<img src="img/blob.gif" id="imgBlob"
style="position:absolute;display:none;">

</div>

A single <div> contains the play area, and what that <div> contains is another <div> that
will house the dojox.gfx Surface, after it’s created in the JavaScript that we’ll be looking at
shortly. There is also an that is the idiot blob itself. The src points to an animated GIF of
our little stupid pet jumping up and down. Notice that it is initially hidden via the style set-
ting and is also set to be positioned absolutely. This is of course necessary; otherwise, we
wouldn’t be able to move the blob around the screen.

It’s important to remember that as you add elements to a page, each subsequent element
is effectively (but not literally) at a higher z-index than its predecessors. This means, for exam-
ple, that if the blob is placed at a location that puts it on top of the Surface <div>, the
blob will appear on top of the Surface, even though they have the same z-index. This is an
important fact that will work for us not only with the blob but in other situations that you’ll
see.

Next up we find the side area, which is where the control buttons, Countdown timer, Next
Move indicator, and New Game button are housed. This is really not much more than simple
HTML and some styling, so I won’t spend too much time on it:

<!-- In-game data display areas. -->
<div class="cssSideAreaPart" style="top:6px;height:164px;">
<table cellpadding="4" cellspacing="4" width="100%">
<tr>
<td width="1" class="cssInfoBoxes">Countdown: </td>
<td width="100%" class="cssInfoBoxes"
id="countdownDisplay"> </td>

</tr>
<tr>
<td width="1" class="cssInfoBoxes">Next move: </td>
<td width="100%" class="cssInfoBoxes" id="nextMoveDisplay"> </td>

CHAPTER 7 ■ ID IOT BLOB: THE GAME!340

</tr>
</table>

</div>

The way these sections lay out is kind of important, though. Basically, the side area has
three segments: the area where the game is displayed, the area containing the control buttons,
and the area containing the New Game button.

The in-game data display area is the prior snippet. This is where the Countdown timer
and Next Move indicator are. Note that the height of this <div>, 164px, is actually more than is
needed to display its content. That’s by design. When we look at the style sheet, you’ll find that
each of these segments has a background image attached to it. In order to get the marble
background to appear properly in the side area, each segment that makes it up needs to take
up the space it needs for its content, and then some, so that the marble background fills up
the entire side area.

The second segment is where the directional control buttons are, and the markup for that
segment is seen here:

<!-- Control buttons. -->
<div class="cssSideAreaPart" style="top:170px;height:230px;">
<table align="center" border="0" width="100%">
<tr>
<td valign="middle" align="center" colspan="2">
<button dojoType="dijit.form.Button" iconClass="icons iconUp"
onClick="game.setNextMove('up');" showLabel="false"
label="up"></button>

</td>
</tr>
<tr>
<td valign="middle" align="left" width="50%">
<button dojoType="dijit.form.Button" iconClass="icons iconLeft"
onClick="game.setNextMove('left');" showLabel="false"
label="left"></button>

</td>
<td valign="middle" align="right" width="50%">
<button dojoType="dijit.form.Button" iconClass="icons iconRight"
onClick="game.setNextMove('right');" showLabel="false"
label="right"></button>

</td>
</tr>
<tr>
<td valign="middle" align="center" colspan="2">
<button dojoType="dijit.form.Button" iconClass="icons iconDown"
onClick="game.setNextMove('down');" showLabel="false"
label="down"></button>

</td>
</tr>

</table>
</div>

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 341

Once again, not a whole lot to it, just some relatively simple markup and four Button
dijits. Each button, when clicked, calls the setNextMove() method of the GameClass instance,
passing the direction that was clicked.

■Note One problem I discovered is that in Internet Explorer, if you set showLabel to false and don’t
include the label attribute, you’ll encounter an error (you want showLabel set to false because all you
really want to see on the buttons are arrows indicating the direction to move the blob). In Firefox, this is not
the case; you can drop the label attribute entirely, which logically is what you’d think of doing. That’s why
there is a label attribute on each of these buttons, even though showLabel is set to false, thereby making
the actual label value irrelevant.

The final segment is where the New Game button lives:

<!-- New Game button. -->
<div class="cssSideAreaPart" style="top:400px;height:86px;">
<table width="100%" align="center">
<tr><td align="center">

<button dojoType="dijit.form.Button"
onClick="game.commonGameOverWork();➥

dijit.byId('WelcomeOneDialog').show();">
New Game

</button>

</tr><tr>
</table>

</div>

Once again, just some very simple markup and a Button dijit. A call to
commonGameOverWork() is required to essentially finish off any current game that might be
in progress, including getting the screen ready to display the two Welcome dialog boxes.

Writing styles.css
The style sheet for this game isn’t all that large and certainly doesn’t contain any especially
complicated pieces, but let’s have a look just the same, beginning with this snippet:

/* Styles for button icons. */
.icons {
background-repeat : no-repeat;
background-position : 0px;
width : 20px;
height : 18px;
text-align : center;

}

CHAPTER 7 ■ ID IOT BLOB: THE GAME!342

.iconUp {
background-image : url("../img/up.gif");

}
.iconDown {
background-image : url("../img/down.gif");

}
.iconLeft {
background-image : url("../img/left.gif");

}
.iconRight {
background-image : url("../img/right.gif");

}

This is the exact sort of stuff in previous chapters for putting icons on Button dijits. Here
we’re putting arrows on the four directional control buttons:

/* Style for outer border. */
.cssOuterBorder {
position : absolute;
top : 2px;
left : 2px;
border : 2px solid #a0a0ff;
width : 780px;
_width : 784px;
height : 484px;
_height : 488px;

}

When we looked at index.htm, you’ll recall there was a <div> whose only purpose in life
was to give us a border around the entire play area; it wasn’t actually a container of anything.
The cssOuterBorder class is what’s applied to that <div>. It’s positioned absolutely in the
upper-left corner of the page, just 2 pixels from the edge, and it’s a slightly bluish solid border
that is 2 pixels thick. The width and height are simply specified as actual pixel values because
we know exactly how large to make it based on the fact that we know exactly how big all the
parts that will appear to be inside of it are.

However, there is a problem: Internet Explorer and Firefox don’t deal with borders in
exactly the same way. They always wind up being off by just a little bit (because, I believe, IE
doesn’t count the border itself in the overall width and height, whereas Firefox does). So, a
simple CSS hack is used here. Any attribute name beginning with an underscore is ignored by
all browsers other than IE. So, we have a width attribute set to 780px. Firefox will use that value
and ignore the _width attribute. However, IE will also use the 780px, but will then not ignore
the _width attribute, thereby overriding the value given by width right before it. It’s a simple
but effective hack. In general, you want to avoid hacks like this, especially given that a future
version of IE might not work this way, but for the time being it works well and lets us avoid
writing some JavaScript to deal with it.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 343

The next two styles are somewhat interesting:

/* Hide close icon on dialog #1. */
#WelcomeOneDialog .dijitDialogCloseIcon {
display : none;

}

/* Hide close icon on dialog #2. */
#WelcomeTwoDialog .dijitDialogCloseIcon {
display : none;

}

I discovered that there is currently no way in Dojo to turn off the Close button that a dia-
log box usually has. This is annoying because you don’t want the user to be able to close the
Welcome dialogs; you want them to use the buttons on the bottom to move through them.
(The Close button would have provided another path of execution to deal with that I’d prefer
not to have to deal with.) The only way to get rid of that button is via CSS, as you can see here.

Two more style classes are present that have to do with the dialog boxes:

/* Style for dialog #1. Note IE hack. */
.cssDialog1 {
_width : 565px;
_height : 480px;

}

/* Style for dialog #2. Note IE hack. */
.cssDialog2 {
_width : 555px;
_height : 380px;

}

As it turns out, in Firefox the dialogs size exactly as you’d expect, and everything works
right without specifying a width and height. In IE, however, this wasn’t the case. Things didn’t
line up properly, I found, and the solution was to explicitly size the dialogs. However, because I
needed to do this only for IE, I used the same sort of CSS hack trick we saw previously, so in
Firefox these width and height values are simply ignored.

The next two style classes deal with the difficulty slider on the second Welcome dialog
box:

/* Style for the difficulty slider. */
.cssSlider {
width : 350px;

}

/* Style for the labels on the difficulty slider. */
.cssSliderLabels {
height : 1.2em;
font-size : 10pt;
color : #000000;

}

CHAPTER 7 ■ ID IOT BLOB: THE GAME!344

The cssSlider class gives the slider an explicit width so that it fits nicely in the dialog box.
The cssSliderLabels class simply sets the style for the text labels above the slider.

Following that is the class applied to the container around the play area:

/* Style for the play area container. */
.cssPlayArea {
position : absolute;
left : 6px;
top : 6px;

}

No big deal there; it’s nothing but positioning. The cssSideAreaPart that follows is a little
more interesting:

/* Style for the side area parts (info, control buttons, New Game button. */
.cssSideAreaPart {
position : absolute;
left : 648px;
width : 134px;
background-image : url(../img/marble.gif);

}

Okay, so we’re again positioning it absolutely, 648 pixels to the right to be precise, which
puts it just beyond the 32 ✕ 24 grid of tiles that is used to show the current level, and it has a
background image of marble. The width is set so that it takes up the space between the right-
hand edge of the grid and the right-hand edge of the border around everything. Notice,
however, that there is no top attribute specified. The reason is that this same style class will be
applied to each of the three segments that make up the info area portion of the screen, but
each of those will have a different top setting, as well as a different height setting, which you’ll
also notice is not specified in the style sheet. In other words, I factored out the style attribute
common to all three segments and placed it in cssSideAreaPart and left out the attributes that
differ for each segment.

The last class, cssInfoBoxes, is this:

/* Style for the info boxes in the side area. */
.cssInfoBoxes {
font-weight : bold;
font-size : 10pt;
background-color : #ffffa0;

}

This is used to style the Next Move and Countdown timer text, and also give the yellowish
background color to them so they stand out a little bit off the marble background.

With the style sheet and markup now all examined and hopefully making sense in your
mind, it’s time to get into the JavaScript used in this game. We’ll begin with the code that stores
the data representing the four levels, or cave chambers, of the game.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 345

Writing LevelMaps.js
The LevelMaps.js file contains a single JavaScript class named, not surprisingly I expect,
LevelMaps. The UML diagram for this class can be seen in Figure 7-6.

Figure 7-6. UML class diagram of the LevelMaps class

It has only a single member (which I think pretty much makes the UML diagram a waste
of ink, but for the sake of consistency I included it). As it turns out, that single member,
levels, is just a multidimensional array. The first dimension consists of four elements, one for
each level of the game. The second dimension is a list of “tiles” to display. The data here is
quite large, so here are just a few snippets from it, enough to give you a representative idea of
what it’s all about:

function LevelMaps() {

this.levels = [

/* LEVEL 1 */
[
{ background : "fire" },
{ x : 10, y : 0, type : "end" },
{ x : 10, y : 1, type : "bridge" },
{ x : 10, y : 10, type : "skull" },
{ x : 10, y : 11, type : "bridge" },
{ x : 10, y : 12, type : "bridge" },
{ x : 10, y : 13, type : "bridge" },
{ x : 10, y : 14, type : "bridge" },
{ x : 10, y : 2, type : "bridge" },
{ x : 10, y : 3, type : "skull" },

…
{ x : 9, y : 8, type : "bridge" },
{ x : 9, y : 9, type : "bridge" }

],

/* LEVEL 2 */
[
{ background : "water" },
{ x : 10, y : 23, type : "start" },
{ x : 11, y : 23, type : "bridge" },
{ x : 12, y : 23, type : "bridge" },
{ x : 13, y : 23, type : "bridge" },

…

CHAPTER 7 ■ ID IOT BLOB: THE GAME!346

{ x : 29, y : 12, type : "bridge" },
{ x : 30, y : 12, type : "bridge" },
{ x : 31, y : 12, type : "end" }

]

];

} // End LevelMaps().

■Note In JavaScript, there are no true multidimensional arrays; there are just arrays of arrays, quite liter-
ally. That’s pretty much what a multidimensional array is in any language, but in JavaScript there’s no
syntactic sugar to hide that fact, as there is in some other languages, such as Java.

The way a given level is drawn is like this: The first element of the array for a given level is
always an object with a single attribute named background. This names the type of background
tile to use (it also is used to construct the image filename to use, so fire becomes img/fires.
gif, for example). When a level is drawn, this element is examined, and a bunch of ele-
ments, which are created dynamically during application initialization as you’ll see, are set to
the appropriate image file. These elements are drawn at a z-index below the dojox.gfx
Surface. In other words, the Surface overlays a grid of elements that now have the
appropriate image in them, be it fire, water, earth, or air. If nothing is drawn on the Surface, it
is essentially transparent, so we see the background elements and nothing else.

After that, the array for the level is iterated over. Each element of the array is an object
with three attributes: x, y, and type. The x and y attributes tell the code the location of the tile.
The playfield is a grid of 32 tiles across by 24 tiles down, and each tile is 20 pixels wide and 20
pixels high. So, an x and y location of 1,0 means it’s the second tile from the upper-left corner.
The type attribute obviously tells the code what type of tile it is. This can be a bridge tile, an
end tile (which triggers going to the next level when the blob reaches it, or winning the game if
it’s the last level), a start tile (where the blob should begin on that level), a skull, a rock, or a
deadend.

■Note My son did not only the level designs, but also the coding you see here, which is his first actual pro-
gramming experience. Sure, I gave him a template, so all he really had to do was copy a line, add a comma
to the end, and transcribe the appropriate x, y, and type values from the graph paper he had drawn the
map on, but it still counts! He also got to experience the magic of source control when he accidentally
messed up a lot of work one time and I was able to get him very close to where he was by reverting
changes. (I had him checking code into Subversion frequently; even though he didn’t really know what he
was doing, at least he could follow my directions well enough!)

This means that we are drawing only the tiles that are needed with dojox.gfx, rather than
using it to redraw the entire playfield each time. This is a huge performance savings; it in fact

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 347

cuts the time it takes to draw a level down pretty close to 90 percent. Worst still, the browser is
locked up while the drawing occurs, so 1 second is clearly better than 10 (and that’s 10 on my
fairly beefy PC; it would have been far worse on a more average PC). This is the main reason,
aside from the animation requirement, for using the whole “Surface superimposed over
elements” trick.

I figure taking a look at another of the levels couldn’t hurt at this point, so here in
Figure 7-7 you can see the third level of the game.

Figure 7-7. The third level of the game during play

Now that you have an idea of what the underlying data that describes a level looks like,
and are starting to get an idea of how it’s all drawn and constructed on the screen, let’s delve
into that GraphicsSubsystem.js file and see the (relatively) low-level graphics functions that
are used throughout the main game code to put all this stuff on the screen.

Writing GraphicsSubsystem.js
I’ve written a fair number of games in my day, but few of them have been cross-platform. A
few have been able to run on Windows and Pocket PC, but those platforms are in many ways
similar, and the code didn’t have to change very much to make that happen. I’ve often thought
about the task of writing a complex game that runs on multiple game consoles plus PCs. This
is a pretty tall order! When you think through how to pull that off, you pretty quickly realize
that the only way you can do it without having ten different code bases is to break out the

CHAPTER 7 ■ ID IOT BLOB: THE GAME!348

more generic “game logic” code from the more platform-specific graphics and audio code.
The game logic—things like artificial intelligence (AI), physics, scoring, that sort of stuff—is all
pretty platform-agnostic if you write it in a language that itself is platform-agnostic (or at least
can be, if used right). C, for example, is such a language. If you stick to basic C, you can pretty
well run a game on any platform out there today with minimal changes from platform to plat-
form. C also is powerful enough to write all the core game code in without much trouble.

The graphics code, however, is another story altogether. The Xbox uses one type of graph-
ics chip, while the PlayStation uses another. There are vast differences in programming for the
Cell architecture of the PlayStation versus the Power PC–inspired Xenon core of the Xbox. So,
you want to abstract out the code that is highly platform-specific from the more generic code.

That’s what I’ve attempted to do with GraphicsSubsystem.js. Now, with a JavaScript-
based game, you don’t really have those platform-specific issues to deal with that you do when
programming a multiplatform game. However, what if I later decide I don’t want to use
dojox.gfx for some reason? Maybe a speedier library comes out that does the same thing but
with much better performance. In a sense, dojox.gfx is the platform I’m developing for. So,
the less code I have to touch, the better. Ideally, if I’ve broken things out well, I should have to
touch only the code in this file, and none of the code in GameClass.js, which is where the more
generic “game logic” is.

Let’s get the high-level overview of the GraphicsSubsystem class, which is what’s found in
the GraphicsSubsystem.js file naturally, by looking at its UML class diagram in Figure 7-8.

Figure 7-8. UML class diagram of the GraphicsSubsystem class

So, we have a couple of private members, and their declaration in the code can be seen
here:

// Map sizing variables.
var gridWidth = 32;
var gridHeight = 24;

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 349

var tileWidth = 20;
var tileHeight = 20;

// The drawing surface.
var surface = null;

The gridWidth and gridHeight members define the number of tiles across and down in
the grid that will be used to draw our levels. We’ll have a grid of 32 ✕ 24 tiles, and each tile will
be 20 pixels wide and 20 pixels tall, as defined by the tileWidth and tileHeight members.
Making these variables enables me to resize the play area as I see fit (originally I had this grid
sized to 24 ✕ 24 with a tile size of 32 ✕ 32). Note that the border around the play area would
need to be resized too, and that would be done through the style sheet. You could have that
resized based on these variables too, if you wanted. To be perfectly honest, that didn’t occur to
me when I wrote the code originally; it was something I realized after the fact based on some
comments from my technical reviewer (further proof, as if anyone needed it, that I am not, in
fact, perfect!).

The variable surface is a reference to the dojox.gfx Surface object that will be created in
the init() method, called when the application loads (indirectly called at least—this will
make sense when we look at GameClass), and whose code you can see here:

this.init = function() {

// Calculate actual pixel width and height of grid.
var gridPixelWidth = gridWidth * tileWidth;
var gridPixelHeight = gridHeight * tileHeight;

// Resize container DIV and create Surface.
var ds = dojo.byId("divSurface");
ds.style.width = gridPixelWidth + "px";
ds.style.height = gridPixelHeight + "px";
ds.style.display = "";
surface = dojox.gfx.createSurface(
"divSurface", gridPixelWidth, gridPixelHeight);

// Create img elements for background tiles.
var container = dojo.byId("divContainer");
for (var y = 0; y < gridHeight; y++) {
for (var x = 0; x < gridWidth; x++) {
var i = document.createElement("img");
i.id = "imgBackground_" + x + "_" + y;
i.style.position = "absolute";
i.style.display = "none";
i.style.left = (x * tileWidth) + "px";
i.style.top = (y * tileHeight) + "px";
container.appendChild(i);

}
}

} // End init().

CHAPTER 7 ■ ID IOT BLOB: THE GAME!350

This code begins by calculating the pixel width and height that the surface needs to be,
which is simply multiplying the number of tiles across by a tile’s width, and doing the same for
the height. The divSurface <div> is then sized according to those calculations, and dojox.
gfx.createSurface() is called, placing the Surface within divSurface. We now have a canvas
on which to draw our game levels.

Now we move on to creating a series of elements. We create an element for
each tile in the grid by using a loop within a loop. The outer loop is the height of the grid, and
the inner loop is the width of the grid. This is how the background for a given level will be
drawn. The src of each element will be, in the drawLevel() method that we’ll see next,
set to point to the appropriate background tile GIF, as defined in the LevelMaps.js data, as we
saw earlier. Each element is created and then positioned absolutely at the appropriate
location so that a grid is formed, which is a simple calculation: multiply the x loop value by the
width of a tile, and the y loop value by the height of a tile, and that gives you the x and y (left
and top style attributes) where the should be located on the page.

The Surface is superimposed over this grid of elements, which just means that it’s
located at the same location and “covers” the elements. However, because the Surface is
essentially transparent, anywhere that nothing is drawn on it, we see the elements
“shine through it.” I’ve described all of this more than once now, but it occurs to me a picture
is worth a thousand words, so here is Figure 7-9 to save me from typing a thousand more
words!

Figure 7-9. A grid of elements, with a dojox.gfx.Surface located directly over it, is where
(and how) our levels will be drawn.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 351

■Note The Surface being “superimposed” over the elements doesn’t really mean anything is done
in terms of the z-index because again, any part of the Surface where nothing is drawn is transparent, so
there’s nothing special we have to do to make this work as we want. It’s a natural consequence of how the
Surface works, and of the fact that the location and size of the Surface is the same as the location and
size of the grid of elements.

With init() complete, the next step, at some point anyway (when a game starts to be
more specific, or when Qwamp passes along to a new chamber in the cave), is to draw a level.
Naturally, we want to have a fairly generic way of doing this, so the drawLevel() method exists,
which accepts as an argument the array of data for a given level pulled from LevelMaps:

this.drawLevel = function(inLevelMap) {

var retVal = "";

// Clear the surface.
this.clearSurface();

// Show all background tiles and set the appropriate graphic.
for (var y = 0; y < gridHeight; y++) {
for (var x = 0; x < gridWidth; x++) {
var tile = dojo.byId("imgBackground_" + x + "_" + y);
tile.style.display = "";
tile.src = "img/" + inLevelMap[0].background + ".gif";

}
}

// Overlay the actual play tiles.
for (var i = 0; i < inLevelMap.length; i++) {

var xBase = inLevelMap[i].x * tileWidth;
var yBase = inLevelMap[i].y * tileWidth;
switch (inLevelMap[i].type) {

// Bridge piece.
case "bridge":
// Nothing to draw, background shines through.
dojo.byId("imgBackground_" + inLevelMap[i].x + "_" +
inLevelMap[i].y).style.display = "none";

break;

CHAPTER 7 ■ ID IOT BLOB: THE GAME!352

// Dead end.
case "deadend":
this.drawDeadEnd(surface, xBase, yBase);
dojo.byId("imgBackground_" +
inLevelMap[i].x + "_" + inLevelMap[i].y).style.display = "none";

break;

// Rock.
case "rock":
this.drawRock(surface, xBase, yBase);
dojo.byId("imgBackground_" +
inLevelMap[i].x + "_" + inLevelMap[i].y).style.display = "none";

break;

case "skull":
this.drawSkull(surface, xBase, yBase);
dojo.byId("imgBackground_" +
inLevelMap[i].x + "_" + inLevelMap[i].y).style.display = "none";

break;

case "start":
// Nothing to draw, background shines through.
dojo.byId("imgBackground_" +
inLevelMap[i].x + "_" + inLevelMap[i].y).style.display = "none";

// Record the location for the caller.
retVal = inLevelMap[i].x + "," + inLevelMap[i].y;

break;

case "end":
this.drawDoorway(surface, xBase, yBase);
dojo.byId("imgBackground_" +
inLevelMap[i].x + "_" + inLevelMap[i].y).style.display = "none";

break;

} // End switch.

} // End for.

return retVal;

} // End drawLevel().

First, we have a variable retVal, which as you’ll see returns to the caller the x and y loca-
tion of the starting tile for the level. You’ll see why this is necessary when we look at the core
game logic later.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 353

The first task this method performs is to clear the Surface via a call to clearSurface() on
it. We now have a clean slate on which to draw, which is important when moving from level to
level. Next, we deal with the background. This is done by ensuring that all the elements
created in init() are showing (they are hidden at various times, as you’ll see later). We point
all of their src attributes to the appropriate GIF, as determined by looking at the first element
of the passed-in array. As you’ll recall from looking at LevelMaps.js, that data contains the
name of the tile (fire, water, air, or earth).

If we did nothing else in this method, what you’d see on the screen would be nothing but
the background, which wouldn’t be a very fun game! So we begin to iterate over the array
passed in. With each iteration, we calculate the x and y location of the next tile by using the x
and y locations specified in the next element in the array. These values are relative to the grid
of tiles, but xBase and yBase are relative in terms of pixels to the page, so it’s a simple calcula-
tion, but a necessary one. Because we’re going to need these values for just about any tile type,
it’s smart to calculate it here rather than duplicate the code in multiple places or, worse still,
calculate it possibly multiple times, which would be inefficient in a loop like this.

Then, for each element we switch on the type attribute. For the type bridge, there’s
nothing to draw: we just need to hide the element for that tile. This lets the marble back-
ground, which was set as the background image of the <div> that the Surface is in, shine
through. This is also the case for the start type tile, which is a bridge tile but is slightly special
in that the game code knows this tile indicates where Qwamp should be placed to start a level.
For the start tile, the x and y locations are concatenated with a comma between them, and
that value is stored in retVal to be returned to the caller. Again, you’ll see how this is used in a
bit when we look at GameClass.

■Note Originally, I had code that drew a bridge tile, which maybe looked a little better, but it added sec-
onds to the amount of time it took to draw a level. Using the background marble texture as the bridge
shaved a noticeable amount of time off how long it took to draw a level, which I felt was a decent
compromise.

For all the other types, there is some drawing to be done, so the appropriate method of
GraphicsSubsystem is called to do so. Figure 7-10 shows the fourth level of the game.

CHAPTER 7 ■ ID IOT BLOB: THE GAME!354

Figure 7-10. The fourth level of the game during play

For example, a skull type tile is drawn by calling the drawSkull() method, seen here:

this.drawSkull = function(inSurface, inXBase, inYBase) {

// Fill background to white.
inSurface.createRect({
x : inXBase, y : inYBase, width : 20, height : 20
}).setStroke({ color : "white" }).setFill("white");

// Draw skull.
inSurface.createRect({
x : inXBase + 4, y : inYBase, width : 12, height : 2
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase + 2, y : inYBase + 2, width : 2, height : 2
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase + 16, y : inYBase + 2, width : 2, height : 2
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase, y : inYBase + 4, width : 2, height : 10

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 355

}).setStroke({ color : "black" }).setFill("black");
inSurface.createRect({
x : inXBase + 18, y : inYBase + 4, width : 2, height : 10
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase + 4, y : inYBase + 6, width : 4, height : 5
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase + 12, y : inYBase + 6, width : 4, height : 5
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase + 2, y : inYBase + 14, width : 2, height : 4
}).setStroke({ color : "black" }).setFill("black");

inSurface.createLine({ x1 : inXBase + 6, y1 : inYBase + 14,
x2 : inXBase + 6, y2 : inYBase + 17 }).setStroke({
color : "black" });

inSurface.createRect({
x : inXBase + 9, y : inYBase + 14, width : 2, height : 4
}).setStroke({ color : "black" }).setFill("black");

inSurface.createLine({ x1 : inXBase + 13, y1 : inYBase + 14,
x2 : inXBase + 13, y2 : inYBase + 17 }).setStroke({
color : "black" });

inSurface.createRect({
x : inXBase + 16, y : inYBase + 14, width : 2, height : 4
}).setStroke({ color : "black" }).setFill("black");

inSurface.createRect({
x : inXBase + 4, y : inYBase + 18, width : 12, height : 2
}).setStroke({ color : "black" }).setFill("black");

} // End drawSkull().

Passed into this method is the Surface on which to draw, as well as the base x and y loca-
tions, meaning the pixel location of the upper-left corner of the tile to be drawn. All of the
dojox.gfx drawing functions called in this method are based on that corner’s location.

Here’s where we have that procedural-type graphics approach I mentioned before. A skull
is put on the screen by executing a bunch of createRect() and createLine() method calls on
the Surface, beginning with one meant to give us a 20 ✕ 20 white square on which to draw the
black skull. We’ve seen these functions before, so I don’t think there are any real surprises in
them, except that the inXBase and inYBase arguments are used to calculate the true x and y
location for each drawing operation.

I think perhaps the best way to really grasp what is going on is by looking at Figure 7-11.
This shows each of the drawing operations that are performed, numbered in the order they
occur. There’s no magic to how I did this: it’s nothing but a sheet of graph paper, and I draw
the image and then figure out the minimum set of operations I could perform to draw it, or at
least something close to the minimum. There may have been a more optimal set of opera-
tions, but this is fairly close, I think. At the end of the day, the fewer operations that need to be
performed, the better, for the sake of performance.

CHAPTER 7 ■ ID IOT BLOB: THE GAME!356

Figure 7-11. The drawing operations, in sequence, for drawing a skull (not including the very first
createRect() call that fills the background with white)

The next method, drawDoorway(), is just like drawSkull() but is called to draw a doorway
on the last tile of a given level:

this.drawDoorway = function(inSurface, inXBase, inYBase) {

// Fill background to white.
inSurface.createRect({
x : inXBase, y : inYBase, width : 20, height : 20
}).setStroke({ color : "white" }).setFill("white");

// Draw the archway.
inSurface.createRect({ x : inXBase + 4, y : inYBase + 0,
width : 12, height : 2 }).setStroke({
color : "black" }).setFill("black");

inSurface.createRect({ x : inXBase + 2, y : inYBase + 2,
width : 16, height : 2 }).setStroke({
color : "black" }).setFill("black");

inSurface.createRect({ x : inXBase, y : inYBase + 4,
width : 20, height : 2 }).setStroke({

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 357

color : "black" }).setFill("black");
inSurface.createRect({ x : inXBase, y : inYBase + 6,

width : 2, height : 13 }).setStroke({
color : "black" }).setFill("black");

inSurface.createRect({ x : inXBase + 18, y : inYBase + 6,
width : 2, height : 13 }).setStroke({
color : "black" }).setFill("black");

// Draw the "perspective" triangle in the middle.
inSurface.createPolyline([
{ x : inXBase + 4, y : inYBase + 20},
{ x : inXBase + 9, y : inYBase + 15},
{ x : inXBase + 10, y : inYBase + 15},
{ x : inXBase + 15, y : inYBase + 20}

]).setFill([0, 0, 0, 1]);

} // End drawDoorway().

Figure 7-12 is the same sort of diagram as shown in describing the skull-drawing code.

Figure 7-12. The drawing operations, in sequence, for drawing a doorway (not including the very
first createRect() call that fills the background with white)

CHAPTER 7 ■ ID IOT BLOB: THE GAME!358

Drawing a dead end is next:

this.drawDeadEnd = function(inSurface, inXBase, inYBase) {

inSurface.createRect({
x : inXBase, y : inYBase, width : 20, height : 20
}).setStroke({ color : "#4e4e4e" }).setFill("#b0b0b0");

inSurface.createLine({ x1 : inXBase + 1, y1 : inYBase + 4,
x2 : inXBase + 20, y2 : inYBase + 4 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 1, y1 : inYBase + 9,
x2 : inXBase + 20, y2 : inYBase + 9 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 1, y1 : inYBase + 14,
x2 : inXBase + 20, y2 : inYBase + 14 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 4, y1 : inYBase + 1,
x2 : inXBase + 4, y2 : inYBase + 4 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 14, y1 : inYBase + 1,
x2 : inXBase + 14, y2 : inYBase + 4 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 9, y1 : inYBase + 5,
x2 : inXBase + 9, y2 : inYBase + 9 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 4, y1 : inYBase + 10,
x2 : inXBase + 4, y2 : inYBase + 14 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 14, y1 : inYBase + 10,
x2 : inXBase + 14, y2 : inYBase + 14 }).setStroke({ color : "#6e6e6e" });

inSurface.createLine({ x1 : inXBase + 9, y1 : inYBase + 15,
x2 : inXBase + 9, y2 : inYBase + 19 }).setStroke({ color : "#6e6e6e" });

} // End drawDeadEnd().

I’m pretty sure you’re getting the idea by now without me going into any detail, but for the
sake of completeness, Figure 7-13 is another diagram showing the drawing operations per-
formed to draw a dead end.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 359

Figure 7-13. The drawing operations, in sequence, for drawing a dead end (not including the very
first createRect() call that fills the background with gray)

Now we come to drawRock(), called to…wait for it…draw a rock! This one is different,
however, because the rock isn’t drawn as are skulls and dead ends; it is instead an actual GIF
image displayed, but in a different fashion than the background tiles. Here, see for yourself:

this.drawRock = function(inSurface, inXBase, inYBase) {

surface.createImage({
type : "image", width : 20, height : 20, src : "img/rock.gif",
x : inXBase, y : inYBase

});

} // End drawRock().

The createImage() method of the Surface class enables you to load an existing image file,
rock.gif in this case, and display it on the Surface. You need to set the type to "image", and
you also need to tell the method how wide and tall the image is (and no, the values do not
need to be real, so you can in fact expand or contract, stretch or shrink the image).

CHAPTER 7 ■ ID IOT BLOB: THE GAME!360

■Note You may at this point be wondering why I didn’t use this method for the background tiles. There are
a couple of reasons. First and most important, animated GIFs aren’t supported by this method, so I wouldn’t
have been able to create the animated backgrounds called for by my son’s level designs. Second, the per-
formance of using this approach, while not poor, wasn’t quite as good as the approach I wound up taking.
Last, I frankly didn’t know about this method to begin with! I discovered it after I had written the code
described previously. I did go back and try to use it, which is how I found the first and second reasons
were true.

Drawing Qwamp is also a different animal than the previously described methods
because the blob is never actually drawn:

this.drawBlob = function(inBlobX, inBlobY) {

var x = inBlobX * tileWidth;
var y = inBlobY * tileHeight;
var b = dojo.byId("imgBlob");
b.style.display = "";
b.style.left = x;
b.style.top = y;

} // End drawBlob().

You’ll recall when we looked at index.htm that there is an with the ID imgBlob. All we
need to do to “draw” Qwamp on the screen is ensure that this is visible by settings its
display style attribute to an empty string, and setting the left and top position values prop-
erly based on Qwamp’s current location. Once again, using createImage() wouldn’t have
worked here because of the desire to animate Qwamp.

As I mentioned earlier with regard to the Welcome dialogs, the text in them is drawn by
using dojox.gfx functions. However, as I started writing that code, I discovered that there was
a lot of commonality in the text-drawing code for each dialog, so I decided to factor out the
common bits and create a drawText() method to handle that:

this.drawText = function(inSurface, inX, inY, inSize, inColor, inText) {

var txt = inSurface.createText({ x : inX, y : inY, text : inText });
txt.setFont({ family : "Times", size : inSize + "pt", weight : "bold" });
txt.setFill(inColor);

} // End drawText().

This method accepts a reference to the Surface to draw the text on, the x and y coordi-
nates on that Surface to draw the text at, the font size in points, the color of the text, and of
course the text itself. The font used will always be a Times variant and will always be bold. A
call to createText(), followed by calls to setFont() and setFill(), are all that it takes to draw
the text on the Surface.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 361

When the player gets Qwamp to the last end tile of the fourth level of the game, that
player wins the game. When that happens, we show a little graphic declaring the player victo-
rious, and the drawWin() method is responsible for doing that:

this.drawWin = function() {

this.clearSurface();
var w = 361;
var h = 80;
surface.createImage({
type : "image", width : w, height : h, src : "img/win.gif",
x : ((gridWidth * tileWidth) - w) / 2,
y : (((gridHeight * tileHeight) - h) / 2) - 10

});

} // End drawWin().

This is a simple matter of using the createImage() method to display the win.gif image.
The only real trick is that we want this graphic to be centered on the Surface; thus we need to
do a quick little calculation for the x and y coordinates that is based on the width and height of
the graphic. Figure 7-14 is the result of this method being executed.

■Note Making the x and y location a calculation is a little more work than necessary because I could have
just done the math and had the values statically in the code. I mean, if I wanted to swap in a new graphic, I’d
have to go touch the code anyway to update the width and height values. But hey, isn’t it a little cooler to
have the code do the math? I think so! You also may wonder why I used a graphic at all and not just draw-
Text(). There are two reasons. First, I couldn’t see a good way to center the text except to precalculate the
location and have it statically in the code, but we’ve already determined that’s less cool! Second, and more
important, I felt the graphic approach just plain looks better because I could make the text fancier than I
could with just the dojox.gfx text functions (not without a lot more work, at least work I didn’t feel was
justified by the results).

CHAPTER 7 ■ ID IOT BLOB: THE GAME!362

Figure 7-14. Spoiler alert! This is what you see when you win. Did I ruin it for you?

Similarly, when Qwamp dies, you get to see a different graphic, generated by the code in
the drawDead() method:

this.drawDead = function() {

this.clearSurface();
var w = 422;
var h = 114;
surface.createImage({
type : "image", width : w, height : h, src : "img/dead.gif",
x : ((gridWidth * tileWidth) - w) / 2,
y : (((gridHeight * tileHeight) - h) / 2) - 10

});

} // End drawDead().

The result of that method being executed is shown in Figure 7-15. The code is pretty well
identical to drawWin(), so no sense discussing it again.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 363

Figure 7-15. In honor of the British tradition!

The final method in GraphicsSubsystem is clearSurface(), which you can see here:

this.clearSurface = function() {

// Clear the surface.
surface.clear();

// Hide Qwamp.
dojo.byId("imgBlob").style.display = "none";

// Hide all background tiles.
for (var y = 0; y < gridHeight; y++) {
for (var x = 0; x < gridWidth; x++) {
var tile = dojo.byId("imgBackground_" + x + "_" + y);
tile.style.display = "none";

}
}

} // End clearSurface().

CHAPTER 7 ■ ID IOT BLOB: THE GAME!364

This method encapsulates some common work that has to be done when clearing the
surface at various points in the game’s lifecycle. It’s not just a simple call to clear() on the Sur-
face object because of the overlaying of the Surface over the tiles grid. We also need to
hide Qwamp himself, in addition to hiding all those elements, and those three tasks are
what this method accomplishes.

Now that you’ve seen how all the graphics functions work, it’s time to get into the core
game code and see where all those functions are used.

Writing GameClass.js
Now we come to the code in GameClass.js, the core game logic code for the Idiot Blob. Have a
look at the UML for the GameClass, shown in Figure 7-16.

Figure 7-16. UML class diagram of GameClass

First we have a batch of class members, a few private and a few public:

// The GraphicsSubsystem instance.
var gss = new GraphicsSubsystem();

// The LevelMaps instance.
var levelMaps = new LevelMaps();

// Difficulty level being played on (1-3, 3=easy, 2=medium, 1=hard).
var difficulty = null;

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 365

// The current level (0-3) game is on.
var currentLevel = 0;

// Blob location.
var blobX = null;
var blobY = null;

// What direction will the blob move next iteration?
this.blobNextMove = null;

// Is the game currently running?
this.gameRunning = false;

// The current value of the move countdown.
this.countdownValue = null;

// The game Timer.
this.gameTimer = null;

So we have an instance of the GraphicsSubsystem class we looked at a short while ago,
which makes sense because the game wouldn’t be much fun if nothing got drawn on the
screen! It also makes sense that we’d have an instance of LevelMaps floating around so we
know what to draw on the screen, and sure enough that’s there too. We also need to know what
difficulty the game is being played at, and that is stored in the aptly named difficulty field.
The currentLevel field tells us which of the four maps is being navigated by the player, num-
bered 0–3 so that it lines up with the array index in LevelMaps. The location of the blob is
stored in blobX and blobY, and the next move the blob will make is stored in blobNextMove. We
also have a field, gameRunning, that is a simple Boolean to tell us whether the game is currently
running. This is necessary to stop things from happening while the game isn’t running—for
example, the player clicking one of the directional buttons when the Welcome dialogs are
showing. The countdownValue field is used to do the countdown to the next move. Finally,
gameTimer is a reference to a dojox.timing.Timer object that will do the countdown and then
move the blob when the countdown reaches zero.

GAME LOOPS

This is ostensibly a book about Dojo, of course, but that doesn’t mean I can’t touch on other topics! One of
those topics is a basic game theory concept called the game loop.

In most games there is a loop that runs, and this is essentially the heartbeat that makes everything
work. The loop executes some number of times per second, and with each iteration the screen is updated,
characters are moved, the states of onscreen objects are updated, and so on. We have a game loop in the
Idiot Blob game, but it doesn’t fire multiple times per second. Instead it fires once every tenth of a second.
With each iteration, the countdown timer is updated, and we check to see whether it’s time to move Qwamp
yet, and do so if it is. If Qwamp is moved, we check where he landed to determine whether he is dead, has
reached the end of a level, or is bouncing into a dead end or rock that he can’t move through, and then we
act accordingly.

CHAPTER 7 ■ ID IOT BLOB: THE GAME!366

A game loop is the heartbeat of a game’s core logic, and also typically is used to update the screen, so
if the game loop fires 30 times a second, for example, the screen may be updated each time, giving you a
frame rate of 30 frames per second (fps). This is what you often hear about in game magazines when they
say the frame rate is good: the higher the frame rate, and the more consistently it runs, the better, because it
will appear smoother to the human eye. (24fps is considered the lowest frame rate where flickering is, for
most people, not present. Anything lower shows flickering and doesn’t appear smooth.) We of course don’t
have the need to update the screen every loop iteration in this game, so we don’t have those types of con-
cerns, but if you grab my Practical JavaScript, DOM Scripting, and Ajax Projects book (Apress, 2007), you’ll
find an arcade-style game where that consideration definitely does come into play.

We saw in index.htm that the init() method of GameClass is called on startup, which kicks
off the game itself, so let’s see what goes on in that code now:

this.init = function() {

// Create game timer and define its onTick handler.
game.gameTimer = new dojox.timing.Timer();
game.gameTimer.setInterval(100);
game.gameTimer.onTick = function() {
dojo.byId("countdownDisplay").innerHTML = game.countdownValue / 100;
game.countdownValue = game.countdownValue - 100;
if (game.countdownValue == 0) {
game.gameTimer.stop();
game.moveBlob();
if (game.gameRunning) {
game.countdownValue = difficulty * 1000;
game.gameTimer.start();

}
}

};

// Initialize graphics subsystem.
gss.init();

// Prepare the welcome dialog's two surfaces, one for each page.
this.prepareWelcomeOne();
this.prepareWelcomeTwo();

// Show the first Welcome dialog.
dijit.byId("WelcomeOneDialog").show();

} // End init().

First is the instantiation of our Timer that will run our main game loop. We set its interval
to 1/10 of a second, or 100 milliseconds, and create an onTick event handler function for it.
In that function, we’re updating the countdown timer, which requires that we divide the

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 367

countdownValue by 100 so that we’re displaying tenths of seconds and not milliseconds. We
then check whether we’ve reached zero, and if so we stop the timer and call the moveBlob()
method, which naturally moves Qwamp based on the current direction he’s set to move in. As
you’ll see, it’s that method that contains the real logic of the game—for example, determining
if the player has won or if Qwamp has died. After the call to moveBlob(), we check whether
gameRunning is still true. It would have been set to false if Qwamp died or if the player won,
but if neither of those things occurred, we need to start the timer again. At this point, we also
reset the countdownValue to its initial value, which is based on the difficulty level. If the diffi-
culty is Easy, the player has three seconds to determine Qwamp’s next move. Because the
Timer will fire 30 times within three seconds, that means that we need to reduce the value of
countdownValue by 100 each time, which means it needs to start at 3000, hence the multiplica-
tion in setting its value. A difficulty of Medium gives 2 seconds, and Hard gives 1 second, so
I’m sure you can see how the values work in those cases as well.

The next task is to initialize the GraphicsSubsystem, which you saw previously, so a quick
call to gss.init() does that for us. After that we need to prepare the two Welcome dialogs and
begin things by showing the first dialog.

Speaking of the first dialog, here is what “preparing” it actually means:

this.prepareWelcomeOne = function() {

// Create the surface for page one. Note different widths for IE vs. FF.
var surface = dojox.gfx.createSurface(
"divWelcomeOneSurface", (dojo.isIE?540:445), 400);

// Title.
gss.drawText(surface, (dojo.isIE?90:60), 30, 20, "red",
"Welcome to The Idiot Blob");

// First paragraph.
gss.drawText(surface, 5, 80, 12, "black",
"Your pet idiot blob, Qwamp, has wandered into the Cave of the");

gss.drawText(surface, 5, 100, 12, "black",
"Elements. Your job is to guide him to safety through the four");

gss.drawText(surface, 5, 120, 12, "black",
"chambers of the cave: Fire, Water, Air and Earth.");

// Second paragraph.
gss.drawText(surface, 5, 160, 12, "black",
"Idiot Blobs are known throughout the galaxy as great pets with");

gss.drawText(surface, 5, 180, 12, "black",
"one serious flaw: THEY ARE TOTAL IDIOTS! They cannot");

gss.drawText(surface, 5, 200, 12, "black",
"think for themselves at all. Therefore, you must tell Qwamp");

gss.drawText(surface, 5, 220, 12, "black",
"what to do each step of the way. Being an idiot though, he will");

gss.drawText(surface, 5, 240, 12, "black",
"do what you tell him to do, and will keep doing it, until you tell");

CHAPTER 7 ■ ID IOT BLOB: THE GAME!368

gss.drawText(surface, 5, 260, 12, "black",
"him to do something else.");

// Third paragraph.
gss.drawText(surface, 5, 300, 12, "black",
"This would be OK except that the only way through the cave is");

gss.drawText(surface, 5, 320, 12, "black",
"along a narrow, maze-like bridge that is easy to fall off, that");

gss.drawText(surface, 5, 340, 12, "black",
"has dead ends everywhere and which has alien skulls everywhere");

gss.drawText(surface, 5, 360, 12, "black",
"that if touched mean instant death for Qwamp.");

} // End prepareWelcomeOne().

You’ll recall when we looked at the markup for this dialog that the text wasn’t present on it
and I said it was drawn on with dojox.gfx functions. See, I wasn’t lying, here is that code! A
Surface is created in the <div> reserved for it in the Dialog markup. Note the difference for IE
and Firefox, which results in slightly different values for the width, as well as the x location of
the first text drawn, and the title. (I don’t typically like magic numbers, which is what these
are, but I couldn’t find a good way to do all this positioning in a more automatic way.) The
drawText() method of the GraphicsSubsystem class that we looked at earlier is used through-
out to draw the text, and I’ve simply precalculated the locations for each string of text so that
it is positioned nicely in the dialog.

■Note Magic numbers are a code smell, that is, something that most programmers consider bad form. A
magic number is a “naked” number statically present in code whose meaning and derivation isn’t immedi-
ately obvious from the code. Generally, constants and/or variables are a better choice because they give the
numbers some semantic meaning. For instance, I could have had a variable named surfaceWidth and then
had an if…else block that set it to the appropriate value based on whether dojo.isIE was true or false.
This arguably would have made the code more readable, but also would have meant there was more code to
parse, and sometimes a more concise form is preferable, even if it means using a magic number. It’s a sty-
listic choice here, but magic numbers really do make code harder to read most of the time, and you should
therefore take this as a counterexample of what you should, typically anyway, do in your own code!

The second dialog is similar, but is also a bit different, as you can see by examining the
code here:

this.prepareWelcomeTwo = function() {

// Create the surface for page two.
var surface = dojox.gfx.createSurface(
"divWelcomeTwoSurface", (dojo.isIE?530:445), 300);

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 369

// Bridge tile and description.
surface.createImage({
type : "image", width : 20, height : 20, src : "img/marble.gif",
x : 40, y : 30

});
gss.drawText(surface, 70, 44, 12, "black",
"This is (roughly!) the bridge. STAY ON THIS!");

// Dead end and description.
gss.drawDeadEnd(surface, 40, 60);
gss.drawText(surface, 70, 75, 12, "black",
"This is a dead end. It stops Qwamp in his tracks.");

// Skull and description.
gss.drawSkull(surface, 40, 90);
gss.drawText(surface, 70, 105, 12, "black",
"This is an alien skull. DON'T TOUCH THESE!");

// Doorway and description.
gss.drawDoorway(surface, 40, 120);
gss.drawText(surface, 70, 135, 12, "black",
"This is a doorway. Get to the one on the far end of");

gss.drawText(surface, 70, 155, 12, "black",
"each level to get to the next level. Get through all");

gss.drawText(surface, 70, 175, 12, "black",
"four levels to get Qwamp back safely to you.");

// Difficulty level information.
gss.drawText(surface, 40, 220, 12, "black",
"Select your difficulty level below and click Start Game.");

gss.drawText(surface, 60, 240, 12, "black",
"The harder the difficulty, the less time you'll have");

gss.drawText(surface, 115, 260, 12, "black",
"to determine Qwamp's next move");

} // End prepareWelcomeTwo().

In this case, the Dialog shows the various obstacles for Qwamp to avoid, as well as what
the bridge and end of a level look like, so there is a need to draw them (which is, incidentally,
why I’ve used a Surface in these Dialogs rather than just static text). So, you can see the draw-
ing functions that we examined previously in GraphicsSubsystem being used. You also now
should understand why those methods accept a reference to a Surface, rather just assuming it
would be the Surface on which the level is drawn: they are needed not just on the main game
Surface, but on this Dialog-based Surface as well.

After the user clicks the Button dijit in the second Welcome dialog, a new game is begun,
which results in a call to startGame():

CHAPTER 7 ■ ID IOT BLOB: THE GAME!370

this.startGame = function() {

// Set background image so we get a bridge.
dojo.byId("divContainer").style.backgroundImage = "url(img/marble.gif)";

// Set up initial conditions. Reverse the values 1 and 3 on the slider
// because it's essentially backwards right now.
difficulty = dijit.byId("sldDifficulty").getValue();
if (difficulty == 1) {
difficulty = 3;

} else if (difficulty == 3) {
difficulty = 1;

}
currentLevel = 0;
game.gameRunning = true;
game.blobNextMove = null;
game.countdownValue = difficulty * 1000;

// Draw the level map and blob.
var blobLocation = gss.drawLevel(levelMaps.levels[currentLevel]);
blobX = parseInt(blobLocation.split(",")[0]);
blobY = parseInt(blobLocation.split(",")[1]);
gss.drawBlob(blobX, blobY);

// Start the main game "loop".
game.gameTimer.start();

} // End startGame().

The first task is to set the backgroundImage of the <div> that the play grid is in to the
marble.gif texture image. Recall from looking at GraphicsSubsystem that when a level is drawn
and a tile that is a bridge tile is hit, the tile is not drawn and the corresponding background
 is hidden. This enables the background of the divContainer <div> to shine through,
giving us a bridge tile (a bridge made out of marble—but hey, this is the Cave of the Elements,
so you’d imagine it’d be a bit fancier than just a wooden bridge!).

Next, the difficulty level is determined by getting the value of the Slider dijit. However,
the values in a slider go up, from left to right, but remember that the higher the difficulty, the
lower the amount of time the player has to move. That means that laying the difficulty levels
out on the slider from left to right doesn’t match the values because it’s logical for the difficulty
to increase as you read left to right across the slider, but the values are going to increase going
in the same direction, which is the opposite of what we want. So, we have a little if…else block
here that reverses the 1 and 3 values (2, Medium, is of course 2 no matter what).

After that, a bunch of variables are set to the correct initial values to start a game, includ-
ing currentLevel set to 0 so that the game begins on the first level, setting gameRunning to true
to indicate to the rest of the code that the game is in progress, setting blobNextMove to null so
that to begin with Qwamp isn’t moving, and setting countdownValue to the initial value based
on the difficulty.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 371

Following that setup is a call to gss.drawLevelMap(), which you’ll recall accepts an array of
tiles to draw taken from LevelMaps, which is just an array, so we use the value of currentLevel
as an index into that array to get the appropriate-level data.

The call to drawLevelMap() returns a string in the form x,y where x and y are the coordi-
nates Qwamp starts at. This is determined by looking for the special start tile in the level data,
as you’ll recall, so here finally is how that information is used. The values are parsed so we
have numbers and not string values, and a call to gss.drawBlob() is made, passing those
values into it.

At this point, we have the first level on the screen, and Qwamp at his starting location, so
the only step left is to start the game loop Timer and we’re off to the races!

The game loop looks at the value of blobNextMove during each iteration to determine how,
if at all, to move Qwamp. How does that value get set, you ask? It’s set when the player clicks
one of the directional buttons, and the method that gets called is setNextMove():

this.setNextMove = function(inDirection) {

if (game.gameRunning) {
game.blobNextMove = inDirection;
dojo.byId("nextMoveDisplay").innerHTML = inDirection.toUpperCase();

}

} // End setNextMove().

As you can see, there’s not much to it. We first check to ensure that the game is currently
running; otherwise, clicking the buttons shouldn’t do anything (this is really to deal with the
user clicking the buttons after Qwamp has died, that and when the player wins is the only
time this can happen because otherwise the game is running, or one of the Welcome dialogs is
showing, which makes the buttons unclickable). The argument passed in is the string value up,
down, left, or right, which we store in blobNextMove, and we display it in the info area on the
right. Note that Qwamp isn’t actually moved at this time. That won’t happen until the next iter-
ation of the game loop, which means the player has the chance to change his mind before the
countdown timer expires. Actually moving the blob is accomplished by calling moveBlob(),
seen here:

this.moveBlob = function(inDirection) {

// Skip if blob isn't moving this iteration.
if (!game.blobNextMove) {
return;

}

// Update blob location.
var oldX = blobX;
var oldY = blobY;
switch (game.blobNextMove) {
case "up": blobY = blobY - 1; break;
case "down": blobY = blobY + 1; break;
case "left": blobX = blobX - 1; break;

CHAPTER 7 ■ ID IOT BLOB: THE GAME!372

case "right": blobX = blobX + 1; break;
}

// Check the tile the blob is now on. If it's a dead end, revert the
// location changes.
var result = this.checkBlobPosition();
if (result == "deadend" || result == "rock") {
blobX = oldX;
blobY = oldY;

}

// Draw the blob at its (potentially) new location.
gss.drawBlob(blobX, blobY);

// Check for win or loss and react accordingly.
if (result == "dead") {
this.commonGameOverWork();
gss.drawDead();

} else if (result == "win") {
this.commonGameOverWork();
gss.drawWin();

}

} // End moveBlob().

First, a trivial rejection: Is there a move queued up? If not, the method ends with a return
and that’s that. If there’s a move to make, though, we first update Qwamp’s coordinates. In
some cases, we’ll need to basically revert the changes, so we begin by storing the current blobX
and blobY values. Next it’s just a simple switch block to determine how to modify Qwamp’s
coordinates.

After the coordinates have been updated, we have what is really the only game
“logic,” and that’s to see if Qwamp is still alive, or if he’s hit a dead end or a rock. A call to
checkBlobPosition() is made, which returns a string that tells us the current state of Qwamp.
There are a couple of possible return values. One is deadend, and another is rock. These are
more or less the same thing because both mean Qwamp can’t move in the direction requested,
and in this case we need to revert the changes to his location, which is just a matter of setting
blobX to oldX, and blobY to oldY.

At this point, we call drawBlob() so that Qwamp is shown at his new location (which may
in fact be where he started, if he hit a rock or a dead end).

The last step is to see whether Qwamp is alive. If he’s dead, the game is over and the
player has lost, in which case we need to perform some common cleanup tasks by calling
commonGameOverWork(). Then we call gss.drawDead() to show the “You’re a loser” graphic. If
Qwamp has landed on the end tile on the fourth level, the player has won and we need to
show the “You’re worth something” win graphic. This is achieved by the same
commonGameOverWork() call, and then a call to gss.drawWin().

The other possible return value from checkBlobPosition() is ok, which means Qwamp is
alive and well and should move. In that case, there’s nothing else to do because everything
necessary has already occurred, so the method just ends.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 373

We’ll look at the checkBlobPosition() method next, because we just discussed how it’s
used:

this.checkBlobPosition = function() {

var retVal = null;

var tileType = this.getTileAtLocation(blobX, blobY);
switch (tileType) {

// Blob is still on a bridge tile or start tile, game continues.
case "bridge": case "start":
retVal = "ok";

break;

// Blob is on end tile, jump to next map or end win game.
case "end":
if (currentLevel == 3) {
retVal = "win";

} else {
game.blobNextMove = null;
dojo.byId("nextMoveDisplay").innerHTML = "";
currentLevel = currentLevel + 1;
var blobLocation = gss.drawLevel(levelMaps.levels[currentLevel]);
blobX = parseInt(blobLocation.split(",")[0]);
blobY = parseInt(blobLocation.split(",")[1]);
gss.drawBlob(blobX, blobY);
retVal = "ok";

}
break;

// Blob ran into skull and is now dead.
case "skull":
retVal = "dead";

break;

// They hit a dead end or a rock, so revert the last move so it looks
// like they didn't go anywhere, but the game continues.
case "deadend": case "rock":
retVal = "deadend";

break;

// Blob must be on a background tile, meaning they fell off
// the bridge.
default:
retVal = "dead";

break;

CHAPTER 7 ■ ID IOT BLOB: THE GAME!374

} // End switch.

return retVal;

} // End checkBlobPosition().

First a call to getTileAtLocation() is made, passing it the current location of Qwamp.
That method is this:

this.getTileAtLocation = function(inX, inY) {

// Cycle through tiles for this map and find the appropriate one and
// return its type, or null if not found.
retVal = null;
for (var i = 0; i < levelMaps.levels[currentLevel].length; i++) {
if (levelMaps.levels[currentLevel][i].x == inX &&
levelMaps.levels[currentLevel][i].y == inY) {
retVal = levelMaps.levels[currentLevel][i].type;
break;

}
}
return retVal;

} // End getTileAtLocation().

Recall that the data for a level does not include every single tile on the grid, nor does it
have to be in any particular order. Therefore, there’s no direct, straightforward way to retrieve
the tile at location x,y without systematically scanning through the level data looking for the
element with x and y attribute values that match the inX and inY values passed in, hence the
need to do this loop. After the appropriate element is found, its type is returned.

Getting back to checkBlobPosition() now . . . after getTileAtLocation() gives us the type
of tile Qwamp is standing on, it checks that type and acts accordingly. If the tile is a bridge or
start type, checkBlobPosition() will need to return ok so that the caller, the moveBlob()
method specifically, knows that Qwamp is alive and well. If the type is skull, Qwamp is dead,
and that’s the return value. Likewise, if the call to getTileAtLocation() returns null, that indi-
cates that Qwamp has fallen off the bridge and is similarly toast. If the tile type is rock or
deadend, the return value is deadend, which tells moveBlob() that the move needs to be reverted
because Qwamp can’t move on that tile.

I skipped over the case where the tile is the end tile until now because in this case there is
more work to do than the other possibilities. When Qwamp steps on an end tile, it’s either time
to go to the next level or the game has been won. The check is simple: if the currentLevel
value is 3, which is the last level, the game has been won, and the return value is win. If, how-
ever currentLevel is not 3, it’s time to move on to the next level. In this case, all the game
status variables are reset to their values when the game started, currentLevel is incremented
by one (there’s no way to go backward through the levels), and the new level is displayed.
Qwamp is put on the starting tile, just like when the game first began, and the player is ready
to start that level.

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 375

■Note You can make the argument that the getTileAtLocation() belongs in the LevelMaps class, and
I wouldn’t argue too strenuously against that. Architecturally speaking, I think there’s some logic to that posi-
tion. Still, I chose to put getTileAtLocation() here simply because this is the only place it is used, and
sometimes I find it makes more sense to keep code elements that call one another as close to each other as
possible.

The final method to examine is really just a fairly simple utility method that saves us from
having some duplicate code in a couple of places:

this.commonGameOverWork = function() {

game.gameTimer.stop();
game.gameRunning = false;
gss.clearSurface();
dojo.byId("divContainer").style.backgroundImage = "";
dojo.byId("nextMoveDisplay").innerHTML = "";
dojo.byId("countdownDisplay").innerHTML = "";

} // End commonGameOverWork().

The commonGameOverWork() method does some things that always have to occur when a
game ends, regardless of how the game ended. The game timer is first stopped, and then
gameRunning is set to false. The Surface is cleared, and the backgroundImage of the divCon-
tainer <div> is cleared. The result of these last two tasks is that the play area is completely
blank. Finally, the information display fields on the right are cleared, and that’s a wrap.

Suggested Exercises
For this project, I’m going to go fairly light on the suggestions because creating a game is
pretty much all up to your imagination, more so than most other projects. After all, we are
talking about a game called the Idiot Blob, so clearly imagination factors into it right from the
word go! However, here are a few that might be good experience, and fun, which is the name of
the…wait for it…game!

1. Add more levels. This won’t give you much in the way of experience with Dojo, but
seeing another level in there will give you a good sense of accomplishment. Of course,
you’ll have to modify the underlying story because there would no longer be the four
basic “elements” at play, but that’s up to you! Actually, come to think of it, I take back
what I said. Doing this in fact would give you some play time with Dojo because you’ll
have to modify at least the second Welcome dialog, so go for it!

2. Add some other obstacles and draw them with dojox.gfx. This could be anything you
want. Maybe a lava pit, or a snake, or whatever you can dream up.

CHAPTER 7 ■ ID IOT BLOB: THE GAME!376

3. Make the win and lose screens a little fancier and do it all with dojo.gfx. I like the way
the graphics look on both these screens, but maybe some spinning text or something
would be a good option too, and dojo.gfx can do that!

4. Add a scoring system. Maybe there are some “power crystals” that Qwamp needs to
pick up in order to be able to get through a given level.

Summary
In this chapter, we took a break from the ordinary for a little while and developed a game by
using Dojo. We got to play around with dojo.gfx a bit, and we also saw some tricks for blend-
ing what it can do with more-traditional types of graphics. We got a little more experience with
Dijit too. Hopefully, in the process of all that we developed a game that is at least a little bit
fun.

In the next chapter, we’ll get back to some “serious” work and develop an application that
uses Dojo to access some remote services in order to watch our stock portfolio grow and grow
and grow. (Sorry, I don’t know what happened, I slipped into optimistic mode there—that’s not
like me at all! I don’t know what your stock portfolio has been doing lately, but I know mine
has most certainly not been growing and growing and growing, that’s for sure!)

CHAPTER 7 ■ ID IOT BLOB: THE GAME! 377

When the Yellow Pages Just
Isn’t Cool Enough: Local
Business Search

Sit right back and you’ll hear a tale, a tale of a big yellow book . . . I know, it doesn’t quite fit
the melody of the Gilligan’s Island theme, but work with me here!

You kids today with your Internets1 and your iPhones and your Tellmes,2 you don’t know
what it was like! Back in the day, if you wanted to find a business in your home town, you
either asked a neighbor or pulled out this huge yellow book called, very creatively, the Yellow
Pages. Within this book, you could flip through an alphabetically sorted listing of all sorts
of businesses in your vicinity. It was a manual process: you actually had to turn pages! You
couldn’t just type something into a computer and have it spit out a list of businesses; you had
to burn some calories and expand some mental effort.

Ah, but I like progress as much as the next guy, so now I get to play the part of old cur-
mudgeon and tell these stories about how we used to walk to school in the snow, uphill, both
ways, and use the yellow pages. I also get to write books and show how the world is much bet-
ter now that we can write an application to save us all that work.

That’s precisely what this chapter is all about! We’ll be writing an application that enables
us to search for local businesses. We’ll be able to see a map of where the business is located,
and we’ll be able to jump directly to the business’s web site, if there is one. We’ll also have the
ability to store a business as one of our favorites so that, if you can believe it, we’ll be able to
expend even less energy next time to find it again! Dojo will make all of this a piece of cake, of
course, and we’ll have a pretty useful little application by the time we’re finished.

379

C H A P T E R 8

1. During the 2000 presidential campaign, George W. Bush uttered the term Internets. Clearly, the Inter-
net should never be pluralized like that—it’s a pretty dumb thing to say—which is why people now use
this phrase in a humorous context (and sometimes in an insulting way, depending on how it’s used).

2. Tellme (www.tellme.com) is a voice-activated service that enables you to call a 1-800 number and get
information such as weather, sports scores, business listings, and more, all just by speaking into the
phone. It’s a very handy service to have handy in your cell phone’s contact list.

Application Requirements and Goals
Let’s get the silly terminology out of the way first, shall we? What we’re actually creating here is
a mashup. A mashup, as it has come to be known, is basically a web site or application that
takes content from multiple sources (usually via some sort of public programmatic interface,
a remote API in other words), and integrates it all into a new experience, that is, a new
application.

The term mashup might sound a bit silly (it does to me!) but it’s the term that’s been
applied to what is at its core an extremely powerful vision: people provide various services and
data over the Internet, and anyone can come along and combine them to create applications.
In other words, we’re talking about a relatively simple, open, platform-agnostic service-
oriented architecture (SOA).

MORE ON SOA

The idea of SOA has been gaining steam over the past few years. Most notably, the concept of web services
has been evolving rapidly over that time. However, the meaning of that term has been evolving as well.
People now often consider things such as the Yahoo services that will be used in this application to be web
services, even though they don’t use the full web services stack (that is, SOAP, WS-Security, and all the other
specifications that can go along with it).

Whatever line of demarcation you choose to use, the bottom line is that you’re developing using a SOA,
which means you have loosely coupled components that expose a remote service interface that, usually, is
platform- and language-agnostic and can therefore be married together in nearly limitless ways.

The benefits of this approach are numerous. The simple fact that you aren’t generally tied to any partic-
ular technology or language is a big one. The ease with which updates can be done, assuming the interface
doesn’t change, is another big one (this is the same reason people love web apps in general). The ability to
use all sorts of automated tools to both create and consume services is another (although this isn’t always a
good thing, of course, if those tools become a crutch that allow you to not actually understand what you’re
doing). Realizing the goal of building your application on top of established standards is another. Reusing
existing assets and therefore increasing the speed with which solutions can be delivered is another (some
would argue this is the biggest benefit). There are plenty more; these are just some that come to mind
immediately.

You’ve almost certainly heard the term web services before. Web services are sometimes
involved in mashups. However, web services, as most people mean when they use the term,
can be pretty complicated beasts! SOAP, Universal Description, Discovery, and Integration
(UDDI) directories, Web Services Description Language (WSDL) documents, not to mention
a whole host of other specifications, are the types of things you deal with in working with
web services. Although there’s nothing that says that stuff can’t be involved when writing a
mashup, typically they aren’t.

Today, the term mashup most usually refers to a web app that, by and large, runs within
your browser. In fact, for many people, mashup implies a JavaScript-based application that
can run locally with no server interaction (aside from loading it in the first place, which is
actually optional too, and calling on remote servers). Mashup has generally come to mean
browser-based JavaScript clients aggregating content through public APIs from various

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH380

companies and vendors to form new applications. These APIs are often referred to as web
services, and even though they may not truly be web services in the sense of using the full
technology stack, they fulfill the same basic goal as those types of web services. They provide
services and function over a network (specifically, the Web), so calling them web services isn’t
really too far-fetched!

Many companies are getting into the API business, including companies you’ve certainly
heard of: Google, Yahoo, Amazon, and eBay, just to name a few. Google and Yahoo have really
led the charge, and Yahoo, in particular, originated a neat trick that will be central to the appli-
cation we’ll build in this chapter, namely the dynamic <script> tag trick, or <script> injection
trick (it’s sometimes referred to both ways—just depends on who you’re talking to). Now with
the preliminaries out of the way, let’s go ahead and spell out what this application is going
to do:

• We will be able to perform a search for businesses given an address or some compo-
nents of a location, by using a remote service. We’ll be able to see a list of search results,
page through large result sets, and select one to view in more detail.

• Those “more details” will be things like the address of the business, phone number, web
site, and average user ratings.

• We’ll also be able to view a map of the location around the business and be able to
zoom in and out of that map.

• We can save a selected business as a favorite so that we can quickly call up its details
later. These favorites will be stored in a local database via Gears.

• The address used for a search can be saved as the default location to save time later.

• A lot of Dijit will be used for the user interface, so we’ll have a good-looking application
automatically.

Now let’s have a look at the web services we’re going to be using to pull this off, and look
at exactly how we’re going to be calling on them.

The Yahoo APIs and the Dynamic <script> Tag Trick
Yahoo did something very cool a little while ago, and it is this one cool thing that makes the
application in this chapter possible. Before we can discuss that, though, we have to discuss
what was going on before the coolness occurred.

For a while now, many companies have been exposing public APIs for people to use,
Yahoo among them. For instance, you could perform a Yahoo search remotely, or you could
get a Yahoo map from your own application, and so on. These APIs, these “web services,” if
you will, usually used XML as their data-transport mechanism. You would post some XML to
a given URL, and you would get an XML response back. It was (and still is) as simple as that.
These types of services don’t require all the web services such as SOAP, UDDI, WSDL, and
the like.

If you wanted to use these APIs from a JavaScript-based client running in a browser,
you quickly ran into a major stumbling block, though. Ajax, using the XMLHttpRequest object,
has what’s known as the same-domain security restriction in place. This means that the
XMLHttpRequest object will not allow a request to a domain other than the domain from which

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 381

the document it is in was served. For instance, if you have a page named page1.htm located at
http://www.omnytex.com, you can make requests to any URL at www.omnytex.com. However, if
you try to make a request to something at www.yahoo.com, the XMLHttpRequest object won’t
allow it. This means that the APIs Yahoo exposes aren’t of much use to you if you try to access
them directly from a browser. Because Ajax is the only way (apparently!) to make an asynchro-
nous call from a browser that doesn’t result in the full page being reloaded, it seems we’re up a
stream of feces without a means of locomotion! Even if you use a library such as Dojo, it can’t
work around the limitations imposed by the underlying browser technology, so there’s no
relief to be had there.

There are of course ways around this same-domain restriction. Probably the most com-
mon is to write a server-side component on your own server that acts as a proxy. This enables
your code to make requests via XMLHttpRequest to something like www.omnytex.com/proxy,
which makes a request to something at www.yahoo.com on behalf of the calling code and
returns the results. This is very cool, but it requires your own server in the mix, which is
limiting.

Wouldn’t it be so much more useful if the JavaScript running in the browser could make
the request directly to Yahoo and not need a server-side component? Yes, indeed it would be!
And as you probably have guessed, there is a clever way to do it. Take a look at the following
bit of JavaScript:

var scriptTag = document.createElement("script");
scriptTag.setAttribute("src", "www.yahoo.com/someAPI");
scriptTag.setAttribute("type", "text/javascript");
var headTag = document.getElementsByTagName("head").item(0);
headTag.appendChild(scriptTag);

So, what we have here is a new <script> tag being created. We set the src attribute to
point to some API at Yahoo (which at the end of the day is just a specific URL), and finally we
append that new tag to the <head> of the document. The browser will go off and retrieve the
resource at the specified URL, and then evaluate it, just as it does for any imported JavaScript
file. To understand this fully, keep in mind that anytime the browser encounters a <script> tag
in the HTML document that it is parsing, it stops, retrieves the code at the URL specified by
the src attribute of the <script> tag, and evaluates it, right then and there. Fortunately, if you
create a <script> tag and insert it into the <head> as this code does, the browser does the exact
same thing: it goes off and retrieves the JavaScript resource and evaluates it.

Now, in and of itself, that isn’t very useful. As I said, the Yahoo APIs return XML, and XML
being evaluated by the browser won’t do much. (Some browsers may generate a DOM object
from the XML, but even still, that on its own isn’t of much use.) Unlike with the XMLHttpRequest
object, you don’t get any events to work with, callback functions that can act upon what was
returned, and so on.

Now we come to the bit of coolness that Yahoo came up with that I mentioned before!
Let’s say we have some XML being returned by a Yahoo service, like so:

<name>Frank</name>

It may not be very interesting, but it’s perfectly valid XML. Now let’s ask the probing ques-
tion: what is the JSON equivalent to that XML? It’s nothing more than this:

{ "name" : "Frank" }

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH382

Okay, now suppose that we pass that JSON to a JavaScript function, like so:

someFunction({ "name" : "Frank" });

What is the parameter passed to someFunction()? As it turns out, it’s an object constructed
from the JSON. (Remember that JSON stands for JavaScript Object Notation: it is literally a
notation format that defines an object.) This means that if someFunction() is this . . .

function someFunction(obj) {
alert(obj.name);

}

. . . the result is an alert() pop-up that reads, Frank.
Are you maybe starting to see what Yahoo might have done? If you are thinking that what

the service returns is something like this . . .

someFunction({ "name" : "Frank" });

. . . then give yourself a big round of applause; you just came to the same wonderful discovery
that Yahoo did a while ago!

What Yahoo came up with is the idea of returning JSON in place of XML from an API serv-
ice call, and wrapping the JSON in a function call. When you call the API function, you tell
it what the callback function is. In other words, you tell the remote service what JavaScript
function on your page you want passed the JSON that is returned. So let’s say you wanted to
interact with some Yahoo API that returns a person’s name, as we’ve been discussing as our
example. Your page might look something like this:

<html>
<head>
<title>Dummy Yahoo API Test</title>
<script>
function makeRequest() {
var scriptTag = document.createElement("script");
scriptTag.setAttribute("src", "www.yahoo.com/someAPI/callback= ➥

myCallback&output=json");
scriptTag.setAttribute("type", "text/javascript");
var headTag = document.getElementsByTagName("head").item(0);
headTag.appendChild(scriptTag);

}
function myCallback(inJSON) {
alert(inJSON.name);

}
</script>

</head>
<body>
<input type="button" value="Test" onClick="makeRequest();">
</body>

</html>

When you click the button, makeRequest() is called, and it uses that dynamic <script> tag
trick to call the Yahoo API function. Notice the URL, which specifies the name of the callback

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 383

function and also specifies that we want to get back JSON instead of the usual XML. Now,
when the response comes back, the browser evaluates what was inserted into the document
via the <script> tag, which would be this:

myCallback({ "name" : "Frank" });

myCallback() is called at that point, with the object resulting from evaluation of the JSON
being passed to it. You can load this page from any domain, and it will work. Hence, we’ve
done what the XMLHttpRequest object does (in a basic sense, anyway), and we’ve gotten
around the same-domain limitation. Sweet!

Yahoo was the first to use this hack (that I am aware of), but many others such as Google
have begun to follow suit because what this allows is purely client-side mashups and API uti-
lization. No longer do you need a server-side proxy. You can now make the requests across
domains directly. This is an extremely powerful capability that leads to some really cool possi-
bilities, such as the type of application in this chapter.

■Note While this technique is very useful because it allows you to make direct requests to any server you
want, it also has the potential for malicious code to be introduced. Remember that what is being returned is
script that winds up executing with the same privileges as any other script on the page. This provides a
potential for scams including stealing cookies, spoofing, phishing, and so on. You therefore want to take care
in your choice of services and organizations. Accessing APIs from Yahoo or Google, for instance, isn’t likely to
present any security issues, but less-well-known companies may not be quite as safe.

JSON-P and Dojo
The approach to web services where JSON is returned wrapped in a JavaScript function call
has come to be known as JSON with Padding, or JSON-P. It is also sometimes referred to as
JSON-based web services. Whatever the term, it all means the same thing.

The example we just looked at is nice, not too complicated codewise, but as I’m sure you
can guess, Dojo makes it even easier. Dojo provides the dojo.io.script.get() function, which
looks something like this:

dojo.io.script.get({
callbackParamName : "callback",
url : "http://local.yahooapis.com/MapsService/V1/mapImage",
content : {
"appid" : "xxx", "output" : "json",
"longitude" : "xxx",
"latitude" : "xxx",
image_width : 480, image_height : 460

}
}).addCallback(function(response) {
// Do something

});

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH384

We’ll get into the details of this later, but as you can see, it’s just a single function call to
which we pass some information. The callbackParamName attribute is the name of the parame-
ter that the remote service looks for to determine the name of the JavaScript function to call.
In other words, the value of the callback HTTP parameter will name the JavaScript function on
the page that we want called back. In this case, Dojo takes care of the callback function itself,
but it still has to be told the name of the parameter that the remote service will look at to get
the function name to wrap the JSON in. The url attribute is obviously the URL of the remote
service. The content attribute contains all the parameters to be passed to the service. This is of
course all determined by the service being called and can and will vary from service to service;
it isn’t dictated by Dojo in any way. Finally, we use the addCallback() method to add the func-
tion to execute when our response comes back. With all that in place, Dojo takes care of all the
details of implementing the dynamic <script> tag trick. Very clean, very simple, typical Dojo!

JSON-P AND ERROR HANDLING—THAT IS, THE LACK THEREOF!

JSON-P is, I think without question, a really handy technique. However, to call it anything other than a trick,
even a hack, would mean we aren’t being quite intellectually honest! It’s most definitely thinking outside the
box, that’s for sure!

As neat a trick as it is, it has one significant flaw: error handling. That is to say, there really is none.
There is no error callback as with a typical Ajax request, no interrogating HTTP status codes, or any of that.
Your script simply doesn’t do something you expected it to do. Oh, you may well see a failed outbound
request in a debug tool such as Firebug, but that’s about it, and that won’t generally help your end users any.

There is one way you can get at least some degree of error handling: use a time-out. In other words,
you fire off a request, and you start a JavaScript time-out, say to fire some function in 5 seconds. In the call-
back to the JSON-P request, you cancel the time-out. So, if the request takes longer than 5 seconds to
execute, you take that to mean that the call failed, and the function the time-out fires is essentially your error
handler. (If the response comes back in less than 5 seconds, that function will never fire because the time-
out is cancelled first.) This clearly isn’t ideal: who’s to say the request didn’t just go long and really is taking a
little more than 5 seconds to complete? In fact, you could arguably make matters worse because you might
flash an error message and then a short time later process a completed request that you just told the user
had failed! You could code for this possibility too and avoid it with a system of status flags, but hopefully you
see that in any case, this simply isn’t a robust error-handling mechanism.

As an FYI, note that in this application I took the tact that because the error-handling scheme is pretty
poor anyway, and could potentially even be worse than none at all, I simply went with none at all. If a service
call hangs, the application hangs with the Please Wait dialog box showing. Not great by any stretch of the
imagination, but such is the difficulty with the <script> injection technique underlying this all.

Yahoo Web Services Registration
Before you go looking at the web services we’re going to be using to build this application, you
need to get some paperwork out of the way first.

Most API services require you to register to use their APIs, and Yahoo is no exception.
Every time you make a Yahoo service call, you need to pass an appid parameter. The value of
this parameter is a unique identifier assigned to your application. Not passing this value, or

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 385

passing an invalid value, will result in the call failing. Before you can play with the application
in this chapter, you will have to register and get your own appid. It’s a painless process that you
can go through by accessing the following page:

http://api.search.yahoo.com/webservices/register_application

You should plug your own appid into the App class (in the App.js source file, aptly named
appID field) before you spend time with the application, just so you are playing nice with
Yahoo. I’ll use XXX in the following sections when referencing appid to indicate that you should
plug your ID in there.

There are some limitations associated with using the APIs in terms of request volume, but
the upper limit is so high as to not be a realistic concern for your adventures with this applica-
tion! If you are intent on building a production-level application by using these services, you
will need to consult with Yahoo for other registration options that allow for high volumes.
Again, for our purposes, the number of requests allowed is more than sufficient.

Yahoo Local Search Service
Yahoo offers some very nice search services that you can play with, and one of them is the
Yahoo Local search service. Simply stated, it enables you to search for businesses around a
given geographic location. For each search result, the service provides a plethora of informa-
tion, including the business location, contact information (phone number, web site, and so
forth), and user rating information.

Using this service requires you to access a given URL, for example:

http://local.yahooapis.com/LocalSearchService/V3/➥

localSearch?appid=XXX&query=pizza&zip=94306&results=2

The query parameter enables you to specify a keyword to search for, zip is just a US zip
code to center the search around, and results is the maximum number of results you want
to return. The appid is an ID you get when you register for the services, as discussed in the
previous section. If you go ahead and paste that into the address bar of your web browser,
assuming you replace the XXX appid with a valid ID as described in the previous section, you’ll
see the following response:

<?xml version="1.0"?>
<ResultSet xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance➥

xmlns="urn:yahoo:lcl" xsi:schemaLocation="urn:yahoo:lcl➥

http://api.local.yahoo.com/LocalSearchService/V3/➥

LocalSearchResponse.xsd" totalResultsAvailable="459"➥

totalResultsReturned="1" firstResultPosition="1"><ResultSetMapUrl>➥

http://maps.yahoo.com/broadband/?q1=Palo+Alto➥

%2C+CA+94306&tt=pizza&tp=1</ResultSetMapUrl➥

><Result id="28734629"><Title>➥

Patxi's Chicago Pizza</Title><Address>➥

441 Emerson St</Address><City>Palo Alto</City>➥

<State>CA</State><Phone>(650) 473-9999</Phone><Latitude>➥

37.445242</Latitude><Longitude>-122.163427</Longitude><Rating>➥

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH386

<AverageRating>4.5</AverageRating><TotalRatings>➥

30</TotalRatings><TotalReviews>21</TotalReviews>➥

<LastReviewDate>1203959693</LastReviewDate>➥

<LastReviewIntro>I'd give this place 4.5 Stars, but➥

since I can't tie goes to the Restaurant. This is➥

a good alternative to the legendary Zachary's with➥

the benefit that there isn't usually a wait. In➥

many ways I like this place better than Zachary's➥

since it seems to have figured out a way to do➥

Chicago deep dish without the heaviness of the➥

oils, It could be the sauce being more of a puree➥

instead of chopped tomatoes balances the oils out.➥

While I am mostly a NY Thin Crust kind of guy, this➥

is top notch pizza.</LastReviewIntro></Rating>➥

<Distance>2.67</Distance><Url>➥

http://local.yahoo.com/details?id=28734629&➥

stx=pizza&csz=Palo+Alto+CA&➥

ed=5Ft25a160SwgYwogEsXfvFF62jUOrNK1trfxXbRawD4AClLt➥

Hub4_iH_GpomidnTfCwCqJBK</Url><ClickUrl>➥

http://local.yahoo.com/details?id=28734629&➥

stx=pizza&csz=Palo+Alto+CA&ed=5Ft25a160➥

SwgYwogEsXfvFF62jUOrNK1trfxXbRawD4AClLtHub4_iH_➥

GpomidnTfCwCqJBK</ClickUrl><MapUrl>➥

http://maps.yahoo.com/maps_result?➥

name=Patxi%27s+Chicago+Pizza&desc=6504739999➥

&csz=Palo+Alto+CA&qty=9&cs=9&➥

gid1=28734629</MapUrl><BusinessUrl>➥

http://www.patxispizza.com/</BusinessUrl>➥

<BusinessClickUrl>http://www.patxispizza.com/➥

</BusinessClickUrl><Categories><Category id="96926243">➥

Pizza</Category><Category id="96926236">Restaurants➥

</Category><Category id="96926237">➥

American Restaurants</Category>➥

<Category id="96926190">Italian Restaurants</Category>➥

</Categories></Result></ResultSet>

<!-- ws02.search.re2.yahoo.com compressed/➥

chunked Fri Jul 25 22:45:33 PDT 2008 -->

To turn this into a JSON-P request, we have only to add two parameters to the request:
output, with a value of json, and callback, with a value of the name of the function to call. So,
if we do this . . .

http://local.yahooapis.com/LocalSearchService/V3/localSearch?appid=XXX➥

&query=pizza&zip=94306&results=1&output=json&callback=myCallback

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 387

. . . the response we get back is this:

myCallback({"ResultSet":{"totalResultsAvailable":"459",➥

"totalResultsReturned":"1","firstResultPosition":"1",➥

"ResultSetMapUrl":"http:\/\/maps.yahoo.com\/broadband\/➥

?q1=Palo+Alto%2C+CA+94306&tt=pizza&tp=1","Result":➥

{"id":"28734629","Title":"Patxi's Chicago Pizza",➥

"Address":"441 Emerson St","City":"Palo Alto","State":"CA","Phone":➥

"(650) 473-9999","Latitude":"37.445242",➥

"Longitude":"-122.163427","Rating":{"AverageRating":"4.5",➥

"TotalRatings":"30","TotalReviews":"21",➥

"LastReviewDate":"1203959693","LastReviewIntro":➥

"I'd give this place 4.5 Stars, but since I can't➥

tie goes to the Restaurant. This is a good alternative➥

to the legendary Zachary's with the benefit that there➥

isn't usually a wait. In many ways I like this place➥

better than Zachary's since it seems to have figured out➥

a way to do Chicago deep dish without the heaviness of➥

the oils, It could be the sauce being more of a puree➥

instead of chopped tomatoes balances the oils out. While➥

I am mostly a NY Thin Crust kind of guy, this is top notch➥

pizza."},"Distance":"2.67","Url":"http:\/\/➥

local.yahoo.com\/details?id=28734629&stx=pizza&➥

csz=Palo+Alto+CA&ed=5Ft25a160SwgYwogEsXfvFF62jUOr➥

NK1trfxXbRawD4AClLtHub4_iH_GpomidnTfCwCqJBK",➥

"ClickUrl":"http:\/\/local.yahoo.com\/details?➥

id=28734629&stx=pizza&csz=Palo+Alto+CA&ed=5Ft25➥

a160SwgYwogEsXfvFF62jUOrNK1trfxXbRawD4AClLtHub4➥

_iH_GpomidnTfCwCqJBK","MapUrl":"http:\/\/➥

maps.yahoo.com\/maps_result?name=Patxi%27s+➥

Chicago+Pizza&desc=6504739999&csz=Palo+Alto+➥

CA&qty=9&cs=9&gid1=28734629","BusinessUrl":➥

"http:\/\/www.patxispizza.com\/","BusinessClickUrl":➥

"http:\/\/www.patxispizza.com\/","Categories":➥

{"Category":[{"id":"96926243","content":"Pizza"},➥

{"id":"96926236","content":"Restaurants"},➥

{"id":"96926237","content":"American Restaurants"},{"id":"96926190",➥

"content":"Italian Restaurants"}]}}}});

It’s not much to look at on the page, I admit, but it’s golden in the code: if we called this by
using the <script> injection trick, what would happen is that myCallback() would get called
and passed into it would be an object with a bunch of data fields we can reference. For
instance, the Latitude and Longitude fields tell us where this business is located, Rating tells
us the average user rating, and Distance tells us how far away the business is. The set of data
returned by the service is pretty large, and a lot of it won’t be used in this application, but if
you cruise on over to http://developer.yahoo.com/search/local/V3/localSearch.html, you
can get all those details, plus a lot more, about this particular service.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH388

Yahoo Maps Map Image Service
Yahoo is also going to be providing the maps that you can see on the Map tab of the applica-
tion. (Yes, take a break and go play with the application a bit now!) Yahoo Maps is a service
that has been around for a while, even before a public JSON-P interface was provided for it. It
enables you to get maps for a given address, as well as access other features, such as traffic
and local places of interest. The API Yahoo provides has a number of different services, but for
our purposes, we’ll be focusing on the Map Image service.

The Yahoo Maps Map Image API enables you to get a reference to a graphic of a map gen-
erated according to the parameters you specify in your request. You may specify latitude and
longitude or address in your request (we’ll be specifying longitude and latitude in the applica-
tion itself, but in this discussion it’ll just be an address, more precisely, a component of an
address).

This service is referenced via a simple HTTP request, such as the following:

http://local.yahooapis.com/MapsService/V1/mapImage?appid=XXX&location=11719

The location parameter specified is just a US zip code, and the appid is once again your
registered application ID. If you go ahead and paste that into the address bar of your web
browser, you’ll see the following response:

<?xml version="1.0"?>
<Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">➥

http://gws.maps.yahoo.com/mapimage?MAPDATA=n60ehud6wXUJUYM_tJcfOwsQpG9JUAzuPg➥

gQRTTce9N8zspONMdiDVuUVXTcOkJcBUZXUolGqZulnHzcPOkjcpYTF82_DXtJgf4ISRYS8gqVHa➥

BiWhmY3OqSK9C9PR4.k.HNxwaJJ02UQq0OexH6&mvt=m?cltype=onnetwork&.➥

intl=us</Result>
<!-- ws01.search.re2.yahoo.com compressed/chunked➥

Fri Jul 25 10:32:36 PDT 2008 -->

What you’ve gotten back includes a reference to an image now sitting on Yahoo’s servers.
If you pluck out the following URL . . .

http://gws.maps.yahoo.com/mapimage?MAPDATA=n60ehud6wXUJUYM_tJcfOw➥

sQpG9JUAzuPggQRTTce9N8zspONMdiDVuUVXTcOkJcBUZXUolGqZulnHzcPOkjcpYT➥

F82_DXtJgf4ISRYS8gqVHaBiWhmY3OqSK9C9PR4.k.HNxwaJJ02UQq0OexH6&➥

mvt=m?cltype=onnetwork&.intl=us

. . . and put that in the address bar of a web browser, you’ll see an image that is a map of the
Bellport/Mastic Beach area of Long Island, New York, as shown in Figure 8-1.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 389

Figure 8-1. The map resulting from accessing the URL in the example

You can also add some parameters to the original request. For instance, you can specify
that you want a GIF back (by default, you get a PNG file), and you can specify that instead of
XML, you want JSON back. The URL would then look like this:

http://local.yahooapis.com/MapsService/V1/mapImage?appid=XXX&➥

location=11719&image_type=gif&output=json&callback=myCallback

Now the response you get is this:

myCallback({"ResultSet":{"Result":"http:\/\/gws.maps.yahoo.com\/mapimage?➥

MAPDATA=cxsuGud6wXXyiBJ69MPrKK..1HUkskJsw7lifuUcFkwxzQ4OjwJp.wHqkuSE➥

pCr9RhHUtwrTtNO.b4WNfkBNid1D6TAblazXIF8anq5PqbaLIF5iAmHGbbh8LZtPjnvs➥

LP8Ndkoiu1qWNWduAGHC&mvt=m?cltype=onnetwork&.intl=us"}});

A few other parameters are used in the application, and these are summarized in
Table 8-1.

Table 8-1. Some Yahoo Map Image Service Parameters Used in This Application

Parameter Meaning

latitude The latitude that is the center of the map.

longitude The longitude that is the center of the map.

image_width The width of the map image.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH390

Parameter Meaning

image_height The height of the map image.

zoom The zoom factor to apply to the map. This is a value in the range 1–12, where 1
represents street level and 12 represents regional level (a little wider than state
level).

As with the local search service, I encourage you to examine the Yahoo Maps APIs more
(http://developer.yahoo.com/maps/rest/V1) because they can definitely do more than this
application demonstrates. This is about all we need for the purposes of this chapter, though,
so you’re now armed with all the knowledge you need to go forth and dissect this application!

Dissecting the Solution
Let’s begin by taking a quick look at the application itself, beginning with Figure 8-2.

Figure 8-2. The local business search in all its glory

The basic structure and layout of the application is simple: at the top we have a Fisheye
dijit that gives us access to common functions such as adding and deleting favorites and
printing the currently selected item. There is also a logo in the upper-right corner of the
screen. Below that the screen is split vertically in two. On the left side we have a tabbed sec-
tion: one tab for entering search criteria, another for displaying the results of a search. Below
that is a list of favorites you have saved. On the right we have an Accordion dijit with two
panes, one for details about the currently selected business, the other for displaying a map.
Note that the vertical split can be resized to the user’s liking.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 391

Moving right along . . . the directory structure for this application should by now be
absolutely nothing new, because it’s in no way a departure from the previous applications.
We’ll look at it just the same, beginning with Figure 8-3.

Figure 8-3. The directory structure of the application

The css directory has the typical styles.css, the style sheet for the application. The
img directory has all our images. This includes the icons for the Fisheye dijit at the top
(AddToFavorite.gif, ClearFavorites.gif, DeleteFavorite.gif, NewSearch.gif, and PrintItem.
gif). We also have the application’s logo that you see in the upper-right corner, which is the
file LocalBusinessSearch.gif. The file SavedFavorites.gif is the little header you see above
your list of saved favorites. The favorite.gif file is the little heart shown next to each saved
favorite. The files icon_no.gif, icon_yes.gif, icon_save.gif, and icon_search.gif are the
images seen on various buttons throughout the application, such as confirmation pop-ups
and the search form. Finally, transPix.gif is a transparent single-pixel image for spacing out
the Fisheye dijit, as seen in the Chapter 5 project. The js directory contains a single file,
App.js, which houses all the JavaScript for this application. Finally, in the root directory we
find index.htm, the starting point and markup for the application, which is where we’re
headed next.

Writing index.htm
Every web app needs to start with at least one HTML page, and this one is no exception. The
index.htm file begins as any well-formed HTML document does, with a <head> section. (Well,
it technically begins with an <html> tag, as my technical reviewer pointed out, but a well-
formed HTML document begins with a <head> section, which is different from an <html> tag,
so nyah-nyah to Herman van Rosmalen!)

<head> Contents
The first thing we need to do is get all the style sheets imported into the page that we’re going
to need:

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH392

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojo/resources/dojo.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dijit/themes/soria/soria.css">

<link rel="StyleSheet" type="text/css"
href="js/dojo/dojox/widget/FisheyeList/FisheyeList.css">

<link rel="StyleSheet" type="text/css" href="css/styles.css">
<link rel="StyleSheet" type="text/css"
href="js/dojo/dojox/grid/_grid/grid.css">

We have the dojo.css style sheet as always, plus the one for the Soria theme, namely
soria.css, because that’s what we’re going to use for all our dijits this time around. Then we
have the FisheyeList.css files, needed for our Fisheye dijit to work right. Next we import
styles.css, the application-specific style sheet. Finally, because we’ll be using a Grid dijit in
this application, we also need to import grid.css.

The next step is to configure Dojo:

<script type="text/javascript">
var djConfig = {
baseScriptUri : "js/dojo/",
parseOnLoad : true

};
</script>
<script type="text/javascript" src="js/dojo/dojo/dojo.js"></script>

This is of course just like code you’ve seen a bunch of times before, so no need to go over
it again.

Next we have to get the JavaScript that represents the core of this particular application,
so we need to bring in App.js:

<script type="text/javascript" src="js/App.js"></script>

Now it’s time to go ahead and import all the Dojo components we’re going to be using.
You’ve previously seen each of these in other applications or in examples in previous chapters,
so there shouldn’t be any surprises here:

dojo.require("dijit.Dialog");
dojo.require("dijit.Toolbar");
dojo.require("dijit.form.Button");
dojo.require("dijit.form.ComboBox");
dojo.require("dijit.form.Form");
dojo.require("dijit.form.NumberSpinner");
dojo.require("dijit.form.ValidationTextBox");
dojo.require("dijit.form.Slider");
dojo.require("dijit.form.TextBox");
dojo.require("dijit.layout.AccordionContainer");
dojo.require("dijit.layout.ContentPane");
dojo.require("dijit.layout.LayoutContainer");
dojo.require("dijit.layout.SplitContainer");
dojo.require("dijit.layout.TabContainer");

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 393

dojo.require("dojo.data.ItemFileWriteStore");
dojo.require("dojo.io.script");
dojo.require("dojo.parser");
dojo.require("dojo.string");
dojo.require("dojox.collections.Dictionary");
dojo.require("dojox.fx._base");
dojo.require("dojox.grid.Grid");
dojo.require("dojox.storage");
dojo.require("dojox.widget.FisheyeList");

The next step is to kick off the application, so to speak:

var app = new App();

dojo.addOnLoad(function() {
app.init();

});

We create a single instance of the App class, which again is the real code behind the appli-
cation. Then we hook up an event to fire when the page and all Dojo initialization is complete,
using the dojo.addOnLoad() function. All we need to do is call the init() method of the App
instance—all the real work is done there, as you’ll see a little later.

Now we can move on to the markup content in the <body> of index.htm, starting with the
definitions of the dialog boxes that the user can see in this application.

The Four Dialogs of the Apocalypse
There are four types of dialog boxes that can be displayed in this application. The first one is
the Print dialog (these don’t appear here, or in the code, in any sort of important order):

<div dojoType="dijit.Dialog" id="printDialog"
title="Local Business Search"
style="display:none;width:100%;height:100%">
Title:

Longitude:

Latitude:

Distance:

Phone:

Rating:

Address:

City:

State:

Business Web Site:

</div>

Dialog boxes are nothing new at this point; you’ve seen a bunch of them in other applica-
tions. This one has some content that will be populated dynamically: the map and the details

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH394

for the selected business. These are the same details shown in the Accordion section of the
main UI. A dialog is used for printing so that all the information can be presented in one con-
solidated view. This isn’t the case on the main UI because you are either viewing business
details or the map, never both at the same time, so there had to be some sort of new display
mechanism to present both simultaneously. A dialog, maximized so that it covers everything
else, meaning the main UI, does the job perfectly. Later in the JavaScript you’ll see that each of
the <div>s with ids beginning with print_ are populated with the information, and the
print_map is pointed at the appropriate map image, all as you’d expect.

The next dialog is the Please Wait dialog, and it’s a very simplistic beast:

<div dojoType="dijit.Dialog" id="pleaseWaitDialog"
title="Please Wait" style="display:none;width:200px;">
<p align="center" id="pleaseWaitText"></p>

</div>

An example of the Please Wait dialog can be seen in Figure 8-4. This is in fact what you’ll
see when the application is first loaded and initialization of the Dojo storage system is in
process.

Figure 8-4. An example of the Please Wait dialog box, the “initializing” dialog

The text to be displayed, Initializing in this case, is inserted into the pleaseWaitText <p>
element (you will see the code for doing this later). This type of dialog is meant to block the
user from interacting with the UI in any way; hence the typical Close button that usually
appears on a dialog is hidden, and there is no button to dismiss the dialog as you’ll see that
other types have. This type of dialog is used, in addition to during initialization, when
searches are being performed.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 395

The info type of dialog is next. This is similar to the Please Wait dialog in that it blocks the
user from interacting with the UI, except in one way: the user can dismiss the dialog by click-
ing an OK button. The idea behind this type of dialog is that the user needs to be presented
with some information and can continue only after acknowledging the dialog, by clicking the
OK button:

<div dojoType="dijit.Dialog" id="infoDialog"
title="Attention Human!" style="display:none;width:300px;">
<p align="center" id="infoText"></p>
<p align="center">
<button dojoType="dijit.form.Button"
onClick="dijit.byId('infoDialog').hide();">
Ok

</button>
</p>

</div>

As you can see, the OK button hides the dialog. In fact, each of the four types of dialogs
are always hidden or shown; they are never destroyed and re-created after the initial creation.
This is just more efficient because it means less work for Dojo to have to do (that is, creating a
dijit can be a bit expensive—better to avoid it wherever possible).

The final type of dialog is the Confirm dialog:

<div dojoType="dijit.Dialog" id="confirmDialog"
title="Confirm" style="display:none;width:300px;">
<p align="center" id="confirmText"></p>
<p align="center">
<button dojoType="dijit.form.Button" iconClass="icons iconYes"
onClick="app.confirmCallback(true);">
Yes

</button>

<button dojoType="dijit.form.Button" iconClass="icons iconNo"
onClick="app.confirmCallback(false);">
No

</button>
</p>

</div>

A confirmation dialog requires that the user make a decision via a yes or no response.
Hence, as you can see, there are two buttons that can be clicked. The Close button is hidden
on this dialog as well, so the user will have to answer whatever question is being asked—the
user can’t just skip it (well, he could just close the application entirely). The text is dynamically
inserted into confirmText <p>, similar to the other three dialog types. The buttons call the
confirmCallback() method of the App class, passing either true if Yes is clicked or false if No
is clicked. You’ll see how this mechanism works later, but these two buttons are the triggers,
one way or another, for that mechanism.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH396

The Menu
The next bit of markup we encounter as we explore index.htm is the markup responsible for
rendering our menu, the Fisheye List dijit. Figure 8-5 shows what this menu looks like in
action, specifically when the Add to Favorites icon is hovered over.

Figure 8-5. The Fisheye dijit in action, with the Add to Favorites item being hovered over

You’ve seen the Fisheye List dijit in action before in the Chapter 5 project, but darn, it’s so
pretty I just had to show it again! Anyway, the markup for generating the menu is this:

<div class="outerbar" id="fisheyeList">
<div dojoType="dojox.widget.FisheyeList"
itemWidth="84" itemHeight="84"
itemMaxWidth="128" itemMaxHeight="128"
orientation="horizontal" effectUnits="1" itemPadding="20"
attachEdge="top" labelEdge="bottom">
<div dojoType="dojox.widget.FisheyeListItem"
onclick="app.newSearch();"
label="New Search" iconSrc="img/NewSearch.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="app.printCurrentItem();"
label="Print Item" iconSrc="img/PrintItem.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="app.addToFavorites();"
label="Add To Favorites" iconSrc="img/AddToFavorites.gif">

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 397

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="app.deleteFavorite();"
label="Delete Favorite" iconSrc="img/DeleteFavorite.gif">

</div>
<div dojoType="dojox.widget.FisheyeListItem"
onclick="app.clearFavorites();"
label="Clear Favorites" iconSrc="img/ClearFavorites.gif">

</div>
</div>

</div>

This is almost completely identical to the definition of the Fisheye List used in the
Chapter 5 project, so I won’t go into any detail here. None of it should be new, except for the
methods that each of the icons executes when clicked. All of them are just straight method
calls—no arguments are being passed anywhere—so it’s pretty simple stuff.

Main Contents
The main content of the UI is next, and it begins with the definition of the mainContainer,
which is a LayoutContainer that houses all the UI components except the Fisheye List. (The
Fisheye List is positioned relative to the upper-left corner of the browser window, as the
style sheet definition that we’ll look at after index.htm shows.) Here is the markup for the
mainContainer:

<div dojoType="dijit.layout.LayoutContainer" id="mainContainer">

<div dojoType="dijit.layout.ContentPane" layoutAlign="top"
class="cssTitle">
<table border="0" cellpadding="0" cellspacing="0" width="100%"><tr>
<td align="right">

</td>
</tr></table>

</div>

The mainContainer ContentPane enables us to maximize usage of the browser window—
take up the entire usable area, in other words. The first ContentPane beneath it is where the
application’s logo lives.

Below that ContentPane comes the first of three SplitContainer dijits:

<div dojoType="dijit.layout.SplitContainer" persist="true"
orientation="horizontal" sizerWidth="8" activeSizing="true"
layoutAlign="client">

This SplitContainer lays out its children horizontally, so it gives us the split between the
search section/favorites section and the business details/map section. Note that persist is set
to true so that the sizes of the two sections are stored via a cookie and are used the next time
the application is loaded (the user can choose the sizes). This is the only SplitContainer that
will persist its sizing (in fact, the others are not even resizable).

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH398

We next find another SplitContainer:

<div dojoType="dijit.layout.SplitContainer" persist="false"
orientation="vertical" sizerWidth="0" activeSizing="false"
sizeShare="4">

This time we are laying out the children of this SplitContainer vertically. This SplitCon-
tainer divides the left side of the display between the search and favorites sections. Note that
the sizerWidth value of 0, plus the activeSizing value of false, results in this SplitContainer
not being resizable by the user. This becomes strictly a means to lay out the two sections
(search and favorites) and assign them sizes based on a percentage of the total window height.
This SplitContainer is not something the user can interact with, as is the preceding one.

The first child of this SplitContainer (the one dividing the left side of the page) is a Tab-
Container where the Search and Results tabs will live:

<div dojoType="dijit.layout.TabContainer" id="searchTabs"
sizeShare="5">

There’s not much to see there, but moving down into the children of this TabContainer
there’s definitely more to see.

The Search Criteria Pane

Next up we find a ContentPane that houses the search criteria form. This is where the user
enters the values used to perform a search—things like a keyword, address, and minimum rat-
ing. This is also the first of two tabs within the TabContainer named searchTabs. The markup
for the Search tab looks like this:

<div dojoType="dijit.layout.ContentPane" title="Search"
id="tabSearch">
<form id="searchForm">
<table width="100%" style="padding-left:6px;padding-top:6px;">
<tr>
<td valign="bottom">Keyword: </td>
<td colspan="3" valign="bottom">
<input type="textbox" dojoType="dijit.form.TextBox"
id="queryKeyword">

</td>
</tr>
<tr>
<td valign="bottom">Sort By: </td>
<td valign="bottom">
<select dojoType="dijit.form.ComboBox" id="sortBy"
autocomplete="false" hasDownArrow="true">
<option></option>
<option>Distance</option>
<option>Relevance</option>
<option>Title</option>
<option>Rating</option>

</select>

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 399

</td>
<td valign="bottom">Minimum Rating: </td>
<td valign="bottom">
<input dojoType="dijit.form.NumberSpinner" value="0"
constraints="{min:0,max:5,places:0}"
style="width:50px;" id="minimumRating">

</td>
</tr>
<tr>
<td valign="bottom">Street: </td>
<td valign="bottom">
<input type="textbox" dojoType="dijit.form.TextBox"
id="street">

</td>
<td valign="bottom">City: </td>
<td valign="bottom">
<input type="textbox" dojoType="dijit.form.TextBox"
id="city" style="width:140px;">

</td>
</tr>
<tr>
<td valign="bottom">State: </td>
<td valign="bottom">
<select dojoType="dijit.form.ComboBox" id="state"
autocomplete="true" hasDownArrow="true">
<option></option>
<option>Alabama</option><option>Alaska</option>
<option>Arizona</option><option>Arkansas</option>
<option>California</option><option>Colorado</option>
<option>Connecticut</option><option>Delaware</option>
<option>Florida</option><option>Georgia</option>
<option>Hawaii</option><option>Idaho</option>
<option>Illinois</option><option>Indiana</option>
<option>Iowa</option><option>Kansas</option>
<option>Kentucky</option><option>Louisiana</option>
<option>Maine</option><option>Maryland</option>
<option>Massachusetts</option><option>Michigan</option>
<option>Minnesota</option><option>Mississippi</option>
<option>Missouri</option><option>Montana</option>
<option>Nebraska</option><option>Nevada</option>
<option>New Hampshire</option>
<option>New Jersey</option>
<option>New Mexico</option><option>New York</option>
<option>North Carolina</option>
<option>North Dakota</option>
<option>Ohio</option><option>Oklahoma</option>

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH400

<option>Oregon</option><option>Pennsylvania</option>
<option>Rhode Island</option>
<option>South Carolina</option>
<option>South Dakota</option><option>Tennessee</option>
<option>Texas</option><option>Utah</option>
<option>Vermont</option><option>Virginia</option>
<option>Washington</option>
<option>West Virginia</option>
<option>Wisconsin</option><option>Wyoming</option>

</select>
</td>
<td valign="bottom">Zip Code: </td>
<td valign="bottom">
<input type="textbox"
dojoType="dijit.form.ValidationTextBox"
id="zipCode" style="width:60px;" regExp="\d{5}"
invalidMessage="Invalid zip code">

</td>
</tr>
<tr>
<td valign="bottom">Radius: </td>
<td valign="bottom" colspan="3">
<input dojoType="dijit.form.NumberSpinner" value="10"
constraints="{min:5,max:1000,places:0}" smallDelta="5"
largeDelta="25" style="width:75px;" id="radius">

</td>
</tr>
<tr>
<td colspan="4" align="center" style="padding-top:10px;">
<button dojoType="dijit.form.Button"
iconClass="icons iconSearch" onClick="app.search();">
Execute Search

</button>

<button dojoType="dijit.form.Button"
iconClass="icons iconSaveLocation"
onClick="app.saveLocation();">
Save Location As Default

</button>
</td>

</tr>
</table>

</form>
</div>

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 401

By this point in this book, there probably isn’t anything new in there, but I’ll just point out
a few interesting tidbits. First, notice that the sortBy ComboBox has its autocomplete attribute
set to false. Because there are only a limited set of options to choose from here, I didn’t see
much sense in having autocomplete enabled. The state ComboBox, on the other hand, has
autocomplete set to true because I think that makes sense, seeing as it has 50 options.

The minimumRating field is implemented by using a NumberSpinner, which is a dijit you
haven’t seen used in a project yet. This is perfect for situations when there is a finite set of
numeric options to choose from and they are contiguous, as is the case here (0–5). You could
certainly argue that other controls would have been just as appropriate, perhaps even more
so—maybe radio buttons, maybe a combo box, and I wouldn’t argue too strenuously against
you—but a NumberSpinner is a good choice too, and because we haven’t used it yet, I thought
it was a good choice.

The zipCode field is interesting in that we have a regExp defined, namely five numbers. So
if you try to enter a letter there, for instance, you’ll see an error pop up, as shown in Figure 8-6.

Figure 8-6. An error resulting from entering a letter in the Zip Code field

To perform a search, the user enters some search criteria, as seen in Figure 8-7. The crite-
ria always requires a keyword to be entered, as you see in the figure, and at least some portion
of the location fields (zip code at minimum). The Sort By and Minimum Rating fields are com-
pletely optional, but give users a way to limit the results further to get only matches that will
be suitable to them.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH402

Figure 8-7. The search form, populated with some entries

When the user clicks the Execute Search button, the search is performed via a call to
Yahoo’s web service, and results are returned (assuming there were matches—otherwise, the
user would have seen a dialog indicating there were no matches). How those results are dis-
played, markup-wise at least, is where we’re headed next.

The Search Results Pane

The second ContentPane also contains the contents for the second tab, where search results
are displayed. The markup is straightforward, as you can see for yourself:

<div dojoType="dijit.layout.ContentPane" id="tabResults"
sizeShare="8" title="Results">
<div dojoType="dijit.layout.SplitContainer" persist="false"
orientation="vertical" sizerWidth="0" activeSizing="true"
layoutAlign="client">
<div dojoType="dijit.layout.ContentPane"
sizeShare="8">
<div id="searchResultsGrid" dojoType="dojox.Grid"
structure="app.searchResultsGridLayout"
class="cssSearchResultsGrid"
style="width:100%;height:100%;">
<script type="dojo/method" event="onRowClick" args="e">
app.itemClicked(e.rowIndex);

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 403

</script>
</div>

</div>
<div dojoType="dijit.layout.ContentPane" sizeShare="2"
style="padding-top:6px;">
<table border="0" cellpadding="0" cellspacing="0"
align="center" width="98%"><tr>
<td width="28%" colspan="2" id="totalCount"> </td>
<td align="center" width="18%" nowrap>
<button dojoType="dijit.form.Button" id="vcrFirst"
onClick="app.pageResults(app.PAGERESULTS_FIRST);"
disabled="true">First</button>

</td>
<td align="center" width="18%" nowrap>
<button dojoType="dijit.form.Button" id="vcrPrevious"
onClick="app.pageResults(app.PAGERESULTS_PREVIOUS);"
disabled="true">Previous</button>

</td>
<td align="center" width="18%" nowrap>
<button dojoType="dijit.form.Button" id="vcrNext"
onClick="app.pageResults(app.PAGERESULTS_NEXT);"
disabled="true">Next</button>

</td>
<td align="center" width="18%" nowrap>
<button dojoType="dijit.form.Button" id="vcrLast"
onClick="app.pageResults(app.PAGERESULTS_LAST);"
disabled="true">Last</button>

</td>
</tr></table>

</div>
</div>

</div>

Inside this ContentPane is a SplitContainer. The reason for this is that we have to show the
Grid with the actual search results, and below it are buttons for paging through large result
sets, and for displaying the current position within that larger list. Although this is a SplitCon-
tainer, note that sizerWidth is set to 0, which as we’ve previously seen, effectively makes it not
resizable, precisely what we want here.

Within the SplitContainer is a ContentPane. This is the top half where the Grid goes, and
sure enough that’s exactly what you see in it. The Grid gets its structure by pointing to the
searchResultsGridLayout member of the App class instance. A simple onClick handler is
attached, which is the only function this Grid really has.

Below this ContentPane is another, and this is where our VCR buttons are, as you can see
in Figure 8-8.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH404

Figure 8-8. The search results after executing a search

VCR buttons are a common interface metaphor and are so named because they typically
are organized and work like the control buttons on an old-fashioned (by today’s standards!)
videocassette recorder, or VCR. That means there is a rewind button (labeled First here), a fast-
forward button (Last), and, stretching the analogy just a bit, slow-motion forward (Next), and
back (Previous) buttons. In today’s age of TiVo and digital video recorders (DVRs), maybe next
scene and previous scene are closer.

Be that as it may, these buttons are simply Button dijits, each calling the App class’s
pageResults() method and passing to it the appropriate constants to tell that method
what function to perform. You’ll see how that works later, but that’s how it works from a
UI perspective.

■Note The term constant is of course a misnomer in JavaScript as there is no such animal. However, you
can have an object that has fields with values that you can reference and pretend they are constants. If you
follow the semistandard convention of making them all uppercase with underscores separating words, they
at least look like constants, to a reasonable approximation. That’s as reasonable an approximation as is cur-
rently possible in JavaScript.

The Favorites Pane

Below the tabbed section where the Search and Results tabs are is the section where favorites
are listed. This content is dynamically generated, save for the header image, but I’ll show the
markup for this nonetheless:

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 405

<div dojoType="dijit.layout.ContentPane" sizeShare="5">
<p align="center"></p>
<div dojoType="dijit.layout.ContentPane" id="cpFavorites"></div>
</div>

The actual list of favorites will be inserted into cpFavorites later via code in the App class,
which we’ll get to shortly.

The Details Pane

The Details section on the right comes next, and this is implemented via a dijit that you
haven’t seen in real action yet, the Accordion dijit. This starts with an AccordionContainer:

<div dojoType="dijit.layout.AccordionContainer" sizeShare="6"
duration="200" id="detailsTabs">

This is a container dijit, which means it hosts child dijits. More specifically, it hosts some
number of AccordionPane dijits. The first we have is the Details section, where the details for a
selected business are displayed:

<div dojoType="dijit.layout.AccordionPane" title="Details"
id="tabDetails">
<table style="padding-left:6px;padding-top:6px;" width="100%">
<tr>
<td width="20%">Title: </td><td id="details_title"></td>

</tr>
<tr><td colspan="2"> </td></td>
<tr class="cssAltRow">
<td>Longitude: </td>

<td id="details_longitude"></td></tr>
<tr><td colspan="2"> </td></td>
<tr>
<td>Latitude: </td><td id="details_latitude"></td>

</tr>
<tr><td colspan="2"> </td></td>
<tr class="cssAltRow">
<td>Distance: </td><td id="details_distance"></td></tr>

<tr><td colspan="2"> </td></td>
<tr><td>Phone: </td><td id="details_phone"></td></tr>
<tr><td colspan="2"> </td></td>
<tr class="cssAltRow">
<td>Rating: </td><td id="details_rating"></td>

</tr>
<tr><td colspan="2"> </td></td>
<tr><td>Address: </td><td id="details_address"></td></tr>
<tr><td colspan="2"> </td></td>
<tr class="cssAltRow">
<td>City: </td><td id="details_city"></td>

</tr>

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH406

<tr><td colspan="2"> </td></td>
<tr><td>State: </td><td id="details_state"></td></tr>
<tr><td colspan="2"> </td></td>
<tr class="cssAltRow">
<td>Business Web Site: </td>
<td id="details_businessUrl"></td>

</tr>
</table>

</div>

As you can see, there’s nothing special there; it’s just a table-based layout, straight-up
HTML, nothing more. Note, however, that the AccordionPane has an id assigned, which is
important because that’s necessary to be able to flip back to this pane at various times, such
as when starting a new search.

The Map Pane

The other section in the details area is where the map is displayed, and that’s simply another
AccordionPane, as you can see here:

<div dojoType="dijit.layout.AccordionPane" title="Map"
id="tabMap">

<div style="text-align:center;width:100%;">
<div dojoType="dijit.form.HorizontalSlider"
value="6" minimum="1" maximum="12" discreteValues="12"
showButtons="true" id="sldZoom" style="width:95%;"
onChange="app.showMap(arguments[0]);">
<div dojoType="dijit.form.HorizontalRuleLabels"
container="topDecoration"
labels="Street,2,3,4,5,6,7,8,9,10,11,Country"
class="cssSliderLabels">

</div>
</div>
<img id="imgMap" src="img/transPix.gif" vspace="6"
style="border:1px solid #000000;display:none;">

</div>
</div>

We have ourselves a HorizontalSlider, just as we saw in the previous chapter’s project. This
time, however, we have 12 discrete values, which is the number of levels of zoom Yahoo’s map
service supports, and this is exactly what this slider is for. For the labels, I decided to use
words for the two end conditions, Street and Country, so that there is some sort of contextual
meaning to the numbers. This way, it’s obvious that as the numbers go up, you’re actually
zooming out. Otherwise, you might reasonably think that the higher the number, the higher
the magnification, which is in fact the opposite of how it works.

The element will have its src updated to point to the appropriate map when the
time comes, but it’s initially hidden via display:none so as to avoid there being just a small

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 407

square in the middle of the pane. (Because the tag is defined with a border and a vspace
attribute on it, you’d have a small box in the middle, which would just look a bit ugly.)

In Figure 8-9, you can see an example of what this pane looks like with a map displayed.

Figure 8-9. Viewing the map for a selected search result

And with that, we’re finished with the markup for this application. Let’s now look at the
style sheet that contains the styles that you saw applied to the elements in index.htm.

Writing styles.css
The style sheet for this application is really pretty sparse, and a large portion of it is all but
identical to things you’ve seen in other applications. We’ll go through it, at least briefly,
nonetheless, starting with a “god” style, so to speak:

html, body, #mainContainer {
width : 100%;
height : 100%;
border : 0px;
padding : 0px;
margin : 0px;
font-family : arial;
font-size : 10pt;
overflow : hidden;

}

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH408

These style settings result in there being no padding or margin around all the content in
the browser window, and also ensure that we have a consistent font setting for everything. We
also indicate that no scrolling should occur.

Next we have some styles associated with the icons on the buttons throughout the
application:

.icons {
background-repeat : no-repeat;
background-position : 0px;
width : 20px;
height : 18px;
text-align : center;

}
.iconSearch {
background-image : url("../img/icon_search.gif");

}
.iconSaveLocation {
background-image : url("../img/icon_save.gif");

}
.iconYes {
background-image : url("../img/icon_yes.gif");

}
.iconNo {
background-image : url("../img/icon_no.gif");

}

This works just as you saw in previous projects, so if you can’t make heads or tails of what
you see here, taking a look at previous chapters once more would be very helpful indeed.

Next is a simple style applied to the ContentPane that is housing the application’s logo:

.cssTitle {
height : 110px;
border-bottom : 8px solid #dee8f7;

}

The point to this is twofold: first, to ensure that the ContentPane is tall enough for the
image; and second, to give it a border on the bottom that looks like the divider seen in a Split-
Container, but isn’t. I thought it looked a little odd without this border because there didn’t
seem to be a clear delineation between the logo and menu and the rest of the UI. To be consis-
tent, it had to look like a splitter, but there was no point in actually making it a splitter
(meaning to use a SplitContainer), so just using a border did the trick nicely.

The next handful of styles have to do with the four dialogs we saw earlier:

#InitializingDialog .dijitDialogCloseIcon {
display : none;

}
#pleaseWaitDialog .dijitDialogCloseIcon {
display : none;

}

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 409

#infoDialog .dijitDialogCloseIcon {
display : none;

}
#confirmDialog .dijitDialogCloseIcon {
display : none;

}

This is just the same trick seen in previous chapters to hide the Close icon typically seen
in a dialog.

The next style is applied to the <div> that houses the Fisheye List dijit:

.outerbar {
position : absolute;
left : 150px;
top : 12px;
z-index : 9999;

}

This style’s only purpose in life is to position the menu relative to the upper-left corner of
the browser viewport, which is another way of saying to position it absolutely. Remember that
positioning something absolutely is always done based on a coordinate of 0,0 representing the
upper-left corner of the viewport where the page is drawn. So saying something is positioned
absolutely is equivalent to saying it’s positioned relative to the upper-left corner. I know, it
sounds like I’m running for office with the double-speak, but it’s an accurate bit of double-
speak at least!

I lied there a little: positioning isn’t the style’s only purpose in life. In fact, in IE7, the Fish-
eye List didn’t work right; the items could not be clicked. The solution was setting the z-index
attribute as you see here. This project turned up several IE7 problems with various dijits, and
this was just one of them. Thankfully, they weren’t too hard to address.

The next style is applied to the labels on the map zoom slider:

.cssSliderLabels {
height : 1.2em;
font-size : 10pt;
color : #000000;

}

This just sets the size and font size of the text of the labels, nothing more.
The final style is this one:

.cssAltRow {
background-color : #eaeaea;

}

This is applied to every other row of the <table> where the business’s details are shown,
thus giving the display a striped appearance to help the user’s eyes keep track of the informa-
tion a little better.

Now it’s time to move on to the JavaScript that makes up the core of the application,
housed in the file App.js.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH410

Writing App.js
Now, at last, we come to what is, in my opinion anyway, the most interesting part of the appli-
cation, namely the JavaScript behind it. All of the code for this application is enclosed in a
single class called, not very creatively I admit, App. And, as if I wasn’t being lazy enough, it’s in
the file App.js!

In Figure 8-10, you can see the UML class diagram for App, which gives you an overview of
what we’ll be looking at next.

Figure 8-10. UML class diagram of App class

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 411

To get started, let’s have a look at the data fields in the class, as listed in Table 8-2.

Table 8-2. The Data Fields of the App Class

Field Name Description

appID The application ID you get when you registered to use Yahoo’s
services.

DLG_INFO Pseudo-constant to indicate an info-type dialog should be shown.
Will be passed to showDialog() method.

DLG_CONFIRM Pseudo-constant to indicate a confirmation-type dialog should be
shown. Will be passed to showDialog() method.

DLG_PLEASEWAIT Pseudo-constant to indicate a Please Wait–type dialog should be
shown. Will be passed to showDialog() method.

DLG_PRINT Pseudo-constant to indicate the Print dialog should be shown. Will
be passed to showDialog() method.

PAGERESULTS_FIRST Pseudo-constant used to indicate result set paging should move to
the first item. Passed into pageResults() as a result of a VCR button
being clicked.

PAGERESULTS_PREVIOUS Pseudo-constant used to indicate result set paging should move to
the previous 10 items. Passed into pageResults() as a result of a
VCR button being clicked.

PAGERESULTS_NEXT Pseudo-constant used to indicate result set paging should move to
the next 10 items. Passed into pageResults() as a result of a VCR
button being clicked.

PAGERESULTS_LAST Pseudo-constant used to indicate result set paging should move to
the last item. Passed into pageResults() as a result of a VCR button
being clicked.

totalResultsAvailable Stores the total number of matches found for a given search.

firstResultPosition Stores the first result showing in the results grid. Used for result set
paging.

search_sortBy Value of the sortBy field used during the most recent search.

search_minimumRating Value of the minimumRating field used during the most recent search.

search_queryKeyword Value of the keyword field used during the most recent search.

search_radius Value of the radius field used during the most recent search.

search_street Value of the street field used during the most recent search.

search_city Value of the city field used during the most recent search.

search_state Value of the state field used during the most recent search.

search_zipCode Value of the zipCode field used during the most recent search.

currentDialogShowing Records what dialog, if any, is currently showing. Will be a value
matching one of the DLG_* fields.

initTimer Handle to timer used during application initialization.

firstPhaseStorageInit Flag to indicate whether application is in the first stage (true) of
initialization or the second stage (false).

Favorites A Dictionary object where the list of the user’s favorites is stored
during application run.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH412

Field Name Description

currentItem A reference to the current search result whose details are being
shown.

currentIsFavorite Flag that is set to true if the item whose details are being displayed is
a favorite, false if it’s not.

searchResultsStore The data store for the search results grid.

searchResultsStoreModel The data model for the search results grid.

searchResultsGridLayout The layout specification for the search results grid.

Many of those are obvious based on their names. Still others you should have a pretty
good idea about based just on the brief descriptions in the table. The rest will become clear as
you see them used in the code, which we’re now ready to begin looking at, starting with the
application initialization procedure.

Initialization
As we saw in index.htm, the init() method of the App class is called onLoad (via the Dojo
onLoad mechanism) to perform application initialization. It’s about time we look at that code,
wouldn’t you say? Here it is:

this.init = function() {

if (dojo.exists("firstPhaseStorageInit", app)) {
// Perform these tasks the first timer iteration only.
app.showDialog(app.DLG_PLEASEWAIT, "... Initializing ...");
// Make sure Gears is available, abort if not.
if (!dojox.storage.manager.supportsProvider(
"dojox.storage.GearsStorageProvider")) {
app.hideDialog();
app.showDialog(app.DLG_PLEASEWAIT,
"Gears is not installed or is disabled, cannot continue.");

return;
}
// Make sure we use Gears, then move on to second phase of initialization.
dojox.storage.manager.setProvider(dojox.storage.GearsStorageProvider);
app.firstPhaseStorageInit = false;
app.initTimer = setTimeout("app.init()", 500);

} else {
// Do this as many times as necessary (phase 2 initialization).
if (dojox.storage.manager.isInitialized()) {
clearTimeout(app.initTimer);
app.initTimer = null;
app.readFavorites();
app.showFavorites();
app.setDefaultLocation();
app.hideDialog();
// Deal with an IE issue that caused Sort By and Minimum rating

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 413

// fields to not be visible initially.
dijit.byId("searchTabs").selectChild(dijit.byId("tabResults"));
dijit.byId("searchTabs").selectChild(dijit.byId("tabSearch"));

} else {
app.initTimer = setTimeout("app.init()", 500);

}
}

} // End init().

As I alluded to earlier, initialization is performed in two phases. Each time this method is
called, it checks whether the firstPhaseStorageInit field is present on the App instance. This
check is performed by using the dojo.exists() function. If that field is present, dojo.exists()
returns true. In this case, the “initializing” dialog is shown. This is done via a call to the
showDialog() method of the App class. As a preview of that method, which we’ll look at in
detail later, you pass to it a code that tells it what type of dialog to show (using one of the
constants we saw earlier) and the text to display on the dialog (Initializing, in this case).

The next step of this first phase of initialization is to see whether the dojox.storage.
GearsStorageProvider is a supported storage provider for the Dojo storage system. This is
done via a call to dojox.storage.manager.supportsProvider(), passing it the name of the
provider we want to check for (dojox.storage.GearsStorageProvider, in this case). This func-
tion will return false if the provider isn’t available, meaning Gears isn’t available. In that case,
the “initializing” dialog is hidden via a call to hideDialog(), and then a new dialog is shown
stating that Gears isn’t available and the application can’t continue.

Assuming Gears is available, firstPhaseStorageInit is set to false, indicating that the
second phase of initialization is now in progress. Next, a time-out is set to fire in 500 millisec-
onds, and the function to execute at that time is init() again. A reference to the time-out is
stored in the initTimer field of the App instance.

Now, when init() fires again, we’re still in the second phase, so the else branch of the ini-
tial if check executes. At this point, a call to dojox.storage.manager.isInitialized() is made.
If this returns true, the Dojo storage system is all set and we can continue. The time-out is first
cleared, and then favorites are read in via a call to readFavorites(). This gets the favorites
from the local Gears database, if there are any favorites to get. Then a call to showFavorites()
is made, which displays the favorites on the screen. The method setDefaultLocation() is then
called, which will set the search criteria to the saved default location, if there is one. Finally,
the “initializing” dialog is hidden, and initialization is complete.

■Note A problem was observed running in IE7 that caused the Sort By and Minimum Rating fields to not
appear when the application started up. So a bit of hackery was employed: by flipping to the Results tab and
then back to the Search tab, the fields appear. I don’t know the root cause of the issue—it appears to be
something IE7-specific that Dojo doesn’t like—but at least this solution works without too much fuss.

Now, if that check to see whether the Dojo storage system is initialized returns false, a
time-out is set again, and init() will execute as many times as necessary, waiting for the stor-
age system to initialize.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH414

To make certain the entire flow through initialization is clear, have a look at Figure 8-11.
Hopefully, that clears up any nagging doubt you may have.

Figure 8-11. Initialization process flow

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 415

Performing a Search
Now it’s time to perform a search! Because this method is fairly long, we’re going to look at it in
chunks, just to make things a little easier to digest. The first chunk is this:

this.search = function(inUseCurrent) {

if (!inUseCurrent) {
app.search_sortBy = dijit.byId("sortBy").getValue();
app.search_minimumRating = dijit.byId("minimumRating").getValue();
app.search_queryKeyword = dijit.byId("queryKeyword").getValue();
app.search_radius = dijit.byId("radius").getValue();
app.search_street = dijit.byId("street").getValue();
app.search_city = dijit.byId("city").getValue();
app.search_state = dijit.byId("state").getValue();
app.search_zipCode = dijit.byId("zipCode").getValue();
app.totalResultsAvailable = 0;
app.firstResultPosition = 1;
dojo.byId("totalCount").innerHTML = "";
app.enableVCRButtons(true);

}

This method can be called in two situations. The first is obviously when the Execute
Search button is clicked. The second is when one of the VCR buttons is clicked to page
through results.

In the first case, inUseCurrent will be true. In this case, we retrieve the values of each of
the search criteria fields and store them in fields of the App instance. For example, the radius
UI field is stored in the search_radius App instance field. At this point, the code also resets the
totalResultsAvailable and firstResultPosition fields to their default values. These fields
will be populated when a search is performed (or when paging is performed, in the case of
firstResultPosition). The code also clears the <div> where the total number of search results,
and the current position within the result set, are displayed. Finally, a call to the method
enableVCRButtons() is made, passing it a value of true. This enables all the VCR buttons
(passing false would disable them all).

When inUseCurrent is false, this entire branch is skipped because in that case the user is
paging through results, not initiating a new search, so none of these tasks is necessary.

The next chunk we encounter is this:

if (app.search_queryKeyword == "") {
app.showDialog(app.DLG_INFO, "You must enter a keyword to search for");
return;

}
if (app.search_street == "" && app.search_city == "" &&
app.search_state == "" && app.search_zipCode == "") {
app.showDialog(app.DLG_INFO,
"You must enter a location to search around " +
"(just zip code at a minimum)");

return;
}

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH416

if (app.search_street != "" &&
(app.search_city == "" || app.search_state == "")) {
app.showDialog(app.DLG_INFO,
"When street is entered you must also enter city and state");

return;
}

This is just some simple checking to ensure that we have required fields. A keyword is
always required, and at least one of the location fields (street, city, state, zip code) is required.
If a street is entered, the city and state are then required.

Next we have a single line:

app.showDialog(app.DLG_PLEASEWAIT, "... Performing Search ...");

This shows a dialog to indicate that a search is in progress. That line is followed by
another single line:

if (app.search_sortBy == "") { app.search_sortBy = "distance"; }

This sets a default for the sort condition if none was selected by the user.
The next chunk is a bit longer:

var contentObj = {
"appid" : app.appID, "output" : "json", "sort" :
app.search_sortBy.toLowerCase(), start : app.firstResultPosition,
results : 10

};

if (dojo.exists("search_queryKeyword", app)) {
contentObj.query = dojo.string.trim(app.search_queryKeyword);

}
if (dojo.exists("search_minimumRating", app)) {
contentObj.minimum_rating = app.search_minimumRating;

}
if (dojo.exists("search_radius", app)) {
contentObj.radius = app.search_radius;

}
if (dojo.exists("search_street", app)) {
contentObj.street = dojo.string.trim(app.search_street);

}
if (dojo.exists("search_city", app)) {
contentObj.city = dojo.string.trim(app.search_city);

}
if (dojo.exists("search_state", app)) {
contentObj.state = app.search_state;

}
if (dojo.exists("search_zipCode", app)) {
contentObj.zip = app.search_zipCode;

}

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 417

The contentObj object will be passed to the dojo.io.script.get() function that will be
called next. These are the parameters to be passed to the web service. The dojo.exists() func-
tion is used on each of the possible search criteria. As opposed to the previous instance when
we saw this function used, this time there are two arguments being passed. The first is of
course the field to look for, and the second is a scope to look in. In other words, it tells the
function what object to examine. This defaults to the current object. That’s why the first time
we saw this function in action, it had only one argument: it was checking for the existence of
the given field on the object pointed to by the standard this reference. Any field that is found
to exist is added to contentObj.

There are also a few parameters in contentObj that don’t come from search criteria. The
appid parameter is the application ID you registered to access the Yahoo web services. The
output parameter tells the web service what kind of output you want, json in this case.
Because the sort parameter will always have a value, one way or another, it too is added. Next,
the start parameter, based on the web service documentation, tells the service what the first
result you want returned is. For a new search, this will be zero, as you saw in the first chunk of
code here. If search() is called as a result of a VCR button being clicked, that value will be
something else. Finally, the results parameter tells the service the maximum number of
results we want returned, ten in this case.

Now it’s time to actually make the call to the web service, and Dojo of course makes that
simple for us:

dojo.io.script.get({
callbackParamName : "callback", content : contentObj,
url : "http://local.yahooapis.com/LocalSearchService/V3/localSearch"

}).addCallback(function(response) {

I’ve broken down what is actually a single JavaScript statement into discrete pieces
because, again, it’ll be a bit easier to follow this way. The first part is the call to
dojo.io.script.get(). As you can see, it accepts an object as an argument. This object has a
couple of attributes, beginning with callbackParamName. Recall that the way JSON-P works is
that you tell the remote service the name of the JavaScript function you want to use as the call-
back. The service generates its response in JSON, and then wraps that JSON in a function call
using the function name you specified. When you use dojo.io.script.get(), however, Dojo is
taking care of that callback for you. In other words, you have no clue regarding the name of
the function that the remote service should wrap the JSON response in; Dojo determines the
name behind the scenes. However, Dojo needs to know the name of the parameter that the
remote service will look at to determine the name of the callback function, and the Yahoo
service uses the parameter callback for that, so that’s where the value of callbackParamName
comes from.

Next, the contentObj object that we previously built up is handed to the function via the
content attribute. Dojo takes care of making sure those parameters get sent to the remote
service for us. Finally, the URL of the remote service is specified via the url attribute.

Now, also notice that at the end of this portion of code a call to addCallback() is made. So,
dojo.io.script.get() is returning some object, on which addCallback() is called. We pass to
addCallback() a reference to a function, which in this case is an inlined function, shown here:

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH418

if (!dojo.exists("ResultSet.Result", response)) {
app.hideDialog();
app.showDialog(app.DLG_INFO,
"No businesses were found matching your search criteria");

return;
}

At least, that’s the first portion of the function! Here, we are again using the dojo.exists()
function to look for an attribute ResultSet.Result on the response object returned by the web
service (which is the object resulting from the returned JSON). If the object doesn’t exist, the
dialog saying a search is in progress is hidden, and then another is shown saying there were no
matches. That’s it; the callback is done at that point and is exited.

Assuming there were some matches, the remainder of the callback code executes. Before
we look at that code, although it’s not all that relevant to understanding the application, let’s
have a look at the request to and response from the Yahoo Local Search web service. In Figure
8-12, you can see the request parameters, courtesy of your friendly neighborhood Firebug.

Figure 8-12. Request parameters of the local search API call

The appID has been blurred in all of these to protect the innocent. (I wouldn’t want Yahoo
to come knocking on my door because someone deployed this app on Facebook and everyone
on the planet is running it against my registered ID!)

Figure 8-13 shows the headers for the same request.

Figure 8-13. Request headers of the local search API call

Finally, Figure 8-14 shows the actual response. Note that I showed only the first result in
the result set because the whole set is quite a bit larger than I could reasonably display in a
screenshot in this book.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 419

Figure 8-14. Response of the local search API call

■Note It’s really cool just how powerful Firebug is. To generate Figure 8-14, all I had to do was drill down
through the DOM hierarchy starting with the dojo object, then into io, then into script. I was able to find
the actual JSON response from the call in there. That’s a really powerful capability to have at your fingertips.
If you aren’t using Firebug on a regular basis, all I can say is, Shame on you! What are you waiting for?

Getting back to the code of the callback function, we are now ready to take the response
and process it, which is done by the following chunk of code:

app.searchResultsStore = new dojo.data.ItemFileWriteStore({data:{
label : "title", identifier : "id", items : []

}});
for (var i = 0; i < response.ResultSet.Result.length; i++) {
var ratingVal = response.ResultSet.Result[i].Rating.AverageRating;
app.searchResultsStore.newItem({
id : parseInt(response.ResultSet.Result[i].id),
title : response.ResultSet.Result[i].Title,
distance : response.ResultSet.Result[i].Distance,
phone : response.ResultSet.Result[i].Phone,
rating : (isNaN(ratingVal) ? 0 : ratingVal),
address : response.ResultSet.Result[i].Address,
city : response.ResultSet.Result[i].City,
state : response.ResultSet.Result[i].State,
latitude : response.ResultSet.Result[i].Latitude,
longitude : response.ResultSet.Result[i].Longitude,
businessUrl : response.ResultSet.Result[i].BusinessUrl

});
}

Here we’re creating a new DataStore for the results Grid to bind to. The structure of the
JSON returned by the web service is fairly simple. There is a ResultSet attribute that is the
overall set of matching businesses. Within that is a Result attribute that is an array of the
matches. So, we iterate over this array and call newItem() on the DataStore for each match. The
data from the next match in the array is transferred into the new item.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH420

After that’s done, it’s time to do some UI setup, beginning with this:

dijit.byId("searchTabs").selectChild(dijit.byId("tabResults"));
app.searchResultsStoreModel = new dojox.grid.data.DojoData(null, null, {
store: app.searchResultsStore, query: {id:"*"}

});
dijit.byId("searchResultsGrid").setModel(app.searchResultsStoreModel);
dijit.byId("searchResultsGrid").update();

This code gets a reference to the tab container with the Search and Results tabs, and
selects the Results tab. Then it creates a new data model from the DataStore we just popu-
lated. Here, the query parameter is used to get all the items in the DataStore. This query
attribute allows you to retrieve only matching elements from the store, but here we need them
all, so a simple wildcard query does the trick. Then, the model of the results Grid is pointed to
the model we just created and update() is called on the Grid. At this point, we have search
results in the Grid!

The next task is to deal with the display of total results:

app.totalResultsAvailable =
parseInt(response.ResultSet.totalResultsAvailable);

app.firstResultPosition =
parseInt(response.ResultSet.firstResultPosition);

dojo.byId("totalCount").innerHTML = app.firstResultPosition + " / " +
app.totalResultsAvailable;

This code displays the current position within the overall result set, and the total number
of matches in the form X / Y, where X is the current position and Y is the total number of
matches.

Finally, the following is executed to get rid of the dialog box indicating that a search is in
progress:

app.hideDialog();
});

} // End search().

Dealing with Result Paging
Now, seeing how a search is done pretty well prepares you for seeing how paging works,
because paging is built directly on top of the search capability. Let’s begin with that
enableVCRButtons() method we saw referenced earlier:

this.enableVCRButtons = function(inEnabled) {

if (inEnabled) {
dijit.byId("vcrFirst").setDisabled(false);
dijit.byId("vcrPrevious").setDisabled(false);
dijit.byId("vcrNext").setDisabled(false);
dijit.byId("vcrLast").setDisabled(false);

} else {

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 421

dijit.byId("vcrFirst").setDisabled(true);
dijit.byId("vcrPrevious").setDisabled(true);
dijit.byId("vcrNext").setDisabled(true);
dijit.byId("vcrLast").setDisabled(true);

}

} // End enableVCRButtons().

Yes, that’s all there is to it!

■Note You might argue that the name of the method isn’t exactly accurate, but then you’d have to make
the same argument about setDisabled() on the buttons themselves. I mean, how can a method called
setDisabled() actually enable something, right? But I digress . . .

Now we come to the pageResults() method, which is called whenever one of the VCR
buttons is clicked:

this.pageResults = function(inCommand) {

switch (inCommand) {
case app.PAGERESULTS_FIRST:
if (app.firstResultPosition > 1) {
app.firstResultPosition = 1;
app.search(true);

}
break;
case app.PAGERESULTS_PREVIOUS:
if (app.totalResultsAvailable > 10) {
app.firstResultPosition = app.firstResultPosition - 10;
if (app.firstResultPosition < 1) {
app.firstResultPosition = 1;

}
app.search(true);

}
break;
case app.PAGERESULTS_NEXT:
if (app.totalResultsAvailable > 10) {
app.firstResultPosition = app.firstResultPosition + 10;
if (app.firstResultPosition >= app.totalResultsAvailable) {
app.firstResultPosition = app.totalResultsAvailable - 10;

}
app.search(true);

}
break;

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH422

case app.PAGERESULTS_LAST:
if (app.totalResultsAvailable > 10 && app.firstResultPosition <
(app.totalResultsAvailable - 10)) {
app.firstResultPosition = app.totalResultsAvailable - 10;
app.search(true);

}
break;

}

} // End pageResults().

The inCommand argument tells this method what paging operation is being performed,
whether it’s jumping to the first result, last result, or moving forward or back ten items. The
value passed in is taken from one of the PAGERESULTS_* constants seen previously. The code
switch is based on inCommand. In the case of PAGERESULTS_FIRST, the process is simple: assum-
ing some paging has occurred already, we set the firstResultPosition to 1, which is where it
starts out when a new search is performed, and call search(), passing true. Recall that when
search() gets true as its argument, it does not grab the entries from the search criteria fields; it
instead uses the values stored when the last search was performed, which is precisely what we
want to happen here. Now, if no paging has occurred yet, that means firstResultPosition is
already 1, so there’s no sense in calling the web service again, so in that case nothing happens
here.

When inCommand is PAGERESULTS_PREVIOUS, a check is performed to see whether there
are more than ten total search results. If there are not, obviously paging can’t occur, so
nothing would happen here. If there are more than ten, the next step is to subtract ten from
firstResultPosition. This assumes that some paging has already occurred, which may not be
the case. That’s where the if check to see if firstResultPosition is now less than one. If it is,
firstResultPosition is set to 1 and a search is performed. This just makes paging a little sim-
pler: rather than keeping track of what has happened and acting accordingly, assumptions are
made about what could have happened, and bounds checking is instead done to ensure that
paging doesn’t break around the edge conditions. It’s a design choice, but I find that this
approach results in less code and is easier to understand, paradoxically.

When inCommand is PAGERESULTS_NEXT, the task to perform is similar to PAGERESULTS_
PREVIOUS. First we see whether there are more than ten results. If there are, we add ten to
firstResultPosition. Now we have to check the boundary condition: if firstResultPosition
is greater than or equal to the total number of results, we need to back it off ten so that we
don’t wind up with a starting position beyond the end of the result set.

Finally, when inCommand is PAGERESULTS_LAST, there are two checks to perform. Again, we
make sure that there are more than ten total results, and then we need to see whether the
current firstResultPosition is less than the total number of results, less ten. The second con-
dition comes into play when there are fewer than an even ten results in the last “group” of
results—for example, if we have 43 results. That gives us ten groups of four results, plus one
group on the end of three. If both conditions pass, we subtract ten from the total number of
results and use that value as the new value of firstResultPosition and we’re good to go.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 423

Initiating a New Search and Clearing Details
When the New Search icon is clicked on the Fisheye menu, the current search needs to be
cleared and things prepared for a new search to be initiated. It’s just a lot of cleanup work
really and nothing too complex. The newSearch() method does it all:

this.newSearch = function() {

// Clear current data.
app.currentItem = null;
app.currentIsFavorite = false;
app.totalResultsAvailable = 0;
app.firstResultPosition = 1;
app.search_sortBy = null;
app.search_minimumRating = null;
app.search_queryKeyword = null;
app.search_radius = null;
app.search_street = null;
app.search_city = null;
app.search_state = null;
app.search_zipCode = null;

// Clear search results grid by connecting an empty store to it.
app.searchResultsStore = new dojo.data.ItemFileWriteStore({data:{
label : "title", identifier : "id", items : []

}});
dijit.byId("searchTabs").selectChild(dijit.byId("tabResults"));
app.searchResultsStoreModel = new dojox.grid.data.DojoData(null, null, {
store: app.searchResultsStore

});
dijit.byId("searchResultsGrid").setModel(app.searchResultsStoreModel);
dijit.byId("searchResultsGrid").update();

// Clear search criteria form.
dijit.byId("searchTabs").selectChild(dijit.byId("tabSearch"));
dojo.byId("searchForm").reset();

// Clear details tabs and other UI reset work.
app.clearDetailsTabs();
app.enableVCRButtons(false);
dojo.byId("totalCount").innerHTML = "";

// Reset to stored default values for convenience, and reset a few others
// to sensible defaults.
app.setDefaultLocation();
dijit.byId("minimumRating").setValue(0);
dijit.byId("radius").setValue(10);

} // End newSearch().

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH424

The currentItem field is set to null because obviously there is no currently selected item
now. Likewise, currentIsFavorite is set to false because that could be true only if the user
selects one of her favorites. The totalResultsAvailable and firstResultPosition are also
reset to their correct initial values. Any previously stored search criteria are cleared next. Then,
an empty DataStore is created, as well as a new model based on it. The results Grid is pointed
to that model and update() is called, all of which clears any previous search results. Then, the
search criteria fields are cleared, which is done via a call to reset() (they are all nested inside a
<form>, so that’s all it takes). The Search tab is made current at this point as well.

The method clearDetailsTab() is called next:

this.clearDetailsTabs = function() {

dijit.byId("detailsTabs").selectChild(dijit.byId("tabDetails"));
dojo.byId("details_title").innerHTML = "";
dojo.byId("details_latitude").innerHTML = "";
dojo.byId("details_longitude").innerHTML = "";
dojo.byId("details_distance").innerHTML = "";
dojo.byId("details_phone").innerHTML = "";
dojo.byId("details_rating").innerHTML = "";
dojo.byId("details_address").innerHTML = "";
dojo.byId("details_city").innerHTML = "";
dojo.byId("details_state").innerHTML = "";
dojo.byId("details_businessUrl").innerHTML = "";
dojo.byId("imgMap").src = "img/transPix.gif";
dojo.style("imgMap", "display", "none");
dijit.byId("sldZoom").setValue(6);

} // End clearDetailsTabs().

This code flips over to the Details AccordionPane and clears all the <div>s containing the
details of the currently selected business, if any. It also points the imgMap element to the
transparent pixel image and hides the map. It also resets the zoom slider to its initial value of
6.

Back in newSearch(), the enableVCRButtons() method is called, passing false, so all those
buttons are disabled. Then, a call to setDefaultLocation() resets all the location-related
search criteria to the stored default location, if any, just like during application initialization.
The Minimum Rating and Radius fields are also set to their default values.

At this point, everything is reset to how it was at application initialization, and the user
can perform a new search with a clear slate.

Showing a Selected Item’s Details and Map
After a search has been performed, the user will look at the list of results and select one. The
details for that business then need to be displayed, and the appropriate map retrieved from
the Yahoo Map service. The same occurs when one of the user’s saved favorites is clicked. In
both these cases, the itemClicked() method is called (indirectly in the case of favorites, but
ultimately it is called):

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 425

this.itemClicked = function(inIndex) {

// Get all items in current snippets collection, then get the clicked
// item from it. This has to be done because all we know at this point
// is the row index from the grid, we can't uniquely identify the item
// that was clicked, so we have to fetch all the items in order to use
// that row index.
dijit.byId("detailsTabs").selectChild(dijit.byId("tabDetails"));
app.searchResultsStore.fetch(
{ onComplete : function(items, request) {
// Get the Item from the data store, and create a simple object out of
// it with all the attributes on it.
app.currentIsFavorite = false;
var attrs = app.searchResultsStore.getAttributes(items[inIndex]);
var item = new Object();
for (var i = 0; i < attrs.length; i++) {

item[attrs[i]] = app.searchResultsStore.getValue(items[inIndex],
attrs[i]);

}
app.currentItem = item;
app.showItemDetails();

}
});

} // End itemClicked().

First, we need to retrieve the appropriate Item from the results Grid’s DataStore. You’ve
seen how this works in previous projects, so it shouldn’t be any surprise. All items in the
DataStore are fetched, and then the index of the item clicked in the Grid is used to get the cor-
responding Item. Because this is an actual Item object, an object specific to the DataStore, I
decided it was better, and would make other code that needed this object later simpler, so I
created a more simplistic object. So, a new Object is created, and then the attributes of the
DataStore Item are iterated over. For each, a field is added to the Object and the value of it set.
This means that this is the only place that the getValue() technique is needed. From here on
out, we can reference currentItem.longitude, for instance, without having to worry about
asking Dojo to get the value and possibly translate it from its internal representation to the
real value. We simply have the real value all the time.

After the Item is transferred to the more basic Object, and the currentItem field is set to
reference that Object, showItemDetails() is called to display the details on the screen:

this.showItemDetails = function() {

// Iterate over attributes in the item.
for (var attr in app.currentItem) {
// If the current attribute has a corresponding field on the screen,
// go ahead and populate it.
var fieldOnScreen = dojo.byId("details_" + attr);
if (fieldOnScreen) {

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH426

if (attr == "businessUrl") {
fieldOnScreen.innerHTML = "<a href=\"" + app.currentItem[attr] +
"\" target=\"new\">" + app.currentItem[attr] + "";

} else {
fieldOnScreen.innerHTML = app.currentItem[attr];

}
}

}

// Show map.
app.showMap();

} // End showItemDetails().

This is a simple enough matter: iterate over the attribute of currentItem, and for each
construct an ID for a <div> by concatenating details_ with the attribute name. Then, try to
get a reference to that <div>. If it’s found (remember that there may be some fields in the
object that don’t have a corresponding display <div> on the screen), then populate the <div>’s
innerHTML attribute. In the special case of the field being businessUrl, the markup to be
inserted into innerHTML is a little more complex—not just the value of the attribute as it is for
all the others, but instead a hyperlink so the user can jump to the business’s web site.

The results of all this effort can be seen in Figure 8-15.

Figure 8-15. Viewing the details for a given item

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 427

Now, you’ll notice that at the end of showItemDetails(), a call is made to showMap(). This is
responsible for displaying the map for the business, which means we have to make another
web service call. The showMap() method is this:

this.showMap = function(inZoomLevel) {

// Make call to Yahoo! Map service.
if (dojo.exists("currentItem", app)) {
if (!inZoomLevel) {
inZoomLevel = 6;

}
dijit.byId("sldZoom").setValue(inZoomLevel);
dojo.io.script.get({
callbackParamName : "callback",
url : "http://local.yahooapis.com/MapsService/V1/mapImage",
content : {
"appid" : app.appID, "output" : "json",
"longitude" : app.currentItem.longitude,
"latitude" : app.currentItem.latitude,
image_width : 480, image_height : 460, zoom : inZoomLevel

}
}).addCallback(function(response) {
// Show map.
dojo.style("imgMap", "display", "");
dojo.byId("imgMap").src = response.ResultSet.Result;

});
}

} // End showMap().

This method is also called when the zoom slider is moved, and that’s where the
inZoomLevel argument comes into play. When showMap() is called from showItemDetails(),
nothing is passed in, in which case the default value 6 is set.

■Note Modifying an input parameter like this is usually something I frown upon, but it does often make the
code somewhat less verbose, as is the case here, because there’s no local variable whose value is taken
from inZoomLevel. Still, you should probably take this as a good example of what not to do, generally
speaking!

Then, another dojo.io.script.get() invocation occurs, this time passing the longitude
and latitude field values from the currentItem. We also specify the size of the map image we
want back, 480 ✕ 460, as well as the zoom level. The callback here is very simple: just update the
src attribute of the imgMap element to point to the response.ResultSet.Result element,
which is the URL of the map image generated by the service invocation.

Figure 8-16 shows you the net result of all this work.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH428

Figure 8-16. A map that has been zoomed

The slider has the following attribute on it in index.htm:

onChange="app.showMap(arguments[0]);"

The arguments[0] part is a fancy way of getting the current value of the slider, so as you
can see, another web service call will be made, and the imgMap will again be updated,
every time the value of the slider changes. That’s all it takes to implement that zoom feature!

Dealing with Default Location
In this application, the user has the ability to save whatever location search criteria he cur-
rently has entered and use that as his default location. This information is stored in a cookie.
When the Save Location as Default Button is clicked, the saveLocation() method is called:

this.saveLocation = function() {

// Save location values for one year.
dojo.cookie("defaultLocation_street",
dijit.byId("street").getValue(), { expires : 365 });

dojo.cookie("defaultLocation_city",
dijit.byId("city").getValue(), { expires : 365 });

dojo.cookie("defaultLocation_state",
dijit.byId("state").getValue(), { expires : 365 });

dojo.cookie("defaultLocation_zipCode",
dijit.byId("zipCode").getValue(), { expires : 365 });

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 429

// Tell the user we're done.
app.showDialog(app.DLG_INFO,
"This location has been saved and will be used automatically " +
"next time you start the application");

} // End saveLocation().

The dojo.cookie() function accepts the name of the cookie to save, the value to save,
and an object specifying extra options—in this case, just the expires attribute that tells the
browser this cookie should last 365 days, or one year. Only the street, city, state, and
zipCode fields get stored, so the function just goes out and grabs the values of the fields and
stores them. At the end, a dialog is shown to confirm that the location has been saved.

When the application initializes, and when a new search is initiated, the
setDefaultLocation() method is called:

this.setDefaultLocation = function() {

dijit.byId("street").setValue(dojo.cookie("defaultLocation_street"));
dijit.byId("city").setValue(dojo.cookie("defaultLocation_city"));
dijit.byId("state").setValue(dojo.cookie("defaultLocation_state"));
dijit.byId("zipCode").setValue(dojo.cookie("defaultLocation_zipCode"));

} // End setDefaultLocation().

The multifaceted dojo.cookie() function is again used, but this time only the name of the
cookie to retrieve is specified. The value of the entry fields are set to whatever the value of the
cookie is. If the cookie isn’t set, meaning no default location has been saved yet, the field’s
value winds up being blank anyway, which is perfect.

■Note You might be wondering why this default location information is stored in a cookie rather than in the
Gears database. The answer is simply this: I wanted to demonstrate using the Dojo cookie functions to you!
You already have seen plenty of Gears interaction in this application and others, so I took this opportunity to
go in a different direction and show off more of Dojo. Feel free to rewrite the code to store it in the database
if you wish; that wouldn’t be a bad exercise.

Dialog Functionality
A number of times now you’ve seen the showDialog() and hideDialog() methods used, and
now it’s time to see what they’re all about. I hope you aren’t disappointed, but they frankly
aren’t very complex at all!

this.showDialog = function(inWhich, inMessage) {

var textField = dojo.byId(inWhich + "Text");
if (textField) {
textField.innerHTML = inMessage;

}

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH430

dijit.byId(inWhich + "Dialog").show();
app.currentDialogShowing = inWhich;

} // End showDialog().

The showDialog() method accepts two arguments. The first is a code telling it which
type of dialog to display. These codes are the values of the DLG_* fields. So, passing in
DLG_INFO shows an info-type dialog, for example. This method also accepts a string of text to
display in the dialog. Recall from when we looked at index.htm that each dialog has a <div>
where the text is inserted. Further recall that the ID of those <div>s are things like infoText,
pleaseWaitText, and confirmText. As you can see, the inWhich argument, more precisely, the
values of the DLG_* fields, are values such as info, pleaseWait and confirm. Because of that, the
ID of the appropriate <div> to insert the text into can be constructed easily. Then, a reference
to that <div> is retrieved via dojo.byId(). Assuming the reference is found, the text is inserted.
(This won’t occur for the Print dialog because no such <div> is present; there’s no dynamic text
insertion for that dialog.) Then the dialog is shown, and again the correct ID is constructed
dynamically based on the inWhich value passed in. Finally, the currentDialogShowing field is
updated to store the value of inWhich. That’s primarily done so that this next method can do its
thing:

this.hideDialog = function() {

dijit.byId(app.currentDialogShowing + "Dialog").hide();
app.currentDialogShowing = null;

} // End hideDialog().

The hideDialog() method uses the value of currentDialogShowing to hide whatever the
currently showing dialog is. This method doesn’t have to perform any conditional logic,
though; the value of currentDialogShowing is all that’s needed to construct the proper ID.
Then of course currentDialogShowing has to be set to null because no dialog would be show-
ing at that point.

The final dialog-related method to look at is confirmCallback(), and this is the method
called when either the Yes or No button on a confirm-type dialog is clicked:

this.confirmCallback = function(inYesOrNo) {

app.hideDialog();
var confirmText = dojo.byId("confirmText").innerHTML;
if (inYesOrNo) {
if (confirmText.indexOf(

"Are you sure you want to delete the favorite") != -1) {
app.deleteFavorite(true);

} else {
app.clearFavorites(true);

}
}

} // End confirmCallback().

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 431

First, the dialog is hidden. Then, the content of the confirmText <div> is retrieved. Next,
inYesOrNo is branched on. If it’s true, we then look at the value retrieved from confirmText.
If it contains the string “Are you sure you want to delete the favorite,” we know the dialog was
the result of the user wanting to delete the currently selected favorite, so we can then call
deleteFavorite() if inYesOrNo was true (meaning Yes was clicked). If that string is not present,
then we’re clearing favorites, because those are the only two operations that are performed in
this application that require confirmation by the user. In that case, clearFavorites() is called.

■Note The calls to deleteFavorite() and clearFavorites() are both passed true. The reason for
this will be apparent when we look at those methods, but here’s a hint: it’s similar conceptually to how
init() works.

A confirmation-type dialog, by the way, is what you see in Figure 8-17.

Figure 8-17. A confirmation dialog box

As you can see, the user has a choice to make. The user can’t just close the dialog because
the Close icon is hidden, so we are guaranteed that confirmCallback() will be called, one way
or another.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH432

Printing an Item
Printing an item is also a pretty simple function:

this.printCurrentItem = function() {

// Make sure we have a current item to print.
if (!dojo.exists("currentItem", app)) {
app.showDialog(app.DLG_INFO,
"Please select an item (either a favorite or a search result) " +
"to print it");

return;
}

// Show print dialog, then reset the currentDialogShowing field, since it
// won't be done via the usual call to hideDialog().
app.showDialog(app.DLG_PRINT);
app.currentDialogShowing = null;

// Populate details of current item, including map.
for (var attr in app.currentItem) {
var field = dojo.byId("print_" + attr);
if (field) {
field.innerHTML = app.currentItem[attr];

}
}
dojo.byId("print_map").src = dojo.byId("imgMap").src;

// Pop info dialog.
app.showDialog(app.DLG_INFO,
"You can now print, and remember to close this maximized dialog " +
"when you are done to return to the application");

} // End printCurrentItem().

The display that the user sees when printing an item is seen in Figure 8-18. As you can
see, it’s implemented as a maximized dialog that contains the map and business details. There
is also a dialog that appears on top of that, informing the user that he has to close the dialog
when he is finished. This is necessary because calling the print() method automatically, as
you’d expect you want to do, runs into timing issues and what winds up printing is the under-
lying UI and not the Print dialog. This little bit of user interaction avoids that problem and is
therefore an acceptable alternative.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 433

Figure 8-18. Printing a selected item

The code itself begins with a simple check to ensure that there is an item currently
selected. If there isn’t, a quick info dialog is displayed, indicating that the user needs to select
an item (or favorite) first.

If an item is selected, the next step is to show the Print dialog itself. Because the user
will manually close the dialog, and we don’t have a triggering event to hook into, the
currentDialogShowing field is set to null right then and there. This is just like what occurs
when hideDialog() is called, but because hideDialog() won’t actually be called here, the
code has to do the job of hideDialog() itself.

Then, the currentItem object (the currently selected search item or favorite, in other
words) is iterated over. For each member, we construct an ID based on its name prefixed with
print_. So, if the next member during the iteration process is zipCode, for instance, we con-
struct an ID string value of print_zipCode, and we then use this value to try to get a reference
to a DOM node with that ID. If one is found, innerHTML is set to the value of that member of
the currentItem object. Because some of the members of currentItem may not have a corre-
sponding field in the Print dialog, we need to see whether a reference to the field was retrieved
before trying to set its innerHTML property, or else Bad Things™ would happen (read: a
JavaScript error).

Implementing Favorites Functionality
The next bit of functionality to explore is everything having to do with favorites, beginning
with readFavorites(), which is responsible for retrieving any stored favorites the user might
have from the Gears database:

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH434

this.readFavorites = function() {

app.favorites = new dojox.collections.Dictionary();
// Get all keys in Gears database and iterate over them, retrieving each
// favorite and adding it to the collection.
var favKeys = dojox.storage.getKeys("DojoLocalBusinessSearch");
dojo.forEach(favKeys, function(inVal) {
var favorite = dojox.storage.get(inVal, "DojoLocalBusinessSearch");
app.favorites.add(favorite.id, favorite);

});

} // End readFavorites().

I decided to use a dojox.collections.Dictionary object to store these in the App instance
because doing so makes it easy to retrieve a given favorite when it’s clicked from the list. A
Dictionary is a Map after all, so keying the favorites by the id field is a pretty natural thing
to do.

So, we ask the Dojo storage system to give us all the keys stored in the
DojoLocalBusinessSearch namespace. Then, using the dojo.forEach() function, we iterate
over that collection of keys. For each, we execute a function (inlined in the dojo.forEach()
call) that gets the value associated with the given key. This value is in fact a serialized version
of the simple object that was created previously when a given DataStore Item is clicked. So,
when this value is added to the favorites Dictionary, what we’re actually adding is in fact an
object, one that has attributes where all the data on that business is stored! All the details of
how this works are neatly tucked behind the Dojo storage system, making it really drop-dead
simple.

After favorites have been read in during application initialization, or after any add or
delete from the collection of favorites is performed, the UI’s favorites display is updated via a
call to showFavorites():

this.showFavorites = function() {

var htmlOut = "
";
var it = app.favorites.getIterator();
while (!it.atEnd()) {
var fav = it.get().value;
htmlOut = htmlOut + "<div onClick=\"app.favoriteClicked('" + fav.id +
"');\" style=\"width:100%;margin-bottom:10px;cursor:pointer;\" " +
"onmouseover=\"dojo.style(this, 'backgroundColor', '#ffff00');\" " +
"onmouseout=\"dojo.style(this, 'backgroundColor', '');\" " +
"id=\"fav_" + fav.id + "\">" +
"" +
fav.title + "</div>";

}
dijit.byId("cpFavorites").setContent(htmlOut);

} // End showFavorites().

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 435

The getIterator() method of the Dictionary class gives us an Iterator that we can then
use to . . . wait for it . . . iterate over the elements in the Dictionary. Each element has a key
attribute and a value attribute, but it’s only the value attribute we’re interested in here. Using
the value (which, remember, is an object), we can generate some markup that becomes the
list of favorites. Each favorite is in its own <div> with onMouseOver and onMouseOut event han-
dlers attached to give us a nice little hover effect. Each also has an onClick handler that calls
the favoriteClicked() method of the App class, passing it in the id of the clicked favorite. After
the HTML is fully constructed, it is inserted into the cpFavorites <div>, and we have a list of
favorites on the screen for the user to interact with.

When a favorite is clicked, the favoriteClicked() method is called:

this.favoriteClicked = function(inID) {

dijit.byId("detailsTabs").selectChild(dijit.byId("tabDetails"));
app.currentItem = app.favorites.entry(inID).value;
app.currentIsFavorite = true;
app.showItemDetails();

} // End favoriteClicked().

See? It’s just a simple matter of getting the corresponding element from the Dictionary via
the entry() method, getting the value of that entry, setting currentItem to the retrieved object,
and calling showItemDetails(). We also set the currentIsFavorite flag to true so that the other
code in the App class knows this is a favorite rather than a clicked search result, which is
important in some cases, as you’ve seen.

Adding a favorite is the next piece of the puzzle:

this.addToFavorites = function() {

if (dojo.exists("currentItem", app)) {
dojox.storage.put(app.currentItem.id,
app.currentItem, function(status, keyName) {
if (status == dojox.storage.FAILED) {
app.showDialog(app.DLG_INFO,
"A failure occurred saving favorite to persistent storage");

} else if (status == dojox.storage.SUCCESS) {
app.favorites.add(app.currentItem.id, app.currentItem);
app.showFavorites();
dojox.fx.highlight(
{ node : "fav_" + app.currentItem.id, color : "#ffff00" }

).play();
}

}, "DojoLocalBusinessSearch"
);

} else {
app.showDialog(app.DLG_INFO,

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH436

"You must perform a search and select an item before " +
"you can add a favorite");

}

} // End addToFavorites().

First, a check is performed to ensure that there is an item currently selected. If there’s not,
the else branch executes and a dialog is displayed, telling the user to select an item first.
Assuming an item is selected, though, all it takes is a call to dojox.storage.put() to save it. To
this function we pass the id of the currentItem, plus the currentItem itself. That is the value
being saved, and you should note that there’s no work here on our part to serialize the object;
dojox.storage.put() takes care of that for us entirely. All we’re dealing with are JavaScript
objects, nothing more.

We also pass a callback function that will be called when the operation completes. If the
outcome was dojox.storage.FAILED, a dialog is popped saying the favorite couldn’t be saved.
If the outcome was dojox.storage.SUCCESS, the favorite is also added to the favorites Dictio-
nary on the App instance, and a call to showFavorites() is made to update the UI. Then, the
dojo.fx.highlight() function is used to create a yellow fade effect on the newly added
favorite. Figure 8-19 attempts to show this, although obviously you can’t see the animation,
nor will the color be apparent, but you can see a slight coloration at least. (Run the app and try
it, that’s of course the best answer here!)

The final argument passed to dojox.storage.put() is the namespace to save the data
under, DojoLocalBusinessSearch in this case.

Figure 8-19. Adding a favorite, which is displayed with the yellow fade effect

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 437

Deleting a favorite is the next function required of the favorites facility, and here it is:

this.deleteFavorite = function(inDoDeleteNow) {

if (dojo.exists("currentIsFavorite", app)) {
if (inDoDeleteNow) {
dojox.storage.remove(app.currentItem.id, "DojoLocalBusinessSearch");
app.favorites.remove(app.currentItem.id);
app.showFavorites();
app.currentItem = null;
app.currentIsFavorite = false;
app.clearDetailsTabs();

} else {
app.showDialog(app.DLG_CONFIRM,
"Are you sure you want to delete the favorite '" +
app.currentItem.title + "'?");

}
} else {
app.showDialog(app.DLG_INFO,
"Please select a favorite first to delete it");

}

} // End deleteFavorite().

First, we ensure that the currently showing item is actually a favorite; otherwise, a dialog
is displayed saying this item can’t be deleted. If it is a favorite, the dojox.storage.remove()
function is employed to delete the favorite from the database. This simply requires the id to
delete and the namespace it’s under. After being deleted from the database, the item is also
removed from the favorites Dictionary. Then showFavorites() is called to reshow the
updated list of favorites on the screen, and details and such are reset.

However, I glossed over something here. Did you take note of the inDoDeleteNow argument?
Here’s how it works: when the Delete Favorite Fisheye menu icon is clicked, deleteFavorite()
is called with no argument. Inside the first if branch, the value of the inDoDeleteNow argument
is checked. If it’s true, the delete proceeds as described. If it’s false, or wasn’t passed in at all,
the else branch is executed. In this situation, a confirmation-type dialog is shown, asking the
user whether he is sure. If the user clicks No, nothing happens and we’re finished. If the user
clicks Yes, confirmCallback() is called, as previously discussed, and that will ultimately call
deleteFavorite(), passing in true. At that point, the delete proceeds.

The last function related to favorites is the function to clear all favorites:

this.clearFavorites = function(inDoDeleteNow) {

if (app.favorites.count == 0) {
app.showDialog(app.DLG_INFO, "You currently have no favorites saved");

} else {
if (inDoDeleteNow) {

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH438

dojox.storage.clear("DojoLocalBusinessSearch");
app.favorites.clear();
app.showFavorites();
app.currentItem = null;
app.currentIsFavorite = false;
app.clearDetailsTabs();

} else {
app.showDialog(app.DLG_CONFIRM,
"Are you sure you want to delete all favorites?");

}
}

} // End clearFavorites().

This does the same sort of two-phase process as deleteFavorite() did because a confir-
mation-type dialog is involved here as well. First, however, we check to be sure there are
elements in the favorites Dictionary. If there aren’t, an information-type dialog is displayed.

If there are favorites to be cleared and the user confirms the operation, the dojox.
storage.clear() method is called, passing it the namespace we want cleared, and the Dojo
storage system takes care of that. The clear() method on the favorites Dictionary is called to
clear that out. Then, showFavorites() is called, which effectively clears the list of favorites
from the UI because there are no favorites to display now. The Details tab is cleared as well,
other variables are reset, and that’s it for favorites.

And that’s it for this application as well!

Suggested Exercises
This is now my fourth book, and each one was an Apress “practical’ book, which means I’ve
written a whole lot of mini-applications over the past few years! I myself refer back to them
when I have questions or need to remember how to do something. This application, however,
is the first that I’ve found myself actually using on a pretty regular basis! I find it to be gen-
uinely useful in my day-to-day life.

That being said, I think there are some things that could be added to make it even more
useful, and I think they would be good learning exercises for you to undertake as well, so here
are a few ideas:

1. Add a link to the Yahoo page with the details for the selected business. Look through
the documentation for the local search service and you’ll find that such a link is part of
the data returned. This would enable you to see things like user ratings and reviews.

2. Add a Google search pane to the Accordion. This would enable you to see a list of
search hits for a given business as provided by Google. I say Google for two reasons:
first, as for most of the planet, it is my search engine of choice because I find the
results are generally better than other engines, and second, just to prove that there’s
no inherent limitation on mashing up services from two sources.

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH 439

3. Store the last, say, three searches in the Gears database and provide a way to quickly
pull them up. I mean store the search results, not just the search criteria. No sense
pinging Yahoo’s servers if you can avoid it!

4. Add the ability to get directions to a selected business. You may have to look around for
a service that gives you this capability; I’d check into what else Yahoo offers first, and
then Google’s map APIs.

Summary
In this chapter, we looked at the concept of a mashup and saw how Dojo provides some very
nice functions for being able to call on remote web services, allowing for a completely client-
side mashup to be developed. We of course developed such an application and saw some of
the services Yahoo provides. We also learned about JSON-P, the technique underlying the
functions Dojo provides. We got to play with some more of Dijit and saw some more Core
functions in action. We saw more of Dojo’s storage subsystem and how it lets us interact with
Gears in a simple way. Plus, we wound up with what I think is a pretty useful application,
which is definitely a win in my book!

CHAPTER 8 ■ WHEN THE YELLOW PAGES JUST ISN’T COOL ENOUGH: LOCAL BUSINESS SEARCH440

■Special Characters
* (asterisk) to define styles, 228
37signals Basecamp product

web site address, 9
yellow fade effect usage in, 9

■A
Academic Free License (AFL), 13
Accordion dijit, 148–150, 406
AccordionContainer dijit, 148–150
AccordionPane dijit, 148–150
AccordionPane objects, 150
ActiveX, 216
AdapterRegistry object, 46–47
Add Category dialog box (Code Cabinet

application), 277
addCategory() method, 278
addCategoryClicked() method, 306
addClass()/removeClass() functions, 171,

173
addOnLoad() function, 232, 276
addPlot() method, 160–161
addSeries() method, 159
addSnippetClicked() method, 314
Ajax (Asynchronous JavaScript and XML),

80–81
Anderson, Mark, 13
Animation objects, 175
API (Application Programming Interface)

App class data fields, 412–413
dojo.data, 267
Gears Database, 268, 270
Yahoo APIs, 381, 384

app() method, 194
App.js (Local Business Search application)

App class data fields, 412–413
default locations, 429–430

dialog functionality, 430–432
favorites functionality, 434–439
initialization, 413–415
initiating new searches, 424–425
performing searches, 416–421
printing items, 433–434
result paging, 421–423
showing selected item details, 425–429

applications, initializing, 233
applyTransform() function, 184–185
Aptana (Jaxer), 87
area charts, 160
ArrayLists, 162–166
aspect-oriented programming (AOP),

53–54
attributes, Fisheye List, 235–236
autocomplete function (ComboBox dijit),

135
autoSave attribute (InlineEditBox dijit),

124

■B
Babylon 5, 69
Ballmer, Steve, 7
bar charts, 161–162
Base

baseScriptUri, 34, 231
vs. Dojo Core, 41–42

body section (Idiot Blob application), 337
<body> tags, 116
Boodman, Aaron, 13
The Book of Dojo, 268
bootstrap JavaScript code (Contact

Manager application), 232–233
borders, 343
BSD license, 13
Builder class, 194–195
build.txt file, 43–45

Index

441

Button dijit, 133, 336
buttonCancel attribute (InlineEditBox

dijit), 124
buttonSave attribute (InlineEditBox dijit),

124

■C
callbackParamName attribute

(dojo.io.script.remove function),
107

Cartman, Eric, 34
categories (Code Cabinet application)

category-related functions, 306–314
category Tree, 282–283
overview, 265

ch2_back.htm example, 91–92
ch2_xhr.htm, 82
Chart2D class, 158
charting

charting namespace (DojoX). See
dojox.charting namespace

in DojoX, 26–27
check boxes

assigning IDs to, 134
CheckBox dijit, 133–134
creating in JavaScript code, 134

checked attribute (ToggleButton dijit), 146
checkString attribute

(dojo.io.script.remove function),
107

circles, drawing, 183, 184
clear() method, 166
Clearleft, 9
clearSurface() method, 364–365
clickSelect attribute (HorizontalRuleLabels

dijit), 142
client-side application, building. See

contact manager application
(client-side)

clOut() function, 245
code cabinet application

category-related functions, 306–314
category Tree, 282–283
Code tab, 273–287

CodeCabinet.js, writing, 295–301
dialog boxes, 276, 281
directory structure, 270
dojo.data namespace, 266–268
features and goals, 265–266
Gears Database component, 268–270
head section, 274–276
index.htm overview, 271–274
Info tab, 273–287
initialization at startup, 302–306
Keywords tab, 274–288, 290
learning exercises, 327–328
main content, 282
Notes tab, 287–288
overview, 265
search functions, 320–327
search-related markup, 290–292
snippet-related functions, 314–320
SplitContainer, 283–284
styles.css, writing, 293–295
tab definitions, 284–285

code monkey, 14–15
Code tab (code cabinet application),

273–287
CodeCabinet.js (code cabinet application),

295–301
Cold Stone Creamery, 70
collections

classes, in DojoX, 30
collections namespace, DojoX. See

dojox.collections namespace
defined, 162

ColorPalette dijit, 120–121
ComboBox, creating, 135–136
ComboBox dijit, 135–136
ComboButton dijit, 136–137
Common Locale Data Repository (CLDR).

See Dojo, dojo.cldr namespace
com.omnytex.AnotherClass, 58–59
configuring Dojo, 34
Confirm Deletion dialog, 278
Confirm dialog (Local Business Search

application), 396
confirmCallback() method, 396, 431

■INDEX442

connectId attribute (Tooltip dijit), 131
constants in JavaScript, 405
constraints attribute (NumberSpinner

dijit), 143
contact manager application (client-side)

bootstrap JavaScript code, adding,
232–233

contact list, adding, 237–240
Contact.js, 245–250
Contact.js, writing, 245–250
ContactManager.js file, 250–256
ContactManager.js file, writing, 250–256
cookies and Dojo, 217–218
data storage, 216–217
DataManager.js, writing, 256–262
directory structure, 223–226
Dojo storage system, 218–220
dojoStyles.css, writing, 229–230
EventHandlers.js, writing, 240
features and goals, 215–216
Fisheye List, adding, 233–237
Gears Database overview, 220–223
goodbye.htm, writing, 240
index.htm, writing, 230–232
initializing application, 233
learning exercises, 262–263
styles.css file, writing, 226–229

container attribute (HorizontalRuleLabels
dijit), 142

contains() method, 171
containsKey() method, 168
containsValue() method, 168
ContentPane dijit, 150–151
contextMenuForWindow attribute (Menu

dijit), 125
cookies

Dojo and, 217–218
dojo.cookie() function, 430
Flash, 216

Core
automatic functionality, 17–20
component, 41. See also Dojo Core
manually added functionality, 19–20

Coulton, Jonathan, 15

Crawford, Christina, 6
Crawford, Joan, 6
createImage() method, 360, 362
createText() function, 184
credit cards, validating, 205
crossFade() function, 173–175
cryptographic algorithms, 30
css classes (Code Cabinet application), 295
CSS3 selectors, 72–73
cssOuterBorder class, 343
cssSlider class, 345
cssTab class, 229
cssTextbox style class, 240
currency code. See ISO 4217 currency code
CurrencyTextBox dijit, 137–138
customDOJO.js, 45
customPackage namespace, 74
cylindrical bar chart, 26

■D
data-entry markup (Contact Manager

application), 237–240
data storage (Contact Manager

application), 216–217
Data Switch code, 222
data transfer object (DTO) pattern, 247
Database component (Gears), 221–223
DataManager.js (Contact Manager

application), 256–262
DateTextBox dijit, 138–139
defaultTimeout attribute (ColorPalette

dijit), 120
degressToRadians()/radiansToDegrees()

functions, 190
deleting

categories (Code Cabinet application),
310–314

cookies, 217
favorites, 438
snippets, 319

Details AccordionPane, 425
Details pane (Local Business Search

application), 406–408

■INDEX 443

dialog boxes
Code Cabinet application, 276–281
Idiot Blob application, 344
Local Business Search application,

394–396, 430–432
Dialog dijit, 121–122, 331, 336
Dictionary class, 166–168, 436
digit.layout, 115
Dijits

attraction of, 20–21
attributes, 118–119
common methods and attributes,

118–119
creating, 116
creation of, 35
declarative vs. programmatic, 116–117
dijit.form, 115
dijit.form package, 132–147
dijit.form.ComboBox, 136
dijit.form.ComboButton object, 137
dijit.form.ToggleButton digit, 129
dijit.hideTooltip(), 131
dijit.layout package, 148–156
dijit.showTooltip(), 131
dijit.ToolbarSeparator dijit, 129
Dojo widget, 20–25
example of i18n support, 22
form elements, 21
getting references to existing, 119
getting started with, 116
at a glance, 115–117
mail reader application, 21
methods, 118
namespace, 115, 119–132
themes packaged with, 115–116
toolbars provided by, 23

Direct Web Remoting (DWR) library, 12
directory structure

Contact Manager application, 223–226
Idiot Blob application, 333–335

Display for Menu dijit, 125
distance() method, 190–191
djConfig object, 34, 85
djConfig variable, 231

Document Object Model (DOM), 4
document.getElementsByTagName()

function, 242
Dog Heaven silent film, 3
Dojo. See also Dojo Toolkit

applied, 30–36
automatic Core functionality, 17–19
Base. See Base
components of, 16–30
configuring, 34
creating custom build, 43–45
data system, 136
directory structure of, 32
dojo-developer list, 13
dojo.AdapterRegistry() object, 46–47
dojo.addClass() function, 48–49
dojo.addOnLoad() function, 49–50, 122,

337
dojo.addOnUnload() function, 50
dojo.back namespace, 90–92
dojo.back.addToHistory() function,

90–92
dojo.back.init() function, 90–92
dojo.back.setInitialState() function,

91–92
dojo.baseUrl property, 85
dojo.behavior namespace, 92–94
dojo.behavior.add() function, 93
dojo.behavior.apply() function, 93–94
dojo.blColors() function, 50
dojo.body() function, 50
dojo.byId() function, 50–51
dojo.cldr namespace, 94, 94–95
dojo.cldr.monetary.getData() function,

94
dojo.cldr.supplemental.getFirstDayOfW

eek() function, 95
dojo.cldr.supplemental.getWeek()

function, 95
dojo.clone() function, 51
dojo.Color(), 47–48
dojo.colorFromArray() function, 52
dojo.colorFromHex() function, 52
dojo.colorFromRgb() function, 53

■INDEX444

dojo.colorFromString() function, 53
dojo.colors namespace, 96
dojo.colors.makeGrey() function, 96
dojo.config property, 85
dojo.connect() function, 53–55
dojo.connectPublisher() function, 55–56
dojo.cookie() function, 57, 430
dojo.cookie package, 217–218
dojo.coords() function, 57
dojo.currency, 96–98
dojo.currency.format() function, 97
dojo.currency.parse() function, 97–98
dojo.data namespace, 98, 266–268
dojo.data.ItemFileReadStore type, 132
dojo.data.ItemFileWriteStore, 136, 276
dojo.date namespace, 98–101
dojo.date.add() function, 98
dojo.date.compare() function, 98–99
dojo.date.difference() function, 98–99
dojo.date.getDaysInMonth() function,

99–100
dojo.date.getTimezoneName() function,

99–100
dojo.date.isLeapYear() function, 99–100
dojo.date.stamp.fromISOString()

function, 100–101
dojo.date.stamp.toISOString() function,

100–101
dojo.declare() function, 58–59, 297
dojo.disconnect() function, 55
dojo.doc property, 85
dojo.eval() function, 59
dojo.every() function, 59
dojo.exists() function, 59–60, 414,

418–419
dojo.ext() function, 60–61
dojo.fadeIn() function, 61
dojo.fadeOut() function, 61
dojo.filter() function, 61–62
dojo.forEach() function, 62, 435
dojo.formToJson() function, 62–63
dojo.formToObject() function, 62–63
dojo.formToQuery() function, 62–63
dojo.fx namespace, 101–103, 171–179

dojo.fx.chain() function, 102–103
dojo.fx.combine() function, 102–103
dojo.fx.slideTo() function, 102–103
dojo.fx.Toggler() constructor, 101–102
dojo.fx.wipeIn() function, 102–103
dojo.fx.wipeOut() function, 102–103
dojo.getComputedStyle() function,

63–64
dojo.getObject() function, 64
dojo.gfx packages, 27
dojo.global property, 85
dojo.hasClass() function, 64
dojo.i18n namespace functions,

104–105
dojo.i18n.getLocalization() function,

104–105
dojo.i18n.normalizeLocale() function,

104–105
dojo.indexOf() function, 65
dojo.io namespace functions, 105–107
dojo.io.iframe.create() function,

105–106
dojo.io.iframe.setSrc() function, 106–107
dojo.io.script.attach() function, 106
dojo.io.script.get() function, 107, 384
dojo.io.script.remove() function, 107
dojo.isArray() function, 47, 65–66
dojo.isArrayLike() function, 66
dojo.isBrowser property, 85
dojo.isDescant() function, 66–67
dojo.isFF property, 86
dojo.isFunction() function, 67
dojo.isGears, 86
dojo.isIE property, 86
dojo.isKhtml property, 86
dojo.isMozilla property, 86
dojo.isObject() function, 67–68
dojo.isOpera property, 87
dojo.isQuirks property, 87
dojo.isRhino property, 87
dojo.isSafari property, 87
dojo.isSpidermonkey property, 87
dojo.isString() function, 47, 68
dojo.jaxer property, 87–88

■INDEX 445

dojo.keys property, 88–89
dojo.lastIndexOf() function, 68–69
dojo.loaded() function, 48
dojo.locale property, 89
dojo.map() function, 69
dojo.mixin() function, 70
dojo.number namespace, 107–109
dojo.number.format() function, 97, 108
dojo.number.parse() function, 108–109
dojo.number.regexp() function, 109
dojo.number.round() function, 109
dojo.objectToQuery() function, 70–71
dojo.OpenAjax property, 89
dojo.parser, 231
dojo.place() function, 71
dojo.platformRequire() function, 72
dojo.provide() call, 74
dojo.publish() function, 55–56
dojo.query() function, 72–73
dojo.queryToObject() function, 73–74
dojo.regexp namespace, 110–111
dojo.regexp.buildGroupRE() function,

110
dojo.regexp.escapeString() function, 111
dojo.regexp.group() function, 111
dojo.registerModulePath() function,

74–75
dojo.removeClass() function, 48–49
dojo.require() function, 231
dojo.required() function, 42–43
dojo.required() statement, 35
dojo.requireIf() function, 75
dojo.requireLocalization() function, 104
dojo.setContext() function, 76
dojo.setObject() function, 76
dojo.setSelectable() function, 76
dojo.some() function, 77
dojo.stopEvent() function, 77–78
dojo.string namespace, 111–113
dojo.string.pad() function, 112
dojo.string.pad() namespace, 112–113
dojo.string.substitute() function,

112–113
dojo.string.trim() function, 113, 307, 320

dojo.style() function, 78
dojoStyles.css (Contact Manager

application), 229–230
dojo.subscribe() function, 55–56
dojo.toggleClass() function, 79
dojo.toJson() function, 79–80
dojo.trim() function, 80
dojo.unloaded() function, 80
dojo.unsubscribe() function, 55–56
dojo.version property, 90
Foundation, 14
functions, 48
help and information, 36–38
history of, 13–14
importing dojo.js, 17
importing other parts of, 35
importing style sheets, 33–34
include() mechanism, 17
including optional components in, 35
manually added functionality, 19–20
My First Dojo app, 31–32
object constructors, 46–48
object properties, 85–90
online API documentation, 37–38
overall architecture of, 42
overview, 3
page access, 32–33
philosophy of, 15–16
pros and cons of, 38–39
storage system, 218–220
TabContainer dijit, 302
Tundra theme, 33
version 1.0.2 releases, 44

Dojo Core
vs. Base, 41–42
in detail, 45

Dojo Toolkit
Core component of, 41
open-source JavaScript library, 13–14

Dojo widgets. See also Dijits
accessibility of, 21
attraction of, 20–21
dojox.widget namespace, 206–210
ease of creating, 21

■INDEX446

internationalization and localization
supported by, 21

programming interface provided by, 20
skinnability of, 20

DojoX
charting in, 26–27
collection classes in, 30
ColorPicker widget, 29
dojo.fx. See Dojo, dojo.fx namespace
dojox.charting namespace. See

dojox.charting namespace
dojox.collections. See dojox.collections

namespace
dojox.gfx. See dojox.gfx namespace
dojox.grid namespace, 185–188, 285
dojo.xhr() function, 81–82
dojo.xhrDelete() function, 80–84
dojo.xhrGet() function, 80–84
dojo.xhrPost() function, 80
dojo.xhrPut() function, 80–84
dojox.math namespace. See dojox.math

namespace
dojox.storage package, 218–220
dojox.storage.put() function, 437
dojox.storage.remove() function, 438
dojox.string namespace. See

dojox.string namespace
dojox.timing namespace. See

dojox.timing namespace
dojox.uuid namespace, 199–201
dojox.validate namespace, 202–206
dojox.widget namespace, 206, 210
drawing in, 27–30
Fisheye List widget, 30
Grid widget, 28
ImageGallery widget, 29
implementations of cryptographic

algorithms in, 30
Lightbox widget, 29
math functions in, 30
Offline, capabilities provided by, 27–28
other things included in, 30
overview, 157–158
validation functions in, 30

widgets, 28–30
XML functionality package in, 30

dojox.charting namespace
area charts, 160
bar charts, 161–162
line charts, 159–160
overview, 158–159
StackedLines charts, 161

dojox.collections namespace
ArrayLists, 162–166
Dictionary class, 166–168
overview, 162
Stacks, 169, 171

dojox.collections.Dictionary objects, 435
dojox.gfx namespace

applyTransform() function, 184–185
circles, drawing, 183–184
ellipses, drawing, 184
Idiot Blob application and, 331–332
lines, drawing, 182–183
overview and example, 179–182
Polylines, 183
Rect() function (rectangles), 183
surfaces, creating, 182
text, creating, 184

dojox.math namespace
degreesToRadians()/radiansToDegrees()

functions, 190
distance() method, 190–191
factoral() function, 191
gaussian() function, 191
midpoint() function, 191
overview and example, 188–190
range() function, 192
sd() (standard deviation) function, 192

dojox.string namespace
Builder class, 194–195
overview and example, 192–195
sprintf() function, 195

dojox.timing namespace
Sequence class, 197–199
Timer class, 195–197

drawing shapes. See DojoX, dojox.gfx
drawText() method, 369

■INDEX 447

DropDownButton dijit, 140–141
DTO (data transfer object) pattern, 247
duration attribute

in Accordion dijit, 149
setting for Tooltip dijit, 131

Dynamic HTML, 7

■E
early binding, 243
Eckel, Bruce, 1
ECMAScript, 9
Editor dijit, 122–123, 287
Eich, Brendan, 4
ellipses, drawing, 184
emails, validating, 204
error handling, JSON-P and, 385
errorMessage attribute (ContentPane

dijit), 151
European Computer Manufacturers

Association (ECMA), 9–10
EventHandlers.js (Contact Manager

application), 240
execute() method, 269
expando attribute (dojo type), 36
extraLocale for configuring Dojo, 34

■F
factoral() function, 191
favorites

Favorites pane, 405
Local Business Search application,

434–439
fetch() method, 310
field() method, 269
fieldCount() method, 269
FILO (first in, last out) stacks, 169
Firebug, 420
Fisheye List

dijit, 397–398
widget, 206, 233–237

Flash shared objects, 216
form element, 288

frameDoc attribute (dojo.io.script.remove
function), 107

frames in Netscape Navigator 2.0, 4
fromJson() function, 249

■G
game application. See Idiot Blob

application
game loops, 366
GameClass.js, writing (Idiot Blob

application), 365–376
gaussian() function, 191
Gears Database

API, 222
Code Cabinet application, 268–270
installing, 223
overview, 220–223

getIterator() method, 436
getValue() method, 299
getValuesList() method, 168
Gibbs, Mark, 1
GNU General Public License (GPL), 13
goodbye.htm (Contact Manager

application), 240
Google, origins of, 3
GraphicsSubsystem.js, writing (Idiot Blob

application), 348–365
grid namespace (DojoX). See DojoX,

dojox.grid namespace
gridWidth/gridHeight, 350

■H
head section

Code Cabinet application, 274–276
Idiot Blob application, 335
Local Business Search application,

392–394
hideDialog() method, 430
highlight() function, 175–176
HorizontalRuleLabels dijit, 142
HorizontalSlider dijit, 141
HorizontalSliders, 407

■INDEX448

■I
i18n (internationalization), 104
iconClass attribute (ToggleButton dijit),

146
Idiot Blob application

body section, 337
dialog boxes, 344
directory structure, 333–335
dojox.gfx namespace, 331–332
exercises for further learning, 376–377
game loops, 366
GameClass.js, writing, 365–376
GraphicsSubsystem.js, writing, 348–365
head section, 335–336
index.htm, writing, 335–342
LevelMaps.js, writing, 346–348
procedural graphics, 332
requirements and goals, 330–331
script section, 336
styles.css, writing, 342–345

ifBlur() function, 242–343
ifFocus() function, 242–243
ignoreCase attribute, 136
img elements, 351–352
include() mechanism (Dojo), 35, 42
indeterminate attribute (ProgressBar dijit),

127
index.htm

Code Cabinet application, 271–274
Contact Manager application, 230–232
Idiot Blob application, 335–342

index.htm (Local Business Search
application)

Details pane, 406–408
dialog boxes, 394–396
Favorites pane, 405
head contents, 392–394
main contents, 398–399
menu markup, 397–398
search criteria pane, 399–403
search results pane, 403–405

indexOf() method, 165

Info dialog box (Local Business Search
application), 395

Info tab (Code Cabinet application), 273,
286–287

init() function (DataManager class), 251
initializing

Code Cabinet application, 302–306
Contact Manager application, 233
Local Business Search application,

413–415
initTimer, 253
InlineEditBox dijit, 123–125
interceptor() function, 54
Internet Explorer problems, 173, 175
Internet Movie Database (IMDb), 69
invalidMessage attribute

(ValidationTextBox dijit), 147
ISBN numbers, validating, 206
isEmailAddress() function, 204
isInRange() function, 205
isIpAddress() function, 205
isNumberFormat() function, 205
ISO 4217 currency code, 94
ISO standard 8601 (RFC 3339), 100
isSupported() function (dojo.cookie), 217
isValidCreditCardNumber() function, 205
isValidIsbn() function, 206
isValidLuhn() function, 206
isValidRow() method, 269
item() method, 165
itemClicked() method, 425
ItemFileReadStore/ItemFileWriteStore

classes, 266, 276
Items, defined (dojo.data), 266
Iterator pattern, 165

■J
Java applets, 216
Java import statement vs. dojo.required()

statement, 43
JavaScript

acceptance of, 10–11
birth of, 3
current version, 11–12

■INDEX 449

developer reluctance toward, 7–9
early perceptions of, 8–9
effects in, 8
evolution of, 3–13
LiveScript renamed as, 4
memory usage in early versions, 7
object-oriented design in, 11–12
performance issues in early versions, 7
problems with, 6–7
problems with early releases of, 5–6
reasons for rise of, 5
standardization by ECMA, 9–10

JavaScript libraries, 12–13
Jaxer web site, 88
jQuery library, 12, 88
JSON (JavaScript Object Notation), 249,

383–385
JSON-P (JSON with Padding), 384–385

■K
Kay, Alan, 1
Keywords tab (Code Cabinet application),

274, 288–290
Konquerer web browser, 86

■L
label attribute (Button dijit), 133
label element

for CheckBox dijit, 134
for RadioButton dijit, 144

labels attribute (HorizontalRuleLabels
dijit), 142

lastInsertRowId() method, 269
late binding, 243
layout, defined, 188
LayoutContainer dijit, 151–152
LayoutContainers, 281, 283
Lesser General Public License (LGPL), 13
LevelMaps.js, writing (Idiot Blob

application), 346–348
Lightbox effect in Dialog dijit, 121
Lin, Leonard, 13
Linderman, Matthew, 9
line charts, 159–160

lines, drawing, 182–183
listContacts() function, 261
LiveScript, 4
LiveWire, development of, 4
loadingMessage attribute (ContentPane

dijit), 151
Local Business Search application

exercises for further development,
439–440

features and goals, 381
JSON-P, 384–385
mashups, 380–381
overview, 379
script tag trick, 382
structure and layout, 391–392
styles.css, writing, 408–410
Yahoo APIs, 381–384
Yahoo Local search service, 386–388
Yahoo Maps Image service, 389–391
Yahoo web services registration,

385–386
Local search service, Yahoo, 386–388
local shared objects, 216
LocalServer component (Gears), 221
loops, game, 366
lowercase attribute (TextBox dijit), 144
Luhn numbers, defined, 206

■M
Macintosh windows effect, 7
magic numbers, 369
main contents

Code Cabinet application, 282
Local Business Search application,

398–399
mainContainer ContentPane, 398
Maps Image service, Yahoo, 389–391
mashups, 380–381
match() method, 47
math functions in DojoX, 30
math namespace. See dojox.math

namespace
maximum attribute (ProgressBar dijit), 127
maxLength attribute (TextBox dijit), 145

■INDEX450

menus
markup (Local Business Search

application), 397–398
Menu dijit, 125
MenuItem dijit, 125
MenuSeparator dijit, 125

Microsoft Windows, performance test for,
7

midpoint() function, 191
mock server technique, 83
modules 10, 206
Mollari, Londo, 1
MooTools, 13
My First Dojo app, 31–32
myFunc() function, 74
myMessage event, subscribing to, 56

■N
Netscape Navigator browser, 4
netWindows library, 13
newSearch() method, 424
Notes tab (Code Cabinet application),

287–288
noValueIndicator attribute (InlineEditBox

dijit), 124
numbers

determining range of, 205
generating random, 191
Luhn numbers, 206
NumberSpinner dijit, 142, 143
NumberTextBox dijit, 139
validating, 205

■O
object-oriented design in JavaScript, 11–12
O'Brien, Larry, 1
onChange attribute (InlineEditBox dijit),

124
onChange handler (ColorPalette dijit), 121
open-source software, 15–16

■P
pageResults() method, 405, 422
pageSize attribute (ComboBox), 136

palette attribute (ColorPalette dijit), 120
Park, Joyce, 13
parseOnLoad option (Dojo config), 34
parser component in Dojo, 35
pauseAfter/pauseBefore elements, 199
peek() method, 171
performance test for Microsoft Windows, 7
Perlis, Alan J., 1
persistContacts() function, 259
persistent storage, defined, 216
places attribute (ProgressBar dijit), 127
Please Wait dialog box (Local Business

Search application), 395
Polylines (polygons), 183
pop-up dialog boxes (Code Cabinet

application), 276
popping off stacks, 169
populateContact() function, 248
Practical JavaScript, DOM Scripting, and

Ajax Projects (Apress), 364–365
prefixes section, listing of modules in, 45
preventCache attribute (ContentPane

dijit), 151
Print dialog box (Local Business Search

application), 394
print() method, 433
printing items (Local Business Search

application), 433–434
procedural graphics, 332, 356
progress attribute (ProgressBar dijit), 127
ProgressBar dijit, 126

creating, 126–127
updating, 127

prompt attribute (ValidationTextBox dijit),
147

propercase attribute (TextBox dijit), 145
Prototype library (JavaScript), 13
provider, storage, 219
publish() function, 89
publish-subscribe model, 210
pushing onto stacks, 169

■INDEX 451

■Q
query attribute (ComboBox), 136
quirks mode, 87

■R
RadioButton dijit, 143–144
range() function, 192
ranges of numbers, determining, 205
Rect() function (rectangles), 183
regExp attribute (ValidationTextBox dijit),

147
remove() method, 168, 195
removeClass()/addClass() functions,

171–173
replace() method, 195
Resig, John, 88
REST (Representational State Transfer), 84
restoreContacts() function, 257
result paging, 421–423
ResultSet object, 269
Russell, Alex, 13

■S
same-domain security restriction (Ajax),

381
saveContact() function, 259
saveHandler() function, 260
saveLocation() method, 429
saveSnippet() method, 319
Schiemann, Dylan, 13
Schontzler, David, 13
script injection trick, 385, 388
script-kiddie language, 6
script tag trick (Local Business Search

application), 382
script.aculo.us (JavaScript library), 13
sd() (standard deviation) function, 192
search criteria pane (Local Business

Search application), 399–403
searches

initiating new (Local Business Search
application), 424–425

Local Business Search application,
416–421

searching
search functions (Code Cabinet

application), 320–327
search-related markup (Code Cabinet

application), 290–292
search results pane (Local Business

Search application), 403–405
searchClicked() method, 320
Yahoo Local search service, 386–388

selected attribute (AccordionPane dijit),
149

Separator dijit, 281
Sequence class, 197–199
setByIndex() method, 165
setDefaultLocation() method, 430
setFill() method, 183
setInterval() function, 197
setStroke() method, 183
setTheme() method, 160
shared objects, local, 216
showButtons attribute

(HorizontalRuleLabels dijit), 142
showDialog() method, 430
showFavorites() method, 435, 439
showLabel attribute

setting for Button dijit, 133
for ToggleButton dijit, 146

showMap() method, 428
showMsg() function, 210
ShrinkSafe JavaScript compressor, 45
sizeTo() function, 177–178
slideBy() function, 178–179
sliders, horizontal and vertical dijits for,

141
snippets (Code Cabinet application)

searching for, 320–327
snippet-related functions, 314–320
Snippets tab, 284
snippetsStores array, 300

SOA (service-oriented architecture), 380
sort() method, 166
splice() method (JavaScript), 261
SplitContainer (Code Cabinet application),

283–284

■INDEX452

SplitContainer dijits, 398
SplitContainers, 282, 283
sprintf() function, 195
SQLite engine, 221
StackContainer dijit, 152–154
StackedLines chart, 161
stacks, 169, 171
standard deviation (sd) function, 192
stClick() function, 244
storage

provider object, 219
storage.clear() function, 262
system, Dojo, 218–220
transient storage, defined, 216

strings
string namespace. See dojox.string

namespace
string.trim() function (Dojo), 307, 320
string.trim() method, 276

style attribute
on HorizontalRuleLabels dijit, 142
for Textarea dijit, 145

styles.css file (Contact Manager
application), 226–229

styles.css, writing
Code Cabinet application, 293–295
Idiot Blob application, 342–345
Local Business Search application,

408–410
surface objects, 182, 332

■T
tabs

coding in TabCotainer dijit, 156
creating without writing code, 155
tab definitions (Code Cabinet

application), 284–285
TabContainer dijit, 154, 156, 284, 302

targetNodeIds attribute (Menu dijit), 125
text, creating, 184
Textarea dijit, 145
TextBox dijit, 144–145

themes
packaged with Digit, 115–116
setting on a per-digit basis, 116
switching, 116
Theme Tester application, 23–25

timeoutChangeRate attribute
(ColorPalette dijit), 120

Timer class, 195, 197
TimeSpinner widget, 206–208
TimeTextBox dijit, 139–140
timing namespace. See dojox.timing

namespace
title attribute (AccordionPane dijit), 149
TitlePane dijit, 127–128
Toaster widget, 208–210
ToggleButton dijit, 146
toJson() function, 249
Toolbar dijit, 128–130
Tooltip dijit, 130–131
toString() function, 248–249
transient storage, defined, 216
Tree, category, 282–283
Tree dijit, 131–132
Trenka, Tom, 13
Tundra theme

packaged with Digit, 115
using in Dojo, 33

■U
Unicode Locale Data Markup Language

(LDML) specification, 108
unregister() method (AdapterRegistry

object), 47
update() method (ProgressBar dijit), 127
uppercase attribute (TextBox dijit), 144
useObject() function (dojo.cookie), 218
uuid namespace (DojoX), 199–201

■V
validation

functions (DojoX), 30
namespace. See dojox.validate

namespace

■INDEX 453

validate namespace (DojoX), 202–206
ValidationTextBox dijit, 147

value attribute
check box, 134
NumberSpinner dijit, 143

VCR buttons, 405
VerticalSlider dijit, 142

■W
web services

fundamentals, 380
Yahoo web services registration,

385–386
web sites, for downloading

Gears Database installation, 223
SQLite engine, 221

web sites, for further information
37signals Basecamp product, 9
The Book of Dojo, 268
Clearleft contact form, 9
Cold Stone Creamery, 70
Dojo 1.0.2, 44

Dojo help and information, 37
ECMA, 9
Flash shared objects, 216
Google information, 3
Internet Movie Database (IMDb), 69
ISO standard 8601 (RFC 3339), 100
Jaxer, 88
Jonathan Coulton, 15
Matthew Linderman blog, 9
Unicode Locale Data Markup Language

(LDML) specification, 108
Yahoo Maps APIs, 391

widgets. See Dojo widgets; DojoX
width attribute (InlineEditBox dijit), 125
Willison, Simon, 13

■X
XML functionality package (DojoX), 30

■Y
Yahoo! UI Library (YUI), 12
yellow fade effect, 9

■INDEX454

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

