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Preface

The purpose of the second edition of this book is to update the developments in
various semiconductor and photonic devices since the first edition was published
in 1993. Due to the advances in semiconductor technologies over the past decade,
many new semiconductor devices have emerged and entered the marketplace. As
a result, a significant portion of the material covered in the original book has
been revised and updated. The intent of this book is to provide the reader with
a self-contained treatment of the fundamental physics of semiconductor materi-
als and devices. The author has used this book for a one-year graduate course
sequence taught for many years in the Department of Electrical and Computer
Engineering of the University of Florida. It is intended for first-year graduate stu-
dents who majored in electrical engineering. However, many students from other
disciplines and backgrounds such as chemical engineering, materials science and
engineering, and physics have also taken this course sequence. This book may also
be used as a general reference for processing and device engineers working in the
semiconductor industry.

The present volume covers relevant topics of basic solid-state physics and fun-
damentals of semiconductor materials and devices and their applications. The
main subjects covered include crystal structures, lattice dynamics, semiconductor
statistics, one-electron energy band theory, excess carrier phenomena and recom-
bination mechanisms, carrier transport and scattering mechanisms, optical prop-
erties, photoelectric effects, metal–semiconductor contacts and devices, p-n junc-
tion diodes, bipolar junction transistors (BJTs), heterojunction bipolar transistors
(HBTs), MOS devices (MOSFETs, CCDs), photonic devices (solar cells, LEDs,
and LDs), quantum-effect devices (QWIPs, QDIPs, QW-LDs), and high-speed
III-V semiconductor devices (MESFETs, HEMTs, HETs, RTDs, TEDs). The text
presents a unified and balanced treatment of the physics of semiconductor mate-
rials and devices. It is intended to provide physicists and materials scientists with
more background on device applications, and device engineers with a broader
knowledge of fundamental semiconductor physics.

The contents of the book are divided into two parts. In Part I (Chapters 1–9), the
subjects of fundamental solid-state and semiconductor physics that are essential
for understanding the physical, optical, and electronic properties of semiconductor
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materials are presented. Part II (Chapters 10–16) deals with the basic device
physics, device structures, operation principles, general characteristics, and ap-
plications of various semiconductor and photonic devices.

Chapter 1 presents the classification of solids, crystal structures, concept of re-
ciprocal lattice and Brillouin zone, Miller indices, crystal bindings, and defects in
solids. Chapter 2 deals with the thermal properties and lattice dynamics of crys-
talline solids. The lattice-specific heat, the dispersion relation of lattice vibrations,
and the concept of phonons are also described. Chapter 3 is concerned with the
three basic semiconductor statistics. Derivation of Maxwell–Boltzmann (M-B),
Bose–Einstein (B-E), and Fermi–Dirac (F-D) distribution functions are given in
this chapter. Chapter 4 describes the elements of quantum concepts and wave
mechanics, the one-electron energy band theory, the effective mass concept for
electrons and holes in a semiconductor, the energy band structures for elemental
and compound semiconductors, and the density-of-states functions for bulk semi-
conductors and low-dimensional systems such as superlattices, quantum wells, and
dots. Chapter 5 deals with the equilibrium properties of intrinsic and extrinsic semi-
conductors. Derivation of general expressions for electron and hole densities, and
discussion of the shallow- and deep-level impurities in semiconductors are given in
this chapter. Chapter 6 presents the recombination mechanisms and excess carrier
phenomenon in a semiconductor. The basic semiconductor equations, which gov-
ern the transport of excess carriers in a semiconductor, are described in this chapter.
Chapter 7 deals with the derivation of transport coefficients using the Boltzmann
equation and relaxation time approximation. The low-field galvanomagnetic, ther-
moelectric, and thermomagnetic effects in n-type semiconductors are described
in this chapter. Chapter 8 is concerned with the scattering mechanisms and the
derivation of electron mobility in n-type semiconductors. The relaxation time and
mobility expressions for the ionized and neutral impurity scatterings and acoustical
and optical phonon scatterings are derived. Chapter 9 presents the optical properties
and photoelectric effects in semiconductors. The fundamental optical absorption
and free-carrier absorption processes as well as the photoelectric effects such as
photoconductive, photovoltaic, and photomagnetoelectric effects in a semiconduc-
tor are depicted. Chapter 10 deals with the basic theories and relevant electronic
properties of metal–semiconductor contacts and their applications. The current
conduction in a Schottky barrier diode, methods of determining and enhancing the
barrier heights in a Schottky contact, and ohmic contacts in a semiconductor are
presented. Chapter 11 presents the basic device theories and characteristics of a p-n
junction diode. The p-n heterojunction diodes and junction-field effect transistors
(JFETs) are also discussed. Chapter 12 is concerned with the device physics, device
structures, and characteristics of various photovoltaic devices (solar cells), pho-
todetectors, and their applications. The solid-state light-emitting devices, which
include the light-emitting diodes (LEDs) and semiconductor diode lasers (LDs) are
described in Chapter 13. Recent advances in LEDs and LDs and their applications
are given in this chapter. Chapter 14 deals with the basic device physics, modeling,
and electrical characteristics of bipolar junction transistors (BJTs), p-n-p-n four-
layer devices (SCRs, thyristers), and heterojunction bipolar transistors (HBTs).
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Chapter 15 presents the silicon-based metal-oxide-semiconductor (MOS) de-
vices. The device physics and characteristics for both metal-oxide-semiconductor
field-effect transistors (MOSFETs) and charge-coupled devices (CCDs) are de-
scribed. Finally, high-speed and high-frequency devices using GaAs and other
III-V compound semiconductors are discussed in Chapter 16. The GaAs-based
metal–semiconductor field-effect transistors (MESFETs), high-electron-mobility
transistors (HEMTs), hot-electron transistors (HETs), resonant tunneling diodes
(NTDs) and transferred electron devices (TEDs) are described in this chapter.

Throughout the text, the author stresses the importance of basic semiconductor
physics and its relation to the properties and performance of various semiconductor
devices. Without a good grasp of the physical concepts and a good understand-
ing of the underlying device physics, it would be difficult to tackle the problems
encountered in material growth, device processing and fabrication, device char-
acterization, and modeling. The materials presented in this book should provide
a solid foundation for understanding the fundamental limitations of various semi-
conductor materials and devices. This book is especially useful for those who are
interested in strengthening and broadening their basic knowledge of solid-state
and semiconductor device physics.

The author would like to acknowledge his wife, “Julie” Wen-Fu Shih, for her
support, love, and encouragement during the course of preparing this second
edition.
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1
Classification of Solids and
Crystal Structure

1.1. Introduction

Classification of solids can be based on atomic arrangement, binding energy, phys-
ical and chemical properties, or the geometrical aspects of the crystalline structure.
In one class, the atoms in a solid are set in an irregular manner, without any short-
or long-range order in their atomic arrangement. This class of solids is commonly
known as noncrystalline or amorphous materials. In another class, the atoms or
group of atoms in the solid are arranged in a regular order. These solids are referred
to as the crystalline solids. The crystalline solids can be further divided into two cat-
egories: the single-crystalline and the polycrystalline solids. In a single-crystalline
solid, the regular order extends over the entire crystal. In a polycrystalline solid,
however, the regular order exists only over a small region of the crystal, with grain
size ranging from a few hundred angstroms to a few centimeters. A polycrystalline
solid contains many of these small single-crystalline regions surrounded by the
grain boundaries. Distinction between these two classes of solids—amorphous
and crystalline—can be made through the use of X-ray or electron diffraction
techniques.

Classification of solids can also be made according to their electrical conduc-
tivity. For example, while the electrical conductivity of an insulator is usually
less than 10−8 �−1/cm, the electrical conductivity of a metal is on the order of
106 �−1/cm at room temperature. As for a semiconductor, the room-temperature
electrical conductivity may vary from 10−4 to 104 �−1/cm, depending on the dop-
ing impurity density in the semiconductor. Furthermore, the temperature behavior
of a semiconductor can be quite different from that of a metal. For example, the
electrical conductivity of a metal is nearly independent of the temperature over a
wide range of temperatures (except at very low temperatures), while the electrical
conductivity of a semiconductor is in general a strong function of the temperature.

In this chapter, we are concerned with the classification of crystalline solids
based on their geometrical aspects and binding energies. Section 1.2 presents the
seven crystal systems and fourteen Bravais lattices. The crystal structure, the con-
cept of reciprocal lattice and Brillouin zone, and the definition of Miller indices
are described in Sections 1.3, 1.4, and 1.5, respectively. Section 1.6 presents the
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2 1. Classification of Solids and Crystal Structure

classification of solids according to the binding energy of their crystalline struc-
ture. Of particular interest is the fact that many important physical properties of
a solid can be understood, at least qualitatively, in terms of its binding energy.
Finally, defects in a semiconductor including vacancies, interstitials, impurities,
dislocations, and grain boundaries are described in Section 1.7. It should be men-
tioned that these defects play an important role in influencing the physical and
electrical properties of a semiconductor.

1.2. The Bravais Lattice

In a crystalline solid, the atoms or groups of atoms are arranged in an orderly or
periodic pattern. It can be distinguished from all other aggregates of atoms by the
three-dimensional (3-D) periodicity of the atomic arrangement. Thus, by properly
choosing a small polyhedron as a basic building block, it is possible to construct
the entire crystal by repeatedly displacing this basic building block along the three
noncoplanar directions of the crystal lattice by translational operation. The suitable
geometrical shapes for the basic building blocks are a regular cubic dodecahedron,
a truncated octahedron, and any arbitrary parallelepiped. The basic building block
of a crystal is called the unit cell. Although a variety of unit cells may be chosen
for a particular crystalline structure, there is generally one that is both the most
convenient and the most descriptive of the structure. If the shape of the unit cell
is specified, and the arrangement of all the atoms within the unit cell is known,
then one has a complete geometrical description of the crystal lattice. This is due
to the fact that there is only one way in which the unit cells can be stacked to fill
the entire space of the crystal.

The various possible arrangements of unit cells in a crystalline solid can be
readily achieved by means of the space lattice, a concept introduced by Bravais.
The space lattice is an arrangement of lattice points in space such that the placement
of points at any given point in space is the same for all points of the space lattice. In
general, the periodic translational symmetry of a space lattice may be described in
terms of three noncoplanar basis vectors b1, b2, b3 defined in such a way that any
lattice point r (n1, n2, n3) can be generated from any other lattice point r (0, 0, 0)
in space by the translational operation

r (n1, n2, n3) = r (0, 0, 0) + R, (1.1)

where

R = n1b1 + n2b2 + n3b3 (1.2)

is the translational basis vector and n1, n2, n3 are arbitrary integers. A lattice
generated by such a translational operation is called the simple Bravais lattice, and
the parallelepiped spanned by the three basis vectors b1, b2, b3 is called the unit
cell of the Bravais lattice. Figure 1.1 shows a parallelepiped unit cell defined by
the length of three basis vectors b1, b2, b3 and three angles α, β, and γ . This is the
conventional unit cell for the Bravais lattice.
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Figure 1.1. A parallelepiped

unit cell for a Bravais lattice.

Depending on the lengths of the three noncoplanar basis vectors, the angles
between them, and the number of lattice points in a unit cell, the space lattice
may be divided into seven lattice systems and fourteen Bravais lattices. The seven
lattice systems and fourteen Bravais lattices generated by (1.1), are shown in
Table 1.1 and Figure 1.2, respectively. The fourteen Bravais lattices, which are all
that are known to exist in nature, are constructed using all possible arrangements
of lattice points in each unit cell. Each of the Bravais lattices is unique in that it
cannot be generated by any of the other thirteen Bravais lattices. Rather, they are
generated through any combination of a simple lattice, a base-centered lattice, a
face-centered lattice, and a body-centered lattice. All of the Bravais lattices have
different symmetry properties. A simple Bravais lattice contains lattice points only
at the vertices of a parallelepiped. A base-centered Bravais lattice has lattice points
located at the centers of the top and bottom faces as well as at the vertices of the
unit cell. In a face-centered Bravais lattice, in addition to the vertex lattice points,

Table 1.1. Seven lattice systems and fourteen Bravais lattices.

Lattice systems Angles and basis vectors Bravais lattices

Triclinic b1 �= b2 �= b3 Simple

α �= β �= γ

Monoclinic b1 �= b2 �= b3 Simple, base-centered

α = β = 90◦ �= γ

Orthorhombic b1 �= b2 �= b3 Simple, base-centered, body-centered, face-centered

α = β = γ = 90◦
Tetragonal b1 = b2 �= b3 Simple, body-centered

α = β = γ = 90◦
Trigonal b1 = b2 = b3 Simple

α = β = γ �= 90◦
Hexagonal b1 = b2 �= b3 Simple

α = β = 90◦, γ = 120◦
Cubic b1 = b2 = b3 Simple, body-centered, face-centered

α = β = γ = 90◦
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Figure 1.2. The fourteen Bravais lattices: (1) triclinic, simple; (2) monoclinic, simple; (3)

monoclinic, base-centered; (4) orthorhombic, simple; (5) orthorhombic, base-centered; (6)

orthorhomic, body-centered; (7) orthorhombic, face-centered; (8) hexagonal; (9) rhombo-

hedral; (10) tetragonal, simple; (11) tetragonal, body-centered; (12) cubic, simple; (13)

cubic, body-centered; (14) cubic, face-centered.
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it has lattice points located at the centers of all six faces. Finally, a body-centered
Bravais lattice has an extra lattice point located at the volume center of the unit cell.
It should be noted that the parallelepiped unit cell shown in Figure 1.1 does not need
to be the smallest unit cell for a Braivais lattice. A primitive cell is constructed
using three noncoplanar primitive basis vectors with lattice points located only
at the vertices of the parallelepiped; it is the smallest unit cell (in volume) in a
Bravais lattice. Figure 1.3 shows (a) the primitive cells for a face-centered cubic
(FCC) lattice and (b) the relation of the primitive cell in the hexagonal lattice
(heavy lines) to a prism of hexagonal symmetry. The rhombohedral primitive cell
of the FCC lattice is formed by three primitive translation basis vectors a′, b′,
and c′ connecting the lattice point at the origin with lattice points at the three
face-center lattice points. The volume of the primitive cell is only one-fourth of
the volume of the conventional parallelepiped unit cell for the FCC lattice (see
Problem 1.4).

Symmetry is a very important consideration in crystalline solids because many
of the physical, electrical, magnetic, elastic, and thermal properties of the solids
are strongly dependent on the symmetry properties of their crystal lattice. For
example, the electrical conductivity of a cubic crystal is isotropic and indepen-
dent of its crystalline orientations, while the electrical conductivity of a trigonal
crystal can be highly anisotropic along different crystalline axes. The symme-
try of a real crystal is determined by the symmetry of its basis and of the Bra-
vais lattice to which the crystal belongs. In addition to the translational symme-
try, each Bravais lattice may have different degrees of rotational, reflectional,
and inversional symmetry. The rotational symmetry of a crystal lattice is ob-
tained when rotation about a certain crystal axis through an angle of 2π /n ra-
dians leaves the lattice invariant. The lattice is said to have an n-fold rotational
axis. Due to the requirements of translational symmetry, the possible values
of n are limited to 1, 2, 3, 4, and 6. There are no five- and sevenfold rota-
tional symmetries in a Bravais lattice. Examples of rotation axes can be seen
in the (100) axes of a cubic crystal, which has fourfold rotational symmetry,
and in the body diagonal (111) axis, which has threefold rotational symmetry.
Another type of symmetry, known as reflectional symmetry, is possessed by a
crystal lattice when it is invariant under reflection in a plane through the lattice.
For example, the six faces of a cubic lattice are the reflection planes for that
lattice.

Finally, it is noted that all Bravais lattices possess inversional symmetry. A
crystal lattice with inversion symmetry will remain invariant if the lattice point
at the coordinate r = x, y, z is replaced by the lattice point at r = −x, −y, −z.
Although all monatomic crystals have a center of inversion, this type of sym-
metry is not a general property of crystals. The different types of symmetry
that a crystalline solid possesses can be identified through the use of X-ray
diffraction techniques. Among the Bravais lattices, the cubic lattice possesses
the most symmetry properties, and most semiconductors have the structure of a
cubic lattice. Table 1.2 lists some of the important characteristics of cubic lat-
tices.
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Figure 1.3. (a) The primitive cells for a face-centered cubic (FCC) lattice and (b) the

relation of the primitive cell in the hexagonal lattice (heavy lines) to a prism of hexagonal

symmetry.

1.3. The Crystal Structure

The Bravais lattice discussed in the preceding section is a mathematical abstraction
that describes the periodic arrangement of lattice points in space. In general, a real
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Table 1.2. Characteristics of cubic lattices.

Simple cubic lattice Body-centered cubic Face-centered cubic

Volume, unit cell a3 a3 a3

Lattice points per cell 1 2 4

Volume, primitive cell a3 a3/2 a3/4

Lattice points per unit 1/a3 2/a3 4/a3

volume

Number of nearest 6 8 12

neighbors

Nearest-neighbor a
√

3a/2 a/
√

2

distance

Number of second 12 6 6

neighbors

Second neighbor
√

2a a a
distance

crystal is not a perfect replica of a Bravais lattice, with identical atoms at every
lattice point. In fact, there is generally a set of atoms, whose internal symmetry
is restricted only by the requirement of translational periodicity, that must be as-
sociated with each lattice point of the corresponding Bravais lattice. This set of
atoms is known as the basis, and each basis of a particular crystal is identical in
composition, arrangement, and orientation. A crystalline structure is formed when
a basis of atoms is attached to each lattice point in the Bravais lattice. Figure 1.4
shows the distinction between a space lattice and a crystal structure. Many metals
and semiconductors have a simple crystal structure with high degrees of symme-
try. For example, alkali metals such as lithium, sodium, and potassium have the
face-centered cubic (FCC) structure, while elemental and compound semiconduc-
tors have either the diamond, zinc-blende, or wurtzite structure. Figure 1.5 shows

Figure 1.4. (a) A two-dimensional (2-D)

space lattice, and (b) a 2-D crystal structure

with basis of atoms attached to each lattice

point.
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Figure 1.5. Four important crystal structures in semiconductors: (a) diamond structure, (b)

zinc-blende structure, (c) wurtzite structure, and (d) hexagonal close-packed structure.

the four most commonly observed crystal structures in a semiconductor. The di-
amond structure shown in Figure 1.5a is actually formed by two interpenetrating
face-centered cubic lattices with the vertex atom of one FCC sublattice located at
(0, 0, 0) and the vertex atom of another FCC sublattice located at (a/4 a/4, a/4),
where a is the lattice constant. In the diamond lattice structure, the primitive basis
of two identical atoms located at (0, 0, 0) and (a/4, a/4, a/4) is associated with
each lattice point of the FCC lattice. Elemental semiconductors such as silicon
and germanium belong to this crystal structure. The zinc-blende structure shown
in Figure 1.5b is similar to the diamond structure except that the two FCC sub-
lattices are occupied alternately by two different kinds of atoms (e.g., Ga and
As in a GaAs crystal). III-V compound semiconductors such as GaAs, InP, and
InSb have the zinc-blende structure. The wurtzite structure shown in Figure 1.5c
is formed by two interpenetrating hexagonal close-packed structures occupied al-
ternately by two different kinds of atoms. II-VI compound semiconductors such
as CdS, CdTe, ZnS, and ZnSe have this type of crystal structure. Both the dia-
mond and zinc-blende structures belong to the tetrahedral phase, with each atom
surrounded by four equidistant nearest-neighbor atoms at the vertices of a tetrahe-
dron. Figure 1.5d shows a hexagonal close-packed structure. It should be noted that
some of the III-V and II-VI compound semiconductors including GaP, ZnS, and
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Table 1.3. The crystal structures and lattice constants for elemental and compound

semiconductors.

Semiconductors Elements Lattice structure Lattice constant (Å)

Elemental Ge Diamond 5.66

semiconductors

Si Diamond 5.43

IV-IV semiconductor SiC Zinc blende 4.36

III-V compound GaN Zinc blende 4.50

semiconductors Wurtzite a = 3.189, c = 5.185

AIN Wurtzite a = 3.11, c = 4.98

InN Wurtzite a = 3.54, c = 5.70

GaP Zinc blende 5.45

GaAs Zinc blende 5.65

Wurtzite a = 5.18, c = 5.17

InP Zinc blende 5.87

InAs Zinc blende 6.06

InSb Zinc blende 6.48

II-VI compound CdS Zinc blende 5.83

semiconductors

Wurtzite a = 4.16, c = 6.75

CdSe Zinc blende 6.05

Wurtzite a = 4.30, c = 7.01

CdTe Zinc blende 6.48

ZnSe Zinc blende 5.88

ZnS Zinc blende 5.42

Wurtzite a = 3.82, c = 6.26

IV-VI compound PbS Cubic 5.93

semiconductors

PbTe Cubic 6.46

CdSe may be crystallized either in a zinc-blende or a wurtzite structure. Table 1.3
lists the crystal structures and the lattice constants for elemental and compound
semiconductors.

1.4. Miller Indices and Crystal Planes

The orientation of a crystal plane can be determined by three integers, h, k, and l,
known as the Miller indices. They are related to the orientations of a crystal plane
in the following manner: If h′, k ′, and l ′ represent the intercepts of a particular
crystal plane on the three crystal axes (i.e., x, y, z) in units of the lattice constant
a, then the three smallest integers h, k, and l that satisfy the relation

hh′ = kk ′ = ll ′ (1.3)

are the Miller indices. As an example, Figure 1.6 illustrates an arbitrary plane that
intercepts the three crystal axes at h′ = 2a, k ′ = a, and l ′ = a, where a is the lattice
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Figure 1.6. The Miller

indices and the lattice plane.

constant. In this case, the smallest integers that satisfy (1.3) are h = 1, k = 2, and
l = 2. These three integers are therefore the Miller indices, and the plane defined
by them is called the (122) plane. If a plane is parallel to one of the crystal axes
with no interception, then the corresponding Miller index for that axis is zero
(i.e., k ′ → ∞ and k = 0). For example, a plane set parallel to the y-z plane and
intercepted at the x-axis is called the (100) plane. Furthermore, a set of equivalent
planes can be represented collectively by enclosing the Miller indices with in curly
braces. For example, the {100} planes represent a family of planes consisting of
the (100), (010), (001), (1̄00), (01̄0), and (001̄) planes. The bar on the top of a
particular Miller index represents a plane that is intercepted at a negative crystal
axis. Figure 1.7 shows the (010), (110), (111), and (1̄, 1̄, 1̄) crystal planes for a
simple cubic crystal.

Figure 1.7. Some lattice planes in

a cubic crystal.
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1.5. The Reciprocal Lattice and Brillouin Zone

The Bravais lattice described in Section 1.2 is a space lattice, which has transla-
tional symmetry in real space. Since the motion of electrons in a crystal is usually
described in both real space and momentum space (or k-space), it is important to
introduce here the concepts of reciprocal space and reciprocal lattice. In analogy
to a periodic time-varying function, which can be described in terms of the sum of
Fourier components in the frequency domain, the spatial properties of a periodic
crystal can be described by the sum of the components in Fourier space, or the
reciprocal space. For a perfect crystal, the reciprocal lattice in the reciprocal space
consists of an infinite periodic three-dimensional (3-D) array of points whose spac-
ing is inversely proportional to the distance between the lattice planes of a Bravais
lattice.

The reciprocal lattice is a geometrical construction that allows one to relate the
crystal geometry directly to the electronic states and the symmetry properties of
a crystal in the reciprocal space. Many important physical, electrical, and optical
properties of semiconductors and metals can be understood using the concept of
reciprocal lattice. The unit cell of a reciprocal lattice is also known as the Brillouin
zone or the Wigner–Seitz cell. The importance of the Brillouin zone in a crystalline
solid will become clear when we discuss the lattice dynamics and the energy band
theories in Chapters 2 and 4, respectively.

While the basis vector of a direct lattice has the dimension of length, the basis
vector of a reciprocal lattice has the dimension of reciprocal length. The transla-
tional basis vector of a direct lattice is defined by (1.2). In a reciprocal lattice a
set of reciprocal basis vectors b1

∗, b2
∗, b3

∗ can be defined in terms of the basis
vectors b1, b2, b3 of a direct lattice. This is given by

b1
∗ = 2π (b2xb3)

|b1 · b2xb3| , b2
∗ = 2π (b3xb1)

|b1 · b2xb3| , b3
∗ = 2π (b1xb2)

|b1 · b2xb3| . (1.4)

The reciprocal lattice vector can be defined in terms of the reciprocal basis vectors
and Miller indices by

K = hb1
∗ + kb2

∗ + lb3
∗ , (1.5)

where b1
∗, b2

∗, and b3
∗ are given by (1.4), and h, k, l are the Miller indices.

The reciprocal lattice vector defined by (1.5) may be used to generate all the
reciprocal lattice points in the entire reciprocal space with its unit cell spanned
by the reciprocal basis vectors defined by (1.4). Some important properties of the
reciprocal lattice are summarized here:

1. Each reciprocal lattice vector in the reciprocal lattice is perpendicular to a set
of lattice planes in the direct lattice, as illustrated in Figure 1.8. Using (1.2) and
(1.5) one obtains

R · K = 2π (n1h + n2k + n3l) = 2π N , (1.6)
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Figure 1.8. The reciprocal lattice vector and the lattice planes of a direct lattice, where K
denotes the reciprocal lattice vector and R is the translational lattice vector; d is the distance

between the lattice planes.

or

exp(iK · R) = 1, (1.7)

where N , n1, n2, and n3 are integers. Equation (1.6) shows that the projection
of the translational vector R in the direction of K has length given by

dhkl = 2π N/|K |, (1.8)

where dhkl is the spacing between the two nearby planes of a direct lattice, as
shown in Figure 1.8. Equation (1.7) defines the reciprocal lattice in the reciprocal
space.

2. The volume of a unit cell in the reciprocal lattice is inversely proportional to the
volume of a unit cell in the direct lattice. The denominator of (1.4) represents
the volume of the unit cell of a direct lattice, which is given by

Vd = |b1 · b2xb3| . (1.9)

The volume of the unit cell of a reciprocal lattice is defined by the three reciprocal
basis vectors and is given by

Vr = ∣∣b1
∗ · b2

∗xb3
∗∣∣ = 8π3

Vd

. (1.10)

The factor 8π3 given in (1.10) is included so that the reciprocal lattice is defined
in such a way that the dimension of the reciprocal lattice vector is the same as
the wave vector of phonons or electrons in the momentum (k-) space, as will
be discussed further in Chapters 2 and 4.

3. A direct lattice is the reciprocal of its own reciprocal lattice; this can be shown
using (1.10).

4. The unit cell of a reciprocal lattice need not be a parallelepiped. In fact, one
always deals with the Wigner–Seitz cell of the reciprocal lattice, which is also
known as the first Brillouin zone in the reciprocal space, as shown in Figure 1.9.

Construction of the first Brillouin zone in the reciprocal lattice will be discussed
next. The first Brillouin zone is the unit cell of the reciprocal lattice. It is the basic
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Figure 1.9. Construction of the first Brillouin zone for (a) a two-dimensional reciprocal

lattice, (b) a face-centered cubic lattice, and (c) a body-centered cubic lattice.

building block, having the smallest volume in the reciprocal space, centered at
one reciprocal lattice point, and bounded by a set of planes that bisect the recip-
rocal lattice vectors connecting this reciprocal lattice point to all its neighboring
reciprocal lattice points. As an example, Figure 1.9a shows the construction of the
first Brillouin zone for a two-dimensional reciprocal lattice. It is obtained by first
drawing a number of reciprocal lattice vectors from the center reciprocal lattice
point, say (0, 0), to all its nearest-neighboring reciprocal lattice points, and then
drawing the bisecting lines perpendicular to each of these reciprocal lattice vec-
tors. The smallest area enclosed by these bisecting lines is called the first Brillouin
zone, or the unit cell of this 2-D reciprocal lattice. The first Brillouin zone for a
three-dimensional crystal lattice can be constructed in a similar way to that of a
2-D reciprocal lattice described above. This is done by first drawing the reciprocal
lattice vectors from a chosen reciprocal lattice point to all its nearest-neighboring
reciprocal lattice points, and then drawing the bisecting planes perpendicular to
each of these reciprocal lattice vectors. The smallest volume enclosed by these
bisecting planes will normally form a polyhedron about the central reciprocal
lattice point, and this polyhedron is called the first Brillouin zone or the Wigner–
Seitz cell of the reciprocal lattice. Figure 1.9b, c shows the first Brillouin zones
for a face-centered cubic lattice and a body-centered cubic lattice, respectively.
It is noted that the first Brillouin zone for a diamond lattice and a zinc-blende
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lattice structure is identical to that of the face-centered cubic lattice shown in
Figure 1.9b.

The importance of the first Brillouin zone can be best illustrated by considering
the wave function of an electron wave packet in a crystalline solid, which is
described by the wave vector k in momentum (or the reciprocal lattice) space.
In a periodic crystal, it can be shown using translational operation that for any
given wave vector k ′ of the electron wave packet in the reciprocal space, there is a
corresponding wave vector k inside the first Brillouin zone, which is related to k ′

by

k′ = k + K , (1.11)

where K is the reciprocal lattice vector defined by (1.5). Therefore, for a given
reciprocal lattice point in the reciprocal space, there is a corresponding recipro-
cal lattice point in the first Brillouin zone, which can be obtained through the
translational operation by substituting (1.7) into (1.11). In fact, one can show that
except for a phase factor difference, the wave function of an electron at any given
reciprocal lattice point in the reciprocal space is identical to the wave function
of a corresponding reciprocal lattice point in the first Brillouin zone obtained
via the translational operation of (1.7). This is important since it allows one to
describe the entire physical properties of electrons or phonons in the first Bril-
louin zone of the reciprocal space using the reduced zone scheme. In fact, the
phonon dispersion relation and the electronic states (or the energy bands) in a
solid can be described using the concept of reciprocal lattice and the first Bril-
louin zone described in this section. This will be discussed further in Chapters 2
and 4.

1.6. Types of Crystal Bindings

In Section 1.2, we described the classification of solids based on the geometrical
aspects of the crystal lattice. In this section, we present the classification of solids
according to their binding energy (i.e., the energy responsible for holding the atoms
of a solid together). Based on the types of chemical binding energy, we can divide
the crystalline solids into four categories. These are discussed next.

(i) Ionic crystals. In an ionic crystal, the electrostatic bonding normally comes
from the transfer of electrons from alkali atoms to halogen atoms, resulting in
the bonding of positively and negatively charged ions by the Coulomb attractive
force. Typical examples are alkali metals such as sodium and potassium, in which
each of these atoms has one extra valence electron to transfer to the atoms of
halogens such as chlorine and bromine to form an alkali halide salt (e.g., NaCl,
KCl, NaBr). The II-VI (e.g., CdS, ZnSe, and CdTe) and III-V (e.g., GaAs, InP, and
InSb) compound semiconductors also show certain ionic crystal properties. The
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ionic crystal usually has high binding energy due to the strong Coulombic force
between the positive and negative ions. Ionic crystals formed by the group I and
group VII elements (e.g., NaCl, KCl) in the periodic table belong to this category.
Although they are good electrical insulators at room temperature due to their large
binding energy, these ions may become mobile at very high temperatures and
diffuse through the crystal, which results in an increase of electrical conductivity.
The electrical conductivity of an ionic crystal is usually many orders of magnitude
smaller than the electrical conductivity of a metal, since the mass of the ion is
about 104 times larger than the electron mass in a metal. The conductivity of an
ionic crystal at elevated temperatures is related to the diffusion constant D of the
mobile ion by

σi = Nq2 D

kBT
, (1.12)

where σi is the electrical conductivity of the ionic crystal, N is the density of
mobile ions, q is the electronic charge, and kB is the Boltzmann constant.

One important feature of alkali-halide crystals is that they are transparent to
visible and infrared (IR) optical radiation, and hence are widely used as op-
tical window materials in the visible to IR spectral range. For example, crys-
talline Nacl which is transparent to optical radiation from 0.4 to 16 μm, is
widely used as the prism material for grating monochromators in this spectral
range.
(ii) Covalent crystals. In a covalent crystal, the binding energy comes from the
reciprocal sharing of valence electrons of the nearest-neighboring atoms rather
than from the transfer of valence electrons as in the case of ionic crystals.
Elemental semiconductors such as silicon and germanium are typical covalent
crystals.

The structure of a covalent crystal depends strongly on the nature of bonding
itself. Covalent crystals such as germanium, silicon, and carbon have four valence
electrons per atom, which are shared reciprocally with the nearest-neighboring
atoms, contributing to the bonding of the crystal. Figure 1.10a illustrates the tetra-
hedral bonding for silicon and GaAs crystals, and Figure1.10b the charge distri-
bution of a silicon crystal. Each silicon atom has four valence electrons, which are
shared reciprocally by its neighboring atoms and form a tetrahedral bonding. The
diamond structure of a silicon crystal is a structure in which each atom is at the
center of a tetrahedron, symmetrically surrounded by the four nearest-neighbor
atoms located at the vertices. The tetrahedral bonding shown in Figure 1.10a for
silicon crystalline can be explained by a linear combination of the s- and p-like
atomic orbitals, called the sp3 hybrids.

High-purity covalent crystals can have very high electrical resistivity and behave
like insulators at room temperature. However, the binding force holding the valence
electrons in orbit is not as strong as that of an ionic crystal. For example, while the
energy required to break an ionic bond in most ionic crystals may be as high as
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Figure 1.10. (a) The tetrahedral bonding configuration of silicon and GaAs crystals, and

(b) charge distribution in a diamond lattice structure, showing the tetrahedral covalent bond

of a silicon lattice.

10 eV, the energy necessary to break a covalent bond is much smaller, having values
ranging from 0.1 eV to around 6.2 eV. Therefore, at room temperature or higher,
the thermal energy may be sufficient to break the covalent bonds, thus freeing the
valence electrons for electrical conduction in a covalent crystal. Furthermore, the
broken bonds left behind by the valence electrons may be treated as free holes
in the covalent crystal, which in turn can also contribute to the electrical conduc-
tivity in the valence band. In fact, both electrons and holes can contribute to the
electrical conduction in an intrinsic semiconductor, as will be discussed further in
Chapter 5.
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The fact that III-V compound semiconductors such as GaAs, InP, and InAs
crystallize in a zinc-blende structure implies that covalent bonding occurs in these
crystals. However, in order to form covalent (homopolar) bonding in III-V semicon-
ductors, the sp3 orbital surrounding each group-III and group-V atom requires four
valence electrons per atom. This means that a transfer of one electronic charge from
the group-V atom to the group-III atom will occur in III-V compound semiconduc-
tors. This will result in group-III atoms becoming negatively charged (III1−) and
group-V atoms becoming positively charged (V1+). A negatively charged (III1−)
atom together with positively charged (V1+) atom constitutes a nonneutral situation
involving Coulombic interaction and hence ionic bonding. This partial ionic bond-
ing characteristic is responsible for some striking differences between the III-V
compound semiconductors and elemental semiconductors such as silicon and ger-
manium.
(iii) Metallic crystals. One of the most striking features of a metal is its high
electrical conductivity. The binding energy of a metal comes mainly from the
average kinetic energy of its valence electrons, and there is no tendency for these
electrons to be localized within any given portion of the metal. For example, in a
monatomic metal such as sodium or potassium, there are some 1023 cm−3 valence
electrons that can participate in the electrical conduction in these metals. In the
classical theory of metals, valence electrons are treated as free electrons, which
can move freely inside the metal. The valence electrons form an electron sea in
which the positive ions are embedded. Typical examples are the 2s electrons in a
lithium crystal and the 3s electrons in a sodium crystal, which are responsible for
the binding force of these metallic crystals.

In general, the binding energy of a monatomic metal is mainly due to the average
kinetic energy of the valence electrons, which is usually much smaller than that of
the ionic and covalent crystals. However, for transition metals, the binding energy,
which is due to the covalent bonds of the d-shell electrons, can be much higher
than that of monatomic metals.
(iv) Molecular crystals. Argon, neon, and helium are solids that exhibit properties
of molecular binding. These substances generally have a very small binding energy,
and consequently have low melting and boiling temperatures. The binding force
that holds the saturated molecules together in solid phase comes primarily from
the van der Waals force. This force is found to vary as r−6, where r is the distance
between the two molecules. To explain the origin of this force, it is noted that
molecules in such a substance carry neither net electric charge nor permanent
electric dipole moment. The instantaneous dipole moment on one molecule will
give rise to an electric field, which induces dipole moments on the neighboring
molecules. It is the interactions of these instantaneous dipole moments that produce
the cohesive energy of a molecular crystal. Since the individual molecules of
a molecular crystal are electrically neutral and interact only weakly with one
another, they are good electrical insulators, showing neither electronic nor ionic
conductivity.
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1.7. Defects in a Crystalline Solid

It is generally known that a perfect crystal lattice is possible only mathematically,
and in fact does not exist in real crystals. Defects or imperfections are found in
all crystalline solids. The existence of defects usually has a profound effect on
the physical properties of a crystal, which is particularly true for semiconductor
materials. Therefore, it is important to discuss various types of defects that are
commonly observed in a crystalline solid.

In general, defects may be divided into two broad categories: One class of
defects, which is called dynamic defects, refers to phonons, electrons, and holes.
Another class of defects, which is known as stationary defects, is composed of point
defects (e.g., vacancies, interstitials, antisite defects, and foreign impurities), line
defects (e.g., dislocations), and surface defects (e.g., grain boundaries). Stationary
defects play a key role in affecting the electronic, optical, and physical properties of
semiconductors. The physical properties and formation of these stationary defects
are discussed next.

1.7.1. Vacancies and Interstitials

Both vacancies and interstitials are defects of atomic dimensions; they can be ob-
served only through the use of modern field-ion microscopy or infrared microscopy
techniques. Vacancies are always present in crystals, and the density of vacancies
depends strongly on temperature. In fact, temperature fluctuation can cause a con-
stant creation and annihilation of vacancies in a crystal. Figure 1.11 shows the
formation of vacancy, interstitial, and foreign impurity defects in a crystal lattice.

A vacancy is created when an atom migrates out of its regular lattice site to an
interstitial position or to the surface of the crystal. The energy required to remove an
atom from its regular lattice site is defined as the activation energy of the vacancy.
Two types of defects are usually associated with the creation of vacancies, namely,
the Frenkel and Schottky defects. A Frenkel defect is created when an atom is
moved from its regular lattice site to an interstitial site, while a Schottky defect
is formed when the atom is moved from its regular lattice site to the surface of
the crystal. Figure 1.12 shows both the Frenkel and Schottky defects. Another
type of point defect, which is commonly found in a semiconductor, is created by

Figure 1.11. Vacancy, interstitial, and impurity point defects in a crystal lattice.
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Figure 1.12. Formation of Frenkel

and Schottky defects in a crystal

lattice.

the introduction of foreign impurities into the crystal, either intentionally (e.g.,
by thermal diffusion or ion implantation), or unintentionally (due to metallic or
chemical contaminations), as shown in Figure 1.11c. The Frenkel defects can be
created by radiation damages such as high-energy (1 MeV) electron radiation and
low-energy proton radiation in semiconductor devices.

The density of vacancies in a crystal can be calculated using classical statistics
and thermodynamic principles. In thermal equilibrium, the entropy of a crystal is
increased by the presence of disorders, and thus a certain number of vacancies
are always present in the crystal. According to the principles of thermodynamics,
the equilibrium condition of a system at a finite temperature is established when
the free energy of the system is at a minimum. If there are n vacancies distributed
randomly among N lattice sites, then the increase of entropy and free energy in the
crystal can be calculated as follows: If Ev is the activation energy of a vacancy,
then the total incremental internal energy U of the crystal due to the creation of n
vacancies is equal to nEv, where n is the number of vacancies at temperature T.
The total number of ways of arranging n vacancies among N lattice sites is given
by

P = N !

(N − n)!n!
. (1.13)

The increase of entropy due to the creation of n vacancies in a crystal can be
expressed by

S = kB ln(P) = kB ln[N !(N − n)!n!], (1.14)

where S is the entropy, and kB is the Boltzmann constant. Thus, the total change
in the free energy of the system is given by

F = U − T S = nEv − kBT ln[N !/(N − n)!n!]. (1.15)

In thermal equilibrium, the incremental free energy F must be at its minimum
with respect to n. The factorials given in (1.15) can be simplified using Stirling’s
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approximation when n is very large (i.e., ln n! ≈ n ln n − n, for n 
 1). Thus, for
n 
 1, (1.14) can be simplified to

S ≈ kB[N ln N − (N − n) ln(N − n) − n ln n]. (1.16)

Using (1.15) and (1.16), the minimum free energy can be obtained by differen-
tiating F with respect to n in (1.15) and setting the result equal to zero (i.e.,
∂ F/∂n = 0), which yields

n = (N − n) exp(−Ev/kBT ), (1.17)

or

n ≈ N exp(−Ev/kBT ) for N 
 n. (1.18)

Equation (1.18) shows that the density of vacancies increases exponentially with
temperature. For example, assuming Ev = 1 eV and N = 1023 cm−3, the density
of vacancies n at T = 1200 K is equal to 4.5 × 1018 cm−3.

A similar procedure may be employed to derive the expressions for the density
of Frenkel and Schottky defects in a crystal. For Schottky defects, this is given by

n ≈ N exp(−Es/kBT ), (1.19)

where Es is the activation energy for creating a Schottky defect. For Frenkel defects,
we obtain

n ≈ (N N ′)1/2 exp(−E f /2kBT ), (1.20)

where Ef is the activation energy of a Frenkel defect. Note that N ′ is the density
of interstitial sites. In general, it is found that Es > Ef > Ev. For example, for
aluminum, Ev has been found equal to 0.75 eV and Es ≈ 3 eV.

It is interesting to note that Frenkel defects may be created by nuclear bombard-
ment, high-energy electron and proton irradiation, or ion implantation damage.
In fact, the radiaton damage created by high-energy particle bombardment in a
solid is concerned almost entirely with the creation and annihilation of Frenkel
defects. The Frenkel defects may be eliminated or reduced via thermal or laser an-
nealing processes. Both thermal and laser annealing procedures are widely used in
semiconductor material processing and device fabrication. Recently, rapid thermal
annealing (RTA) and laser annealing techniques have also been used extensively
in the semiconductor industry for removing damages created by radiation, ion
implantation, and device processing.

Foreign impurities constitute another type of point defect, one that deserves
special mention. Both substitutional and interstitial impurity defects may be intro-
duced by doping the host crystal with foreign impurities using thermal diffusion
or ion implantation. It is a common practice to use foreign impurities to modify
the electrical conductivity and the conductivity types (i.e., n- or p-type) of a semi-
conductor. Foreign impurities may either occupy a regular lattice site or reside
in an interstitial site of the host crystal. As will be discussed in Chapter 5, both
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shallow- and deep-level impurities may play a very important role in controlling
the physical and electrical properties of a semiconductor. Finally, point defects
may also be created by quenching the crystal at high temperatures or by severe
deformation of the crystal through hammering or rollling.

1.7.2. Line and Surface Defects

Another type of crystal defect, known as line defects, may be created in both
single- and polycrystalline solids. The most common type of line defect created
in a crystalline solid is called dislocation. Dislocations are lattice defects created
in a crystal that can best be described in terms of partial internal slip. There are
two types of dislocations that are commonly observed in a crystalline solid. They
are the edge and screw dislocations. The creation of these dislocations and their
physical properties are discussed next.

(i) Edge dislocation. An edge dislocation can best be described by imagining a
perfect crystal that is cut open along line AO, shown in Figure 1.13a; the plane
of the cut is perpendicular to that of the page. An extra monolayer crystal plane
of depth AO is then inserted in the cut and the crystal lattice is repaired as well
as possible, leaving a line perpendicular to the plane of the paper and passing
through the point O around which the crystal structure is severely distorted. The
distortion of a crystal lattice can be created by the partial insertion of an extra
plane of atoms into the crystal. This distortion is characterized by a line defect.
The local expansion (known as the dilatation) around the edge dislocation can be
described by a simple expression, which reads

d =
(

b

r

)
sin θ, (1.21)

O

Figure 1.13. (a) Edge dislocation and (b) screw dislocation in a crystal lattice.
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where b is the Burgers vector (a measure of the strength of distortion caused by
dislocation), r is the radial distance from a point in the crystal to the dislocation
line, and θ is the angle between r and the slip plane. The sign of dilatation is
positive for expansion and negative for compression. The Burgers vector for an
edge dislocation is perpendicular to the dislocation line and lies in the slip plane.

(ii) Screw dislocation. The second type of dislocation, known as screw dislocation,
is shown in Figure 1.13b. As shown in the horizontal plane of the figure, the screw
dislocation is produced by cutting the crystal partially through and pushing the
upper part of the crystal one lattice spacing over. A line of distortion is clearly
shown along the edge of the cut. This line is usually called the screw dislocation.
In contrast to the type of distortion surrounding an edge dislocation, the atoms
near the center of a screw dislocation are not in dilatation, but are on a twisted or
sheared lattice. It is noted that in a screw dislocation the relative displacements
of the two halves of the crystal lie in the direction of the dislocation line rather
than normal to it. Again, the Burgers vector can be used to specify the amount of
displacement that has occurred.

Dislocations may be created in a number of ways. For example, a plastic de-
formation creates dislocation and consequently creates damage in the lattice. The
dislocations themselves introduce defect levels in the forbidden gap of a semi-
conductor. For semiconductors with a diamond lattice structure the dislocation
velocity depends exponentially on the temperature, and hence the dislocation
generation requires that the plastic deformation take place in a semiconductor
at very high temperatures. The density of dislocations, which is defined by the
number of dislocation lines intersected by a plane of unit area, can be counted
using either the etch-pit or the X-ray diffraction technique. In the etch-pit tech-
nique, the sample is first polished and then chemically etched. Conical pits are
formed at places where dislocation lines intersect the crystal surface, and the
number of etch pits is counted. In the X-ray diffraction technique, the observed
spread of angle θ in the Bragg diffraction pattern is a measure of the dislocation
density.

If the dislocation density is sufficiently high (e.g., ND > 107 cm−2), then the
electrical and mechanical properties of a crystalline solid may be affected by
the presence of these dislocations. For example, the electrical conductivity of a
semiconductor measured parallel and perpendicular to the dislocation line can
vary considerably when the density of these dislocation lines is very high. It is
noted that a dislocation line may be considered as a line charge, which can trap
the minority carriers and affect the minority carrier lifetime in a semiconductor.
In a pure silicon or germanium crystal, the dislocation density may range from a
few hundred to several tens of thousands per cm2, depending on the conditions of
crystal growth and heat treatment. In general, if the dislocation density is less than
106 cm−2, then its effect on the electrical properties of a semiconductor becomes
negligible. Semiconductors can be produced with zero or few dislocations per
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unit area. In fact, dislocation-free germanium and silicon single crystals have been
routinely grown using current crystal pull technology. However, for polycrystalline
materials, the dislocation density is usually very high, and thus dislocations play
a much more important role in a polycrystalline semiconductor than in a single-
crystalline semiconductor. Its effects on the minority carrier lifetimes and the
majority carrier mobility of a polycrystalline material are also more pronounced
than for a single-crystalline semiconductor.

The surface defect is another type of defect that can affect the performance of
a semiconductor device. A typical example of a surface defect is the grain bound-
aries in a polycrystalline semiconductor. In general, an array of edge dislocations
can be formed near the grain boundaries of any two subregions of a polycrystalline
material. Grain boundaries often play an important role in influencing the electrical
and transport properties of a polycrystalline semiconductor. For example, depend-
ing on the heat treatment used during and after the film growth, the grain size of
polycrystalline silicon thin films grown by the low-pressure chemical vapor depo-
sition (LPCVD) technique may vary from a few hundred angstroms to a few tens
of micrometers. On the other hand, for a bulk polycrystalline silicon material, the
grain size may vary from a few millimeters to a few centimeters. Polycrystalline
silicon thin films prepared by the LPCVD technique are widely used for inter-
connects and thin-film resistors in silicon integrated circuits. Bulk multicrystalline
silicon and polycrystalline thin-film materials from II-VI and I-III-VI compound
semiconductors such as CdTe and CuInSe2 (CIS) are widely used in fabricating
low-cost solar cells for terrestrial power generation.

Problems

1.1. Show that the maximum proportion of the available volume that can be filled
by hard spheres for the following lattice structures is given by
(a) Simple cubic: π/6.
(b) Body-centered cubic:

√
3π/8.

(c) Face-centered cubic:
√

2π/6.
(d) Hexagonal-closed-packed:

√
2π/6.

(e) Diamond:
√

3π/16.
1.2. Explain why the following listed lattices are not Bravais lattices.

(a) Base-centered tetragonal.
(b) Face-centered tetragonal.
(c) Face-centered rhombohedral.

1.3. Show that a crystal lattice cannot have an axis with fivefold and sevenfold
rotational symmetry.

1.4. Construct a primitive cell for a body-centered cubic (BCC) and a face-
centered cubic (FCC) lattice, and write down the primitive basis vectors and
the volume of these two primitive cells.

1.5. (a) Show that a diamond lattice structure is made up of two interpenetrating
face-centered cubic lattices.
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(b) If the cubic edge (or the lattice constant) of a diamond lattice is equal
to 3.56 Å, calculate the distance between the nearest neighbors and the
total number of atoms per unit cell.

(c) Repeat for silicon (cubic edge a = 5.43 Å) and gemanium (cubic edge
a = 5.62 Å).

1.6. Show that a body-centered tetragonal lattice with a = √
2b has the symmetry

of a face-centered cubic lattice.
1.7. Find the number of nearest neighbors and the primitive lattice vectors for a

diamond lattice structure.
1.8. Show that the reciprocal lattice of a body-centered cubic lattice is a face-

centered cubic lattice.
1.9. Draw the crystal planes for the following lattice structures:

(a) (200), (222), (311) planes for a cubic crystal.
(b) (101̄0) plane of a hexagonal crystal. (Hint: the Miller indices for a hexag-

onal lattice are represented by (a1, a2, a3, c).)
1.10. Show that the first Brillouin zone of a diamond lattice structure is enclosed

by eight {111} and six {200} planes.
1.11. (a) Find the total number of planes for {100}, {110}, {111}, and {200} of

a cubic lattice.
(b) Find the normal distance from the origin of the unit cell to the planes

listed in (a).
1.12. Show that in a hexagonal close-packed lattice structure, the length of the

c-axis is equal to
√

8/3a, where a is the length of one side of the hexagonal
base plane.

1.13. Draw the first four Brillouin zones of a two-dimensional square lattice, and
show that the areas of all the zones are identical.

1.14. Show that the density of the Schottky and Frenkel defects in a crystal are
given, respectively, by (1.19) and (1.20).
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2
Lattice Dynamics

2.1. Introduction

This chapter presents the thermal properties and lattice dynamics of solids. In
thermal equilibrium, the mass centers or the nuclei of the atoms in a solid are
not at rest, but instead they vibrate with respect to their equilibrium positions. In
fact, many thermal properties of solids are determined by the amplitude and phase
factor of the atomic vibrations. For example, the specific heat of an insulator is
due entirely to its lattice vibrations. Solid argon, which is perhaps the simplest
solid of all, consists of a regular array of neutral atoms with tightly bound closed-
shell electrons. These electrons are held together primarily by the van der Waals
force, and hence interact only with their nearest-neighbor atoms. The physical
properties of such a solid are due entirely to the thermal vibrations of its atoms
with respect to their equilibrium positions. Therefore, the specific heat for such
a solid results entirely from its lattice vibrations. On the other hand, the specific
heat for metals is dominated by the lattice-specific heat at high temperatures, and
by the electronic specific heat at very low temperatures. The most important effect
of the lattice vibration on metals or intrinsic semiconductors is that it is the main
scattering source that limits the carrier mobility in these materials. In fact, the
interaction between the electrons and lattice vibrations is usually responsible for
the temperature dependence of the resistivity and carrier mobility in metals or
lightly doped semiconductors. Furthermore, such interactions may also play an
important role in the thermoelectric effects of metals and semiconductors.

According to the classical Dulong and Petit law, the lattice-specific heat for a
solid is constant and equal to 3R (= 5.96 cal/(mol ◦C). The Dulong and Petit law
gives a correct prediction of lattice-specific heat for most solids at high temper-
atures but fails at very low temperatures. The lattice specific heat can be derived
from classical statistics as follows.

Consider a solid with N identical atoms that are bound together by an elastic
force. If each atom has three degrees of freedom, then there will be 3N degrees of
freedom for the N atoms, to produce 3N independent vibration modes, each with
the same vibration frequency. According to classical statistics, the mean energy for
each lattice vibration mode is kBT , and hence the total energy U for 3N vibration

26



2.2. The One-Dimensional Linear Chain 27

modes in a solid is equal to 3NkBT . Thus, the lattice specific heat under a constant-
volume condition is given by

Cv = dU

dT
= 3NkB = 3R, (2.1)

where R(= NkB) is the ideal gas constant, and kB is the Boltzmann constant
(= 1.38 × 10−23 joule/K). For an ideal gas system, by substituting N = 6.025 ×
1023 atoms/(g mol) (Avogadro’s number) into (2.1) one finds that Cv is equal to 5.96
cal/(mol ◦C). This value is in good agreement with the experimental data for solids
at high temperatures. However, (2.1) fails to predict correctly the lattice specific
heat for most solids at very low temperatures. This is due to the fact that at very low
temperatures, atoms in a solid are no longer vibrating independently of one another.
Instead, the lattice vibration modes can be considered as a quasi-continuum, with
a broad spectrum of vibration frequencies from very low frequencies up to a
maximum frequency determined by the number of vibration modes available in
the lattice.

In Section 2.2, expressions for the dispersion relations of a one-dimensional (1-
D) monatomic linear chain and a diatomic linear chain are derived and described.
The dispersion relation for a three-dimensional (3-D) lattice is derived and dis-
cussed in Section 2.3. The concept of phonons (i.e., quantized lattice vibration
modes) in crystalline solids is discussed in Section 2.4. In Section 2.5, the phonon
density of states function is derived, and the lattice spectra for some metals and
semiconductors are presented. The Debye model for predicting the lattice specific
heat of a solid over the entire range of temperature is discussed in Section 2.6.

2.2. The One-Dimensional Linear Chain

To understand the thermal and physical properties associated with atomic (lattice)
vibrations in a solid, it is useful to consider two simple cases, namely, the one-
dimensional (1-D) monatomic linear chain and the 1-D diatomic linear chain.

2.2.1. The Monatomic Linear Chain

In a 1-D monatomic linear chain, there is one atom per unit cell. If only the
nearest- neighbor interaction is considered, then the linear chain can be represented
by a string of identical masses connected to one another by a massless spring,
as illustrated in Figure 2.1. In this case, the equation of motion for the atomic
displacement can be easily derived using Hooke’s law. According to this classical
law, the force acting on the nth atom with mass m can be expressed as

Fn = m
∂2un

∂t2
= −β(un − un+1) − β(un − un−1)

= −β(2un − un+1 − un−1), (2.2)
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Figure 2.1. Lattice vibration of a one-dimensional monatomic linear chain. Here a is the
lattice constant, β is the force constant, and μn is the displacement of the nth atom from its
equilibrium position.

where β is the force constant between two adjacent atoms, and un, un−1, un+1

denote the displacements of the nth, (n − 1)th, and (n + 1)th atoms, respectively.
The solution of (2.2) has the form of a traveling wave, which is given by

un = uqei(naq−ωt), (2.3)

where q is the wave vector (q = 2π/λ) of the lattice wave, a is the lattice constant,
and n is an integer. Note that uq denotes the amplitude function of the lattice wave,
which is also a function of wave vector q. Substituting (2.3) into (2.2), one obtains

mω2 = −2β(cos qa − 1). (2.4)

Equation (2.4) is the solution for a simple harmonic oscillator, which has a disper-
sion relation (ω vs. q) given by

ω = 2

√
β

m
sin

(qa

2

)
= ωm sin

(qa

2

)
, (2.5)

where ωm = 2(β/m)1/2 is the maximum frequency of the lattice vibration modes.
Figure 2.2 shows a plot of the dispersion relation for a 1-D monatomic linear chain
obtained from (2.5). As shown in this figure, the dispersion curve has a period of
2π/a.

The dispersion relation given by (2.5) for a 1-D monatomic linear chain ex-
emplifies several fundamental physical properties of lattice dynamics in a solid.
First, all the possible lattice vibration modes are limited by the allowed values of
wave vector q, which fall in the range −π/a ≤ q ≤ π/a. This range is known as
the first Brillouin zone for the dispersion curve of a 1-D monatomic linear chain.
There are n independent wave vectors within the first Brillouin zone, represent-
ing n (i.e., n = N , where N is the total number of atoms) independent vibration
modes. Each atomic displacement contributes to one lattice vibration mode. The
maximum wave number qmax, which occurs at the zone boundary, is given by

qmax = π/a ≈ 108 cm−1, (2.6)
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Figure 2.2. Dispersion curve for a one-dimensional monatomic linear chain.

where a is the lattice constant. Since the frequency ω is a periodic function of wave
vector q in q-space, for any given wave vector q ′ outside the first Brillouin zone
there is a corresponding wave vector q in the first Brillouin zone, which can be
obtained by translational operation (i.e., q ′ = q ± K , where K is the reciprocal
lattice vector). The translational symmetry operation in a crystal lattice has been
discussed in detail in Chapter 1. At the zone boundaries, the solution of (2.3) does
not represent a traveling wave but a standing wave. Thus, at the zone boundaries,
qmax = ±(nπ/a), and un is given by

un = uq max ei(nπ−ωt) = uq max e−iωt cos(nπ ). (2.7)

Equation (2.7) shows that at the zone boundaries, cos nπ = ±1, depending on
whether n is an even or an odd integer. This implies that the vibration modes for
the alternate atoms are out of phase at the zone boundaries. The group velocity of
the lattice wave packet is defined by

vg = dω

dq
. (2.8)

Solving (2.5) and (2.8) yields an expression for the group velocity, which is

vg = (β/m)1/2a cos(qa/2). (2.9)

From (2.9), it is noted that at the zone boundaries where qmax = ±π/a, the group
velocity vg is equal to zero. Thus, the lattice wave is a standing wave packet at
the zone boundaries, and the incident and reflected lattice waves have the same
amplitude but travel in opposite directions.

In the long-wavelength limit (i.e., for qa → 0), (2.5) reduces to

ω = (β/m)1/2aq, (2.10)
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which shows that for qa → 0, the vibration frequency ω of the lattice waves
is directly proportional to the wave vector q. This corresponds to the common
property of ordinary elastic waves in a continuum medium. In this case, the group
velocity (vg = dω/dq) and the phase velocity (vp = ω/q) are equal, and their
values can be determined from the slope of the dispersion curve at small q value,
as is shown in Figure 2.2. Using a = 3 Å and vs = 105 cm/s, one obtains a value
of (β/m)1/2 ≈ 3 × 1012 s−1, and the maximum vibration frequency that a lattice
can support is ωmax = 2(β/m)1/2 = 6 × 1012 s−1; this value falls in the infrared
spectral regime of the electromagnetic radiation spectrum.

2.2.2. The Diatomic Linear Chain

The dispersion relation for a 1-D diatomic linear chain will be derived next. Figure
2.3 shows a 1-D diatomic linear chain, which contains two types of atoms with
different masses per unit cell. The atoms are equally spaced, but with different
masses placed in alternate positions along the linear chain. If one assumes that
only the nearest-neighbor interactions are important, then the force constant β

between the two different mass atoms is the same throughout the entire linear
chain. Therefore, there are two atoms per unit cell, with masses of m1 and m2.
Using Hooke’s law, the equations of motion for the 2nth and (2n + 1)th atoms of
the 1-D diatomic linear chain can be written as

m1
∂2u2n

∂t2
= β(u2n+1 + u2n−1 − 2u2n), (2.11)

m2
∂2u2n+1

∂t2
= β(u2n+2 + u2n − 2u2n+1). (2.12)

Solutions of (2.11) and (2.12) can be expressed, respectively, as

u2n = uaei(2naq−ωt), (2.13)

u2n+1 = uoei[(2n+1)aq−ωt], (2.14)

Figure 2.3. A diatomic linear chain in equilibrium position and in the displaced position,
assuming m1 > m2.
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where u2n and u2n+1 are the displacements for the 2nth and (2n + 1)th atoms,
respectively. Now, substituting (2.13) and (2.14) into (2.11) and (2.12), one obtains

2βua − m1ω
2ua − 2βuo cos aq = 0, (2.15)

2βuo − m2ω
2uo − 2βua cos aq = 0. (2.16)

Equations (2.15) and (2.16) will have a nontrivial solution if and only if the de-
terminant for the coefficients of ua and uo in both equations is set equal to zero.
Thus, the frequency ω must satisfy the secular equation given by∣∣∣∣(2β − m1ω

2) −2β cos(qa)
−2β cos(qa) (2β − m2ω

2)

∣∣∣∣ = 0. (2.17)

Solving (2.17) for ω yields

ω2 = β

⎧⎨
⎩

(
1

m1
+ 1

m2

)
±

[(
1

m1
+ 1

m2

)2

− 4 sin2(aq)

m1m2

]1/2
⎫⎬
⎭ . (2.18)

Using the same argument as in the case of a monatomic linear chain, one finds that
the allowed values of |q| for the diatomic linear chain are given by

|q| = nπ

Na
, (2.19)

where N is the total number of unit cells in the linear chain and n is an integer.
Since the period of a diatomic linear chain is equal to 2a, the first Brillouin zone
is defined by

−π

2a
≤ q ≤ π

2a
, (2.20)

which is a factor of 2 smaller than the first Brillouin zone of the 1-D monatomic
linear chain. Figure 2.4 shows the dispersion curves for the 1-D diatomic linear
chain with m1 > m2. The upper curve shown in Figure 2.4 corresponds to the plus
sign given by (2.18), and is called the optical branch. The lower curve, which
corresponds to the minus sign in (2.18), is known as the acoustical branch. The
lattice vibration modes in the optical branch can usually be excited by the infrared
optical radiation, which has frequencies in the range from 1012 to 1014 Hz. For the
acoustical branch, the lattice vibration modes can be excited if the crystal is con-
nected to an acoustical wave transducer that produces pressure waves throughout
the crystal. In general, the dispersion curves for a solid with two atoms per unit
cell contain both the acoustical and optical branches. For example, the dispersion
curves for an alkalihalide crystal such as NaCl consist of both acoustical and opti-
cal branches, contributed by the positively and negatively charged ions (i.e., Na+,
Cl−) in the crystal.

The physical insights for the dispersion curves of a diatomic linear chain can be
best explained by considering two limiting cases, namely, (i) the long-wavelength
limit (i.e., qa → 0) and (ii) near the zone boundaries (i.e., q → ±π/2a). These
are discussed as follows:
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Figure 2.4. Dispersion curves of a one-dimensional diatomic linear chain, assuming m1 >

m2.

(i) The acoustical branch. For qa → 0, using the minus sign in (2.18) for the
acoustical branch, one obtains

ω =
[

2β

(m1 + m2)

]1/2

aq. (2.21)

Equation (2.21) shows that in the long-wavelength limit, ω is directly propor-
tional to the wave vector q. This result is identical to the monatomic linear chain
discussed in the previous section. Furthermore, from (2.16), and for qa → 0, the
ratio of the amplitude of two different mass atoms is given by

ua

uo
= 1, (2.22)

which implies that in the long-wavelength limit, atoms at odd and even lattice sites
are moving in phase with equal amplitude. From the above analysis, it is obvious
that in the long-wavelength limit the dispersion curve in the acoustical branch for a
diatomic linear chain will reduce to that of a monatomic linear chain if the masses
of two different mass atoms are equal (i.e., m1 = m2 = m).

(ii) The optical branch. The optical branch for the 1-D diatomic linear chain is
shown by the upper curve of Figure 2.4. In the long-wavelength limit, when qa
approaches zero, one obtains

ω =
[

2β(m1 + m2)

m1m2

]1/2

. (2.23)

Solving (2.15) and (2.16) for qa → 0, the ratio of the amplitude of two different
mass atoms is given by

ua

uo
= −m2

m1
. (2.24)
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Equation (2.23) shows that in the optical branch as qa → 0, the frequency ω

becomes a constant and independent of the wave vector q. Thus, the lattice vibration
mode at qa = 0 represents a standing wave. The ratio of the amplitude factor given
by (2.24) reveals that the lattice vibration modes of alternate masses are out of
phase, and the amplitude of the vibration modes is inversely proportional to the
mass ratio of the alternate atoms. This can be best explained by considering the
alkali-halide crystal. The two types of ions in an alkali-halide crystal (e.g., NaCl)
are oppositely charged, and hence will experience opposing forces when an electric
field is applied to the crystal. As a result, the motions of atoms in alternate lattice
sites are out of phase with each other with an amplitude ratio inversely proportional
to their mass ratio. If electromagnetic waves with frequencies corresponding to the
frequencies of optical lattice vibration modes are applied to the crystal, resonant
absorption takes place. Since the frequencies in which the lattice vibration modes
are excited in this branch usually fall in the infrared spectral range, it is referred
to as the optical branch.

Another feature of the dispersion curves shown in Figure 2.4 is the existence
of a forbidden gap between ω− = (2β/m1)1/2 and ω+ = (2β/m2)1/2 at the zone
boundaries (i.e., qmax = ±π/2a). The forbidden region corresponds to frequen-
cies in which lattice waves cannot propagate through the linear chain without
attenuation. This can be easily verified by substituting a value of ω, which falls
in the forbidden region of the dispersion curve shown in Figure 2.4, into (2.18).
In this case, the wave vector q becomes a complex number, and the lattice waves
with frequencies falling in the forbidden zone will attenuate when they propagate
through the linear chain. It is interesting to note that a similar situation also exists
in the energy band scheme of a semiconductor in which a forbidden band gap
exists between the valence band and the conduction band at the zone boundaries
of the first Brillouin zone. This will be discussed in detail in Chapter 4.

2.3. Dispersion Relation for a Three-Dimensional Lattice

The dispersion relation for the 1-D linear chain derived in Section 2.2 can be easily
extended to the 2-D and 3-D lattices by considering the lattice vibration modes
as simple harmonic oscillators. As frequently encountered in quantum mechanics,
the displacement of atoms can be expressed in terms of the normal coordinates and
normal modes of quantum oscillators. According to quantum mechanics, the lattice
vibration modes generated by the atomic vibrations in their equilibrium positions
can be represented by the harmonic oscillators, with each vibration mode having its
own characteristic frequency ω and wave vector q. According to quantum theory,
the equation of motion for a 3-D harmonic oscillator is given by

Q̈q,s + ω2(q, s)Qq,s = 0, (2.25)

where Qq,s is the normal coordinate and ω(q, s) denotes the normal frequency. For
a 3-D lattice both Qq,s and ω(q, s) are functions of wave vector q and polarization
index s (i.e., s = 1, 2, 3).
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In general, if a crystal contains only one atom per unit cell, then there are three
possible polarizations for each wave vector q, one longitudinal and two transverse
modes of polarization. In the longitudinal mode of lattice vibration, the motion
of atoms is along the direction of wave propagation, while for the transverse
modes the motion of atoms is in the plane perpendicular to the direction of wave
propagation. If a crystal contains N atoms per unit cell, then the index n varies
from 1 to 3 N. For example, if N = 2 and s = 3, then there are three polarizations
(i.e., one longitudinal and two transverse modes) in the acoustical branch and three
polarizations in the optical branch.

Figure 2.5a–c shows the measured lattice dispersion curves for silicon,
GaAs, and aluminum, respectively, obtained from the inelastic slow neutron
experiment.1−3 As can be seen in this figure, the dispersion curves for these mate-
rials are strongly dependent on the crystal orientations. This is due to the fact that
lattice vibration modes depend strongly on crystal symmetry and atomic spacing
along a particular crystal orientation. For example, the atomic spacing for a silicon
crystal along the (100) axis is different from those along the (111) and (110) axes.
As a result, the dispersion relations for the silicon lattice are different along the
(100), (110), and (111) orientations. A similar situation exists in GaAs and alu-
minum. In general, the dispersion curves for most solids can be determined from the
inelastic slow neutron experiment. In this experiment, the energy losses of a slow
neutron due to scattering by the lattice vibrations and the change of wave vector
during scattering can be determined experimentally by the conservation of energy
and momentum. A slow neutron impinging on a crystal sees the crystal lattice
mainly by interacting with the nuclei of the atoms. The momentum conservation
for the slow neutron scattering by a lattice vibration mode can be described by

k = k′ ± q + K , (2.26)

where k is the wave vector of the incident neutron, k′ is the wave vector of the
scattered neutron, q is the phonon wave vector, and K is the reciprocal lattice
vector. The plus sign in (2.26) denotes the creation of a phonon, while the minus
sign is for annihilation of a phonon. Note that we have introduced here the
terminology “phonon” to represent the quantized lattice vibration.

The conservation of energy for scattering of a slow neutron by a lattice atom is
given by

h̄2k2

2Mn
= h̄2k ′2

2Mn
± h̄ωq , (2.27)

where h̄ωq is the phonon energy. In (2.27), the plus sign is for phonon emission
and the minus sign is for phonon absorption. The dispersion relation for the lat-
tice vibration modes of a crystalline solid can be determined by (2.26) and (2.27)
using the energy gain and loss of the scattered neutrons as a function of the scat-
tering direction (i.e., k − k′) from the slow neutron experiment. This method has
been widely used in determining the phonon spectra of metals, insulators, and
semiconductors. The concept of phonon will be discussed next.



Figure 2.5. (a) Dispersion curves for silicon along the (100) and (111) orientations, (b) for
GaAs along the (111), (110), and (100) orientations, and (c) for aluminum. After Dolling,1

Waugh and Dolling,2 Wallis,3 by permission.
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2.4. The Concept of Phonons

The dispersion relations derived in Section 2.2 for the 1-D monatomic and diatomic
linear chains are based on Hooke’s law. The results of this classical approach
provide a good insight concerning the physical properties of lattice waves, which
is important to the understanding of the specific heat of a solid. However, it is not
a common practice to use the wave concept of lattice vibrations to deal with the
problems of interactions between electrons and lattice waves in a crystalline solid,
such as scattering of electrons by the lattice waves in a semiconductor or a metal.
Instead, the quantum-mechanical approach is usually used to solve the problems
of scattering of electrons by the lattice vibrations in a solid. In the framework of
quantum mechanics, each lattice vibration mode is quantized and can be treated as
a quantum oscillator with a characteristic frequency ω and a wave vector q. This
quantized lattice vibration mode is usually referred to as the “phonon,” analogous to
the term “ photon” as a quantum unit of the electromagnetic radiation. Therefore, it
is appropriate to introduce here the concept of “phonons” to represent the quantized
lattice vibration modes in a crystalline solid.

In Section 2.3, the normal coordinates and normal modes are introduced to
describe the quantum oscillators for the 3-D lattice vibration modes in a crys-
talline solid. A quantized lattice vibration mode (phonon) can be represented by
a harmonic oscillator, which has a characteristic frequency ω, wave vector q, and
polarization index s. According to quantum theory, the energy of a harmonic os-
cillator is given by

En = (n + 1/2) h̄ω, (2.28)

where n = 0, 1, 2, 3, . . . , h̄ = h/2π ; h is Planck’s constant, and ω is the charac-
teristic frequency of the quantum oscillator. Using (2.28), the phonon energy can
be written as

En(q, s) = (nq,s + 1/2) h̄ω(q, s), (2.29)

where nq,s = 1/[exp( h̄ω/kBT ) − 1] is the average phonon occupation number,
which can be derived using Bose–Einstein statistics, to be discussed in Chapter 3.
The quantity h̄ω/2 on the right-hand side of (2.29) represents the zero-point phonon
energy (i.e., nq,s = 0). It should be noted that the zero-point energy does not affect
the phonon distribution function in any way, nor does it contribute to the average
internal energy and the specific heat of a solid at temperatures above absolute zero.
A large value of nq,s in (2.29) corresponds to phonons with large amplitude, and
vice versa. In the dispersion curves shown in Section 2.2, the acoustical branch
consists of both the longitudinal and transverse acoustical (LA and TA) phonons,
while the optical branch is composed of longitudinal and transverse optical (LO
and TO) phonons.

It should be noted that phonon scatterings are usually the dominant scattering
mechanisms in intrinsic and lightly doped semiconductors, and hence they control
the carrier mobilities in these semiconductors. This will be discussed further in
Chapters 7 and 8.
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2.5. The Density of States and Lattice Spectrum

The density of states function for phonons in a crystalline solid can be derived
using the periodic boundary conditions of the crystalline solids. For a 3-D cubic
lattice, if the length of each side of the cubic unit cell is equal to L , then the density
of states function can be derived using the periodic boundary conditions over the
N atoms within the cubic unit cell with a volume of L3. Values of the phonon wave
vector q are determined using the 3-D periodic boundary conditions, given by

ei(qx x+qy y+qz z) = ei[qx (x+L)+qy (y+L)+qz (z+L)], (2.30)

which reduces to

ei(qx +qy+qz )L = 1. (2.31)

From (2.31) one obtains qx , qy, qz = 0, ±2π/L , ±4π/L , . . . , Nπ/L . Therefore,
there is one allowed value of q per unit volume (2π/L)3 in the reciprocal space
(i.e, the q-space). To find a general expression for the phonon density of states
function D(ω) for a 3-D crystal lattice, the total number of states per unit volume
with frequencies between ω and ω + dω can be expressed by

D(ω) dω =
(

L

2π

)3 ∫
shell

d3q. (2.32)

The integrand of (2.32) represents the total number of states available within a
spherical shell in q-space with frequencies varying between ω and ω + dω, and
(2π/L)3 is the volume of the unit cell in q-space. As shown in Figure 2.6, dSω

is the area element of the constant frequency surface in q-space, and d3q is the

Figure 2.6. Constant-frequency surface in q-space; dSωdq is the volume element between
two surfaces of constant frequency ω and ω + dω.
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volume element, which can be expressed as

d3q = dSωdq⊥. (2.33)

Now substituting (2.33) into (2.32) and using the relation dq⊥ = dω/
∣∣∇qω

∣∣, one
obtains a general expression for the phonon density of states function as

D(ω) =
(

L

2π

)3 ∫
shell

dSω∣∣∇qω
∣∣ , (2.34)

or

D(ω) =
(

L

2π

)3 ∫
dSω

vg
(2.35)

where vg = |∇qω| is the group velocity of the phonons. Note that integration of
(2.34) is carried out over the constant-frequency surface in q-space.

It is clear that an expression for the phonon density of states function can be
derived from (2.34), provided that the dispersion relation betweenω and q is known.
Figure 2.7a shows the plot of phonon density of states as a function of frequency
for copper, and Figure 2.7b illustrates the corresponding density of states function
derived using a dispersionless relation, ω = usq , in (2.34), where us is the velocity
of sound.

The phonon density of states plot shown in Figure 2.7a for the copper crystal
was obtained from the numerical analysis of the measured dispersion curve. In
general, if the constant-frequency surface in q-space is spherical, then in the long-
wavelength limit, the density of states function D(ω) is proportional to the square
of the frequency. It should be noted that (2.34) could be applied to the derivation
of the density of states function for electrons in the conduction band or for holes in
the valence band of a semiconductor. This can be achieved by including the spin

Figure 2.7. (a) Density of phonon states versus frequency for copper. (b) Debye lattice
spectrum, where ωD is the Debye cutoff frequency.
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degeneracy factor (= 2) due to the Pauli’s exclusion principle and by replacing
the frequency of phonons by the energy of electrons or holes in (2.34), as will be
discussed further in Chapter 4.

2.6. Lattice Specific Heat

The classical Dulong and Petit law described in Section 2.1 fails to predict cor-
rectly the temperature dependence of the lattice specific heat of solids at very low
temperatures. The reason for its failure arises from the fact that Dulong and Petit’s
law does not consider all lattice vibration modes with different vibration frequen-
cies, particularly the long-wavelength phonons, which are the dominant vibration
modes at low temperatures. In deriving the lattice specific heat for solids, Debye
uses a continuum model to account for all the possible lattice vibration modes.
This assumption is valid as long as the wavelength of phonons is large compared
to the interatomic spacing. In this respect, a solid is considered as a continuous
medium to the lattice phonons. Furthermore, the number of vibration modes is
limited by the total number of constituent atoms in the crystal, which is equal to
N. Therefore, for N atoms each with three degrees of freedom, the total number
of vibration modes is equal to 3N. In other words, the frequency spectrum cor-
responding to a perfect continuum is cut off so as to comply with a total of 3N
vibration modes. The Debye cutoff frequency, ωD, corresponds to the maximum
frequency that the transverse and longitudinal vibration modes can support. The
Debye model for the lattice specific heat of a solid is discussed next.

To derive the lattice specific heat of a crystalline solid, it is necessary to find the
total internal energy due to the thermal vibrations of lattice atoms. Using (2.29)
for the average phonon energy (= nq,s h̄ω) and ignoring the zero-point energy, the
total energy of the lattice phonons with frequencies varying from zero to a cutoff
frequency ωD is given by

U =
∫ ωD

0

D(ω) h̄ωdω(
eh̄ω/kBT − 1

) , (2.36)

where D(ω) is the density of states function per unit frequency given by (2.34).
To find the solution of (2.36), the expression for D(ω) and the dispersion relation
between ω and q must be first derived. In the Debye model, it is assumed that the
solid under consideration is an isotropic dispersionless continuum medium, and
hence the relation between ω and q is given by

ω = vgq = vpq = usq, (2.37)

where vg, vp, and us denote the group velocity, phase velocity, and the velocity of
sound in a solid, respectively. From (2.37), it is noted that the group and phase
velocities are equal to the velocity of sound in a dispersionless continuum medium.
Furthermore, in an isotropic medium, the phase velocity of phonons is independent
of the direction of the wave vector q. To derive the phonon density of states
function, one can consider the spherical shell in q-space as shown in Figure 2.6.
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From (2.34) through (2.37) one can determine the number of vibration modes
within the spherical shell for frequencies between ω and ω + dω, and the result
yields

D(ω)dω =
(

L

2π

)3 ∫
dSω

vg
dω =

(
3V ω2

2π2u3
s

)
dω, (2.38)

where V = L3 is the volume of the cubic unit cell, and the surface integral (
∫

dSω)
is equal to 4πq2, or 4πω2/us

2. A typical Debye spectrum calculated from (2.38)
is shown in Figure 2.7b. A factor of 3 is included in (2.38) to account for the three
components of polarizations (i.e., two transverse and one longitudinal) per wave
vector. In general, the propagation velocities for the transverse-mode phonons and
the longitudinal-mode phonons are not equal (i.e., vt 	= vl), and hence (2.38) must
be replaced by

D(ω)dω =
(

V

2π2

) (
2

v3
t

+ 1

v3
l

)
ω2dω. (2.39)

The Debye cutoff frequency ωD can be obtained by integrating (2.39) for frequen-
cies from 0 to ωD, and using the fact that there are 3N total vibration modes in the
crystal. Thus, the total number of vibration modes is given by∫ ωD

0
D(ω) dω = 3N . (2.40)

Substituting (2.38) for D(ω) into (2.40) yields

ωD = (6π2n)1/3us, (2.41)

where n = N/V is the number of atoms per unit volume and us is given by

us =
[

1

3

(
2

v3
t

+ 1

v3
l

)]−1/3

, (2.42)

where us is the velocity of sound in the solid. The total energy of the phonons can
be obtained by substituting (2.38) into (2.36) and integrating (2.36) from ω = 0
to ω = ωD, which yields

U =
(

3V

2π2u3
s

) ∫ ωD

0

h̄ω2dω

(eh̄ω/kBT − 1)
=

(
3V k4

BT 4

2π2 h̄3u3
s

) ∫ xm

0

x3dx

(ex − 1)
, (2.43)

where x = h̄ω/kBT, xm = h̄ωD/kBT = TD/T , and TD = h̄ωD/kB is called the
Debye temperature. The lattice specific heat under constant volume can be obtained
from (2.43) by differentiating the total energy U with respect to temperature, which
yields

Cv = dU

dT
= 9NkB

(
T

TD

)3 ∫ TD/T

0

ex x4 dx

(ex − 1)2 , (2.44)

where TD = h̄ωD/kB = ( h̄us/kBL)(6π2 N )1/3 is used in (2.44). It is noted that an
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analytical expression valid over the entire temperature range could not be obtained
from (2.44). However, an analytical expression may be derived for two limiting
cases, namely, for T 
 TD and T � TD. They are described as follows:

(i) The high-temperature regime (T � TD or x � 1). In the high-temperature
regime, (2.44) can be simplified to

Cv ≈ 9NkB

(
T

TD

)3 ∫ TD/T

0

x4 dx

x2
= 3NkB = 3R, (2.45)

which is identical to the result predicted by the classical Dulong and Petit’s law
for the lattice specific heat of solids.
(ii) The low-temperature regime (T � TD or x 
 1). In this case, the upper limit
of the integral in (2.43) for the total energy of phonons may be replaced by infinity,
and the definite integral is given by∫ ∞

0

x3 dx

(ex − 1)
= π4

15
. (2.46)

Now, substituting (2.46) into (2.43) and differentiating the total energy U with
respect to T, one obtains the lattice specific heat as

Cv =
(

12π4

5

)
(NkB)

(
T

TD

)3

. (2.47)

Equation (2.47) shows that the lattice specific heat of a crystalline solid is pro-
portional to T 3 at low temperatures. The result given by (2.47) provides a correct
prediction of the temperature dependence of the lattice specific heat for both semi-
conductors and insulators at low temperatures. The reason for the good agreement
is attributed to the fact that the Debye model takes into account the contribution
of the long-wavelength acoustical phonons to the lattice specific heat, which
is dominant at low temperatures. Figure 2.8 shows a comparison of the lattice
specific heat versus temperature predicted by the Debye model and by Dulong and
Petit’s law.

Although the Debye model generally gives a correct prediction of the lattice
specific heat for both insulators and semiconductors over a wide range of temper-
atures, the Debye temperature used in theoretical fitting of the experimental data
varies from material to material. For example, the Debye temperature is TD = 640
K for silicon and 370 K for germanium.

In spite of the success of the Debye model in predicting the correct temperature
behavior of lattice specific heat of semiconductors and insulators over a wide
range of temperatures, it fails to predict the correct temperature dependence of the
specific heat of metals at very low temperatures. The reason for its failure stems
from the fact that the electronic specific heat, which is influenced by the total
kinetic energy of electrons in a metal, becomes dominant at very low temperatures.
In fact, the specific heat of a metal is dominated by the electronic specific heat
rather than by the lattice specific heat at very low temperatures. Using Fermi–Dirac
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Figure 2.8. Lattice specific heat Cv versus normalized temperature T/TD, as predicted by
the Debye model and the Dulong and Petit law.

statistics it can be shown that the electronic specific heat for a metal varies linearly
with temperature at very low temperatures, which is in good agreement with the
experimental observation of the specific heat of metals at very low temperatures.
Thus, the total specific heat for a metal consists of the lattice specific heat and the
electronic specific heat, which can be expressed by

Cv = Cl + Ce = αT 3 + βT, (2.48)

where Cl and Ce denote the lattice and electronic specific heats, respectively. Both
α and β are constants, which can be determined from the Cv/T versus T 2 plot.
From the slope of this plot one can determine the constant α, and the intercept,
when extrapolated to T = 0 K, yields the constant β. It is noted that at very low
temperatures the electronic specific heat prevails in metals and the second term
in (2.48) becomes dominant. Therefore, the specific heat of metals varies linearly
with temperature at very low temperatures. Derivation of the electronic specific
heat for a metal can be made using Fermi–Dirac statistics, to be discussed in
Chapter 3.

Problems

2.1. (a) Considering only the nearest-neighbor interaction, find the dispersion
relation for the diatomic linear chain of a silicon lattice along the (111)
crystal axis. Note that the masses of the silicon atoms are identical, and
the positions of the nearest-neighbor atoms on the (111) axis are located
at (0,0,0), (a/4, a/4, a/4), and (a, a, a) inside the unit cell. Assume that
the force constant between the nearest-neighbor atoms is equal to β.
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(b) Plot the dispersion curves (ω vs. q) from the result obtained in (a).
(c) Sketch the atomic displacement for the longitudinal and transverse optical

lattice vibration modes at q = π/4
√

3a, π/2
√

3a, and π/
√

3a.
2.2. Using the Einstein model, derive the lattice specific heat for a 3-D crystal

lattice. (Hint: The Einstein model is similar to the Debye model except that it
assumes a single vibration frequency ωE and energy E = h̄ωE for all lattice
phonons. The phonon distribution function is 〈n〉 = 1/(eh̄�E/kBT − 1). Based
on this assumption you can derive the average phonon energy and the lattice
specific heat.)

2.3. (a) For a 1-D monatomic linear chain with fixed-end boundary condition,
show that the density of states function can be expressed by

D(ω) = L

π
· dq

dω
=

(
2L

πa

)
· 1

(ω2
m − ω2)1/2

.

(Hint: Use the dispersion relation given by (2.5) to derive D(ω) for the
1-D case.)

(b) Apply the Debye model to this 1-D linear chain, and show that the density
of states function can be expressed by

D (ω) = L

πvs
,

where L is the length of the linear chain.
(c) Plot D (ω) versus ω for (a) and (b), and explain the difference.

2.4. Using the Debye model derive the specific heat for a 1-D monatomic linear
chain with only nearest-neighbor interaction, and show that at low temper-
atures the specific heat varies linearly with temperature. What is the cutoff
frequency for this case?

2.5. (a) Write down the equations of motion for a 1-D linear chain of identical
masses that are connected to each other by springs of two difference force
constants, β1 and β2, in alternating positions. Find the dispersion relation
for this linear chain.

(b) Plot the dispersion curve for the linear chain given in (a).
2.6. (a) Write down the equation of motion for a 2-D square lattice with spacing

a and atomic mass M. The nearest-neighbor force constant is given by β.
(b) Assume that the solution of (a) is given by

ulm = u(0) exp[i(lkx a + mkya − ωt)],

where ulm denotes the displacement normal to the plane of the square
lattice for the atom in the lth column and mth row. Find the dispersion
relation in (a).

(c) Plot the dispersion curve for a square lattice based on the result obtained
in (b).

2.7. Derive the density of states function D(ω) for a 1-D linear chain of length L
carrying N + 1 particles with a spacing of a for the following cases:
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(a) The particles s = 0 and s = N at the ends of the linear chain are held
fixed (i.e., fixed boundary condition).

(b) The linear chain is allowed to form a ring, so that the periodic boundary
condition can be applied to the problem [i.e., u(sa) = u(sa + L)].

(c) What are the allowed values of the wave vector q in cases (a) and (b)?
2.8. One common method used in determining the phonon spectra of a solid is the

slow neutron scattering experiment. Give an example to explain this technique
for determining the phonon spectra in a crystal.4,5
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3
Semiconductor Statistics

3.1. Introduction

In this chapter we present three basic statistics that are commonly used in the
derivation of distribution functions for gas molecules, photons and phonons, elec-
trons in a metal, and electrons and holes in a semiconductor. These basic statistics
are needed to deal with the problems of interactions of a large number of particles
in a solid. Since a great deal of physical insight can be obtained from statistical
analysis of the particle distribution functions in a solid, it is appropriate for us to
devote this chapter to finding the distribution functions associated with different
statistical mechanics for particles such as gas molecules, photons, phonons, elec-
trons, and holes. The three basic statistics that govern the distribution of particles
in a solid are (1) Maxwell–Boltzmann (M-B) statistics, (2) Bose–Einstein (B-E)
statistics, and (3) Fermi–Dirac (F-D) statistics. The M-B statistics are also known
as the classical statistics, since they apply only to particles with weak interactions
among themselves. In the M-B statistics, the number of particles allowed in each
quantum state is not restricted by the Pauli exclusion principle. Particles such as
gas molecules in an ideal gas system and electrons and holes in a dilute semicon-
ductor are examples that obey the M-B statistics. The B-E and F-D statistics are
known as quantum statistics because their distribution functions are derived based
on quantum-mechanical principles. Particles that obey the B-E and F-D statistics
in general have a much higher density and stronger interaction among themselves
than the classical particles. Particles that obey the B-E statistics, such as photons
and phonons, are called bosons, while particles that obey the F-D statistics, such
as electrons and holes in a degenerate semiconductor or electrons in a metal, are
known as fermions. The main difference between the F-D and the B-E statistics
is that the occupation number in each quantum state for the fermions is restricted
by the Pauli exclusion principle, while bosons are not subjected to the restric-
tion of the exclusion principle. The Pauli exclusion principle states that no more
than two particles with opposite spin degeneracy can occupy the same quantum
state. Therefore, the total number of particles with the same spin should be equal
to or less than the total number of quantum states available for occupancy in a
solid.

45
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The M-B statistics and velocity distribution function for ideal gas molecules are
depicted in Section 3.2. Section 3.3 presents the F-D statistics, the physical aspect
of F-D distribution function, and its derivative for the free-electron case. Section 3.4
depicts the B-E statistics and the distribution function of phonons and photons. The
blackbody radiation formula is also presented. Finally, the distribution functions
for electrons in the shallow donor states and holes in the shallow acceptor states
in the forbidden gap of a semiconductor are presented in Section 3.5.

3.2. Maxwell–Boltzmann Statistics

In this section, the M-B distribution function for classical noninteracting parti-
cles such as ideal gas molecules and electrons in an intrinsic or lightly doped
semiconductor is derived. Let us first consider an isolated system that contains N
distinguishable particles with a total energy of E . Let us then consider the problem
of distributing N particles among the q energy levels. If the system consists of
E1, E2, . . ., Ei , . . ., Eq energy levels with n1, n2, . . ., ni , . . ., nq particles in each
corresponding energy level, then there are two constraints imposed on these N
particles, namely, the conservation of energy and the conservation of particles.
These two constraints can be expressed by

C1(n1, n2, . . . , ni , . . . , nq ) = N =
q∑

i=1

ni , (3.1)

C2(n1, n2, . . . , ni , . . . , nq ) = E =
q∑

i=1

ni Ei . (3.2)

Equation (3.1) states that the total number of particles in the system is constant
and equal to N, and (3.2) states that the total energy in the system is constant
and equal to E. To derive the classical M-B distribution function, the framework
of quantum states and energy levels in a noninteracting system is retained and
the Pauli exclusion principle is neglected. Therefore, there is no limitation on the
number of particles that can be put into a quantum state at a given energy level in the
system. In order to derive the distribution function for particles in a noninteracting
system, we first analyze the problem of distributing N1 and N2 balls in two boxes
and then extend this result to the problem of particle distribution in a solid.

If W (N1, N2) represents the total number of independent ways of arranging N1

and N2 balls in box 1 and box 2, respectively, then W (0, N2) is the total number of
ways of making box 1 empty and box 2 full. There is only one possible arrangement
for this case, and hence W (0, N2) = 1. Next, consider the case of arranging 1 ball
in box 1 and (N − 1) balls in box 2. In this case, there are N different ways of
putting 1 ball in box 1, and hence the total number of ways of arranging 1 ball in
box 1 and (N − 1) balls in box 2 is given by W (1, N2) = N . Next, consider the
case of arranging 2 balls in box 1 and (N − 2) balls in box 2. The number of ways
of arranging the first ball in box 1 is N , and the number of ways of arranging the
second ball in box 1 is (N − 1). Thus, the total number of ways of arranging 2 balls
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in box 1 and (N − 2) balls in box 2 is W (2, N − 2) = N (N − 1)/2!, where 2! is
included to account for the permutation between two identical balls. Similarly, one
can extend this procedure to the distribution of N1 balls in box 1 and N2 balls in
box 2. Thus, one can write the total number of ways of arranging N1 and N2 balls
in boxes 1 and 2 as

W (N1, N2) = N (N − 1)(N − 2)(N − 3) · · · (N − N1 + 1)

Ni !
= N !

N1 N2!
. (3.3)

Extending the above procedure, the total number of ways of arranging
N1, N2, N3, . . ., Nq balls in boxes 1, 2, 3, . . ., q can be expressed by

W (N1, N2, N3, . . . , Nq ) = N !

N1!N2!N3! · · · Nq !
= N !∏q

i=1 Ni !
, (3.4)

where N = N1 + N2 + N3 + · · · + Nq is the total number of balls available for
distribution in q boxes.

The above results can be applied to the derivation of the M-B distribution func-
tion for particles in a solid. Next, consider the distribution of n particles among
the E1, E2, E3, . . ., Eq energy levels in a solid. If one assumes that there are
g1, g2, g3, . . ., gq degenerate quantum states and n1, n2, n3, . . ., nq particles in
each corresponding energy level E1, E2, E3, . . . .Eq , then the distribution func-
tion for the n particles among the q energy levels each with gi degenerate states
is similar to the distribution of N balls in q boxes discussed above. The only
difference is that in this case there are gi additional quantum states in each Ei

energy level (where i = 1, 2, 3, . . ., q). If the quantum state in each energy level is
nondegenerate, then the total number of ways of arranging n1, n2, . . ., nq particles
in the E1, E2, E3, . . ., Eq energy levels is given by (3.4). If there are gi degener-
ate quantum states in each energy level Ei , then it is necessary to count the total
number of ways of arranging ni particles in each of the gi quantum states in the
Ei energy level. For example, the number of ways of arranging n1 particles in g1

quantum states in the energy level E1 is given by (g1)n1 . Similarly, there are (g2)n2

ways of arranging n2 particles among the g2 quantum states in the E2 energy
level. Therefore, the total number of ways of arranging n1, n2, . . ., nq particles
among the g1, g2, . . . , gq quantum states in the E1, E2, . . ., Eq energy levels is
given by

W (n1, n2, . . . , ni , . . . , nq ) = n!(g1)n1 (g2)n2 · · · (gq )nq

(n1!n2! · · · nq !)

= n!

q∏
i=1

(
(gi )

ni

ni !

)
. (3.5)

Taking the natural logarithm on both sides of (3.5), one obtains

ln W (n1, n2, n3, . . . , ni , . . . , nq ) = ln(n!) +
q∑

i=1

[ni ln(gi ) − ln(ni !)]. (3.6)
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Since values of ni , gi , and n are much larger than unity, one can employ
Stirling’s approximation (i.e., ln x! ≈ x ln x − x , for x � 1) in (3.6), and the result
is

ln W ≈ (n ln(n) − n) +
q∑

i=1

[ni ln(gi ) − ni ln(ni ) + ni ]. (3.7)

From thermodynamics, the entropy of a solid is defined by S = kB ln W , where
kB is the Boltzmann constant, and ln W is given by (3.7). Furthermore, the most
probable distribution function for particles in a solid can be obtained by maximizing
the entropy of the system. Thus, the distribution function for the noninteracting
particles described above can be obtained by differentiating (3.7) with respect to ni

for the maximum entropy, which can be carried out using the method of Lagrange
multipliers. Using (3.1), (3.2), and (3.7), one obtains

d ln W

dni
= d

dni

[
n ln(n) +

g∑
i=1

{
ni ln

(
gi

ni

)}]

= α
dC1

dni
+ β

dC2

dni
, (3.8)

which yields

ln

(
gi

ni

)
− 1 = α + βEi , (3.9)

where α and β are constants to be determined. From (3.9), the distribution function
of the classical particles is defined by

f (Ei ) = ni

gi
= exp[−(1 + α + βEi )]. (3.10)

If one drops the index i from (3.10), then the M-B distribution function can be
expressed as

f (E) = A exp(−βE), (3.11)

where A and β are constants, which can be determined from the distribution of
gas molecules in an ideal gas system that obeys the M-B statistics. For example,
if there are N monatomic gas molecules that interact only through the collision
processes, then the energy of such particles is purely kinetic, and may be written
as

E = mv2

2
=

(m

2

)
(v2

x + v2
y + v2

z ). (3.12)

Now substituting (3.12) into (3.11), the M-B distribution function for an ideal
gas molecule system can also be expressed in terms of the velocity distribution
function, which is given by

N (v) = 4πv2 A e−βmv2/2. (3.13)
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The velocity distribution function N (v) given by (3.13) represents the number of
particles in the system whose velocities lie in a range dv about v. Using (3.13), the
number of particles with velocities between v and v + dv in the velocity space is
given by

dN = N (v) dv = 4πv2 A e−βmv2/2dv. (3.14)

The total number of particles in the velocity space is obtained by integrating (3.14)
from zero to infinity, and the result is

N =
∫

dN =
∫ ∞

0

4πv2 A e−βmv2/2dv. (3.15)

The total energy of the gas molecules in such a system is given by

U =
∫ ∞

0

(
mv2

2

)
4πv2 A e−βmv2/2dv. (3.16)

To find constants A and β from (3.15) and (3.16), the kinetic energy of the gas
molecules must be determined first. This energy may also be obtained indepen-
dently using the equipartition law, which shows that the kinetic energy for each
gas molecule in an ideal gas system is equal to (3/2)kBT . Thus, the total energy
for an ideal gas system containing N molecules is given by

U = 3

2
NkBT . (3.17)

Solving (3.15) to (3.17) yields

A = N

(
m

2πkBT

)3/2

and β = 1

kBT
. (3.18)

The velocity distribution function for a classical particle can be obtained by
substituting the expressions of A and β given by (3.18) into (3.13), and the result
is

N (v) = 4π N

(
m

2πkBT

)3/2

v2 e−mv2/2kBT . (3.19)

Figure 3.1 shows the plot of N (v) versus v for three different temperatures.
The average velocity for a classical particle that obeys the M-B statistics can be
obtained using the expression

〈v〉 =
∫ ∞

0
vN (v) dv∫ ∞

0
N (v) dv

, (3.20)

where N (v) is given by (3.19). A general expression for the average of velocity to
the nth power, 〈vn〉, in the velocity space is given by

〈vn〉 =
∫ ∞

0
vn N (v) dv∫ ∞

0
N (v) dv

, (3.21)
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Figure 3.1. Maxwell–

Boltzmann velocity

distribution function for

three different temperatures.

where n = 1, 2, 3, . . . . Note that both the average velocity 〈v〉 and the average
kinetic energy (〈E〉 = (1/2)m0〈v2〉) of a classical particle in the velocity space
can be calculated using (3.21). Table 3.1 lists some definite integrals that may be
used to calculate the average velocity to the nth power for electrons or holes in a
nondegenerate semiconductor or for gas molecules in an ideal gas system.

3.3. Fermi–Dirac Statistics

The M-B statistics described in Section 3.2 are applicable for noninteracting par-
ticles, which are assumed to be distinguishable. However, in reality it is usu-
ally impossible to distinguish electrons in a metal or in a degenerate semicon-
ductor because of the extremely high density of electrons in these materials
(1019 ≤ n0 ≤ 1023 cm−3). To apply statistical methods to particles in such a system,
an additional constraint imposed by the Pauli exclusion principle from quantum
mechanics must be considered. According to the Pauli exclusion principle, no more
than one electron with the same spin is allowed per quantum state in a degenerate

Table 3.1. Some frequently used integrals for the M-B

statistics.∫ ∞
0 e−ax2

dx = (π/4a)1/2 = (πkBT/2m)1/2∫ ∞
0 x e−ax2

dx = 1/2a = kBT/m∫ ∞
0 x2 e−ax2

dx = (π/16a3)1/2 = (
√

π/4)(2kBT/m)3/2∫ ∞
0 x3 e−ax2

dx = 1/2a2 = 2(kBT/m)2∫ ∞
0 x4 e−ax2

dx = (3/8a2)(π/a)1/2 = (3
√

π/8)(2kBT/m)5/2∫ ∞
0 x5 e−ax2

dx = 3/a3 = 3(2kBT/m)3

a = m/2kBT
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electron system. The F-D distribution function, which takes into account the Pauli
exclusion principle, may be employed to find the electron densities in a metal or
in a heavily doped semiconductor. It is interesting to note that several important
physical phenomena that cannot be explained properly using the classical M-B
statistics at very low temperatures come as a direct result of the F-D statistics.

To derive the F-D distribution function, three basic constraints must be consid-
ered. They are the conservation of particles, the conservation of energy, and the
Pauli exclusion principle, which are given by

C1(n1, n2, . . . , ni , . . . , nq ) =
q∑

i=1

ni = n, (3.22)

C2(n1, n2, . . . , ni , . . . , nq ) =
q∑

i=1

ni Ei = E, (3.23)

ni ≤ gi , (3.24)

where ni and gi denote the number of particles and quantum states in the Ei

energy level, respectively. The total energy of the system is equal to E , and the
total number of particles in the system under consideration is n. Equation (3.24)
gives the additional constraint imposed by the Pauli exclusion principle. To derive
the F-D distribution function, it is appropriate to first consider the distribution of
particles in the Ei energy level. If there are ni particles and gi quantum states
(ni ≤ gi ) in the Ei energy level, then in the gi quantum states there are gi ways of
arranging the first particle, (gi − 1) ways of arranging the second particle, (gi − 2)
ways of arranging the third particle, and so on. Thus, the total number of ways of
arranging ni particles in the gi quantum states in the Ei energy level is given by

gi (gi − 1)(gi − 2) · · · (gi − ni + 1) = gi !

(gi − ni )!
. (3.25)

Since all ni particles are indistinguishable, permutation among them cannot be
counted as independent arrangements. Thus, (3.25) must be modified to account
for the permutation of ni particles, with the result

W (ni ) = gi !

ni !(gi − ni )!
. (3.26)

Using the above procedure, the total number of independent ways of arranging
n1, n2, n3, ni , . . ., nq particles among g1, g2, g3, gi , . . ., gq quantum states in the
E1, E2, E3, Ei , . . ., Eq energy levels, with no more than one particle per quantum
state with same spin, is given by

W (n1, n2, . . . , ni , . . . , nq ) = g1!g2!g3! · · · gq !

(n1!n2! · · · nq !)(g1 − n1)!(g2 − n2)! · · · (g4 − n4)!

=
q∏

i=1

[
(gi )!

ni !(gi − ni )!

]
. (3.27)
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Taking the natural logarithm on both sides of (3.27), one obtains

ln W (n1, n2, . . . , nq ) =
q∑

i=1

ln

[
gi !

ni !(gi − ni )!

]
. (3.28)

Now using Stirling’s approximation on the right-hand side of (3.28) yields

ln W ≈
q∑

i=1

[gi ln gi − ni ln ni − (gi − ni ) ln(gi − ni )]. (3.29)

The most probable distribution function of the F-D statistics can be obtained by
differentiating (3.29) with respect to ni , and applying the method of Lagrange
multipliers on the two constraints given by (3.22) and (3.23). The result is

d ln W

dni
= ln

[
(gi − ni )

ni

]
= η

dC1

dni
+ β

dC2

dni
= η + βEi . (3.30)

From (3.30), one obtains the F-D distribution function, which reads

f (Ei ) = ni

gi
= 1

1 + e(η+βEi )
, (3.31)

where η = −Ef/kBT is the reduced Fermi energy, Ef is the Fermi energy or chem-
ical potential, and β = 1/kBT . Dropping the index i in (3.31), the F-D distribution
function can be expressed by

f0(E) = 1

1 + e(E−Ef)/kBT
. (3.32)

To explain the physical significance of the F-D distribution function given by
(3.32), one must refer to Figure 3.2a, which shows the F-D distribution function
f0(E) versus energy E for three different temperatures, and Figure 3.2b, which

Figure 3.2. Fermi–Dirac distribution function f0(E) and its derivative, d f0
d E , versus

energy E.
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shows a plot of d f0(E)/dE versus E at temperature T . As shown in Figure 3.2a, at
T = 0 K, f0(E) = 1 for E < Ef, and f0(E) = 0 for E > Ef. This means that the
probability of finding a particle with energy smaller than the Fermi energy (i.e.,
E < Ef) is equal to unity, which implies that all the quantum states below the Fermi
level Ef are completely occupied at T = 0 K. On the other hand, the probability
of finding a particle with energy greater than the Fermi energy (i.e., E > Ef) is
zero, which implies that all the quantum states above Ef are empty at T = 0 K.
These results are in sharp contrast to the results predicted by the classical M-B
statistics, which shows that the kinetic energy (E = 3

2
kBT ) for electrons is zero at

T = 0 K. The fact that the kinetic energy of electrons is not zero at T = 0 K can
be explained using the F-D statistics. It is clear from the F-D distribution function
that even at T = 0 K, electrons will fill all the quantum states up to the Fermi
level Ef. In fact, one can show that the average kinetic energy of electrons in a
metal at T = 0 K is equal to 3

5
Ef(0), where Ef(0) is the Fermi energy at T = 0 K.

As discussed previously, this result is in sharp contrast to the zero kinetic energy
predicted by the classical M-B statistics at T = 0 K.

As shown in Figure 3.2a, for T > 0 K, f0(E) = 1
2

at E = Ef, which shows that
the probability of finding an electron at the Fermi level is 50%. For E < Ef, f0(E)
is greater than 1

2
, and f0 is smaller than 1

2
for E > Ef. The results show that for

T > 0 K, the quantum states below the Fermi level are partially empty, and the
quantum states above the Fermi level are partially filled. It is these partially filled
states (electrons) and partially empty quantum states (holes) that are responsible
for the electronic conduction in semiconductors. This can also be explained using
Figure 3.2b. It shows that d f0/dE is a delta function centered at Ef, and only those
quantum states that are a few kBT above and below the Fermi level may contribute
to the electrical conduction in a semiconductor or metal.

To find the Fermi energy and the electron density in a metal at T = 0 K, it
is necessary to know the density-of-states function g(E) in the conduction band.
This is due to the fact that the density of electrons in an energy band depends
on the availability of the quantum states in that energy band and the probability
of a quantum state being occupied by an electron. The density of quantum states
for electrons in the conduction band and holes in the valence bands of a semi-
conductor can be derived using the phonon density-of-states function derived in
Section 2.5. The only difference between these two particle systems is that, in
deriving the electron density-of-states function, the spin degeneracy (= 2) due to
Pauli exclusion principle must be considered. Thus, by taking into account the
spin degeneracy of electrons, the density of quantum states per unit energy in-
terval between the constant-energy surfaces of E and E + dE in k-space can be
found from (2.34) by simply replacing the phonon frequency ω by the electron
energy E , and the phonon wave vector q by the electron wave vector k, which
yields

g(E) = 2

(
1

2π

)3 ∫
dSk

|∇k E | , (3.33)
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where dSk is the surface element in k-space and ∇k E is the gradient of energy,
which is directly related to the group velocity of electrons. The factor 2 on the
right-hand side of (3.33) accounts for the spin degeneracy. The density-of-states
function for the free-electron case can be derived as follows.

The energy of free electrons is given by

E = h̄2k2

2m0

. (3.34)

Thus, using the energy dispersion relation given by (3.34) and assuming a spherical
constant-energy surface, one obtains ∇k E = h̄2k/m0, and the surface integral in
k-space is given by

∫
dSk = 4πk2. Now, substituting these two expressions into

(3.33), one obtains the density-of-states function per unit volume as

g(E) =
(

1

4π3

)
4πk2

h̄2k/m0

=
(

4π

h3

)
(2m0)3/2 E1/2. (3.35)

Equation (3.35) shows that the density-of-states function g(E) for the free-electron
case with a parabolic energy band is proportional to the square root of the energy, as
illustrated in Figure 3.3. This result can also be applied to describe the density-of-
states functions in the conduction and valence bands of a semiconductor provided
that the free-electron mass used in (3.35) is replaced by either the electron density-
of-states effective mass (mdn

∗) in the conduction band or hole density-of-states
effective mass (mdp

∗) in the valence bands.
The equilibrium electron density in a metal can be calculated using (3.32)

and (3.35). The density of electrons with energy between E and E + dE in the

Figure 3.3. Density of quantum states g(E) versus energy E for the free-electron case.
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conduction band can be expressed by

dn = f0(E)g(E) dE =
(

4π

h3

)
(2m0)3/2 E1/2 dE

1 + e(E−Ef)/kBT
. (3.36)

Thus, the total density of electrons in a metal can be obtained by integrating
(3.36) from E = 0 to E = ∞, which yields

n0 =
∫

dn =
(

4π

h3

)
(2m0)3/2

∫ ∞

0

E1/2 dE

1 + e(E−Ef)/kBT
. (3.37)

At T = 0 K, (3.37) reduces to

n0 =
∫ Ef(0)

0

(
4π

h3

)
(2m0)3/2 E1/2 dE, =

(
8π

3h3

)
(2m0)3/2 Ef(0)3/2. (3.38)

The Fermi energy at T = 0 K can be obtained by solving (3.38), and the result
is

Ef(0) =
(

h2

8m0

) (
3n0

π

)2/3

. (3.39)

Note that in (3.39), n0 is the free-electron density, m0 is the free-electron mass,
and h is Planck’s constant. Now, substituting the value of n0 = 1 × 1022 cm−3

and m0 = 9.1 × 10−31 kg into (3.39), one finds that the Fermi energy is given by
Ef(0) = 10 eV at T = 0 K for a metal. This implies that the average kinetic energy
of electrons can still be quite large even at T = 0 K (see Problem 3.3). This result
is in sharp contrast with the prediction given by the classical M-B statistics, which
predicts that the average kinetic energy of the classical particles is equal to zero at
T = 0 K.

In a metal, both the electron density and the Fermi energy depend very weakly
on the temperature. For example, using the F-D statistics, one can show that the
first-order correction in the temperature dependence of the Fermi energy is given
by

Ef(T ) ≈ Ef(0)

[
1 − π2

12

(
T

Tf

)2
]

, (3.40)

where Ef(0) is the Fermi energy at T = 0 K, given by (3.39), and Tf = Ef(0)/kB

is the Fermi temperature. Using (3.40) and Ef(0) = 10 eV, the Fermi temperature
Tf was found to be 11,600 K. Thus, it is clear that the Fermi energy in a metal
indeed depends very weakly on temperature. In fact, if the values of Ef(0) and
Tf given above were used in (3.40), the second term in the square brackets of
(3.40) would indeed be negligible for a metal. On the contrary, both the Fermi
energy and the carrier density for an intrinsic or lightly doped semiconductor
are in general a strong function of temperature. This will be discussed further in
Chapter 5.
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3.4. Bose–Einstein Statistics

In this section the distributon function for photons and phonons is derived using
the B-E statistics. The general characteristics of photons and phonons include the
following: (i) they are indistinguishable and each is with a quantized energy value
and wave number, and (ii) the occupation number in each quantum state for these
particles is not restricted by the Pauli exclusion principle. To derive the B-E dis-
tribution function, consider a linear array of ni particles and (gi – 1) partitions,
which are necessary to divide these particles into gi quantum states. It is not diffi-
cult to see that the number of ways of arranging the ni particles among gi quantum
states is equal to the number of independent permutations of particles and par-
titions. Since there are a total of (ni + gi − 1) particles plus partitions, they can
be arranged linearly in (ni + gi − 1)! ways. However, permutations of particles
among themselves or partitions among themselves do not count as independent
arrangements; one must take into account the number of ways of permuting parti-
cles among themselves (i.e., ni !) and the number of ways of permuting partitions
among themselves ((gi − 1)!). Therefore, the total number of independent ways
of arranging ni particles among gi quantum states in the Ei energy level can be
written as

Wi = (ni + gi − 1)!

ni !(gi − 1)!
. (3.41)

In contrast to the F-D statistics, ni can be greater than gi in the B-
E statistics. Therefore, the total number of independent ways of arranging
n1, n2, . . ., ni , . . ., nq particles among E1, E2, Ei , . . ., Eq energy levels with
g1, g2, gi , . . ., gq quantum states pertaining to each corresponding energy level
is given by

ln W (n1, n2, . . . , nq ) =
q∑

i=1

ln

[
(ni + gi − 1)!

ni !(gi − 1)!

]
. (3.42)

Now differentiating (3.42) with respect to ni and using Stirling’s approximation
and Lagrange multipliers, one obtains

d ln W

dni
≈ ln

[(
gi

ni

)
+ 1

]
= α + βEi . (3.43)

From (3. 43), the B-E distribution function can be expressed as

f (Ei ) = ni

gi
= 1

(eα+βEi − 1)
, (3.44)

where α and β are constants to be determined. In the B-E statistics, since the
number of particles in each quantum state is not restricted by the Pauli exclusion
principle, the constant α can be set equal to zero, and β is equal to 1/kBT . Thus,
dropping the index i in (3.44), the B-E distribution function can be expressed as

f (E) = 1

(eh̄ω/kBT − 1)
, (3.45)
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where E = hν = h̄ω is the energy of a photon or a phonon, h is Planck’s con-
stant, and ν is the phonon or photon frequency. It is important to compare
the B-E distribution function given by (3.45) with Planck’s blackbody radia-
tion formula, which describes the photon distribution over a wide range of op-
tical spectrum. According to Planck’s blackbody radiation law, the number of
photons per unit volume having frequencies between ν and ν + dν is given
by

Qeqdν = (8πν2/c3) dν

(ehν/kBT − 1)
. (3.46)

Comparing (3.45) and (3.46) one finds that the denominators in both equations
are identical, implying that the distribution function for photons given by Planck’s
blackbody radiation law is indeed identical to the distribution function for the
photons and phonons given by the B-E statistics. It is noted that similar to the
F-D distribution function, the B-E distribution function will reduce to the classical
M-B distribution function at high temperatures (i.e., for hν ≥ 4kBT ) at which the
lattice phonons are dominated by the optical phonons.

3.5. Statistics for the Shallow-Impurity States
in a Semiconductor

The F-D distribution function derived in Section 3.3 is applicable to electrons in
the conduction band and holes in the valence bands of a semiconductor. How-
ever, the distribution of electrons in the shallow-donor states or holes in the
shallow-acceptor states in the forbidden gap of a semiconductor is somewhat
different from that in the conduction or the valence band states. The difference
stems mainly from the fact that in the forbidden gap a shallow-donor state can
be occupied by one electron with either spin-up or spin-down. Once a donor im-
purity state is occupied by one electron, it becomes a neutral donor state. As a
result, no additional electron is allowed to occupy this donor impurity state. The
distribution function of electrons in the shallow-donor state can be derived as
follows.

Consider a hydrogenic shallow-donor impurity state located a few kBT below the
conduction band edge with density Nd and ionization energy Ed. If Wd is the total
number of ways of arranging nd electrons in the Nd donor states with one electron
per state, then there are 2Nd ways of putting the first electron in the Nd donor states,
taking into account the spin degeneracy (2) of electrons. Similarly, the number of
ways of arranging the second electron in the (Nd − 1) donor states is equal to
2(Nd − 1), since there are only (Nd − 1) empty donor states available for electron
occupation This procedure can be repeated either until all the nd electrons are
filled up or until there are only 2(Nd − nd + 1) ways of arranging the last electron
in the remaining donor impurity state. Since electrons are indistinguishable, the
permutations among them do not count as independent arrangements. Therefore,
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the total number of ways of distributing nd electrons among Nd donor states is
given by

Wd = 2(Nd)2(Nd − 1)2(Nd − 2) · · · 2(Nd − nd + 1)/nd!

= 2nd Nd!

nd!(Nd − nd)!
. (3.47)

Comparing (3.47) and (3.26) reveals that an extra factor of 2nd is included in
(3.47) to account for the Coulombic nature of the shallow-donor impurity states.
Applying the same procedure as described in the previous sections to (3.47),
the distribution function of electrons in a shallow-donor state can be written
as

f (Ed) = nd

Nd

= 1

1 + 1
2

e(Ed−Ef)/kBT
. (3.48)

From (3.48), it is noted that a degenerate factor of 1
2

appears in the exponential
term of the denominator. This degenerate factor is to account for the Coulombic
interaction between the electron and the ionized donor impurity state. A more
generalized expression for the electron distribution function in a shallow-donor
state can be obtained by replacing the degenerate factor 1

2
in (3.48) by g−1

D , where
gD is the degeneracy factor of the shallow-donor state. Values ofgd may vary
between 2 and 12 depending on the nature of the shallow-donor states and the
conduction band structure of a semiconductor. For semiconductors with a single
spherical conduction band, gd = 2, and for the multivalley semiconductor such as
silicon, gd is equal to 12.

The above derivation can also be applied to find the distribution function of
holes in the shallow-acceptor states. Using a similar procedure for electrons, it can
be shown that the distribution function of holes in a shallow-acceptor state is given
by

f (Ea) = pa

Na

= 1

1 + gA e(Ef−Ea)/kBT
. (3.49)

Equation (3.49) is the distribution function for holes in the shallow-acceptor states,
which can be used in calculating the hole density in the shallow-acceptor states of
a semiconductor. Note that gA is the degenerate factor for the acceptor states; for
the valence bands with a heavy-hole band and a light-hole band, the value of gA

is equal to 4.
The M-B and F-D distribution functions and the density-of-states function de-

rived in this chapter are very important for calculating the density of electrons and
holes in a semiconductor. While the M-B statistics are applicable to both the ideal
gas system and nondegenerate semiconductors, the F-D statistics are used mainly
for metals and degenerate semiconductors. On the other hand, the B-E statistics
are used primarily for calculating the average energy and population distribution
of phonons and photons.
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Problems

3.1. Using (3.20), show that the average velocity of a classical particle is given by

〈v〉 = (8kBT/πm0)(1/2).

3.2. Using the M-B statistics, find the average kinetic energy of classical par-
ticles. What is the root-mean-square value of the velocity? The average
kinetic energy of a classical particle can be obtained using the following
equation:

〈E〉 =
∫ ∞

0
Eg(E) exp(−E/kBT )dE∫ ∞

0
g(E) exp(−E/kBT )dE

,

where g(E) is the density-of-states function given by (3.35).
3.3. Using the F-D statistics and Problem 3.2, derive a general expression for the

average kinetic energy of electrons, and show that at T = 0 K, the average
energy of electrons 〈E〉 is equal to ( 3

5
)Ef(0). Compare the average kinetic

energies predicted by both the M-B and F-D statistics at T = 0 K, and explain
the physical meanings of their difference.

3.4. Calculate the Fermi energy (in eV) for electrons in sodium and copper at
T = 0 K. Assuming one electron per atom, calculate the equivalent Fermi
temperature for each case.

3.5. Plot the F-D distribution function f0(E) and its derivative ∂ f0(E)/∂ E as a
function of electron energy for T = 0, 300, 600, and 1000 K.

3.6. Derive (3.40). Hint: The temperature dependence of the Fermi energy for a
metal can be derived using the integral.

I =
∫ ∞

0

f0(E)(dG(E)/dE) dE,

where f (E) is the F-D distribution function and G(E) is a well-behaved
function that vanishes at E = 0. Using integration by parts and Taylor’s se-
ries expansion in G(E) with respect to E = Ef, the above integral reduces
to

I = G(Ef) +
(

π2

6

)
(kBT )2

(
d2G(E)

dE2

)
|Ef

+ · · · ,

where

G(E) =
∫ E

0

g(E) dE,
dG(E)

dE
= g(E),

d2G(E)

dE2
= dg(E)

dE
.

Here g(E) is the density-of-states function given by (3.35). It is noted that
the temperature dependence of free-electron density n0 in a metal can be
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expressed by

n0 =
∫ ∞

0

f0(E)g(E) dE

=
∫ Ef

0

g(E) dE +
(

π2

6

)
(kBT )2

(
dg(E)

dE

)
Ef

.

At T = 0 K,

n0 =
∫ Ef(0)

0

g(E) dE .

3.7. Using the results given in Problem 3.6, show that the electronic specific heat
for a metal is given by

Ce = dU

dT
=

(
π2n0kB

2

) (
T

Tf

)
,

where U is the average energy of electrons at any given temperature, given
by

U =
∫ ∞

0

Eg(E) f (E) dE = U0 +
(

π2

6

)
(kBT )2g(Ef(0)).

3.8. Derive (3.48) and (3.49).
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4
Energy Band Theory

4.1. Introduction

In this chapter the one-electron energy band theories for crystalline solids are
presented. The importance of energy band theories for a crystalline solid is due to
the fact that many important physical and optical properties of a solid can be readily
explained using its energy band structure. In general, the energy band structure of
a solid can be constructed by solving the one-electron Schrödinger equation for
electrons in a crystalline solid that contains a large number of interacting electrons
and atoms. To simplify the difficult task of solving the Schrödinger equation for
the many-body problems in a crystal, the effects that arise from the motion of
atomic nuclei must be neglected (i.e., it is assumed that the nuclei are at rest in
the equilibrium positions at each lattice site). Under this condition, the nuclear
coordinates enter the problem only as a constant parameter. However, even though
the problem is confined as a purely electronic one, there are still the many-electron
problems in the system that cannot be solved explicitly. Therefore, it is necessary to
apply additional approximations in solving the Schrödinger equation for electrons
in a crystalline solid.

One of the most fruitful methods developed for solving the many-electron prob-
lems in a crystal is the one-electron approximation. In this method the total wave
functions of electrons are chosen as a linear combination of the individual wave
functions in which each wave function involves only the coordinates of one elec-
tron. It is this approximation that forms the basic framework for calculating the
energy band structure of a solid. This method can be described by assuming that
each electron sees, in addition to the potential of the fixed charges (i.e., positive
ions), only some average potential due to the charge distribution of the rest of
the electrons in the solid. Therefore, the movement of each electron is essentially
independent of the other electrons throughout the crystal lattice. By means of the
one-electron approximation, the solution of the many-electron problems is reduced
to (1) finding equations that are satisfied by the one-electron wave functions and (2)
obtaining adequate solutions for the electron wave functions and electron energies
in the crystal under consideration.

61
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Section 4.2 presents the basic quantum concepts and wave mechanics that are
essential for dealing with systems of atomic scale and for solving the electron wave
functions and energy band structures in crystalline solids. Section 4.3 describes
the basic constraints imposed on the electron wave functions that are attributed
to the translational symmetry of the periodic crystal. For example, suitable elec-
tron wave functions in a crystal must obey the Bloch theorem. According to this
theorem, the electron wave functions in a periodic crystal consist of a plane wave
modulated by a Bloch function that has the same periodicity as the crystal poten-
tial. Section 4.4 depicts the Kronig–Penney model for the one-dimensional (1-D)
periodic crystal lattice. Section 4.5 describes the nearly free electron (NFE) ap-
proximation for a three-dimensional (3-D) crystal lattice. The NFE method can
be used to find the electronic energy states for the outer-shell valence electrons in
which the periodic potential of the crystal can be treated as a small perturbation.
Section 4.6 presents the tight-binding approximation (or a linear combination of
atomic orbits (LCAO)). The LCAO method may be employed to calculate the elec-
tronic states for the inner shell core electrons in a crystalline solid. The solutions
of Schrödinger equations and the density of states functions for low-dimensional
systems (0-D, 1-D, 2-D, quasi-1-D, and quasi-2-D) will also be discussed in this
section. Section 4.7 describes the energy band structures for some elemental and
compound semiconductors. In general, the calculations of energy band structures
for semiconductors are carried out using more rigorous and sophisticated methods
than those described in this chapter. The effective mass concept for electrons and
holes in a semiconductor is presented in Section 4.8.

4.2. Basic Quantum Concepts and Wave Mechanics

In this section several important historical experimental observations dealing with
blackbody radiation, optical spectra emitted by atoms, and the wave like nature of
particles that could not be explained by the classical mechanics, and the success of
quantum mechanics in describing the behavior of systems with atomic dimensions
will be discussed.

4.2.1. Planck Blackbody Radiation Formula

For an ideal radiator, called the blackbody, the spectrum or the wavelength de-
pendence of the emitted radiation is described by Planck’s blackbody radiation
law. Various attempts to explain the observed blackbody radiation spectrum were
made in the later half of the nineteenth century. Rayleigh and Jeans first proposed
the concept of blackbody radiation, based on classical mechanics, that the heat
absorbed by a material should cause vibration of atoms within the solid. The vi-
brating atoms were modeled as harmonic oscillators with a spectrum of normal
mode frequency ν = ω/2π , and a continuum of allowed energies distributed in
accordance with statistical considerations. The emitted radiation was in essence
equated to a sampling of the energy distribution inside the solid. This classical
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theory was in good agreement with experimental observation at long wavelengths
but failed at short wavelengths. In 1901, Max Planck provided a detailed theo-
retical fit to the observed blackbody spectrum. The explanation was based on the
hypothesis that the vibrating atoms in a material could radiate or absorb energy
only in discrete packets. Specifically, for a given atomic oscillator vibrating at a
frequency v, Planck postulated that the energy of the oscillator was restricted to
the quantized values

En = nhν = nh̄ω, n = 0, 1, 2, 3 . . . , (4.1)

where h = 6.628 × 10−34 J/s (h̄ = h/2π ) is Planck constant. Planck’s blackbody
radiation formula for describing the photon emission spectra is given by

S(ν) =
∫

Qeqdν =
∫

(8πν2/c3)dν

(ehν/kBT − 1)
. (4.2)

It is noted from the above equation that for atomic-dimension systems the classical
view, which always allows a continuum of energies, is experimentally incorrect.
Extremely small discrete steps in energy, or energy quantization, can occur in a
photon, and is a central feature of quantum mechanics. A comparison of the black-
body radiation formula given by (4.2) with the Bose–Einstein (B-E) distribution
function given by (3.45) reveals that blackbody radiation indeed obeys the B-E
statistics.

4.2.2. Bohr Model for the Hydrogen Atom

Another experimental observation that puzzled scientists in the nineteenth century
was the sharp, discrete spectral lines emitted by heated gases. In 1913, Niels
Bohr proposed a model explaining the discrete nature of the spectra emitted by
heated gases. Building on Planck’s hypothesis and Rutherford’s atomic model,
Bohr suggested that the electrons in an atom are restricted to certain well-defined
orbits, or, equivalently, assumed that the orbiting electrons could take on only
certain (quantized) values of angular momentum L.

For the simple hydrogen atom with Z = 1 and a circular electron orbit, the Bohr
postulate of angular momentum can be expressed by

Ln = m0vrn = nh̄, n = 1, 2, 3 . . . , (4.3)

Since the electron orbits are assumed stable, the centripetal force on the electron
must be balanced by the Coulomb attractive force. Thus, one obtains

m0v
2

rn
= q2

4πε0r2
n

. (4.4)

Solving (4.3) and (4.4) yields

rn = 4πε0(nh̄)2

m0q2
. (4.5)
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Next, the total energy of an electron (En) is equal to the sum of kinetic energy
(K.E.) and potential energy (P.E.). The kinetic energy is given by

K.E. = 1

2
m0v

2 = 1

2

q2

4πε0rn
, (4.6)

and the potential energy is given by

P.E. = −q2

4πε0rn
. (4.7)

Note that the potential energy vanishes for rn → ∞.
From (4.6) and (4.7), the total electron energy is given by

En = P.E. + K.E. = 1

2

−q2

4πε0rn
. (4.8)

Substituting rn given by (4.5) into (4.8) yields

En = − m0q4

2(4πε0nh̄)2
= −13.6

n2
(eV), (4.9)

where n = 1, 2, 3. . .. Equation (4.9) shows that the ionization energy of the first
Bohr orbit with n = 1 is E1 = −13.6 eV. The allowed energy transitions in the
hydrogen atom as predicted by Bohr’s model are found in excellent agreement
with the obsverved spectral lines. Although Bohr’s model given by (4.9) success-
fully predicted the hydrogen spectrum, the model failed to predict the spectra of
more complex atoms such as helium. Nevertheless, the Bohr theory reinforced the
concept of energy quantization and failure of the classical mechanics in dealing
with systems on an atomic scale. The quantization of angular momentum in Bohr’s
model clearly extended the quantum concept in dealing with systems of atomic
dimensions.

4.2.3. The Wave–Particle Duality

In 1925 de Broglie suggested that since electromagnetic radiation (waves) ex-
hibited particle-like (photon) properties, particles should also exhibit wave like
properties. De Broglie further hypothesized that, parallel to the photon momen-
tum calculation, the wavelength characteristic of a given particle with momentum p
can be calculated from p = h/λ, where λ is the wavelength of the electromagnetic
radiation. Based on de Broglie’s wave–particle duality hypothesis, the momentum
of a particle (or wave) can be written as

p = m0v = h̄k. (4.10)

Although pure conjecture at the time, the de Broglie hypothesis was quickly con-
firmed by the well-established fact of the wave–particle duality of electromagnetic
radiation.

Based on the experimental evidence of blackbody radiation, the Bohr atom,
and the wave–particle duality, one is led to the conclusion that classical mechanics
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does not accurately describe the action of particles in systems of atomic dimension.
Experiments point to a quantization of observables (energy, angular momentum,
etc.) and to the inherent wave like nature of all matter.

4.2.4. Schrödinger Equations

In 1926, Schrödinger established a unified scheme valid for describing both the
microscopic and macroscopic universes. The formulation, called wave mechanics,
which incorporated the physical notion of quantization first advanced by Planck
and the wave like nature of matter hypothesized by de Broglie, was subsequently
developed by Schrödinger to treat the electron systems in crystalline materials.
There are five basic postulates in Schrödinger wave mechanics for a single-particle
system:

(a) There exists a wave function � = �(r, t), where r = x, y, z, from which one
can ascertain the dynamic behavior of the system and all desired system vari-
ables. Note that ψ(r, t) may be a complex quantity with real and imaginery
parts and is in general a function of space coordinates, r = x, y, z, and time, t.

(b) The wave function ψ(r, t) for a given system and specified system constraints
is determined by solving the time-dependent Schrödinger equation, which is
given by

−h̄2

2m
∇2� + V (r )� = −h̄

i

∂�

∂t
, (4.11)

where V (r ) is the potential energy of the system, and i = √−1.
(c) Both ψ and ∇ψ must be finite, continuous, and single-valued for all values of

r and t.
(d) If ψ∗ is the conjugate of ψ , then ψ∗ψdr3 represents the probability that the

particle will be found in the volume element dr3. Thus,∫
v

�∗�dr3 = 1. (4.12)

Equation (4.12) implies that the probability of finding a particle over the entire
space is equal to unity.

(e) The expectation value of a system variable such as momentum p and position
r can be calculated from the mathematical operator

〈α〉 =
∫

�α�∗dr3. (4.13)

To deal with electrons in crystalline solids, the time-independent Schrödinger
equation is used to solve the electron wave functions and energy states in such
solids. If the electron in the crystal under consideration has a fixed total energy E,
then the quantum-mechanical formulation of the problem can be greatly simplified.
Using (4.13), the expectation value of energy 〈E〉 is equal to a constant E, and the
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right-hand side of (4.11) becomes

− i

h̄

∂ψ

∂t
= Eψ. (4.14)

Using the separation of variables method, the time-dependent wave functions
ψ(r, t) given in (4.11) can be expressed in terms of the product of the time-varying
phase factor e−i Et/h̄ and the spatially dependent wave functions φ(r ) as

ψ(r, t) = φ(r )e−i Et/h̄ . (4.15)

Now, substituting (4.14) and (4.15) into (4.11), one obtains

−
(

h̄2

2m

)
∇2φ(r ) + V (r )φ(r ) = Eφ(r ). (4.16)

Equation (4.16) is called the time-independent Schrödinger equation, and φ(r )
is a function only of the space coordinate, r. This time-independent Schrödinger
equation is the basis for solving the one-electron energy band theory and related
problems in crystalline materials.

4.3. The Bloch–Floquet Theorem

The Bloch–Floquet theorem states that the most generalized solution for a one-
electron time-independent Schrödinger equation in a periodic crystal lattice is
given by

φk(r ) = uk(r )eik·r , (4.17)

where uk(r ) is the Bloch function, which has the spatial periodicity of the crystal
potential, and k(=2π/λ) is the wave vector of the electron. The one-electron time-
independent Schrödinger equation for which φk(r ) is a solution is given by (4.16)
and can be rewritten as

−
(

h̄2

2m

)
∇2φk(r ) + V (r )φk(r ) = Ekφk(r ), (4.18)

where V (r ) is the periodic crystal potential, which arises from the presence of ions
at their regular lattice sites, and has the periodicity of the crystal lattice given by

V (r ) = V (r + R j ). (4.19)

Note that R j is the translational vector in the direct lattice defined by (1.3). To
prove the Bloch theorem, it is necessary to consider the symmetry operation, which
translates an eigenfunction in a periodic crystal lattice via the translational vector
R j . This translational operation can be expressed by

Tj f (r ) = f (r + R j ). (4.20)

The periodicity of a crystal lattice can be verified from the fact that f (r ) is invariant
under the symmetry operations of Tj . Since the translational operator Tj commutes
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with the Hamiltonian H, it follows that

Tj Hφk = H Tjφk . (4.21)

Since φk is an eigenfunction of Tj , one may write

Tjφκ (r ) = φk(r + R j ) = σ jφk(r ), (4.22)

where σ j is a phase factor and an eigenvalue of Tj . The phase factor σ j can be
expressed by

σ j = eik·Rj , (4.23)

where k is the wave vector of electrons, which can be a complex number in
a periodic crystal. If one performs two successive translational operations (i.e.,
Tj Ti ) on the wave function φk , one obtains from (4.22) and (4.23) the following
relationship:

Tj Tiφk = Tjσiφk = eik·(Ri +R j )φk(r ). (4.24)

From (4.17), the Bloch function uk(r ) can be written as

uk(r ) = e−ik·rφk(r ). (4.25)

Now solving (4.22), (4.24), and (4.25), one obtains

Tj uk(r ) = uk(r + R j ) = Tj
[
e−ik·rφk(r )

]
= e−ik·(r+R j )Tjφk(r ) = e−ik·(r+R j )eik·R j φk(r )

= e−ik·rφk(r ) = uk(r ). (4.26)

Thus, from the symmetry operations given by (4.26) one obtains

uk(r + R j ) = uk(r ), (4.27)

which shows that the Bloch function uk(r ) has indeed the same periodicity in space
as the crystal potential V (r ). Therefore, the general solution of (4.18) is given by
(4.17). From (4.17), it is noted that the electron wave function in a periodic crystal
lattice is a plane wave modulated by the Bloch function. The Bloch function uk(r )
is invariant under translation. It should be pointed out here that the exact shape
of uk(r ) depends on the electron energy Ek and the crystal potential V (r ) of a
crystalline solid. Thus, the Bloch theorem described in this section can be applied
to solve the electron wave functions and energy band structures (i.e., Ek vs. k
relation) for the crystalline solids with periodic potential.

4.4. The Kronig–Penney Model

In this section, the one-electron Schrödinger equation is used to solve the elec-
tron wave functions and energy states for a one-dimensional (1-D) periodic lat-
tice. The periodic potential V (x) for the 1-D lattice is shown in Figure 4.1a. The
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(a)

(b)

Figure 4.1. (a) A one-dimensional (1-D) periodic potential distribution. (b) The Kroning–
Penney model for a 1-D periodic lattice.

Kronig–Penney model shown in Figure 4.1b is used to replace the periodic poten-
tial of a 1-D crystal lattice with a delta function at each lattice site. In this model, it is
assumed that V (x) is zero everywhere except at the atomic site, where it approaches
infinity in such a way that the integral of V (x) dx over the potential barrier remains
finite and equal to a constant C. Inside the potential barrier, the electron wave func-
tions must satisfy the one-electron Schrödinger equation, which is given by(

h̄2

2m

)
d2φk

dx2
+ [E − V (x)]φk = 0, (4.28)

where V (x) is the periodic potential with period a. According to the Bloch–Floquet
theorem discussed above, the general solution of (4.28) is given by

φk(x) = uk(x)eik·x. (4.29)

Note that between the potential barriers (i.e., 0 < x < a), V (x) = 0, and (4.28)
becomes

∂2φk

∂x2
+ k2

0φk = 0, (4.30)

where

k2
0 = 2m E

h̄2 , (4.31)

and k0 is the wave vector of free electrons. Since the solution of the electron
wave functions given by (4.29) is valid everywhere in the periodic lattice, one
can substitute (4.29) into (4.30) to obtain an equation that contains only the Bloch
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function uk(x), namely,

d2uk

dx2
+ 2ik

duk

dx
+ (

k2
0 − k2)uk = 0. (4.32)

This is a second-order differential equation with constant coefficients, and the roots
of its characteristic equation are equal to –i(k ± k0). Thus, the general solution of
(4.32) for uk(x) can be expressed as

uk(x) = e−ik·x (A cos k0x + B sin k0x), (4.33)

where A and B are constants, which can be determined from the periodic boundary
conditions. The first boundary condition can be obtained by noting the fact that
both uk(x) and φk(x) are invariant under translation. Thus, one can write

uk(0) = uk(a), (4.34)

where a is the period of the crystal potential (i.e.,V (x) = V (x + a)). To calculate
the change in the slope of the electron wave functions across the infinitely thin
potential barrier at the atomic site, one can integrate (4.28) from x = 0− on the
left-hand side of the potential barrier to x = 0+ on the right-hand side of the
potential barrier at x = 0. This yields∫ 0+

0−

{
∂2φk

∂x2
+

(
2m

h̄2

)
[E − V (x)]φk

}
dx = 0, (4.35)

or

φ′
k(0+) − φ′

k(0−) =
(

2m

h̄2

)
Cφk(0), (4.36)

where C is defined by (4.43).
Equation (4.36) is obtained using the fact that as x → 0 inside the potential

barrier, integration of Edx over the barrier width is equal to 0, and the change in
the slope of the electron wave functions (φ′

k = dφk/dx) across the potential barrier
is given by (4.36). From (4.29) and (4.36), one obtains the derivative of uk as

u′
k(0+) − u′

k(0−) =
(

2mC

h̄2

)
uk(0). (4.37)

Now, replacing 0+ = 0 and 0− = a in (4.37), the second boundary condition for
uk(x) is given by

u′
k(0) = u′

k(a) +
(

2mC

h̄2

)
uk(0). (4.38)

Note that the first derivative of uk(x) is identical on the left-hand side of each poten-
tial barrier shown in Figure 4.1b. Next, substituting the two boundary conditions
given by (4.34) and (4.38) into (4.33), one obtains two simultaneous equations for
A and B:

A(e−ika cos k0a − 1) + B(e−ika sin k0a) = 0, (4.39)

A

[
−ik(1 − e−ika cos k0a) +

(
e−ikak0 sin k0a − 2mC

h̄2

)]
+ B

[
k0 + e−ika(ik sin k0a − k0 cos k0a)

] = 0. (4.40)
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In order to have a nontrivial solution for (4.39) and (4.40), the determinant of the
coefficients of A and B in both equations must be set equal to 0, which yields∣∣∣∣∣∣

[e−ika cos k0a − 1]

−ik(1 − e−ika cos k0a) +
(

e−ikak0 sin k0a − 2mC

h̄2

)

×
e−ika sin k0a[
k0 + e−ika(ik sin k0a − k0 cos k0a)

]
∣∣∣∣∣∣ = 0 (4.41)

Solving (4.41), one obtains

cos ka =
(

P

k0a

)
sin k0a + cos k0a, (4.42)

where P = mCa/h̄2, and C is defined by

C = lim
V (x)→∞

dx→0

[∫ 0+

0−
V (x)dx

]
. (4.43)

Equation (4.42) has a real solution for the electron wave vector k if the value of the
right-hand side of (4.42) lies between −1 and +1. Figure 4.2 shows a plot of the
right-hand-side term of (4.42) versus k0a for a fixed value of P. It is noted that the
solution of (4.42) consists of a series of alternate allowed and forbidden regions,

Figure 4.2. A plot of the magnitude of the right-hand side of (4.26) versus k0a for a
one-dimensional periodic lattice.
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with the forbidden regions becoming narrower as the value of k0a becomes larger.
We now discuss the physical meaning of Figure 4.2.

It is noted that the magnitude of P is closely related to the binding energy of
electrons in the crystal. For example, if P is zero, then one has the free-electron
case, and the energy of the electrons is a continuous function of the wave vector k,
as given by (4.31). On the other hand, if P approaches infinity, then the energy of
the electrons becomes independent of k. This corresponds to the case of an isolated
atom. In this case, the values of electron energy are determined by the condition that
sin k0a in (4.42) must be set equal to 0 as P approaches infinity, which implies k0a =
nπ . Thus, the electron energy levels are quantized for this case, and are given by

En = h̄2k2
0

2m0
= n2π2h̄2

2m0a2
, (4.44)

where n = 1, 2, 3 . . . . In this case, the electrons are completely bound to the atom,
and their energy levels become discrete. If P has a finite value, then the energy band
scheme of electrons is characterized by the alternate allowed and forbidden energy
regions, as shown in Figure 4.2. The allowed regions are the regions in which the
magnitude of the right-hand side in (4.42) lies between −1 and +1, while the
forbidden regions are the regions in which the magnitude of the right-hand side is
greater than 1. It is further noticed from this figure that the forbidden region be-
comes smaller and the allowed region becomes larger as the value of k0a increases.

Figure 4.3 shows the plot of electron energy as a function of P. As shown in
this figure, the origin, where P = 0, corresponds to the free-electron case, and the
energy of electrons is continuous in k-space. In the region where P has a finite value,

Figure 4.3. The energy versus P for a one-dimensional (1-D) periodic lattice.
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Figure 4.4. The energy band diagram for a one-dimensional (1-D) periodic potential.

the energy states of electrons are characterized by a series of allowed (shaded area)
and forbidden regions. As P approaches infinity, the energy of electrons becomes
discrete (or quantized), which corresponds to the case of an isolated atom with
atomic spacing a → ∞.

Based on the Kronig–Penney model discussed above, a schematic energy band
diagram for the 1-D periodic lattice is illustrated in Figure 4.4, which is plot-
ted in the extended zone scheme. The values of the wave vector k are given by
−nπ/a, . . . ,−π/a, 0, +π/a, . . . , nπ/a. The first Brillouin zone, known as the
unit cell of the reciprocal lattice, is defined by the wave vectors with values vary-
ing between –π/a and +π/a. Figure 4.4 illustrates two important physical aspects
of the energy band diagram: (i) at the zone boundaries where k = ±nπ/a and
n = 1, 2, 3, . . ., there exists an energy discontinuity, and (ii) the width of allowed
energy bands increases with increasing electron energy, and the width of forbidden
gaps decreases with increasing electron energy.

If the energy band diagram (i.e., E vs. k) is plotted within the first Brillouin
zone, then it is called the reduced zone scheme. The reduced zone scheme
(i.e., –π/a ≤ k ≤ π/a) is more often used than the extended zone scheme because
for any values of the wave vector k′ in the higher zones there is a corresponding
wave vector k in the first Brillouin zone, and hence it is easier to describe the elec-
tronic states and the related physical properties using the reduced zone scheme.
The relation between k′ and k can be obtained via the translational symmetry
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(a) (b)

Figure 4.5. (a) Energy band diagrams for an isolated silicon atom, and (b) a one-
dimensional silicon lattice.

operation, which is given by

k′ = k ± 2nπ/a, (4.45)

where k′ represents the wave vector in the higher zones, k is the corresponding
wave vector in the first Brillouin zone, n = 1, 2, 3 . . . , and a denotes the lattice
constant of the crystal. Thus, the reduced zone scheme contains all the information
relating to the electronic states in the crystalline solids.

The Kronig–Penney model described above can be employed to construct the
energy band diagrams of an isolated silicon atom and an artificial 1-D periodic
silicon lattice. Figures 4.5a and b show the discrete energy level schemes for such
an isolated silicon atom and the energy band diagram for a 1-D silicon lattice,
respectively. As shown in Figure 4.5a, electrons in the 3s and 3p shells are known
as the valence electrons, while electrons in the 1s, 2s, and 2p orbits are called the
core electrons. When the valence electrons are excited into the conduction band,
the conductivity of a semiconductor increases. It is noted that as the spacing of
silicon atoms reduces to a few angstroms, the discrete energy levels shown in
Figure 4.5a broaden into energy bands, and each allowed energy band is separated
by a forbidden band gap. In this energy band scheme the highest filled band (i.e.,
3s and 3p states for silicon) is called the valence band, while the lowest empty band
is called the conduction band. In a semiconductor, a forbidden band gap always
exists between the conduction and the valence bands, while in metals the energy
bands are usually continuous. For most semiconductors, the band gap energies
may vary between 0.1 and 6.2 eV.

The main difference in the energy band scheme between the 1-D and 2- or
3-D crystal lattices is that in the 1-D case, an energy discontinuity always exists
at the zone boundary, and hence the energy band is characterized by a series of
alternate allowed and forbidden bands. However, in the 3-D case, the energy band
discontinuity may or may not exist, since the values of kmax at the zone boundaries
along different crystal orientations may be different, as is clearly illustrated in
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Figure 4.6. Energy band dia-
grams in the reduced zone scheme
for a three-dimensional (3-D)
rectangular lattice, assuming a �=
b �= c.

Figure 4.6. This will lead to an overlap of energy states at the zone boundaries and
hence the possible disappearance of the band gap in the 3-D energy band diagram.
It should be mentioned that the electron wave functions in a 3-D periodic crystal
lattice are of the Bloch type and can be described by (4.17). In the next section we
shall describe the nearly free electron (NFE) approximation for constructing the
energy band scheme of valence electrons in a semiconductor. It is noted that the
NFE approximation can provide only a qualitative description of the energy band
schemes for the valence electrons in a 3-D crystal lattice. To obtain true energy
band structures for semiconductors and metals, more rigorous and sophisticated
methods such as the pseudopotential and orthogonalized plane wave methods must
be used in calculations of the energy band structures for these materials.

4.5. The Nearly Free Electron Approximation

In Section 4.4, it was shown that when the value of P in (4.42) is small compared
to k0a, the behavior of electrons in the 1-D periodic lattice should resemble that
of the free-electron case, in which the energy band is continuous in k-space. In a
semiconductor, the outer-shell valence electrons are loosely bound to the atoms,
and the effect of the periodic crystal potential on the electron wave functions can
be treated as a perturbing potential. In this case, the nearly free electron (NFE)
approximation can be applied to deal with the valence electrons.

In order to apply the NFE approximation to a 3-D crystal lattice, the periodic po-
tential must be treated as a small perturbation. In doing so, one assumes that the per-
turbing potential is small compared to the average energy of electrons. The problem
can then be solved using the quantum-mechanical stationary perturbation theory.
From wave mechanics, the stationary perturbation method can be derived using
the first- and second-order approximations in the time-independent Schrödinger
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equation. In the NFE approximation, it is assumed that the total Hamiltonian H
consists of two parts, H0 and H ′, with H0 being the unperturbed Hamiltonian and
H ′ the perturbed Hamiltonian. Thus, one can write

H = H0 + aH ′, for a ≤ 1. (4.46)

The unperturbed one-electron Schrödinger equation is given by

H0φn0 = En0φn0, (4.47)

where φn0 and En0 are the unperturbed eigenfunctions and eigenvalues, respec-
tively. The perturbed Schrödinger equation is given by

Hφn = Enφn. (4.48)

From stationary perturbation theory, the solutions of the electron wave functions
and energies in (4.48) can be expressed in terms of power series expansions, which
are given, respectively, by

φn = φn0 + aφn1 + a2φn2 + · · · , where a ≤ 1, (4.49)

En = En0 + aEn1 + a2 En2 + · · · . (4.50)

The new perturbed wave functions φnj ( j = 1, 2, 3, . . .) given in (4.49) and (4.50)
can be expressed in terms of a linear combination of the unperturbed wave functions
φl0 as

φnj =
∞∑

l=0

bl jφl j . (4.51)

Now, substituting (4.46), (4.49), and (4.50) into (4.48) and equating the coefficients
of the a and a2 terms on both sides of (4.49) and (4.50), one obtains

H0φn1 + H ′φn0 = En0φn1 + En1φn0, (4.52)

H0φn2 + H ′φn1 = En0φn2 + En1φn1 + En2φn0. (4.53)

Note that (4.52) contains the coefficients of the a term, and (4.53) contains the
coefficients of the a2 term. For simplicity one can set a equal to 1. Consequently,
the first-order correction of energy, En1, and wave function, φn1, is obtained by
multiplying both sides of (4.52) by the unperturbed conjugate wave function φ∗

m0
and integrating the equation over the entire volume. This yields

∫
φ∗

m0

[
H0

( ∞∑
l=0

bl1φl0

)
+H ′φn0

]
dr3 =

∫
φ∗

m0

[
En0

( ∞∑
l=0

bl1φl0

)
+ En1φn0

]
d3r.

(4.54)

Integrating (4.54) using the orthonormality of the wave functions φn0 and the
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Hermitian property of H0, one obtains

bm1 Em0 +
∫

φ∗
m0 H ′φn0d3r = En0bm1 for m �= n, (4.55)

and

En1 =
∫

φ∗
n0 H ′φn0dr3 = H ′

nn for m = n. (4.56)

Solving (4.55) and (4.56) yields

bm1 = H ′
mn

(En0 − Em0)
for m �= n, (4.57)

En1 = 0 for m = n. (4.58)

In (4.57), H ′
mn is called the matrix element, and is defined by the second term

on the left-hand side of (4.55). Thus, the new electron wave function φn with the
first-order correction using the stationary perturbation theory is given by

φn = φn0 + φn1 = φn0 +
∞∑

m=0
m �=n

H ′
mnφm0

(En0 − Em0)
, (4.59)

where the matrix element H ′
mn can be expressed by

H ′
mn =

∫
φ∗

m0 H ′φn0dr3, (4.60)

where H ′ is the perturbing Hamiltonian. Equation (4.59) can be used to find
the wave functions of valence electrons in a periodic crystal lattice using the
NFE approximation. In order to find the lowest-order correction of the electron
energy due to the perturbing potential H ′, it is usually necessary to carry out
the expansion to the second-order correction given by (4.50). The reason for the
second-order correction in energy calculations is that the perturbed Hamiltonian
H ′ has a vanishing diagonal matrix element such that the first-order correction
in energy is equal to 0 (i.e., En1 = 0). This can be explained by the fact that the
perturbed Hamiltonian H ′ is usually an odd function of the coordinates, and hence
H ′

nn is equal to 0. From (4.51), the perturbed wave functions for the first- and
second-order corrections are given, respectively, by

φn1 =
∞∑

l=0

bl1φl0, (4.61)

φn2 =
∞∑

l=0

bl2φl0. (4.62)

Now, substituting (4.61) and (4.62) into (4.53) and using the same procedure
as described above for the first-order correction of electron wave functions, one
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obtains the second-order correction of energy, which is

En2 =
∞∑

m=0
m �=n

|H ′
nm |2

(En0 − Em0)
. (4.63)

Using (4.63), the expression for the electron energy corrected to the second order
is given by

En = En0 +
∞∑

m=0
m �=n

|H ′
nm |2

(En0 − Em0)
. (4.64)

Equations (4.59) and (4.64) are the new wave functions and energies of electrons
derived from the quantum-mechanical stationary perturbation theory. The results
may be used in the NFE approximation to find the wave functions and energies of
the outer-shell electrons of a crystalline solid. As mentioned earlier, the valence
electrons in a semiconductor are loosely bound to the atoms, and hence the periodic
crystal potential seen by these valence electrons can be treated as a small perturbing
Hamiltonian. The unperturbed one-electron Schrödinger equation is described by

−h̄2

2m0
∇2φ0

k (r ) = E0
k φ

0
k (r ), (4.65)

which has the solutions of free-electron wave functions and energies given, re-
spectively, by

φ0
k (r ) =

√
1

N V
eik·r , (4.66)

E0
k = h̄2k2

2m0
, (4.67)

where N is the total number of unit cells in the crystal, V is the volume of the unit
cell, φ0

k (r ) are the free-electron wave functions, and E0
k is the free-electron energy.

The preexponential factor given by (4.66) is the normalization constant. The one-
electron Schrödinger equation in the presence of a periodic crystal potential V (r )
is given by (

− h̄2

2m∗

)
∇2φk(r ) + V (r )φk(r ) = Ekφk(r ), (4.68)

where m∗ is the effective mass of electrons in the crystal. The crystal potential
V (r ) can be expressed in terms of the Fourier expansion in the reciprocal space,
which is given by

V (r ) =
∑
K j

v(K j )e
−i K j ·r , (4.69)

where K j is the reciprocal lattice vector and v(K j ) is the Fourier coefficient of the
periodic potential V (r ).
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The new electron wave functions and energies can be obtained by finding the
matrix element Hk ′k due to the periodic crystal potential V (r ) using the stationary
perturbation method described above. Now substituting (4.69) into (4.60), the
matrix element due to the periodic potential V (r ) is given by

Hkk ′ =
∫

φ∗
k ′ (r )|V (r )|φk(r )dr3

=
(

1

N V

) ∫
e−ik ′ ·r

(∑
K j

v(K j )e
−i K j ·r

)
eik·r d3r. (4.70)

Note that the integral on the right-hand side of (4.70) will vanish unless k − k ′ =
K j , where K j is the reciprocal lattice vector. Thus, by substituting k − k ′ = K j

in (4.70) and carrying out the integration one obtains

Hk ′k = v(K j ). (4.71)

Now, substituting (4.71) into (4.59) yields the new electron wave function, which
is

φk(r ) =
√

1

N V
eik·r

[
1 +

∑
K j

v(K j )e−i K j ·r(
E0

k − E0
k ′
)

]
. (4.72)

It is interesting to note that the term inside the square brackets on the right-
hand side of (4.72) has the periodicity of the crystal potential V (r ), and may be
designated as the Bloch function uk(r ). Thus, the new electron wave functions
given by (4.72) indeed satisfy the Bloch-type wave functions defined by (4.17).

The expression of electron energy can be obtained by substituting (4.71) into
(4.64), yielding

Ek = E0
k +

∑
K j

|v(K j )|2(
E0

k − E0
k ′
) . (4.73)

It is seen that the expressions for the electron wave functions and energies
given by (4.72) and (4.73) become infinite if E0

k = E0
k ′ , and hence the perturbation

approximation is no longer valid. This condition occurs at the zone boundaries,
and the electron energy corresponding to this condition is given by

E0
k = h̄2k2

2m0
= h̄2(k − K j )2

2m0
= E0

k ′ . (4.74)

Solving (4.74) yields

k · K j = |K j |2
2

. (4.75)

Here the relation k ′ = k − K j is used in (4.74). Equation (4.75) represents exactly
the Bragg diffraction condition in a crystalline solid, which occurs at the zone
boundaries. Failure of the perturbation theory at the zone boundaries is due to the
fact that the periodic crystal potential V (r ) at zone boundaries is no longer small,
and hence cannot be treated as a small perturbing potential. In fact, the Bragg
diffraction condition results in a very severe perturbation of electron wave functions
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at the zone boundaries. Therefore, to find a proper solution for the electron energy
and wave functions at the zone boundaries, it is necessary to reconstruct a new
perturbed wave function, which is a linear combination of an incident- and a
reflected-plane wave. Using a linear combination of the incident- and reflected-
plane waves, one can construct a new electron wave function at the zone boundary,
which is given by

φ0
k (r ) = A0eik·r + A1eik ′ ·r , (4.76)

where k ′ = k − K j . Substituting (4.76) into (4.65) yields

{
h̄2k2

2m
+ [V (r ) − Ek]

}
A0eik·r +

{
h̄2k

′2

2m
+ [V (r ) − Ek]

}
A1eik ′ ·r = 0.

(4.77)

Now, multiplying (4.77) by e−ik·r and integrating the equation over the entire space,
one obtains

A0
(
E0

k − Ek
) − A1v

∗(K j ) = 0, (4.78)

where E0
k = h̄2k2

2m0
, and v∗(K j ), the conjugate of the Fourier coefficient, is given by

v∗(K j ) =
∫ ∞

0
e−ik·r V (r )eik ′ ·r d3r. (4.79)

Similarly, multiplying (4.77) by e−ik ′ ·r and integrating over the entire space, one
obtains

A0v(K j ) − A1
(
Ek − E0

k ′
) = 0, (4.80)

where E0
k ′ = h̄2k ′2

2m0
, and

v(K j ) =
∫ ∞

0
e−ik ′ ·r V (r )eik·r d3r (4.81)

is the Fourier coefficient of the periodic crystal potential V (r ). A nontrivial solution
exists in (4.78) and (4.80) only if the determinant of the coefficients of A0 and A1

is set equal to zero, namely,∣∣∣∣∣
(
E0

k − Ek
) −v∗(K j )

v(K j ) − (
Ek − E0

k ′
)
∣∣∣∣∣ = 0. (4.82)

Now, solving (4.82) for Ek yields

Ek = 1

2

{(
E0

k + E0
k ′
) ±

[(
E0

k − E0
k ′
)2 + 4v∗ (

K j
) · v(K j )

]1/2
}

. (4.83)

Equation (4.83) shows that a forbidden gap exists at the zone boundaries, and
the width of the forbidden gap is determined by the value of 4v∗(K j ) · v(K j )
inside the square brackets of (4.83), which is determined by the Fourier coefficient
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Figure 4.7. The energy band diagram
in a reduced zone scheme showing the
discontinuity of the energy at the zone
boundaries.

of the periodic crystal potential. In general, the energy band gap will increase
with increasing value of the Fourier coefficient |v(K j )|. Figure 4.7 shows the
schematic energy band diagram in the reduced zone scheme derived from the NFE
approximation. It is interesting to note that the energy band scheme derived from
NFE approximation is similar to that obtained from the Kronig–Penney model for
the 1-D periodic lattice. Furthermore, the electron wave functions derived from
the NFE approximation indeed satisfy the Bloch condition. The results show that,
except at the zone boundaries where an energy discontinuity (or a band gap) occurs,
the energy band scheme derived from the NFE approximation resembles that of
the free-electron case (with v(K j ) = 0) discussed earlier.

The NFE approximation presented in this section provides a qualitative descrip-
tion of the electronic states for the outer-shell valence electrons of a 3-D crystal lat-
tice. However, in order to obtain true energy band structures for a real crystal, a more
rigorous and sophisticated method, such as the pseudopotential or the orthogonal-
ized plane wave method, must be employed in the energy band calculations. Both
methods have been widely used in the energy band calculations of semiconductors.

4.6. The Tight-Binding Approximation

In this section energy band calculation using the tight-binding approximation or
the linear combination of atomic orbits (LCAO) method is described. The LCAO
method, which was first proposed by Bloch, is often used to calculate the electronic
states of core electrons in a crystalline solid. It is generally known that core
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electrons are tightly bound to the individual atoms, which interact with one another
within the crystal lattice. In this case, the construction of electron wave functions is
achieved using the LCAO method, and the energy bands of electrons are calculated
for the corresponding periodic crystal potential. The atomic orbitals are centered
on one of the constituent atoms of the crystal. The resulting wave functions are then
substituted into the Schrödinger equation, and the energy values are calculated by
a procedure similar to that of the NFE approximation described in Section 4.5.
In order to apply the LCAO method to core electrons in a crystalline solid, the
solution for the free atomic orbital wave functions must be obtained first. This is
discussed next.

If φn(r − R j ) represents the atomic orbital wave functions centered at the lattice
site R j , then the wave functions of the crystal orbits φk(r ) corresponding to the
wave vector k may be represented by a Bloch sum, which is

φk(r ) =
∑

j

C j (k)φn(r − R j ). (4.84)

The summation in (4.84) extends over all the constituent atoms of the crystal. The
coefficient C j (k), which satisfies the Bloch condition, can be written as

C j (k) = eik·R j . (4.85)

Now substituting (4.85) into (4.84) one obtains

φk(r ) =
∑

j

eik·r e−ik·(r−R j )φn(r − R j ) = eik·rUk,n(r ). (4.86)

To satisfy the Bloch condition, the summation given by (4.86) must have the
periodicity of the crystal lattice.

The LCAO method is clearly an approximation to the true crystal orbitals.
This method is adequate when the interatomic spacing is large enough such that
overlapping among the atomic orbital wave functions φn(r − R j ) is negligible.
Thus, the LCAO method is most suitable for the tightly bound core electrons, and
is frequently referred to as the tight-binding approximation. Using this method to
derive the wave functions and energy band schemes for the core electrons of a
crystalline solid is discussed next.

If φn(r − R j ) represents a set of atomic orbital wave functions that satisfy the
free-atom Schrödinger equation, then one can write

−
(

h̄2

2m∗

)
∇2φn(r − R j ) + Vn0(r − R j )φn(r − R j ) = En0φn(r − R j ), (4.87)

where Vn0(r − R j ) is the free atomic potential of the R j th atom. The wave functions
for the crystal orbitals may be expressed in terms of a Bloch sum, which is given
by

φk(r ) =
(

1

N V

)1/2

eik·r e−ik(r−R j )φn(r − R j ) =
(

1

N V

)1/2

eik·r uk(r ),

(4.88)
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where uk(r ) is the Bloch function. In (4.88), the atomic wave functions are nor-
malized (i.e., N represents the total number of atoms in the crystal). The factor
(1/N V )1/2 is the normalization constant for the Bloch sum if overlapping of the
atomic orbitals centered at different atomic sites is negligible. Thus, (4.88) is a good
approximation for the crystal orbitals, provided that the energy levels of the atomic
orbits are nondegenerate and overlapping between the orbital wave functions of
the neighboring atoms is negligible. This condition can be expressed by∫

φ∗
n (r − R j )φn(r − Ri )dr3 = δi j . (4.89)

Note that in (4.89), δi j = 0 if i �= j . Now, substituting (4.88) into (4.87),
multiplying (4.87) by the conjugate wave functions φ∗

n (r − Ri ), and integrating
the equation over the entire space, one obtains the energy

Ek =
∫

φ∗
k (r )Hφk(r )dr3

=
(

1

N V

){∫ ∑
i j

eik(R j −Ri )φ∗
n (r−Ri )

[
−h̄2∇2

2m∗ + Vn0(r − R j )

]
φn(r − R j )dr3

+
∫ ∑

i j

e jk·(R j −Ri )φ∗
n (r − R j )V

′(r − R j )φn(r − R j )dr3

}
.

(4.90)

Using (4.89), (4.90) can be rewritten as follows:

Ek = En0 − αn −
∑
Ri j

βn(Ri j )e
ik·Ri j , (4.91)

where Ri j = R j − Ri , and

En0 =
(

1

N V

) ∫
φ∗

n

[
−h̄2∇2

2m∗ + Vn0

]
φnd3r, (4.92)

αn = −
∫

φ2
n (r − Ri )V

′(r − R j )dr3, (4.93)

βn = −
∫

φ∗
n (r − Ri )V

′(r − R j )φn(r − R j ) dr3, (4.94)

V (r − R j ) = Vn0(r − R j ) + V ′(r − R j ). (4.95)

As shown in Figure 4.8, Vn0(r − R j ) is the unperturbed atomic potential centered
at R j , and V ′(r − R j ) is the perturbed crystal potential due to atoms other than
the R j th atom.

In general, the atomic orbital wave functions φn(r ) fall off exponentially with
the distance r, and hence overlapping of each atomic orbital wave function φn(r )
is assumed to be negligibly small. Therefore, it is expected that the contribution to
βn will come from a rather restricted range of r. Furthermore, it is also expected
that βn will decrease rapidly with increasing distance between the neighboring
atoms. Figure 4.8 illustrates the potential V ′(r − R j ), which plays the role of the
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Figure 4.8. The crystal potential used in the tight-binding approximation.

perturbing potential and is practically zero in the vicinity of R j . The LCAO method
may be applied to construct the energy band structures of the s-like states for a
simple cubic lattice and a body-centered cubic lattice. This is discussed next.

4.6.1. The s-like States for a Simple Cubic Lattice

The LCAO method is first applied to the calculations of the energy band struc-
ture of the s-like states for a simple cubic lattice. In a simple cubic lattice, there
are six nearest-neighbor atoms located at an equal distance a from any chosen
atomic site. Therefore, the value of βn(a), given by (4.94), is the same for all
six nearest-neighbor atoms. Since the perturbing potential V ′(r ) is negative, and
the atomic wave functions are of the same sign in the region of overlapping,
values for both αn and βn(a) are positive. Thus, the energy dispersion relation
(E vs. k) for s-like states of a simple cubic lattice can be derived by sub-
stituting Ri j = (a, 0, 0), (0, a, 0), (0, 0, a), (−a, 0, 0), (0, −a, 0), (0, 0, −a) into
(4.91), which yields

Ek = E0 − αn − βn
(
eikx a + eikya + eikza + e−ikx a + e−ikya + e−ikza

)
= En0 − αn − 2βn(cos kx a + cos kya + cos kza). (4.96)

Equation (4.96) shows the E–k relation for the s-like states of a simple cubic lattice.
Figures 4.9a and b shows the energy band diagrams plotted in the kx -direction and
the kx –ky plane, respectively, as calculated from (4.96). The width of the energy
band for this case is equal to 12βn . It is of interest to note that the shape of the E–k
plot is independent of the value of αn or βn used, but depends only on the geometry
of the crystal lattice. Two limiting cases deserve special mention, namely, (i) near
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Figure 4.9. Energy band diagram for the s-like states of a simple cubic lattice: (a) one-
dimensional and (b) two-dimensional energy band diagrams.

the top of the band and (ii) near the bottom of the band. First, near the bottom of the
band, the value of k is very small, and the cosine terms in (4.96) may be expanded
for small ka (i.e., cos ka ≈ (1 − k2a2/2)). If only the first-order term is retained,
then the energy E is found to vary with k2 near the bottom of the band. This result
is identical to the free-electron case. Under this condition, the E–k relation for the
s-like states in a simple cubic lattice is reduced to

Ek = En0 − αn − 6βn + βnk2a2. (4.97)

From (4.97), the electron effective mass m∗ for small ka can be expressed as

m∗ = h̄2

(
∂2 Ek

∂k2

)−1

= h̄2

2βna2
, (4.98)

which shows that the constant-energy surface near the bottom of the band is
parabolic (i.e., Ek = h̄2k2/2m∗), and the effective mass of electrons is a scalar
quantity. Similarly, the E–k relation near the top of the band (i.e., k ≈ π/a) can
be obtained by expanding cos(ka) in (4.96) at kx = ky = kz = π/a. This is car-
ried out by substituting kx = π/a − k ′

x , ky = π/a − k ′
y , and kz = π/a − k ′

z into
(4.96), where k ′

x , k ′
y, k ′

z , are small wave vectors, which yields

Ek ′ = C + h̄2k ′2

2m∗ , (4.99)

where C is a constant, and m∗ is given by

m∗ = − h̄2

2βna2
. (4.100)

Equation (4.100) shows that the electron effective mass m∗ is negative near
the top of the band. It is noted that the effective masses given by (4.98) and
(4.100) represent the curvatures of the bottom and top of the s-like energy band,
respectively. The effective mass is an important physical parameter in that it
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measures the curvature of the (E−k) energy band diagram. It is noted that a
positive m∗ means that the band is bending upward, and a negative m∗ implies that
the band is bending downward. Moreover, an energy band with a large curvature
corresponds to a small effective mass, and an energy band with a small curvature
represents a large effective mass. The effective mass concept is important since
the mobility of electrons in a band is inversely proportional to the effective mass
of electrons. For example, by examining the curvature of the energy band diagram
near the bottom of the conduction band one can obtain qualitative information con-
cerning the effective mass and the mobility of electrons in the conduction band. A
detailed discussion of the effective masses for electrons (or holes) in the bottom
(or top) of an energy band is given in Section 4.8.

4.6.2. The s-like States for a Body-Centered Cubic Lattice

For a body-centered cubic (BCC) lattice, there are eight nearest-neighbor atoms
for each chosen atomic site, which are located at Ri j = (±a/2, ±a/2, ±a/2). If
one substitutes these values in (4.101), the E–k relation for the s-like states of the
BCC crystal can be expressed as

Ek = En0 − αn − 8βn[cos (kx a/2) cos (kya/2) cos (kza/2)]. (4.101)

In (4.101), values of k must be confined to the first Brillouin zone in order to
have nondegenerate energy states. Using (4.101), the 2-D constant-energy contour
plotted in the first quadrant of the kx –ky plane for the s-like states of a body-centered
cubic lattice is shown in Figure 4.10. Although the constant-energy surfaces are
spherical near the zone center and zone boundaries, the constant-energy contours
depart considerably from the spherical shape for other values of k. For small values
of k near the zone center and for large values of k near the zone boundaries, the
electron energy E is proportional to k2, and the effective mass of electrons can be

Figure 4.10. Constant-energy con-
tours for a two-dimensional body-
centered cubic (BCC) lattice. The
E−k relation is given by Ek = En0 −
αn − 8βn cos(kx a/2) × cos(kya/2)
and kz = 0.
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derived from (4.101), which yields

m∗ = h̄2

8a2βn
. (4.102)

From (4.101), it can be shown that the total width of the allowed energy band for
the s-like states in a body-centered cubic crystal lattice is equal to 16βn(a).

It is clear from the above examples that the tight-binding approximation is indeed
applicable for calculating the energy states of the core electrons, such as the s-like
states in the cubic crystals.

4.7. Energy Band Structures for Some Semiconductors

Calculations of energy band structures for the elemental (Si, Ge) and III-V com-
pound semiconductors (e.g., GaAs, InP) have been widely reported in the litera-
ture. As a result, a great deal of information is available for the band structures of
semiconductors from both the theoretical and experimental sources. In most cases,
theoretical calculations of the energy band structures for these semiconductor
materials are guided by the experimental data from the optical absorption, photolu-
minescence, and photoemission experiments in which the fundamental absorption
process is closely related to the density of states and the transitions from the initial
to the final states of the energy bands. The energy band structures for some ele-
mental and III-V compound semiconductors calculated from the pseudopotential
method are discussed in this section. In general, the exact calculations of the en-
ergy band structures for semiconductors are much more complex than those of the
NFE approximation and the LCAO method described in this chapter. In fact, both
of these approximations can provide only a qualitative description of the energy
bands in a crystalline solid. For semiconductors, the two most commonly used
methods for calculating the energy band structures are the pseudopotential and the
orthogonalized plane wave methods. They are discussed briefly as follows.

The main difficulty of band calculations in a real crystal is that the only wave
functions that satisfy the boundary conditions imposed by the Bloch theorem in a
simple manner are plane waves, but plane wave expressions do not converge readily
in the interior of an atomic cell. The pseudopotential method is based on the concept
of introducing the pseudopotential for a crystal that will lead to the same energy
levels as the real crystal potential but do not have the same wave functions. The
pseudopotential technique can greatly improve the convergence of the series of the
plane waves that represent the pseudowave functions of electrons in a crystal. In
many cases it is convenient to choose the pseudopotential to be a constant within
the ion core. The parameters of the pseudopotential can be determined from the
spectroscopic data for the individual atom. Results of the empirical pseudopotential
energy band calculations for some elemental and compound semiconductors with
diamond and zinc blende structures are shown in Figure 4.11.1 Figure 4.12 shows
the various symmetry points displayed at the zone center (�) and along the (100)
axis (X) and (111) axis (L) inside the first Brillouin zone of a diamond lattice. The
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Figure 4.11. The energy band structures for some semiconductors with diamond and zinc
blende structures. After Cohen and Bergstrasser,1 by permission.

first symmetry point, �, is the symmetry point located at the Brillouin zone center.
The conduction band minimum and the valence band maximum located at the �-
point in the zone center are designated as Ec and Ev, respectively. It is noted that
the conduction band is defined as the lowest empty band, while the valence band is
defined as the highest filled band at T = 0 K. In most semiconductors, there exists
a forbidden gap between the conduction and valence bands, and the values of the
energy band gap may vary from 0.1 to about 6.2 eV for the semiconductors. If
the conduction band minimum and the valence band maximum are located at the
same k-value in the first Brillouin zone, such as the �-point at the zone center, then
the semiconductor is called the direct band gap semiconductor. Most of the III-V
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Figure 4.12. Symmetry points in the first Brillouin zone of a diamond lattice.

compound semiconductors, such as GaN, GaAs, InP, InAs, and InSb, belong to
this category. Direct band gap semiconductors have been widely used in photonic
device applications such as laser diodes, LEDs, and photodetectors because their
band structures allow for direct optical transitions. They are also widely used
in high-speed and high-frequency device applications due to the small electron
effective mass and high electron mobility in these materials. If the conduction band
minimum and the valence band maximum are not located at the same k-value in the
first Brillouin zone, then the semiconductor is referred to as an indirect band gap
semiconductor. Elemental semiconductors such as silicon and germanium belong
to this category. Table 4.1 lists the energy band gaps and the effective masses of
electrons and holes for the elemental and compound semiconductors.

The conduction band of a diamond or a zinc blende crystal usually consists of
several subbands or satellite bands. For example, the conduction band minimum
of a germanium crystal is located at the zone boundaries along the {111} axes,
while for silicon it is located near the zone boundaries along the {100} axes; these
are shown in Figures 4.11b and a, respectively. It is noted that the constant-energy
surfaces for electrons in silicon and germanium are ellipsoidal energy surfaces,
while the constant-energy surface near the conduction band minimum is spherical
for GaAs and other III-V compound semiconductors. Figure 4.13 shows a more
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Table 4.1. Energy Band Gaps and Effective Masses for Elemental and Compound
Semiconductors at 300 K.

Element Eg (eV) Electron mass (m∗
e/m0) Hole mass (m∗

e/m0)

Si 1.12 m∗
t = 0.19, m∗

l = 0.97 m∗
lh = 0.16, m∗

hh = 0.50
Ge 0.67 m∗

t = 0.082, m∗
l = 1.6 m∗

lh = 0.04, m∗
hh = 0.30

GaAs 1.43 0.068 m∗
lh = 0.074, m∗

hh = 0.62
AlN 6.10 (WZ) m∗

t = 0.33, m∗
l = 0.32 mhht = 0.73, mhhl = 3.52;

6.15 (ZB) mlh = 0.471
GaN 3.51 (WZ) m∗

t = 0.22, m∗
l = 0.20 mhht = 0.39, mhhl = 2.04

3.35 (ZB) mlht = 0.39, mlhl = 0.74
InN 0.78 (WZ) m∗

t = 0.07, m∗
l = 0.06 mhht = 0.14, mhhl = 2.09

0.70 (ZB) mhht = 0.13, mhhl = 0.50
AlAs 2.16 ml = 2.0 m∗

lh = 0.15, m∗
hh = 0.76

GaP 2.26 ml = 1.12, m∗
t = 0.22 m∗

hh = 0.79, m∗
lh = 0.14

GaSb 0.72 0.045 m∗
hh = 0.62, m∗

hl = 0.074
InP 1.29 0.08 m∗

hh = 0.85, m∗
hl = 0.089

InAs 0.33 0.023 m∗
hh = 0.60, m∗

hl = 0.027
InSb 0.16 0.014 m∗

hh = 0.60, m∗
hl = 0.027

CdS 2.42 0.17 0.60
CdSe 1.70 0.13 0.45
CdTe 1.50 0.096 0.37
ZnSe 2.67 0.14 0.60
ZnTe 2.35 0.18 0.65
ZnS 3.68 0.28 —
PbTe 0.32 0.22 0.29

+m∗
t denotes transverse effective mass, m∗

l longitudinal effective mass, m∗
lh light-hole mass, m∗

hh
heavy-hole mass, and m0 free-electron mass (9.1 × 10−31 kg).
WZ:Wurtzite structure, ZB: Zincblende structure.

detailed energy band structure of GaAs calculated from the pseudopotential
method.2 The �-conduction band minimum is located at the zone center, the
L-conduction band valleys are located at (2π/a)(1/2, 1/2, 1/2) along the (111)
axes, and the X -conduction band valleys are located at the zone boundaries along
the (100) axes. The separation between the L-valley and the �-band minimum
is equal to 0.29 eV. The valence band maxima of the heavy- and light-hole bands
are located at the �-point in the Brillouin zone center. Therefore, both silicon
and germanium are indirect bandgap semiconductors, while GaN, GaAs, InP, and
InAs are direct bandgap semiconductors. For silicon, the conduction band minima
consist of six ellipsoids of constant-energy surfaces along the {100} axes with the
center of each ellipsoidal energy surface located about three-fourths of the distance
from the zone center to the zone boundary. For germanium, the conduction band
minima consist of eight ellipsoidal constant-energy surfaces along the {111}
axes with the center of each ellipsoid located at the zone boundary. Thus, for
germanium there are eight half-ellipsoidal conduction band valleys inside the first
Brillouin zone. For GaAs, the constant-energy surface of the �-conduction band
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Figure 4.13. Detailed energy band diagram for a GaAs crystal calculated from the pseudo-
potential method, showing both the conduction and valence bands along the (100) and (111)
crystal orientation. After Chelikowski and Cohen,2 by permission.

minimum is spherical, and is located at the zone center. The energy dispersion
(i.e., E vs. k) relation for electrons near the bottom of the conduction band can be
expressed by

E (k) = Ec + h̄2k2

2m∗
n

(4.103)

for the spherical constant energy surface, and

E (k) = Ec + h̄2

2

(
k2

l

m l
+ k2

t

m t

)
(4.104)

for the ellipsoidal constant-energy surface, where m l and m t denote the longitudinal
and transverse effective masses of electrons in the conduction band, respectively.

The valence bands of silicon, germanium, and GaAs crystals consist of the
heavy- and light-hole bands that are degenerate at k = 0. In addition, a spin-orbit
split-off band is located at a few tens of meV below the top of the heavy- and
light-hole bands. This can be best described using the band structure shown in
Figure 4.13 for a GaAs crystal. In this figure, it is shown that the heavy- and light-
hole bands are degenerate at the top of the valence band and may be represented
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by a parabolic band with different curvatures. The valence band with a smaller
curvature (i.e., with a larger hole effective mass) is usually referred to as the heavy-
hole band, and the valence band with a larger curvature (i.e., with a smaller hole
effective mass) is known as the light-hole band. The effective masses of the light-
and heavy-hole bands for Si, Ge, and GaAs are also given in Table 5.3. In general,
the energy versus wave vector relation (E vs. k) for the heavy- and light-hole bands
near the top of the valence bands is nonparabolic and can be expressed by

E (k) = Ev − h̄2k2s (k)

2m∗
p

, (4.105)

where s(k) is given by

s(k) = A ± [
B2 + C2 (

k2
x k2

y/k4 + k2
x k2

z /k4 + k2
yk2

z /k4)]1/2
. (4.106)

Note that A, B, and C in (4.106) are constants (see Problem 4.10); the plus and mi-
nus signs correspond to the heavy- and light-hole bands, respectively. It should be
noted that the constant-energy surfaces near the top of the valence bands are warped
and nonparabolic for Si, Ge, GaAs, and other III-V compound semiconductors.

Another important feature of the III-V semiconductor technology is the ability to
grow the lattice-matched ternary or quaternary compound semiconductor epitaxial
layers on either the GaAs or InP semi-insulating substrates (e.g., Inx Ga1−x P,
Alx Gal−x As, and Inx Gal−x AsyPl−y on GaAs; Inx Gal−x As and Inx All−x As on InP
substrates). Using these ternary and quaternary compound semiconductors, it is
possible to change many important optical, physical, and electrical properties of
the III-V compound semiconductors, such as the band gap energy and electron mo-
bility, for a wide variety of applications. In addition, many novel device structures
can be fabricated using the binary/ternary superlattice and quantum well hetero-
junction structures (e.g., Alx Gal−x As/GaAs, InGaAs/AlGaAs). These features are
extremely important for many applications in detectors, lasers, LEDs, and high-
speed devices using III-V compound semiconductor epitaxial layers grown by the
MOCVD and MBE techniques. Figure 4.14 shows the energy band gap versus lat-
tice constant for Si, Ge, II-VI, and III-V binary compound semiconductors.3 The
solid lines denote the direct band gap materials and the dashed lines are for the
indirect band gap materials. A mixture of AlP/GaP to form Alx Gal−x P, AlAs/GaAs
to form Alx Gal−x As, AlSb/GaSb to form Alx Gal−x Sb ternary compounds, and
InP/GaAs/InAs to form Inx Gal−x AsyPl−y quaternary compound semiconductor
along the vertical line of Figure 4.14 yields lattice-matched epitaxial layers grown
on the GaP, GaAs, InP, and GaSb substrates, respectively. By tailoring the energy
band gap of these III-V alloy systems, it is possible to produce detectors, LEDs, and
lasers with wavelengths covering the visible to infrared spectral range. Wide band
gap semiconductors such as AlN, SiC, and GaN have been widely investigated in
recent years, enabling the fabrication of various electronic devices for microwave,
high-temperature, and high-power applications. Furthermore, GaN-based ternary
compounds such as Alx Ga1−x N and Inx Ga1−x N with the energy band gaps varying
from 0.7 to 6.2 eV have been developed for UV detectors, laser diodes, and LED
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Figure 4.14. The energy band gap versus lattice constant for III-V binary compound semi-
conductors. Solid lines denote the direct band gap materials and dashed lines the indirect
band gap materials. Vertical lines are for the lattice-matched ternary compound semicon-
ductors on a selected binary compound semiconductor substrate. After Hansen,3 reprinted
by permission from John Wiley & Sons Inc.

applications. Figures 4.15a and b show the energy band gap versus alloy com-
position x for GaAsx P1−x and Alx Ga1−x As ternary compound semiconductors,
which illustrate the band gap variation from Eg = 1.42 to 2.25 eV and 2.19 eV,
respectively, as x varies from 1 to 0. The variation of band gap with alloy composi-
tion in a III-V ternary material system can be estimated using an empirical formula
given by

Eg(x) = Eg(0) + bx + cx2, (4.107)

where b is a fitting parameter, and c is called the bowing parameter, which may
be calculated theoretically or determined experimentally. For the Alx Ga1−x As
material system, the energy band gap for the �-, X -, and L-valleys as a function
of alloying composition x can be expressed as

E�
g (x) = 1.425 + 1.247x + 1.147(x − 0.45)2, (4.108a)

E X
g (x) = 1.90 + 0.125x + 0.143x2, (4.108b)

E L
g (x) = 1.708 + 0.642x . (4.108c)

It is noted that Alx Ga1−x As becomes indirect band gap material for x ≥ 0.43,
and GaAsx P1−x becomes indirect band gap material for x ≥ 0.45. In general, many
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Figure 4.15. Energy band gap Eg versus alloy composition x for (a) GaAsx P1−x and (b)
Alx Ga1−x As material systems.

physical parameters of ternary compounds are determined by the parameters of the
constituent binaries and vary roughly linearly with the composition. For example,
in a ternary compound semiconductor, the lattice constant varies linearly with the
composition; this also holds true for the quaternary alloys.

The energy band structures presented in this section are extremely important
for understanding the physical, optical, and electrical properties of semiconductor
materials and devices. The energy band structures for semiconductors presented
in this section will be used in explaining the physical and transport properties of a
wide variety of semiconductor devices to be discussed throughout this book.

4.8. The Effective Mass Concept for Electrons and Holes

As described in Section 4.1, the most generalized solution of the electron wave
functions in a periodic crystal is a plane wave modulated by the Bloch function,
uk(r ). For the time-dependent electron wave functions, this can be written as

φk (r, t) = uk (r ) ei(k·r−ωt). (4.109)

Since the wave function for a Bloch-type wave packet extends over the entire
crystal lattice, the group velocity for such a wave packet is given by

vg = dω

dk
=

(
1

h̄

)
∇k E (k) . (4.110)

Note that the electron energy E(k) = h̄ω is used in (4.110) to define the group
velocity, vg. According to (4.110), the group velocity of an electron wave packet is
in the direction perpendicular to the constant-energy surface at a given wave vector
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k in k-space. The group velocity can be determined by the gradient of energy with
respect to the wave vector k.

If a Lorentz force F, which may be due to either an electric field or a magnetic
field, is applied to the electrons inside a crystal, then the wave vector of electrons
will change with the applied Lorentz force according to the following relation:

F = −q
(
EE + vg × B

) = h̄

(
dk
dt

)
= h̄k̇, (4.111)

where EE is the electric field, and B is the magnetic flux density. The product h̄k̇ is
referred to as the change of crystal momentum. Equation (4.111) shows that the
external applied force acting on an electron tends to change the crystal momentum
or the electron wave vector in a crystal lattice. The electron effective mass in a
crystal lattice can be defined by

F = m∗
na = m∗

n

(
dvg

dt

)
. (4.112)

Solving (4.110) through (4.112), one obtains an expression of acceleration for
electrons due to the applied Lorentz force, which is given by

a = dvg

dt
=

(
1

h̄

) (
d∇k E

dk

) (
dk
dt

)
=

(
1

h̄2

) (
d2 E

dk2

)
· F. (4.113)

Solving (4.112) and (4.113), one obtains an expression for the reciprocal effective
mass tensor for electrons, whose component is given by

(
m∗

n

)−1
i j

=
(

1

h̄2

) (
∂2 E(k)

∂ki ∂k j

)
, (4.114)

where i, j = 1, 2, 3 . . . are the indices used to define the crystal orientations. From
(4.114), it is noted that the reciprocal effective mass is directly proportional to the
curvature of the energy band structure in the E versus k plot. A large curvature near
the conduction band minimum implies a small effective mass of electrons, and vice
versa. For example, a comparison of the curvatures of the energy band diagrams
near the bottom of the conduction band for silicon and GaAs (see Figure 4.11)
shows that silicon has a smaller curvature than GaAs near the conduction band
minimum, and hence has a larger electron effective mass than that of a GaAs crystal.

Another important concept to be discussed in this section is concerned with
holes in the valence bands of a semiconductor. A hole in the valence band marks
the absence of a valence electron or the creation of an empty state in the valence
band. Furthermore, the motion of a hole can be regarded as the motion of a missing
electron in the valence band. Since most of the holes reside near the top of the
valence band maximum in which the curvature of the E versus k diagram is
always negative, which implies a negative electron effective mass, it is appropriate
to replace the missing electrons by the positively charged holes. This arrangement
greatly simplifies the treatment of electronic conduction in the valence band of
a semiconductor. By using the concept of holes, which have a positive effective
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Figure 4.16. Electrons near the bottom of the conduction
band and holes near the top of the valence band.

mass and a positive charge, the inverse hole effective mass can be derived from
the expression

dvg

dt
= −

(
1

m∗
n

)
F =

(
1

h̄2

)
∇2

k ′ Ek ′ · F =
(

1

m∗
h

)
F, (4.115)

which yields

1

m∗
h

=
(

1

h̄2

)
∇2

k ′ Ek ′ , (4.116)

where F is the Lorentz force experienced by a hole. Thus, a hole in the valence
band may be considered as a charged particle with a positive charge q and a
positive effective mass m∗

h. Figure 4.16 shows the electrons near the bottom of the
conduction band and holes near the top of the valence band.

The effective mass concept presented above is particularly useful for describ-
ing the transport properties of a semiconductor. In a semiconductor, most of the
electrons reside near the bottom of the conduction band, and holes are located near
the top of the valence bands. If the energy band structures near the bottom of the
conduction band and the top of the valence bands have spherical constant-energy
surfaces, then the effective masses for both electrons and holes are given by a
scalar quantity. If one assumes that both the conduction band minimum and the
valence band maximum are located at k = 0 (i.e., at the zone center (�-point)),
then the E−k relation can be expressed by

Ek = Ec + h̄2k2

2m∗
n

(4.117)

for electrons in the conduction band, and

Ek ′ = Ev − h̄2k ′2

2m∗
h

(4.118)

for holes in the valence bands. Both the heavy- and light-hole bands degenerate
into a single band at the top of the valence band edge.
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Equations (4.117) and (4.118) may be used to describe the E–k relation for elec-
trons near the bottom of the conduction bands and holes near the top of the valence
bands with parabolic band structure. These relations are valid for direct band gap
semiconductors such as GaAs, InP, and InAs, in which the constant-energy surfaces
near the conduction band minimum and the valence band maximum are assumed
parabolic. If the constant-energy surface near the band edge is nonparabolic, then
an effective mass tensor given by (4.116) should be used instead. For silicon and
germanium, the constant-energy surface near the bottom of the conduction band
is ellipsoidal, and the electron effective mass may be expressed in terms of its
transverse and longitudinal effective masses (i.e., m∗

t and m∗
l ). Both these masses

can be determined using the cyclotron resonance experiment performed at very
low temperature. The effective masses of electrons and holes for some practical
semiconductors are listed in Table 4.1. Using the effective mass concept for elec-
trons in the conduction band and holes in the valence bands, one can treat both
the electrons and holes as quasifree particles, which in turn greatly simplify the
mathematics of solving the carrier transport problems in a semiconductor.

4.9. Energy Band Structures and Density of States for
Low-Dimensional Systems

In this section the band structure and the density of states for a heterostructure
superlattice are discussed. In addition, the density of states functions for the low-
dimensional systems (0-D,1-D, 2-D, Q1-D, Q2-D systems) are also presented. With
the advent of molecular beam epitaxy (MBE) and metal-organic chemical vapor
deposition (MOCVD) growth techniques, it is now possible to grow high-quality
III-V semiconductor epitaxial layers composed of alternating material systems
(e.g., AlGaAs/GaAs, InAlAs/InGaAs) with a thickness of few atomic layers. As
a result, extensive studies of the fundamental properties of superlattices, such
as energy band structures and carrier transport in the growth direction of the
superlattice layers, have been widely reported in recent years. Novel devices such
as semiconductor lasers, infrared detectors, LEDs, and modulators using quantum
well/superlattice structures have been developed. Unlike the three-dimensional
(3-D) system in which the size of the sample in the x, y, z directions is much
larger than the de Broglie wavelength (i.e., Lx , L y, Lz � λe), the thickness of
a two-dimensional (2-D) system along the growth direction is smaller than the
de Broglie wavelength (d ≤ λe). For a GaAs crystal, this corresponds to a layer
thickness of 25 nm or less at 300 K. In a 2-D system, carrier confinement occurs
along the growth direction in which the layer thickness is comparable to the de
Broglie wavelength, but retains quasifree-electron behavior within the plane of the
superlattice.

A superlattice structure is formed when thin layers (d ≤ 25 nm) of a larger
band gap semiconductor (e.g., AlGaAs) and a smaller band gap semiconductor
(e.g., GaAs) are grown alternately on a conducting or a semi-insulating substrate.
The periodic structure formed by alternate deposition of thin epitaxial layers of
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Figure 4.17. Calculated widths of minibands and intermittent gaps as a function of the
period length for a symmetrical well/barrier heterostructure (e.g., AlGaAs/GaAs). After
Esaki,4 by permission.

two different band gap materials produces a periodic potential similar to the 1-D
Kronig–Penney potential discussed in Section 4.3. A potential barrier is formed
between a larger band gap material (AlGaAs) and a smaller band gap material
(GaAs), while a potential well is formed in the smaller band gap material sand-
wiched between two wide band gap materials. The energy band diagram for the
superlattice is similar to that of free electrons exposed to a periodic crystal poten-
tial, except that now the periodic potential is imposed on Bloch electrons with an
effective mass m∗

n. Depending on the width of the superlattice, the energy states
inside the quantum well could be discrete bound states or minibands. Figure 4.17
shows the calculated widths of minibands and intermittent gaps as a function of
the period length (i.e., l = l1 + l2) for a symmetric barrier/quantum well structure
with a barrier height of 0.4 eV.4 It is noted that for an equal barrier/well width (i.e.,
l1 = l2 = 4 nm) superlattice, the lowest band is extremely narrow and lies 100
meV above the bottom of the quantum well. The second miniband extends from
320 to 380 meV, while higher bands overlap above the top of the potential barrier.

Figure 4.18 shows (a) the first and second minibands inside the conduction band
of a superlattice along the growth direction (i.e., the z-direction), (b) minibands
and minigaps in the kz-direction inside the Brillouin zone, and (c) energy (E1

and E2) versus wave vector k in the kx - and ky-directions (i.e., in the plane of
the superlattice). It is seen that within the conduction band, we observe a subband
structure of minibands across the potential barrier and the quantum well; the higher
minibands extend beyond the height of potential barriers. The lower minibands
inside the well are separated by the minigaps in the direction of superlattice pe-
riodicity (i.e., the z-direction). Within the plane of the superlattice layers (i.e.,
the x–y plane), the electron wave functions experience only the regular periodic
lattice potential. Therefore, the energy dispersion relations (i.e., E vs. kx and ky)
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Figure 4.18. (a) Minibands in the growth direction, z, of the superlattice layers, (b) mini-
bands and gaps in the kz direction (perpendicular to the superlattice layer) inside the Brillouin
zone, and (c) energy dispersion curves in the kx and ky directions (i.e., in the plane of the
superlattice later), which show the continuous states within the Brillouin zone for the E1

and E2 levels.

are similar to that of the unperturbed crystal lattice except for mixing the states
in the z-direction, which results in lifting the lowest energy states at k = 0 above
Ec of the bulk well material as shown in Figures 4.18b and c. The second mini-
band results in a second shifted parabola along the kx - and ky-directions. It is seen
that the E versus k relation in the kx –ky plane is continuous, while a minigap be-
tween the first and second minibands appears in the direction perpendicular to the
superlattice (kz). Formation of the miniband in a superlattice can be realized when
the wave functions of carriers in the neighboring quantum wells of a multilayer
heterostructure overlap significantly. The energy levels broaden into minibands
with extended Bloch states. These minibands are expected to lead to the trans-
port of carriers perpendicular to the superlattice layers, which include tunneling,
resonant tunneling, ballistic and miniband transport.

Calculations of energy band structures in a superlattice can be carried out
by several methods. These include the pseudopotential, tight-binding (LCAO),
and envelope-function (i.e., k · p) methods. Among these methods, the envelope-
function approach is most widely used due to its simplicity. With several refine-
ments, this method can become quite effective in dealing with many problems
such as band mixing, the effects of external fields, impurities, and exciton states.
A detailed description of the envelope-function approximation for calculating the
energy bands in superlattice heterostructure devices has been given by Altarelli.5,6

The density of states in the minibands of a superlattice is discussed next. It is
shown in Figure 4.19 that the density-of-states function has a staircase character
(dashed steps) for the isolated quantum wells (i.e., the barrier width is much larger
than the well width).4 In this case, each level can be occupied by the number
of electrons given by its degeneracy multiplied by the number of atoms in the
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Figure 4.19. Staircase density of states for the iso-
lated 2-D quantum wells (dashed line), the superlat-
tice (distorted solid line), and the 3-D system with
a parabolic band. After Esaki,4 by permission.

Figure 4.20. The density of states functions for the 0-D, 1-D, 2-D, 3-D, Q1-D, and Q2-D
systems. After M.J. Kelly.7

quantum well. Thus, the two-dimensional (2-D) density of states, g(E), in each
discrete level can be described by

g(E) = m∗
n

πh̄2 , (4.119)

where g(E) is measured in cm−2. Equation (4.119) shows that g(E) for a 2-D
system is a constant and independent of energy. When significant overlap occurs,
tunneling becomes possible and each energy level splits into minibands, and the
staircase behavior (dashed line) changes shape as shown by the solid curly line in
Figure 4.19. For comparison, the density-of-states function for a 3-D system is also
included in Figure 4.19 for a parabolic band. The density of states functions for
other low-dimensional systems has also been published in the literature. Figure 4.20
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shows the plots of density of states function versus energy for the 3-D, 2-D, 1-
D, Q1-D (quantum wire), and Q2-D (quantum well), and the 0-D (quantum dot)
systems. The density of states functions for the low-dimensional systems are given
respectively as follows:7

N (E) = 2L3(2m∗)3/2

(2πl)2h̄3 E1/2, (3-D) (4.120)

N (E) = L22m∗

πh̄2 , (2-D) (4.121)

N (E) = L(2m∗)1/2

2πh̄2 E−1/2, (1-D) (4.122)

N (E) =
∑

n

L2(2m∗)

πh̄2 H (E − En), (Q2-D) (4.123)

N (E) =
∑
lm

L(2m∗)1/2

2πh̄2 (E − Elm)−1/2 H (E − Elm), (Q1-D) (4.124)

N (E) = δ(E − Elmn), (0-D) (4.125)

where H (σ ) is the Heaviside function (H (σ ) = 1 for σ > 0; H (σ ) = 0 for σ < 0).
The electron wave functions φn , φnl , and φnmn , and the energy levels En, Eln, Elnm

for the 2-D, 1-D, and 0-D systems are given respectively by7

φn =
(

2

L

)1/2

sin
(nπ z

L

)
, En = h̄2

2m∗
[nπ

L

]2
, (2-D) (4.126)

φlm =
(

2

L

)
sin

(
lπx

L

)
sin

(mπy

L

)
,

El,n = h̄2

2m∗

[
lπ

L
+ nπ

L

]2

, (1-D) (4.127)

φlmn =
(

2

L

)3/2

sin

(
lπx

L

)
sin

(mπy

L

)
sin

(nπ z

L

)
,

El,m,n = h̄2

2m∗

[
lπ

L
+ mπ

L
+ nπ

L

]2

. (0-D) (4.128)

Equations (4.125) and (4.128) are the density of states function, the wave functions,
and energy levels for the 0-D system (quantum dots), respectively. The density of
states function is a very important function for calculating many response functions
and the transport parameters such as thermoelectric power, thermal conductivity,
electrical conductivity, and Hall coefficients, which are all dependent on the density
of states at the Fermi energy (EF ). The concept of miniband and the density of
states function in a superlattice and in the low-dimensional systems described in
this section may be used in the design of various quantum-effect devices using
multiple quantum well (QW) and quantum dot (QD) heterostructures grown by
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the MBE and MOCVD techniques, as will be dicussed later in Chapters 12, 13,
14, and 16.

Problems

4.1. Using the nearly free-electron approximation for a one-dimensional (1-D)
crystal lattice and assuming that the only nonvanishing Fourier coefficients
of the crystal potential are v(π/a) and v(−π/a) in (4.73), show that near the
band edge at k = 0, the dependence of electron energy on the wave vector
k is given by

Ek = E0 + h̄2k2

2m∗ ,

where m∗ = m0[l − (32m2
0a4/h4π4)v(π/a)2]−1 is the effective mass of the

electron at k = 0.
4.2. The E–k relation of a simple cubic lattice given by (4.79) is derived from

the tight-binding approximation. Show that near k ≈ 0 this relation can be
expressed by

Ek = En0 + h̄2k2

2m∗ ,

where m∗ = h̄2/2βna2.
And for k ≈ π/a, show that the E–k relation is given by

Ek = En0 + h̄2k2

2m∗ ,

where m∗ = −h̄2/2βna2.
4.3. If the conductivity and the density-of-states effective masses of electrons are

defined, respectively, by

m∗
cn = 3(1/m∗

l + 2/m∗
t )−1 and m∗

dn = v2/3(m∗
l m∗

t )1/3,

where m∗
l and m∗

t denote the longitudinal and transverse effective masses,
respectively, find the conductivity effective mass m∗

cn and the density-of-
states effective mass m∗

dn for Si and Ge crystals. Given: m∗
t = 0.19m0, m∗

l =
0.97m0, v = 6 for silicon; and m∗

t = 0.082m0, m∗
l = 1.64m0, v = 4 for Ge.

4.4. Explain why most of the III-V compound semiconductors such as GaAs,
InP, and InSb have smaller electron effective masses than those of silicon
and germanium.

4.5. Sketch the constant-energy contours for a two-dimensional square lattice
using the expression derived from the tight-binding approximation

E(k) = E0 + B cos(kx a/2) cos(kya/2).

4.6. Derive expressions for the group velocity (vg), acceleration (dvg/dt), and
the effective mass (m∗) of electrons using the E–k relation for the two-
dimensional square lattice described in Problem 4.5. If cos(kya/2) = 1,
plot E, vg, dvg/dt , and m∗ versus k for the one-dimensional (1-D) crystal
lattice.
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4.7. If the E–k relation for a simple cubic lattice corresponding to an atomic state
derived by the tight-binding approximation is given by

E(k) = E0 − E ′
0 − 2E ′(cos k1a + cos k2a + cos k3a),

derive the expressions of (i) group velocity, (ii) acceleration, and (iii) the
effective mass tensor.

4.8. Repeat Problem 4.7 for a body-centered cubic lattice (s-like states). (See
(4.84).)

4.9. Using the tight-binding approximation, derive the E–k relation for the s-like
states in a face-centered cubic lattice.

4.10. The E–k relation near the top of the valence band maximum for silicon and
germanium is given by

E(k) = −
(

h̄2

2m

) {
Ak2 ± [

B2k4 + C2 (
k2

1k2
2 + k2

2k2
3 + k2

3k2
1

)]1/2
}

,

where E is measured from the top of the valence band edge. Plus refers to
the heavy-hole band and minus is for the light-hole band.

A B C

Ge 13.1 8.3 12.5
Si 4.0 1.1 4.1

Using the values of A, B, and C for germanium and silicon given in the
above table, plot the constant-energy contours for the heavy- and light-hole
bands in silicon and germanium.

4.11. Plot the energy bandgap (Eg) versus temperature (T ) for the E�, EL , and
EX conduction minima of GaAs crystal for 0 < T < 1000 K. Given:

E� (T ) = 1.519 − 5.405 × 10−4T 2

(T + 204)
,

EL (T ) = 1.815 − 6.05 × 10−4T 2

(T + 204)
,

EX (T ) = 1.981 − 4.60 × 10−4T 2

(T + 204)
(eV).

4.12. Plot the energy band gap as a function of pressure (P) for the E�, EL , and
EX conduction minima of GaAs for 0 < P < 50 bars. At what pressure P
will GaAs become an indirect band gap material? Given:

E� = E� (0) + 0.0126P − 3.77 × 10−5 P2, (eV)

EL = EL (0) + 0.0055P,

EX = EX (0) − 0.0015P.

4.13. Referring to the paper by J. R. Chelikowsky and M. L. Cohen,2 describe
briefly the pseudopotential method for calculating the energy band structures
of semiconductors with diamond and zinc blende structures.
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4.14. Plot the energy, group velocity, and inverse effective mass of electrons versus
the wave vector in the first Brillouin zone of a one-dimensional crystal lattice,
using the relation E = h̄2k2/2m0.

4.15. Using the one-dimensional (1-D) Schrödinger equation, derive the expres-
sions of quantized energy states for (i) an infinite square well (with well
width a = 100 Å), (ii) triangular well, and (iii) parabolic well. Assuming
that the quantization occurs in the z-direction and the potential energies for
the three cases are given by (i) U (z) → ∞ (ii) U (z) = qEz (where E is the
electric field inside the triangular well), and (iii) U (z) = m∗(ω2/2)z2, cal-
culate the energy levels of the ground state and the first excited state of (i)
and (ii). Given: m∗ = 0.067m0, a = 100 Å, and E = 105 V/cm. Answer:

(i) Er = h̄2π2

8m∗a2
(r + 1)2,

r = 0, 1, 2, . . . , E0 = 56 meV, E1 = 224 meV

(ii) Er =
(

h̄2q2E2

2m∗

)1/3 [
3π

2
(r + 3/4)

]2/3

,

E0 = 87 meV, E1 = 153 meV,

(iii) Er = h̄ω(r + 1/2).
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5
Equilibrium Properties of
Semiconductors

5.1. Introduction

In this chapter, the equilibrium properties of semiconductors are presented. The
fact that electrical conductivity of a semiconductor can be readily changed by many
orders of magnitude through the incorporation of foreign impurities has made the
semiconductor one of the most intriguing and unique electronic materials among
all the crystalline solids. The invention of germanium and silicon transistors in
the early 1950s and the silicon integrated circuits in the 1960s as well as the
development of microprocess chips in the 1980s has indeed transformed semicon-
ductors into the most important and indispensable electronic materials of modern
times.

Unlike metals, the electrical conductivity of a semiconductor can be changed by
many orders of magnitude by simply doping it with acceptor or donor impurities
or by using external excitations (e.g., by photoexcitation). At low temperatures,
a pure semiconductor may become a perfect electrical insulator, since its valence
band is totally filled with valence electrons and the conduction band is completely
empty. However, as the temperature rises, a fraction of the valence electrons are
excited into the conduction band by the thermal energy, thus creating free holes in
the valence band. As a result, the electrical conductivity will increase rapidly with
increasing temperature. Therefore, even an intrinsic semiconductor may become a
good electrical conductor at high temperatures. In general, the semiconductors may
be divided into two categories: the pure undoped semiconductor, which is usually
referred to as the intrinsic semiconductor, and the doped semiconductor, which is
also called the extrinsic semiconductor. Another distinct difference between a metal
and a semiconductor is that the electrical conduction in a metal is due to electrons,
while the electrical conduction of a semiconductor may be attributed to electrons,
holes, or both carriers. The electrical conduction of an intrinsic semiconductor is
due to both electrons and holes, while for an extrinsic semiconductor it is usually
dominated by either electrons or holes, depending on whether the semiconductor
is doped with shallow donors or shallow acceptor impurities.

To understand the conduction mechanisms in a semiconductor, the equilib-
rium properties of a semiconductor are first examined. A unique feature of

105
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semiconductor materials is that the physical and transport parameters depend
strongly on temperature. For example, the intrinsic carrier concentration of a semi-
conductor depends exponentially on temperature. Other physical parameters, such
as carrier mobility, resistivity, and the Fermi level in a nondegenerate semiconduc-
tor, are likewise a strong function of temperature. In addition, both the shallow-level
and deep-level impurities may also play an important role in controlling the phys-
ical and electrical properties of a semiconductor. For example, the equilibrium
carrier concentration of a semiconductor is controlled by the shallow-level impu-
rities, and the minority carrier lifetimes are usually closely related to defects and
deep-level impurities in a semiconductor.

In Section 5.2, the general expressions for the electron density in the conduction
band and the hole density in the valence band are derived for the cases of the single
spherical energy band and the multivalley conduction bands. The equilibrium
properties of an intrinsic semiconductor are described in Section 5.3. Section 5.4
presents the equilibrium properties of n-type and p-type extrinsic semiconductors.
The change of the conduction mechanism from the intrinsic to n-type (electrons)
or p-type (holes) conduction by doping the semiconductors with shallow-donor
or shallow-acceptor impurities is discussed in this section. Section 5.5 deals with
the physical properties of a shallow-level impurity. Using Bohr’s model for a
hydrogen-like impurity atom the ionization energy of a shallow-level impurity is
derived in this section. In Section 5.6, the Hall effect and the electrical conductivity
of a semiconductor are discussed. Finally, the heavy doping effects such as carrier
degeneracy and band gap narrowing for degenerate semiconductors are discussed
in Section 5.7.

5.2. Densities of Electrons and Holes in a Semiconductor

General expressions for the equilibrium densities of electrons and holes in a semi-
conductor can be derived using the Fermi–Dirac (F-D) distribution function and the
density-of-states function described in Chapter 3. For undoped and lightly doped
semiconductors, the Maxwell–Boltzmann (M-B) distribution function is used in-
stead of the F-D distribution function. If one assumes that the constant-energy
surfaces near the bottom of the conduction band and the top of the valence band
are spherical, then the equilibrium distribution functions for electrons in the con-
duction band and holes in the valence band may be described in terms of the F-D
distribution function. The F-D distribution function for electrons in the conduction
band is given by

fn(E) = 1

[1 + e(E−Ef)/kBT ]
, (5.1)

and the F-D distribution function for holes in the valence band can be expressed
by

fp(E) = 1

[1 + e(Ef−E)/kBT ]
. (5.2)
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The density-of-states function given by (3.33) for free electrons in a metal can
be applied to electrons in the conduction band and holes in the valence band of
a semiconductor. Assuming parabolic bands for both the conduction and valence
bands and using the conduction and valence band edge as a reference level, the
density of states function per unit volume in the conduction band can be expressed
by

gn(E − Ec) =
(

4π

h3

)
(2m∗

n)3/2(E − Ec)1/2. (5.3)

The density of states in the valence band is given by

gp(Ev − E) =
(

4π

h3

)
(2m∗

p)3/2(Ev − E)1/2. (5.4)

Figure 5.1 shows a plot of fn(E), fp(E), gn(E), gp(E), fn(E)gn(E), and
fp(E)gp(E) versus energy E in the conduction and valence bands for T > 0 K.
The hatched area denotes the electron density in the conduction band and hole
density in the valence band, respectively, Ec is the conduction band edge; Ev

is the valence band edge, and Eg is the band gap energy. The equilibrium elec-
tron density n0 in the conduction band can be obtained by integrating the prod-
uct dn = fn(E)gn(E)dE (i.e., the electron density per unit energy interval) with
respect to energy over the entire conduction band using (5.1) and (5.3), which
yields

n0 =
∫

dn =
∫ ∞

Ec

fn(E)gn(E − Ec)dE

=
(

4π

h3

)
(2m∗

n)3/2

∫ ∞

Ec

(E − Ec)1/2dE

[1 + e(E−Ef)/kBT ]

=
(

4π

h3

)
(2m∗

nkBT )3/2

∫ ∞

0

ε1/2dε

[1 + e(ε−η)]

= Nc F1/2(η), (5.5)

where

Nc = 2(2πm∗
nkBT/h2)3/2 (5.6)

is the effective density of the conduction band states,

F1/2(η) =
(

2√
π

) ∫ ∞

0

ε1/2dε

[1 + e(ε−η)]
(5.7)

is the Fermi integral of order one-half, ε = (E − Ec)/kBT is the reduced energy,
m∗

n is the density-of-states effective mass of electrons, and η = −(Ec − Ef)/kBT
is the reduced Fermi energy. Equation (5.5) is the general expression for the
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Figure 5.1. The Fermi–Dirac distribution function and the density-of-states function for

electrons and holes in the conduction and valence bands of a semiconductor respectively,

for T > 0 K.

equilibrium electron density in the conduction band applicable over the entire
doping density range. Since the Fermi integral given by (5.7) can be evalu-
ated only by numerical integration or by using a table of Fermi integrals, it
is a common practice to use simplified expressions for calculating the carrier
density over a certain range of doping densities in a degenerate semiconductor.
The following approximations are valid for a specified range of reduced Fermi
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energies:

F1/2(η) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

en for η < −4,
1

(e−η + 0.27)
for −4 < η < 1,

(
4

3
√

π

) (
η2 + π2

6

)3/4

for 1 < η < 4,

(
4

3
√

π

)
η3/2 for η > 4.

(5.8)

The expression of Nc given by (5.6) can be simplified to

Nc = 2.5 × 1019(T/300)3/2(m∗
n/m0)3/2, (5.9)

where m0 = 9.1 × 10−31 kg is the free-electron mass, and m∗
n is the density-of-

states effective mass for electrons in the conduction band. For η ≤ −4, the Fermi
integral of order one-half becomes an exponential function of η, which is identical
to the M-B distribution function. In this case, the classical M-B statistics prevail,
and the semiconductor is referred to as nondegenerate semiconductor. The density
of electrons for the nondegenerate case can be simplified to

n0 = Nce−(Ec−Ef)/kBT = Nceη. (5.10)

Equation (5.10) is valid for intrinsic or lightly doped semiconductors. For silicon,
(5.10) is valid for doping densities less than 1019 cm−3. However, for doping
densities higher than Nc, (5.5) must be used instead. A simple rule of thumb for
checking the validity of (5.10) is that n0 should be three to four times smaller than
Nc. Figure 5.2 shows the normalized electron density versus the reduced Fermi

Figure 5.2. The normalized electron density,

n0/Nc, versus the reduced Fermi energy, η.

The solid line is obtained from (5.5) and the

dashed line is calculated from (5.10).
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energy as calculated by (5.5) and (5.10). It is evident from this figure that the two
curves calculated from the F-D and M-B distribution functions are nearly identical
for η ≤ −4 (i.e., the nondegenerate case), but they deviate considerably from each
other for η ≥ 0 (i.e., the degenerate case).

The hole density in the valence band can be derived in a similar way from
(5.2) and (5.4), and the result is given by

p0 =
(

4π

h3

)
(2m∗

p)3/2

∫ Ev

−∞

(Ev − E)1/2dE

[1 + e(Ef−E)/kBT ]
, = Nv F1/2(−η − εg) (5.11)

where Nv = 2(2πm∗
pkBT/h2)3/2 is the effective density of the valence band states,

m∗
p is the density-of-states effective mass for holes in the valence band, and

εg = (Ec − Ev)/kBT is the reduced band gap. For the nondegenerate case with
(Ef − Ev) ≥ 4kBT , (5.11) becomes

p0 = Nve(Ev−Ef)/kBT = Nve−η−εg , (5.12)

which shows that the equilibrium hole density depends exponentially on the tem-
perature and the reduced Fermi energy and energy band gap.

The results derived above are applicable to a single-valley semiconductor with
a constant spherical energy surface near the bottom of the conduction band and
the top of the valence band maximum, III-V compound semiconductors such as
GaAs, InP, and InAs, which have a single constant spherical energy surface near
the conduction band minimum (i.e., �-band), fall into this category. However, for
elemental semiconductors such as silicon and germanium, which have multivalley
conduction band minima, the scalar density-of-states effective mass used in (5.6)
must be modified to account for the multivalley nature of the conduction band
minima. This is discussed next.

The constant-energy surfaces near the conduction band minima for Si, Ge, and
GaAs are shown in Figures 5.3a–c, respectively.1 For silicon, there are six conduc-
tion band minima located along the {100} axes, while there are eight conduction
band minima located at the zone boundaries of the first Brillouin zone along the
{111} axes for germanium. Furthermore, the constant-energy surfaces near the
bottom of the conduction bands are ellipsoidal for Si and Ge and spherical for
GaAs. If one assumes that there are ν conduction band minima, then the total
density of electrons in ν conduction band minima is given by

n′
0 = νn0 = νNc F1/2(η) = N ′

c F1/2(η), (5.13)

where

N ′
c = νNc = 2

(
2πm∗

nν
2/3kBT/h2

)3/2 = 2
(
2πm∗

dnkBT/h2
)3/2

(5.14)

is the effective density of the conduction band states for a multivalley semicon-
ductor with an ellipsoidal constant-energy surface. The density-of-states effective
mass of electrons, m∗

dn, in (5.14) can be expressed in terms of m t and m l by

m∗
dn = ν2/3

(
m2

t m l

)1/3
, (5.15)
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(c)(b)

(a)

Figure 5.3. Constant-energy surfaces near the conduction band edges for (a) Si, (b) Ge,

and (c) GaAs.

where m t and m l denote the transverse and longitudinal effective masses of elec-
trons along the minor and major axes of the constant ellipsoidal energy surface,
respectively. Values of m t and m l can be determined using the cyclotron resonant
experiment performed at very low temperature. Here ν denotes the number of
conduction band valleys in the semiconductor (e.g., ν = 6 for Si and 4 for Ge).
For silicon crystal with ν = 6, m t = 0.19 m0, and m l = 0.98m0, m∗

dn was found
to be 1.08 m0. Table 5.1 lists the values of m t, m l, m∗

dn, and N ′
v for Si, Ge, and

GaAs at 300 K.
Calculations of hole densities in the valence bands for Si, Ge, and GaAs are

different from those of the electron densities in the conduction band. This is because
the valence band structures for these semiconductors are similar, consisting of a
heavy-hole band and a light-hole band as well as the split-off band, as shown in
Figure 5.4. For these semiconductors, the constant-energy surface near the top
of the valence bands is nonparabolic and warped. For simplicity, it is assumed
that the constant-energy surface near the top of the valence bands is parabolic,
and by neglecting the split-off band contribution the hole density in the light- and
heavy-hole bands can be expressed as

p0 = pH + pL = N ′
v F1/2(−η − εg), (5.16)
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Table 5.1. Conduction and Valence Band Parameters for

Silicon, Germanium, and GaAs.

Parameters Ge Si GaAs

Conduction band

ν 4 6 1

mx/m0 0.082 0.19 —

ml/m0 1.64 0.98 —

m∗
dn/m0 0.561 1.084 0.068

N ′
c(cm−3) 1.03 × 1019 2.86 × 1019 4.7 × 1017

Valence band

mx/m0 0.044 0.16 0.082

ml/m0 0.28 0.49 0.45

m∗
dp/m0 0.29 0.55 0.47

N ′
c(cm−3) 5.42 × 1018 2.66 × 1019 7.0 × 1018

Figure 5.4. Energy band structures for Si, Ge, and GaAs along the (111) and (100) axes.

For the valence bands, H represents the heavy-hole band and L denotes the light-hole band.

Note that both bands are degenerate at k = 0. After Sze,1 reprinted by permission from

John Wiley & Sons Inc.
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where pH is the heavy-hole density, pL is the light-hole density, N ′
v =

2(2πm∗
dpkBT/h2)3/2 is the effective density of the valence band states, and

m∗
dp = (

m3/2
H + m3/2

L

)2/3
(5.17)

is the hole density-of-states effective mass; mH and mL denote the heavy- and
light-hole masses, respectively. Values of mH, mL , m∗

dp, and N ′
v for Ge, Si, and

GaAs are also listed in Table 5.1.

5.3. Intrinsic Semiconductors

A semiconductor may be considered as an intrinsic semiconductor if its thermally
generated carrier density (i.e., ni) is much larger than the background doping or
residual impurity densities. At T = 0 K, an intrinsic semiconductor behaves like
an insulator because the conduction band states are totally empty and the valence
band states are completely filled. However, as the temperature increases, some of
the electrons in the valence band states are excited into the conduction band states
by thermal energy, leaving behind an equal number of holes in the valence band.
Thus, the intrinsic carrier density can be expressed by

ni = n0 = p0, (5.18)

where n0 and p0 denote the equilibrium electron and hole densities, respectively.
Substituting (5.5) and (5.11) into (5.18) yields the intrinsic carrier density

ni = Nc F1/2(η) = Nv F1/2(−η − εg)

= (Nc Nv)1/2[F1/2(η)F1/2(−η − εg)]1/2. (5.19)

In the nondegenerate case, (5.19) becomes

ni = (Nc Nv)1/2e−Eg/2kBT

= 2.5 × 1019(T/300)3/2
(
m∗

dnm∗
dp/m2

0

)3/4
e−Eg/2kBT . (5.20)

A useful relationship between the square of the intrinsic carrier density and the
product of electron and hole densities, valid for the nondegenerate case, is known
as the law of mass action equation, which is given by

n0 p0 = n2
i = Nc Nve−Eg/kBT = Ki(T ). (5.21)

From (5.20) and (5.21) it is noted that the product n0 p0 depends only on the
temperature, band gap energy, and the effective masses of electrons and holes.
Equation (5.21) allows one to calculate the minority carrier density in an extrinsic
semiconductor when the majority carrier density is known (e.g., p0 = n2

i /n0 for
an extrinsic n-type semiconductor).

The intrinsic carrier density depends exponentially on both the temperature and
band gap energy of the semiconductor. For example, at T = 300 K, values of
the band gap energy for GaAs, Ge, and Si are given by 1.42, 0.67, and 1.12 eV,
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and the corresponding intrinsic carrier densities are 2.25 × 106, 2.5 × 1013, and
9.65 × 109 cm−3, respectively. Thus, it is clear that an increase of 0.1 eV in
band gap energy can result in a decrease of the intrinsic carrier density by
nearly one order of magnitude. This result has a very important practical im-
plication in semiconductor device applications, since the saturation current of
a p-n junction diode or a bipolar junction transistor varies with the square of
the intrinsic carrier density (I0 ∝ n2

i ∝ e−Eg/kBT ). Therefore, p-n junction de-
vices fabricated from larger band gap semiconductors such as GaAs and GaN
are expected to have much lower dark currents than those of smaller band gap
semiconductors such as silicon and germanium, and hence are more suitable
for high-temperature applications. The Fermi level of an intrinsic semiconductor
may be obtained by solving (5.10) and (5.12) for the nondegenerate case, which
yields

Ef = (Ec + Ev)

2
+

(
kBT

2

)
ln(Nv/Nc) = Ei +

(
3kBT

4

)
ln(m∗

dp/m∗
dn),

(5.22)

where Ei is known as the intrinsic Fermi level, which is located in the middle of
the forbidden gap at T = 0 K. As the temperature rises from T = 0 K, the Fermi
level, Ef, will move toward the conduction band edge if m∗

dp > m∗
dn, and toward

the valence band edge if m∗
dp < m∗

dn, as illustrated in Figure 5.5. The energy
band gap of a semiconductor can be determined from the slope (= −Eg/2kB)
of the semilog plot of intrinsic carrier density (ni) versus inverse temperature
(1/T ). The intrinsic carrier density may be determined using either the Hall effect
measurements on a bulk semiconductor or the high-frequency capacitance–voltage
measurements on a Schottky barrier or a p-n junction diode. The intrinsic carrier

Figure 5.5. Fermi level vs. temperature for an intrinsic semiconductor.
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Figure 5.6. Intrinsic carrier density vs. inverse temperature for Si, Ge, and GaAs crystals.

densities for Ge, Si, and GaAs as a function of temperature are shown in Figure
5.6. The energy band gaps for these materials can be determined from the slope
of the ln(niT −3/2) versus 1/T plot. The energy band gap determined from ni is
known as the thermal band gap of the semiconductor. On the other hand, the
energy band gap of a semiconductor can also be determined using the optical
absorption measurements near the absorption edge of the semiconductor. The
energy band gap thus determined is usually referred to as the optical band gap
of the semiconductor. A small difference between these two band gap values is
expected due to the difference in the measurements of optical and thermal band
gaps.

Since the energy band gap for most semiconductors decreases with increasing
temperature, a correction of Eg with temperature is necessary when the intrinsic
carrier density is calculated from (5.20). In general, the variation of energy band
gap with temperature can be calculated using an empirical formula given by

Eg(T ) = Eg(0) − αT 2

(T + β)
, (5.23)
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Table 5.2. Coefficients for the

Temperature-Dependent Energy Band Gap of GaAs,

InP, Si, and Ge.

Materials Eg(0) (eV) α(10−4 eV/K) β(K)

GaAs 1.519 5.41 204

InP 1.425 4.50 327

Si 1.170 4.73 636

Ge 0.744 4.77 235

where Eg(0) is the energy band gap at T = 0 K; values of Eg(0), α (eV/K), and
β (K) for GaAs, InP, Si, and Ge are listed in Table 5.2.

5.4. Extrinsic Semiconductors

As discussed in Section 5.3, the electron–hole pairs in an intrinsic semiconductor
are generated by thermal excitation. Therefore, for intrinsic semiconductors with an
energy band gap on the order of 1 eV or higher, the intrinsic carrier density is usually
very small at low temperatures (i.e., for T < 100 K). As a result, the resistivity
for these intrinsic semiconductors is expected to be very high at low temperatures.
This is indeed the case for Si, InP, GaAs, and other large band gap semiconductors.
It should be noted that semi-insulating substrates with resistivity greater than
107	-cm can be readily obtained for undoped and Cr-doped GaAs as well as for
Fe-doped InP materials. However, high-resistivity semi-insulating substrates are
still unattainable for silicon and germanium due to the smaller band gap inherent
in these materials, instead, SOI (silicon-on-insulator) wafers formed by oxygen-
implantation (SIMOX) or wafer bonding (WB) techniques have been developed for
producing the insulating substrates in silicon wafers. Novel devices and integrated
circuits have been fabricated on SIMOX and WB silicon wafers for low-power,
high-speed, and high-performance CMOS and BICMOS for a wide variety of
ULSI applications.

The most important and unique feature of a semiconductor material lies in
the fact that its electrical conductivity can be readily changed by many or-
ders of magnitude by simply doping the semiconductor with shallow-donor or
shallow-acceptor impurities. By incorporating the doping impurities into a semi-
conductor, the electron or hole density will increase with increasing shallow-donor
or shallow-acceptor impurity concentrations. For example, electron or hole den-
sities can increase from 1013 cm−3 to more than 1020 cm−3 if a shallow-donor or
shallow-acceptor impurity with an equal amount of impurity densities were added
into a silicon crystal. This is illustrated in Figure 5.7 for a silicon crystal.

Figure 5.7a shows an intrinsic silicon crystal with covalent bond structure. In
this case, each silicon atom shares the four valence electrons reciprocally with
its neighboring atoms to form covalent bonds. The covalent structure also applies
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Figure 5.7. A covalent bond model for intrinsic and extrinsic silicon.

to other group-IV elements in the periodic table, such as germanium and dia-
mond crystals. Figure 5.7b shows the substitution of a silicon atom by a group-V
element such as phosphorus, arsenic, or antimony. In this case, an extra elec-
tron from the group-V atom is added to the host silicon lattice. Since this extra
electron is loosely bound to the substitutional impurity atom (i.e., with ioniza-
tion energy of a few tens of meV), it can be easily excited into the conduction
band via thermal energy, and hence contributes to free electrons in the conduction
band at 300 K. If the electrical conduction is due to electrons, then it is called
an n-type semiconductor. A doping impurity that provides an extra electron per
impurity atom to the host semiconductor is called a shallow-donor impurity. Thus,
group-V elements in the periodic table are usually referred to as shallow-donor
impurities for group-IV elemental semiconductors such as Si and Ge. If a group-
III element is introduced into a group-IV elemental semiconductor, then there
is a deficiency of one electron for each replaced host atom by a group-III im-
purity atom, leaving an empty state (or creation of a hole) in the valence band,
as illustrated in Figure 5.7c. In this case, the conduction process is carried out
by holes in the valence bands, and the semiconductor is called a p-type semi-
conductor. The group-III elements including boron, gallium, and aluminum are
common doping impurities for producing p-type doping in the elemental semicon-
ductors. Thus, group-III elements are shallow-acceptor impurities for the elemental
semiconductors.

For III-V compound semiconductors (e.g., GaAs, GaP, GaSb, InP, InAs, InSb,
etc.) and II-VI compounds (e.g., CdS, CdTe, ZnS, ZnSe, etc.), controlling n- or
p-type doping is more complicated than for the elemental semiconductors. For
example, n-GaAs can be obtained if the arsenic atoms in the arsenic sublattices
are replaced by a group-VI element such as Te or Se, or if the gallium atoms are
replaced by a group-IV element such as Ge, Si, or Sn. A p-type GaAs may be
obtained if arsenic atoms are replaced by a group-IV element such as Ge or Si,
or if gallium atoms are replaced by a group-II element such as Zn or Be. How-
ever, in practice, Te, Se, Sn, and Si are often used as n-type dopants, and Zn
and Be are widely used as p-type dopants for GaAs and InP materials. As for
II-VI compound semiconductors, it is even more difficult to produce n- or p-type
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Figure 5.8. Ionization energies for various impurity levels in (a) Si, (b) Ge, and (c) GaAs.

After Sze,1 reprinted by permission from John Wiley & Sons Inc.

semiconductors by simply using the doping technique cited above due to the high
density of native defects and the nonstoichiometric nature of the II-VI semiconduc-
tors. For example, while CdS and ZnSe are always exhibiting n-type conduction,
ZnS and ZnTe are always showing p-type conduction. In recent years, nitrogen
has been successfully used as p-type dopant to convert n-type ZnSe into p-type
ZnSe, which has enabled the fabrication of blue and blue-green ZnSe p-n junction
laser diodes and LEDs. The dopant impurities used in controlling the conductivity
type of a semiconductor usually have very small ionization energies (i.e., a few
tens of meV), and hence these impurities are often referred to as shallow-donor
or shallow-acceptor impurities. These shallow-level impurities are usually fully
ionized at room temperature for most semiconductors due to the small ionization
energy.

Figure 5.8 shows the energy band diagrams and the impurity levels for (a) Si,
(b) Ge, and (c) GaAs, respectively. The energy levels shown in the forbidden gap
of Si and Ge include all the shallow-donor and acceptor impurities from group-
III elements (e.g., B, Al, Ga) and group-V elements (e.g., P, As, Sb), and the
deep-level impurity states from normal metals (Au, Cu, Ag) and transition metals
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(Fe, Ni, Co). The shallow-level impurities are used mainly for controlling the
carrier concentration and the conductivity of semiconductors, while the deep-level
impurities are used to control the recombination and hence the minority carrier
lifetimes in a semiconductor. As an example, gold is a deep-level impurity and
an effective recombination center in n-type silicon; it has an acceptor level with
ionization energy of E−

Au = Ec − 0.55 eV and a donor level with ionization energy
of E+

Au = Ev + 0.35 eV in the forbidden gap of silicon. Since the gold acceptor
level is the most effective mid-gap recombination center in silicon, gold impurity
has been used for controlling the minority carrier lifetimes and hence the switching
times in silicon devices.

The temperature behavior of equilibrium carrier density in an extrinsic semi-
conductor can be determined by solving the charge neutrality equation, using the
expressions for the electron and hole densities in the conduction and valence band
states as well as in the impurity states derived in Section 5.2. For an extrinsic
semiconductor, if both the donor and acceptor shallow impurities are present in a
host semiconductor, then the charge neutrality condition in thermal equilibrium is
given by

ρ = 0 = q(p0 − n0 + ND − nD − NA + pA), (5.24)

where p0 and n0 are the equilibrium hole and electron densities in the valence
and conduction bands, while ND and NA are the donor- and acceptor-impurity
densities, respectively. Note that nD and pA are the electron and hole densities in
the shallow-donor and shallow-acceptor states, which are given, respectively, by

nD = ND

[1 + g−1
D e(ED−Ef)/kBT ]

, (5.25)

pA = NA

[1 + gAe(Ef−EA)/kBT ]
, (5.26)

where gD and gA denote the ground-state degeneracy factors for the shallow-donor
and shallow-acceptor states.

In general, the temperature dependence of the carrier density and the Fermi level
for an extrinsic semiconductor can be predicted using (5.24), (5.25), and (5.26).
For an n-type nondegenerate semiconductor, assuming ND 
 NA and NA 
 pA,
a general expression for the charge neutrality equation can be obtained by substi-
tuting (5.10), (5.12), and (5.25) into (5.24), which yields

Nce−(Ec−Ef)/kBT = Nve(Ef−Ev)/kBT − NA + ND

1 + gDe(Ef−ED)/kBT
. (5.27)

Equation (5.27) is known as the charge neutrality equation for n-type extrinsic
semiconductors. The Fermi level Ef can be determined by solving (5.27) using an
iteration procedure. However, simple analytical solutions may be obtained in three
different temperature regimes in which simplification can be made in (5.27). The
three temperature regimes, which include the intrinsic, exhaustion, and deioniza-
tion regimes, are now discussed.
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(i) The intrinsic regime. At very high temperatures, when the thermally generated
carrier densities in both the conduction and valence bands are much larger than the
background doping densities (i.e., ni 
 (ND − NA)), the semiconductor becomes
an intrinsic semiconductor. In the intrinsic regime, (5.24) reduces to

n0 = p0 = ni, (5.28)

where

ni = (Nv Nc)1/2e−Eg/2kBT (5.29)

is the intrinsic carrier density. In this regime, the intrinsic carrier density is much
larger than the net doping impurity density of the semiconductor. For a silicon
specimen with a doping density of 1 × 1016 cm−3, the temperature corresponding
to the onset of the intrinsic regime is at T ≥ 800 K. For a germanium crystal
with the same doping density, this occurs at T ≥ 600 K. Figure 5.6 shows a plot
of intrinsic carrier density versus temperature for Ge, Si, and GaAs. Note that
the energy band gap can be determined from the slope of the ln(niT −3/2) versus
1/T plot using (5.29). It is noted that for the same doping density, the intrinsic
regime for GaAs will occur at a much higher temperature than that of Si due to the
larger energy band gap (Eg = 1.42 eV at 300 K) for GaAs. From Figure 5.6 the
intrinsic carrier densities at 300 K for Si and GaAs are found to be ni = 9.65 ×
109 cm−3 for Si, and 2.25 × 106 cm−3 for GaAs. The Fermi level as a function
of temperature in the intrinsic regime is given by (5.22), which shows a linear
dependence with temperature (Ef = Ei at T = 0 K), as shown in Figure 5.5.

(ii) The exhaustion regime. In the exhaustion regime, the shallow-donor impurities
in an n-type semiconductor are fully ionized at room temperature, and hence the
electron density is equal to the net doping impurity density. Thus, the electron
density can be expressed by

n0 ≈ (ND − NA) = Nc e−(Ec−Ef)/kBT . (5.30)

From (5.30), the Fermi level Ef is given by

Ef = Ec − kBT ln[NC/(ND − NA)]. (5.31)

Equation (5.31) is valid only in the temperature regime in which all the shallow-
donor impurities are ionized. As the temperature decreases, the Fermi level moves
toward the donor level, and a fraction of the donor impurities become deionized (or
neutral). This phenomenon is known as carrier freeze-out, which usually occurs
in shallow-donor impurities at very low temperatures. This temperature regime is
referred to as the deionization regime, which is discussed next.

(iii) The deionization regime. In the deionization regime, the thermal energy
is usually too small to excite electrons from the shallow-donor impurity level
into the conduction band, and hence a portion of the shallow-donor impurities
are filled by electrons while some of the shallow-donor impurities will remain
ionized. The kinetic equation, which governs the transition of electrons between
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the shallow-donor level and the conduction band, is given by

n0 + (ND − nD) � n0
D, (5.32)

or

n0(ND − nD)

N 0
D

= KD(T ), (5.33)

where N 0
D denotes the neutral donor density (i.e., nD = N 0

D), and KD(T ) is a
constant that depends only on temperature. The charge-neutrality condition in this
temperature regime (assuming pA � NA and (Ef − ED) 
 kBT ) is given by

n0 = p0 + (ND − nD) − NA (5.34)

and

(ND − nD) = NDg−1
D e(ED−Ef)/kBT . (5.35)

Substituting (5.35) into (5.33) and assuming N 0
D = ND, one obtains

KD(T ) = g−1
D Nce−(Ec−ED)/kBT . (5.36)

Now solving (5.33) and (5.34) yields

KD(T ) = n0(ND − nD)

N 0
D

≈ n0(n0 + NA)

(ND − NA)
. (5.37)

Equation (5.37) is obtained by assuming n0 
 p0 and (ND − nD) 
 n0, and may
be used to determine the ionization energy of the shallow-donor level and the dopant
compensation ratio in an extrinsic semiconductor. Two limiting cases, which can
be derived from (5.37), are now discussed.

(a) The lightly compensated case (ND 
 NA and NA � n0). In this case, (5.37)
becomes

KD(T ) ≈ n2
0

(ND − NA)
. (5.38)

Now solving (5.36) and (5.38), one obtains

n0 = [
(ND − NA)Ncg−1

D

]1/2
e−(Ec−ED)/2kBT , (5.39)

where gD = 2 is the degeneracy factor for the shallow-donor level. Equation (5.39)
shows that the electron density increases exponentially with increasing tempera-
ture. Thus, from the slope of the ln(n0T −3/2) versus 1/T plot in the deionization
regime, one can determine the ionization energy of the shallow-donor level. For
the lightly compensated case, the activation energy deduced from the slope of this
plot is equal to one-half of the ionization energy of the shallow-donor level (i.e.,
slope = −(Ec − ED)/2kB).

(b) The highly compensated case (ND > NA 
 n0). In this case, (5.37) reduces
to

KD = n0 NA/(ND − NA). (5.40)
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Figure 5.9. Electron density

versus 102/T for two n-type

silicon samples with different

impurity compensations.

Solving (5.36) and (5.40) yields

n0 = [(ND − NA)/NA]Ncg−1
D e−(Ec−ED)/kBT . (5.41)

From (5.41), it is noted that the activation energy determined from the slope of the
ln(n0T −3/2) versus 1/T plot is equal to the ionization energy of the shallow-donor
impurity level for the highly compensated case.

Figure 5.9 shows a plot of ln(n0) versus 1/T for two n-type silicon samples
with different doping densities and compensation ratios. The results clearly show
that the sample with a higher impurity compensation ratio has a larger slope
than the one with a smaller impurity compensation ratio. From the slope of
this plot one can determine the activation energy of the shallow-donor impurity
level. Therefore, by measuring the majority carrier density as a function of
temperature over a wide range of temperature, one can determine simultaneously
the values of ND, NA, Eg, ED, or EA for the extrinsic semiconductors. The above
analysis is valid for an n-type extrinsic semiconductor with different impurity
compensation ratios. A similar analysis can also be performed for a p-type
extrinsic semiconductor.

The resistivity and Hall effect measurements are commonly employed to deter-
mine the carrier concentration, carrier mobility, energy band gap, and activation
energy of shallow impurity levels as well as the compensation ratio of shallow im-
purities in a semiconductor. In addition to these measurements, the deep-level
transient spectroscopy (DLTS) and photoluminescence (PL) methods are also
widely used in characterizing both the deep-level defects and the shallow-level
impurities in a semiconductor. Thus, by performing the resistivity and Hall effect
measurements, detailed information concerning the equilibrium properties of a
semiconductor can be obtained.
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Figure 5.10. The Fermi level as a function of temperature for n- and p-type silicon with

different compensation ratios (ND/NA).

Figure 5.10 shows the plot of Fermi level versus temperature for both n- and p-
type silicon with different degrees of impurity compensation ratio. As can be seen
in this figure, when the temperature increases, the Fermi level may move either
toward the conduction band edge or toward the valence band edge, depending on
the ratio of the electron effective mass to the hole effective mass. As shown in this
figure, if the hole effective mass is greater than the electron effective mass, then the
Fermi level will move toward the conduction band edge at high temperatures. On
the other hand, if the electron effective mass is larger than the hole effective mass,
then the Fermi level will move toward the valence band edge at high temperatures.

5.5. Ionization Energies of Shallow- and
Deep-Level Impurities

Figure 5.8 shows the ionization energies of the shallow-level and deep-level impu-
rities measured in Ge, Si, and GaAs materials. In general, the ionization energies
for the shallow-donor impurity levels in these materials are less than 0.1 eV below
the conduction band edge for the shallow-donor impurity levels and less than 0.1
eV above the valence band edge for the shallow-acceptor impurity levels. The ion-
ization energy of a shallow-level impurity may be determined using the Hall effect,
photoluminescence, or photoconductivity method. For silicon and germanium, the
most commonly used shallow-donor impurities are phosphorus and arsenic, and
the most commonly used shallow-acceptor impurity is boron. For GaAs and other
III-V compounds, Si, Ge, Te, and Sn are the common shallow-donor impurities
used as n-type dopants, while Zn and Be are commonly used as p-type dopants.

The shallow-impurity levels in a semiconductor may be treated within the frame-
work of the effective mass model, which asserts that the electron is only loosely
bound to a donor atom by a spherically symmetric Coulombic potential, and hence
can be treated as a hydrogen-like impurity. Although the ionization energy of a
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shallow impurity level can be calculated using the Schrödinger equation for the
bound electron states associated with a shallow impurity atom, this procedure is
a rather complicated one. Instead of solving the Schrödinger equation to obtain
the ionization energy of a shallow impurity state, the simple Bohr model for the
hydrogen atom described in Chapter 4 can be applied to calculate the ionization en-
ergy of the shallow-donor level in a semiconductor. Although Bohr’s model may
be oversimplified, it offers some physical insights concerning the nature of the
shallow impurity states in a semiconductor. It is interesting to note that the ioniza-
tion energy of a shallow impurity level calculated from the modified Bohr model
agrees reasonably well with the experimental data for many semiconductors. In the
hydrogen-like impurity model, the ionization energy of a shallow impurity state
depends only on the effective mass of electrons and the dielectric constant of the
semiconductor.

To calculate the ionization energy of a shallow impurity level, consider the case
of a phosphorus donor atom in a silicon host crystal as shown in Figure 5.7b. Each
silicon atom shares four valence electrons reciprocally with its nearest-neighbor
atoms to form a covalent bond. The phosphorus atom, which replaces a silicon
atom, has five valence electrons. Four of the five valence electrons in the
phosphorus atom are shared by its four nearest-neighbor silicon atoms, while the
fifth valence electron is loosely bound to the phosphorus atom. Although this
extra electron of phosphorus ion is not totally free, it has a small ionization energy,
which enables it to break loose relatively easily from the phosphorus atom and
become free in silicon crystal. Therefore, one may regard the phosphorus atom
as a fixed ion with a positive charge surrounded by an electron with a negative
charge. If the ionizaton energy of this bound electron is small, then its orbit will be
quite large (i.e., much larger than the interatomic spacing). Under this condition,
it is reasonable to treat the bound electron as being embedded in a uniformly
polarized medium whose dielectric constant is given by the macroscopic dielectric
constant of the host semiconductor. This assumption resembles that of a hydrogen
atom embedded in a uniform continuous medium with a dielectric constant equal
to unity. Therefore, as long as the dielectric constant of the semiconductor is large
enough such that the Bohr radius of the shallow-level impurity ground state is
much larger than the interatomic spacing of the host semiconductor, the modified
Bohr model can be used to treat the shallow impurity states in a semiconductor.

To apply the Bohr model to a phosphorus impurity atom in a silicon crystal, two
parameters must be modified. First, the free electron mass m0, which is used in a
hydrogen atom, must be replaced by the electron effective mass m∗

n. Second, the
relative permittivity in free space must be replaced by the dielectric constant of
silicon, which is εs = 11.7. Using (4.9) derived from the Bohr hydrogen model,
the ground-state ionization energy for the shallow-donor impurity in silicon may
be obtained by setting n = 1, and replacing m0 = m∗

e and ε0 = ε0εs in (4.9), which
yields

Ei = −m∗
eq4

32(πε0εsh)2
= −13.6(m∗

e/m0)ε−2
s eV. (5.42)
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From (4.5), the Bohr radius for the ground state of the shallow impurity level is
given by

r1 = 4πε0εsh2

m∗
eq2

= 0.53
(
m0/m∗

e

)
εs Å. (5.43)

Equation (5.42) shows that the ionization energy of a shallow impurity level is
inversely proportional to the square of the dielectric constant. On the other hand,
(5.43) shows that the Bohr radius varies linearly with the dielectric constant and
inversely with the electron effective mass. For silicon, using the values of the
electron effective mass m∗

e = 0.26 m0 and the dielectric constant εs = 11.7, the
ionization energy calculated from (5.42) is found to be 25.8 meV, and the Bohr
radius calculated from (5.43) is 24 Å. For germanium, with m∗

e = 0.12 m0 and
εs = 16, the calculated value for Ei is found to be 6.4 meV, and the Bohr radius
is equal to 71 Å. The above results clearly illustrate that the Bohr radii for the
shallow impurity states in both silicon and germanium are indeed much larger
than the interatomic spacing of silicon and germanium. The calculated ionization
energies for the shallow impurity states in Si, Ge, and GaAs are generally smaller
than the measured values shown in Figure 5.8. However, the agreement should
improve for the excited states of these shallow impurity levels (i.e., for n ≥ 1).

5.6. Hall Effect, Electrical Conductivity, and Hall Mobility

As discussed earlier, the majority carrier density (i.e., n0 or p0) and carrier mobility
(μn or μp) are two key parameters that govern the transport and electrical properties
of a semiconductor. Both parameters are usually determined using the Hall effect
and resistivity measurements.

The Hall effect was discovered by Edwin H. Hall in 1879 during an investigation
of the nature of the force acting on a conductor carrying a current in a magnetic
field. Hall found that when a magnetic field is applied at right angles to the direction
of current flow, an electric field is set up in a direction perpendicular to both the
direction of the current and the magnetic field. To illustrate the Hall effect in a
semiconductor, Figure 5.11 shows the Hall effect for a p-type semiconductor bar
and the polarity of the induced Hall voltage.

As shown in Figure 5.11, the Hall effect is referred to the phenomenon in which
a Hall voltage (VH) is developed in the y-direction when an electric current (Jx )
is applied in the x-direction and a magnetic field (Bz) is in the z-direction of a
semiconductor bar. The interaction of a magnetic field in the z-direction with the
electron motion in the x-direction produces a Lorentz force along the negative
y-direction, which is counterbalanced by the Hall voltage developed in the y-
direction. This can be written as

qEy = −q Bzvx = −Bz Jx/n0, (5.44)

where Bz is the magnetic flux density in the z-direction, and n0 is the electron
density. The current density Jx due to the applied electric field Ex in the x-direction
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Figure 5.11. Hall effect for a p-type semiconductor bar. The Hall voltage VH, the ap-

plied electric field Ex , and the applied magnetic field Bz are mutually perpendicular.

For an n-type sample, electrons are deflected in the y-direction to the bottom of the

sample.

is given by

Jx = n0qμn Ex . (5.45)

For the small magnetic field case (i.e., μn Bz � 1), the angle between the current
density Jx and the induced Hall field Ey is given by

tan θn ≈ θn = Ey

Ex
= −Bzμn, (5.46)

where θn is the Hall angle for electrons. The Hall coefficient RH is defined by

RH = Ey

Bz Jx

∣∣
Jy=0

= VHW

Bz Ix
; (5.47)

VH is the Hall voltage, and W is the width of the semiconductor bar. Solving (5.44)
through (5.47) yields

RHn = − 1

n0q
. (5.48)

Equation (5.48) shows that the Hall coefficient is inversely proportional to the
electron density, and the minus sign in (5.48) is for n-type semiconductors in which
the electron conduction prevails. Thus, from the measured Hall coefficient, one can
calculate the electron density in an n-type semiconductor. It should be noted that
(5.48) does not consider the scattering of electrons by different scattering sources
such as ionized impurities, acoustical phonons, or neutral impurities. A relaxation
time τ should be introduced when one considers the scattering mechanisms. Thus,
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(5.48) is valid as long as the relaxation time constant τ is independent of electron
energy. If τ is a function of electron energy, then a generalized expression for the
Hall coefficient must be used, namely,

RHn = − γn

qn0

, (5.49)

where γn = 〈τ 〉2/〈τ 2〉 is the Hall factor, and 〈τ 〉 is the average relaxation time.
Values of γn may vary between 1.18 and 1.93, depending on the types of scattering
mechanisms involved. Derivation of the Hall factor due to different scattering
mechanisms will be discussed further in Chapter 7.
Similarly, the Hall coefficient for a p-type semiconductor can be expressed
by

RHp = γp

qp0

, (5.50)

where p0 is the hole density and γp = 〈τ 〉2/〈τ 2〉 is the Hall factor for holes in a
p-type semiconductor. Equation (5.50) shows that the Hall coefficient for a p-type
semiconductor is positive since a hole has a positive charge. Values of the Hall
factor for a p-type semiconductor may vary between 0.8 and 1.9, depending on
the types of scattering mechanisms involved. This will also be discussed further
in Chapter 7.

For an intrinsic semiconductor, both electrons and holes are expected to partic-
ipate in the conduction process, and hence the mixed conduction prevails. Thus,
the Hall coefficient for a semiconductor in which both electrons and holes are
contributing to the conduction can be expressed by

RH = Ey

Bz Jx
= RHnσ

2
n + RHpσ

2
p

(σn + σp)2
=

(
p0μ

2
p − n0μ

2
n

)
q(p0μp + n0μn)2

, (5.51)

where RHn and RHp denote the Hall coefficients for n- and p-type conduction given
by (5.49) and (5.50), respectively; and σn and σp are the electrical conductivities for
the n- and p-type semiconductors, respectively. It is interesting to note from (5.51)
that the Hall coefficient vanishes (i.e., RH = 0) if p0μ

2
p = n0μ

2
n. This situation

may in fact occur in an intrinsic semiconductor as one measures the Hall coeffi-
cient as a function of temperature over a wide range of temperature in which the
conduction in the material may change from n- to p-type conduction at an elevated
temperature.

From the above analysis, it is clear that the Hall effect and resistivity measure-
ments are important experimental tools for analyzing the equilibrium properties
of semiconductors. It allows one to determine the key physical and material pa-
rameters such as majority carrier density, conductivity mobility, ionization energy
of the shallow impurity level, conduction type, energy band gap, and the impurity
compensation ratio in a semiconductor.

Electrical conductivity is another important physical parameter, which is dis-
cussed next. The performance of a semiconductor device is closely related to the
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electrical conductivity of a semiconductor. The electrical conductivity for an ex-
trinsic semiconductor is equal to the product of electronic charge, carrier density,
and carrier mobility, and can be expressed by

σn = qn0μn for n-type , (5.52)

σp = qp0μp for p-type . (5.53)

For an intrinsic semiconductor, the electrical conductivity is given by

σi = σn + σp = q(μnn0 + μp P0) = q(μn + μp)ni, (5.54)

where μn and μp denote the electron and hole mobilities, respectively, and ni is
the intrinsic carrier density.

Since both the electrical conductivity and Hall coefficient are measurable quan-
tities, the product of these two parameters, known as the Hall mobility, can
also be obtained experimentally. Using (5.49), (5.50), (5.52), and (5.53) the
Hall mobilities for an n-type and a p-type semiconductor are given, respectively,
by

μHn = RHnσn = γnμn for n-type , (5.55)

μHp = RHpσp = γpμp for p-type , (5.56)

where γn and γp denote the Hall factor for n- and p-type semiconductors, respec-
tively. The ratio of Hall mobility to conductivity mobility is equal to the Hall factor,
which depends only on the scattering mechanisms.

5.7. Heavy Doping Effects in a Degenerate Semiconductor

As discussed earlier, the electrical conductivity of a semiconductor may be
changed by many orders of magnitude by simply doping the semiconductor with
shallow-donor or shallow-acceptor impurities. However, when the doping density
is greater than 1019 cm−3 for the cases of silicon and germanium, the materi-
als become degenerate, and hence change in the fundamental physical properties
of the semiconductor result. The heavy doping effects in a degenerate semicon-
ductor include the broadening of the shallow impurity level in the forbidden gap
from a discrete level into an impurity band, the shrinkage of the energy band
gap, the formation of a band tail at the conduction and valence band edges, and
distortion of the density-of-states function from its square-root dependence on
the energy. All these phenomena are referred to as heavy doping effects in a
degenerate semiconductor. In a heavily doped semiconductor, the Fermi–Dirac
(F-D) statistics rather than the Maxwell–Boltzmann (M-B) statistics must be em-
ployed in calculating the carrier density and other transport coefficients in such a
material.

There are two key heavy-doping effects in a degenerate semiconductor that
must be considered. The first consideration is that the F-D statistics must be em-
ployed to calculate the carrier density in a degenerate semiconductor. The second
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heavy-doping effect is related to the band gap narrowing effect. It is noted that the
heavy-doping effect is a very complicated physical problem, and existing theories
for dealing with the heavy-doping effects are inadequate. Due to the existence of
the heavy-doping regime in various silicon devices and ICs, most of the theoreti-
cal and experimental studies on heavy-doping effects reported in recent years have
been focused on degenerate silicon material. The results of these studies on the
band gap narrowing effect and carrier degeneracy for heavily doped silicon are
discussed next.

Measurements of band gap narrowing as a function of doping density in heavily
doped silicon samples have been widely reported in the literature. A semiempirical
formula, based on the stored electrostatic energy of majority–minority carrier pairs,
has been derived for the band gap reduction. The band gap narrowing, �Eg, for
an n-type silicon is given by2

�Eg =
(

3q2

16πε0εs

) (
q2 ND

εsε0kBT

)1/2

. (5.57)

At room temperature, the band gap narrowing versus donor density for n-type
silicon given by (5.57) becomes

�Eg = 22.5(ND/1018)1/2 meV, (5.58)

where ND is the donor density. Using (5.58), a band gap reduction of 225 meV is
obtained at a doping density of 1020 cm−3 for n-type silicon. This value appears to
be larger than the measured value reported for silicon. Figure 5.12 shows a plot of
band gap narrowing versus donor density for silicon at 300 K, and a comparison
of the calculated values of �Eg from (5.58) with experimental data.

Another important physical parameter to be considered here is the n0 p0 product,
which is equal to the square of the effective intrinsic carrier density, n2

ie. The n0 p0

product is an important parameter in a heavily doped p+-n or an n+-p junction diode
and in the emitter region of a p+-n-p or an n+-p-n bipolar junction transistor. It
relates the band gap narrowing effect to the saturation current density in the heavily
doped emitter region of a bipolar junction transistor. To explain this, consider the
square of the intrinsic carrier density in a heavily doped n-type semiconductor,
which is given by

n2
ie = n0 p0 = Nc Nve−E ′

g/kBT F1/2(η)e−η = n2
i e�Eg/kBT F1/2(η)e−η,

(5.59)

where E ′
g = Eg − �Eg is the effective band gap of a heavily doped n-type semi-

conductor. Equation (5.59) is obtained using (5.5) for n0 and (5.12) for p0. Thus,
when the band gap narrowing effect is considered, the n0 p0 product (or n2

ie) is
found to be much larger for a degenerate semiconductor than for a nondegenerate
semiconductor. The increase of n2

ie in the heavily doped emitter region of a
bipolar junction transistor (BJT) will lead to higher dark current, higher Auger
recombination rate, and hence shorter carrier lifetime and lower current gain in
a BJT.
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Figure 5.12. Calculated and measured values of bandgap narrowing versus donor density

in n-type silicon material.2

In this chapter the physical and electrical properties of semiconductors under
equilibrium conditions have been described. Key physical parameters, such as
electron and hole densities in the conduction and valence bands, the ionization
energies of the shallow- and deep-level impurities, and the band gap narrowing
effect, have been derived and discussed. The importance of these physical param-
eters on the transport properties of semiconductors and device performance will
be discussed further in Chapter 7.

Problems

5.1. Consider an n-type silicon doped with phosphorus impurities. The resistivity
of this sample is 10 	 cm at 300 K. Assuming that the electron mobility is
equal to 1350 cm2/(Vs) and the density-of-states effective mass for electrons
is m∗

dn = 1.065 m0:
(a) Calculate the density of phosphorus impurities, assuming full ionization

of phosphorus ions at 300 K.
(b) Determine the location of the Fermi level relative to the conduction band

edge, assuming that NA = 0 and T = 300 K.
(c) Determine the location of the Fermi level if NA = 0.5ND and T = 300

K.
(d) Find the electron density, n0, at T = 20 K, assuming that NA = 0, gD =

2, and Ec − ED = 0.044 eV.
(e) Repeat (d) for T = 77 K.
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5.2. If the temperature dependence of the energy band gap for InAs material is
given by

Eg = 0.426 − 3.16 × 10−4T 2(93 + T )−1 eV

and the density-of-states effective masses for electrons and holes are given,
respectively, by m∗

n = 0.002 m0 and m∗
p = 0.4 m0, plot the intrinsic carrier

density, ni, as a function of temperature for 200 < T < 700 K. Assume that
effective masses of electrons and holes do not change with temperature.

5.3. If the dielectric constant for GaAs is equal to 12, and the electron effective
mass is m∗

n = 0.086 m0, calculate the ionization energy and the radius of
the first Bohr orbit using Bohr’s model given in the text. Repeat for an InP
material.

5.4. Plot the Fermi level as a function of temperature for a silicon specimen with
ND = 1 × 1016 cm−3 and compensation ratios of ND/NA = 0.1, 0.5, 2, 10.

5.5. Show that the expressions given by (5.10) and (5.12) for electron and hole
densities can be written in terms of the intrinsic carrier density, ni, as follows:

n0 = nie
(Ef−Ei)/kB T and p0 = nie

(Ei−Ef)/kBT ,

where Ef is the Fermi level, and Ei is the intrinsic Fermi level.
5.6. Consider a semiconductor specimen. If it contains a small density of shallow-

donor impurity such that kBT � (Ec − ED) � (ED − Ev), show that at
T = 0 K the Fermi level is located halfway between Ec and ED, assum-
ing that ED is completely filled at T = 0 K.

5.7. Derive an expression for the Hall coefficient of an intrinsic semiconductor
in which conduction is due to both electrons and holes. Find the condition
under which the Hall coefficient vanishes.

5.8. (a) When a current of 1 mA and a magnetic field intensity of 103 gauss are
applied to an n-type semiconductor bar 1 cm wide and 1 mm thick, a
Hall voltage of 1 mV is developed across the sample. Calculate the Hall
coefficient and the electron density in this sample.

(b) If the electrical conductivity of this sample is equal to 2.5 	−1cm−1,
what is the Hall mobility? If the Hall factor is equal to 1.18, what is the
conductivity mobility of an electron?

5.9. (a) Using the charge neutrality equation given by (5.24), derive a general
expression for the hole density versus temperature, and discuss both the
lightly compensated and highly compensated cases at low temperatures
(i.e., in the deionization regime). Assume that the degeneracy factor for
the acceptor level is gA = 4. Plot p0 versus T for the case NA = 5 × 1016

cm−3, ND = 1014 cm−3, and EA = 0.044 eV.
(b) Repeat for the case ND = 0.5NA; NA = 1016 cm−3.
(c) Plot the Fermi level versus temperature.

5.10. Using Fermi statistics and taking into account the band gap narrowing effects,
show that the product n0 p0 is given by (5.66) for a heavily doped n-type
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semiconductor:

n2
ie = n0 p0 = n2

i exp(�Eg/kT )F1/2(η) exp(−η),

where ni is the intrinsic carrier concentration for the nondegenerate case,
�Eg is the band gap narrowing, F1/2(η) is the Fermi integral of order one-
half, and η = −(Ec − Ef)/kBT is the reduced Fermi energy. Using the above
equation, calculate the values of n2

ie and �Eg for an n-type degenerate silicon
for η = 1 and 4 (assuming fully ionization of the donor ions) and T = 300
K. Given:

�Eg = 22.5(ND/1018)12 meV,

F1/2(η) = (4/3
√

x)(η2 + π2/6)3/4,

Nc = 2.75 × 1019 cm−3,

Nv = 1.28 × 1019 cm−3.

5.11. Using (5.66), plot n2
ie versus ND for n-type silicon with ND varying from

1017 to 1020 cm−3.
5.12. Plot the ratios n�/n0,/nL/n0, /nx/n0 versus temperature (T ) for a

GaAs crystal for 0 < T < 1000 K. The electron effective masses for
the �-, X -, and L-conduction band minima are given, respectively, by
�-band, m� = 0.0632 m0; L-band, m l ≈ 1.9 m0; m t ≈ 0.075 m0; mL =
(16 m lm2

t )1/3 = 0.56 m0; X -band: m l ≈ 1.9 m0; m t ≈ 0.19 m0; m X =
(9 m lm2

t )1/3 = 0.85 m0; n0 = n� + nX + nL ; mL and m X are the density-
of-states effective masses for the L- and X -bands, and

n� = N�
c exp[(EF − Ec)/kBT ] = 2(2πm�kBT/h2)3/2 exp[η/kBT ],

nx = 2(2πmx kBT/h2)3/2 exp[(η − �x )/kBT ],

nL = 2(2πmLkBT/h2)3/2 exp[(η − ��L )/kBT ],

where
η = EF − Ec��X = EX − E� = 0.50 eV, and ��L = EL − E� =
0.33 eV.

5.13. (a) If the energy band gaps for InP, InAs, and InSb are given by Eg = 1.34
(InP), 0.36 (InAs), and 0.17 eV (InSb), respectively, at 300 K, calculate the
intrinsic carrier densities in these materials at 300, 400, and 500 K. (b) Plot
ln ni versus 1/T for these three materials for 200 < T < 600 K. (Given:
ni = 1.2 × 108, 1.3 × 1015, and 2.0 × 1016 cm−3, for InP, InAs, and InSb
at 300 K, respectively.)

5.14. Using (5.23) and Table 5.2 plot the energy band gap versus temperature for
Si, GaAs, Ge, and InP for 200 ≤ T ≤ 600 K.
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6
Excess Carrier Phenomenon
in Semiconductors

6.1. Introduction

The generation of excess carriers in a semiconductor may be accomplished by
either electrical or optical means. For example, electron–hole pairs are created
in a semiconductor when photons with energies exceeding the band gap energy
of the semiconductor are absorbed. Similarly, minority carrier injection can be
achieved by applying a forward bias voltage across a p-n junction diode or a bipo-
lar junction transistor. The inverse process to the generation of excess carriers
in a semiconductor is that of recombination. The annihilation of excess carriers
generated by optical or electrical means in a semiconductor may take place via
different recombination mechanisms. Depending on the ways in which the energy
of an excess carrier is removed during a recombination process, there are three
basic recombination mechanisms that are responsible for carrier annihilation in
a semiconductor. They are (1) nonradiative recombination (i.e., the multiphonon
process), (2) band-to-band radiative recombination, and (3) Auger band-to-band
recombination. The first recombination mechanism, known as the nonradiative
or multiphonon recombination process, is usually the predominant recombination
process for indirect band gap semiconductors such as silicon and germanium.
In this process, recombination is accomplished via a deep-level recombination
center in the forbidden gap, and the energy of the excess carriers is released via
phonon emission. The second recombination mechanism, band-to-band radiative
recombination, is usually the predominant process occurring in direct band gap
semiconductors such as GaAs and InP. In this case, the band-to-band recombi-
nation of electron-hole pairs is accompanied by the emission of a photon. Auger
band-to-band recombination is usually the predominant recombination process oc-
curring in degenerate semiconductors and small-band-gap semiconductors such as
InSb and HgCdTe materials. The Auger recombination process can also become
the predominant recombination mechanism under high-injection conditions. Un-
like the nonradiative and radiative recombination processes, which are two-particle
processes, Auger band-to-band recombination is a three-particle process, which
involves two electrons and one hole for n-type semiconductors, or one electron
and two holes for p-type semiconductors. For an n-type semiconductor, Auger

134
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recombination is accomplished first via electron–electron collisions in the con-
duction band, and followed by electron–hole recombination in the valence band.
On the basis of the principle of detailed balance, the rate of recombination is equal
to the rate of generation of excess carriers under thermal equilibrium conditions,
and hence a charge-neutrality condition prevails throughout the semiconductor
specimen.

Equations governing the recombination lifetimes for the three basic recombina-
tion mechanisms described above are derived in Sections 6.2, 6.3, and 6.4, respec-
tively. The continuity equations for the excess carrier transport in a semiconductor
are presented in Section 6.5, and the charge-neutrality equation is discussed in
Section 6.6. The Haynes–Shockley experiment and the drift mobility for minority
carriers are presented in Secton 6.7. Section 6.8 presents methods of determining
the minority carrier lifetimes in a semiconductor. The surface states and surface re-
combination mechanisms in a semiconductor are discussed in Section 6.9. Finally,
the deep-level transient spectroscopy (DLTS) technique for characterizing deep-
level defects in a semiconductor is described in Section 6.10.

6.2. Nonradiative Recombination:
The Shockley–Read–Hall Model

In the nonradiative recombination process, the recombination of electron-hole pairs
may take place at the localized trap states in the forbidden gap of a semiconductor.
This process involves the capture of electrons (or holes) by the trap states, followed
by the recombination with holes in the valence band (or electrons in the conduc-
tion band). When electron–hole pairs recombine, energy is released via phonon
emission. The localized trap states may be created by deep-level impurities (e.g.,
transition metals or normal metals such as Fe, Ni, Co, W, Au), or by radiation-
and process-induced defects such as vacancies, interstitials, antisite defects and
their complexes, dislocations, and grain boundaries. The nonradiative recombina-
tion process in a semiconductor can be best described by the Shockley–Read–Hall
(SRH) model,1,2 which is discussed next.

Figure 6.1 illustrates the energy band diagram for the SRH model. In this figure,
the four transition processes for the capture and emission of electrons and holes via
a localized recombination center are shown. A localized deep-level trap state may
be in one of the two charge states differing by one electronic charge. Therefore,
the trap could be in either a neutral or a negatively charged state or in a neutral or a
positively charged state. If the trap state is neutral, then it can capture an electron
from the conduction band. This capture is illustrated in Figure 6.1a. In this case,
the capture of electrons by an empty neutral trap state is accomplished through the
simultaneous emission of phonons during the capture process. Figure 6.1b shows
the emission of an electron from a filled trap state. In this illustration, the electron
gains its kinetic energy from the thermal energy of the host lattice. Figure 6.1c
shows the capture of a hole from the valence band by a filled trap state, and Figure
6.1d shows the emission of a hole from the empty trap state to the valence band.
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Figure 6.1. Capture and emission of an
electron and a hole via a deep-level trap.
The Shockley–Read–Hall model: (a) elec-
tron capture, (b) electron emission, (c) hole
capture, and (d) hole emission.

The rate equations that describe the SRH model can be derived from the four
emission and capture processes shown in Figure 6.1. In deriving the SRH model,
it is assumed that the semiconductor is nondegenerate and that the density of trap
states is small compared to the majority carrier density. When the specimen is in
thermal equilibrium, ft denotes the probability that a trap state located at Et in the
forbidden gap is occupied by an electron. Using the Fermi–Dirac (F-D) statisics
described in Chapter 3, the distribution function ft of a carrier at the trap state is
given by

ft = 1

(1 + e(Et−Ef)/kBT )
. (6.1)

The physical parameters used in the SRH model are defined as follows:

Ucn is the electron capture probability per unit time per unit volume (cm−3/s).
Uen is the electron emission probability per unit time per unit volume.
Ucp is the hole capture probability per unit time per unit volume.
Uep is the hole emission probability per unit time per unit volume.
cn and cp are the electron and hole capture coefficients (cm3/s).
en and ep are the electron and hole emission rates (s−1).
Nt is the trap density (cm−3).

In general, the rate of electron capture probability is a function of the density of
electrons in the conduction band, capture cross section, and density of the empty
traps. However, the rate of electron emission probability depends only on the
electron emission rate and the density of traps being filled by the electrons. Thus,
the expressions for Ucn and Uen can be written as

Ucn = cnnNt (1 − ft), (6.2)

Uen = en Nt ft . (6.3)

Similarly, Ucp, the rate of hole capture probability, and Uep, the rate of hole emission
probability, are given by

Ucp = cp pNt ft, (6.4)

Uep = ep Nt (1 − ft) . (6.5)
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According to the principle of detailed balance, the rates of emission and capture
at a trap level are equal in thermal equilibrium. Thus, one can write

Ucn = Uen for electrons, (6.6)

Ucp = Uep for holes. (6.7)

Solving (6.2) through (6.7) yields

en = cnn0(1 − ft)/ ft, (6.8)

ep = cp p0 ft/(1 − ft). (6.9)

From (6.8) and (6.9) one obtains

enep = cncpn0 p0 = cncpn2
i . (6.10)

From (6.1) one can write

(1 − ft)/ ft = e(Et−Ef)/kBT . (6.11)

Now solving (6.8), (6.9), and (6.11), one obtains

en = cnn1, (6.12)

ep = cp p1, (6.13)

where n1 and p1 denote the electron and hole densities, respectively, when the
Fermi level Ef coincides with the trap level Et. Expressions for n1 and p1 are
given respectively by

n1 = n0 e(Et−Ef)/kBT , (6.14)

p1 = p0 e(Ef−Et)/kBT . (6.15)

Solving (6.14) and (6.15) yields

n1 p1 = n0 p0 = n2
i . (6.16)

Under steady-state conditions, the net rate of electron capture per unit volume
may be found by solving (6.2) through (6.16), which yields

Un = Ucn − Uen = cn Nt[n(1 − ft) − n1 ft]. (6.17)

Similarly, the net rate of hole capture per unit volume may be written as

Up = Ucp − Uep = cp Nt[p ft − p1(1 − ft)]. (6.18)

The excess carrier lifetimes under steady-state conditions are defined by the ratio
of the excess carrier density and the net capture rate for electrons and holes, and
are given respectively by

τn = �n

Un
for electrons, (6.19)

τp = �p

Up
for holes. (6.20)
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For the small-injection case (i.e., �n � n0 and �p � p0), the charge-neutrality
condition requires that

�n = �p. (6.21)

Under steady-state conditions, if one assumes that the net rates of electron and
hole capture via a recombination center are equal, then one can write

U = Un = Up. (6.22)

Substituting (6.21) and (6.22) into (6.19) and (6.20) one finds that the electron and
hole lifetimes are equal (i.e., τn = τp) for the small-injection case. The electron
distribution function ft at the trap level can be expressed in terms of the electron
and hole capture coefficients as well as the electron and hole densities. Now solving
(6.17), (6.18), and (6.21), one obtains

ft = (cnn + cp p1)

cn(n + n1) + cp(p + p1)
. (6.23)

A general expression for the net recombination rate can be obtained by substituting
(6.23) into (6.17) or (6.18), and the result is

U = Un = Up = (np − n2
i )

τp0(n + n1) + τn0(p + p1)
, (6.24)

where τp0 and τn0 are given respectively by

τp0 = 1

cp Nt
, (6.25)

τn0 = 1

cn Nt
, (6.26)

where cp = σp〈νth〉 and cn = σn〈νth〉 denote the hole- and electron-capture coef-
ficients; σp and σn are the hole- and electron-capture cross-sections, respectively,
and 〈νth〉 = (3kBT/m∗)1/2 is the average thermal velocity of electrons or holes; τp0

is the minority hole lifetime for an n-type semiconductor, and τn0 is the minority
electron lifetime for a p-type semiconductor. Now solving (6.17) through (6.26),
one obtains a general expression for the excess carrier lifetime, which is given by

τ0 = �n

Un
= �p

Up
= τp0(n0 + n1 + �n)

(n0 + p0 + �n)
+ τn0(p0 + p1 + �p)

(n0 + p0 + �p)
, (6.27)

where n = n0 + �n and p = p0 + �p denote the nonequilibrium electron and
hole densities, n0 and p0 are the equilibrium electron and hole densities, and �n
and �p denote the excess electron and hole densities, respectively.

For the small-injection case (i.e., �n � n0 and �p � p0), the excess carrier
lifetime given by (6.27) reduces to

τ0 = τp0(n0 + n1)

(n0 + p0)
+ τn0(p0 + p1)

(n0 + p0)
, (6.28)
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which shows that under small-injection conditions, τ 0 is independent of the excess
carrier density or injection. It is interesting to note that for an n-type semiconductor
with n0 � p0, n1, and p1, (6.28) reduces to

τ0 = τp0. (6.29)

Similarly, for a p-type semiconductor with p0 � n0, p1, and n1, (6.28) becomes

τ0 = τn0. (6.30)

Equations (6.29) and (6.30) show that the excess carrier lifetime in an extrinsic
semiconductor is dominated by the minority carrier lifetime. Therefore, the minor-
ity carrier lifetime is a key physical parameter for determining the excess carrier
recombination in an extrinsic semiconductor under low-injection conditions.

For the high-injection case with �n = �p � n0, p0, (6.27) becomes

τh = τp0 + τn0, (6.31)

which shows that in the high-injection limit the excess carrier lifetime τh reaches a
maximum value and becomes independent of the injection. In general, it is found
that in the intermediate-injection ranges the excess carrier lifetime may depend
on the injected carrrier density. Furthermore, it is found that the excess carrier
lifetime also depends on n1 and p1, which in turn depend on the Fermi level and
the dopant density. This is clearly illustrated in Figure 6.2.

On the basis of the above discussions, the minority carrier lifetime is an important
physical parameter that is directly related to the recombination mechanisms in a
semiconductor. A high-quality semiconductor with few defects generally has long
minority carrier lifetime, while a poor-quality semiconductor usually has short
minority carrier lifetime and large defect density. The minority carrier lifetime
plays an important role in the performance of semiconductor devices. For example,
the switching speed of a bipolar junction transistor and the conversion efficiency

Figure 6.2. Dependence of the excess carrier lifetime on the Fermi level.
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of a p-n junction solar cell depend strongly on the minority carrier lifetimes of a
semiconductor.

It is noted that the SRH model presented in this section is applicable for describ-
ing the nonradiative recombination process via a single deep-level recombination
center in the forbidden gap of a semiconductor. Treatment of the nonradiative re-
combination process via multiple deep-level centers in the forbidden gap of the
semiconductor can be found in a classical paper by Sah and Shockley.3

6.3. Band-to-Band Radiative Recombination

Band-to-band radiative recombination in a semiconductor is the inverse process
of optical absorption. Emission of photons as a result of band-to-band radiative
recombination is a common phenomenon observed in a direct band gap semicon-
ductor such as GaAs, GaN, or ZnSe. In a nondegenerate semiconductor, the rate at
which electrons and holes are annihilated via band-to-band radiative recombina-
tion is proportional to the product of electron and hole densities in the conduction
and valence bands, respectively. In thermal equilibrium, the rate of band-to-band
recombination is equal to the rate of thermal generation, which can be expressed
by

R0 = G0 = Brn0 p0 = Br n2
i , (6.32)

where Br is the rate of radiative capture probability, which can be derived from
the optical absorption process using the principle of detailed balance. Under
steady-state conditions, the rate of band-to-band radiative recombination is given
by

r = Brnp, (6.33)

where n = n0 + �n and p = p0 + �p. The net recombination rate is obtained by
solving (6.32) and (6.33), resulting in

Ur = r − G0 = Br(np − n2
i ). (6.34)

The radiative lifetime τr as a result of band-to-band recombination is obtained
by solving (6.34) and (6.21), which yields

τr = �n

Ur
= 1

Br(n0 + p0 + �n)
. (6.35)

From (6.35), it is noted that τr is inversely proportional to the majority carrier
density n0. Under small-injection conditions, (6.35) can be simplified to

τr0 = 1

Br(n0 + p0)
, (6.36)

which shows that for the small-injection case, the band-to-band radiative life-
time is inversely proportional to the majority carrier density. For the intrinsic case
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(i.e., n0 = p0 = ni ), the radiative lifetime τri due to the band-to-band recombina-
tion is given by τri = 1/(2Brni ).

In the high-injection limit, �n = �p � n0, p0, and (6.35) becomes

τrh = 1

Br�n
. (6.37)

Equation (6.37) shows that the band-to-band radiative lifetime under high-injection
conditions is inversely proportional to the excess carrier density, and is independent
of the majority carrier density in the semiconductor.

Since band-to-band radiative recombination is the inverse process of optical
absorption, an analytical expression for the radiative recombination capture rate Br

can be derived from the fundamental optical absorption process using the principle
of detailed balance.

In a direct band gap semiconductor, the fundamental absorption process is usu-
ally dominated by the vertical transition. As will be shown in Chapter 9, the energy
dependence of the fundamental optical absorption coefficient for a direct band gap
semiconductor can be expressed by

αd =
(

22/3q2

3nm0ch2

)
(m3/2

r + m0m1/2
r )(hν − Eg)1/2 , (6.38)

where n is the index of refraction, Eg is the energy band gap, m−1
r = (me +

mh)/memh is the reduced electron and hole effective mass, and m0 is the free-
electron mass. Equation (6.38) shows that for hν ≥ Eg, the optical absorption
coefficient for a direct band gap semiconductor is proportional to the square root
of the photon energy.

In order to correlate the rate of capture probability coefficient Br to the optical
absorption coefficient αd, one can treat the semiconductor as a blackbody radia-
tion source and use the principle of detailed balance under thermal equilibrium
conditions. From (6.32), Br may be determined by setting the rate of radiative
recombination equal to the rate of total blackbody radiation absorbed by the semi-
conductor due to band-to-band radiative recombination, which can be expressed
by

Brn
2
i =

∫
n2αE2 dE

(π2q2h3)(eE/kBT − 1)
, (6.39)

where E = hν is the photon energy. The right-hand side of (6.39) is obtained from
the Planck blackbody radiation formula. Solving (6.38) and (6.39), one obtains the
rate of capture probability Br for the direct transition, which reads

Br =
(

Eg

ni

)2

(2π )3/2

(
hq2

3m2
0c2

)
η(1+m0/mr)

(
m0

me+mh

)3/2

(kBT )−3/2(m0c2)−1/2.

(6.40)

It is important to note from (6.40) that Br is inversely proportional to the
square of the intrinsic carrier density, which shows an exponential dependence
of Br on temperature. This implies that the band-to-band radiative recombination
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Table 6.1. Band-to-band radiative recombination parameters for some elemental
and compound semiconductors at 300 K.

Semiconductors Eg (eV) ni (cm−3) Br or Bd (cm3/s) τi τ0
a(μs)

Si 1.12 1.5 × 1010 2.0 × 10−15 4.6 h 2500
Ge 0.67 2.4 × 1013 3.4 × 10−15 0.61s 150

GaSb 0.71 4.3 × 1012 1.3 × 10−11 9 ms 0.37
InAs 0.31 1.6 × 1015 2.1 × 10−11 15μs 0.24
InSb 0.18 2 × 1016 4 × 10−11 0.62 μs 0.12
PbTe 0.32 4 × 1015 5.2 × 10−11 2.4 μs 0.19

aCalculated, assuming n0 or p0 = 1017 cm−3. τ i : lifetime due to indirect transition, τ0: lifetime
due to direct transition.

lifetime is a strong function of temperature. Table 6.1 lists the values of Br cal-
culated from (6.40) for GaSb, InAs, and InSb. The results are found to be in
reasonable agreement with the published data for these materials.

A similar calculation of the capture probablity for the indirect transition involv-
ing the absorption and emission of phonons in an indirect band gap semiconductor
yields the capture probability coefficient Bi , which is given by

Bi =
(

4πh3

m3
0c3

)
(Aμ2)

(
m2

0

memh

)3/2

E2
g coth(θ/2T ) , (6.41)

where A and μ are adjustable parameters used to fit the measured absorption data.
Equation (6.41) shows that Bi depends weakly on temperature. For a direct band
gap semiconductor in which recombination is via band-to-band radiative transition,
values of Br can be quite high (i.e., 3 ×10−11 cm3/s). On the other hand, for indirect
transitions, values of Bi are found to be 3 to 4 orders of magnitude smaller than
Br for direct transitions. Table 6.1 lists the calculated values of Br and Bi and
the radiative lifetimes for some direct and indirect band gap semiconductors at
T = 300 K.

6.4. Band-to-Band Auger Recombination

As discussed in Section 6.3, band-to-band radiative recombination is the in-
verse process of fundamental optical absorption in a semiconductor. In a sim-
ilar manner, Auger recombination is the inverse process of impact ionization.
Band-to-band Auger recombination is a three-particle process, which involves
either electron–electron collisions in the conduction band followed by recombi-
nation with holes in the valence band, or hole–hole collisions in the valence band
followed by recombination with electrons in the conduction band. These two re-
combination processes and their inverse processes are shown schematically in
Figure 6.3.

For small-band-gap semiconductors such as InSb, the minority carrier lifetime is
usually controlled by band-to-band Auger recombination, and energy loss is carried
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(a) (b)

(c) (d)

Figure 6.3. Auger recombination and its in-
verse process, which shows the annihilation
and creation of an electron–hole pair: (a) an-
nihilation of an electron–hole pair by electron–
electron collisions, (b) creation of an electron–
hole pair by electron impact ionization, (c) de-
struction of an electron–hole pair by hole–hole
collisions, and (d) creation of an electron–hole
pair by hole impact ionization.

out either by electron–electron collisions or hole–hole collisions and subsequent
Auger recombination.

To derive the band-to-band Auger recombination lifetime, the rate of Auger
recombination in equilibrium conditions can be written as

Ra = G0 = Cnn2
0 p0 + Cp p2

0n0. (6.42)

Under nonequilibrium conditions, the Auger recombination rate is given by

rA = Cnn2 p + Cp p2n. (6.43)

Therefore, the net Auger recombination rate under steady-state conditions can be
obtained from (6.42) and (6.43), which yields

UA = rA − G0 = Cn(n2 p − n2
0 p0) + Cp(p2n − p2

0n0), (6.44)

where Cn and Cp are the capture probability coefficients when the third carrier
is either an electron or a hole. Both Cn and Cp can be calculated from their in-
verse process, namely, impact ionization. In thermal equilibrium, the rate at which
carriers are annihilated via Auger recombination is equal to the generation rate av-
eraged over the Boltzmann distribution function in which the electron–hole pairs
are generated by impact ionization. Thus, one obtains

Cnn2
0 p0 =

∫ ∞

0
P(E)(dn/dE) dE, (6.45)

where P(E) is the probability per unit time that an electron with energy E makes
an ionizing collision. It can be described by

P(E) = (mq4/2h3)G(E/Et − 1)s, (6.46)
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where G < 1 is a parameter that is a complicated function of the band struc-
ture of the semiconductor. The exponent s is an integer that is determined by
the symmetry of the crystal in momentum space at a threshold energy Et. The
value of Et for impact ionization is roughly equal to 1.5Eg, where Eg is the
energy band gap of the semiconductor. By substituting (6.46) into (6.45), one
obtains

n2
i Cn =

(
s√
π

) (
mq4

h3

)
G

(
kBT

Et

)(s−1/2)

e−Et/kBT . (6.47)

Equation (6.47) shows that the Auger capture coefficient Cn for electrons depends
exponentially on both the temperature and energy band gap of the semiconductor.
The Auger lifetime may be derived from (6.44), with the result

τA = �n

UA
= 1

n2Cn + 2n2
i (Cn + Cp) + p2Cp

. (6.48)

If one assumes that Cn = Cp and n = p = ni , then (6.48) shows that τA has a
maximum value of τ i = 1/6n2

i Cn for an intrinsic semiconductor. For an extrinsic
semiconductor, τA is inversely proportional to the square of the majority carrier
density. For the intrinsic case, the Auger lifetime can be obtained from (6.47) and
(6.48) with s = 2 and Cn 
= C p, which yields

τAi = 1

3n2
i (Cn + Cp)

= 3.6 × 10−17(Et/kBT )3/2eEt/kBT , (6.49)

which shows that the intrinsic Auger lifetime is an exponential function of temper-
ature and energy band gap (Et ≈ 1.5Eg). Note that the temperature dependence of
the Auger lifetime in an extrinsic semiconductor is not as strong as in an intrinsic
semiconductor. However, because of the strong temperature dependence of the
Auger lifetime, it is possible to identify the Auger recombination process by ana-
lyzing the measured lifetime as a function of temperature in a semiconductor. For
a heavily doped semiconductor, (6.48) predicts that the Auger lifetime is inversely
proportional to the square of the majority carrier density. The Auger recombi-
nation has been found to be the dominant recombination process for degenerate
semiconductors and small-band-gap semiconductors. Values of Auger recombina-
tion coefficients for silicon and germanium are Cn = 2.8 × 10−31 and Cp = 10−31

cm6/s for silicon, Cn = 8 × 10−32 and Cp = 2.8 × 10−31 cm6/s for germanium.
Using these values, the intrinsic Auger lifetime for silicon is equal to 4.48 × 109

s at 300 K, and is equal to 1.61 × 103 s for germanium. Thus, the Auger recombi-
nation is a very unlikely recombination process for intrinsic semiconductors (with
the exception of small-band-gap semiconductors such as InSb). It is noted that
the Auger recombination lifetime for n-type silicon reduces to about 10−8 s at a
doping density of 1019 cm−3.

Under high-injection conditions (i.e., n0, p0 � �n = �p), Auger recombina-
tion may become the predominant recombination process. In this case, the Auger
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lifetime is given by

τAh = 1

�n2(Cn + Cp)
=

(
3n2

i

�n2

)
τAi, (6.50)

where τAi is the intrinsic Auger lifetime given by (6.49).
As an example, consider a germanium specimen. If the injected carrier density

is �n = 1018 cm−3 and Et = 1.0 eV, then the Auger lifetime τAi, as calculated
from (6.50), was found equal to 1 μs. For small-band-gap semiconductors, one
expects the Auger recombination to be the predominant recombination process
even at smaller injection level. Additional discussion on the Auger recombination
and the band-to-band radiative recombination mechanisms in semiconductors can
be found in a special issue of Solid State Electronics edited by Landsberg and
Willoughby.4

In order to obtain an overall picture of the various recombination processes
taking place in a semiconductor, Figures 6.4 and 6.5 show the qualitative plots
of the excess carrier lifetimes due to different recombination mechanisms as a
function of the majority carrier density for a Ge and GaSb crystal respectively.

Figure 6.4. A comparison of the recombination lifetimes at T = 300 K for a germanium
crystal for the cases in which recombination is dominated by (a) band-to-band radiative
recombination, (b) Auger band-to-band recombination, (c) multiphonon process (Shockley–
Read–Hall model), and (d) impurity-to-band Auger recombination.
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Figure 6.5. A comparison of the recombination lifetimes at 300 K for a direct-gap semi-
conductor such as GaSb when the recombination is dominated by (a) band-to-band radiative
recombination, (b) Auger band-to-band recombination, (c) multiphonon process, and (d)
Auger impurity-to-band recombination.

From these two figures, a significant difference in the dominant recombination
process was observed between these two materials. The difference in the dominant
recombination process in Ge and GaSb can be attributed to the fact that Ge is an
indirect band gap semiconductor, while GaSb is a direct band gap semiconductor.
For Ge, the SRH recombination process is expected to be the predominant process
over a wide range of doping densities (except in the very high doping densities),
while for GaSb the band-to-band radiative recombination is expected to be the
predominant process for the low to medium doping density ranges.

6.5. Basic Semiconductor Equations

The spatial and time-varying function of the excess carrier phenomena in a
semiconductor under nonequilibrium conditions may be analyzed by using the
basic semiconductor equations. These equations contain the drift and diffusion
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components (for both electrons and holes) as well as the recombination and gen-
eration terms. There are two continuity equations for the excess carriers in a semi-
conductor: one for electrons and one for holes. As will be discussed later, both
the steady-state and transient effects can, in principle, be solved from these two
continuity equations.

In a semiconductor, the electron–hole pairs can be created by either thermal or
optical means and annihilated by different recombination processes. In thermal
equilibrium, the rate of generation must be equal to the rate of recombination.
Otherwise, space charge will be built up within the semiconductor specimen. The
nonequilibrium condition is established when an external excitation is applied
to the semiconductor specimen. For example, excess electron–hole pairs can be
generated in a semiconductor by the absorption of photons with energies greater
than the band gap energy (i.e., hν ≥ Eg) of the semiconductor. The continuity
equations for both electrons and holes under nonequilibrium conditions are given
respectively by

dn

dt
= 1

q
∇ · Jn − n

τn
+ gT, (6.51)

dp

dt
= −1

q
∇ · Jp − p

τp
+ gT, (6.52)

where n = �n + n0 and p = �p + p0 are the nonequilibrium electron and hole
densities, respectively; gT is the total generation rate; n/τ n and p/τ p are the rates of
recombination for electrons and holes; τn and τp are the electron and hole lifetimes;
and Jn and Jp denote the electron and hole current densities, respectively. In
general, in addition to the thermal generation rate, the excess electron–hole pairs
can be created by external excitation. Thus, the total generation rate can be written
as

gT = G th + gE, (6.53)

where G th is the thermal generation rate and gE is the external generation rate.
According to the principle of detailed balance, under thermal equilibrium, the
rate of generation must be equal to the rate of recombination. Thus, in thermal
equilibrium, one can write

G th = R0 = n0

τn
= p0

τp
. (6.54)

The continuity equations for the excess electron and hole densities can be ob-
tained by substituting (6.53) and (6.54) into (6.51) and (6.52), yielding

∂�n

∂t
= 1

q
∇ · Jn − �n

τn
+ gE, (6.55)

∂�p

∂t
= −1

q
∇ · Jp − �p

τp
+ gE. (6.56)
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The electron and hole current densities in a semiconductor consist of two compo-
nents, namely, the drift and diffusion currents. These two current components are
given respectively by

Jn = qμnnE + q Dn∇n, (6.57)

Jp = qμp pE − q Dp∇ p, (6.58)

where E is the electric field; μn and μp are the electron and hole mobilities; and
Dn and Dp are the electron and hole diffusivities, respectively. The first term on
the right-hand side of (6.57) and (6.58) is called the drift current component, while
the second term is the diffusion current component. The total current density is
equal to the sum of electron and hole current densities, which is given by

JT = Jn + Jp. (6.59)

In thermal equilibrium, both the electron and hole current densities are equal to
zero. Now, letting Jn = 0 and Jp = 0 in (6.57) and (6.58), one obtains

Dn = −
(

n0

|∇n0|
)

μnE, (6.60)

Dp = +
(

p0

|∇ p0|
)

μpE . (6.61)

The electric field E in a bulk semiconductor can be related to the electrostatic
potential φ by

E = −∇φ. (6.62)

If a concentration gradient due to the nonuniform impurity profile exists in a
semiconductor, then a chemical potential term must be added to the electrostatic
potential term given in (6.62). This is usually referred to as the electrochemical
potential or the Fermi potential. The equilibrium carrier density for both electrons
and holes can also be expressed in terms of the intrinsic carrier density and the
electrostatic potential using M-B statistics, which are given by

n0 = ni eqφ/kBT , (6.63)

p0 = ni e−qφ/kBT , (6.64)

where φ (= (Ef − Ei )/kBT ) is the electrostatic potential measured relative to
the intrinsic Fermi level Ei , and ni is the intrinsic carrier density. Solving (6.60)
through (6.64) yields the relationships between μn and Dn , and μp and Dp in
thermal equilibrium, which are given respectively by

Dn =
(

kBT

q

)
μn, (6.65)

Dp =
(

kBT

q

)
μp. (6.66)

Equations (6.65) and (6.66) are the well-known Einstein relations. The
Einstein relation shows that under thermal equilibrium, the ratio of diffusivity
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and mobility of electrons and holes (i.e., Dn/μn and Dp/μp) in a semiconductor is
equal to kBT/q. This relation is valid for the nondegenerate semiconductors. For
heavily doped semiconductors, Fermi statistics should be used instead, and (6.65)
and (6.66) must be modified to account for the degeneracy effect (see Problem
6.5).

In addition to the five basic semiconductor equations described above, Poisson’s
equation should also be included. This equation, which relates the divergence of
the electric field to the charge density in a semiconductor, is given by

∇ · E = −∇φ2 = ρ

ε0εs
=

(
q

ε0εs

) (
N+

D − N−
A + p − n

)
, (6.67)

where N+
D and N−

A denote the ionized donor and acceptor impurity densities,
respectively, and εs is the dielectric constant of the semiconductor. Equations (6.55)
through (6.59) plus (6.67) are known as the six basic semiconductor equations,
which are commonly used in solving a wide variety of spatial and time-dependent
problems related to the steady-state and transient behavior of the excess carriers
in a semiconductor. Examples of using these basic semiconductor equations to
solve the excess carrier phenomena in a semiconductor are given in Sections 6.7
and 6.8.

6.6. The Charge-Neutrality Equation

In a homogeneous semiconductor, charge neutrality is maintained under thermal
equilibrium conditions, and (6.67) is equal to zero. However, a departure from the
charge neutrality condition may arise from one of the following two sources: (1) a
nonuniformly doped semiconductor with fully ionized impurities in thermal equi-
librium conditions, and (2) unequal densities of electrons and holes arising from
carrier trapping under nonequilibrium conditions. In both situations, an electro-
chemical potential (i.e., the quasi-Fermi potential) and a built-in electric field may
be established within the semiconductor. In this section, a nonuniformly doped
semiconductor is considered.

From (6.63), the electrostatic potential for an n-type semiconductor can be
expressed by

φ =
(

kBT

q

)
ln

(
N

ni

)
, (6.68)

where N (x) = ND − NA is the net dopant density, which could be a function of
position in a nonuniformly doped semiconductor. Now, substituting (6.62), (6.63),
and (6.64) into (6.67), the Poisson equation becomes

∇2φ =
(

2qni

ε0εs

)
[sinh (qφ/kBT ) − (N/2ni )] . (6.69)
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Equation (6.69) can be rewritten as

∇2ϕ =
(

2q2ni

kBT ε0εs

)
(sinh(ϕ) − sinh(ϕ0))

=
(

4q2ni

kBT ε0εs

) [
cosh

(
ϕ + ϕ0

2

)
sinh

(
ϕ − ϕ0

2

)]
. (6.70)

In (6.70), the normalized electrostatic potential ϕ is defined by

ϕ = qφ/kBT (6.71)

and

sinh(ϕ0) = N

2ni
. (6.72)

The physical significance of (6.70) can be best described by considering the one-
dimensional (1-D) case in which the impurity density N is a function only of x in the
semiconductor. If (ϕ − ϕ0) � 1 (i.e., a small inhomogeneity in the semiconductor)
in (6.70), one obtains

cosh

(
ϕ + ϕ0

2

)
≈ cosh(ϕ0) = [

1 + sinh (ϕ0)2]1/2 ≈ N

2ni
(6.73)

and

sinh

(
ϕ − ϕ0

2

)
≈ (ϕ − ϕ0)

2
. (6.74)

Now substituting (6.73) and (6.74) in (6.70), the 1-D Poisson equation can be
written as

∂2ϕ

∂x2
≈ ∂2(ϕ − ϕ0)

∂x2


(
q2 N

kBT ε0εs

)
(ϕ − ϕ0) = 1

L2
D

(ϕ − ϕ0), (6.75)

which has a solution given by

ϕ − ϕ0 ≈ e−x/LD , (6.76)

where

LD =
√

kBT ε0εs

q2 N
(6.77)

is known as the extrinsic Debye length. The physical meaning of LD is that it is a
characteristic length used to determine the distance in which a small variation of
the potential can smooth itself out in a homogeneous semiconductor.

Equation (6.76) predicts that in an extrinsic semiconductor under thermal equi-
librium, no significant departure from the charge-neutrality condition is expected
over a distance greater than a few Debye lengths. It can be shown that LD in (6.77)
for an n-type semiconductor can also be expressed as

LDn =
√

Dnτd , (6.78)
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where τd = ε0εs/σ is the dielectric relaxation time and σ is the electrical conduc-
tivity of the semiconductor.

6.7. The Haynes–Shockley Experiment

In this section an example is given to illustrate how the basic semiconductor
equations described in Section 6.6 can be applied to solve the space- and time-
dependent excess carrier phenomena in a semiconductor. First consider a uniformly
doped n-type semiconductor bar in which N electron–hole pairs are generated
instantaneously at x = 0 and t = 0. If one assumes that the semiconductor bar
is infinitely long in the x-direction (see Figure 6.7), then the continuity equation
given by (6.55) for the excess holes under a constant applied electric field can be
reduced to a 1-D equation, which is given by

∂�p

∂t
= Dp

∂2�p

∂x2
− μpE

∂�p

∂x
− �p

τp
. (6.79)

Equation (6.79) is obtained by substituting Jp, given by (6.58), into (6.56) and
assuming that the external generation rate gE is zero. The solution of (6.79) is
given by

�p(x, t) =
[

Ne−t/τp(
4π Dpt

)1/2

]
exp

[−(x − μpE t)2/4Dpt
]
. (6.80)

From (6.80), it is seen that the initial value of �p(x, 0) is zero except at x = 0,
where �p(x, 0) approaches infinity. Thus, the initial hole concentration distribu-
tion corresponds to a Dirac delta function. For t > 0, the distribution of �p(x, t)
has a Gaussian shape. The half-width of �p(x, t) will increase with time, and its
maximum amplitude will decrease with distance along the direction of the ap-
plied electric field, with a drift velocity νd = μpE . The total excess carrier density
injected at time t into the semiconductor is obtained by integrating (6.80) with
respect to x from −∞ to +∞, which yields

�p(t) =
∫ +∞

−∞
�p(x, t) dx = Ne−t/τp . (6.81)

Equation (6.81) shows that �p(t) decays exponentially with time and with a time
constant equal to the hole lifetime τp. Figure 6.6 shows the space and time depen-
dence of the excess carrier density in an n-type extrinsic semiconductor under a
constant applied electric field. As shown in this figure, in order to maintain the
original injection hole density profile, a large hole lifetime τp is needed. This im-
plies that the semiconductor specimen should be of high quality with a very low
defect density. Figure 6.7 shows the schematic diagram of the Haynes–Shockley
experiment for measuring both the diffusivity and drift mobility of minority car-
riers in a semiconductor. In this experiment, P1 and P2 denote the injection and
collector contacts for the minority carriers (i.e., holes in the present case), and
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Figure 6.6. Space and time
dependence of the excess hole
density in an n-type extrinsic
semiconductor bar under a
constant applied electric field.

V1 and V2 are the voltages applied to the respective contacts in order to create a
uniformed electric field along the specimen and to provide a reverse bias voltage
to the collector contact. The injection of minority carriers at contact P1 can be
achieved by using either an electric pulse generator or a pulsed laser. An oscil-
loscope is used to display the pulse shape at contacts P1 and P2 and to measure
the time delay of minority carriers traveling between the injecting and collecting
contacts.

The Haynes–Shockley experiment is described as follows. At t = 0, holes are
injected at point P1 of the sample in the form of a pulse of very short duration
(on the order of a few microseconds or less). After this initial hole injection, the
excess holes will move along the direction of the applied electric field (i.e., the
x-direction) and are collected at contact P2. This collection results in a current
flow and a voltage drop across the load resistor R. The time elapsed between the
initial injection pulse at P1 and the arrival of the collection pulse at P2 is a measure

Figure 6.7. Schematic diagram for the Haynes–Shockley experiment.
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of the drift velocity of holes in the n-type semiconductor bar. In addition to the
drift motion along the direction of the applied electric field, the hole density is
also dispersed and broadened because of the diffusion effect. This explains why
the pulse shown on the right-hand side of Figure 6.6 is not as sharp as the initial
injection pulse shown at x = 0.

The procedures involved in determining the values of μp and Dp from the
Haynes–Shockley experiment and (6.80) are discussed as follows: If t0 is the time
required for the peak of the hole pulse to move from contact P1 to contact P2 when
an electric field is applied to the specimen, then the distance that the hole pulse
traveled is given by

d = vd t0 = μpt0

(
Va

l

)
, (6.82)

where d is the distance between the injection and collecting contacts of the spec-
imen, and Va is the applied voltage across the sample of length l. If values of d
and t0 are known, then the hole drift mobility μp can be easily calculated from
(6.82).

The hole diffusion constant Dp can be determined from the width of the Gaussian
distribution function �p(x, t). The output voltage VR of the hole pulse will drop
to 0.367 of its peak value when the second exponential factor on the right-hand
side of (6.80) is equal to unity. Thus, one obtains

(d − μpE�t)2 = 4Dp�t. (6.83)

If t1 and t2 denote the two delay time constants that satisfy (6.83) and �t = t2 − t1,
then Dp can be determined from the expression given by

Dp = (μpE)2(�t)2/16t0. (6.84)

The approximation given above is valid as long as the exponential factor −t/τp

given by (6.80) does not change appreciably over the measured time interval �t .
In practice, the diffusion constants for electrons and holes are determined from
the electron and hole mobilities using the Einstein relations given by (6.65) and
(6.66). Values of the electron and hole drift mobilities for silicon and germanium
determined by the Haynes–Shockley experiment at room temperature are listed in
Table 6.2.

Table 6.2. Drift mobilities (cm2/V· s) for Si
and Ge measured at 300 K using the
Haynes–Shockley experiment.

Silicon Germanium

μn = 1350 ± 100 μp = 3900 ± 100
μp = 480 ± 15 μp = 1900 ± 50
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6.8. The Photoconductivity Decay Experiment

In this section, measurement of the minority carrier lifetime in a semiconductor
by the transient photoconductivity decay method is depicted. The theoretical and
experimental aspects of the transient photoconductivity effect in a semiconductor
are discussed. As shown in Figure 6.8, if the semiconductor bar is illuminated
by a light pulse, which contains photons with energies greater than the band gap
energy of the semiconductor, then electron–hole pairs will be generated in the
specimen. The creation of excess carriers by the absorbed photons will result in a
change of the electrical conductivity in the semiconductor bar. This phenomenon
is known as the photoconductivity effect in a semiconductor. If the light pulse
is abruptly turned off at t = 0, then the photoconductivity of the specimen will
decay exponentially with time and gradually return to its equilibrium value un-
der dark conditions. The time constant of photoconductivity decay is controlled
by the lifetimes of minority carriers. By measuring the photoconductivity decay
time constant, one can determine the minority carrier lifetime in a semiconductor
specimen.

The problem of the transient photoconductivity decay experiment for the excess
hole density in an n-type semiconductor can be solved using (6.56). As shown
in Figure 6.8, assuming that the light pulse is impinging along the y-direction of
the sample, the spatial and time-dependent excess hole density for t ≥ 0 can be
written as

∂�p

∂t
= Dp

∂2�p

∂y2
− �p

τp
. (6.85)

Equation (6.85) is obtained from (6.56) by assuming that the light pulse is uni-
formly illuminated in the x–z plane of the specimen so that its diffusion components
∂2�p/∂x2 and ∂2�p/∂z2 are negligible compared to the diffusion component in
the y-direction. The electric field is also assumed to be small, so that the drift term
in (6.56) can be neglected. As shown in Figure 6.8, the boundary conditions at the

Figure 6.8. Photoconductivity-decay experiment for the minority carrier lifetime measure-
ment in a semiconductor.
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top and bottom surfaces are given respectively by

Dp
∂�p

∂y
= −sb�p at y = d, (6.86)

Dp
∂�p

∂y
= sf�p at y = 0, (6.87)

where sf and sb denote the surface recombination velocities at the top and bottom
surfaces of the specimen, respectively. The values of sb and sf depend strongly on
the surface treatment. In addition to the boundary conditions given by (6.86) and
(6.87), the initial and final conditions are assumed by

�p(y, t = 0) = �p0 = constant, (6.88)

�p(y, t → ∞) = 0. (6.89)

Since (6.85) is a homogeneous linear partial differential equation for �p(y, t), its
solution can be written as the product of two independent functions of t and y:

�p(y, t) = A e−(b2 Dp+1/τp)t cos(by). (6.90)

It is noted that (6.90) does not satisfy the boundary conditions imposed by (6.88)
and (6.89). Therefore, the most general solution for (6.85) corresponding to an
arbitrary initial condition at t = 0 can be expressed in terms of a series sum of the
solution given by (6.90) such that

�p(y, t) =
∞∑

n=0

Ane−(b2
n Dp+1/τp)t cos(bn y). (6.91)

Substituting (6.91) into (6.86) for y = d yields the boundary condition

sin(bnd) = s/Dpbn. (6.92)

Solutions for the surface recombination velocity s can be obtained graphically
for different values of bn (i.e., for n = 0, 1, 2, . . .). The coefficient An in (6.91)
can be determined from the initial condition given by (6.88). Furthermore, one can
assume that at t = 0,

�p(y, 0) =
∞∑

n=0

An cos(bn y) = �p0 = constant. (6.93)

Multiplying (6.93) by cos(bm y) and integrating both sides of the equation from
y = 0 to y = d yields∫ d

0
�p0 cos(bm y) dy =

∫ d

0

∞∑
n = 0

An cos(bn y) cos(bm y) dy. (6.94)

If a set of functions of cos(bm y) and cos(bn y) is orthogonal for 0 < y < d, then
the integration on the right-hand side of (6.94) will vanish, except for the term
with n = m. Thus, one obtains

An = 4�p0 sin(bnd)

2bnd + sin(2bnd)
. (6.95)
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From (6.91) and (6.95) one can derive a general solution for (6.85) that satisfies
the boundary and initial conditions given by (6.86) through (6.89). Therefore, the
general solution for �p(y, t) is

�p(y, t) = 4�p0 e−t/τp

∞∑
n =0

[
sin(bnd) cos(bn y)

[2bnd + sin(2bnd)]

]
e−b2

n Dpt. (6.96)

Using (6.96), the transient photoconductivity can be expressed by

�σ (t)=qμp(b + 1)
∫ d

0
�p(y, t) dy

=4qμp(b + 1)�p0 e−t/τp

∞∑
n = 0

[
sin2(bnd)

bn[2bnd + sin (2bnd)]

]
e−b2

n Dpt , (6.97)

or

�σ (t) =
∞∑
m

Cm e−t/τm , (6.98)

where

Cm = 4qμp(b + 1)�p0 sin2 (bmd)

bm[2bmd + sin(2bmd)]
(6.99)

and

τ−1
m = τ−1

p + b2
m Dp. (6.100)

Equation (6.98) shows that the transient photoconductivity is represented by a
summation of infinite terms, each of which has a characteristic amplitude Cm and
decay time constant τm , where m = 0, 1, 2, . . . .

Since b0 (i.e., m = 0) is the zeroth-order mode and the smallest member of
the set bm , the time constant τ−1

0 = (τ−1
p + b2

0 Dp) must be larger than any other
higher-order modes. The fact that the higher-order modes will die out much more
quickly than the fundamental mode (i.e., m = 0) after the initial transient (i.e.,
for t > 0) implies that the decay time constant will be dominated by the zeroth-
order mode. Therefore, the minority carrier lifetime can be determined from the
photoconductivity-decay experiment using (6.98) for m = 0. Figure 6.9 shows
a plot of �σ (t) versus t for a semiconductor specimen. From the slope of this
photoconductivity-decay curve, one obtains the zeroth-order decay mode time
constant, which is

τ−1
0 = τ−1

p + b2
0 Dp. (6.101)

The first term on the right-hand side of (6.101) denotes the inverse bulk hole life-
time, while the second term represents the inverse surface recombination lifetime
(to account for the effect of surface recombination). If the surface recombina-
tion velocity is small, then the photoconductivity-decay time constant is equal to
the bulk lifetime. However, if the surface recombination term in (6.101) is much
larger than the bulk lifetime term, then one can determine the surface recombi-
nation velocity from (6.101) by measuring the effective lifetimes of two samples
with different thicknesses and similar surface treatment.
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Figure 6.9. A typical photoconductivity-decay curve in a semiconductor.

Since the minority carrier lifetime is an important physical parameter for mod-
eling the silicon devices and integrated circuits, it is important to determine
the minority carrier lifetimes versus doping concentrations in silicon materials.
Figures 6.10 and 6.11 show the measured minority carrier lifetimes as a func-
tion of doping concentrations in both n- and p-type silicon, as reported recently
by Law et al.5 The effective carrier lifetime is modeled using a concentration-
dependent SRH lifetime τsrh and a band-to-band Auger recombination lifetime
τA to calculate the total effective lifetime by Mathiessen’s rule, which is given
by

τ−1 = τ−1
srh + τ−1

A , (6.102)

where

τsrh = τ0

1 + N1/Nref
(6.103)

and

τA = 1

CA N 2
I

. (6.104)

Figure 6.10 shows the measured hole lifetimes as a function of the donor density
for n-type silicon. The solid line is the best-fit curve using (6.102) through (6.104).
The values of parameters used in fitting this curve are given by τ0 = 10 μs, Nref =
1017 cm−3, and CA = 1.8 × 10−31 cm6/s. Figure 6.11 shows the measured electron
lifetimes as a function of the acceptor density for p-type silicon. The solid line is the
best-fit curve using values of τ0 = 30 μs, Nref = 1017 cm−3, and CA = 8.3 × 10−32

cm6/s.
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Figure 6.10. Measured and best-fit hole lifetimes versus donor concentrations in n-type
silicon. After Law et al.,5 by permission, c© IEEE–1990.

Figure 6.11. Measured and best-fit electron lifetimes versus acceptor concentrations in
p-type silicon. After Law et al.,5 by permission, c©IEEE–1990.
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6.9. Surface States and Surface Recombination Velocity

It is well known that a thin natural oxide layer can be easily formed on a freshly
cleaved or chemically polished semiconductor surface when it is exposed to air. As
a result, an oxide–semiconductor interface usually exists at an unpassivated semi-
conductor surface. In general, as a result of a sudden termination of the periodic
structure at the semiconductor surface and the lattice mismatch in the crystallo-
graphic structure at the semiconductor–oxide interface, defects are likely to form
at the interface, which will create discrete or continuous energy states within the
forbidden gap of the semiconductor. Figure 6.14 illustrates the energy band dia-
gram for an oxide–semiconductor interface having surface states in the forbidden
gap of the semiconductor.

In general, there are two types of surface states that are commonly observed
in a semiconductor surface, namely, slow surface states and fast surface states.
In a semiconductor surface, the density of slow states is usually much higher
than the density of fast states. Furthermore, these surface states can be either
positively or negatively charged. To maintain surface charge neutrality, the bulk
semiconductor near the surface must supply an equal amount of opposite elec-
tric charges. As a result, the carrier density near the surface is different from
that of the bulk semiconductor. Because of the slow surface states, the carrier
densities at the semiconductor surface not only can change, but may vary so dras-
tically that the surface conductivity type may convert to the opposite type of the
bulk. In other words, if the bulk semiconductor is n-type with n0 � p0, then the
hole density ps at the semiconductor–oxide interface may become much larger
than the electron density (i.e., ps � ns), so that the surface is inverted to p-type
conduction. This is illustrated in Figure. 6.12a, in which an inversion layer is
formed at the semiconductor surface. On the other hand, if the surface electron

Figure 6.12. Potential barrier created at n-type semiconductor surface: (a) negatively
charged slow states and the inversion layer, and (b) positively charged slow states and
the accumulation layer.
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Figure 6.13. Energy band diagram of a semicon-
ductor surface in the presence of a thin natural
oxide layer and two types of surface states. � de-
notes the slow surface states and ● denotes the
fast surface states.

density is much greater than the surface hole density and bulk electron density (i.e.,
ns > ps and ns > n0), then an accumulation layer is formed at the semiconductor
surface, as shown in Figure 6.12b. Therefore, the slow surface states at the oxide–
semiconductor interface play an important role in controlling the conductivity type
of the semiconductor surface.

Figure 6.13 shows both the slow and fast surface states commonly observed in a
semiconductor surface. The fast surface states are created either by termination of
the periodic lattice structure in the bulk (i.e., creation of dangling bonds at the semi-
conductor surface) or by lattice mismatch and defects at the oxide–semiconductor
interface. These surface states are in intimate electrical contact with the bulk semi-
conductor, and can reach a state of equilibrium with the bulk within a relatively
short period of time (on the order of microseconds or less), and thus are referred
to as fast surface states.

Another type of surface state, usually referred to as the slow state, exists inside
the thin oxide layer near the oxide–semiconductor interface. This type of surface
state may be formed by either chemisorbed ambient ions or defects in the oxide
region (e.g., sodium ions or pinholes in the SiO2 layer). Carriers transporting from
such a state to the bulk semiconductor either have to overcome the potential barrier
because of the large energy gap of the oxide or tunnel through the thin oxide layer.
Such a charge transport process involves a large time constant, typically on the
order of seconds or more, and hence these states are usually called slow states.

The concept of surface recombination velocity is discussed next. The SRH model
derived earlier for dealing with nonradiative recombination in the bulk semicon-
ductor may also be used to explain the recombination in a semiconductor surface.
It is noted that a mechanically roughened surface, such as a sand-blasted surface,
will have a very high surface recombination velocity, while a chemically etched
surface will have a much lower surface recombination velocity. Undoubtedly, the
fast surface states play an important role in controlling the recombination of excess
carriers at the semiconductor surface. For example, GaAs has a very large surface
state density and hence a very high surface recombination velocity, while an etched
silicon surface has a much lower surface recombination velocity than that of GaAs.
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Figure 6.14. Energy band diagram of a semi-
conductor surface showing the fast surface
states in the forbidden gap of the vacuum–
semiconductor interface; φs donotes the sur-
face potential and φb is the bulk potential.

Figure 6.14 shows the energy band diagram for an n-type semiconductor with
fast states present at the surface. The energy level introduced by the fast surface
states is designated as Et, while φs and φb are the surface and bulk electrostatic
potentials, respectively. The equilibrium electron and hole densities (ns and ps) at
the surface can be expressed in terms of the bulk carrier densities, which are given
by

ns = n e−q(φb−φs )/kBT , (6.105)

ps = p eq (φb−φs )/kBT , (6.106)

ns ps = np = (n0 + �n)(p0 + �p), (6.107)

where n and p are the nonequilibrium electron and hole densities, and �n and �p
are the excess electron and hole densities, respectively.

In (6.24), if n is replaced by the surface electron density ns and p by the sur-
face hole density ps, the SRH model for the surface recombination rate is given
by

Us = Ntscncp(ns ps − n2
i )

cp(ps + p1) + cn(ns + n1)
, (6.108)

where

n1 = ni e(Et−Ei)/kBT , (6.109)

p1 = ni e−(Et−Ei )/kBT , (6.110)

Et is the energy level of the fast surface states, and Nts the surface state density
per unit area (cm2). Thus, the surface recombination rate Us has the dimensions
of cm−2/s. The surface recombination velocity s can be defined by

s = Us

�n
= Us

�p
, (6.111)

where Us is given by (6.108). For the small-injection case (i.e., �n �
n0), the surface carrier densities ns and ps can be approximated by their
respective equilibrium carrier densities ps0 and ns0. Solving (6.105) and (6.106)
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yields

ns ≈ ns0 = ni eqφs/kBT , (6.112)

ps ≈ ps0 = ni e−qφs/kBT , (6.113)

where φs = (Ef − Eis)/q is the surface potential, Ef is the Fermi energy, and Eis

is the intrinsic Fermi level at the semiconductor surface. Solving (6.108) through
(6.113) yields an expression for the surface recombination velocity:

s = Us/�n = Ntsc(p0 + n0)/2ni

cosh[(Et − Ei − qφ0)/kBT ] + cosh[q(φs − φ0)/kBT ]
,

(6.114)

where

φ0 = (kBT/2q) ln(cp/cn), (6.115)

and

c = (cpcn)1/2 (6.116)

is the average rate of capture coefficient.
Equation (6.114) shows that the surface recombination velocity vs is directly

proportional to the surface state density Nts and the rate of capture coefficient c. It
also depends on the surface potential φs . As the ambient conditions at the surface
change, the values of φs also change accordingly. This fact explains why a stable
surface is essential for the operation of a semiconductor device. The surface re-
combination velocity is closely related to the surface state density. For example, a
high surface state density (e.g., Nts > 1013 cm−2) in a GaAs crystal also leads to a
high surface recombination velocity (vs > 106 cm/s) in this material. For silicon
crystal, the surface state density along the (100) surface can be smaller than 1010

cm−2 and higher than 1011 cm−2 along the (111) surface; as a result, the surface
recombination velocity for a chemically polished silicon surface can be less than
103 cm/s. Therefore, careful preparation of the semiconductor surface is essential
for achieving a stable and high-performance device.

6.10. Deep-Level Transient Spectroscopy Technique

As discussed earlier, deep-level defects play an important role in determining
the minority carrier lifetimes in a semiconductor. Therefore, it is essential to de-
velop a sensitive experimental tool for characterizing the deep-level defects in a
semiconductor. The deep-level transient spectroscopy (DLTS) experiment, a high-
frequency (1 MHz) transient capacitance technique, is the most sensitive technique
for defect characterization in a semiconductor. For example, by performing the
DLTS thermal scan from 77 K to around 450 K one can obtain the emission spec-
trum of all the deep-level traps (both majority and minority carrier traps) in the
forbidden gap of a semiconductor as positive or negative peaks on a flat baseline.
The DLTS technique offers advantages such as high sensitivity, ease of analysis,
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and the capability of measuring traps over a wide range of depths in the forbidden
gap. By properly changing the experimental conditions, we can measure defect
parameters that include (1) minority and majority carrier traps, (2) activation en-
ergy of deep-level traps, (3) trap density and trap density profile, (4) electron and
hole capture cross sections, and (5) type of potential well associated with each trap
level. In addition, the electron and hole lifetimes can also be calculated from these
measured defect parameters. Therefore, by carefully analyzing the DLTS data, all
the defect parameters associated with the deep-level defects in a semiconductor
can be determined. We shall next discuss the theoretical and experimental aspects
of the DLTS technique.

The DLTS measurements can be performed using a variety of device structures
such as Schottky barrier, p-n junction, and MOS structures. The DLTS technique
is based on the transient capacitance change associated with the thermal emis-
sion of charge carriers from a trap level to thermal equilibrium after an initial
nonequilibrium condition in the space-charge region (SCR) of a Schottky barrier
diode or a p-n junction diode. The polarity of the DLTS peak depends on the ca-
pacitance change after trapping of the minority or majority carriers. For example,
an increase in the trapped minority carriers in the junction SCR of a p-n diode
would result in an increase in the junction capacitance of the diode. In general,
a minority carrier trap will produce a positive DLTS peak, while a majority car-
rier trap would display a negative DLTS peak. For a p+-n junction diode, the
SCR extends mainly into the n-region, and the local charges are due to positively
charged ionized donors. If a forward bias is applied, the minority carriers (i.e.,
holes) will be injected into this SRC region. Once the minority holes are trapped
in a defect level, the net positive charges in the SCR will increase. This in turn
will reduce the width of SCR and cause a positive capacitance change. Thus, the
DLTS signal will have a positive peak. Similarly, if electrons are injected into the
SCR and captured by the majority carrier traps, then the local charge density in
the SCR is reduced and the depletion layer width is widened, which results in a
decrease in the junction capacitance. Thus, the majority carrier trapping will result
in a negative DLTS peak. The same argument can be applied to an n+-p junction
diode.

The peak height of a DLTS signal is directly related to the density of a trap
level, which in turn is proportional to the change of junction capacitance �C(0)
as a result of carrier emission from the trap level. Therefore, the defect density Nt

can be calculated from the capacitance change �C(0) (or the DLTS peak height).
If C(t) denotes the transient capacitance across the depletion layer of a Schottky
barrier diode or a p-n junction diode, then using abrupt junction approximation,
one can write

C(t) = A

[
qε0εs

(
Nd − Nte−t/τ

)
2(Vbi + VR + kBT/q)

]1/2

= C0

[
1 −

(
Nt

Nd

)
e−t/τ

]
,

(6.117)
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where τ is the thermal emission time constant and C0 = C(VR) is the junction
capacitance measured at a quiescent reverse bias voltage VR. If we use the binomial
expansion in (6.117) and assume that Nt/Nd � 1, then C(t) can be simplified
to

C(t) ≈ C0

[
1 −

(
Nt

2Nd

)
e−t/τ

]
. (6.118)

At t = 0, one obtains

Nt ≈ (2�C(0)/C0)Nd, (6.119)

where �C(0) = C0 − C(0) is the net capacitance change due to thermal emission
of electrons from the trap level, and C(0) is the capacitance measured at t = 0;
�C(0) can be determined from the DLTS measurement. It is seen that both the
junction capacitance C0 and the background dopant density Nd are determined
from the high-frequency C–V measurements. Therefore, the defect concentration
Nt can be determined from (6.119) using DLTS and high-frequency (1 MHz) C–V
measurements.

The decay time constant of the capacitance transient in the DLTS thermal scan
is associated with a specific time constant, which is equal to the reciprocal of the
emission rate. For a given electron trap, the emission rate en is related to the capture
cross-section and the activation energy of the electron trap by

en = (σn〈vth〉Nc/g) e(Ec−Et)/kBT , (6.120)

where Et is the activation energy of the electron trap, 〈vth〉 is the average thermal
velocity, Nc is the effective density of conduction band states, and g is the degener-
acy factor. The electron capture cross-section σn , which depends on temperature,
can be expressed by

σn = σ0 e−�Eb/kBT , (6.121)

where σ0 is the capture cross-section when temperature approaches infinity, and
�Eb is the activation energy of the capture cross-section. Now substituting σn

given by (6.121) into (6.120) and using the fact that Nc is proportional to T −3/2

and 〈vth〉 is proportional to T −1/2, the electron emission rate en given in Eq. (6.120)
can be expressed by

en = BT 2 e(Ec−Et−�Eb)/kBT = BT 2 e(Ec−Em )/kBT ,

(6.122)

where B is a constant that is independent of temperature. From (6.122), it is
seen that the electron thermal emission rate en is an exponential function of the
temperature. The change of capacitance transient can be derived from (6.118),
which yields

�C(t) = C0 − C(t) ≈ C0(Nt/2Nd) e−t/τ = �C(0) e−t/τ , (6.123)

where τ = e−1
n is the reciprocal emission time constant.
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The experimental procedures for determining the activation energy of a deep-
level trap in a semiconductor are described as follows. The first step of the DLTS
experiment is to choose the rate windows t1 and t2 in a dual-gated integrator of a
boxcar averager, which is used in the DLTS system, and measure the capacitance
change at a preset t1 and t2 rate window. This can be written as

�C(t1) = �C(0) e−t1/τ , (6.124)

�C(t2) = �C(0) e−t2/τ . (6.125)

The DLTS scan along the temperature axis is obtained by taking the difference of
(6.124) and (6.125), which produces a DLTS spectrum given by

S(τ ) = �C(0)(e−t1/τ − e−t2/τ ). (6.126)

The maximum emission rate τ−1
max can be obtained by differentiating S(τ ) with

respect to τ and setting dS(τ )/dτ = 0, which yields

τmax = (t1 − t2)

ln(t1/t2)
. (6.127)

Note that S(τ ) reaches its maximum value at a characteristic temperature Tm corre-
sponding to the maximum emission time constant τmax. The emission rate is related
to this τmax value by en = 1/τmax for each t1 and t2 rate window setting. By chang-
ing the values of the rate window t1 and t2 in the boxcar-gated integrator, a series of
DLTS scans with different values of en and Tm can be obtained. From these DLTS
thermal scans we can obtain an Arrhenius plot of enT 2 versus 1/T for a specific
trap level, as shown in Figure 6.15.6 The activation energy of the trap level can
be calculated from the slope of this Arrhenius plot. Figure 6.16 shows the DLTS
scans of electron and hole traps observed in a 290-keV proton-irradiated GaAs p-n
junction diode.6 Three electron traps and three hole traps were observed in this
sample. Figure 6.17 shows the DLTS scans of a hole trap versus annealing time
for a thermally annealed (170◦C) Sn-doped InP grown by the liquid-encapsulated
Czochralski (LEC) technique and the trap density versus annealing time for this
sample.7

From the above description it is clearly shown that the DLTS technique is indeed
a powerful tool for characterizing the deep-level defects in a semiconductor. It
allows a quick inventory of all deep-level defects in a semiconductor and is widely
used for defect characterization in semiconductors.

6.11. Surface Photovoltage Technique

Another characterization method, known as the surface photovoltage (SPV) tech-
nique, can be employed to measure the minority carrier diffusion length in a
semiconductor wafer. The SPV method is a nondestructive technique since it is
a steady-state, contactless optical technique. No junction preparation or high-
temperature processing is needed for this method. The minority carrier lifetime
can also be determined from the SPV measurements using the relation τ = L2/D,



Figure 6.15. DLTS scans of the holes traps observed in a 100-keV proton-irradiated GaAs
solar cell with a proton fluency of 1012 cm−2. Six different DLTS scans were performed for
the second hole trap observed at a higher temperature. After Li et al.,6 by permission, c©
IEEE–1980.

Figure 6.16. DLTS scans of electron and hole traps for a 290-keV and 1012 p/cm2 proton
irradiation AlGaAs/GaAs p-n junction solar cell. After Li et al.,6 by permission, c© IEEE–
1980.
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Figure 6.17. DLTS scans of a hole trap versus annealing time for a Zn-doped InP specimen
annealed at 200◦C. After Li et al.,7 by permission.

where L is the minority carrier diffusion length and D is the diffusivity. The SPV
technique has been widely used in determining the minority carrier diffusion length
in silicon, GaAs, and InP materials. The basic theory and experimental details of
the SPV method are depicted next.

When a semiconductor specimen is illuminated by chopped monochromatic
light with its photon energy greater than the band gap energy of the semicon-
ductor, an SPV is induced at the semiconductor surface as the photogenerated
electron–hole pairs diffuse into the specimen along the direction of incident light.
The SPV signal is capacitively coupled into a lock-in amplifier for amplifica-
tion and measurement. The light intensity is adjusted to produce a constant SPV
signal at different wavelengths of the incident monochromatic light. The light
intensity required to produce a constant SPV signal is plotted as a function of
the reciprocal absorption coefficient for each wavelength near the absorption
edge. The resultant linear plot is extrapolated to zero light intensity and inter-
cepts the horizontal axis at −1/α, which is equal to the minority carrier diffusion
length.
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Figure 6.18. Relative light intensity I0 versus inverse optical absorption coefficient α−1

for an InP specimen. After Li.8

The SPV signal developed at the illuminated surface of a semiconductor spec-
imen is a function of the excess minority carrier density injected into the surface
SCR. The excess carrier density is in turn dependent on the incident light intensity,
the optical absorption coefficient, and the minority carrier diffusion length. Thus,
an accurate knowledge of the absorption coefficient versus wavelength is required
for the SPV method. In general, the SPV signal for an n-type semiconductor may
be written as

VSPV = f (�p), (6.128)

where

�p = ηI0(1 − R)

(Dp/L p + s1)

αL p

(1 + αL p)
(6.129)

is the excess hole density, η is the quantum efficiency, I0 is the light intensity,
R is the reflection coefficient, Dp is the hole diffusion coefficient, s1 is the front
surface recombination velocity, α is the optical absorption coefficient, and L p is the
hole diffusion length. Equation (6.128) holds if α−1 � L p, n � �p, and αd > 1
(where d is the thickness of the specimen).

If η and R are assumed constant over the measured wavelength range, the
incident light intensity I0 required to produce a constant SPV signal is directly
proportional to the reciprocal absorption coefficient α−1 and can be written as

I0 = C(α−1 + L p), (6.130)
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where C is a constant, independent of the photon wavelength. The linear plot of I0

versus α−1 is extrapolated to zero light intensity and the negative intercept value
is the effective hole diffusion length.

Figure 6.18 shows the relative photon intensity I0 versus the inverse absorption
coefficient α−1 for an n-type InP specimen.8 The negative intercept yields L p =
1.4 μm. The SPV measurements have been widely used in determining the minority
carrier diffusion lengths in silicon wafers, with measured minority carrier diffusion
lengths in the undoped silicon wafers greater than 100 μm.

Problems

6.1. Consider an n-type silicon sample with a dopant density of 2 × 1015 cm−3.
If the sample is illuminated by a mercury lamp with variable intensity, plot
the excess carrier lifetimes as a function of the excess carrier density for �n
varying from 2 × 1013 to 5 × 1016 cm−3. It is assumed that the recombina-
tion of excess carriers is dominated by the SRH process, τn0 = τp0 = 1 ×
10−8 s, n0 � p0, and n0 � n1, p1.

6.2. Consider a gold-doped silicon sample. There are two energy levels for the
gold impurity in silicon. The gold acceptor level is located at 0.55 eV below
the conduction band edge, and the gold donor level is 0.35 eV above the
valence band edge. If the electron capture rate Cn for the gold acceptor center
is assumed equal to 5 × 10−8 cm3/s, the hole capture rate Cp is 2 × 10−8

cm3/s, and the density of the gold acceptor center, NAu, is equal to 5 × 1015

cm−3:
(a) Compute the electron and hole lifetimes in this sample.
(b) If the temperature dependence of the electron emission rate is given by

en = Am(T/300)m exp[−(Ec − E−
Au)/kBT ],

find a solution for en when m = 0 and 2.
(c) Calculate ep from (a) and (b).

6.3. The kinetics of recombination, generation, and trapping at a single energy
level inside the forbidden band gap of a semiconductor have been considered
in detail by Shockley and Read.1 From the appendix of this paper derive an
expression for the excess carrier lifetime for the case that a large trap density
is present in the semiconductor [see also reference9].

6.4. Plot the radiative lifetime for a GaAs sample as a function of excess car-
rier density �n at T = 300 K, for �n/ni = 0, 1, 3, 10, 30 and n0/ni =
10−2, 10−1, 1, 10, 102. Here ni = 1 × 107 cm−3 is the intrinsic carrier den-
sity, and the generation rate Gr is assumed equal to 107 cm−3/s.

6.5. Show that the Einstein relation (i.e., Dn/μn) for an n-type degenerate semi-
conductor is equal to (kBT/q)F1/2(η)/F−1/2(η), where F1/2(η) is the Fermi
integral of order one-half. Plot the Dn/μn versus dopant density ND for
n-type silicon at 300 K.

6.6. Derive an expression for the extrinsic Debye length for nondegenerate and
degenerate semiconductors, and calculate the Debye lengths LDn for an n-
type silicon sample with ND = 1014, 1015, 1016, 1017, 1018, and 1019 cm−3.
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6.7. Plot the energy band diagram for a p-type semiconductor surface under (a)
inversion, (b) accumulation, and (c) depletion conditions.

6.8. Calculate the surface recombination velocity versus surface state density for
an n-type silicon with Nts = 109, 1010, 1011, and 1012 cm−2. Assume that
ET = Ec − 0.5 eV, cn = cp = 10−8 cm3/s, n0 = 1016 cm−3, n0 � p0, and
T = 300 K.

6.9. From the paper “Fast Capacitance Transient Apparatus: Application to Zn-
and O-centers in GaP p–n Junctions,” in reference (10), describe the electron
emission and capture processes in a Zn–O doped GaP p-n diode and their
correlation to the DLTS thermal scan. Explain under what conditions the
DLTS theory described in this paper fails.

6.10. Using the Arrhenius plot (i.e., ep/T 2 versus 1/T ) find the activation energy
of the second hole trap (located at a higher temperature) shown in Figure
6.15.
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7
Transport Properties of Semiconductors

7.1. Introduction

In this chapter the carrier transport phenomena in a semiconductor under the in-
fluence of applied external fields are presented. Different galvanomagnetic, ther-
moelectric, and thermomagnetic effects created by the applied electric and mag-
netic fields as well as the temperature gradient in a semiconductor are discussed
in this chapter. The transport coefficients associated with the galvanomagnetic,
thermoelectric, and thermomagnetic effects in a semiconductor are derived from
the Boltzmann transport equation using the relaxation time approximation. In the
event that the relaxation time approximation fails, the solutions for the Boltzmann
transport equation could be obtained using variational principles.

The effect of an applied electric field, magnetic field, or temperature gradient on
the electrons in a semiconductor is to change the distribution function of electrons
from its equilibrium condition. As discussed in Chapter 5, in the absence of external
fields, the distribution of electrons in a semiconductor or a metal under equilibrium
conditions may be described by the Fermi–Dirac distribution function, which is
given by

f0(E) = 1

1 + e(E−Ef)/kBT
. (7.1)

Equation (7.1) shows that in thermal equilibrium the electron distribution function
f0(E) depends not only on the electron energy but also on the Fermi energy Ef,
a many-body parameter, and the temperature T . However, under the influence of
external fields, f0(E) given in (7.1) may change from its equilibrium distribution
function in a semiconductor. This can best be explained by considering the case
in which an electric field or a magnetic field is applied to the semiconductor
specimen. When an electric field or a magnetic field is applied to the semiconductor,
the Lorentz force will tend to change the wave vector of electrons (i.e., F =
−q(EE + v × B) = h̄ dk/dt) along the direction of the applied fields. As a result,
the distribution function is modified by the changing wave vector of electrons
under the influence of Lorentz force. Furthermore, since f0 depends on both the
energy and temperature as well as the electron concentration, one expects that

171
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Figure 7.1. The effect of an applied electric field and a temperature gradient on the electron
distribution function in a semiconductor.

the nonequilibrium distribution function of electrons will also be a function of
the position in space when a temperature gradient or a concentration gradient is
presented across the semiconductor specimen.

To illustrate the effect of external forces on the electron distribution function,
Figures 7.1a and 7.1b show the two-dimensional (2-D) electron distribution func-
tions in the presence of an applied electric field and a temperature gradient, re-
spectively. As shown in Figure 7.1a, when an electric field is applied along the
x-direction, the change of electron wave vector in the x-direction is given by
�kx = −qExτ/h̄, where τ is the mean relaxation time of electrons, and Ex is the
applied electric field in the x-direction. In this case, the electron distribution func-
tion as a whole moves to the right by �kx from its equilibrium position. It is noted
that the shape of the nonequilibrium distribution function remains unchanged from
its equilibrium condition. The fact that the shape of the electron distribution func-
tion in k-space does not change because of the electric field can be explained by the
force acting on each quantum state k. Since the Lorentz force (Fx = −qEx ) due
to the electric field is equal to h̄k̇x , the rate of change of kx is the same for all elec-
trons. Consequently, if there is no relaxation mechanism to restore the distribution
function to equilibrium, an applied electric field can cause the distribution func-
tion to drift, unaltered in shape, only along the kx -direction at a constant velocity
(vx = h̄kx/m∗), and the change in crystal momentum as a result of this drift is given
by �kx = qExτ/h̄. On the other hand, the change in electron distribution function
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is quite different when a temperature gradient is applied to a semiconductor. In
this case, the nonequilibrium distribution function is shifted to the right by an
amount equal to �kx for those electrons with energies greater than Ef, and shifted
to the left by the same amount �kx for those electrons with energies less than
Ef, as illustrated in Figure 7.1b. The physical mechanisms causing this shift can
be explained using a Taylor series expansion of (E − Ef) about the Fermi energy
(Ef = h̄2k2

f /2m∗). Assuming that |E − Ef| � Ef, one can replace (E − Ef) by
(h̄2k f /m∗)(k − k f ) and obtain

�kx = τh̄k f

m∗T
(k − k f )

∂T

∂x
. (7.2)

This result shows that the distribution of quantum states at the Fermi surface
(i.e., at E = Ef) is not affected by the temperature gradient (i.e., �kx = 0). From
(7.2) it is noted that for those quantum states with energies greater than Ef (i.e.,
E > Ef) their centers shift in the same direction as the temperature gradient (�kx

is positive), whereas for those quantum states with energies smaller than Ef (i.e.,
E < Ef), their centers move in the opposite direction to the temperature gradient
(�kx is negative).

Section 7.2 describes various galvanomagnetic, thermoelectric, and thermomag-
netic effects in a semiconductor. These include electrical conductivity, the Hall
effect, the Seebeck and Pelter effects, the Nernst and Ettinghousen effects, and the
magnetoresistance effect. In Section 7.3, the Boltzmann transport equation for the
steady-state case is derived. Expressions for the electrical conductivity, electron
mobility, Hall coefficient, magnetoresistance, and Nernst and Seebeck coefficients
for n-type semiconductors are derived in Section 7.4. Transport coefficients for the
mixed conduction case are considered in Section 7.5. Section 7.6 presents some
experimental results on the transport coefficients for germanium, silicon, and III-V
compound semiconductors.

7.2. Galvanomagnetic, Thermoelectric,
and Thermomagnetic Effects

In this section, the galvanomagnetic, thermoelectric, and thermomagnetic effects
in a semiconductor are discussed. These effects are created by the transport of
electrons (for n-type) or holes (for p-type) in a semiconductor when an external
electric field, a magnetic field, or a temperature gradient is applied separately or
simultaneously to a semiconductor specimen. The transport coefficients to be de-
scribed here include electrical conductivity, thermal conductivity, Hall coefficient,
Seebeck coefficient, Nernst coefficient, and the magnetoresistance of an n-type
semiconductor. Transport coefficients derived for an n-type semiconductor can
also be applied to a p-type semiconductor, provided that the positive charge and
positive effective mass of holes are used instead. It is noted that for nondegenerate
semiconductors, Maxwell–Boltzmann (M-B) statistics are used in the derivation of
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transport coefficients, while Fermi–Dirac (F-D) statistics are used in the derivation
of transport coefficients for degenerate semiconductors and metals.

7.2.1. Electrical Conductivity

In this section the current conduction due to electrons in an n-type semiconductor
is described. When a small electric field is applied to the specimen, the electrical
current density can be related to the electric field using Ohm’s law, which reads

Jn = σnE = qμnnE , (7.3)

where σn = qμnn is the electrical conductivity, μn is the electron mobility, and n
denotes the electron density.

The electrical current density can also be expressed in terms of the electron
density and electron drift velocity vd along the direction of the applied electric
field by

Jn = qnvd , (7.4)

where q is the electronic charge. Comparing (7.3) and (7.4), one finds that the
electron drift velocity is related to the electric field by

vd = μnE , (7.5)

where μn is the low-field electron drift mobility, which is defined as the electron
drift velocity per unit electric field strength. For metals, μn can be expressed in
terms of the mean collision time τ and the electron effective mass m∗:

μn = qτ

m∗ . (7.6)

From (7.3) and (7.6), the electrical conductivity σn for a metal can be expressed
in terms of the mean collision time and the electron effective mass as

σn = q2nτ

m∗ . (7.7)

In the collision processes, the transition probability for electron collision is di-
rectly related to the density of collision centers, and the collision rate is inversely
proportional to the collision time constant. For example, in the case of electron–
phonon scattering, the number of scattering centers is equal to the phonon pop-
ulation in thermal equilibrium. At high temperatures the average phonon density
is proportional to temperature. Consequently, at high temperatures, the collision
time τ varies as 1/T , and hence the electrical conductivity σn varies inversely
with temperature T . This prediction is consistent with the observed temperature
dependence of electrical conductivity in a metal.

Equations (7.6) and (7.7) can also be applied to n-type semiconductors, pro-
vided that the free-electron mass is replaced by the conductivity effective mass of
electrons in the conduction bands m∗

n, and τ is replaced by the average relaxation
time 〈τ 〉. In general, the electron density in a semiconductor is a strong function
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of temperature, and the relaxation time may depend on both the energy and tem-
perature. A general expression for the current density in an n-type semiconductor
can be derived as follows. From (5.3), the density of quantum states gn(E) for a
single-valley semiconductor with a parabolic conduction band can be written as

gn(E) =
(

4π

h3

)
(2m∗

n)3/2 E1/2 . (7.8)

Using (7.4) and (7.8), a general expression for the electron current density can be
expressed by

Jn = −qnvx = −q
∫ ∞

0
vx f (E)gn(E) dE, (7.9)

where f (E) is the nonequilibrium electron distribution function, which can be
obtained by solving the Boltzmann transport equation to be described in Section
7.4. The integration of (7.9) is carried out over the entire conduction band. The
minus sign in (7.9) stands for electron conduction in an n-type semiconductor. For
hole conduction in a p-type semiconductor, a plus sign should be used instead.
Figure 7.2a shows the applied electric field and the current flow in an n-type

Figure 7.2. Longitudinal transport effects in the presence of an electric field or a temper-
ature gradient: (a) electrical conductivity; (b) electronic thermal conductivity; (c) Seebeck
effect, Sab = Vdc/(T2 − T1); (d) Peltier effect, �ab = SabT ; (e) Thomson effect.
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semiconductor specimen. The electrical conductivity for an n-type semiconductor
is derived in Section 7.4.

7.2.2. Electronic Thermal Conductivity

Electronic thermal conductivity is due to the flow of thermal energy carried by
electrons when a temperature gradient is applied across a semiconductor specimen.
As shown in Figure 7.2b, when a temperature gradient is created in a semiconductor
specimen, a heat flux flow will appear across the specimen. The electronic thermal
conductivity Kn is defined as the thermal flux density per unit temperature gradient,
and can be expressed by

Kn = − Qx

(∂T/∂x)

∣∣∣∣
Jx = 0

, (7.10)

where Qx is the thermal flux density given by

Qx = nvx E =
∫ ∞

0
vx E f (E)gn(E) dE . (7.11)

Note that the integration on the right-hand side of (7.11) is carried out over the
entire conduction band. Equations (7.9) and (7.11) are the two basic equations
that describe the flow of electric current density and heat flux density in an n-type
semiconductor, respectively. All the transport coefficients described in this section
can be derived from (7.9) and (7.11), provided that the nonequilibrium distribution
function f (k, r ) is known. The steady-state nonequilibrium distribution f (k, r ) can
be derived by solving the Boltzmann transport equation. It is noted that in thermal
equilibrium, both Jn and Qx , given by (7.9) and (7.11), are equal to zero, and f (k, r )
reduces to the equilibrium Fermi distribution function f0(E). Figures 7.2 and 7.3
show the plots of various galvanomagnetic, thermoelectric, and thermomagnetic
effects in a semiconductor in the presence of the electric field, current density, heat
flux, and temperature gradient. Various galvanomagnetic, thermoelectric, and ther-
momagnetic effects as well as the transport coefficients associated with the applied
electric field, magnetic field, and the temperature gradient in a semiconductor are
discussed next.

7.2.3. Thermoelectric Coefficients

When a temperature gradient, an electric field, or both are applied across a semi-
conductor or a metal specimen, three different kinds of thermoelectric effects can
be observed. They are the Seebeck, Peltier, and Thomson effects. The thermoelec-
tric coefficients associated with each of these effects can be defined according to
Figures 7.2c–e, in which two pieces of conductors (A and B) are joined at junc-
tions x1 and x2. If a temperature difference �T is established between junctions
x1 and x2, then an open-circuit voltage Vcd is developed between terminals “c”
and “d.” This is known as the Seebeck effect. In this case, the differential Seebeck
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Figure 7.3. Galvanomagnetic and thermomagnetic effects in a semiconductor under the
influence of an applied electric field, a magnetic field, and a temperature gradient. The
polarity shown is for hole conduction: (a) Hall effect, (b) Nernst effect, (c) Ettingshausen
effect, (d) Righi–Leduc effect.

coefficient, or the thermoelectric power, can be defined by

Sab = V

�T
= Vcd

(T2 − T1)
. (7.12)

If junctions x1 and x2 are initially maintained at the same temperature, then by
applying a voltage across terminals “c” and “d” one observes an electrical current
flow through these two conductors. If the result is a rate of heating at junction x1,
then there will be a cooling at the same rate at junction x2. This is the well-known
Peltier effect, the basic principle of thermoelectric cooling. The differential Peltier
coefficient is defined by

�ab = Qx

Ix
. (7.13)

The Thomson effect occurs when an electric current and a temperature gradient are
applied simultaneously in the same direction on a semiconductor specimen. In this
case, the simultaneous presence of the current flow Ix and the temperature gradient
∂T/∂x in the x-direction will produce a rate of heating or cooling (∂ Qx/∂x) per
unit length. Thus, the Thomson coefficient can be expressed by

τ = (∂ Qx/∂x)

Ix (∂T/∂x)
. (7.14)



178 7. Transport Properties of Semiconductors

Applying thermodynamic principles to the thermoelectric effects shown in
Figures 7.2c–e, Thomson derived two important equations, later known as the
Kelvin relations, that relate the three thermoelectric coefficients. The Kelvin rela-
tions can be expressed by

�ab = SabT, (7.15)

τa − τb = T
dSab

dT
. (7.16)

Equations (7.15) and (7.16) not only have a sound theoretical basis, but also have
been verified experimentally by the measured thermoelectric figure of merit. Equa-
tion (7.15) is particularly useful for thermoelectric refrigeration applications. This
is due to the fact that the rate of cooling by means of the Peltier effect can be
expressed in terms of the Seebeck coefficient, which is a much easier quantity to
measure. Equation (7.16) allows one to account for the influence of the Thomson
effect on the cooling power of a thermoelectric refrigerator via the variation of
Seebeck coefficient with temperature.

Since the Thomson coefficient is defined for a single conductor, it is appro-
priate to introduce here the absolute Seebeck and Peltier coefficients for a single
conductor. The differential Seebeck and Peltier coefficients between the two con-
ductors are given by (Sa − Sb) and (�a − �b), respectively, where Sa and Sb are
the absolute Seebeck coefficients for conductors A and B, and �a and �b denote
the absolute Peltier coefficients for conductors A and B, respectively. The Kelvin
relations for a single conductor given by (7.15) and (7.16) can be expressed as

� = ST , (7.17)

τs = T
dS

dT
, (7.18)

where �, S, and τs denote the absolute Peltier, Seebeck, and Thomson coeffi-
cients for a single conductor or a semiconductor, respectively. Therefore, using
the definitions of thermoelectric coefficients described in this section, the gen-
eral expressions of thermoelectric coefficients can be derived from the Boltzmann
transport equation to be discussed in Section 7.4.

7.2.4. Galvanomagnetic and Thermomagnetic Coefficients

When a magnetic field is applied to a semiconductor specimen in addition to an
electric field and/or a temperature gradient, the transport phenomena become much
more complicated than those without a magnetic field. Fortunately, most of the
important galvanomagnetic effects in a semiconductor associated with the applied
magnetic fields are focused on the cases in which a magnetic field is applied in
a direction perpendicular to the electric field or the temperature gradient. These
are usually referred to as the transverse galvanomagnetic effects, which include
the Hall, Nernst, and magnetoresistance effects. In this section, the transverse
galvanomagnetic effects in an n-type semiconductor are described.
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The Hall effect is the best-known galvanomagnetic effect found in a semicon-
ductor. As shown in Figure 7.3a, when a magnetic field is applied in the z-direction
and an electric field is applied in the x-direction, an electric field (known as the Hall
field) will be developed in the y-direction of the specimen. The Hall coefficient
RH, under isothermal conditions, can be defined by

RH = Ey

Jx Bz

∣∣∣∣
Jy=0

, (7.19)

whereEy is the Hall field induced in the y-direction, Jx is the electric current density
flow in the x-direction, and Bz is the applied magnetic field in the z-direction.

Figure 7.3a shows a schematic diagram of the Hall effect across a semiconductor
specimen under isothermal conditions. Note that both the electric current density
in the direction of the Hall field (i.e., the y-direction) and the temperature gradient
across the specimen are assumed equal to zero. The polarity of the Hall voltage
depends on the type of charge carriers (i.e., electrons or holes) in the specimen.
This is due to the fact that electrons and holes in a semiconductor will experience an
opposite Lorentz force when they are moving in the same direction of the specimen.
Therefore, the polarity of the Hall voltage will be different for an n-type and a p-
type semiconductor, and the Hall effect measurement is often used to determine
the conduction types (i.e., n- or p-type) and the majority carrier concentration in a
semiconductor.

If a temperature gradient is applied in the x-direction and a magnetic field in the
z-direction, then a transverse electric field will be developed in the y-direction of
the specimen, as illustrated in Figure 7.3b. This effect is known as the Nernst effect.
The Nernst coefficient, which is thermodynamically related to the Ettingshausen
coefficient in the same way as the Seebeck coefficient is related to the Peltier
coefficient, is defined by

Qn = Ey

Bz(∂T/∂x)

∣∣∣∣
Jx =Jy=0

, (7.20)

where Ey is the Nernst field developed in the y-direction when a temperature
gradient is applied in the x-direction and a magnetic field is in the z-direction.
Note that the electric current density along the x- and y-directions and the
temperature gradient in the y-direction (i.e., ∂T/∂y = 0) are assumed equal to
zero.

As is shown in Figure 7.3c, if an electric field is applied in the x-direction and
a magnetic field in the z-direction, then a temperature gradient will be developed
in the y-direction of the specimen. This is known as the Ettingshausen effect. It
is this effect that forms the basis of thermomagnetic cooling as a counterpart to
thermoelectric cooling by the Peltier effect discussed earlier. The Ettingshausen
coefficient PE is defined by

PE = (∂T/∂y)

Jx Bz

∣∣∣∣
Jy=∂T/∂x=0

, (7.21)
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where ∂T/∂y is the temperature gradient developed in the y-direction of the spec-
imen. Note that in defining the Ettingshausen effect, the current density in the y-
direction and the temperature gradient in the x-direction are assumed equal to zero.

The Ettingshausen coefficient PE and the Nernst coefficient Qn are related by
the Bridgeman equation, which is given by

PE Kn = QnT , (7.22)

where Kn is the electronic thermal conductivity defined by (7.11).
The Righi–Leduc effect refers to the creation of a transverse temperature gradi-

ent ∂T/∂y when a temperature gradient ∂T/∂x in the x-direction and a magnetic
field Bz in the z-direction are applied simultaneously to a semiconductor specimen.
The Righi–Leduc coefficient RL can be expressed by

RL = (∂T/∂y)

(∂T/∂x)Bz

∣∣∣∣
Jx =Jy=0

. (7.23)

Note that the current densities Jx and Jy in the x- and y-directions are assumed
equal to zero in (7.23).

In order to derive general expressions for the different transport coefficients
described above, the nonequilibrium distribution function f (E) in (7.9) and (7.11)
will first be solved from the Boltzmann transport equation using relaxation time
approximation, which will be discussed next.

7.3. Boltzmann Transport Equation

An analytical expression for the Boltzmann transport equation can be derived for an
n-type semiconductor using the relaxation time approximation. The relaxation time
approximation assumes that all the collision processes are elastic and can be treated
in terms of a unique relaxation time. Elastic scattering requires that the change
of electron energy during the scattering process must be small compared to the
energy of electrons, and the relaxation time is a scalar quantity. Typical examples of
elastic scattering processes include the scattering of electrons by the longitudinal
acoustical phonons, ionized impurities, and neutral impurities in a semiconductor.
It is noted that the relaxation time τ may be a function of temperature and energy,
depending on the types of scattering mechanisms involved, as will be discussed
later, in Chapter 8. The transport coefficients for an n-type semiconductor to be
derived in this section include electrical conductivity, the Hall coefficient, the
Seebeck coefficient, the Nernst coefficient, and magnetoresistance.

According to Liouville’s theorem, if f (k, r, t) denotes the nonequilibrium dis-
tribution function of electrons at time t , in a volume element of d3r d3k, and located
at (r, k) in r - and k-space, then f (k + k̇ dt, r + ṙ dt, t + dt) represents the distri-
bution function at time (t + dt) within the same volume element. The difference
between f (k, r, t) and f (k + k̇ dt, r + ṙ dt, t + dt) must be balanced by the col-
lision processes that occur inside a semiconductor or a metal. Therefore, the total
rate of change of the distribution function with respect to time in the presence of
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a Lorentz force or a temperature gradient can be written as

d f

dt
= (−k̇ · ∇k f − ṙ · ∇r f ) + ∂ f

∂t

∣∣∣∣
c

+ ∂ f

∂t
, (7.24)

where k̇ = dk/dt and ṙ = dr/dt = v denote the change of crystal momentum and
the electron velocity, respectively. The two terms inside the parentheses on the
right-hand side of (7.24) represent the external force terms due to the Lorenz force
and temperature gradient; the next term is the internal collision term, which tends
to offset the external force terms; and the last term is the time-dependent term that
exists only for the transient case. Equation (7.24) is the generalized Boltzmann
transport equation.

In this section, only the steady-state case will be considered. The transport
coefficients are derived when the time-independent external forces are applied
to a semiconductor specimen. In this case, the third term on the right-hand
side of (7.24) is set equal to zero, and the Boltzmann equation given by (7.24)
becomes

k̇ · ∇k f + ṙ · ∇r f = ∂ f

∂t

∣∣∣∣
c

. (7.25)

In general, the nonequilibrium distribution function f (k, r ) can be obtained from
solving (7.25), and the transport coefficients of a semiconductor or a metal can be
derived once f (k, r ) is found from (7.25).

In order to obtain an analytical expression for f (k, r ) from (7.25), it is neces-
sary to assume that the scattering of charge carriers in a semiconductor is elastic so
that the relaxation time approximation can be applied to the Boltzmann equation.
According to the classical model, electron velocity is accelerated by the applied
electric field over a period of time inside the crystal, while its drift velocity drops
to zero through the internal collision process. It is, however, more appropriate to
consider the way in which the electron system is relaxed toward its equilibrium
distribution once the external perturbation is removed. Therefore, if f (k, r ) repre-
sents the distribution function of electrons under the influence of an applied electric
field and f0(E) is the thermal equilibrium distribution function, then the collision
term given by (7.25) can be expressed in terms of the relaxation time τ as

∂ f

∂t

∣∣∣∣
c

= − f − f0

τ
. (7.26)

Equation (7.26) is the basis of the relaxation time approximation in which the
collision term on the right-hand side of (7.25) is replaced by the difference in the
nonequilibrium and equilibrium distribution functions divided by the relaxation
time constant τ . The relaxation time constant is usually dependent on the types of
scattering mechanisms in a semiconductor. If the external forces are removed, then
the nonequilibrium distribution function will decay exponentially to its equilibrium
value with a time constant τ governed by the internal scattering processes.
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For n-type semiconductors, the relaxation time τ depends on the energy of
electrons according to the simple power law

τ = aEs , (7.27)

where s is a constant whose value depends on the types of scattering mechanisms
involved. The constant a may or may not be a function of temperature, depending
on the types of scattering mechanisms. For example, in a semiconductor in which
the ionized impurity scattering is dominated, s is equal to 3/2 and a is independent
of temperature, while for acoustical phonon scattering, s is equal to −1/2 and a
varies inversely with temperature. For neutral impurity scattering, τ is independent
of the electron energy, and s = 0.

7.4. Derivation of Transport Coefficients
for n-Type Semiconductors

In this section, the transport coefficients for n-type semiconductors are derived for
the cases in which an electric field, a magnetic field, or a temperature gradient
is applied to the specimen. Transport coefficients such as electrical conductivity,
Hall coefficient, Seebeck and Nernst coefficients, and magnetoresistance can be
derived from (7.24) using the relaxation time approximation.

Derivation of the nonequilibrium distribution function from the Boltzmann
equation for an n-type semiconductor is described first. The Lorentz forces acting
on the electrons because of the presence of an electric field and a magnetic field
can be expressed by

F = −q(EE + v × B) = h̄k̇ or k̇ = −q

h̄
(EE + v × B) . (7.28)

Now substituting k̇ given by (7.28) into (7.25), the first term on the left-hand side
of (7.25) becomes

−k̇ · ∇k f =
(

q

h̄

)
(EE + v × B) · ∇k f . (7.29)

The second term on the left-hand side of (7.25) is due to the presence of a temper-
ature gradient or a concentration gradient in a semiconductor. Using the relaxation
time approximation, the collision term is given by (7.26). Now, substituting (7.29)
and (7.26) into (7.25), one obtains(

q

h̄

)
(EE + v × B) · ∇k f − v · ∇r f = f − f0

τ
, (7.30)

or (
q

m∗
n

)
(EE + v × B) · ∇v f − v · ∇r f = f − f0

τ
. (7.31)

Equation (7.31) is the generalized steady-state Boltzmann equation, which is ob-
tained using de Broglie’s wave–particle duality relation (h̄k = m∗

nv) in (7.30). To
obtain an analytical solution for f (k, r ) from (7.31), certain approximations must
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be used. Since the equilibrium distribution function f0 depends only on energy and
temperature, the nonequilibrium distribution function f (k, r ) must contain terms
that depend only on the electron velocity and energy. Therefore, it is appropriate
to write a generalized trial solution for (7.31) in terms of the equilibrium distribu-
tion function and a first-order correction term, which contains both the energy and
velocity components. This is given by

f = f0 − v · P(E)
∂ f0

∂ E
, (7.32)

where P(E) is an unknown vector quantity, which depends only on the electron
energy. For the small-perturbation case [i.e., ( f − f0) � f0], each term in (7.31)
can be approximated by

v · ∇r f ≈ v .∇r f0 = v · ∇r T

[
(Ef − E)

T

∂ f0

∂ E

]
, (7.33)

EE · ∇ν f ≈ EE · ∇ν f0 = EE · (∇ν E)
∂ f0

∂ E
= EE · (m∗v)

∂ f0

∂ E
, (7.34)

(v × B) · ∇ν f ≈ −v · [B × P(E)]
∂ f0

∂ E
. (7.35)

Now, substituting (7.33), (7.34), and (7.35) into (7.31), one obtains

−qτv · EE +
(

qτ

m∗
n

)
[B × P(E)] · v + τ

(Ef − E)

T
v · ∇r T − v · P(E) = 0 .

(7.36)

Equation (7.36) is a generalized steady-state Boltzmann equation in the presence
of an applied electric field, a magnetic field, and a temperature gradient. Note that
(7.36) can be further simplified by factoring out the velocity component, and the
result is

P(E) −
(

qτ

m∗
n

)
[B × P(E)] = −qτEE + τ

(Ef − E)

T
∇r T . (7.37)

In order to obtain a solution for the unknown vector functionP(E) in (7.37), it
is assumed that the applied electric fields and temperature gradients are in the x–y
plane of the semiconductor specimen, and the magnetic field is in the z-direction.
Under this assumption, the components forP(E) in (7.37) in the x- and y-directions
of the specimen are given respectively by

Px (E) + (qτ/m∗
n)Bz Py(E) = −qτEx + τ

(Ef − E)

T

∂T

∂x
, (7.38)

Py(E) − (qτ/m∗
n)Bz Px (E) = −qτEy + τ

(Ef − E)

T

∂T

∂y
. (7.39)

Solving (7.38) and (7.39) for Px (E) and Py(E), one obtains

Px (E) = (β − δγ )

(1 + δ2)
, (7.40)

Py(E) = (γ − δβ)

(1 + δ2)
, (7.41)
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where

δ = qτ Bz

m∗
n

= ωτ , (7.42)

β = τ

[
−qEx + (Ef − E)

T

∂T

∂x

]
, (7.43)

γ = τ

[
−qEy + (Ef − E)

T

∂T

∂y

]
. (7.44)

Thus, the expressions of transport coefficients for an n-type semiconductor de-
scribed in Section 7.2 can be derived using (7.31) through (7.44). This is discussed
next.

7.4.1. Electrical Conductivity

Consider the cases in which the applied electric field and the current flow are in
the x- and y-directions of the specimen. By substituting (7.32) for f (E) into (7.9),
the electric current density components due to electron conduction along the x-
and y-directions are given respectively by

Jx = −nqvx = −
∫ ∞

0
qvx f (E)g(E) dE (7.45)

= q
∫ ∞

0
v2

x Px (E)g(E)
∂ f0

∂ E
dE ,

Jy = q
∫ ∞

0
v2

y Py(E)g(E)
∂ f0

∂ E
dE , (7.46)

where Px (E) and Py(E) are obtained from (7.40) through (7.44) by setting
δ, ∂T/∂x , and ∂T/∂y equal to zero, results yielding

Px (E) = −qτEx , (7.47)

Py(E) = −qτEy . (7.48)

From (7.45) through (7.48), it is noted that Jx and Jy vanish if P(E) is equal to
zero. To derive the electrical conductivity, it is assumed that the electron velocity
is isotropic within the specimen, and hence the square of the velocity components
along the x-, y-, and z-directions can be expressed in terms of the kinetic energy
of electrons by

v2
x = v2

y = v2
z = 2E

3m∗
n

, (7.49)

where E is the total kinetic energy of electrons. Equation (7.49) is obtained by
using the fact that the electron kinetic energy is equal to (1/2)m∗

nv
2, where v2 =

v2
x + v2

y + v2
z and it is assumed that vx = vy = vz . Now, substituting (7.47) and

(7.49) into (7.45), one obtains

σn = Jx

Ex
=

(−2q2

3m∗
n

) ∫ ∞

0
τ Eg(E)

∂ f0

∂ E
dE . (7.50)
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For a nondegenerate semiconductor, the F-D distribution function given by (7.1)
is reduced to the classical M-B distribution function, which reads

f0 ≈ exp[(Ef − E)/kBT ] (7.51)

and

∂ f0

∂ E
= − f0

kBT
. (7.52)

Now, substituting (7.52) into (7.50), the electrical conductivity can be expressed
as

σn =
(

2q2

3m∗
nkB T

) ∫ ∞

0
τ Eg(E) f0 dE

=
(

2n0q2

3m∗
nkB T

) ∫ ∞
0 τ E3/2 f0 dE∫ ∞
0 E3/2 f0 dE

(7.53)

= n0q2〈τ 〉
m∗

n
,

where

〈τ 〉 =
∫ ∞

0 τ E3/2 e−E/kBT dE∫ ∞
0 E3/2 e−E/kBT dE

(7.54)

is the average relaxation time. It is noted that (7.54) is valid only for the nondegen-
erate semiconductors in which the M-B statistics one applicable. Equation (7.53)
is obtained using the expression of electron density given by

n0 =
∫ ∞

0
f0g(E) dE =

(
4π

h3

)
(2m∗

n)3/2
∫ ∞

0
E1/2 e−E/kBT dE . (7.55)

The average kinetic energy of electrons for a nondegenerate n-type semiconductor
can be obtained using the expression

〈E〉 =
∫ ∞

0 E f0g(E) dE∫ ∞
0 f0g(E) dE

=
∫ ∞

0 E3/2 e−E/kBT dE∫ ∞
0 E1/2 e−E/kBT dE

= 3kBT

2
. (7.56)

A generalized expression for the average relaxation time to the nth power 〈τ n〉 is
given by

〈τ n〉 =
∫ ∞

0 τ n Eg(E) ∂ f0/∂ E dE∫ ∞
0 Eg(E) ∂ f0/∂ E dE

, (7.57)

where n = 1, 2, 3, . . ., and

〈τ En〉 =
∫ ∞

0 (τ En)Eg(E) ∂ f0/∂ E dE∫ ∞
0 Eg(E) ∂ f0/∂ E dE

. (7.58)

It is noted that the electrical conductivity for an n-type semiconductor given by
(7.53) is similar to that of (7.7) for a metal. The only difference is that the free-
electron mass in (7.7) is replaced by the effective mass of electrons, m∗

n , and the
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constant relaxation time τ is replaced by an average relaxation time 〈τ 〉 defined
Eq. (7.54).

Using the M-B distribution function for f0 in (7.57) and (7.58), the expres-
sions of 〈τ n〉 and 〈τ En〉 for a nondegenerate semiconductor are given respectively
by

〈τ n〉 =
∫ ∞

0 τ n E3/2 e−E/kBT dE∫ ∞
0 E3/2 e−E/kBT dE

, (7.59)

〈τ En〉 =
∫ ∞

0 (τ En)E3/2 e−E/kB T dE∫ ∞
0 E3/2 e−E/kBT dE

. (7.60)

Now, solving (7.53) and (7.54) and using τ = τ0 Es , one obtains the expression of
electrical conductivity for a nondegenerate n-type semiconductor as

σn =
(

n0q2τ0

m∗
n

)
(kBT )s (5/2+s)

(5/2)
, (7.61)

where

n(x) =
∫ ∞

0
xn−1 e−x dx (7.62)

is the gamma function of order n, n = (n − 1)!, and 1/2 = √
π . Since the elec-

trical conductivity is related to the electron mobility by (7.6), an expression
of the electron mobility can be derived from (7.6) and (7.61), and the result
is

μn =
(

qτ0

m∗
n

)
(kBT )s (5/2+s)

(5/2)
. (7.63)

It is noted that for acoustical phonon scattering, τ0 varies as T −1 and s = −1/2,
and hence the electron mobility μn varies with T −3/2. For ionized impurity scat-
tering, s = +3/2, and τ0 independent of temperature, the electron mobility varies
as T 3/2. Detailed scattering mechanisms in a semiconductor will be discussed in
Chapter 8.

The electrical conductivity given by (7.53) was derived on the basis of the single-
valley model with a spherical constant-energy surface for the conduction band. This
applies to most of the III-V compound semiconductors such as GaAs and InP in
which the conduction band minimum is assumed to have spherical constant-energy
surface (i.e., parabolic band). In this case the conductivity effective mass m∗

n is
an isotropic scalar quantity, and n is the total carrier concentration in the single
spherical conduction band. For multivalley semiconductors such as silicon and
germanium, since their crystal structures possess cubic symmetry, the electrical
conductivity remains isotropic. Thus, (7.53) is still applicable for the multivalley
semiconductors, provided that the average relaxation time is assumed isotropic
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and the conductivity effective mass m∗
n is replaced by

m∗
σ =

[
1

3

(
1

m l
+ 2

m t

)]−1

= 3m l

(2K + 1)
, (7.64)

where K = m l/m t is the ratio of the longitudinal and transverse effective masses
of an electron along the two main axes of the ellipsoidal energy surface near the
conduction band edge. Values of m l and m t can be determined by the cyclotron
resonance experiment at 4.2 K. Equation (7.64) is obtained using the geometrical
average of the electron mass along the two main axes of the ellipsoidal energy
surface.

7.4.2. Hall Coefficients

The general expression of the Hall coefficient for a nondegenerate n-type semi-
conductor with a single-valley spherical energy band can be derived from (7.45)
and (7.46) using the definition given by (7.19). Consider the case of small mag-
netic field (i.e., μB � 1) in which the δ2 term in (7.40) and (7.41) is negligible
(i.e., δ2 � 1). Thus, by substituting Px (E) given by (7.40) into (7.45) and setting
∂T/∂x equal to zero, one obtains

Jx = q
∫ ∞

0
v2

x (β − γ δ)g(E)
∂ f0

∂ E
dE

=
(

2q2

3m∗
nkBT

) ∫ ∞

0
τ E

[
Ex −

(
qτ Bz

m∗
n

)
Ey

]
g(E) f0 dE . (7.65)

Similarly, (7.46) can be expressed as

Jy = q
∫ ∞

0
v2

y(γ + δβ)g(E)
∂ f0

∂ E
dE

=
(

2q2

3m∗
nkB T

) ∫ ∞

0
τ E

[
Ey +

(
qτ Bz

m∗
n

)
Ex

]
g(E) f0 dE . (7.66)

By setting Jy = 0 in (7.66), Ex can be expressed in terms of Ey , which can then
be substituted into (7.65) to obtain an expression for the Hall coefficient using the
definition of RHn given by (7.19), and one obtains

RHn = Ey

Jx Bz

∣∣∣∣
Jy=0

= −
(

3kBT

2q

) ∫ ∞
0 τ 2 Eg(E) f0 dE

[
∫ ∞

0 τ Eg(E) f0 dE]2
= − 1

qn0

〈τ 2〉
〈τ 〉2

,

(7.67)

where 〈τ 〉 is the average relaxation time and 〈τ 2〉 is the average of the relaxation
time squared, which can be determined using (7.57). The minus sign in (7.67) de-
notes electron conduction in an n-type semiconductor. For p-type semiconductors,
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the Hall coefficient is given by

RHp = 1

qp0

〈τ 2〉
〈τ 〉2

, (7.68)

which has a positive Hall coefficient due to the hole conduction. From (7.67) and
(7.68), the Hall factor γH can be expressed by

γH = 〈τ 2〉
〈τ 〉2

. (7.69)

If the relaxation time is given by τ = aEs , then the Hall coefficient for a non-
degenerate n-type semiconductor is given by

RHn = − 1

qn

(2s + 5/2)(5/2)

[(s + 5/2)]2
= −γHn

qn
, (7.70)

where n is the gamma function defined by (7.62) and γHn is the Hall factor for an
n-type semiconductor. In general, the Hall factor can be calculated if the scattering
mechanisms in the semiconductor are known. The expression for the Hall factor
for a p-type semiconductor is identical to that of n-type semiconductors discussed
above.

Another important physical parameter, which is usually referred to as Hall mo-
bility, can be obtained from the product of electrical conductivity and the Hall
coefficient. Thus, using (7.61) and (7.70) one obtains

μHn = RHnσn =
(

qτ0

m∗
n

)
(kBT )s (2s + 5/2)

(s + 5/2)
. (7.71)

The Hall factor for a nondegenerate semiconductor, which is defined as the
ratio of Hall mobility and conductivity mobility, can be obtained from (7.69) and
(7.70)

γHn = μHn

μn
= 〈τ 2〉

〈τ 〉2 = (2s + 5/2)(5/2)

[(s + 5/2)]2
. (7.72)

Values of γHn may vary between 1.18 and 1.93 depending on the types of
scattering mechanisms involved. For example, for acoustical phonon scattering
with s = −1/2, the Hall factor is equal to 3π/8 (≈1.18), and for ionized impurity
scattering with s = 3/2, the Hall factor was found equal to 315π/512 (≈1.93).
For neutral impurity scattering with s = 0, the Hall factor is equal to 1. Values of
the Hall factor given above are obtained for nondegenerate semiconductors with a
single-valley spherical energy surface in the conduction band.

For multivalley semiconductors such as silicon and germanium where the con-
duction band valley has an ellipsoidal energy surface, the expression for the Hall
factor should be modified to include the mass anisotropic effect. In this case, a
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“Hall mass factor” a0 is multiplied by the Hall factor given by (7.69) for the single-
valley case to account for the mass anisotropic effect. Thus, the Hall factor for a
multivalley semiconductor can be expressed by

γH = μHn

μn
= 〈τ 2〉a0

〈τ 〉2
, (7.73)

where a0 is known as the “Hall mass factor,” which can be expressed by

a0 =
(

m∗
σ

m∗
H

)2

= 3K (K + 2)

(2K + 1)2
, (7.74)

where

m∗
H = m l

√
3/[K (K + 2)] (7.75)

is the Hall effective mass, m∗
σ is the conductivity effective mass defined by (7.64),

and K = m l/m t is the ratio of the longitudinal and transverse effective masses of
electrons along the two major axes of the constant ellipsoidal energy surface of
the conduction band. For germanium, K ≈ 20 and a0 = 0.785, while for silicon,
K = 5.2 and a0 = 0.864. Thus, the Hall coefficient given by (7.67) for n-type
silicon and germanium should be multiplied by a Hall mass factor given by (7.74).

For p-type silicon, the Hall factor may be smaller than unity because of the
warped and nonparabolic valence band structures. In general, it is usually difficult
to obtain an exact Hall factor from the Hall effect measurements. In fact, it is a
common practice to assume that the Hall factor is equal to one so that the majority
carrier density in a semiconductor can be readily determined from the Hall effect
measurements.

7.4.3. Seebeck Coefficients

The Seebeck coefficient for a single-valley n-type semiconductor with spherical
constant-energy surface can be derived from (7.40) and (7.45) by letting δ = 0 in
(7.40) and Jx = 0 in (7.45). One then has

Sn = Ex

(∂T/∂x)

∣∣∣∣
Jx =0

=
(

− 1

qT

) [∫ ∞
0 τ E2g(E)∂ f0/∂ E dE∫ ∞
0 τ Eg(E)∂ f0/∂ E dE

− Ef

]

= −
(

1

qT

) [ 〈τ E〉
〈τ 〉 − Ef

]
. (7.76)

For a nondegenerate semiconductor, the Seebeck coefficient given by (7.76)
can be derived using (7.59) and (7.60) to obtain 〈τ E〉 and 〈τ 〉 with τ = aEs ,
yielding

Sn = −
(

1

qT

)
[(5/2 + s)kBT − Ef]. (7.77)
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It is noted that values of the Seebeck coefficient given by (7.77) can be determined
if the types of scattering mechanisms and the position of Fermi level are known.
For example, if acoustical phonon scattering is dominant (i.e., s = −1/2), then
the Seebeck coefficient is given by

Sn = −
(

1

qT

)
(2kBT − Ef). (7.78)

On the other hand, if ionized impurity scattering (i.e., s = 3/2) is dominant, then
the Seebeck coefficient becomes

Sn = −
(

1

qT

)
(4kBT − Ef). (7.79)

From (7.78) and (7.79), it is seen that the Fermi energy for a nondegenerate semi-
conductor can be determined from the measured Seebeck coefficient, provided
that the dominant scattering mechanism is known. The minus sign in (7.77) for the
Seebeck coefficient indicates that the conduction is due to electrons in an n-type
semiconductor. Thus, measurement of the Seebeck coefficient can also be used to
determine the conduction type of a semiconductor.

For p-type semiconductors, the sign of the Seebeck coefficient given by
(7.76) is positive, since the conduction is carried out by holes. Expressions of
Seebeck coefficient derived in this section are applicable only for single-valley
nondegenerate semiconductors. However, the results can also be applied to multi-
valley semiconductors such as silicon and germanium, provided that the density-
of-states effective mass for electrons is modified to account for the multivalley
conduction bands. For degenerate semiconductors, the F-D distribution function
should be used in deriving the Seebeck coefficients. This is left as an exercise for
the reader in the problems.

7.4.4. Nernst Coefficients

The Nernst effect for a nondegenerate n-type semiconductor with a single-valley
spherical energy surface in the conduction band is discussed next. The Nernst coef-
ficient Qn, defined by (7.20), can be derived from (7.40) through (7.48). Consider
the case of low magnetic fields (i.e., μB = δ � 1). Under isothermal conditions,
the Nernst coefficient can be derived by letting Jx = Jy = 0 and ∂T/∂y = 0 in
(7.45) and (7.46), which can be expressed as

Jx = 0 = q
∫ ∞

0
v2

x (β − δγ )g(E)
∂ f0

∂ E
dE

=
(

2q2

3m∗
nkBT

) ∫ ∞

0
τ E

[
Ex − (Ef − E)

T

(
∂T

∂x

)
− ωτEy

]
g(E) f0 dE (7.80)
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and

Jy = 0 =
(

2q2

3m∗
nkBT

) ∫ ∞

0
τ E

[
Ey − (Ef − E)

T
ωτ

(
∂T

∂x

)
+ ωτEx

]
g(E) f0 dE .

(7.81)
Now solving (7.80), (7.81), and using (7.20) for Qn, one obtains

Qn = Ey

Bz(∂T/∂x)

∣∣∣∣
Jx =Jy=0

=
{(

1

m∗T

)∫ ∞
0 τ 2 E2g(E) f0 dE∫ ∞

0 τ Eg(E) f0 dE
−

∫ ∞
0 τ 2 Eg(E) f0 dE

∫ ∞
0 τ E2g(E) f0 dE

[
∫ ∞

0 τ Eg(E) f0 dE]2

}

=
(

μn

qT

) [ 〈τ 2 E〉
〈τ 〉2

− 〈τ 2〉〈τ E〉
〈τ 〉3

]
, (7.82)

where μn = q〈τ 〉/m∗
n is the electron conductivity mobility. Now substituting τ =

aEs into (7.82), one obtains the Nernst coefficient for a nondegenerate n-type
semiconductor as

Qn =
(

kB

q

)
μns

(2s+5/2)(5/2)

[(s+5/2)]2
. (7.83)

If the acoustical phonon scattering (s = −1/2) or ionized impurity scattering (s =
3/2) is the dominant scattering mechanism, then (7.83) is given by

Qn = −
(

3π

16

) (
kB

q

)
μn for s = −1/2,

=
(

945π

1024

) (
kB

q

)
μn for s = 3/2. (7.84)

It is interesting to note that, in contrast to both the Hall and Seebeck coefficients,
the sign of the Nernst coefficient given by (7.83) depends only on the types of
scattering mechanisms (s) rather than on the types of charge carriers. For example,
the Nernst coefficient is negative when the acoustical phonon scattering (i.e., s =
−1/2) is dominant, and is positive when the ionized impurity scattering (i.e.,
s = +3/2) is dominant, as shown in (7.84). Equation (7.83) can be applied to
p-type semiconductors, provided that the hole mobility is used in the expression.

7.4.5. Transverse Magnetoresistance

The transverse magnetoresistance effect describes the change of electrical resistiv-
ity when a transverse magnetic field is applied across a semiconductor specimen.
For example, if an electric field in the x-direction and a magnetic field in the z-
direction are applied simultaneously to a semiconductor specimen, then an increase
in resistance with the applied magnetic field may be observed along the direction
of current flow. The magnetoresistance in a semiconductor can be derived using
(7.40) through (7.46). To derive an expression for transverse magnetoresistance
in a single-valley semiconductor with spherical energy band, it is assumed that
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the specimen is subject to isothermal conditions with ∂T/∂x = ∂T/∂y = 0 and
Jy = 0. Equations (7.40) and (7.41) can be rewritten as

Px (E) = (β − δγ )

(1 + δ2)
= (β − ωτγ )

(1 + ω2τ 2)
, (7.85)

Py(E) = (γ + δβ)

(1 + δ2)
= (γ + ωτβ)

(1 + ω2τ 2)
, (7.86)

where

γ = −qτEy, β = −qτEx , δ = ωτ = q Bzτ

m∗
n

. (7.87)

Now substituting (7.85) and (7.86) into (7.45) and (7.46) yields

Jx =
(

2q2

3m∗
nkBT

) ∫ ∞

0

[
(τEx + ωτ 2Ey)

(1 + ω2τ 2)

]
Eg(E) f0 dE, (7.88)

Jy =
(

2q2

3m∗
nkBT

) ∫ ∞

0

[
(τEy − ωτ 2Ex )

(1 + ω2τ 2)

]
Eg(E) f0 dE . (7.89)

Solving (7.88) and (7.89), one obtains the transverse magnetoresistance coeffi-
cients of a nondegenerate n-type semiconductor for two limiting cases, namely,
the low and high magnetic fields cases.

(i) The low magnetic field case (i.e., δ = ωτ � 1). In this case, the ω2τ 2 term in
the denominator of (7.88) and (7.89) is retained. From (7.89), Ey may be expressed
in terms of Ex by setting Jy = 0, which yields

Ey = −Ex

[∫ ∞
0 ωτ 2 Eg(E) f0 dE∫ ∞

0 τ Eg(E) f0 dE

]
. (7.90)

Now, substituting (7.90) for Ey into (7.88) and using the binomial expansion for
(1 + ω2τ 2)−1 ≈ (1 − ω2τ 2) in (7.88) for ωτ � 1, one obtains the electrical con-
ductivity σn for the low magnetic field case:

σn = Jx

Ex

=
(

2q2

3m∗
nkBT

) [∫ ∞

0
τ E(1 − ω2τ 2)g(E) f0 dE + ω2(

∫ ∞
0 τ 2 Eg(E) f0 dE)2∫ ∞
0 τ Eg(E) f0 dE

]

= σ0

[
1 − ω2

( 〈τ 3〉
〈τ 〉 − 〈τ 2〉2

〈τ 〉2

)]
, (7.91)

where σ0 = nq2 〈τ 〉 /m∗
n is the electrical conductivity at zero magnetic field.

For the low magnetic field case, the electrical conductivity is given by

σn = 1

ρn
= σ0 − �σ = σ0

(
1 − �σ

σ0

)
, (7.92)
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where ρn is the resistivity of the semiconductor in the presence of a small magnetic
field, which can be expressed by

ρn = ρ0

(
1 + �ρ

ρ0

)
≈ σ−1

0

(
1 + �σ

σ0

)
. (7.93)

Solving (7.91) through (7.93), one obtains

�ρ

ρ0
= �σ

σ0
= ω2

[ 〈τ 3〉
〈τ 〉 − 〈τ 2〉2

〈τ 〉2

]

= (σ 2
0 B2

z )

[(
1

nq

) 〈τ 2〉
〈τ 〉2

]2 [ 〈τ 3〉〈τ 〉
〈τ 2〉2

− 1

]

= R2
Hσ 2

0 B2
z

[ 〈τ 3〉〈τ 〉
〈τ 2〉2

− 1

]

= μ2
H B2

z

[ 〈τ 3〉〈τ 〉
〈τ 2〉2

− 1

]
. (7.94)

The magnetoresistance coefficient can be deduced from (7.94), which yields

ξ =
(

�ρ

ρ0 B2
z

) (
1

μ2
H

)
= 〈τ 3〉〈τ 〉

〈τ 2〉2
− 1. (7.95)

For the nondegenerate semiconductor, using τ = τ0 Es, (7.95) becomes

ξ = (3s+5/2)(s+5/2)

[(2s+5/2)]2
− 1. (7.96)

From (7.96), one finds that ξ is equal to 0.273 for acoustical phonon scattering
(i.e., s = −1/2) and 0.57 for ionized impurity scattering (i.e., s = 3/2).

Under low magnetic field conditions, the above results show that the trans-
verse magnetoresistance in a nondegenerate semiconductor is directly propor-
tional to the square of the magnetic field. The magnetoresistance data obtained
for semiconductors with a single spherical energy band were found in good agree-
ment with the theoretical prediction at low magnetic fields. It should be noted
that for semiconductors with spherical energy bands, the longitudinal magne-
toresistance (i.e., Jn//B) should vanish under the small magnetic field condi-
tion.

(ii) The high magnetic field case (i.e., δ = ωτ 
 1). At high magnetic fields,
(7.88) and (7.89) become

Jx =
(

2q2

3m∗
nkBT

) ∫ ∞

0
E(−Ey/ω)g (E) f0 dE, (7.97)

Jy =
(

nq2

m∗
nω

2

)
[Ey〈τ−1〉 + ωEx ]. (7.98)
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Thus, for Jy = 0, one obtains

Ey = − ωEx

〈τ−1〉 . (7.99)

Now substituting (7.99) into (7.97) yields

σ∞ = Jx

Ex
=

(
nq2

m∗
n

) (
1

〈τ−1〉
)

= σ0

〈τ 〉〈τ−1〉 , (7.100)

or
σ0

σ∞
= ρ∞

ρ0
= 〈τ 〉〈τ−1〉, (7.101)

which shows that the ratio of electrical conductivity at zero and high magnetic
fields is equal to a constant whose value depends only on the types of scattering
mechanisms involved. In general, the transverse magnetoresistance approaches a
constant value at very high magnetic fields. For a nondegenerate semiconductor,
(7.101) becomes

σ0

σ∞
= ρ∞

ρ0
= (s+5/2)(5/2−s)

[(5/2)]2
. (7.102)

Using (7.102) one obtains the value of ρ∞/ρ0 = 1.17 for s = −1/2 and ρ∞/ρ0 =
3.51 for s = 3/2. The high field magnetoresistance value is three times higher
for the ionized impurity scattering than for the acoustical phonon scattering
case.

The magnetoresistance coefficients derived above are valid only for the single-
valley conduction band with spherical energy surface. For multivalley semicon-
ductors such as silicon and germanium, the situation is more complicated than
that presented in this section. The effective mass anisotropy strongly affects the
magnetoresistance value. For example, if an electric field and a magnetic field are
applied parallel to the x-direction of an n-type germanium in which the conduction
valleys are located along the {111} axes, the longitudinal magnetoresistance along
the (100) direction is given by

�ρ

ρB2
= q2

m2
l

2K (K − 1)2

3(2K + 1)

〈τ 3〉
〈τ 〉 = μ2

Mn
2K (K − 1)2

3(2K + 1)
, (7.103)

where μ2
Mn = (q2/m2

1)(〈τ 3〉/〈τ 〉) is the square of the electron mobility associated
with the magnetoresistance effect in a semiconductor. For n-type germanium with
K = 20, the K -dependent factor in (7.103) has a value equal to 118, which reduces
to zero for K = 1. Thus, the longitudinal magnetoresistance is strongly affected
by the effective mass anisotropy for n-type germanium. For n-type silicon, if the
electric current and magnetic field are applied simultaneously along the (100) di-
rection, the longitudinal magnetoresistance should vanish since σxx is independent
of the magnetic field Bz .

It is noted that the high magnetic field case discussed above is valid only for
the classical limit in that the magnetoresistance coefficient does not exhibit any
quantum oscillatory behavior. In the quantum limit, the magnetoresistance exhibits
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oscillatory behavior at very high magnetic fields. The oscillatory behavior of the
magnetoresistance observed in metals is known as the Shubnikov–de Haas–van
Alphen effect. This effect is usually observed in the degenerate electron gas in a
metal at very low temperatures (e.g., at 4.2 K) and under very high magnetic fields
(e.g., several hundred kilogauss). The Shubnikov–de Haas–van Alphen effect has
been widely used in the construction of the energy contour of the Fermi surface in
a metal.

For p-type semiconductors in which holes are the majority carriers, the expres-
sions of various transport coefficients derived above are still valid, provided that
the positive sign is used for the electronic charge and the electron effective mass
is replaced by the hole effective mass.

The transport coefficients derived in the preceding section are valid only for
nondegenerate n-type semiconductors in which the classical M-B statistics are
used to obtain the average relaxation time contained in the expressions of the
transport coefficients. However, for degenerate n-type semiconductors, the F-D
statistics should be used in the derivation of these transport coefficients. This will
be left as exercises for the reader to derive in the problems section.

7.5. Transport Coefficients for the Mixed Conduction Case

In an intrinsic semiconductor or an extrinsic semiconductor with heavy compen-
sation, both electrons and holes can be participated in the conduction process and
hence mixed conduction prevails in carrier transport. In this case, the conduction
is a two-carrier process contributed by both electrons and holes. Derivation of
transport coefficients for the mixed conduction case is more complicated than that
of the single-carrier conduction case discussed in the previous sections. This is
discussed next.

7.5.1. Electrical Conductivity

The electrical conductivity for a two-carrier conduction is equal to the sum of the
single-carrier conductivities due to electrons and holes. Thus, one can write

σ = σn + σp = q(n0μn + p0μp), (7.104)

where σn and σp denote the electron and hole conductivities, μn and μp are the
electron and hole mobilities, while n and p represent the electron and hole densities,
respectively. Thus, the electrical conductivity for the mixed conduction case can
be obtained by substituting the expressions for σn and σp derived from the single-
carrier conduction case into (7.104).

7.5.2. Hall Coefficient

The Hall coefficient for the mixed conduction case can be derived as follows. If an
electric field is applied in the x-direction and a magnetic field in the z-direction,
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then a Hall voltage is developed in the y-direction of the specimen. The total
current flow due to both electrons and holes in the x-direction is given by

Jx = Jnx + Jpx , (7.105)

where Jx , Jnx , and Jpx are given respectively by

Jx = σEx , Jnx = σnEx , Jpx = σpEx . (7.106)

The Hall fields due to electrons and holes developed in the y-direction can be
expressed by

Ey = RH Jx Bz, Eny = RHn Jnx Bz, Epy = RHp Jpx Bz . (7.107)

Since the electric current density in the y-direction is given by Jy = Jny + Jpy ,
one obtains

σEy = σnEny + σpEpy . (7.108)

Substituting (7.107) for Ey , Eny , and Epy into (7.108) yields

σRH Jx Bz = σn RHn Jnx Bz + σp RHp Jpx Bz . (7.109)

Substituting (7.106) for Jx , Jnx , and Jpx into (7.109), one obtains

σ 2 RHEx Bz = σ 2
n RHnEx Bz + σ 2

p RHpEx Bz . (7.110)

Thus the Hall coefficient due to electron and hole conduction can be obtained from
(7.110), which yields

RH =
(

RHnσ
2
n + RHpσ

2
p

)
(σn + σp)2

, (7.111)

where RHn and RHp are the Hall coefficients given by (7.68) and (7.70) for n- and
p-type conduction, respectively; σn and σp denote the corresponding electron and
hole conductivities.

It is interesting to note that the Hall coefficient for the mixed conduction case
given above is not equal to the simple summation of the Hall coefficients due to
electrons and holes. In fact, (7.111) shows that the Hall coefficient may become zero
if the contribution of the Hall coefficient from electrons (i.e., the first term, negative)
is equal to that from holes (i.e., the second term, positive) in the numerator. This
phenomenon may be observed in the Hall coefficient versus temperature plot for
an intrinsic semiconductor in which changes in conductivity type may occur from
n-type to p-type while the Hall coefficient changes from negative to positive at a
certain elevated temperature.

7.5.3. Seebeck Coefficient

The Seebeck coefficient for the mixed conduction case can be derived in a sim-
ilar way as the Hall coefficient. First, one considers the electric current density
contributed by both electrons and holes in the presence of an electric field and a
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temperature gradient in the x-direction. The electric current density due to elec-
trons is given by

Jnx = σn

(
Ex − Sn

∂T

∂x

)
, (7.112)

and the electric current density due to holes is

Jpx = σp

(
Ex − Sp

∂T

∂x

)
. (7.113)

If the temperature gradient is zero, then the total electric current density in the
x-direction is given by

Jx = Jnx + Jpx = (σn + σp)Ex = σEx . (7.114)

Note that the electrical conductivity is simply equal to the sum of the conductivities
due to electrons and holes. Thus, in the mixed conduction case the thermoelectric
effect is obtained from (7.112) and (7.113) by setting the total current density in
the x-direction equal to zero (i.e., Jx = 0), which yields

(σn + σp)Ex = (Snσn + Spσp)
∂T

∂x
. (7.115)

From (7.115), the total Seebeck coefficient S for the mixed conduction case is
given by

S = Ex

∂T/∂x

∣∣∣∣
Jx =0

= (Snσn + Spσp)

(σn + σp)
, (7.116)

where Sn denotes the Seebeck coefficient for n-type conduction given by (7.76).
The Seebeck coefficient Sp for p-type conduction is similar to (7.76), except that
n is replaced by p, and a plus sign is used instead.

7.5.4. Nernst Coefficient

When both electrons and holes are present in a semiconductor, the Nernst co-
efficient Q is not equal to the simple sum of Qn and Qp because in the mixed
conduction case an additional temperature gradient is developed in the specimen.
This temperature gradient causes a Seebeck voltage to appear across the specimen.
The Seebeck voltage in turn creates an electric field, which results in a flow of
charge carriers. This current flow can induce a Hall voltage when a transverse mag-
netic field is applied to the specimen. Therefore, it can be shown that the Nernst
coefficient for the mixed conduction case can be expressed in terms of σn, σp, Sn,
Sp, RHn, RHp, Qn, and Qp for the single-carrier conduction case as

Q = (Qnσn + Qpσp)(σn + σp) + (Sn − Sp)σnσp(RHnσn − RHpσp)

(σn + σp)2
. (7.117)

It is seen that the total Nernst coefficient for a given semiconductor depends
on both the location of the Fermi level and the types of scattering mechanisms



198 7. Transport Properties of Semiconductors

involved. For an intrinsic semiconductor, the Nernst coefficient differs considerably
from that of Qn and Qp for the single-carrier conduction case.

It should be noted that exact expressions for the transport coefficients for the
mixed conduction case can be obtained by inserting the individual transport coeffi-
cients derived for the n- or p-type single-carrier conduction case into the transport
coefficient formula given by (7.104) to (7.117) for the mixed conduction case.

7.6. Transport Coefficients for Some Semiconductors

Measurements of the transport coefficients for elemental and compound semi-
conductors have been widely reported in the literature. Some of these results are
discussed in this section. Since silicon, germanium, and GaAs have been studied
most extensively in the past, it is pertinent to describe some of the resistivity,
Hall coefficient, Hall mobility, Seebeck coefficient, and magnetoresistance data
for these materials.

Figure 7.4 shows the resistivity as a function of reciprocal temperature for several
n-type As-doped germanium specimens of different doping concentrations.1 Figure
7.5 shows the corresponding Hall coefficient curves.1 The results indicate that in the
high-temperature regime, values of resistivity for all samples are almost identical

Figure 7.4. Resistivity versus inverse absolute temperature for the As-doped germanium
samples of different donor concentrations (from low 1014 for the top curve to 1018 cm–3 for
the bottom curve). After Debye and Conwell,1 by permission.
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Figure 7.5. Hall coefficient
versus inverse absolute
temperature for the As-doped
germanium samples of
different donor concentrations
(from low 1014 for the top
curve to 1018 cm–3 for the
bottom curve). After Debye
and Conwell,1 by permission.

and independent of the dopant densities. This is the intrinsic regime, and the carrier
concentration is predicted by (5.20) for the intrinsic semiconductor case. In this
regime, the densities of electrons and holes are equal and increase exponentially
with temperature with a slope equal to −Eg/2kB. As the temperature decreases, the
material becomes an extrinsic semiconductor. In this temperature regime (i.e., the
exhaustion regime), all impurity atoms are ionized, and the carrier density is equal
to the net dopant density. As the temperature further decreases, carrier freeze-out
occurs in the material. This is the so-called deionization regime. In this regime, the
Hall coefficient increases again, and from the slope of the Hall coefficient versus
temperature curve one can determine the shallow impurity activation energy. At
very high doping concentrations, the carrier density becomes nearly constant over
the entire temperature range, as is evident by the flatness of the resistivity and
Hall coefficient curves (bottom curves) shown in Figures 7.4 and 7.5. The carrier
concentration as a function of temperature can be deduced from Figure 7.5, and
the Hall mobilities can be obtained from the product of the Hall coefficient and
electrical resistivity curves shown in Figures 7.4 and 7.5.

Measurements of transport coefficients for both n- and p-type silicon have
been widely reported in the literature, and some of these results are illustrated
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Figure 7.6. Resistivity versus temperature for phosphorus-doped silicon. Solid lines denote
theoretical calculations and solid dots are the experimental data. After Li2.

in Figures 7.6 to 7.11.2–5 Figure 7.6 shows resistivity as a function of tempera-
ture for n-type silicon doped with different phosphorus impurity densities (ND

varying from 1.2 × 1014 to 2.5 × 1018 cm−3).(2) Figure 7.7 shows the resistivity
versus temperature for boron-doped silicon with boron impurity densities varying
from 4.5 × 1014 to 3.2 × 1018 cm−3.3 Excellent agreement between theoretical
calculations (solid lines) and experimental data (solid dots) was obtained in both
cases. Figures 7.8a and b show resistivity versus dopant density for both n- and
p-type silicon at 300 K.2,3 The solid line shown in Figure 7.8a represents the the-
oretical calculations given by this author, while the dashed line corresponds to the
experimental data compiled by Irvine.4 In Figure 7.8b, the solid line represents the
theoretical calculations by this author and the dashed line by these Irvine, while
the broken line denotes the experimental data reported by Wagner.5

The resistivity and Hall effect measurements are often used in determining the
carrier density and mobility in a semiconductor. The mobility determined from
the product of electrical conductivity and Hall coefficient is known as the Hall
mobility, which is the majority carrier mobility. The drift mobility determined
by the Haynes–Shockley experiment is usually referred to as the minority carrier
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Figure 7.7. Resistivity versus temperature for boron-doped silicon. Solid lines denote
theoretical calculations and solid dots denote experimental data. After Li3.

mobility. These two quantities may or may not be equal, depending on the scattering
processes and the dopant density of the semiconductor. The ratio of the Hall
mobility and the conductivity mobility is equal to the Hall factor. Values of the
Hall factor may vary between 1 and 1.93, depending on the types of scattering
mechanisms involved in a semiconductor.

Figures 7.9 and 7.10 show the Hall mobility as a function of temperature for both
n- and p-type silicon specimens with dopant density as a parameter, respectively.6

The empirical formulas for the temperature dependence of Hall mobility for both
n- and p-type silicon are given respectively by

μHn = 5.5 × 106T −3/2 and μHp = 2.4 × 108T −2.3. (7.118)

Equation (7.118) is valid for T > 100 K and NI < 1017 cm−3.
Figures 7.11a and b show the electron and hole conductivity mobilities as a

function of dopant density for n- and p-type silicon, respectively, at T = 300 K.1
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Figure 7.8. Resistivity versus dopant density for (a) n-type and (b) p-type silicon at 300 K.
Solid lines correspond to calculated values by Li,2,3 the dashed line data published by
Irvine,4 and the broken line data by Wager;5 solid dots correspond to experimental data by
Li.2,3

The experimental data are deduced from the resistivity and junction capacitance–
voltage (CV) measurements on a specially designed test structure developed at
the National Bureau of Standards for accurate determination of the conductiv-
ity mobility in silicon. The solid line corresponds to the theoretical calculations
reported by this author using a more rigorous theoretical model.2,3 The model
takes into account all the scattering mechanisms contributed by acoustical and
optical phonons, as well as scatterings due to ionized and neutral impurities. Fur-
thermore, the intervalley and intravalley phonon scatterings and the effect of the
nonparabolic band structure of silicon have also been taken into account in the
calculations. The results show excellent agreement between theory and experi-
ment for both n- and p-type silicon over a wide range of dopant densities and
temperatures.

The Seebeck coefficient data for silicon and germanium are discussed next. The
Seebeck coefficient for a nondegenerate n-type semiconductor is given by (7.77).
If the acoustical phonon scattering is dominant, then the Seebeck coefficient for
both n- and p-type semiconductors can be expressed by

Sn,p = ±
(

kB

q

) (
2 − Ef

kBT

)
, (7.119)

where the plus sign is for p-type conduction and the minus sign for n-type con-
duction. Equation (7.119) shows that the Seebeck coefficient is directly related
to the Fermi energy in the semiconductor. By measuring the Seebeck coeffi-
cient as a function of temperature, the Fermi level can be determined at different
temperatures.
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Figure 7.9. Hall mobility versus temperature for the As-doped silicon samples. After Morin
and Maita,6 by permission.

Figure 7.12a shows the Seebeck coefficient (thermoelectric power) versus tem-
perature for n-type germanium with different resistivities,7 and Figure 7.12b shows
the Seebeck coefficient as a function of temperature for n- and p-type silicon.8 As
is clearly shown in Figure 7.12a, the Seebeck coefficient increases with increas-
ing resistivity (or decreasing doping density) in n-type germanium. To obtain a
large Seebeck coefficient (or large Peltier coefficient) in a semiconductor, it is
necessary to use lightly doped semiconductors for the thermoelectric cooling or
power generation elements. For p-type silicon, the Seebeck coefficient changes
sign from positive to negative at high temperatures because of mixed conduction
and becomes constant at the onset of the intrinsic regime. It is noted in Figure
7.12a that the measured and calculated Seebeck coefficients (dashed lines) for ger-
manium are in good agreement for low-resistivity samples for T > 200 K. How-
ever, the Seebeck coefficients (curves B, C, and D shown in Figure 7.12a) increase
rapidly with decreasing temperature for lightly doped samples for T < 100 K. Such
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Figure 7.10. Hall mobility versus temperature for p-type silicon doped with different boron
densities. After Morin and Maita,6 by permission.

behavior cannot be explained by the theoretical expression derived above, and the
so-called phonon drag effect must be considered in order to explain this anomalous
behavior. Phonon drag has a striking effect on the Seebeck coefficient, particularly
at low temperatures. This effect can be explained if one assumes that the flow
of long-wavelength phonons in the presence of a temperature gradient leads to
preferential scattering of electrons in the direction of the temperature gradient. It
can be shown that the phonon-drag Seebeck coefficient can be expressed as

Spd = ±
(

xν2τd

μT

)
, (7.120)

where the minus sign denotes n-type conduction and the plus sign p-type conduc-
tion, x is the fraction of carrier collisions due to phonons, and τd is the relaxation
time for loss of momentum from the phonon system.
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(a) (b)

Figure 7.11. Electron and hole mobility versus dopant density for (a) n-type and (b) p-
type silicon doped with phosphorus and boron impurities at T = 300 K, respectively. After
Li.2,3.

It is noted that the phonon-drag Seebeck coefficient has the same sign as the
Seebeck coefficient in the absence of the phonon-drag effect. Therefore, the elec-
tron and phonon contributions to the Seebeck coefficient reinforce one another at
low temperatures. It is seen from (7.77) that the Seebeck coefficient in a nonde-
generate semiconductor can be quite large, on the order of a few mV/K, while
for metals the Seebeck coefficient is on the order of a few tens of μV/K. Thus,
at a metal–semiconductor junction, the total Seebeck coefficient is approximately
equal to the absolute Seebeck coefficient of the semiconductor.

Transverse magnetoresistance for silicon and germanium is discussed next. The
change in resistivity as a result of an applied magnetic field is usually referred to
as the magnetoresistance effect. The magnetoresistance is defined by

(ρ − ρ0)

ρ0
= (σ0 − σ )

σ0
. (7.121)

Early measurements of magnetoresistance in germanium and silicon were made
on polycrystalline materials. Magnetoresistance measurements on single-crystal
silicon samples by Pearson and Herring have produced some interesting re-
sults. The effect was found to depend not only on the relative orientations
of the current and magnetic field, but also on the crystal orientations. This
is illustrated in Figure 7.13 for an n-type silicon sample.9 The results show
that the theoretical derivation of magnetoresistance based on the assumption
that the constant-energy surface is spherical and that σ depends only on the
carrier energy are inadequate for the case of silicon. This is due to the fact
that the constant-energy surfaces in the conduction band minimum and va-
lence band maximum of silicon are not exactly spherical. Therefore, refinement
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Figure 7.12. Seebeck coefficient as a function of temperature: (a) for n-type germanium
and (b) for n- and p-type silicon. After Frederikse,7 and Geballe and Hull,8 by permission.
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Figure 7.13. Variation of �ρ/ρB2 as the magnetic field H is rotated with respect to the
current flow I for (a) n-type and (b) p-type silicon samples. After Pearson and Herring,(9)

by permission.

of the transport theories presented in this chapter by taking into account var-
ious effects cited above is needed in order to obtain an accurate prediction
of the experimental results of different transport coefficients in semiconductor
materials.
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Problems

7.1. (a) Show that if an electric field is applied in the x-direction, the steady-state
nonequilibrium distribution function can be expressed by

f (kx , ky, kz) = f0((kx − qExτ/h̄), ky kz),

where f0 is the equilibrium distribution function.
(b) If a temperature gradient is applied in the x-direction, show that the

steady-state nonequilibrium distribution function is given by

f (kx , ky, kz) = f0(kx + �kx , ky, kz),

where �kx = (τh̄k f /m∗T )(k − k f )(dT/dx), and k f is the wave vector
of electrons at the Fermi level.

7.2. (a) Plot σn and Sn versus η (the reduced Fermi energy) for −4 ≤ η ≤ 4,
assuming s = −1/2 and τ = τ0 Es .

(b) Repeat (a) for s = +3/2.
7.3. Using (7.53) and the Fermi–Dirac statistics, show that the electrical conduc-

tivity for a degenerate n-type semiconductor is given by

σn =
(

2nq2τ0

3m∗
n

)
(kB T )s(s + 3/2)

F(s+1/2)

F(1/2)
,

where

τ = τ0 Es

and

Fr (η) =
∫ ∞

0

εr dε

[1 + e(ε−η)]
,

where Fr (η) is the Fermi integral of order r , ε = E/kBT , and η = E f /kBT .
7.4. Show that the Seebeck coefficient for a degenerate n-type semiconductor

can be expressed by

Sn = −
(

kB

q

) [
(s + 5/2)F(s+3/2)

(s + 3/2)F(s+1/2)
− Ef

kBT

]
.

7.5. If an electric current and a temperature gradient are applied simultaneously to
an n-type semiconductor specimen in the x-direction, show that the electric
current density and the heat flux density can be expressed by

Jx = −nqvx = −
∫ ∞

0
qvx f (E)g(E) dE

= −
(

2q

3m∗
n

) ∫ ∞

0
τ Eg(E)

∂ f0

∂ E

[
qEx − (Ef − E)

T

∂T

∂x

]
dE

and

Qx = −
(

2q

3m∗
n

) ∫ ∞

0
τ E2g(E)

∂ f0

∂ E

[
qEx − (Ef − E)

T

∂T

∂x

]
dE .
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(Hint: Solve P(E) from (7.38) with B = 0.)
7.6. (a) Using the expressions given in Problem 7.5, show that the electronic

thermal conductivity for a degenerate n-type semiconductor can be ex-
pressed by

Kn = − Qx

(dT/dx)
=

( n

m∗T

)
[〈τ E2〉 − 〈τ E〉2 / 〈τ 〉].

(b) Show that for the nondegenerate case, the expression given by (a) can
be simplified to

Kn =
( nτ0

m∗T

)
(kBT )s+2 (7/2−s)

(5/2)
.

7.7. Show that the longitudinal magnetoresistance effect will vanish if the
constant-energy surface of the conduction bands is spherical.

7.8. Using (7.65) and (7.66) and Fermi–Dirac statistics, derive the Hall coeffi-
cient for a degenerate n-type semiconductor and show that the result can
be reduced to (7.70) if the M-B statistics are used instead. Derive the Hall
factor for a degenerate n-type semiconductor.

7.9. If the total electron mobility of an n-type semiconductor is obtained using the
reciprocal sum of the lattice scattering mobility and the ionized impurity scat-
tering mobility (i.e., μ−1

n = μ−1
L + μ−1

l ), where τL = aT −1 Es, τI = bEs ,
and a and b are constants, derive an expression for the total electron mobility
when both the lattice and ionized impurity scatterings are dominated in this
semiconductor.

7.10. Show that the Seebeck coefficient for the mixed conduction case is given
by (7.116). If the lattice scattering is dominant, derive the Hall and Seebeck
coefficients from (7.104) and (7.116) for a nondegenerate n-type semicon-
ductor.
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8
Scattering Mechanisms and Carrier
Mobilities in Semiconductors

8.1. Introduction

The relaxation time approximation introduced in Chapter 7 enables one to lin-
earize the Boltzmann transport equation in that the collision term is expressed
in terms of the ratio of the perturbed distribution function (i.e., f − f0) and the
relaxation time. This approximation allows one to obtain analytical expressions
for different transport coefficients in semiconductors. However, detailed physical
insights concerning the collision term and the validity of the relaxation time ap-
proximation were not discussed in Chapter 7. In this chapter, various scattering
mechanisms associated with the collision term in the Boltzmann equation will be
described, and the relaxation time constants due to different scattering mechanisms
in a semiconductor will be derived.

The collision term in the Boltzmann transport equation represents the inter-
nal relaxation mechanisms, which are related to the collision of charged carriers
(electrons or holes) with different scattering sources (e.g., scattering of electrons
by acoustical phonons and ionized impurity) in a semiconductor under the in-
fluence of external forces. These scattering mechanisms are responsible for the
charged carriers reaching steady-state conditions when external forces are ap-
plied to the semiconductor, and returning to equilibrium conditions when the
external forces are removed from the semiconductor. In elastic scattering, the
nonequilibrium distribution function will decay exponentially with time to its
equilibrium value after the external force is removed. The time constant associ-
ated with this exponential decay is known as the relaxation time or the collision
time.

In this chapter, several important scattering mechanisms such as acoustical
phonon and optical phonon scatterings, ionized impurity scattering, and neutral
impurity scattering, which play a key role in determining the carrier mobilities
in a semiconductor, will be considered. Using quantum-mechanical treatments,
the relaxation time expressions for these scattering mechanisms can be derived.
In Section 8.2, the collision term is expressed in terms of the rate of transition
probability and the distribution functions for the initial and final states in k-space.

211
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The differential scattering cross section, which is defined in terms of the rate of
transition probability and the incident flux of the scattering charged carriers, is also
introduced in this section. Using the Brooks–Herring (B-H) model, the relaxation
time for ionized impurity scattering is derived in Section 8.3. Section 8.4 describes
neutral impurity scattering, which is an important scattering source at very low
temperatures or at very high doping densities. Using deformation potential the-
ory, the scattering of charge carriers by longitudinal-mode acoustical phonons is
derived in Section 8.5. The scatterings of charge carriers by polar and nonpolar
optical phonons in compound semiconductors as well as intervalley optical phonon
scattering in a multivalley semiconductor are discussed in Section 8.6. The scat-
tering of charge carriers by dislocations is described in Section 8.7. Finally, the
measured Hall mobilities and drift mobilities for some elemental and compound
semiconductors are presented in Section 8.8.

In general, the charge carriers in a semiconductor may be scattered by sta-
tionary defects (e.g., impurities and dislocations) and/or by dynamic defects (e.g.,
electrons, holes, and lattice phonons). Therefore, the transport properties of a semi-
conductor depend strongly on the types of scattering mechanisms involved. For
example, the electrical conductivity of an n-type semiconductor can be expressed
in terms of the electron mobility and electron concentration by

σn = n0qμn, (8.1)

where n0 is the electron concentration, q is the electronic charge, and μn is the
electron mobility. The electron mobility may be defined in terms of the conductivity
effective mass m∗

c and the relaxation time τ by

μn = q〈τ 〉
m∗

c
, (8.2)

where 〈τ 〉 is the average relaxation time defined by (7.54). Thus, the electron
mobility is directly proportional to the average relaxation time and varies inversely
with the conductivity effective mass. Since the average relaxation time given in
(8.2) is directly related to the scattering mechanisms, in order to calculate the
carrier mobility, it is necessary first to consider the scattering mechanisms in a
semiconductor.

In the relaxation time approximation, the collision term in the Boltzmann equa-
tion can be expressed in terms of the perturbed distribution function divided by
the relaxation time. From (7.25), one obtains

∂ f

∂t

∣∣∣∣
c

= − f − f0

τ
, (8.3)

where f is the nonequilibrium distribution function and f0 is the equilibrium Fermi–
Dirac distribution function. As mentioned earlier, the relaxation time approxima-
tion is valid only for the elastic-scattering case. This condition is satisfied as long
as the change in energy of the charge carriers before and after each scattering
event is small compared to the initial carrier energy. In fact, a generalized expres-
sion for the collision term given by (8.3) can be formulated in terms of the rate
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of transition probability Pkk ′ and the nonequilibrium distribution function f (k, r ),
which is given by

− ∂ fk ′

∂t

∣∣∣∣
c

=
∑

k ′
[Pkk ′ fk ′ (1 − fk) − Pk ′k fk (1 − fk ′ )], (8.4)

where Pkk ′ is the rate of transition probability from the final state k ′ to the initial
state k, and Pk ′k is the rate of transition probability from the k-state to the k ′-
state. The electron distribution function in the k ′-state is designated by fk ′ , and the
electron distribution function in the k-state is represented by fk .

The right-hand side of (8.4) represents the net transition rates from the k- to
the k ′-state summed over all the final states k ′. The summation in (8.4) can be
replaced by integration over the entire conduction band if all the quantum states in
the band are treated as a quasicontinuum. Since the density of quantum states in
the conduction band is very large and the spacing between each quantum state is
very small, such an assumption is usually valid. Therefore, it is a common practice
to replace the summation in (8.4) by an integral, which can be written as

− ∂ fk ′

∂t

∣∣∣∣
c

= N�

(2π )3

∫
[Pkk ′ fk ′ (1 − fk) − Pk ′k fk (1 − fk ′ )] d3k ′

= N�

(2π )3

∫
Pkk ′ ( fk ′ − fk) d3k ′, (8.5)

where Pkk ′ is assumed equal to Pk ′k, N is the total number of unit cells in the
crystal, and � is the volume of the unit cell.

It is noted that the collision term given by (8.5) is a differential integral equation
and cannot be solved analytically without further approximations. In order to derive
an analytical expression for (8.5), it is useful to first consider the small-perturbation
case (i.e., the low-field case). In this case, the nonequilibrium distribution function
f (k, r ) can be expressed in terms of the equilibrium distribution function f 0

k and
a first-order perturbing distribution function f 1

k , which reads

fk = f 0
k + f 1

k + · · · ,
fk ′ = f 0

k ′ + f 1
k ′ + · · · , (8.6)

where f 0
k and f 0

k ′ are the Fermi–Dirac distribution functions in the k- and k ′-states,
while f 1

k and f 1
k ′ denote the first-order correction terms of the distribution functions

in the k- and k ′-states, respectively.
If one assumes that the scattering is elastic, then the energy change during

scattering processes is small compared to the average electron energy. Under this
condition, the average energy of electrons in the initial and final states can be
assumed equal (i.e., Ek = Ek ′ ). Therefore, the equilibrium distribution functions
for the initial and final states are identical, and the collision term can be simplified
to

− ∂ fk ′

∂t

∣∣∣∣
c

= f 1
k ′

τ
= N�

(2π )3

∫
Pkk ′

(
f 1
k ′ − f 1

k

)
d3k ′. (8.7)
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Thus, the inverse relaxation time τ−1 can be written as

1

τ
= N�

(2π )3

∫
Pkk ′

(
1 − f 1

k

f 1
k ′

)
d3k ′. (8.8)

Furthermore, if one assumes that the scattering process is isotropic, then the ratio
of f 1

k and f 1
k ′ can be expressed in terms of cos θ ′, where θ ′ is the angle between the

incident wave vector k and the scattered wave vector k ′ (see Figure 8.2b). Under
this condition, (8.8) becomes

1

τ
= N�

(2π )3

∫
Pkk ′

(
1 − cos θ ′) d3k ′. (8.9)

Equation (8.9) shows that the scattering rate τ−1 of the charge carriers for isotropic
elastic scattering depends only on the angle θ ′ between the k- and k ′-states and the
rate of transition probability Pkk ′ .

In order to derive the relaxation time for a specific scattering process, both the
rate of transition probability and the differential scattering cross-section must be
determined first. This is discussed next.

8.2. Differential Scattering Cross-Section

In the present treatment, it is assumed that the scattering of charge carriers is
confined within a single energy band (e.g., electrons in the conduction band and
holes in the valence band), as illustrated in Figure 8.1a. Other important scattering
processes such as intervalley scattering for multivalley semiconductors such as Si
and Ge and interband scattering in the heavy-hole and light-hole bands are also
shown in Figure 8.1b and c, respectively.

Figure 8.1. Scattering of electrons in the k-space of a semiconductor: (a) The intravalley
scattering of electrons in the conduction band and the intraband scattering of holes in the
valence band, (b) intervalley scattering of electrons in the conduction band, and (c) interband
scatterng of holes in the valence bands; k denotes the wave vector of incident electrons and
k ′ the wave vector of scattered electrons in k-space.
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The intraband and intravalley scatterings shown in Figure 8.1a are usually
accompanied by the absorption or emission of a longitudinal-mode acoustical
phonon, and hence can be considered as elastic scattering. However, the interband
and intervalley scatterings shown in Figure 8.1b and c are usually inelastic because
the change in electron energy for these scatterings is no longer small compared to
the average electron or hole energy. The intervalley and interband scattering pro-
cesses are usually accompanied by the absorption or emission of optical phonons,
which occur at high temperatures or high electric fields.

The rate of transition probability Pkk ′ in a scattering event can be derived
from the one-electron Schrödinger equation. The one-electron time-independent
Schrödinger equation for the initial unperturbed states is given by

H0φk (r ) = Ekφk(r ), (8.10)

where

H0 = −h--2∇2

2m∗ + V (r ). (8.11)

Here H0 is the unperturbed Hamiltonian, and φk(r ) is the initial unperturbed elec-
tron wave function given by

φk(r ) = uk(r ) eik,r , (8.12)

where uk(r ) is the Bloch function, which has the same periodicity as the crystal
potential V (r ).

When a small perturbation (e.g., a small electric field) is applied to the crystal,
the electron may be scattered from the initial state k into the final state k ′. The
perturbed Hamiltonian under this condition can be written as

H = H0 + H ′, (8.13)

where H0 is the unperturbed Hamiltonian given by (8.11), and H ′ is the first-order
correction due to perturbation. The time-dependent Schrödinger equation under
the perturbed condition is given by

Hψk(r, t) = −ih--
∂ψk(r, t)

∂t
, (8.14)

which has a solution given by

ψk(r, t) =
∑

k

ak(t) e−i Ek t/h-- φk(r ), (8.15)

where ak(t) is the time-dependent amplitude function, and φk(r ) is the unperturbed
electron wave function defined by (8.12).

According to time-dependent perturbation theory, the transition probability per
unit time from the k- to the k ′-state can be expressed in terms of the amplitude
function ak(t) by

Pk ′k(t) = |ak(t)|2
t

. (8.16)
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Similarly, the transition probability per unit time from the k ′- to the k-state is given
by

Pkk ′ (t) = |ak ′ (t)|2
t

. (8.17)

From the principle of detailed balance, one can assume that Pkk ′ = Pk ′k . Using
(8.14) through (8.17) and the orthogonal properties of electron wave functions,
it can be shown from quantum-mechanical calculations that the rate of transition
probability Pkk ′ in the presence of a step perturbation function (i.e., a constant H ′)
is given by

Pkk ′ = |ak ′ (t)|2
t

= 2π

h--
|Hkk ′ |2 δ(Ek ′ − Ek), (8.18)

where

Hkk ′ = 〈
k ′ ∣∣H ′∣∣ k

〉 = 1

(N�)

∫
N�

φ∗
k ′ H ′φk d3r (8.19)

is the matrix element. In (8.19), H ′ is the perturbing Hamiltonian, φk is the electron
wave function given by (8.12), and φ∗

k ′ is the complex conjugate of φk ′ . The function
δ(Ek ′ − Ek) is the Dirac delta function, which is equal to unity for Ek = Ek ′ and
vanishes otherwise.

The matrix element Hkk ′ , given by (8.19), has a finite value only if the golden
selection (momentum conservation) rule is satisfied (i.e., k = k ′ for a direct tran-
sition and k ′ = k ± q for an indirect transition). Calculations of relaxation time
can be simplified by introducing a differential scattering cross-section σ (θ ′, φ′)
in the relaxation time formula. It is noted that σ (θ ′, φ′) depends only on θ ′ if the
scattering process is isotropic (i.e., independent of φ′). Under this condition, a
simple relationship exists between σ (θ ′) and the rate of transition probability Pkk ′ .
In general, the differential scattering cross-section σ (θ ′, φ′) is defined as the total
number of particles that make transitions from the k- to the k ′-state per unit solid
angle per unit time divided by the incident flux density. This can be written as

σ (θ ′, φ′) =
N�

(2π )3
Pkk ′

d3k ′

dω
vk

N�

= (N�)2 Pkk ′d3k ′

(2π )3vk sin θ ′dθ ′dφ′ , (8.20)

where vk is the initial particle velocity, N� is the volume of the crystal, and
dω = sin θ ′ dθ ′ dφ′ is the solid angle between the incident wave vector k and the
scattered wave vector k ′ (see Figure 8.2).

Now consider the case of isotropic elastic scattering. Substituting (8.18)
and (8.19) into (8.20), and using the relationships vk = vk ′ , k = k ′, and d3k ′ =
k ′2 sin θ ′ dθ ′ dφ′ dk ′, one can obtain an expression for the differential scattering
cross-section, which is given by

σ (θ ′) = (N�)2k ′2 |Hkk ′ |2
(2πh--vk ′ )2

. (8.21)
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Figure 8.2. Scattering of electrons by a positively charged shallow-donor impurity atom
in k-space.

The relaxation time τ is defined in terms of the total scattering cross-section by

1

τ
= NTσTvth, (8.22)

where NT is the density of total scattering centers, σT is the total scattering cross-
section, and vth is the mean thermal velocity [vth = (3kBT/m∗)1/2]. The total
scattering cross-section (σT) for the isotropic elastic scattering process can be cal-
culated from (8.23) using the differential scattering cross-section given by (8.21),
which can be expressed by

σT = 2π

∫ π

0
σ (θ ′)(1 − cos θ ′) sin θ ′ dθ ′. (8.23)

Substituting (8.21) into (8.23), the total scattering cross-section can be calculated
from (8.23), provided that the perturbing Hamiltonian H ′, and hence the matrix
element Hkk ′ , is known. In the following sections, (8.20) through (8.23) will be
used to derive the expressions of relaxation time constants and carrier mobilities
for a semiconductor in which scatterings of electrons or holes are due to the ionized
impurities, neutral impurities, or the longitudinal mode acoustical phonons.

8.3. Ionized Impurity Scattering

Scattering of electrons by ionized shallow-donor impurities is a classical example
of elastic scattering in a semiconductor. This is due to the fact that the mass
of a shallow-donor impurity atom is much larger than that of an electron. As a
result, the change of electron energy during such a scattering process is negligible
compared to the electron energy before the scattering. Therefore, the relaxation
time approximation given by (8.22) is valid in this case. In order to derive the
differential scattering cross-section and the relaxation time for the ionized impurity
scattering, the matrix element Hkk ′ and the perturbing Hamiltonian H ′ due to the
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Figure 8.3. Potential due to a positively charged shallow-donor impurity atom: (a) bare
Coulomb potential, (b) screening Coulomb potential, and (c) trajectory of electron scattering
by a positively charged ion.

shallow-donor impurity potential must first be determined. Let us consider the
scattering of electrons by a positively charged shallow-donor impurity in an n-
type semiconductor, as shown in Figure 8.2a. If the donor impurity is ionized with
a single net positive charge, then the potential due to this ionized donor atom, at
a large distance from the impurity atom, can be approximated by a bare Coulomb
potential

V (r ) = q

4πε0εsr
. (8.24)

It should be noted that (8.24) did not consider the Coulomb screening effect due to
electrons from the rest of positively charged donor ions in the semiconductor. To
take into account the screening effect of these electrons, it is necessary to replace
the bare Coulomb potential by a screening Coulomb potential in the derivation
of ionized impurity scattering mobility. As shown in Figure 8.3b, if the screening
effect of the shallow-donor ion by the surrounding conduction electrons is included,
then the screening Coulomb potential (also known as the Yukawa potential) for
the ionized impurity atom can be expressed by

V ′(r ) = qe−r/λD

4πε0εsr
, (8.25)

where

λD =
√

ε0εskBT

q2n0
(8.26)

is the Debye screen length.
In deriving the matrix element for ionized impurity scattering, Conwell and

Weisskopf1 used the bare Coulomb potential given by (8.24) as the perturb-
ing Hamiltonian, while Brooks and Herring2 employed the screening Coulomb
(Yukawa) potential given by (8.25) as the perturbing Hamiltonian. It will be shown
later that the relaxation-time formula derived from both models differs only by
a constant but gives the same prediction concerning the energy dependence of
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the relaxation time. Since the Brooks–Herring (B-H) model is based on the quan-
tum mechanical principle, and is fundamentally much more sound and accurate
than the Conwell–Weisskopf (C-W) model, it is pertinent here to use the B-H
model for the derivation of ionized impurity scattering mobility in a semiconduc-
tor. The perturbing Hamiltonian due to the Yukawa potential, given by (8.25), can
be written as

H ′ = qV ′(r ) = q2e−r/λD

4πε0εsr
. (8.27)

Based on the Bloch theorem, the electron wave functions for the k-state can be
expressed by

φk(r ) =
(

1

N�

)1/2

uk(r ) eik·r . (8.28)

The matrix element due to the Yukawa potential can be derived using (8.19), (8.27),
and (8.28), with the result

Hkk ′ = 1

N�

∫
e−ik ′ ·r

(
q2e−r/λD

4πε0εsr

)
eik·r d3r

= q2

2N�ε0εs

∫ π

0

∫ ∞

0
e−i K ·r

(
e−r/λD

r

)
r2 sin θr dθr dr (8.29)

= q2λ2
D

N�ε0εs
(
1 + K 2λ2

D

) ,

where d3r = 2πr2 sin θr dθr dr is the volume element, and

K = k ′ − k = 2 |k| sin

(
θ ′

2

)
. (8.30)

Here K is the reciprocal lattice vector. Figure 8.4 shows the relationship between
the incident and scattered wave vectors k and k ′ in real space.

Figure 8.4. Coordinates for computing the matrix
element of scattering by an ionized impurity, where
k is the wave vector of the incident electron, k ′

is the wave vector of the scattered electron wave,
and K = k ′ – k = 2|k| sin (θ ′/2) is the reciprocal
lattice vector.
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The differential scattering cross-section can be obtained by substituting
Eq. (8.29) into (8.21), which yields

σ
(
θ ′) =

(
q2m∗λ2

D

)2(
2πh--2ε0εs

)2 (
1 + K 2λ2

D

)2 = 4λ4
D

a2
B

(
1 + K 2λ2

D

)2 , (8.31)

where

aB = 4πε0εsh--2

m∗q2
(8.32)

is the Bohr radius for the ground state of the impurity atom.
The relaxation time for the ionized impurity scattering can be obtained by sub-

stituting (8.31) into (8.22) and (8.23), and the result is given by

1

τI
= (2π NI v)

∫ π

0

4λ4
D(1 − cos θ ′) sin θ ′ dθ ′

a2
B

[
1 + 4λ2

Dk2 sin2(θ ′/2)
]2

= (2π NIv)

(
λ4

D

a2
B

) (
1

kλD

)4

L(2kλD),

(8.33)

where

L(2kλD) = ln
(
1 + 4k2λ2

D

) − 4k2λ2
D(

1 + 4k2λ2
D

) ∼= ln
(
4k2λ2

D

)
, for kλD 	 1. (8.34)

It is noted that L(2kλD) is a slowly varying function of temperature and elec-
tron density, that 4k2λ2

D = 8m∗Eε0εskBT/h--2q2n′, and that n′ = n + (ND − N−
A −

n)(N−
A + n)/ND is the density of screening electrons surrounding the ionized

donor impurity. The integration of (8.33) can be carried out by letting sin(θ ′/2) =
x, (1 − cos θ ′) = 2x2, sin θ ′dθ ′ = 4x dx , and using a table of integrals.

Equation (8.33) is derived using the Brooks–Herring (B-H) model, and hence
is known as the Brooks–Herring formula for ionized impurity scattering. By using
the relation E = h--2k2/2m∗, and substituting (8.26) and (8.32) into (8.33), one
obtains the inverse relaxation time as

1

τI
= q4 NIL(2kλD)

16π (2m∗)1/2ε2
0ε

2
s E3/2

. (8.35)

Equation (8.35) shows that for ionized impurity scattering, the relaxation time
τI is directly proportional to the energy to the 3/2 power (i.e., τI ∝ E3/2). The
temperature dependence of τI comes only from the variation of L(2kλD) with T,
which is usually very small.

By substituting τI, given by (8.35), into (8.2) and averaging τI over the energy
with the aid of (7.54), one obtains the ionized impurity scattering mobility μI,
which reads

μI = q 〈τI 〉
m∗ = 64

√
πε2

0ε
2
s (2kBT )3/2

NI q3
√

m∗ ln

(
12m∗k2

BT 2ε0εs

q2h--2n′

) , (8.36)
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which shows that the ionized impurity scattering mobility μI is directly propor-
tional to the temperature to the 3/2 power (i.e., μI ∝ T 3/2). Good agreement has
been found between the theoretical prediction given by (8.36) and mobility data
for different semiconductors in which ionized impurity scattering is the dominant
scattering mechanism.

Conwell and Weisskopf used the bare Coulomb potential as the perturbing
Hamiltonian and derived a relaxation-time formula for the ionized impurity scat-
tering given by

1

τ ′
I

= q4 NI

16π (2m∗)1/2ε2
0ε

2
s E3/2

ln[1 + (2E/Em)2], (8.37)

where Em = q2/4πε0εsrm and NI = (2rm)−3. The ionized impurity scattering mo-
bility derived from (8.37) is given by

μ′
I = 64

√
πε2

0ε
2
s (2kBT )3/2

NIq3m∗1/2 ln

[
1 +

(
12πε0εskBT/q2 N 1/3

I

)2
] . (8.38)

Equation (8.38) is known as the Conwell–Weisskopf formula for ionized impu-
rity scattering. Comparing (8.36) and (8.38) reveals that both formulas are very
similar except that the coefficient inside the logarithmic term is slightly different.
It is of interest to note that both formulas predict the same temperature dependence
for the ionized impurity scattering mobility and the same energy dependence for
the relaxation time.

8.4. Neutral Impurity Scattering

Neutral impurity scattering is an important source of resistance in a semiconductor
at very low temperatures. As the temperature decreases, carrier freeze-out occurs
at the shallow-level impurity centers in an extrinsic semiconductor, and these
shallow-level impurities become neutral at very low temperatures. The scattering
potential due to a neutral shallow-level impurity center may be described by a
square-well potential, which becomes the dominant scattering source for electrons
or holes at very low temperatures.

In general, the scattering of charge carriers by neutral shallow-donor or shallow-
acceptor impurities can be treated in a similar way to that of scattering of electrons
by a hydrogen atom. The neutral shallow-donor atom in a semiconductor can
be treated as a hydrogenic neutral atom immersed in the dielectric medium of the
semiconductor whose dielectric constant is equal to that of the host semiconductor.

Erginsoy3 derived the neutral impurity scattering mobility for a semiconductor
using the partial wave technique to obtain the differential scattering cross-section.
In the derivation, Erginsoy assumed that the electron velocity is low, and elas-
tic scattering prevails in the semiconductor. Based on his derivation, the total
differential scattering cross-section for neutral impurity scattering can be written
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as

σN ≈ 20aB

k
, (8.39)

where aB is the Bohr radius given by (8.32). Using (8.22) and (8.39), the relaxation
time for the neutral impurity scattering can be expressed by

τN = (NNvthσN)−1 = k

20aB NNvth
. (8.40)

Substituting aB given by (8.32) and k = m∗v/h-- into (8.40), one obtains

1

τN
= 10ε0εs NNh3

π2m∗2q2
, (8.41)

where NN is the density of neutral impurities. Since the relaxation time for neutral
impurity scattering is independent of energy, the mobility due to neutral impurity
scattering can be readily obtained from (8.41), which yields

μN = qτN

m∗ = π2m∗q3

10ε0εs NNh3
, (8.42)

which shows that the carrier mobility due to neutral impurity scattering is in-
dependent of temperature. However, experimental results show that the carrier
mobility is generally a weak function of temperature for many semiconductors at
low temperatures.

8.5. Acoustical Phonon Scattering

Scattering of electrons by longitudinal-mode acoustical phonons is described in
this section. The scattering of electrons by longitudinal-mode acoustical phonons
is the most important scattering source in intrinsic or lightly doped semiconductors
at room temperature. The scattering of electrons by longitudinal-mode acoustical
phonons can usually be treated as an elastic scattering because the electron energy
is much larger than the phonon energy and the change in electron energy during
such a scattering process is small compared to the average energy of electrons.
It can be shown that the maximum change of electron energy due to acoustical
phonon scattering is given by

�E ≈ 4

(
us

vth

)
Ee, (8.43)

where us = 3 × 105 cm/s is the velocity of sound in a solid, and vth is the mean
thermal velocity of electrons (≈107 cm/s). Thus, the ratio of phonon energy to
mean electron energy as given by (8.43) is usually much smaller than unity for
T > 100 K. At very low temperatures, mean electron energy may become com-
parable to the acoustical phonon energy, and the assumption of elastic scatter-
ing may no longer be valid. Fortunately, at very low temperatures other types of
scattering such as ionized impurity and neutral impurity scattering may become
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dominant. It is noted that acoustical phonons may cause scattering in two different
ways, either through deformation potential scattering or piezoelectric scattering.
An acoustical wave may induce a change in the spacing of neighboring atoms in
a semiconductor. This change in atomic spacing could result in the fluctuation of
energy band gap locally on an atomic scale and is known as the deformation poten-
tial. The deformation potential is measured as the change of energy band gap per
unit strain due to the acoustical phonons. This type of scattering is usually the most
important scattering source for intrinsic or lightly doped silicon and germanium
at room temperatures.

Piezoelectric scattering is another type of acoustical phonon scattering. This
type of scattering is observed in III-V and II-VI compound semiconductors with
the zincblende and wurtzite crystal structures. The lack of inversion symmetry
in these semiconductors creates a strain-induced microscopic electric field per-
turbation, which leads to piezoelectric scattering with emission or absorption of
an acoustical phonon. This type of scattering is important for pure III-V and II-
VI compound semiconductors at low temperatures. These two types of acoustical
phonon scattering are discussed next.

8.5.1. Deformation Potential Scattering

To derive an expression for relaxation time for nonpolar acoustical phonon scat-
tering, the deformation potential technique developed originally by Bardeen and
Shockley4 for calculating the matrix element of longitudinal-mode acoustical
phonon scattering will be discussed first. The perturbing Hamiltonian can be ob-
tained from the deformation potential shown in Figure 8.5. Figure 8.5a shows the
change of lattice spacing with respect to its equilibrium position due to lattice
vibration. It is seen that thermal expansion and contraction of the lattice with tem-
perature can lead to a change in the conduction and valence band edges or the
energy band gap of the semiconductor, as shown in Figure 8.5b. Based on the de-
formation potential model proposed by Shockley, the fluctuation of the conduction

Figure 8.5. The change of conduction band edge and the deformation potential due to
thermal expansion or contraction of the lattice spacing.
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band edge due to lattice vibrations may be represented by a deformation poten-
tial. Therefore, the perturbing Hamiltonian can be related to the change of crys-
tal volume caused by the lattice phonons and the deformation potential by the
expression

H ′ = �Ec = Ec − Eco =
(

�Ec

�V

)
�V = Ec1

(
�V

V

)
, (8.44)

where Eco is the conduction band edge in thermal equilibrium, and

Ec1 = �Ec/�T

�V/V �T
(8.45)

is the deformation potential constant. For silicon, Ec1 = −16 eV, and for germa-
nium, Ec1 = −9.5 eV. The ratio �V/V represents the change of crystal volume
to the total crystal volume due to temperature change in a semiconductor. Since
�V/V can be expanded in terms of a Fourier series in the atomic displacement rn ,
one can write

�V

V
= ∇r · rn, (8.46)

where

rn =
3∑

j=1

(1/N )1/2ζ j b j (q) ei(q·Rn0−ωt). (8.47)

The lattice displacement rn given by (8.47) can be expressed in terms of the normal
coordinates and normal frequencies in three-dimensional form (i.e., two transverse
branches and one longitudinal branch). It is also assumed that only the longitudinal-
mode acoustical phonon scattering is important in the present case. Therefore,
under this condition ∇r · rn can be expressed by

∇r · rn =
∑

q

qlrl, (8.48)

where ql is the wave vector of the longitudinal-mode acoustical phonon, and rl

represents the displacement due to longitudinal-mode acoustical phonons. Substi-
tuting (8.46) and (8.48) for (�V/V ) into (8.44) yields the perturbing Hamiltonian
H ′, which is given by

H ′ = Ec1

(
�V

V

)
= Ec1

∑
q

qlrl. (8.49)

The matrix element Hkk ′qq ′ due to this perturbing Hamiltonian can be expressed
as

Hkk ′qq ′ = 〈
k ′nq ′

∣∣H ′∣∣ knq
〉 =

∫
φ∗

k ′ϕ
∗
nq

(∑
q

Ec1qlrl

)
φkϕnq d3r d3rl,

(8.50)
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where ϕnq represents the phonon wave functions and φk is the electron wave
functions. For phonon emission, the solution of (8.50) for the matrix element is
given by

Hkk ′qq ′ =
(

Ec1ql

N�

)(
h--

Mω

)1/2
(〈

nq
〉

2

)1/2

, (8.51)

and for phonon absorption it is given by

Hkk ′qq ′ =
(

Ec1ql

N�

) (
h--

Mω

)1/2
[(〈

nq
〉 + 1

)
2

]1/2

. (8.52)

In (8.51) and (8.52), N� is the volume of the crystal, M is the mass of the atom,
and

〈
nq

〉
is the average phonon population density given by

〈
nq

〉 = 1

(eh-- ω/kBT − 1)
≈ kBT

h--ω
. (8.53)

Equation (8.53) is valid for long-wavelength acoustical phonons (i.e., kBT 	 h--ω
and eh-- ω/kBT ≈ 1 + h--ω/kBT ). The square of the matrix element due to defor-
mation potential scattering can be obtained from the summation of the square
of (8.51) and (8.52) and using the dispersionless relation ω = usql, which
yields

∣∣Hkk ′qq ′
∣∣2 = E2

clkBT

M(us N�)2
. (8.54)

Substituting
∣∣Hkk ′qq ′

∣∣2
given by (8.54) into (8.21) yields the differential scatter-

ing cross-section, which reads

σa = m∗2 E2
c1kBT

4π2h--4ρu2
s

= m∗2 E2
c1kBT

4π2h--4cl
, (8.55)

where ρ = M/� is the mass density of the atom, and � is the volume of the unit
cell; cl = ρu2

s is the longitudinal elastic constant. For a cubic crystal, cl = c11 for
wave propagating along the (100) direction; for the (110) direction, cl = (c11 +
c12 + c44)/2, and for the (111) propagation direction, cl = (c11 + 2c12 + 4c44)/3,
where c11, c12, and c44 are components of the elasticity tensor.

The relaxation time due to longitudinal-mode acoustical phonon scattering can
be obtained by substituting (8.55) into (8.23) and (8.22), yielding

1

τa
= 2πv

∫ π

0
σa sin θ ′(1 − cos θ ′) dθ ′ = m∗2vE2

c1kBT

πh--4cl
= v

la
,

(8.56)

where la = πh--4cl/m∗2E2
c1kBT is the mean free path of electrons, which

varies inversely with temperature. Substituting v = (2E/m∗)1/2 into (8.56)
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yields

1

τa
= m∗3/2

n kBT E2
c1(2E)1/2

πh--4cl
, (8.57)

which shows that for acoustical phonon scattering τa varies with E−1/2 and T −1.
The electron mobility due to acoustical phonon scattering can be obtained by
substituting τa given by (8.57) into (7.64), with the result

μa = q 〈τa〉
m∗

c
=

(
2
√

2πqh--4cl

3m∗3/2
n m∗

ck3/2
B E2

c1

)
T −3/2, (8.58)

where m∗
c is the conductivity effective mass of electrons. For cubic crystals with

ellipsoidal constant-energy surfaces, the effective mass product mcm∗3/2
n is given

by

1

mcm∗3/2
n

= 1

3m tm
1/2
l

(
2

m t
+ 1

m l

)
, (8.59)

where m t and m l are the transverse and longitudinal effective masses of electrons
for the ellipsoidal conduction band valley, respectively. Equation (8.58) predicts
that the electron mobility due to longitudinal-mode acoustical phonon scattering is
directly proportional to T −3/2. Figures 8.7 and 8.8 show the experimental results for
electron mobilities in undoped germanium and silicon crystals, which were found
to be in good agreement with theoretical predictions for T < 200 K. However, at
high temperatures, intervalley optical phonon scattering contributes substantially
to electron mobility, and hence μn varies as T −n , where n lies between 1.5 and
2.7.

8.5.2. Piezoelectric Scattering

For polar semiconductors such as III-V and II-VI compound semiconductors, the
bonds are partially ionic, and the unit cell does not possess inversion symmetry.
As a result, charged carriers may be scattered by longitudinal-mode acoustical
phonons due to piezoelectric scattering. In general, the strain-induced electric
field due to the piezoelectric effect can be represented by

Epz = −
(

epz

ε0εs

)
(∇r rn) , (8.60)

where epz is the piezoelectric constant. Thus, the perturbation potential due to
piezoelectric scattering can be expressed by

H ′ = eEpz

q
=

(
|e| epz

ε0εsq

)
(∇r rn) , (8.61)

where q = |k ′ − k| = 2k sin(θ ′/2) = (2m∗v/h--) sin(θ ′/2) is the phonon wave vec-
tor, and |e| is the electronic charge. A comparison of (8.61) with (8.49) for nonpolar
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acoustical phonon scattering reveals that instead of the deformation potential con-
stant Ec1, one has |e|epz/ε0εsq , which is not a constant (since q depends on v and
θ ′). Thus, the matrix element Hkk ′ due to piezoelectric scattering can be written as

Hkk ′ = |e| epz

ε0εsq

(
kBT

2V cl

)1/2

=
(

e2 K 2kBT

2V ε0εsq2

)1/2

. (8.62)

In (8.62) a dimensionless electromechanical coupling constant K 2 is introduced,
which is defined by

K 2

1 − K 2
= e2

pz

ε0εscl
. (8.63)

The left-hand side of (8.63) reduces to K 2 if K 2  1. For most polar semicon-
ductors, the value of K 2 is on the order of 10−3.

The relaxation time due to piezoelectric scattering can be obtained by substitut-
ing (8.62) into (8.18) and (8.9), which yields

1

τpz
= V

(2π )2

∫
2

(
2π

h--

) (
e2 K 2kBT

2V ε0εsq2

)
δ(Ek − Ek ′ )k ′2 (1 − cos θ ′) sin θ ′dθ ′ dk ′,

(8.64)

where q2 = 4k ′2 sin2(θ ′/2) and dk ′ = h--−1(m∗/2E)1/2 dE . Carrying out the inte-
gration in (8.64), one obtains

τpz = 23/2πh--2ε0εs

m∗1/2e2 K 2kBT
E1/2, (8.65)

which shows that the relaxation time for piezoelectric scattering is proportional
to the square root of the energy. Thus, the carrier mobility due to piezoelectric
scattering can be derived using the expression of τpz given by (8.65) and (8.2), and
one has

μpz = 16
√

2πh--2ε0εs

3m∗3/2|e|K 2(kBT )1/2
. (8.66)

Equation (8.66) shows that the piezoelectric scattering mobility depends on T −1/2.
For a typical III-V compound semiconductor with εs = 12, m∗/m0 = 0.1, and
K 2 = 10−3, a mobility value of 1.7 × 105 cm2/(V·s) was obtained for piezoelec-
tric scattering at T = 300 K. This value is significantly higher than the deformation
potential scattering mobility for most polar semiconductors. Therefore, piezoelec-
tric scattering is usually not as important as acoustical phonon scattering due to
deformation potential or ionized impurity scattering. Thus, piezoelectric scatter-
ing has little influence on electron mobilities for most III-V compound semicon-
ductors. However, piezoelectric scattering can become important for many II-VI
compound semiconductors such as CdS and ZnSe, which have the wurtzite crystal
structure. For example, ionic and polar crystals, including most of the II-VI com-
pound semiconductors, show a strong piezoelectric effect because the wurtzite
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crystal structure lacks inversion symmetry, and hence the piezoelectric stress ten-
sor is nonvanishing. The microscopic origins of piezoelectricity are due to ionic
polarization, strain-dependent ionization, and electronic polarization. It has been
suggested that the strain-induced flow of covalent charge between sublattices may
be the dominant source of piezoelectricity in II-VI compound semiconductors,
since electronic polarization is usually accompanied by acoustical mode phonons
in such a crystal. This polarization can lead to a periodic electric perturbation po-
tential, which will contribute to electron scattering. The electron mobility due to
piezoelectric scattering varies as T −1/2, and the effects of piezoelectric scattering
may be sufficiently large to be important in determining mobility in a piezoelec-
tric crystal. For example, the temperature dependence of electron mobility for
CdS crystal shows that contributions from optical-mode phonon scattering and
piezoelectric scattering become dominant at high temperatures. In contrast, for
III-V compound semiconductors, piezoelectric scattering becomes important only
at very low temperatures.

8.6. Optical Phonon Scattering

Optical phonon scattering becomes the predominant scattering source at high tem-
peratures or at high electric fields. Both polar and nonpolar optical phonons are
responsible for this type of scattering. The scattering of electrons by nonpolar opti-
cal phonons may be treated as one type of deformation potential scattering process.
Nonpolar optical phonon scattering becomes important for silicon and germanium
crystals above room temperatures when intervalley scattering becomes the domi-
nant process. However, intervalley scattering is generally not important for elec-
trons in the conduction band minima located at the �-valley or along the 〈100〉
axes, but is important for conduction band minima located along the 〈111〉 axis
(e.g., the �-valley in germanium and the L-valley in GaAs). Polar optical phonon
scattering is the predominant scattering mechanism for ionic or polar crystals such
as II-VI and III-V compound semiconductors. For these crystals the motion of
negatively and positively charged atoms in a unit cell will produce an oscillating
dipole, and the vibration mode is called the polar optical-mode phonon. Polar
optical phonon scattering is associated with the atomic polarization arising from
displacement caused by optical phonons. This is often the most important scatter-
ing mechanism at room temperature for III-V compound semiconductors. Optical
phonon scattering is usually an inelastic process that cannot be treated by the re-
laxation time approximation because the optical phonon energy is comparable to
that of mean electron energy (i.e., h--ω ≈ kBT ) at room temperature.

For a multivalley semiconductor such as silicon or germanium, intravalley scat-
tering (i.e., scattering within a single conduction band minimum) near room tem-
perature is usually accompanied by absorption or emission of a longitudinal-mode
acoustical phonon. In this case, (8.58) is used to calculate the mobilities in these
materials. However, at higher temperatures, intervalley scattering (i.e., scatter-
ing from one conduction band minimum to another) may become the dominant
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scattering process. Intervalley scattering is usually accompanied by absorption or
emission of a longitudinal-mode optical phonon. Since the energy of an optical
phonon is comparable to that of the average electron energy, scattering of elec-
trons by intervalley optical phonons is generally regarded as inelastic. In this case,
the change in electron energy during scattering is no longer small, and hence the
relaxation time approximation can be used only if certain assumptions are made
for this type of scattering. For silicon and germanium, it is found that over the
temperature range in which intervalley optical phonon scattering is comparable
to acoustical phonon scattering, the temperature dependence of electron mobility
can be described by an empirical formula given by

μn ∝ T −n with 1.5 < n < 2.5. (8.67)

Figure 8.8 shows the temperature dependence of electron mobility in silicon at high
temperatures. Theoretical calculations of hole mobility for p-type silicon show that
hole mobility varies as T −2.3 when both optical and acoustical phonon scatterings
become dominant. This result compares favorably with the measured data.

In multivalley semiconductors such as silicon and germanium, intervalley scat-
tering becomes important at high temperatures. In this case the scattering of elec-
trons is controlled by nonpolar optical phonons, and the relaxation time is given
by5

1

τoi
=

(
m∗3/2

dn

τ0

)
WθDT 1/2

[
〈n0 + 1〉

(
E0 − θD

T

)1/2

+ 〈n0〉
(
E0 + θD

T

)1/2
]

,

(8.68)

where θD is the Debye temperature, 〈n0〉 = [exp(θD/T ) − 1]−1 is the aver-
age phonon distribution function, and W is a constant that determines the
relative coupling strength between the electrons and optical phonons; W =
(D0hus)2/2(k0aθD)2, where D2

0 is the optical deformation potential constant,
E0 = h--ω/kBT is the reduced optical phonon energy, and a is the optical cou-
pling constant. Note that the first term in (8.68) corresponds to the emission of an
optical phonon, and the second term corresponds to the absorption of an optical
phonon. Emission of optical phonons is important only when it is energetically
possible (i.e., E0 > θD/T ). The mobility due to intervalley optical phonon scat-
tering can be calculated using (8.68) to find the average relaxation time 〈τ0i 〉 and
then substituting the result in the mobility formula μ0i = q〈τ0i 〉/m∗

c . Based on
(8.68) and the mobility formula, one can expect that the electron mobility due to
intervalley optical phonon scattering will decrease exponentially with temperature
(i.e., μ0i ∼ eθD/T ).

In II-VI and III-V compound semiconductors, polar optical phonon scattering
becomes the dominant scattering mechanism at room temperature. Coupling be-
tween the conduction electrons and the optical-mode phonons in a polar crystal
such as GaAs is a very effective scattering source. Both perturbation theory and
polaron theory have been employed to derive the polar optical phonon scattering
mobility. The theoretical expression of electron mobility derived by Petritz and
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Scanlon for polar optical-mode phonon scattering is given by6

μpo = 8qa0

3(2πmkB�)1/2

(
1

ε∞
− 1

εs

)−1 (m0

m∗
)1/2 χ (Z0)[exp(Z0) − 1]

Z1/2
0

, (8.69)

where ε∞ is the high-frequency dielectric constant, εs is the low-frequency dielec-
tric constant [εs = ε∞(ωl/ωs)2], � = h--ωl/kB, a0 = h--2/mq2, and Z0 = �/T ; ωl

is the angular frequency of the longitudinal optical phonon (LO) modes and
χ (Z0) is a quantity defined by Howarth and Sondheimer.5 For pure GaAs crys-
tal, with a longitudinal optical phonon temperature � = 416 K (i.e., LO phonon
energy h--ωl ∼ 36 meV), the mobility μpo is roughly equal to 10,000 cm2/V·s
at 300 K.

Due to the exponential dependence of μpo on temperature, the scattering of
electrons by polar optical phonons becomes very unlikely at low temperatures.
For example, at room temperature, the electron mobility in a lightly to moderately
doped GaAs is contributed to both the longitudinal acoustical phonon and polar
optical phonon scatterings, while ionized impurity scattering becomes dominant
at low temperatures.

8.7. Scattering by Dislocations

Dislocations in a semiconductor can act as scattering centers for both electrons
and holes. The scattering of electrons by a dislocation may be attributed to two
effects. First, a dislocation may be viewed as a line charge, and hence has an effect
similar to that of a charged impurity center. Second, the strain field created by
the dislocations in a crystal can produce a scattering potential similar to that of
a deformation potential. However, it is generally known that scattering by dislo-
cations can become important only if the density of dislocations is greater than
108 cm−2.

To deal with scattering of electrons by dislocations, one may consider the dislo-
cation line as a space charge cylinder of radius R and length L, as shown in Figure
8.6. The probability that an electron is scattered into an angle dθ ′ by a dislocation

Figure 8.6. Scattering of electrons by a dislocation line.
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line can be expressed by

Pd = d (b/R)

dθ ′ = 1

2
sin

(
θ ′

2

)
, (8.70)

where b is the scattering impact parameter. The differential scattering cross-section
per unit length of dislocation line charge is thus given by

σd(θ ′) = R sin

(
θ ′

2

)
. (8.71)

The total scattering cross-section can be obtained by substituting (8.71) into (8.23)
and integrating over θ ′ from 0 to π , which yields

σT = 8R

3
. (8.72)

Therefore, the relaxation time due to scattering of electrons by dislocations is given
by

τd = 1

NdσTv
= 3

(8Nd Rv)
. (8.73)

The electron mobility due to scattering by dislocations can be obtained directly
from (8.73), yielding

μd = qτd

m∗ =
(

3q

8Nd R

)
1

(3m∗kBT )1/2
, (8.74)

where Nd is the density of dislocation lines. Equation (8.74) shows that the electron
mobility due to scattering by dislocations is directly proportional to T −1/2. For
single-crystal silicon and germanium the dislocation density is usually very low,
and hence scattering of electrons by dislocations is negligible. It should be pointed
out that scattering of carriers by dislocations could also take place by virtue of their
surrounding strain fields. The effect of strain fields can be calculated by finding
a deformation potential from the known strain field. The scattering due to these
strain fields is usually not important for n-type semiconductors, but could become
important for p-type semiconductors.

8.8. Electron and Hole Mobilities in Semiconductors

Using the relaxation time approximation and the mobility formulas derived in this
chapter for different scattering mechanisms, the electron and hole mobilities in a
semiconductor could in principle be calculated over a wide range of temperatures
and doping concentrations. However, one must realize that these mobility formulas
are derived for the isotropic elastic scattering case. Some modifications may be
needed so that these mobility formulas can be applied to practical semiconductors.
In general, it is not a simple task to fit theoretical calculations with experimental
data for electron and hole mobilities in a semiconductor over a wide range of doping
concentrations and temperatures because in most semiconductors the total carrier
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mobility is usually controlled by several scattering mechanisms, such as acoustical
phonons, optical phonons, and ionized impurities. An exception may exist for
ultrapure semiconductors in which longitudinal acoustical phonon scattering may
prevail over a wide range of temperatures, and hence allows for direct comparison
between the theoretical calculations and measured values. In general, electron
mobility in a scmiconductor due to mixed scattering processes can be calculated
using the expression

μn = q〈τ 〉
m∗

c
, (8.75)

where
1

τ
=

∑
i

1

τi
(8.76)

and τi denotes the relaxation time due to a particular scattering process. For exam-
ple, if the scattering mechanisms are due to acoustical phonons, ionized impurities,
and neutral impurities, then the total scattering time constant can be obtained by
employing the reciprocal sum of the relaxation times due to these scattering pro-
cesses, namely,

τ−1 = τ−1
a + τ−1

l + τ−1
N . (8.77)

The electron mobility for the mixed scattering case can be calculated as follows:
(1) find the total relaxation time τ due to different scattering mechanisms using
(8.76); (2) calculate the average relaxation time 〈τ 〉 from (7.54); and (3) calculate
the total electron mobility using (8.75). It should be pointed out here that computing
the carrier mobility using the above procedure can be quite tedious if the relaxation
time due to different scattering mchanisms is energy-dependent. In this case it may
not be possible to obtain an analytical expression for the average relaxation time,
and instead a numerical solution may be needed for finding the mean relaxation
time and the total carrier mobility. On the other hand, if the relaxation time due to
different scattering mechanisms is independent of energy, then one could use the
simplified reciprocal sum formula to obtain the total electron mobility, which is
given by

μ−1
n =

∑
i

μ−1
i . (8.78)

Figures 8.7 through 8.15 show the calculated and measured values of elec-
tron and hole mobilities versus temperature for pure Ge, Si, GaAs, GaP, InSb,
InP, InAs, CdS, and CdTe crystals, respectively. The solid lines are theoret-
ical calculations, while the solid dots are the measured values.7 Figure 8.16
shows (a) the carrier concentration versus reciprocal temperature and (b) Hall
mobility versus temperature for the undoped (sample one) and silicon-doped
(samples two to five) n-type GaN films grown by the MOCVD technique. The
symbols refer to experimental data. Figure 8.17 shows (a) the hole concentra-
tion versus reciprocal temperature and (b) Hall mobility versus temperature for
the Mg-doped, p-type GaN films. The symbols refer to the experimental data.
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Figure 8.7. A comparison of the calculated drift mobility of electrons (solid curve) and the
measured Hall mobility in a pure germanium specimen. The results show that acoustical
phonon scattering is the dominant scattering mechanism in this sample. After Rode,7 p. 83,
by permission.

Figure 8.8. A comparison of the calculated drift mobility of electrons (solid curve) and the
measured Hall mobility in a pure silicon specimen. The results show that acoustical phonon
scattering is dominant for T < 80 K, and intervalley scattering becomes comparable to
acoustical phonon scattering for T ≥ 300 K. After Rode,7 p. 81, by permission.
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Figure 8.9. Comparison of calcu-
lated drift mobility of electrons (solid
curve) and measured Hall mobility
for a pure GaAs crystal. After Rode,7

by permission.

The solid lines in Figure 8.17a result from a least-squares fit to the experimental
data, which yields parameters for the shallow acceptors.

Table 8.1 lists electron drift mobilities for Ge, Si, GaP, and GaAs measured at 77
and 300 K. A comparison of the mobility data of these semiconductors shows that

Figure 8.10. Comparison of cal-
culated drift mobility of electrons
(solid curve) and measured Hall
mobility for a pure GaP crystal. Af-
ter Rode,7 by permission.
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Figure 8.11. Comparison of calcu-
lated drift mobility of electrons (solid
curve) and measured Hall mobility for
a pure InSb crystal. After Rode,7 by
permission.

InSb has the highest electron mobility, while CdS has the lowest electron mobility.
In general, the electron mobilities for III-V compound semiconductors such as
GaAs, InP, and InAs are higher than for Si and Ge. Therefore, various electronic and
photonic devices fabricated from III-V compound semiconductors are expected to
operate at much higher frequencies and speeds than those of silicon devices. To
facilitate mobility calculations in GaAs due to various scattering mechanisms,

Figure 8.12. Comparison of cal-
culated drift mobility of electrons
(solid curve) and measured Hall
mobility for a pure InP crystal. Af-
ter Rode,7 by permission.
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Figure 8.13. Comparison of calcu-
lated drift mobility of electrons (solid
curve) and measured Hall mobility for
a pure InAs crystal. After Rode,7 by
permission.

Figure 8.14. Comparison of calcu-
lated drift mobility of electrons (solid
curve) and measured Hall mobility for
a pure CdS specimen. After Rode,7 by
permission.

Figure 8.15. Comparsion of calculated
drift mobility of electrons (solid curve)
and measured Hall mobility for a
pure CdTe specimen. After Rode,7 by
permission.
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Figure 8.16. (a) Electron concentration versus reciprocal temperature and (b) Hall mobility
versus temperature for the undoped (sample one) and silicon-doped (samples two through
five) n-type GaN films grown by MOCVD technique. The symbols refer to the experimental
data.

Table 8.2 lists some bulk- and valley-dependent material parameters for the GaAs
crystal.

In n-type silicon, the important scattering mechanisms for electrons are mainly
due to acoustical phonon and ionized impurity scatterings. At room tempera-
ture, the longitudinal-mode acoustic phonons are the dominant scattering source
for undoped silicon, while ionized impurity scattering becomes important for
ND ≥ 1017 cm−3. Optical deformation potential scattering is negligible for elec-
tron scattering within a particular conduction band minimum, since the matrix
element vanishes due to symmetry. However, scattering between different con-
duction band minima (i.e., intervalley optical phonon scatterings) may become
important at higher temperatures. The scattering mechanisms in the conduction
band of GaAs crystal are different from that of silicon. Due to the spherical sym-
metry of the electron wave functions at the �-band, optical deformation potential
scattering is zero in the conduction band minimum. Furthermore, due to the small
electron effective mass (i.e., m∗ = 0.067m0) at the �-band minimum, the contri-
bution of acoustical phonon scattering to electron mobility is also negligible in
GaAs. As a result, electron mobility in GaAs is much higher than in silicon. Im-
portant scattering mechanisms for GaAs are polar optical phonon scattering (for
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(a) (b)

Figure 8.17. (a) Hole concentration versus reciprocal temperature and (b) Hall mobility
versus temperature for Mg-doped, p-type GaN films. The symbols refer to the experimental
data. The solid lines in (a) are a least-squares fit to the experimental data, which yields
parameters for shallow acceptors.

pure and lightly doped GaAs), ionized impurity scattering (for ND ≥ 1017 cm−3),
and intervalley optical phonon scattering (at high fields).

For p-type silicon and GaAs, the valence band maxima for both silicon and GaAs
are located at the �-point (i.e., the zone center), and wave functions of holes do
not possess spherical symmetry. Thus, optical deformation potential scattering is
important for holes in p-type GaAs. In addition, both acoustical phonon scattering
and ionized impurity scattering may also play an important role in the valence
bands for both materials.

Table 8.1. Electron Drift Mobilities μn(cm2/V·s) for Ge, Si, GaP,
and GaAs.

Ge Si GaP GaAs

T = 300 K

Calculated 4080 1580 183 8920
Measured 3800–4200 1350–1450 120–200 3500–9000

T = 77 K

Calculated 37,400 22,800 4370 2.9 × 105

Measured 35,000–47,000 18,000–24,000 2.2 × 105
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Table 8.2. Bulk- and valley-dependent material parameters for mobility calculations in
GaAs.

(a) Bulk parameters:
Density (g/cm) 5.36
Piezoelectric constant (C/m2) 0.16
LO phonon energy (eV) 0.36
Longitudinal sound velocity (cm/s)
Optical dielectric constant 10.92
Static dielectric constant 12.90

(b) Valley material parameters: �[100] L[111] X[100]
Electron effective mass (m∗/m0) 0.067 0.222 0.58
Energy band gap Eg(eV) 1.43 1.77 1.96
Acoustic deformation potential (eV) 7.0 9.2 9.7
Optical deformation potential (eV/cm) 0 3 × 108 0
Number of equivalent valleys 1 4 3

Intervally deformation potential constant D (eV/cm)
� 0 1 × 109 1 × 109

L 1 × 109 1 × 109 1 × 108

X 1 × 109 5 × 108 7 × 108

8.9. Hot Electron Effects in a Semiconductor

As discussed in Chapter 7, Ohm’s law prevails in low-electric-field conditions,
and the current density varies linearly with the applied electric field. This can be
expressed as

Jn = σnEx = qn0μnEx, (8.79)

Figure 8.18. Electron mobility that drift velocity versus electric field calculated for a
typical semiconductor, assuming that longitudinal acoustical phonon scattering dominates
at low and intermediate fields, and optical phonon scattering dominates at high fields.
Values of parameters used in the calculations are μ0 = 104 cm2/V·s, us = 2 × 105 cm/s,
h--ω0 = 0.04 eV, and m∗ = m0. After Bube,8 by permission.
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where σn is the electrical conductivity, and Ex is the applied electric field. As the
electric field continues to increase, a point is reached at which the electric current
density will no longer vary linearly with the electric field. This means that either the
electron density or the electron mobility becomes a function of the electric field.
An increase in the electron density is possible if the electric field is high enough to
cause (1) impact ionization (i.e., ionization of other imperfections or crystal atoms
upon impact by hot electrons), (2) field ionization (i.e., ionization of imperfections
by quantum-mechanical tunneling to the nearest band), or (3) electrical injection
(i.e., injection of electrons from contacts into the semiconductor). These processes
may lead to a change of electric current with applied electric field that is faster than
that predicted by (8.79). It will be shown later that these effects are usually observed
in a p-n junction diode operating under a large reverse bias condition. Another high-
field effect, which has been found in many III-V compound semiconductor devices,
is that the electric current density will increase with the electric field at a slower
rate than that predicted by (8.79) under high-field conditions. This effect arises
from the decrease in electron mobility with increasing electric field resulting from
scattering of electrons by optical phonons under high-electric-field conditions.

In this section, only the effect of applied electric fields on electron mobility is
considered. The mobility versus electric field relation can be derived by assuming
that the scattering of electrons is dominated by the longitudinal-mode acoustical
phonons.

It is generally known that as the electric field increases, the electrons will gain
energy from the applied electric field. Furthermore, scattering of electrons is as-
sociated with the absorption or emission of phonons. Thus, in order to calculate
energy loss by electrons due to phonon scattering, it is necessary to determine the
average energy resulting from either absorption or emission of phonons under high
electric-field conditions. The electron energy will increase if there is a net gain in
energy due to phonon absorption.

Under high-electric-field conditions, electron energy can be described in terms
of an effective electron temperature Te. For a nondegenerate semiconductor, an
increase in energy on the order of kBT represents a large change in the mean
electron energy. An effective electron temperature Te for such an energetic electron
may be defined by the Maxwellian mean velocity, which is given by

〈v〉 =
(

kBTe

8πm∗

)1/2

. (8.80)

If the effective electron temperature defined by (8.80) is equal to the lattice
temperature, then the electron mobility is independent of the electric field. On the
other hand, if there is a net gain of energy due to the effects of applied electric
field and acoustical phonon scattering, then the electrons will heat up. Under this
condition Te becomes larger than the lattice temperature of the crystal, and the
electric current will no longer vary linearly with the electric field. Derivation of
the current–electric field relation under high-field conditions is quite complicated,
and only the relation between the electron mobility and the electric field is discussed
in this section.
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Under steady-state conditions, electron mobility as a function of electric field
can be expressed in terms of the effective electron temperature Te. The low-field
electron mobility for longitudinal acoustical phonon scattering is given by

μ0 = 4ql

3 (2πm∗kBT )1/2 , (8.81)

where l is the mean free path of electrons, which is inversely proportional to the
temperature. If the electron mobility under high-field conditions is expressed in
terms of the low-field electron mobility μ0 and the effective electron temperature
Te, then one can write the field-dependent electron mobility as

μ = μ0

(
T

Te

)1/2

. (8.82)

The condition for Te to exceed the lattice temperature T is that μ0Ex > us. This
means that the effective electron temperature starts to rise when the drift velocity
becomes comparable to the velocity of sound (us) in the semiconductor. Since
μ0 is proportional to T −3/2 for acoustical phonon scattering, it follows that μ is
proportional to T −1T −1/2

e . For scattering by acoustical mode phonons, the effective
electron temperature versus electric field can be written as8

Te =
(

T

2

) ⎧⎨
⎩1 +

[
1 +

(
3π

8

) (
μ0Ex

us

)2
]1/2

⎫⎬
⎭ . (8.83)

In the relatively low field regime, where μ0Ex  us, Te can be simplified to

Te ≈ T

[
1 +

(
3π

32

) (
μ0Ex

us

)2
]

. (8.84)

Now by substituting (8.85) into (8.82) and carrying out binomial expansion, one
obtains the corresponding field-dependent electron mobility, which reads

μ = μ0

[
1 −

(
3π

64

) (
μ0Ex

us

)2
]

. (8.85)

It is noted from (8.85) that in the intermediate-field regime, the differential mobility
(μ0 − μ) varies as the square of the applied electric field. In the high-field regime,
with μ0Ex 	 us, (8.83) becomes

Te = T

[(
3π

32

)1/2 (
μ0Ex

us

)]
, (8.86)

and the corresponding electron mobility is given by

μ =
(

32

3π

)1/4 (
μ0us

Ex

)1/2

. (8.87)

Equation (8.87) shows that electron mobility at high fields is inversely propor-
tional to the square root of the electric field. Since the drift velocity vd is equal to
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the product of electron mobility and electric field, it will increase with the square
root of the electric field at high fields.

It should be noted that the results obtained above are for the case that scatter-
ing of electrons is due to longitudinal acoustical phonons. For such scattering,
increasing electron energy with the applied electric field will result in an increase
of phonon scattering, which in turn will lead to the reduction of electron mobility
with increasing electric field. On the other hand, if scattering is dominated by
ionized impurity scattering, then an increase in electron energy with increasing
electric field will result in an increase of electron mobility. This is due to the fact
that for ionized impurity scattering, the probability of scattering decreases with
increasing electron energy (i.e., τ−1

I ∼ E−3/2).
Figure 8.16 shows a plot of electron mobility and drift velocity versus elec-

tric field calculated for a typical semiconductor at 300 K.2 In this figure, it is
assumed that scattering of electrons is dominated by the longitudinal-mode acous-
tical phonons at low and intermediate electric fields and by optical-mode phonons
at high electric fields. The results clearly show that for scattering by acoustical
phonons, the electron mobility will decrease with the square of the applied elec-
tric fields, and the high-field electron mobility will vary inversely with the square
root of the electric fields. At very high fields, hot electrons will start interacting
with optical phonons, which in turn will limit the drift velocity to a saturation
value.

The most widely used method to study the hot electron effects in a semicon-
ductor is the Monte Carlo approach. It consists in a simulation of the motion of
one or more electrons inside a semiconductor subject to the action of an exter-
nal applied electric field and given scattering mechanisms. The basic principle of
the Monte Carlo method relies on the generation of a sequence of random num-
bers with given distribution probabilities. When charge transport is analyzed on
submicrometer scales under very high electric field conditions, the conventional
semiclassical approach of transport processes in terms of the Boltzmann equation
can be substituted by a full quantum-mechanical description, namely, the Monte
Carlo approach.

A brief description of the general procedure governing the Monte Carlo method
is given as follows: Consider the case of a cubic semiconductor under a very high
electric field Ex . The simulation starts with a set of given initial conditions with
initial wave vector k0. The duration of the first free flight is determined stochasti-
cally from a probability distribution determined by the scattering probabilities. The
simulation of all quantities of interest, such as velocity and energy, are recorded.
A dominant scattering mechanism is then selected as being responsible for the end
of the free flight according to the relative probabilities of all possible scattering
mechanisms. From the transition rate of this scattering mechanism, The value of a
new wave vector k after scattering is determined stochastically as the initial state
of the new free flight, and the entire process is repeated iteratively. The results of
the calculation become more and more accurate, and the simulation ends when the
quantities of interest are known with the desired precision. A detailed description
of this method can be found in a monograph edited by Reggiani.9 The Monte
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Carlo method allows one to extract derived phyical information from simulated
experiments, and is a powerful tool for analyzing stationary and transient transport
effects in semiconductors under high-field conditions. It is particularly useful for
analyzing high-field transport properties in submicron devices.

Problems

8.1. Using (8.18), (8.19), and (8.20) derive (8.21), assuming that vk = vk ′ , k = k ′,
and d3k ′ = k ′2 sin θ ′dθ ′dφ′dk ′.

8.2. Using the Conwell–Weisskopf model, derive (8.37) and (8.38) (i.e., V (r ) =
q/4πε0εsr for ionized impurity scattering).

8.3. Show that the maximum change of electron energy due to acoustical phonon
scattering is given by (8.43). Does this satisfy the condition of elastic scatter-
ing?

8.4. Calculate the Debye screen lengths for Si, Ge, and GaAs for ND = 1015, 1017,
and 1019 cm−3, given εs = 11.7 for Si, 12 for GaAs, and 16 for Ge.

8.5. If the electron mobility in silicon is due to scattering of acoustical phonons
and ionized impurities, show that the mixed scattering mobility can be ap-
proximated by

μL I = μL

{
1 + χ2

[
Ci (χ ) cos χ + sin χ

(
Si (χ ) − π

2

)]}
,

where χ2 = 6μL/μL, and μL and μI are the acoustical phonon scattering and
ionized impurity scattering mobilities; Ci(χ ) and Si(χ ) are the cosine and sine
integrals of χ , respectively. (See the paper by P. P. Debye and E. M. Conwell,
Phys. Rev. 93, 693 (1954).)

8.6. Using (8.58), calculate the electron mobility due to acoustical phonon scatter-
ing for pure silicon for 100 K ≤ T ≤ 300 K, given (m0/m∗)5/2 = 20.4, Ec1 =
12.8 eV, and lu2

s = 1.97 × 1012 dynes/cm2.
8.7. Using the expression for τI given by (8.35) and μI = q〈τI〉/m∗, show that the

ionized impurity scattering mobility is given by (8.36).
8.8. The inverse scattering relaxation time for piezoelectric scattering in a nonde-

generate semiconductor with a parabolic band is given by

τ−l
pe = 3q2κT P2m∗

6πh--3ε0k ′ ,

where k ′ is the electron wave vector and P is the piezoelectric coefficient.
Derive an expression for the piezoelectric scattering mobility, and show that
the mobility is proportional to T 1/2.

8.9. For a GaAs crystal, the polar optical phonon scattering mobility μp0 given by
(8.69) can be simplified to

μpo = 5.3 × 103

(
χ (Z0)

[
exp (Z0) − 1

]
Z1/2

0

)
,
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where � = h--ωl/kB, a0 = h--2/mq2, and Z0 = �/T ; ωl is the angular frequency of
the longitudinal optical modes, and χ (Z0) is a quantity defined by Howarth and
Sondheimer.5 For pure GaAs, the longitudinal optical phonon temperature � is
equal to 416 K (i.e., the LO phonon energy h--ωl ≈ 36 meV), and μp0 ≈ 10,000
cm2/(V·s) at 300 K.

The ionized impurity scattering mobility μi is given by

μi = 1.5 × 1018

NI[ln(1 + b) − b/(1 + b)]
T 3/2,

where

b = 9.1 × 1013

n0
T 2.

The piezoelectric scattering mobility is given by

μpz = 4.89 × 105

(
100

T

)1/2

.

Assuming that Matthiessen’s rule prevails, the total electron mobility for this GaAs
crystal can be approximated by

μ−1
n = μ−1

po + μ−1
i + μ−1

pz .

Using the above expression, plot the electron mobility versus temperature for this
GaAs crystal for 100 K < T < 600 K for NI = 1016, 1017, and 1018 cm−3.
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9
Optical Properties and Photoelectric
Effects

9.1. Introduction

This chapter presents the fundamental optical properties and bulk photoelectric
effects in a semiconductor. The optical properties associated with the fundamental
and free-carrier absorption processes and the internal photoelectric effects such
as photoconductive (PC), photovoltaic (PV), and photomagnetoelectric (PME)
effects in a semiconductor are described. Important fundamental physical and
electronic properties such as energy band structures, excess carrier phenomena, and
recombination mechanisms can be understood by studying the optical absorption
processes and photoelectric effects in a semiconductor. Many practical applications
have been developed using internal photoelectric effects such as PV and PC effects
in semiconductors. Future trends are moving toward further development of various
optoelectronic devices for a wide variety of applications in PV devices (solar
cells), light-emitting diodes (LEDs) and laser diodes (LDs), and optoelectronic
integrated circuits (OEICs) for use in optical computing, optical communications,
signal processing, and data transmission.

Depending on the energy of incident photons, there are two types of optical
absorption processes that may occur in a semiconductor. The first type involves
the absorption of photons, which have energies equal to or greater than the band
gap energy of a semiconductor. This type of optical absorption is called the fun-
damental or interband absorption process. The fundamental absorption process
is usually accompanied by an electronic transition across the forbidden gap, and
as a result, excess electron–hole pairs are generated in the semiconductor. The
absorption coefficient due to the interband transition is usually very large. For
example, in the ultraviolet (UV) to visible spectral range, typical values of the
absorption coefficient for most semiconductors vary from 106 cm−1 near the UV
wavelength to around 1 cm−1 near the cutoff wavelength of the semiconductor.
However, the absorption coefficient becomes very small (e.g., less than 1 cm−1)
when the photon energies fall below the band gap energy of the semiconduc-
tor. In this case, another type of optical absorption process takes place in the
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semiconductor. This type of optical absorption results in electronic transitions
only within the allowed energy band, and is called the free-carrier absorption
process. The fundamental absorption process, which leads to an interband tran-
sition, must be treated quantum mechanically, while the free-carrier absorption
process can be described by classical electromagnetic (EM) wave theory. Finally,
absorption of photons with energies below the band gap energy of the semicon-
ductor may also lead to electronic transitions from localized impurity states to the
conduction or valence band states. For example, the extrinsic photoconductivity
observed at low temperatures is due to the photoexcitation of free carriers from
shallow-impurity states to conduction or valence band states. Since the energy
band gap varies between 0.1 and 6.2 eV for most semiconductors, the fundamen-
tal optical absorption may occur in the UV, visible, and infrared (IR) spectral
regimes (i.e., 0.3 to 10 μm). Therefore, most semiconductors are opaque from the
UV to the IR spectral range, and become transparent in the IR spectral regime for
λ > 10 μm.

In order to better understand the optical absorption processes in a semicon-
ductor, it is necessary first to consider two optical constants, namely, the index
of refraction and the extinction coefficient. These two optical constants may be
derived by solving the Maxwell wave equations for the EM waves in a solid, as
will be described in Section 9.2. The free-carrier absorption process is presented
in Secton 9.3. Section 9.4 deals with the fundamental absorption process in a semi-
conductor. The internal photoelectric effects such as PC, PV, and PME effects in
a semiconductor are described in Sections 9.5, 9.6, and 9.7, respectively. Section
9.5 presents both the intrinsic and extrinsic PC effects in a semiconductor. The
internal PV effect also known as the Dember effect is discussed in Section 9.6.
The PME effect in a semiconductor is presented in Section 9.7.

9.2. Optical Constants of a Solid

Optical constants such as the index of refraction and extinction coefficient can
be derived by solving the Maxwell equations for EM waves propagating in a
solid. It is well known that some solids are transparent while others are opaque,
that some solid surfaces are strongly reflective while others tend to absorb opti-
cal radiation that falls on them. The degree of optical absorption depends on the
wavelength of the incident optical radiation. For example, most semiconductors
show strong absorption from UV (λ < 0.4 μm), visible to near-IR (0.4 < λ < 2
μm), mid-wavelength IR (3–5 μm), and long-wavelength IR (8–12 μm), and be-
come transparent in the far-IR (λ > 14 μm) spectral regime. Therefore, in order
to obtain a better understanding of the optical absorption process in a semicon-
ductor, it is important to derive the expressions of the two basic optical con-
stants (i.e., index of refraction and extinction coefficient) in the UV to IR spectral
range.
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The propagation of EM waves in a solid can be described by the Maxwell wave
equations, which are given by

∇ · E = 0, (9.1)

∇ × E = −∂ B

∂t
, (9.2)

∇ · B = 0, (9.3)

∇ × H = σE + ε0εs
∂E
∂t

. (9.4)

In free space, the EM wave equation can be obtained from (9.1) through (9.4) by
setting B = μ0 H, σ = 0, and εs = 1, which yields

∇2E = μ0ε0
∂2E
∂t2

=
(

1

c2

)
∂2E
∂t2

, (9.5)

where c = 1/
√

ε0μ0 is the speed of light in free space. Inside the solid, the wave
equation can also be obtained by solving (9.1) through (9.4), and the result yields

∇2E = μ0ε0εs
∂2E
∂t2

+ μ0σ
∂E
∂t

. (9.6)

A comparison of (9.5) and (9.6) shows that the difference between the waves
propagating in free space and in a solid is due to the difference in the dielectric
constant and electrical conductivity in both media. It is clear that (9.6) will reduce
to (9.5) if the dielectric constant εs equals 1 and the electrical conductivity σ is zero.
The first term on the right-hand side of (9.6) is the displacement current density,
while the second term represents the conduction current density. An EM wave with
frequency ω propagating in the z-direction and polarizing in the x-direction can be
expressed by

Ex = E0 exp
[
iω

( z

v
− t

)]
= E0 exp

[
i
(
k∗ · z − ωt

)]
, (9.7)

where k∗ is the complex wave vector and v is the velocity of the EM waves inside
the solid, which could be a complex number. It is noted that k∗ and v are related by

k∗ = ω

v
. (9.8)

Now, by substituting (9.7) into (9.6), one obtains

k∗2 = ω2

v2
= μ0ε0εsω

2 + iμ0σω, (9.9)

or

k∗ = ω

v
=

(ω

c

) (
εs + iσ

ωε0

)1/2

=
(ω

c

)
n∗, (9.10)

where

n∗ =
(

εs + iσ

ωε0

)1/2

= ε∗1/2
s (9.11)
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is the complex refractive index of the solid and ε∗
s is the complex dielectric constant;

the complex refractive index n∗ can be expressed by

n∗ = n + ike, (9.12)

where n is the index of refraction of the medium and ke is the extinction coefficient,
which is a constant relating the attenuation of the incident EM wave inside the solid
to its penetration depth. For example, if an incident EM wave propagates into a
solid at a distance equal to one wavelength in free space (i.e., λ0 = 2πc/ω), then its
amplitude is decreased by a factor of e−2πke , where ke is the extinction coefficient
of the solid. It is noted that the fundamental optical absorption coefficient α is
related to ke by α = 4πke/λ, as will be shown later. Solving (9.11) and (9.12),
one obtains the real and imaginary parts of the complex refractive index, which
are given respectively by

n2 − k2
e = εs, (9.13)

2nke = σ

ωε0
. (9.14)

Thus, the optical properties of a solid, as observed macroscopically, may be de-
scribed in terms of the complex refractive index n∗. Now substituting (9.10) and
(9.12) into (9.7), we see that the solution for the EM waves inside the solid becomes

Ex = E0 exp

(−keωz

c

)
exp

[
iω

(nz

c
− t

)]
, (9.15)

which shows that the speed of incident electric waves in a solid is reduced by a
factor of n (n is the refractive index), and its amplitude decreases exponentially
with distance. The attenuation of incident electric waves is associated with the
absorption of EM energy by the dissipating medium. However, the optical constant
commonly measured in a solid is not the extinction coefficient ke, but the absorption
coefficient α. The optical absorption coefficient is related to the Poynting vector
of the EM wave energy flow by

S (z) = S0 e−αz, (9.16)

where S(z) is the Poynting vector, which is proportional to the square of the
amplitude of the electric waves (i.e., |E2

x |) given by (9.15). Thus, from (9.15) and
(9.16), one obtains the optical absorption coefficient

α = 2keω

c
= 4πke

λ0
, (9.17)

where λ0 is the wavelength of the EM waves in free space. Thus, the extinction
coefficient ke can be determined from the optical absorption coefficient α of the
semiconductor. It is noted that both the real (n2 − k2

e ) and imaginary (2nke) parts
of the complex refractive index n∗ are quantities measured in a solid. In practice,
(n2 − k2

e ) and 2nke can be obtained by measuring the reflection and transmission
coefficients of a solid.
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Figure 9.1. An eletromagnetic
wave propagating into a solid un-
der normal incidence.

To derive the reflection coefficient in a solid let us consider the case of normal
incidence, as shown in Figure 9.1. If Ex (Hy) and E ′′

x (H ′′
y ) denote the incident

and reflected electric (magnetic) waves, and E ′
x (H ′

y) is the transmitted electric
(magnetic) wave into the solid in the z-direction, then the transmitted wave for
z > 0 can be expressed by

E ′
x = E0 exp

[
iω

(
n∗z

c
− t

)]
. (9.18)

For z < 0 (i.e., in free space), the electric waves are composed of the incident
and reflected waves, which can be expressed by

Ex = E1 exp
[
iω

( z

c
− t

)]
+ E2 exp

[
−iω

( z

c
+ t

)]
. (9.19)

The magnetic wave components polarized in the y-direction (i.e., Hy) may be
related to the electric wave components in the x-direction by the characteristic
impedance of the medium, which is given by

Ex

Hy
=

√
μ0

E0
= Z0,

E ′
x

H ′
y

=
√

μ′

ε0εs
= Z ′,

E ′′
x

H ′′
y

= −
√

μ0

ε0
= −Z0. (9.20)

Equation (9.20) relates the incident, transmitted, and reflected EM waves to the
characteristic impedances Z0 and Z ′ in free space and in the solid. The boundary
conditions at the plane z = 0 requires that the tangential components of both Ex

and Hy be continuous. Thus, one can write

E ′
x = Ex + E ′′

x and H ′
y = Hy + H ′′

y . (9.21)

Now solving (9.20) and (9.21) yields

E ′′
x

Ex
= Z ′ − Z0

Z ′ + Z0
=

√
ε0/μ0 − √

ε0εs/μ′
√

ε0/μ0 + √
ε0εs/μ′ . (9.22)

From (9.20) one obtains

H ′′
y

Hy
= −E ′′

x

Ex
= − Z ′ − Z0

Z ′ + Z0
. (9.23)
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Since the Poynting vector is equal to the product of the electric and magnetic
field strengths (i.e., |S| = Ex Hy, |S′′| = E ′′

x H ′′
y ), the reflection coefficient R can be

obtained from (9.22) and (9.23) using the definition R = |S′′/S|, and the result is

R =
∣∣∣∣ S′′

S

∣∣∣∣ =
(E ′′

x

Ex

) (
H ′′

y

Hy

)
=

(
Z ′ − Z0

Z ′ + Z0

)2

=
[√

ε0/μ0 − √
ε0εs/μ0√

ε0/μ0 + √
ε0εs/μ0

]2

=
(

n′ − n0

n′ + n0

)2

. (9.24)

For nonmagnetic materials, μ′ = μ0, ε = ε0εs, and n′ = n + ike; for free space,
E = ε0 and n0 = 1. Thus, the absolute value of the reflection coefficient for normal
incidence can be written as

R =
∣∣∣∣ (n − 1)2 + k2

e

(n + 1)2 + k2
e

∣∣∣∣ , (9.25)

where n and ke are the index of refraction and the extinction coefficient of the
solid, respectively.

The transmission coefficient T, defined as the ratio of the transmission power
and the incident power, can be derived in a similar way as that of the reflection
coefficient described above or using the relation T = 1 − R, which yields

T =
∣∣∣∣E

′
x H ′

y

Ex Hy

∣∣∣∣ = 4Z0 Z ′

(Z ′ + Z0)2 = 4n0n′

(n0 + n′)2
. (9.26)

Since n0 = 1 for free space, the absolute value of the transmission coefficient can
be obtained from (9.26), which yields

T = 4n

(n + 1)2 + k2
e
. (9.27)

For normal incidence, it is seen from (9.25) and (9.27) that by measuring T and
R one can determine both n and ke. However, for incident angles other than normal
incidence, the reflection coefficient will, in general, depend on the polarization,
and from observation of different angles of incidence, both n and ke values can
be determined if ke is not too small. If both n and ke values are large, then R will
approach unity.

An inspection of (9.13) reveals that the dielectric constant εs can also be de-
termined directly from the refractive index n, provided that ke is much smaller
than unity. Values of n can be found directly from measurements of the reflection
coefficient if ke is very small.

There is considerable practical interest in measuring the transmission and reflec-
tion coefficients in free space under normal incidence using a thin plane-parallel
sheet of crystal with refractive index n and thickness d. If I0, It, and Ir denote
the incident, transmitted, and reflected wave intensities through the thin specimen,
then the normalized transmitted and reflected wave intensities can be expressed,
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respectively, by

It

I0
= (1 − R)2 e−αd

(
1 + k2

e /n2
)

1 − R2 e−2αd
, (9.28)

Ir

I0
= R

(
1 − e−2αd

)
1 − R2 e−2αd

. (9.29)

Equations (9.28) and (9.29) show that both n and ke can be found by measuring It

and Ir. For most transmission experiments, it is valid to assume that k2
e � n2. If

the sample thickness d is chosen such that R2 e−2αd � 1, then (9.28) becomes

It

I0
= (1 − R)2 e−αd . (9.30)

From (9.30), it is noted that the optical absorption coefficient α of a semiconduc-
tor near the band edge can be determined by measuring the transmission coefficient
as a function of wavelength on two thin samples of different thicknesses without
knowledge of the reflectance. This is valid as long as both samples have the same
reflection coefficients at the front surface of the sample. For elemental semicon-
ductors such as Si and Ge, the main contribution to the dielectric constant arises
from electronic polarization. However, in compound semiconductors (such as III-
V and II-VI compounds), both electronic and ionic polarizations can contribute to
the dielectric constant. The increase in the degree of ionicity in these compounds
relative to the group IV elements will lead to a significant difference between the
static and optical (high-frequency) dielectric constants. The high-frequency dielec-
tric constant ε∞

s is equal to n2. The static dielectric constant εs can be calculated
using the relation

εs = ε∞
s

(
ωl

ωt

)2

, (9.31)

where ωl and ωt are the longitudinal- and transverse-mode optical phonon fre-
quencies, respectively. Table 9.1 lists values of dielectric constants and refractive
indices for Si, Ge, and some III-V and II-VI compound semiconductors.

9.3. Free-Carrier Absorption Process

When the energy of incident EM radiation is smaller than the band gap energy
(i.e., hν ≤ Eg) of the semiconductor, excitation of electrons from the valence
band into the conduction band will not occur. Instead, the absorption of incident
EM radiation will result in the excitation of lattice phonons and the acceleration
of free electrons inside the conduction band. In the conduction band, free-carrier
absorption is proportional to the density of conduction electrons. Since free-carrier
absorption involves only electronic transitions within the conduction band, one can
apply the classical equations of motion to deal with the interaction between the EM
waves and the conduction electrons. The equation of motion for an electron due
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Table 9.1. Refractive indices and dielectric constants for Si, Ge, and some III-V and
II-VI semiconductors.

Materials n εs ε∞
s

Si 3.44 11.8 11.6
Ge 4.00 16 15.8
InSb 3.96 17 15.9
InAs 3.42 14.5 11.7
GaAs 3.30 12.5 10.9
GaP 2.91 10 8.4
CdS 2.30 8.6 5.2
CdSe 2.55 9.2 6.4
CdTe 2.67 9.7 7.1
ZnS 2.26 8.1 5.1
ZnSe 2.43 8.7 5.9

to a time-varying electric wave (i.e., E0 eiωt ) of frequency ω propagating in the
z-direction is given by

m∗ ∂2z

∂t2
+

(
m∗

τ

)
∂z

∂t
= qE0 eiωt , (9.32)

where τ is the relaxation time and m∗ is the effective mass of electrons in the
conduction band. The solution of (9.32) is given by

z = (qE0/m∗) eiωt(
iω/τ − ω2

) . (9.33)

If the electron density in the conduction band is equal to N0, then the total polar-
ization P, which is equal to the product of displacement z and electron density N0,
can be expressed by

P = q N0z. (9.34)

The polarizability p∗, which is defined as the polarization per unit electric field,
can be written as

p∗ = q N0z

E0
. (9.35)

The complex dielectric constant ε∗
s given by (9.11) is related to the polarizability

p∗ by

ε∗
s = ε′

s − iε′′
s = n∗2 = εs + p∗

ε0
= εs +

(
N0q2/m∗E0

)
(
iω/τ − ω2

) . (9.36)

Note that the second term on the right-hand side of (9.36) is due to the contribution
of free-carrier absorption. Thus, from (9.36), the real and imaginary parts of the
complex dielectric constant can be written as

ε′
s = n2 − k2

e = εs − τσ0

ε0
(
1 + ω2τ 2

) (9.37)
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and

ε′′
s = 2nke = σ0

ωε0
(
1 + ω2τ 2

) , (9.38)

where σ0 = N0q2τ/m∗ is the dc electrical conductivity. In (9.37) and (9.38), it is
assumed that τ is a constant and is independent of energy.

Solving (9.17) and (9.38), one obtains the optical absorption coefficient
as

α = 4πke

λ0
= σ0

ncε0
(
1 + ω2τ 2

) , (9.39)

which shows the frequency dependence of the optical absorption coefficient. Two
limiting cases, for ωτ 	 1 and ωτ � 1, are discussed next.

(i) Long-wavelength limit (ωτ � 1). In this case, the absorption coefficient given
by (9.39) becomes

α = σ0

ncε0
. (9.40)

The real part of the dielectric constant in (9.37) is reduced to

ε′
s = εs − τσ0

ε0
. (9.41)

Equation (9.40) shows that the absorption coefficient is independent of frequency,
but depends on temperature through σ0. For example, for an n-type germanium
sample with τ = 10−12 s this corresponds to a wavelength of about 2 mm. For
a lightly doped semiconductor with large dielectric constant, the contribution of
τσ0/ε0 in (9.41) to the real part of the dielectric constant ε′

s is quite small, and
hence ε′

s is equal to the dielectric constant εs of the semiconductor.
For heavily doped semiconductors with large σ0, the value of τσ0/ε0 becomes

much larger than εs and hence ε′
s becomes negative. This corresponds to the metallic

case. If one assumes εs � τσ0/ε0, then solving (9.41) and (9.37), one obtains the
real part of the dielectric constant as

ε′
s = n2 − k2

e = −τσ0

ε0
. (9.42)

Similarly, from (9.38) one obtains the imaginary part of the dielectric constant as

ε′′
s = 2nke = σ0

ωε0
. (9.43)

Now, solving (9.42) and (9.43) yields

ωτ = −
(
n2 − k2

e

)
2nke

. (9.44)
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From (9.44), for ωτ � 1 we have ke ≈ n. Thus, setting n = ke in (9.43), we see
that the refractive index is given by

n =
(

σ0

2ωε0

)1/2

. (9.45)

The absorption coefficient can be deduced from (9.40) and (9.45), and the result
yields

α =
(

2σ0ω

ε0c2

)1/2

, (9.46)

which shows that α is proportional to the square root of the frequency. There-
fore, in this case, the material exhibits metallic behavior. This corresponds to
the well-known skin effect, in which the penetration depth (δ) of the incident EM
wave is inversely proportional to the square root of the frequency and the electrical
conductivity.

(ii) Short-wavelength limit (ωτ 	 1). This usually occurs in the wavelength
regime extending upward from far-IR toward the fundamental absorption edge
of the semiconductor. The short-wavelength free-carrier absorption becomes neg-
ligible when the photon energy exceeds the band gap energy of the semiconductor.
To understand the free-carrier absorption process in the short-wavelength limit,
one can solve (9.37) to (9.39) to obtain

ε′
s = εs − σ0

ε0ω2τ
= n2 − k2

e , (9.47)

ε′′
x = 2nke = σ0

ε0ω3τ 2
, (9.48)

α = σ0

ncε0ω2τ 2
= N0q3λ2

0

4π2c3m∗2
μnε0

. (9.49)

Equation (9.49) shows that for ωτ 	 1, the absorption coefficient is directly pro-
portional to the square of the wavelength, which has been observed in a number
of semiconductors. Figure 9.2 shows a graph of the absorption coefficient versus
the square of the wavelength for two n-type InSb specimens with different dopant
concentrations.1 The results are in good agreement with the prediction given by
(9.49).

It is seen from (9.47) that ε′
s changes sign from positive to negative as ω de-

creases. The condition for which ε′
s = 0 corresponds to total internal reflection,

and the frequency at which this occurs is called the plasma resonance frequency,
ωp. Solving (9.47), one obtains

ωp =
(

σ0

ε0εsτ

)1/2

=
(

N0q2

m∗ε0εs

)1/2

, (9.50)

where ωp is the frequency at which the classical undamped plasma of free
electrons exhibits its normal mode of oscillation. For a germanium sample with
N0 = 1016 cm−3, m∗ = 0.12 m0, and εs = 16, one finds that ωp is equal to 2 × 102

GHz, which falls into the rather difficult millimeter-wavelength regime. In order
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Figure 9.2. Optical
absorption coefficient
versus the square of the
wavelength for two InSb
specimens with different
doping densities over the
wavelength range in which
free-carrier absorption is
dominant. After Moss,1 by
permission.

to observe plasma resonance in the microwave frequency range, one should use an
ultrapure semiconductor specimen for the experiment. Otherwise, the experiment
must be performed at extremely low temperatures. For a germanium crystal, a
carrier concentration of 1013 cm−3 or less is required for the plasma resonance
to be observed in the microwave-frequency range. For metals, since the electron
concentration is very high (≈ 1022 cm−3), the plasma resonance frequency usually
falls in the solar blind UV spectral range, which corresponds to photon energies
of 10–20 eV. Free-carrier absorption has been used extensively in determining the
relaxation time constant and the conductivity effective mass of electrons in a semi-
conductor.

9.4. Fundamental Absorption Process

The fundamental absorption process takes place when photons with energies
greater than the band gap energy of the semiconductor (i.e., hν ≥ Eg) are absorbed
in a semiconductor. This process usually results in the generation of electron–hole
pairs in the semiconductor. For most semiconductors, the fundamental absorp-
tion process may occur in the UV, visible, and IR wavelength regimes. It is the
most important optical absorption process because important photoelectric effects
for generating excess electron–hole pairs in a semiconductor are based on such
absorption processes.

There are two types of optical transition associated with the fundamental ab-
sorption process, namely, direct and indirect band-to-band transitions, as shown in
Figures 9.3a and b. In a direct transition only one photon is involved, while in an
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Figure 9.3. Direct and indirect transitions associated with the fundamental absorption
processing in a semiconductor.

indirect transition additional energy is supplied or released in the form of phonons.
The absorption coefficients associated with these two transition processes depend
on the probability per unit time that an electron makes a transition from the valence
band into the conduction band when an incident photon is absorbed. The transi-
tion probability Pi can be calculated using first-order time-dependent perturbation
theory. We have

Pi =
(

2π

h

)
|Mif|2 gn(E), (9.51)

where Pi is the transition probability per unit time from the initial state ki in
the valence band to the final state kf in the conduction band, Mif denotes the
matrix element due to perturbation that connects the initial states ki and the final
states kf of the system, and gn(E) is the density of final states in the conduction
band.

In the present case, the perturbation is due to incident EM radiation, and the
matrix element corresponding to the electric dipole transition is given by

Mif =
∫

ψ∗
i ∇rψf d3r

=
∫

u∗
v(ki, r ) e−iki·r∇ruc(kf, r ) eikf·r d3r (9.52)

=
∫

u∗
v(ki, r )∇ruc(kf, r ) ei(kf−ki)·r d3r + ikf

∫
u∗

v(kf, r )uc(kf, r ) ei(kf−ki)·r d3r,

where ψi and ψf denote the electron wave functions in the valence and conduction
bands, respectively; uv(ki, r ) and uc(kf, r ) are the Bloch functions for the valence
and conduction bands, respectively. Both terms on the right-hand side of (9.52)
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contain the factor ei(kf−ki)·r , which oscillates rapidly. Thus, the integrand of (9.52)
will vanish unless

kf = ki, (9.53)

which is the condition of momentum conservation for such a transition. In fact, the
contribution of photon momentum in (9.53) is negligible, because it is very small
compared to the crystal momentum. It is noted that the first term on the right-hand
side of (9.52) is known as the allowed transition; its value is real and independent of
the wave vector kf of the final state. The second term on the right-hand side of (9.52)
is imaginary, and it depends on the wave vector of the final state kf. Transitions
associated with the second term are called the forbidden transitions. Since the
absorption coefficient is directly related to the rate of transition probability Pif,
equation (9.52) can be employed to derive the absorption coefficient for the direct
and indirect interband transitions taking place between the valence band and the
conduction band of a semiconductor.

9.4.1. Direct Transition Process

The direct (or vertical) transition shown in Figure 9.3a is the dominant absorption
process taking place in a direct band gap semiconductor when the conduction
band minimum and the valence band maximum are located at the same k-value
in the reciprocal space (i.e., typically at the -point of the Brillouin zone center).
In order to derive an expression of the absorption coefficient near the conduction
band minimum, it is necessary to find the density of final states gn(E) in (9.51). It
is noted that electron energy in the conduction band can be expressed by

En = Ec + h̄2k2

2m∗
n
, (9.54)

and in the valence band by

Ep = Ev − h̄2k2

2m∗
p
. (9.55)

The photon energy corresponding to such a vertical transition can be written as

hν = En − Ep = Eg + h̄2k2

2m∗
r
, (9.56)

where Eg is the band gap energy of the semiconductor and m∗
r = m∗

nm∗
p/(m∗

n + m∗
p)

is the reduced electron effective mass.
Equations (9.54) through (9.56) allows one to express the density of final states

for the conduction band with a parabolic band structure as

gn(E) =
(

4π

h3

)
(2m∗

r )3/2(hν − Eg)1/2. (9.57)
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Figure 9.4. Direct transition in
a p-type GaAs specimen with
NA = 1017 cm−3 and an
absorption coefficient greater
than 9 × 103 cm−1. The
threshold energy is
(1.39 ± 0.02) eV. After
Kudman and Seidel,2 by
permission.

From (9.52) and (9.57), we see that the absorption coefficient for a direct allowed
transition can be expressed by

αa
d = K a

d (hν − Eg)1/2. (9.58)

In the direct allowed transitions, the square of the matrix element (i.e., |Mif|2)
is independent of the wave vector, and hence K a

d is a constant, independent of
electron energy.

Equation (9.58) shows that for an allowed direct optical transition, the optical
absorption coefficient αa

d varies as (hν − Eg)1/2. Therefore, a plot of α2
d versus hν

near the fundamental absorption edge allows one to determine the band gap energy
of a semiconductor. This is illustrated in Figure 9.4 for a p-type GaAs2 specimen,
the intercept of this plot with the horizontal axis yields the band gap energy of GaAs.

In the forbidden direct transitions, as given by the second term of (9.52), the
matrix element Mif is proportional to kf, and hence the optical absorption coefficient
in this case is given by

α
f

d = K f
d (hν − Eg)3/2. (9.59)

The energy dependence (∼ E3/2) of α
f

d given by (9.59) is due to the fact that the
transition probability for the direct forbidden transitions varies with the product
of k2

f (∼ E = (hν − Eg)) and the density-of-states function (∼E1/2).

9.4.2. Indirect Transition Process

For an indirect band gap semiconductor, the conduction band minimum and the
valence band maximum are not located at the same k-value in the reciprocal
space. Therefore, the indirect optical transition induced by photon absorption is
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usually accompanied by the simultaneous absorption or emission of a phonon. As
illustrated in Figure 9.3b, conservation of momentum in this case is given by

kf = ki ± q, (9.60)

where kf and ki denote the wave vectors of the final and initial states of electrons,
respectively, and q is the phonon wave vector. The plus sign in (9.60) corresponds
to phonon emission, and the minus sign is for phonon absorption. The conservation
of energy for the indirect optical transitions requires that

hν = En − Ep ± h̄ωq = Eg + h̄2(kn − kc)2

2m∗
n

+ h̄2k2
p

2m∗
p

± h̄ωq

(9.61)

and

En = Ec + h̄2(kn − kc)2

2m∗
n

, (9.62)

Ep = Ev − h̄2k2
p

2m∗
p
, (9.63)

where En is the electron energy in the conduction band, Ep is the electron energy
in the valence band, and (kn − kc) � kc.

It is noted from (9.61) that in an indirect optical transition the conservation of
energy is accompanied by the emission or absorption of a phonon. The plus sign
in (9.61) is for phonon emission and the minus sign is for phonon absorption; kp

denotes the initial state in the valence band, kc is the state at the conduction band
minimum, and kn is the final state in the conduction band. Now consider the case
in which transition from the kp state in the valence band is induced by a photon
with energy hν. The density of states in the valence band can be described by

gv(Ep) = Av E1/2
p , (9.64)

where Ep = Ev − �E, �E is a small energy interval in the valence band in
which transitions can take place, and Aν = (4π/h3) (2m∗

p)3/2.
The density of final conduction band states involving phonon absorption is given

by

gc(En) = Ac(En − Ec)1/2 = Ac(hν − Eg − Ep + h̄ωq)1/2

= Ac(�E − Ep)1/2 , (9.65)

where Ac = (4π/h3) (2m∗
n)3/2. Equation (9.65) is obtained by solving (9.61)

through (9.64). In (9.65), the relation hν = (Eg ± h̄ωq + �E) is used in the deriva-
tion. Therefore, the total effective density of states for transitions involving ab-
sorption and emission of a phonon can be expressed by

g(hν) =
∫ �E

0
gc(En)gv(Ep) dEp = Ac Av

∫ �E

0
(�E − Ep)1/2 E1/2

p dEp

= K a
i �E2 = K a

i (Ev − Ep)2 = K a
i (hν − Eg ± h̄ωq)2 , (9.66)
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where the plus sign denotes phonon absorption and the minus sign phonon emis-
sion. Note that the integral on the right-hand side of (9.66) is carried out by letting
u = E1/2

p , so that∫ �E

0
(�E − Ep)1/2 E1/2

p dEp

= 2
∫ �E1/2

0
u(�E − u2)1/2 du

= 2

{
−u

4
(�E − u2)3/2+ �E

8

[
u(�E − u2)1/2+�E sin−1

( u

�E1/2

)]}�E1/2

0

= π�E2

8
= π (hν − Eg + h̄ωq)2

8
. (9.67)

The probability of phonon absorption and phonon emission is directly propor-
tional to average phonon density, which is given by

〈nq〉 = (
e h̄ωq/kBT − 1

)−1
. (9.68)

Combining (9.66) and (9.68) one obtains the optical absorption coefficient due to
the indirect transitions with phonon absorption as

αia = 〈nq〉g(hν) = Kia

(
hν − Eg + h̄ωq

)2(
e h̄ωq/kBT − 1

) . (9.69)

Similarly, for transitions involving phonon emission, the optical absorption coef-
ficient can be expressed by

αie = 〈nq + 1〉g(hν) = Kie

(
hν − Eg − h̄ωq

)2(
1 − e−h̄ωq/kBT

) . (9.70)

Now combining (9.69) and (9.70), we see that the optical absorption coefficients
for the indirect allowed transitions involving both the emission and absorption of
a phonon can be written as

αi = αie + αia = Ki

{
(hν − Eg − h̄ωq)2(

1 − e−h̄ωq/kBT
) + (hν − Eg + h̄ωq)2(

e h̄ωq/kBT − 1
)

}
.

(9.71)

The first term in (9.71) is due to phonon emission, while the second term is at-
tributed to phonon absorption. It is clearly shown in Figure 9.5 that the optical
absorption coefficient curve for the indirect allowed transitions involving phonon
absorption will extend to longer wavelengths than those associated with phonon
emission. The optical absorption coefficient for the indirect allowed transitions
varies with the square of photon energy. A plot of α

1/2
i versus hv at different

temperatures should yield a straight line, and its intercept with the horizontal
axis allows one to determine the phonon energy and the energy band gap of a
semiconductor.
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Figure 9.5. α
1/2
i versus

photon energy hν for indirect
optical transitions with
temperature as a parameter.
Note that
T1 > T2 > T3 > T4.

Figure 9.5 shows a plot of α
1/2
i versus hν involving the emission and absorption

of a phonon for four different temperatures. According to (9.70), two straight-line
segments can be observed in the α

1/2
i versus hν plot. For small photon energy,

only αia (i.e., associated with phonon absorption) contributes, and the α
1/2
ia versus

hν plot intersects the axis at hν = Eg − hωq. For hν > Eg + h̄ωq, αie becomes
dominant at lower temperatures. Since the intersection of α

1/2
ie versus hν occurs

at hν = Eg + h̄ωq, one can determine both the energy band gap and the phonon
energy from this plot. Figure 9.6 shows the square root of the absorption coefficient
versus photon energy near the fundamental absorption edge of a germanium crystal
with temperature as a parameter.3 The results show that the phonon emission
process becomes dominant for T < 20 K.

Several effects could influence the accuracy of determining the band gap energy
from the optical absorption measurements in a semiconductor. The first effect is
due to the Burstein shift in a degenerate semiconductor. In a heavily doped n-type
semiconductor, the Fermi level lies inside the conduction band. Therefore, in order
for photon-generated electrons to make transitions from the valence band into the
conduction band, the photon energy must be greater than the band gap energy of the
semiconductor so that electrons can be excited into the empty states above the Fermi
level in the conduction band. This shifts the optical absorption edge to a higher en-
ergy with increased doping concentration. This problem is particularly severe for
small-band gap semiconductors such as InSb and InAs, since the electron effective
masses and densities of states in the conduction band are small for these mate-
rials. In calculating the Burstein shift, the effect of energy-band nonparabolicity
should also be considered. The second effect is related to the formation of impurity
band-tail states (or impurity bands) arising from high concentrations of shallow
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Figure 9.6. Square root of the absorption coefficient versus photon energy for a germanium
specimen with temperature as a parameter. The inserts show the spectral resolution. After
Macfarlane et al.,3 by permission.

impurities or defects, which can merge into the conduction band (for n-type) or the
valence band (for p-type). This effect will result in an exponential absorption edge
in the semiconductor. The third effect is associated with exciton formation in the
semiconductor. An exciton is an electron–hole pair bound together by Coulombic
interaction. Excitons may be free, bound, or constrained to a surface, or associated
with a defect complex. The binding energies for excitons are slightly below the
conduction band edge, and hence exciton features are sharp peaks just below the
absorption edge. Excitons are usually observed at low temperatures and become
dissociated into free carriers at room temperature.

It is seen that the absorption coefficient increases rapidly above the fundamen-
tal absorption edge (i.e., hν ≥ Eg). In the visible spectral range, values of the
absorption coefficient for most semiconductors may vary from 103 to 105 cm−1.
In general, the magnitude of the absorption coefficient represents the degree of
interaction between the semiconductor and the incident photons. The internal pho-
toelectric effects in a semiconductor are closely related to the optical absorption
coefficient. Experimental results of absorption coefficient versus photon energy
for some elemental and compound semiconductors (Si, Ge, GaAs, GaP, and InSb)
are shown in Figures 9.7 through Figure 9.10.4−−7 Information concerning the
optical absorption coefficient versus photon energy is essential for analyzing the
photoelectric effects in a semiconductor.
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Figure 9.7. Absorption
coefficient versus photon
energy for a GaP sample at
room temperature. After
Spitzer et al.,4 by permission.

9.5. The Photoconductivity Effect

In this section, the photoconductivity effect in a semiconductor is described. In the
absence of illumination, the dark conductivity of a semiconductor is given by

σ0 = q(n0μn + p0μp), (9.72)

Figure 9.8. Absorption coefficient versus photon energy for a GaAs sample at room tem-
perature. After Moss and Hawkins,5 by permission.
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Figure 9.9. Absorption coefficient versus
photon energy for silicon and germanium
crystals measured at 300 K. After Dash and
Newman,6 by permission.

where n0 and p0 denote the densities of electrons and holes in thermal equilibrium,
while μn and μp are the electron and hole mobilities, respectively.

When photons with energies equal to or greater than the band gap energy
(hν ≥ Eg) of a semiconductor are absorbed in a semiconductor, intrinsic photocon-
ductivity results. The absorbed photons create excess electron–hole pairs (i.e., �n
and �p), and as a result the densities of electrons and holes (i.e., n and p) increase
above their equilibrium values of n0 and p0 (i.e., n = n0 + �n, p = p0 + �p).

Figure 9.10. Absorption coefficient
versus photon energy for a pure
InSb sample measured at three differ-
ent temperatures. After Johnson,7 by
permission.
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The photoconductivity is defined as the net change in electrical conductivity
under illumination and can be expressed by

�σ = σ − σ0 = q
(
�nμn + �pμp

)
, (9.73)

where �n and �p are the excess electron and hole densities, respectively.
In a degenerate semiconductor, �p and �n are generally much smaller than p0

and n0, and the effect of incident photons can be considered as a small perturbation.
However, in an insulator or a nondegenerate semiconductor, values of �n and �p
can become comparable or larger than their equilibrium carrier densities. If the
effect of electron or hole trapping by the defect levels is negligible and the semi-
conductor remains neutral under illumination, then �n = �p holds throughout
the specimen.

Depending on the incident photon energies, there are two types of photoconduc-
tion processes that are commonly observed in a semiconductor. One type of photo-
conduction process is known as the intrinsic photoconductivity (PC), in which the
excess electron–hole pairs are generated in the semiconductor by the absorption of
photons with energies greater than the band gap energy of the semiconductor (i.e.,
hν ≥ Eg). This type of photoconduction process is illustrated in Figure 9.11a. The
other type of photoconduction process is known as extrinsic photoconductivity, in
which electrons (or holes) are excited from the localized donor (or acceptor) states
into the conduction (or valence) band states by the absorption of photons with en-
ergy equal to or greater than the activation energy of the donor (or acceptor) levels,
but is less than the band gap energy of the semiconductor (i.e., ED ≤ hν ≤ Eg for
n-type conduction, and EA ≤ hν ≤ Eg for p-type conduction). This is illustrated
in Figure 9.11b.

In intrinsic photoconduction, both the photogenerated electrons and holes par-
ticipate in the photoconduction process, and the photoconductivity is described
by (9.73). However, for extrinsic photoconductivity, the photoconduction process

Figure 9.11. (a) Intrinsic and (b) extrinsic photoconductivity in a semiconductor.
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usually involves only one type of charge carrier (i.e., either electrons or holes),
and the expressions for the extrinsic photoconductivity are given by

�σn = qnDμn for n-type, (9.74)

�σp = qpAμp for p-type, (9.75)

where nD and pA are the photogenerated excess electron and hole densities from
the donor and acceptor centers, respectively.

An extrinsic photoconductor usually operates at cryogenic temperatures be-
cause at very low temperatures freeze-out occurs for electrons in the conduc-
tion band states or for holes in the valence band states. The transition of elec-
trons from the conduction band states to the shallow-donor states or of holes
from the valence band states to the shallow-acceptor states because of the freeze-
out effect is the basis for extrinsic photoconductivity. At very low temperatures,
the electrical conductivity under dark condition and background noise are gen-
erally very low. When photons with energies of ED ≤ hν ≤ Eg impinge on an
n-type specimen, the electrical conductivity of the sample will increase dramati-
cally by the absorption of these incident photons. These photons excite the elec-
trons in the shallow-donor impurity states into the conduction band states, re-
sulting in an increase of electrical conductivity in the sample. The sensitivity of
extrinsic photoconductivity depends greatly on the density of sensitizing shallow-
impurity centers and the thickness of the specimen. Extrinsic photoconductivity
has been widely used in long-wavelength IR detection. For example, a Cu-doped
germanium extrinsic photoconductor operating at 4.2 K can be used to detect
photons with wavelengths ranging from 2.5 to 30 μm, while a Hg-doped ger-
manium photodetector operating at 28 K can be used for 10.6-μm wavelength
detection.

Figure 9.12 shows a schematic diagram of an intrinsic photoconductor un-
der illumination and bias conditions. In the intrinsic photoconduction process,
electron–hole pairs are generated in a semiconductor when photons with energies
exceeding the band gap energy of the semiconductor are absorbed. The rate of
generation of electron–hole pairs per unit volume per unit time can be written
as

gE =
{

αφ0 (1 − R) for αd � 1, (9.76)

αφ0 (1 − R) e−αy for αd 	 1, (9.77)

where R is the reflection coefficient of the semiconductor defined by (9.25), α is
the absorption coefficient, φ0 is the photon flux density (i.e., φ0 = I0/hν), and I0

is the incident light intensity per unit area (W/cm2).
Equation (9.76) is valid for a very thin photoconductor (i.e., αd � 1) in which

photons are uniformly absorbed throughout the sample, while (9.77) is applicable
for a thick specimen (i.e., αd 	 1) in which the photogeneration rate decays
exponentially with penetration distance. These are discussed next.
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Figure 9.12. Photoconductivity process in a semiconductor specimen.

First consider the case of a thin specimen with αd � 1. Here, the excess electron
and hole densities are related to the generation rate gE by

�n = gEτn, (9.78)

�p = gEτp, (9.79)

where τn and τp denote the electron and hole lifetimes, respectively. As shown in
Figure 9.12, the change of electrical conductance as a result of the incident photons
can be expressed by

�G = �σ

(
A

l

)
= q

(
�nμn + �pμp

) (
W d

l

)

= qgE
(
τnμn + τpμp

) (
W d

l

)
(9.80)

and

�G = qGE

(
τnμn + τpμp

)
l2

, (9.81)

where GE = gE(W dl) = gEV0 is the total volume generation rate (i.e., total number
of carriers generated per second), and A = W d is the cross-sectional area. If V is
the applied voltage, the photocurrent Iph can be expressed as

Iph = V �G = qV GE

(
τnμn + τpμp

)
l2

= qV GES, (9.82)
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where

S = (τnμn + τpμp)

l2
= μτ

l2
(9.83)

is the photosensitivity factor. It is seen that the value of S is directly proportional to
the product μτ . This means that in order to obtain a high photosensitivity factor,
the lifetimes and mobilities of the excess carriers must be as large as possible and
the sample length l between two electrodes should be as small as possible. As
an example, consider a silicon photoconductor. If the wavelength of the incident
photon is λ = 0.5 μm, the absorption coefficient α = 104 cm−1, τn = 100 μs, the
reflection coefficient R = 0.3, and the photon flux density φ0 = 1014 cm−2· s−1,
then the excess electron density can be calculated using the following formula:

�n = αφ0 (1 − R) τn = 7 × 1013cm−3, (9.84)

which shows that a relatively large density of excess electrons can be generated even
with a relatively small incident light intensity. Another parameter that has often
been used to assess the performance of a photoconductor is the photoconductivity
gain Gp. This figure of merit (Gp) is defined as the ratio of the excess carrier
lifetime τ to the carrier transit time tr across the specimen, which can be written
as

Gp = τ

tr
= SV, (9.85)

where tr = l/vd = l2/μV is the transit time for the excess carriers to drift across
the photoconductor specimen, vd is the drift velocity, and μ is the carrier mobility.
A photoconductivity gain of 104 can be readily obtained for a CdS photoconductor.

In the above formulation, loss due to surface recombination was neglected. For a
thin-film photoconductor, the effect of surface recombination can be incorporated
into an effective excess carrier lifetime as

1

τ ′ = 1

τB
+ 1

τs
, (9.86)

where τ ′ is the effective excess carrier lifetime, τB is the bulk carrier lifetime, and
τs is the surface recombination lifetime given by

τs = d

2s
, (9.87)

where s is the surface recombination velocity and d is the sample thickness. For
example, for a chemically polished silicon specimen, with s = 500 cm/s and
thickness d = 2 μm, the surface recombination lifetime τs is found to be equal
to 2 × 10−7 s. Therefore, for a thin-film photoconductor, if τs is less than τB, then
the surface recombination lifetime rather than the bulk lifetime may control the
effective excess carrier lifetime.
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In general, the photocurrent for a thin-film photoconductor can be derived from
(9.76) and (9.82), yielding

Iph = �GVa = q (1 − R) αφ0τ
′ (1 + b) μp

(
V

l

)
(W d) , (9.88)

where τ ′ is given by (9.86) and b = μn/μp is the electron-to-hole mobility
ratio. From (9.88) it is seen that for constant τ ′, the photocurrent Iph is directly
proportional to the light intensity I0 (= φ0/hν) or photon flux density φ0. This
is generally true under low- and high-injection conditions (i.e., for �n � n0

or �n � n0). However, for the intermediate-injection range (i.e., �n ≤ n0), τ
may become a function of the injected excess carrier density �n, and hence the
photocurrent is no longer a linear function of the light intensity. Depending on
the relationship between the excess carrier lifetime and the injected excess carrier
density, a superlinear or sublinear region may exist in the intermediate-injection
regime.

Next consider the case of a thick photoconductor with αd 	 1. Here, the gen-
eration rate is given by (9.77). Because of nonuniform absorption the diffusion of
excess carriers along the direction of incident photons plays an important role in
this case. As shown in Figure 9.12, the excess carrier densities as a function of
distance along the y-direction can be obtained by solving the continuity equation
for excess electron density:

Dn
∂2�n

∂y2
− �n

τn
= −gE = −αφ0 (1 − R) e−αy . (9.89)

If the electron diffusion length Ln(= (Dnτn)1/2) is much smaller than the sample
thickness d, then (9.89) has the solution

�n = α I0 (1 − R) τn

hν
(
α2L2

n − 1
) [(

αL2
n + sτn

Ln + sτn

)
e−y/Ln − e−αy

]
, (9.90)

where I0 = φ0/hν is the incident light intensity. Note that (9.90) was obtained
using the boundary condition

Dn
∂�n

∂y

∣∣∣∣
y=0

= s�n

∣∣∣∣
y=0

. (9.91)

The photocurrent can be obtained by integrating (9.90) with respect to y from
y = 0 to y = ∞, yielding

Iph =
(

W

l

)
V qμp (1 + b)

∫ ∞

0
�n dy

= q I0W Lnμp(1 + b)τn(1 − R)V

l(Ln + sτn)hν

[
1 + sτn

Ln(1 + αLn)

]
, (9.92)

where l is the sample length. In (9.92), the upper limit of the integral y = d is
replaced by y = ∞ in the integration. This is valid as long as the sample thickness
is much larger than the diffusion length of electrons.
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Figure 9.13. Relative photoresponse
versus wavelength for different surface
recombination velocities si .

Figure 9.13 shows the photocurrent versus wavelength of incident photons for
different surface recombination velocities. For sτn 	 Ln, the photocurrent Iph

reaches a maximum for α ≈ 1/Ln. However, if the surface recombination ve-
locity is small and sτn � Ln, then the photocurrent will increase monotonically
with decreasing wavelength. This is shown in Figure 9.13 for the case s = 0. The
sharp decrease in photocurrent is usually observed near the absorption edge (i.e.,
hν ≈ Eg), in which the absorption coefficient decreases sharply with increasing
wavelength. However, in the very short wave length regime (i.e., near the UV
regime), the absorption coefficient is usually very large (i.e., α ≥ 105 cm−1) and
αLn 	 1. In this regime, the excess carriers are generated near the surface of
the photoconductor, where the excess carrier lifetime is controlled by the surface
recombination. Thus, the photocurrent is expected to decrease rapidly with in-
creasing surface recombination velocity in the short-wavelength regime. In order
to improve the short-wavelength photoresponse, careful preparation of the sample
surface is necessary so that the surface recombination velocity of the photocon-
ductor can be kept low.

9.5.1. Kinetics of Photoconduction

Since the photocurrent is directly related to the excess carrier densities generated
by the incident photons, a study of photocurrent as a function of light intensity
usually yields useful information concerning the recombination mechanisms of the
excess carriers in a semiconductor. As an example, consider an n-type direct band
gap semiconductor. If the band-to-band radiative recombination dominates the
excess carrier lifetimes, then the kinetic equation for the photoconduction process
can be expressed by

dn

dt
= gE − U, (9.93)
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where gE is the external generation rate of the excess carriers defined by (9.76) and
U is the net recombination rate. For the band-to-band radiative recombination, U
is given by

U = B(np − n0 p0) = B
(
np − n2

i

)
. (9.94)

In the steady-state case, the carrier generation rate is obtained by solving (9.93)
and (9.94), with the result

gE = U = B
(
np − n2

i

)
, (9.95)

where n = n0 + �n and p = p0 + �p denote the nonequilibrium electron and
hole densities, respectively.

In order to understand the kinetics of photoconduction, consider two limiting
cases, namely, the low- and high-injection cases.

(i) The low-injection case (�n � n0, �p � p0). Under low-injection condi-
tions, (9.95) becomes

B�n (p0 + n0) = gE = α I0 (1 − R)

hν
, (9.96)

or

�n = gE

B (n0 + p0)
= α I0 (1 − R)

Bhν (n0 + p0)
. (9.97)

In (9.97) it is assumed that �n = �p (i.e., no trapping), and the charge-neutrality
condition prevails. Equation (9.97) shows that �n is directly proportional to the
light intensity I0. In the low-injection case, Iph varies linearly with �n, and hence
Iph is also a linear function of the light intensity I0.

(ii) The high-injection case (�n = �p 	 n0, p0). Under high-injection condi-
tions, (9.95) reduces to

gE = B�n2, (9.98)

or

�n =
(gE

B

)1/2
=

[
α I0 (1 − R)

Bhv

]1/2

, (9.99)

which shows that �n is directly proportional to the square root of the light intensity.
Thus, under high-injection conditions, the photocurrent varies with the square root
of light intensity when the band-to-band radiative recombination is dominant.

Another example to be given here for analyzing the kinetics of photoconduction
in a semiconductor is shown in Figure 9.14 for a p-type extrinsic photoconductor
with a deep acceptor center. The kinetic equation for the photoconduction process
in this case is given by

dp

dt
= ep (NA − p) − cp p2 + gE, (9.100)



9.5. The Photoconductivity Effect 273

Figure 9.14. Kinetics of photocon-
duction in a p-type semiconductor with
a deep acceptor center.

where ep and cp denote the emission and capture rates of holes, respectively, as
shown in the figure. The first term on the right-hand side of (9.100) is the rate
of spontaneous generation from the neutral acceptor centers. The second term
gives the rate of recombination of free holes and ionized acceptor centers. For the
steady-state low-injection case, solving (9.100) yields

�p = gE

(ep + 2cp p0)
= gEτp, (9.101)

where τp = 1/(ep + 2cp p0). Equation (9.101) is obtained using the fact that
ep(NA − p0) = cp p0

2 and �p � p0 in (9.100). The results predict a linear re-
lationship between �p (or Iph) and gE (or I0), providing that the hole lifetime is
constant and independent of injection.

For the high-injection case, under steady-state conditions, (9.100) becomes

gE = cp�p2, (9.102)

or

�p =
(

gE

cp

)1/2

, (9.103)

which shows that �p is directly proportional to the square root of the generation
rate.

A typical plot of the relative photocurrent versus light intensity is illustrated
in Figure 9.15, which usually consists of a linear, a sublinear, and a superlinear
region as the light intensity increases from low to high. This type of behavior has
been observed in a wide variety of photoconductors such as CdS and other II-VI
compound semiconductors.

9.5.2. Practical Applications of Photoconductivity

Photoconductors made from high-resistivity semiconductors are often used to de-
tect visible-to-IR radiation. Intrinsic photoconductors such as lead sulfide (PbS),



274 9. Optical Properties and Photoelectric Effects

Figure 9.15. Photocurrent versus light
intensity for a photoconductor, show-
ing the linear, superlinear, and sublinear
regions.

lead selenide (PbSe), lead telluride (PbTe), and indium antimonide (InSb), op-
erating at 77 K, are commonly used for 3- to 5-μm middle-wavelength infrared
(MWIR) detection, while wide-band-gap photoconductors such as CdS and CdTe
are mainly used in the near-UV to visible spectral region. For longer-wavelength
(i.e., λ > 10 μm) applications, extrinsic photoconductors such as Au-, Cu-, Hg-
, and Cd-doped germanium photoconductors and CdHgTe photoconductors are
widely used. Figure 9.16 shows a detectivity versus wavelength plot for various
PC and PV infrared detectors.8 The detection principle for these IR detectors is
based on the optical excitation of holes from the acceptor-impurity centers into
the valence band. In order to suppress the competing thermal excitation, extrin-
sic photoconductors are generally operated in the temperature range between 77
and 4.2 K. Since optical absorption coefficients for extrinsic photoconduction are
usually very small (typically in the range of 1 to 10 cm−1), to obtain high quan-
tum efficiency the thickness of the photoconductor along the direction of incident
photons is usually several millimeters or centimeters.

In an intrinsic photoconductor, the conduction process is due to band-to-band
excitation. Consequently, the absorption coefficients are usually very large (in the
range of 103 to 105 cm−1), and hence the thickness of the photoconductor in the di-
rection of incident light may vary from a couple of micrometers to a few tens of mi-
crometers. Practical long-wavelength infrared (LWIR) photodetectors operating in
the 8- to 14-μm spectral range have been developed from II-IV-VI compound semi-
conductors such as Hg1−x Cdx Te and Pb1−x Snx Te material systems. Hg1−x Cdx Te
IR detectors with very high detectivity [i.e., D∗ ≥ 1011 cm · Hz1/2/W] operating
at 77 K have been developed for 10.6 = μm detection. The energy band gap of
Hg1−x Cdx Te can be varied by changing the mole fraction ratio x (i.e., Eg may
vary from 1.4 eV to less than 0.1 eV as x varies from 1 to 0). As a result, the
Hg1−x Cdx Te IR detectors can be tailored to the desired wavelength by varying the
mole fraction x in this material. The main drawback of Hg1−x Cdx Te for LWIR de-
tection applications is that long-term stability and composition uniformity across
the wafer need to be improved.



9.6. The Photovoltaic (Dember) Effect 275

Figure 9.16. Spectral dependence of detectivity for some important photoconductive and
photovoltaic infrared detectors. After Sze,8 by permission.

In addition to practical applications of photoconductors described above, the fun-
damental physical parameters related to the recombination mechanisms of excess
carriers can be determined by studying the steady-state and transient photoconduc-
tivity effects in a semiconductor. For example, from the study of photoconductance
versus light intensity, one can deduce basic information concerning the recombina-
tion and trapping mechanisms in a semiconductor. The minority carrier lifetime or
diffusion length in a semiconductor can be determined by using either the steady-
state or transient photoconductivity method. This will be discussed later in Section
9.7.

9.6. The Photovoltaic (Dember) Effect

The internal photovoltaic (PV) or the Dember effect in a semiconductor is discussed
in this section. Figure 9.12 shows the incident photons with energies greater than
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the band gap energy (i.e., hν ≥ Eg) impinging on a p-type semiconductor speci-
men. If the sample thickness is much larger than the inverse absorption coefficient,
then a concentration gradient of the photoinjected excess carriers is established
in the direction of incident photons. This will cause electron and hole currents
to flow by diffusion along the direction of the incident light. The total diffusion
current is equal to zero if the mobilities of electrons and holes are equal in the
semiconductor. In general, the electron and hole mobilities are not equal in semi-
conductors. As a result, an unbalanced electron and hole diffusion current will
create an internal electric field along the direction of incident light. The polarity
of this internal electric field tends to assist hole diffusion and retard electron dif-
fusion. As a result, an internal electric field is established under this condition.
This internal electric field is usually referred to as the Dember field. To derive
an expression for the Dember field, the components of electron and hole current
densities (i.e., Jny and Jpy) along the direction of incident photons can be written
as

Jny = qnμnEy + q Dn
∂n

∂y
, (9.104)

Jpy = qpμpEy − q Dp
∂p

∂y
, (9.105)

where n = n0 + �n, p = p0 + �p, �n = �p; μn/Dn and μp/Dp are related by
the Einstein relations, which are given by

Dn =
(

kBT

q

)
μn and Dp =

(
kB T

q

)
μp. (9.106)

The total current density in the y-direction is equal to the sum of Jny and Jpy. From
(9.104) and (9.105), one obtains an expression for Jy as

Jy = Jny + Jpy = q(bn + p)μpEy + (b − 1)q Dp
∂�n

∂y
. (9.107)

Under open-circuit conditions, Jy = 0, and the Dember field in the y-direction is
given by

Ey = −
(

kBT

q

)
(b − 1)

(bn + p)

∂�n

∂y
, (9.108)

where b = μn/μp is the electron-to-hole mobility ratio; the expression for Ey given
by (9.108) is known as the Dember electric field. It is noted that the Dember field
vanishes if b = 1. The Dember field developed inside the sample will enhance the
diffusion of holes and retard the diffusion of electrons. The resulting photovoltage
(or the Dember voltage) between the front side (i.e., illuminated side) and the back
side of the sample is obtained by integrating (9.108) from y = 0 to y = d. For the



9.7. The Photomagnetoelectric Effect 277

small-injection case (i.e., �n � n0), the Dember voltage is given by

Vd =
∫ d

0
−Ey dy

=
(

kBT

q

) ∫ �nd

�n0

−(b − 1)

(bn0 + p0)
d�n

=
(

kBT

q

)
(b − 1)

(bn0 + p0)
(�n0 − �nd), (9.109)

where �n0 is the excess electron density at y = 0 and �nd is the excess electron
density at y = d. For a thick sample, αd 	 1 and �nd � �n0, (9.109) becomes

Vd =
(

kBT

q

)
(b − 1)

(bn0 + p0)
�n0. (9.110)

The excess electron density �n0 at y = 0 can be related to the incident light
intensity using the result obtained in (9.90), which is given by

�n0 = αLn I0(1 − R)τn

hν(αLn + 1)(Ln + sτn)
. (9.111)

Now substituting (9.111) into (9.110) yields

Vd =
(

kBT

q

)
αLn I0(1 − R)τn(b − 1)

hν(αLn + 1)(Ln + sτn)(bn0 + p0)
. (9.112)

Equation (9.112) shows that under low injection the Dember voltage varies linearly
with the light intensity I0. In contrast to the PC effect, the PV effect requires no
external applied voltage, and hence can be used to generate electrical power using
the PV effect in a semiconductor. Devices using this internal PV effect are known as
solar cells or PV devices. Typical PV devices are fabricated using a p-n junction or a
Schottky barrier structure. Details of the PV devices and their operation principles
will be discussed in detail in Chapter 12.

9.7. The Photomagnetoelectric Effect

The photomagnetoelectric (PME) effect refers to the voltage (or current) developed
in a semiconductor specimen as a result of the interaction of an applied magnetic
field with the diffusion current produced by the photogenerated excess carriers. A
PME open-circuit voltage (or short-circuit current) is developed in the x-direction
when a magnetic field is applied in the z-direction and the incident light is in the
y-direction of the specimen, as illustrated in Figure 9.17.

The development of a PME field in a semiconductor under the influence of a
magnetic field and incident light may be explained as follows: Electron–hole pairs
generated near the surface of a semiconductor specimen by the incident photons
are diffused into the specimen in the direction of incident light. The time-invariant
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Figure 9.17. Schematic diagram showing
the photomagnetoelectric (PME) effect in a
semiconductor.

magnetic flux density B along the z-direction deflecting holes in the positive x-
direction and electrons in the negative x-direction results in a net PME short-circuit
current flowing in the positive x-direction. Under open-circuit conditions, a PME
voltage is developed in the x-direction.

In order to derive the expression for the PME open-circuit voltage or PME
short-circuit current, consider a semi-infinite semiconductor slab. The following
equations hold for the rectangular slab shown in Figure 9.17. For a small magnetic
field (i.e., μB � 1) and the small-injection case, the Hall angles are given by

tan θp ≈ θp = μp B (9.113)

tan θn ≈ θn = −μn B (9.114)

θ = θp − θn = μp(1 + b)B, (9.115)

where �n = �p � n0 or p0, and b = μn/μp is the electron and hole mobility
ratio.

The hole and electron current density can be best described by vector equations
with ı̂, ĵ, k̂ denoting the unit vectors along the x-, y-, and z-axes, respectively

Jp
∼= Jpy j̇̂ + θp Jpy j̇̂ × k̂, (9.116)

Jn
∼= Jny j̇̂ + θn Jny j̇̂ × k̂. (9.117)

Here Jpy and Jny are given respectively by

Jpy = q

(
μp pEy − Dp

∂�p

∂y

)
, (9.118)

Jny = q

(
μnnEy + Dn

∂�n

∂y

)
. (9.119)



9.7. The Photomagnetoelectric Effect 279

Thus, the total current density is given by

J = Jp + Jn = (Jpx + Jnx)î + (Jpy + Jny)j̇̂ . (9.120)

Since the total current density in the y-direction is zero, equation (9.120) reduces
to

J = Jx = (Jpx + Jnx) = [q(pμp + nμn)Ex + θp Jpy + θn Jny].

(9.121)

Solving (9.118) through (9.120) yields

Jpy = −Jny = −q D

(
∂�n

∂y

)
, (9.122)

where D = Dn(n + p)/(bn + p) is the effective diffusion coefficient. Substituting
(9.122) into (9.121), one obtains

Jx = Jnx + Jpx = qμp(p + nb)Ex − q(b + 1)μp B D

(
∂�n

∂y

)
. (9.123)

To derive the PME electric field or PME open-circuit voltage along the x-
direction, it is usually not sufficient to assume that Jx = Jnx + Jpx = 0. Such a
solution would lead to Jx being a function of z, which is incorrect, because for a
constant magnetic field the electric field must be irrotational. With ∂Ez/∂x =
0, it follows that ∂Ex/∂z = 0. Thus, the correct boundary condition is given
by ∫ d

0
(Jnx + Jpx) dy = 0. (9.124)

For the small-injection case, with �n = �p � n0 or p0, the PME electric field in
the x-direction becomes

Ex = (b + 1)B D

d(n0b + p0)

∫ d

0

∂�n

∂y
dy = − B D(b + 1)

d(n0b + p0)
(�n0 − �nd)

(9.125)

The PME short-circuit current can be obtained by setting Ex = 0 in (9.123) and
then integrating the equation from y = 0 to y = d . The result is

IPME = −W
∫ d

0
q(b + 1)μp B D

(
∂�n

∂y

)
dy

= qW (b + 1)μp B D(�n0 − �nd). (9.126)

For αd 	 1 and d 	 Ln, one may assume that �nd ≈ 0. Substituting (9.111) into
(9.126), one obtains

IPME = qW (b + 1)μp I0(1 − R)BL2
n

hν(Ln + sτn)
· αLn

(1 + αLn)
. (9.127)
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Figure 9.18. PME short-circuit
current versus photoconductance
for an Au-doped silicon specimen
with NAu = 5 × 1016 cm−3. After
Agraz and Li,9 by permission.

In (9.127), the quantum yield is assumed equal to 1. Thus, at low magnetic
fields, the PME short-circuit current is directly proportional to the magnetic flux
density B. For αLn 	 1, IPME becomes independent of the wavelength.

The ratio of the PME short-circuit current given by (9.127) to the photocurrent
given by (9.92) is given by

(IPME/B)

(Iph/Ex )
= αL2

n

(1 + αLn + sτn
Ln

)τn
. (9.128)

If αLn is much larger than 1 and sτn/Ln, then (9.128) reduces to

(IPME/B)

(Iph/Ex )
= Ln

τn
=

(
Dn

τn

)1/2

, (9.129)

where Ln = (Dnτn)1/2 is the electron diffusion length. Equation (9.129) provides
a direct means for determining the minority carrier lifetime from the PME and PC
effect measurements. The electron diffusion constant can be determined from the
electron mobility data using the Einstein relation given by (9.106).

The PME effect has been used in determining the minority carrier life-
times in a semiconductor. This method is particularly attractive for semiconduc-
tors with very short carrier lifetimes for which the transient photoconductivity
decay method fails. Studies of the PME effect have been reported in various
semiconductors such as Ge, Si, InSb, and GaAs. Figure 9.18 shows the PME
short-circuit current versus photoconductance for an Au-doped silicon sample
measured at different temperatures. The nonlinear relationship between IPME and
�G is due to the effect of minority carrier trapping in the Au-doped silicon
sample.
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Figure 9.19. (a) PME short-circuit current and (b) lifetime versus photoconductance for a
Cr-doped n-type GaAs sample. After Huang and Li,10 by permission.

Figure 9.19a shows the PME short-circuit current versus photoconductance
over a wide range of light intensity for two Cr-doped n-type GaAs samples. The
dependence of lifetime on photoconductance is also illustrated in Figure 9.19b. In
the low- and high-injection regimes, IPME varies linearly with �G, while in the
intermediate-injection range a nonlinear relationship exists between IPME and �G
as a result of the trapping effect in the sample.

Problems

9.1. Consider an n-type silicon specimen. The sample is 0.2 cm thick, 1 cm wide,
and 2 cm long. Monochromatic light with wavelength λ = 0.9 μm and in-
tensity I0 = 5 × 10−4 W/cm2 is impinging on the sample. Assuming that the
equilibrium electron density is n0 = 1016 cm−3 and the absorption coefficient
α is equal to 320 cm−1 at λ = 0.9 μm, find:
(a) The number of incident photons per second on this sample.
(b) The depth at which the light intensity I0 is 10% of its value at the surface.
(c) The number of electron–hole pairs generated per second in this sample,

assuming a quantum yield of η = 0.8.
(d) The photoconductance �G, assuming an electron diffusion length

Ln = 50 μm and that the surface recombination at the illuminated sur-
face is zero (s = 0).

9.2. Repeat Problem 9.1, (a) through (d), assuming that the wavelength of the
incident photons is λ = 0.63 μm and the absorption coefficient of silicon is
α = 3 × 103 cm−1 at λ = 0.63 μm.

9.3. Show that under high-injection conditions (i.e., �p = �n 	 n0 or p0)
and assuming τn = τp = τh (where τh is the carrier lifetime at high injec-
tion as defined by the Shockley–Read–Hall model), the following relations
prevail:
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(a) �G = qWμp(1 + b)(Dτn)1/2�n0l,
(b) IPME = qWμp(1 + b)DB�n0,
(c) VPME = IPME/�G = (D/τn)1/2 Bl,
where D = 2Dn/(1 + b) is the ambipolar diffusion constant and �n0 is the
excess electron density generated at the illuminated surface.

9.4. An n-type CdS photoconductor, which has a dark resistivity of 108 � cm, is
illuminated by a He–Ne laser (λ = 0.6328 μm). If the power output of the
laser beam is 0.5 mW/cm2, find:
(a) The incident photon flux density per second.
(b) The volume generation rate given α = 4 × 103 cm−1 at λ = 0.6328 μm

and R = 0.
(c) The photogenerated electron density given τn = 10−3 s.
(d) The photoconductivity. Given μn = 400 cm2/V · s.

9.5. Using (9.92), calculate the photocurrent for an InSb photoconductor for s = 0,
100, and 10,000 cm/s, respectively, given τn = 10 μs, Ln = 10 μm, R =
0.35, w/ l = 1, I0 = 1 mW/cm2, V = 100 mV, μp = 500 cm2/V · s, b =
100, λ = 4 μm, hv = hc/λ.

9.6. Using (9.112), calculate the Dember voltages for the InSb photoconductor
given in Problem 9.5 with α = 104 cm−1 and n0 = 5 × 1016 cm−3 assume that
p0 ≈ 0, quantum yield η = 0.8, surface recombination velocities s = 0, 100,
and 104 cm/s, and T = 300 K.

9.7. If the intensity of incident photons on an n-type semiconductor is such that
�p 	 n0 (i.e., high-injection case), and the band-to-band radiative recombi-
nation is dominant, show that the photocurrent is directly proportional to the
square root of the light intensity.

9.8. Suppose the energy band gap versus alloy composition x for an Alx Ga1−x As
ternary compound semiconductor is given by

Eg =
{

1.424 + 1.247x for 0 ≤ x ≤ 0.45,

1.900 + 0.125x + 0.143x2 for 0.45 ≤ x ≤ 1.0.

(a) Plot Eg versus x for 0 ≤ x ≤ 1.0. Note that Alx Ga1−x As is a direct band
gap material for x ≤ 0.45, and becomes an indirect band gap material for
x > 0.45.

(b) Plot the optical absorption coefficient (α) versus wavelength λ for
Alx Ga1−x As materials with x = 0.2, 0.4, 0.6, and 0.8.

(c) If a He–Ne laser beam with λ = 0.6328 μm and intensity I0 = 0.5
mW/cm2 is illuminated on an Alx Ga1−x As specimen 10 μm thick,
100 μm wide, and 500 μm long, what is the total volume generation rate
for this sample? Assume that the optical absorption coefficient at this
wavelength is α = 5 × 104 cm−1.

9.9. Consider an intrinsic photoconductor. If the wavelength of incident photons
is λ = 0.5 μm, the optical absorption coefficient at this wavelength is α =
104 cm−1, the reflection coefficient is R = 0.3, the excess electron lifetime
τn = 10 μs, and the photon flux density is 1014 cm−2 -s−1, calculate the excess
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electron density generated by the incident photons described in this problem.
Assume uniform absorption in this thin film photoconductor. If the electron
mobility μn is equal to 1,500 cm2/V · s, hole mobility μp = 500 cm2/V · s,
and assuming τn = τp, what is the photosensitivity factor for this intrinsic
photoconductor?
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10
Metal–Semiconductor Contacts

10.1. Introduction

In this chapter, the basic device physics, the electrical and transport properties,
and the formation and characterization of various metal–semiconductor contacts
are presented. It is well known that the quality of metal–semiconductor contacts
plays an important role in the performance of various semiconductor devices and
integrated circuits. For example, good ohmic contacts are essential for achieving
excellent performance of a semiconductor device, while Schottky (i.e., rectifying)
contacts can be used for a wide variety of device applications. In addition to
different device and circuit applications, Schottky contacts can also be used as test
vehicles for investigating the physical and electrical properties of a semiconductor
material and its surfaces. For example, a Schottky diode can be used to study bulk
defects and interface properties of a metal–semiconductor system. Therefore, it is
essential to obtain a better understanding of the fundamental physical and electrical
properties of the metal–semiconductor systems so that technologies for preparing
good ohmic and Schottky contacts can be developed for a wide variety of device
applications.

Two types of metal–semiconductor contacts are commonly used in the fabri-
cation of semiconductor devices and integrated circuits. They are the Schottky
and ohmic contacts. A Schottky barrier contact exhibits an asymmetrical current–
voltage (I–V) characteristic when the polarity of a bias voltage applied to the
metal–semiconductor contacts is changed. The ohmic contact, on the other hand,
shows a linear I–V characteristic regardless of the polarity of the external bias
voltage. A good ohmic contact is referred to the case in which the voltage drop
across a metal–semiconductor contact is negligible compared to that of the bulk
semiconductor material.

The Schottky barrier diode is actually a variation of the point-contact diode
in which the metal–semiconductor junction is a surface rather than a point con-
tact. In fact, a large contact area between the metal and the semiconductor in a
Schottky barrier diode provides some advantages over the point-contact diode.
Lower forward resistance and lower noise generation are the most important

284
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advantages of the Schottky barrier diode. The applications of a Schottky barrier
diode are similar to those of the point-contact diode. The low noise level generated
by Schottky diodes makes them especially suitable for uses in microwave receivers,
detectors, and mixers. The Schottky barrier diode is sometimes called the hot elec-
tron or hot carrier diode because the electrons flowing from the semiconductor
to the metal have a higher energy level than electrons in the metal. The effect is
the same as it would be if the metals were heated to a higher temperature than
normal.

Section 10.2 describes the metal work function and the Schottky effect at a
metal–vacuum interface. Thermionic emission theory, used to describe carrier
transport in a metal–semiconductor contact, is presented in Section 10.3. In Sec-
tion 10.4, the energy band diagram, the spatial distributions of the space charge,
potential, and electric field across the depletion layer of a Schottky barrier diode are
derived. Section 10.5 presents the diffusion and thermionic emission models for
carrier transport in a Schottky barrier diode. Section 10.6 describes the I–V charac-
teristics and fabrication schemes for a metal-Si and metal-GaAs Schottky barrier
diode. Section 10.7 describes three common methods for determining the barrier
height of a Schottky diode. Methods for the effective barrier height enhancement of
a metal–semiconductor Schottky contact are discussed in Section 10.8. In Section
10.9, applications of Schottky barrier diodes for photodetectors, microwave mix-
ers, clamped transistors, metal-gate field-effect transistors (MESFETs), and solar
cells are discussed. Finally, some conventional and novel approaches for forming
ohmic contacts on semiconductors are presented in Section 10.10.

10.2. Metal Work Function and Schottky Effect

The schematic energy band diagram under equilibrium conditions for a metal in
free space is shown in Figure 10.1. The energy difference between the vacuum level
and the Fermi level is known as the work function of a metal. The work function,φm,
is defined as the minimum kinetic energy required for an electron to escape from
the metal surface (or the Fermi level) into free space at T = 0 K. The probability
for an electron to escape from the metal surface into the vacuum depends on the
velocity of electrons perpendicular to the metal surface. The minimum kinetic
energy required for an electron to escape from the metal surface into vacuum is

Figure 10.1. Energy band
diagram at a metal–vacuum
interface: φm is the metal work
function and Ef is the Fermi
level.
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Figure 10.2. Schottky (or image-lowering) effect at the metal–vacuum interface in the
presence of an applied electric field: (a) energy band diagram, showing the applied field
(gx ), the image potential Vi(x), and the image-lowering potential �φm; (b) the induced
image charge (positive) inside the metal.

given by

1

2

(
m0v

2
1

) ≥ qφm , (10.1)

where v1 is the electron velocity normal to the metal surface, and m0 is the free
electron mass. The Schottky effect, or image-lowering effect, occurs when an
external electric field is applied to the metal surface. To understand the Schottky
effect, consider the energy band diagram shown in Figure 10.2a. When an electric
field is applied to the metal surface, electrons that escape from the metal surface
will experience two external forces: the image force that arises from the Coulomb
attractive force as a result of the positive image charges induced inside the metal
by the escaping electrons, and the Lorentz force due to the applied electric field.
The positive image charges create a Coulomb attractive force, which tends to pull
the escaping electrons back into the metal. The image force can be expressed
by

Fi = q2

16πε0x2
, (10.2)

where x is the distance from the metal surface. The potential energy associated
with this image force is given by

Vi(x) = −
∫ x

∞
Fi dx = − q2

16πε0x
. (10.3)

The potential energy due to the applied electric field can be written as

Va(x) = −qEx . (10.4)

The total potential energy of the electron is equal to the sum of (10.3) and (10.4),
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namely,

V (x) = Vi(x) + Va(x) = − q2

16πε0x
− qEx . (10.5)

The distance at which the maximum potential energy occurs is obtained by dif-
ferentiating (10.5) with respect to x and then setting the result equal to 0, which
yields

xm =
√

q

16πε0E
. (10.6)

Substituting (10.6) into (10.5), one obtains the maximum potential energy for the
electron, which is

Vm(xm) = −qE
√

q

4πε0E
= −2qExm = −q�φm. (10.7)

As shown in Figure 10.2, the effect of the image force and the applied electric
field is to lower the work function of a metal. Therefore, the effective metal work
function under the applied electric field can be obtained from Figure 10.2, and the
result is

qφ′
m = qφm + Vm = qφm − q�φm = qφm − q

√
qE

4πε0
, (10.8)

where q�φm = −Vm is the image-lowering potential energy. To see the effect of the
image-lowering effect, one can consider two electric field strengths. If the applied
electric field E is equal to 105 V/cm, then xm is equal to 60 Å and q�φm = 0.12
eV. On the other hand, if E = 107 V/cm, then xm = 6 Å and q�φm = 1.2 eV.
Therefore, it is obvious that the effective metal work function is greatly reduced
at high electric fields as a result of the image-lowering effect. Figure 10.3 shows
the image-lowering potential versus square root of the applied electric field with

Figure 10.3. Image-lowering poten-
tial versus square root of the applied
electric field with dielectric constant
εs as parameter.
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Table 10.1. Metal work functions for a clean metal surface in vacuum.

Work Work Work
Metal(s) function (eV) Metal (s) function (eV) Metal Function (eV)

Ti, Al, Ta, Ag 4.33 Sn 4.4 Ir 5.3
Au, Pd 5.10 W, Mo, Sb 4.63 T1 3.9

Pt 5.65 Ga, Cd 4.28 In 4.2
Cr, Hg 4.5 Ni 5.15 Zn 4.4

Mg 3.65 Rh 5.05 Fe 4.45
Cu 4.65 In 4.2 Mn 4.15
Si 4.85 Se 5.9 Co 5.0

dielectric constant εs as a parameter. Table 10.1 lists the work function data for
some metals.

10.3. Thermionic Emission Theory

Thermionic emission usually refers to the emission of electrons from a hot metal
surface. If the metal is used as a cathode, and all the emitted electrons from the
metal surface are collected at the anode of a vacuum diode, then the cathode
is in a saturation emission condition. The emitted current density is then called
the saturation current density Js, and the equation that relates Js to the cath-
ode temperature and the work function of a metal is known as the Richardson
equation.

The Richardson equation is derived using the geometry of metal surface as
shown in Figure 10.4. The surface is assumed infinite in the x–y plane and the
electron emission is normal to the metal surface along the z-axis. The free electron

Figure 10.4. Thermionic
emission of electrons from a
metal surface.
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density in the metal with velocity between (vx , vy, vz) and (vx + dvx , vy + dvy ,
vz + dvz) is given by

dn = 2

(
1

2π

)3

f (k) d3k =
(

2m3
0

h3

)
f (v) dvx dvy dvz, (10.9)

where m0 is the free electron mass and h̄k = m0v. Using Maxwell–Boltzmann
statistics, the electron distribution function f (v) is given by

f (v) = exp

[
−m0(v2

x + v2
y + v2

z )

2kBT

]
. (10.10)

Now substituting (10.10) into (10.9) one obtains the thermionic emission current
density in the z-direction, which is given by

Js =
∫

qvz dn =
(

2qm3
0

h3

) ∫ ∞

−∞
exp

(
− m0v

2
x

2kBT

)
dvx

×
∫ ∞

−∞
exp

(
− m0v

2
y

2kBT

)
dvy

∫ ∞

vzm

vz exp

(
− m0v

2
z

2kBT

)
dvz

= A0T 2 exp

(
−qφm

kBT

)
, (10.11)

where A0 = 4πqm0k2
B/h3 is the Richardson constant, which is equal to 120 A/

(cm2 · K2) for electrons in free space. In (10.11), it is noted that only electrons with
kinetic energies greater than the metal work function (i.e., 1/2(m0v

2
zm) ≥ qφm) can

escape from the metal surface along the z-direction.
It is noted from (10.11) that both the Richardson constant A0 and the metal work

function φm can be determined from the plot of ln(Js/T 2) versus 1/T , as illustrated
in Figure 10.5. The intercept of this plot with the ordinate yields A0, while the
slope gives the value of the metal work function φm.

The image-lowering effect should be considered in deriving the thermionic
emission current density when an electric field is applied to the metal surface. In

Figure 10.5. Plot of ln(Js/T 2) versus 1/T
using (10.11). The Richardson constant A0

and the metal work function φm can be de-
termined from this plot.
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Figure 10.6. Plot of ln J ′
s versus E1/2

for a thoriated tungsten metal, assuming
Js = 1 A/cm2 at T = 1873 K.

this case, φm in the exponent of (10.11) is replaced by an effective metal work
function φ′

m given by (10.8). By replacing φ′
m for φm in (10.11), one obtains an

expression for the effective thermionic current density, which is given by

J ′
s = A0T 2 exp

(
−qφ′

m

kBT

)

= A0T 2 exp

(
−qφm

kBT

)
exp

[(
q

2kBT

) (
qE
πε0

)1/2
]

= Js exp

(
4.39E1/2

T

)
. (10.12)

It is noted that the exponential term in (10.12) is due to the image-lowering
effect. In general, a plot of ln(J ′

s ) versus E1/2 yields a straight line over a wide
range of the electric field. However, deviation from linearity is expected at very
low electric fields. Figure 10.6 shows the plot of ln(J ′

s ) versus E1/2 for thoriated
tungsten metal. Using (10.11) and assuming that Js = 1 A/cm2, T = 1873 K, and
A0 = 120 A/(cm2· K2), one obtains a value of φm = 3.2 eV for thoriated tungsten
metal.

10.4. Ideal Schottky Contact

According to the Schottky–Mott model, the barrier height of an ideal metal/n-type
semiconductor Schottky contact is equal to the difference between the metal work
function φm and the electron affinity χs of a semiconductor, which can be written as

φBn = φm − χs. (10.13)

Figure 10.7 shows the schematic energy band diagrams for a metal/n-type
semiconductor system before and after contact and under various conditions.
Figures 10.7a, b, and c denote the cases for φm > φs, and Figures 10.7d, e, and
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Figure 10.7. Energy band diagrams for an ideal metal/n-type semiconductor contact. (a)
to (c) φm > φs: (a) before contact, (b) in contact with a small air gap and interface states,
(c) in intimate contact (rectifying contact), with no interface states; (d) to (f) φm < φs,
(d) before contact, (e) in contact with a small air gap, and (f) in intimate contact (ohmic
contact).

f denote the cases with φm < φs. Figures 10.7a and d are before the contact, and
Figures 10.7b and e are after the contact, assuming that a thin insulating interfacial
layer (e.g., 20–30 Å) exists between the metal and semiconductor. Figures 10.7c
and f pertain to intimate contact without the insulating interfacial layer. From Fig-
ure 10.7c it is seen that for φm > φs, there exists a potential barrier for electrons to
cross from the metal to the semiconductor, and the metal–semiconductor contact
exhibits a rectifying behavior. However, an ohmic contact is obtained if φm < φs,
as shown in Figure 10.7f. For a metal/p-type semiconductor contact, the opposite
behavior results. It should be noted that the measured barrier heights for most of
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the metal/n-type semiconductor contacts do not always follow the simple predic-
tion given by (10.13), owing to the fact that it does not consider the interface state
density and the image-lowering effect. In fact, for many III-V compound semicon-
ductors, because of the high surface state density and Fermi-level pinning at the
interface states, the barrier height for the Schottky contacts formed on III-V semi-
conductor materials was found to be independent of the metals used. A detailed
explanation of this result will be given in Section 10.7.

Similarly, the barrier height for an ideal metal/p-type semiconductor Schottky
contact can be expressed by

φBp = Eg

q
− (φm − χs) = Eg

q
− φBn, (10.14)

where Eg is the energy band gap and q is the electronic charge. Equation (10.14)
shows that for a given metal–semiconductor system, the sum of barrier heights
for a metal on n- and p-type semiconductor contacts is equal to the band gap
energy of the semiconductor (i.e., qφBn + qφBp = Eg). As shown in Figure 10.7c,
the potential difference, q(φm − χs − Vn), known as the contact potential or the
diffusion potential VD, can be expressed by

VD = φm − �s = φBn − Vn, (10.15)

where φBn is the barrier height and Vn = (Ec − Ef)/q = (kBT/q) ln(Nc/ND) is
the Fermi (or chemical) potential of an n-type semiconductor.

Equation (10.15) shows that the contact (or diffusion) potential for an ideal
metal/n-type Schottky barrier diode is equal to the difference between the metal
work function and the semiconductor work function, or the difference between the
Schottky barrier height and the Fermi potential of an n-type semiconductor.

To find the spatial distributions of potential and electric fields, the depletion
layer width, and the junction capacitance of a Schottky diode, one needs to solve
the Poisson equation in the space-charge region using proper boundary conditions.
The one-dimensional (1-D) Poisson equation in the depletion region of a Schottky
diode is given by

d2V (x)

dx2
= − ρ

ε0εs
, (10.16)

where εs is the dielectric constant of the semiconductor and ε0 is the permittivity
of free space. The charge density for 0 ≤ x ≤ W is given by

ρ = q[ND − n(x)], (10.17)

where n(x) is the electron density in the space-charge region, which is equal to
n0 exp(−qVD/kBT ) at the edge of the depletion layer (i.e., at x = W ). It is noted
that n(x) decreases exponentially with distance from the depletion layer edge (at
x = W ) into the space-charge region.

Using a one-sided abrupt junction approximation and assuming that n(x) = 0
for 0 < x < W , one can obtain the spatial distribution of the electric field by
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integrating (10.16) once, with the result

E(x) = −dV (x)

dx
=

(
q ND

ε0εs

)
x + C1, (10.18)

where C1 is a constant to be determined by the boundary conditions.
The potential distribution can be obtained by integrating (10.18) once more,

which yields

V (x) = −
(

q ND

2ε0εs

)
x2 − C1x + C2, (10.19)

where C2 is another constant of integration. The constants C1 and C2 can be
determined using the following boundary conditions:

V (0) = −φBn at x = 0,

E(x) = −dV (x)

dx
= 0 at x = W. (10.20)

Solving (10.18), (10.19), and (10.20), one obtains

C1 = −q NDW

ε0εs
, C2 = −φBn. (10.21)

Now substituting C1 and C2 given by (10.20) and (10.21) into (10.18) and (10.19),
one obtains the spatial distributions of the electric field and potential inside the
depletion region, which are given respectively by

E(x) =
(

q ND

ε0εs

)
(x − W ), (10.22)

V (x) = −
(

q ND

ε0εs

) (
x2

2
− W x

)
− φBn. (10.23)

The depletion layer width W can be expressed in terms of ND, VD, and Va across
the barrier. From Figure 10.8a and (10.23) one obtains the potential at x = W as

V (W ) = (VD − Va) − φBn =
(

q NDW 2

2ε0εs

)
− φBn. (10.24)

From (10.24), the depletion layer width W is given by

W =
√

2ε0εs(VD − Va)

q ND
. (10.25)

It is seen from (10.25) that the depletion layer width is directly proportional to the
square root of the applied voltage (Va), and is inversely proportional to the square
root of the dopant density of the semiconductor. Furthermore, (10.25) shows that
the depletion layer width decreases with the square root of the forward-bias voltage
(i.e., for Va ≥ 0), and increases with the square root of the reverse-bias voltage
(i.e., for Va < 0).
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Figure 10.8. (a) Energy band diagram, (b) electric field, (c) potential distribution, and (d)
space-charge distribution for a metal/n-type semiconductor Schottky barrier diode.

To find the depletion layer capacitance, it is noted in Figure 10.8d that the space
charge per unit area, Qs, in the depletion region is given by

Qs = q NDW =
√

2q NDε0εs(VD − Va). (10.26)

The depletion layer capacitance per unit area can be obtained by differentiating
(10.26) with respect to the applied voltage Va, which yields

Cd = dQs

dVa
=

√
q NDε0εs

2(VD − Va)
. (10.27)

Equation (10.27) shows that the depletion layer capacitance is inversely propor-
tional to the square root of the applied voltage. Figure 10.8a shows the energy
band diagram for a metal/n-type semiconductor Schottky barrier diode in thermal
equilibrium (solid line) and under forward-bias conditions (dashed line). Figure
10.8b illustrates the spatial dependence of the electric field in the depletion region.
From (10.22), the maximum electric field, which occurs at x = 0, is given by

Em = −q NDW

ε0εs
. (10.28)

The spatial distributions of the potential and the space charge in the depletion
region are shown in Figures 10.8c and d, respectively. In Figure 10.8d the dashed
line denotes the actual charge distribution, which shows that at x = W the free
electron density n0 decreases exponentially with distance as it spreads into the
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Figure 10.9. Square of the inverse capaci-
tance versus the applied voltage for a metal/n-
type semiconductor Schottky barrier contact.

depletion region. The solid line is the abrupt junction approximation that was used
in the present derivation. The above analysis is valid only for an ideal Schottky
diode in which both the surface states and the image-lowering effect are neglected.
Figure 10.9 shows a plot of 1/C2

d versus the applied bias voltage Va. A linear
relation is obtained if ND is constant throughout the depletion region, and ND can
be determined from the slope of this plot, while the intercept at the horizontal axis
yields VD. From the measured VD, the value of barrier height φBn can be calculated
from (10.15).

10.5. Current Flow in a Schottky Diode

A metal–semiconductor Schottky barrier diode is a majority-carrier device, be-
cause the current flow in such a device is due to the majority carriers (e.g., electrons
in an n-type semiconductor). This is in contrast to a p-n junction diode, in which
both the majority and minority carriers participate in the current conduction. To il-
lustrate the current flow in a Schottky diode, the energy band diagrams and current
components for an ideal metal/n-type semiconductor Schottky barrier diode under
zero-bias, forward-bias, and reverse-bias conditions are shown in Figures 10.10a,

Figure 10.10. Energy band diagrams and current components for a Schottky barrier diode
under (a) zero bias, (b) forward bias, and (c) reverse bias. Here Jsm denotes the current flow
from semiconductor to metal, Jms is the current density from metal to semiconductor, and
J0 = Jms is the saturation current density.
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b, and c, respectively. The potential barrier for electrons moving from the semi-
conductor side to the metal side is designated as VD, while the potential barrier for
electrons moving from the metal side to the semiconductor side is defined as φBn.

If a forward-bias voltage Va is applied to the Schottky diode, then the potential
barrier on the semiconductor side of the diode is reduced to VD − Va, as shown
in Figure 10.10b. It is noted that the barrier height remains relatively unaffected
by the applied bias voltage or the doping density of the semiconductor. Thus,
the current flow from the semiconductor to the metal increases dramatically under
forward-bias conditions, while the current flow from the metal to the semiconductor
remains essentially the same. Under forward-bias conditions, the net current flow
is controlled by the electron current flow from the semiconductor to the metal,
as shown in Figure 10.10b. Under reverse-bias conditions, the potential barrier
on the semiconductor side increases to VD + Va, and the current flow from the
semiconductor to the metal becomes negligibly small compared to the current flow
from the metal to the semiconductor. Thus, the net current flow under reverse-
bias conditions is controlled by the thermionic emission from the metal to the
semiconductor, as shown in Figure 10.10c.

The carrier transport and current flow in a Schottky barrier diode can be analyzed
using the thermionic emission, the diffusion, or the combined thermionic–diffusion
model. The current–voltage (I–V) equation derived from these models may be
used to predict the current versus temperature or voltage behavior in a Schottky
barrier diode. The simple thermionic emission model developed by Bethe and the
diffusion model developed by Schottky are the most widely used physical models
for predicting the I –V characteristics of a Schottky barrier diode. In this section,
the current density equations are derived from both the thermionic emission and
diffusion models. In addition, the current density expression obtained from the
combined thermionic–diffusion model developed by Sze and Crowell1 is also
given. Finally, the tunneling phenomenon in a highly doped Schottky contact will
also be described.

10.5.1. The Thermionic Emission Model

The thermionic emission model described in Section 10.3 for electron emis-
sion from a hot metal surface into free space can be easily modified for a
metal–semiconductor system. The current flow from semiconductor to metal in
a Schottky diode is determined mainly by the barrier potential (VD − Va) under
a forward-bias condition. To overcome this potential barrier, the minimum ki-
netic energy of electrons in the semiconductor side along the x-direction is given
by

1

2

(
m∗

nv
2
xm

) ≥ q(VD − Va). (10.29)

Therefore, the electron current density component flowing from semi-
conductor to metal side, Jsm, can be obtained by modifying (10.11) for the
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metal–semiconductor contacts, yielding

Jsm =
(

2qm∗3

h3

) ∫ ∞

−∞
exp

[−m∗v2
z

2kBT

]
dvz

∫ ∞

−∞
exp

[−m∗v2
y

2kBT

]
dvy

×
∫ ∞

vxm

vx exp

[−m∗v2
x

2kBT

]
dvx

= A∗T 2 exp

(
−qφBn

kBT

)
exp

(
qVa

kBT

)

= J0 exp

(
qVa

kBT

)
, (10.30)

where

J0 = A∗T 2 exp

(
−qφBn

kBT

)
(10.31)

is the saturation current density. In (10.31), A∗ = 4πm∗
nqk2

B/h3 is the effective
Richardson constant, m∗

n is the electron effective mass, and φBn is the barrier
height. The current flow from metal to semiconductor side can be obtained from
(10.30) by using the fact that in thermal equilibrium, Va = 0 and

Jms = −Jsm = −J0. (10.32)

Thus, the total current flow under forward-bias conditions is equal to the sum of
(10.30) and (10.32), which reads

J = Jsm + Jms = J0

[
exp

(
qVa

kBT

)
− 1

]
. (10.33)

Equation (10.33) is the well-known Schottky diode equation, which predicts an
exponential dependence of the current density on both the temperature and applied
bias voltage. Since the saturation current density J0 depends exponentially on the
barrier height, a large barrier height is needed in order to reduce the value of J0 in
a Schottky diode. Methods of increasing the effective barrier height of a Schottky
barrier diode will be discussed in Section 10.8.

10.5.2. Image-Lowering Effect

As in the case of a metal–vacuum interface, the image-lowering effect also exists in
the metal–semiconductor interface, as shown in Figure 10.11. Taking into account
the image-lowering effect in (10.31), the saturation current density can be expressed
as

J0 = A∗T 2 exp

[
−q(φBn − �φm)

kBT

]

= A∗T 2 exp

(
−qφBn

kBT

)
exp

(
q3Em

4πε0εsk2
BT 2

)1/2

. (10.34)
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Figure 10.11. Energy band
diagram for a metal/n-type
semiconductor Schottky barrier
diode showing the
image-lowering effect; q�φ is
the image-lowering potential.

In the depletion region, the maximum field strength Em at the metal–semiconductor
interface can be obtained from solving (10.25) and (10.28), with result

Em =
√

2q ND(VD − Va)

ε0εs
. (10.35)

As shown in Figure 10.8b, the maximum electric field occurs at x = 0, and the
field decreases linearly with distance from the metal–semiconductor interface (i.e.,
x = 0) to the edge of the depletion layer (i.e., x = W ) in the bulk semiconductor.
From (10.34) and (10.35) it is noted that ln(J0) is directly proportional to (Em)1/2, or
(VD − Va)1/4 when the image-lowering-effect is considered. This current–voltage
(I–V) behavior has indeed been observed in many metal–semiconductor Schottky
barrier diodes.

10.5.3. The Diffusion Model

The Schottky diffusion model is based on the assumption that the barrier height
is greater than a few kBT and that the semiconductor is lightly doped so that
the depletion layer width is larger than the carrier diffusion length. Based on
this model, both the drift and diffusion current components are considered in the
depletion region, and the electron current density Jn can be written as

Jn = qn(x)μnEx + q Dn
dn(x)

dx

= q Dn

[(
qn(x)

kBT

) (
−dV (x)

dx

)
+ dn(x)

dx

]
. (10.36)

It is noted that the Einstein relation μn = (q/kBT )Dn and Ex = −dV (x)/dx were
used in (10.36). Since the total current density Jn in the depletion region is constant
and independent of x , one can multiply both sides of (10.36) by exp[−qV (x)/kBT ]
and then integrate the equation over the entire depletion region from x = 0 to
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x = W , which yields

Jn

∫ W

0
e−qV (x)/kBT dx = q Dn

∫ W

0

[
−

(
qn(x)

kBT

)
dV (x)

dx
e−qV (x)/kBT

+ dn(x)

dx
e−qV (x)/kBT

]
dx, (10.37)

or

Jn

∫ W

0
e−qV (x)/kBT dx = q Dnn(x) e−qV (x)/kBT

∣∣∣W

0
. (10.38)

The boundary conditions for (10.38) at x = 0 and x = W are given by

qV (0) = −qφBn and qV (W ) = −q(Vn + Va), (10.39)

where qVn = Ec − Ef and Va is the applied voltage. The electron densities at x = 0
and x = W are given by

n(0) = Nc exp

{
− [Ec(0) − Ef]

kBT

}
= Nc exp

(
−qφBn

kBT

)
, (10.40a)

n(W ) = Nc exp

(
− qVn

kBT

)
. (10.40b)

Now substituting (10.39) and (10.40) into (10.38), one obtains

Jn = (q Dn Nc)
[
exp(qVa/kBT ) − 1

]
∫ W

0 exp [−qV (x)/kBT ] dx
. (10.41)

The integral in the denominator of (10.41) can be carried out by substituting V (x)
given in (10.23) (neglecting the x2 term) and W given in (10.25) into (10.41), and
one obtains

Jn =
(

q2 Dn Nc

kBT

) √
2q(VD − Va)ND

ε0εs
exp

(
−qφBn

kBT

) [
exp

(
qVa

kBT

)
− 1

]

= J ′
0

[
exp

(
qVa

kBT

)
− 1

]
, (10.42)

where

J ′
0 =

(
q2 Dn Nc

kBT

) √
2q(VD − Va)ND

ε0εs
exp

(
−qφBn

kBT

)
(10.43)

is the saturation current density derived from the diffusion model.
A comparison of (10.43) and (10.31) reveals that the saturation current density

derived from the thermionic emission model is more sensitive to temperature than
that from the diffusion model. However, the latter shows a stronger dependence on
the applied-bias voltage than the former. It is noted that the image-lowering effect
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is neglected in (10.43). Both models predict the same exponential dependence of
the saturation current density on the barrier height and the temperature.

Finally, a synthesis of the diffusion and thermionic emission models has
been reported by Crowell and Sze.1 The so-called thermionic-emission diffusion
model uses the boundary conditions of the thermionic recombination velocity
at the metal–semiconductor interface and considers the effects of electron-optical
phonon scattering and quantum-mechanical reflection at the metal–semiconductor
interface. The current density equation derived from the thermionic-emission dif-
fusion model is given by1

J = q NcvR

(1 + vR/vD)
exp

(
−qφBn

kBT

) [
exp

(
qVa

kBT

)
− 1

]
, (10.44)

where vR is the recombination velocity at the interface and vD is the diffusion
velocity associated with electron transport from the depletion layer edge at W
to the potential energy maximum at xm. If vR is much larger than vD, then the
diffusion process is dominant. On the other hand, if vD is much greater than vR,
then the preexponential factor in (10.44) is dominated by vR and the thermionic
emission current becomes the predominant current component.

Finally, it should be noted that if a metal–semiconductor Schottky contact is
formed on a degenerate semiconductor, the barrier width becomes very thin, so
that the flow of current through the Schottky contact is dominated by a tunneling
process. In this case, the current flow in the diode is determined by the quantum-
mechanical tunneling transmission coefficient, and the tunneling current density is
proportional to the exponential function of the barrier height and doping density,
which is given by

Jt ≈ exp(−qφBn/E00), (10.45)

where E00 = (qh̄/2)
√

ND/m∗ε0εs. From (10.45), it is seen that the tunneling cur-
rent density will increase exponentially with the square root of dopant density
and decrease exponentially with increasing barrier height. Equation (10.45) may
be applied to analyze the specific contact resistance for the ohmic contact on a
heavily doped semiconductor. This will be discussed further in Section 10.10.

10.6. Current–Voltage Characteristics of a Si
and a GaAs Schottky Diode

In this section, the current–voltage (I–V) characteristics of a Au/n-type Si Schottky
diode and an Au/n-type GaAs Schottky diode are described. The experimental
results for both diodes under forward-bias conditions are shown in Figures 10.12
and 10.14, respectively.2 In a practical Schottky barrier diode the slope of the I–V
curve under forward-bias conditions is usually greater than unity; a diode ideality
factor “n” is incorporated in (10.33). A semiempirical formula for predicting the



10.6. Current–Voltage Characteristics of a Siand a GaAs Schottky Diode 301

Figure 10.12. Forward I–V curve and the energy band diagram for a Al/n-type Si Schottky
diode with a field-plate structure. After Yu and Mead,2 by permission.

I–V characteristics of a practical Schottky diode is given by

J = J0

[
exp

(
qVa

nkBT

)
− 1

]
, (10.46)

where J0 is the saturation current density given by (10.31). Under forward-bias
conditions and for qVa ≥ 3kBT , (10.46) becomes

JF ≈ J0 exp

(
qVa

nkBT

)
. (10.47)

For an ideal metal–semiconductor Schottky diode, the diode ideality factor n is
equal to 1. Deviation of n from unity may be attributed to a number of factors such
as large surface leakage current, high density of bulk recombination centers in the
depletion region, and high interface state density as well as high series resistance.

The metal/n-type Si Schottky barrier diode with diode ideality factor n varying
from 1.01 to 1.12 has been reported in the literature. To achieve near-ideal I–V
characteristics for the Si Schottky barrier diodes, various fabrication techniques
have been developed in the past. The two most widely used techniques to achieve
near-ideal Schottky contacts are the field-plate and guard-ring structures. Figure
10.12 shows an Al/n-type Si Schottky barrier diode with a field-plate structure. As
shown in Figure 10.12, a field oxide (e.g., SiO2) is grown underneath the edge of
an Al Schottky contact. The Al film is overlaid on top of this field oxide to serve
as a field plate. When the Schottky diode is reverse-biased, this field plate keeps
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Figure 10.13. Reverse I–V
curves for the A1/n-type silicon
Schottky barrier diode with two
different substrate resistivities.
Al overlaid on SiO2 is used to
control the soft breakdown due
to the edge effect. After Yu and
Mead,2 by permission.

the underlying contact surface fully depleted so that soft breakdown arising from
the surface accumulation layer formed around the edge of the metal plate does
not occur in this structure. As can be seen in Figure 10.12, the I–V characteristics
for this diode closely follow the theoretical prediction given by the thermionic
emission model for about six decades of current with values of n very close to
unity. The intercept of the forward current at zero bias gives a barrier height
of φBn = 0.70 V. The barrier height deduced from the activation energy plot of
ln(JF) versus 1/T at a fixed forward bias is found to be equal to 0.69 V. This
value is in good agreement with the value determined using the photoemission
excitation of electrons from metal into the semiconductor. The reverse I–V curves
for an Al/n-type Si Schottky barrier diode are also displayed in Figure 10.13 for
two different substrate resistivities (i.e., ρ = 0.4 and 1.0 	 · cm). The breakdown
voltages for both diodes are presumably limited by the metal edge curvature in the
depletion region. Figure 10.14 shows the near-ideal forward I–V characteristics
for three Au/n-type GaAs Schottky barrier diodes formed on the GaAs substrates
with different crystal orientations.3

Another Schottky barrier diode structure with near-ideal I–V characteristics is
obtained using a p-type diffused guard-ring structure on an n-type silicon substrate,
as shown in Figure 10.15.4 A p-type diffused guard-ring structure is extended in the
normal planar fashion under the oxide. The PtSi Schottky barrier contact formed on
the n-type silicon inside the p+ guard ring is in electrical contact with the p-type Si
substrate. The doping profile of the p+ guard ring is tailored in such a way that the
breakdown voltage of the p-n junction in the guard-ring region is higher than that
of the Schottky barrier contact. In this structure, the region of maximum electric
field depends on the depth and profile of the diffused junction. For an ideal linearly
graded junction, the breakdown voltage is higher than that of a planar junction.
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Figure 10.14. Forward I–V curves
for Au/n-type GaAs diodes fabri-
cated on different substrate orienta-
tions. After Kahng,3 by permission.

Figure 10.16 shows the reverse I–V characteristics of a PtSi/n-Si Schottky diode
with a diffused guard-ring structure.4 The solid line is for the experimental data,
while the dashed line is calculated from (10.34) by including the image lowering
effect.

In silicon integrated circuits, aluminum and its alloy (Al–Cu) have been widely
used for ohmic contacts and interconnects for silicon devices and silicon integrated
circuits. In addition, aluminum is also widely used as a gate metal for silicon MOS
devices and as Schottky contacts for bipolar transistor circuits. Unfortunately, the
aluminum/silicon system has low eutectic temperature (577◦C) and interdiffusion
occurs at a relatively low temperature (i.e., approximately 400◦C). As a result,
large leakage current is often observed in the silicon shallow junction bipolar
transistors and the n-p junction diodes when aluminum is used for interconnects
and ohmic contacts. To overcome this problem, metal silicides with low resistiv-
ity and high-temperature stability are required for contacts in silicon integrated
circuits (ICs). Silicide is a metal–silicon compound, which can be formed with

Figure 10.15. A PtSi-n-Si Schot-
tky barrier diode with a diffused
guard-ring structure. After Lepsel-
ter and Sze,4 by permission.
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Figure 10.16. Comparison of theoreti-
cal and measured reverse I–V character-
istics for a PtSi/n-type Si Schottky bar-
rier diode shown in Figure 10.15. After
Lepselter and Sze,4 by permission.

a specific ratio of metal–silicon composition. Important silicides for silicon are
those of the refractory metals such as Mo, Ti, Ta, and W and the near-noble
metals such as Co, Ni, Pt, and Pd. Silicides formed from these metals have low
resistivity, high eutectic temperature, good adhesive characteristics, and stabil-
ity. The most stable silicides are the silicon-rich metal disilicides (e.g., CoSi2,
MoSi2, TiSi2, and WSi2), which have eutectic temperatures ranging from 1195 to
1440◦C and a resistivity of 2 to 4 × 10−5 	 · cm. The reaction temperatures for
these silicides may vary from 350 to 650◦C. Schottky barrier diodes formed on
these silicides have barrier heights varying between 0.58 and 0.67 eV on n-type
silicon. The most widely used metal silicide Schottky barrier contact in bipolar
circuit applications is the PtSi/n-Si system. The barrier height for a PtSi/n-Si Schot-
tky barrier diode is around 0.90 eV, which is probably the highest barrier height
(without barrier height enhancement) for a silicon Schottky barrier diode. In ad-
dition, high-quality PtSi/p-type silicon Schottky barrier diodes with low barrier
height of 0.2 eV have been developed for mid-IR (3–5 μm) photodetector array
applications.

In recent years, metal silicides have been widely used at the source or drain
contact region of silicon MOS transistors. In processing technology, the silicide
is formed by depositing the metal onto the exposed silicon area and followed
by annealing to form the silicide film. The annealing occurs at temperatures well
below the melting point of the silicon, but solid-state interdiffusion takes place and
a silicide film is formed. For metals deposited on Si, different silicide compounds
are formed under different annealing conditions. For example, in the case of Pt
deposited on Si, a Pt2Si film will form at around 300◦C, and it transforms into
PtSi with further annealing at 450◦C. Although PtSi has been widely used in
silicon ICs, the PtSi films are not very stable under high-temperature operation
and hence require further processing steps. The group of refractory metal silicides
of titanium (Ti), tantalum (Ta), molybdenum (Mo), and tungsten (W) has proved
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stable at high-temperature operation. For example, Ti film deposited on Si forms
stable TiSi2 compound following a 650◦C annealing. TiSi2 has been widely used
in VLSI device contacts. In addition, silicide films can also be formed by epitaxial
growth. For example, epitaxial silicides, such as CoSi2 and NiSi2, which have cubic
crystal structure, have been used as low-resistivity contacts and in novel high-speed
device structures, such as metal-based transistors. More recently, epitaxial silicide
film of TiSi2 has also been reported for use in VLSI circuits and devices.

10.7. Determination of Schottky Barrier Height

Expressions of the barrier height for an ideal metal on n- and p-type semiconductor
Schottky barrier diodes are given by (10.13) and (10.14), respectively. However,
these expressions are valid only when the image lowering effect is negligible and
the surface state density is small. However, in most III-V compound semicon-
ductors, the surface state density is usually very high. As a result, it is necessary
to include the interface state effect in the barrier height expression. As shown in
Figure 10.7b, the effect of the surface states is represented by the energy level qφ0.
This energy level coincides with the Fermi level at the semiconductor surface be-
fore the metal–semiconductor contact is formed. In fact, qφ0 could be considered
as a demarcation level in which the surface states below it must be filled in order to
satisfy the charge-neutrality condition at the surface. If the surface states become
very large, then the Fermi level at the surface will be pinned at qφ0, and the barrier
height for a metal–semiconductor contact becomes independent of the metal work
function. This has indeed been observed in many Schottky barrier contacts formed
on III-V compound semiconductors. Cowley and Sze have derived a general ex-
pression for the barrier height by taking into account the effects of image lowering
and surface state density. This is given by5

φBn = c2(φm − χs) + (1 − c2)(Eg/q − φ0) − �φ = c2φm + c3, (10.48)

where

c2 = εiε0

εiε0 + q2δDs
. (10.49)

Here, εi is the dielectric constant of the interfacial layer and δ is the thickness of
this interfacial layer (see Figure 10.7b). Equation (10.48) is obtained by assuming
that δ is only a few angstroms thick, and hence εi is roughly equal to unity. Since
c2 and c3 are determined experimentally, one can express qφ0 and Ds in terms of
these two quantities,

qφ0 = Eg − q

(
c2χs + c3 + �φ

1 − c2

)
, (10.50)

and the interface state density Ds is given by

Ds = (1 − c2)εiε0

c2δq2
. (10.51)
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It is noted that the value of qφ0 for a wide variety of metals on III-V compound
semiconductor Schottky contacts was found to be about one-third of the band gap
energy above the valence band edge. Therefore, the barrier height for a Schottky
diode formed on n-type semiconductors with very high surface state density
is roughly equal to two-thirds of the band gap energy (i.e., qφBn ≈ (2/3)Eg).
Measurements of barrier heights for many metal/III-V semiconductor Schottky
diodes with high surface state density are found to be in good agreement with
this prediction. Theoretical calculations and experimental data reveal that the
surface state densities for many III-V semiconductors such as GaAs and GaN are
indeed very high (e.g., Qss ≥ 1013 states/cm2) and the barrier height was found to
be independent of the metal work function for Schottky diodes formed on these
semiconductor materials.

If the interfacial layer is assumed only a few angstroms thick and εi = 1, then
the interface state density given by (10.51) is reduced to

Ds ≈ 1.1 × 1013(1 − c2)/c2 states/(cm2 · eV). (10.52)

For infinite interface state density, Ds → ∞ and c2 → 0, (10.48) becomes

φBn = Eg/q − φ0 − �φ ≈ 2

3
(Eg/q). (10.53)

If the interface state density is negligible and only the image-lowering effect is
considered, then the barrier height is given by

φBn = (φm − χs) − �φ, (10.54)

which reduces to the ideal Schottky barrier height given by (10.13) when the
image-lowering effect is neglected.

Experimental results reveal that values of c2 for Si, GaAs, and GaP are equal to
0.27, 0.09, and 0.27 eV, respectively. The calculated values of qφ0 for Si, GaAs,
and GaP are found to be 0.30, 0.54, and 0.67 eV, respectively. Figure 10.17 shows
the experimental results of the barrier height versus metal work function for n-
type Si, GaAs, GaP, and CdS Schottky contacts.5 The results clearly show that for
GaAs Schottky contacts, the barrier height is nearly independent of the metal work
function. This is due to the very high interface state density for GaAs crystal, and
the barrier height is determined by (10.53).

The three most commonly used methods for determining the barrier height of
a Schottky barrier diode are discussed next. These are (i) current–voltage (I–V),
(ii) capacitance–voltage (C–V), and (iii) photoemission (I–E) methods, which are
now discussed.

(i) The current–voltage method. A semiempirical formula for the current density
of a practical Schottky barrier diode can be expressed as

J = C exp

(
−qφBn

kBT

) [
exp

(
qVa

nkBT

)
− 1

]
, (10.55)

where C is a preexponential factor; its value depends on the model employed (i.e.,
thermionic emission or diffusion model). Typical plots of ln(J ) versus applied
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Figure 10.17. Schottky barrier heights versus metal work function for metal–Si GaAs,
GaP, and CdS Schottky contacts. After Cowley and Sze,5 by permission.

voltage Va and inverse temperature 1/T for a Schottky barrier diode are shown
in Figures 10.18a and b, respectively. The barrier height can be determined either
from the saturation current density J0, as shown in Figure 10.18a, or from the ln(J )
versus 1/T plot at a fixed-bias voltage, as shown in Figure 10.18b. To increase
the accuracy of the barrier height determined from the ln(JF/T 2) versus 1/T plot
at a fixed forward-bias voltage, it is important to choose a bias voltage in which
the diode ideality factor is nearly equal at different temperatures (i.e., the slope of

Figure 10.18. (a) ln J versus Va for a Schottky barrier diode at four different temperatures;
(b) ln J versus 1/T for four different forward-bias voltages.
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Figure 10.19. (a) Illumination from the top surface of a Schottky photodiode. (b) Photoex-
citation of electrons: (i) from the metal into the semiconductor with qφBn < hν < Eg, (ii)
inside the semiconductor with hν > Eg.

ln(JF) vs. VF plots at T1, T2, T3, and T4 should be identical), as shown in Figure
10.18a.

(ii) The photoemission method. The barrier height of a Schottky diode can be
determined by measuring the photocurrent versus wavelength of the incident pho-
tons near the fundamental absorption edge, as illustrated in Figure 10.19a. When
photons with energies falling between the barrier height and the band gap en-
ergy of the semiconductor (i.e., qφBn < hv < Eg) impinge on the Schottky con-
tact, electrons are excited from the metal and injected into the semiconductor.
This is illustrated in process (i) of Figure 10.19b. If the energy of the incident
photons exceeds the band gap energy of the semiconductor (i.e., hv > Eg), then
direct band-to-band excitation occurs and electron–hole pairs are generated in
the semiconductor. This is illustrated in process (ii) of Figure 10.19b. When
process (ii) becomes dominant, a sharp increase in photoresponse near the ab-
sorption edge is observed, and intrinsic photoconduction becomes the dominant
process.

In the photoemission method, the energies of the incident photons are limited
between the barrier height and the band gap energy of the semiconductor. Accord-
ing to Fowler’s theory, the photocurrent of a Schottky barrier diode produced by
photogenerated electrons in the metal [i.e., process (i)] is given by6

Iph = C(hν − qφBn)2, (10.56)

which is valid for (hν − qφBn) ≥ 3kBT and qφBn < hν < Eg. From (10.56), it
is seen that the photocurrent is directly proportional to the square of the photon
energy. Therefore, a plot of the square root of the photocurrent versus photon energy
should yield a straight line. Extrapolation of this straight line to the intercept of
the horizontal axis yields the barrier height φBn. Figure 10.20 shows values of the
barrier heights determined by the photoemission method for a W/Si and a W/GaAs
Schottky diode.

(iii) The capacitance–voltage method. Another method of determining the barrier
height of a Schottky diode uses the capacitance versus voltage (C–V) measurement.
From (10.27), it is seen that for a uniformly doped semiconductor, a plot of C−2

d
versus V should yield a straight line, and its intercept with the voltage axis is equal
to the diffusion potential VD. This is illustrated in Figure 10.21 for a W/n-Si and
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Figure 10.20. Square root of pho-
tocurrent (in arbitrary units) ver-
sus photon energy for a W–Si and
a W–GaAs Schottky diode. The
intercept of the curves with the
horizontal axis yields the barrier
height. After Crowell et al.,7 by
permission.

a W/n-GaAs Schottky barrier diode.7 The diffusion potential determined by the
C–V measurements is directly related to the barrier height by the expression

φBn = VD + Vn − �φ + kBT/q, (10.57)

where

�φ =
√

qEm

4πε0εs
, (10.58)

and

Vn =
(

kBT

q

)
ln

(
Nc

ND

)
. (10.59)

Figure 10.21. 1/C2 versus
applied voltage for a W–Si
and a W–GaAs Schottky
diode. After Crowell et al.,7

by permission.
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Table 10.2. Barrier heights, φBn (eV), at 300 K for some
metal/n-type semiconductor Schottky diodes.

Metal Si Ge GaAs GaP InP GaN InSb

Al 0.55–0.77 0.48 0.80 1.05 – 0.6, 0.8 –
Ag 0.56–0.79 – 0.88 1.20 0.54 – 0.18
Au 0.76–0.81 0.45 0.90 1.30 0.49 0.94 0.17
Cu 0.69–0.79 0.48 0.82 1.20 – – –
Mo 0.68 – – – – – –
Ni 0.67–0.70 – – 1.27 – 1.13 –
Pd 0.71 – – – – 0.93 –
Pt 0.90 – 0.86 1.45 – 0.8–1.60 –

PtSi 0.85 – – – – – –
W 0.66 0.48 0.71–0.80 – – – –
Ti 0.60 – 0.82 – – 1.12 –

Ti/Ai – – – – – Ohmic –

is the depth of the Fermi level below the condution band edge. Thus, knowing
VD, Vn, and �φ, the barrier height φBn can be determined from the C–V measure-
ment. Table 10.2 lists values of the barrier heights for some metal/n-type semi-
conductor Schottky contacts determined using the three methods described above.
Table 10.3 lists values of the barrier heights for some metal/p-type semiconductor
Schottky contacts.

The Schottky barrier energy (φB) for Al, Ni, Pd, Co, Au, and Ag contacts on
chemically etched 〈100〉 surfaces of both n-and p-type InP was measured and the
metallurgical behavior of the contact structures was studied using Auger-electron
spectroscopy (AES) by E. Hokelek and G. Y. Robinson.8 In their study, they
found two distinct Fermi-level pinning positions located at Ef = Ec − 0.50 eV and
Ef = Ec − 0.40 eV and correlated them to the metallurgical state of the contact
structures. Their findings strongly suggested that the Schottky barrier formation
on InP is controlled by the chemical reaction between the contact metal and the
InP substrate, with the degree of chemical reactivity appearing to determine the
Fermi-level pinning position at the interface. No simple linear relationship could be
found between the measured Schottky barrier height on InP and the work function
or the electron negativities of the contact metals. Thus, the results could not be
explained in terms of the traditional Schottky9 and Bardeen theories.10 Table 10.4

Table 10.3. Barrier heights, φBp (eV), at 300 K for some
metal/p-type semiconductor Schottky barrier diodes.

Metal Si Ge GaAs InP GaN

Al 0.58 0.48 – 0.92 Ohmic
Ag 0.54 0.50 0.63 0.81 –
Au 0.34 0.30 0.42 0.81 0.57
Ti 0.61 0.48 – – 0.65
Hf 0.54 – 0.68 – –
Ni 0.51 – – 0.90 0.50
Pt 0.20 – – – 0.50
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Table 10.4. Schottky barrier heights for metal/p-type InP Schottky diodes
calculated from the photoemission, C–V, and I–V measurements.8

φBp(I –E) φBp(I –V ) φBp(C–V )
Metal (meV) (meV) (meV) �φ (meV) φm (eV) χ (eV)

Al 915 ± 25 889 ± 11 1118 ± 68 229 ± 79 4.17 1.5
Ni 895 ± 5 897 ± 5 1140 ± 10 243 ± 15 5.10 1.8
Co 780 ± 0 803 ± 8 865 ± 23 62 ± 31 4.97 1.8
Ag 810 ± 10 788 ± 27 862 ± 4 74 ± 31 4.41 1.9
Au 810 ± 10 794 ± 4 930 ± 10 136 ± 14 5.10 2.4
Pd 810 ± 15 823 ± 3 895 ± 16 72 ± 19 5.17 2.2

lists the Schottky barrier heights for several metal/p-type InP Schottky barrier
diodes determined using the photoemission, C–V, and I–V measurements.

Recent study of Schottky barrier contacts on n- and p-type GaN have been
reported by Rickert et al.11 using X-ray photoemission techniques to determine the
barrier heights of Au, Al, Ni, Ti, Pt, and Pd on n- and p-type GaN Schottky contacts.
Two different behaviors were observed for the six metals studied. For Au, Ti, and
Pt, the surface Fermi-level position lies about 0.5 eV higher in the band gap for
n-type than for the p-type GaN. For Ni, Al, and Pd, the surface Fermi-level position
is independent of doping, but varies from one metal to the other. Results for Ni,
Pd, and Al fit a modified Schottky–Mott theory, while Au, Ti, and Pt show a more
complex behavior. Table 10.5 lists the Schottky barrier heights for six metals with
contact to n- and p-type GaN determined using the X-ray photoemission method.11

It should be noted that for metals (e.g., Ni, Al, and Pd) that exhibit a single
Fermi-level pinning position, the sum of φBn and φBp values shown in Table 10.5
is very close to the GaN band gap (Eg = 3.4 eV). In this respect, Ni, Al, and Pd
could be considered to follow the Schottky–Mott theory.

10.8. Enhancement of Effective Barrier Height

As discussed in the previous section, the barrier height of an ideal metal–
semiconductor Schottky diode is equal to the difference between the metal work

Table 10.5. The schottky barrier heights and Fermi-level positions for metals
on n- and p-type GaN as determined by the X-ray photoemission method.11

Barrier height (eV)
n-GaN: position

Metal φm(eV) χm(eV) of EF (above Ev) φBn φBp

Al 4.28 1.61 2.6 ± 01 0.8 ± 01 2.5 ± 01
Ti 4.33 1.54 2.8 ± 01 0.6 ± 01 2.3 ± 01
Au 5.10 2.54 2.5 ± 01 0.9 ± 01 1.9 ± 01
Pd 5.12 2.20 1.5 ± 01 1.9 ± 01 1.5 ± 01
Ni 5.15 1.91 2.0 ± 01 1.4 ± 01 1.9 ± 01
Pt 5.65 2.28 1.8 ± 01 1.6 ± 01 1.4 ± 01
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function and the electron affinity of the semiconductor. In reality, however, the
surface state density of a semiconductor plays an important role in determining
the effective barrier height of a Schottky diode. Since only a limited number of
metals are suitable for forming Schottky contacts on the semiconductor, it is im-
portant to explore alternative methods for enhancing the effective barrier height of
a Schottky diode.

It is noted that the effective barrier height of a Schottky diode can be strongly
affected by the electric field distribution near the metal–semiconductor interface.
Therefore, the barrier height of a Schottky contact can be modified by altering the
built-in electric field distribution (e.g., through creating a concentration gradient
near the semiconductor surface) in a thin region below the metal–semiconductor in-
terface. Evidence of such dependence has indeed been observed in various Schottky
barrier contacts. In fact, the barrier height will decrease if a heavily doped n+ or
p+ layer is grown on the n or p semiconductor to form a metal-n+/n or metal-p+/p
structure. This technique is widely used for making good ohmic contacts in various
semiconductor devices and integrated circuits. On the other hand, if a thin surface
layer of opposite dopant to the substrate is deposited onto it to form a metal-p+/n
or metal–n+/p structure, the effective barrier height can be significantly enhanced
by using such a structure.

In this section, three different barrier height enhancement methods are described.
In the first approach, the effective barrier height of a Schottky diode can be en-
hanced by depositing a very thin epilayer of opposite dopant on the semiconductor
substrate. In such a structure, the barrier height of a metal/p+-n or a metal/n+-
p Schottky barrier contact is controlled by the thickness and dopant density of
the thin epilayer grown on top of the semiconductor substrate. This thin surface
layer can be deposited using low-energy ion implantation, molecular beam epi-
taxy (MBE), or a metal-organic chemical vapor deposition (MOCVD) technique.
Theoretical and experimental results for the metal/p+-n and metal/n+-p silicon
Schottky barrier diodes are discussed next.

Figure 10.22a shows the cross-sectional view and Figure 10.22b the energy
band diagram of a metal/p+-n GaAs Schottky barrier diode. It is noted that the
p+-n junction shown in Figure 10.22a is an abrupt junction structure, and the
thickness (Wp) of the p region is treated as an adjustable parameter. As long as this
p layer remains very thin, the entire p layer will be fully depleted even at zero-bias
conditions. The potential distribution in such a structure can be evaluated using the
depletion approximation. However, if the p layer becomes too thick, then it will be
partially depleted. As a result, a quasineutral p region will exist, and the structure
becomes a conventional metal/p-type Schottky barrier diode in series with a p-n
junction diode. Such a structure will be avoided in the present analysis. Therefore,
it is important to keep in mind that the metal/n+-p or metal/p+-n structure will
work as a Schottky diode only if the thin n+ or p+ surface layer remains fully
depleted.

To analyze the barrier height enhancement in a metal/p+-n or metal/n+-p Schot-
tky barrier structure, the abrupt junction approximation will be used. The ba-
sic device parameters are defined as follows: χs is the electron affinity of the
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Figure 10.22. Schematic diagram of a metal/p-n Schottky barrier diode: (a) cross-sectional
view, and (b) energy band diagram showing barrier height enhancement of qVm.

semiconductor; φm, φp, and φn are the work functions of the metal, p-
semiconductor, and n-semiconductor, respectively. If a voltage V is applied to
the metal contact, then a potential maximum Vm will appear in front of the
metal contact. In this case, φ′

Bn = φm − χs + Vm(V ) is the barrier height seen
by electrons in the metal, and φ′

Bn = φm − φn − V + Vm(V ) is the barrier height
seen by electrons on the n-type semiconductor side. If Wn is the width of the
space-charge region that extends into the n region and x = 0 at the metal con-
tact, then using the depletion approximation, Poisson’s equation can be written
as

d2V (x)

dx2
=

⎧⎪⎪⎨
⎪⎪⎩

q Na

ε0εs
for 0 < x < Wp, (10.60)

−q Nd

ε0εs
for Wp < x < Wp + Wn, (10.61)

with boundary conditions given by

V (x) =
{

0 at x = 0,

V (x) = φm − φn + Vn at x = Wp + Wn.
(10.62)



314 10. Metal–Semiconductor Contacts

It is noted that V (x) and dV (x)
dx are continuous at x = Wp, and

dV (x)

dx

∣∣∣∣
x=0

= q(NdWn − NaWp)

ε0εs
,

dV (x)

dx

∣∣∣∣
x = Wp+Wn

= 0. (10.63)

It can be shown that the solution of V (x) for 0 ≤ x ≤ Wp is given by

V (x) = V1(x) =
(

q Na

ε0εs

) (
x2

2
− xWp

)
+

(
q Nd

ε0εs

)
Wnx . (10.64)

And the solution of V (x) for Wp < x < Wp + Wn is given by

V (x) = V2(x) = −
(

q Nd

ε0εs

) [
x2

2
− x(Wp + Wn)

]
− q(Nd + Na)W 2

p

ε0εs
. (10.65)

The width of the n region can be obtained using the second boundary condition
(10.62), namely,

φm − φn + Vn = 1

2

[
q Nd(Wn + Wp)2

ε0εs

]
− 1

2

[
q(Nd + Na)W 2

p

ε0εs

]
. (10.66)

If NdWn  NaWp, then a potential maximum exists inside the space-charge region
of the semiconductor and in front of the metal contact. The position of this potential
maximum, xm, can be determined by setting dV (x)/dx = 0 at x = xm, which yields

q Na(xm − Wp)

ε0εs
+ q NdWn

ε0εs
= 0, (10.67)

or

xm = Wp −
(

Nd

Na

)
Wn. (10.68)

Note that Vm can be obtained by substituting xm given by (10.68) into (10.64),
which yields

Vm = −�φ =
(

q

2ε0εs Na

)
(NaWp − NdWn)2. (10.69)

Therefore, the effective barrier height for the metal/p+-n Schottky barrier diode
shown in Figure 10.22a is given by

φ′
Bn = φm − χs + Vm, (10.70)

where Vm is given by (10.69), and Wp is the thickness of the p layer. The depletion
layer width in the n region, Wn, can be calculated using the expression

Wn = −Wp + (W 2
p + C)1/2, (10.71)
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Figure 10.23. Calculated barrier heights of a Au/p-n GaAs Schottky barrier diode versus
dopant density, NA, of the p-layer for different p-layer thicknesses. Note: Nd of the n-
substrate is fixed at 1016 cm−3. After Li,12 by permission.

where

C =
(

Na

Nd

)
W 2

p + 2ε0εs(φm − φn)

q Nd
(10.72)

and

φn = χs + Vn = χs +
(

kBT

q

)
ln

(
Nc

Nd

)
. (10.73)

From the results discussed above, the barrier height enhancement for a
metal/p+-n Schottky barrier diode can be calculated using (10.69) through (10.73).
Figures 10.23 and 10.24 show the theoretical calculations of barrier height
enhancement versus dopant density of the p+ and n+ layers for a Au/p+-n
GaAs Schottky barrier diode with p-layer thickness as parameter.12 Figure 10.25a
shows a plot of the effective barrier height for a Ti/n+-p silicon Schottky bar-
rier diode, and Figure 10.25b shows the forward I–V characteristics for several
Ti/n+-p silicon Schottky diodes with different phosphorus implant doses in the
n+-implanted layer.13 The barrier height was found to increase from φBo = 0.60 eV
for a conventional Ti/p-silicon Schottky diode to φBp = 0.93 eV for a Ti/n+-p sili-
con Schottky diode fabricated using a phosphorus implant dose of 1.2 × 1012 cm−2

on the p-type silicon substrate. The results show that a significant (>50%) increase
in barrier height was obtained using this approach. In principle, an effective barrier
height equal to the band gap energy of the semiconductor can be achieved using the
structure described in this section, provided that the thickness and dopant density
of the thin surface layer are properly chosen for such a Schottky barrier structure.
For silicon Schottky barrier diodes, incorporation of such a thin surface layer can
be achieved using epitaxial growth or an ion implantation technique, while for
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Figure 10.24. Calculated barrier heights of a Au/p-n Schottky barrier diode versus dopant
density, Nd, of the n-substrate for different p-layer thicknesses and for NA = 5 × 1016 cm−3.
After Li,12 by permission.

Schottky barrier diodes formed on III-V compound semiconductors the thin epi-
layer can be deposited using either molecular beam epitaxy (MBE), atomic layer
epitaxy (ALE), or the metal-organic chemical vapor deposition (MOCVD) growth
technique. Layer thickness from a few tens of Å to a few hundreds or thousands of
Å can be readily deposited onto the GaAs or InP substrates using either the MBE

Figure 10.25. (a) Calculated barrier heights versus density of the phosphorous implanted
layer for different layer thicknesses of a Ti/n-p silicon Schottky barrier diode. Solid dots
denote experimental data. (b) Forward-biased I–V curves for a controlled Ti/p-silicon Schot-
tky diode (577) and four other Ti/n-p silicon Schottky barrier diodes with different implant
doses. After Li et al.,13 by permission, c© IEEE–1980.
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or MOCVD growth technique. Therefore, the metal/p+-n or metal/n+-p Schottky
barrier structure described in this section can be considered as a viable approach
for enhancing the effective barrier height of a conventional metal–semiconductor
Schottky diode.

Another barrier height enhancement technique using the band gap engineering
approach on a small-band-gap semiconductor such as In0.53Ga0.47As has been re-
ported recently.14 The technique involves the growth of n periods of thin graded
superlattices consisting of a larger-band-gap material and a smaller-band-gap epi-
layer of variable thickness to create a larger-band-gap surface layer so that the
effective barrier height can be enhanced in such a Schottky barrier diode. For
example, a high-quality In0.53Ga0.47As Schottky barrier diode has been fabri-
cated using a novel graded superlattice structure consisting of 10 periods of n-
In0.52Al0.48As/In0.53Ga0.47As graded superlattice deposited on top of the n-type
In0.53Ga0.47As epilayer grown by the MBE technique on the InP substrate. The
result shows a barrier height enhancement of 0.41 eV (i.e., from φB0 = 0.3 eV
to φBn = 0.71 eV), and near-ideal I–V and C–V characteristics are obtained for
this novel Schottky diode. Figure 10.26a shows the energy band diagram of
this n-In0.52Al0.48As/In0.53Ga0.47As graded superlattice structure formed on an In-
GaAs Schottky diode, and Figure 10.26b shows the dimensions of this graded
InAlAs/InGaAs superlattice layer structure and doping densities in each region.
The composition of InAlAs/InGaAs and total thickness of each period remain
the same in the superlattice layer. The graded composition is achieved by chang-
ing the thickness ratio of the InAlAs/InGaAs superlattice in each period (i.e.,
each period is 60 Å and the thickness ratio of InAlAs/InGaAs superlattice varied
from 55/5, 50/10, . . . ,30/30, . . . ,5/55 Å from the top to the bottom layers). Figure
10.26c shows the reverse leakage current for a Schottky barrier diode formed on
the graded superlattice structure shown in Figure 10.26b. It is noted that very low
leakage current was obtained in this InAlAs/InGaAs superlattice Schottky diode.

The third method of enhancing the effective barrier height in a Schottky barrier
diode is using the metal–insulator–semiconductor (MIS) structure. In this structure,
a very thin insulating layer with thickness of 1 to 3 nm is inserted between the
metal and the semiconductor Schottky contact, which results in an MIS Schottky
barrier structure (see Figures 12.10a and b). The MIS structure can increase the
effective barrier height by �φB = δχ1/2, where δ is the thickness of the insulating
layer and χ is the mean incremental barrier height. In an MIS Schottky diode,
the current conduction is due to the majority carriers tunneling through the thin
insulating layer. This tunneling current can be described by

Jt = A∗T 2 exp(−qφBn/kBT ) exp(−δχ1/2) exp(qVa/nkBT ). (10.74)

In (10.74), it is noted that the dark current of an MIS Schottky diode can be
reduced sharply by the incorporation of a thin insulating layer between the
metal/semiconductor contact. As a result, the MIS structure has been widely used
in the fabrication of Schottky barrier solar cells to increase the open-circuit voltage
and the conversion efficiency. This will be discussed further in Section 12.2.4.



Figure 10.26. (a) Energy diagram of a Au/n-InAlAs/n-InGaAs Schottky barrier diode with
a 600 Å graded superlattice of InAlAs/InGaAs for barrier height enhancement, (b) dimen-
sions and dopant densities of the structure shown, and (c) the reverse I–V characteristics for
this Schottky barrier diode. After Lee et al.,14 by permission.
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10.9. Applications of Schottky Diodes

Schottky diodes have been widely used for a wide variety of applications such as
solar cells, photodetectors, Schottky-clamped transistors, metal gate field-effect
transistors (MESFETs), modulation-doped field-effect transistors (MODFETS or
HEMTs), microwave mixers, RF attenuators, rectifiers, varactors, Zener diodes,
Schottky transistor logic (STL) gate arrays, and various integrated circuits. For ex-
ample, the exact logarithmic relationship displayed by the I–V curve of a Schottky
diode under forward-bias conditions over several decades of current change en-
ables it to be used in logarithmic converter circuits. A metal–semiconductor Schot-
tky diode can also be used as a variable capacitor in parametric circuits for
frequency multiplication. The Schottky barrier solar cell has the potential for use as
a low-cost photovoltaic power conversion device for large-scale terrestrial power
generation. High-speed Schottky barrier photodiodes covering a broad wavelength
range from ultraviolet to visible and into the mid-IR spectral regime have been
reported using different metal–semiconductor contacts. In this section, some prac-
tical applications of Schottky barrier diodes are described.

10.9.1. Photodetectors and Solar Cells

A Schottky barrier diode can be used as a high-speed photodetector for low-level
light detection or as a solar cell for conversion of solar energy into electricity. To
reduce absorption loss in the metal contact of a Schottky barrier photodiode, it is
a common practice to use either a thin metal film (100 Å or less) or a grating-
type (metal grids) structure for the Schottky contact. The reflection loss on a
semiconductor surface is minimized by using an antireflection (AR) coating an the
front side of a Schottky barrier photodiode, as illustrated in Figure 10.27a. For a
grating-type Schottky barrier photodiode shown in Figure 10.27b, the pattern of
metal-grating structure for the Schottky contact can be defined and produced using
the photolithography technique. Selection of the metal-grid spacing is determined
by the operating bias voltage and the substrate doping concentration of the diode
to ensure that spacing between the metal grids is fully depleted under operating
conditions. For example, in the case of a Au/n-Si Schottky diode with a doping
density of ND = 1014 cm−3, a spacing of around 10 μm between the metal grids
is adequate for creating a fully depleted region between the metal grids of such
a Schottky contact. A photodetector using a semitransparent Schottky contact or
a grating-type Schottky contact structure has shown excellent quantum efficiency
and high responsivity.

In general, there are three detection modes that are commonly used in a Schottky
barrier photodiode; these are illustrated in Figures 10.28a, b, and c. The operation
of each of these detection modes depends greatly on the incident photon energies,
the applied bias voltage, and the breakdown voltage of the photodiode. These are
discussed as follows.
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(i) qφBn < hν < Eg and Va  VB. In this detection mode, electrons are excited
from the metal and injected into the semiconductor, as illustrated in Figure 10.28a.
In this case, the Schottky barrier photodiode may be used for a wide variety of
applications, which include (1) IR detector, (2) as a test structure to determine the
barrier height by the photoemission (I–E) technique, and (3) as a test device for
studying the bulk defects and interface states in a semiconductor, and hot electron
transport in a metal film. The reason a Schottky diode can be used for long-
wavelength infrared (LWIR) detection is that the barrier height for most Schottky
diodes is smaller than the band gap energy of the semiconductor. As a result,
photons with energy equal to the barrier height absorbed inside the metal film of
a Schottky diode usually fall in the infrared regime. Since the barrier height for
an IR Schottky barrier photodiode is usually small, the reverse leakage current
in such a device is expected to be very large at room temperature. Therefore, in
order to reduce the reverse leakage current, an IR Schottky barrier photodetector is
usually operated at cryogenic temperatures (e.g., T < 77 K). For example, PtSi/p-
Si Schottky barrier photodiode (with barrier height φBp = 0.2 eV) arrays integrated
with CCD (charge-coupled device) arrays have been developed for 3- to 5-μm IR
image-sensor array applications. Extending the detection wavelength to 10 μm
is possible if the operating temperature for the low-barrier (≈ 0.1 eV) Schottky
barrier photodiode is lowered to 4.2 K.

(ii) hν ≥ Eg and Va  VB. As shown in Figure 10.28b, in this detection mode,
the electron–hole pairs are generated inside the depletion region of the semicon-
ductor, and the Schottky diode is operating as a high-speed photodetector. Since
the Schottky diode is a majority carrier device, its response speed is limited mainly
by the RC time constant and the carrier transit time across the depletion region
of the detector. The grating-type Au/n-Si Schottky barrier photodiode shown in
Figure 10.27b has a responsivity of 0.63 A/W at 0.9 μm and a bandwidth of 1 GHz.
A Au/n-GaAs Schottky barrier photodiode has achieved a response speed of less
than 100 ps at 0.85 μm. In fact, a high-speed GaAs Schottky barrier photodiode
with a 3-dB bandwidth greater than 100 GHz has been reported recently. Further
description of high-speed photodetectors using Schottky barrier structures will be
given in Chapter 12.

Figure 10.27. Schematic diagrams of (a) conventional Schottky barrier photodiode and (b)
a grating-type Schottky barrier photodiode.
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Figure 10.28. Different detection modes of a Schottky barrier photodiode: (a) qφBn ≤
hν ≤ Eg, (b) hν ≥ Eg, Va  VB, (c) hν ≥ Eg, Va ≈ VB.

(iii) hν ≥ Eg and Va = VB. In this mode of operation, the Schottky barrier pho-
todiode is in the avalanche mode of detection; this is shown in Figure 10.28c.
When a Schottky diode is operating in the avalanche regime (Va = VB), an inter-
nal current gain is obtained. Thus, a Schottky barrier avalanche photodiode (APD)
can provide both high-speed and high-sensitivity detection. A diffused guard-ring
structure is usually employed in a Schottky barrier APD to eliminate the possible
edge breakdown effect.

A Schottky barrier photodiode can also be used as an efficient ultraviolet (UV)
photon detector. For example, in the UV regime the absorption coefficient for
most semiconductors is greater than 105 cm−1, which corresponds to an effec-
tive absorption depth of 0.1 μm or less. Thus, by using a thin metal film and
an AR coating film simultaneously on the Schottky barrier structure, efficient



322 10. Metal–Semiconductor Contacts

Figure 10.29. A Schottky-clamped bipolar
transistor. The Schottky diode is connected
between the base and collector of a bipolar
junction transistor.

collection of photons in the UV spectrum can be achieved. For example, both
Ag/ZnS and Au/ZnSe Schottky barrier photodiodes have been developed for UV
light detection. More recently, Schottky barrier photodiodes formed on GaN and
SiC wide-band-gap materials have shown superior performance characteristics
in the UV and solar blind spectral regions. This will be discussed further in
Chapter 12.

Finally, Schottky barrier solar cells have also been developed for photovoltaic
conversion of sunlight into electricity. The Schottky barrier solar cell is easy to
fabricate, and has the potential for low-cost and large-scale production. However,
because of the low barrier height, Schottky barrier solar cells in general have lower
open-circuit voltage and lower conversion efficiency than most p-n junction solar
cells. This will be discussed further in Chapter 12.

10.9.2. Schottky-Clamped Transistors

In the saturated switching process of a conventional n-p-n or p-n-p bipolar junction
transistor (BJT), the turnoff speed is limited by the minority carrier storage time in
the collector region of the transistor. For a Si switching transistor, the conventional
method of reducing the storage time is to shorten the minority carrier lifetime
by doping the Si transistors with gold impurity. However, since current gain is
also proportional to the minority carrier lifetime, the gold-doped silicon transistor
will also have a lower current gain. Therefore, it is generally not desirable to
dope silicon transistors with gold impurity. To overcome this problem a Schottky
barrier diode is usually connected to the base–collector junction of the transistor.
As shown in Figure 10.29, the minority carrier storage problem can be virtually
eliminated if a Schottky barrier diode is connected between the base–collector
junction of the transistor to form a Schottky-clamped transistor. The switching time
constant is drastically shortened in this transistor, since the minority carrier storage
in the collector is greatly reduced by the Schottky diode connecting in parallel
with the base–collector junction. In the saturation region, the collector junction of
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the transistor is slightly forward-biased instead of reverse-biased. If the forward
voltage drop in the Schottky diode is much smaller than the base–collector voltage
of the transistor, then most of the excess base current will flow through the Schottky
diode. Therefore, the minority carriers are not stored in the collector. Furthermore,
the saturation time is greatly reduced when compared to a transistor without a
Schottky diode connecting to the base–collector junction. A switching time of
less than 1 ns for a Schottky-clamped silicon BJT has been reported. Recently,
low-power and high-speed Schottky-clamped transistor logic (STL) gate arrays
have been developed for computer and other custom IC applications. In an STL
gate array, two Schottky barrier diodes with different barrier heights are used. For
example, in the Si STL gate array, one Schottky diode (e.g., PtSi/n-Si) with large
barrier height is connected to the base–collector junction, while another Schottky
diode with low barrier height (e.g., TiW/p-Si) is connected in the collector region
of the transistor. The Si STL gate arrays with propagation delay times of less than
1 ns and voltage swings of a few hundred millivolts or less have been achieved. The
STL gate arrays fabricated from III-V compound semiconductors such as GaAs,
InP, and InGaAs with propagation delay times of a few tens of picoseconds have
also been reported.

10.9.3. Microwave Mixers

High-frequency applications of Schottky barrier diodes deal with low-level signal
detection and mixing at microwave frequencies. It has been shown that burnout
resistance and noise performance of a Schottky diode is usually superior to that of
a point-contact mixer diode.

The frequency response of a Schottky diode is generally superior to that of a
p-n junction diode, since it is limited by the RC time constant of the Schottky
diode rather than by the minority carrier lifetime as in the case of a p-n junction
diode. Using an n-n+ epitaxial wafer for Schottky contact fabrication, both junction
capacitance (e.g., C < 0.1 pF at Va = 0 and Nd = 1017 cm−3) and series resistance
of the diode can be reduced to a very low value. This is a direct result of using
a very thin n-type epitaxial layer on an n+-silicon substrate, and the resistance
drop across the n+ region is negligibly small. A point-contact Schottky diode
with barrier contact area 5- to 10-μm in diameter has been reported. Figure 10.30
shows the geometry of a microwave Schottky barrier diode mixer using a microstrip
line configuration. This Schottky diode is capable of excellent mixer performance,
either as a discrete component in a waveguide or as a balanced mixer in a microstrip
line at carrier frequencies as high as several tens of GHz.

The RC time constant of a Schottky barrier diode can be calculated using an
n-n+ structure with a barrier contact of radius r , which is large compared to the
epilayer thickness. The series resistance of a Schottky diode can be calculated
using the expression

Rs = ρd

πr2
=

(
1

q NDμn

) (
d

πr2

)
. (10.75)
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Figure 10.30. Cross-sectional view
of a Au/n-type GaAs microwave
mixer using a Schottky barrier
structure.

The depletion layer capacitance can be calculated using the expression

Cd = (πr2)

(
q NDε0εs

2VD

)1/2

, (10.76)

where ND is the doping density of the n-epitaxial layer and VD is the diffusion
potential. Thus, the RC time constant for such a Schottky diode is given by

RsCd =
(

d

μn

) (
ε0εs

2q NDVD

)1/2

. (10.77)

To achieve high-frequency performance in a Schottky diode, the RC time con-
stant of the diode must be kept as small as possible. This requires the use of a very
thin epitaxial layer with high carrier mobility and doping density. Other important
applications of the Schottky barrier structure include metal gate (i.e., Schottky gate)
field-effect transistors (MESFETs) and modulation-doped field-effect transistors
(MODFETs) formed on III-V compound semiconductors such as GaAs/AlGaAs,
InGaAs/AlGaAs, InGaAs/InAlAs, and GaN/InGaN, and the metal–semiconductor
IMPATT diodes for microwave power generation.

10.10. Ohmic Contacts in Semiconductors

Formation of good ohmic contact between metal and semiconductor is an extremely
important process for fabricating high-performance semiconductor devices and in-
tegrated circuits. Table 10.6 gives a list of metals that are used in forming the ohmic
contacts on a wide variety of semiconductors. Good ohmic contacts are necessary
in order to effectively extract electric current and power from a semiconductor de-
vice. In general, an ohmic contact is referred to a noninjecting contact in which the
current–voltage (I–V) relationship under both the reverse- and forward-bias condi-
tions is linear and symmetrical. However, in reality, a contact is considered ohmic
if the voltage drop across the metal–semiconductor interface is small compared to
the voltage drop across the bulk semiconductor.

Ohmic contacts can be characterized in terms of the specific contact resistance
Rc, which is defined as the reciprocal of the derivative of the current density with
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Table 10.6. Metals for forming ohmic contacts in various
semiconductors.

Semiconductor Metals

Ge (N) Ag-Al-Sb, Al, Au, Bi, Ai-Au-P, Sb, Sn, Pb-Sn
Ge (P) Ag-Al, Au, Cu, Ga, Ga-In, In, Al-Pd, Ni, Pt, Sn
Si (N) Ag-Al, Al-Au, Au, Ni, Pt, Cu, In, Ge-Sn, Au-Sb, Al-Cu,
Si (P) Ag, Al, Al-Au, Au, Ni, Pt, Sn, In, Pb, Ga, Ge, Al-Cu

GaAs (N) Au-Ge (88%, 12%)-Ni, Ag-In (95%, 5%)-Ge, Ag-Sn
GaAs (P) Au-Zn (84%, 16%), Ag-In-Zn, Ag-Zn
GaP (N) Ag-Te-Ni, Al, Au-Si, Au-Sn, In-Sn
GaP (P) Au-In, Au-Zn, Ga, In-Zn, Zn, Ag-Zn

GaAsP (N) Au-Sn
GaAsP (P) Au-Zn

GaAlAs (N) Au-Ge-Ni
GaAlAs (P) Au-Zn

InAs (N) Au-Ge, Au-Sn-Ni, Sn
InGaAs (N) Au-Ge, Ni
InGaAs (P) Au-Zn, Ni

InP (N) Au-Ge, In, Ni, Sn
InSb (N) Au-Sn, Au-In, Ni, Sn
InSb (P) Au-Ge
CdS (N) Ag, Al, Au, Au-In, Ga, In, Ga-In
CdTe (N) In
CdTe (P) Au, In-Ni, Pt, Rh
ZnSe (N) In, In-Ga, Pt, In-Hg
SiC (N) W, Ni
SiC (P) Al-Si, Si, Ni
GaN (P) Pd-Ni, Au-Ni
GaN (N) Ti-Al, Ti-Al-Ni-Au

respect to the applied voltage. An expression for the specific contact resistance
evaluated at zero bias is given by

Rc =
(

dJ

dV

)−1
∣∣∣∣∣
V =0

. (10.78)

The specific contact resistance defined by (10.78) is an important figure of merit
for evaluating ohmic contacts. In general, the current conduction in the ohmic con-
tact region of a metal/moderately doped n-type semiconductor contact is usually
dominated by the thermionic emission process. Therefore, the expression of Rc

can be derived directly from (10.33) and (10.78), which yields

Rc =
(

kB

q A∗T

)
exp

(
qφBn

kBT

)
. (10.79)

Equation (10.79) shows that in order to achieve a small specific contact resistance,
the barrier height of the metal–semiconductor contact should be as small as pos-
sible. A smaller decrease in the barrier height will result in a very large reduction
in the specific contact resistance in the Schottky contact.



326 10. Metal–Semiconductor Contacts

For the ohmic contact on a heavily doped semiconductor, the field-emission
process (i.e., tunneling) dominates the current transport, and hence the specific
contact resistance Rc can be expressed by15

Rc ≈ exp

[(
2φBn

h̄

) √
ε0εsm∗

ND

]
, (10.80)

which shows that in the tunneling process, Rc depends strongly on the doping
density and varies exponentially with (φBn/N 1/2

D ). The specific contact resistance
for n-type GaAs may vary between 10−4 and 10−7 	 · cm2, while values of spe-
cific contact resistance for GaN ranging from 10−4 to 10−8	 · cm2 have been
reported. Figures 10.31a and b show the energy band diagrams for a low-barrier-
height contact and an ohmic contact on a heavily doped n++/n-type semiconductor,
respectively. Figure 10.31c shows the I–V characteristics of a metal/n++-n-type
semiconductor ohmic contact. It is noted that the specific contact resistance calcu-
lated from (10.80) agrees well with the measured value for the MBE doped ohmic
contacts. However, alloyed contacts usually exhibit a linear dependence of ln(Rc)
on N−1/2

D , and the simple formula given by (10.80) cannot adequately explain the
I–V behavior of the alloyed ohmic contacts.

Formation of ohmic contacts can be achieved in a number of ways. These
include (1) choosing a metal with a lower work function than that of an n-type
semiconductor (i.e., φm < φs) such that the potential barrier between the metal
and the semiconductor is small enough for the thermionic emission electrons to
tunnel through both directions of the metal–semiconductor contact; (2) deposition
of a thin and heavily doped epilayer of the same doping type as the substrate to
form an n++/n or p++/p high–low junction structure on the semiconductor surface.
This will reduce the barrier width of the metal–semiconductor contact such that
current flow can be achieved by quantum-mechanical tunneling through the thin
barrier with low contact resistance; (3) using a graded heterojunction approach by
using a small-band-gap material for ohmic contact (e.g., form an n+-InAs/n-GaAs
or n+Ge/n-GaAs heterojunction structure using the MBE technique); (4) using a
nonalloyed short-period superlattice (SPS), composed of GaN and narrow-band-
gap InN, sandwiched between the GaN channel and the InN cap layer to form
ohmic contacts on GaN; and (5) increasing the density of recombination centers
at the semiconductor surface (e.g., by surface roughening) so that the surface will
serve as an infinite sink for the majority carriers at the contact.

Techniques for forming ohmic contacts on the semiconductor devices include
alloying, electroplating, thermal or E-beam evaporation, sputtering, ion implanta-
tion, and MBE techniques. In principle, an ohmic contact is formed if the potential
barrier between the metal and semiconductor contact is very small. It is seen
in Figures 10.7c and f that in order to obtain good ohmic contact on an n-type
semiconductor, the metal work function should be less than that of the n-type
semiconductor. Conversely, to form ohmic contact on a p-type semiconductor, the
metal work function must be larger than that of the p-type semiconductor. Un-
fortunately, for covalent semiconductors such as Ge, Si, and GaAs, formation of
ohmic contacts does not always follow the simple rule cited above. For example,
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Figure 10.31. (a) Energy band dia-
gram for a low-barrier Schottky con-
tact, (b) a metal–n++–n–semiconductor
ohmic contact, and (c) the I–V curve
for the ohmic contact structure shown
in (b).

the barrier height of an n-GaAs Schottky barrier contact tends to remain nearly
constant regardless of the metals used. This is because the surface state density
for GaAs is usually very high (e.g., ≥ 1013 cm−2 · eV−1). As a result, the Fermi
level at the interface is pinned at the level where the peak interface state density
occurs. In this case, the barrier height of the Schottky contact is determined by the
Fermi-level pinning at the surface and is independent of the metal work function.

The most widely used technique for forming ohmic contact on a semiconduc-
tor is by first growing a heavily doped thin surface layer to form an n++/n or
p++/p high–low junction structure on an n- or p-type semiconductor substrate be-
fore making ohmic contact. By using such a structure, the barrier width between
the metal and the heavily doped n++ or p++ layer can be greatly reduced, and
hence quantum-mechanical tunneling of charge carriers through such a thin bar-
rier becomes possible. In this case, the barrier becomes essentially transparent to
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the charge carriers, and the specific contact resistance is usually very small. The
heavily doped layer can be readily grown using alloying, thermal diffusion, ion
implantation, or epitaxial growth with a suitable dopant impurity on the growth
layer. This approach of forming ohmic contact has been quite successful for both
the silicon and GaAs IC technologies. However, it is not as successful for many
large band gap semiconductors such as CdS, AlN, and SiC materials because these
crystals have a tendency to compensate the foreign dopant impurities. This is due
to the large density of native defects created by the nonstoichiometric crystal struc-
tures in these crystals. Finally, it should be pointed out that good ohmic contacts
on p-type III-V compound semiconductors are in general more difficult to achieve
than their n-type counterparts. This is due to the fact that a p-type III-V compound
semiconductor surface (e.g., p-type AlGaAs) is much easier to oxidize than an
n-type surface during metallization or simple exposure to the air.

Another approach that has also been employed for forming ohmic contacts on
a semiconductor is introducing a large density of recombination centers at the
semiconductor surface before making ohmic contact. The recombination centers
at the semiconductor surface may be created by damaging or straining the surface
using mechanical lapping and polishing, or by introducing impurities at the semi-
conductor surface region to create large recombination centers. Plating of metals
to such a damaged surface usually results in adequate ohmic contact.

The procedures for forming ohmic contacts on a semiconductor are discussed
next. Various contact-forming techniques, such as alloying, thermal or E-beam
evaporation, sputtering, ion implantation, plating, and liquid regrowth have been
employed. The alloying process can be achieved by first placing the metal pellets
or a thin metal foil on the semiconductor surface and then heating the specimen to
the eutectic temperature of metal such that a small portion of the semiconductor is
dissolved with the metal. The contact is then cooled, and semiconductor regrowth
takes place. This regrowth results in the incorporation of some metal and resid-
ual impurities into the metal–semiconductor interface. In this method, impurities
in the metal form a heavily doped interfacial layer of the same dopant type as
the bulk semiconductor, and hence good ohmic contact on the semiconductor can
be obtained. However, many large-band-gap semiconductors have contact prob-
lems because they cannot be doped heavily enough to form good ohmic contact.
Another technique for making ohmic contact is to wet the semiconductor with a
metal. In order to promote wetting and good ohmic contact, both the metal and
semiconductor surface must be ultraclean. A flux is often used during alloying in
order to remove any residual impurities or oxide film so that surface wetting can
be enhanced. Care must be taken to identify the difference in thermal expansion
coefficients between the semiconductor and metal so that residual stress does not
develop in the semiconductor upon cooling from the alloying temperature to room
temperature. Liquid regrowth can also be used to form a high–low junction (i.e.,
n+/n or p+/p) on a semiconductor substrate before forming ohmic contact. This
technique has been used to form ohmic contact on GaAs Gunn-effect devices.

Ohmic contacts on semiconductors can also be achieved using electrodeless
plating. This method involves the use of a metallic salt (such as AuCl3), which
is reduced to a metal at the semiconductor surface by a chemical reducing agent
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present in the plating solution. Solutions of nickel, gold, and platinum are the most
widely used metals for electrodeless plating in semiconductors. It has been found
that a nickel film adheres better on a mechanically lapped semiconductor surface
than on a chemically polished semiconductor surface.

In the traditional silicon IC technology, the most commonly used technique for
depositing metal films on silicon devices in IC chips uses thermal or electron-
beam (E-beam) evaporation. The E-beam evaporation is particularly attractive for
integrated circuits in which complex contact patterns are formed using a pho-
tolithography technique. The metal contact is deposited using a heated filament,
an electron-beam evaporation, or sputtering. The heated boat or filament technique
is the simplest method, but suffers from the disadvantage of being contaminated by
the heated container (e.g., tungsten basket or graphite boat). A shutter mechanism
is often used to block the initial vapor that may be contaminated with the more
volatile impurities. If multiple boats or filaments are used, two or more metals
may be evaporated simultaneously with independent control of each evaporating
source. In the E-beam system, the E-beam gun melts the evaporant alone, which
serves as its own crucible. This eliminates contamination from the crucible and
gives purer deposited metal films. In the sputtering system, positive gas ions bom-
bard the source (cathode), emitting metal atoms. These ejected atoms traverse the
vacuum chamber and are deposited onto the semiconductor substrate. The sput-
tering system has the advantage that the polarity of the system may be reversed so
that sputtering may occur from the substrate to a remote anode, thereby cleaning
the substrate surface. The back-sputtering approach is particularly useful for re-
moving any residual thin oxide films or other impurities on the substrate surface
while it is in the vacuum, and can be followed immediately by depositing metal
contact on the substrate.

The standard procedure for making ohmic contacts in silicon IC fabrication is
usually accomplished by a two-step process. In general, ion implantation is first
employed to create a thin, heavily doped layer of the same dopant type as that of
the bulk material to form a p+/p or n+/n high–low junction, and is then followed by
deposition of metal contacts using either thermal or E-beam evaporation. Finally,
thermal annealing is performed on the implanted region to achieve good ohmic
contact. In this procedure, careful cleaning of the semiconductor surface is essential
to ensure good ohmic contact prior to metal deposition.

The wire bonding in semiconductor devices is usually carried out using either the
thermal compression or ultrasonic wire bonder. In thermal compression bonding,
both heat and pressure are applied simultaneously to the ball bonder (using 1-mil
gold or aluminum wires) and the contact pad. In ultrasonic bonding, a combination
of pressure and 60 kHz ultrasonic vibrations is employed. The ultrasonic vibration
gives rise to a scrubbing action that breaks up any thin-surface insulating film,
and hence intimate contacts between the metal and semiconductor can be made.
The advantage of using ultrasonic bonding is that heating is not required, and any
previous bondings will not be affected.

In conventional silicon IC technologies, interconnects are incorporated after
front-end processing. The front-end processing refers to the sequence of fabri-
cation steps, typically at very high temperatures (700–1100◦C), that form the
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MOS transistors in the active regions, the pockets of thick isolation in the field
regions that separate adjacent transistors, and the silicidation of the transistor
terminals for low-resistance contacts. The back-end processing, which refers to the
interconnection of transistors, is subsequently formed by contacting the transistor
terminals and then vertically stacking layers of metal wires and vias encased in the
dielectric materials. Back-end processing temperatures typically do not exceed
450◦C to avoid melting of metals and to control stress. Integration success in the
conventional silicon IC technology is largely attributed to the processes that
maintain excellent planarity after fabricating each via and wire level. The state-
of-the-art 0.25-μm back-end processing uses the integration of conventional Al
metallization and Al alloy (Al/Cu) wires and W vias (plugs or studs), which serves
as a blocking barrier to the Al for diffusing into silicon transistors and oxides.

In 1999, IBM Corp. introduced a new chip-manufacturing technique to the main-
stream to boost the performance of the Power PC microprocessor by more than
30% using a combination of the SOI (silicon-on-insulator) technology and the
copper-interconnect wiring scheme. The high-performance copper-interconnects
technique offers lower contact resistance to the transistors, lower wiring parasitic
capacitance, and significantly higher electromigration resistance over the standard
Al or Al alloy interconnnects. It improves overall chip performance including
higher speed, higher packing density, and lower power consumption for the mi-
croprocessor. In the silicon IC industry, the method of embedding metal structures
in dielectrics (known as the Damascene process) is widely used for metal wire in-
terconnects. The copper interconnects are usually deposited using electrochemical
plating instead of the physical vapor deposition (PVD) process. Since the PVD
process could not fill the Damascene features, and is more expensive than the
electroplating technique, tungsten (W) via (plug) technology has matured to the
point where void-free and untapered vias with aggressive aspect ratios exceeding
3:1 are routinely formed, thus enabling increases in wiring density and reduction
of capacitive parasitics to under- and overlying wires. Advances in lithography
alignment have also enabled borderless vias to be formed, thereby permitting even
further improvement in wiring density. In addition, Damascence tungsten has been
adapted as planar local interconnects for strapping source/drain and gate contacts.
Although this process is more difficult to control, successful implementation of
W-local interconnects can reduce the cell size of SRAMs used as microprocessor
cache memories by 20–30%.

Problems

10.1. The saturation current density for a thoriated tungsten metal is 1 A/cm2 at
1873 K, and the work function computed from (10.11) for this metal is 3.2
eV. Assume that A0 = 120 A/cm2 · K2.
(a) Plot ln(J ′

s ) versusE1/2 for T = 1873 K and for 104 < E1/2 < 107 V/cm.
(b) Repeat (a) for T = 873 K and 1500 K.
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10.2. (a) Draw the energy band diagram for an ideal metal/p-type semiconductor
Schottky barrier diode and show that the barrier height for a metal/p-
type semiconductor is given by (10.14).

(b) Plot the energy band diagrams for an ideal metal/p-type semiconductor
Schottky barrier diode for

(i) φm > φs.
(ii) φm < φs.

(iii) Explain which of the above cases would yield an ohmic or a Schot-
tky contact.

10.3. Using (10.25), plot the depletion layer width versus reverse-bias
voltage (VR = 0 to 20 V) for a Au/n-type silicon Schottky barrier
diode for ND = 1014, 1016, and 1018cm−3, given εs = 11.7, VD = φBn −
(kBT/q) ln(Nc/ND), and qφBn = 0.81 eV at T = 300 K.

10.4. Taking into account the image-lowering effect, using (10.34), plot the satu-
ration current density versus reverse-bias voltage for a Au/n-Si and Pt/n-Si
Schottky diode. Assume that qφBn = 0.81 eV for a Au/n-Si Schottky diode,
qφBn = 0.90 eV for a Pt/n-Si Schottky diode, and A∗ = 110 A/cm2 · K2.

10.5. Derive (10.30) and (10.42), and compare the results with the current density
equation derived from the thermionic–diffusion model by C. R. Crowell
and S. M. Sze.1

10.6. Design a Au/n-type GaAs Schottky barrier photodiode for detecting a 20-
GHz modulated optical signal with center wavelength at 0.84 μm. Show
the Schottky barrier structure, and calculate the thickness of the AR coating
layer (e.g., SiO2), the diode area, and the RC time constant of this pho-
todiode. If the incident photosignal has a power intensity of 2 mW/cm2,
what is the responsivity of this photodiode? (Hint: Choose your own design
parameters.)

10.7. If the barrier height of a TiW/p-type Si Schottky barrier diode is equal to
0.55 eV, use (10.65) and (10.66) and (69) through (73) to design a TiW/n+-
p Schottky barrier diode structure to enhance the effective barrier height
to 0.90 eV. Assuming that the p substrate has a dopant density of 1 × 1016

cm−3, calculate the required dopant density and thickness of the n+ surface
layer.

10.8. Assuming that the diode ideality factor n for a Schottky barrier diode is
defined by

n =
(

q

kBT

)
∂V

∂(ln J )
,

(a) Show that

n =
{

1 +
(

∂�φ

∂V

)
+

(
kBT

q

) [
∂(ln A∗)

∂V

]}−1

.

(b) What are the possible physical mechanisms that may cause the n value
to deviate from unity?



332 10. Metal–Semiconductor Contacts

10.9. Using the general expressions of the barrier height for a Schottky barrier
diode given by (10.48) and (10.49) to (10.51), with Ds ≈ 1.1 × 1013(1 −
c2)/c2 states/cm2-eV, where Ds is the interface state density,
(a) What is the barrier height as Ds approaches infinity? Explain the Fermi-

level pinning effect under this condition.
(b) If Ds → 0, what is the value of c2 and the expression for φBn?
(c) If the values of c2, c3, and χs for Si, GaAs, and GaP Schottky contacts

are given by

c2 = 0.27, 0.09, and 0.27 for Si, GaAs, and GaP, respectively,
c3 = −0.66, −0.61, and

−0.07V for Si, GaAs, and GaP, respectively,
χs = 4.05, 4.07, and 4.0 eV for Si, GaAs, and GaP, respectively,

calculate the values of Ds, qφ0, and qφBn for the above Schottky
diodes.

10.10. Using (10.69) to (10.73), calculate the barrier height enhancement for a
Au/p-n GaAs Schottky barrier diode for the following cases:
(a) Nd = 1016 cm−3, plot φBn versus Na(1015 to 5 × 1018 cm−3) for

Wp = 0.3, 0.2, 0.1, 0.05, and 0.02 μm; qφBn = 0.9 eV for a Au/n-
GaAs Schottky contact.

(b) Na = 2 × 1017 cm−3, calculate and plot φBn versus Nd and Wn for the
values given in (a).
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11
p-n Junction Diodes

11.1. Introduction

In this chapter, the basic device physics, the ideal static and dynamic character-
istics, the operation principles, and practical applications of p-n junctions will be
described. Unlike a Schottky diode (a majority carrier device), a p-n junction diode
is known as a minority carrier device since the current conduction is controlled by
the diffusion of minority carriers (i.e., electrons in the p region and holes in the n
region) in a p-n junction diode.

A p-n junction diode can be fabricated by doping the semiconductor mate-
rial with opposite doping impurities (i.e., acceptor or donor impurities) to form
the p and n regions of the diode. If a p-n junction is formed on the same semi-
conductor it is referred to as a p-n homojunction diode. On the other hand, if a
p-n junction is formed using two semiconductor materials of different band gaps
and with opposite doping impurities, then it is referred to as a p-n heterojunc-
tion diode. Both the p-n homo- and heterojunction diodes are discussed in this
chapter. The p-n junction plays an important role as the basic device structure for
fabricating a wide variety of electronic and photonic devices. For example, p-n
junction structures have been used in fabricating switching diodes, diode recti-
fiers, solar cells, light emitting diodes (LEDs), laser diodes (LDs), photodetectors,
bipolar junction transistors (BJTs), heterojunction bipolar transistors (HBTs), junc-
tion field-effect transistors (JFETs), metal–semiconductor field-effect transistors
(MESFETs), high-electron mobility transistors (HEMTs), tunnel diodes, multi-
quantum well (MQW) and superlattice (SL) devices. The p-n heterojunctions can
be formed from a wide variety of elemental and compound semiconductors such
as n-Si/p-SiGe, n-ZnSe/p-GaAs, p-AlGaAs/n-GaAs, p-Ge/n-GaAs, n-InGaAs/n-
InP, p-InAlAs/n-InGaAs, p-GaN/n-InGaN, and p-AlGaN/n-InGaN semiconductor
heterojunction devices.

The p-n junction theory serves as a foundation for the interpretation of device
physics in various semiconductor devices. The basic device theory used in pre-
dicting the current–voltage (I–V) characteristics in a p-n junction diode was first
developed by Shockley,1 and later extended by Sah, Noyce, and Shockley,2 and
Moll.3 Derivation of charge carrier distribution, built-in potential, electric field,

334
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and the potential distribution in the junction space charge region of a p-n junc-
tion under equilibrium and applied bias conditions are given in Sections 11.2 and
11.3. The minority carrier distributions and current flow in a p-n junction are de-
rived using the continuity equations presented in Chapter 6. The current–voltage
(I–V) and capacitance–voltage (C–V) characteristics under forward- and reverse-
bias conditions are described in Section 11.4. The minority carrier storage and
transient behavior in a p-n junction are discussed in Section 11.5. Section 11.6
presents the junction breakdown phenomena in a p-n junction under large reverse-
bias conditions. Finally, the basic device theory and general characteristics of a
p-n heterojunction diode are discussed in Section 11.7.

11.2. Equilibrium Properties of a p-n Junction Diode

A p-n junction diode is formed when an opposite doping impurity (i.e., donor
or acceptor impurity) is introduced into a region of the semiconductor using the
alloying, thermal diffusion, ion-implantation, or epitaxial growth technique. For
example, a silicon p-n junction diode can be formed when a p-type doping impurity
such as boron (B), aluminum (Al), or gallium (Ga) is introduced into an n-type
silicon substrate via the thermal diffusion or ion-implantation process. On the other
hand, a silicon n-p junction diode is formed when an n-type doping impurity such
as a phosphorus (P) or arsenic (As) impurity is introduced into a p-type silicon
substrate. The n-type doping impurity is called a donor impurity since it will
contribute an extra electron to the silicon lattice, while the p-type doping impurity
is called an acceptor impurity since it will give an extra hole to the silicon lattice. For
III-V compound semiconductors such as GaAs, InP, InGaAs, and AlGaAs, a p-n
junction can be formed in these material systems using different growth techniques
such as liquid-phase epitaxy (LPE), vapor-phase epitaxy (VPE), metal-organic
chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE).

Figures 11.1a and b show the energy band diagrams of a p-n junction under
thermal equilibrium conditions before and after the intimate contacts. It is noted
that the Fermi level is constant across the entire region of the p-n junction under
thermal equilibrium conditions. Figure 11.2a shows the charge distribution in the
p- and n-quasineutral regions as well as in the depletion region of the junction. In
general, depending on the doping impurity profile across the junction, a diffused
p-n junction may be approximated by either a step- (or abrupt-) junction or a
linear-graded junction. As shown in Figure 11.3a, the impurity profile for a step
junction changes abruptly across the metallurgical junction of the diode, while the
impurity profile for a linear-graded junction varies linearly with distance across
the junction, as illustrated in Figure 11.3b.

The static properties of an abrupt p-n junction and a linear-graded p-n junction
diode are discussed next. The carrier distribution, built-in potential, electric field,
and potential profile in the junction space-charge region of a p-n junction diode
can be derived for both the abrupt- and linear-graded junctions using Poisson’s
equation and continuity equations.
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Figure 11.1. Energy band diagrams for an isolated n- and p-type semiconductor (a) before
contact, and (b) in intimate contact.

Figure 11.2. (a) Space-charge distribution, (b) electric field, and (c) potential distribution
for an abrupt p-n junction diode.
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Figure 11.3. Impurity profile for (a) a shallow-diffused junction (i.e., an abrupt or step
junction) and (b) a deep-diffused junction (i.e., a linearly graded junction).

In thermal equilibrium, the Fermi level is constant throughout the entire p-n
junction, as shown in Figure 11.1b. The one-dimensional (1-D) Poisson’s equation,
which relates the charge density ρ to the potential V (x), is given by

d2V (x)

dx2
= − ρ

ε0εs
=

(
q

ε0εs

)
(n − p − Nd + Na). (11.1)

As shown in Figure 11.1b, the electron and hole densities in the n and p regions
of the junction can be expressed in terms of the intrinsic carrier density, ni, and
the electrostatic potential, φ, and are given by

n = ni exp

(
φn

VT

)
(11.2)

and

p = ni exp

(−φp

VT

)
, (11.3)

where ni is the intrinsic carrier density, VT = kBT/q is the thermal voltage, and
φn, φp denote the electrostatic potential in the n and p regions of the diode, respec-
tively. Using proper boundary conditions, expressions for the potential, electric
field, and charge distribution in the different regions of the p-n junction can be
derived using (11.1) to (11.3). Figure 11.1b shows the three distinct regions in
a p-n junction, namely, the n- and p-quasineutral regions (QNR) away from the
metallurgical junction, and the space-charge (or depletion) region (SCR), which
is occupied by the ionized shallow acceptors in the p-depletion region and the
ionized shallow donors in the n-depletion region. In addition to these three distinct
regions, a transition region of a few Debye lengths may also be presented in the
boundary region between the QNR and the SCR interfacial layers. This transition
layer is usually much smaller than the depletion layer width, and hence may be
neglected in the diode analysis.
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In the n- and p-quasineutral regions, the total charge density is equal to 0, and
(11.1) becomes

d2V (x)

dx2
= 0 (11.4)

and

n − p − Nd + Na = 0. (11.5)

In the n-quasineutral region, Na is assumed equal to 0 (or Na � Nd), and p � n.
The electrostatic potentialφn at the depletion layer edge of the n-quasineutral region
can be derived by assuming Na = p = 0 in (11.5) and then substituting the result
into (11.2), which yields

φn = VT ln

(
Nd

ni

)
. (11.6)

Similarly, the potential distribution at the depletion edge of the p-quasineutral
region can be written as

φp = −VT ln

(
Na

ni

)
. (11.7)

Therefore, the built-in or diffusion potential of a p-n junction diode between the
n- and p-quasineutral regions can be obtained from (11.6) and (11.7), and one
has

Vbi = φn − φp = VT ln

(
Nd Na

n2
i

)
, (11.8)

where Vbi is known as the built-in or diffusion potential of a p-n junction diode in
thermal equilibrium. For simplicity, the free-carrier density in the depletion region
is assumed equal to 0 (i.e., n = p = 0). Thus, (11.1) becomes

d2V (x)

dx2
=

(
q

εsε0

)
(Na − Nd). (11.9)

Equation (11.9) may be used in solving the potential and electric field distri-
butions in the junction space-charge region of the abrupt- and a linear-graded p-n
junction shown in Figures 11.3a and 11.3b. The abrupt junction approximation can
be applied to the shallow-diffused step junction or an ion-implanted junction, while
the linear-graded junction approximation is more suitable for a deep-diffused p-n
junction diode.

Figure 11.2a shows the impurity distribution in the space-charge region of an
abrupt p-n junction diode. It is noted that the boundary layer effect (i.e., the spread-
ing of space charges a few Debye lengths into the quasineutral regions) shown by
the dotted line is neglected in the present analysis. In the depletion region, free
carriers are negligible, and the Poisson equation in the n- and p-space-charge
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regions are given respectively by

d2V (x)

dx2
=

⎧⎪⎪⎨
⎪⎪⎩

−q Nd

ε0εs
for 0 < x < xn, (11.10)

q Na

ε0εs
for − xp < x < 0, (11.11)

where xn and xp denote the depletion layer widths in the n and p regions, re-
spectively. The charge-neutrality condition in the depletion region of the junction
requires that

Naxn = Ndxp, (11.12)

which shows that the depletion layer width on either side of the junction space-
charge region is inversely proportional to the doping density. The total depletion
layer width Wd of the junction is given by

Wd = xn + xp. (11.13)

From (11.12), it is seen that if Na is much greater than Nd, then xn will be much
larger than xp, and the depletion region will spread mostly into the n region. Thus,
for xn � xp, Wd ≈ xn, and one has a one-sided abrupt p-n junction diode. In this
case, the depletion layer width on the heavily doped p region becomes negligible
compared to the depletion layer width on the lightly doped n region. As a result, one
can solve the Poisson equation for the lightly doped side (i.e., n region) to obtain
basic information on the junction characteristics. Integration of (11.10) once from
x to xn yields the electric field

E(x) = −dV (x)

dx
=

(
q Nd

ε0εs

)
(x − xn), (11.14)

which is obtained from the boundary condition that dV (x)/dx = 0 at x = xn.
Since the maximum electric field occurs at x = 0, (11.14) can be expressed
as

E(x) = Em

(
1 − x

xn

)
for 0 < x < xn, (11.15)

where Em = q Ndxn/ε0εs is the maximum electric field strength at x = 0. It is noted
that the electric field is negative throughout the entire depletion region, and varies
linearly with distance from x = 0 to either side of the junction. As illustrated in
Figure 11.2b, the electric field on the right-hand side of the junction (i.e., the n
region) is negative since the force exerted by the electric field is offset by the
electron diffusion to the left from the quasineutral n region.

Similarly, the electric field in the p region is also negative in order to retard the
diffusion of holes to the right-hand side of the junction. Thus, the electric field for
x < 0 can be written as

E(x) = −
(

q Na

εsε0

)
(x + xp) for −xp < x < 0. (11.16)
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The potential in the n region can be obtained by integrating (11.14) once more,
yielding

V (x) = Vn −
(

q Ndx2
n

2εsε0

) (
1 − x

xn

)2

for 0 < x < xn, (11.17)

where Vn = VT ln(Nc/Nd) is the potential difference between the conduction band
edge and the Fermi level at the depletion edge of the n-quasineutral region. Simi-
larly, the potential in the p region is given by

V (x) = Vp +
(

q Nax2
p

2ε0εs

) (
1 − x

xp

)2

for −xp < x < 0, (11.18)

where Vp = VT ln(Nv/Na) is the potential at the edge of the p-depletion region.
The built-in potential Vbi, which is defined as the total potential change from the

quasineutral p region to the quasineutral n region, is equal to (φn − φp), as given
by (11.8). It is noted that most of the potential drop and the depletion region are on
the lightly doped side of the junction. The depletion layer width can be obtained
by solving (11.12), (11.17), and (11.18) at x = 0, and the result is

Wd = xn + xp =
[(

2εsε0Vbi

q

) (
Nd + Na

Nd Na

)]1/2

. (11.19)

Equation (11.19) shows that the depletion layer width depends on the doping den-
sity of the lightly doped n-base region (i.e., for Na � Nd, Wd ≈ (2εsε0Vbi/q Nd)1/2,
which varies inversely with the square root of the doping density.

For a linear-graded p-n junction, the space-charge distribution in the depletion
region is given by

Na − Nd = −ax, (11.20)

where a is the slope of the doping impurity density profile (cm−4). Thus, the
Poisson equation for a linear-graded p-n junction diode can be expressed by

d2V (x)

dx2
= −

(
q

ε0εs

)
ax . (11.21)

Using the same procedures as for the step-junction diode described above, one can
derive the depletion layer width Wd and the built-in potential Vbi for a linear-graded
p-n junction diode, which yields

Wd =
[

12ε0εsVbi

qa

]1/3

(11.22)

and

Vbi = 2VT ln

(
aWd

2ni

)
. (11.23)

Comparing (11.19) and (11.22), one finds that for a linear-graded junction, Wd

depends on (Vbi/Nd)1/3, while for an abrupt junction, it depends on (Vbi/Nd)1/2.



11.3. p-n Junction Diode Under Bias Conditions 341

11.3. p-n Junction Diode Under Bias Conditions

When an external bias voltage is applied to a p-n junction diode, the thermal
equilibrium condition is disrupted and a current flow across the junction results.
Since the resistance across the depletion region is many orders of magnitude larger
than the resistance in the quasineutral regions, the voltage drops across both the
n- and p-quasineutral regions are negligible compared to the voltage drop across
the depletion region. Thus, it is reasonable to assume that the voltage applied to a
p-n junction diode is roughly equal to the voltage drop across the depletion layer
region. The current–voltage (I–V) characteristics of a p-n junction diode under
reverse- and forward-bias conditions are discussed next.

The current flow in a p-n junction depends on the polarity of the applied bias
voltage. Under forward-bias conditions, the current increases exponentially with
applied voltage. Under reverse-bias conditions, the current flow is limited mainly
by the thermal generation current and hence depends very little on the applied
voltage. Figure 11.4 shows the energy band diagrams for a p-n junction diode
under (a) zero-bias, (b) forward-bias, and (c) reverse-bias conditions. As shown
in Figure 11.4b, when a forward-bias voltage V (i.e., positive polarity applied to
the p-side and negative to the n-side) is applied to the p-n junction, the potential
barrier across the junction will decrease to (Vbi − V ). In this case, the potential
barrier for the majority carriers at the junction is reduced, and the depletion layer
width is decreased. Thus, under forward-bias conditions a small increase in applied
voltage will result in a large increase in current flow across the junction. On the
other hand, if a reverse-bias voltage is applied to the junction, then the potential
barrier across the junction will increase to (Vbi + V ), as shown in Figure 11.4c.
Therefore, under a reverse-bias condition the potential barrier for the majority
carriers and the depletion layer width will increase with increasing reverse-bias
voltage. As a result, current flow through the junction becomes very small, and the
junction impedance is extremely high.

The abrupt junction approximation is used to analyze the I–V characteristics of
a step-junction diode under bias conditions. In the analysis it is assumed that (1)
the entire applied voltage drop is only across the junction space-charge region,
and is negligible in the n- and p-quasineutral regions; (2) the solution of Poisson’s
equation obtained under thermal equilibrium conditions can be modified to the
applied bias case, and (3) the total potential across the junction space-charge
region changes from Vbi for the equilibrium case to (Vbi ± V ) when a bias voltage
is applied to the p-n junction. Thus, the depletion layer width for a step-junction
diode under bias conditions is given by

Wd = xn + xp =
[(

2ε0εs(Na + Nd)

q Na Nd

)
(Vbi ± V )

]1/2

, (11.24)

where the plus sign is for the reverse-bias case, and the minus sign is for the
forward-bias case. Equation (11.24) shows that for a step-junction diode under
reverse-bias conditions, the depletion layer width Wd is proportional to the square
root of the applied voltage.



342 11. p-n Junction Diodes

Figure 11.4. Energy band diagram of a p-n junction diode under (a) zero-bias, (b) forward-
bias, and (c) revised-bias conditions.

Similarly, for a linear-graded junction, the depletion layer width under bias
conditions can be expressed by

Wd =
[

12ε0εs(Vbi ± V )

qa

]1/3

. (11.25)

The relationship between the maximum electric field and the applied bias
voltage in the junction space-charge region can be derived as follows. For a step-
junction diode, assuming Wd ≈ xn (i.e., Na � Nd and xn � xp), the maximum
electric field at the junction can be derived from (11.15) and (11.19), and one has

Em = q Ndxn

ε0εs
≈ 2(Vbi − V )

Wd
. (11.26)
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Similarly, the maximum electric field versus applied bias voltage for a linearly
graded junction is given by

Em = 3(Vbi − V )

2Wd
. (11.27)

Another important parameter that needs to be considered is the depletion
capacitance in the space-charge region of a p-n junction. A p-n junction diode
can be viewed as a parallel-plate capacitor filled with positive and negative fixed
charges arising from the ionized donor and acceptor impurities in the depletion
region, which determine the junction capacitance of the diode. For a step-junction
diode with doping densities of Na and Nd in the p and n regions, respectively, the
transition capacitance per unit area may be derived from the total space charge
Qs per unit area on either side of the depletion region. Thus, one can write

Cj = dQs

dV
= d(q Naxp)

dV
= d(q Ndxn)

dV
. (11.28)

If one assumes that Na and Nd are constant and independent of the position,
and uses the relations xp = (Nd/Na)xn and Wd = xn + xp, then the small signal
transition capacitance per unit area can be derived from (11.28), and one has

Cj =
√

qε0εs

2(1/Nd + 1/Na)(Vbi − V )
. (11.29)

For a one-sided step-junction diode (i.e., Na � Nd), (11.29) predicts that the
transition capacitance due to fixed charges in the depletion region is directly
proportional to the square root of the doping density, and varies inversely with the
square root of the applied bias voltage for | −V | � Vbi. The transition capacitance
per unit area for a one-sided step-junction diode is equal to ε0εs/Wd. Thus, from
(11.29) and assuming Na � Nd one obtains

Cj = dQs

dV
= εsε0

Wd
=

[
qε0εs Nd

2(Vbi ± V )

]1/2

. (11.30)

Equation (11.30) shows that the inverse of the capacitance (1/C2
j ) square varies lin-

early with the applied voltage V . Thus, a plot of 1/C2
j versus V yields a straight line.

The slope of this straight line yields the doping density of the lightly doped semi-
conductor (i.e., n region), and the intercept of the 1/C2

j plot on the voltage axis gives
the built-in potential Vbi. It is noted that if the doping density is not uniform across
the lightly doped n region, the doping density profile can be determined using a dif-
ferential C–V technique similar to the one described above, except that the doping
densities are determined piecewise at a small incremental voltage across the n re-
gion, and the entire doping profile in the n region can be determined by this method.
Figure 11.5 shows a typical 1/C2

j versus V plot for a step junction diode. The doping
density in the substrate and the built-in potential can be determined from this plot.

The transition capacitance for a linear-graded junction diode can be derived in a
similar way as that of the step-junction diode discussed above. Thus, from (11.25),
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Figure 11.5. Inverse of capacitance squared
versus applied reverse-bias voltage for a one-
sided step-junction diode.

the transition capacitance for a linear-graded junction can be expressed by

Cj = dQs

dV
= εsε0

Wd
=

[
qa(εsε0)2

12(Vbi ± V )

]1/3

, (11.31)

which shows that the transition capacitance for a linear-graded junction diode is
inversely proportional to the cube root of the applied reverse-bias voltage.

11.4. Minority Carrier Distribution and Current Flow

In order to derive the current density equations for an ideal p-n junction diode,
it is necessary to find the minority carrier density distributions at the edges
of the depletion layer near both the p- and n-quasineutral regions under ap-
plied bias conditions. Figure 11.6 shows a schematic diagram of a p-n junc-
tion diode to be used for deriving the current density equations in the n- and
p-quasineutral regions as well as in the depletion region. The cross-sectional area
of the diode perpendicular to the current flow is assumed equal to A. As illustrated
in Figure. 11.6, the minority carrier densities at the edge of the quasineutral p (at
x = −xp) and n (at x = xn) regions can be related to the majority carrier den-
sities at the edge of the depletion region under bias conditions. These are given
by

pn(xn) = pp0(−xp) exp[−q(Vbi − V )/kBT ], (11.32)

which is the hole density at the depletion edge of the n-quasineutral region, and

np(−xp) = nn0(xn) exp[−q(Vbi − V )/kBT ] (11.33)

is the electron density at the depletion edge of the p region. It is noted that
pp0(−xp) = Na(−xp) and nn0(xn) = Nd(xn) denote the majority carrier densities
at the edges of the p-quasineutral and n-quasineutral regions, respectively. If the
applied voltage V is set equal to 0, then np = np0 = nn0 exp(−qVbi/kBT ) and
pn = pn0 = pp0 exp(qVbi/kBT ), which are valid only for the low-level injection
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Figure 11.6. Minority carrier distribution under (a) forward-bias and (b) reverse-bias con-
ditions current components under (c) forward-bias and (d) reverse-bias conditions: jp1 and
jn1 are injected minority hole and electron currents; jn2 and jp2 are majority electron and
hole currents recombining with jp1 and jn1, respectively; jn3 and jp3 are electron and hole
recombination currents in the space-charge region.

case. The excess carrier densities at the depletion layer edges under bias condi-
tions can be obtained from (11.32) and (11.33) by subtracting their equilibrium
densities, which yields

p′
n(xn) = pn(xn) − pn0(xn) = pn0(xn)(eqV/kBT − 1), (11.34)

n′
p(−xp) = np(−xp) − np0(−xp) = np0(−xp)(eqV/kBT − 1). (11.35)

If (11.34) and (11.35) are used as the boundary conditions, then the expressions
for the spatial distributions of the minority carrier densities can be derived by
solving the continuity equations in the quasineutral regions of a p-n junction
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Figure 11.7. Schematic diagram of a p-n junction diode showing the dimensions and
boundaries of the n- and p-quasi-neutral regions and the space-charge region.

diode. It is seen from (11.32) to (11.35) that the majority carrier density is in-
sensitive to the applied bias voltage, while the minority carrier density depends
exponentially on the applied bias voltage. It can be shown that the current flow in
a p-n junction diode is in fact governed by the diffusion of the minority carriers
across the p-n junction.

The derivation of electron and hole current densities in a p-n junction diode may
be obtained from the continuity equations given in Chapter 6. The one-dimensional
(i.e., x-direction) continuity equation for the excess hole density injected into the
n-quasi-neutral region under steady-state conditions is given by

Dp
d2 p′

n

dx2
− p′

n

τp
= 0. (11.36)

The solution of (11.36) can be expressed by

p′
n(x) = Ae−(x−xn)/Lp + Be(x−xn)/Lp , (11.37)

where A and B are constants to be determined by the boundary conditions given
by (11.34) and (11.35), and Lp = (Dpτp)1/2 is the hole diffusion length; Dp and τp

denote the hole diffusion constant and hole lifetime, respectively.
The solutions of (11.36) can be obtained by considering two special cases,

namely, the long-base diode with base width larger than the hole diffusion length
(i.e., WB � Lp) and the short-base diode with base width smaller than the hole-
diffusion length (i.e., Lp � WB). The current densities in the n- and p-quasineutral
regions as well as in the depletion region, as shown in Figure 11.7, for both the
long-base and short-base diodes will be derived next.

For a long-base diode, the base width in the n-quasineutral region is much
larger than the hole diffusion length. As a result, the excess hole density p′

n(x) will
decrease exponentially with increasing distance x , and the constant B in (11.37)
can be set equal to 0. Constant A can be determined from (11.34) and (11.37) at
x = xn, and one obtains

p′
n(x) = pn0(eqV/kBT − 1)e−(x−xn)/Lp . (11.38)

Equation (11.38) is the excess hole density in the n-quasineutral region of the
p-n junction. Figures 11.6a and b show the distributions of the minority carriers
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in the p- and n-quasineutral regions under forward- and reverse-bias conditions,
respectively, and Figures 11.6c and d show the corresponding current densities
under forward- and reverse-bias conditions. The excess carriers inside the depletion
region are assumed equal to 0. The hole current density in the n-quasineutral region
is contributed to only by the diffusion of excess holes in this region. Thus, from
(11.38) one obtains

Jp(x) = −q Dp
dp′

n

dx
=

(
q Dpn2

i

NdLp

)
(eqV/kBT − 1) e−(x−xn)/Lp , (11.39)

where pn0 = n2
i /Nd is used in the preexponential factor in (11.39). As shown in

Figure 11.6c, the hole current density (Jp1) has a maximum value at the deple-
tion layer edge, at x = xn, and decreases exponentially with x in the n region.
This is a result of the recombination of the injected excess holes with the ma-
jority electrons in the n-quasineutral region before they reach the ohmic contact.
Since the total current density (Jtotal) across the entire diode is invariant under
steady-state conditions, the majority electron current (Jn2), which supplies elec-
trons for recombination with holes, must increase with x away from the junction
and reaches a maximum at the ohmic contact in the n-quasineutral region. Simi-
larly, the minority electrons injected into the p-quasineutral region will contribute
to the electron current flow (i.e., Jn1) in this region, and it can be derived in a sim-
ilar way to that of the hole current density in the n-quasineutral region described
above. Thus, the electron current density in the p-quasineutral region can be written
as

Jn(x) = q Dn

dn′
p(x)

dx
=

(
q Dnn2

i

NaLn

)
(eqV/kBT − 1)e(x+xp)/Ln , (11.40)

which is obtained by assuming that the width of the p region is much larger than
the electron diffusion length (i.e., WE � Ln) in the p-quasineutral region. Note
that x is negative in the p region and positive in the n region, and is equal to 0 at
the metallurgical junction.

It is seen in Figure 11.6c that if the recombination current (i.e., Jn4 or Jp4) in the
depletion region is neglected, then the total current density in a p-n junction diode
can be obtained by adding the injected minority hole current density evaluated at
x = xn and the injected minority electron current density evaluated at x = −xp.
From (11.39) and (11.40) one obtains the total current density flow in a p-n junction
as

J = Jp1(xn) + Jn1(−xp) = J0(eqV/kBT − 1), (11.41)

where

J0 = qn2
i

(
Dp

NdLp
+ Dn

NaLn

)
(11.42)

is the saturation current density. Since J0 is proportional to n2
i , its value depends

exponentially on the temperature and energy band gap of the semiconductor (i.e.,
J0 ∝ n2

i ∝ exp(−Eg/kBT )). For a silicon p-n junction diode, the value of J0 will
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double roughly for every 10◦C increase in temperature. Equation (11.41) is known
as the Shockley diode equation for an ideal p-n junction diode.3

Next consider the current flow in a short-base p-n junction diode, which has a
base width WB and an emitter width WE much smaller than the minority carrier
diffusion lengths (i.e., WB � Lp) in the n-base region and (i.e., WE � Ln) in the
p-emitter region. In this case, the recombination loss in the p- and n-quasineutral
regions is negligible, and hence the injected minority carriers are expected to
recombine at the ohmic contact regions of the diode. It can be shown that the
excess hole density in the n-base region of a short-base diode can be expressed
by

p′
n(x) = pn0(eqV/kBT − 1)

[
1 − (x − xn)

W ′
B

]
, (11.43)

where W ′
B = WB − xn is the width of the quasineutral n-base region. Equation

(11.43) is obtained by replacing the exponential term in (11.38) by [1 − (x −
xn)/W ′

B], which was obtained from the boundary condition p′
n(x) = 0 at x = WB.

The boundary condition at x = xn is identical for both the short- and long-base
diodes discussed above. Equation (11.43) predicts that the excess hole density in
the n-base region decreases linearly with distance x . Thus, the hole current density
can be derived from (11.43), and one has

Jp = −q Dp
dp′

n

dx

∣∣∣∣x=xn =
(

q Dpn2
i

NdW ′
B

)
(eqV/kBT − 1) , (11.44)

which shows that the hole current density in the n-base region is constant (i.e., the
recombination loss in the base region is negligible). If the width of the p-emitter
layer is smaller than the electron diffusion length (i.e., WE � Ln), then the electron
current density in the p+-emitter region is given by

Jn = q Dn
d′np

dx

∣∣∣∣x=−xp =
(

q Dnn2
i

NaW ′
E

)
(eqV/kBT − 1) . (11.45)

Therefore, the total current density for a short-base diode is equal to the sum of Jn

and Jp, given by (11.44) and (11.45), which reads

J = Jn + Jp = qn2
i

(
Dn

NaW ′
E

+ Dp

NdW ′
B

)
(eqV/kBT − 1). (11.46)

Equation (11.46) shows that the current flow in a short-base diode is independent
of the minority carrier diffusion lengths in the p and n regions of the diode, but
varies inversely with the n- and p-layer thickness.

A comparison of the current density equations for a long-base diode and a short-
base diode reveals that the preexponential factor for the former depends inversely
on the minority carrier diffusion length, while the preexponential factor for the
latter depends inversely on the thickness of the n and p regions of the diode.
This is easy to understand, because for a long-base diode the width of the n-base
region is much larger than the minority carrier diffusion length, and hence one
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can expect that the hole current density in the n-base region will be influenced
by the recombination loss of holes in the n-base region. However, this is not the
case for the short-base diode, in which little or no recombination loss of holes in
the n-base region is expected. It is, however, seen that both (11.41) and (11.46)
predict the same exponential dependence of the current density on the applied bias
voltage under forward-bias conditions and a very small saturation current density
under reverse-bias conditions. It should be pointed out that under the reverse-bias
condition, the saturation current density is contributed to by the thermal generation
currents produced in both the n- and p-quasineutral regions of the junction. It is also
noted that if one side of the junction is heavily doped, then the reverse saturation
current will be determined by the thermal generation current produced on the
lightly doped side of the junction. However, if the band gap narrowing and Auger
recombination effects are taken into account in the heavily doped emitter region,
then the saturation current density may be determined by the current flow in the
heavily doped region of the junction.

The ideal diode analysis presented above is based on the assumption that the
total current flow in a p-n junction diode is due solely to the diffusion current
components produced in the n- and p-quasineutral regions. This approximation
is valid as long as the recombination current in the junction space-charge re-
gion is negligible compared to the diffusion currents produced in the quasineu-
tral regions. However, for a practical silicon p-n junction diode and p-n junction
diodes fabricated from III-V compound semiconductors such as GaAs and InP,
recombination in the junction space-charge region may become important and
need to be considered. In this case, the ideal diode equation described above may
be inadequate under small forward-bias conditions, and hence one needs to add
the recombination current component (i.e., Jn4 or Jp4) generated in the junction
space-charge region to the total current density given by (11.41) for a long-base
diode.

The generation-recombination current density in the junction space-charge re-
gion of a p-n diode can be derived using the Shockley–Read–Hall (SRH) model
discussed in Chapter 6. For simplicity, it is assumed that the electron and hole
capture cross-sections at the mid-gap recombination center are equal. Under this
condition, the net recombination-generation rate for electrons and holes in the
junction space-charge region is given by2

Ur = n2
i (eqV/kBT − 1)

[p + n + 2ni cosh(Et − Ei)/kBT ]τ0
, (11.47)

where Et is the activation energy of the recombination center; Ei is the intrinsic
Fermi level; np = n2

i exp(qV/kBT ) and τ0 = 1/(Ntυthσ ) are used in (11.47). It is
noted that the recombination rate given by (11.47) is positive under forward-bias
conditions when the recombination process prevails, and becomes negative under
reverse-bias conditions when the generation process is dominant in the junction
space-charge region.
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The total recombination-generation current density in the junction space-charge
region can be obtained by integrating the recombination rate given in (11.47) over
the entire depletion region from x = 0 to x = W , which is

Jgr = q
∫ W

0
Ur dx . (11.48)

Although the above integration cannot be readily carried out, it is possible to obtain
an analytical expression for the recombination current density in the junction
space-charge region if certain assumptions are made. For example, if one assumes
that the recombination process is via a mid-gap trap center (i.e., Et = Ei and
n = p = ni exp(qV/2kBT ) for a maximum recombination rate, Umax), then the
recombination current density under forward-bias conditions can be expressed
as

Jr = qW ′ n2
i (eqV/kBT − 1)

2niτ0(eqV/2kBT + 1)
≈

(
qW ′ ni

2τ0

)
eqV/2kBT , (11.49)

where τ0 = (τn0τp0)1/2 is the effective carrier lifetime associated with the re-
combination of excess carriers in the junction space-charge region of width
W ′, and for exp(qV/2kBT ) � 1. It is interesting to note that if one calculates
the ratio of the diffusion current and the recombination current components
from (11.46) and (11.49), one finds that the recombination current component
is important only in the small forward-bias regime, while the diffusion cur-
rent becomes the dominant current component in the intermediate forward-bias
regime.

Under reverse-bias conditions, the numerator in (11.47) reduces to (−n2
i ),

and thus Ur becomes negative, which implies a net generation rate inside the
junction space-charge region. The generation current density can be determined
from the product of maximum generation rate and the depletion layer width Wi,
namely,

Jg =
Wi∫

0

qUdx = q|Um|Wi = qniWi

τe

∼=
(

ni

τe

) [(
qε0εs

2Nd

)
(Vbi + V )

]1/2

.

(11.50)

Equation (11.50) was obtained by assuming that the generation center coincides
with the intrinsic Fermi level (i.e., Et = Ei) and the depletion region is dominated
by the lightly doped n region. The result shows that the generation current density
varies linearly with the intrinsic carrier density, ni, and the square root of the
reverse-bias voltage.

It should be noted that the reverse saturation current density of a p-n junction
diode is in general much smaller than that of the Schottky barrier diode discussed
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Figure 11.8. Current-voltage
(I–V) characteristics of a
practical silicon p-n diode; (a)
generation-recombination (g-r)
regime, (b) diffusion regime, (c)
high-injection regime, (d) series
resistance effect, (e) reverse
leakage current due to g-r
current and surface effects. After
Moll,3 by permission.

in Chapter 10. This is due to the fact that the saturation current of a p-n junction
diode depends exponentially on the energy band gap of the semiconductor, while
the saturation current of a Schottky diode depends exponentially on the barrier
height. Since the barrier height is usually smaller than the energy band gap, the
saturation current of a Schottky diode can be several orders of magnitude higher
than that of a p-n junction diode under same temperature condition. Furthermore,
one also expects that the saturation current of a p-n junction diode will have a
stronger temperature dependence than that of a Schottky barrier diode due to the
exponential dependence of the current density on both the temperature and band
gap energy.

Figure 11.8 shows the I–V characteristics of a practical silicon p-n junction
diode under forward and reverse-bias conditions.3 The solid line corresponds to
the ideal I–V curve predicted from the Shockley diode equation, while the dashed
line corresponds to the I–V curve for a practical silicon p-n junction diode in
which the recombination-current and series-resistance effects are also included
under forward-bias conditions.

11.5. Diffusion Capacitance and Conductance

The transition capacitance derived in Section 11.3 is the dominant junction ca-
pacitance under reverse-bias conditions. However, under forward-bias conditions,
when a small ac signal superimposed on a dc bias voltage is applied to a p-n junc-
tion diode, another capacitance component, known as the diffusion capacitance,
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becomes the dominant component. This diffusion capacitance is associated with
the minority carrier rearrangement in the quasineutral regions of the p-n junction
under forward-bias conditions. The diffusion capacitance of a p-n junction diode
under forward bias conditions can be derived using the small-signal time-varying
voltage and current density equations:

V (t) = V0 + v1eiωt , (11.51)

J (t) = J0 + jie
iωt , (11.52)

where V0 and J0 denote the dc bias voltage and the current density; v1 and j1
are the amplitude of the small-signal voltage and current density applied to the
p-n junction, respectively. The small-signal condition is satisfied if v1 � kBT/q.
When a small ac signal is applied to the junction, the minority hole density in the
n-quasineutral region can be expressed as

pn = pn0 exp

[
q(V0 + v1eiωt )

kBT

]
. (11.53)

Since v1 � V0, an approximate solution can be obtained by expanding the expo-
nential term of (11.53), which yields

pn ≈ pn0 exp

(
qV0

kBT

) (
1 + qv1

kBT
eiωt

)
. (11.54)

The first term in (11.54) is the dc component, while the second term corresponds
to the small-signal component at the depletion layer edge of the n-quasineutral
region. A similar expression for the electron density in the p+-quasineutral region
can also be derived. Substituting the ac component of pn given by (11.54) into the
continuity equation yields

Dp
∂2 p̃n

∂x2
− p̃n

τp
= iω p̃n, (11.55)

where

p̃n = pn1eiωt =
(

pn0qv1

kBT

)
exp

(
qV0

kBT

)
eiωt . (11.56)

Now substituting (11.56) into (11.55), one obtains

∂2 p̃n

∂x2
− p̃n

Dpτ ∗
p

= 0, (11.57)

where

τ ∗
p = τp

(1 + iωτp)
(11.58)

is the effective hole lifetime, which is frequency-dependent. The solution of (11.57)
is given by

p̃n = pn1e−(x−xn)/L∗
p , (11.59)
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where L∗
p = √

Dpτ ∗
p is the effective hole diffusion length in the n-quasineutral

region. Similar to the solution given by (11.41) for the dc current den-
sity, the solution for the ac hole current density is obtained by substituting
(11.59) into (11.39) and evaluating the hole current density at x = xn, which
yields

jp(xn) = −q Dp
dpn

dx

∣∣∣∣∣x=xn =
(

qv1

kBT

) (
q Dpn2

i

NdL∗
p

)
exp

(
qV0

kBT

)
. (11.60)

Similarly, the ac electron current density at x = −xp in the p+-quasineutral region
can be expressed as

jn(−xp) = q Dn
dnp

dx

∣∣∣∣x=−xp =
(

qv1

kBT

) (
q Dnn2

i

NaL∗
n

)
exp

(
qV0

kBT

)
. (11.61)

The total ac current density is equal to the sum of jp(xn) and jn(−xp) given by
(11.60) and (11.61), respectively, and can be written as

j1 = jp(xn) + jn(−xp) =
(

qv1

kBT

) (
q Dpn2

i

NdL∗
p

+ q Dnn2
i

NaL∗
n

)
exp

(
qV0

kBT

)
. (11.62)

The small-signal admittance (Y) of the p-n diode can be obtained from (11.62),
and one obtains

Y = j1
v1

= Gd + iωCd =
(

q

kBT

) (
q Dpn2

i

NdL∗
p

+ q Dnn2
i

NaL∗
n

)
exp

(
qV0

kBT

)
, (11.63)

where L∗
p = Lp/

√
1 + iωτp and L∗

n = Ln/
√

1 + iωτn denote the effective hole-
and electron-diffusion lengths, respectively. It is noted that both L∗

p and L∗
n depend

on the frequency of the ac signals. At very low frequencies, ωτp,n � 1, the diffusion
capacitance and conductance of a p-n diode can be obtained from (11.63), which
yield

Cd0 ≈
(

q2n2
i

2kBT

) (
Lp

Nd
+ Ln

Na

)
exp

(
qV0

kBT

)
, (11.64)

Gd0 ≈
(

q2n2
i

kBT

) (
Dp

NdLp
+ Dn

NaLn

)
exp

(
qV0

kBT

)
. (11.65)

Equation (11.63) shows that the diffusion capacitance varies inversely with
the square root of the frequency and the minority carrier lifetimes, while the
conductance increases with the square root of the frequency and the minority
carrier lifetime. The small-signal analysis presented above for a p-n junction
diode reveals that under forward-bias conditions the diffusion capacitance will
become the dominant junction capacitance. It increases exponentially with the dc
forward-bias voltage. Thus, the equivalent circuit of a p-n junction diode under
small-signal operation should include both the transition and diffusion capaci-
tances in parallel with ac-conductance and the series resistances that account for



354 11. p-n Junction Diodes

the voltage drop across the ohmic contacts and the quasineutral regions of the
diode.

11.6. Minority Carrier Storage and Transient Behavior

As discussed in the previous section, under forward-bias conditions, electrons are
injected from the n-quasineutral region into the p-quasineutral region, while holes
are injected from the p-quasineutral region into the n-quasineutral region. This will
lead to a current flow and minority carrier storage in both the n- and p-quasineutral
regions of the p-n junction. In this section, the minority carrier storage and transient
behavior in a p-n junction diode are described.

Although in principle one could predict the transient behavior of minority carri-
ers by solving the continuity equations, it is usually difficult to obtain an analytical
solution by this approach. Fortunately, one can solve the problem more readily by
using the charge-control method, as will be discussed next.

The total injected minority carrier charge per unit area stored in the n-
quasineutral region can be found by integrating the excess hole density distribution
across the n-quasineutral region. For a long-base diode, this is given by

Q′
p = q

∫ WB

xn

p′
n(x) dx

= q
∫ WB

xn

pn0(eqV/kBT − 1) e−(x−xn)/Lp dx

= q Lp pn0(eqV/kBT − 1). (11.66)

Equation (11.66) shows that the minority carrier charge storage is proportional to
both the minority carrier diffusion length and the minority carrier density at the
depletion layer edge. The stored minority carrier charge (holes) given by (11.66)
can be related to the hole injection current density given by (11.39) in the n-
quasineutral region evaluated at x = xn, namely

Q′
p =

(
L2

p

Dp

)
Jp(xn) = τp Jp(xn). (11.67)

Equation (11.67) shows that the hole charge stored in the n-quasineutral base
region is equal to the product of the hole lifetime and the hole current density.
Thus, a long hole lifetime will result in more hole storage in the n-base region.
This is expected since the injected holes can stay longer and diffuse deeper into
the n-base region for long hole lifetime.

Similarly, the minority carrier storage in a short-base diode can be obtained by
substituting (11.43) into (11.66), and using (11.44) for hole current density. This
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yields

Q′
p = q(WB − xn)pn0

2
(eqV/kBT − 1) =

[
(WB − xn)2

2Dp

]
Jp = τtr Jp,

(11.68)

which shows that for a short-base diode the minority carrier storage is not dependent
on the minority carrier lifetime, but instead varies linearly with the average transit
time τtr across the n-base region. The term inside the square brackets of (11.68)
denotes the average transit time for a hole to travel across the n-quasineutral
region.

Another important diode parameter under forward-bias conditions that is asso-
ciated with the minority carrier storage in the quasineutral regions is the diffusion
capacitance. The diffusion capacitance per unit area for hole storage in the n-
quasineutral region can be derived using the definition Cd = dQ′

p/dV , where Q′
p

is given by (11.67) and (11.68) for long- and short-base diodes, respectively. Thus,
the diffusion capacitance due to hole charge storage in the n-base region is given
by

Cd =
(

q2Lp pn0

kBT

)
exp

(
qV

kBT

)
(11.69)

for the long-base diode, and

Cd =
(

q2(WB − xn)pn0

2kBT

)
exp

(
qV

kBT

)
(11.70)

for the short-base diode. It is seen that the diffusion capacitance is important only
under forward-bias conditions, and is negligible under reverse-bias conditions
when the transition capacitance becomes the dominant component.

The transient behavior of the minority carrier storage in a p-n junction diode is
very important when the diode is used in switching applications. This is because
the switching time of a p-n diode depends on the amount of stored charge that
must be injected and removed from the quasineutral regions of the diode. For
example, one may shorten the switching time by reducing the stored charge in
the quasineutral regions of the diode. This can be achieved by either reducing the
minority carrier lifetime or by limiting the forward current flow in the diode. For
switching applications the forward- to reverse-bias transition must be nearly abrupt,
and the transit time must be short. In a switching diode the turnoff time is limited
by the speed at which the stored holes can be removed from the n-quasineutral
base region. When a reverse-bias voltage is suddenly applied across a forward-
biased junction, the current can be switched in the reverse direction quickly. This
is due to the fact that the gradient near the edge of the depletion region can make
only a small change in the number of stored holes in the n-quasineutral region.
Figure 11.9a shows a qualitative sketch of the transient decay of the excess stored
holes in a long-base p-n diode. Figure 11.9b shows the basic switching circuit, and
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(a) (b)

(c)

Figure 11.9. Transient behavior of a p-n junction diode: (a) transient decay of the minority
hole density, (b) basic circuit diagram, and (c) transient response of the current from forward-
to reverse-bias conditions.

Figure 11.9c displays the transient response of the current from the forward- to
the reverse-bias conditions. It is seen that the turnoff time constant toff shown in
Figure 11.9c is the time required for the current to drop to 10% of the initial reverse
current, Ir. This turnoff time can be estimated by considering a p+-n junction diode
under forward-bias conditions. In this case, the charge of the stored excess holes
in the n-quasineutral region is given by

Q′
p = q A

∫ WB

xn

p′
n(x) dx, (11.71)

where WB is the n-base width, p′
n(x) is the excess hole density in the n-base region,

and A is the diode cross-sectional area. By integrating the continuity equation for
the excess hole density given by (6.56) once from x = xn to x = WB and using
(11.71), one obtains

Ip(xn) − Ip(WB) = dQs

dt
+ Qs

τp
. (11.72)

Equation (11.72) is known as the charge-control equation for a long-base diode.
It is noted that Ip(WB) for a long-base diode can be set equal to 0. Thus, the
steady-state forward-bias current can be obtained by setting dQs/dt = 0 in (11.72),
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which yields

If = Ip(xn) = Qsf

τp
, (11.73)

or

Qsf = Ifτp. (11.74)

If the reverse-bias current is designated as Ir during the turnoff period, then (11.72)
becomes

−Ir = dQs

dt
+ Qs

τp
. (11.75)

Using (11.73) as the initial condition, the solution of (11.75) is a time-dependent
storage charge equation, which reads

Qs(t) = τp[−Ir + (If + Ir)e
−t/τp ]. (11.76)

The turnoff time toff, which is defined as the time required to move the minority
holes out of the n-quasineutral region in order to reduce Qs to zero, can be obtained
by solving (11.76), which yields

toff = τp ln

(
1 + If

Ir

)
, (11.77)

which shows that the turnoff time or switching time is directly proportional to the
minority carrier lifetime and the ratio of the forward current to the reverse current
in the diode. Thus, the switching speed of a p-n junction diode can be increased
by shortening the minority carrier lifetimes in a n-p junction diode. Gold impurity
is often used as an effective mid-gap recombination center in silicon switching
diodes and transistors for reducing the minority carrier lifetimes and increasing
the switching speed in these devices. Another approach, such as adding a Schottky
barrier diode to the collector-base junction of a bipolar junction transistor (BJT)
to form a Schottky-clamped BJT, has been widely used to reduce the minority
carrier storage time in a switching transistor.

11.7. Zener and Avalanche Breakdowns

In this section, the junction breakdown phenomena in a p-n junction diode are
described. As described in Section 11.2, the depletion layer width and the max-
imum electric field in the space-charge region of a p-n junction will increase
with increasing reverse-bias voltage. Increasing the maximum field strength in
the depletion region will eventually lead to junction breakdown phenomena com-
monly observed in a p-n junction diode under large reverse bias. There are two
types of junction breakdown commonly observed in a p-n diode: Zener break-
down and avalanche breakdown. Zener breakdown occurs when valence elec-
trons gain sufficient energy from the electric field and then tunnel through the
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Figure 11.10. Critical electric
fields for avalanche and Zener
breakdowns in silicon as a
function of dopant density. After
Grove,4 with permission by John
Wiley & Sons, Inc.

forbidden gap into the conduction band. In this case electron–hole pairs are cre-
ated by the large reverse-bias voltage, which results in a current flow. Avalanche
breakdown is different from Zener breakdown in that the electric field is usu-
ally much higher. In avalanche breakdown, electrons (or holes) gain sufficient
energy from the electric field and then engage in collisions. Between collisions
of these high-energy electrons (or holes) they break the covalent bonds in the
lattice and thus create more electron–hole pairs during the collisions. In this pro-
cess, every electron (or hole) interacting with the lattice will create additional
electrons (or holes), and all these electrons can participate in further avalanche
collisions under high field conditions. This avalanche process will eventually lead
to a sudden multiplication of carriers in the junction space-charge region where
the maximum electric field becomes large enough to cause avalanche multipli-
cation. It is noted that avalanche multiplication (or impact ionization) is proba-
bly the most important mechanism in junction breakdown, since the avalanche
breakdown voltage imposes an upper limit on the reverse I–V characteristics of
a p-n junction diode as well as other bipolar junction devices. Both Zener and
avalanche breakdowns are nondestructive processes. Values of the breakdown
voltage for each of these two processes depend on the junction structure and
the doping concentration of the p-n junction. Figure 11.10 shows the critical
electric fields for the avalanche and Zener breakdowns as a function of dop-
ing concentration in a silicon crystal.4,5 Both of these breakdown phenomena
are very important in practical device applications. The physical mechanisms
and mathematical derivation of the avalanche and Zener breakdowns are given
next.

Avalanche multiplication is an important mechanism in the junction breakdown
phenomena because the avalanche breakdown voltage determines the maximum
reverse-bias voltage that can be applied to a p-n junction without destroying the
device. The avalanche multiplication mechanism has been widely used in achiev-
ing the internal current gain of an avalanche photodiode (APD) or to generate
microwave power in an IMPATT diode.

The basic ionization integral, which determines the breakdown condition, can
be derived as follows. As shown in Figure 11.11, consider the case in which
impact ionization is initiated by electrons. The electron current In(0) enters on the
left-hand side (p region) of the depletion layer region of width equal to W , at
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(a)

(b)

Figure 11.11. Schematic representation of (a) the electric field distribution and (b) the
avalanche process in the space-charge region showing that ionization occurs in the hight
field portion of the space-charge region (i.e., xi).

x = 0. If the electric field in the depletion region is large enough (i.e., E ≥ Ec), then
electron–hole pairs will be created by impact ionization, and the electron current
In will increase with distance through the depletion region, reaching a maximum
value of In(W ) = Mn In(0) at x = W . Similarly, the hole current Ip(x) will increase
from x = W to x = 0 as it moves through the depletion region from right to left
in the junction space-charge region. Figure 11.11b shows the current flows due to
the avalanche multiplication process of electrons and holes in the depletion region
under large reverse-bias conditions. The total current I = Ip(x) + In(x) is constant
under steady-state conditions. The incremental electron current at x is equal to the
number of electron–hole pairs generated per second in the interval dx, which is
given by

d

(
In

q

)
=

(
In

q

)
αndx +

(
Ip

q

)
αp dx, (11.78)

or

dIn

dx
− (αn − αp)In = αp(In + Ip) = αp I, (11.79)

where αn and αp denote the electron and hole ionization coefficients (cm−1), re-
spectively. If one introduces the boundary conditions In(0) = In0 at x = 0 and
I = In(W ) = Mn In0 at x = W , then the solution of (11.79) is given by

In(x) = I {1/Mn + ∫ x
0 αp exp[− ∫ x

0 (αn − αp)du]dx}
exp[− ∫ x

0 (αn − αp) du]
, (11.80)
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where Mn is the multiplication factor of electrons, defined by

Mn = In(W )

In(0)
. (11.81)

Solving (11.80) and (11.81), one obtains the electron multiplication factor as

Mn = 1

exp
[− ∫ w

0 (αn − αp) dx
] − ∫ w

0 αp exp
[− ∫ x

0 (αn − αp) du
]

dx
, (11.82)

or

Mn = 1

1 − ∫ w
0 αn exp

[− ∫ x
0 (αn − αp)du

]
dx

. (11.83)

Note that (11.83) is obtained by using the relation

exp

[
−

∫ w

0
(αn − αp) dx

]
= 1 −

∫ w

0
(αn − αp) exp

[
−

∫ x

0
(αn − αp) du

]
dx .

(11.84)

The avalanche breakdown voltage is referred to as the critical bias voltage
in which the impact ionization occurs in the junction space-charge region and
the multiplication factor Mn becomes infinity. When the avalanche multiplication
process is initiated by the electron, the breakdown condition can be obtained from
(11.83) with Mn → ∞, which yields∫ w

0
αn exp

[
−

∫ x

0
(αn − αp) du

]
dx = 1. (11.85)

Similarly, if the avalanche multiplication is initiated by holes instead of electrons,
then the ionization integral given by (11.85) becomes∫ w

0
αp exp

[
−

∫ x

0
(αp − αn) du

]
dx = 1. (11.86)

Equations (11.85) and (11.86) should yield the same breakdown condition within
the depletion region of the diode regardless of whether the avalanche process is
initiated by electrons or holes. For a semiconductor such as GaP that has equal
ionization coefficients (i.e., αn = αp = α), (11.85) and (11.86) can be simplified
to ∫ W

0
α dx = 1. (11.87)

If the ionization coefficients for both electrons and holes are independent of the
position in the depletion region, then (11.82) becomes

Mn = (1 − αp/αn) exp[(αn − αp)W ]

(1 − exp[(αn − αp)W ])
. (11.88)

In general, the ionization coefficient α is a strong function of the electric field,
since the energy necessary for an ionizing collision is imparted to the carriers by
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the electric field. The field-dependent ionization coefficient can be expressed by
an empirical formula given by

α = A exp

(
− B

E

)
, (11.89)

where A and B are material constants;E is the electric field, which can be calculated
for each material from the solution of Poisson’s equation. For silicon, A = 9 ×
105 cm−1 and B = 18 × 106 V/cm. It is noted that not only does the ionization
coefficient vary with the electric field and the position in the depletion region, but
the width of the depletion region also changes with the applied bias voltage. Thus,
it is usually difficult to evaluate the avalanche multiplication factor M from (11.85)
or (11.86). Instead, an empirical formula for M given by

M = 1

[1 − (VR/VB)n]
(2 < n < 6) (11.90)

is often used. Here, VR denotes the applied reverse-bias voltage, and VB is the
breakdown voltage given by

VB = EmW

2
= ε0εsE2

m

2q NB
(11.91)

for a one-sided abrupt junction diode, and

VB = 2EmW

3
=

(
4E3/2

m

3

) (
2ε0εs

qa

)1/2

(11.92)

for a linear-graded junction diode. It is noted that NB is the background doping
density in the lightly doped base region of the junction; a is the impurity gradient
coefficient, and Em is the maximum electric field in the junction space-charge
region. An approximate universal expression for calculating the breakdown voltage
as a function of energy band gap and doping density in an abrupt p-n junction diode
is given by

VB ≈ 60

(
Eg

1.1

)3/2 (
NB

1016

)−3/4

, (11.93)

where Eg is the band gap energy in eV. For a linear-graded junction diode, the
breakdown voltage is given by

VB ≈ 60

(
Eg

1.1

)1.2 (
a

3 × 1020

)−0.4

. (11.94)

Using (11.93), the breakdown voltage VB for a silicon p+-n step-junction diode
with Nd = 1016 cm−3 was found equal to 60 V at T = 300 K, and for a GaAs
p+-n diode with similar doping density the breakdown voltage VB was found to
be 75 V. Figure 11.12 shows the avalanche breakdown voltage versus impurity
density for a one-sided abrupt junction and a linear-graded junction diode formed
on Ge, Si, GaAs, and GaP, respectively.5 The dashed line indicates the maximum
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Figure 11.12. Avalanche breakdown voltage versus impurity density for (a) a one-sided
abrupt junction and (b) a linearly graded diode in Ge, Si, GaAs, and GaP. The dashed
line indicates the maximum doping density beyond which the tunneling mechanism will
dominate the voltage breakdown characteristics. After Sze and Gibbons,5 by permission.

doping density beyond which the tunneling mechanism will dominate the voltage
breakdown characteristics. The Zener breakdown phenomenon in a p-n junction
diode is discussed next.

As shown in Figure 11.10, when the doping density increases, the width of
the space-charge region will decrease and the critical field at which avalanche
breakdown occurs will also increase. At very high doping density, the electric field
required for the avalanche breakdown to occur exceeds the field strength necessary
for the Zener breakdown to take place, and hence the latter becomes more likely
to occur. To explain the Zener breakdown mechanism, Figures 11.13a and b show
the energy band diagram under reverse-bias conditions and the triangle potential
barrier for a heavily doped p+-n+ junction diode, respectively. The probability for

(a) (b)

Figure 11.13. (a) Energy band diagram of a Zener diode under reverse-bias conditions.
(b) The probability of tunneling across the junction is represented by tunneling through a
triangle potential barrier.
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electrons to tunnel from the valence band to the conduction band under high field
conditions can be calculated using the tunneling of electrons through a triangular
potential barrier. The energy barrier height, EB(x), decreases linearly from Eg at
x = 0 to 0 at x = L . The probability of tunneling, Tx , can be derived from the
WKB (Wentzel–Kramers–Brillouin)6 approximation, which reads

Tx ≈ exp

⎡
⎣−2

∫ L

0

√
2m∗

h̄2

(
Eg − qEx

)
dx

⎤
⎦

= exp(−B/E) = exp(−q BL/Eg), (11.95)

where

B = 4(2m∗)1/2 E3/2
g

3qh̄
. (11.96)

In (11.95), L is the tunneling distance, and E = Eg/q L is the average electric field
in the junction space charge region. Therefore, the Zener tunneling probability
decreases exponentially with decreasing electric field or increasing tunneling dis-
tance. If n is the number of valence electrons tunneling through the barrier, and vth

is the thermal velocity of electrons, then the tunneling current can be written as

It = AqnvthTx , (11.97)

where A is the cross-sectional area of the diode, and Tx is the tunneling probability
given by (11.95). Equations (11.95) through (11.97) enables one to estimate the
tunneling probability, the tunneling distance, and the electric field for a given
tunneling current. It is seen that p-n diodes exhibiting Zener breakdown generally
have a lower breakdown voltage than that of avalanche diodes. For example, in
a silicon p-n junction diode with doping densities on both sides of the junction
greater than 1018 cm−3, Zener breakdown will occur at a voltage less than −6 V,
while avalanche breakdown will occur at a much higher reverse-bias voltage.

11.8. Tunnel Diodes

In 1958, L. Esaki discovered a new device, known as the tunnel diode, when he
observed a negative differential resistance and microwave oscillation in a heavily
doped germanium p++-n++ junction diode under forward-bias conditions. The
current flow in a forward-bias tunnel diode can be attributed to the quantum-
mechanical tunneling of charged carriers through the thin potential barrier across
the junction.

A tunnel diode is formed when the densities of the shallow-donor and shallow-
acceptor impurities in both the p+ and n+ regions of the junction are doped to the
middle-1019 cm−3 range. Figure 11.14a shows the energy band diagram of a tun-
nel diode under equilibrium conditions (V = 0). Figure 11.14b shows the energy
band diagram under a small forward-bias voltage with a triangle potential barrier
height of qχB ≈ Eg. Figure 11.14c displays the forward current–voltage (I–V)
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Figure 11.14. Energy band diagram (a) for a tunnel diode in equilibrium, (b) under forward-
bias conditions, and (c) I–V characteristics under forward-bias conditions.

characteristics of a tunnel diode. Due to the high doping densities on both sides of
the junction, the Fermi levels on either side of the junction are located a few kBT
inside the conduction and valence bands, as shown in Figure 11.14a. For a tunnel
diode, the depletion layer width under zero bias condition is on the order of 50 to
100 Å, which is much smaller than that of a standard p-n junction diode.

The electron tunneling process from the valence band to the conduction band,
which is dominated in a tunnel diode under forward-bias condition, can be ex-
plained using the quantum-mechanical tunneling mechanism. As shown in Figure
11.14a, at V = 0 and T = 0 K, the states above the Fermi level in the conduction
band of the n+ region are empty, and the states below the Fermi level in the va-
lence band of the p+ region are completely filled. Therefore, under this condition
no tunneling of electrons from the conduction band to the valence band will take
place, and the tunneling current is equal to 0. This situation will usually prevail
even at room temperature. When a forward-bias voltage is applied to the tunnel
diode as shown in Figure 11.14b, the quasi-Fermi level in the n+ region will move
above the quasi-Fermi level in the p+ region. As a result, it is possible for some
of the electrons in the conduction band of the n+ region to tunnel through the thin
potential barrier across the junction into the empty states in the valence band of
the p+ region. The tunneling probability in this case will depend on the thickness
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of the potential barrier across the junction, which will increase with decreasing
barrier thickness.

A typical current–voltage (I–V) characteristic curve for a tunnel diode under
forward-bias conditions is illustrated in Figure 11.14c, where Ip and Vp denote
the peak current and peak voltage, while Iv and Vv are the valley current and val-
ley voltage, respectively. The I–V characteristics under forward-bias conditions
may be divided into three regions: (i) the low-bias (i.e., V < Vp) regime, where
the current increases monotonically with voltage to a peak value Ip at voltage
Vp; (ii) the intermediate-bias (i.e., Vp < V < Vv) regime, where the current de-
creases with increasing voltage to a minimum current Iv at voltage Vv; and (iii) the
high-bias regime (i.e., V > Vv), where the current increases exponentially with
applied voltage. In general, the current components contributing to the forward
I–V characteristics of a tunnel diode shown in Figure 11.14c are dominated by the
band-to-band tunneling current, the excess current, and the diffusion current. For
V < Vv the diffusion current is the dominant current component. In the negative
resistance regime (i.e., regime (ii)) the current is dominated by the band-to-band
tunneling through the thin triangle potential barrier of the junction.

Tunneling mechanisms and physical insight in a tunnel diode can be understood
with the aid of a simple model using the triangle potential barrier shown in Figure
11.14b under forward-bias conditions. If the barrier height of the triangle potential
barrier is assumed equal to the band gap energy (i.e., ≈ Eg), and n is the density
of electrons in the conduction band available for tunneling, then using the WKB
method the tunneling probability of electrons across a triangle potential barrier is
given by

Tt ≈ exp

[
−2

∫ W

0
|k(x)|dx

]
≈ exp

(
−4

√
2qm∗

e E3/2
g

3h̄ε

)
, (11.98)

where |k(x)| =
√

2m∗/h̄2(Eg/2 − qEx) is the absolute value of the electron mo-
mentum; E = Eg/W is the average electric field across the depletion region of the
tunnel diode; W is the depletion layer width. It is seen in Figure 11.14b that if the
states in the valence band of the p+ region are mostly empty, then the tunneling
current due to the band-to-band tunneling from n+ to p+ region is given by

It = AqvthnTt, (11.99)

where A is the cross-sectional area of the tunnel diode, vth is the thermal velocity
of the tunneling electrons, and Tt is the tunneling probability given by (11.98).

The tunneling current given by (11.99) is relatively insensitive to temperature.
For example, the peak current of a typical germanium tunnel diode varies by only
±10% over a temperature range from −50 to 100◦C. Since the tunneling time
across a tunnel diode is very short, the switching speed of a tunnel diode is usually
very fast. A wide variety of device and circuit applications using tunnel diodes,
including microwave oscillators, multivibrators, low-noise microwave amplifiers,
and high-speed logic circuits, have been reported in the literature. In addition to
microwave and digital circuit applications, a tunnel diode can also be used as a test
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vehicle in tunneling spectroscopy for studying fundamental physical parameters
such as electron energy states in a solid and excitation modes in a p-n junction
device. Finally, it should be noted that a tunnel diode is a two-terminal device,
and hence it is not easy to incorporate such a device structure in many integrated
circuit applications.

11.9. p-n Heterojunction Diodes

A p-n heterojunction diode can be formed using two semiconductors of dif-
ferent band gaps and with opposite doping impurities. Examples of p-n het-
erojunction diodes are Ge/GaAs, Si/SiGe, AlGaAs/GaAs, InGaAs/InAlAs, In-
GaP/GaAs, InGaAs/InP, and GaN/InGaN heterostructures. The heterojunction
diodes offer a wide variety of important applications for laser diodes, light-emitting
diodes (LEDs), photodetectors, solar cells, junction field-effect transistors (JFETs),
modulation-doped field-effect transistors (MODFETs or HEMTs), heterojunction
bipolar transistors (HBTs), quantum cascade lasers, quantum well infrared pho-
todetectors (QWIPs), quantum dot lasers, and quantum dot infrared photodetectors.
With recent advances in MOCVD and MBE epitaxial growth techniques for III-V
compound semiconductors and SiGe/Si systems, it is now possible to grow ex-
tremely high-quality III-V heterojunction structures with layer thickness of 100
Å or less for quantum dots, superlattices, and multiquantum-well (MQW) device
applications.

Figure 11.15a shows the energy band diagram for an isolated n-Ge and p-GaAs
semiconductor in thermal equilibrium, and Figure 11.15b shows the energy band
diagram of an ideal n-Ge/p-GaAs heterojunction diode. The energy band diagrams
for ideal n-Ge/n-GaAs, p-Ge/n-GaAs, and p-Ge/p-GaAs heterostructures with no
interface states are illustrated in Figures 11.16a, b, and c, respectively. Although the
energy band gaps and dielectric constants for Ge and GaAs are quite different, the
lattice constants for both materials are nearly identical (5.658 Å for Ge and 5.654
Å for GaAs). As a result, high-quality lattice-matched Ge/GaAs heterojunction
structures can be formed in this material system. As shown in Figures 11.15b
and 11.16, the energy band diagram for a heterojunction diode is much more
complicated than that of a p-n homojunction due to the presence of energy band
discontinuities in the conduction band (�Ec) and the valence band (�Ev) at the
metallurgical junction of the two materials. In Figure 11.15b, subscripts 1 and
2 refer to Ge and GaAs, respectively; the energy discontinuity step arises from
the difference of band gap and work function in these two semiconductors. The
conduction band offset at the heterointerface of the two materials is equal to �Ec,
and the valence band offset is �Ev. Based on the Anderson model,6 the conduction
and valence band offsets (�Ec and �Ev) can be obtained from the energy band
diagram shown in Figure 11.15a, and are given, respectively, by

�Ec = q(χ1 − χ2), (11.100)

�Ev = (Eg2 − Eg1) − �Ec = �Eg − �Ec, (11.101)
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Figure 11.15. Energy band diagrams for (a) an isolated n-Ge and p-GaAs semiconductor
in equilibrium, and (b) n-Ge and p-GaAs brought into intimate contact to form an n-p
heterojunction diode.

which shows that the conduction band offset is equal to the difference in the electron
affinity of these two materials, and the valence band offset is equal to the band
gap difference minus the conduction band offset. From (11.101) it is noted that
the sum of the conduction band and valence band offsets is equal to the band gap
energy difference of the two semiconductors. When these two semiconductors are
brought into intimate contact, the Fermi level (or chemical potential) must line up in
equilibrium. As a result, electrons from the n-Ge will flow to the p-GaAs, and holes
from the p-GaAs side will flow to the n-Ge side until the equilibrium condition
is reached (i.e., the Fermi energy is lined up across the heterojunction). As in the
case of a p-n homojunction, the redistribution of charges creates a depletion region
across both sides of the junction. Figure 11.15b shows the energy band diagram
for an ideal n-Ge/p-GaAs heterojunction diode in equilibrium, and the band offset
in the conduction and valence bands at the Ge/GaAs interface is clearly shown in
this figure. The band bending across the depletion region indicates that a built-in
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(a)

(b)

(c)

Figure 11.16. Energy band diagrams for (a) n-Ge/n-GaAs, (b) p-Ge/n- GaAs, and (c)
p-Ge/p- GaAs heterojunction diodes in thermal equilibrium.

potential exists on both sides of the junction. The total built-in potential, Vbi, is
equal to the sum of the built-in potentials on each side of the junction, i.e.,

Vbi = Vb1 + Vb2, (11.102)

where Vb1 are Vb2 are the band bending potentials in p-Ge and n-GaAs, respectively.
It is noted that the discontinuity in the electrostatic field at the interface is due to the
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difference in dielectric constants of these two semiconductors. Using the depletion
approximation, Vb1 and Vb2 in the n-Ge and p-GaAs regions can be expressed,
respectively, by

Vb2 = ε1 ND1

ε1 ND1 + ε2 NA2
Vbi, (11.103)

Vb1 = ε2 NA2

ε1 ND1 + ε2 NA2
Vbi. (11.104)

If one assumes the existence of a Schottky barrier at the heterointerface, the solution
of Poisson’s equation yields the depletion layer widths on either side of the step-
heterojunction diode under bias conditions, which are given, respectively, by

W1 =
[

2NA2ε1ε2(Vbi − V )

q ND1(ε1 ND1 + ε2 NA2)

]1/2

, (11.105)

W2 =
[

2ND1ε1ε2(Vbi − V )

q NA2(ε1 ND1 + ε2 NA2)

]1/2

. (11.106)

Thus, the total depletion layer width of the heterojunction can be obtained from
(11.105) and (11.106) as

Wd = W1 + W2,

Wd =
[

2ε1ε2(Vbi − V )(N 2
A2 + N 2

D1)

q(ε1 ND1 + ε2 NA2)ND1 NA2

]1/2

. (11.107)

Equations (11.105) and (11.106) are derived from Poisson’s equation in the
depletion region of the heterojunction diode. The two boundary conditions are
given, respectively, by

W1 ND1 = W2 NA2, (11.108)

ε1E1 = ε2E2, (11.109)

where εi and Ei (i = 1, 2) denote the dielectric constants and electric fields in
regions 1 and 2, respectively. From (11.103) and (11.104), the ratio of the relative
voltage drop across regions 1 and 2 of the two semiconductors is given by

(Vb1 − V1)

(Vb2 − V2)
= NA2ε2

ND1ε1
. (11.110)

The transition capacitance per unit area for the p-n heterojunction can be derived
from (11.107), and one obtains

Cj =
[

q ND1 NA2ε1ε2

2(ε1 ND1 + ε2 NA2)(Vbi − V )

]1/2

=
√

ε1ε2

Wd
. (11.111)

The current–voltage (I–V) characteristics for an n-Ge/p-GaAs heterojunction
diode can be derived using the energy band diagram shown in Figure 11.15b and
the thermionic emission theory for a Schottky barrier diode described in Chapter
10. Since the relative magnitudes of the current components in a heterojunction are
determined by the potential barriers involved, for the n-Ge/p-GaAs heterojunction
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diode shown in Figure 11.15b the hole current from p-GaAs to n-Ge is expected
to dominate the current flow because of the lower potential barrier (= Vb2) for
hole injection and the higher potential barrier (= Vb1 + �Ec + Vb2) for electron
injection. Therefore, to derive the current–voltage relationship for the n-p hetero-
junction diode shown in Figure 11.15b, only the hole current need be considered.
At zero bias, the barrier to hole flow from p-GaAs to n-Ge is equal to qVb2, and in
the opposite direction it is (�Ev − qVb1). Under thermal equilibrium conditions,
the two oppositely directed fluxes of holes must be equal, since the net current
flow is zero. Thus, one can write

A1 exp[−(�Ev − qVb1)/kBT ] = A2 exp(−qVb2/kBT ), (11.112)

where constants A1 and A2 depend on the doping levels and carrier effective masses
in the diode.

If one applies a forward-bias voltage Va across the junction, then the portions
of the voltage drops on the two sides of the junction are determined by the rel-
ative doping densities and dielectric constants of the materials, and are given,
respectively, by

V2 = K2Va, where K2 = ND1ε1

ND1ε1 + NA2ε2
(11.113)

and

V1 = K1Va, where K1 = 1 − K2. (11.114)

The energy barriers are equal to q(Vb2 − V2) on the p-GaAs side and [�Ev −
q(Vbi − V1)] on the n-Ge side of the junction. Using (11.112), the net hole flux
from right to the left under forward-bias conditions can be expressed by

φp = A1 exp(−qVb2/kBT )[exp(qV2/kBT ) − exp(qV1/kBT )]. (11.115)

If the conduction mechanism is governed by thermionic emission, the current
density due to hole injection from p-GaAs to n-Ge of the n-p heterojunction diode
shown in Figure 11.15b has a similar form to that given by (11.115). Thus, the
hole current density can be written as

Jp = A exp(−qVb2/kBT ) [exp(qV2/kBT ) − exp(qV1/kBT )]

≈ J0

(
1 − Va

Vbi

)
[exp(qVa/kBT ) − 1], (11.116)

where

J0 =
(

q A∗T Vbi

kB

)
e−qVbi/kBT . (11.117)

It is noted that (11.116) was obtained using the approximation eq(Vh1−V1)/kBT ≈
(q/kBT )(Vbi − Va) and the total applied voltage Va = V1 + V2. From (11.116), it
is seen that the current–voltage (I–V) relationship for an n-p heterojunction diode
is somewhat different from that of a metal–semiconductor Schottky diode. The
main difference is that the reverse saturation current density is not a constant,
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but increases linearly with the applied reverse-bias voltage for Va � Vbi. Under
forward-bias conditions, as in the case of a Schottky barrier diode, the current–
voltage relationship can be approximated by an exponential dependence of the
form e−qVa/nkBT , where n is the diode ideality factor.

Practical applications of heterojunction structures for a wide variety of devices
such as solar cells, LEDs, laser diodes, photodetectors, HEMTs, and HBTs will
be discussed further in Chapters 12, 13, and 16. Finally, it should be mentioned
that multilayer heterojunction structures such as superlattices, multiple quantum
wells and quantum dots, and the modulation-doped heterostructures grown us-
ing MBE and MOCVD techniques have been widely reported for photonic and
high-speed device applications. Figure 11.17 shows (a) the energy band diagrams
for a modulation-doped Al0.3GA0.7As/GaAs heterostructure and a single-period
Al0.3Ga0.7As/GaAs heterostructure, (b) a comparison of the electron mobilities
as a function of temperature in the undoped GaAs quantum well and in several
bulk GaAs samples of diferent doping concentrations, and (c) a comparison of
electron mobilities versus temperature in the triangle potential well of undoped
GaAs with a single-period modulation-doped AlGaAs/GaAs heterostructure and
in bulk GaAs doped to 1017 cm−3. Using a modulation-doping technique, the elec-
tron mobility in the undoped GaAs quantum well can be greatly enhanced because
the impurity scattering due to ionized donor impurities in the AlGaAs layer can
be eliminated in the undoped GaAs quantum well. Typical layer thickness for
the modulation-doped heterostructure devices is around 100 Å. The modulation-
doping technique has been widely used in heterojunction field-effect transistors
such as HEMTs for high-speed device applications. Other applications using su-
perlattices and multiple quantum well heterostructures include resonant tunnel-
ing devices and quantum well infrared photodetectors (QWIPs), LEDs and laser
diodes (LDs). These devices will be discussed further in Chapter 12, 13, and
16.

11.10. Junction Field-Effect Transistors

The junction field-effect transistor (JFET) is a three-terminal device, which consists
of the source, the gate, and the drain electrode. In a JFET the lateral current flow
between the source and drain electrodes is controlled by the applied vertical electric
field via a controlled gate, which is formed by a p+-n junction. Figure 11.18 shows
the basic device structure of an n-channel JFET formed on a lightly doped n-type
epilayer grown on a p-type substrate. The heavily doped n+-source–drain regions
and the p+-gate region can be formed using either the thermal diffusion or ion
implantation technique. In IC fabrication, the ion-implantation technique is more
widely used since better control of geometries, doping densities, and profiles for
both the source and drain regions can be obtained using this technique.

Since current flow in a JFET is due to the majority carriers in the channel that
is formed between the p+-gate and the p-substrate, the JFET is also known as a
unipolar transistor. The unique feature of a JFET is that the conductivity in the
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Figure 11.17. (a) Energy band for an AlGaAs/GaAs modulation-doped heterostructure,
(b) electron mobility versus temperature for the modulation-doped structure and bulk GaAs
with different doping concentrations, and (c) electron mobility versus temperature for the
single-period modulation-doped AlGaAs/GaAs heterostructure. After Dingle et al.,7 by
permission.
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Figure 11.18. The device structure of an n-channel junction field-effect transistor (JFET).

channel can be controlled by the reverse-bias voltage at the gate electrode. The gate
bias voltage is used to change the depletion layer width in the p+-gate/n-channel
space-charge region. If the current flow in the channel is due to electrons, then
one has an n-channel JFET. On the other hand, if the current flow in the channel
is due to holes, then one has a p-channel JFET (in this case the source and drain
electrodes are p+ doping, and the substrate is n-type).

The dc characteristics of a JFET can be analyzed using a one-dimensional (1-D)
JFET structure as shown in Figures 11.19a and b under different bias conditions.
In this figure, L is the channel length between the source and drain, Z is the
depth of the channel, 2a is the channel width, and the drain current is along the
x-direction of the channel length. If the channel length (L) is much larger than
the channel width (2a), then the change in channel width along the channel is
small compared to the channel width. Therefore, the electric field in the depletion
region of the gate junction is assumed perpendicular to the channel (i.e., along the
y-direction), while the electric field inside the neutral n-channel may be assumed
in the x-direction only. The gradual-channel approximation was first introduced
by Shockley to analyze the current–voltage (ID–VD) characteristics of a JFET. By
assuming a one-side abrupt junction at the gate region with its doping density NA

much larger than ND in the channel, the depletion layer will extend mainly into
the channel region. Under normal operating conditions, a reverse-bias voltage is
applied across the gate electrode so that free carriers are depleted from the channel
and the space-charge region extends into the channel. Consequently, the cross-
sectional area of the channel is reduced, and channel conduction is also reduced.
Thus, the current flow in the channel is controlled by the gate voltage. The depletion
layer width in this case can be expressed as

Wd(x) =
√

2ε0εs[V (x) + Vbi − Vg]

q ND
. (11.118)
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Figure 11.19. Schematic diagram of an n-channel JFET showing (a) the source (S), gate
(G), and drain (D) regions, the dimensions of the channel, and the depletion region (shaded
area) in the channel under small gate bias voltage and (b) at pinch-off condition.

The resistance in the channel region can be expressed by

R = ρL

A
= L

qμn ND A
= L

2qμn ND Z (a − Wd)
. (11.119)

The drain current ID in the n-channel is due to the drift component only, and is
given by

ID = AqnμnEx = 2qμn ND[a − Wd(x)] Z
dV

dx
, (11.120)

where A = 2(a − Wd)Z is the cross-sectional area of the channel. Substituting
(11.118) for Wd(x) into (11.120) and integrating the equation from x = 0 to x = L
with corresponding voltages from 0 to VD yields

ID

∫ L

0

dx

2qμn ND Z
=

∫ VD

0

{
a −

[(
2ε0εs

q ND

)
(V + Vbi − Vg)

]1/2
}

dV . (11.121)
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Now integrating and rearranging the terms in (11.121), one obtains

ID = G0

{
VF − 2

3

(
2ε0εs

qa2 ND

)1/2

[(Vd + Vbi − Vg)3/2 − (Vbi − Vg)3/2]

}
.

(11.122)

Equation (11.122) is a general expression of the current–voltage (ID–VD) relation
for a JFET; it can also be expressed in terms of the pinch-off voltage and pinch-off
current as

ID = Ip

{(
VD

Vp

)
− 2

3

[
(VD + Vg + Vbi)

Vp

]3/2

+ 2

3

[
(Vg + Vbi)

Vp

]3/2
}

, (11.123)

where

Ip = q2μn N 2
D Za3

ε0εsL
, (11.124)

Vp = q NDa2

2ε0εs
, (11.125)

where Vp is the pinch-off voltage (i.e., Vp = VD + Vg + Vbi, and Wd = a at x = L)
and Ip is the pinch-off current.

The I–V characteristics for a JFET can be analyzed in two regions with pinch-off
as the boundary condition. At low drain voltages (i.e., VD � Vg + Vbi), (11.123)
becomes

ID = G0

{
1 −

[
ε0εs

2q Nd(a − Wd)(Vbi − Vg)

]1/2
}

VD, (11.126)

where G0 = 2qμn Nd Z (a − Wd)/L is the channel conductance. Equation (11.126)
shows that at a given gate voltage, a linear relationship between ID and VD prevails
in this region. The inverse square-root dependence of the drain current on the
gate voltage is a direct result of assuming an abrupt junction for the gate-channel
junction. It is seen in (11.126) that the drain current reaches a maximum value when
the gate voltage is zero and decreases with increasing gate voltage. In addition,
this equation also predicts zero drain current when the gate voltage is large enough
to deplete the entire channel region. If the drain voltage is further increased, the
depletion layer width will also increase. Eventually, the two depletion regions
touch each other at the drain electrode as shown in Figure 11.19b. This pinch-off
condition occurs when the depletion width Wd is equal to a at the drain electrode.
For a p+-n junction, solving (11.118) yields the corresponding value of the drain
voltage, which is given by

VDS = q NDa2

2ε0εs
− Vbi for Vg = 0, (11.127)

where VDS is the saturation drain voltage. The pinch-off condition is reached at this
drain voltage, and both the source and drain regions are completely separated by a
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Figure 11.20. Output I –V characteris-
tics of a JFET for different gate bias volt-
ages, showing the linear and saturation
regions of the device operation.

reverse-bias depletion region. The location of point P in Figure 11.19b is called the
pinch-off point, and the corresponding drain current is called the saturation drain
current IDS, which can flow through the depletion region. Beyond the pinch-off
point, as VD is increased further, the depletion region near the drain will expand
and point P will move toward the source region. However, the voltage at point
P remains the same as VDS. As a result, the potential drop in the channel from
the source to point P remains the same, and the current flow in the channel also
stays constant. Thus, for drain voltages larger than VDS, the current flow in the
channel is independent of VD and is equal to IDS. Under this condition, the JFET
is operating in the saturation regime, and the expression for the saturation current
can be deduced from (11.122) in the form

IDS = G0

{
q NDa2

6ε0εs
− (Vbi − Vg)

[
1 − 2

3

(
2ε0εs(Vbi − Vg)

q NDa2

)1/2
]}

,

(11.128)
or

IDS = Ip

{
1

3
− (Vg + Vbi)

Vp
+ 2

3

[
Vg + Vbi

Vp

]3/2
}

. (11.129)

The corresponding drain saturation voltage is given by

VDS = Vp − Vg − Vbi. (11.130)

Based on the above analysis, the ID versus VD curve can be divided into three
different regimes: (1) the linear regime at low drain voltages, (2) a regime with
less than a linear increase of drain current with drain voltage, and (3) a saturation
regime where the drain current remains constant as the drain voltage is further
increased. This is illustrated in Figure 11.20.

The JFETs are often operated in the saturation regime in which the output drain
current does not depend on the output drain voltage but depends only on the input
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gate voltage. Under this condition, the JFET may be used as an ideal current
source controlled by an input gate voltage. The transconductance of a JFET can
be obtained by differentiating (11.122) with respect to gate voltage, which yields

gm ≡ ∂ ID

∂Vg

∣∣∣∣
VD = constant

= G0

(
2ε0εs

q NDa2

)1/2

[(Vbi − Vg + VD)1/2 − (Vbi − Vg)1/2] (11.131)

=
(

Ip

Vp

) {
1 −

[
(Vg + Vbi)

Vp

]1/2
}

.

It is noted from (11.131) that in the saturation regime, the transconductance has a
maximum value given by

gms = G0

{
1 −

[
2ε0εs

q NDa2
(Vbi − Vg)

]1/2
}

. (11.132)

Theoretical analysis presented in this section for a JFET is based on several
simplified assumptions. For example, it is assumed that the depletion layer width
is controlled solely by the gate-channel junction and not by the channel–substrate
junction. In reality, there will be a variation in potential across the channel–
substrate junction along the channel, with maximum potential and depletion width
occurring near the drain region. As a result, this simplified assumption may lead
to a disagreement between the theoretical predictions and experimental data on
ID–VD characteristics of a practical JFET. In general, the simple model presented
here is valid only for a long-channel JFET device. For a short-channel JFET with
L/a < 2, the saturation mechanism becomes more complex and the above theo-
ries require refinement in order to obtain good agreement between the theory and
experiment.

Based on the above theoretical analysis, it is clear that the dc characteristics of
a JFET are usually quite sensitive to doping density and thickness of the channel
region. Therefore, a precise control of thickness and doping density in the channel
region of a JFET is very important. An n-channel silicon JFET can be made
with excellent control using the epitaxial growth technique. As for the source,
drain, and gate regions, because the density and location of the doping impurity in
these regions can be controlled better using ion implantation rather than thermal
diffusion, the ion-implantation approach is preferable to the thermal-diffusion
method. In fact, both the n-channel and p-gate regions for the silicon JFET are
usually formed using the ion-implantation technique.

Problems

11.1. Derive the electric field, potential distribution, and depletion layer width
for a linearly graded p-n junction diode, and show that the depletion layer
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width and the built-in potential under zero-bias conditions are given by
(11.22) and (11.23), respectively.

11.2. If the impurity gradient a for a Si and a GaAs linearly graded p-n junction
diode is equal to 1022 cm−4 at 300 K, calculate the depletion layer width,
built-in potential, and breakdown voltage for these two diodes. Repeat for
a = 1020 cm−4. Calculate and plot junction capacitance versus applied
voltage for both diodes.

11.3. The small-signal ac characteristics of a p-n junction diode are important
for circuit applications. The diode admittance can be obtained by solving
the small-signal carrier distribution from the steady-state continuity equa-
tion. The small-signal condition is satisfied if the applied ac signal, v1, is
small compared to the thermal voltage, VT (= kBT/q). Draw a small-signal
equivalent circuit for the diode by including the circuit elements rs, Gd, Cd,
and Cj, where rs is the series resistance caused by the ohmic drop across the
neutral semiconductor regions and the contacts, Gd = I/VT is the small-
signal conductance, Cd ≈ τp I/2VT is the diffusion capacitance, and Cj is
the transition capacitance that arises from the junction space-charge layer.
Note that I = Ip(0) is the dc current density for a p+-n junction diode.

11.4. From the results obtained in Problem 11.3, calculate the small-signal con-
ductance and capacitance for a long-base silicon p+-n diode if NA = 5 ×
1018 cm−3, ND = 2 × 1016 cm−3, τn = 2 × 10−8 s and τp = 5 × 10−8 s,
A = 2 × 10−4 cm2, and T = 300 K.
(a) For forward-bias voltages Vf = 0.1, 0.3, 0.5, and 0.7 V.
(b) For reverse-bias voltages VR = −0.5, −5, −10, and −20 V.
(c) What is the series resistance of the n-neutral region if the thickness is

equal to 2 mm?
11.5. Consider the minority carrier charge storage effect in a long-base p+-n

diode.
(a) Show that the turnoff time toff of holes in the n region is given by

toff = τp ln

(
1 + If

Ir

)
. (1)

The above equation is obtained from the charge-control equation for a
long-base p+-n diode. It can be shown that an exact analysis by solving
the time-dependent diffusion equation would yield

erf

(
toff

τp

)1/2

= If

(If + Ir)
, (2)

where erf (x) is the error function.
(b) Plot toff/τp versus Ir/If using expressions (1) and (2) given above.

11.6. Under forward-bias conditions, the space-charge recombination current can
be calculated from the Shockley–Read–Hall (SRH) model via a mid-gap
recombination center. The recombination rate derived from the SRH model
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is given by

Ur = n2
i (eqVa/kBT − 1)

[p + n + 2ni cosh (Et − Ei)/kBT ]τ0
, (1)

where τ0 = 1/Ntσvth is the effective carrier lifetime.
(a) Find the conditions of maximum recombination rate from (1).
(b) If the recombination current in the junction space-charge region can be

derived from

Jr = q
∫ xn

−xp

Ur dx , (2)

where Ur is given by (1), and xn and xp are the depletion layer widths in
the n and p regions, respectively, show that the recombination current
density can be expressed by

Jr =
(

qW ′ni

2τ0

)
eqVa/2kBT , (3)

where W ′ is the portion of the depletion region in which the recombi-
nation current is dominant, which is valid for qVa > 3kBT .

11.7. Consider a long-base silicon p+ -n diode. If the diode parameters are given
by NA = 1019 cm−3, ND = 5 × 1016 cm−3, Dp = 4 cm2/s, Dn = 20 cm2/s,
τp = 10−8 s, τn = 10−6 s, ni = 1.4 × 1010 cm−3, and A = 10−4 cm2:
(a) Calculate the hole injection current into the n region for forward-bias

voltages of 0.1, 0.3, 0.5, and 0.7 V at 300 K.
(b) Repeat (a) for the electron injection current into the p+-n region.
(c) What is the total injection current for V = 0, 0.3, and 0.5 V if the silicon

p-n diode is a short-base diode with p-emitter width of WE = 5 × 10−5

cm and n-base width of WB = 10−3 cm?
11.8. If the silicon p-n diode given in Problem 11.7 has a mid-gap recombina-

tion center in the junction space-charge region with large defect density,
calculate the recombination current for the cases Nt = 1013, 1014, and 1015

cm−3 and V = 0.2, 0.4, and 0.6 V assuming that capture cross-section
σ = 10−15 cm2, vth = 107 cm/s, and recombination occurs throughout the
entire depletion region. (Hint: use the expression for the recombination
current given by Problem 11.6.)

11.9. The diode parameters for a Ge-, Si-, and GaAs- p+-n short-base diode are
the same as those given by Problem 11.7, except that the intrinsic carrier
densities are 2.5 × 1013, 9.65 × 109, and 106 cm−3 for Ge, Si, and GaAs at
300 K, respectively. Calculate the total injection current for these diodes.
Explain why GaAs is more suitable for high-temperature applications than
Si and Ge. (Given: Eg = 0.67.1.12, and 1.43 eV for Ge, Si, and GaAs at
300 K.)

11.10. (a) Plot the energy band diagram for an Alx Ga1−x As/GaAs p+-n hetero-
junction for x = 0.3 (Eg = 1.8 eV).
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(b) If NA = 5 × 1018 cm−3, ND = 2 × 1017 cm−3, Dn = Dp = 5 cm2/s,
and τn = τp = 10−9 s, calculate the injection currents in both regions
of the diode, assuming A = 2 × 10−5 cm2.

(c) Plot the injection current versus temperature (100–400 K) for this diode.
11.11. The onset of Zener breakdown in an abrupt silicon p-n diode takes place

when the maximum electric field approaches 106 V/cm. If the doping den-
sity in the p region is 5 × 1019 cm−3, what would be the doping density in
the n region in order to achieve a Zener breakdown voltage of 2 V? Repeat
the calculation for NA = 1020 cm−3 and VZB = 3 V.

11.12. Plot the energy band diagrams for a p+-Al0.3Ga0.7As/n-GaAs and an n-
Ge/p-GaAs heterojunction diode. The band gap energy for Alx Ga1−x As
can be calculated using the equation Eg = 1.424 + 1.247xeV (for 0 <

x < 0.45). Calculate the values of �Ec and �Ev for both cases.
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12
Solar Cells and Photodetectors

12.1. Introduction

Photonic devices play an important role in a wide variety of applications in the areas
of photovoltaic (PV) power generation, optical communications, data transmission
and signal processing, detection, sensors and optical imaging, and displays and
light sources. Recent advances in III-IV compound semiconductor growth and
processing technologies have enabled these applications to become a reality. As a
result, various photonic devices such as laser diodes (LDs), light-emitting diodes
(LEDs), solar cells, and photodetectors using III-V semiconductors have been
developed for use in power generation, optical communications, displays and solid-
state light sources, data transmission, and signal processing. Depending on the
device structures and operating modes, photonic devices can in general be divided
into three categories: (i) PV devices (i.e., solar cells), which convert sunlight
directly into electricity by generating electron–hole pairs in a solar cell via internal
PV effect, (ii) photodetectors, which detect photons or optical signals and convert
them into electrical signals via internal photoelectric effects, and (iii) LEDs and
LDs, which convert electrical energy into incoherent (for LEDs) and coherent
(for LDs) optical radiation by electrical injection into the junction region of a
p-n junction diode. In this chapter, the basic device physics and structures, the
operation principles, and the general characterstics of solar cells and photodetectors
fabricated from elemental and compound semiconductors will be depicted.

The solar cell, which utilizes the internal PV effect in a semiconductor, will
be discussed first. Solar cells may be formed using a p-n junction, a Schottky
barrier, or a metal–insulator–semiconductor (MIS) structure fabricated on various
semiconductor materials. The basic device physics, cell structures and charac-
teristics, design criteria, and performance limitations for different types of solar
cells are described in Section 12.2. It is interesting to note that prior to 1973, a
majority of solar cell research was focused mainly on the development of sil-
icon p-n junction solar cells for space applications. However, in recent years
most of the efforts have been shifted toward the development of various low-
cost and high-efficiency solar cells for both terrestrial and space power genera-
tion as well as for consumer electronics applications. It is well known that for
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terrestrial applications, cost and conversion efficiency are the two key factors that
determine the viability and compatibility of the PV system with other types of
power generation systems using fossil fuel, nuclear, hydrogen fuel cell, windmill,
and geothermal technologies. Recent advances in several thin-film PV technolo-
gies using amorphous silicon (a-Si) thin films, Cu(ln,Ga)Se2(CIGS), and CdTe
absorber materials show excellent potential of meeting both low-cost and high-
efficiency criteria for large-scale terrestrial power generation. On the other hand,
multijunction tandem solar cells using III-V compound semiconductors with dif-
ferent band gaps and concentrator solar cells using a multijunction approach have
achieved much higher conversion efficiency than a single-junction solar cell. For
example, a mechanically stacked lnGaP/GaAs/lnGaAs 3-junction solar cell has
achieved a conversion efficiency of 33.3% at 1-sun AM1.5G conditions, and a con-
centrator operation of InGaP/InGaAs/Ge 3-junction solar cell has demonstrated a
world-record 36% efficiency at 100-sun AM1.5G conditions. Large-band-gap III-
V compound semiconductor materials such as GaAs and InGaP are particularly
attractive for concentrator solar cell applicaitons since they can be operated at a
much higher temperature than that of a silicon solar cell. Conversion efficiency
over 20% AM1.5G has been achieved in a single-junction solar cell fabricated
from CIGS,Si,GaAs and InP material systems.

Photodetectors, which employ the internal photoelectric effects to detect pho-
tons in a semiconductor device, are presented in Section 12.3. A p-n junction or
a Schottky barrier photodiode can be very fast and sensitive when operating un-
der reverse-bias conditions. If sensitivity is the main concern, then an avalanche
photodiode (APD) may be used to obtain the necessary internal current gain and
quantum efficiency. The APD has achieved the highest-gain bandwidth product
among all photodetectors. On the other hand, a silicon p-i-n photodiode can offer
both sensitivity and speed in the visible to near-infrared (IR) spectral range. In
fact, various photodetectors covering a broad range of wavelengths from ultravio-
let (UV) to visible, near-IR, mid-wavelength infrared (MWIR), long-wavelength
(LWIR), and far-infrared spectral ranges have been developed for a wide variety
of applications. For example, GaN and SiC Schottky barrier and p-i-n photo-
diodes have been developed for solar-blind and UV light detection. Extremely
high sensitivity photomultipliers are commercially available for photon count-
ing in the visible to near-IR (0.3–0.9 μm) spectral range, while p-i-n photodi-
odes and APDs fabricated from Si, GaAs, InGaAs, InGaAsP, and Ge cover the
wavelength ranges from UV, visible, to near-IR (0.4–1.8 μm). Quantum-well in-
frared photodetectors (QWIPs) and Hgx Cd1−x Te (MCT) photoconductors and p-n
diodes have been developed for 3–5 μm (MWIR) and 8–12 μm (LWIR) detec-
tion, while extrinsic photoconductors (impurity-band photoconductors such as
As- or Sb-doped Si, and Cu-doped Ge photoconductors) can extend the detec-
tion wavelengths into the far-IR spectral regime (e.g., λ > 30 μm). Large-format
(e.g., 640 × 480), highly uniform GaAs/AlGaAs QWIP focal plane arrays (FPAs)
with excellent noise equivalent temperature difference (NEDT) of a few tens of
mK have been developed for IR imaging camera applications in the 8–12 μm at-
mospheric spectral window. Multicolor QWIP FPAs using InGaAs/AlGaAs and
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GaAs/AlGaAs material systems have also been demonstrated for MWIR and LWIR
imgaing array applications.

12.2. Photovoltaic Devices (Solar Cells)

12.2.1. Introduction

Although practical solar cells have become available only since the mid-1950s,
scientific investigation of the PV effect started as early as in 1839, when the French
scientist Henri Becquerel discovered that an electric current was produced by shin-
ing a light onto certain chemical solutions. The PV effect was first observed in the
metal selenium in 1877. This material was used for many years in light meters that
required only very small amounts of electric power. A more detailed understanding
of the basic principles, provided by Einstein in 1905 and Schottky in 1930, was
required before efficient solar cells could be made. The first silicon solar cell with
a conversion efficiency of 6% AM0 was demonstrated by Chapin, Pearson, and
Fuller in 1954, which was used primarily in specialized applications for orbiting
space satellites. Today, single- and multicrystalline silicon solar cells with 1-sun
conversion efficiencies ranging from 14.7% to around 25% AM1.5G have been
demonstrated using different fabrication processing steps and device structures.
There are several competing PV technologies available for the production of com-
mercial PV modules for terrestrial power generation and consumer electronics
applications. They are (i) silicon solar cell modules made from single-crystal and
polycrystalline silicon, (ii) low-cost thin-film solar cell modules fabricated from
a-Si: H, Cu(In,Ga)Se2(CIGS), and CdTe materials, and (iii) high-efficiency mul-
tijunction tandem cells and concentrator solar cells using III-V compound semi-
conductors such as InGaP/GaAs and InGaP/GaAs/Ge material systems for cell
fabrication. These solar cells and solar cell modules can be used in a wide variety
of applications for consumer electronics, office and residential systems, remote
irrigation systems and relay stations, and remote village and off-grid industrial
systems.

A solar cell using a p-n junction or a Schottky barrier structure can convert
sunlight directly into electricity. In order to calculate the conversion efficiency of
a solar cell, one needs to know the exact incident solar irradiance power under
different insolution conditions. Figure 12.1 shows the solar irradiance spectra for
two air-mass (AM) conditions.1 The top curve is the solar irradiance spectrum
measured above the earth’s atmosphere, and is defined as the air-mass zero (AM0)
insolution. The irradiant power of the sun under AM0 conditions is 136.61 mW/cm2

(or 1,366.1 W/m2). The bottom curve is the solar irradiance spectrum measured
under AM1 conditions. The AM1 solar spectrum represents the sunlight on the
earth’s surface when the sun is at its zenith. The total incident power of sunlight
under AM1 condition is 92.5 mW/cm2. The AM1.5G (global) condition is the solar
irradiance of both diffuse and direct components that are incident on a sun-facing
37◦ tilted surface, and has an average incident power of 100 mW/cm2. This is the
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Figure 12.1. Solar irradiance versus wavelength under air-mass zero (AM0) and air-mass
one (AM1) conditions. Also shown are the energy band gaps and the corresponding cutoff
wavelengths for both GaAs and Si. After Thekaekara,1 by permission.

most suitable incident solar irradiance power for calculating the conversion effi-
ciency of a solar cell in the terrestrial environment because this is representative of
conditions in the 48 contiguous states of the United States. Since the conversion
efficiency will vary under different AM conditions, it is important to specify the
exact AM (i.e., AMx ; x = 0, 1, 1.5, or 2) condition in calculating the conversion
efficiency of a solar cell.

In this section, different types of solar cells using p-n junction, Schottky barrier,
MIS, p-n heterojunction, concentrator, and multijunction tandem solar cell struc-
tures are described. The generation and collection of photogenerated electron–hole
pairs in a p-n junction solar cell are discussed first, followed by the derivation of
equations for spectral response (quantum efficiency, ηq), short-circuit current (Isc),
open-circuit voltage (Voc), and conversion efficiency (ηc) of a p-n junction solar
cell. Formation of the front ohmic contact grids and antireflection (AR) coatings
for a p-n junction solar cell will be discussed. Key PV technologies based on crys-
talline and polycrystalline silicon solar cells, amorphous silicon, CuInGaSe2 and
CdTe polycrystalline thin-film solar cells, and multijunction and concentrator so-
lar cells fabricated from III-V compound semiconductors for terrestrial and space
power generation will be presented.

12.2.2. Device Physics and General Characteristics
of a p-n Junction Solar Cell

Since most solar cells use a p-n junction structure, it is important to consider
the basic device physics and electrical characteristics of a p-n junction solar cell.
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Figure 12.2. (a) A typical cell structure and (b) the cross-sectional view of a silicon n+-p
junction solar cell. Also shown are the front ohmic contact grids and the antireflection (AR)
coating layer (e.g., Ta2O5).

Topics to be covered include current–voltage (I–V) characteristics, the derivatiion
of photocurrent and quantum efficiency expressions, and analysis of the perfor-
mance parameters of a p-n junction solar cell. Figure 12.2 shows (a) the cell
structure and (b) the cross-sectional view of a typical n+-p junction solar cell. The
basic characteristics of an n-p junction solar cell are obtained by analyzing the I–V
behavior under dark and illumination conditions. The key performance parame-
ters such as the open-circuit voltage (Voc), short-circuit current density (Jsc), fill
factor (FF), and conversion efficiency (ηc) can be determined from the photo-I–V
characteristics of a solar cell. To explain the basic operational principles of a p-n
junction solar cell, Figure 12.3 shows the energy band diagrams, carrier generation,
dark current components, I–V characteristics, and the equivalent circuit of an n+-p
junction solar cell under dark and illumination conditions. Figure 12.3a shows
the electron–hole pairs generated by the absorbed photons in different regions
of the solar cell, and Figure 12.3b shows the dark current components generated
in different regions of the junction. The I–V curves under dark and illumination
conditions are illustrated in Figure 12.3c. It is noted that the shaded area in the
fourth quadrant of the photo- I–V curve represents the power generated in the solar
cell. The equivalent circuit of a p-n junction solar cell is shown in Figure 12.3d,
where Rs denotes the series resistance and Rp is the shunt resistance. The dark and
photo-I–V characteristics of a p-n junction solar cell are discussed next.

(i) Dark I–V characteristics. As shown in Figure 12.3b, the dark current of a
p-n junction solar cell under forward-bias conditions consists of three compo-
nents: (1) the injection current due to injection of majority carriers across the p-n
junction, (2) the recombination current due to the recombination of electrons and
holes via deep-level traps in the junction space-charge region, and (3) the tunnel-
ing current due to multistep tunneling via deep-level defect states in the junction
space-charge region. In a silicon p-n junction solar cell, the injection current is
usually the dominant component. However, the recombination current can be-
come a dominant component for solar cells fabricated from low-quality materials
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Figure 12.3. (a) The energy band diagram of an n+-p junction solar cell under illumination;
(b) the energy band diagram showing (1) the injection current, (2) the recombination current
via a deep-level trap, and (3) the trap-assisted tunneling current in the junction space-charge
region; (c) I–V characteristics under dark and illumination conditions; and (d) the equivalent
circuit diagram.

such as amorphous and polycrystalline thin-film materials. The tuneling current
component may become important in some solar cells such as Cu2S/CdS hetero-
junction cells or MIS cells.

The injection current, which is due to the injection of holes from the p region
into the n region and electrons from the n region into the p region of the junction,
can be described by the ideal Shockley diode equation, which is given by

Id = I01[exp(qV/kBT ) − 1], (12.1)

where

I01 = qn2
i Aj

(
Dp

Lp ND
+ Dn

Ln NA

)
(12.2)

is the reverse saturation current due to the injection of electrons and holes across
the p-n junction; Aj is the junction area; ni is the intrinsic carrier density; Dn and Dp

denote the electron and hole diffusion coefficients; and Ln and Lp are the electron
and hole diffusion lengths, respectively. Equation (12.1) is obtained by assuming
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uniform doping in the n and p regions of the solar cell so that the quasineutral
conditions prevail in both regions.

The recombination current in a p-n junction solar cell is due to the recombination
of electrons and holes via deep-level defect centers inside the junction space-charge
region. Based on the Shockley–Read–Hall (SRH) model, this recombination cur-
rent component can be expressed by

Ir = I02[exp(qV/mkBT ) − 1], (12.3)

where

I02 = qniW Aj

2
√

τn0τp0
. (12.4)

In (12.4), W is the depletion layer width; τno and τpo are the minority electron and
hole lifetimes in the p and n regions, respectively. It is noted that the diode ideality
factor m in the exponent of (12.3) may vary between 1 and 2, depending on the
location of the defect level in the forbidden gap. For example, m equals 2 if the
recombination of electron–hole pairs is via a mid-gap recombination center (i.e.,
Et = Ei), and is smaller than 2 if the recombination center is not located at the mid-
gap or if the multilevel recombination centers exist in the junction space-charge
region.

In general, the total dark current of a p-n junction solar cell can be represented
by the sum of injection and recombination current components given by (12.1)
and (12.3), namely,

ID = Id + Ir. (12.5)

The main difference between Id and Ir given by (12.5) is that the injection current Id

varies with n2
i eqV/kBT , while the recombination current Ir varies with ni eqV/mkBT,

which shows that the injection current depends more strongly on temperature than
the recombination current. For a typical silicon p-n junction solar cell, values of
the injection current density may vary from 10−8 to 10−12 A/cm2, while values of
the recombination current depend on the density of recombination centers in the
junction space-charge region. In general, the recombination current is important
only at low to moderate forward-bias regimes, and becomes less important at
higher-bias regimes. For a high-quality p-n junction solar cell, the recombination
current component can be neglected in (12.5). The tunneling current component,
which may be important for an MIS solar cell or a CdS solar cell, can be neglected
in (12.5).

(ii) Photo-I–V characteristics. The photocurrent generated in a p-n junction solar
cell under 1-sun conditions is discussed next. When photons with energy hν ≥ Eg

impinge on a p-n junction solar cell, the rate of generation of electron–hole pairs
as a function of distance x from the surface of the solar cell is given by

gE (x) = αφ0(1 − R) e−αx , (12.6)



388 12. Solar Cells and Photodetectors

where α is the optical absorption coefficient, φ0 is the incident photon flux density
(number of photons absorbed per unit area per second), and R is the reflection
coefficient at the semiconductor surface. The photocurrent generated in a solar
cell by the incident sunlight can be derived using the continuity equations for the
excess carriers described in Chapter 6. For an n+-p junction solar cell, the spatial
distribution of the excess hole density, �p(x), generated in the n region of the solar
cell can be obtained by solving the steady-state continuity equation given by

Dp
d2�p(x)

dx2
− �p(x)

τp
= −αφ0(1 − R) e−αx . (12.7)

Equation (12.7) has a general solution given by

�p(x) = A cosh

(
x

Lp

)
+ B sinh

(
x

Lp

)
+ Ce−αx , (12.8)

where A and B are constants, which can be determined using the boundary con-
ditions at the front surface of the cell where the recombination occurs (at x = 0)
and at the depletion edge of the n quasineutral region (at x = xj), and C can be
determined using a particular solution for �p(x) = Ce−αx in (12.7), which yields

C = αφ0(1 − R)τp/(α2L2
p − 1). (12.9)

The first boundary condition is obtained from the fact that the diffusion current
density is equal to the surface recombination current density at x = 0, which can
be expressed as

Dp
d�p(0)

dx
= sp�p(0) at x = 0, (12.10)

where�p(0) = pn(0) − pno is the excess hole density at x = 0, and sp is the surface
recombination velocity at x = 0. The second boundary condition is obtained at the
edge of the space-charge region where the excess hole density is assumed equal
to zero (i.e., holes are swept out by the high electric field in the depletion region).
Thus, one can write

�p(xj) = 0 at x = xj, (12.11)

where xj is the junction depth. Constants A and B in (12.8) can be determined
by solving the boundary conditions given by (12.10) and (12.11), and hence the
photo-generated excess hole density in the n region is given by

�p(x) = αφ0(1 − R)τp

(α2L2
p − 1)

×
⎧⎨
⎩−e−αx +

(sp + αDp) sinh
(

X j−x
Lp

)
+ e−αxj

[
sp sinh

(
x

Lp

)
+

(
Dp

Lp

)
cosh

(
x

Lp

)]
sp sinh

(
xj

Lp

)
+

(
Dp

Lp

)
cosh

(
xj

Lp

)
⎫⎬
⎭.

(12.12)
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Thus, the hole current density at x = xj generated by the absorbed photons of
wavelength λ can be expressed by

Jp(λ) = −q Dp
d�p

dx

∣∣
x=xj

= qφ0(1 − R)αLp

(α2L2
p − 1)

×
⎧⎨
⎩−αLp e−αxj +

(sp + αDp) − e−αxj

[
sp cosh

(
xj

Lp

)
+

(
Dp

Lp

)
sinh

(
x j

Lp

)]
sp sinh

(
xj

Lp

)
+

(
Dp

Lp

)
cosh

(
xj

Lp

)
⎫⎬
⎭ ,

(12.13)

where Jp(λ) is the photo-generated hole current density with wavelength λ in the
n region of the n-p junction cell.

The photocurrent density due to electrons generated in the p-base region can be
derived in a similar way to the hole current density generated in the n region derived
above. The continuity equation for electrons in the p-base region is obtained by
replacing �p(x) by �n(x), Dp by Dn, and τp by τn in (12.7). However, the boundary
conditions for this case are given by

�n(x) = 0, at x = xj + W,

−Dn
d�n

dx
= sn�n, at x = d, (12.14)

where W is the depletion layer width, d is the thickness of the solar cell, and
�n(x) = np(x) − np0 is the excess electron density. The photocurrent density per
unit bandwidth due to electrons collected at the depletion edge of the p-base region
is thus given by

Jn(λ) = q Dn
d�n

dx

∣∣∣∣
x=xj+W

= qφ0(1 − R)αLn exp[−α(xj + W )]

(α3L2
n − 1)

×
⎧⎨
⎩αLn −

sn

[
cosh

(
d
Ln

)
− eαd

]
+

(
Dn
Ln

)
sinh

(
d
Ln

)
+ αDn e−αd

sp sinh
(

d
Ln

)
+

(
Dn
Ln

)
cosh

(
d
Ln

)
⎫⎬
⎭ .

(12.15)

In addition to the diffusion components of the photocurrent collected in the n
and p quasineutral regions given by (12.13) and (12.15), the drift component of
the photocurrent generated in the depletion region must also be considered. The
electron–hole pairs generated in the depletion region are swept out by the built-
in electric field in this region. The drift component of the photocurrent density
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Figure 12.4. Normalized
quantum yield versus
wavelength in the n-emitter,
p-base, and space-charge
regions of a silicon p-n
junction solar cell. The solid
line denotes the total quantum
yield, while the dashed
and dotted lines are the
quantum yields in different
regions of the solar cell,
assuming zero reflection loss
at the top surface of the cell.

generated in the depletion region can be expressed by

Jd(λ) = q
∫ xj+w

xj

gE (λ) dx = qφ0(1 − R) e−αxj (1 − e−αW ).

(12.16)

Thus, the total photocurrent density generated in a p-n junction solar cell by the
incident sunlight for a given wavelength λ is equal to the sum of (12.13), (12.15),
and (12.16), which is

JL(λ) = Jp(λ) + Jn(λ) + Jd(λ). (12.17)

The quantum efficiency, which is defined as the number of electron–hole pairs
generated per absorbed photon, for a p-n junction solar cell can be expressed by

η = JL(λ)

qφ0(1 − R)
× 100%, (12.18)

where JL(λ) is the photocurrent current density given by (12.17).
Figure 12.4 shows the quantum yield versus wavelength in the n+-emitter (ηn),

p-base (ηp), and the junction space-charge (ηd) regions as well as the total quantum
yield (ηT) of a silicon n+-p junction solar cell. In this plot the reflection loss (R) at
the front surface of the solar cell is assumed equal to 0.

The total photocurrent density generated in a p-n junction solar cell under 1-sun
conditions can be obtained by integrating (12.17) over the entire solar spectrum
(under different AM conditions), which can be written as

Jph =
∫ λ2

λ1

JL(λ) dλ, (12.19)

where λ1 and λ2 denote the cutoff wavelengths at the short- and long-wavelength
limits of the solar spectrum, respectively. For a typical p-n junction solar cell,
λ1 can be set at 0.3 μm, and λ2 is determined by the cutoff wavelength or the
energy band gap of the semiconductor (i.e., λ2 = λc = 1.24/Eg(μm)). For a
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silicon solar cell with Eg = 1.12 eV at 300 K, the cutoff wavelength is
λc = 1.1 μm.

(iii) Solar cell parameters. The equivalent circuit for a p-n junction solar cell
is shown in Figure 12.3d, which is composed of the photocurrent component
represented by a constant current source Iph = Isc, a dark current component ID, a
shunt resistance Rsh, and a series resistance Rs. If one neglects the effects of shunt
resistance (assuming Rsh → ∞), series resistance (Rs ≈ 0), and the recombination
current (Ir = 0) in the depletion region, then the photo-I–V characteristics of a p-n
junction solar cell under illumination condition can be expressed by

I = −Iph + I01[exp(qV/kBT ) − 1], (12.20)

where Iph is given by (12.19), and I01 is the injection current given by (12.2). The
short-circuit current can be obtained by setting V = 0 in (12.20), which yields

Isc = −Iph, (12.21)

which shows that the short-circuit current Isc is equal to the photogenerated current
−Iph. The open-circuit voltage Voc can be obtained by setting I = 0 in (12.20),
and one obtains

Voc = VT ln

[(
Isc

I01

)
+ 1

]
, (12.22)

where VT = kBT/q is the thermal voltage. It is seen from (12.22) that Voc depends
on the ratio of the short-circuit current and the dark current, and Voc can be increased
by keeping the ratio of Isc/I01 as large as possible. This can be achieved by reducing
the dark current, either by increasing the substrate doping density or by increasing
the minority carrier lifetimes in the solar cell. Increasing the short-circuit current
can also enhance Voc, but it is not as drastic as reducing the dark current in the solar
cell. In practice, the Voc can be improved by incorporating a p-p+ back surface
field (BSF) structure in the n-p junction solar cell. The BSF structure not only can
deflect the minority carriers back into the junction but can also reduce the back
contact resistance of the cell. As a result, Voc, Jsc, FF, and conversion efficiency
can be improved with the BSF structure. Values of Voc for a silicon p-n junction
solar cell may vary between 0.5 and 0.7 V depending on the cell structure, doping
densities, and other device parameters used in the cell’s design and fabrication.

If one includes the series resistance Rs and neglects the shunt resistance effect
(i.e., Rsh → ∞) in the I–V equation, then the output current of the solar cell can
be expressed as

I = ID{exp[(V − I Rs)/VT] − 1} − Iph, (12.23)

and the output power is given by

P = |I V | = I

[
VT ln

(
I + Iph

ID
+ 1

)
+ IRs

]
. (12.24)
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The maximum output power can be calculated using the expression

Pm = Vm Im, (12.25)

where

Im = (Isc + I01)

[
(Vm/VT)

(1 + Vm/VT)

]
. (12.26)

Here Im is the current corresponding to the maximum power output, which is
obtained by differentiating (12.24) with respect to current I and setting ∂ P/∂ I = 0.
It is noted that Vm is obtained by solving the equation given below using the iteration
procedure:

exp(Vm/VT)[1 + Vm/VT] = exp(Voc/VT). (12.27)

Another important solar cell parameter known as the fill factor (FF), which
measures the squareness of the photo-I–V curve shown in Figure 12.3c, is defined
by

FF = Vm Im

Voc Isc
=

(
Vm

Voc

) [
1 − e(Vm/VT) − 1

e(Voc/VT) − 1

]
. (12.28)

Depending on the values of the diode ideality factor and the shunt and series
resistances, the fill factor for a silicon p-n junction solar cell may vary between
0.75 and 0.85, while for a GaAs solar cell it may vary between 0.79 and 0.87.

Finally, the conversion efficiency of a p-n junction solar cell can be calculated
by

ηc =
(

Pout

Pin

)
× 100%, (12.29)

where Pin is the input power from the sunlight, and Pout is the output power from the
solar cell. The input power from the sunlight under 1-sun AM0, AM1, AM1.5G,
and AM2 conditions are given by 135.3, 92.5, 100, and 69.1 mW/cm2, respectively.

12.2.3. Design Considerations

It is clear from the above analysis that the performance of a solar cell is determined
by both the device and physical parameters such as the minority carrier lifetimes
and diffusion lengths, the doping densities, the series and shunt resistances, the
AR coating, and the junction structures. Therefore, in order to obtain an optimal
cell design, it is important to consider all the key device and material parameters
that affect the conversion efficiency of a solar cell. These are discussed next.

(i) Spectral response. An important consideration in material selection for solar
cell fabrication is to select a semiconductor with energy band gap that is matched
with the peak irradiance power density of the solar irradiant spectrum. This will
provide a maximum absorption of the incident sun power by the solar cell, and
hence will enable the cell to produce an optimum spectral response. Figure 12.5
shows the maximum theoretical conversion efficiency of an ideal p-n junction solar
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Figure 12.5. Maximum
theoretical AM0 conversion
efficiency versus energy band
gap for different
semiconductor materials.
Dashed lines denote
conversion efficiencies under
different operating
temperatures (0–400◦C). After
Wysocki and Rappaport,2 by
permission.

cell versus energy band gap for various semiconductor materials. It is noted that a
single-junction GaAs solar cell has a maximum theoretical conversion efficiency
of around 28% under AM0 conditions, while a silicon p-n junction solar cell has a
maximum theoretical conversion efficiency of around 21% under AM0 conditions.
The reasons a GaAs solar cell has a higher conversion efficiency than a silicon
cell are that (a) the band gap energy for GaAs is better matched with the peak
solar insolation spectrum than that of silicon, (b) GaAs has a larger band gap
(Eg = 1.43 eV) and higher Voc than silicon, and (c) GaAs is a direct band gap
material, which has a larger absorption coefficient at peak solar irradiance, while
silicon is an indirect band gap material.

(ii) Series resistance and contact grids. The series resistance, which is due to
the contact and bulk resistances of the cell, can influence the shape of photo-I–V
curve, fill factor, and conversion efficiency of a solar cell. For example, a large
series resistance will increase the internal power dissipation and reduce the fill
factor and output power of the solar cell. To reduce the effect of series resistance,
both the contact and bulk resistances must be minimized. The contact resistance can
be greatly reduced if optimal front contact grids are used. Unfortunately, reducing
the sheet resistance of a solar cell is not an easy task. One way to reduce the sheet
resistance is to employ a heavily doped surface layer and to design an optimized
front contact grid in the cell. However, this will in turn reduce the minority carrier
lifetime and diffusion length at the surface layer, and hence it could also decrease
the short-circuit current. Therefore, a compromise between the doping density
and the junction depth is necessary in order to achieve optimal design. There are
a number of ways of making the front contact grids. The most common contact
grids are formed with the rectangular metal grids (fingers); each grid line is equally
spaced and set on top of the front surface of the solar cell. This is shown in
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Figure 12.6. Relative spectral responses of
(1) a normal silicon p-n junction solar cell,
and (2) a violet (i.e., nonreflecting) silicon
p-n cell that utilizes a texturized front surface
to reduce reflection loss to near zero. After
Lindmayer and Allison,3 by permission.

Figure 12.2a for a silicon n+-p junction solar cell. It is noted that using the contact
grid structure allows the exposure of a major portion of the solar cell surface to
sunlight and at the same time keeps the series resistance to a minimum value. It
should be noted that the area covered by the front metal contact grids is usually
less than 10% of the total solar cell area.

(iii) Antireflection coatings. Another important factor that must be considered in
the solar cell design is the reflection loss at the front surface of the solar cell. For
example, as much as 30–35% of the incident sunlight in the visible spectral range
is reflected back to the air from the bare surface of a semiconductor without AR
coatings. Therefore, it is important to reduce the surface reflection loss by using
proper AR coatings on the solar cell. To illustrate the effect of reflection loss on
the quantum efficiency of a solar cell, Figure 12.6 shows the spectral response of a
regular silicon p-n junction solar cell (curve 1) and a violet silicon solar cell (curve
2). The reflection loss in the violet cell is reduced to near zero from UV to the
visible wavelength regime when a texturized front surface is used. The texturized
grooves on the front surface of a silicon solar cell can be formed using a preferential
etching technique. As shown in Figure 12.6, the short-wavelength response of a
violet cell is greatly improved over a regular cell as a result of using the texturized
surface.

The most widely used technique for achieving near-zero reflection loss is by
applying the AR coatings on the front surface of a solar cell. This is usually
achieved by depositing a thin dielectric film of Ta2O5, SiO2, or Si3N4 on the front
side of a silicon solar cell with thickness equal to a quarter-wavelength of a selected
incident monochromatic light corresponding to the peak response wavelength of
the solar cell. The thickness of the dielectric film for a single AR coating can be
calculated using the expression

d = λ0

4n1
, (12.30)

where λ0 is the wavelength of incident sunlight at a selective wavelength, and n1 is
the refractive index of the dielectric film used for AR coatings. For example, using
SiO2 film (n1 = 1.5) for AR coatings on a silicon solar cell, the film thickness



12.2. Photovoltaic Devices (Solar Cells) 395

calculated using (12.30) is found to be d = 80 nm at λ0 = 0.48μm, and d = 100
nm at λ0 = 0.60 μm. The minimum reflection loss for a quarter-wavelength AR
coating may be calculated using the expression

Rmin =
(

n2
1 − n0n2

n2
1 + n0n2

)2

, (12.31)

where n0, n1, and n2 are the refractive indices of air, AR coating film, and the solar
cell material, respectively. From (12.31), it is found that a silicon solar cell coated
with a 110-nm thick SiO2 film has a reflection loss of only 7%, which is a drastic
improvement over that of a silicon solar cell without AR coatings (R = 35%).
Among the various AR coating materials used today, Ta2O5 (with n1 = 2.25) is
probably the most widely used dielectric film used for AR coatings on silicon solar
cells, which can be easily done using the sputtering technique. For example, by
applying a 70-nm-thick Ta2O5 AR coating film on a silicon solar cell, the reflection
loss can be reduced to about 5%. Therefore, it is clear that by carefully selecting
a suitable AR coating film, it is possible to reduce the reflection loss of a solar
cell to almost 0. It is noted that aside from the methods cited above for improving
solar cell performance, there are other means that could also be employed to further
improve the conversion efficiency of a solar cell. For example, the short-wavelength
spectral response may be improved by using a shallow-junction structure with a
thin p-emitter in a p-n junction solar cell. The Voc of a p-n junction cell could be
increased using a BSF structure (i.e., n/n+ or p/p+) and by increasing the doping
density (to reduce the dark current) in the base region of the cell. Theoretical
calculations reveal that Voc = 0.7 V for a silicon n+-p junction solar cell can
be obtained using a 0.1 
 · cm (NA ≈ 2 × 1017 cm−3) silicon material for the
p-base layer. Recently, Martin Green’s group at the University of New South
Wales, in Sydney, Australia, has reported a record 24.7% AM1.5G efficiency for
a PERL (passivated emitter, rear locally diffused) silicon solar cell. This is the
highest ever reported conversion efficiency for a silicon solar cell. The advanced
surface passivation method and an improved cell pattern design have contributed
to the improvement in the cell efficiency. The PERL cell has achieved Voc = 706
mV, Jsc = 42.2 mA/cm2, and F.F. = 82.8%. Using their PERL cells, a silicon PV
module has demonstrated 22.7% AMI.5G efficiency, which is the highest reported
efficiency for a PV module made on any material.

For a GaAs p-n junction solar cell, the short-wavelength spectral response
and contact resistance can be greatly improved by growing a wide-band-gap p+-
Al0.9Ga0.1 As window layer 0.3–0.5 μm thick on top of the GaAs p-n junction
cell structure. Figure 12.7 shows the cross-sectional view of a high-efficiency
AlGaAs/GaAs p-n junction solar cell. The reason for using a thin highly doped
p+-AlGaAs wide-band-gap window layer on top of the p+-GaAs emitter layer is
to reduce the surface recombination velocity and series resistance of the GaAs
solar cell. Since the Al0.9Ga0.1As window layer is a wide-band-gap (Eg = 2.1 eV)
material, it is transparent to most of the visible sunlight. The AlGaAs window
layer can reduce the surface recombination velocity of a GaAs solar cell to less
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Figure 12.7. The cross-sectional view of a GaAs p-n junction solar cell with a p+-AlGaAs
window layer and a Ta2O5 layer for antireflection coating.

than 103 cm/s from 106 cm/s. Figure 12.8 shows the spectral response curves for
a GaAs p-n junction solar cell with (curve 2) and without (curve 1) an AlGaAs
window layer. It is clearly shown that adding an AlGaAs window layer to the GaAs
p-n junction solar cell can indeed produce a significant improvement in the short-
wavelength response. Maximum conversion efficiency of 24.2% AM1.5G for a
GaAs single-junction solar cell has been achieved recently. The solar cell structure
consists of an active GaAs single-junction solar cell grown on an inactive back-
side AlGaAs/GaAs distributed Bragg reflector (DBR) grown on top of the GaAs
substrate. This GaAs cell is capped with an AlGaAs window layer. The reflectivity
of the backside DBR is approximately 70% for incident light with energy close
to the band edge of GaAs. The cell is coated with a TiO2/MgF2 AR coating. The
GaAs-based solar cells are preferred for powering of space satellites. The use of

Figure 12.8. Spectral response
curves (i.e., normalized quantum
yield) for a GaAs p-n junction solar
cell: (1) without window layer and
(2) with an AlGaAs window layer.
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Ge substrates could reduce weight significantly, and the conversion efficiency can
be further increased using a GaInP/GaAs/Ge tandem cell structure. These types of
solar cells are superior to silicon cells because of their lighter weight and higher
resistance to the cosmic radiation in space.

12.2.4. Schottky Barrier and MIS Solar Cells

Although most commercial solar cells use a p-n junction structure, other struc-
tures such as Schottky barrier, MIS, heterojunction, and multijunction tandem
cell structures have also been employed for cell fabrication. The Schottky barrier
solar cell is easy to fabricate and has the simplest structure among all the solar
cells. It has a better spectral response in the shorter-wavelength regime, and hence
can produce higher short-circuit current. However, the conversion efficiency of a
Schottky barrier solar cell is usually lower than a p-n junction solar cell due to its
lower open-circuit voltage, which is a direct result of higher dark current due to
the inherent barrier height limitation.

A Schottky barrier solar cell can be fabricated using either a thin semitransparent
metal film or a grating-type structure deposited on the semiconductor substrate to
form Schottky contacts. Figure 12.9a shows the cross-sectional view of a Schottky
barrier solar cell with a 10-nm semitransparent metal film for Schottky contact,
and Figure 12.9b shows the energy band diagram under illumination conditions.

In a Schottky barrier solar cell, the photocurrents are generated in the depletion
and base regions of the cell. The collection of electron–hole pairs in the depletion
region is similar to that of a p-n junction cell discussed in the previous section.
The excess carriers generated in the depletion region are swept out by the built-in
electric field in this region, leading to a photocurrent density per unit bandwidth
given by

Jd(λ) = q
∫ W

0
T (λ)αφ0 (λ)e−αx dx = qT (λ)φ0(λ)(1 − e−αW ),

(12.32)

Figure 12.9. (a) Cross-sectional view and (b) energy band diagram of a metal–n-type
semiconductor Schottky barrier cell under illumination conditions.
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where φ0(λ) is the incident photon flux density at wavelength λ, T (λ) is the trans-
mission coefficient of the metal film, and W is the depletion layer width given by

W =
√

2ε0εs(Vd − V )

q ND
. (12.33)

The photocurrent given by (12.32) is similar to that given by (12.16) for a p-n
junction cell, except that in the latter case the transmission coefficient of light
through the metal film (i.e., T (λ)) for the Schottky contact is replaced by the
transmission coefficient (1 − R) of light through a p-n junction solar cell.

The collection of photocurrent in the quasineutral base region of a Schottky
barrier solar cell is similar to that in the base region of a p-n junction cell. Thus, the
photocurrent density due to holes collected in the n-base region can be expressed
by

Jp(λ) = qφ0αLp

(1 + αLp)
T (λ) e−αw. (12.34)

Equation (12.34) is obtained by assuming that the cell thickness is much larger
than the hole diffusion length in the n-base region. The photocurrent generated in a
Schottky barrier solar cell due to the incident monochromatic light of wavelength
λ is equal to the sum of (12.32) and (12.34). Thus, the total photocurrent generated
by the sunlight can be obtained by integrating the single-wavelength photocurrent
from the UV (λ1) to the cutoff wavelength (λ2) of the semiconductor material,
namely,

Jph =
∫ λ2

λ1

[Jd(λ) + Jp(λ)] dλ, (12.35)

where λ1 = 0.3 μm and λ2 = λg, the cutoff wavelength of the semiconductor.
Under forward-bias conditions, the dark current in a Schottky barrier solar cell

is due primarily to the thermionic emission of majority carriers in the bulk semi-
conductor, which is given by

JD = Js[exp(V/nVT) − 1], (12.36)

where Js = A∗T 2 exp(−φBn/VT) is the saturation current density, and A∗ is the
effective Richardson constant, which is equal to 110 A/(cm2·K2) for n-type silicon
and 8.16 A/(cm2·K2) for n-type GaAs. Here A∗ is equal to 79.2 A/(cm2·K2) for
p-Si, and 74.4 A/cm2-K2 for p-GaAs. Since the barrier height is generally lower
than the band gap energy of the semiconductor, one expects that the saturation
current for a Schottky barrier solar cell will be much higher than that of a p-n
junction solar cell. As a result, Voc for a Schottky barrier solar cell is expected to
be lower than that of a p-n junction solar cell. To overcome this problem, barrier
height enhancement techniques described in Section 10.8 may be applied to the
Schottky barrier solar cell in order to obtain a higher Voc and conversion efficiency.

The open-circuit voltage, fill factor, maximum power output, and conversion
efficiency for a Schottky barrier solar cell can be calculated in a similar way to
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Figure 12.10. (a) Cross-sectional view and (b) energy band diagram of an MIS solar cell
under illumination conditions.

those of the p-n junction solar cell discussed earlier. The short-circuit current and
dark current can be calculated using (12.32)–(12.36). Typical values of Voc from
0.4 to 0.55 V, fill factor (FF) of 0.6–0.76, and conversion efficiency ηc of 12–15%
AM1.5G are achievable for a silicon Schottky barrier solar cell.

Another method to improve the value of Voc in a Schottky barrier solar cell is
to use an MIS structure. In this structure, a thin insulating layer with thickness
of 1–3 nm is formed between the metal Schottky contact and the semiconductor,
which results in an MIS solar cell structure. The MIS structure can increase the
effective barrier height (�φB = δχ1/2), and hence can reduce the dark current of
the MIS cell. As a result, the Voc of an MIS solar cell is usually higher than that
of a conventional Schottky barrier cell. Figure 12.10a shows the cross-sectional
view of an MIS Schottky barrier solar cell and Figure 12.10b displays the energy
band diagram under illumination conditions. In an MIS solar cell, current conduc-
tion under dark conditions is due to majority carriers tunneling through the thin
insulating layer. This tunneling current can be described by

Jt = A∗T 2 exp(−φBn/VT) exp(−δχ1/2) exp(V/nVT), (12.37)

where δ is the thin insulating layer thickness in Å, χ is the mean incremental barrier
height, and φBn is the barrier height without the thin insulating layer (i.e., δ = 0).
Equation (12.37) reduces to (12.36) if δ = 0. It is seen from (12.37) that the thin
insulating layer in an MIS structure will limit only the majority carrier flow and
not the minority carrier flow (or the photocurrent) as long as the thickness of the
insulating layer remains very thin (e.g., δ ≤ 30Å). Thus, the Voc of an MIS solar
cell will be higher than that of a conventional Schottky barrier solar cell. The Voc

of an MIS solar cell can be derived from (12.22) and (12.37), which yields

Voc = nVT

[
ln

(
Jsc

A∗T 2

)
+ φBn

VT
+ δχ1/2

]
. (12.38)

Conversion efficiencies of 15% for an Au–Si MIS cell and 17% for an Au–GaAs
MIS cell under AM1 conditions have been reported. The main drawback to the MIS
solar cells is the difficulty of controlling the thin insulating layer thickness in the
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Figure 12.11. Calculated photocurrent den-
sity versus wavelength for a Au–p+-n GaAs
Schottky barrier solar cell under AM0 con-
ditions. The dopant density of the n-GaAs
substrate is Nd = 1016 cm−3, and the thick-
nesses and dopant densities for curves 1
through 4 are given by: curve 1, Na = 8.2 ×
1016 cm−3 and Wp = 100 Å; curve 2, Na =
2.2 × 1016 cm−3 and Wp = 200 Å curve 3,
Na = 4.4 × 1016 cm−3 and Wp = 500 Å ;
curve 4, Na = 8.2 × 1016 cm−3 and Wp =
1000Å. After Li,4 by permission.

cell. When the insulating film thickness exceeds 5 nm, photocurrent suppression
results and the conversion efficiency drops. This, in turn, will lower the value of
Voc and the conversion efficiency of the MIS solar cell. An alternative approach for
solving the problems associated with low barrier height and high dark current in
a Schottky barrier solar cell is to introduce a thin semiconductor layer of opposite
doping type to the substrate to form a metal–p+-n or metal–n+-p Schottky barrier
structure, as described in Section 10.8. Using this approach, enhancement of the
effective barrier height for Au–p+-n and Au–n+-p GaAs Schottky diodes can be
readily achieved, as shown earlier in Figures 10.21 and 10.22, respectively. Figure
12.11 shows the calculated photocurrent density versus wavelength for an ideal
Au–p+-n GaAs Schottky barrier solar cell under AM0 conditions for four different
p-layer doping densities and thicknesses. Theoretical conversion efficiency as high
as 21% for a metal–n+-p GaAs Schottky barrier solar cell structure is predicted
under AM0 conditions.

Finally, since a Schottky barrier solar cell offers several advantages such as
low cost, simple structure, ease of fabrication, and low-temperature processing,
it is clear that using a Schottky barrier structure could be an attractive and vi-
able approach for fabricating low-cost photovoltaic modules for terrestrial power
generation.

12.2.5. Heterojunction Solar Cells

A p-n heterojunction solar cell is formed using two semiconductor materials of
different band gap energies and opposite dopant impurities. For example, a p-n het-
erojunction solar cell can be fabricated using a p+-InGaP/n-GaAs, p+-AlGaAs/n-
GaAs, p+-GaAs/n-Ge, n-CdS/p-CdTe, or n-CdS/p-CIGS material system. Figure
12.12a shows the energy band diagram for an n+-GaAs/p-Ge heterojunction solar
cell in equilibrium. In this heterojunction structure, a wide band gap (Eg1 = 1.43
eV) n-GaAs is used as the emitter layer, while a small band gap (Eg2 = 0.67 eV)
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Figure 12.12. (a) Energy band diagram of an n-GaAs/p-Ge heterojunction solar cell in
equilibrium. (b) Cross-sectional view of a high-efficiency MOCVD-grown GaAs/Ge tandem
solar cell. After Tobin et al.,5 by permission, c© IEEE-1988.

p-Ge is used as the base layer. The distinct feature of a p-n heterojunction solar cell
lies in its window effect in which photons with energies between Eg1 and Eg2 can
pass through the wide-band-gap window layer, and are absorbed in the smaller-
band-gap base layer. The window layer is usually heavily doped, and has a thickness
of a few tenths of a micrometer. Thus, with the addition of a window layer, the
sheet resistance of the heterojunction solar cell can be reduced, which is important
for reducing the internal power loss of the solar cell. In general, the output power
and conversion efficiency of a heterojunction solar cell are determined mainly by
the photocurrent produced in the smaller-band-gap base layer. In order to fully
utilize the solar spectrum and to increase the conversion efficiency of a solar cell,
multijunction solar cell structures have been widely investigated in recent years.
For example, a high-efficiency GaAs/Ge heterojunction tandem solar cell grown
using the metal-organic chemical vapor deposition (MOCVD) technique has been
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reported. This tandem cell structure is shown in Figure 12.12b, which consists
of a 4-μm front AR coating, a 0.46-μm p+-GaAs front contact layer, a 0.03-μm
p+-AlGaAs window layer, a 0.5-μm p-GaAs emitter and a 2.6-μm n-GaAs base
layer for the top cell, a 1.7-μm thick n+-GaAs buffer layer, and a p+ (1 μm)-n (200
μm) Ge bottom cell. AM0 conversion efficiency of 21.7% and AM1.5G conversion
efficiency of 24.3% have been achieved for this tandem solar cell.

The current collection mechanism for a p-n heterojunction solar cell is similar
to that of a p-n homojunction solar cell. The main contribution to the photocurrent
comes from the base region, with smaller contribution coming from the top emitter
layer and the depletion region. The photocurrent for a p-n heterojunction solar cell
can be derived in a similar way to that of the p-n homojunction solar cell discussed
earlier.

The p-n heterojunction solar cell usually has a better short-wavelength response,
lower series resistance, and better radiation tolerance than a conventional p-n
homojunction solar cell. In order to obtain maximum short-circuit current, open-
circuit voltage, and conversion efficiency, it is essential that materials selected
for fabricating the heterojunction cells have good lattice match and compatible
thermal expansion coefficients. Energy band discontinuities at the heterointerface
of a heterojunction cell must be minimized to avoid barrier formation (spike) at the
heterointerface, where photocurrent collection can be severely degraded. Several
heterojunction pairs with good lattice matches have been reported in the literature.
These include the InGaP/GaAs, GaAs/Ge, AlGaAs/GaAs, GaP/Si, CdTe/CdS, and
CuInSe2/CdS material systems.

It is interesting to compare the characteristics of a heterojunction solar cell to
a Schottky barrier solar cell. The most striking similarity is that short-wavelength
photons can be absorbed within or very near the surface region of both cells, leading
to an excellent short-wavelength response. However, the open-circuit voltage of a
heterojunction solar cell can be much higher than that of a Schottky barrier solar
cell as a result of the use of a larger-band-gap material for the top layer of the solar
cell. As a result, higher conversion efficiency can be expected in a heterojunction
solar cell. In fact, an Alx Ga1−x As/GaAs p-n heterojunction solar cell with AM1
conversion efficiency as high as 21.5% has been reported. It has been shown that
a heterojunction solar cell is more radiation-tolerant to low-energy protons and
1-MeV electron irradiation than that of a conventional p-n junction solar cell,
because a thicker wide-band-gap window layer is used in a heterojunction solar
cell to cut down radiation damage on the cell without losing the short-circuit
current and conversion efficiency. Another type of heterojunction solar cell using
a wide-band-gap conducting glass such as indium oxide (In2O3), tin oxide (SnO2),
or indium tin oxide (ITO) has also been reported in the literature. These highly
conducting glasses with band gap energies varying from 3.5 to 3.7 eV are n-type
semiconductors, and can be deposited on top of a p-type silicon substrate to form
an n+-ITO/p-Si heterojunction solar cell. The ITO film has a typical thickness of
around 400 nm and resistivity of 5 × 10−4
·cm. Conversion efficiencies of 12–
15% have been reported for the ITO/Si n-p junction solar cells. Heterojunction
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structures are used extensively in the fabrication of high-efficiency multijunction
tandem solar cells and concentrator solar cells, as will be described later.

12.2.6. Thin-Film Solar Cells

Thin-film solar cells are promising candidates for low-cost, large-scale terres-
trial PV power-generation applications. A thin-film solar cell (film thickness
≤ 10 μm) uses thin absorber layers to form a p-n junction or a Schottky bar-
rier structure on foreign substrates. The absorber layers may be polycrystalline or
amorphous films. Recently, a number of semiconductor materials including CdTe,
Cu(In,Ga)Se2(CIGS), and polycrystalline and amorphous silicon (a-Si) materi-
als have been developed for thin-film PV device applications. A wide variety of
low-cost substrate materials such as ceramic, soda-lime glass, graphite, aluminum,
polymer, stainless steel, and metallurgical grade silicon have been used as substrate
materials for the fabrication of thin-film solar cells for space and terrestrial power
generation applications. Currently, there are three main competing thin-film PV
technologies based on a-Si, CdTe, and CIGS absorbers available for large-scale
terrestrial power generation and other consumer electronic applications. These are
discussed next.

(i) a-Si thin-film solar cells. Among the various thin-film solar cells, the hydro-
genated amorphous silicon (a-Si:H) thin-film solar cells have been developed for
a wide variety of consumer electronic uses and for low-cost, large-scale PV power
generation. Conversion efficiency around 10–11% AM1.5G for a single-junction
a-Si:H solar cell and over 14% AM1.5G for an a-Si/a-SiGe/a-SiGe triple-junction
solar cell have been developed for commercial applications. However, problems
associated with long-term stability and degradation in a-Si solar cells have yet to
be solved before large-scale production of a-Si thin-film solar cell modules can be
implemented for terrestrial power generation use.

Most of the a-Si solar cells made today are being used in powering calculators,
watches, toys, and cameras. The a-Si solar cells are formed by depositing a 1- to
3-μm thick a-Si thin film by RF glow-discharge decomposition of silane (which
produces 10% hydrogenated a-Si) onto metal or ITO (indium–tin oxide) coated
glass substrates. The a-Si:H is distinguished from crystalline silicon by the lack of
long-range order and the high content of bonded hydrogen (typically around 10%)
in device-quality a-Si:H. Hydrogen atoms passivate most of the unsaturated Si
dangling bonds and make the a-Si film useful for photovoltaic device applications.
Despite the inherent limitations (disorder causes high density of localized defects
and the band-tailing effect lowers the value of Voc), the a-Si:H material is a promis-
ing candidate for low-cost, large-scale photovoltaic applications. The commercial
deposition process of a-Si:H using plasma-enhanced chemical vapor deposition
(PECVD) is compatible with large-area deposition and low-temperature process-
ing. This allows the use of a large variety of inexpensive substrate materials. The
a-Si:H films can be easily doped by adding phosphorus-or boron-containing gases
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Figure 12.13. (a) Layer structure
and (b) schematic energy band dia-
gram for an a-Si:H p-i-n solar cell
grown on ITO (indium–tin-oxide
conducting film) coated glass, and
(b) energy band diagram under illu-
mination conditions.

during the deposition process for n- and p-type doping. The optical band gap of
a-Si is typically around Eg ≈ 1.7 eV and can be tuned. For example, the band
gap energy of a-Si:H can be increased by alloying with carbon or oxygen, and de-
creased with incorporation of germanium to form a-Six Ge1−x (0 ≤ x ≤ 1) films.
The energy band gap can also be fine-tuned by changing the hydrogen content
using different deposition parameters and methods.

Figures 12.13a and b show the layer structure and the schematic energy band
diagram of an a-Si:H p-i-n thin-film solar cell formed on an ITO-coated glass
substrate. It is noted that the optical properties for a hydrogenated a-Si (a-Si:H)
film resembles a direct band gap material with an energy band gap of Eg = 1.7 eV.
As a result, a-Si:H film has a much higher optical absorption coefficient at a
photon energy of hv = 1.7 eV than that of single-crystal silicon. Thus, the short-
wavelength response (i.e., the blue-green region) for an a-Si:H solar cell is much
better than that of single-crystal silicon solar cell. The most widely used structure
for an a-Si:H solar cell is a p-i-n structure deposited on the conducting ITO-
coated glass substrate, as shown in Figure 12.13b. In this structure, the typical
thickness of p+ and n+ layers is around 10–30 nm, and the intrinsic (i) layer
thickness may vary between 200 nm and 500 nm. Conversion efficiency over
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10% AM1 has been reported for a single-junction a-Si:H solar cell. To achieve
higher conversion, a stack of three cells with different band gap energies using
an a-Si/a-SiGe/ a-SiGe triple-junction structure has been reported. In the triple
stack, the top cell, which captures the blue photons, utilizes a-Si:H with an optical
band gap of Eg = 1.8 eV for the i-layer. The i-layer for the middle cell is an
a-SiGe alloy with 10–15% Ge and a band gap of Eg = 1.6 eV, which is ideally
suited for absorbing the photons in the green spectral range. The i-layer for the
bottom cell uses an a-SiGe with 40–50% of Ge, which has an optical band gap
of Eg = 1.4 eV, suitable for absorbing the red and infrared photons. Light that is
not absorbed in the cells is reflected from the Ag/ZnO back reflector. These three
subcells are interconnected through the heavily doped layers that form the tunnel
junctions between the adjacent cells. Conversion efficiency over 14% AM1.5G has
been achieved in such an a-Si/a-SiGe/a-SiGe triple junction solar cell. The a-Si:H
solar cells have been widely used in consumer electronics for powering digital
watches, calculators, and other electronic gadgets. In recent years, a-Si:H thin-
film solar cell modules have been developed for large-scale low-cost terrestrial
power generation, although issues related to long-term stability and degradation
problems remain the main concern for such applications. Recently, it has been
shown that a two-terminal a-Si:H solar cell stacked with a poly-Si cell structure
has achieved a conversion efficiency of 15.04% AM1.5G with Voc = 1.478 V, Jsc =
16.17 mA/cm2, and FF = 63%. Finally, a prototype four-terminal a-Si:H p-i-n top
cell stacked with a poly-Si bottom cell has achieved a total conversion efficiency
of 21% AM1.5G with top cell efficiency of 7.25% and bottom cell efficiency
of 13.75%.

(ii) Cu(In,Ga)Se2thin-film solar cells. Cu(In,Ga)Se2 (CIGS) is an excellent ma-
terial for high-efficiency thin-film solar cells because it is a direct band gap
semiconductor with suitable energy band gap and high optical absorption coef-
ficient in the visible spectrum of incident sunlight. The absorption coefficient
of CIGS films in the visible spectrum is 100 times larger than silicon mate-
rial. Therefore, a 2-μm thick CIGS absorber film is sufficient to absorb more
than 90% of useful sunlight for the conversion of solar energy into electricity.
Moreover, the CIGS films can be deposited by physical evaporation deposition
(PVD) or spray-paint technique on various inexpensive substrates such as soda-
lime glass, stainless steel, and plastic substrates for the production of low-cost
solar cell modules. Recently, high-efficiency CIGS solar cells grown on flexi-
ble stainless steel substrates have been reported. The device structure consists of
MgF2/ITO/ZnO/CdS/CIGS /Mo/stainless steel substrates. A compound layer that
contains Na was deposited prior to the formation of the CIGS absorber layer. The
maximum efficiency for the best CIGS cell grown on stainless steel substrates is
17% AM1.5G (Voc = 0.628 V, Jsc = 37.2 mA/cm2, FF = 0.723) with an active area
of 0.96 cm2. This performance is comparable to the CIGS cells fabricated on soda-
lime glass substrates, which has a world record efficiency of 19.8% AM1.5G, as
reported recently by the NREL (National Renewable Energy Laboratory) research
team.
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Figure 12.14. (a) Layer structure and (b) energy band diagram of a Cds/CIGS thin-film
solar cell grown on Mo-coated soda-lime glass substrate.

Figure 12.14 shows (a) the cell structure and (b) the energy band diagram of
a CIGS thin-film solar cell grown on Mo-coated soda-lime glass substrate. A
typical CIGS thin-film solar cell is fabricated by first depositing a 2-μm thick
CIGS absorber layer on an Mo-coated (for bottom contact) soda-lime glass (SLG)
substrate using PVD or spray-paint technique, followed by deposition of a 30- to
50-nm CdS buffer layer on top of the CIGS films using chemical bath deposition
(CBD), and then the deposition of a thin (50 nm) intrinsic ZnO and a 1-μm thick
conducting ZnO (Al-doped) using the sputtering technique, and finally the Al-
ohmic contact grids are applied for the top contacts. The CuInSe2 (CIS) film has
an energy band gap of 1.04 eV; by adding Ga to CIS to form the Cu(In1−x ,Gax )Se2

(CIGS) alloy, the band gap energy will increase from 1.04 eV for CIS to around
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1.67 eV for CuGaSe2(CGS) films. The optimum band gap for the CIGS cells is
Eg = 1.3 eV with 35% of Ga incorporation in the CIGS films. Figure 12.15a shows
a computer-simulated photo-J-V curve using the cell structure and the energy band
scheme shown in Figures 12.14a and b. A computer simulation tool AMPS-1D
(analysis of microelectronic and photonic structures)6 was used in the simulation.
The results are compared with the published data for a high-efficiency NREL CIGS
cell. Excellent agreement was obtained between the simulated and measured data
for the NREL high-efficiency CIGS cell (19.8%AM 1.5G). Figure 12.15b shows
a comparison of the simulated quantum efficiency (QE) versus wavelength curve
with the experimental curve for the same cell shown in Figure 12.15a. Excellent
agreement was also obtained in this case in the wavelength (λ) range of 0.5 μm
≤ λ ≤ 1.2 μm.7

The conversion efficiency could increase to over 21% under high concentration
(e.g., 100 suns) of sunlight. Flexible CIGS solar cell modules fabricated on a
plastic sheet (e.g., polyamide substrates) with conversion efficiency of over 10%
AM1.5G have also been reported by Global Solar Inc. in the United States. Large-
scale production of megawatt CIGS solar cell modules for commercial power
generation has been achieved in Japan, Germany, and the United States. Further
improvement in module efficiency and long-term reliability issues should make
the CIGS thin-film solar cells a viable PV technology for producing low-cost
photovoltaic systems for terrestrial power generation.

(iii) CdTe thin-film solar cells. Another promising thin-film PV technology is
based on CdTe thin-film solar cells. The CdTe is a direct band gap semiconductor
with an energy band gap of Eg = 1.45 eV, which matches the peak solar irradiance
spectrum, and is an ideal semiconductor material for high-efficiency solar cell fab-
rication. Figure 12.16a shows the schematic energy band diagram of a CdS/CdTe
thin-film solar cell. A high-efficiency CdS/CdTe thin-film solar cell typically uses
the chemical bath deposition (CBD) and close-space sublimation (CSS) methods
for the deposition of CdS and CdTe layers, respectively. The CdS/CdTe is de-
posited directly onto the TCO (transparent conducting oxides) such as SnO2- and
In2O3-coated glass substrates. The CSS process is one of the most efficient meth-
ods to control the grain size of the deposited CdTe films, which has a direct effect
on the cell performance. However, regardless of the average grain size obtained,
CSS CdTe deposition results in a randomized polycrystalline layer. Because of the
relatively easy manufacturability and a good absorption coefficient in the visible
sun spectrum, CdS/CdTe cell efficiency has improved significantly over the past
decade. The maximum conversion efficiency reported for the CdS/CdTe thin-film
solar cell is 16.5% AM1.5G by the NREL research group. Figure 12.16b shows
the cross-sectional view of a high-efficiency CdS/CdTe thin-film solar cell pre-
pared by a process suitable for large-scale production. The cell is fabricated on a
soda-lime glass substrate, which consists of five layers: a 500-nm TCO (In2O3)
and a 100-nm CdS are first deposited using sputtering, an 8-μm thick CdTe de-
posited using CSS process, a 150-nm Sb2Te3, and a 150-nm Mo contact layer
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Figure 12.15. (a) A comparison of the simulated (using AMPS-1D computer simulation
tool) and the measured photo-I–V curves, and (b) a comparison of the simulated and mea-
sured Q.E. versus wavelength curve for a high-efficiency NREL CIGS solar cell.6,7



12.2. Photovoltaic Devices (Solar Cells) 409

Figure 12.16. (a) Layer structure
and (b) energy band diagram of
a CdS/CdTe thin-film solar cell
grown on ITO (Sn2O) coated glass
substrate.

by sputtering technique. Maximum efficiency for this solar cell is 14% AM1.5G
with a Voc = 800 mV, Jsc = 25 mA/cm2, and FF = 0.66. Commercial CdTe thin-
film solar cell modules are currently in production by First Solar Inc., in the United
States.

12.2.7. Multijunction Tandem Solar Cells

Because of the band gap limitation, a single-junction solar cell can only utilize a
portion of the sun’s spectrum to convert useful sunlight into electricity. In order to
further increase the conversion efficiency of p-n junction solar cells, it is necessary
to employ the multijunction approach. A high-efficiency multijunction solar cell
can be fabricated using semiconductors of different band gaps to form individual
p-n junction cells that can absorb photons from different spectral regions of the
solar irradiance. These individual cells can be stacked mechanically to form 2-,
3-, or 4-junction cells or interconnected by tunnel junctions for monolithically
integrated multijunction tandem cells. For example, a typical triple-junction solar
cell is composed of a top cell that is usually formed using a wide-band-gap material
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such as GaInP or AlGaAs; the middle cell is formed using a medium-band-gap
material such as GaAs, while the bottom cell can be formed using a smaller-band-
gap material such as InGaAs or Ge. The triple-junction solar cells can be stacked
mechanically on top of each other or interconnected by tunnel junctions to form a
3-junction tandem solar cell.

A two-terminal monolithic InGaP/GaAs tandem solar cell with a conversion
efficiency of 30.28% under 1-sun AM1.5G conditions has been reported recently
by Takamoto et al.8 The improvements of the tandem cell performance are achieved
by using a double-hetero (DH) structure InGaP tunnel junction, in which the InGaP
layers are surrounded by wide-band-gap AlInP barriers. The DH structure by the
AlInP barriers increases the peak current of the InGaP tunnel junction. The AlInP
barrier directly below the InGaP top cell, which takes the part of a BSF layer,
was found to be quite effective in reflecting the minority carriers in the top cell.
The AlInP BSF layer not only forms a high-potential barrier but also prevents the
diffusion of zinc from a highly doped tunnel junction toward the top cell during
epitaxial growth. Furthermore, an InGaP tunnel junction reduces the absorption
loss, which exists in a GaAs tunnel junction, and increases the photogenerated
current in the GaAs bottom cell. Figure 12.17a shows the detailed structure of
this InGaP/GaAs 2-junction tandem cell, and Figure 12.17b illustrates the spectral
responses for the top and bottom cells and the effect of the tunnel junctions on the
spectral response of the top and bottom cells. The InGaP top cell absorbs photons
with hν ≥ 1.85 eV, while the GaAs bottom cell absorbs photons with energies of
1.4 eV ≤ hν ≤ 1.85 eV. Some optical losses are expected in the tunneling junction
connecting the top and bottom cells.

More recently, Yamaguchi et al.9 reported a mechanically stacked In-
GaP/GaAs/InGaAs 3-junction solar cell (1 cm2) with a conversion efficiency of
33.3% under 1-sun AM1.5G conditions. The multijunction solar cell structures
have also been applied to other material systems to achieve high conversion effi-
ciency. For example, an a-Si/a-SiGe/mc-SiGe 3-junction thin-film solar cell with
conversion efficiency as high as 14% AM1.5G has been reported recently.10

Figure 12.18 shows the evolution of the multijunction solar cell research that
covers the state-of-the-art 2- and 3-junction solar cells based on InGaP/GaAs and
InGaP/GaAs/Ge (or InGaAs) material systems and a proposed 4-junction solar
cell using an InGaP/GaAs/InGaNAs/Ge material system for future development.11

Theoretical conversion efficiency over 40% AM1.5G is predicted for the proposed
4-junction tandem solar cell. The multijunction solar cells are particularly attrac-
tive for space power generation and for terrestrial concentrator cell applications.
Table 12.1 summarizes the confirmed conversion efficiencies for the single-
junction, thin-film, and multijunction solar cells fabricated from a wide variety
of semiconductor material systems.12

12.2.8. Concentrator Solar Cells

Single-junction solar cells are typically encapsulated in flat-panel weatherproof
modules. Solar cells cover the entire flat-plate module area and are uniformly
illuminated under 1-sun conditions. In contrast, a solar concentrator electric
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Figure 12.17. A high-efficiency InGaP/GaAs 2-junction tandem solar cell: (a) layer struc-
ture and (b) spectral response for the top and bottom cells, showing the effect of tunnel
junction interconnects on spectral response. After Takamoto et al.8
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Figure 12.18. Evolution of multijunction solar cell structures from the existing
InGaP/GaAs 2-junction cell to 3- and 4-junction future generation solar cells by incorporat-
ing a 1 eV 3rd junction subcell (using InGaNAs). Tunnel junctions are used to interconnect
the individual subcells.11
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Figure 12.19. (a) Comparison of a flat-plate solar cell and a concentrating solar cell, and
(b) the power out from a flat-plate cell and a concentrator cell as a function of time from
6:00 am to 7:00 pm.

system uses a plastic Fresnel lens, similar to those found in overhead projectors,
to concentrate sunlight manyfold before it reaches the solar cells. Alternatively,
reflective mirrors can be used to concentrate the sunlight. Figure 12.19a shows a
comparison of the flat-plate single-junction solar cell and the concentrator solar
cell with Fresnel lens, and Figure 12.19b shows a comparison of the power output
of the flat-plate solar cell and the concentrator solar cell as a function of the time
of day from 6:00 am to 7:00 pm. When sunlight concentrated 300-fold illuminates
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a solar cell, the cell will produce about 300 times more power than it would with-
out concentration. Concentrating lenses and solar cells are assembled together in
a plastic housing to form a weatherproof concentrator module. Because of the
concentration optics, concentrator modules must be pointed at the sun, so tracking
systems are required to follow the sun across the sky during the day. The basic eco-
nomics of solar concentration are simple: It replaces costly semiconductor solar
cell area with lower-cost plastic lenses, which leads to lower overall system cost.
For a concentrator module, the solar cell area is a small fraction of the total mod-
ule area. In addition, the solar concentrator conversion efficiency is significantly
higher than flat-plate PV technologies. Because the solar cell is a lower percentage
of the overall concentrator system cost, using very high efficiency multijunction
solar cells for a concentrator system makes good economic sense. It delivers more
kilowatt-hours per day than the flat-panel solar modules. Total energy delivered,
not peak power, is what really counts in electricity generation. Flat-plate solar
systems are typically rated by peak wattage, when mounted with a fixed orienta-
tion they produce this amount of power only once during the day, at solar noon,
as shown in Figure 12.19b. Because of solar tracking, the concentrator solar cell
produces dramatically more power than a flat-plate cell in early morning and late
afternoon hours. In addition, owing to its high efficiency, the concentrator system
produces more power than a flat-plate system even at solar noon. The combined
benefits of solar tracking and high efficiency allow the concentrator system to
produce much more energy per day than the flat-plate system (the areas under
the curves in the figure). A concentrator will produce more kilowatt-hours per
day (energy) for the same module watt (power) rating. Furthermore, solar track-
ing also provides much more level power production throughout the day than a
fixed-orientation flat-plate system, as seen in Figure 12.19b. This not only leads
to higher daily energy production, but also has significant load matching advan-
tages. For example, in sunny climates peak electric load due to air-conditioning
occurs late in the afternoon rather than at solar noon. If renewable solar electricity
is to make a significant contribution to the world’s electricity generation needs
in the twenty-first century, an absolutely monumental scale-up of manufacturing
capacity will be required. For example, if solar power is to supply 10% of the
forecasted world demand for new electric generation capacity, one will have to
produce nearly 80 square miles of solar modules per year. Because of concen-
tration, solar concentrators will require about 300 times less solar cell area than
competing flat-plate PV technologies. Yamaguchi et al.9 reported a monolithically
integrated InGaP/InGaAs/Ge 3-junction concentrator solar cell with a conversion
efficiency of 36% at 100 suns AM1.5G illumination. Spectral Lab has also reported
a GaInP/GaInAs/Ge 3-junction concentrator solar cell with a world record effi-
ciency of 36.9±1.8% AM1.5G at 309 suns (30.9 W/cm2) intensity and 25◦C, with
Voc = 2.892 V, Jsc = 4.608 A/cm2, FF = 85.52%, and Vmp = 2.591 V. Using con-
centrated sunlight, these 3-junction concentrator solar cells can convert 36.9% of
the sun’s energy into electricity, a technology capability that could dramatically re-
duce the cost of generating electricity from solar energy. Table 12.2 summarizes the
confirmed conversion efficiencies of the terrestrial concentrator solar cells and
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modules measured under direct sunlight with AM1.5G spectrum at a cell temper-
ature of 25◦C.

12.3. Photodetectors

12.3.1. Introduction

Photodetectors and light-emitting devices (LEDs, LDs) are two important active
elements for optoelectronic device applications. Since a large number of semicon-
ductor LDs and LEDs have been developed for use in a broad-wavelength range
from UV, to visible, to the IR spectrum, it is equally important to develop a wide va-
riety of photodetectors for detection in the corresponding wavelengths of LDs and
LEDs. In fiber-optic communications, the detectors must possess such features as
low noise, high responsivity, and large bandwidth. Although high-sensitivity pho-
tomultipliers and traveling-wave phototubes are widely used for detecting mod-
ulated optical signals at microwave frequencies, recent trends are toward the use
of various solid-state photodetectors including Schottky barrier, p-i-n, and APDs
fabricated from elemental and compound semiconductors. A GaAs Schottky bar-
rier photodetector with cutoff frequency greater than 100 GHz has been reported
recently. High-speed photodetectors are particularly attractive for millimeter-wave
fiber-optic links. In0.53Ga0.47As p-i-n photodiodes with bandwidth greater than 30
GHz have been developed for 1.3- to 1.6-μm optical fiber communications. APDs
made from InGaAs/InP, InGaAsP/InP, Ge, and GaAs with high internal current
gains have also been developed for such applications.

In this section, various photodetectors including p-n junction and p-i-n photo-
diodes, APDs, Schottky barrier photodiodes, and heterojunction photodiodes are
described. Since most of these photodiodes are based on depletion-mode operation
(reverse-bias operation), they offer high-speed and high-sensitivity detection. A
comparison of different types of solid-state photodetectors reveals that the intrinsic
photoconductor has the highest internal gain (Gp > 104), while Schottky barrier
photodiodes have the shortest response time (≈10−11 s) and largest bandwidth.
On the other hand, the APD has the highest-gain bandwidth product among all
photodetectors.

A depletion-mode photodiode usually operates under small reverse-bias con-
ditions. Under depletion-mode operation, the reverse saturation current (or dark
current) is superimposed by the photocurrent produced by the incident photons
in a photodiode. The applied reverse bias is usually not high enough to cause
avalanche multiplication, and hence no internal current gain is expected in this
operation mode. This is in contrast to an APD, in which an internal current gain is
achieved as a result of avalanche multiplication near the breakdown conditions.

12.3.2. Key Physical Parameters and Figures of Merit

In order to evaluate the performance of a photodiode one needs to measure the spec-
tral response, response speed, and noise figure under depletion-mode operation.
The spectral response of a photodiode is determined in the wavelength range in
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which an appreciable photocurrent can be measured. Key physical parameters
affecting the spectral response are optical absorption coefficient, surface recombi-
nation velocity, and minority carrier lifetimes of a semiconductor from which the
photodiode is fabricated. The cutoff wavelength, λc, of a photodiode is determined
by the energy band gap of the semiconductor. For example, the energy band gap
of silicon is equal to 1.12 eV at room temperature, and hence the cutoff wave-
length for a silicon photodiode is around 1.1 μm (i.e., λc = 1.24/Eg (eV) μm).
Germanium has an energy band gap of Eg = 0.67 eV at 300 K, and hence its cutoff
wavelength is around 1.8 μm. The short-wavelength limit is set by the wavelength
at which the absorption coefficient of the semiconductor is in excess of 105 cm−1.
For wavelengths shorter than this value, the absorption of photons takes place
mostly near the surface region of the photodiode, and hence electron–hole pairs
generated in this region may recombine right near the surface and not reach the
junction. Thus, for photodetectors with large surface recombination velocity, the
photocurrent produced by the short-wavelength photons could be greatly reduced.

The important figures of merit for evaluating the performance of a photodetector
are quantum efficiency (η), responsivity (R), noise equivalent power (NEP), and
detectivity (D∗). These are discussed as follows:

(i) Quantum efficiency. The quantum efficiency, η, is widely used in assessing the
spectral response of a photodiode, which can be defined by

η =
(

Iph/q

Pin/hν

)
× 100% =

(
Iph

Pinλ

)
× 124%, (12.39)

where Iph (A) is the photocurrent generated when a light beam with input power
Pin (watts) and frequency ν falls onto the active area of the photodiode. The quan-
tum efficiency η is determined at low-reverse-bias voltage in which no avalanche
multiplication takes place. In (12.39), h is Planck’s constant, q is the electronic
charge, and λ is the wavelength of the incident photon. Figure 12.20 shows the

Figure 12.20. Relative spectral responses for several selected Schottky barrier, MIS, and
p-i-n photodiodes.
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relative spectral response curves for some Schottky barrier photodiodes and silicon
MIS and p-i-n photodiodes.

(ii) Spectral responsivity. The spectral responsivity, R, is an important figure of
merit that relates to the quantum efficiency of the photodetector. The responsivity
is defined by the ratio of the photocurrent to the input optical power, which can be
expressed by

R = Iph

Pin
= ηλ (μm)

1.24
A/W, (12.40)

where η is the quantum efficiency, and λ is the wavelength of incident photons.
Equation (12.40) shows that the responsivity varies linearly with the wavelength of
incident photons. For example, if the wavelength of incident photon is λ = 0.62 μm
and the quantum efficiency of the photodetector is η = 100% at this wavelength,
then the responsivity of the photodetector is R = 1.0 × 0.62/1.24 = 0.5 A/W,
and the responsivity R is equal to 1.0 A/W if the wavelength of incident photons is
double (i.e., λ = 1.24 μm). For IR photodetectors, the responsivity is widely used
in evaluating detector performance, since it is directly related to the detectivity D∗

of the IR detector.

(iii) Noise equivalent power. Noise equivalent power (NEP) is another figure
of merit widely used in assessing the performance of an IR photodetector. By
definition, the NEP of an IR detector and its associated amplifier is the RMS
(root mean square) value of the sinusoidally modulated optical power falling on a
detector that gives rise to an RMS noise voltage referred to the detector terminal
at a reference bandwidth of 1 Hz. For a monochromatic radiant flux (φp) with
wavelength λ necessary to produce an RMS signal-to-noise ratio (SNR) of 1 at
frequency f, the NEP is defined by

NEP(λ, f ) =
(

hc

λ

)
qφp watts, (12.41)

where hc/λ is the incident photon energy in eV, and φp is the RMS photon flux
(i.e., photons/s) required to produce the SNR of 1. Equation (12.41) enables one to
estimate the value of NEP due to different noise sources in a photodetector. It should
be noted that a major limitation of NEP is due to two additional parameters, namely,
the noise bandwidth (� f ) and the detector area (Ad), which must be given. Both
are related to noise considerations—different � f gives different noise values and
smaller areas collect less power. In addition to the spectral NEP defined above, one
can also consider the blackbody NEP, which is defined as the blackbody radiant flux
(i.e., due to the background blackbody radiation) necessary to produce an RMS
SNR of 1 at frequency f. As an example, consider a background-noise-limited
detector performance, which is common in the IR spectral region. The spectral
NEP for a background-limited infrared photodetector (BLIP) can be expressed
by

NEP(λ, f ) =
(

hc

λ

)
qφp =

(
hc

λ

) (
2φBG

p � f

η

)1/2

, (12.42)
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where φBG
p is the background photon flux (photons/s) that falls on the detector,

� f is the noise bandwidth, and η is the quantum efficiency. Values of NEP may
vary from 10−8 to 10−13 W for a wide variety of IR detectors reported in the
literature.

(iv) Spectral detectivity. Another figure of merit commonly used in an IR detec-
tor is known as the spectral detectivity D∗(λ, f ), which is defined as the SNR
normalized per unit area per unit noise bandwidth, and is given by

D∗(λ, f ) = A1/2
d (� f )1/2

NEP
(cm · Hz1/2)/W. (12.43)

The spectral detectivity D∗ is usually used for comparing the signal-to-noise per-
formance of a photodiode having different active areas and operating at different
noise bandwidths. Values of D∗ have been found to vary from 108 to 1014 cm-
Hz1/2/W for various semiconductor photodetectors reported in the literature. In
general, both D∗ and NEP are frequently used in evaluating the performance of
an IR detector, while the quantum efficiency and responsivity are often used in
assessing the spectral response of a photodiode operating in the visible to near-IR
spectral ranges. Using (12.42) and (12.43), the spectral detectivity under BLIP
conditions can be expressed as

D∗
BG(λ, f ) =

(
λ

hc

) (
ηAd

2φBG
p

)1/2

. (12.44)

Figure 12.21 shows the plot of detectivity D∗ as a function of wavelength for
various photoconductors and photodiodes. The dashed curves are the theoretical
ideal D∗ at 77 and 300 K with a 360◦ field of view (FOV).

The response speed of a photodetector is discussed next. In general, the response
speed of a p-n junction photodiode depends on three key factors, namely, the
carrier diffusion time in the n and p quasineutral regions, the carrier drift transit
time across the depletion layer, and the RC time constant of the detector system.
In a depletion-mode photodiode, excess electron–hole pairs are generated inside
the depletion region and quasineutral regions of the photodiode, and are collected
as photocurrent across the junction of the photodiode. Since the minority carrier
diffusion in the quasineutral regions is usually slower than the drift of excess
carriers in the depletion region, high-speed detection is achieved by generating
excess carriers inside the depletion region or close to the junction so that the
diffusion time of the excess carriers is comparable to the transit time across the
depletion region. For most semiconductors, the saturation-limited velocity (vs =
(3kBT/m∗)1/2) of the excess carriers generated inside the junction space-charge
region of the photodiode is about 1 to 2 × 107 cm/s. Since the depletion layer
width for most p-n junction photodiodes is only a few micrometers or less, the
carrier transit time in the picosecond range can be readily achieved in a depletion-
mode photodiode. Since the response speed or the bandwidth of a depletion-mode
photodiode is determined by the three time constants discussed above, the 3-dB
cutoff frequency of a p-n junction or Schottky barrier photodiode can be calculated
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Figure 12.21. Detectivity (D∗) versus wavelength for various photoconductors and photo-
diodes. The dashed lines are theoretical ideal D∗ at 77 K and 300 K with FOV = 2π . After
Sze.13

using the expression

fc = 0.35

(t2
tr + t2

dif + t2
RC)1/2

, (12.45)

where

ttr = Wd

2.8vs
, (12.46)

tdif ≈ Wp

2.43τn
, (12.47)

tRC = 1

RC
. (12.48)
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Note that ttr is the carrier transit time across the depletion layer region of width
Wd, vs (≈ 107 cm/s) is the saturation velocity, tdif and Wp are the electron diffusion
time constant and the width of the p-base region, τn is the electron lifetime, and
tRC is the RC time constant.

In a practical detector system, however, the cutoff frequency of a photodetector
is usually lower than that predicted by (12.45) because of the finite load resis-
tance and stray capacitances from the load resistance and the amplifier circuit.
Fast photodiodes may be fabricated using a planar structure on a semi-insulating
substrate with small active area (e.g., diameter less than 10 μm) to keep the diode
capacitance and series resistance (or RC time constant) low. The point-contact
Schottky barrier photodiode has the highest response speed and bandwidth among
all photodetectors discussed in this section.

For a photodetector, the ultimate limitation on its performance is the noise
generated in the detector. In general, the noises generated in a photodiode under
reverse-bias conditions consist of the shot noise, 1/ f noise (or flicker noise), and
thermal noise (or Johnson noise). Shot noise is created by reverse leakage current
flowing through the photodiode and is given by

i2
s = 2q ID� f, (12.49)

where ID is the dark current of the photodiode and � f denotes the noise-equivalent
bandwidth. For frequencies below 1 kHz, the noise of a photodiode is usually
dominated by 1/ f noise (I 2

f = B Idc� f/ f ), which has a current-dependent power
spectrum inversely proportional to the signal frequency. The origin of the flicker
noise can be attributed to fluctuation associated with generation-recombination of
excess carriers in a photodiode. In the intermediate frequency range (1 kHz < f <

1 MHz), the generation-recombination noise becomes the dominant component. At
high frequencies ( f > 1 MHz) the photodetector is dominated by white noise (i.e.,
independent of frequency) that includes shot noise, thermal noise, and generation-
recombination noise. It should be noted that the break points of the frequencies
for each of these noise sources vary from material to material.

Thermal noise is usually generated by random motion of carriers through the
series resistance of the photodetector and load resistance. For photodiodes using
a guard-ring structure, the channel resistance must also be included. The thermal
noise of a photodiode can be calculated using the expression

i2
th = 4kBT G� f, (12.50)

which shows that the thermal noise of a photodiode varies with the square root
of the product of temperature (T), noise bandwidth (� f ), and diode conductance
(G).

12.3.3. p-n Junction Photodiodes

In this section, the basic principles and general characteristics of a p-n junction pho-
todiode are discussed. Figure 12.22a shows the schematic diagram of a p-n junction
photodiode under reverse-bias conditions. Electron–hole pairs are generated by the
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Figure 12.22. (a) Schematic representation of a p-n junction photodiode, (b) energy band
diagram under illumination and reverse-bias conditions, and (c) equivalent circuit diagram:
Iph is the photocurrent; Is the shot-noise current source; IR the thermal-noise current source;
Cj the junction capacitance; Rs and Rp denote the series and shunt resistances, and RL the
load resistance.

internal photoelectric effect in the photodiode to a depth on the order of 1/α, where
α is the optical absorption coefficient at the wavelength of interest. As shown in
Figure 12.22b, under reverse-bias conditions, the photogenerated electron–hole
pairs are separated in the depletion region by the built-in electric field and col-
lected as photocurrent in the external circuit. The small-signal equivalent circuit
for a p-n junction photodiode is shown in Figure 12.22c, which consists of a pho-
tocurrent source Iph, junction transition capacitance Cj, series resistance Rs, and
shunt resistance Rp. The shunt resistance is usually very large and can be neglected
for a typical photodiode operating in the visible spectral range, but is included to
account for the possible leakage current path (i.e., low Rp) in a photodiode fabri-

cated from small-bandgap semiconductors. The symbols
√

I 2
s and

√
I 2
R shown in
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Figure 12.22c are the equivalent noise current sources due to the shot noise and
thermal noise of the photodiode, respectively.

A high-speed p-n junction photodiode is usually constructed in such a way that
most of the photons are absorbed in the p-emitter region. The junction is placed
as deep as possible so that efficient separation of photogenerated electron–hole
pairs can be achieved. This ensures that most of the photocurrent is carried out
by electrons whose speed, either by diffusion or drift, is always faster than that
of holes. The conditions for achieving excellent low-frequency response in a p-
n junction photodiode are that sWp/Dn < Wp/(Dnτn)1/2 < 1 and Wd/(vsτn) < 1,
where s is the surface recombination velocity, Wp is the width of the p region, Dn is
the electron diffusion constant, τn is the electron lifetime in the p region, Wd is the
depletion layer width, and vs is the saturation velocity of electrons in the depletion
region. The diffusion time constant for the photogenerated electron–hole pairs in
the p region is given by (12.47), which is valid for αWp < 1 and for uniform doping
in the p region. If an impurity concentration gradient is present in the p region,
then faster detection can be expected owing to the built-in drift field created by the
impurity concentration gradient. Since a large impurity concentration gradient is
difficult to obtain in the thin diffused p region, the maximum transit time reduction
by the field-assisted diffusion is about a factor of 5–10. The drift transit time
governed by the electric field in the depletion region is given by (12.46).

The power available from a p-n junction photodiode may be characterized by the
power available in a conjugate matched load. Using the equivalent circuit shown
in Figure 12.22c, this can be written as

P (ωm) = I 2
ph Rp

4
(
1 + Rs/Rp + Rs RpC2ω2

m

) , (12.51)

where Iph is the photocurrent and ωm is the frequency at which the photodi-
ode is conjugately matched. For high-frequency operation, a match of the pho-
todiode parameters with load impedance is normally required at frequencies
ωm ≥ 1/C(Rp Rs)1/2, so that the maximum power output is given by

P (ωm) = I 2
ph

4RsC2
j ω

2
m

, (12.52)

where Cj, Rp, and Rs are the junction capacitance, shunt resistance, and series
resistance of the photodiode shown in Figure 12.22c.

12.3.4. p-i-n Photodiodes

The p-i-n photodiode is the most commonly used detector structure in the visible to
near-IR spectral range. Silicon p-i-n photodiodes are widely used in the 0.4–1.06
μm spectral range, while InGaAs/InP p-i-n photodiodes can extend the detection
wavelengths to the 1.3–1.55 μm wavelength range. A p-i-n photodiode consists of
a highly doped p+-emitter layer, a wide undoped intrinsic layer (i region), and a
highly doped n+-base layer. Figure 12.23a shows the schematic diagram of a p-i-n
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Figure 12.23. (a) Schematic diagram of a p-i-n photodiode, and (b) generation rate versus
distance for two different wavelengths, where λ1 denotes the short-wavelength photons, and
λ2 the long-wavelength photons.

photodiode, and Figure 12.23b shows the photogeneration rates versus distance
for two different wavelengths. The reason that a p-i-n photodiode is so popular is
that the spectral response near the cutoff wavelength region can be tailored to meet
specific detection requirements. As shown in Figure 12.23, the long-wavelength
spectral response of a p-i-n photodiode can be greatly improved by increasing the
thickness (W) of the undoped i layer. In addition to the p-i-n (p+-π -n+) structure
shown in Figure 12.23a, other p-i-n photodiode structures such as n+-ν-p+, n+-π -
p+, and p+-ν-n+ junctions can also be fabricated (note that ν denotes n−, and π

is for p−).
A p-i-n photodiode usually operates under the depletion-mode condition in

which a sufficiently large reverse bias is applied to the photodiode such that the
entire i region is fully depleted. When photons with energies greater than the
bandgap energy of the semiconductor (i.e., hν ≥ Eg) are impinging on the photo-
diode, a small fraction of the short-wavelength photons will be absorbed in the p+

region, while the majority of photons are absorbed in the i region. Excess electron–
hole pairs generated in the i region are swept out by the high electric field created
by the applied reverse-bias voltage across the photodiode. The photogenerated
electron–hole pairs are then collected at the ohmic contacts of the photodiode. The
carrier transit time across the i region can be calculated using the expression

tr = W

vs
, (12.53)

where W is the thickness of the i layer and vs is the thermal velocity of the excess
carriers (vs = (3kBT/m∗)1/2) in the i region.

Photocurrents generated in each region of the p-i-n photodiode and the spectral
responses are derived next. As shown in Figure 12.23a, the thickness of the p layer
is denoted by x0, and W is the i-layer thickness (W 
 x0). When monochromatic
light is impinging on a p-i-n photodiode at x = 0, the rate of generation of excess
carriers is given by

gE(x) = αφ0(1 − R) e−αx , (12.54)
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where φ0 is the photon flux density, R is the reflection coefficient at the surface
of the p region, and α is the absorption coefficient. Under steady-state conditions,
the total photocurrent density Jph is equal to the sum of electron and hole current
components produced by the incident photons at a given plane along the x-direction
of the photodiode. This can be expressed by

Jph = Jn(x0) + Jp(x0) = Jn(x0) + Jp(W ) + Ji, (12.55)

where

Ji = Jp(x0) − Jp(W ) (12.56)

is the photocurrent density due to the hole generation in the i region.
The spectral dependence of the quantum yield η can be obtained by solving

Jn(x0), Jp(W ), and Ji as functions of λ, α, W , and x0. To derive expressions for
Jn, Jp, and Ji in the three regions of a p-i-n photodiode, it is assumed that (1) the
photogenerated excess carrier densities are small compared to the majority carrier
density in both the n+ and p+ regions (i.e., �p � n0 and �n � p0), (2) the
reverse-bias voltage is not large enough to cause avalanche multiplication in the
i region, (3) the surface recombination velocity is very high at the illuminated
surface such that �n(0) = 0, (4) the excess carrier density at the edge of the i
region is small enough so that the boundary condition �n(x0) = 0 holds at x = x0,
(5) the effect of the built-in electric field in the emitter region (i.e., the p region)
is neglected, and (6) recombination of excess carriers in the depletion region is
negligible. Assumption (3) is valid for most silicon p-n junction photodiodes,
because impurity concentration at the surface of the p-emitter region is usually
several orders of magnitude higher than that of the i region. As a result, the carrier
lifetime at the surface is also expected to be much shorter than that of the bulk.
Therefore, excess carriers generated at the surface will usually recombine before
they are able to diffuse to the junction.

The photocurrents produced by the absorbed incident photons in the three re-
gions of a p-i-n photodiode can be derived as follows:14

(i) The p region (0 < x ≤ x0). In the p-emitter region, the contribution of pho-
tocurrent is mainly due to the electron diffusion current generated in the p re-
gion, which can be evaluated at x = x0. This photocurrent component can be de-
rived by solving the continuity equation of excess electrons in the p region, given
by

Dn
d2�n

dx2
− �n

τn
= −αφ0 (1 − R) e−αx . (12.57)

The general solution of (12.57) is given by

�n (x) = A sinh

(
x0 − x

Ln

)
+ B cosh

(
x0 − x

Ln

)
− αφ0 (1 − R) τn e−αx(

α2L2
n − 1

) .

(12.58)
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Constants A and B in (12.58) can be determined using the boundary conditions
�n(x) = 0 at x = 0 and x = x0, which yield

A = αφ0 (1 − R) τn[1 − cosh(x0/Ln) e−αx0 ]

(α2L2
n − 1) sinh(x0/Ln)

(12.59)

and

B = αφ0 (1 − R) τn e−αx0

(α2L2
n − 1)

. (12.60)

The electron diffusion current density in the p-emitter region of the photodiode is
obtained by substituting (12.59) and (12.60) into (12.58) and evaluating at x = x0,
assuming that αLn 
 1. This yields

Jn (x0) = q Dn
d�n (x)

dx

∣∣∣∣
x=x0

= qφ0(1 − R)

{
e−αx0 − 1

αLn sinh
(

x0
Ln

)[
1 − cosh

(
x0

Ln

)
e−αx0

]}
, (12.61)

which shows the functional dependence of Jn(x0) on the absorption coefficient α,
the electron diffusion length Ln, and the junction depth x0.

(ii)] The i region (x0 ≤ x ≤ W ). In the undoped (i) layer, the drift current density
contributed by the photogenerated excess carriers in this region is given by

Ji = q
∫ x0+W

x0

gE (x) dx = qφ0(1 − R)(e−αW − e−αx0 ). (12.62)

In (12.62), it is assumed that W 
 x0 and W + x0 ≈ W ; gE(x) = αφ0(1 − R) e−αx

is the photon generation rate inside the photodiode. Figure 12.23b shows the pho-
togeneration rate gE(x) as a function of distance x for two different wavelengths.

(iii) The n region (x ≥ W + x0). In this region, the photogenerated excess carriers
(i.e., holes) contribute to the hole diffusion current. The hole current density can
be derived by solving the continuity equation for the excess hole density in the n
region, which is given by

Dp
d2�p

dx2
− �p

τp
= −αφ0(1 − R) e−αx , (12.63)

where Dp and τp denote the hole diffusion coefficient and hole lifetime, respec-
tively. The hole diffusion current density Jp(x) can be obtained by solving (12.63)
for �p(x) using the boundary conditions

�p(x) = −pn0 at x = W + x0,

= 0 for x → ∞. (12.64)
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Figure 12.24. Quantum yield versus
wavelength for a silicon p-i-n pho-
todiode with different depletion layer
widths. The solid lines are calculated
from (12.62) and (12.63), and the
dashed lines are experimental data. Li
and Lindholm.14

The hole current density is obtained by evaluating Jp(x) at x = W + x0, which
yields

Jp(W ) = −q Dp
d�p(x)

dx

∣∣∣∣
x=x0+W

= −qφ0(1 − R)αLp e−αW

(1 + αLp)
. (12.65)

Thus, the total photocurrent density produced in a p-i-n photodiode is equal to the
sum of (12.61), (12.62), and (12.65), which is given by

Jph = qφ0(1 − R)

⎧⎨
⎩ 1

αLn sinh
(

x0
Ln

) [
1 − cosh

(
x0

Ln

)
e−αx0

]
− e−αW

(1 + αLp)

⎫⎬
⎭ .

(12.66)

The quantum efficiency η, defined as the number of electron–hole pairs generated
per absorbed photon, can be expressed by

η = Jph

qφ0
× 100%, (12.67)

where Jph is given by (12.66).
For a silicon p-i-n photodiode, the p region is usually very thin (≤ 1.5μm), while

the i region is much wider (from a few μm to hundreds of μm). As a result, excess
carriers generated by the short-wavelength photons are confined mainly in the
p region. The quantum efficiency for a silicon p-i-n photodiode can be calculated
using the optical absorption coefficient data and carrier diffusion lengths for silicon.
Figure 12.24 shows the quantum yield versus photon wavelength for a silicon p-i-n
photodiode with i-layer width W as a parameter and x0 = 1.5 μm. Note that solid
lines are the calculated results using (12.67) for W = 0.32, 0.08, 0.04, and 0.01
cm, respectively. The reflection coefficient R for silicon is assumed equal to 0.3 in
these calculations.

The sharp decrease of quantum yield in the short-wavelength regime can be
explained as follows. As can be seen from (12.58) and Figure 12.23, the ex-
cess carriers generated by the short-wavelength photons are confined mainly in
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the p region. Therefore, the photocurrent due to photon excitations in the short-
wavelength regime must come from the excess carriers generated in the p region.
However, only those excess carriers generated near the junction will diffuse to-
ward the i region. In fact, only a fraction of the excess carriers generated by the
short-wavelength photons in the p region will be collected and will contribute
to the photocurrent Jn(x0). To improve the short-wavelength (or UV) response,
the surface recombination loss must be minimized to preserve the excess carriers
generated near the surface region so that photocurrent generated by the short-
wavelength photons can be collected across the junction.

An estimate of the maximum cutoff frequency for a p-i-n photodiode operat-
ing under the condition limited by the load impedance RL can be obtained using
the equivalent circuit shown in Figure 12.21c. It is noted that the excess carriers
generated in the i region that are separated by the built-in electric field can be
represented by a current source Iph, which is in parallel with the junction capaci-
tance Cj. The series resistance is denoted by Rs, and RL is the load resistance. The
junction capacitance of the p-i-n photodiode is given by

Cj = Aε0εs

W
, (12.68)

where A is the cross-sectional area of the junction, εs is the dielectric constant
of the semiconductor, and ε0 is the free space permittivity. The maximum cutoff
frequency for a p-i-n photodiode can be calculated using the expression

fc = 2.4

2πτtr
≈ 0.4αvs, (12.69)

where vs is the average thermal velocity of electrons in the i region and α is the
optical absorption coefficient. For a Ge p-i-n photodiode with vs = 6 × 106 cm/s,
εs = 16, A = 2 × 10−4 cm2, and RL = 10
, the cutoff frequency fc was found to
be 41.84 GHz.

If the light modulation frequency approaches that of the transit time of excess
carriers across the entire i region, a phase shift between the photon flux and the
photocurrent will appear in the photodiode. This effect is severe for the case in
which incident photons are absorbed very close to the outer edge of the depletion
layer or near the surface of the photodiode. However, for most semiconductors
the absorption coefficients vary between 10 and 105 cm−1; the optical absorption
takes place quite deep inside the photodiode. If the modulation frequency is around
109 Hz, then the depletion layer width must be a few microns. This means that the
excess carriers are generated throughout the entire volume of the depletion layer,
and hence have a distribution of transit times. The phase-shift effect in this case is
less severe than in the case of surface generation.

12.3.5. Avalanche Photodiodes

Avalanche photodiodes (APDs) are high-gain and high-speed photodetectors that
have been extensively investigated for a wide variety of applications. An APD
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Figure 12.25. (a) Cross-sectional view of a planar silicon avalanche photodiode (APD)
with a guard-ring structure, (b) the equivalent circuit, and (c) the energy band diagram
under illumination and large-reverse-bias conditions showing avalanche multiplication in
the space-charge region.

can have the dual function of serving as a photodetector for detecting incident
photons or optical signals, and as an amplifier (with internal current gain via
avalanche multiplication) for the excess carriers generated by the incident pho-
tons. An APD is known to produce the highest-gain bandwidth product among all
the solid-state photodetectors discussed in this chapter. APDs can be fabricated
from a wide variety of semiconductors using different device structures. Besides
the conventional germanium and silicon APDs, various APDs fabricated from
III-V compound semiconductors have also been reported, in particular the long-
wavelength (1.3 and 1.55 μm) APDs using InGaAs/InP and InGaAsP/InP material
systems. More recently, APDs fabricated from wide-band-gap materials such as
GaN/AlGaN and GaP have also been reported for UV detection.

Figure 12.25a shows the cross-sectional view of a silicon planar APD. In this
structure, the (p+-n or n+-p) guard-ring structure around the edge of the APD is
employed to prevent the occurrence of microplasmas (i.e., small regions where the
breakdown voltage is lower than that of the p-n junction as a whole) around the
edge of the active region of the APD. The occurrence of bulk microplasmas can be
reduced using detector-grade semiconductor materials with low defect densities.
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Figure 12.25b shows the equivalent circuit of an APD, where M denotes the
multiplication factor, is is the shot-noise current source, and Rs and Cj denote the
series resistance and junction capacitance, respectively.

The basic principle underlying the operation of an APD is discussed next. If
the reverse-bias voltage across a photodiode is smaller than the breakdown volt-
age under dark conditions, a small reverse leakage current will flow through the
APD. The reverse leakage current ID is due to thermally generated carriers in
the quasineutral regions of the diode, and should be kept as low as possible. If
the reverse-bias voltage continues to increase, the electric field in the depletion
region will eventually become strong enough (i.e., E ≥ Ec; Ec is the critical field)
to cause both thermally generated electrons and holes to gain sufficient kinetic
energy, and impact ionization will occur when electron–electron or hole–hole col-
lisions take place at electric field strength E ≥ Ec. These energetic electrons and
holes will undergo further impact ionizations, which produce more electron–hole
pairs and more impact ionization, resulting in a runaway condition limited only
by the series resistance and the external circuitry of the APD. This runaway con-
dition is called avalanche breakdown. Thus, it is understandable that the current
flow in an APD during avalanche breakdown, IMD, may be orders of magnitude
larger than the initial thermally generated dark current ID. Figure 12.25c shows
the avalanche multiplication that occurs inside the junction space-charge region of
a silicon APD. When an APD is illuminated by light under a small-reverse-bias
condition, the primary current flowing through the APD is denoted by Ip, which
consists of the dark current ID and the photocurrent Iph (due to electron–hole pairs
generated optically within the depletion region). If the reverse-bias voltage is in-
creased, avalanche multiplication of the primary current Ip occurs, but the onset
of avalanche multiplication is usually gradual. This is clearly illustrated by the
photo-I–V characteristics of a Ge APD shown in Figure 12.26, with prime current
Ip as a parameter.15

In general, the photo-I–V characteristics of an APD can be predicted using an
empirical formula

I = M Ip, (12.70)

where

Ip = ID + Iph. (12.71)

Here Ip is the primary current of the APD before the onset of avalanche multi-
plication, Iph is the primary photocurrent produced by the incident photons in the
APD, and ID is the dark current given by

ID =
(

q

√
Dp

τp

n2
i

ND
+ qniW

τe

)
Aj. (12.72)

Equation (12.72) consists of two terms: the first term is the thermal gener-
ated current from the n-quasineutral region of the APD, and the second term is
the generation current produced in the space-charge region of the APD under
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Figure 12.26. Current–voltage (I–
V) characteristics of a germanium
avalanche photodiode with differ-
ent primary currents. After Melchior
and Lynch,15 by permission, c©
IEEE-1966.

reverse-bias conditions. The multiplication factor given in (12.70) can be described
by an empirical formula given by

M = 1{
1 −

[
(V −Ip R)

VB

]n} , (12.73)

where R = Rs + Rc + RT is the total resistance of the APD, Rs is the series resis-
tance of the contacts and the bulk material, Rc is the resistance due to carrier drift
through the depletion layer, and RT is the thermal resistance that heats the junc-
tion and increases the diode breakdown voltage VB. The factor n in the exponent
depends on the semiconductor material used, the doping profile in the junction,
and the wavelength of incident photons. A low value of n corresponds to high
avalanche multiplication at a given bias voltage.

Although a large internal current gain can be achieved using an avalanche mul-
tiplication process, the shot noise also increases rapidly with the multiplication
process in an APD. It is noted that a significant improvement in overall sensi-
tivity has been achieved in both the Si and Ge APDs with wide instantaneous
bandwidth. Figure 12.27 shows the signal and noise power outputs of a Ge APD
operating at 1.5 GHz and λ = 1.15μm.15 Silicon APDs are commercially available
for fiber optic and very low light level applications. For example, Perkin Elmer type
C30902E APD utilizes a silicon detector chip fabricated with a double-diffused
“reach-through” structure. This structure provides high responsivity between 0.4
and 1.0 μm as well as extremely fast rise and fall times at all wavelengths. The
responsivity of the device is independent of modulation frequency up to about
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Figure 12.27. Signal and noise
power outputs of a germanium
avalanche photodiode. Both are
measured with an input light
intensity of 1 mW. After
Melchior and Lynch,15 by
permission, c© IEEE-1966.

800 MHz. Typical breakdown voltage for this type of APD is VB = 225 V, M =
150–250, current responsivity RA = 65–109 A/W, quantum efficiency η = 60%
at 900 nm and 77% at 830 nm.

Figure 12.28 shows a novel InGaAs/InP SAM (Separate Absorption and Mul-
tiplication) APD grown by the molecular beam epitaxy (MBE) technique for a
1.3-μm fiber optic receiver application.10 A SAM-APD uses a smaller-band-
gap In0.53Ga0.47As (Eg = 0.74 eV) active layer to absorb long-wavelength
photons (λ = 1.3 μm) and a wider-band-gap InP p-n junction grown on top
of an In0.53Ga0.47As absorber layer to achieve avalanche multiplication. Long-
wavelength photons impinging on the AR coating layer of a SAM-APD will pass
through the top layer of the wider-band-gap InP p-n junction, and absorb in the
smaller-band-gap In0.53Ga0.47As active layer. Electron–hole pairs generated in the
InGaAs region by the absorbed photons will move into the upper InP p-n junction,
where a large reverse-bias voltage is applied to produce avalanche multiplication
by impact ionization. It should be noted that doping density and thickness of each
layer in the SAM-APD must be calculated so that the electric field at the heteroin-
terface remains sufficiently small to avoid a significant tunneling current, but is
large enough to deplete the entire absorber region. Precise control of the device
parameters for a planar SAM-APD is very important for achieving optimum per-
formance. The high-performance InGaAs/InP SAM-APD is developed primarily
for 10-Gbps fiber optic receiver applications.16 As shown in Figure 12.28a, the
APD employs a widely used SAM layer structure to achieve both high optical
absorption and internal gain. The epitaxial layers are grown lattice-matched to the
InP substrate. The back-illuminated planar device geometry minimizes junction
capacitance and dark current for a given optical coupling diameter. The electron–
hole pairs are generated in the InGaAs absorber layer and multiplication takes
place in the InP high-field region with an internal gain factor M of around 10
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Figure 12.28. (a) Cross-sectional view of InGaAs/Si SAM APD structure; (b) bandwidth
as a function of the multiplication gain; the experimental data points are also shown.16

or higher. This SAM-APD has a gain bandwidth product of 85 GHz and a peak
bandwidth of about 10 GHz at 1.55 μm wavelength, as shown in Figure 12.28b.

The conventional near-IR InGaAs/InP APDs discussed above are limited in
performance by a small ionization coefficient ratio, which results in a low-gain
bandwidth product and high excess noise. At shorter wavelengths, the silicon APD
is used extensively for applications where high sensitivity and high-gain bandwidth
product are required. Silicon is an ideal material for APDs because of its very high
ionization coefficient ratio, which results in a high-gain bandwidth product and
very low excess noise. Unfortunately, silicon has a very low absorption coefficient
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Figure 12.29. (a) A passivated planar InGaAs/InP SAM-APD structure grown on n+-InP
substrate and the electric field profile. The APD used the InP p-i-n structure for multiplication
and i-InGaAs layer for absorption, (b) the 3-dB bandwidth versus multiplication gain.17

especially at the fiber-optic and free space optical communications wavelengths
of 1.3 and 1.55 μm. On the other hand, InGaAs is an excellent optical absorber in
the wavelengths of 1.3 and 1.55 μm.

A new InGaAs/Si SAM-APD has been demonstrated recently with separate ab-
sorption and multiplication regions as shown in Figure 12.29a. The device active
area diameter is 23 μm with an InGaAs absorption layer thickness of 1μm and a Si
multiplication thickness of 0.6 μm. This SAM-APD was fabricated by wafer fusing
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an InGaAs absorption region with a silicon multiplication region, taking advantage
of the high IR absorption capability of InGaAs and the high multiplication effi-
ciency of silicon. The enormous advantage of using silicon for the multiplication
region is due to its high ionization coefficient ratio, which results in much higher
sensitivity, higher-gain bandwidth product, lower noise, and higher temperature
and voltage stability than any near-IR APD previously fabricated. The wafer fusion
technology employed in the new APD involves the heterogeneous fusion of two
dissimilar semiconductor materials (InGaAs and Si). The resulting advantage is the
ability to utilize the inherent optical and electrical characteristics of each material
to optimize photodetector detectivity at these important wavelengths. Measure-
ments demonstrated a bandwidth of 13 GHz and a gain bandwidth product of
315 GHz as shown in Figure 12.29b. According to calculations, an optimally de-
signed InGaAs/Si SAM-APD could extend the gain-bandwidth product to beyond
500 GHz. This device has substantially higher optical sensitivity, higher speed,
lower noise, and higher temperature and voltage stability than currently available
APDs operating in this wavelength range. This detector is particularly effective at
eye-safe wavelengths.

In addition to the APDs depicted above for the visible to near-IR detection,
GaP APDs have also been reported recently for UV photon detection. Although
APDs are typically made from silicon, GaP offers three advantages over silicon:
GaP is a widely available large-band-gap (Eg = 2.26 eV) material, and it has a
low intrinsic carrier concentration (ni = 1 cm−3 at 300 K) with extremely low
reverse leakage current and a band gap amenable to solar blind UV detection.
A GaP APD using a guard-ring p-i-n structure has recently achieved a current
gain of M = 1000 at a reverse bias of around 21 V. The device has applications
in a variety of areas, from protein tagging to CD data storage. Finally, APDs
using GaN-based wide-band-gap material systems have also been developed for
UV detection and chemical sensor applications. Commercial applications of GaN-
based UV detectors include environmental monitoring, automobile engine com-
bustion sensing, solar UV monitoring, burner monitoring in gas turbines, and flame
detection.

12.3.6. Schottky Barrier Photodiodes

Schottky barrier photodiodes (SBDs) are particularly attractive for high-speed
detection. The basic detection principles for an SBD were described in Chapter
10. Depending on the modes of detection, the SBD may be used to detect photons or
optical signals with wavelengths extending from UV to IR spectral ranges. When
an SBD is operating in the depletion mode under reverse-bias conditions, electron–
hole pairs are generated by incident photons with energy greater than the band gap
energy of the semiconductor (i.e., hν ≥ Eg). In this case, the cutoff wavelength of
the SBDs is determined by the band gap energy of the semiconductor (λc = 1.24
eV/Eg). Depletion-mode Sods fabricated from larger-band-gap semiconductors
such as SiC, GaN, GaP, and ZnS are used primarily to detect shorter-wavelength
photons (e.g., from UV to visible), while Sods and p-i-n photodiodes fabricated
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Figure 12.30. (a) Top and cross-sectional views of a Au/GaAs/AlGaAs heterostructure
planar Schottky barrier photodiode, (b) external quantum efficiency and responsivity curves,
and (c) impulse response of the photodiode showing a rise time of 8.5 ps and an FWHM of
16 ps, which corresponds to a cutoff frequency of 45 GHz. After Lee et al.18

from smaller-band-gap semiconductors such as Ge, InGaAs, InAs, and CdHgTe are
used mainly for mid- to long-wavelength infrared (MWIR to LWIR) detection. The
SBD may be fabricated by depositing different metals on various semiconductors
to cover the wavelengths from UV to IR spectral ranges. For example, an Ag/ZnS
SBD, which has a peak photoresponse at 0.3 μm, is mainly used for UV light
detection. An Au/GaAs SBD, which has a peak response at 0.85 μm, is used for
visible to near-IR detection. IR detectors using Schottky barrier structures such
as a Au/p-In0.53Ga0.47As/p+-InP SBD for 1.3–1.5 μm and PtSi on p-Si Schottky
photodiode operating at 77 K have been developed for 3–5 μm IR imaging array
applications. Figure 12.30a shows the top and cross-sectional views of a high-
speed Au/n-GaAs/n+-GaAlAs planar SBD. The detector is capable of detecting
modulating optical signals up to 45 GHz at λ = 0.8 μm. Figure 12.30b displays
the spectral response of such an SBD, and Figure 12.30c is the impulse response
for this detector. A rise time of 8.5 ps and an FWHM of 16 ps have been measured
for this detector using the sampling/correlation technique. This corresponds to a
3-dB cutoff frequency of 45 GHz.18

SBDs can also be operated in the hot electron detection mode. In this case,
photons are absorbed inside the metal film, and photogenerated hot electrons in
the metal film are then swept across the Schottky barrier and injected into the
semiconductor side. The cutoff wavelength under this detection mode is determined
by the barrier height (i.e., λc = 1.24 eV/qφBn). Therefore, under this detection
mode, an SBD with small barrier height can be used for LWIR detection. A typical
example for this type of photodetector is the PtSi/p-type silicon SBD, which has a
barrier height of qφBp = 0.2 eV and a cutoff wavelength of λc = 5.6 μm. Large-
format (1024 × 1024) PtSi/p-Si SBD focal plane arrays have been widely used for
3–5 μm IR image sensor applications.
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Figure 12.31. A p-In0.53Ga0.47As–v-In0.53Ga0.47As–n-InP heterojunction p-i-n infrared
photodetector for 1.1- to 1.6-μm detection: the cross-sectional view, and quantum effi-
ciency and responsivity curves. After Lee et al.,19 by permission, c© IEEE-1981.

Recently, there has been shown a strong interest in wide-band-gap semicon-
ductor (e.g., GaN, SiC, AlGaN) based gas and liquid sensors for applications
including fuel leak detection in spacecraft and automobiles as well as chemical
and bioagent sensing for the defense industry and homeland security applications.
Wide-bandgap semiconductor devices are capable of operating in harsher envi-
ronments and at much higher temperatures than the conventional semiconductors
such as Si and GaAs. Simple Schottky diode or field-effect transistor structures
fabricated on GaN (or SiC) are sensitive to a number of gases, including hydrogen,
carbon monoxide, and hydrocarbons. One additional attractive attribute of GaN
and SiC is that gas sensors based on these materials can be integrated with high-
temperature electronic devices on the same chip. ZnO-based wide-bandgap devices
are currently attracting attention for application to UV light emitters, transparent
high-power electronics, surface acoustic wave devices, and piezoelectric transduc-
ers. Pt/ZnO Schottky diode-based hydrogen sensors with detection limits as small
as 5 ppm of H2 in N2 have been reported recently.

12.3.7. Point-Contact Photodiodes

A point-contact photodiode may be constructed as a Schottky barrier or as a p-i-n
photodiode, depending on the device structures. The active area of a point-contact
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photodiode is usually very small, and as a result, both the junction capacitance and
transit time are extremely small. The point-contact photodiode is used mainly to
detect optical signals at very high modulation frequencies. As an example, consider
a Ge point-contact photodiode. The photodiode is formed using a p-type epitaxial
layer 8 μm thick grown on a p+-Ge substrate, and a 0.6-mil arsenic-doped gold
foil is alloyed for Schottky contact on the p region using a short current pulse. The
alloy region is approximately 4 μm in diameter and depth. Light impinges on the
surrounding area of the p region. Using a 4-μm deletion layer width, the carrier
transit time for this photodiode is less than 4 × 10−11 s. The junction capacitance
and series resistance for such a diode are 4.5 × 10−4 pF and 10 
, respectively,
which yield an RC time constant equal to 4.5 × 10−15 s. Therefore, the bandwidth
(or cutoff frequency) for this photodiode is limited by the transit time, which is
on the order of 10−11 s. A cartridge-type point-contact photodiode capable of
responding to the modulation optical signals with frequencies up to 30 GHz has
been reported in the literature. Point-contact photodiodes are particularly attractive
for applications in fiberoptic communications in which incident light is confined
inside the optic fiber with a light spot a few microns in diameter.

12.3.8. Heterojunction Photodiodes

A heterojunction photodiode is formed with two types of semiconductor materi-
als with different energy bandgaps and opposite dopant impurities. To reduce the
dark current and noise of a heterojunction photodiode, the lattice constants for both
semiconductors should be chosen as closely matched as possible. There are several
semiconductor pairs with good lattice match that can be used to fabricate hetero-
junction photodiodes. These include InGaP/GaAs, AlGaAs/GaAs, GaAs/Ge, and
InGaAs/InP. For example, a heterojunction photodiode made from a wide-bandgap
n-type GaAs on a narrow-bandgap p-type Ge can be used to detect IR radiation in
the 1.1- to 1.8-μm wavelength regime. The detector is designed in such a way that
long-wavelength photons can pass through the top wide-bandgap n-GaAs layer
and absorb in the depletion region of the bottom narrow-bandgap p-Ge layer. Car-
rier generation takes place as a result of absorption of long-wavelength photons
in the p-Ge base layer. The optical absorption coefficients for GaAs and Ge are
around 10 cm−1 and 2.4 × 104 cm−1 at 1.6 μm, respectively. This implies that
less than 1% of the incident photons are absorbed in the n-GaAs layer, while
more than 99% of the incident photons are absorbed within 1 μm from the de-
pletion edge of the p-Ge layer. For this n-GaAs/p-Ge heterojunction photodiode,
a narrow-peak spectral response will occur at hν = 1.38 eV. Since germanium
is an indirect bandgap material, the quantum efficiency and responsivity for an
n-GaAs/p-Ge heterojunction photodiode are usually low. A superior IR detector
using a p-In0.53Ga0.47As/n-InP p-i-n heterojunction structure can produce excellent
spectral response, high quantum efficiency, and high responsivity for wavelengths
between 1.0 and 1.6 μm. Figure 12.31 shows the cross-sectional view and spectral
response for such a detector.12 Responsivity greater than 0.5 A/W and quantum
efficiency between 55 and 70% are obtained for this detector in the wavelength
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Figure 12.32. A typical photomultiplier electrode arrangement showing the linear config-
uration of the dynode section, with a partitioned transparent photocathode.

range from 1.0 to 1.6 μm. In this photodetector, back-illumination (i.e., incident
photons impinging from the wide bandgap InP substrate into the narrow bandgap
InGaAs active layer) is used so that most of the long-wavelength photons are
absorbed in the undoped ν-In0.53Ga0.47As active layer. Since most of the incident
photons are absorbed in the i region, a p-i-n heterojunction photodiode is relatively
insensitive to the surface condition. It should be noted that the transit time of the
photogenerated carriers across the i region is usually smaller than the RC time
constant of the detector. As a result, the frequency response for such a photodiode
is usually limited by the RC time constant rather than by the transit time of the
detector.

12.3.9. Photomultipliers

The photomultiplier is another type of photodetector and is known as the most
sensitive detector available in the visible spectral region. This type of photodetec-
tor is particularly useful for photon-counting applications. Figure 12.32 shows a
partition-type electron multiplier in which the photocathode is transparent and
mounted at the end of the tube. The incident light falls on the front face of
the photocathode, and electrons emitted from the cathode surface are multi-
plied by nine dynode stages. In a conventional P2 phototube, the photocathode
is of the S4 class, and the sensitivity is about 40 μA/lm. The overall gain for
the nine dynode stages is 2 × 106, corresponding to an average gain of about
5 per stage. Conventional dynode materials for such a photomultiplier include
Cs3Sb, Mg–Ag, and Be–Cu. It is screened from the secondary-emission dynode
electrodes by a partition and an aperture that provides convenient separation dur-
ing activation. Other electron multiplier structures such as Venetian screen, box-
type, cross-field, and diode arrangements are used in different photomultiplier
applications.

Since the gain per stage is only about 5 for a conventional secondary emitter,
the statistical fluctuation in the number of secondary electrons emitted by the first
dynode usually limits the tube performance. In order to provide discrimination
between signals representing the emission of one or two photoelectrons, it is nec-
essary that the first dynode provide a gain of 15–20. Even higher gains are needed
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Figure 12.33. (a) Spectral responses of cathode radiant sensitivity and quantum efficiency
for several new compact-type photomultiplier tubes (PMTs) by Hammamatsu, and (b)
internal current gain versus applied voltage for two of these PMTs.

to distinguish between n and (n + 1) photoelectrons, where n is greater than 1. For
a cesium-coated GaP photocathode with the first dynode operating at 600 V, gain
of 20–40 can be achieved. New compact-type nine-stage photomultiplier tubes
(PMTs) developed by Hammamatsu using cathode materials such as Sb–Cs, BA
(bialkali), LBA (low dark current bialkali), and MA (multialkali) can cover the
wavelengths from 185 nm to around 900 nm and provide a cathode sensitivity up
to 100 mA/W and internal current gain of up to 107 at Va = 1000 V. Figure 12.33a
shows the typical spectral responses for the BA-, LBA-, and Sb–Cs-coated PMTs
by Hammamatsu, which have detection wavelengths from the UV (185 nm) to the
near-IR (700–900 nm) spectral range. The dashed line is for the quantum efficiency
and the solid line denotes the radiant sensitivity of the PMT. Figure 12.33b shows
the current gain versus applied voltage for the Sb–Cs-and MA-coated PMTs by
Hammamatsu.

PMTs provide high sensitivity and fast response speed for wavelengths from UV
to near-IR spectral ranges (λ = 185 to 830 nm). The PMTs are primarily used in
detection and measurements of very-low-light-level scintillations. Some practical
applications of the PMTs include emission spectroscopy (e.g., ICP, direct reader),
environmental monitoring (NOx , SiO2, etc.), fluorescence immunoassay, hygiene
monitor (bioluminescence), X-ray phototimer, fluorometer, and laser-scanning mi-
croscope. New photocathode materials using III-V compound semiconductors such
as InAsx P1−x and Inx Ga1−x As can extend the useful detection wavelengths to the
1–2 μm IR spectral range.
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12.3.10. Infrared Photodetectors

Because of the increasing use of IR technologies for various IR image sensor sys-
tems and optical communications, a wide variety of IR photodetectors covering
the wavelengths in the 1–2 μm, 3–5 μm, 8–14 μm, and even longer wavelengths
have been extensively investigated and developed in the last two decades using
different device structures and material systems. For example, InGaAs/InP and In-
GaAsP/InP p-i-n photodiodes are used mainly for detection in the 1.3 and 1.55 μm
range, PtSi/Si Schottky barrier photodetectors have been widely used in the 3–5 μm
image sensor arrays, and the extrinsic photoconductors using impurity (Cu, In, Hg)
doped Ge and (In, Ga) doped Si photoconductors have been used for detection in
the 8–40 μm wavelength range. Hgx Cd1−x Te (MCT) is the most widely used IR
material for the 3–5 μm and 8–12 μm IR image sensor applications. Hgx Cd1−x Te
(MCT) photoconductive and photovoltaic detectors have also been developed for
the 3–5 μm MWIR and 8–14 μm LWIR focal plane arrays (FPAs) for IR camera
applications. In order to reduce the dark current in the LWIR detectors, these IR
detectors are operated at cryogenic temperatures (i.e., at 77 K or 40 K depending
on the detection wavelength). In spite of tremendous efforts in the development
of various IR detectors, further improvement in the quality of CdHgTe materials
and the development of new IR detectors are needed for LWIR FPAs applications.
Although the CdHgTe material system can cover a wide range of wavelengths
(1–30 μm), the quality of this material needs further improvement; in particular,
uniformity of Hg and Cd alloy composition across the entire wafer remains a se-
rious problem. Figure 12.34 shows the energy bandgap versus cutoff wavelength
for various impurity-doped IR semiconductor materials.

The development of new and improved long-wavelength (8–12 μm) IR pho-
todetectors for FPA technology is an important step toward meeting the challenges
and needs of future IR applications including remote sensing, forward-looking in-
frared (FLIR) image sensors, highly sensitive staring IR sensor systems, medical
imaging, atmospheric optical communication, environmental studies, and space
exploration. Extending detection to longer wavelengths offers several advantages.
These include the following: (i) IR radiation in the 8–12 μm atmospheric spectral
window can travel a longer distance through the atmosphere with small attenuation,
(ii) enabling the use of an existing powerful CO2 laser (λ ≈ 10.6 μm) and maturing
technology, (iii) reducing the interference radiation reflected from the background
and eliminating susceptibility of false signals triggered by sunlight and other back-
ground radiations, and (iv) enabling detection and tracking of cooler targets, such
as satellites.

12.3.11. Quantum-Well Infrared Photodetectors

Recent advances in III-V semiconductor epitaxial layer growth using MBE and
MOCVD techniques have made it possible to grow a wide variety of novel semicon-
ductor heterostructures. Significant progress has been made in quantum wells and
superlattice optoelectronic devices using these growth techniques. The quantum
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Figure 12.34. Energy band gap versus cutoff wavelength for some important impurity-
doped semiconductor materials (extrinsic photoconductors).

well is formed using an ultrathin layer of narrow-bandgap semiconductor (e.g.,
GaAs) sandwiched between two thin wider-band gap semiconductor (e.g., Al-
GaAs) barrier layers. The thickness of the quantum well is typically smaller than
the electron mean free path such that the motion of the carriers perpendicular to
the layers becomes quantized so that localized two-dimensional (2-D) subbands
of quantized states are formed inside the quantum well.

West and Eglash20 first reported the observation of intersubband absorption
in GaAs/AlGaAs quantum well in 1985. Levine et al.21 demonstrated the first
GaAs/AlGaAs quantum-well infrared photodetector (QWIP) in 1987. Since then,
QWIPs based on the bound-to-bound (B-B) state, bound-to-continuum (B-C)
state,12 and bound-to-miniband (B-M)22 state transitions have been widely inves-
tigated for 3–5 μm MWIR and 8–14 μm LWIR FPA applications.23 Additionally,
there is considerable interest in the development of multistack QWIP structures
for multicolor FPA applications in the MWIR and LWIR atmospheric spectral
windows.24

One major difference between the QWIP and other IR detectors is that QWIPs
use intersubband transitions either in the conduction band (n-type) or in the valence
band (p-type) to detect IR radiation. The existence of a large-dipole matrix ele-
ment between the subbands of the quantum well makes such a structure extremely



444 12. Solar Cells and Photodetectors

attractive for LWIR detection and modulation, especially in the 8–12 μm atmo-
spheric spectral window. The basic intersubband transition schemes for n-type
QWIPs include (a) B-B state, (b) B-C state, (c) B-M state, and (d) bound-to-
quasibound (B-QB) state transitions. By using different well widths and barrier
heights, the detection wavelengths of QWIPs can be varied from 3 to 20 μm and
beyond. Depending on where the upper excited states are located and the barrier
layer structure, the intersubband transitions in a QWIP can be based on the B-
B, B-M, B-QB, and B-C state transitions. Among the various types of QWIPs
reported, GaAs/AlGaAs and InGaAs/AlGaAs QWIP structures using B-C or B-
M state transitions are the most widely used material systems and structures for
the fabrication of large-format FPAs for LWIR and MWIR imaging applications.
Large-format (640 × 480), highly uniform FPAs using GaAs/AlGaAs QWIPs have
been developed for 8–12 μm IR imaging camera applications. Multicolor QWIPs
using a multistack of InGaAs/AlGaAs (for MWIR) and GaAs/AlGaAs (for LWIR)
QWIPs have been developed recently. The multistack QWIP structures are widely
used to obtain multicolor detection in the MWIR and LWIR atmospheric spectral
windows.

Responsivity and detectivity are two key figures of merit commonly used in
comparing the performance of QWIPs. Since the performance of QWIPs depends
on the dark current and responsivity, reducing dark current and enhancing respon-
sivity are key to improving the detectivity of a QWIP. Although reducing dark
current and increasing responsivity can be achieved by optimizing the quantum-
well structure and material parameters, considerable effort has been directed to-
ward the design of efficient light-coupling schemes in n-type QWIPs for FPA
applications.

The spectral responsivity of a QWIP is defined by

Rp = q

hν
ηgpe, (12.74)

where hν is the photon energy, η is the absorption quantum efficiency, pe is the
escape probability of a hot electron from the quantum-well region, and g is the
photoconductive (PC) gain. Note that the value of pe depends on how easy an
electron can escape out of the quantum-well region after absorbing photons; its
value usually increases with increasing bias voltage.

In a B-C state transition QWIP, pe is large even at very small bias voltage
because the excited state is above the conduction band edge of the barrier layer. In
general, the B-C QWIP has a relatively large PC gain because of the easy electron
transport in the continuum states above the barrier. The responsivity of a B-C
QWIP is usually larger than that of the B-QB and B-M QWIPs under the same
bias conditions, while the B-M QWIP has the smaller responsivity and lower dark
current compared to B-QB and B-C QWIPs owing to the lower electron mobility
in the miniband.

For a given QWIP structure, reducing the number of quantum wells can increase
the responsivity and PC gain. However, reducing the number of quantum wells
will also reduce the absorption quantum efficiency if the light paths and doping
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density are fixed. If the absorption is kept constant using effective optical coupling
schemes, then the responsivity will increase with decreasing number of quantum
wells. Certain light-coupling schemes give effective coupling with a thinner active
region. For example, the enhancement QWIP (E-QWIP) reported by Dodd and
Claiborn25 employed a diffractive resonant optical cavity in the place of optical
gratings. The cavity requires a relatively thin active layer to resonate at the de-
sired wavelength. This grating structure gives effective light coupling with fewer
quantum wells.

The spectral response of a QWIP can be measured using a monochrometer and
a blackbody IR source, or an FTIR system. The absolute value of the responsivity
can be determined using a calibrated blackbody source. For a single n-type QWIP
device, the IR radiation is usually incident through a 45◦ facet on the edge of
the substrate. Either front- or backside illumination can be used depending on the
contact metal geometry.

The detectivity D∗ is an important figure of merit for IR detectors. Values of
D∗ can be determined from the measured responsivity and noise of the detector.
In general, D∗ is a function of operating temperature, detector bias, and cutoff
wavelength. Therefore, a typical detector characterization should include mea-
surements of both the responsivity and noise as a function of temperature, bias,
and wavelength. The noise current consists of two components: one is due to the
device noise current, and the other is due to the background photon noise current. In
general, there are two main noise sources in a QWIP device: one is the generation–
recombination noise (in PC mode operation) and the other is the Johnson noise (in
PV mode operation). Since the majority of QWIPs are operating under PC mode
detection, the QWIP device noise is due primarily to the dark-current-related shot
noise at high temperatures (T > 60 K).

The peak detectivity of a QWIP can be calculated using

D∗
p = Ri,p

√
Ad� f

in
, (12.75)

where Ri,p is the peak current responsivity, � f is the noise spectral bandwidth, Ad

is the device area, and in is the overall root-mean-square noise current of a QWIP.
The background limited performance (BLIP) peak detectivity can be determined

using

D∗
BLIP = 1

2

√
η

hν IBG
, (12.76)

where η is the absorption quantum efficiency and IBG is the intensity of the incident
background photons, which is given by

IBG = sin2

(



2

)
cos(θ )

∫ λ2

λ1

W (λ) dλ, (12.77)

where 
 is the solid angle, θ is the angle between the incident IR radiation and
the normal to the quantum-well plane, and W (λ) is the blackbody spectral density
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given by

W (λ) = 2πc2

λ5

1

(ehc/λkBTBG − 1)
, (12.78)

where c is the speed of light, λ is the wavelength, h is Planck’s constant, kB is
Boltzmann’s constant, and TBG is the background temperature.

The D∗ value also depends on the detector structure. For example, a B-M QWIP
could have a higher D∗ at high temperatures when the miniband width is very
narrow and resonant with the excited state. The miniband structure could lower
the dark current more effectively than the photocurrent in this situation, and hence
give rise to a higher signal-to-noise ratio. At low operating temperatures (T < 50
K at 10 μm cutoff), the dark current is low, and D∗ varies linearly with the spectral
responsivity. The B-C QWIP usually has a higher value of D∗ at lower temperatures
and smaller bias voltages owing to its larger responsivity compared with other types
of QWIPs.

Figure 12.35a shows the energy band diagram of a standard GaAs/AlGaAs
QWIP, which uses the B-C state transition to achieve charge transport and IR
detection. A typical device structure for a standard GaAs/AlGaAs QWIP consists
of 50 periods of GaAs (width of 3–5 nm) quantum wells doped to 1 × 1018 cm−3

and an undoped Al0.3Ge0.7As (thickness of 40–50 nm) barrier layer; the heavily
doped (2 × 1018 cm−3) GaAs buffer layer and GaAs cap layer are deposited on the
bottom and top of the active quantum-well layers for ohmic contacts. As shown
in Figure 12.35a, in the B-C QWIP structure only one bound ground state (E1)
exists in the quantum well that is filled with electrons, and the next empty band is
the continuum band states located slightly above the conduction band edge of the
AlGaAs barrier layer. The conduction band offset (equal to the potential barrier
height) for the GaAs/AlGaAs quantum well is about 190 meV, and the energy
separation between the bound state, E1, and the continuum states, Ec, is about 120
meV, which corresponds to a peak detection wavelength of around 10 μm (λp =
1.24 eV/0.120 eV ≈ 10 μm). A standard QWIP device operating in PC detection
mode uses the B-C states’ intersubband transitions. Since the dark current in this
QWIP is controlled by the thermionic emission across the barrier from the ground
states in the quantum well to the continuum states, the detector is required to cool
down to 77 K or lower in order to reduce the dark current. Excellent responsivity
and detectivity have been obtained in GaAs/AlGaAs QWIPs. Detectivity greater
than 1010 (cm · Hz1/2)W has been achieved for the GaAs/AlGaAs B-C QWIP at
λp = 10 μm and T = 77 K.

Another type of QWIP aimed at reducing the dark current of the standard B-C
QWIP has been reported by Yu and Li.22 Figure 12.35b shows a B-M transition
GaAs/AlGaAs QWIP. In the B-M QWIP structure the AlGaAs bulk barrier used
in the standard GaAs/AlGaAs QWIP is replaced by a short-period (5 periods)
AlGaAs (5.8 nm)/GaAs (2.9 nm) superlattice barrier layer, and the width of the
GaAs quantum well is increased to 8.8 nm. The B-M QWIP differs from the
standard B-C QWIP in that (a) the potential barrier is increased to 300 meV, and
(b) a global miniband superimposed with the first excited state (E2) in the quantum
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Figure 12.35. Energy band diagrams for (a) a standard GaAs/AlGaAs (40/480Å) quantum-
well infrared photodetector (QWIP) using bound-to-continuum (B-C) state transition, (b)
a GaAs (88Å QW)/AlGaAs-GaAs (58/29Å superlattice) QWIP using bound-to-miniband
(B-M) transition, (c) an InGaAs (106 Å QW)/AlGaAs-GaAs (58/29 Å SL) QWIP using
step-bound-to-miniband (SBM) transition, (d) dark current versus bias voltage for QWIP
shown in (c) with temperature as a parameter, and (e) relative responsivity versus wavelength
for QWIP shown in (c), measured at VB = 6 V and T = 77 K.

well of the superlattice barrier layer is formed inside the quantum well to facilitate
intersubband IR detection. The energy separation between the ground state and
the miniband determines the spectral bandwidth of the IR detection (typically
Em − E1 = 90 to 120 meV). The current conduction mechanism in this miniband
transport is based on the thermionic-assisted resonant tunneling from the ground
state to the global miniband states as shown in Figure 12.35b. As a result, the dark
current in such a B-M QWIP is expected to be lower than a standard B-C QWIP.
Excellent detectivity and responsivity have been obtained for the GaAs/AlGaAs
B-M QWIP. To further reduce the dark current in a B-M QWIP, an enlarged
InGaAs (with less than 10% of In) quantum well (width of 10.6 nm) is introduced
to replace the GaAs quantum well, and the resulting structure is shown in Figure
12.35c. This modified B-M QWIP is also referred to as the step-bound-to-miniband
(SB-M) QWIP. The dark current in an SB-M QWIP is generally lower than a
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B-M QWIP and a standard B-C QWIP. Figure 12.35d shows the dark current
versus bias voltage for an SB-M QWIP with temperature as a parameter. The
results show that thermionic-assisted tunneling current dominates at 77 K, while
resonant tunneling current prevails for temperatures below 50 K. A typical spectral
response curve for an SB-M QWIP is displayed in Figure 12.35e, which shows
a peak response around 10 μm. It is interesting to note that the spectral response
peak wavelength for a B-M QWIP is usually voltage-tunable, as is evidenced in
Figure 12.35e.

Another advantage of QWIPs is the flexibility and ease of fabricating multi-
color IR detectors using MBE growth of multiquantum well layer structures on
GaAs substrates. Figure 12.36a shows a schematic conduction band diagram of
a two-stack, two-color QWIP. An MWIR QWIP stack consisting of 20 periods
of InGaAs/AlGaAs QWIP structure with peak wavelength at 4.3 μm was first
grown on the GaAs substrate, followed by the deposition of a thin highly doped
ohmic contacting layer, and the LWIR QWIP stack consisting of 20 periods of
GaAs/AlGaAs QWIP structure with peak wavelength at 9.5 μm was then grown
on top of this intermediate contact layer, and finally, an n+ GaAs cap layer was
grown on top of the LWIR QWIP stack. Figure 12.36b shows the dark I–V char-
acteristics for the MWIR and LWIR QWIP stacks, and Figure 12.36c shows the
spectral responsivity of the MWIR and LWIR QWIP stacks, respectively. Excellent
performance has been achieved for these two-stack, two-color MWIR and LWIR
QWIPs.26

Although detectivity and responsivity for the QWIPs discussed above are gen-
erally lower than for the HgCdTe IR detectors, the GaAs/AlGaAs QWIP device
has the advantages of low noise, high uniformity, and extremely high number
of operable pixels (>99%), which results in excellent imaging performance with
a noise-equivalent temperature difference (NE�T ) of 10 mK. In fact, low-noise
large-format (640 × 480) GaAs/AlGaAs QWIP FPA for staring IR (10 μm) sensor
systems has been developed for IR imaging camera applications in recent years.
QWIP devices can be fabricated using the mature GaAs growth and processing
technology, which could produce highly uniform and 99.99% operable pixels for
IR FPA applications. In addition, QWIP technology also offers the benefits of
wavelength selectivity, multiple-band sensitivity, compatibility for hybridization
with silicon and GaAs IC read-out electronics, and the possibility of full optical and
electronic monolithic integration. QWIP FPAs are comparable in complexity to ex-
isting GaAs devices and are expected to be producible and low-cost. One drawback
of QWIP technology is related to the fact that owing to the quantum-mechanical
selection rule, n-type QWIP requires metal or dielectric grating structures to cou-
ple the normal-incidence IR radiation into the quantum wells for normal-incident
absorption. The grating structures will make the fabrication of QWIP FPAs more
complicated than the conventional p-n junction or Schottky barrier photodetectors.
Figure 12.37 shows the spectral detectivity (D∗) versus wavelength for both n- and
p-type QWIPs published in the literature.27 The best fit to the experimental data
for the spectral detectivities of n-and p-type QWIPs with a 45◦ polished incident
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Figure 12.37. Peak detectivity (D∗) versus cutoff energy Ec (= 1.24/λc) for n-type QWIPs
(solid circles) and p-type QWIPs (open circles). Straight lines are the best fits to the measured
data.27

facet are given by

D∗
n = 1.1 × 106 exp(Ec/2kBT ) cm · Hz1/2/W for n-type QWIPs, (12.79)

D∗
p = 2.0 × 105 exp(Ec/2kBT ) cm · Hz1/2/W for p-type QWIPs,

where Ec = 1.24/λc is the cutoff energy in eV, and λc is the cutoff wavelength
in μm. Values of D∗ for n-type QWIPs are found to be one to two orders of
magnitude higher than those of p-type QWIPs because of the higher electron
mobilities and the use of grating structures to enhance responsivity and absorption
quantum efficiency in n-type QWIPs. As a result, all QWIP FPAs used in IR
cameras are made from n-type QWIPs. Table 12.3 lists some of the photodetectors
for UV, visible, near-IR, MWIR, and LWIR applications.

12.3.12. Quantum-Dot Infrared Photodetectors

Quantum-dot infrared photodetectors (QDIPs) have been widely studied in
the past decade when the self-assembled growth technique was applied to
form quantum dots in III-V semiconductors. By controlling the barrier char-
acteristics, dot size, and doping level in semiconductor quantum-dot systems,
QDIPs operating in the 3.5–14 μm spectral range have been reported in single-
stack QDIPs.28,29. The QDIPs have emerged as promising devices for 3–5-μm
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Figure 12.38. (a) The AFM photo of In0.6Ga0.4As QDs grown on the GaAs substrates, and
(b) cross-sectional TEM micrographs of an InGaAs/GaAs QDIP.

MWIR and 8–12-μm LWIR detection because of their potential advantages over
conventional QWIPs. The advantages of QDIPs include (1) intrinsic sensitivity
to normal incident IR light, (2) longer carrier lifetime due to greatly suppressed
electron–phonon scattering, and (3) potential for very low dark current. These
unique properties arise from 3-D carrier confinement of quantum dots (QDs). Al-
though several earlier studies showed that the performance of QDIPs was still
inferior to that of QWIPs, recent studies have shown that InAs/GaAs QDIPs could
achieve higher operating temperature (> 100 K) by using a large-band-gap mate-
rial such as AlGaAs or InGaP as the current-blocking barrier to reduce the device
dark current.28,29 Figure 12.38 shows a highly sensitive In0.6Ga0.4As/GaAs QDIP
operating in the 6.7–11.5 μm spectral range, and photoresponse up to 260 K is
demonstrated. The BLIP detectivity at Vb = −2 V, T = 77 K, and λp = 7.6 μm
was found to be 1.1 × 1010 (cm · Hz1/2)/W, with a corresponding responsivity of
0.25 A/W.28

The QDIP sample with self-assembled In0.6Ga0.4As QDs was grown on a semi-
insulating GaAs substrate using the Stranski–Krastanov (S-K) growth mode by
the solid-source MBE technique. Before the growth of QDIP structure, a 0.5-μm
GaAs buffer layer was grown on the GaAs substrate. The active region consists of
10 periods of In0.6Ga0.4As/GaAs QDs, and a 60-nm GaAs spacer is added to each
QD cell. The QD active layers were sandwiched by a 500-nm n-type GaAs top
contact layer and a 1-μm bottom contact layer. These contact layers were doped
with Si to 2.0 × 1018cm−3. The nominal thickness for the In0.6Ga0.4As QDs is 5
ML, and the QDs are Si-doped to 8.0 × 1017cm−3. The In0.6Ga0.4As QD growth
rate is 0.5 ML/s; the GaAs spacer is controlled at a growth rate of 1 μm/h. The
growth temperature is 580◦C for the GaAs buffer and contact layers, and 520◦C
for the In0.6Ga0.4As QDs and GaAs spacers. Figure 12.38a shows the atomic force
microscopy (AFM) of In0.6Ga0.4As QDs grown on GaAs substrates. The AFM
images reveal that the average QD density is 1.2 × 1010 cm−2, and the average
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Figure 12.39. (a) Responsivity versus wavelength for the InGaAs/GaAs QDIP for 160 < T
K < 260 K, and (b) dark current versus bias voltage for 40 K < T < 300 K.28

size of the QDs is 26 nm in diameter and 6 nm in height. Figure 12.38b shows the
cross-sectional transmission electron microscopy (TEM) of this QDIP structure.

Figure 12.39a shows the spectral responsivities for 160 K < T < 260 K. As
shown in this figure the maximum responsivity obtained at 160 K and Vb = −0.8
V was 0.11A/W at λp = 8.1 μm. The peak responsivity was 6.1 mA/W at T = 260
K, Vb = −0.55 V, and λp = 8.4 μm. Values of FWHM (�λ/λp) vary from 14.3
to 14.8%. The narrow absorption bandwidth of this QDIP reveals that the optical
transition is due to the B-B state intersubband transition (i.e., the absorption is due
to the QD first and second bound states to wetting-layer bound state transitions).
Since the size and shape of the dots that affect the electronic levels cannot be
accurately determined, and the strain tensor of the dots is complicated, it is difficult
to obtain a true band structure for this QDIP. Based on the calculated values for a
typical InGaAs/GaAs QDs (i.e., 15–28 nm in base width, 3–7 nm in QD height), the
energy difference from the ground bound state of QDs to the wetting-layer bound
state was estimated in the 100–200 meV range, and the energy separation between
the electron states in QDs was in the 30–80 meV range. The photon absorption
peaks (127–163 meV) and the energy separation of the electron states in QDs
(≈ 36 meV) are in reasonably good agreement with the estimation. Another key
factor for high-temperature operation of this QDIP is attributed to the intrinsic
property of the 0-D device: the large electron relaxation time from the excited
states to the ground state of the QDs, which makes photoexcited electrons difficult
to recapture by QDs, and hence can increase the signal-to-noise ratio and allow for
higher operating temperature. Figure 12.39b shows the dark I–V curves along with
the 300 K window current with a 180◦ FOV measured at different temperatures. In
the top figure, the dark current was measured at T = 40, 50, 60, 77, 90, 120 K with



454 12. Solar Cells and Photodetectors

bias voltages varying from −4.0 to +4.0 V. The BLIP conditions for this QDIP
are obtained for −2.2 V ≤ Vb ≤ 0 V at 90 K, and for 0 V ≤ Vb ≤ 1.64 V at 77 K.
The bottom figure shows the dark current density measured at T = 140, 180, 220,
260, and 300 K for 1.5 V≤ Vb ≤ 1.5 V. As shown in this figure, at T = 260 K and
Vb = −0.5 V, the dark current density is 3.75 × 10−3 A/cm2, which is comparable
to the dark current density of an LWIR InGaAs/GaAs QWIP operating at 90 K
(JD = 10−3A/cm2, Vb = −1 V).

Problems

12.1. Using (12.59) and (12.60) calculate the quantum yield versus photon
wavelength for a Si p-i-n photodiode for x0 = 0.4, 0.8, and 1.2 μm, and
W = 0.01 cm. Assume R = 0.3, Ln = 6 × 10−2 cm, and Lp = 4 × 10−3

cm.
12.2. (a) Describe some key factors that need to be considered in the design of

a photodetector.
(b) Which of the following detectors would you choose (and explain why)

for detection in the specific wavelength shown below: (i) a Si p-i-n
photodiode, (ii) a Au/n-type Si Schottky barrier photodiode, and (iii)
an n-type GaAs/AlGaAs QWIP.
(i) For 10.6 μm detection.

(ii) Maximum sensitivity needed for detection of 1.06 μm wavelength.
(iii) Low-noise, high-speed detection in the visible spectral range.

12.3. Design a silicon p-n junction solar cell using your own device and mate-
rial parameters that could produce a conversion efficiency of 19% under
AM1.5G conditions (i.e., Pin = 100 mW/cm2). What are the short-circuit
current density, open-circuit voltage, and fill factor (FF) for such a solar
cell. What is the key difference in the performance characteristics between
a p-n and an n-p junction solar cell?

12.4. The conversion efficiency of a Schottky barrier solar cell can be expressed
by

ηc = V 2
mp I0(q/kBT ) exp(qVmp/kBT )(Pin Aj)

−1, (1)

where Vmp is the voltage at maximum power output, Pin = 100 mW/cm2

for AM1.5G sunlight, Aj is the cell area,

I0 = Aj A
∗∗T 2 exp(−qφBn/kBT ), (2)

where I0 is the reverse saturation current; Vmp is related to I0 and Iph via
the following relation:(

1 + qVmp

kBT

)
exp(qVmp/kBT ) =

(
1 + Iph

I0

)
. (3)

Equation (3) can be solved iteratively for Vmp. By substituting (2) into
(1), the conversion efficiency can be calculated as a function of φBn.
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Calculate the conversion efficiency ηc for an Al-n-Si Schottky barrier so-
lar cell. Given: φBn = 0.71 eV, A∗∗ = 110A/(cm2 · K2), Aj = 4 cm2, and
Iph = 140 mA. Repeat for a Au-n-type Si Schottky barrier solar cell with
φBn = 0.81 eV.

12.5. Draw the energy band diagram for an AlGaAs/GaAs p-n junction solar cell
shown in Figure 12.7. If x in the Alx Ga1−x As window layer (top layer)
varies from x = 0, 0.3, 0.5, 0.7, to 0.9, plot the relative spectral responses
for these solar cells. Given: Eg = 1.43 eV for x = 0 and Eg = 2.1 eV for
x = 0.9; assume that a linear relation exists between Eg and x .

12.6. Consider an InGaP/GaAs/Ge triple-junction solar cell. If the short-circuit
current densities produced in each subcell are given by Jsc1 = 16.3 mA/cm2

for the InGaP top cell, Jsc2 = 17.5 mA/cm2 for the GaAs middle cell, and
Jsc3 = 16.3 mA/cm2 for the Ge bottom cell, the open-circuit voltage (Voc)
for this 3-junction cell is equal to 2.56 V and the FF is 84.6%. (a) Calculate
the conversion efficiency of this cell under AM0 conditions (Pin = 135.3
mW/cm2 at 28◦C), (b) draw the relative spectral response curves for the
top, middle, and bottom cells, and (c) plot the photo-I–V curve using the
data given above for this 3-junction cell.

12.7. Using the equations for dark currents in an ideal Schottky barrier diode
and a p-n junction diode given in the text calculate the dark current for an
Al-n-Si Schottky barrier solar cell and a Si p-n junction solar cell. Given:
φBn = 0.71 V, ND = 1016 cm−3, NA = 5 × 1018 cm−3, Ln = 100 μm,
Lp = 20 μm, ni = 1.4 × 1010 cm−3, Aj = 4 cm2, μn = 1000 cm2(V· s),
and μp = 100 cm2/(V· s). If the photocurrents generated in both cells are
assumed the same (Iph = 140 mA), what are the open-circuit voltages for
both cells?

12.8. (a) Show that the short-circuit current Jp(λ) generated in the n-base region
of a metal-n-type semiconductor Schottky barrier solar cell is given by
(12.34), assuming that d 
 Lp and sn = ∞ at x = d.

(b) Using (12.32) to (12.36) calculate the quantum efficiency (= Iph/qφ0)
versus wavelength for a Au-n-type Si Schottky barrier solar cell for
different depletion layer thicknesses: W = 0.01, 0.05, and 0.1 cm, as-
suming Lp = 0.05 cm and R = 0.3.

12.9. Design a Au-GaAs Schottky barrier photodiode for detecting a 20-GHz
modulation optical signal at 0.84 μm (select your own design parameters:
diode area, dopant density, AR coating, etc.). If the bandwidth of the detec-
tor is increased to 100 GHz for the Au-GaAs Schottky diode, what device
parameters need to be modified in this photodiode in order to meet this
specification?

12.10. An In0.53Ga0.47 As p-i-n photodiode is used to detect 1.3-μm IR radiation.
If the dopant density is 1 × 1016 cm−3 in the n region and 2 × 1018 cm−3

in the p+ region, the diode area is 50 μm2, and the n-layer is 1.5 μm thick,
calculate Rs, Cj, and the RC time constant of this photodiode. What is the
maximum cutoff frequency for this photodetector?



456 12. Solar Cells and Photodetectors

12.11. Draw the schematic energy band diagrams for n-type GaAs/AlGaAs
QWIPs using (a) bound-to-bound (B-B) state, (b) bound-to-miniband (B-
M) state, (c) bound-to-continuum (B-C) state, and (d) bound-to-quasibound
(B-QB) state intersubband transitions. Compare the differences in the spec-
tral response bandwidth, the dark current, and the responsivity of QWIPs
based on these four different transition schemes.
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13
Light-Emitting Devices

13.1. Introduction

Photonic devices play an important role in a wide variety of applications in areas
of optical communications, optical computing and interconnects, data transmis-
sion and signal processing, optical storage, sensors and optical imaging, solid-state
lamps, and displays. Recent advances in III-V compound semiconductor growth
and processing technologies have enabled these applications to become a real-
ity. As a result, various photonic devices such as light-emitting diodes (LEDs),
laser diodes (LDs), modulators, and photodetectors using III-V semiconductors
have been developed for a wide variety of commercial applications. The LEDs
are p-n junction diodes made from III-V and II-VI compound semiconductors
that emit incoherent light under forward-bias conditions, while the LDs are p-n
junction diodes with higher doping densities that emit coherent light for use in
space and fiber-optic communications and data transmission, laser printers, CDs,
and DVDs. In addition to high performance, low cost, and reliability, another
factor in favor of LEDs is their compatibility with modern electronic devices as
well as the increasingly important applications in visual displays. Low power, low
operating voltage, small size, fast switching speed, and long life are some attrac-
tive features of LEDs. It is noted that the manufacturing technology for LEDs
is compatible with silicon-integrated circuit technology. Depending on the com-
plexity of visual tasks, LEDs are being used as solid-state lamps, symbolic and
picture displays, data transmission, and in optical communications. LEDs coupled
with silicon photodiodes can be used as optically isolated switches and sensing
elements. With the technology breakthrough and cost reduction, the flat panel pic-
ture display using LEDs will soon become a reality for commercial applications.
In this chapter the basic device physics and structures, operation principles, and
general characteristics of various LEDs and LDs fabricated from III-V and II-VI
compound semiconductors are discussed.

Section 13.2 describes the basic device physics and structures, the injection
and recombination mechanisms, and the electrical and optical characteristics of
an LED. An LED can emit incoherent light from the minority carrier injection
in a forward-biased p-n junction diode followed by radiative recombination in
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the p and n regions of the device. The basic mechanism of an LED involves the
spontaneous emission of photons via the radiative recombination of electron–hole
pairs, which converts the electrical energy into optical radiation. Random emission
of incoherent optical radiation from a standard LED leads to a broad emission
spectral line width of 10 nm or greater (on the order of kBT ). If a resonant cavity
(RC) is added to the LED structure, then a very narrow spectral line width similar to
that of an LD could be achieved in a RCLED. Section 13.3 presents different types
of LEDs fabricated from III-V and II-VI compound semiconductor materials, such
as GaN, InGaN, GaP, GaAsP, AlGaInP, AlGaAs, GaAs, InGaAsP, InP, SiC, and
ZnSe. The emission spectra for LEDs fabricated from these materials cover the
wavelengths from UV (ultraviolet), visible (violet, blue, green, yellow, amber, and
red), to the near IR (infrared) spectral range. Ultrabright white, blue, green, yellow,
orange, and red color LEDs have been developed in recent years using GaN- and
AlGaInP-based material systems for a wide variety of commercial applications
such as commercial lighting and display, traffic signals, automotive lighting and
signals, instrument panel displays, and solid-state lamps for home and office uses.

Section 13.4 describes the basic device physics and structures, electrical and
optical characteristics, and the performance parameters for semiconductor LDs.
The conditions for population inversion and oscillation, the threshold current den-
sity, and the slope efficiency for an LD are described in this section. Section
13.5 presents recent developments of various edge-emitting single- and double-
heterostructure (DH) LDs, vertical cavity surface-emitting laser (VCSEL) diodes,
tunable LDs, and quantum-well (QW) lasers fabricated from III-V semiconduc-
tor materials. The commercial applications for these LDs such as solid-state light
source, optical storage device (DVD, CD) and laser printers, optical networking,
data transmission, and optical fiber communications are also discussed in this
section.

13.2. Device Physics, Structures, and Characteristics
of LEDs

In this section the basic device physics and structures, operating principles, and
electrical and optical characteristics of an LED are presented. An LED is a semi-
conductor p-n junction light-emitting device, which under proper forward-biased
conditions can emit spontaneous optical radiation in the wavelengths from the UV,
visible, to IR regions of the electromagnetic spectrum. Depending on the semicon-
ductor material used in the light-emitting layers (active layers), the wavelength of
the emitted light can vary from the UV to the IR spectral range. Most commer-
cially available LEDs are made from III-V compound semiconductors, while some
LEDs are fabricated from ZnSe and SiC materials. An LED may be considered an
electroluminescent device. The emission of light in such a device is accomplished
by applying a sufficiently large forward-bias voltage across the p-n junction, fol-
lowed by the minority carrier injection and radiative recombination taking place in
the quasineutral n and p regions of the diode. Table 13.1 lists the most widely used
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Table 13.1. Energy band gap, emitting wavelength, and color for some LED
materials.

Material Energy band gap (eV) Wavelength (μm) Color of LEDs

GaN 3.3 0.375 UV, blue
InGaN 0.67–3.3 0.375–1.85 Blue, green, red
AlGaN 3.3–6.2 0.2–0.375 UV, blue
SiC 2.86 0.435 Blue
ZnSe 2.70 0.46 Blue
GaP 1.98 0.63 Green, red
AlGaInP 1.35–1.98 0.63–0.92 Yellow, orange, amber, red
AlGaAs 1.43–2.19 0.57–0.83 Orange, red
GaAsP 1.41–1.95 0.63–0.88 Yellow, orange, red
GaAs 1.43 0.84 IR emitter
InGaAs 0.34–1.43 1.3 IR

LED material systems. These include a majority of the III-V compound semicon-
ductors as well as some II-VI and IV-IV compound semiconductors such as ZnSe
and SiC.

13.2.1. Injection Mechanisms

The basic requirement for radiative recombination to take place in a semiconductor
is the injection of minority carriers into the bulk semiconductor. To explain the
injection mechanism in an LED, Figure 13.1a shows the schematic drawing and

Figure 13.1. (a) Schematic drawing of a GaAs IR emitter with an AIGaAs window layer,
(b) the energy band diagram in equilibrium, and (c) the energy band diagram under forward
bias condition showing light emission from both p and n regions.
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Figure 13.2. Possible electronic
transitions that lead to radiative
recombination in a semiconduc-
tor. (a) Conduction band to ac-
ceptor states, (b) donor states to
valence band, (c) donor to accep-
tor states (pair emission), (d) con-
duction band to valence band (in-
trinsic emission), (e) hot carrier
or avalanche emission, and (f) in-
traband transition. After Ivey,1 by
permission, c© IEEE–1981.

Figure 13.1b the energy band diagram of an AlGaAs/GaAs p-n junction IR emitter
under thermal equilibrium. The wide-band-gap p+-Al0.3Ga0.7As window layer
is employed to reduce the surface recombination velocity and to increase the
luminescent efficiency of the GaAs IR emitter. Figure 13.1c shows the energy
band diagram of the same LED under forward-bias conditions. It is seen that
under forward-bias conditions, electrons are injected from the n region into the p
region while holes are injected from the p into the n region of the junction. For a
direct band gap material such as GaAs, if the band-to-band radiative recombination
is dominated on both sides of the junction, then the emission of optical radiation
can be readily achieved.

13.2.2. Electronic Transitions

Figure 13.2 shows the possible electronic transitions in a semiconductor due to
external excitations. These transitions may lead to either radiative or nonradiative
recombination processes, which include (a) conduction band to acceptor states,
(b) donor states to valence band, (c) donor to acceptor states (pair emission), (d)
conduction band to valence band (intrinsic emission), (e) hot carrier or avalanche
emission, and (f) intraband transition. For an efficient luminescent material, the
radiative transition usually dominates the nonradiative process. In a direct-band-
gap semiconductor such as GaAs, the emission of optical radiation is due mainly
to the band-to-band radiative recombination, as shown by process (d) in Figure
13.2. The emission spectrum for such a transition is given by

I (hν) = ν2(hν − Eg)1/2 exp[−(hν − Eg)/kBT ], (13.1)

which shows that the peak intensity occurs near the band gap energy of the semi-
conductor, and the theoretical full width at half maximum (FWHM) line width for
the emission spectrum of an LED is �E = 1.8 kBT, as shown in Figure 13.3.

If the electronic transition is from the band edge of one energy band to the
impurity level near the opposite band (see process (a) and (b) in Figure 13.2),
then the energy of the emitted photons will be slightly smaller than the band gap
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Figure 13.3. The emission spectrum of an LED due to band-to-band radiative recombi-
nation in a direct band gap semiconductor (see process “d” in Figure 13.2). After E. F.
Schubert.21

energy of the material. The emission spectrum for the electronic transition from
the conduction band edge to the acceptor level near the valence band is given by

I (hν) = ν2(hν − Eg + Ea)1/2{exp[(hν − E − Eg + Efn)/kBT ] + 1}−1,

(13.2)

where Ea is the ionization energy of the acceptor level. The peak intensity occurs
near (Eg − Ea), and the width of the emission spectrum is also proportional to
kBT .

The peak emission wavelength of an LED for band-to-band radiative recombi-
nation can be calculated using the formula

λp = hc

Eg
= 1.24

Eg
μm, (13.3)

where Eg is the band gap energy of the semiconductor. For a GaAs IR emit-
ter, with Eg = 1.43 eV, the peak emission wavelength is λp = 0.873 μm at
300 K.

13.2.3. Luminescent Efficiency

The luminescent efficiency of an LED is defined as the ratio of total optical ra-
diation output power associated with the radiative recombination process to the
total input power. For a given input power, the radiative recombination process
is in direct competition with the nonradiative processes such as the Auger and
Shockley–Read–Hall (SRH) recombination processes occurring inside the LED.
Therefore, in order to increase the luminescent efficiency it is important to increase
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Figure 13.4. Energy band diagram showing emission and capture processes via a single
electron trap and a luminescence center in the forbidden energy band gap of an LED. After
Ivey,1 by permission.

the radiative recombination process and in the meanwhile reduce the nonradiative
recombination processes in the LED material.

To derive the luminescent efficiency of an LED, consider the radiative and
nonradiative transition processes for a typical LED material, as shown in Fig-
ure 13.4. In the present case, it is assumed that only one electron trap level with
activation energy Et and density Nt exists below the conduction band edge. Fur-
thermore, it is assumed that there is only one luminescent center with density Nl

and activation energy El above the valence band edge. It should be noted that
the recombination of electron–hole pairs via the electron trap Et is nonradiative,
while recombination via the luminescent center El is radiative. Under steady-state
conditions, the rate equations for electrons in the conduction band and in the trap
level are given, respectively, by

dn

dt
= gE − Cntn (Nt − nt) − Brnpl + entnt = 0, (13.4)

dnt

dt
= Cntn (Nt − nt) − Cptnt p − entnt = 0, (13.5)

where gE is the external generation rate, Cnt is the electron capture rate at the Et

trap center, nt is the electron density at the Et trap level, Br is the radiative capture
rate at the El luminescent center, ent is the electron emission rate from the Et trap,
Cpt is the hole capture rate of the Et trap, pl is the hole density in the El, and Nl

is the density of El center.
Similar rate equations can also be written for holes in the valence band and in

the luminescent center. Solving (13.4) and (13.5) under steady-state conditions
yields the external generation rate as

gE = Brnpl + Cptnt p. (13.6)

The first term on the right-hand side of (13.6) is due to radiative recombination,
while the second term is attributed to the nonradiative recombination process.
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Thus, the luminescent efficiency can be obtained using (13.6), which yields

ηl =
(

Brnpl

gE

)
× 100% = 1(

1 + Cptnt p/Brnpl
) × 100%. (13.7)

For the low-injection case, one can assume that the principle of detailed balance
prevails between the electron trap level and the conduction band as well as between
the luminescent center and the valence band. Thus, under thermal equilibrium
condition, (13.4) and (13.5) become

entnt = Cntn0(Nt − nt), (13.8)

epl pl = Cpl p0(Nl − pl). (13.9)

Furthermore, it is assumed that the Fermi level is located between Et and El such
that

(Nt − nt) ≈ Nt, (13.10)

(Nl − pl) ≈ Nl. (13.11)

From Chapter 6, the relationships between ent and Cnt and between epl and Cpl are
given, respectively, by

ent = n1Cnt, (13.12)

epl = p1Cpl, (13.13)

where

n1 = n0 exp[−(Et − E f )/kBT ], (13.14)

p1 = p0 exp[−(E f − El)/kBT ]. (13.15)

Solving (13.8) through (13.15), one obtains

nt

pl
=

(
Nt

Nl

)
exp [− (Ef − El) /kBT ] . (13.16)

Substituting (13.16) for nt/pl into (13.7) yields the luminescent efficiency

ηl = 1

1 + (Cpt pNt/BrnNl) exp [− (Et − El) /kBT ]
. (13.17)

From (13.17) it is noted that the luminescent efficiency can be enhanced by increas-
ing the density of luminescent centers or by decreasing the operating temperature.
The luminescent efficiency of an LED can also be increased by reducing the energy
separation between the luminescent level El and the valence band edge Ev (i.e.,
El should be as close to the valence band edge as possible), and the density of
electron trap Nt must be kept as low as possible.

The minority carrier injection efficiency is another important parameter that gov-
erns the internal quantum efficiency of an LED. This parameter is directly related
to the radiative recombination current, which is the dominant current component
in an LED. Depending on the impurity profile and the external applied bias volt-
age, there are four current components in an LED that should be considered under
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forward-bias conditions, namely, the electron diffusion current in the p quasineutral
region, the hole diffusion current in the n quasineutral region, the recombination
current in the depletion region, and the tunneling current across the junction bar-
rier. The tunneling current is important only in a heavily doped p-n junction under
small-forward-bias conditions and can be neglected in an LED operating under a
moderate forward-bias condition. Since most of the luminescence is usually pro-
duced by the electron diffusion current inside the p quasineutral region, one can
define the current injection efficiency of an LED as

γ = In

(In + Ip + Ir)
, (13.18)

where

In =
(

q Dnn2
i

Ln NA

)
A

[
eqV/kBT − 1

]
, (13.19)

Ip =
(

q Dpn2
i

Lp ND

)
A

[
eqV/kBT − 1

]
, (13.20)

Ir =
(

qniW

2τ0

)
A eqV/2kBT . (13.21)

The hole-diffusion current component given in (13.20) is usually small compared
to the electron current component in a practical LED due to the high electron–hole
mobility ratio, and hence (13.18) can be further simplified. The overall internal
quantum efficiency of an LED is equal to the product of (13.17) and (13.18), which
is given by

ηi = ηlγ. (13.22)

13.2.4. External Quantum Efficiency

The single most important physical parameter for assessing the performance of
an LED is the external quantum efficiency ηE. Even though the internal quantum
efficiency ηi given by (13.22) can be quite high (e.g., ηi ≥ 80%), the external
quantum efficiency is usually lower than the internal quantum efficiency. This is
due to significant losses of internal absorption and reflection taking place during
light emission from the LED. A simple expression relating the external quantum
efficiency to the internal quantum efficiency is given by

ηE = ηi(
1 + ᾱV/AT̄

) = ηi(
1 + ᾱxj/T̄

) , (13.23)

where ᾱ is the average absorption coefficient and T̄ is the total light transmitted
within the critical angle θc, which is related to the transmissivity T by

T̄ = T sin2 (θc/2) . (13.24)



466 13. Light-Emitting Devices

Here θc is the critical angle defined by Snell’s law, which can be expressed by

θc = sin−1

(
n2

n1

)
. (13.25)

The transmitivity T is given by

T = 4n1n2

(n1 + n2 )2 , (13.26)

where n1 and n2 denote the refractive indices of the semiconductor and the ambi-
ent, respectively; V and A are the volume and the active area of the LED and xj

is the junction depth. For most LEDs, n1 varies between 3.3 and 3.8, and n2 = 1
for air. From (13.23), it is noted that the external quantum efficiency can be in-
creased by reducing the junction depth xj or by increasing T̄ . However, reducing
the junction depth to less than one minority carrier diffusion length will increase
the number of minority carriers diffused toward the surface. This may not be de-
sirable, since a high surface recombination loss will reduce the internal quantum
efficiency. For example, to reduce the surface recombination loss in a GaAs IR
emitter, it is a common practice to incorporate a wider-band-gap AlGaAs window
layer in the GaAs LED structure. Since the band gap energy of AlGaAs is larger
than that of GaAs, the AlGaAs window layer is transparent to light emitting from
the GaAs active region. It is worth noting that the interface state density between
the AlGaAs and GaAs layers is usually much lower than that at the GaAs sur-
face due to excellent lattice match between these two material systems. Therefore,
the junction depth of an AlGaAs/GaAs LED can be greatly reduced. Reduction
in the absorption of emitting photons in a GaAs IR emitter can be achieved by
shifting the luminescence peak beyond the absorption edge of GaAs with photon
energies hv < Eg. Higher external quantum efficiency can be obtained for this
case, since the emitted photons fall beyond the absorption edge of the semicon-
ductor where the absorption coefficient in the LED is very small. Figure 13.5a
shows the emission spectra at 295 K and 77 K, and Figure 13.5b shows the
external quantum efficiency versus temperature for a GaAs IR emitter reported
earlier.

Other loss mechanisms, which may reduce the number of emitted photons and
the external quantum efficiency, include the absorption loss within the LED, Fres-
nel loss, and critical angle loss. For example, the absorption loss for a GaAsP
LED grown on the GaAs substrate could be quite large, since GaAs is opaque
to visible light and can absorb about 85% of the photons emitted from a GaAsP
LED. However, for a GaAsP LED grown on the GaP substrate, the absorption loss
can be greatly reduced. In fact, only about 25% of the photons emitted from the
active region of the GaAsP LED are absorbed by the GaP substrate. Therefore, the
external quantum efficiency for such an LED can be greatly improved. Fresnel loss
arises from the fact that when photons emit from a medium with a higher index of
refraction (e.g., for GaAs, n1 = 3.66) to a medium with a low index of refraction
(e.g., n2 = 1 for air), a portion of the light is reflected back to the medium in-
terface (i.e., R = (n1 − n2)2/(n1 + n2)2). Finally, critical angle loss is caused by
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Figure 13.5. (a) Emission spectra at 295 K and 77 K and (b) the external quantum efficiency
versus temperature for a GaAs infrared (IR) emitter. After Carr4, by permission, c© IEEE–
1965.

total internal reflection of incident photons impinging on the surface of an LED at
an angle greater than the critical angle θc, defined by (13.25).

Recent advances in LED technologies have greatly reduced the losses de-
scribed above and as a result of technical breakthroughs the external quantum
efficiency has been increased to over 30% for the InGaN/GaN-based blue/blue-
green LEDs, and greater than 50% for the ultrabright AlGaInP/GaP red LEDs.
Figure 13.6 shows the external quantum efficiency versus forward current for
a red (λp = 650 nm) AlGaInP/GaP truncated inverted-pyramid (TIP) LED and
a conventional large-junction (LJ) AlGaInP/GaP LED in power lamp packages.
This AlGaInP/GaP TIP red LED exhibits a 1.4-fold improvement in extraction
efficiency as compared to the LJ AlGaInP/GaP LED, resulting in a peak external
quantum efficiency of 55% at IF = 100 mA.

13.2.5. Device Structures and Electrical Characteristics

The device structures commonly used in an LED include the p-n homojunction,
p-n heterojunction, and double heterojunction (DH) structures. Figure 13.7 shows
the schematic energy band diagrams and free carrier distribution in (a) a p-n ho-
mojunction LED and (b) a p-n heterojunction LED under forward-bias conditions.
In a homojunction LED the free carriers are distributed over the diffusion length,
while in a heterojunction LED the free carriers are confined to the well region
with more free carriers available for radiative recombination, and hence result in
more efficient luminescence. Heterojunctions are widely used in the fabrication
of high-performance LEDs and LDs. Figure 13.8 shows the schematic drawing of
the most commonly used DH LED, consisting of a bulk or a multiquantum well
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Figure 13.6. External quantum efficiency versus forward current for a red (λ = 650 nm)
truncated-inverted-pyramid (TIP) LED and a conventional large-junction (LJ) LED in power
lamp packages. The TIP LED has a 1.4-fold improvement in extraction efficiency as com-
pared to the LJ - LED, resulting in a peak external quantum efficiency of 55% at 100 mA.
After Krames et al., 1999.3

(MQW) active region and two confinement layers. The confinement layers are of-
ten called the cladding layers, which are formed using a wider-band-gap material
than that in the active layer.

Figure 13.9 shows the schematic layer structures of two AlGaInP LEDs
grown on (a) the GaAs absorbing substrate (AS) and (b) on the GaP transpar-
ent substrate (TS). In both structures the active layer is sandwiched between two
carrier-confining layers, which are typically composed of (Alx Ga1−x )0.5In0.5P,

Figure 13.7. Schematic energy band diagrams for (a) a p-n homojunction LED and (b)
a p-n heterojunction LED under forward-bias conditions, showing free-carrier distribution
and radiative recombination emission. In homojunctions carriers are distributed over the
diffusion length, while in heterojunctions more carriers are confined to the well region,
leading to more efficient luminescence. After E. F. Schubert.2
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Figure 13.8. A schematic drawing of a double-heterostructure (DH) LED consisting of
a bulk or multiquantum well (MQW) active region and two confinement layers. The con-
finement layers are often called the cladding layers, which are formed by wider-band-gap
materials than those in the active layer. After E. F. Schubert.2

with x > 0.7. The top contact layer, usually GaP or AlGaAs, serves as both a
current-spreading layer and a window layer to improve extraction of light directed
toward the side of the chip. The structure shown in Figure 13.9a is an AS LED.
In AS devices a distributed Bragg reflector (DBR) layer is often grown below the
lower confining layer to increase on-axis light emission, and reduces the light ab-
sorption in the GaAs substrate. The structure shown in Figure 13.9b is a TS LED,
in which the absorbing GaAs substrate is replaced by an optically transparent GaP

Figure 13.9. The schematic layer structures of two AlGaInP LEDs grown on (a) the GaAs
absorbing substrate (AS) and (b) on the GaP transparent substrate (TS). In both structures
the active layer is sandwiched between two carrier-confining layers, which are typically
composed of (Alx Ga1x )0.5In0.5P, with x > 0.7.7
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Figure 13.10. Current–voltage (I–V) characteristics of a GaAsP/GaAs LED emitting in
the red part of the visible spectrum, measured at 77 K and 300 K. The threshold voltages
are 2 V and 1.6 V at 77 and 300 K, respectively. After E. F. Schubert.2

substrate by solid-state wafer bonding. Both structures are aimed at enhancing the
light-emitting efficiency in both LEDs.

The electrical characteristics of LEDs can be described by the forward current–
voltage (IF–VF) characteristics of a p-n junction diode. Figure 13.10 shows the
I–V characteristic of a GaAsP/GaAs LED emitting in the red part of the visible
spectrum, measured at 77 and 300 K, and the threshold voltages for this LED are
2 and 1.6 V at 77 and 300 K, respectively. The forward-bias voltage required to
drive an LED at a constant forward current (e.g., IF = 20 mA) depends on the
band gap energy of the semiconductor; typically, the larger-band-gap LED (e.g.,
GaN- LEDs) needs higher bias voltage. Figure 13.11 shows the forward voltage
versus energy band gap for different LED materials, operating at 20 mA forward
current. As can be seen in this figure, most of the LEDs in the visible spectrum
can be operated in the 1.5–3.5 V range at a 20 mA forward current. The blue LED
requires higher bias voltage, while the IR emitter operates at a much lower bias
voltage.

Another important issue of LED operation is the light extraction scheme and
packaging for different applications. Figure 13.12 shows (a) several LED lens
geometries designed to increase light extraction or optical efficiency and (b) the
radiation patterns of LEDs with (i) retangular, (ii) hemispheric, and (iii) parabolic
geometries. Figure 13.13 shows some common LED packages: (a) LED with
hemispherical epoxy dome and (b) LEDs with cylindrical and retangular epoxy
packages. These packages are suitable for signal and panel displays as well as
solid-state lamp applications. For fiber-optic communications the circular surface-
mount LED chips are used to couple the LEDs with the optical fiber core. Both
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Figure 13.11. Typical diode forward voltage versus energy band gap for LEDs fabricated
from different semiconductor materials, measured at a forward current of IF = 20 mA.
After Krames et al., 2000.2

Figure 13.12. (a) Some LED lens geometries designed to increase light extraction or optical
efficiency; (b) radiation patterns of LEDs with (1) rectangular, (2) hemispherical, and (3)
parabolic geometries. After Galginaitis,5 with permission.
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Figure 13.13. Typical LED packages: (a) LED with hemispherical epoxy dome and (b)
LEDs with cylindrical and rectangular epoxy packages. (After E. F. Schubert.2)

GaAs (0.85 μm emission peak) and InGaAs (1.3 μm) IR emitters are widely used
for fiber-optic communications.

13.3. LED Materials and Technologies

13.3.1. Introduction

LEDs are devices designed to efficiently convert electrical energy into electro-
magnetic radiation, most of which is visible to the human eye. The semiconductor
LEDs are most familiar as the little glowing red or green indicators on the elec-
tronic equipment and consumer electronics. Visible LEDs, introduced commer-
cially in 1960s, offer the advantage of efficient direct monochromatic emission.
However, until recently the commercial use of visible LEDs has been largely con-
fined to indicator and display applications. The recent efficiency improvements of
MOCVD-grown GaInN/GaN (white, blue, and green) and AlGaInP (red, orange,
amber, yellow, and green) LEDs have enabled their use in a wide range of applica-
tions such as exterior automotive lighting, traffic signals, full-color outdoor signs,
and solid-state lamps for home and office use. Further efficiency improvements
and manufacturing cost reduction will enable LED-based systems to compete in
the $40 billion lighting market with conventional technologies such as incandes-
cent bulbs, fluorescent lighting, and neon and sodium vapor lamps. For LEDs that
are used in optical fiber communication systems, efficient spontaneous emission
originating from the excitation is favorable for reducing input power, and hence a
p-n heterojunction LED structure is used for this purpose. Bulk semiconductor ma-
terials usually form the active layer in these LEDs. In LEDs that emit visible light
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for display use, however, a variety of structures may be used. In the visible LEDs,
the light originating in the spontaneous emission process is emitted in all directions
from the light-emitting region (active layer). For that reason, several structures
restricting the emitted light to a certain direction have been developed. These
structures are divided into two groups: the surface-emitting and the edge-emitting
types. The surface-emitting LEDs emit the light in a direction perpendicular to
the p-n junction plane, while the edge-emitting LEDs emit the light in a direction
parallel to the p-n junction plane.

In LED design, one needs first to characterize the physical parameters dis-
cussed above so that the performance of an LED can be optimized for a spe-
cific application. The design considerations are similar for LEDs fabricated from
both direct and indirect band gap semiconductor materials. However, there are
distinct differences between the direct and indirect band gap materials, which
include a larger optical absorption coefficient for the direct-band-gap semicon-
ductor in the case of light generation at the junction, and the need to introduce
luminescence centers in an indirect-band-gap semiconductor to produce radiative
recombination.

The most efficient LEDs using indirect-band-gap materials are the red and
green GaP LEDs, while direct-band-gap materials such as GaN, Inx Ga1−x N,
(Alx Ga1x )0.5In0.5P (x ≤ 0.53), GaAs, GaAs1−x Px (x ≤ 0.45), Ga1−x Alx As
(x ≤ 0.44), SiC, and ZnSe have been widely used in fabricating visible LEDs.
Applications of LEDs for optical display in the visible spectrum require that wave-
lengths of the emitted photons from these LEDs fall between 0.45 and 0.68 μm.
Therefore, materials useful for this spectral range should have energy band gaps
varying between 1.8 and 2.7 eV. However, for fiber-optic communication appli-
cations, IR-driven LEDs such as GaAs (0.85 μm), In0.53Ga0.47As (1.3 μm), and
InGaAsP (1.55 μm) IR emitters are the prime candidates. Some of the commer-
cially available LEDs are discussed next.

13.3.2. AlGaInP LEDs

Hewlett Parkard (HP) and Toshiba developed the first high-brightness Al-
GaInP LEDs. The highest-efficiency LEDs demonstrated to date come from the
quaternary AlGaInP material system, which encompasses the amber through
red color spectral regime. (Alx Ga1−x )0.5In0.5P is lattice matched to GaAs for
Al compositions ranging from x = 0 to x = 1, and has a direct band gap
for x ≤ 0.53. In the direct-band-gap compositional range, (Alx Ga1x )0.5In0.5P
emits over the red (Eg = 1.9 eV) to yellow-green (Eg = 2.26 eV) spec-
tral range; however, the radiative efficiency drops rapidly with higher Al
content as the alloy approaches the direct/indirect-band-gap crossover. Thus,
commercial AlGaInP LEDs are primarily limited to red, orange, and am-
ber emission. Figure 13.14 shows the energy band gap and the correspond-
ing wavelength versus lattice constant of (Alx Ga1−x )yIn1−yP at 300 K; the
dashed vertical line shows (Alx Ga1−x )0.5In0.5P lattice-matched to GaAs.6 Fig-
ure 13.15 shows the historical development stages for the high-efficiency and
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Figure 13.14. Energy band gap and corresponding wavelength versus lattice constant for
AIP, GaP, Gax In1−x P, Alx In1−x P, (Alx Ga1−x )y In1−yP, GaAs, and InP material systems. After
Chen et al., 1997.6

Figure 13.15. Historical development sequence of four generations of AlGaInP LEDs: (a)
the absorbing substrate (AS) LED, (b) the transparent substrate (TS) LED with 2–3 times
the AS flux, (c) the high-power LED with 5 times the TS flux, and (d) the truncated inverted
pyramid (TIP) LED with 8 times the TS flux.7
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Figure 13.16. A truncated inverted pyramid (TIP) AlInGaP/GaP LED: (a) LED driven by
an electrical injection current, and (b) schematic diagram of the LED showing the enhanced
light extraction efficiency. After Krames et al., 1999.3

high-power LEDs using the AlInGaP material system that cover four generations of
LEDs: (a) LED grown on the GaAs absorbing substrate (AS), (b) LED grown on
the GaP transparent substrate (TS) with two to three times the AS flux, (c) the high-
power LED with five times the TS flux, and (d) the truncated inverted pyramid (TIP)
LED with eight times the TS flux. Figure 13.16 illustrates a TIP AlGaInP/GaP red
LED driven by (a) an electrical injection current and (b) enhanced light extraction
efficiency.

Typical illumination systems require photometric output power of several hun-
dred lumens. Simply increasing the number of conventional LEDs is often im-
practical for such systems. The simplest way of increasing the flux per LED is
to make the chip bigger. One example of a chip with increased die area is shown
in Figure 13.15c for a high-power AlGaInP/GaP LED. The junction area of this
LED chip is approximately five times that of the conventional die packaged in a
5-mm LED lamp. Therefore, driving the larger die with five times the current of
the conventional die (equivalent current density) should in principle increase the
flux fivefold. The highest luminous efficiency measured from a conventional 5-mm
LED lamp made with TS wafers is shown in Figure 13.17 as a function of peak
wavelength. The lamps have luminous efficiencies exceeding 50 lm/W at a current
density of 40 A/cm2 over the color range used for commercial AlGaInP LEDs.
The highest luminous efficiency for the 5-mm lamps is 74 lm/W for lamps emit-
ting at 615 nm. The external quantum efficiency of AlGaInP LEDs improves with
increasing wavelength (lower Al composition) due to better carrier confinement,
higher relative electron population of the direct minimum, reduced nonradiative
impurity incorporation, and reduced absorption. For these LED lamps an external
quantum efficiency of 32% at 632 nm has been achieved. However, the luminous
efficiency drops due to the decreasing response of the human eye with increasing
wavelength, as indicated by the CIE curve shown in Figure 13.17. The maximum
DC output flux from 5-mm lamps driven at 50 mA is limited to 510 lm per LED.
Super-red 5-mm AlGaInP LEDs with peak emission wavelength at 638 nm and
luminous intensity of 1500 mcd are commercially available for lamp applications.
This red LED has a power dissipation rating of 150 mW at 50 mA forward current
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Figure 13.17. The measured luminescence efficiency for a standard 5-mm AlGaInP TIP
LED lamp and a high-power lamps using AlGaInP TIP LED chips (JF = 40 A/cm2. The 611
nm TIP LED has a luminescence efficiency of 102 lm/W, and the 652 nm TIP LED has an
external quantum efficiency of 55%. The luminescence efficiencies for all the conventional
lamps and human eye response curve are also shown on the right for comparison purposes.7

and 2.2 V forward bias. High-brightness yellow, green, and orange color LEDs
fabricated from AlGaInP/GaAs material systems are now available for a wide
variety of applications.

13.3.3. GaN-Based LEDs

GaN is considered the most “environmentally friendly” III-V compound material
available for the fabrication of LEDs and LDs. In comparison to toxic GaAs LEDs
or even mercury-containing fluorescent lamps, GaN offers a truly safe lighting
solution. The first successful development of GaN-based blue LEDs was reported
by Dr. Nakamura, of Nichia Chemical Industries Ltd., Japan, in early 1990. Nichia
is the world’s leading manufacturer of GaN-based blue, green, and white LEDs
and phosphors for lighting. Dr. Nakamura started the GaN effort in 1989 at a time
when all the other optoelectronic companies were pursuing II-VI technology. His
foresight has allowed Nichia to develop a large technology lead in nitride semicon-
ductor technology. Nichia controls the market for wide-band-gap (Eg = 3.3 eV)
GaN LED devices and is selling more than 20 million LEDs every month. The best
external quantum efficienies achieved by Nichia for the blue and green LEDs were
10% and 12%, respectively, in 1998. Today, external quantum efficiency exceeding
30% has been achieved for GaN-based LEDs. The Inx Ga1−x N LEDs (Eg = 3.3 eV,
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for x = 0 and Eg = 1.8 eV, for x = 1) are capable of producing UV, blue, green,
and red color light, although there is more efficiency in the blue and green spectral
regimes. Super-blue GaN LEDs and InGaN LEDs with emission peaks at 463 and
470 nm and luminous intensities in the range of 2400–5500 mcd (operating at
VF = 3.5V and IF = 20–30 mA) are commercially available for lamps and other
applications. Power dissipation for these LEDs is in the range of 100–120 mW.
Super-green 5 mm GaN/InGaN LEDs with peak emission wavelength at 525 nm
and luminous intensity of 8,000 mcd are also commercially available for lamp
applications.

The high-temperature performance of GaN amber LEDs is far superior to Al-
GaInP amber LEDs. The wavelength shift as a function of temperature is much
smaller in GaN-based than in GaAs-based LEDs. A comparison of InGaN-based
and AlGaInP-based LEDs operating at an elevated temperature of 80◦C reveals
that the InGaN LED light output is decreased by only 20%, whereas the AlGaInP
LED light output is down by 70%. The excellent temperature performance for the
GaN-based LEDs in comparison to the GaAs-based LEDs is also seen when GaN-
based LEDs are compared to GaP green and AlGaAs red LEDs. The InGaN yellow
LEDs are not as bright as the TS AlGaInP LEDs, but their performance rivals AS
AlGaInP LEDs. Recently, Nichia has successfully developed an efficient UV (372
nm) LED. The UV LEDs are expected to find new applications in UV plastic curing,
lighting, sterilization, medical, and counterfeit currency detection. Figure 13.18
shows a schematic drawing of an InGaN/GaN multiquantum well (MQW) LED
structure grown on sapphire substrate. The LEDs are grown on sapphire substrates
and incorporated with an InGaN/GaN MQW active region, which is sandwiched
between n- and p-AlGaN/GaN superlattice and GaN cladding layers. A range of

Figure 13.18. The layer
structure of an InGaN/GaN
LED grown on a sapphire
substrate with an InGaN/GaN
multiquantum well (MQW)
active region, which is
sandwiched between n- and
p-AlGaN/GaN superlattice and
GaN cladding layers.8
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blue, blue/green, and yellow colors has been realized in the InGaN-based LEDs
with corresponding emission peaks at 460, 500, and 560 nm, respectively. The per-
formance of these blue and blue/green InGaN/GaN LEDs are also shown in Figure
13.18. Blue GaN LEDs and high-brightness blue and green InGaN LEDs grown
on SiC substrates are now available for a wide range of commercial applications.

13.3.4. GaP-Based LEDs

Gallium phosphide (GaP), which is an indirect wide-band-gap material with an
energy band gap of Eg = 2.26 eV at 300 K, is widely used for fabricating red
and green LEDs. By doping GaP LEDs with isoelectronic impurities such as N
and Zn-O, green and red light emission can be obtained from these doped GaP
LEDs. For example, a red LED can be fabricated from Zn–O-doped GaP, while a
green GaP LED is obtained using nitrogen (N)-doped GaP. In general, radiative
recombination in an indirect band gap material such as GaP can be achieved by
the excitonic radiative recombination process via luminescent impurity centers
such as the N or ZnO center in the forbidden gap. The physical principles and
characteristics of a red and green GaP LED are discussed next.

The zinc and oxygen (ZnO) doped GaP p-n junction diode grown by the LPE
technique is an efficient red LED for commercial use. The ZnO pair impurity is
an isoelectronic trap in GaP, which can replace an adjacent Ga-P pair of atoms to
form a recombination center with ionization energy of 0.3 eV below the conduction
band edge. Radiative recombination of electrons and holes in the ZnO centers will
lead to the emission of red light (hν = 1.95 eV) from such an LED. The energy
of the emitting photons from such a radiative recombination process is given by

hν = Eg − EDA + q2

4πε0εsr
, (13.27)

where hν is the photon energy, EDA is the activation energy of the ZnO center, and
the last term in (13.27) is due to Coulomb potential energy of the ZnO pair separated
by a distance r . The red GaP: ZnO LED produces an emission peak at 648 nm and
has an emission half-width (FWHM) of 93 nm, as shown in Figure 13.19. Typical
external quantum efficiencies of 2–3% have been obtained at a current level of 10
A/cm2. Luminous performance of 1 lm/W has been achieved in ZnO-doped GaP
LED. The switching speed for a typical red GaP LED is about 100 ns. Most of the
commercial red LEDs are fabricated from GaAsP and AlGaInP material systems
that produce higher external quantum efficiency and luminous intensity for various
lamps applications. The emission peak wavelength can be controlled by varying
the alloy composition x in GaAsx P1−x and (Alx Ga1−x )0.5In0.5P material systems.
Typical emission wavelengths for these red LEDs may vary from 626 to 660 nm.

The emission of green light (λp = 563 nm) from a GaP LED can be achieved
in N-doped (5 × 1018 cm−3) GaP LEDs grown by vapor-phase epitaxy (VPE) or
liquid-phase epitaxy (LPE) techniques. The emission mechanism is due to radia-
tive recombination of electron–hole pairs (exciton recombination) at a nitrogen
impurity center on a phosphorus site. The nitrogen impurity is an isoelectronic
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Figure 13.19. Normalized
internal luminescence
intensity spectra of a red
ZnO doped GaP LED and a
green N-doped GaP LED.

trap in GaP, which can replace the phosphorus atom to achieve green emission
(hv = 1.95 eV and λ = 554 nm) in a GaP LED. A nitrogen isoelectronic trap is
a highly localized potential well that can trap an electron and become charged.
The resulting Coulomb field attracts a hole, which pairs with the trapped electron
to form an exciton (i.e., a hydrogenlike bound electron–hole pair). The annihila-
tion of this exciton via a radiative recombination process gives rise to a green
emission with wavelength equal to 554 nm at 300 K. Because of other non-
radiative recombination processes, the external quantum efficiency for a green
N-doped GaP LED is usually a few percent. However, despite its low exter-
nal quantum efficiency, the N-doped GaP LED provides high brightness, since
green emission is near the peak of human-eye sensitivity. Figure 13.19 shows the
normalized luminescence intensity spectra for a red GaP:ZnO LED and a green
GaP:N LED.

Emission of yellow light can also be accomplished in a N-doped GaP LED if
the nitrogen doping density is greater than 2 × 1019 cm−3. Using a high nitrogen-
doping density in a GaP LED will lead to a shift in the emission peak to a longer
wavelength (from green to yellow light) because of the excitonic recombination
at the N–N nearest-neighbor complexes. However, most of the commercial high-
brightness yellow LEDs are now fabricated from AlGaInP material systems with
peak emission wavelength at 589 nm.

13.3.5. GaAsP and AlGaAs LEDs

In a direct-band-gap semiconductor, the color of light emission from an LED
depends on the energy band gap of the LED material. In III-V ternary compound
semiconductors such as Alx Ga1−x As, GaAs1−x Px , and Inx Ga1−x N, the energy
band gap can be altered by varying the alloy composition x. By changing the value
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Figure 13.20. The band gap energy and emission wavelength of Alx Ga1−x As LEDs at
room temperature. EΓ is the conduction band minimum at Γ point, while EL and Ex

denote the indirect conduction band minima at the L and X points in the Brillouin zone,
respectively.2

of x and hence the energy band gap, one can change the color of light emitted
from these LEDs. The Alx Ga1−x As and GaAs1−x Px materials are the two most
commonly used ternary compound semiconductors for LED fabrications in the
visible spectral range. The energy band gap for Alx Ga1−x As can be varied from
1.43 eV for x = 0 to 2.19 eV for x = 1. It is seen that Alx Ga1−x As is a direct-
band-gap semiconductor for x < 0.45, and becomes indirect-band-gap material
for x > 0.45. For example, if the aluminum mole fraction x is chosen equal to
0.3 (i.e., Eg = 1.8 eV), then red emission can be obtained from a Ga0.3Al0.7As
LED via band-to-band radiative recombination. Figure 13.20 shows the band gap
energy and emission wavelength of Alx Ga1−x As at room temperature. Here EΓ is
the conduction band minimum at the Γ point, while EL and EX denote the indirect
conduction band minima at the L and X points in the Brillouin zone, respectively.
The band gap energy as a function of Al composition x at the Γ, L , and X points
can be calculated using the formula

Eg� = 1.424 + 1.247x (eV) (0 ≤ x ≤ 0.45)

Eg� = 1.424 + 1.247x + 1.147 (x − 0.45)2 (0.45 ≤ x ≤ 1.0)

EgL = 1.708 + 0.642x (0 ≤ x ≤ 1.0)

EgX = 1.900 + 0.1252x + 0.143x2 (0 ≤ x ≤ 1.0). (13.28)
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Since the band-to-band radiative recombination is the dominant recombination
process in a direct-band-gap material, it is expected that the external quantum effi-
ciency for a GaAs1−x Px LED will decrease with increasing alloy composition and
energy band gap. Nitrogen (N) is found to enhance the radiative recombination and
the external quantum efficiency of a GaAsP LED. The brightness of a GaAs1−x Px

LED is seen to peak around Eg = 1.9 eV; this peak corresponds to a phosphorus
mole fraction of x = 0.4, and the peak emission wavelength for such an LED
is 660 nm, which falls in the red spectral range. Further increase in phosphorus
mole fraction x (and hence the energy band gap) in a GaAs1−x Px LED will shift
the emission peak toward the orange color with decreasing external luminescent
efficiency and brightness.

A planar technology has been employed to fabricate GaAs0.6P0.4 LED arrays
for numeric and alphanumeric displays. In this technology the transparent GaP
substrate is used for fabricating the GaAs1−x Px LEDs (with x ≥ 0.5) to avoid
absorption of light emitted from the GaAs1−x Px active layer by the GaP substrate.
When GaAs substrate is used for growing the GaAs1−x Px LEDs, because of the
lattice mismatch between the GaAs and GaP material system it is necessary to
grow a GaAs1−x Px graded epilayer by gradually increasing the alloy composition
x from the surface of GaAs substrate to the top of the GaAs1−x Px epilayer in order
to create lattice match with the GaAs substrate during the epitaxial layer growth.
The junction can be formed by changing the dopants during vapor-phase deposition
or by zinc diffusion into a uniformly doped structure of the graded composition. A
heavily doped p+-GaAs1−x Px is usually grown on top of the p-GaAs1−x Px active
layer to lower the contact resistance of the LED.

13.3.6. GaAs LEDs

Gallium arsenide, a direct-band-gap material with an energy band gap of 1.43
eV at 300 K, is widely used for the fabrication of near-IR-emitting diodes with
emission peak wavelength at 890 nm. The GaAs LED is the most efficient and
widely used near-IR light source for a variety of applications ranging from optical
communications, signal processing, fiber optic links, to optical computing. A GaAs
LED can be readily fabricated using zinc diffusion in an n-type GaAs substrate to
form a p-n junction. High external quantum efficiency can be obtained in a GaAs
IR emitter by using a dopant density of around 1018 cm−3 in both the n- and p-
type regions. If a Si-doped GaAs substrate is used for fabricating the GaAs LED,
then its emission peak will shift to 1.32 eV, which is below the absorption edge
of the GaAs material. As a result, the self-absorption effect in such a GaAs LED
is greatly reduced and the external quantum efficiency can be greatly improved
(ηext ≈ 20%). Other features of a GaAs LED include high switching speed and fast
recovery time (i.e., 2–10 ns), which make GaAs LED ideal for data transmission
applications. Although direct-band-gap GaAsP LEDs have the fastest switching
speed, the best luminescence efficiency and color coverage among the LED family
of phosphor-coated GaAs LEDs have the edge in color coverage, but fall well
behind in both switching speed and light conversion efficiency. In addition to
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Figure 13.21. (a) Structure of a white LED consisting of a GaInN blue LED chip and
a phosphor-containing epoxy encapsulating the semiconductor die and (b) wavelength-
converting phosphorescence and blue luminescence. After Nakamura and Fasol.9

GaAs LEDs, InGaAsP LEDs with wavelength extended to 1.45 μm have been
developed for applications in high-speed fiber-optic communications, industrial
equipment, and illumination. InGaAs LEDs have also been developed for 1.3 μm
fiber-optic communication and data transmission applications.

13.3.7. White LEDs

LEDs in the UV to near UV spectrum are particularly important for making white
solid-state lamps using phosphors to down-convert the wavelength of the light emit-
ter to the visible spectrum, then color mix to make a white light. High quantum
efficiency is critical to making energy-efficient solid-state lamps. Figure 13.21
shows (a) the structure of a white LED consisting of a GaInN blue LED chip
and a phosphor-containing epoxy encapsulating the semiconductor die and (b)
wavelength converting phosphorescence and blue luminescence into white light.
Figure 13.22 shows the emission spectrum of a commercial phosphor-based white
GaN/InGaN LED. Super-white GaN/InGaN LED (5-mm size) lamps with lumi-
nous intensities in the range of 2,400–10,000 mcd at forward currents of 20–30
mA and forward bias of 3.4 V and power dissipation of 100–120 mW are now com-
mercially available. This technology has the potential to revolutionize the lighting
industry by enabling solid-state lamps with high efficiency and a lamp lifetime of
5–10 years. Such solid-state lamps will have efficiencies that are two to three times
greater than those for incandescent bulbs. To further improve the performance of
white LEDs, the peak emission wavelength of GaN/InGaN LED should shift to
even shorter wavelengths below 400 nm. At these wavelengths, the light emitter
better matches typical phosphor absorption bands. External quantum efficiency
greater than 30% for InGaN LEDs in the UV-to-blue portion of the wavelength
spectrum has been reported recently for ultrabright light-emitting and white lamp
applications. White light can also be produced using a photon-recycling semicon-
ductor LED. Figure 13.23 shows the schematic structure of a photon-recycling
semiconductor (PRS) LED with one current-injected active region (1) and one
optically excited active region (2). GaInN/GaN LED is used as primary source,
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Figure 13.22. Emission spectrum of a commercial phosphor-based white LED manufac-
tured by Nichia Chemical Industries Corporation.2

which produces the blue light, and the secondary source uses AlGaInP LED to
produce the yellow light. White light is created by mixing the blue and yellow lights
generated from the GaInN/GaN and AlGaInP LEDs, which are grown on opposite
sides of the sapphire substrate. In addition to the two white LEDs described above,
white light can also be produced by mixing three primary-color LEDs, that is,
by using blue, green, and red LEDs (four-terminal device) with separate injection
currents to adjust the intensity of each LED to produce pure or soft white light.
Figure 13.24 shows the progress made on the luminous performance of LEDs from
the mid-1960s to 2000. It is seen that a nearly three orders of magnitude increase in

Figure 13.23. Schematic structure of a photon-recycling semiconductor LED with one
current-injected active region (1) and one optically excited active region (2). After Gou
et al., 1999.10
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Figure 13.24. Luminescence performance of various LEDs developed from mid 1960 to
year 2000, compared to the conventional lamps.2

luminous performance was achieved during this period. Table 13.2 summarizes the
commercially available LEDs with emitting color, peak wavelength, and device
structures. With further improvement in performance and cost reduction, LEDs
are expected to play a major role in a wide range of commercial applications in
lighting, display, printers, data transmission, and optical fiber communications.

High-brightness (HB) LEDs have been successfully developed in recent years
and are being used in a wide variety of applications that benefit from their high vis-
ibility (even in full sunlight conditions) and full-color spectrum, including white.
The spectacular growth of 2002 was led by a dramatic ramp-up in the use of HB
LEDs in mobile phones, including both backlighting for full-color LCD screens and
keypad backlighting. However, other applications also contributed to this vibrant
market. HB LEDs are used extensively in the automotive sector, both for instru-
ment panel lighting and for external signaling. They are the enabling components
for full-color outdoor video screens used in sports stadiums, outdoor advertising,
and rock concerts. Moreover, they have been widely adopted in red, green, and
yellow traffic signals, as well as in highway signs and moving message panels.
Illumination applications are the latest to benefit from the high efficiency and long
lifetimes of HB LEDs. Based on continuing positive trends in this dynamic indus-
try, the market for HB-LEDs is forecast to grow to $4.7 billion by 2007. HB LEDs
will continue to penetrate the outdoor sign, automotive, traffic, signal, and display
backlighting markets, as well as to capture an increasing variety of illumination
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Table 13.2. Some commercial LEDs, their emitting colors (wavelengths), and
device structures.

Material Color Wavelength (nm) Structure

InGaN+phosphor White 460–800 p-n junction
GaN UV 370–390 p-n junction
GaN/SiC Blue 430 p-n junction
InGaN Blue 450, 473 p-n junction
ZnSe Blue 460 p-n junction
SiC Blue 490 p-n junction
InGaN Turquoise 495–505 p-n junction
InGaAlP/GaAs Pure green 562 heterojunction
GaP 555 p-n junction
InGaN Green 525 p-n junction
InGaAlP/GaAs 574 heterojunction
GaP 567–585
GaAsP Yellow-green 555–575 p-n junction
AlInGaP Yellow
InGaAsP/GaAs 585–595 p-n junction

590 heterojunction
GaAsP/GaP 585 heterojunction
GaP/GaP 570
AlGaAs Orange 605–620 p-n junction
InGaAlP/GaAs 612–620 heterojunction
GaAlP/GaP 610 heterojunction
GaP Red 700 p-n junction
AlGaAs 660 p-n junction
InGaAlP/GaAs 623–644 heterojunction
GaAsP/GaP 635 heterojunction
GaAs Near IR 840 p-n junction
InP Near IR 900 p-n junction
InGaAs IR 1.3 μm p-n junction,

applications. From modest beginnings in the mid-1990s, the non-Japan region of
Asia, including Taiwan, South Korea, and China, has become the world’s largest
volume producer of HB LEDs. Using advanced device manufacturing techniques
based on metal-organic chemical vapor deposition (MOCVD), 23 companies in
the region produced the equivalent of 13.4 billion red–orange–yellow (InGaAlP-
based) LED chips and 3.4 billion blue and green (GaN-based) LED chips in 2003,
representing 80% and 40% of the world totals, respectively. The HB LED market
grew by 51% in 2002 to total sales of $1.84 billion.

13.3.8. RC LEDs

A new type of photonic device is now available in large-scale production: reso-
nant cavity (RC) LEDs. The RC LED emitting red light at λp = 650 nm has been
successfully developed for plastic optical fiber (POF) communication use. The
RC LED is superior to its predecessors in luminous intensity, light purity, and
modulation capabilities. With properties somewhere between a standard LED and
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a LD, an RC LED produces intense light from quantum wells. Compared with the
conventional LEDs, the RC variety produces a brighter, more directional beam
with higher spectral purity and modulation speed, making it suitable for use in
POF short-haul communications. It is less temperature sensitive and has a longer
lifetime than competing laser light sources. RC LEDs are a key technology for
the next generation of data communication via high-speed polymethyl methacry-
late (PMMA) POF, which is now entering the information and entertainment or
“infotainment” market in automotive and consumer applications.

A typical RC LED consists of two distributed Bragg reflectors (DBRs) made
of semiconductor materials (e.g., AlGaAs/GaAs DBR mirrors), which form a res-
onant cavity. An active layer is located between the DBR mirrors and includes
quantum wells (e.g., GaInP/GaAs QWs) a few nanometers thick for light genera-
tion. If the thickness of the active layer between the DBR mirrors of the RC LED
is chosen as an integer multiple of the half-wavelength of the emitting light, then
the condition for vertical resonance is fulfilled. However, there are also resonances
at off-axis angles, and the more half-wavelengths that fit between the mirrors the
more off-axis resonances will be observed. The off-axis resonances are outside
the extraction cone, which is defined by the angle of total internal reflection. Light
in these resonances is absorbed, not emitted. Since the same amount of light is
emitted in every resonance, the cavity order has to be as low as possible. The
penetration depth of the light in the DBR mirrors contributes to the effective res-
onator length. Even if the active layer is only about the size of a wavelength, the
arrangement still amounts to a multiple of half-wavelengths. External quantum
efficiency as high as 12% has been reported for the red RC LED with 650 nm light
emission. Commercial red RC LED has been grown on GaAs substrates using the
MOCVD technique. These red RC LEDs feature GaInP QW active layer and Al-
GaAs/GaAs DBR mirrors and are characterized by low turn-on voltage (VF = 1.8
V at IF = 30 mA) and high optical output power (P0 > 0.5 mW at IF = 30 mA).
Typical spectral width is 3 nm at a peak wavelength of 650 nm.11,12

RC LEDs are being designed for emerging high-speed POF applications in
homes, offices, and automobiles. It transmits data at 650 nm over short-distance
plastic fiber connections to link appliances such as PCs, storage devices, digital
cameras, and set-top boxes. Data rates of up to 500 Mbit/s over 50 m of graded-
indexed POF are supported, or 250 Mbit/s over 50 m of step-index POF. Figure
13.25a shows a schematic illustration of an RC LED formed using InGaP/AlGaInP
MQW active layer and two DBRs emitting at 650 nm for POF communications, and
Figure 13.25b shows spectra of light coupled into a POF from a GaInP/AlGaInP
MQW RC LED and a conventional GaInP/AlGaInP LED at different driving cur-
rents. Note the narrow spectrum and higher coupled power of the RC LED.

The POF can carry more data over longer distances than Category 5 copper
cable, costs less, and is easier to install compared to glass optical fiber. A number
of other devices such as LEDs, edge-emitting lasers, and VCSELs also operate at
650 nm. For POF applications, conventional LEDs offer only poor coupling ef-
ficiency and operate at slower modulation speeds, while RC LEDs have a high
coupling efficiency and feature a small active area, enabling higher data rate
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Figure 13.25. (a) Schematic illustration of an RC LED emitting at 650 nm. The active
region is an InGaP/AlGaInP MQW structure. Two distributed Bragg reflectors (DBRs) from
the optical cavity. (b) Spectra of light coupled into a POF from a GaInP/AlGaInP MQW
RC LED and a conventional GaInP/AlGaInP LED at different driving currents. Note the
narrow spectrum and higher coupled power of RC LED. After Streubel et al, 1998; Whitaker,
1999.11,12

operation. RC LEDs are much cheaper than edge-emitting lasers and are less
temperature sensitive and considerably more reliable than currently available red
VCSELs. RC LEDs exhibit narrow emission line width comparable to that of LDs.
This narrower emission spectrum minimizes chromatic dispersion and attenuation
and allows transmission over longer lengths of POF. Unlike glass fiber, there is
also no need for special alignment equipment to join the plastic fiber and emitter,
and hence greatly reduces the cost of installation.
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13.4. Semiconductor LDs

13.4.1. Introduction

The first coherent light source became available when Maiman introduced a pulsed
solid-state ruby laser in 1960. Since then a wide variety of lasers including gas, solid
state, semiconductor, and dye lasers have been developed. Today, semiconductor
laser diodes (LDs) offer coherent light sources with wavelengths extending from
the extremely short wavelength (i.e., X-ray) to long-wavelength infrared (>10μm)
spectral regime. Semiconductor lasers were first reported by IBM, General Elec-
tric, and MIT’s Lincoln Laboratory in 1962. These p-n junction LDs diodes were
fabricated from Alx Ga1−x As alloys on the GaAs substrates using the liquid phase
epitaxy (LPE) technique, and emitted coherent light in the 600–900 nm wavelength
range for optical communication use.

The advances in III-V semiconductor materials processing using MBE,
MOCVD, and chemical beam epitaxy (CBE) have allowed the creation of var-
ious semiconductor lasers that can operate in wavelengths from the UV, visible,
and near-IR, to the mid-infrared spectral range. These advanced growth tech-
niques allow greater control in the thickness of epitaxial layers and types of ma-
terials used, resulting in a wide variety of heterostructures including quantum
well (QW), multiple quantum well (MQW), strained MQW, and quantum cascade
lasers.

A semiconductor LD differs from conventional solid-state lasers or gas lasers in
several aspects: (i) an LD is extremely small, (ii) it exhibits high-power conversion
efficiency, (iii) it can be pumped directly by an electric current, and (iv) the intensity
of output light can be easily modulated by varying the forward current of the LD.
Furthermore, an LD is usually operating at a much lower power level than that of a
solid-state laser or gas laser. Therefore, an LD can be used as a portable and easily
controlled coherent radiation source. LDs play an important role in a wide range
of applications such as coherent light sources, optical communications and data
transmission, optical computing, optical displays, CD, DVD, laser printers, and
optoelectronic integrated circuits (OEICs). In this section, the basic device physics
and structures, operation principles, and electrical and optical characteristics of an
LD are described.

13.4.2. Population Inversion

An LD can be formed by a heavily doped p+-n+ junction structure using a direct-
band-gap semiconductor. The dopant density in both regions of the diode is usually
greater than 1019 cm−3. When a large forward-bias voltage is applied to the LD,
a state of population inversion (i.e., the conduction band states are filled with
electrons and the valence band states are empty) occurs near a narrow region of the
p-n junction. Under this condition, radiative recombination takes place between
electrons and holes in a narrow population inversion region near the junction,
and lasing action is followed if a resonant cavity is provided and the oscillation



13.4. Semiconductor LDs 489

Figure 13.26. Energy band diagrams for a heavily doped p-n junction laser diode (a) in
thermal equilibrium (Va = 0) and (b) under large forward bias voltage (Va � 0).

condition is satisfied. It should be noted that the radiative recombination is not
confined merely to the conduction-valence band transition. In fact, transitions
from impurity band states have also been used in many LDs.

Figure 13.26 shows the energy band diagrams of an LD (a) in thermal equilibrium
and (b) under large forward-bias and population inversion conditions. Since the
total rate of radiative recombination is directly proportional to the product of
electron and hole densities available in the conduction and valence bands, the
radiative recombination is most intense in a narrow region near the metallurgical
junction of the LD, as shown in Figure 13.26b.

Population inversion in a p-n junction LD may be obtained by injection (or
pumping) of minority carriers under a sufficiently large forward-bias voltage. To
understand how the population inversion condition is accomplished, consider a
GaAs LD. The applied forward-bias voltage Va is chosen such that

Va >
hν

q
, (13.29)

where hν = E1 − E2 is the emitted photon energy, E1 is the electron energy in
the conduction band, and E2 is the hole energy in the valence band. As shown in
Figure 13.26b, the distribution functions for electrons in the conduction band and
the valence band under a forward-bias condition are given, respectively, by

fc(E1) = 1

1 + exp(E1 − Efn)/kBT
, (13.30)

fv(E2) = 1

1 + exp(E2 − Efp)kBT
, (13.31)

where E2 = E1 − hν, Efn and Efp are the quasi-Fermi levels for electrons and
holes, respectively. Now consider the rate of stimulated emission at a frequency ν

due to transition from energy state E1 in the conduction band to energy state E2 in
the valence band. The rate of stimulated emission is proportional to the product of
the density of occupied states in the conduction band, gc(E) fc(E), and the density
of unoccupied states in the valence band, gv(E)[1 − fv(E)]. Therefore, the total
stimulated emission rate is obtained by integrating over all the energy states in the



490 13. Light-Emitting Devices

population inversion region. This can be expressed by

Wemission =
∫

Pcvgcgv fc(1 − fv) dE, (13.32)

Wabsorption =
∫

Pvcgcgv(1 − fc) fv dE . (13.33)

In (13.32) and (13.33) it is assumed that the rate of transition probability from the
valence band to the conduction band and its inverse are equal (i.e., Pcv = Pvc),
where Pcv denotes the rate of transition probability from the conduction band to
the valence band and Pvc is the rate of transition probability from the valence band
to the conduction band. The condition for lasing action to occur is that Wemission

must be greater than Wabsorption. Solving (13.30) through (13.33) one obtains

fc(1 − fv) > fv(1 − fc), or fc > fv. (13.34)

Equation (13.34) implies that more states are occupied in the conduction band
than in the valence band, which is the condition for population inversion. Solving
(13.30), (13.31), and (13.34) yields

Efn − Efp > (E1 − E2) = hν. (13.35)

It is noted that (13.35) is identical to (13.29) since (Efn − Efp) is equal to the
applied voltage, qVa. Thus, the condition for population inversion in an LD is
given by either (13.29) or Eq. (13.35).

13.4.3. Oscillation Conditions

Two conditions must be met to achieve sustained oscillation in an LD. First, a
resonant cavity must be provided so that photons generated via radiative recom-
bination can make several passages within the cavity to be further amplified in
the active medium before leaving the cavity. A typical resonant cavity consists
of two parallel reflecting surfaces perpendicular to the junction plane of an LD.
This type of resonant cavity is known as a Fabry–Perot cavity or an interferometer.
The air–semiconductor interface boundary may serve adequately as a reflecting
surface if the refractive index of the semiconductor is large enough (e.g., for GaAs,
n = 3.46). The second requirement is that the overall amplification constant per
round trip through the cavity must be positive. If R is the reflection coefficient
at the two reflecting surface boundaries and L is the distance between the two
reflecting boundaries of the cavity, then for each trip between the boundaries the
radiation power density is reduced by a factor of 2R at the interface boundaries.
If the gain through stimulated emission is designated by g(ν), and the loss in the
laser medium due to free-carrier absorption and defect-center scattering is denoted
by l, then the condition for sustained oscillation can be expressed as

�g(ν) = l +
(

1

L

)
ln(1/R), (13.36)
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where � is the carrier confinement factor, L is the length of the laser cavity,
g(ν) = αd( fc − fv) is the gain factor due to stimulated emission, and αd is the
absorption coefficient for direct transition.

A physical interpretation of (13.36) is given as follows: In laser operation,
the condition for a complete population inversion is that fc = 1 and fv = 0. In
general, there exist three distinct regimes in an LD under different forward-bias
conditions. When the nonequilibrium condition is established by current injection
(i.e., Va > 0), spontaneous emission occurs. As the injection current increases, a
condition for population inversion (i.e., for fc > fv) is reached near the physical
junction (see Figure 13.26b), which marks the beginning of stimulated emission,
and the gain factor g(v) becomes positive. Upon further increase of the injection
current, the difference between fc and fv widens and hence g(v) increases. When
the threshold condition is met, the LD undergoes an oscillating mode of opera-
tion, resulting in the emission of coherent light from the LD. As the operating
temperature is lowered, the difference between fc and fv will increase for the
same amount of injection current. Therefore, the threshold current will decrease
with lowering the diode temperature, as is evident from the experimental results
of GaAs and other LDs. Figure 13.27a shows the experimental curves of emis-
sion intensity versus diode current for a GaAs LD operating at 4.2 and 77 K, and
Figure 13.27b illustrates the emission intensity versus wavelength at 77 and 4.2
K for conditions below and above the threshold current of the same GaAs LD.

Figure 13.27. (a) Relative emission intensity versus diode current for a GaAs laser diode at
4.2 K and 77 K and (b) emission peak intensity versus wavelength before and after reaching
threshold oscillation conditions. After Kressel and Butler,13 by permission.
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Figure 13.28. Structure of a GaAs p-n junction laser diode with a Fabry–Perot cavity. The
optically flat parallel faces serve as the optical cavity (with length equal to L) along the
x-direction, while the other two faces are roughened to prevent positive optical feedback
along the z-direction.

The results reveal that a significant improvement in LD performance such as low-
ering the threshold current and reducing the emission line width can be obtained
at 4.2 K.

13.4.4. Threshold Current Density

Figure 13.28 shows the device structure of a GaAs LD, which is used for analyzing
the lasing threshold current density. The LD is constructed using a Fabry–Perot
cavity with a pair of parallel planes (left and right sides) cleaved or polished to
serve as end mirrors. The two remaining sides (front and back) of the LD are
roughened to reduce emission of photons from both faces.

To facilitate analysis, it is assumed that the junction area is equal to A, the
thickness of population inversion region is d , and the distance between the two
end mirrors is equal to L . For simplicity, it is further assumed that the reflection
coefficients R1 and R2 at the two parallel plane mirrors are equal. At T = 0 K, the
population inversion condition requires that in the population inversion region, N2

be equal to n (where n is the electron density in the conduction band) and N1 be
zero (where N1 is the electron density in the valence band). Thus, the total number
of conduction electrons in the population inversion region is equal to N2Ad. If
the conduction electron making a downward transition from the conduction band
to the valence band has a lifetime of τ2 and with each such decay requiring the
injection of one electron into the junction region, then the total current flow in the
LD needed to maintain the conduction band population density of N2 is given by

I = q N2 Ad

τ2
or J = qnd

τ2
. (13.37)
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The inverted population density N2(= n/A) is related to the lasing frequency ν0,
linewidth �ν0, and cavity decay time constant τc by

N2 =
(

4π2

3

) (
�ν0

ν0

) (
τr

τc

) (n0

λ

)3
, (13.38)

where τr is the total lifetime due to radiative and nonradiative recombination pro-
cesses. The cavity decay time τc is given by

τc = (n0/2cL)

(2/L + ln l/R)
, (13.39)

where c is the speed of light, n0 is the index of refraction for the laser material,
and l is the loss associated with free-carrier absorption and scattering events in
the cavity media. Now solving (13.37)–(13.39), one obtains the threshold current
density Jth, which reads

Jth = Ith

A
= (4π2/3)(2qcd L/η)(�ν0/ν0)

(
n2

0/λ
3
0

)
[2l L + ln(R−1)], (13.40)

where η = τ2/τr is the quantum efficiency of LD, which measures the ratio of
radiative lifetime to total decay lifetime by both the radiative and nonradiative
recombination processes.

As an example, calculations of the threshold current density Jth for a p-n junction
LD using (13.40) are as follows. The physical parameters for a GaAs LD operating
at very low temperatures are quantum yield,η = 1 (i.e., τr = τ2); index of refraction
for GaAs, n0 = 3.46; linewidth, �λ = 20 nm; laser wavelength, λ = 840 nm;
cavity length, L = 0.3 mm; junction depth, d = 10−4 cm; reflection coefficient,
R = 0.32; junction area, A = 3x10−4 cm2; and losses, l = 0. Substituting the
values of these physical parameters into (13.40), one obtains a threshold current
density Jth = 120 A/cm2 or Ith = 36 mA. Experimental data for a GaAs LD at
4.2 K agree well with this calculation. It is noted, however, that for T > 60 K
the threshold current density Jth for lasing is found to increase with T 3 due to
the increase of absorption in the bulk GaAs near the junction region. This in
turn increases the density of electrons in the valence band states. The measured
threshold current at room temperature is about two orders of magnitude higher
than the predicted value given above.

13.5. Laser Diode Materials and Technologies

13.5.1. GaAs-Based LDs

The structure of a typical GaAs LD with a Fabry–Perot resonant cavity is illustrated
in Figure 13.28. To obtain the population inversion condition in the active region
of the p-n junction LD, both p and n regions are heavily doped (i.e., the doping
densities in both regions are greater than 1019 cm−3). A pair of parallel planes are
cleaved and polished perpendicular to the junction to act as an optical resonance
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Figure 13.29. Multilayer heterostructures for carrier confinement in an injection laser
diode (LD): (a) homojunction GaAs LD, (b) single heterostructure (SH) LD, (c) double
heterostructure (DH) LD, and (d) large optical cavity (LOC) DH LD.

cavity, while the two remaining sides of the LD are roughened to eliminate possible
lasing in directions other than the two main parallel mirror planes.

Several types of conventional GaAs LD structures have been reported in the
literature. These include (a) epitaxial homostructure, (b) single heterostructure
(SH), (c) double heterostructure (DH), and (d) large optical cavity (LOC) DH LD
structure. The schematic diagrams for these structures and their corresponding
energy band diagrams are shown in Figures 13.29a through 13.29d, respectively.
The GaAs p-n homojunction LD structure becomes obsolete due to its high lasing
threshold current density and poor confinement of both charge carriers and photons
in the junction region. These shortcomings can be partially corrected in the SH
LD structure, in which an AlGaAs layer with a significantly different refractive
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index from that of GaAs is incorporated into the GaAs LD structure. Furthermore,
the inherent energy band gap difference in both materials confines the carriers to
one side (i.e., the p-GaAs side) of the junction. Significant improvement can be
made if the injected carriers and emitted light are kept near the active region of the
p-n junction. These techniques are known as carrier and optical confinements, and
they can be achieved using the DH LD shown in Figure 13.29c. The basic device
structure consists of a thin p-GaAs active layer sandwiched between the p-AlGaAs
and n-AlGaAs cladding layers. Electrons injected into p-GaAs under forward-bias
conditions are prevented from reaching the p-AlGaAs layer by the conduction
band discontinuity. For example, the potential barrier (�Ec) for the Al0.3Ga0.7As
layer is equal to 0.28 eV, which povides excellent carrier confinement. The optical
confinement of the DH LD is due to the difference in the refractive index of
GaAs and AlGaAs. Although the refractive index of GaAs is only 5% larger than
that of AlGaAs, the optical confinement is excellent for the GaAs/AlGaAs DH
LD. Population inversion in a GaAs/AlGaAs DH LD can be readily reached, and
radiative recombination is limited to the p-GaAs active layer. Figure 13.30 shows

Figure 13.30. The CW output power versus forward current for a GaAs/AlGaAs DH LD
measured at different diode temperatures. After Kressel,14 by permission.
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the CW output power as a function of current and heat-sink temperature for an
oxide-defined GaAs/AlGaAs DH LD. As can be seen in this figure, the threshold
current of an LD decreases with decreasing operating temperature. A differential
efficiency (i.e., dP0/dIF) for an LD can be obtained from the slope of the output
power (P0) versus forward current (IF) plot shown in Figure 13.30. A steeper slope
represents a higher differential efficiency for the LD (i.e., a small increase in IF

will lead a large increase in LD output power above the threshold current). Figure
13.31 shows the typical optical characteristics of the CW laser spectrum for a
GaAs/AlGaAs DH LD with a cavity length of 250 μm. As illustrated in this figure,

Figure 13.31. Lasing spectra of an oxide-defined GaAs/AlGaAs DH laser with cavity
length 250 μm and different driving currents: IF = 50, 75, and 100 mA. After Kressel,14

by permission.
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Figure 13.32. A GaAs/AlGaAs DH
laser diode with a stripe geometry con-
tact. The laser diode is mounted with
the stripe down on a metallized dia-
mond heat sink having five times the
thermal conductivity of copper. Light
emits from the p-GaAs active layer.
After D’Asaro,15 by permission.

this LD behaves like an LED at a forward current of 50 mA (or smaller) with
a broad emission line width (a). As forward current increases to 75 mA, lasing
action occurs with multimode emission spectra (b), and at 100 mA forward-current
single-mode lasing was observed (c). The peak lasing wavelength is defined by
the maximum spectral intensity in either mode.

The DH LD has by far shown the best performance in the LD operation among
the bulk p-n junction LDs. Some DH LDs mounted on the diamond-II heat sinks
can operate continuously at room temperature and above. A comparison of the
LD structures shown in Figure 13.29 reveals that the LOC LD has the advantage
of reducing the diffraction of the laser beam at the face of the p-n junction active
region. This is achieved by allowing the laser beam to emerge from an opening
that is much larger than the 1.2 μm openings of the other types of LDs shown in
Figure 13.29.

Figure 13.32 shows a GaAs-AlGaAs DH LD with a stripe geometry contact.
The substrate material is (111) or (100) oriented GaAs with a dopant density of
around 1 to 4 × 1018 cm−3. The first layer grown on the GaAs substrate is n-
Alx Ga1−x As, 2–5-μm thick, typically Sn-doped, with x varying between 0.2 and
0.4. The second layer is the p-GaAs active region (0.4–2-μm thick) doped with Si,
and usually contains a small amount of Al, either deliberately provided or carried
over from the first layer. The third layer is p-Alx Ga1−x As with a dopant density of
around 3.8 × 1018 cm−3 and thickness of 1–2-μm; the composition x for this layer
varies between 0.2 and 0.4. The fourth is a p+-GaAs layer with dopant density
of 3.5 × 1018 cm−3. The main function for this layer is to provide better ohmic
contact. The third and fourth layers are kept quite thin, and the fourth layer (i.e., the
p+ GaAs layer) is used as the main heat sink for the LD. A type-II diamond heat
sink is used to improve the thermal performance of the LD and possesses thermal
conductivity up to five times better than that of copper. The stripe geometry contact
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Figure 13.33. Some important stripe-geometry structures for a GaInAsP/InP laser diode:
(a) inverted rib, (b) ridge waveguide, (c) etched-mesa buried heterostructure, and (d) chan-
neled substrate buried structure. After Bowers and Pollack,16 by permission.

provides a convenient way of attaining a small device area with some lateral heat
flow, which allows a high continuous wavelength (CW) operating temperature. The
optimum stripe width is usually between 10 and 15 μm for a typical GaAs LD.
Figure 13.33 shows the cross-sectional views of several stripe-geometry InGaAsP
infrared (IR) LD structures grown on InP substrates for 1.3–1.55 μm wavelength.
Figure 13.33a is an inverted-rib laser structure. The wide-band-gap (e.g., AlGaAs)
waveguide layer underneath the active layer (GaAs) has a riblike structure inside
the optical cavity. The change in thickness produces a larger effective index of
refraction in the rib region than on both sides of the rib stripe, which results in
waveguiding along the rib region. In this structure, the active layer is a planar
structure and the injection of current through the active layer is limited to the
narrow stripe of the rib region. The ridge-waveguide structure shown in Figure
13.33b employs the same principle as the rib structure for waveguiding, which
occurs underneath the ridge region. Figure 13.33c shows the etched-mesa buried
heterostructure LD, which is quite different from those shown in Figures 13.33a
and b. In this structure the active layer (InGaAsP) is first etched into a narrow
stripe, and InP is then regrown over the active stripe. Since the InP layer has a
lower refractive index and larger energy band gap than the InGaAsP active stripe,
both optical and carrier confinements can be achieved using such a structure. It
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is seen that current injection for structure (c) is confined by the SiO2 on the top
of the device and the reverse-bias p-n junction on both sides of the active stripe,
which results in more efficient use of injected carriers and hence lowers the lasing
threshold. Figure 13.32d illustrates another InGaAsP LD structure. In this laser
structure a V-groove is first etched into the substrate, and then a crescent stripe of
InGaAsP active layer and InP cladding layers are grown on top of the V-groove
in the wide-band-gap InP by a liquid-phase epitaxy (LPE) technique to achieve
optical and carrier confinements in such an LD structure.

13.5.2. Quantum-Well and Quantum-Dot Lasers

In the DH LDs discussed above, the typical thickness of the LD active layer is
about 0.1 μm. If the thickness of the active layer is reduced to less than 200 Å,
quantum size effects will occur. A new class of QW lasers based on such ef-
fects has been widely investigated in recent years. These new QW lasers display
characteristics that are quite different from those of conventional DH LDs. In a
QW laser structure, the confinement of carriers in one dimension causes quanti-
zation in the allowed energy levels along the direction perpendicular to the QW
plane. The density-of-states function changes from a square-root dependence on
energy in a DH LD to a steplike dependence in a QW laser. If carriers are con-
fined in two or three dimensions (i.e., a quantum wire or quantum dot), the peak
density of states of the quantum-wire or quantum-dot lasers becomes even larger
at each discrete level. Such modifications in the density-of-states function of the
QW lasers can greatly reduce the threshold temperature dependence, lower the
threshold current, and narrow the laser line width. Of the two most throughly
developed QW lasers, AlGaAs/GaAs QW lasers are found to have superior perfor-
mance characteristics to those of InGaAsP QW lasers and conventional DH lasers.
As an example, a very efficient AlGaAs/GaAs QW laser can be formed using a
graded-index waveguide, separate-confinement heterostructure (GRIN SCH) with
SQW or MQWs in the active layer, as shown in Figure 13.34, which illustrates
that both optical and carrier confinement efficiencies can be greatly improved in
a GRIN SCH AlGaAs/GaAs QW laser structure. The optical confinement effi-
ciency is improved by using a parabolic refractive index profile, which can focus
more optical energy to the active quantum well. The improvement in carrier col-
lection efficiency may be attributed to the fact that change in the density of states
in the graded layers is reduced. It should be noted that the GRIN-SCH laser has
yielded the lowest threshold current ever reported for any semiconductor laser. The
GRIN-SCH-SQW lasers and MQW ridge-waveguide lasers using GaAs/AlGaAs
(λp = 0.82 μm), InGaAs/GaAs (0.98 μm), and InGaAsP/InP (1.3–1.55μm) mate-
rial systems have been developed for applications in fiber-optic communications
and fiber-optic networking in recent years. These MQW lasers show superior per-
formance with lower threshold current, narrower and sharper emission peak, and
higher differential efficiency when compared to the conventional bulk semicon-
ductor LDs.

Quantum-dot (QD) lasers have received great attention in recent years. The
main advantages of quantum-dot (QD) based lasers are low threshold current,
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Figure 13.34. (a) Schematic diagram of a graded-index waveguide, separate-confinement
heterostructure (GRIN-SCH) single-quantum-well (SQW) laser; (b) energy band diagram
of a GRIN-SCH-SQW laser. After Tsang et al.,17 by permission.

temperature insensitivity, excellent carrier and optical confinements, reduced
linewidth, smaller size, and wavelength tunability. QD lasers fabricated from a
wide variety of III-V compound semiconductors have been reported in recent
years.18–20 The growth of QDs can be achieved using the direct method or self-
organized technique. In the direct method, a combination of high-resolution lithog-
raphy and etching is used to form the quantum dots. In the direct method, the QW
structure is formed first to provide confinement only in one dimension. By etching
the QW structures to form pillars, one can provide confinement in the other two di-
rections. The major disadvantage of this technique is the generation of nonradiative
defects in the QDs, which makes this technique unsuitable for LD applications.
The main requirement during the growth of QDs for semiconductor LDs is the
minimization in fluctuation of dot size and position. The self-organized method
using the Stranski–Krastanow (SK) growth mode can be used to grow QD LDs.
The advantages of this technique include (i) complete maskless process, (ii) high
uniformity in the size, location, and composition of the QDs, and (iii) that large
number of QDs can be fabricated in a single step.

Some of the key features that make QD LDs popular include the following: (i)
The QD structure can be easily integrated into arrays; (ii) low-threshold current
density enables high-density arrays; (iii) QD-based VCSELs are readily possible
with improved performance over conventional VCSELs; (iv) vertically stacked
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QDs allow one to realize room-temperature lasing at a relatively low threshold
current density of 90 A/cm2; (v) QD lasers with emission wavelengths up to
1.8 μm have been fabricated using InAs/(In,Ga,Al)As QDs; (vi) CW output power
of 3.5–4.0 W has been demonstrated. Another improvement predicted in QD lasers
is the simultaneous reduction of threshold current density to less than 5 A/cm2 and
complete temperature insensitivity.

13.5.3. Other Semiconductor LDs

In the previous section, only GaAs-based LDs and QW lasers were discussed. The
reasons that GaAs is chosen for LD fabrication are that it is a direct-band-gap
material, and high-purity GaAs epilayers with relatively low defect density can
be grown routinely using the MBE and MOCVD techniques. This is important
from the standpoint of fabricating a reliable LD. Besides GaAs, various LDs have
been fabricated using direct-band-gap compound semiconductors such as InGaN,
InGaAs, InAsP, InGaAsP, ZnSe, PbSnx Te1−x , and CdHgx Te1−x , with emitting
wavelengths varying from 0.4 μm to greater than 30 μm, depending on the se-
lected alloy compositions of these materials. For example, the energy band gap for
In1−x Gax N alloy may vary from 3.3 to about 1.8 eV at 300 K as x changes from
1 to 0; this corresponds to a shift of the emission peak wavelength from 0.376 μm
(UV) to 0.688 μm (red).

A GaAs LD that emits coherent infrared radiation at 0.84 μm is an important IR
light source for many applications including data transmission, signal processing,
optical links, and optical communications. In the visible spectrum where excellent
detectors are available, visible coherent light sources can be obtained from LDs fab-
ricated on large-band-gap ternary and quaternary compound semiconductor mate-
rials such as In1−x Gax N, Alx Ga1−x As, Gax In1−x AsyP1−y , and Alx Ga1−x AsyP1−y .
These materials can be grown on sapphire, InP, or GaAs substrates. LDs fabricated
from these materials can extend the useful wavelengths of coherent radiation from
0.4 to about 3 μm.

Although a change of energy band gap can be obtained from a list of compound
semiconductors for LD applications, the choice is limited by two requirements,
namely, that the material must be a direct-band-gap semiconductor and capable of
forming a p-n junction on such a material system. III-V compound semiconductors
such as GaN, GaAs, GaSb, InP, InSb, and II-VI compounds such as ZnS, ZnSe,
and the ternary and quaternary compounds of these materials have been widely
investigated for laser fabrication. III-V compound semiconductors can be grown
on both n-type and p-type materials, and hence p-n junction LDs can be readily
fabricated from these material systems using the MBE or MOCVD technique.
Furthermore, since the band gap energies of the III-V ternary compounds such as
Inx Ga1−x N, Alx Ga1−x As, GaAsx P1−x , Inx Ga1−x As, and Inx Ga1−x P can be varied
by changing their alloy compositions, LDs fabricated from these materials can
cover the emission wavelengths from UV to IR spectral regimes. For example,
the energy band gap of the AlAs material is 2.19 eV, while the energy band gap
for GaAs is 1.43 eV at 300 K. Thus, the mixed compounds of Gax Al1−x As can
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produce coherent light emissions from the yellow and red to the near-infrared (IR)
spectral regime. UV, blue, and blue/green lasers have been successfully developed
in recent years using wide-band-gap GaN (Eg = 3.3 eV) based ternary compounds
such as Gax Al1−x N and Gax In1−x N material systems as well as SiC material.

As for the II-VI compound semiconductors, fabrication of LDs from these mate-
rial systems is not as simple and straightforward as it is for the III-V semiconductor
lasers. The self-compensation problem in II-VI semiconductors prevents possible
fabrication of p-n junction LDs from several of these materials. For example,
CdS can be produced only in n-type, while materials such as ZnS and ZnTe are
available only in p-type. Recent progress in material growth for some of the II-
VI compound semiconductors has made it possible to fabricate LDs from some
of the II-VI material systems. Although it is possible to fabricate a p-n hetero-
junction laser structure from the II-VI materials, lattice mismatch at the interface
of two different II-VI semiconductors creates further complications for efficient
laser operation. In the absence of an adequate heterostructure, LDs made from
II-VI materials must utilize an optical or electron-beam pumping technique. Re-
cently, successful fabrication of a ZnSe blue LED operating at 77 and 300 K has
been reported. Successful conversion of n-type ZnSe into p-type ZnSe has been
achieved using nitrogen implantation followed by thermal annealing with an IR
lamp, while n-type conduction can be obtained in Ga-doped ZnSe. Nitrogen dop-
ing in ZnSe enables one to produce p-type ZnSe. As a result, blue/green ZnSe
p-n junction LDs have been successfully developed for commercial applications.
Most ZnSe LDs reported are grown on GaAs substrates using the MOCVD or
MBE technique. However, the lifetime for ZnSe LDs is still shorter than that of
GaN LDs, and further improvement in material quality is needed for improving
the performance of ZnSe LDs.

It should be noted that the number of semiconductor materials exhibiting laser
action has been continually growing in recent years. Most of the semiconductor ma-
terials listed in Table 13.2 for LEDs have also been used in the fabrication of LDs.

13.5.4. Recent Advances in Semiconductor LDs

The worldwide market for LDs in noncommunications applications exceeded
$2 billion in 2004. Driven particularly by the demand for DVD players and DVD-
ROM drives, the market for LDs with wavelengths less than 1 μm grew from
$966 million in 1999 to more than $2.2 billion in 2004. LDs are an enabling
technology for a wide variety of consumer, computer, business, and industrial
products including the familiar audio CD players and computer CD-ROM drives,
DVD players and DVD-ROM drives, laser printers, laser pointers, barcode scan-
ners, industrial material processing systems, and computer-to-plate digital printing
presses.

The first significant volume application of LDs was in audio CD players,
beginning in 1981. Historically, most applications of LDs have required near-IR-
wavelength devices (780–850 nm); however, visible red (630–680 nm) LDs be-
came available in 1988. Initially, visible laser diodes (VLDs) were used primarily



13.5. Laser Diode Materials and Technologies 503

for barcode scanner and laser pointer applications. More recently, these LDs have
been used in higher-density optical storage systems, such as DVD-ROM drives.

Another major area of applications for LDs is in the telecom laser market. In-
frared LDs are a key component in local and long-distance telecom networks, as
well as in cable television distribution systems. The LDs for telecommunication
and fiber-optic links are fabricated from GaAs (850–980 nm), InGaAs (1.3 μm),
and InGaAsP (1.55 μm) material systems for fiber-optic links. The InGaAs and
InGaAsP LDs are used mainly for long-haul fiber-optic communications and data
transmission, while GaAs LDs are used mainly for short-distance local area net-
works (LAN). The LDs are used in these systems as transmitters into the optical
fiber, and also as high-power “pump” sources to drive the optical amplifiers used
along long-distance routes. The performance requirements on LDs for these appli-
cations are considered exceptionally demanding, and especially for the LDs used in
transcontinental cables. Demand for these products is so strong that the worldwide
market for LDs for telecom applications is forecast to grow from $1.95 billion in
1999 to over $5 billion in 2004, for a compound growth rate of over 22% per year.
Several semiconductor lasers developed recently for fiber-optic communication
and DVD applications are described next.

13.5.4.1. Visible Laser Diodes (VLDs)

LDs continue to find new product applications as the lasing wavelength is pushed
shorter into the visible spectrum. The latest generation of visible laser diodes
(VLDs) operate at or near 635 nm; this wavelength, equivalent to a helium neon
gas laser, is highly visible to the human eye. VLDs in the range from 635 to
685 nm are replacing the traditional HeNe laser in many commercial products for
good reasons: lower cost, compact size, and superior long-term reliability. Another
intrinsic benefit is that LDs are generally more suitable for battery-operated devices
and other low-voltage applications. The key technology for the VLDs is based on
AlGaAs and AlGaInP LDs grown on GaAs substrates by the MOCVD technique.
Commercial applications for these VLDs include laser pointer, line marker, leveler,
bar-code scanner, DVD, DVD-R/RW, laser printer, CD, CD-ROM, CD-R/RW, and
optical communications. The emission wavelengths can vary from 635 to 850 nm
depending on the alloy compositions used in the fabrication of these LDs. The
AlGaInP LDs with low threshold current (20 mA) and short wavelength (635 nm)
are achieved by using a strained InGaP/AlGaInP MQW active layer. A reduction
in the peak emission wavelength is achieved by increasing the band gap of the QW
active region. The 635-nm LD is eight times brighter than a 670-nm LD. Typical
output power for such an LD is 3–5 mW CW, which is suitable for battery-powered
laser pointers due to its low operating current and voltage.

For shorter-wavelength (400–470 nm) operation, blue LDs based on GaN/InGaN
material systems have been developed in recent years. Nichia Corporation has
demonstrated a long-lived (10,000 hours) GaN-based blue LD, and Sony, Fujitsu,
Toshiba, and many other companies have aggressive research programs to develop
these devices for high-density optical storage applications. There are now more
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than 30 LD manufacturers around the world. The major suppliers of low-power
LDs (i.e., P0 < 100 mW) are Japanese companies such as Sony, Rohm, Sharp, and
Matsushita. North American companies such as SDL and Opto Power have taken a
leading role in the high-power LD (P0 > 10 W) market. European producers, such
as OSRAM Opto Semiconductor and DILAS, are gradually increasing their market
share. In Asia, Samsung and several Taiwanese companies are also producing LDs.
There are many applications using LDs operating in the 780–850 nm infrared
spectral range, since some machine vision systems and sensors are optimized for
near-infrared light sources, and GaAs LDs operating at 850 nm are widely used
in short-distance LAN and optical links. High-performance InGaAsP/InP strained
MQW lasers grown on InP substrates have been developed for 1.3 and 1.55 μm
fiber-optic communications applications.

13.5.4.2. Vertical Cavity Surface Emitting Lasers

The vertical cavity surface emitting laser (VCSEL) is a semiconductor LD that
emits light in a cylindrical beam vertically from the surface of a fabricated wafer.
It offers significant advantages when compared to the edge-emitting lasers cur-
rently used in the majority of fiber-optic communications devices. VCSELs can be
fabricated efficiently on a 3-inch-diameter wafer. Even more important, the ability
to manufacture these lasers using standard microelectronic fabrication methods
allows integration of VCSELs on board with other components without requiring
prepackaging. As an enabling technology, VCSELs allow superior new systems
and products to be created at a lower cost. VCSELs provide a higher coupling
efficiency with an optical fiber due to the emission of a circular laser beam and
the ease of the manufacture of an array, and enable error detection and character-
istics measurement in a wafer state. As a result, they are emerging as a promising
light source in optical communications and optical interconnections. In partic-
ular, index-guided VCSELs, in which an aperture through which current flows
is confined by selective oxidation, have a very low threshold current and power
consumption, high efficiency, and excellent linearity of current to light output.
Therefore, the index-guided VCSELs can be applied to transceiver modules for
local area communications and for optical interconnection between computers and
digital displays; and some of these are under commercial development. The VC-
SELs can be fabricated from a list of material systems including GaN, GaAs, InP,
GaSb, ZnSe, and their compounds.

VCSELs have a number of important advantages that have catapulted them to
the distinctive position of being the technology of choice for a wide range of
data communications products. With a low threshold current of between 1 and 6
mA, VCSELs offer very efficient power conversion. They can deliver transmission
speeds between 1 and 10 Gbit/s, yet have a modulation swing of only 5–10 mA,
which keeps power consumption low. The latest generation of VCSELs does not
require hermetic packaging, yet typical mean lifetimes for a well-manufactured
VCSEL device range from 10 to 100 years. At the same time, the circular, low-
divergence output beams provided by VCSELs eliminate the need for corrective
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optics in most applications. The GaAs-based VCSELs with peak emission wave-
length at 850 nm are used as optical switch interconnects for very-short-reach
(VSR), rack-to-rack or switch-to-aggregation device interconnects, short-reach
storage-area networks (SAN), and LAN links for enterprise networks (typical dis-
tance is less than 500 m). They are solidly entrenched in the network for SAN and
LAN backbones. The dominant laser communication for these optical intercon-
nects is transceivers based on VCSELs. For longer-reach links (10 km) in optical
metro/access interconnects, the InP-based VCSELs with peak emission wave-
length at 1310 nm are used in these applications. The InGaAsP VCSEL arrays
grown on InP substrates with emission wavelength at 1550 nm are used primarily
for long-haul, core fiber-optic interconnects with distances greater than 100 km.

Currently, optical networks use fixed-wavelength lasers emitting at particular
wavelengths to achieve data multiplexing and higher bandwidth. Advances in
GaAs-based VCSELs have led to commercial applications in data communications
at 850 nm, while InP-based VCSELs operating at 1.3 and 1.55 μm are used as
sources for long-haul telecommunications.

The VCSEL devices are characterized by a short optical cavity length on the
order of nλ, where λ is the laser operating wavelength and n is the refractive index
of the cavity material. The cavity is formed between two highly reflecting DBR
mirrors, which consist of alternate quarter-wavelength (1/4 λ) low and high refrac-
tive index layers. The gain region generally consists of quantum wells positioned
at the antinodes of the cavity resonance. The VCSEL’s geometry is such that the
optical cavity is defined normal to the wafer surface, and hence the laser is surface
emitting. The surface normal emission means that subsequent process steps are
used to define a circularly symmetric optical aperture. The resulting transverse
mode thus produces low-divergence circular-beam profiles that are ideal for cou-
pling into optical fibers. The very short cavity length also ensures support of only
one longitudinal mode.

Figure 13.35 shows a schematic drawing of an oxide-confined top-emitting
AlGaAs/GaAs-based VCSEL for ultra-high-speed 850-nm optical interconnects.
The layer structure is grown by molecular beam epitaxy (MBE) on GaAs substrate.
The active region is composed of three 8-nm-thick GaAs/AlGaAs QWs embed-
ded in carrier confinement layers and bottom and top DBRs. Devices with small
mesa diameters are desirable in order to reduce the low-pass filter effect of series
resistance and parasitic capacitances on the modulation bandwidth. As shown in
Figure 13.35, upper mesas of 20 μm diameter are formed using chemically as-
sisted ion beam etching. After selective wet oxidation of the 30-nm-thick AlAs
layer current aperture, the mesas are passivated and a second etching step gives ac-
cess to the n-doped GaAs substrate on which a large-area n-contact is evaporated.
The surface is planarized with polyimide and a coplanar contact layout is put on
top that allows wire bonding to a transmission line or alternatively flexible testing
with a microwave probe tip. Measured electrical 3-dB bandwidths easily exceed
12 GHz for small-signal modulation. For apertures below 4 μm, the VCSEL emits
in a single fundamental mode closely resembling a Gaussian field profile. High-
est reported output powers are in the 5 mW range. Both types of VCSELs can
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Figure 13.35. Schematic drawing of an oxide-confined top-emitting AlGaAs/GaAs-based
VCSEL for ultra-high-speed 850-nm optical interconnects. The active region is composed
of three 8-nm-thick GaAs/AlGaAs QWs embedded in carrier confinement layers and bottom
and top DBRs. After mederer. 21

be designed for 10 Gbit/s operation. For larger diameter, lasing occurs in several
transverse modes. Both types of VCSELs can be designed for 10 Gbit/s operation.

VCSELs operating at telecom wavelengths of 1,310 and 1,550 nm are signif-
icantly more cost effective and easier to build than standard edge-emitting lasers
used in current high-speed communications. A number of approaches have been
developed to produce 1.3 and 1.55 μm VCSELs. One approach is using wafer
fusion to combine the 1300 nm active region with the GaAs-based DBR mir-
rors and an integrated optical pump. Another approach is to use an InGaAsN
active layer lattice-matched to GaAs-based DBRs. Cielo and Sandia demonstrated
the first electrically pumped 1.3 μm VCSEL. The monolithic device exhibited
single-mode and continuous-wave operation at 1,294 nm with an output power of
60 mW. The device is grown by a single MBE growth process, and does not involve
the use of wafer fusion techniques. It is a monolithic GaAs-based structure with
GaAs/AlGaAs DBR mirrors and an active region containing two QWs made from
the quaternary In0.35Ga0.65As0.983N0.017 alloy, which is lattice-matched to GaAs
at low nitrogen composition. The significant cost reduction provided by 1.3 μm
VCSELs has made increased bandwidth more accessible and cost effective for the
telecommunications and Internet infrastructure. Furthermore, since 1.3 μm light
can be transmitted through silicon, the additional flexibility this offers for integrat-
ing the 1.3 μm VCSELs with silicon-based microsystems will have significant im-
plications for security systems applications. The development of 1310 nm VCSEL
arrays and 10 Gbit/s transceivers is causing VCSELs to expand into ultrahigh-
bandwidth enterprise switching and SAN applications, as well as metro/access
applications.
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Figure 13.36. The schematic layer structure of a single-epitaxy 1.6 μm InP-based VCSEL
developed by Bandwidth. This VCSEL is grown on InP substrate, and is composed of a
lattice-matched n-InGaAlAs/InAlAs bottom DBR mirror and an InGaAs QW active region.
After Whitaker.22

The InP-based VCSEL is capable of emitting light in the 1550 nm transmission
window for fiber-optic links. Figure 13.36 shows the schematic layer structure of
a single-epitaxy 1.6 μm InP-based VCSEL developed by Bandwidth9. This VC-
SEL device is grown on InP substrate, which is composed of a lattice-matched
n-InGaAlAs/InAlAs bottom DBR mirror and an InGaAs QW active region. The
key feature of the device is the inclusion of a metamorphic p-GaAs/AlGaAs top
DBR mirror, which provides high reflectivity and allows direct current injection.
The device emitted a single transverse mode with fixed polarization, and demon-
strated CW output power of 0.45 mW at 25◦C, as well as error-free transmission
at 2.5 Gb/s through 50 km of single-mode fiber. The maximum output power of
0.45 mW was achieved for a device with a 9 μm aperture and a threshold voltage
of 1.7 V. The minimum threshold current is 0.87 mA for a 32-μm device.

Today,1,310 and 1,550 nm VCSELs with low threshold current (10 mA) and
modulation capability up to 2.5 and 1.25 Gb/s are commercially available for
applications in telecommunications, fiber-optic links, cable TV, fiber channel, and
ATM transceiver modules and systems. Typical high-speed 1310 nm LD devices
deliver a CW output power of 5 mW at operating current of 22 mA and operating
voltage of 1.15 V with a slope efficiency of 0.40 mW/mA. The 1,550 nm LD device
delivers a CW output power of 5 mW at 33 mA and 1.15 V with a slope efficiency
of 0.26 mW/mA.
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13.5.4.3. Tunable Lasers

The high data capacity provided by dense-wavelength division multiplexing
(DWDM) optical fiber links is the reason that Internet exists in its current form.
The DWDM technology has been instrumental in allowing network operators to
send multiple signals down a single fiber, enabling a huge growth in network re-
sources for no extra fiber deployment. With the exponential growth of traffic, it
is clear that optical network capacity installation must continue apace by scaling
dramatically. Currently, optical networks employ fixed lasers emitting at particular
wavelengths to achieve data multiplexing and higher bandwidth. Therefore, key to
satisfying the requirements of future optical networks will be the ability to supply
bandwidth on demand. These can be nicely met by tunable lasers: light sources
that can be tuned over a range of wavelengths.

There are several approaches to tunable lasers on the market, including DFB laser
arrays, DBR lasers, tunable VCSELs, and ECLs. Each of these laser technologies
has strong points and weaknesses to be overcome. The ECL device is capable of
very high spectral purity, high output power, and wide tuning range. These features
make the emerging ultra-long-haul applications a natural target for this technology.
Since wavelength tuning in an ECL is achieved by physically moving the mirror
and grating in concert, there are some major challenges to overcome in qualifying
the product and proving telecom-level reliability. Furthermore, the ECL is fairly
complex to manufacture, and hence is unlikely to achieve the cost points necessary
to address the metropolitan or regular long-haul applications.

Tunable VCSELs are used with a MEMS mirror to provide the wavelength
tuning. There are two main types of tunable VCSELs: electrically pumped and
optically pumped. The electrically pumped architecture offers wide tunability at
relatively low power levels. Using direct modulation, this approach can be well
suited to metro-access solutions where low power and short-dispersion limited
reach can be accommodated. This technology has the potential for low-cost man-
ufacturing; the laser’s chips can be tested on wafer, so only known good dies are
assembled and coupling efficiency can be quite high due to the circular nature of
the beam. The power capabilities largely preclude this technology from addressing
long-haul applications.

The optically pumped variant of the tunable VCSEL offers slightly greater power
and is targeted more toward long-haul applications. To achieve the power necessary
for long-haul applications, it is necessary to use an additional semiconductor optical
amplifier (SOA) chip to boost the output power; this adds cost and complexity to
the manufacturing process. It is also possible to modulate the pump laser to address
the metro-access market, but the multichip assembly approach does not lend itself
well to addressing the cost requirements for this space. Both of these VCSEL
approaches rely on small mechanical movement to provide the tuning function. The
same reliability and qualification challenges outlined for the ECLs also apply here.

Figure 13.37 shows a cross-sectional view of a grating coupled sample reflector
(GCSR) tunable laser developed by Attitun. This GCSR laser employs four separate
regions fabricated from a monolithic InP structure with an InGaAsP quantum-well
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Figure 13.37. A grating coupled sample reflector (GCSR) tunable laser that uses four
separately controlled regions fabricated in the monolithic InP structure with an InGaAsP
QW quaternary active region. The design allows tuning across a 100-nm range. After
Plasto.23

(QW) active region, each section determines the optical power of the device, while
the second vertical coupler region acts as a coarse tuning of up to 100 nm. This
enables the choice of one of the ten or more wavelengths available from the peaks
reflected by the sampled grating Bragg reflector (S-DBR). Once the wavelength
range is selected, the grating region tunes the current across a 4-nm band in the
same way as that of a DBR, and a phase region gives the fine control at the
GHz level. The control of power and wavelength of this device is managed at the
module level and the power output can be at 10 dBm or higher. Tunable lasers will
be extensively used for bandwidth provisioning and for fast optical switching in
the new generation of optical networking.

Problems

13.1. If band-to-band radiative recombination is responsible for the emission
of photons, what color of light may be expected from an LED made
from the following materials and explain why: GaAs, GaN, Ga0.3Al0.7As,
GaAs0.6P0.4, In0.53Ga0.47As, In0.5Al0.5P, and In0.5Ga0.5P? If the band gap
energy for GaAs is Eg = 1.42 eV; Eg = 3.5 eV for GaN, 2.26 eV for GaP,
2.45 eV for AlP, 2.19 eV for AlAs, and 1.35 eV for InP, use linear ex-
trapolation to find the band gap energy variation with alloy composition x
(i.e., Alx Ga1−x As) for the ternary compounds listed above and find their
corresponding emission wavelengths.

13.2. (a) Draw a cross-sectional view of the layer structure of an AlGaInP
DH LED consisting of p-GaP window-layer, p-AlInP cladding layer
(NA = 5 × 1017 cm−3), p-AlGaInP active layer (NA = 5 × 1016 cm−3),
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n-AlInP cladding layer, and AlAs/AlGaAs DRB grown on n-GaAs ab-
sorbing substrate; this DH LED emits light at 565 nm (yellow). (b)
Explain how the light emission, carrier, and optical confinements are
achieved in this DH LED and (c) if yellow light is emitted from this
LED, what would happen if the GaAs substrate were replaced by GaP
substrate.

13.3. A ZnO-doped GaP LED is used as a red LED. The Zn impurity is an acceptor
level with EA = Ev + 0.04 eV, an oxygen (O) impurity is a deep-donor
level with ED = Ec − 0.43 eV, and the band gap energy for GaP is Eg =
2.26 eV. What is the peak emission wavelength for this LED if the light
emission is due to the radiative recombination via ZnO impurity centers.

13.4. The refractive indices of GaN and GaAs LEDs are given by 2.5 and 3.4,
respectively. (a) Calculate the critical angle of total internal reflection
for GaAs, and GaN, using (13.25). (b) If the fraction of light power that
escapes from the semiconductor is given by

Pescape

Psource
= n2

air

4n2
s
, (1)

where Psource is the light power emitted from the semiconductor and
nair and ns are refractive indices of air and semiconductor, respectively,
calculate the fraction of light power that can escape from a planar GaAs
and GaN LED structure. (Answer: φc = 17.1◦ for GaAs, 23.6◦ for GaN;
fraction of light escape: 2.21% for GaAs, and 4.18% for GaN.)

13.5. Using (13.23) through (13.26) and the latest LED growth technologies,
design an AlGaInP red LED that could yield an external quantum
efficiency of 50% or higher.

13.6. High-power white LEDs are in great demand for lighting use in homes and
offices. Describe two or three approaches that could be used to produce
high-efficiency white LED solid-state lamps.

13.7. What is the optical power density (per unit volume) generated in a typical
GaAs injection LD at threshold for T = 4, 77, and 300 K? If 1% of this
power density is absorbed and converted into heat in the junction volume,
what would be the rate of temperature rise in this GaAs LD?

13.8. Draw the energy band diagram of a degenerate GaAs p+-n+ junction LD
with a sufficiently large forward bias to cause population inversion in a
narrow region of the junction, and explain the operation principle of this LD.

13.9. Design a single-mode double-heterojunction LD with carrier and optical
confinements using InP-based lattice-matched materials for light emission
at wavelength 1.55 μm.

13.10. Using (13.40), calculate the threshold current density Jth for a GaAs p-n
junction LD. The physical parameters for this LD operating at very low
temperatures (e.g., at 4.2 K) are quantum yield, η = 1 (i.e., τr = τ2); index
of refraction for GaAs, n0 = 3.46; linewidth, �λ = 20 nm; laser wave-
length, λ = 840 nm; cavity length, L = 0.3 mm; junction depth, d = 10−4



13.5. Laser Diode Materials and Technologies 511

cm; reflection coefficient, R = 0.32; junction area, A = 3 × 10−4 cm2;
and losses, l = 0. (Answer: Jth = 120 A/cm2 or Ith = 36 mA at 4.2K.)

13.11. The power output (P0) of an LD as a function of injection current density
can be described by

P0 = A(J − Jth)

(
ηihν

q

)
(1/2L) ln(R)

[l + (1/2L) ln(R)]
, (1)

where Jth is the threshold current density, η is the internal quantum
efficiency, R = R1 = R2 is the reflectivity at two laser facets, l is the loss
in the laser medium due to free carrier absorption and scattering by defect
centers, and hv is the emission photon energy. Suppose the temperature
dependence of threshold current density is given by

Jth = Jth0 exp(T/T0), (2)

where Jth0 is the threshold current density at T = 0 K and T0 is the
characteristic temperature of LD material.
Using (1) and (2), plot the power output (P0) of an AlGaAs/GaAs DH
laser versus diode current for T = 0, 10, 20, 30, 40, 50, 60, and 70 ◦C (see
Figure 13.30). Given: T0 = 160 K for an AlGaAs/GaAs LD.
(Note that (1) can also be used to find the power conversion efficiency of
an LD, which is defined by ηp = P0/Va AJ .)
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14
Bipolar Junction Transistors

14.1. Introduction

The invention of germanium alloy bipolar junction transistors (BJTs) by Bardeen,
Brattain, and Shockley in 1948 has revolutionized the electronics industry. The
BJT device is considered one of the most important electronic components used
in modern integrated circuit (IC) chips for computers, communications and power
systems, and in many other digital and analog electronic circuit applications. The
subsequent developments of silicon BJTs, metal-oxide-semiconductor field-effect
transistors (MOSFETs), and ICs based on BJTs and MOSFET have changed the
landscape of the entire electronics industry. As a result, silicon BJTs and FETs have
replaced bulky vacuum tubes for various electronic circuits, computers, microwave,
and power systems applications. Furthermore, advances in silicon-processing tech-
nologies such as the development of optical and electron-beam (E-beam) lithogra-
phies, new metallization and etching techniques, as well as ion-implantation en-
able the fabrication of high-performance silicon BJTs with submicron geometries
for very large scale integrated circuit (VLSIC) applications. Recent development
of new Si/Si-Ge heterojunction bipolar transistors (HBTs) grown by molecular
beam epitaxy (MBE) and metal-organic-chemical vapor deposition (MOCVD)
techniques on silicon substrates offer even higher speed performance for next-
generation supercomputer applications.

Conventional n+-p-n or p+-n-p BJTs may be fabricated using either alloy-
ing, thermal-diffusion, or ion-implantation techniques. Various semiconductor-
processing technologies such as epitaxy, planar, beam-lead, optical and E-beam
lithographies, oxidation, passivations, and dry etching (i.e., reactive ion etching
(RIE)) have been developed to facilitate fabrication of silicon ICs and III-V semi-
conductor optoelectronic devices. Recent advances in processing technologies of
III-V compound semiconductor materials and devices have made it possible to
develop new high-speed and high-frequency devices using GaAs- and InP-based
III-V compound semiconductors. For example, high-speed HBTs have been devel-
oped using AlGaAs/GaAs and InAlAs/InGaAs material systems. In general, semi-
conductor devices fabricated from GaAs/AlGaAs, InGaAs/InP, and other III-V
compound semiconductors (e.g., AlGaN/GaN) can be operated at a much higher
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frequency and speed than silicon devices because of the inherent high electron
mobility of III-V semiconductors. This will be discussed further in Chapter 16.

A BJT device may be operated as an amplifier or as an electronic switch, de-
pending on its bias condition. Unlike a unipolar field-effect transistor (FET), which
is a majority carrier device, the BJT is a bipolar device since its current conduction
is due to the diffusion of the minority carriers (i.e., electrons in the p region and
holes in the n-region) across the p-n junctions. Therefore, the p-n junction theories
described in Chapter 11 can be used to derive the minority and majority carrier
distributions, current conduction, and the static and dynamic characteristics of a
BJT device.

If one adds another p-n junction to the n-p-n BJT structure, a four-layer p-
n-p-n switching device can be formed. A p-n-p-n structure is a bistable device
whose operation depends on internal feedback mechanisms that can produce high-
and low-impedance stable states under bias conditions. This enables the p-n-p-n
device to operate as a switching device. The p-n-p-n devices are available for a wide
range of voltage and current ratings. The low-power p-n-p-n devices are designed
mainly for use in switching and logic circuitry, while high-power p-n-p-n devices
find wide applications in AC switching, DC choppers, phase-control devices, and
power inverters.

In this chapter, the basic principles that govern the operation of a BJT and a
four-layer p-n-p-n device are discussed. A general description of the basic BJT
structure and modes of operation is presented in Section 14.2. The distribution of
excess carrier densities, current components, and current–voltage (I–V) character-
istics for a BJT under bias conditions are discussed in Section 14.3. The current
gain, base transport factor, and emitter injection efficiency of a BJT are examined
in Section 14.4. In Section 14.5, we present the Ebers–Moll and Gummel–Poon
models, which provide a powerful means for elucidating the physical insights
of the transistor action under different operation modes and biasing conditions.
The frequency response and switching properties of a BJT as well as the effect
of heavy doping on current gain and limitations due to base resistance and junc-
tion breakdown are also discussed. Section 14.6 describes basic device theory and
performance characteristics of a Si BJT switching device. Finally, the device struc-
ture, operation principles, and performance characteristics of a p-n-p-n four-layer
switching device are presented in Section 14.7.

14.2. Basic Device Structures and Modes of Operation

The physical makeup of a typical n+-p-n (or p+-n-p) BJT consists of three distinct
regions, namely, a heavily doped n+ (or p+) emitter region, a thin (0.5 μm or less) p
(or n) base region, and a lightly doped n (or p) collector region. Figures 14.1a and b
show a vertical n+-p-n and a vertical p+-n-p BJT, respectively. Figure 14.1c is a
schematic representation of an n+-p-n transistor, and Figure 14.1d shows the circuit
symbols of an n+-p-n and a p+-n-p transistor. In general, a BJT may be operated
in three different configurations: the common-emitter mode, the common-base
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Figure 14.1. (a) Cross-sectional view of an n+-p-n bipolar junction transistor (BJT), (b) a
p+-n-p BJT, (c) schematic diagram of an n+-p-n BJT, and (d) circuit symbols for an n-p-n
and a p-n-p transistor.

mode, and the common-collector mode, as shown in Figure 14.2. In normal
active-mode operation, the emitter–base junction is forward-biased and the
collector–base junction is reverse-biased. Under this condition, the transistor is
operated as an amplifier. In the saturation-mode operation, both the emitter–
base and collector–base junctions are forward-biased, while in the cutoff-mode

Figure 14.2. Three different configurations of an n+-p-n BJT: (a) common-base,
(b) common-emitter, and (c) common-collector connections.
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Figure 14.3. (a) Energy-band diagram of a p+-n-p transistor operating in the normal active
mode as an amplifier (VEB > 0 and VCB � 0) and (b) current components for a p+-n-p
transistor amplifier.

operation both the emitter–base and collector–base junctions are reverse-biased.
Figures 14.3a and b show the energy band diagram and current components of
a p+-n-p BJT operating as an amplifier under normal active mode conditions,
respectively.

14.3. Current–Voltage Characteristics

The current–voltage (I–V) characteristics for a BJT under bias conditions can be
derived from the p-n junction theories described in Chapter 11. To analyze the dc
characteristics of a BJT, it is assumed that the I–V characteristics in the emitter–
base (E-B) junction and the collector–base (C-B) junction follow the ideal diode
equation. Under this assumption, effects due to surface recombination-generation,
series resistance, and high-level injection may be neglected. Figure 14.4 shows the
spatial distributions of excess carrier densities in the emitter, base, and collector
regions of the BJT. The excess electron and hole densities at the edge of the E-B
junction of a p+-n-p transistor can be expressed as

p′
nb (0) = pnb (0) − p0b = p0b

(
eqVBE/kBT − 1

)
at x = 0 (14.1)

and

n′
pe (−xE) = npe (−xE) − n0e = n0e

(
eqVBE/kBT − 1

)
at x = −xE, (14.2)
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Figure 14.4. Minority carrier
density distributions for a
p+-n-p transistor with E-B
junction forward-biased and
C-B junction reverse-biased
(assuming WE � Lpe and
WB � Lpb).

where p0b and n0e denote the equilibrium hole and electron densities at the edge
of the E-B junction, respectively. Similarly, the excess hole and electron densities
at the edge of the base–collector junction are given, respectively, by

p′
nb (Wb) = pnb (Wb) − p0b = p0b

(
eqVCB/kBT − 1

)
at x = Wb (14.3)

and

n′
pc (xC) = npc (xC) − n0e = n0e

(
eqVCB/kBT − 1

)
at x = xC, (14.4)

where n0c is the equilibrium density of electrons in the collector region. Since the
potential drop occurs mainly across the depletion region, the continuity equation
for holes in the quasineutral n-base region can be written as

Dpb
∂2 p′

nb

∂x2
− p′

nb

τb
= 0. (14.5)

The general solution of (14.5) for the excess hole density in the quasineutral n-base
region (i.e., 0 < x < Wb) is given by

p′
nb (x) = C1e−x/Lpb + C2ex/Lpb , (14.6)

where C1 and C2 are constants to be determined. Substituting the boundary con-
ditions given by (14.1) and (14.3) into (14.60), we obtain

p′
nb (x) = pn0

(
eqVEB/kBT − 1

) sinh
(
(Wb − x)/Lpb

)
sin

(
Wb/Lpb

)
+ pn0

(
eqVCB/kBT − 1

) sinh
(
x/Lpb

)
sinh

(
Wb/Lpb

) , (14.7)

where Lpb = (Dpbτb)1/2 is the hole diffusion length in the n-base region. Equation
(14.7) is important, because it relates the minority hole density in the base region
to the base width Wb. For example, if Wb approaches infinity (i.e., Wb/Lpb � 1),
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then (14.7) reduces to the case of a p-n junction diode, and the transistor action
is halted. If the E-B junction is forward-biased and the C-B junction is reverse-
biased, then the second term in (14.7) is negligible, and the hole density profile in
the base region becomes

p′
nb (x) ≈ pn0(eqVEB/kBT − 1)

sinh((Wb − x)/Lpb)

sinh(Wb/Lpb)
. (14.8)

Equation (14.8) can be further simplified for most practical transistors since the
base width is much smaller than the hole diffusion length Lpb, and hence for
VEB � kBT/q, (14.8) reduces to

p′
nb ≈ pn0 eqVEB/kBT

(
1 − x

Wb

)
. (14.9)

This shows that the minority hole density in the base region decreases linearly
with distance x from the edge of the E-B junction to the edge of the base–collector
(C-B) junction, as shown in Figure 14.4. Deviation from this linear dependence
with distance x can be attributed to the recombination loss occurring in the base
region. The hole current in the base region may be derived from the diffusion
equation for the excess hole density, which is given by

Ipb = −q ADpb
dp′

nb (x)

dx
, (14.10)

where p′
nb(x) is given by (14.7). Thus, the injected hole current entering the base

can be evaluated at x = 0 using (14.10), and the hole current flowing out of the
base is evaluated at x = Wb using (14.10). This yields

Ipb (0) = q Dpb pn0

Lpb
coth

(
Wb

Lpb

)
(eqVEB/kBT − 1)

− q Dpb pn0

Lpb sinh
(
Wb/Lpb

) (eqVCB/kBT − 1), (14.11)

Ipb (Wb) = q Dpb pn0

Lpb sinh
(
Wb/Lpb

) (eqVEB/kBT − 1)

− q Dpb pn0

Lpb
coth

(
Wb/Lpb

)
(eqVCB/kBT − 1). (14.12)

It is seen that the hole current in the base region is, in general, a function of the
applied bias voltages at both the E-B and C-B junctions. The polarity of the bias
voltages at both junctions can be changed depending on the operation modes of
the BJTs.

Similarly, the excess electron densities in the p+-emitter and p-collector regions
of the BJTs can be determined by solving the continuity equations for the excess
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electron densities in both regions; they are given respectively by

n′
pe (x) = n′

pe (−xE) e(x+xE)/Lne for x < −xE, (14.13)

n′
pc (x) = n′

pc (xC) e−(x−xC)/Lnc for x > xC, (14.14)

where n′
pe(−xE) and n′

pc(xC) are the excess electron densities at the edges of the E-
B and C-B junctions defined by (14.2) and (14.4), respectively. Equations (14.13)
and (14.14) show that the excess electron densities decrease exponentially with
distance from the depletion edge of both the E-B and C-B junctions, as shown
in Figure 14.4. The electron current in the emitter and collector regions can be
derived from the diffusion equation given by

In = q ADn

dn′
p

dx
. (14.15)

The total emitter current, which consists of the electron injection current from the
emitter to the base and the hole-injection current from the base to the emitter, is
given by

IE = A′ (IpE + InE
)

= −A′q Dpb
dp′

nb

dx

∣∣∣∣
x=0

+ A′q Dne

dn′
pe

dx

∣∣∣∣
x=−xE

= IBO coth

(
Wb

Lpb

) ⎡
⎣(

eqVEB/kBT − 1
) − 1

cosh
(

Wb
Lpb

) (
eqVCB/kBT − 1

)⎤⎦
+ IEO

(
eqVEB/kBT − 1

)
, (14.16)

where

IBO = A′qn2
i

(
Dpb

NdbLpb

)
, (14.17)

IEO = A′qn2
i

(
Dne

NaeLne

)
, (14.18)

are the saturation currents in the base and emitter regions of the BJTs, respectively.
Similarly, the collector current can be expressed by

IC = A
(
IpC + InC

)
= −Aq Dpb

dp′
nb

dx

∣∣∣∣
x=WB

+ Aq Dnc

dn′
pc

dx

∣∣∣∣
x=xC

= IBO

sinh (Wb/Lpb)

[(
eqVEB/kBT − 1

) − coth

(
Wb

Lpb

) (
eqVCB/kBT − 1

)]
+ ICO

(
eqVCB/kBT − 1

)
, (14.19)

where

ICO = Aqn2
i

(
Dnc

NacLnc

)
(14.20)
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is the collector saturation current, A is the C-B junction area, and A′ is the E-B
junction area. If the direction of current flow into the emitter, base, and collector
junctions shown in Figure 14.3b is defined as positive, then the base current IB is
related to the emitter and collector currents by

IB = −IE − IC, (14.21)

where IE and IC are the emitter and collector currents given by (14.16) and
(14.19), respectively. Since the emitter current is nearly equal to the collec-
tor current, the base current IB is usually very small. It is noted that (14.21)
does not include the recombination current in the base region. As shown by
(14.9), for a uniformly doped base with negligible base recombination (i.e.,
Wb � Lpb) the injected excess hole density is a linear function of x in the base
region. In general, the recombination current in the base region can be expressed
by

Ir =
(

q A′

τp

) ∫ Wb

0
p′

nb (x) dx ≈
(

q A′niW

2τ0

)
eqVEB/2kBT . (14.22)

If the recombination current component in the base is not negligible, then (14.22)
should be added to (14.21) to obtain the total base current.

It should be noted that (14.16) through (14.22) for the current components
derived above are valid only for a BJT with a uniformly doped base. However, for
a practical BJT in which the E-B and B-C junctions are formed by double diffusion
or ion implantation, the base impurity doping profile is no longer uniform and a
built-in electric field exists in the base region. This is illustrated in Figure 14.5 for

Figure 14.5. Impurity density
profile for a double-diffused pla-
nar epitaxial structure of a p+-n-
p-p+ transistor.
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a double-diffused planar p+-n-p-p+ BJT. The built-in electric field E due to the
nonuniform doping profile in the base region of a BJT can be expressed by

E = kBT

q Nd (x)

dNd (x)

dx
. (14.23)

The polarity of the built-in electric field given by (14.23) is such that it assists the
transport of injected holes in the base region. Thus, the hole current density in this
case is given by

J ′
pb = qμp pnbE − q Dpb

dpnb

dx
= q Dpb

[(
pnb

Ndb

)
dNdb (x)

dx
+ dpnb

dx

]
.

(14.24)

Equation (14.24) is obtained by substituting E given by (14.23) for the electric
field and using μp from the Einstein relation (i.e., μp = (kBT/q)−1 Dp) in the
first term of (14.24). Multiplying both sides of (14.24) by Ndb and integrating the
equation yields

p′
nb (x) = J ′

pb

q Dpb Ndb

∫ Wb

x
Ndb dx . (14.25)

It is noted that (14.25) is obtained using the boundary condition p′
nb(Wb) = 0 and

x = Wb and by assuming that J ′
pb is constant (i.e., the recombination current is

negligible in the base region). From (14.25), the hole density at x = 0 is given by

p′
nb(0) = n2

i

Ndb(0)
eqVBE/kBT = J ′

pb

q Dpb Ndb(0)

∫ Wb

0
Ndb(x) dx . (14.26)

Thus, the hole current in the base region can be derived from (14.26), which yields

I ′
pb = J ′

pb A′ =
(
q A′ Dpbn2

i

)
eqVBE/kBT∫ Wb

0 Ndb (x) dx
. (14.27)

The integral in the denominator of (14.27) represents the total number of im-
purity atoms in the base and is known as the Gummel number. For silicon BJTs
the Gummel number may vary between 1012 and 1013 cm−2. Therefore, a larger
electron current flow can be realized with a smaller Gummel number, which corre-
sponds to a narrower base width. Figure 14.6 shows the base and collector currents
versus the E-B junction bias voltage for a silicon BJT.1 Four regions are observed
in this plot: (i) the low-VBE, nonideal region in which the base current is dominated
by the recombination current and IB varies with eqVEB/2kBT ; (ii) the ideal region
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Figure 14.6. Base and
collector currents as a function
of the emitter-base bias voltage
for a silicon BJT under
forward-bias conditions. After
Jespers,1 by permission.

in which both the base and collector currents are dominated by the diffusion cur-
rent (i.e., IB and IC ≈ eqVEB/kBT ; (iii) the moderate-injection region in which a
significant voltage drop occurs across the base resistance (i.e., rb IB drop); (iv)
the high-injection region in which IC and IB vary with eqVEB/2kBT . In general, the
recombination current generated in the base region can be decreased by reducing
the processing-related defects in this region, while the high-injection and base-
resistance effects can be minimized by modifying the base doping profile and the
transistor structure.

The output I–V (i.e., IC vs. VCE) characteristics for a silicon p+-n-p BJT with a
common-emitter configuration is shown in Figure 14.7.2 Also shown in this figure
are the Early voltage VA, the collector saturation current I ′

CO (also known as ICEO),

Figure 14.7. Ic versus VCE

for a p+-n-p silicon BJT with
common-emitter
configuration. Also shown in
the figure are the Early
voltage VA, saturation current
I′CO, and breakdown voltage
VCEO for the common-emitter
configuration. After Gummel
and Poon,2 by permission.
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Figure 14.8. Breakdown voltage and
saturation current for p+-n-p silicon BJTs
with common-base and common-emitter
configurations.

and the breakdown voltage VCEO. The breakdown voltages and saturation currents
for p+-n-p silicon BJTs with common-base and common-emitter configurations
are shown in Figure 14.8. It is seen that the saturation current ICO (also known
as ICBO) for the common-base configuration is substantially smaller than ICEO for
the common-emitter configuration (i.e., by a factor of β0). In the common-base
configuration, the current gain α0 is close to unity and IC is nearly independent of
VCB. From the current equations derived earlier, we see that both the emitter current
IE and collector current IC are functions of the applied voltage across the E-B and
C-B junctions. In the common-emitter configuration the current gain β0 can be
quite large and IC usually increases with increasing VCE. The collector saturation
current I ′

CO for the common emitter configuration (i.e., base opened and IB = 0)
is related to the saturation current ICBO for the common-base configuration by

I ′
CO = ICEO = ICO

(1 − α0)
= β0 ICBO. (14.28)

The base width Wb will decrease with increasing VCE, which in turn will cause
an increase in the current gain. The continued increase of IC with increasing VCE

is attributed to a large increase of β0 with VCE in the common-emitter mode of
operation. This phenomenon is called the Early effect, which is a direct result of
the base-width modulation by the C-B junction bias voltage variation. It is noted
that in a BJT, a change of C-B junction bias voltage will result in a change of
space-charge layer width at the C-B junction and consequently will modify the
width of the quasineutral base region. This variation will result in several effects
that further complicate the performance of a BJT as a linear amplifier. The voltage
VA in which the extrapolated IC versus VCE curves (see Figure 14.7) meet the
negative VCE axis is called the Early voltage, which is given by

VA = q NBW 2
b

ε0εs
. (14.29)

Equation (14.29) is valid for a BJT whose base width Wb is much larger than its
depletion layer width in the base. To reduce the influence of the C-B voltage on the
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collector current, the value of VA must be increased. From (14.29), it is seen that
this can be accomplished by increasing the base doping density, which, in turn,
will reduce the C-B depletion layer width and hence the Early effect. This reduces
the movement of the C-B boundary to the base region of a BJT.

The breakdown voltage BVCEO for the common-emitter configuration can be
related to the breakdown voltage BVCBO for the common-base configuration by

BVCEO = BVCBO (1 − α0)1/m , (14.30)

where m is an integer. Since α0 is very close to unity for most BJTs, BVCBO is
usually much larger than BVCEO. It is noted that BVCBO under open-base conditions
can be related to the multiplication factor M by

M = 1

1 − (V/BVCBO)m , (14.31)

where V is the applied bias voltage. When the base is opened, the emitter and
collector currents are equal (i.e., IE = IC = I ). Both ICO and α0 IE are multiplied
by M as they flow across the C-B junction. From (14.30) it is seen that for α0 ≈
1, BVCBO becomes much larger than BVCEO. This is clearly illustrated in Figure
14.8, which shows the breakdown voltage BVCBO and saturation current ICO for
the common-base configuration, and the corresponding BVCEO and I ′

CO for the
common-emitter configuration.

The current–voltage equations derived in this section for a BJT will be used
in the Ebers–Moll model for large-signal and transient analysis, which will be
discussed in detail in Section 14.5.

14.4. Current Gain, Base Transport Factor, and Emitter
Injection Efficiency

When a BJT is biased in the normal active mode, it operates as an amplifier, and
hence a current gain results. For a p+-n-p transistor, the emitter current consists
of two components: a hole current IpE, which is due to hole injection from the
p+-emitter into the n-base region, and an electron current InE, which is due to
electron injection from the n-base into the p-emitter region. The collector current
also consists of two components, namely, a hole current IpC injecting from the
n-base into the p-collector region, and an electron current InC injecting from the p-
collector into the n-base region. Expressions for the emitter- and collector-current
components are given by (14.16) and (14.19), respectively. For a common-base
BJT amplifier, the key parameters affecting its performance include the emitter
injection efficiency, the base transport factor, and the current gain. If the base
recombination current component is included, then the emitter injection efficiency
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γ can be expressed by

γ = IpE

IE
= IpE

(InE + IpE + Ir)
. (14.32)

And the base transport factor βT is given by

βT = IpC

IpE
. (14.33)

The common-base current gain α0 is defined by

α0 = hFB = dIC

dIE
= − (IC − ICO)

IE
= IpC

(InE + IpE + Ir)
= γ βT, (14.34)

which shows that for a common-base BJT the current gain is equal to the product
of emitter injection efficiency and base transport factor. Since IpC is smaller than
IpE, the common-base current gain α0 is always smaller than unity. However, for a
well-designed BJT, this gain factor can be very close to unity (e.g., α0 = 0.9999),
and from (14.34) one obtains

IC = −α0 IE + ICO, (14.35)

which relates the collector current to the emitter current with the base as a common
terminal. It is noted that ICO is the collector reverse saturation current for the C-B
configuration.

To obtain current amplification in a BJT, the transistor is usually operating in
the common-emitter configuration. In this configuration, the emitter terminal is
used as a common ground, the B-E terminal is used as an input port, and the C-E
terminal serves as an output port. The common-emitter current gain β0 (or hFE) is
defined by

β0 = hFE = dIC

dIB
= α0

(1 − α0)
, (14.36)

which is obtained by solving (14.21) and (14.35). Since the value of α0 for a
well-designed BJT is very close to unity, β0 for the common-emitter operation is
usually much larger than unity (e.g., if α0 = 0.99, then β0 = 99).

For a p+-n-p transistor operating under normal active-mode conditions (i.e.,
VBE > 0 and VCB � 0), the emitter injection efficiency γ can be derived using
(14.16), and one obtains

γ ≈ IpE

(IpE + InE)
= 1

1 + (Ndb DneLpb/Nae DpbLne) tanh(Wb/Lpb)
. (14.37)

Equation (14.37) neglects the base recombination current. Similarly, the base
transport factor can be obtained by solving (14.16) and (14.19), which
yields

βT = IpC

IpE
= 1

cosh(Wb/Lpb)
≈ 1 − W 2

b

2L2
pb

. (14.38)
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In the above derivation it is assumed that the base width is much smaller than the
hole-diffusion length in the base region. An interesting physical insight of βT can
be obtained if (14.38) is expressed in terms of the transit time τB and the minority
carrier lifetime τp in the base region. It can be shown that in order to have a base
transport factor close to unity, the base transit time must become so short (i.e.,
τB � τp) that the injected holes have little chance to recombine with electrons in
the base region. For practical silicon BJTs, βT is very close to unity, and hence the
current gain β0 can be obtained by solving (14.36) and (14.37), which yields

β0 = hFE = α0

1 − α0
= γβT

1 − γ βT
≈ γ

(1 − γ )

=
(

Nae DpbLne

Ndb DneLpb

)
coth

(
Wb

Lpb

)
≈ Nae

QB
, (14.39)

where QB is the Gummel number defined by the denominator of (14.27). Thus,
for a given emitter doping density Nae, the static common-emitter current gain
β0 is inversely proportional to the base charge density QB. Figure 14.9 illustrates
the current gain hFE versus collector current IC for the silicon BJT shown in
Figure 14.6. As shown in Figure 14.9, β0 is small when IC is small. This can
be attributed to bulk and surface recombination losses that occurred in the base
region at small-bias voltages. The recombination current in the base region may
be larger than the diffusion current component at low current level. Thus, by re-
ducing the bulk trap density and surface recombination loss, the current gain can
be increased substantially at low collector current. As the collector current con-
tinues to increase, hFE will also increase and eventually reach a saturation value.
At still higher collector current, the minority carrier density injected into the base
approaches the majority carrier density, and the injected carriers effectively in-
crease the base doping density, which, in turn, will cause the emitter injection effi-
ciency to decrease. This is the so-called high-injection condition. At high-injection

Figure 14.9. Common-emitter current gain versus collector current for the silicon BJTs
shown in Figure 14.6.
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levels, the current gain varies inversely with collector current (i.e., hFE ∼
e−qVEB/2kBT ∼ 1/Ic), as shown in Figure 14.9.

Equation (14.39) shows that hFE is directly proportional to the emitter doping
density. Therefore, in order to increase hFE it is necessary to increase the doping
density in the emitter region. However, two adverse effects associated with heavy
doping in the emitter region may result, namely, band gap narrowing and Auger
recombination. Both of these effects can severely affect the current gain of the
BJTs. The effect of band gap narrowing on the current gain can be evaluated by
examining the band gap narrowing effect on the effective intrinsic carrier density
in the heavily doped emitter region. The square of the effective intrinsic carrier
density under heavy doping conditions is given by

n2
ie = Nc Nv exp

[− (
Eg − �Eg

)
/kBT

] = n2
i e�Eg/kBT , (14.40)

where Nc and Nv are the effective densities of the conduction and valence band
states, respectively, while ni is the intrinsic carrier density for the nondegenerate
case. The quantity �Eg is the band gap shrinkage due to the heavy doping effect
in the emitter region. The minority carrier densities in the base and emitter regions
are given respectively by

pnb = n2
i

Ndb
(14.41)

and

npe = n2
ie

Nae
= n2

i

Nae
e�Eg/kBT . (14.42)

Therefore, the effect of band gap narrowing on the current gain can be estimated
qualitatively from (14.39) to (14.42), which yields

hFE ≈ pnb

npe
≈ e−�Eg/kBT . (14.43)

Equation (14.43) shows that hFE will decrease exponentially with increasing band
gap narrowing �Eg.

Another heavy doping effect that can greatly degrade the transistor performance
is associated with the reduction of minority carrier lifetime with increasing doping
density in the emitter region of the BJTs. As the doping density in the emitter region
increases, Auger recombination becomes the dominant recombination process for
the minority carriers. In this case, the minority carrier lifetime in the emitter region
of a BJT is controlled by the Auger recombination process instead of the Shockley–
Read–Hall (SRH) process. As a result, the minority carrier lifetime in the emitter
region will decrease with the square of the majority carrier density. This, in turn,
will reduce the emitter minority carrier diffusion length and degrade the emitter
injection efficiency. Figure 14.10 shows the effects of band gap narrowing and
Auger recombination on the current gain of a silicon power transistor.3 The results
clearly show that in order to accurately predict the measured current gain data,
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Figure 14.10. Calculated and measured common-emitter current gain hFE versus collector
current for a silicon power transistor by considering (1) the SRH process only, (2) SRH
and bandgap narrowing, (3) measured values, and (4) Auger, SRH, and bandgap narrowing.
After McGrath and Navon,3 by permission, c© IEEE–1977.

the effects of band gap narrowing and Auger recombination in the heavily doped
emitter region should be taken into account. The relative importance of these effects
on the SRH recombination process depends on the emitter junction depth and the
dopant density as well as the injection level.

The base-spreading resistance is another important parameter that will affect
the performance of a BJT at very high frequencies. In general, it will increase the
B-E junction voltage drop at high base current for power and switching transistors.
A close examination of the cross-section of the BJT shown in Figure 14.1 reveals
that the base current must flow some distance from the base terminal to the bulk
base region between the E-B and C-B junctions. Since the base region is very
thin (i.e., ≤ 0.5 μm) and not highly doped, a parasitic resistance known as base
spreading resistance rb′b exists in this region. This spreading resistance must be
included in the BJT device modeling to account for its adverse effect on transistor
performance at high frequencies and at high injection level.

14.5. Modeling of a Bipolar Junction Transistor

In this section, we present the Ebers–Moll model and the Gummel–Poon model
for BJTs. In order to predict the performance of a BJT for large signals or tran-
sient behavior under any biasing conditions, it is necessary to develop a sim-
ple and accurate device model so that its electrical output characteristics can be



14.5. Modeling of a Bipolar Junction Transistor 529

correlated to the physical parameters of the transistor. This is particularly impor-
tant for IC designs, since an accurate device model is needed in the design of any
integrated circuit. The first BJT device model for large-signal circuit simulation
was introduced by Ebers and Moll in 1954, and later modified by Gummel and
Poon to account for various physical effects that were not included in the Ebers–
Moll model. The Ebers–Moll model is the simplest device model for the BJTs that
can be used to predict carrier injection and extraction phenomena in a BJT.

The BJT device model developed by Gummel and Poon is based on the integral
charge equation that relates terminal electrical characteristics to the charges in the
base region. By taking into account many physical effects in the device modeling
parameters, the Gummel–Poon model predicts the transistor behavior more accu-
rately than does the Ebers–Moll model. To implement the Gummel–Poon model
for computer circuit simulation, many physical parameters must first be deter-
mined. It can be shown that a simplified version of the Gummel–Poon model can
be reduced to the basic Ebers–Moll model.

Figure 14.11a shows the equivalent circuit of the simplest Ebers–Moll model
for a BJT.4 This large-signal transistor model consists of two diodes connected
back to back, and each diode is connected in parallel with a current source. The
current sources are driven by the diode currents, which are assumed to have ideal
diode characteristics. Using the results derived in Section 14.2 for p+-n-p BJTs,
the terminal current equations for the Ebers–Moll model can be written as

IE = IF − αR IR, (14.44)

IC = IR − αF IF, (14.45)

IB = −(IE + IC) = −(1 − αF)IF − (1 − αR) IR, (14.46)

where

IF = IES
(
eqVBE/kBT − 1

)
, (14.47)

IR = ICS
(
eqVBC/kBT − 1

)
. (14.48)

Note that IF is the forward current flowing through the E-B junction and IR is
the reverse current flowing through the C-B junction; αF and αR denote the for-
ward and reverse C-B current gains, respectively, while IES and ICS denote the
emitter and collector saturation currents, respectively. Expressions for αF, αR, IES,
and ICS can be derived from (14.16) through (14.20) for a p+-n-p BJT and are
given by

IES = q A′ Dpbn2
i

NdbLpb
coth

(
Wb

Lpb

)
+ q A′ Dnen2

i

NaeLne
, (14.49)

ICS = q ADpbn2
i

NdbLpb
coth

(
Wb

Lpb

)
+ q ADncn2

i

NacLnc
, (14.50)

αF = 1

IES

q A′ Dpbn2
i

NdbLpb

1

sinh(Wb/Lpb)
, (14.51)

αR = 1

ICS

q ADpbn2
i

NdbLpb

1

sinh(Wb/Lpb)
. (14.52)
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Figure 14.11. Equivalent circuit diagrams of an n-p-n transistor based on the Ebers–Moll
model: (a) basic model, (b) modified model including series resistance and depletion ca-
pacitances, and (c) additional current source for the Early effect. After Ebers and Moll,4 by
permission, c© IEEE–1961.
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Equations (14.44) and (14.45) relate currents IE and IC to the terminal voltages
VEB and VCB, and the four transistor parameters IES, ICS, αF, and αR. The current
equations for the emitter and collector junctions given above enable the general
expressions for the emitter and collector currents to be rewritten as

IE = a11
(
eqVEB/kBT − 1

) + a12
(
eqVCB/kBT − 1

)
, (14.53)

IC = a21
(
eqVEB/kBT − 1

) + a22
(
eqVCB/kBT − 1

)
, (14.54)

where

a11 = −IES, a12 = αR ICS, a21 = αF IES, a22 = −ICS. (14.55)

Based on the reciprocity property of a two-port device, one obtains a12 = a21,
and henceαR ICS = αF IES. Therefore, only three unknowns are involved in the basic
Ebers–Moll model shown in Figure 14.11a. The accuracy of this basic model can be
improved by adding the emitter- and collector-series resistances (re and rc) and the
emitter- and collector-depletion capacitances (Cc and Cc) to the equivalent circuit
shown in Figure 14.11a, and the result is shown in Figure 14.11b. In this case, the
diode is controlled by the internal junction voltages VE′B′ and VC′B′ but not by the
external voltages. If one adds the Early effect (i.e., the base-width modulation)
to the model, then an extra current source must be included between the internal
emitter and the collector terminals, as shown in Figure 14.11c. A comparison of
Figures 14.11a and b shows that in order to improve the model accuracy from
Figures 14.11a and b, the unknown physical parameters must increase threefold.
This makes the model too complicated to handle and more difficult to solve.
Furthermore, the model shown in Figure 14.11b can be improved by adding a
diode to the base lead to account for the two-dimensional current crowding effect
along the E-B junction. Therefore, it is evident that the basic Ebers–Moll model
can provide a first-order solution for relating the device physical parameters to the
large-signal dc and transient characteristics of a BJT. The accuracy and complexity
of this model depend on the number of physical effects being considered in the
model. This can be best illustrated by using the Gummel–Poon model, in which
more than 20 physical parameters are incorporated in the equivalent circuit.

The Ebers–Moll model described above may also be applied to n+-p-n BJTs
provided that the polarities defined for IE, IC, IB, VEB, and VCB are reversed. On the
basis of the Ebers–Moll model given by (14.53) and (14.54) one notices that there
are three regions of operation for the common-base or the common-emitter con-
figuration. As shown in Figure 14.7, the three regions of operation for a common-
emitter configuration are (i) the cutoff region with VEB < 0 and VCB � 0, (ii)
the active region with VEB > 0 and VCB � 0, and (iii) the saturation region with
VEB > 0 and VCB � 0. In region (i) both diodes are reverse-biased and only leak-
age currents flow through the transistor. This region corresponds to the “off” state
in the switching transistor operation. In region (ii), the transistor operates as an
amplifier. In this region of operation (i.e., normal active mode), a change in the
base current due to a small change in input voltage VEB across the E-B junction
at the input terminal will result in a large change in the collector current, and
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hence a voltage drop across the load resistance in the collector output terminal
with consequent voltage and power amplification. In region (iii), both junctions
are forward-biased, and VCE is nearly equal to 0 but with a large collector current.
This region corresponds to the “on” state in the switching transistor operation.

The Gummel–Poon model is widely used in modeling the BJTs for various
IC designs.2 It is based on the integral charge model that relates the terminal
electrical characteristics to the base charge. This device model is very accurate
since it takes many physical effects into consideration. For example, over two
dozen physical parameters are needed to cover a wide range of transistor operation.
In the Gummel–Poon model, the current that flows from the emitter to the collector
terminals with unit current gain is given by

ICC = (qni A)2

Qb

(
eqVEB/kBT − eqVCB/kBT

)
, (14.56)

where

Qb = q A
∫ Wb

0
pb(x) dx (14.57)

is the base charge and A is the junction area. The Gummel–Poon model is based
on the control of base charge given by (14.57), which links junction voltages,
collector current, and base charge. The base charges consist of five components,
and are given by

Qb = Qb0 + Qje + Qjc + Qde + Qdc

= Qb0 + Qje + Qjc + τF IF + τR IR, (14.58)

where Qb0 is the zero-bias charge in the base region, Qje and Qjc are charges
associated with the emitter and collector junction depletion capacitances, respec-
tively, and Qde(= τF IF) and Qdc(= τR IR) represent minority carrier charges asso-
ciated with the emitter and collector diffusion capacitances, respectively. As the
injection level increases, the diffusion capacitance also increases, which results in
high-injection gain degradation. The current flow from the emitter region to the
collector region may be written as

ICC = IF − IR, (14.59)

where

IF = Is Qb0

Qb

(
eqVBE/kBT − 1

)
, (14.60)

IR = Is Qb0

Qb

(
eqVBC/kBT − 1

)
. (14.61)

It is interesting to note that (14.60) and (14.61) resemble (14.47) and (14.48) given
by the Ebers–Moll model.

The base current IB, which is related to the base charges and base recombination
current, can be expressed by

IB = dQb

dt
+ IrB. (14.62)
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Figure 14.12. Equivalent circuit diagram of a p-n-p BJT based on the Gummel–Poon
model: CjE and CjC denote the emitter and collector depletion capacitances, CdE and CdC

are the emitter and collector diffusion capacitances, while re, rh, and rc are the emitter, base,
and collector resistances, respectively. After Gummel and Poon,2 by permission.

Here IrB denotes the base recombination current, which consists of two components
given by

IrB = IEB + ICB, (14.63)

where

IEB = I1
(
eqVEB/kBT − 1

) + I2
(
eqVEB/nekBT − 1

)
, (14.64)

ICB = I3
(
eqVCB/nckBT − 1

)
. (14.65)

Here IEB is the emitter part of the base current and ICB is the collector part of
the base current, ne and nc denote the diode ideality factors for the E-B and C-B
junctions, respectively. Values of ne and nc may vary between 1 and 2, depending
on whether the diffusion or the recombination current is the dominant component
in the base region. Thus, referring to Figure 14.12, the total emitter and collector
currents can be written separately as

IE = ICC + IEB + τF
dIF

dt
+ CjE

dVEB

dt
, (14.66)

IC = ICC − ICB − τR
dIR

dt
+ CjC

dVCB

dt
. (14.67)

Figure 14.12 presents the equivalent circuit diagram for the Gummel–Poon
model, which includes the junction depletion and diffusion capacitances of the
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E-B and B-C junctions as well as series resistances re, rh, and rc.
(2) Since Qb

is voltage dependent, the effect of high injection in the base (i.e., τF IF � Qb0)
is included. The Early effect is also included in the model by incorporating the
voltage dependence of the collector charge QjC (= CjCVCB). The emitter part of
the base current IEB is represented by two diodes connected in parallel, one ideal
and one with a diode ideality factor greater than 1 (i.e., to account for the bulk
or surface recombination current), which makes the current gain bias-dependent
at low current levels. Other effects, such as current-induced base push-out (i.e.,
the Kirk effect), can be incorporated into the model by adding a multiplication
factor B to the τF IF term given by (14.58). Therefore, the Gummel–Poon model
is indeed a very accurate device model for predicting large-signal dc or transient
behavior in a BJT. It allows one to predict the device terminal characteristics with
good physical insight over a wide range of transistor operation. For a complete
description of this device model, refer to the original paper published by Gummel
and Poon.2

14.6. Switching and Frequency Response

As pointed out earlier, depending on the biasing conditions and modes of operation,
a BJT can be operated either as an amplifier or as a switching device. In general,
the BJTs are operated in the active mode only in linear or analog circuits. However,
in digital circuits all four modes of operation may be involved. In this section, we
discuss the switching properties and frequency response of a BJT.

When a BJT is operating as a switching device, the transistor has to change its
bias condition from the low-current, high-voltage state (off) to the high-current,
low-voltage (on) state within a very short period of time (e.g., tens of nanosec-
onds or shorter). Figure 14.13 shows the operation regimes and switching modes
of a BJT.5 The switching behavior of a BJT is seen to be a large-signal tran-
sient phenomenon. Since the switching speed is a key parameter in the operation
of a switching transistor, one must include the junction depletion and diffusion
capacitances, as well as the base-spreading resistance in the Ebers–Moll model
shown in Figure 14.11. The junction depletion capacitance is important under
reverse-bias conditions, while the diffusion capacitance becomes dominant under
forward-bias conditions. The diffusion capacitance is related to the excess carrier
stored charge in the transistor. In the active mode this charge is stored in the base,
but in the saturation mode a large part of this charge is stored in the collector re-
gion. Nonlinear computer programs like SPICE are available for computer-aided
simulation of digital bipolar transistors for all regions (i.e., cutoff, active, and
saturation) of operation.

A switching transistor can be operated in several different modes. The saturation
mode and current mode are the two most commonly used modes of operation for
switching applications. Figure 14.13 shows these two basic modes of operation
and their corresponding load lines. If the transistor is used as a current switch in
digital circuits, it is always operated in the common-emitter configuration. In this



14.6. Switching and Frequency Response 535

Figure 14.13. (a) Operation regions and switching modes of a silicon switching transistor
and (b) distribution of minority carrier densities in the base for (i) cutoff, (ii) active, and
(iii) saturation modes. After Moll,5 by permission, c© IEEE–1954.

configuration, current amplification (hFE) is achieved. As shown in Figure 14.13a,
for the current switch mode, the large collector current IC flowing through the load
resistance is switched by controlling the smaller base current IB at the input. The
static “on” and “off” states can be analyzed using the modified Ebers–Moll model
shown in Figure 14.14.

The operation of a switching transistor is determined by its output characteristic
curve, as illustrated in Figure 14.13a. In the cutoff region, the collector current is off
and both the emitter and collector junctions are reverse-biased. In the active region,
the emitter junction is forward-biased and the collector junction is reverse-biased.
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Figure 14.14. Equivalent circuit diagrams of a switching transistor (a) in regions (i) and
(ii) and (b) in region (iii). After Ebers and Moll,4 by permission, c© IEEE–1961.

In the saturation region, the emitter and collector regions are both forward-biased.
The minority carrier density distributions in the base region corresponding to (i)
cutoff, (ii) active, and (iii) saturation regions are shown in Figure 14.13b.

The switch-off condition of a switching transistor for all switching modes may
be obtained by extending the load line into the cutoff regime of the transistor.
Therefore, the operating mode of a switching transistor is determined mainly by
the dc current at the switch-on condition and the location of the operating point.
The most common mode of operation for a switching transistor is the saturation
mode. The transistor is nearly open-circuited between the emitter and the collector
terminals during the switch-off condition, and is short-circuited during the switch-
on condition. The current-mode operation is suitable for high-speed switching
applications, since the delay associated with the excursion of the transistor into
the saturation regime is eliminated.

In the design of a switching transistor, two important factors must be considered:
the switching time and the current gain. The switching time is normally controlled
by the minority carrier lifetime, which controls the charge storage time in the base
and the collector. For example, gold (Au) is commonly used in silicon switching
transistors to shorten its switching time, because Au impurity introduces a mid-gap
acceptor level (E−

Au = Ec − 0.55 eV) in silicon. The Au acceptor center is known
as the most effective recombination center in silicon. Thus, by doping silicon
transistors with a high concentration of Au impurities, the minority carrier lifetime
can be drastically reduced, and hence the switching speed of a Au-doped Si BJT
can be greatly enhanced. Finally, it should be noted that the current gain of a
switching transistor may be improved by lowering the doping density in the base
region of the transistor.

The switching behavior of a BJT may be analyzed using the Ebers–Moll model
discussed in the previous section. Using (14.53) and (14.54), the four coefficients
a11, a12, a21, and a22 may be related to the measurable parameters IEO, ICO, αF,
and αR, which are given by

a11 = −IEO

(1 − αFαR)
, a12 = αR ICO

(1 − αFαR)
, a21 = αF IEO

(1 − αFαR)
, a22 = −ICO

(1 − αFαR)
,

(14.68)
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where IEO denotes the reverse saturation current of the emitter junction with col-
lector opened and ICO is the reverse saturation current of the collector junction with
emitter opened; αF and αR denote the forward and reverse common-base current
gains, respectively. For switching operation, the collector junction is reverse-biased
in the cutoff and active regimes, and (14.53) and (14.54) reduce to

IE = −IEO eqVEB/kBT

(1 − αFαR)
+ (1 − αF)IEO

(1 − αFαR)
, (14.69)

IC = αF IEO eqVEB/kBT

(1 − αFαR)
+ (1 − αR)ICO

(1 − αRαR)
. (14.70)

The equivalent circuit of a switching transistor described by (14.69) and (14.70)
is shown in Figure 14.14a.4 It is noted that the emitter resistance re, base resistance
rb, and collector resistance rc are included in the equivalent circuit shown in Figure
14.14a to account for the finite resistances in each region of the transistor. As for the
saturation regime, both the emitter and collector junctions are under forward-bias
conditions, and the C-B and E-B junction voltages can be derived from (14.53)
and (14.54) in terms of the emitter and collector currents. This yields

VEB =
(

kBT

q

)
ln[−(IE + αR IC)/IEO + 1], (14.71)

VCB =
(

kBT

q

)
ln[−(IC + αF IE)/ICO + 1]. (14.72)

Figure 14.14b shows the equivalent circuit of a switching transistor operating in
the saturation regime. Equations (14.69) through (14.72) may be used to analyze
the nonlinear large-signal switching characteristics of a switching BJT.

In order to characterize a switching transistor, several key parameters such as the
current-carrying capability, maximum open-circuit voltage, on and off impedances,
as well as the switching time must be considered. The current-carrying capability
is determined by the maximum power dissipation allowed in the transistor. The
maximum open-circuit voltage is determined by the breakdown or punch-through
voltage. The impedance during on and off conditions can be determined from
(14.69) through (14.72) using proper boundary conditions. For example, for a
common-base configuration, the on and off impedances of the transistor are given
respectively by

ZC(on) = VC

IC
=

(
kBT

q IC

)
ln[−(IC + αF IE)/ICO], (14.73)

ZC(off) = VC

IC
= VC(1 − αFαR)

ICO − αF IEO
. (14.74)

Equation (14.73) shows that the on-state impedance varies inversely with the col-
lector current. The on-state impedance is very small when the collector current is
large. On the other hand, the off-state impedance is very large when the reverse
saturation currents IEO and ICO are small.
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Figure 14.15. (a) Circuit diagram of an n-p-n switching transistor, (b) input emitter current
pulse, and (c) collector output current response. Here τ0 is the turn-on delay time, τr is the
rise time, τs is the storage time, and τd is the decay time. After Moll,5 by permission, c©
IEEE–1954.

Let us analyze the switching behavior of a transistor switch. Figure 14.15a shows
the circuit diagram of an n+-p-n BJT operating in the common-base configuration.5

The transistor is assumed to be driven by a square current pulse from the emitter
terminal whose waveform is shown in Figure 14.15b. The corresponding output
collector current response is shown in Figure 14.15c. In the time interval from
t = 0 to t = t1, the transistor is turned on and the transient is determined by
the transistor parameters in the active regime. At time t1, the operating point
of the transistor is in the saturation regime. The time required for the current
to reach 90% of its saturation current (i.e., IC1 = VCC/RL) is called the turn-
on time τ0. At time t2, the emitter current is reduced to zero (i.e., IE2 ≈ 0) and
the turnoff transient begins. From time t2 to t3 the minority carrier density in
the base region is large. This corresponds to operation in regime III, except that
the minority carrier density decays toward 0. During time τ1, the collector is
in the low-impedance state, and the collector current is determined mainly by the
external circuit parameters. At time t3, the carrier density near the collector junction
is close to zero. At this point, the collector junction impedance increases rapidly
and the transistor begins to operate in the active regime (II). The time interval τ1
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is called the carrier storage time. After time t3, the transient behavior is calculated
from the active regime parameters. At time t4, the collector current has decayed to
10% of its peak value. The time between t3 and t4 is called the decay time τd.

The turn-on time τ0 can be determined from the transient response in the active
regime. From a step input current pulse IE1, the Laplace transform is given by
IE1/S. If the common-base current gain is expressed in terms of αF/(1 + jω/ωN),
where ωN is the alpha cutoff frequency at which ω/ωN = 0.707, then the Laplace
transform of the current gain is equal to αF/(1 + s/ωN). Thus, the Laplace trans-
form of the collector current can be expressed as

IC(s) = αF IEI

(1 + s/ωN)
, (14.75)

and the inverse transform of (14.75) can be written as

IC(t) = αF IE1(1 − e−ωNt ). (14.76)

If one sets IC1 = VCC/RL as the saturation value of the collector current, then τ0

is obtained by setting IC = 0.9IC1 in (14.76), which yields

τ0 =
(

1

ωN

)
ln

[
IE1

(IE1 − 0.9IC1/αF)

]
, (14.77)

where τ0 is the time constant for the collector current to reach 90% of its peak value.
Similarly, the storage time τ1 and decay time τd for the common-base configuration
can be written, respectively, by

τ1 = (ωN + ωI)

ωNωI(1 − αFαR)
ln

[
(IE1 − IE2)

(IC1/αN − IE2)

]
, (14.78)

τd =
(

1

ωN

)
ln

[
(IC1 − αF IE2)

(0.1IC1 − αF IE2)

]
, (14.79)

where ω1 is the inverted alpha cutoff frequency, while IE1 and IE2 (≈ 0) are the
peak and bottom of the emitter input current pulse. It is seen that the turnoff
time is equal to the sum of τ1 and τd. From (14.78) and (14.79) it is noted that
both switching times (i.e., turn-on time τ0 and turnoff time τ1 + τd) are inversely
proportional to the cutoff frequency of the transistor. Thus, in order to increase the
switching speed, one must increase the cutoff frequency of the transistor. Since the
cutoff frequency for most switching transistors is limited by the collector storage
capacitance, it is important that this capacitance be kept at its minimum value.

The dc characteristics of a BJT were described in Section 14.3. We now discuss
the ac characteristics and frequency response of a BJT when a small ac signal volt-
age or current is superimposed on the dc value. If a BJT is operating as an amplifier
in common-emitter configuration, then the E-B junction is under forward-bias and
the C-B junction is under reverse-bias conditions. The equivalent circuit of the BJT
under low-frequency operation is shown in Figure 14.16a, where νEB denotes the
ac voltage applied to the E-B junction, gEB(= iB/vEB) is the input conductance,
and gm(= ic/vEB) is the transconductance. At higher frequencies, additional circuit
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Figure 14.16. (a) The equivalent circuit of a BJT under low-frequency operation, and (b)
the high-frequency equivalent circuit with added capacitance and conductance to (a).

elements should be added to account for the base-width modulation effect (i.e.,
finite output conductance gEC (= ic/vc)), the depletion capacitance and diffusion
capacitances, base resistance rB, and collector resistance rC. Figure 14.16b shows
the high-frequency equivalent circuit with added capacitances and conductances
to Figure 14.16a. It is noted that the transconductance gm and input conductance
gEC are dependent on common base current gain, α. At low frequency, α is a
constant (= α0) and independent of operating frequency. However, the value of α

will decrease after reaching a critical frequency. The frequency dependence of the
common-base current gain α can be expressed by

α = α0

1 + j( f/ fα)
, (14.80)

where α0 is the dc common-base current gain (≈1) and fα is the common-base
cutoff frequency. At f = fα the magnitude of α reduces to 0.707α0 (3 dB down).
The common-emitter current gain β can be related to α by the following expression:

β = α

1 − α
= β0

1 + j( f/ fβ)
, (14.81)

where fβ is the common-emitter cutoff frequency ( fβ = (1 − α0) fα), which is
much smaller than fα . Another cutoff frequency fT known as the unit gain (i.e.,
β = 1) cutoff frequency of the BJT can be related to fβ and fα by

fT = fβ
(
β2

0 − 1
)1/2 = β0(1 − α0) fα ≈ α0 fα, (14.82)

which shows that fT is slightly smaller than fα . The cutoff frequency fT can also
be expressed as (2πτT)−1, where τT represents the total time of carrier transit from
the emitter to the collector, which includes the emitter delay time τE, the base
transit time τB, and the collector transit time τC. The base transit time τB due to
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hole drift through the base region can be expressed by

τB = W 2

2Dp
. (14.83)

Equation (14.83) is valid, provided that the recombination loss in the base region
is negligible. It is noted that to improve frequency response of the BJTs, the transit
time of the minority carriers across the base region must be short. Therefore, high-
frequency BJTs are designed with a very small base width. For high-frequency
silicon BJTs, n-p-n structures, are preferred over p-n-p structures, since the electron
diffusion length is much larger than the hole diffusion length (i.e., Ln ≈ 3Lp).
Another approach to reduce the base transit time is to use a graded base with a
built-in field to assist minority carriers to move across the base faster toward the
collector and hence reduce the base transit time.

14.7. Advanced Bipolar Junction Transistors

In order to increase the current gain of a BJT, the emitter region is usually doped
very heavily and the base region is kept very thin. Most silicon BJTs are fabricated
using the polysilicon-emitter structure heavily doped in situ with phosphorous
impurities on the lightly doped ion-implanted base at a temperature low enough
(630◦C) to prevent dopant diffusion. Common-emitter current gains in excess of
104 and emitter Gummel number greater than 1014 cm−4 have been achieved in
silicon BJTs with polysilicon emitter. Other emitter structures such as the MIS
tunnel junction emitter transistor with very high current gain have also been re-
ported in the literature. Polysilicon has been widely used in bipolar technology
for the emitter and base contacts in advanced silicon BJTs. Vertical scaling of
silicon BJTs can be greatly simplified using polysilicon emitter contacts, since
the base saturation current and emitter junction depth can be effectively reduced.
The self-aligned polysilicon-emitter BJT is rapidly becoming the dominant bipolar
structure used in very large scale integrated circuits (VLSIs). The advantages of
using the polysilicon-emitter structure over the conventional metal-emitter con-
tact structure include superior process yields, higher packing densities, and better
device performance.

Fabrication of BJTs using the polysilicon-emitter structure is quite different
from that of the conventional metal-contacted emitter BJTs. For example, after the
emitter window is opened, a polysilicon layer is deposited and doped by ion im-
plantation or, alternatively, an in situ doped polysilicon layer is deposited onto the
underlying emitter region. This polysilicon layer serves as the emitter contact and
at the same time as a dopant source for the underlying emitters during postimplant
activation annealing. Process yields are enhanced because the polysilicon layer
prevents implantation damage from the underlying emitter. Figure 14.17 shows
a self-aligned silicon BJT with a polysilicon-contacted emitter.6 The polysilicon
emitter is formed by arsenic implantation, and the polysilicon is selectively etched
to form the emitter contact. The structure is then oxidized, resulting in a thicker
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Figure 14.17. Cross-section view
of a self-aligned silicon BJT with
polysilicon emitter contact. After
Cuthbertson and Ashburn,6 by per-
mission, c© IEEE–1985.

oxide layer over the polysilicon and a thinner oxide layer over the silicon. The
p+-base contact region is formed using high-energy boron implantation. A high-
temperature diffusion step is used to produce the emitter region and the extrin-
sic base region. Packing densities are increased substantially by realizing the
self-aligned structures. Device performance is greatly improved by the self-aligned
structure and reduction of the base current, since the former reduces the device
parasitics while the latter is traded for low base resistance. As a result, the speed–
power performance of a polysilicon-emitter BJT is improved substantially. Using
polysilicon-emitter BJTs, emitter-coupled logic (ECL) circuits with propagation
delay times in the sub-100 ps have been reported.

14.8. Thyristors

When an extra p-n junction is added to a p-n-p or an n-p-n BJT, an n+-p-n-p or
p+-n-p-n four-layer thyristor is formed. A thyristor is a semiconductor device that
exhibits bistable characteristics and can be switched between a low-impedance,
high-current on-state condition to a high-impedance, low-current off-state con-
dition. The operation of a thyristor is very similar to the operation of a BJT in
that both electrons and holes participate in the transport process. Typical doping
densities in a p+

1 -n1-p2-n+
2 four-layer structure are 1019 cm−3 for the p+

1 region,
5 × 1014 cm−3 in the n1 region, 1016–1017 cm−3 in the p2 region, and 1019 cm−3

in the n+
2 region.

The schematic diagrams of a p-n-p-n device with two, three, and four terminals
are shown in Figures 14.18 a–c, respectively. The device consists of three junctions,
J1, J2, and J3 (i.e., p+

1 -n1, n1-p2, and p2-n+
2 ), in series. The contact electrode

connected to the outer p1 layer is called the anode, and the contact electrode
connected to the outer n+

2 layer is called the cathode. Figure 14.18a shows the
two-terminal p-n-p-n diode with the gate terminal opened. If a gate electrode is
connected to the inner p2 layer to form a three-terminal p+-n-p-n+ device, then the
device is called a semiconductor-controlled rectifier or a thyristor. This is shown in
Figure 14.18b. An additional gate electrode may be connected to the inner n1 layer
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Figure 14.18. (a) Schematic diagrams of a two-terminal p+-n-p-n diode, (b) three-terminal
thyristor (SCR) with a controlled gate, and (c) four-terminal p-n-p-n device with two con-
trolled gates. The device has three junctions, J1, J2, and J3, in series. The current gain α1

is for the p-n-p transistor, and α2 is for the n-p-n transistor. Under the forward-blocking
condition, the center junction J2 is reverse-biased and serves as a common collector for the
p-n-p and n-p-n transistors.

of a p+-n-p-n diode with two gate electrodes, as shown in Figure 14.18c. If no
gate electrode is provided, then the device is operated as a two-terminal p+-n-p-n+

Shockley diode as shown in Figure 14.18a.
The current–voltage (I–V) characteristics of a typical p-n-p-n thyristor are shown

in Figure 14.19a. It is noted that there are four distinct regions shown in this plot.
In region I (0 ⇒ 1) at low-bias voltages, junctions J1 and J3 are forward-biased and
junction J2 is reverse-biased. Therefore, the external voltage drop is almost entirely
across the J2 junction, and the device behaves like a reverse-biased p-n junction
diode. In this region, the device is in the forward-blocking or high-impedance,
low-current off state. In region I, the forward breakover occurs when dV/dI = 0,
and a breakover voltage Vbo and a switching current Is can be defined in this region.
These parameters are shown in Figure 14.19a. Region II (1 ⇒ 2) is the negative
differential resistance region in which the current decreases with increasing applied
voltage. In region III (2 ⇒ 3), the current increases rapidly as the applied voltage
increases slowly. In this region, junction J2 is forward-biased, and the voltage drop
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Figure 14.19. (a) Current–voltage (I−V ) characteristics of a thyristor showing the forward
and reverse regions. Region (1) forward-blocking or “off” state (high impedance, low cur-
rent); (2) negative resistance regions; (3) forward-conducting or “on” state (low impedance,
high current); (4) reverse-blocking state; (5) reverse-breakdown region. (b) The effect of
gate current on the current–voltage characteristics of a thyristor (SCR). (c) A low-power
SCR device structure.

across the device is that of a single p-n junction diode. The device is in the low-
impedance, high-current on state. When the current flow in the diode is reduced, the
device will remain in the on state until it reaches a current level Ih. The current Ih

and its corresponding voltage Vh are called the holding current and holding voltage,
respectively. When the current drops below Ih, the diode switches back to its high-
impedance state and the cycle repeats. If a negative-bias voltage (in region 0 ⇒ 4)
is applied to the p+

1 terminal and a positive voltage to the n+
2 terminal, then both J1

and J3 junctions become reverse-biased. Zener or avalanche breakdown may occur
when the applied reverse-bias voltage is large enough to cause the breakdown of
junctions J1 and J3. This region is usually avoided in thyristor operation. A thyristor
operating in the foward-bias region is thus a bistable device that can switch from a
high-impedance, low-current off state to a low-impedance, high-current on state.
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Figure 14.20. (a) Two-transistor approximation of a three-terminal thyristor. (b) Same as
(a) using transistor symbols.

Thyristors are the most widely used four-layer p-n-p-n devices with applications
ranging from speed control in home appliances to switching and power inversion
in high-voltage transmission lines. In p-n-p-n diode operation, it is necessary to
increase the external applied voltage so that junction J2 is in the avalanche multipli-
cation region. The breakover voltage of a p-n-p-n diode is fixed during fabrication.
However, the shape of the I–V characteristic curve can be controlled by using a
third terminal or a gate in the p2 region of the thyristor as shown in Figure 14.19c.
A thyristor can be fabricated using standard silicon planar technology; the p1 and
p2 regions are formed using thermal diffusion (or implantation) of boron dopant
followed by diffusion of phosphorus impurity to form the n2 region to complete
the four-layer p-n-p-n structure as shown in Figure 14.17. The p1-n1-p2 structure is
known as the lateral transistor and the n2-p2-n1 structure as the vertical transistor.
The gate electrode is connected to the p2 region to control the I–V characteristics
of the thyristor. Figure 14.19b shows the I–V characteristics of a typical silicon-
controlled rectifier (SCR) under different gate currents Ig.

The predominant effects of increasing Ig in an SCR device are an increase
in the off current and a decrease in both the breakover voltage and the holding
current. These effects can be explained qualitatively in terms of the two-transistor
equivalent circuit shown in Figures 14.20a and b. In the off state, the device behaves
essentially like a normal n-p-n transistor with a p-n-p transistor acting as an emitter
follower having a very small forward current gain. Increasing the gate current
Ig will increase the collector current and hence the anode current of the n-p-n
transistor. The larger anode current will result in an increase of the transistor
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current gain. When α1 + α2 = 1, the avalanche multiplication factor decreases
and the breakover voltage decreases. In the on state, the flow of gate current will
again increase the value of α. Thus, the holding current can reach a lower value
before it switches back to the off state.

In general, the basic I–V characteristics of a thyristor can be best explained
using a two-transistor analogue developed by Ebers in which the n base of a p-n-p
transistor is connected to the emitter of an n-p-n transistor to form a four-layer
p-n-p-n device. Figure 14.20a shows a three-terminal thyristor and Figure 14.20b is
its equivalent circuit representation. It is noted from Figure 14.20b that the collector
current of the n-p-n transistor provides the base drive for the p-n-p transistor, while
the collector current and the gate current of the p-n-p transistor supply the base
drive for the n-p-n transistor. Thus, a regeneration condition occurs when the total
loop gain is greater than one. The base current IB1 of the p-n-p transistor is equal
to the collector current IC2 of the n-p-n transistor, and is given by

IB1 = IC2 = (1 − α1)IA − ICO1, (14.80)

where IA is the anode current of the p-n-p transistor and α1 is the dc common-base
current gain. The collector current of the n-p-n transistor is given by

IC2 = α2 IK + ICO2, (14.81)

where α2 is the dc common-base current gain and IK = IA + Ig is the cathode
current of the n-p-n transistor. Solving (14.80) and (14.81), one obtains

IA = (α2 Ig + ICO1 + ICO2)

(1 − α1 − α2)
, (14.82)

which predicts the dc characteristics of a thyristor up to the breakover voltage,
and the device behaves like a p-i-n diode beyond the breakover voltage. It is noted
that all the current components in the numerator of (14.82) are very small except
when α1 + α2 approaches unity. At this point, the denominator of (14.82) be-
comes zero, and IA increases without limit. As a result, the forward breakover
or switching takes place when dVAK/d IA = 0. The transistor current gain is
seen to increase with collector voltage and collector current at low current level.
The effect of collector voltage on α is particularly pronounced as it approaches
the avalanche voltage. Therefore, as the voltage across the thyristor increases,
the collector current and values of α in the two equivalent transistors will also
increase. When α1 + α2 approaches unity, IA increases sharply, which, in turn,
increases the value of α. When the sum of avalanche-enhanced α value is equal to
one (i.e., α1 + α2 = 1), breakover will occur. Because of the regenerative nature
of these processes, the device is eventually switched to its on state. Upon switch-
ing, the current flowing through the thyristor must be limited by the external load
resistance, or the device will be destroyed when the applied voltage becomes too
large. In the on state, all three junctions of the device are forward-biased and nor-
mal transistor action is no longer effective. The voltage across the device is nearly
equal to the sum of the three saturation junction voltage drops, on the order of
1 V for a silicon thyristor. In order to keep the device in its low-impedance on
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Figure 14.21. Energy band
diagrams of a p-n-p-n diode in
(a) equilibrium conditions, (b)
forward off state, where most
of the voltage drop is across
the J2 junction, (c) forward on
state, in which all three
junctions are forward-biased.

state, the condition that α1 + α2 = 1 must be satisfied. In this case, the holding
current corresponds to the minimum current in which α1 + α2 = 1 is satisfied.
Further reduction of current will result in the device being switched back to the
high-impedance off state.

Figure 14.21 shows the energy band diagrams of a p-n-p-n thyristor under dif-
ferent bias conditions: Figure 14.21a is for equilibrium conditions, Figure 14.21b
is for the forward off state, in which most of the voltage drop is across junction
J2, and Figure 14.21c is for the forward on state, in which all three junctions are
forward-biased. In practice, when a positive voltage is applied to the anode to turn
the thyristor from the off state to the on state, the junction capacitance across J2

is charged. This charging current flows through the emitter junctions of the two
transistors. If the rate of change of applied voltage with time is large, the charging
current may be large enough to increase the α value of the two transistors suffi-
ciently to turn on the device. This rate effect may reduce the breakover voltage to
half or less than half of its static value. The voltage at which an SCR device goes
from the “on” to the “off” state is usually controlled by a small gate signal. In a
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low-power SCR, the gate electrode can be used to turn the device to the on and off
states. However, for high-power SCRs, once the device is in the on state, the gate
circuit has little effect on the device operation.

The SCR is usually a large-area device since it needs to handle a large amount
of current. As a result, lateral gate current flow can give rise to a substantial
voltage drop across the device, and the current-crowding effect tends to turn
on the periphery of the device first. This turn-on condition may propagate
through the entire device. During the turn-on transient, the anode current passes
through the small peripheral area momentarily, and the high current density could
cause the device to burn out. To prevent this problem, an interdigitated structure
is often used to reduce the lateral effect.

14.9. Heterojunction Bipolar Transistors

14.9.1. Introduction

Heterojunction bipolar transistors (HBTs) are currently being used in a wide
range of communications products including power amplifiers, voltage-controlled
oscillators (VCO) and mixers, wireless security systems, wireless local area
networks (WLAN), satellite communication systems, high-power radar trans-
mit/receive (T/R) modules, and high-speed analog/digital (A/D) ICs. Recent de-
velopment of high-speed HBT technologies are based on the InP/InGaAs, Al-
GaAs/GaAs, Si/SiGe, and GaInP/GaAs material systems. The GaInP/GaAs has
recently emerged as an alternative to AlGaAs/GaAs material system for HBT
power applications. The GaInP/GaAs system has a larger valence band disconti-
nuity than AlGaAs/GaAs, which results in higher emitter injection efficiency and
higher device gain. Furthermore, because of the smaller conduction band discon-
tinuity of GaInP/GaAs, transport can be improved at higher current levels because
the injected electrons from the emitter to the base at these levels are less likely to
transfer to the L-valley of the GaAs base. Other distinct advantages of GaInP/GaAs
over AlGaAs/GaAs are the absence of donor-related traps (DX centers) and the
etching selectivity of GaInP with respect to GaAs.

The advantages offered by the InP HBT technology have opened up a range
of new applications for high-speed mixed-signal and digital ICs. Modern digital
communications, instrumentation, electronics warfare, and radar systems require
high-speed digital and mixed-signal ICs operating at frequencies from DC to 100
GHz. Broadband requirements place severe constraints on available semiconductor
technologies and design expertise. Indeed, commercial off-the-shelf digital and
mixed-signal ICs based on SiGe or GaAs technologies are generally available
only at speeds up to 13 GHz. For speeds over 13 GHz, InP HBT technology
could pave the way for the development of 100 GHz digital and mixed signal ICs
applications.

Silicon–germanium (SiGe) HBTs have received much attention since IBM
refined its process and began offering a foundry 8-inch SiGe line for the
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fabrication of Si/SiGe HBTs and ICs on silicon substrates. SiGe HBTs have
found applications in many microwave and mixed-signal products, where they
can offer high performance and cost-effective solutions that are not available on
a silicon platform. However, the Si/SiGe HBT structure remains a low-power
configuration. The high-frequency performance exhibited by SiGe HBTs is
largely a result of decreased minority carrier transit time through the base layer.
This is achieved by thinning the SiGe base layer, using a graded GexSi1−x base
layer for the built-in field to push electrons across the base, and increasing the
doping density in the base to lower the base resistance.

14.9.2. Device Structures and Fabrication Technology

In this section, the device structure, fabrication technology, operation principle,
current–voltage (I–V) behavior, and performance characteristics such as current
gain and cutoff frequency of a heterojunction bipolar transistor (HBT) are de-
scribed. Device characteristics and applications of HBTs fabricated from Si/SiGe,
GaAs/AlGaAs, and InGaAs/InAlAs material systems will be presented.

The concept of a heterojunction bipolar transistor (HBT) was first proposed by
Shockley, and the basic device theory describing the operation principles of an HBT
was subsequently developed by Kroemer. In spite of the great potential for using
HBTs in high-speed digital and microwave circuit applications, the technology
for fabricating HBTs did not exist until the 1970s. With the advances of MBE
and MOCVD growth techniques of III-V epitaxial layers, significant progress in
HBT device fabrication technology has been made in recent years, although it
is still not as mature as the technology for FETs. For example, frequency divider
circuits using AlGaAs/GaAs HBTs with clock frequencies exceeding 20 GHz and a
maximum oscillation frequency fmax of 105 GHz have been reported recently. The
main motivation for using the HBT structure is to overcome some of the limitations
found in homojunction bipolar transistors (BJTs). The advantages of an HBT over
a BJT include using (i) a wide-band-gap emitter to suppress minority carrier back
injection, (ii) a lightly doped emitter to reduce the E-B junction capacitance, and
(iii) a heavily doped base to lower the base resistance. As a result both the speed and
frequency performance of the HBT can be significantly improved over that of the
conventional BJT. In this section, we will present the device structure, operation
principles, and dc characteristics of an AlGaAs/GaAs HBT.

In an HBT, the current path (i.e., speed-limiting factor) is perpendicular to the
surface and the epilayers. Therefore, to first order, the speed of an HBT is governed
mainly by the thickness of the epilayers. Since the epilayer thickness can be easily
made much smaller by the MBE or MOCVD technique than the horizontal lithog-
raphy dimensions, for a given horizontal dimension there is a higher speed potential
for the HBT structure than for MESFETs. The HBT using an AlGaAs/GaAs ma-
terial system has shown great promise for high-speed device applications. The
use of a wide-band-gap AlxGa1−xAs emitter for the HBT results in an injection
efficiency of close to unity even if the doping density in the GaAs base region is
much higher than that of the emitter. This provides an extra degree of freedom in
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Figure 14.22. Schematic cross-sec-
tional view of an AlGaAs/GaAs n-
p+-n-n+ HBT: (a) with self-aligned
process and (b) fabricated by ion-
implanted process. After Asbeck,8 by
permission, IEEE–1988.

transistor design, which helps to achieve high-speed operation in such a device.
Its major limitations include technological problems related to reproducible and
stable processing and the device physics related to gain degradation mechanisms.
Historically, the AlGaAs/GaAs emitter-up HBTs have been fabricated on emitter,
base, and collector epilayers grown sequentially by the MBE or MOCVD tech-
nique, with ohmic contacts being made on the emitter, base, and collector regions
by sequential etching. Etching through the emitter to the base and the E-B-n− col-
lector to the n+ collector usually leads to steps in the GaAs surface ranging from
0.4 to 1.0 μm in depth. Although high-quality HBTs can be readily fabricated in
this manner, the resulting mesa structure is a severe topographical obstacle to inte-
grating these HBTs with a multilevel metal system into a densely packed integrated
circuit. High levels of integration have been achieved with HBTs using a planar
HI2L technology, which relies on an emitter-down AlGaAs/GaAs structure with
implanted base and extrinsic p+ base regions. Other advantages of III-V HBTs
over silicon BJTs include possible transient electron velocity overshoot, radiation
hard, and compatibility with optoelectronic integrated circuits (OEICs).

Figure 14.22a shows a cross-sectional view of an AlGaAs/GaAs HBT fabricated
with a self-aligned base process, and Figure 14.22b shows the AlGaAs/GaAs
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Figure 14.23. Energy band diagrams for an AlGaAs/GaAs HBT: (a) with an abrupt E-B
junction and (b) with a graded E-B junction. The electron injection is from the wide-band-
gap n-AlGaAs emitter region (n ≈ 5 × 1017cm−3) into the narrow band gap GaAs base
region (p ≈ 1019 cm−3).

HBT fabricated by using an ion-implanted process. The advantages of an
ion-implanted process include low base contact resistance, flexibility of layer
structure, and low C-B capacitance, and the problems associated with this pro-
cess are dopant diffusion, anneal uniformity, and parasitic base resistance. As
for the self-aligned base process, the advantages include a simpler, faster, and
low-temperature process, while etch control, higher base contact resistance, and
lower current gain are some of the problems associated with this process. Figure
14.23a, b shows the energy band diagram of an AlGaAs/GaAs HBT with an abrupt
E-B junction, and Figure 14.23b is the energy band diagram for an AlGaAs/GaAs
HBT with a graded E-B junction. The effects of using the graded E-B junction
shown in Figure 14.23b include (i) reducing space-charge recombination in the
E-B junction, (ii) increasing injection electron velocity, (iii) being less effective
in suppressing hole injection from the base to the emitter, and (iv) being more
susceptible to base dopant diffusion.
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The typical dopant densities and layer thicknesses for the AlGaAs/GaAs HBT
structure shown in Figures 14.22a and b are as follows: The device structure
consists of a 0.2 μm heavily doped (3 × 1018cm−3) n+-GaAs cap layer grown on
top of the wide-band-gap Al0.3Ga0.7As emitter layer to reduce the emitter con-
tact resistance, a 0.1 μm Al0.3Ga0.7As emitter layer of dopant density around 5 ×
1017cm−3, a 0.1 μm p+-type GaAs base layer with dopant density 1 × 1019 cm−3,
and a 0.3 μm n-type GaAs collector layer with dopant density 1017 cm−3 grown
on top of an n+-GaAs buffer layer with dopant density 3 × 1018 cm−3. These
GaAs/AlGaAs active layers were grown on a semi-insulating GaAs substrate us-
ing the MBE or MOCVD technique.

14.9.3. Current Gain and Device Parameters

The current gain expression for an HBT can be derived using the theory developed
by Kroemer for a wide-band-gap emitter HBT.7 For example, the electron current
injected from emitter to base (i.e., Jn) and the hole current (Jp) injected from
base to emitter for an n-p-n AlGaAs/GaAs graded E-B junction HBT shown in
Figure 14.23b can be expressed as

Jn =q

(
Dn

WB

) [
NE exp

(−�E ′
c/kBT

)]
, Jp =q

(
Dp

WE

) [
NB exp

(−�E ′
v/kBT

)]
.

(14.83)

From (14.83) one can estimate the maximum current gain for the HBT shown in
Figure 14.23b from the ratio of the electron and hole current density, which is
given by

βmax ≈ Jn

Jp
≈ NEvnB

NBvpE
exp

[− (
�E ′

c − �E ′
v

)
/kBT

] = NEvnB

NBvpE
exp

(
�Eg/kBT

)
.

(14.84)

From (14.84) it is seen that a very high value of βmax can be achieved even when
NE is smaller than NB. To obtain a current gain of β > 100 in the AlGaAs/GaAs
HBT structure shown in Figure 14.23b with a base-to-emitter dopant density ratio
(NB/NE) of 50 to 100, the value of �E ′

v − �E ′
c = �Eg should be equal to or

greater than 0.24 eV, which corresponds to a wide-band-gap Al0.22Ga0.78 As (i.e.,
with 22% of AlAs) emitter. A typical AlAs mole fraction used in an AlGaAs/GaAs
HBT is about 25%. It is noted that �E ′

c(= �E ′
g + �E ′

v) is the band gap discon-
tinuity in the valence band edge of the wide-band-gap AlGaAs emitter. It is clear
that a substantial increase in current gain may be achieved in an HBT as a result
of the exponential increase of β with �E ′

v. A decrease in βmax due to the decrease
of potential barrier for holes may be partially compensated by the increase of
electron velocity in the base caused by the ballistic injection of electrons from the
spike-notch structure at the conduction band edge of the wide-band-gap emitter
near the E-B junction (see Figure 14.23a). Smoothing out the conduction band
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spike can be achieved by grading the composition of the wide-band-gap emitter
near the heterointerface of the E-B junction, as shown in Figure 14.23b.

Since the emitter injection efficiency of an HBT can be made very high, its
current gain is essentially equal to the base transport factor. For an n-p+-n HBT,
this is given by

β ≈ τn

τB
, (14.85)

where τn and τB denote the electron lifetime in the base and the transit time across
the base, respectively. For a uniformly doped base the electron transport across
the base is by diffusion and τB ≈ W 2

B/2Dn, while for a graded composition base
the transport of electrons in the base is by drift and τB ≈ WB/μnE . Thus, in order
to obtain a high current gain, τB should be as small as possible. For example, for
a sufficiently short base HBT with WB = 0.1 μm, β > 103 can be obtained even
if τn in the base is on the order of 1 ns. From (14.85) it is interesting to note that
the current gain in an HBT does not depend on the emitter doping level, and is
sensitive to the base doping density only through the variation of τn with the base
doping density NB. Therefore, it is possible to shape the doping profiles of an HBT
such that the emitter doping density NE is smaller than the base doping density NB.
As a result, the base spreading resistance rb′b and the emitter depletion capacitance
CTE can be greatly reduced. The base-spreading resistances rb′b for a circular and
a rectangular geometry are given respectively by

rb′b = 1

8πμp QB
(circular), (14.86)

rb′b = 1

12 (h/ l) μp QB
(rectangular), (14.87)

where

QB = q
∫ Wb

0
NB(x) dx (14.88)

is the Gummel number. The emitter junction transition capacitance is given by

CTE = AE

√
qε0εs NE

2 (Vbi − VBE)
. (14.89)

The above equations can be used to improve the high-frequency performance of
an HBT, such as increasing the cutoff frequency fT and power gain G. This will
be discussed next.

14.9.4. Current–Voltage Characteristics

In this section, the behavior of the collector current (IC) and base current (IB)
as well as the current gain of a single heterojunction AlGaAs/GaAs HBT is dis-
cussed. In general, the current–voltage (I–V) behavior for an AlGaAs/GaAs HBT
is similar to that of silicon BJTs but with a few distinct differences. Figure 14.24



554 14. Bipolar Junction Transistors

Figure 14.24. Collector current versus collector–emitter bias voltage for an AlGaAs/GaAs
HBT with an emitter rea of 2 × 3.5 μm2; IB steps: 20 μA. After Asbeck,8 by permission,
IEEE–1988.

shows the collector current versus collector–emitter bias voltage with base current
as a parameter for the single-heterojunction AlGaAs/GaAs HBT used in digital
and analog-to-digital (A/D) converter circuits. The HBT has an emitter area of
2 × 3.5 μm2. Several distinct features that are absent in a Si BJT are displayed in
this figure. First, the nonzero offset voltage VCE to produce positive IC for the HBT
is due to the difference in the turn-on voltage of the E-B junction and C-B junction.
Second, there exists a negative differential output conductance at a higher IB and
VCE, which is attributed to the heating effect at a higher current level or higher
temperature. In general, the current gain of an HBT decreases with increasing
temperature. Third, the dc current gain increases with increasing collector current
(≈I 1/2

c ) and becomes saturated at high collector current. To understand the basic
mechanisms governing the current conduction in an HBT, we next analyze the
collector current and base current separately.

Figure 14.25 shows the Gummel plot (IC, IB versus VBE) for the HBT shown in
Figure 14.24. As shown in this figure, the ideality factor for the collector current is
equal to unity for low to medium values of VBE, implying that the diffusion current
is the dominant component, while the diode ideality factor for IB at low VBE is
equal to 2, indicating that the recombination current is dominant in the base. At
high VBE the series resistance effect becomes dominant for both IC and IB.

The collector current for an HBT can be explained using the Moll–Ross–
Kroemer relation. If the collector current is base transport limited, then the collector
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Figure 14.25. The collector and base current versus emitter-base bias voltage (Gummel
plot) for the AlGaAs/GaAs HBT shown in Figure 14.24.

current density JC can be expressed by8

JC = q Dnn2
ie exp (qVBE/kBT )∫ WB

0 p (x) dx
. (14.90)

The integral in the denominator represents the number of impurity atoms per
unit area (cm−2) in the base, and is known as the Gummel number. Therefore,
a large collector current can be realized with a smaller Gummel number, which
corresponds to a narrow base width.

The base current IB in an AlGaAs/GaAs HBT is more complex than that of a
silicon BJT due to the use of a wide-band-gap AlGaAs emitter and a narrow-gap
GaAs base. In general, deep-level defects such as DX centers in AlGaAs play an
important role in controlling the recombination current in the E-B junction of the
HBT. For example, the base current of an HBT may consist of four components: (i)
recombination current in the base, (ii) recombination current in the E-B junction
space-charge region, (iii) recombination current in the emitter, and (iv) periphery
current. A general expression for these current components is given by

IB ≈ exp (qVBE/nkBT ), (14.91)

where n is the diode ideality factor, which may vary between 1 and 2. When the
recombination current is dominant in the base due to the short minority carrier
lifetimes, the value of n is equal to unity and the current gain β (=IC/IB) is
constant. If recombination in the E-B junction space-charge region dominates due
to the high density of deep-level centers, such as in the case of the graded E-B
junction HBT shown in Figure 14.23b, then the value of n is equal to 2, and β

increases with IC and decreases with increasing temperature. If recombination in
the emitter is dominant, then the value of n is equal to unity and β decreases
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Figure 14.26. The dc current gain versus collector current for the AlGaAs/GaAs HBT
shown in Figure 14.24.

with increasing temperature. Finally, the periphery current is attributed to the high
surface recombination velocity around the emitter edge if the AlGaAs emitter
surface is not properly passivated. In general, the current gain of an AlGaAs/GaAs
HBT scales with the length of the emitter but not the area. Figure 14.26 shows
the current gain versus collector current for the HBT shown in Figure 14.24. The
results show that β greater than 100 can be achieved at higher collector current
(e.g., IC ≥ 10 mA) for this device.

14.9.5. High-Frequency Performance

The cutoff frequency fT is an important figure of merit for assessing the perfor-
mance of an HBT in high-speed applications. The value of fT for an HBT can be
calculated using the expression

1

2π fT
= τE + τC + τB + τTC, (14.92)

where

τE = re (CTE + CDE) ≈ 4kBT

q IE
CTE(0) (14.93)

is the emitter capacitance charging time, re is the E-B junction resistance, and CDE

is the emitter diffusion capacitance. The collector charging time τC is given by

τC = rcc′CTC, (14.94)
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where

CTC = Ac

√
qε0εs Nc

2 (Vbi + VCB)
(14.95)

is the C-B junction depletion capacitance and rcc′ is the collector series resistance.
Thus, to reduce τC, the doping density between the collector region and the collector
contact should be as large as possible so that rcc′ can be minimized. The effective
base transit time τB is related to the effective electron velocity vn and base width
WB by

τB = WB

vn
≈ W 2

B

2Dn
, (14.96)

where Dn (=kBT μn/q) is the electron diffusion constant in the base. For an Al-
GaAs/GaAs HBT with a p+ GaAs base of WB = 50 nm and vn = 1 × 107 cm/sec,
the value of τB is found to be 0.5 psec. The transit time of carriers across the C-B
junction τTC is given by

τTC = xc

vs
, (14.97)

where xc is the depletion layer width of the C-B junction and vs is the saturation
velocity of carriers in the C-B junction. Finally, the power gain of an HBT can be
written as

G = fT

8π f 2rbb′CTC
. (14.98)

Equation (14.98) shows that the power gain of an HBT is directly proportional
to the cutoff frequency fT and varies inversely with the parasitic base resistance
and C-B junction capacitance. It is evident that high electron mobility in GaAs is
essential for high-frequency performance of the HBT, because an increase in μn

will lower the values of both τB and rcc′ , which in turn will increase fT and hence the
power gain G. A value of fT equal to 75 GHz can be achieved for an AlGaAs/GaAs
HBT with a 1.2 μm emitter width. In addition to high electron mobility, the lower
doping density in the wide-band-gap AlGaAs emitter region and the higher doping
density of the GaAs base region will result in a smaller E-B junction capacitance
and a smaller base-spreading resistance. These two factors are essential for high-
speed and high-frequency operation of the HBT. An AlGaAs/GaAs HBT with a
very short base width (≤ 0.1 μm) can have a current gain of several thousands
or higher, provided that the electron lifetime τn in the base is on the order of a
nanosecond.

The high electron mobility and high base doping density in the GaAs base region
will have additional beneficial effects on the performance of an AlGaAs/GaAs
HBT. For example, parasitic mechanisms such as emitter current crowding and
base widening in the collector region can be greatly reduced with the HBT structure
shown in Figure 14.23a. The additional advantage is the increase of critical current
density when the base widening becomes important. This critical current density
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is related to the electron mobility by

Jbwc = qμn Ndc
VCB

Wc
, (14.99)

where Wc is the width of the collector region. Another important consideration
in the design of an HBT is the emitter current crowding effect, which becomes
important when the emitter current density exceeds Jec, given by

Jec = 8

l2
Dpb QbhFE. (14.100)

This shows that a higher base doping density (i.e., a higher Qb) will reduce the
emitter current crowding in the HBT.

In many circuit applications in which a large load capacitance is required, BJTs
are preferred over field-effect transistors (FETs) because of their large current-
carrying capability, high transconductance, and excellent threshold voltage control.
The main advantage for developing an HBT is to reduce the base resistance rbb′ ,
which severely limits the high-speed performance of a BJT in the bipolar digital
and microwave circuits. For example, the maximum oscillation frequency fmax for
an HBT is given by

fmax = 1

4πrbb′CTCτEC
, (14.101)

which clearly shows that fmax is controlled by the base resistance rbb′ . The collector
junction capacitance (CTC) can be reduced using a smaller collector junction area,
and τEC is the total emitter-to-collector delay time, which is given by

τEC = τE + τB + τTC + τC. (14.102)

Since τE is inversely proportional to the emitter current density, a large emitter
current will improve the frequency response. The base resistance rbb′ can also have
a profound effect on the noise and performance of the HBT. Values of rbb′ can be
reduced by increasing the base width WB and base-doping density NB. Increasing
base width WB is not desirable since it will increase the base transit time τB, which
in turn will reduce the base transport factor γ and current gain β. It is well known
that increasing Nab in a BJT will increase the unwanted carrier injection from the
base into the emitter, which in turn will reduce the emitter injection efficiency. In
an n-p-n HBT, however, due to the presence of two different band gap materials,
the energy barriers for injection of electrons and holes are quite different. The
barrier is larger for holes and the injection efficiency is nearly independent of
the dopant density in the base. Furthermore, the gain is only limited by the base
transport factor. As a result, the base region of an HBT can be heavily doped
without significantly affecting the current gain. In fact, the dopant densities in the
emitter and collector regions can be adjusted to minimize the junction capacitance
and series resistance of an HBT. This is a very attractive feature for the HBT.

The conduction band spike at the E-B junction shown in Figure 14.23a is due
to the abrupt transition at the AlGaAs/GaAs interface. This conduction band spike
can be smoothed out using a compositional grading across the interface (i.e., by
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changing the aluminum molar fraction x gradually in the AlxGa1−xAs layer). The
spike can be used for near-ballistic injection of electrons into the base region
to reduce the base transit time τB (e.g., from 1 to 0.2 psec for a base width of
0.1 μm). Without ballistic injection, the best reported unit current gain cutoff
frequency fT (=1/2πτEC) for an HBT is about 40 GHz with an emitter width of
1.6 μm. Therefore, with ballistic injection, further improvement in fT is possible.
To further reduce τEC, the device area and parasitic of HBTs will have to be reduced
and the current level increased. An important factor for increasing the speed of an
HBT is the reduction of base resistance rbb′ .

Additional advantages of HBTs over BJTs include (1) the suppression of hole
injection into the collector in saturating logic, (2) emitter–collector interchange-
ability leading to an improvement in VLSI circuit design, packing density, and
interconnects, and (3) better control of the emitter–collector offset voltage. The
collector of an HBT can also use a wide-band-gap AlGaAs material to form a dou-
ble heterojunction transistor (DHBT). Besides III-V semiconductor HBTs, several
new types of silicon HBTs using materials such as hydrogenated-amorphous sil-
icon (a-Si:H and a-SiC:H) and hydrogenated microcrystalline silicon (μc-Si:H)
as wide-band-gap emitters have been reported recently. Among these devices,
the μc-Si:H n-p-n silicon HBT has the best overall performance characteristics.
The device shows a much higher common emitter current gain than the conven-
tional homojunction BJT. Figure 14.27 presents a comparison of the unit current
gain cutoff frequency fT as a function of collector current for an AlGaAs/GaAs
HBT and a Si-BJT with similar geometries. The results clearly show that the for-
mer has a much higher fT than the latter. In addition to AlGaAs/GaAs HBTs,
AlGaAs/InGaAs p-n-p HBTs have been fabricated using carbon-doped material
grown by the nonarsine MOVPE technique with fmax = 39 GHz and fT = 18 GHz
achieved. Operating in the common-base mode, this HBT has achieved a 0.5 W
output power with 8 dB gain at 10 GHz.

Figure 14.27. Comparison of
unit current gain cutoff frequency
fT versus collector current for
an AlGaAs/GaAs HBT and a Si
BJT with similar geometry. After
Beilbe et al. (8), by permission,
IEEE–1980.
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In the past decade, using molecular beam epitaxy (MBE) and ultra-high-
vacuum chemical vapor deposition (UHV-CVD) techniques, high-performance
Si/GexSi1−x HBTs have been developed for a wide variety of applications in-
cluding high-speed communication and BiCMOS integration, and have been used
as a key component in modern analog/mixed-signal/RF and high-frequency de-
vices. This latest development has offered new promise for silicon-based HBTs
to compete directly with III-V semiconductor HBTs and HEMTs for high-speed
and high-frequency circuit applications. The epitaxial-base, in situ doped SiGe
HBT technology has been developed by IBM for high-frequency applications. In
research, IBM has achieved values of fT of up to 120 GHz for the SiGe HBT.
To suit a wide range of applications, two variants of the SiGe HBTs have been
developed at IBM: a standard version for general applications (with fT. = 48 GHz
and fmax = 70 GHz; β = 80) and a high-breakdown version (with fT. = 30 GHz)
for power applications, which are able to tolerate a moderate tradeoff in fT. Both
variants can be mixed in any combination in the same circuit if desired. In ad-
dition to enabling a variety of high-frequency applications, the SiGe HBT also
offers great advantages at the lower frequencies (e.g., 1.8 or 2.4 GHz) of today’s
hottest wireless applications. In 2004, Intel released the 90 nm SiGe HBT tech-
nology with fT above 200 GHz. The tremendous headroom in speed may be
traded for very low power. If high current is desired, the SiGe HBT can easily
achieve values for IC in excess of 1.6 mA/μm2 of emitter area, with near perfect
ideality and flat beta over 7 orders of magnitude. Figure 14.28a shows the plots
of fT and fmax versus collector current IC for a GeSi HBT with emitter area of
0.5 μm × 2.5 μm developed by IBM. Figure 14.28b shows the collector and base
currents versus base–emitter voltage (the Gummel plot) for the GeSi HBT shown in
Figure 14.27a.

Figure 14.29 shows a comparison of unity current gain cutoff frequency ( fT)
as a function of the device-critical dimension for various high-speed HBTs and
PHEMT technologies. The 1-μm InP HBT technology has the highest fT value
(145 GHz) compared to Si/SiGe HBT and InGaP/GaAs HBT and GaAs PHEMT
technologies. The key attributes make InP HBT technology ideal for high-speed
digital and mixed-signal ICs with low to medium levels of integration include the
following: (i) High-speed InP HBTs exhibit the highest cutoff frequency ( fT) of
all commercial semiconductor technologies. Indeed, they are significantly faster
than competing technologies at similar or smaller critical dimensions (see Figure
14.29). (ii) High reproducibility: Great progress has been made in the high-volume
production of GaAs-based HBT circuits in the past decade, and this expertise can
be translated to InP HBT technology. For example, the reproducibility of InP HBT
turn-on voltage is typically a few millivolts, compared with hundreds of millivolts
achieved with GaAs PHEMT.

Modern digital communications, instrumentation, electronics warfare, and radar
systems require high-speed digital and mixed-signal ICs operating at frequen-
cies from D.C. to 100 GHz. Broadband requirements place severe constraints on
available semiconductor technologies and design expertise. Indeed, commercial
off-the-shelf digital and mixed-signal ICs based on SiGe or GaAs technologies
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Figure 14.28. (a) Cutoff frequencies fT and fmax for a Si/SiGe HBT reported by IBM and
(b) the collector- and base-current versus emitter–base voltage for the same Si/SiGe HBT
shown in (a).

are generally available only at speeds up to 13 GHz. The advanced InP HBT
technology enables digital and mixed-signal ICs at D.C. to 100 GHz frequencies.
The advantages offered by InP HBT technology have opened up a range of new
applications for high-speed mixed-signal and digital ICs.
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Figure 14.29. Comparison of unity current gain cutoff frequency ( fT) as a function of
the device-critical dimension (emitter size) for various high-speed HBTs and PHEMT
technologies.

Problems

14.1. (a) Plot the energy band diagram of an n-p-n transistor in thermal equilib-
rium and in the normal active mode of operation.

(b) Draw a schematic diagram of an n-p-n transistor, and show all the
current components in the three regions of the transistor.

14.2. Plot the minority carrier density profiles for an n+-p-n BJT for the following
cases:
(a) The E-B junction is forward-biased and the C-B junction is reverse-

biased.
(b) Both the E-B and C-B junctions are reverse-biased.
(c) Both the E-B and C-B junctions are forward-biased.

Plot minority carrier distributions in the base region for the cases WB �
Lnb and WB > Lnb, assuming WE > Lpe and WC > Lpc.

14.3. Consider a double-diffused silicon p-n-p planar transistor, where the im-
purity profile after the base diffusion is given by

ND(x) = Q0√
π Dt

exp

(
x2

4Dt

)
,

where Q0 = 1016 cm−2, t = 5 h, D = 5 × 10−14 cm2/sec, and NA

(substrate) = 1015 cm−3.
(a) Calculate the collector junction depth for the above transistor.
(b) If the emitter junction is obtained by an additional short period of boron

diffusion that yields an emitter junction depth of 1 μm, what is the base
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dopant density NB(0) near the emitter junction, assuming that the col-
lector junction depth remains unchanged after the emitter diffusion?

14.4. Using (14.10) through (14.16) show that the base current IB for an n+-p-n
transistor can be expressed approximately by

IB = q A′n2
i

[(
Dpe

NdeWe
+ DnbWb

2NaL2
nb

)

× (eqVEB/kBT − 1) +
(

xE

2τ0ni

)
eqVEB/kBT

]

and the inverse common-emitter current gain is given by

1

hFE
= NabWb Dpe

NdeWb Dnb
+ W 2

b

2L2
nb

+
(

NabWbxE

2Dnbniτ0

)
e−VEB/kBT ,

where xE is the emitter depletion layer width. Note that the second term
in the square brackets of the above equation represents the recombination
current in the depletion region of the forward-biased emitter junction. It is
further assumed that the base width Wb is much smaller than the electron
diffusion length Lnb in the base region (i.e., Wb � Lnb).

14.5. An interesting physical insight into the base transport factor βT can be
obtained if (14.33) is expressed in terms of the transit time τB of the minority
carriers through the base.
(a) Show that the base transport factor for a p-n-p transistor can be written

as

βT = 1

1 + τB/τpb
,

where τB = W 2
b /2Dpb and τpb denote the base transit time and hole

lifetime in the n-base region, respectively, where Wb is the base width.
(b) Explain the physical significance of the result given in (a).

14.6. When a BJT is operating in the normal active mode, the C-B junction is
reverse-biased. The collector voltage, which determines the depletion layer
width of the C-B junction, can thereby affect the actual base width.
(a) Plot the minority carrier charge (i.e., holes) in the base region of a p-n-p

transistor for two values of VCB, assuming that IE is kept constant. How
is the base transport factor affected by this base width modulation (i.e.,
by the change of VCB)?

(b) Derive an expression of the output resistance for the transistor given in
(a).

(c) For a planar silicon p+-n-p transistor with Lpb = 12 μm, Wb = 1 μm,
VCB = 10 V, IC = 1 mA, ND = 1016 cm−3, and NA = 5 × 1015 cm−3,
calculate the output resistance for this transistor using the result derived
in (b).

14.7. The Gummel number can be calculated from the denominator of (14.27)
if the impurity profile in the base region is known. Calculate the Gummel
number of a silicon p-n-p transistor with
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(a) Uniformly doped base with ND = 5 × 1016 cm−3 and a base width of
1 μm.

(b) Nd(x) = N0e−x/w, where N0 = 1018 cm−3 with a 1 μm base width.
14.8. (a) Show that the general expression for the base transport factor of a p+-n-

p BJT with an arbitrary base impurity doping profile can be expressed
by

βT = 1 −
(

1

L2
pb

) ∫ W

0

[
1

ND

∫ W

x
ND(x)

]
dx .

Note that the above equation will reduce to (14.33) if the base doping
profile is uniform.

(b) Using the expression for the base transport factor defined by (a), find
values of the base transport factor for the base impurity dopant profiles
given by (a) and (b) of Problem 14.7.

14.9. If the space-charge recombination current is negligible, show that the exact
expression for the common-emitter output characteristics of a BJT is given
by

−VCE =
(

kBT

q

)
ln

(−ICO + αF IB − IC(1 − αF)

−IEO + IB + IC(1 − αR)

)
+

(
kBT

q

)
ln

(
αR

αF

)
.

14.10. (a) There are three possible ways of keeping a BJT switch in the off state.
These include (i) the open base (IB = 0), (ii) the B-E junction shorted
(VBE = 0), and (iii) the B-E junction reverse-biased (VBE < 0). Draw
the equivalent circuit diagrams of a p-n-p BJT for these three cases
showing the polarity of VCC, VCB, and VEB, the current flow, and the
load resistance RL.

(b) Find an expression for ICEO (the open-base, collector–emitter leakage
current) in terms of ICBO (the open emitter, collector–base leakage
current) and the forward current gain αF for case (i).

(c) Find an expression for ICES (the shorted base, collector–emitter leakage
current) in terms of ICBO, αF, and αR for case (ii).

(d) Find an expression for ICER (the E-B junction reverse-biased) in terms
of ICBO, αF, and αR for case (iii).

(e) If αF = 0.99 and αR = 0.1, calculate the ratio of the leakage current to
ICBO for cases (i), (ii), and (iii).

14.11. (a) Construct the energy band diagram of an n+-In0.51Ga0.49P/p-GaAs het-
erojunction diode, assuming that the conduction band offset �Ec =
0.21 eV and the valence band offset �Ev = 0.25 eV.

(b) Plot the energy band diagram for an n+-Al0.3Ga0.7As/p-GaAs/n-GaAs
HBT with an abrupt E-B interface by including the effect of the energy
band offsets in the diagram.
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15
Metal-Oxide-Semiconductor
Field-Effect Transistors

15.1. Introduction

The metal-oxide-semiconductor (MOS) system is by far the most important
device structure used in advanced integrated circuits (ICs) such as micropro-
cessors and semiconductor memory chips. The present VLSI (very large scale
integration) and ULSI (ultra-large-scale integration) digital circuits are based
almost entirely on n-channel MOS field-effect transistors (MOSFETs) and com-
plementary MOSFETs (CMOSFETs). The MOS structure is a basic building
block for several key IC active components, namely, MOS field-effect transistors
(MOSFETs), insulated-gate field-effect transistors (IGFETs), and charge-coupled
devices (CCDs). Most commerically available MOSFETs and CCDs are fabricated
from the Si–SiO2 system. The MOSFETs consume very low power and can be
easily scaled down for ULSI circuit applications. Therefore, it is pertinent to devote
this chapter for silicon-based MOS capacitors, MOSFETs, and CCDs. Advanced
FETs and other types of high-speed devices fabricated from III-V compound semi-
conductors will be described in Chapter 16.

As discussed in Chapter 11, the operation of a junction field-effect transistor
(JFET) is based on the control of channel current by a reverse-bias p-n junction
gate. In contrast to a JFET, the channel current of a MOSFET is controlled by
the voltage applied across the gate electrode through a thin gate oxide grown
on top of the channel. The current–voltage (I –V ) characteristics of a MOSFET
are very similar to those of a JFET. However, there are several advantages of a
MOSFET over a JFET including lower power consumption, simpler structure,
smaller size, higher packing density, higher yield, and higher compatiblity with
VLSI technologies.

In this chapter, the basic device theories and general characteristics of silicon-
based MOS capacitors, MOSFETs, and CCDs are presented. Section 15.2 describes
the physical properties of the surface space-charge region and capacitance–voltage
(C–V ) behavior of an ideal MOS capacitor. The oxide charges and interface
traps associated with the Si–SiO2 interface of a nonideal silicon MOS capaci-
tor are discussed in Section 15.3. Section 15.4 is concerned with basic device
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Figure 15.1. Cross-sectional view of an
MOS capacitor.

physics, current–voltage characteristics, small-signal device parameters, and the
equivalent circuit of a MOSFET. Some of the problems associated with a scaled-
down MOSFET used in VLSI circuits are also discussed in this section. Section
15.5 presents the advanced MOSFET device structures and characteristics based
on SOI (silicon-on insulator) technology for ULSI circuit applications. Finally,
the operation principles and electrical characteristics of CCDs are discussed in
Section 15.6.

15.2. An Ideal Metal-Oxide-Semiconductor System

In this section, the formation of a surface space-charge region and energy band
diagrams for an ideal MOS capacitor under different bias conditions are discussed.
The MOS structure has been used extensively for investigating the physical and
electrical properties of a semiconductor surface as well as for various IC appli-
cations. Since the reliability and stability of a MOSFET and a CCD are closely
related to the conditions of the semiconductor surface, understanding the physical
and electrical properties of a semiconductor surface is essential for improving the
performance of MOS devices. Although extensive studies of the Si–SiO2 interface
have been reported in the literature, new physical phenomena associated with the
use of an ultrathin oxide layer in scaled-down MOSFETs need to be studied, and
investigation of the top and bottom interface properties of the SOI MOSFETs has
also been widely reported recently.

Figure 15.1 shows a cross-sectional view of a simple MOS capacitor. The energy
band diagrams for an ideal MOS structure with n- and p-type semiconductor
substrates under equilibrium conditions (V = 0) are illustrated in Figures 15.2a
and b, respectively. An ideal MOS system is defined by the conditions that (i) the
work function difference between the metal and the semiconductor is assumed
equal to zero in thermal equilibrium conditions (i.e., φms = 0 at V = 0), (ii) the
flat-band condition prevails, (iii) at any given bias condition, an equal amount
of charge with opposite sign can exist only in the bulk semiconductor and at the
metal–insulator interface, and (iv) no dc current can flow through an insulator (i.e.,



15.2. An Ideal Metal-Oxide-Semiconductor System 569

Figure 15.2. Energy band diagrams for an ideal MOS capacitor with (a) n-type and
(b) p-type semiconductor substrates under equilibrium conditions (V = 0).

infinite oxide resistance). Condition (i) can be described by

φms =

⎧⎪⎨
⎪⎩

φm −
(
χs + Eg

2q − ϕB

)
= 0 for n-type, (15.1)

φm −
(
χs + Eg

2q + ϕB

)
= 0 for p-type, (15.2)

where φm is the metal work function, χs is the electron affinity of the semicon-
ductor, Eg is the energy band gap, ϕB is the bulk potential, and q is the electronic
charge. As shown in Figure 15.2a, χ0 denotes the electron affinity of the oxide, ϕB

is the potential barrier between the metal and oxide, Ef is the Fermi level, and Ei is
the intrinsic Fermi level. When a bias voltage is applied to an ideal MOS capacitor,
three different surface charge conditions (i.e., accumulation, depletion, and inver-
sion) can be created in the semiconductor surface; these are illustrated in Figures
15.3a–c for a metal-oxide p-type semiconductor structure. When a negative voltage
is applied to the metal gate, the valence band bends upward and moves closer to the
Fermi level. This results in an exponential increase in the majority carrier density
(holes) at the semiconductor–oxide interface and the semiconductor surface is in
accumulation, as shown in Figure 15.3a. When a small positive voltage is applied to
the metal gate electrode, the valence band bends downward and the semiconductor
surface becomes depleted; this is shown in Figure 15.3b. Finally, if a large positive
voltage is applied to the metal gate, the valence band bends downward even more
and the Fermi level moves above the intrinsic Fermi level. In this case, an inversion
layer is formed at the semiconductor surface, as shown in Figure 15.3c. Therefore,
depending on the polarity and the applied bias voltage, an accumulation, depletion,
or inversion region can be created at the semiconductor surface of an MOS de-
vice. If the MOS structure is formed on an n-type semiconductor substrate, similar
surface conditions to those of p-type substrates can be obtained, provided that the
polarity of the applied bias voltage is changed. The charge distributions under dif-
ferent bias conditions are also shown on the right-hand side of Figures 15.3a–c. We
shall next discuss the physical properties of the surface space-charge region and the
high- and low-frequency capacitance–voltage (C–V ) behavior for an ideal MOS
capacitor.
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Figure 15.3. Energy band diagrams and charge distribution for a p-type MOS capacitor
under bias conditions: (a) accumulation (V < 0), (b) depletion (V > 0), and (c) inversion
(V � 0).

15.2.1. Surface Space-Charge Region

In order to predict the capacitance versus applied voltage (C–V ) characteristics
of an ideal MOS capacitor, we first derive the expressions for the space-charge
density and electric field, which depend on the surface potential of the semicon-
ductor. Figure 15.4 shows the energy band diagram for a p-type semiconductor
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Figure 15.4. Energy band diagram
at the surface of a p-type semi-
conductor. The potential � is mea-
sured with respect to the intrinsic
Fermi level and is equal to zero
in the bulk semiconductor; �B =
(Ef − Ei)/q denotes the bulk po-
tential. At the semiconductor sur-
face, � = �s, where �s is the
surface potential. Accumulation oc-
curs when �s < 0, depletion occurs
when �B > �s > 0, and inversion
occurs when �s > �B.

surface. The potential ϕ is measured with respect to the intrinsic Fermi level
(e.g., qϕB = Ef − Ei) in the bulk, which reduces to zero inside the bulk semi-
conductor. At the semiconductor surface, ϕ = ϕs, where ϕs is called the surface
potential.

In a bulk semiconductor, electron and hole densities as a function of potential
ϕ can be expressed by

pp = pp0 exp

(
− qϕ

kBT

)
, (15.3)

np = np0 exp

(
qϕ

kBT

)
, (15.4)

where pp0 and np0 denote the equilibrium densities of holes and electrons in a p-
type semiconductor, respectively. It is noted that ϕ is positive when the band bends
downward. At the semiconductor surface, the densities of electrons and holes are
given respectively by

ps = pp0 exp

(
− qϕs

kBT

)
, (15.5)

ns = np0 exp

(
qϕs

kBT

)
. (15.6)

Equations (15.5) and (15.6) relate the carrier density at the semiconductor surface
to the surface potential ϕs. Depending on the polarity and magnitude of the surface
potential, different surface conditions can be established. These include (i) for
ϕs < 0, accumulation of holes results, with the band bending upward; (ii) for
ϕs = 0, the flat-band condition is obtained; (iii) for ϕB > ϕs > 0, the depletion of
holes results, with the band bending downward; and (iv) for ϕs > ϕB, an inversion
region is created near the surface, with the band bending downward. In general,
the potential and electric fields as a function of distance from the interface to the
bulk semiconductor can be obtained by solving Poisson’s equation

d2ϕ

dx2
= q

(
N+

D − N−
A + pp − np

)
, (15.7)
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where N+
D and N−

A denote the ionized donor and acceptor densities, respectively.
Since the potential ϕ is zero in the bulk one obtains N+

D − N−
A = np0 − pp0. Now

substituting (15.3) and (15.4) into (15.7) and using the condition that (N+
D − N−

A ) =
(np0 − pp0), the electric field as a function of distance from the surface into the
bulk of the semiconductor can be expressed by

E = ±
√

2kBT

q LD

[(
e−qϕ/kBT + qϕ/kBT − 1

) + np0

pp0

(
e−qϕ/kBT + qϕ/kBT − 1

)] 1
2

,

(15.8)

where the plus sign is for ϕ > 0 and the minus sign for ϕ < 0, and LD is the extrinsic
Debye length for holes. The space charge per unit area required to produce this
electric field can be obtained using Gauss’s law, which is

QS = −ε0εrEs = ±
√

2ε0εr kBT

q LD

[ (
e−qϕs/kBT + qϕs/kBT − 1

)

+ np0

pp0

(
e−qϕs/kBT + qϕs/kBT − 1

)] 1
2

, (15.9)

where Es is the electric field at the surface and ϕs is the surface potential. Detailed
derivation of the above equations as well as the variation of the space-charge
density with the surface potential for p-type silicon can be found in the classic
paper by Garrett and Brattain.1

It is interesting to note that the onset of strong inversion in an MOS device
occurs at a surface potential given approximately by

ϕsi ≈ 2ϕB =
(

2kBT

q

)
ln

(
NA

ni

)
, (15.10)

where ϕB is the bulk potential.

15.2.2. Capacitance–Voltage Characteristics

In an ideal MOS capacitor, the effects due to interface traps, oxide charges, and
work function difference are negligible. The energy band diagram for an ideal
MOS device formed on a p-type silicon substrate is shown in Figure 15.3b for
V > 0. The charge distributions in the bulk semiconductor and across the metal-
oxide and oxide-semiconductor interfaces are shown in Figure 15.3b. From the
charge-neutrality condition one obtains

QM = Qn + q NAWd = Qs, (15.11)

where QM is the charge per unit area in the metal, Qn is the charge per unit area
in the inversion region, q NAWd is the number of ionized acceptors per unit area
in the space-charge region of width Wd, and Qs is the total charge per unit area
in the bulk semiconductor. The electric field and potential distribution for an ideal
MOS capacitor are shown in Figures 15.5a and b, respectively.
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Figure 15.5. (a) Electric field distribution and (b) potential distribution of an ideal MOS
capacitor under inversion conditions. The energy band diagram and charge distribution are
shown in Figure 14.4.

If the work function difference between the metal and the semiconductor is
neglected, then the applied voltage across the MOS capacitor is equal to the sum
of the voltage drops across the oxide and semiconductor. This can be expressed as

V = Vox + ϕs, (15.12)

where Vox is the potential drop across the oxide and is given by

Vox = Eoxdox = Qs

Cox
. (15.13)

It is noted that Cox = εoxε0/dox is the oxide capacitance per unit area. The total ca-
pacitance per unit area C is equal to the series combination of the oxide capacitance
Cox and the depletion layer capacitance Cd (= εsε0/Wd), namely,

C = CoxCd

Cox + Cd
. (15.14)

Since Cd depends on the applied voltage, the total capacitance of the MOS
capacitor is a function of the applied bias voltage. Figure 15.6 shows the low- and
high-frequency small-signal capacitance versus applied voltage (C–V ) plot for an
ideal MOS capacitor formed on a p-type substrate. At high frequencies (typically
1 MHz), an accumulation of holes occurs near the semiconductor surface when a
large negative-bias voltage is applied to the metal electrode, and a strong inversion
region is formed near the semiconductor surface when a large positive-bias voltage
is applied to the metal gate. A depletion region is created below the semiconductor
surface when a small positive-bias voltage is applied to the MOS capacitor. It is
seen that in the strong accumulation region (i.e., V � 0), Cd becomes very large
and the total capacitance is equal to the oxide capacitance Cox. This corresponds to
the maximum capacitance of the MOS capacitor. In the strong inversion region (i.e.,
V � 0), the depletion layer reaches a maximum width and remains constant for
further increase in the applied-bias voltage. Thus, the total capacitance in the strong
inversion region is also constant. If the applied voltage becomes more positive than
the flat-band voltage, then holes are pushed away from the semiconductor surface
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Figure 15.6. High- and low-frequency capacitance versus voltage (C–V) curves for a p-
type MOS capacitor: (1) low-frequency C–V curve, (2) high-frequency C–V curve, and (3)
high-frequency C–V curve in deep depletion.

and the surface becomes depleted. In this region, the depletion layer width varies
with the applied voltage, and the total capacitance is also a function of the applied
voltage. Of particular interest in the depletion region is the total capacitance per
unit area under the flat-band condition (i.e., ϕs = 0), which is given by

CFB = 1

dox/εoxε0 + LD/εsε0
, (15.15)

where LD =
√

2kBT εsε0/q2 NA is the extrinsic Debye length. For an ideal MOS
capacitor, by neglecting interface traps, oxide charges, and the work function
difference, the flat-band capacitance occurs at V = ϕs = 0. It is noteworthy that
a depletion region is formed in the device when the surface potential ϕs is greater
than zero but smaller than ϕB, where ϕB = (kBT/q) ln(NA/ni) is the bulk potential.
The weak inversion region begins at ϕs = ϕB, and the onset of strong inversion
occurs at ϕs ≈ 2ϕB.

The high-frequency C–V behavior (typically at 1 MHz) for a silicon MOS
capacitor shown in Figure 15.6 can be explained using the one-sided abrupt junction
approach. When the silicon surface is depleted, the number of ionized acceptors in
the depletion region is equal to −q NAWd, where Wd is the depletion layer width.
In this case, the potential distribution in the depletion region is a quadratic function
of distance, and by solving Poisson’s equation one obtains

ϕ = ϕs

(
1 − x

Wd

)2

, (15.16)

where ϕs is the surface potential, which is given by

ϕs = q NAW 2
d

2εsε0
. (15.17)
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From (15.16) and (15.17), it is seen that both ϕs and Wd will increase with
increasing applied voltage. Eventually, the strong inversion condition is reached
at ϕsi ≈ 2ϕB. When strong inversion occurs, the depletion layer width reaches a
maximum. This maximum depletion layer width can be derived from (15.10) and
(15.17), yielding

Wd max =
√

2ε0εsϕsi

q NA
=

√
4kBT ε0εs ln (NA/ni)

q2 NA
. (15.18)

The threshold (or turn-on) voltage VTH at the onset of strong inversion is given
by

VTH = Qs

Ci
+ 2ϕB, (15.19)

where Qs = q NAWd max is the total charge in the depletion region under strong
inversion. The corresponding total capacitance at the onset of strong inversion is

C ′
min = 1

1/Cox + Wd max/εsε0
, (15.20)

where C ′
min is the minimum capacitance at the onset of strong inversion. Therefore,

the high-frequency C–V behavior can be predicted using the above equations for
different bias voltages. Values of the capacitance measured in the strong inversion
region depend on the ability of minority carriers to follow up the applied ac signals
in the small-signal capacitance measurements. This is usually accomplished by the
low-frequency C–V measurements in which the generation–recombination rates
of minority carriers can keep up with the small ac signals. The simplest case arises
when both the dc gate-bias voltage and the small-signal measuring voltage are
changed very slowly such that the semiconductor is near equilibrium. In this case,
the signal frequency is low enough that the inversion layer population can follow it.
The measured capacitance is equal to the stored charge on either side of the oxide,
and hence its value is equal to the oxide capacitance Cox. Under this condition,
the C–V curve follows the low-frequency behavior as shown in Figure 15.6. The
capacitance, which is equal to the oxide capacitance Cox in the accumulation
region, decreases while the surface is depleted, and moves back up to Cox when
the surface becomes inverted. For silicon MOS devices, the onset of low-frequency
C–V behavior occurs for f ≤ 100 Hz. In general, the capacitance in the inversion
region increases from Cmin to Cox as the signal frequency decreases from the
high-frequency regime to the quasistatic regime. Another interesting capacitance
behavior shown in Figure 15.6 is the deep-depletion region. This corresponds to
the experimental situation in which both the gate voltage and the small ac signals
vary at a faster rate than the minority carrier generation–recombination rates in
the surface depletion region. In this case the inversion layer cannot form and the
depletion region becomes wider than Wd max. Consequently, deep depletion is used
to describe this region. The deep-depletion phenomenon can be relaxed by using
higher-bias voltages or by illuminating the MOS device during the C–V scan.
A final note on the high-frequency C–V curve of the MOS capacitor is that the
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Figure 15.7. The thermally grown sil-
icon MOS structure shown in the figure
comprises a fixed oxide charge, an ox-
ide trap charge, a mobile ion charge, and
an interface at the Si–SiO2 interface.

series resistance of the semiconductor substrate can also affect the capacitance
value in the accumulation region under high-frequency conditions. It is generally
observed that in the accumulation region, values of the capacitance will decrease
with increasing frequencies when the series resistance effect becomes important.

15.3. Oxide Charges and Interface Traps

The oxide charges and interface traps play an important role in affecting the phys-
ical and electrical properties of an MOS device. To illustrate the importance of
these charges, consider an Al–SiO2–Si MOS capacitor structure as shown in Fig-
ure 15.7. For a thermally grown SiO2 layer on silicon substrate, the transition from
silicon to the stoichiometric SiO2 is sharp. The transition region consists of SiOx ,
where x may vary between 1 and 2. From X-ray photospectroscopy (XPS) mea-
surements, this region has been found to be approximately 10 Å thick. A tail of
silicon atoms bonding to only three oxygen atoms extends about 30 Å into the SiO2

layer.
There are four major types of charges in SiO2 and at the Si–SiO2 interface

that need to be considered. These are the mobile ionic charges (Qm), the oxide
trapped charges (Q0t), the fixed oxide charges (Qf), and the interface trapped
charges (Qit). The mobile ionic charges are usually caused by sodium or potas-
sium ions, which become mobile at high temperatures under an applied electric
field. These positively charged ions could migrate from the bulk of the oxide layer
to the Si–SiO2 interface over a period of time, slowly increasing the oxide charge
there. The oxide trapped charges arise from defects in the oxide. These defects can
be structural, chemical, or impurity related. The defects, initially neutral, capture
electrons or holes and become negatively or positively charged. Since very little
current flows through the oxide layer during normal device operation, the traps
usually remain neutral. However, if carriers are injected into the oxide, or ionizing
radiation travels through the oxide, these traps can become charged. Both Qm and
Q0t are distributed randomly throughout the oxide layer. The exact nature of the
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fixed oxide charges is not known. However, more than one type of defect may
cause fixed oxide charges. Although 90% of the charges are located within 30–
40 Å of the Si–SiO2 interface, fixed charges are not mobile and are independent
of the applied voltage. The density of Qf is highly dependent on the process used
to create the oxide layer and on the orientation of the silicon substrate. Finally,
interface traps are generally caused by trivalent silicon, which occurs when silicon
atoms bond to only three oxygen atoms instead of four. This defect is amphoteric.
As the Fermi level rises from the valence band toward the mid-gap, the inter-
face traps capture electrons and become neutral. As the Fermi level rises toward
the conduction band, the traps accept additional electrons and become negatively
charged. It is also possible for positive charges near the interface to induce interface
traps. The energies of the traps vary continuously throughout the silicon band gap.
Therefore, the probability of trapping an electron is dependent on the applied bias
voltage. The positions of the oxide charges and the interface traps in a Si–SiO2

system are shown in Figure 15.7.

15.3.1. Interface Trap Charges

Interface states in a Si–SiO2 system are referred as fast states, which can exchange
charges with silicon in a very short period of time. They may be created by trivalent
silicon (i.e., the so-called Pb center), excess oxygen, or impurities. The density
profile of these interface traps across the forbidden gap of silicon is generally found
to be of a “U” shape, relatively flat near the mid-gap and increasing very rapidly
toward the band edges. Since the interface trap states are distributed across the
silicon forbidden gap, it is important to find out the distribution of the interface
trap density across the band gap. The density of the interface trap states can be
expressed by

Dit =
(

1

q

) (
dQit

dE

)
, (15.21)

where Dit has units of cm−2 ·eV−1 and Qit is the total number of interface charges
per unit area (C/cm2). Integrating (15.21) once with respect to energy E from the
valence band edge Ev to the conduction band edge Ec yields the total interface
state density per unit area in the forbidden gap.

When a voltage is applied to an MOS capacitor, the interface trap levels will
move up or down with the valence and conduction bands, while the Fermi level
remains constant. A change of interface trap charge density will cause a change in
capacitance, and hence will alter the C–V curve of an ideal MOS device. Figure
15.8a shows the equivalent circuit of an MOS capacitor when the interface state
traps are included, where Cox denotes the oxide capacitance, Cd is the depletion
layer capacitance, Cit is the capacitance associated with the interface traps, and
Rit is the resistance associated with the interface traps. Quantities Cit and Rit are a
function of the surface potential. The product RitCit = τit is defined as the interface
state lifetime, which determines the frequency behavior of the interface traps. The
parallel branch of the equivalent circuit shown in Figure 15.8a can be converted
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Figure 15.8. Equivalent circuit of an MOS capacitor taking into account the interface states
effect: (a) Cit and G it are the capacitance and conductance associated with the interface traps,
respectively; Cd is the depletion capacitance and Cox is the oxide capacitance. Quantities Cp

and Gp shown in (b) are given by Cp = Cp + Cit/(1 + ω2τ 2). and Gp = Citω
2τ/(1 + ω2τ 2).

into a parallel frequency-dependent capacitance Cp and a parallel conductance Gp

equivalent circuit as shown in Figure 15.8b, with both components given by

Cp = Cd + Cit

1 + ω2τ 2
it

, (15.22)

Gp = Citω
2τit

1 + ω2τ 2
it

. (15.23)

Therefore, the input admittance of an ideal MOS capacitor can be written as

Yin = G in + jωCin, (15.24)

where G in and Cin are given by

G in = ω2CitτitC2
ox

(Cox + Cd + Cit)2 + ω2τ 2
it (Cox + Cd)2 , (15.25)

Cin = Cox

(Cox + Cd + Cit)

[
Cd + Cit

(Cit + Cd + Cox)2 + ω2τ 2
it Cd (Cox + Cd)

(Cit + Cd + Cox)2 + ω2τ 2
it (Cox + Cd)2

]
.

(15.26)

It is noted that both the input conductance G in and input capacitance Cin given
by (15.25) and (15.26) contain similar information with regard to the interface
state traps, which can be determined using either the capacitance or conductance
measurements. It can be shown that for MOS devices, when the interface state den-
sity is low, the conductance technique is more accurate than the capacitance
method. On the other hand, the capacitance technique can give a rapid evaluation
of the flat-band shift and the total interface trap charge Qit. Figures 15.9a–c show
the stretch-out of the C–V curves of an MOS capacitor owing to the increase in
the interface trap charges: (a) the stretch-out of the high-frequency C–V curve
for a p-type MOS capacitor owing to the interface trap charges, and the shift of the
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Figure 15.9. (a) The stretch-out of the high-frequency C–V curve for a p-type MOS capac-
itor due to the interface trap charges, and the shift of the C–V curves due to (b) the positive
fixed charge and (c) the negative fixed charge in the oxide.

C–V curves owing to (b) the positive fixed charge and (c) the negative fixed charge
in the oxide. At high frequencies (i.e., ωτ � 1), the interface traps cannot follow
the ac signals. As a result, the expression for the capacitance given by (15.26)
reduces to (15.14). In this case, the effect of interface traps on the high-frequency
capacitance curve is negligible. As shown in Figure 15.9, in the presence of
interface trap charges the ideal MOS C–V curve will stretch out along the voltage
axis since more charges on the metal gate are needed for a given surface potential.

Measurements of the interface trap density using capacitance and conductance
techniques in a Si–SO2 device have been reported extensively in the literature.2

Figure 15.10 shows the distribution of interface trap densities in the forbidden gap
of silicon for thermally oxidized silicon along the (111) and (100) orientations. The
results clearly show that the interface trap density at mid-gap is about one order of
magnitude higher for the (111) orientation than for the (100) orientation. This result
has been correlated to the difference in the available dangling bonds per unit area on
(111) and (100) silicon surfaces [e.g., the density of dangling bonds is 11.8 × 1014

cm−2 for a (111) silicon surface and 6.8 × 1014 cm−2 for a (100) surface].

15.3.2. Oxide Charges

The oxide charges in SiO2 films will be considered next. There are three different
types of oxide charges that could be presented in the SiO2. These include the oxide
trap charge Qot, the mobile ionic charge Qm, and the fixed oxide charge Qf. As
discussed earlier, the fixed oxide charge is located within 30 Å of the Si–SiO2
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Figure 15.10. Distribution of interface
trap densities in the forbidden gap of sili-
con for a thermally grown silicon dioxide
along the (111) and (100) orientations.
After White and Cricchi,3 by permission,
c© IEEE–1972.

interface. It cannot be charged or discharged over a wide range of the surface
potential. The density of the fixed oxide charge is virtually independent of the
oxide thickness and the type or density of impurities in the bulk silicon. Its charge
state is generally positive and depends on the oxidation annealing conditions and on
the orientation of silicon crystal. The physical origins of the fixed oxide charge have
been attributed to the trivalent silicon and nonbridging oxygen (excess oxygen) near
the Si–SiO2 interface. Figure 15.9b shows the shift of a high-frequency C–V curve
along the voltage axis when the positive or negative fixed charges are present near
the Si–SiO2 interface of a p-type silicon substrate. The voltage shift is measured
with respect to an ideal C–V curve when the fixed charge is equal to zero. For
a negative fixed charge, the C–V curve shifts to more positive bias voltages, and
a positive fixed charge shifts the C–V curve toward more negative bias voltages
with respect to the ideal C–V curve. The reason for the shift of the C–V curve
in the presence of fixed oxide charges is due to the fact that charge neutrality in a
practical MOS capacitor requires that every negative charge on the metal gate must
be compensated by an opposite charge in the oxide and in the bulk silicon substrate.
This implies that in the presence of a positive fixed oxide charge in the oxide, the
net shallow ionized donor density in silicon must be reduced, which, in turn, will
decrease the depletion layer width. Thus, the capacitance will be higher than that of
the ideal case for all values of the applied gate voltages in the depletion and weak
inversion regions. The result is a shift of the C–V curve toward a more negative
bias region for the positive fixed charges and toward a more positive gate bias for
the negative fixed charges. The magnitude of the C–V shift due to fixed oxide
charges with respect to the ideal C–V curve can be estimated using the expression


Vf = Qf

Cox
, (15.27)
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where Qf is the fixed oxide charge density and Cox is the oxide capacitance per
unit area.

Mobile ionic charges such as sodium ions (which are present in thermally grown
SiO2) can cause surface instability of passivated silicon devices. Reliability prob-
lems of silicon devices operating at high temperatures and high bias conditions
may be related to the trace contamination of sodium ions in these devices. Mobile
ionic charges due to sodium can move in and out of the oxide with changes in
biasing and temperature conditions. These problems can be reduced or eliminated
if a cap layer of Si3N4, Al2O3, or phosphosilicate glass is used as a sodium barrier
layer. The shift of the C–V curve due to the mobile ionic charge can be calculated
using the expression


Vm = Qm

Cox
, (15.28)

where Qm is the mobile ionic charge per unit area at the Si–SiO2 interface.
Oxide trap charges can also cause a voltage shift in the ideal C–V curve. The

oxide traps are associated with defects created either by impurities or by radiation
damage in the oxide layer. They are usually neutral and become charged when
electrons or holes are captured by the oxide traps. The voltage shift due to the
oxide trap charges can be calculated from


V0t = Qot

Cox
, (15.29)

where Q0t is the net oxide trap charge per unit area in the SiO2. Therefore, the
total voltage shift of the ideal C–V curve can be expressed by


Vt = 
Vf + 
Vm + 
V0t = Q0

Cox
, (15.30)

where Q0 = Qf + Qm + Q0t is the sum of the effective net oxide charges per unit
area in the SiO2 layer.

From the above analysis, it is clear that oxide charges play an important role in
the stability and reliability of an MOS capacitor. Therefore, effective control of
the oxide charges in silicon MOS devices is essential for stable device operation.

Finally, the metal–semiconductor work function difference affects the flat-band
voltage shift. The work function difference between a metal and an n-type semi-
conductor is obtained from (15.1), which reads

φms = φm −
(

χs − Eg

2q
− ϕB

)
. (15.31)

For an ideal MOS device, φms is zero. If φms and Q0 are not equal to zero, then
the measured C–V curve of the MOS capacitor will be shifted from the ideal C–V
curve by an amount given by

VFB = φms − Q0

Cox
, (15.32)
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where VFB is known as the flat-band voltage shift, and Q0 = Qf + Qm + Q0t is
the total oxide charge. If the mobile ionic charge Qm and the oxide trap charge
Q0t are negligible, then the flat-band voltage will reduce to

VFB = φms − Qf

Cox
. (15.33)

It is noted that the work function difference φms can have a significant influence
on both the surface potential and voltage shift. For example, for an Al–SiO2–Si
MOS capacitor with φm = 4.1 eV and φs = 4.35 eV, the work function difference
φms is found to be equal to −0·25 eV. This work function difference must be
included in the calculation of voltage shift in the measured C–V curve.

15.4. MOS Field Effect Transistors

In this section we present the basic principles, device structure, and characteristics
of a long-channel metal-oxide-semiconductor field-effect transistor (MOSFET).
The MOSFET is a unipolar device in which the current conduction is due to the ma-
jority carriers. The silicon MOSFET is probably the most important active compo-
nent used in a wide variety of silicon IC applications such as microprocessors, logic
and memory chips, power devices, and many other digital ICs. The MOSFET is
usually referred to as the FET formed on the Si–SiO2 system. Other acronyms such
as IGFET (Insulated-Gate FET) or MISFET (Metal–Insulator–Semiconductor
FET) have also been used for FETs formed on different insulators or semiconduc-
tors. Although semiconductors such as Si, GaAs, and InP and insulators such as
SiO2, Al2O3, and Si3N4 have been used in the fabrication of IGFETs, the majority
of IGFETs used in present-day VLSI technologies are almost entirely based on the
Si–SiO2 system. Therefore, only silicon-based MOSFETS will be presented in this
section, while MESFETs (MEtal–Semiconductor FETs) and modulation-doped
FETs (MODFETs or HEMTs) using III-V compound semiconductors (e.g., GaAs
and InP) will be discussed in Chapter 16. In addition to the conventional MOSFETs,
advanced MOSFETs using SOI technology will also be discussed in this section.

15.4.1. General Characteristics of a MOSFET

Figure 15.11 shows the structure of an n-channel silicon MOSFET. The basic
structure of an n-channel MOSFET consists of a p-type silicon substrate, the heav-
ily doped n+ source and drain regions formed by ion implantation or by thermal
diffusion on the p-substrate, and a thin gate oxide (MOS structure) deposited on
the p-substrate that serves as the gate electrode to control the current flow through
the channel region underneath the gate oxide and between the source and drain
regions. The gate electrode deposited on top of the SiO2 gate oxide is formed
using either heavily doped polysilicon or a combination of polysilicon and silicide
metal. In addition to the gate oxide, a much thicker field oxide surrounding the
MOSFET is also deposited on the outer edge of the device to isolate it from other
devices on the same IC chip. A conducting channel between the source and drain
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Figure 15.11. Device structure of an n-channel silicon MOSFET.

can be formed using a buried implanted layer or a channel that can be induced
by applying a gate voltage. The distance between the metallurgical junctions of
the source and drain regions is defined as the channel length L (i.e., along the
y-direction), and the channel width along the z-direction is designated as Z. The
gate oxide thickness is denoted by dox (≤ 100 nm), and NA is the substrate dopant
density. The n+-p junctions formed in the source and drain regions are electrically
isolated from one another when the gate voltage is equal to zero. If a positive
voltage is applied to the gate electrode, an n-type inversion layer is induced at the
surface of the semiconductor, which in turn creates a conducting channel between
the source and drain regions. When the semiconductor surface under the gate ox-
ide is inverted, and a voltage is applied between the source and drain junctions,
electrons can enter the inverted channel from the source junction and leave at the
drain junction. Similarly, a p-channel MOSFET can be fabricated using an n-type
substrate and implantation of boron to form heavily doped p+ source and drain
regions. In a p-channel MOSFET, holes are the majority carriers that flow through
the channel between the source and drain regions of the device.

Under thermal equilibrium conditions (i.e., V = 0), if a work function difference
and oxide charges exist in the Si–SiO2, then an inverted surface or channel between
the source and drain regions may be formed in the MOSFET. In this case, the
device is called a depletion-mode MOSFET because a negative bias voltage must
be applied to the gate in order to deplete the carriers from the channel region
to reduce the channel conductance. This type of MOSFET is also known as a
normally on depletion-mode MOSFET. However, in most MOSFETs, a positive-
bias voltage must be applied to the gate to induce a channel under the gate oxide of
the device. This type of device is usually called an enhancement-mode MOSFET
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Figure 15.12. Cross-sectional views and circuit symbols of (a) an enhancement-mode
(normally off) n-channel MOSFET and (b) a depletion mode (normally on) n-channel
MOSFET.

or a normally off MOSFET. Figure 15.12 shows the cross-sectional views of (a)
an enhancement-mode n-channel MOSFET and (b) a depletion-mode n-channel
MOSFET. Enhancement-mode MOSFETs are more widely used in IC applications
than depletion-mode MOSFETs. The depletion-mode MOSFET is also called the
buried-channel MOSFET because the channel conduction occurs inside the bulk
silicon.

The MOSFET is a four-terminal device with electrical contacts to the source,
drain, gate, and substrate. Under normal operating conditions, the source and
substrate terminals are connected to a common ground. However, when a bias
voltage is applied to the substrate it can also change the channel conductance of
the MOSFET.

15.4.2. Channel Conductance

The channel conductance is a very important parameter for MOSFET operation.
As shown in Figure 15.11, when a positive voltage is applied to the gate electrode
of a MOSFET, an inversion layer is formed in the semiconductor surface under the
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gate oxide. The inversion layer provides a conducting path between the source and
drain, and is known as the channel. The channel conductance can be calculated
using the expression

gI = Z

L

∫ xI

0
qμnnI (x) dx, (15.34)

where nI(x) is the density of electrons in the inversion (n) channel, Z/L is the
gate width to gate length ratio, μn is the electron mobility in the channel, q is
the electronic charge, and xI is the channel depth along the x-direction. The total
charge per unit area QI in the n-inversion channel is obtained by integrating nI(x)
over the channel depth. This can be expressed by

QI = −
∫ xI

0
qnI (x) dx . (15.35)

Solving (15.34) and (15.35), the channel conductance becomes

gI = −
(

Z

L

)
μn QI. (15.36)

It is worth noting that QI is a function of the applied gate voltage and that the
induced mobile charges in the channel become the current carriers in the device.
The threshold voltage VTH is defined as the gate voltage required to achieve strong
inversion in the MOSFET, and is given by

VTH = − QB

Cox
+ ϕsi, (15.37)

where QB is the bulk charge and ϕsi ≈ 2ϕB is the surface potential under strong
inversion. If a voltage is established in the channel by the applied voltages
from the source and drain electrodes, then QB under strong inversion can be
written as

QB = −
√

2qε0εs NA (Vc + ϕsi). (15.38)

Equation (15.38) shows that QB depends on the applied voltage Vc in the channel.
If the effects of the work function difference and oxide charges are included, then
the threshold voltage given above must be modified, and (15.37) becomes

V ′
TH = φms + ϕsi − Q0

Cox
− QB

Cox
= VFB + ϕsi +

√
2qεsε0ϕsi/Cox, (15.39)

where φms is the metal–semiconductor work function difference and Q0/Cox is
the voltage shift due to the oxide charges. Quantity VFB is the flat-band voltage
defined by (15.32). Furthermore, if a bias voltage is applied to the substrate (body)
of the MOSFET, then the threshold voltage becomes

V ′′
TH = VFB + ϕsi +

√
2qεsε0 NA (ϕsi + Vsb)

Cox
, (15.40)
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where Vsb is the substrate bias voltage. Beyond strong inversion, the charge con-
dition in the surface region becomes

Qs = QI + QB = QI − q NAWd max, (15.41)

where QI and QB denote the channel and bulk charges, respectively; Wd max is the
maximum depletion layer width at the onset of strong inversion and is given by
(15.18). The applied gate voltage VGS, corresponding to strong inversion, is given
by

VGS = − Qs

Cox
+ ϕsi. (15.42)

As an approximation, the channel charge QI may be related to the threshold voltage
VTH by

QI = −Cox (VGS − VTH) . (15.43)

Therefore, the channel conductance gI can be expressed in terms of the gate
voltage and threshold voltage. From (15.43), the channel conductance is given by

gI = − Zμn QI

L
= Z

L
μnCox (VGS − VTH) . (15.44)

Equation (15.44) accurately describes the channel conductance in the strong
inversion region (i.e., VG > VTH). In this region, the channel conductance is a
linear function of the applied gate voltage. In fact, most MOSFETs operate in this
region.

15.4.3. Current–Voltage Characteristics

To analyze the current–voltage (I –V ) relationship of a MOSFET, consider an
n-channel silicon MOSFET as shown in Figure 15.11. For a long-channel sili-
con MOSFET, typical channel length may vary between 3 and 10 μm. With the
advances in electron-beam lithography technology, silicon MOSFETs with sub-
micron (L < 0.13 μm) channel length have been developed recently. In fact, for
ULSI design submicron device geometries are routinely employed in present-day
IC layouts.

A qualitative description of the current–voltage characteristics for an n-channel
silicon MOSFET is given first. To facilitate the analysis, it is assumed that
the source and substrate terminals are grounded and a gate voltage VGS greater
than the threshold voltage VTH is applied to the gate electrode in order to induce an
inversion surface channel. When a small drain voltage VDS is applied to the drain
electrode, current flows from the source to the drain electrodes via the inversion
channel. For small VDS, the channel acts as a variable resistor and the drain current
IDS varies linearly with VDS. This corresponds to the linear region operation (i.e.,
VGS > VTH and VDS ≈ 0). As the drain voltage continues to increase, the space-
charge region under the channel and near the drain region widens and eventually
reaches a pinch-off condition in which the channel depth xI at y = L becomes zero.
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Figure 15.13. An n-channel MOSFET operating under different drain voltages: (a) linear
region, VGS > VTH and VDS small, (b) onset of saturation VGS > VTH and VDS = VDsat,
(c) beyond saturation VG > VTH and VD > VDsat.

Beyond the pinch-off point, the drain current remains essentially constant as the
drain voltage continues to increase. This region is called the saturation region since
the drain current becomes saturated. Figure 15.13 shows the schematic diagrams of
a silicon MOSFET operating under different drain voltage conditions. The effect
of drain voltage on the width of the depletion region across the source, channel,
and drain junctions is clearly illustrated in this figure. Figure 15.13a shows the
MOSFET operating in the linear region, and Figure 15.13b shows the onset of
saturation operation. When the drain voltage is increased beyond saturation (i.e.,
VDS > VDsat), the effective channel length L ′ is reduced (i.e., L ′ < L); however,
as shown in Figure 15.13c, the saturation drain current that flows from the source
to the drain remains unchanged.

For a long-channel MOSFET (i.e., L � Wd), the drain current versus drain
voltage relationship can be derived from the gradual channel approximation. In
this approximation, it is assumed that (i) the transverse electric field along the
x-direction inside the channel is much larger than the longitudinal electric field
in the y-direction (see Figure 15.13a), (ii) both electric fields are independent
of each other, (iii) the effects of fixed oxide charges, interface traps, and metal–
semiconductor work function difference are negligible, (iv) carrier mobility in the
inversion layer is constant, and (v) current conduction in the channel consists of
only the drift component. It should be noted that the transverse electric field in
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the x-direction is to induce an inversion channel, while the longitudinal electric
field in the y-direction is to produce a drain current that flows through the surface
inversion channel.

(i) Linear region operation (VDS ≈ 0). The drain current versus drain voltage for
a MOSFET operating in the linear region under strong inversion and small drain
voltage conditions can be derived as follows. Let us consider a small incremen-
tal section along the channel in the y-direction as shown in Figure 15.13a for
VGS > VTH. Under this bias condition, mobile carriers are induced in the inver-
sion layer. If the channel voltage is equal to zero, the relationship between the
mobile charge QI in the inversion layer and the gate voltage is given by (15.43).
When a drain voltage VDS is applied to the drain electrode (with source electrode
grounded), a channel potential Vc is established along the y-direction in the inver-
sion channel. Thus, the new expression for the induced charge QI in the channel
is given by

QI(y) = −Cox [VG − VTH − Vc (y)] . (15.45)

The drain current IDS, which is due to the majority carrier (electrons) flow, can be
written as

IDS = Zμn QIEy. (15.46)

Now, substituting Ey = −dVc/dy and (15.45) into (15.46) and integrating over the
distance from y = 0 to y = L and potential from Vc = 0 to Vc = VDS, one obtains

IDS = Coxμn Z

L

(
VGS − VTH − VDS

2

)
VDS. (15.47)

In deriving (15.47) it is assumed that VTH is independent of Vc [see (15.37) and
(15.38)]. This approximation could lead to a substantial error, because VTH gen-
erally increases toward the drain region owing to the increase of bulk charge QB

with the applied drain voltage. If (15.38) is used for QB, then a more accurate drain
current versus drain voltage relationship can be derived, and the result is given by

IDS = Coxμn Z

L

{(
VGS − φ′

ms − ψsi + Qox

Cox
− VDS

2

)
VDS

−2

3

√
2qεsε0 NA

Cox

[
(VDS + ϕsi)

3/2 − ϕ
3/2
si

]}
. (15.48)

This equation shows that for a given gate voltage VGS, the drain current initially
increases linearly with drain voltage (i.e., linear region), and then gradually levels
off, reaching a saturated value (i.e., saturation region). It is seen that the simplified
expression given by (15.47) usually predicts a higher value of IDS at large VDS

than predicted by (15.48). However, the simple expression given by (15.47) for
IDS offers better physical insight for the device operation, and hence it is easier to
obtain a first-order prediction of the MOSFET’s performance using (15.47) in a
digital circuit design.
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(ii) Saturation region operation (VDS > VDsat). In the linear region, it is seen that
the inversion layer is formed throughout the semiconductor surface between the
source and the drain. As the drain voltage increases, the inversion layer at the drain
side of the channel will gradually diminish. When the drain voltage is increased to
the point such that the charge in the inversion layer at y = L becomes zero, the so-
called pinch-off condition is reached. The saturation drain voltage and drain current
at the pinch-off point are designated by VDsat and IDsat, respectively. Beyond the
pinch-off point, further increase of drain voltage will not increase the drain current
significantly, and the saturation region is reached. This is shown in Figure 15.13b.
Under the saturation condition, the channel charge at the drain side of the channel
is reduced to zero (i.e., QI = 0 at y = L). The saturation drain voltage VDsat is
obtained from (15.37) and (15.38) by setting V = 0, which yields

VD sat = VGS − VTH = VGS − ϕsi +
√

2qε0εs NAϕsi

Cox
. (15.49)

The saturation drain current is obtained by substituting (15.49) (i.e., VDsat = VGS −
VTH) into (15.47). Thus,

ID sat = μn ZCox

2L
(VGS − VTH)2 . (15.50)

Equation (15.50) predicts that the drain current in the saturation region is a
quadratic function of the gate voltage. It is noted that (15.50) is valid at the onset
of saturation. However, beyond this point the drain current can be considered a
constant. Thus, (15.50) is still valid for VDS > VDsat. Figure 15.14 shows typical
drain current versus drain voltage curves for an n-channel silicon MOSFET under

Figure 15.14. Drain current versus drain voltage
curves for an n-channel MOSFET. The dashed
line denotes the locus of the onset of current sat-
uration under different gate bias voltages.
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different gate bias conditions. The dashed line is the locus of the ID sat versus VD sat

plot, which represents the onset of current saturation in the drain region.

(iii) Cutoff region operation (VGS � VTH). If the gate voltage is much smaller
than the threshold voltage, then there would be no inversion layer formed in the
channel region. Under this condition, the MOSFET acts like two p-n junction
diodes connected back to back with no current flow in either direction between
the source and drain electrodes. Thus, in the cutoff region, the MOSFET is open-
circuited.

(iv) Subthreshold region operation. Another important region of operation for a
MOSFET is known as the subthreshold region. In this region, the gate voltage
is smaller than the threshold voltage, and the semiconductor surface is in weak
inversion (i.e., ϕs < 2ϕB). The drain current in the weak inversion region is called
the subthreshold current. The subthreshold region operation is particularly impor-
tant for low-voltage and low-power applications such as switching devices used
in digital logic and memory applications.

In the weak inversion region, the drain current is dominated by diffusion, and
hence the drain current can be derived in a similar way to that by which the
collector current is derived in a bipolar junction transistor (BJT) with a uniformly
doped base (i.e., the MOSFET can be treated as an n+-p-n BJT). It can be shown
that in the subthreshold region, the drain current varies exponentially with gate
voltage (i.e., IDS ≈ eqVGS/kBT ). For drain voltages greater than 3kBT/q, the drain
current becomes independent of drain voltage. A detailed derivation of the drain
current versus drain voltage expression for a silicon MOSFET operating in the
subthreshold region can be found in (4).

15.4.4. Small-Signal Equivalent Circuits

The small-signal equivalent circuit for a MOSFET operating in a common-source
configuration is shown in Figure 15.15. An ideal MOSFET has an infinite input
resistance (Ri) and a current generator (gmVGS) at the output terminal of the device.
However, in a practical MOSFET, several physical parameters must be included
to reflect the nonideality and parasitic effects of the device.

In small-signal analysis two important device parameters must be considered,
namely, the channel conductance gd and the mutual transconductance gm. In linear
region operation, both parameters can be derived directly from (15.47), and the
results are given by

gd = ∂ IDS

∂VDS

∣∣∣∣
VGS = const

= μn ZCox

L
(VGS − VTH) (15.51)

and

gm = ∂ IDS

∂VGS

∣∣∣∣
VDS = const

= μn ZCox

L
VDS. (15.52)
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Figure 15.15. The small-signal equivalent circuit for a MOSFET in a common-source
configuration.

It is seen that in the linear region, the drain conductance gd is ohmic and de-
pends linearly on the gate voltage (except at high gate voltages in which the carrier
mobility decreases with increasing gate voltage). The inverse of the drain conduc-
tance is usually referred to as the “on” resistance. Thus, in linear region operation,
the MOSFET is operating essentially as a voltage-controlled resistor in circuit
applications.

In the saturation region, the mutual transconductance can be obtained by dif-
ferentiating the saturation drain current given by (15.50) with respect to the gate
voltage, which yields

gm = ∂ IDS

∂VGS

∣∣∣∣
VDS = const

= ZμnCox

L
(VGS − VTH) . (15.53)

Equation (15.53) shows that the transconductance varies linearly with gate voltage
in the saturation region.

In the saturation region, the drain current remains constant for any drain voltage
beyond the pinch-off point. This is true only for the ideal case. In practice, the
drain resistance rd has a finite value for VDS > VD sat, and hence one can define a
drain resistance in the saturation region as

rd sat = ∂VDS

∂ IDS

∣∣∣∣
VGS = const

. (15.54)

Therefore, from the slope of the IDS versus VDS plot, rd sat can be determined. It
is noted that the small-signal equivalent circuit shown in Figure 15.15 includes
all the device parameters discussed above. However, it is worth noting that the
gate-to-drain capacitance Cgd is a key parameter that controls the high-frequency
characteristics of a MOSFET, which is known as the Miller effect.

Another important parameter relating to the small-signal operation of a
MOSFET is the maximum frequency in which its short-circuit current gain drops to
unity. This frequency is usually referred to as the unity gain cutoff frequency fT.
Under the unit gain condition, the input current through the input capacitance
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(=2π fTCgVGS) is equal to the output drain current (≈ gmVGS), as shown in
Figure 15.15. Thus, in the linear region of operation (i.e., VDS ≤ VD sat), the unity
current gain cutoff frequency can be expressed by

fT = gm

2πCg
≈ μnVDS

2π L2
, (15.55)

where Cg is the total gate capacitance. Equation (15.55) is obtained by using (15.52)
for gm and Cg = Z LCox. Thus, for small-signal high-frequency operation, short
gate length and high electron mobility in the channel are highly desirable for a
MOSFET.

In the saturation region, the unity current gain cutoff frequency is given by

fT = gm

2πCg
≈ νs

2π L
, (15.56)

where νs = (μnVD sat)/L is the saturation velocity in the channel. Equation (15.56)
is obtained by using (15.53) for gm and Cg = Z LCox.

In the saturation region operation, the MOSFET device may be used as an
amplifier or a closed switch. A closed switch operates in the region where the
gate voltage is smaller than the threshold voltage. Under this operation condi-
tion, no inversion layer is formed. As a result, the MOSFET behaves like two
p-n junction diodes connected back to back, and no current is expected to flow
in either direction. The device acts as an open-circuit switch in this region of
operation.

The theoretical expressions presented in this section are valid for the long-
channel MOSFET in which the channel length is much larger than the deple-
tion layer width of the source and drain junctions. However, with recent ad-
vances in silicon VLSI technologies, reduction of channel lengths to less than
a micron has become a reality, and gate lengths in the submicron region have
also been widely used. As the size of MOSFETs continues to scale down, the
channel length becomes equal to or less than the depletion layer width of the
source and drain junctions, and hence departure from long-channel behavior oc-
curs in short-channel devices. The short-channel effects are the results of the two-
dimensional (2-D) potential distribution and the high electric field in the channel
region. The gradual channel approximation used in analyzing the long-channel
MOSFET presented in this section is no longer valid, and must be modified to
take into account the short-channel effects. For example, the 2-D potential dis-
tribution will cause degradation of the subthreshold behavior, the dependence
of threshold voltage on channel length and biasing voltages, as well as the fail-
ure of current saturation due to punch-through. As the electric field increases,
the channel mobility becomes field-dependent, and eventually velocity saturation
takes place. At high electric fields, carrier multiplication occurs near the drain
region, leading to substrate current and parasitic bipolar transistor action. High
fields can also cause hot-carrier injection into the oxide. This can lead to oxide
charging, transconductance degradation, and a shift in the threshold voltage. In
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short, in order to further the advancement of short-channel MOSFETs with sub-
micron geometries, it is essential that these short-channel effects be eliminated or
minimized.

15.4.5. Scaled-Down MOSFETs

In addition to the basic enhancement-mode and depletion-mode MOSFET struc-
tures discussed above, a variety of new MOSFET structures such as high-
performance MOSFETs (HMOS), double-diffused MOSFETs (DMOS), verti-
cal or V-shaped grooved MOSFETs (VMOS), U-shaped grooved MOSFETs
(UMOS), Schottky-barrier source and drain MOSFETs, lightly doped drain (LDD)
FETs, and thin-film transistors (TFTs) have been widely investigated. Further-
more, recent development of several new SOI technologies [e.g., Separation by
IMplantation of OXygen (SIMOX) and Wafer Bonding (WB) techniques] en-
ables the fabrication of MOSFETs and BJTs on these SOI substrates for various
radiation-hard digital and low-power IC applications. Using these new structures,
high-performance FETs have been developed for a wide variety of applications.
Performance improvements include higher speed, lower power consumption,
higher packing density, higher radiation tolerance, and higher power handling
capabilities.

For VLSI applications, the dimensions and voltages used in conventional
MOSFETs must be reduced drastically. One way to avoid the undesirable short-
channel effects discussed in the foregoing section while maintaining the long-
channel behavior of the MOSFETs is simply to scale down all dimensions and
voltages of the long-channel MOSFETs. The basic idea underlying the scaling-
down theory is to keep the electric field strength invariant while reducing the
device sizes and voltages. Smaller device geometries will then be translated to
shorter transit times (higher device speed) and lower voltages. Both vertical and
horizontal dimensions must be scaled down accordingly. The source and drain
junction depths must be reduced proportionally to prevent sidewall diffusion from
encroaching on the effective channel diffusion length, and the substrate dopant
density must be increased so that the depletion region can be scaled down ac-
cordingly; otherwise, punch-through between the source and drain may occur.
In addition, the oxide thickness must also be scaled down to maintain the gate
field at a reduced gate voltage and the height of the oxide steps on the surface
must be reduced; otherwise, it may cause breaks in the thinner interconnects. New
gate insulating materials with high dielectric constant are needed for submicron
MOSFETs.

The scaling down of dimensions and device parameters in a MOSFET can
be achieved as follows. If the channel length (L), channel width (Z), gate ox-
ide thickness (dox), and voltages (VGS, VDS, VB) (substrate voltage) are all scaled
down by a factor K (K > 1), and the substrate dopant density (NA) is increased
by the same factor, then the device parameters for the scaled-down MOSFETs
can be modified from the long-channel MOSFETs according to the following
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formulas:

C ′
ox = εoxε0

dox/K
= K Cox, (15.57)

W ′
d =

√
2εsε0(Vbi/K )

q K NA
= Wd

K
, (15.58)

ϕ′
B = EF − Ei = −kBT ln

(
K NA

ni

)
, (15.59)

Q′
B = −q(K NA)(Wd/K ) ≈ QB, (15.60)

V ′
TH = φms + 2ϕB

q
− (Qox + QB)

K Cox
≈ VTH

K
, (15.61)

I ′
DS = μn(K Cox)(Z/K )

L/K

[
(VGS/K − VTH/K )(VDS/K ) − 1

4
(VDS/K )2

]
= IDS

K
,

(15.62)

I ′
D sat = μn(K Cox)(Z/K )

2L/K
(VGS/K − VTH/K )2 = ID sat

K
, (15.63)

g′
m = ∂(IDS/K )

∂(VDS/K )
= gm, (15.64)

C ′
gs = 2

3
(L/K )(Z/K )(K Cox) = Cgs

K
, (15.65)

t ′
d = Cgs/K

gm
= td

K
. (15.66)

From (15.57) to (15.66) it can be shown that the device area (A) is reduced by a
factor of K 2, power dissipation (IV) is reduced by a factor of K 2, and the power-
delay product (I V t ′

d) is reduced by a factor of K 3. The power dissipation per unit
area (IV/A), however, remains unchanged, although considerable gain in the area
and power-delay product (an important figure of merit) is expected by scaling
down the MOSFET’s dimensions. However, a drastic reduction in device size will
also increase the importance of other secondary effects, such as narrow-channel
and short-channel effects on the threshold voltage, etc. These effects must also be
considered in the device modeling. Finally, weak inversion occurs at VGS < VTH,
and hence subthreshold conduction must also be considered.

Figures 15.16a and b show a conventional long-channel MOSFET and a scaled-
down MOSFET, respectively. In the scaled-down MOSFET, both drain voltage
VDS and threshold voltage VTH are scaled down by a factor of K, and the number
of devices per unit area and power dissipation per unit cell are increased by a
factor of K 2. Also, the delay time due to transit across the channel is decreased
by a factor of K. It is interesting to note that the subthreshold current remains
essentially the same for both devices, since the subthreshold voltage swing remains
the same. The junction built-in potential and surface potential at the onset of weak
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Figure 15.16. (a) A conventional long-channel MOSFET and (b) a scaled-down (by a
factor K) short channel MOSFET.

inversion do not scale down with the dimensions, and change by only about 10%
for a tenfold increase in substrate dopant density. Additionally, the range of gate
voltages between depletion and strong inversion is about 0.5 V. However, the
parasitic capacitance may not scale down, and the interconnect resistance will
usually increase in a scaled-down MOSFET.

Another important circuit application using n- and p-channel MOSFET is the
fabrication of CMOS and BiCMOS for logic and memory IC applications. The
CMOS device refers to the complementary n- and p-channel MOSFET pairs fab-
ricated on the same chip to form complementary MOS (CMOS) transistors. It is
the most popular technology used in present-day IC design for logic circuits and
memory cell applications. The reasons for the success of CMOS are due to its
low power consumption and good noise immunity. In fact, currently only CMOS
technology is used in advanced IC manufacturing because of the low power of
dissipation requirement.

A CMOS inverter is used as the basic component of CMOS logic circuits. In
a CMOS inverter, the gates of n- and p-channel MOSFETs are connected and
serve as the input node of the inverter. The drain electrodes of the two transistors
are also connected and serve as the output node of the inverter. The source and
substrate contacts of n-channel MOSFETs are grounded, whereas those of p-
channel MOSFETs are connected to the power supply. Both n- and p-channel
MOSFETs are enhancement-mode FETs. The key feature of the CMOS inverter
is that when the output is in a steady logic state only one transistor is on, and
the current flow from the power supply to the ground is thus very low (equal to
the leakage current of the device). In fact, there is significant current conduction
during the short transient period when both transistors are on. Therefore, the power
consumption in CMOS inverters is very low in the static state compared to other
types of logic circuits.

Although CMOS devices have the advantages of low power consumption and
high packing density, which make them suitable for manufacturing complex cir-
cuits (VLSI and ULSI), they suffer from low drive capability compared with bipo-
lar technology, limiting their circuit performance. BiCMOS is a technology that
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integrates both CMOS and bipolar device structures on the same chip. A BiCMOS
circuit contains mostly CMOS devices, with a relatively small number of bipolar
devices. The bipolar devices have better performance than their CMOS coun-
terparts without consuming too much extra power. However, this performance
enhancement is achieved at the expense of extra manufacturing complexity and
costs. High-performance BiCMOS circuits have also been made on SOI wafers.

15.5. SOI MOSFETS

15.5.1. Introduction

Silicon-on-insulator (SOI) devices and circuits have progressed rapidly during the
past decade. The advantages of SOI over bulk silicon have been demonstrated
in terms of performance and reliability. Recent interest has turned to possible
use of fully depleted (FD) SOI films for deep submicron circuits. SOI MOS-
FETs are free of some of the effects that tend to reduce the performance of their
bulk counterparts. In particular, SOI MOSFETs offer reduced junction capaci-
tances, a very small body factor, and hence a near-ideal subthreshold slope and
high current drive. Other areas in which the capability of SOI technology has
been identified include low-power and mixed-technology circuits. In this section,
the basic properties, device structures, and characteristics of SOI MOSFETs are
described.

Ultra-large-scale integration (ULSI) is the mainstream of the microelectronics
industry. It is essentially in this high-priority arena that the very attractive argu-
ments of SOI technology have to be materialized. Thin-film CMOS, BiCMOS, and
complementary bipolar structures can overcome the severe technological limita-
tions that bulk silicon is expected to encounter in scaling below 0.08 μm: the failure
of LOCOS isolation, threshold voltage roll-off, increased subthreshold slope, hot-
electron degradation, soft errors, and latch-up. In addition to being a high-speed,
low-power process, new innovative structures for SOI CMOS devices can further
increase the performance advantages over the equivalent bulk CMOS devices.
Moreover, SIMOX-based BiCMOSs or complementary bipolar ICs may have cir-
cuit density comparable to that of MOS circuits. They will enjoy higher speed
because of a denser layout and lower parasitic capacitances, and the simpler fabri-
cation process will render them more cost-effective. Most of the commercial SOI
wafers are produced by SIMOX and WB techniques.

Depending on the silicon film thickness and channel doping concentration of the
SOI wafer, partially depleted (PD) and fully depleted (FD) SOI MOSFET devices
can be fabricated on SOI wafers. The FD SOI MOSFET is fabricated on SOI wafer
with ultrathin silicon film, and the PD SOI MOSFET uses a thicker silicon film on
SOI with general characteristics similar to the bulk silicon MOSFET.

In a thin-film SOI MOSFET, the silicon film thickness is smaller than the max-
imum depletion layer width xd max from the Si–SiO2 interface, where, xd max =√

4ε0εsϕF/q ND; ϕF = (kBT/q) ln(ND/ni) is the Fermi potential. In this case, the
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silicon film is fully depleted at threshold, irrespective of the bias voltage applied to
the back gate, with the exception of a thin inversion or accumulation layer formed
at the back interface under large positive or negative bias conditions. Such a de-
vice is called an FD MOSFET. FD MOSFETs are virtually free of kink effect, if
their back interface is not in accumulation. Among all types of SOI devices, FD
MOSFETs with depleted back interface exhibit the most attractive features such
as low electric field, high transconductance, excellent short-channel effect, and a
near-ideal subthreshold slope.

In a thick-film SOI MOSFET, the thickness of silicon film is twice as large
as the depletion layer width (i.e., tSi > 2xd max). In this case, there is no inter-
action between the depletion regions at the front and the back interfaces, and
there exists a neutral region beneath the front depletion zone. Such a thick-film
SOI device is called a PD SOI MOSFET. If the neutral region (called the body)
is connected to the ground by a body contact or body tie, then the characteris-
tics of this MOSFET will be the same as a bulk MOSFET device. If the body
is left electrically floating, then two parasitic effects will occur in this device:
one is the appearance of a kink effect in the output characteristics of the device,
and the second is the presence of a parasitic, open-base bipolar transistor action
(i.e., the so-called latch-up effect) between the source and drain of this MOSFET
device.

Figure 15.17 shows a cross-sectional view of a thin-film n-channel FD SOI
MOSFET device structure. The electrical characteristics of an FD SOI MOSFET
are now described.

15.5.2. Electrical Characteristics

(i) The threshold voltage. The threshold voltage of an FD n-channel SOI MOSFET
can be obtained by solving the Poisson equation (d2ϕ/dx2 = q Na/ε0εr) using the
depletion approximation. By integrating the Poisson equation twice one obtains
the potential ϕ(x) as a function of depth x in the silicon film, which reads

ϕ(x) = q NA

ε0εs
x2 +

(
ϕs2 − ϕs1

tsi
− q NAtsi

2ε0εs

)
x + ϕs1, (15.67)

where ϕs1 and ϕs2 denote the potentials at the front and back of the Si–SiO2

interfaces, respectively. The front- and back-gate voltages are given by Vg1 =
ϕs1 + φox1 + φms1 and Vg2 = ϕs2 + φox2 + φms2; φms1 and φms2 are the front and
back work function differences, respectively. Using these relationships, one can
find the threshold voltage of the front interface by assuming that ϕs1 = 2ϕF.

If the back surface is in accumulation, ϕs2 is pinned to be approximately equal to
zero. The thershold voltage Vth1 acc2 can be obtained from (15.67), where Vth1 acc2 =
Vg1 is calculated at ϕs2 = 0, Qinv1 = 0, and ϕs1 = 2ϕF. One obtains

Vth1,acc2 = φms1 − Qox1

Cox1
+

(
1 + Csi

Cox1

)
2ϕF − Qdepl

2Cox1
. (15.68)
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Figure 15.17. Cross-sectional view of a thin-film n-channel fully depleted (FD) SOI
MOSFET showing some of the parameters used in the derivation of equations in this
section.

If the back surface is inverted, ϕs2 = 2ϕF is pinned to approximately Vth1,inv2 =
Vgl with ϕs2 = 2ϕF, Qinvl = 0, and ϕsl = 2ϕF. One then has

Vth1,inv2 = ϕms1 − Qox1

Cox1
+ 2ϕF − Qdepl

2Cox1
. (15.69)

If the back surface is depleted, then ϕs2 depends on the back-gate bias voltage
Vg2 and its values can vary between 0 and 2ϕF. The back-gate voltage for which
the back gate reaches accumulation with the front interface being at threshold, Vg2,
is obtained by setting ϕs1 = 2ϕF and ϕs2 = 0. Similarly, the value of the back-gate
voltage for which the back interface reaches inversion, Vg2,inv, can be obtained by
setting ϕs1 = 2ϕF and ϕs2 = 2ϕF. When Vg2,acc < Vg2 < Vg2,inv, the front threshold
voltage is obtained by setting ϕs1 = 2ϕF and Qinv = 0. One thus obtains

Vth1,depl2 = Vth1,acc2 − CsiCox2

Cox1(Csi + Cox2)
(Vg2 − Vg2,acc). (15.70)

The variation of threshold voltage Vth1 for an FD SOI MOSFET as a function of
the back-gate bias voltage Vg2 is illustrated in Figure 15.18.

(ii) The body effect. In a bulk MOSFET the body effect is defined as the dependence
of the threshold voltage on the substrate bias, while in an SOI MOSFET it is
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Figure 15.18. Variation of the front-gate threshold voltage with the back-gate bias for an
SOI MOSFET.

defined as the dependence of the threshold voltage on the back-gate bias. In a bulk
n-channel MOSFET, the threshold voltage can be expressed as

Vth = ϕms + 2ϕF − Qox

Cox
+ QB

Cox
= ϕms + 2ϕF − Qox

Cox
+

√
2ε0εsq NA(2ϕF − VB)

Cox
.

(15.71)

If one introduces a body (or back-gate) effect parameter γ = √
2ε0εsq NA/Cox in

(15.71), then the equation can be rewritten as

Vth = ϕms + 2ϕF − Qox

Cox
+ γ

√
2ϕF + γ (

√
2ϕF − VB −

√
2ϕF). (15.72)

It is noted that the last term in (15.72) describes the body effect of the bulk or
SOI MOSFETs. When a negative bias (with respect to the source) is applied to
the substrate, the threshold voltage increases with the square root of the substrate
bias. If one defines the threshold voltage at zero bias as Vth0, then (15.72) becomes

Vth(VB) = Vth0 + γ (
√

2ϕF − VB −
√

2ϕF). (15.73)

For PD SOI MOSFETs, the back-gate effect can be neglected (i.e., γ = 0), because
there is no coupling between the front gate and the back gate of the device. In a
FD SOI MOSFET, the body effect can be described by

dVth1

dVg2
= − CsiCox2

Cox1(Csi + Cox2)
= −εsiCox2

Cox1(tsiCox2 + εsi)
= γ ′. (15.74)
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It is noted that γ ′ is dimensionless for the thin-film FD SOI MOSFETs, and the
threshold voltage is linearly dependent on the back-gate bias. It is practical to
linearize the body effect in bulk devices by introducing a body factor denoted by
n = 1 + CD/Cox, where CD = ε0εsi/xd max is the depletion capacitance. In the FD
SOI MOSFET the body effect factor is defined by n = 1 + γ ′. Typical values for
the body factor are n = 1.3 to 1.5 for bulk MOSFETs and n = 1.05 to 1.1 for FD
SOI MOSFETs.

(iii) Output characteristics and transconductance. The output characteristics of
an FD SOI MOSFET are similar to those of a bulk MOSFET. In both devices the
saturation drain current can be expressed by

IDsat ≈ WμnCox1

2nL
(Vg1 − Vth)2, (15.75)

where W, L , and μn denote the channel width, length, and the electron surface
mobility, respectively. Since the body effect is smaller in the FD SOI MOSFET
than in the bulk MOSFET, a higher drain current can be obtained in this case.

The output characteristics of a PD SOI MOSFET show the kink effect due
to impact ionization taking place near the drain region. This kink effect can be
eliminated using contacts to the floating body of the MOSFET device underneath
the gate.

In an FD SOI MOSFET, the transconductance gm (=dID sat/dVg) can be derived
from (15.75), which yields

gm = WμnCox1

nL
(Vg1 − Vth). (15.76)

As in the case of the drain current, a higher transconductance can be obtained in
an FD SOI MOSFET than in a bulk MOSFET owing to the smaller body effect of
SOI devices.

The maximum voltage gain of a bulk MOSFET is obtained when the value of
gm/ID is maximized, and the voltage gain of a MOSFET is given by


Vout


Vin
= gm

gd
= gm

ID
VA, (15.77)

where gd is the output drain conductance and VA is the Early voltage. It is noted that
VA for an FD SOI MOSFET is identical to that of the bulk MOSFETs discussed
above. The maximum value of gm/ID occurs in the weak inversion regime for the
MOSFET devices, and can be expressed by

gm

ID
= dID

IDdVg
= ln(10)

S
= q

nkBT
, (15.78)

where S is the subthreshold slope and n is the body factor. In strong inversion
gm/ID becomes

gm

ID
=

√
2μCoxW/L

nID
. (15.79)
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Since the value of n (body factor) in an FD SOI MOSFET is lower than that in
the bulk devices, values of gm/ID are significantly higher in FD SOI devices than
in bulk devices. A typical value of gm/ID is 20–25 V−1 for bulk MOSFETs and
30–35 V−1 for FD SOI MOSFETs.

(iv) The subthreshold slope. The inverse subthreshold slope is defined as the in-
verse of the slope of the ID versus Vg curve in the subthreshold regime, presented
in a semilogarithmic plot:

S = dVg

d(log ID)
≈ kBT

q
ln(10)

(
1 + CD

Cox

)
= n

(
kBT

q

)
ln(10). (15.80)

Equation (15.80) is valid for both the bulk and FD SOI MOSFETs provided that
the interface traps at the Si–SiO2 interface are negligible. Note that the value of S
given by (15.80) is S ≈ n × 60 mV/decade at room temperature. Since the body
factor “n” for an FD SOI MOSFET is smaller than that of bulk devices, one can
expect a smaller subthreshold swing for the FD SOI MOSFET than that of bulk
devices.

15.6. Charge-Coupled Devices

As shown in Figure 15.19 a charge-coupled device (CCD) is referred to as an array
of closely spaced (<2.5μm) MOS capacitors formed on a continuous oxide layer
(100–200 nm thick) grown on a semiconductor substrate. An input gate and an
output gate are added to both sides of the MOS capacitor array for the purpose of
injecting and detecting the signal charges in the CCD array. The MOS capacitors
are built closely enough to one another that minority carriers stored in the inversion
layer associated with one MOS capacitor can be transferred to the surface channel
region of an adjacent capacitor. The operation of a CCD is based on the storage and
transfer of minority carriers (known as the charge packet) between the potential
wells created by the voltage pulses applied to the gate electrode of the MOS
capacitors. When a controlled sequence of clock voltage pulses is applied to the
CCD array, the MOS capacitor is biased into deep depletion, and the charge packet
from input signals can be stored and transferred from one potential well to another
in a controlled manner across the semiconductor substrate. The basic types of CCDs
include the surface-channel CCD (SCCD) and buried-channel CCD (BCCD). In an
SCCD the charge packet is transferred along the surface channel, while in a BCCD
doping of the semiconductor substrate is modified so that storage and transfer
of the charge packet can take place in the buried channel of the semiconductor
substrate.

In this section, the basic structure, operation principles, and characteristics of an
SCCD are presented. The operation of an SCCD requires that the MOS capacitors
in the CCD array be biased into deep depletion. Since the storage and transfer
of charge packets in a CCD are achieved mainly by controlling the sequence of
voltage pulses on the closely spaced MOS capacitors, it is important to understand
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Figure 15.19. Schematic diagram of a three-phase CCD with input and output gates for
signal charge injection and detection. Operating under (a) charge storage mode (v1 = v3 >

v2) and (b) charge transfer mode (v3 > v2 > v1).

the transient behavior of an MOS capacitor operating in deep depletion under
pulsed bias conditions. In a practical CCD, there are several different types of
electrode configurations and clocking techniques that can be used to control its
operation. Depending on the electrical performance, fabrication difficulty, and cell
size, two-, three-, and four-phase CCDs have been made for digital and analog
circuit applications. For example, a two-phase CCD has two MOS gates per cell,
while a three-phase CCD has three MOS gates per cell.

15.6.1. Charge Storage and Transfer

Figures 15.19a and b show schematic drawings of a three-phase CCD operat-
ing in storage and transfer modes, respectively. The basic storage and transfer
mechanisms for a CCD can be explained as follows. Figure 15.19a presents the
storage mode for a three- phase SCCD. By applying gate voltage pulses with
v2 > v1 = v3, the charge packet is stored under the middle gate, which has a
channel beneath it. If the applied gate pulses are such that v3 > v2 > v1, then the
right-hand gate causes the transfer of the charge packet from the channel region
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Figure 15.20. A three-phase SCCD along with its phase timing diagrams; the potential
wells are shown for t = 0.

of the middle gate to the right. If one reduces the voltage pulse on the middle gate
to v1, then the bias voltage on the right-hand gate will be reduced to v2. The net
result is a shift of the charge packet one stage to the right. Figure 15.20 shows a
three-phase SCCD with potential wells and their phase timing diagrams at t = 0.

Figure 15.21. (a) Schematic drawing of an SCCD using an Al–SiO2–p-type Si MOS
capacitor structure. (b) Band bending into the deep depletion and the empty potential well
under a large gate bias voltage. (c) Band bending at the Si–SiO2 interface and the potential
well partially filled with signal charges. After Barbe,5 by permission, c©IEEE–1975.



604 15. Metal-Oxide-Semiconductor Field-Effect Transistors

Figure 15.21a shows a schematic drawing of a surface-channel MOS capacitor
built on a p-type silicon substrate. If a large positive pulsed bias voltage is applied
to the gate, then the condition of deep depletion is established under the gate. It
is noted that no inversion layer is formed initially since no minority carriers are
available in the depletion layer. Under deep-depletion conditions, a major portion
of the applied voltage is across the depletion layer, and hence the surface potential
ϕs is large. Figure 15.21b shows the energy band diagram for the MOS capacitor
in deep depletion under zero signal charge conditions (i.e., Qsi = 0). In this case,
the potential well is empty with a height equal to ϕso. The surface potential as a
function of the gate voltage VG for the MOS capacitor under deep depletion is
given by

VG − VFB = − Qs

Cox
+ ϕs, (15.81)

where VG is the applied gate voltage and VFB is the flat-band voltage shift. The
total surface charge Qs is equal to the sum of the depletion layer charge and the
signal charge Qsi. This can be written as

Qs = −q NAWd − Qsi, (15.82)

where

Wd =
√

2εsε0ϕs/q NA (15.83)

is the depletion layer width. Now substituting (15.82) and (15.83) into (15.81),
one obtains

VG − VFB − Qsi

Cox
=

√
2qεsε0 NAϕs

Cox
× ϕs. (15.84)

The solution of the above equation for ϕs yields

ϕs = V ′
G − B

[(
1 + 2V ′

G

B

) 1
2

− 1

]
, (15.85)

where

V ′
G = VG − VFB − Qsi

Cox
(15.86)

and

B = qεsε0 NA

C2
ox

, (15.87)

which shows that the surface potential is a function of the stored signal charge,
the gate voltage, the substrate dopant density, and the oxide thickness. For a given
gate voltage, ϕs decreases linearly with increasing stored signal charge. The linear
relationship between ϕs and Qsi provides a simple explanation of the charge storage
mechanism in the potential well of a CCD. The magnitude of ϕs specifies the depth
of the potential well (Wd) as defined by (15.83). As shown in Figure 15.21c, filling
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the potential well with signal charges will result in a linear reduction of the surface
potential. Equation (15.85) is very important for CCD design, because the gradient
of ϕs controls the movement of minority carriers in the potential well.

There are three basic charge transfer mechanisms in a CCD: thermal diffusion,
self-induced drift, and the fringing field effect. When the signal charge packet
is small, the predominant charge transfer mechanism is usually due to thermal
diffusion. In this case, the total charge under the storage electrode decreases ex-
ponentially with time, and the decay time constant is given by

τth = 4L2

π2 Dn
, (15.88)

where Dn is the minority carrier diffusion constant and L is the length of the gate
electrode. For example, if one assumes that Dn = 10 cm2/s and L = 10 μm, then
the decay time constant τth is 4 μs.

When the signal charge packet is very large (typically >1010 cm−2), the charge
transfer is dominated by the self-induced drift produced by electrostatic repulsion
of the minority carriers in the potential well. In most cases the transfer of the first
99% of the charge is due to this mechanism. In some CCD operations, to improve
transfer efficiency, the entire channel is filled with a large background charge
known as fat zero. Self-induced drift is most important under this operation mode.
The magnitude of the self-induced longitudinal electric field can be estimated by
taking the gradient of the surface potential given by (15.85), which governs the
transfer of charge carriers in a CCD. The decay of the initial charge packet Qi

because of self-induced drift can be calculated from

Q(t) =
(

t0
t + t0

)
Qi (15.89)

and

t0 = π L3WCox

2μn Q
, (15.90)

where L and W denote the gate electrode length and width, respectively, and μn is
the electron mobility.

The surface potential under the storage electrode is influenced by the voltage
applied to the adjacent electrodes because of the 2-D coupling of the electrostatic
potential. The applied gate voltage results in a surface fringing field, which is
present even when the signal charge is zero. The charge transfer process can be
speeded up by using a fringing field established between the gate electrodes. This
fringing field has a maximum at the boundaries between adjacent electrodes and
minima at the centers of transfer gate electrodes. The magnitude of this fringing
field increases with gate voltage and oxide thickness, and decreases with gate length
and substrate doping density. For a surface channel CCD, with clock frequencies
of several tens of megabits per second, charge transfer efficiencies greater than
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Figure 15.22. (a) Injection of minority carrier charges into the potential well of a CCD
using a p-n junction diode. The n-type source is short-circuited to the substrate. (b) Detection
of signal charge by the current-sensing technique.

99.99% (or transfer inefficiencies of less than 10−4) can be obtained in the presence
of a fringing field.

15.6.2. Charge Injection and Detection

In this section, charge injection and detection methods in a CCD are described.
Charge packets can be injected by electrical or optical means. If a CCD is used as
an image sensor, then the injection is carried out by optical means. On the other
hand, in shift register or delay line applications, electrical injection is used instead.
Figure 15.22a shows a p-n junction diode used to inject minority carriers into
the potential well of a CCD. The n-type source is short-circuited to the substrate.
When a positive pulse is applied to the input gate (Vin), the electrons injected
from the source will flow into the potential well under the φ1 gate electrode, and
the current source keeps filling the potential well for the duration 
t of the input
signal. Efficient injection can be achieved by biasing the source and input gates.
Charge injection by optical means can be achieved by impinging light from the
back side of the p-substrate. It should also be noted that optically generated mi-
nority carriers are attracted by the gate electrodes and accumulated in the potential
wells.

The detection of signal charge packets in a CCD can be achieved by either
current-sensing or charge-sensing methods. Figure 15.22b presents the current-
sensing method. In this technique, a reverse-bias p-n junction diode is used as a
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drain electrode at the end of the CCD array to collect the signal charge packet.
When the signal charge packet reaches the drain junction, a current spike is detected
at the output gate as a capacitive charging current. The charge-sensing detection
method employs a floating diffusion region to periodically reset the voltage to a
reference potential VD. When the signal charge packet arrives in this region, the
voltage there becomes a function of the signal charge, and the change of voltage
at the floating diffusion region is detected using a MOSFET amplifier.

15.6.3. Buried-Channel CCDs

Section 15.6.2 presents the operation principles and general properties of SCCDs,
in which charge storage and charge transfer occur in potential wells created in
the surface inversion layer. In an SCCD, the interface traps play an important
role in controlling charge transfer loss (i.e., transfer inefficiency) and noise in
the CCD, particularly when the signal charge is small. To overcome problems
associated with interface traps, it is common practice to move the channel away

Figure 15.23. (a) Cross-sectional view of a buried-channel CD (BCCD). (b) Energy band
diagram of a BCCD under equilibrium, (c) under reverse bias with an empty potential well
and zero signal charge (i.e., Qsig = 0), and (d) under reverse bias and in the presence of a
signal charge packet (i.e., Qsig �= 0).



608 15. Metal-Oxide-Semiconductor Field-Effect Transistors

from the Si–SiO2 interface. This results in a bulk- or buried-channel CCD (BCCD)
as shown in Figure 15.23a. The buried channel is created using a thin n-type
epitaxial or diffused layer on a p-type substrate. Figure 15.23b shows the energy
band diagrams of a BCCD under equilibrium (VS = VD = 0), Figure 15.23c under
reverse-bias (VS = VD = V ) and zero signal charge conditions, and Figure 15.23d
under reverse-bias conditions with signal charge. It is shown in Figure 15.23c
that when a large positive bias voltage (reverse-bias) is applied to the source and
drain gates, the majority carriers in the channel become completely depleted, and
a potential well is formed in the n-buried channel. When a signal charge packet
is injected from the source into the channel, a flat region in the mid-portion of
the potential well results, as shown in Figure 15.23d. This potential well can store
and transfer signal charge packets by using the controlled clock pulses applied
to the MOS gate electrodes. This action is similar to that of the SCCD discussed
earlier. The advantages of a BCCD over an SCCD include the elimination of
problems associated with interface traps and the improvement of carrier mobility
in the channel. Thus, transfer efficiency and channel mobility in a BCCD are
expected to be higher than those of an SCCD. However, the drawbacks of a BCCD
are additional process complications and a small capacitance, which reduces the
signal-handling capability.

When CCDs are used in digital applications, ones and zeros are usually rep-
resented by the presence or absence of a charge packet in the channel under
closely spaced MOS gates. The signals are clocked through the CCD at a rate
set by the timing of the gate voltages. In analog applications, CCDs are fre-
quently used as image sensors. For this application, the whole CCD is biased
into deep depletion and exposed to a focused image for a time interval. The
generation of charge carriers under the CCD gate is enhanced during the ex-
posure time according to the brightness of the image. As a result, each chan-
nel will become charged to a level that represents the brightness at its loca-
tion. This analog information can then be sent to the output gate and amplifier
built on the edges of the CCD image array. This scheme has been demon-
strated successfully in a portable TV camera. Finally, analog signals can also
be stored in CCD arrays, since the amount of charge packet in the channel
can be varied continuously. Therefore, CCDs are also used in analog delay line
applications.

Recently, CMOS image sensors have gained popularity over CCD imagers be-
cause of the maturity of the fabrication technology of CMOS imagers. As a result,
CMOS image sensors are now competing favorably against CCD imagers in most
categories. Although the CMOS imager has not reached the imaging quality of
CCDs, CMOS imager sensors are being used in a wide variety of applications
owing to the advantages of CMOS imagers, which include (i) low-voltage op-
eration and low power consumption, (ii) compatibility with integrating on-chip
electronics, (iii) random access of image data, and (iv) lower cost as compared
to CCDs. In spite of these advantages there are still problems in CMOS imagers
such as sensitivity and operation under low-power conditions. However, because
of the continued improvement in CMOS technology, it is anticipated that the
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performance of CMOS imagers will eventually catch up with that of their CCD
counterparts.

Problems

15.1. Draw the energy band diagrams and charge distributions for an Al–SiO2

n-type Si MOS capacitor under (a) accumulation, (b) depletion, and (c) in-
version conditions. Assume that the interface traps and work function dif-
ference are negligible.

15.2. Consider an Al-gate MOSFET fabricated on an n-type silicon substrate
with dopant density Nd = 2 × 1015 cm−3. If the thickness of the gate oxide
is 100 nm and the interface trap density at the Si–SiO2 interface is 2 × 1011

cm−2, calculate:
(a) The work function difference between aluminum and silicon (the mod-

ified work function φ′
m = 3.2 eV for Al, and the modified electron

affinity χ ′
s = 3.5 eV for Si);

(b) The threshold voltage VTH.
15.3. Using (15.38), (15.39), (15.45), and (15.46), show that the general expres-

sion for ID is given by (15.48).
15.4. Consider a p-channel Al-gate MOSFET with dimensions and physical pa-

rameters given by x0 = 100 nm, L = 10 μm, W = 4 μm, Nd = 1015 cm−3,
Qss = 2 × 1011 cm−2, and μp = 250 cm2/V·s.
(a) Calculate ID for VG = −2, −4, −6, and −8 V and plot ID versus VD

for these four different gate voltages.
(b) If VG − VTH = 1 V, calculate the oxide capacitance and cutoff fre-

quency for this transistor.
(c) What are the transconductances of this MOSFET for VG = −2, −4,

and −6 V?
15.5. Calculate the drain saturation current ID sat and drain saturation volt-

age for an n-channel MOSFET with x0 = 100 nm, W/L = 15, μn =
1100 cm2/V· s VTH = 0.5 V, and for VG = 3 and 5 V.

15.6. Consider a MOSFET built on a p-type silicon substrate with NA = 1 × 1015

cm−3 and an aluminum metal gate with φms = −0.27 V and an oxide
thickness of 100 nm. Calculate:
(a) ϕsi and QB at the onset of strong inversion,
(b) The threshold voltages VTH and V ′

TH using (15.37) and (15.39),
(c) V

′′
TH using (15.40) for Vsb = −1 and −3 V.

15.7. The oxide of a p-channel MOSFET contains mobile sodium ions that can
move slowly toward the Si–SiO2 interface under the influence of an applied
electric field. Discuss the effect of these mobile sodium ions on the charac-
teristics of such a MOSFET if a positive gate voltage is applied to the device.

15.8. The mobile charge in the channel per unit area, QI(y), in an n-channel MOS-
FET is given by (15.45), and the potential V (y) in the channel is given by
(15.57) [with VD replaced by V (y)]. Show that the small-signal capacitance
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measured between the gate and the source in the saturation region is given by

CGS = dQI

dVg
= 2

3
WLCox,

where QI is the total charge in the channel and V (y) = VG − VTH for y = L .
15.9. The potential distribution for the BCCD shown in Figure 15.23 can be

obtained analytically using the depletion approximation for the case in
which the impurity concentrations are constant in the n and p regions of
the BCCD. Poisson equations for the potential are given by

d2ϕ

dx2
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, −dox < x < 0,

−q Nd

ε0εs
, 0 < x < Wn,

q NA

ε0εs
, Wn < x < Wn + Wp.

The boundary conditions are given by
(1) ϕ = (VG − VFB) at x = −dox,
(2) ϕ = 0 at x = Wn + Wp,

The potential and electric displacement are continuous at x = 0 and
x = Wn. Show that the maximum potential well displayed in Figure
15.23b is given by

ϕmax =
(

q NA

2εsε0

)
x2

p

(
1 + NA

ND

)
.

15.10. Using (15.67) show that the threshold voltage for the cases in which the
back surface is (a) in accumulation and (b) inverted can be expressed by
(15.68) and (15.69), respectively.
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16
High-Speed III-V
Semiconductor Devices

16.1. Introduction

In this chapter the basic device physics, operational principles, and general charac-
teristics of high-speed III-V compound semiconductor devices such as MESFETs
and HEMTs are presented. The devices described here include GaAs- and InP-
based metal–semiconductor field-effect transistors (MESFETs) and high electron
mobility transistors (HEMTs). The GaAs-based high-speed devices are fabri-
cated using the lattice-matched GaAs/AlGaAs material system grown on a semi-
insulating GaAs substrate, while the InP-based devices utilize the lattice-matched
InAlAs/InGaAs or InGaAs/InP material systems grown on a semi-insulating InP
substrate. Although the GaAs/AlGaAs material technology is more mature than
that of the InP/InGaAs material system, the InP-based devices can be operated at
a much higher frequency and higher speed than those of the GaAs-based devices.
This is due to the fact that the InGaAs/InP material system has a higher elec-
tron mobility and smaller electron effective mass than those of the AlGaAs/GaAs
material system.

III-V compound semiconductors such as GaAs, InP, and InGaAs have been
developed for high-speed device applications. The III-V semiconductor ma-
terials generally have higher electron mobilities and higher peak saturation
velocities than silicon, as well as the availability of semi-insulating sub-
strates. With the advent of MBE and MOCVD growth techniques, high-quality
AlGaAs/GaAs, InGaAs/AlGaAs, InGaP/GaAs, and InGaAs/InAlAs heterostruc-
ture epitaxial layers and quantum-well/superlattice structures can be readily grown
on either semi-insulating GaAs or InP substrates for the fabrication of a wide va-
riety of high-speed devices. FETs grown on semi-insulating substrates can greatly
reduce the leakage current and parasitic capacitances, and hence enable the in-
tegration of both lumped and distributed microwave components on the same
substrate.

The successful development of GaAs monolithic microwave integrated circuits
(MMICs) is a good example of using GaAs in high-speed digital IC applications.
In fact, impressive results have been achieved in both GaAs- and InP-based FETs
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and HBTs. This is due to the availability of high-quality epitaxial layers prepared
using MBE and MOCVD growth techniques as well as new device processing
techniques. For example, high-current (600 mA/mm) and high-cutoff-frequency
( fT > 80 GHz) HEMTs using delta-doped heterostructures have been fabricated on
AlGaAs/GaAs material systems. Thin-channel and highly doped (2 × 1018 cm–3)
refractory gate self-aligned GaAs MESFETs fabricated by rapid thermal anneal-
ing (RTA) have produced transconductance with values of gm > 550 mS/mm.
InGaAs/InP HEMT with fmax greater than 100 GHz has been demonstrated. In
fact, InP-based lattice-matched and pseudomorphic HEMTs have emerged as lead-
ing candidates for ultra-low-noise and high-frequency applications. Transcon-
ductance of gm = 1,000 mS/mm has been realized in 0.1 μm gate HEMT de-
vices, and a p-PHEMT with fmax of 600 GHz and a noise figure of 1.4 db
at 94 GHz was reported recently. These high-speed devices are critical com-
ponents of advanced satellite communications, radio astronomy, and wideband
instrumentation.

Section 16.2 presents the device physics and structures, I-V characteris-
tics, small-signal device parameters, and some second-order effects in a GaAs
MESFET. Section 16.3 describes the equilibrium properties of two-dimensional
electron gas (2-DEG) in the triangular potential well of an AlGaAs/GaAs het-
erostructure. The basic device theory, the operational principles, and I-V char-
acteristics of an HEMT device are also discussed. The hot-electron transistor
(HET) and its physical limitations are presented in Section 16.5. In Section
16.6, the device physics, general characteristics, and performance limitations
of a resonant tunneling device (RTD) are presented. Finally, the basic physical
principles and general properties of a GaAs Gunn-effect device are discussed in
Section 16.7.

16.2. Metal–Semiconductor Field-Effect Transistors

The maturity of GaAs metal–semiconductor field-effect transistor (MESFET) tech-
nology has created a major impact on solid-state microwave technologies. The
GaAs MESFET has made great strides in both microwave amplifier and digital
applications for commercial and military systems. GaAs MESFET amplifiers op-
erating up to 40 GHz are now commercially available. It is the most important
microwave device in existence today with one of the highest unity gain cutoff
frequencies ( fT) available in a transistor. For example, a GaAs MESFET with
a 0.25 μm gate length exhibits a cutoff frequency of 80 GHz at 300 K. In fact,
GaAs MESFETs, which form the basis of microwave monolithic integrated circuit
(MMIC) technologies, are now emerging from research to commercial production,
and 16 K static random access memory (SRAM) and ring oscillators have been built
for different digital circuit applications. In this section, the device structures, I–V
characteristics, and small-signal device parameters, as well as some second-order
effects of a GaAs MESFET, are described.
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16.2.1. Basic Device Structure and Characteristics

A GaAs MESFET is a rather simple field-effect transistor (FET). It is a three-
terminal majority carrier device, which consists of two ohmic contacts (i.e., source
and drain) separated by a Schottky barrier gate contact electrode. A conducting
channel is formed between the source and the drain electrodes, and a depletion
region in the channel is formed under the gate electrode with its width controlled
by the gate voltage. Therefore, a MESFET device can be considered a voltage-
controlled resistor. Figures 16.1a and b show cross-sectional views of two different
GaAs MESFET device structures that are formed (a) by the epitaxial layer growth
and (b) by the ion-implantation techniques. The basic device structure for a GaAs
MESFET consists of an n-type GaAs active layer of 0.2–0.3 μm with a dopant
density of 2 × 1017 cm−3 deposited on a high-resistivity buffer layer, which is
grown on top of an undoped or Cr-doped semi-insulating (i.e., ρ ≥ 107 � cm),
(100)-oriented GaAs substrate. An undoped high-resistivity buffer layer of 3–
5 μm thickness is grown between the active layer and the substrate to prevent
out-diffusion of residual impurities from the substrate into the active layer. Two
ohmic contact regions, separated by 5 μm or less, form the source and drain
electrodes, and a Schottky barrier contact between the source and drain regions
(i.e., the channel region) forms the control-gate electrode. To reduce the source-
and drain-contact resistance, a heavily doped n+ GaAs contact layer typically
0.1 μm thick and with a doping density of 2 × 1018 cm−3 is grown on top of the
active layer to reduce the parasitic resistance. However, as shown in Figure 16.1b,
most GaAs MESFETs available today are fabricated by direct ion implantation
onto a semi-insulating GaAs substrate. Selective implantation enables an active
channel region of dopant density about 1017 cm−3 to be realized. Heavily doped
source and drain regions can be implanted immediately adjacent to the channel
in order to minimize the source resistance using the self-aligned process. In this
case, implantation is restricted to those areas necessary for MESFET fabrication,
leaving the rest of the wafer in its semi-insulating condition.

Figure 16.1. Cross-sectional views of a GaAs MESFET: (a) with a high-resistivity buffer
layer, an n−-channel epilayer, and an n+-cap layer; (b) with an n+-source, drain, and n−-
channel regions created by direct implantation on a semi-insulating GaAs substrate.
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In general, a GaAs MESFET differs from a silicon JFET in several respects.
The channel region consists of a very thin (≈ 0.2 μm) n-type GaAs layer grown
on a Cr-doped or undoped semi-insulating GaAs substrate. For an n-channel GaAs
MESFET, the controlled gate is formed by a Schottky barrier metal contact (e.g.,
Ti/Pt/Au, or WSix by a self-aligned process) with gate lengths varying from a few
microns to one tenth of a micron (0.1 μm). At a channel doping density of around
2 × 1017 cm−3, the very thin channel under the gate is only partially depleted
by the Schottky barrier built-in voltage (≈0.8 V). When a positive drain voltage
VDS is applied to the FET, the drain current IDS will flow through the channel,
producing current–voltage characteristics similar to those of a JFET. A negative
gate voltage (VGS) will further deplete the channel, reducing IDS until the device
cuts off when VGS reaches the pinch-off voltage. On the other hand, a small positive
gate voltage VGS (<0.8 V) will turn the Schottky gate toward forward conduction,
causing IDS to increase dramatically. The carrier transit time τ through a channel
of length L is approximately equal to L/vs where vs, is the saturation velocity
of electrons in the channel. For a GaAs MESFET with vs = 2 × 107 cm/s and
a channel length of 0.5 μm, the device unity current gain cutoff frequency fT is
about 70 GHz.

The GaAs MESFET structure shown in Figure 16.1a has been widely used as a
low-noise, small-signal microwave amplifier. In this structure, the active layer is
etched briefly before the Schottky gate contact is made. The recessed gate structure
along with an n+-ion implantation into the source and drain regions will reduce the
source and drain parasitic series resistances and greatly improve the ohmic contacts
in both regions. Reducing the parasitic resistances will also decrease the noise
figure and increase the transconductance and cutoff frequency of the MESFET. For
power amplification at microwave frequencies, high current is needed, which, in
turn, requires a very wide gate. Therefore, a high-power MESFET usually consists
of many small MESFETs connected in parallel to increase the total current and
power output.

Although overlays are frequently used to reduce contact resistances and thicken
up the bonding pads, the metallizations required to complete the basic device
structure of a GaAs MESFET are the source and drain ohmic contacts and the
Schottky gate contact. The gate length for a microwave FET usually varies be-
tween 0.25 and 1.5 μm. Such small dimensions can be achieved with a lift-off
process using either the optical or electron beam lithographic technique. Typical
Schottky barrier gate metallizations include using Al or a multilayer structure such
as Ti/Pt/Au or WSi4 contact. Au/Ge/Ni is commonly used for ohmic contacts on
n-type GaAs, while Au/Zn is widely used for ohmic contacts on p-type GaAs.

Depending on the channel doping density and channel height, there are two types
of MESFETs that are commonly used in GaAs digital IC applications. They are the
normally on or depletion/mode (D-) MESFET and the normally off or enhancement
mode (E-) MESFET. The D-MESFET requires a negative gate voltage (i.e., VGS)
to cutoff the drain current under all conditions, while the E-MESFET requires a
positive gate voltage to open up the channel. By controlling the channel doping
density ND and channel height a, both E- and D-MESFETs can be fabricated on
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a semi-insulating GaAs substrate. By solving the Poisson equation in the channel
depletion region under the Schottky gate, it can be shown that a normally on
MESFET can be obtained if

q NDa2/2ε0εs > Vbi, (16.1)

and a normally off MESFET is obtained if

q NDa2/2ε0εs < Vbi, (16.2)

where Vbi is the built-in potential of the MESFET, and other parameters have their
usual meanings. It is seen that (16.1) and (16.2) are the basic conditions that may
be used to guide the design of E/D MESFETs on a GaAs substrate.

The velocity–field relation and the general characteristics for a GaAs MESFET
are discussed next. Figures 16.2a and b illustrate the velocity–field relation for an
undoped GaAs at 300 K and 77 K, respectively, and show a negative differential
mobility regime under steady-state conditions and at moderate field strength. This
velocity–field relation may be represented by a two-piecewise linear approxima-
tion, as shown in curve 2, or a more accurate relation as shown in curve 3 of Figure
16.2a. The two-piecewise linear approximation is often used in the analysis of
MESFET characteristics due to its simplicity. This is understandable if one notes
that at low fields the electron drift velocity vd is linearly related to the electric field
with a proportionality constant equal to the low-field mobility μn, which satisfies

vd = μnE for E < Ec, (16.3)

and in the saturation regime,

vd = νs for E ≥ Ec, (16.4)

where Ec is the critical field that divides the linear and saturation regions of drift
velocity versus the electric field curve. A more precise equation describing the
velocity–field relation is shown in curve 3 of Figure 16.2a, which is given by

vd = μnE
[1 + (μnE/vd)2]1/2

. (16.5)

Since the transit time of electrons in the high-field regime is comparable to the
time constant characterizing relaxation to steady-state velocity–field characteris-
tics, the electron dynamics in a microwave FET are much more complex than the
dynamics derived from the steady-state velocity–field characteristics. Figure 16.3a
shows the device structure of a GaAs MESFET along with the origins of each cir-
cuit element, and Figure 16.3b presents its small-signal equivalent circuit. The dc
device parameters are derived by examining the GaAs MESFET structure shown
in Figure 16.3a, which has an n-type active layer (channel) of thickness a and
doping density ND, gate width Z , and gate length L . The saturation current IDsat

that can be carried by the channel is given by

Isat = q ND Zavd, (16.6)
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(a)

(b)

Figure 16.2. Drift velocity versus electric field (curve 1) in bulk GaAs at (a) 300 K and
(b) 77 K, respectively. Curve 2 is calculated using a two-piece linear approximation, and
curve 3 is calculated using (16.5).

where q is the electronic charge and vs is the saturation velocity. If the metal gate
forms a Schottky contact to this active layer and VDS = 0, then using a one-sided
abrupt junction approximation, the depletion layer width Wd of the Schottky gate
to the active channel is given by

Wd =
√

2ε0εs(−VGS + Vbi)

q ND
, (16.7)
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(a)

(b)

Figure 16.3. (a) Sketch of GaAs MESFET device structure along with the origins of
each circuit element, shown in (b). (b) Small-signal equivalent circuit of a GaAs MESFET
operating in the saturation region in a common-source configuration.

where Vbi is the built-in potential of the Schottky barrier contact gate and VGS is the
gate-to-source voltage. Thus, the channel height b(x)[= a − Wd(x)] can be con-
trolled by the gate voltage VGS. When the channel is pinched off, the depletion layer
depth extends from the surface (y = 0) completely through the n-type active layer
(y = a), and VGS equals the pinch-off (threshold) voltage Vp0. Equations (16.1)
and (16.2) are the conditions for the pinch-off voltage required to deplete the
channel at the drain side:

Vp0 = q NDa2

2ε0εs
. (16.8)

It is seen that the relative importance of the roles of velocity saturation and
pinch-off can be measured using the saturation index (EsL/Vp0), which is equal to
the ratio of potential drop along the gate region at the saturation field to the pinch-
off potential Vp0 required to totally deplete the channel. A smaller saturation index
represents a greater importance of the velocity saturation in limiting the source–
drain current. We shall next derive the dc current–voltage relation and the small-
signal device parameters for a GaAs MESFET.
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(a)

(b)

(c)

(d)

Figure 16.4. Distribution of electric field, drift velocity, and space charge in the channel
of a GaAs MESFET. (a) Cross-section view showing the three regions of the channel: (I)
the depletion region, (II) the electron accumulation region, and (III) formation of the Gunn
domain. (b) Electric field versus distance in the channel. (c) Drift velocity versus distance
in the channel. (d) Normalized space-charge density versus distance in the channel. Also
shown in (a) is the normalized IDS/Z versus VDS plot. After Liechti,1 by permission, c©
IEEE-1976.

16.2.2. Current–Voltage Characteristics

A MESFET operation can be described analytically if some simplified assumptions
concerning the electric field distribution within the device, the carrier dynamics,
and the channel profile are made. For example, if the drain voltage VDS is below the
knee voltage of the IDS versus VDS characteristic curves, then electrons travel with
constant mobility in the channel. In this case, the current–voltage characteristics
can be derived using the gradual channel approximation as in the case of a JFET
(see Chapter 11). As shown in Figure 16.4a, the operation of a MESFET above
the knee voltage may be considered by dividing the channel into three regions.
In region I, carriers travel with constant mobility between the source end of the
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gate and the velocity saturation point x = x1, where the electric field rises to
the value of the saturation field Es. In regions II and III, the carriers travel at
their saturation velocity. These two regions meet at x = L , i.e., the drain end
of the gate. Region III terminates when the electric field in the channel falls to
the saturation field. The longitudinal electric field Ex as a function of position in
the three regions of the channel is shown in Figure 16.4b. The electric field in
regions I will increase initially as the carriers enter the channel beneath the gate.
The electric field continues to increase until it reaches the saturation field at the
boundary between region I and II. At the knee voltage, the velocity saturation
point is located at the drain end of the gate. At higher drain–source potentials, the
velocity saturation point moves toward the source end of the gate, and the electric
field in regions II and III increases to accommodate the drain–source potential. In
region II, carriers travel at their saturation velocity vs. To satisfy Gauss’s law and
current continuity in the channel, the increase in Ex must be accompanied by a
reduction in channel height and by carrier accumulation beyond the charge-neutral
value of region I. Therefore, the electric field in the channel should reach its peak
value near the drain end of the gate. In region III, the carrier density falls as the
channel height increases beyond the drain end of the gate, and as the channel height
rises above that at the velocity saturation point, the mobile carrier density drops
below the charge-neutral value. The transition from carrier accumulation to carrier
depletion is achieved by a sharp drop of the electric field in the channel region.
Charge neutrality is restored when the electric field falls below the saturation
field and electrons reenter the constant-mobility regime. The strong saturation
in the drain–source current above the knee voltage is a direct result of the fact
that most of the VDS voltage drop is across the accumulation–depletion regions of
the channel. Increasing VDS will emphasize these regions and also increases the
length of the velocity saturation region in the channel. Figure 16.4c shows the drift
velocity versus the electric field in the three regions, where vp is the peak velocity.
Figure 16.4d illustrates the space-charge distribution in the channel.

As mentioned above, the current–voltage characteristics of a MESFET below
the knee voltage, in which the electric field is low and the mobility is constant,
can be analyzed using the gradual channel approximation. Figure 16.5 shows the
symmetrical structure for the gradual channel analysis of a GaAs MESFET. It is
shown in this figure that the channel current Ich per half device is related to the
channel potential V (x) by

Ich = G0L

(
1 − Wd(x)

a

)
dV (x)

dx
, (16.9)

where G0 is the conductance of a fully opened channel, which can be expressed
by

G0 = q NDμn Za

L
, (16.10)

where Z , a, and L are the device dimensions defined in Figures 16.3a and 16.5,
respectively; Wd(x) is the depletion layer width in the channel under the gate,
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Figure 16.5. The symmetrical device structure used in the gradual channel approximation
analysis of a GaAs MESFET.

while μn and ND denote the low-field mobility and dopant density, respectively.
A general expression for the depletion layer width Wd(x) as a function of distance
in the channel can be obtained by including V (x) in (16.7), which yields

Wd(x) =
√

2ε0εs(V (x) − VGS + Vbi)

q ND
. (16.11)

If the source and drain series resistances are neglected in the analysis, then the
channel current can be obtained by substituting (16.11) into (16.9), and integrating
x from 0 to L and V (x) from 0 to Vi, which yields

Ich = G0

{
Vi − 2

3

[(Vi − VGS + Vbi)3/2 + (−VGS + Vbi)3/2]

V 1/2
p0

}
, (16.12)

where Ich is the channel current, and Vi is the voltage drop across the gate region.
If one neglects the series resistance of the gate-to-source and gate-to-drain and
contact resistance, then Vi = VDS. Here Vbi is the built-in voltage, VGS is the gate
voltage, G0 is defined by (16.10), and Vp0 is the pinch-off voltage given by (16.8). It
is noted that (16.12) is valid when Vi � Vs = EsL , where Es = vs/μ is the average
electric field under the gate to reach a sustaining domain in the drain region. For a
typical GaAs MESFET with L ≈ 1 μm and Vs � (Vbi − VGS), the channel current
varies almost linearly with channel voltage up to the saturation point, and is given
by

Ich ≈ G0

[
1 −

(
Vbi − VGS

Vp0

)1/2
]

Vch = GdVch, (16.13)
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where

Gd ≈ G0

[
1 −

(
Vbi − VGS

Vp0

)1/2
]

(16.14)

is the drain conductance. From (16.13), the channel saturation current Isat can be
written as

Isat = GdVs. (16.15)

For a GaAs MESFET with low pinch-off voltage (e.g., Vp0 ≤ 2V ), the current–
voltage relation operating in the saturation region can be described accurately
using the “square law” model, which is given by

IDsat = K (VGS − VT)2, (16.16)

where IDsat denotes the drain–source saturation current, VT (= kBT/q) is the
threshold voltage, and

K = 2ε0εsμnvs Z

a(μVp0 + 3vsL)
. (16.17)

The source series resistance effects are neglected in (16.16).
Figure 16.6 shows plots of IDS versus VDS for (a) low pinch-off voltage

GaAs MESFET (Vp0 = 1.8 V, ND = 1.81 × 1017 cm−3, L = 1.3 μm, and Z =
20 μm), and (b) high pinch-off voltage GaAs MESFET (Vp0 = 5.3 V, ND = 6.5 ×
1016 cm−3, L = 1.0 μm, and Z = 500 μm).

(a) (b)

Figure 16.6. IDS versus VDS for (a) a GaAs MESFET with low pinch-off voltage (Vp0 =
1.8V, ND = 1.8 × 1017 cm−3, L = 1.3 μm, and Z = 20 μm), and (b) a GaAs MESFET with
high pinch-off voltage (Vp0 = 5.3 V, ND = 6.5 × 1016 cm−3, L = 10μm, and Z = 500μm).
After Pucel et al. (2) by permission.
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16.2.3. Small-Signal Device Parameters

The small-signal ac device parameters for the MESFET are presented in this sec-
tion. A general expression for the transconductance gm in the saturation region
can be derived from (16.12) by taking the derivative of the channel current with
respect to the gate voltage at Vi = Vs, which yields

gm = ∂ Ich

∂VGS

∣∣∣∣
Vi=Vs

= G0
(Vs + Vbi − VGS)1/2 − (Vbi − VGS)1/2

V 1/2
p0

. (16.18)

If Vs � (Vbi − VGS), then (16.18) reduces to

gm ≈ G0Vs

2[Vp0(Vbi − VGS)]1/2
= vs Z

[
q NDε0εs

2(Vbi − VGS)

]1/2

. (16.19)

It is of interest to note that (16.19) is completely different from that predicted
by Shockley theory, according to which the transconductance in the saturation
region should equal the drain conductance in the linear region as given by (16.14).
However, it has been shown that the theoretical prediction given by (16.19) agrees
well with experimental data for a GaAs MESFET. If the effects due to the gate-
to-source series resistance Rs and the source contact resistance Rsc are taken into
account, then the intrinsic transconductance given by (16.19) should be modified
to

g′
m = gm

1 + (Rs + Rsc)gm
, (16.20)

which is smaller than the value of gm predicted by (16.19).
To derive the unity current gain cutoff frequency fT for a MESFET, one should

first derive expressions for the total charge under the gate and the gate–source
capacitance, using the depletion layer width under the gate given by (16.11). If
one assumes that V (x) is a linear function of position in the channel under the gate
(i.e., V (x) = Vi(x/L)), then (16.11) can be rewritten as

Wd(x) = a(Vix/L + Vbi − VGS)1/2

2V 1/2
p0

. (16.21)

Now using (16.21), the total charge under the gate in the linear region for Vi ≤ Vs

can be obtained with the aid of (16.21), yielding

Qd = q ND Z
∫ L

0
Wd(x) dx

= 2Z L(2ε0εs ND)1/2

3Vch
[(Vch + Vbi − VGS)3/2 − (Vbi − VGS)3/2]. (16.22)

For Vi � (Vbi − VGS), the total charge under the gate can be approximated to

Qd ≈ (q ND Z La/2)

(
Vbi − VGS

Vp0

)1/2

. (16.23)



16.2. Metal–Semiconductor Field-Effect Transistors 625

Equation (16.22) allows one to derive expressions for the gate-to-source and
drain-to-gate capacitances of a GaAs MESFET shown in Figure 16.3a, with
result

Cgs = ∂ Qd

∂VGS

∣∣∣∣
(Vch−VGS = const)

= 2Z L(2ε0εs ND)1/2

3V 2
ch

[
(Vch + Vbi − VGS)3/2 − (Vbi − VGS)3/2

−3

2
(Vbi − VGS)1/2Vch

]
. (16.24)

Similarly,

Cdg = ∂ Qd

∂Vch

∣∣∣∣
(VGS = const)

= 2Z L(2ε0εs ND)1/2

3V 2
ch

[
3

2
Vch(Vch + Vbi − VGS)3/2

−(Vbi − VGS)3/2 − (Vbi − VGS)3/2Vch

]
. (16.25)

If Vi � (Vbi − VGS), then (16.24) and (16.25) can be simplified to

Cgs = Cdg = Z L

2

√
ε0εsq ND

2(Vbi − VGS)
. (16.26)

The current gain β in the common-source configuration is given by

β = iDS

iGS
= gm

ωCgs
, (16.27)

where iDS and iGS denote the small-signal ac drain-to-source current and
gate-to-source current, respectively. The unity current gain cutoff frequency is
obtained from (16.27) by setting β equal to one. Thus,

fT ≈ gm

2πCgs
. (16.28)

For Vi � (Vbi − VGS), (16.28) reduces to

fT ≈ vs

π L
= 1

πτ
, (16.29)

where vs is the saturation velocity of electrons, and τ = L/vs is the transit time
for electrons to travel the length of the gate at saturation velocity. For a GaAs
MESFET with 1 μm gate length, the value of fT was found to be 25.5 GHz, which
is in good agreement with experimental data.

Equation (16.29) shows that in order to maintain high-frequency operation in a
GaAs MESFET, it is imperative that the transit time be kept as short as possible. In
practice, the unity current gain cutoff frequency is usually lower than that predicted
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Figure 16.7. Calculated unity gain cutoff
frequency fT as a function of the gate length
for silicon, GaAs, and InP FETs at 300 K.
After Sze,3 with permission by Wiley.

by (16.29) due to the gate fringing capacitance, interelectrode capacitances, and
other parasitic effects. Figure 16.7 shows the calculated fT as a function of gate
length for silicon, GaAs, and InP FETs. It is noted that the InP FET has a higher fT

than that of a GaAs FET because of its higher peak velocity. For GaAs MESFETs
with gate lengths less than 0.5 μm, one can expect fT to be greater than 30 GHz.

Experimental results show that the ratio gm Cgs depends on both VGS and VDS

even above the knee voltage. In practice, velocity saturation is not attained at
the source end of the gate, and the properties of the constant-mobility region of
the channel must be taken into account. This causes gm to decrease more rapidly
with VGS than predicted by (16.16). The reduction of carrier density and carrier
mobility near the active layer/substrate interface as well as the conduction in the
substrate or buffer layer can also cause a reduction of gm. The combined effect of
these deviations from the simple model is to cause the current gain to diminish
as the gate potential approaches pinch-off and the channel current approaches
zero.

In order to maintain high transconductance, it is important to reduce the effective
source resistance of the MESFET. Further degradation of gm may be caused by
the inductance of a bond wire between the source and the ground. The reduction
of such an inductance is an important feature of GaAs power MESFETs where
many small FET elements are connected in parallel.

The small-signal equivalent circuit of a MESFET operating in the saturation
region in a common-source configuration is shown in Figure 16.3b. It is seen
that in an intrinsic FET, the total gate-to-channel capacitance is equal to the
sum of Cgd and Cgs, and the input resistances Ri and Rds under the gate show
the effects of channel resistance. The extrinsic (or parasitic) elements include
the source resistance Rs, the drain resistance Rd, and the substrate capacitance
Csd.
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The gate current flowing through the Schottky barrier gate-to-channel junction
of the MESFET is given by

IG = Is[e
qVG/nkBT − 1], (16.30)

where Is = A∗T 2 A exp(−qφBn/kBT ) is the saturation current of the Schottky
barrier contact at the gate; n is the diode ideality factor. The input resistance Ri

for the MESFET can be expressed by

Ri =
(

∂ IG

∂VG

)−1

=
(

nkBT

q

)
(IG + Is)

−1. (16.31)

As IG approaches zero, the input resistance becomes very high (e.g., Ri = 250 M�

for Is = 10−10 A). The source and drain series resistances, which cannot be modu-
lated by the gate voltage, will introduce a voltage drop between the gate–source and
gate–drain electrodes. As a result, they will reduce the drain conductance as well
as the transconductance in the linear region (i.e., the low-field constant-velocity
regime) of operation. In the saturation region, however, the transconductance is
affected only by the source resistance, because for VD > VDS, increasing VD will
have little or no effect on the drain current.

The characteristic switching time of a GaAs MESFET operating in the saturation
region can be derived from (16.14), (16.15), and (16.23), yielding

τs = Qd(Vs)

Isat
≈ L

vs

(
Vbi − VGS

Vp0 + Vbi − VGS

)1/2

. (16.32)

Equation (16.32) shows that the switching time is proportional to the transit time
under the gate and that the saturation velocity rather than the peak velocity deter-
mines the switching time. It is also shown that decreasing the gate length can reduce
the switching time and increase the cutoff frequency of the MESFET. However,
there are some physical limitations that can limit the switching speed of the MES-
FET, particularly the parasitic capacitances between the gate, drain, and source
contacts. For a typical GaAs MESFET, a switching time in the picosecond range
can be easily obtained.

Finally, we consider the power required by a MESFET at the saturation point.
This is given by

P = (q NDvsL ZaEs)

[
1 −

(
Vbi − VGS

Vp

)1/2
]

=
(

q ND Z L2aEs

τ

) (
Vbi − VGS

Vp0

)1/2

. (16.33)

From (16.32) and (16.33), the power-delay product can be written as

Pτ = (q ND ZaL2Es)

(
Vbi − VGS

Vp0

)1/2

= Z L2Es

√
2ε0εsq ND(Vbi − VGS),

(16.34)
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where Es = vs/μn is the average electric field under the gate that reaches the
domain-sustaining field in the drain region. Using (16.34), the value of the power-
delay product for a typical GaAs MESFET is estimated to be in the femtojoule
range, which is in good agreement with experimental data.

16.2.4. Second-Order Effects

It is noted that the behavior of a practical GaAs MESFET does not always fol-
low the theoretical predictions described in the previous section. There are sev-
eral second-order effects observed in MESFETs attributable to the nonideality
(e.g., high concentration of carbon acceptors and EL2 deep donor centers) of the
semi-insulating GaAs substrate. The second-order effects include backgating (or
sidegating), light sensitivity, low output resistance, low source–drain breakdown
voltage, low output power gain at RF frequencies, drain current transient lag ef-
fects, temperature dependence, and the subthreshold current effect. Among these
problems, backgating is the most significant for both digital and analog circuit
applications.

The backgating effect refers to the reduction of drain current in a MESFET as
a result of the presence of other nearby neighboring MESFETs that happen to be
negatively biased with respect to the source of the device under consideration. In
response to changes in voltage on the substrate or adjacent devices, the substrate
conducts enough current to modulate the interface space-charge region. When
this interfacial depletion region widens into the active channel, the drain–source
current IDS is reduced.

The degree of backgating effect in a MESFET can vary significantly from sub-
strate to substrate, making the prediction of backgating threshold unreliable. One
approach, which has often been used to alleviate this problem, is the use of proton
(or oxygen) implantation between the MESFETs devices. The unannealed implan-
tation produces a high concentration of defects, which act as electron traps at the
surface down to a depth of 30–40 nm. The backgating threshold voltage is signifi-
cantly increased through this process step, and the effect of backgating is reduced
considerably. The proton bombardment is usually carried out after the alloying
step of ohmic contacts.

The effect of backgating can also be reduced by growing a high-resistivity buffer
layer on a semi-insulating GaAs substrate, as shown in Figure 16.1a. A number of
possible buffer layers that have been suggested for this purpose include undoped
GaAs, AlGaAs, and superlattices (GaAs/GaAlAs). Recently, a new buffer layer
grown by the MBE technique at a low substrate temperature (T = 150 to 300◦C)
using Ga and As4 beam fluxes has been developed. It is highly resistive, optically
inactive, and crystalline. High-quality GaAs active layers have been grown on
top of this LT (low temperature) buffer layer. GaAs MESFETs fabricated in the
active layer grown on top of such an LT GaAs buffer layer have shown total
elimination of backgating and sidegating effects with a significant improvement in
output resistance and breakdown voltages, while other characteristics of MESFET
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performance remain about the same as those of other MESFETs reported in the
literature, using alternative approaches.

The drain lag effect refers to the drain current overshooting and recovering
slowly when a positive step voltage VDS is applied to the drain electrode under
saturation operation. The effect is attributable to the presence of deep-level defects
(e.g., EL2 centers) in the semi-insulating GaAs substrate below the channel of
MESFETs. In saturation, there is an accumulation of electrons beyond the velocity
saturation point, where the channel becomes very narrow and the electric field
is very high at the drain end of the gate. Therefore, the drain current becomes
very sensitive to a small variation in channel height. If a positive voltage step
is applied to the drain electrode, the capacitance through the substrate between
the drain electrode and the channel will cause a sudden widening of the channel,
leading to an abrupt increase in drain current. Another manifestation of this effect
can be observed in the frequency domain, which shows a considerable increase
of small-signal output conductance gds with frequency in the saturation region
for frequencies between 100 Hz and 1 MHz at room temperature. The effect
can be explained in terms of trapping and capture mechanisms taking place at
the channel/substrate interface. At high frequencies, the traps are too slow to
capture and release electrons during one cycle of the ac signal, and hence they do
not counteract the effect of drain capacitance on the channel–substrate interface,
and thereby the drain conductance is large in the saturation region. On the other
hand, the traps can follow the ac signal at low frequencies and effectively shield
the channel from the drain capacitance through the substrate, and thus the drain
conductance is decreased.

The subthreshold current flow in the channel from source to drain electrode
beyond the pinch-off voltage is a well-known phenomenon in a MESFET device.
The pinch-off is a transition between a region of normal conduction in which the
current conduction in the channel is due to the drift of electrons and a region of
subthreshold conduction in which the currents are due to both drift and diffusion.
For small VDS, electrons can be transported by diffusion (via a concentration gradi-
ent between the source and drain electrodes), and the current flow is characterized
by an exponential dependence of IDS on VDS and VGS.

Finally, the temperature effect should also be considered in MESFET device
operation. The temperature dependence of the drain current of a MESFET is in-
fluenced by two related mechanisms, namely, the variation of the built-in voltage
(Vbi of the channel–substrate interface) and the variation in the channel transcon-
ductance factor K . In fact, there are two built-in voltages of interest that exhibit
temperature dependence. The built-in potentials for both the Schottky barrier gate
and the channel–substrate interface are affected by the temperature dependence
of Vn [= (kBT/q) ln(n0/Nc)]. Any change in these built-in voltages will affect the
threshold voltage of the MESFET. The channel transconductance parameter K ,
as defined in the square-law relationship ID = K (VGS − VT)2, can also vary with
temperature. The channel transconductance factor K (= ZEμn/2La) is found to de-
crease with increasing temperature because the mobility decreases with increasing
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temperature and the effective channel thickness increases with temperature due to
the temperature dependence of Vbi discussed above.

16.3. High Electron Mobility Transistors

16.3.1. Introduction

Besides GaAs MESFETs discussed in the previous section, several newly devel-
oped high-speed devices such as HEMTs, RTDs, and HETs using lattice-matched
AlGaAs/GaAs and InGaAs/InAlAs material systems have been developed for high-
speed and high-frequency applications. Furthermore, nonlattice-matched pseudo-
morphic quantum-well structures such as AlGaAs/InGaAs/GaAs have also been
successfully grown in conventional AlGaAs/GaAs HEMTs without extensive crys-
tal defects if the InGaAs layer is thin enough (i.e., less than 20 nm) so that lattice
mismatch can be accommodated by elastic strain rather than by the formation
of dislocations. In fact, significant improvement in low-noise microwave perfor-
mance has been accomplished in pseudomorphic HEMTs relative to conventional
HEMTs. In this section the basic device principles, structure, and characteristics
of an AlGaAs/GaAs HEMT device are described.

The AlGaAs/GaAs modulation-doped (or high electron mobility) field-effect
transistor (MODFET or HEMT) introduced in 1981 has offered high-speed and
excellent gain, low noise, and power performance at microwave and millimeter-
wave (30 to 300 GHz) frequencies. This device, using novel properties of the two-
dimensional electron gas (2-DEG) at the interface between the GaAs and Alx Gal−x

As epitaxial layer and an evolutionary improvement over the GaAs MESFET, has
been used extensively in both hybrid and monolithic integrated circuits. The con-
cept evolves from the fact that high electron mobilities in the undoped 2-DEG
GaAs layer can be achieved if electrons are transferred across the heterointerface
from the heavily doped, wider-bandgap Alx Gal−x As layer (x ≈ 0.3) to the nearby
undoped GaAs buffer layer. This process is now known as modulation doping,
and FETs formed using such a structure are called MODFETs. In addition to the
name MODFET, other acronyms such as HEMT (high electron mobility transistor),
TEGFET (two-dimensional electron gas field-effect transistor), and SDFET (se-
lectively doped field-effect transistor) have also been used in the literature. These
acronyms are all descriptive of various aspects of the same device. The most com-
monly used name for this device, however, is the HEMT. It is worth noting that the
HEMT device is comparable to Josephson junction devices for high-speed applica-
tions with very short switching times and low power dissipation. The conventional
AlGaAs/GaAs HEMT is very similar to a GaAs MESFET.

In this section theoretical aspects of the 2-DEG in a modulation-doped
AlGaAs/GaAs heterostructure are discussed. The basic characteristics and
factors affecting the performance of a HEMT and the model for predicting
current–voltage (I–V) and capacitance–voltage (C–V) behaviors will also be
discussed in this section.

The switching speed of a FET can be improved by reducing the carrier transit
time and increasing the values of drain current IDS and transconductance gm of
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Figure 16.8. Cross-sectional view of a GaAs HEMT, showing the heavily doped n+-GaAs
implanted regions under source and drain ohmic contacts, Si-doped AlGaAs layer, 2-DEG
region formed between the undoped AlGaAs spacer layer and the undoped GaAs buffer
layer grown on a semi-insulating. GaAs substrate.

the device. In order to design a high-speed FET, one needs to optimize the device
parameters including smaller gate length L , higher carrier concentration n0, higher
saturation velocity vs, and larger gate width-to-length ratio (i.e., aspect ratio).
Increasing the dopant density beyond 5 × 1018 cm−3 while maintaining high-
saturation velocity vs, however, cannot be achieved simultaneously in a MESFET.
Increasing the dopant density will reduce the electron velocity due to the increase
of ionized impurity scattering. Therefore, to meet the requirements of large n0 and
vs, a HEMT structure is employed. Figure 16.8 shows a cross-sectional view of an
AlGaAs/GaAs HEMT structure. The structure consists of an undoped GaAs buffer
layer, an undoped Alx Gal−x As spacer layer, and a Si-doped n+-Alx Gal−x As (x =
0.33) layer grown sequentially on a semi-insulating (S.I.) GaAs substrate using the
MBE technique. The source and drain regions are formed by the ion implantation of
an n+-GaAs layer on the doped n+-AlxGal−xAs layer. A Schottky barrier contact
is formed on the doped Alx Gal−x As between the source and drain contacts to
serve as the gate electrode. Since the bandgap energy for Alx Gal−x As (e.g., Eg =
1.8 eV for x = 0.3) is larger than for GaAs, and the energy level of the GaAs
conduction band is lower than that of Alx Gal−x As, electrons will diffuse from the
doped Alx Gal−x As top layer into the undoped GaAs buffer layer. These electrons
cannot drift away from the AlGaAs/GaAs interface in the GaAs layer due to
the Coulomb attractive force of the ionized donor impurities in the AlGaAs layer.
Nor can they go back to the doped AlGaAs layer due to the potential barrier at the
heterointerface of the AlGaAs/GaAs layer. A triangular potential well (quantum
well) is formed in the undoped GaAs layer with well width less than the de Broglie
wavelength (i.e., ≈ 25 nm for GaAs at 300 K) and quantization of energy levels
results along the direction perpendicular to the heterointerface. As a result, a two-
dimensional electron gas (2-DEG) sheet charge is accumulated inside the triangle
potential well at the undoped GaAs layer near the GaAs/AlGaAs interface, which
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forms a conducting channel for the HEMT device. The density of 2-DEG sheet
charge can be modulated by the applied gate voltage in the device. The dopant
densities and dimensions are chosen such that the AlGaAs layer is fully depleted
of free electrons, and the channel conduction is due primarily to the 2-DEG sheet
charge in the undoped GaAs buffer layer. In general, the density of the 2-DEG
sheet charge will depend on the doping density and aluminum mole fraction x
of the Si-doped Alx Gal−x As layer, and the thickness of the undoped Alx Gal−x As
spacer layer.

Since the 2-DEG sheet charge in the channel of the undoped GaAs buffer layer
is spatially separated from the ionized donor impurities by a thin undoped AlGaAs
spacer layer (≤ 6 nm), they will experience no ionized impurity scattering inside
the triangle potential well in the undoped GaAs buffer layer. Consequently, both
the electron mobility and electron velocity in the channel are expected to be very
high. For example, 2-DEG electron mobility values up to 8500 cm2/V·s at 300
K and 50,000 cm2/V·s at 77 K have been obtained in the channel region of the
GaAs buffer layer. This, along with the small separation (≈ 30 nm) between
the gate and conducting channel, leads to extremely high transconductance
(e.g., gm > 500 mS/mm at 77 K), large current-carrying capabilities, small source
resistances, and very low noise figures. For example, a HEMT amplifier operating
at 77 K has a noise figure of 0.25 dB at 10 GHz and 0.35 dB at 18 GHz. Since
the transconductance gm is large, one expects that the unity current gain cutoff
frequency fT will be very high for a HEMT device. Since the maximum oscillation
(for unity power gain) frequency fmax of a HEMT is strongly influenced by the
parasitics (i.e., gate and source resistances, rf drain conductance, feedback and
input capacitances), it is essential that these parasitic components be minimized
in order to further improve the high-frequency performance. We shall next derive
theoretical expressions for the Fermi level, density of 2-DEG sheet charge, electric
field at the interface, and the current–voltage characteristics of a HEMT device.

16.3.2. Equilibrium Properties of 2-DEG in GaAs

In this section, the Fermi level, the density of 2-DEG sheet charge, and the electric
field at the interface of a modulation-doped AlGaAs/GaAs heterostructure are
discussed. Only the lowest (ground state) and first excited subbands (i.e., E0 and
E1) in the triangular potential well of the undoped GaAs buffer layer will be
considered. If the electric field in the triangular potential well is assumed quasi-
constant, then the solution for the longitudinal quantized energy levels can be
expressed as

En ≈
(

h̄2

2m∗
l

)1/3 (
3

2
πqE

)2/3 (
n + 3

4

)2/3

, (16.35)

where m∗
l is the longitudinal effective mass, n is the quantum number, and E is the

electric field. For GaAs, the two subbands E0 and E1 in which the 2-DEG sheet



16.3. High Electron Mobility Transistors 633

charge resides are given by

E0 ≈ 1.83 × 10−6E2/3 eV and E1 ≈ 3.23 × 10−6E2/3 eV, (16.36)

where E is the electric field in V/m.
In order to derive the current–voltage relation for the HEMT, it is important first

to establish a relationship between the interface electric field εi1 and the 2-DEG
sheet charge concentration. For an AlGaAs/GaAs modulation-doped heterostruc-
ture, the electric field in the undoped GaAs buffer layer obeys the Poisson equation,
which is given by

dE1

dx
= − q

ε0εs
[n(x) + Nal], (16.37)

where n(x) is the bulk electron concentration and Na1 is the ionized acceptor
density in the undoped p-GaAs buffer layer. Integration between the limit of the
depletion region (E1 = 0) and the interface (E1 = Ei1) yields

ε0ε1Ei1 = qns + q Na1W1, (16.38)

where ε1 is the dielectric permittivity of the undoped p-GaAs, ns is the 2-DEG
sheet charge density, and W1 is the depletion layer width. In a HEMT, Na1 in the
undoped p-GaAs layer is usually very small, and hence the second term in (16.38)
is negligible. Thus, (16.38) becomes

ε0ε1Ei1 ≈ qns. (16.39)

Equation (16.39) can also be applied to the undoped n-type GaAs layer. The
subband positions given in (16.35) can also be expressed in terms of the 2-DEG
sheet charge concentration, and they are given by

E0 = γ0n2/3
s and E1 = γ1n2/3

s , (16.40)

where γ0 and γ1 are parameters that can be adjusted to obtain the best fit with
the experimental data. To deal with the 2-DEG sheet charge in the undoped GaAs
buffer layer, the relation between ns and the Fermi level position must be derived
first. The density of states associated with a single quantized energy level for a
2-DEG electron system is a constant, which can be expressed by

D = qm∗

πh̄2 , (16.41)

where a spin degeneracy of 2 and a valley degeneracy of 1 have been used. Between
the two subbands E0 and E1, the 2-dimensional density of states is given by D,
and for energies between E1 and E2 it is equal to 2D. Using the Fermi–Dirac
statistics, the 2-DEG sheet charge concentration as a function of the Fermi level
position and temperature can now be written as

ns = D
∫ E1

E0

dE

1 + e(E−EF)/kBT
+ 2D

∫ ∞

E1

dE

1 + e(E−EF)/kBT

= D

(
kBT

q

)
ln[(1 + e(EF−E0)/kBT )(1 + e(EF−E1)/kBT )], (16.42)
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which at low temperatures reduces to

ns = D(EF − E0) (16.43)

if the second subband is empty, and

ns = D(E1 − E0) + 2D(EF − E1) (16.44)

if the second subband is occupied. From the published data taken at low temper-
atures using Shubnikov, de Hass, or cyclotron resonance experiments, values of
γ0 and γ1 for p-type GaAs are found equal to 2.5 × 10−12 and 3.2 × 10−12, re-
spectively. From the measured cyclotron mass, D is found to be 3.24 × 1021 cm−2

V−1. It is seen from (16.43) that the 2-DEG sheet charge density ns is equal to the
product of the density of states D and the energy difference between the Fermi
level and the ground state when the second subband is empty.

Figures 16.9a and b show the energy band diagrams of a single-period
modulation-doped n+-Alx Ga1−x As/p-GaAs heterostructure: (a) in equilibrium and
isolated from the influence of any external contact, and (b) under an applied gate
bias voltage. It is noted that the position for the two presumed subbands in the
quasitriangular potential well shown is only for illustrative purposes. The struc-
ture consists of a Si-doped Alx Ga1−x As (x ≤ 0.3) layer of thickness dd and an
undoped Alx Ga1−x As spacer layer of thickness di (i.e., 2 to 6 nm), which serves
as a buffer layer to further reduce the scattering of 2-DEG in the undoped GaAs
layer (thickness d1) by the ionized impurities in the space-charge region of the
Si-doped Alx Ga1−x As layer. The electric displacement vector at the interface of
Alx Ga1−x As/GaAs can be calculated using the depletion approximation in the
space-charge layer. In this case, the potential V2(x) in the space-charge region
of the Alx Ga1−x As can be derived from the Poisson equation, which is given
by

d2V2(x)

dx2
= − q

ε0ε2
Nd2(x). (16.45)

If the heterojunction interface is chosen as origin, then the following boundary
conditions prevail:

V2(0) = 0,

(
dV2

dx

)
x =− W2

= 0,

(
dV2

dx

)
x = 0

= −Ei2, (16.46)

where W2 is the space-charge layer width in the Si-doped Alx Ga1−x As layer, and
Ei2 and V2(−W2) are given, respectively, by

Ei2 = −
(

q

ε0ε2

) ∫ −W2

0
Nd2(x) dx (16.47)

and

V2(−W2) = v20 = Ei2W2 − q

ε0ε2

∫ −W2

0
dx

∫ x

0
Ndd (x ′) dx ′. (16.48)
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Figure 16.9. Energy band diagrams for an Alx Ga1−x As/GaAs HEMT shown in
(a) in equilibrium and (b) under applied bias conditions (V = −VG).

For the HEMT structure shown in Figure 16.9a, one can write

Nd2(x) =
{

0 for − di < x < 0,

Nd2 for x < −di,
(16.49)

where Nd2 is the dopant density in the Si-doped AlGaAs layer. Solving (16.47)
through (16.49) yields

ε0ε2Ei2 = q Nd2(W2 − di) (16.50)

and

v20 = q Nd2

2ε0ε2
(W 2

2 − d2
i ). (16.51)
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Figure 16.10. 2-DEG sheet charge
density in the p−-GaAs layer (with
Na = 1014 cm−3) as a function of
donor impurity density (N2) in
the Si-doped Al0.3Ga0.7As layer for
different undoped AlGaAs spacer
layer thicknesses calculated at
300 K. Delagebeaudeuf and Ling,4

by permission, c© IEEE–1982.

Since the band bending of the AlGaAs layer at the heterointerface is denoted by
v20, one can easily show from (16.50) and (16.51) that

ε0ε2Ei2 =
√

2qε0ε2 Nd2v20 + q2 N 2
d2d2

i − q Nd2di. (16.52)

From Figure 16.9a, one obtains

v20 = Ec − δ2 − EF0. (16.53)

Using Gauss’s law and neglecting interface traps, the 2-DEG sheet charge density,
which is related to the dielectric constant and the electric field, can be expressed
by

qns = ε0ε1Ei1 = ε0ε2Ei2. (16.54)

Now, solving (16.50) through (16.54) yields a general expression for the 2-DEG
sheet charge density, which reads

ns =
√

2ε0ε2 Nd2v20/q + N 2
d2d2

i − Nd2di

= DkBT

q
ln

(
1 + e(EF0−E0)/kBT

)(
1 + e(EF0−E1)/kBT

)
. (16.55)

The Fermi level EF0 can be solved numerically from (16.55) by iteration proce-
dures. It is noted that the value of ns calculated from (16.55) and (16.42) should be
the same. Otherwise, values of the Fermi energy EF0 must increase until this con-
dition is met. Figure 16.10 shows the 2-DEG sheet concentration in the p−-GaAs
layer (with Nal = 1014 cm−3) as a function of donor impurity density (Nd2) in the
Si-doped Al0.3Ga0.7As layer for different undoped AlGaAs spacer layer thickness
di at 300 K. The 2-DEG sheet concentration is seen to increase as the thickness
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of the undoped AlGaAs spacer layer is decreased, and to increase as the doping
concentration of the Si-doped AlGaAs layer is increased.

16.3.3. 2-DEG Charge Control Regime

The charge control regime, i.e., the region between the Schottky contact on
the Si-doped AlGaAs layer and the AlGaAs/GaAs heterointerface, is totally de-
pleted, and the electrostatic potential obeys the Poisson equation subject to the
conditions

Nd2(x) =
{

0 for − di < x < 0,

Nd2 for − dd < x < −di.
(16.56)

If one chooses the origin at the AlGaAs/GaAs interface and lets V2(0) = 0 at x = 0,
then V2(−dd) can be written as

V2 (−dd) = −v2 = Ei2dd − q

ε2

∫ −dd

0
dx

∫ x

0
Nd2

(
x ′)dx ′. (16.57)

Equation (16.57) can be readily solved using the boundary conditions given by
(16.56), yielding

v2 = q Nd2

2ε0ε2
(dd − di)

2 − Ei2dd. (16.58)

From Figure 16.9b and (16.58) we can establish the relation

ε0ε2Ei2 = ε0ε2

dd

(
Vp2 − v2

)
, (16.59)

where

Vp2 = q Nd2

2ε0ε2
(dd − di)

2 . (16.60)

By examining Figure 16.9b, the potential v2 is given by

v2 = φM − VG + EF − Ec. (16.61)

Now substituting (16.61) into (16.59) yields

ε0ε2Ei2 =
(

ε0ε2

dd

) (
Vp2 − φM − EF + Ec + VG

)
. (16.62)

Therefore, in the absence of interface states, the total charge in the 2-DEG GaAs
buffer layer can be obtained by solving (16.62) and (16.54), which yields

Qs = qns = ε0ε2

dd

(
Vp2 − φM − EF + Ec + VG

)
. (16.63)

Since EF, which is a function of VG, is usually much smaller than the other terms
given in (16.63), one can approximate (16.63) by

Qs ≈ ε0ε2

dd
(VG − Voff) , (16.64)
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where

Voff = φM − Ec − Vp2 (16.65)

is the “off voltage” that eliminates the 2-DEG. Equations (16.64) and (16.65) are
obtained by neglecting the Fermi energy Ef, and hence they are insensitive to the
exact positions of the two subbands. Therefore, (16.64) and (16.65) are applicable
to both p−- and n−-type GaAs buffer layers. If the interface state charge Qi is
included, then (16.65) becomes

Voff = φM − Ec − Vp2 − dd

ε0ε2
Qi. (16.66)

For a given AlGaAs layer width, there exists a threshold voltage VGth, which
separates the charge control regime from the equilibrium state. This can be obtained
by equating the two expressions for ε0ε2Ei2 given by (16.52) and (15.62); one
thereby obtains

VGth = φM − δ2 −
⎛
⎝

√
q Nd2d2

d

2ε0ε2
−

√
(Ec − δ2 − EF0) + q Nd2d2

i

2ε0ε2

⎞
⎠

2

.

(16.67)

16.3.4. Current–Voltage Characteristics

The current–voltage (I–V) characteristics of a HEMT device can be derived using
the charge control model and the gradual channel approximation. If Vc(x) is the
channel potential under the gate at position x , and VGS is the applied gate voltage,
then the effective potential Veff for charge control at x is given by

Veff(x) = VGS − Vc(x). (16.68)

Using (16.64) and (16.68), the 2-DEG sheet charge in the channel can be rewritten
as

Qs (x) = qns = ε0ε2

d

[
V ′

GS − Vc (x)
]
, (16.69)

where VGS = (VGS − Voff) and d = dd + di + d; d = ε0ε2a/q ≈ 8 nm for a =
1.25 × 10−21 V·cm2. The channel current at position x is given by

IDS = Qs(x)Zv(x), (16.70)

where Z is the gate width and ν(x) is the electron velocity at position x . It is
seen that v(x) = μE for a 2-DEG sheet charge in the channel is generally field-
dependent and the electron mobility (μ) as a function of the electric field can be
expressed by

μ = μ0

1 + 1

Ec

dV

dx

, (16.71)
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where Ec is the critical field strength in which the velocity saturation occurs, and
μ0 is the low-field electron mobility. For field strengths less than Ec, the drift
velocity v(x) is equal to μ0E , and v(x) varies linearly with the electric field E
with a constant mobility μ0; v(x) becomes saturated (i.e., v(x) = vs) if E ≥ Ec.
The current–voltage (I–V) relation for a HEMT can be derived using a simple
two-piecewise linear approximation for the vd versus E relation, which may be
written as

vd =
{
μ0E for E < Ec, (16.72)
vs for E ≥ Ec. (16.73)

This is the so-called gradual channel approximation, which is used widely in
modeling the I–V relation of a FET. Therefore, using the two-piecewise linear ap-
proximation and assuming that the electric field in the channel is parallel to the het-
erointerface, we can derive an analytical expression for the I–V relation of a HEMT
in the linear region (VDS/L < Ec) and in the saturation region (VDS/L ≥ Ec). We
note that this approximation does not include the diffusion current component in
the channel.

(i) Linear Regime (E < Ec). In the ohmic regime, where the electric field is much
smaller than the critical field strength Ec, the drain current given by (16.70) can be
expressed in the form

IDS = Qs(x)Zυ(x) = Qs ZμEx = Qs Zμ − dVc(x). (16.74)

Now substituting Qs(x) given by (16.69) into (16.74), and integrating both sides
of (16.74) from x = 0 to x = L , we obtain∫ L

0
IDSdx =

∫ Vc(L)

Vc(0)
μZ

ε0ε2

d

[
V ′

G − Vc (x)
] (

−dVc(x)

dx

)
. (16.75)

If the source and drain resistances are neglected, then (16.75) reduces to

IDS = ε0ε2μZ

d L

(
V ′

GSVDS − V 2
DS/2

)
. (16.76)

Equation (16.76) is obtained from the conditions that Vc = 0 at x = 0 and Vc = VDS

at x = L . It is noted that IDS is constant in the channel and Vc(x) increases with
distance from source to drain. The electric field reaches a maximum near the drain
side of the channel, and velocity saturation will occur first at the drain side of the
gate region. In the linear region, where the drain voltage VDS is very small, (16.76)
can be simplified to

IDS = ε0ε2μZ

d L

(
V ′

GSVDS
)
, (16.77)

which shows that the drain current varies linearly with drain voltage, and the
HEMT device acts like a pure voltage-controlled resistor (by V ′

GS). If the source
and drain resistances are not negligible, then the channel voltages at the source
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and drain sides of the gate region, Vc(0) and Vc(L), are given, respectively, by

Vc(0) = Rs IDS (16.78)

and

Vc(L) = VDS − RD IDS, (16.79)

where Rs and RD denote the source and drain series resistances, respectively. Now
solving (16.75), (16.78), and (16.79), one obtains

IDS = ε0ε2μZ

d L

{
V ′

GS [(RS + RD) IDS − VDS] − 1
2 [(RS + RD) IDS − VDS]2} .

(16.80)

For small VDS and IDS, the first-order approximation enables (16.80) to be reduced
to

IDS = VDS

[
− (RS + RD) + Ld

Zμε0ε2V ′
GS

]−1

, (16.81)

which again shows that a linear relation exists between the drain current and drain
voltage.

(ii) Saturation regime (E ≥ Ec). In the saturation regime, velocity saturation occurs
first at the drain side of the gate region with E(L) = Ec. The drain current under
the saturation condition is given by

IDsat = Zε0ε2v2

d

(√(
V ′

GS − RS IDsat
)2 + E2

c L2 − EcL

)
. (16.82)

For a long-gate HEMT, (15.82) can be approximated by

IDsat ≈ Zε0ε2μ

2d L

(
V ′

GS − Rs IDsat
)2

, (16.83)

and for a short-gate HEMT, (15.82) becomes

IDsat ≈ Zε0ε2vs

d

(
V ′

GS − RS IDsat − EcL
)
, (16.84)

which is valid for (V ′
GS − Rs IDsat) 
 EcL . In fact, the experimental results for a

short-gate GaAs HEMT device confirm the linear relation between IDS and VGS in
the saturation region.

The two-piecewise linear model for the channel charge and current as func-
tions of the gate and drain voltages presented in this section gives a first-order
description of the I–V characteristics of a HEMT in the linear and saturation
regions of operation. A more realistic three-piecewise linear model for predict-
ing the I–V characteristics of a HEMT has also been developed. Such a model
uses a three-piecewise linear approximation for the vD versus E relation to derive
the current–voltage characteristics of a HEMT device. A comparison of the two-
and three-piecewise linear approximations with the actual velocity versus electric
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Figure 16.11. Comparison of the cal-
culated and measured ID versus VDS

curves for a normally on GaAs HEMT
using a three-piece wise linear model.
After Lee et al.,5 by permission, c©
IEEE-1983.

field relation shows that the three-piecewise linear approximation yields roughly
10–20% improvement in accuracy over the two-piecewise linear approximation.
Figure 16.11 shows the I–V characteristics of a normally on HEMT. The solid lines
are calculated from the three-piecewise linear model and the dot and dashed lines
are the experimental data. A more rigorous model using numerical simulation of
the current–voltage characteristics of a GaAs HEMT has also been reported in the
literature.

From the above description, one sees that some advantages associated with a
HEMT device include the large 2-DEG sheet charge density (≈ 1012 cm−2), high
electron mobility, and high saturation velocity. These unique features have resulted
in significant improvement in device performance (i.e., high speed and low noise)
compared to conventional GaAs MESFETs. In the past few years, successful de-
velopment of 0.25-μm-gate-length AlGaAs/GaAs and InGaAs/InP HEMTs has
offered new promise for low-noise applications at microwave frequencies. Fur-
ther improvement in current gain and noise performance of HEMT devices can
be achieved by further reducing the gate length to 0.1 μm or less. However, a
0.1 μm gate length generates undesirable short-channel effects. The effects are
largely due to the space-charge injection of carriers (which is inversely propor-
tional to the square of the effective gate length) into the buffer layer under the
channel. This increases the HEMT output conductance and results in a shift of the
pinch-off voltage and transconductance reduction near the pinch-off region. To
overcome this problem, an AlGaAs/InGaAs/GaAs pseudomorphic HEMT struc-
ture has been developed recently using a 0.1 μm gate length. Using the MBE
growth technique, the AlGaAs/InGaAs/GaAs pseudomorphic HEMT is grown at
a lower temperature than that of the conventional AlGaAs/GaAs HEMT structure.
In this structure a thin strained superlattice (TSSL) of an undoped In0.35Ga0.65As
(5 nm)/GaAs (1.5 nm)/In0.35Ga0.65As (5 nm) pseudomorphic active layer struc-
ture is grown on an undoped GaAs buffer layer. Due to the InGaAs quantum-well
channel structure, this pseudomorphic HEMT structure can greatly improve the
carrier confinement and hence reduces the short-channel effects. In addition, due
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Figure 16.12. Energy band diagrams and cross-sectional views for (a) a conventional
AIGaAs/GaAs HEMT, and (b) an AIGaAs/InGaAs pseudomorphic HEMT.

to the superior transport properties in the InGaAs channel and the large conduc-
tion band discontinuity with the AlGaAs spacer layer (5 nm), the pseudomor-
phic HEMT also provides a very high electron velocity and 2-DEG sheet charge
density. A maximum extrinsic transconductance, gm, of 930 mS/mm with ex-
cellent pinch-off characteristics at room temperature has been reported recently
for a 0.1-μm gate-length planar-doped pseudomorphic HEMT. The device has
a maximum stable gain of 19.3 dB measured at 18 GHz. At 60 GHz the de-
vice demonstrated a minimum noise figure of 2.5 dB with an associated gain
of 8 dB. The unity current gain cutoff frequency fT for this device is around
100 GHz.

Figure 16.12 shows a comparison of a conventional AlGaAs/GaAs HEMT with
a GaAs-based pseudomorphic HEMT. The difference between these two structures
is that in the latter, a thin (typically 5–20 nm) layer of Inx Ga1−x As (x = 0.15–0.35)
is inserted between the doped AlGaAs barrier layer and the GaAs buffer layer. It is
clear that there will be a lattice constant mismatch between AlGaAs/InGaAs/GaAs
layers introduced by the thin InGaAs channel layer. The strain effect created by
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this lattice mismatch will be absorbed totally by the InGaAs quantum-well layer.
If the thickness of the InGaAs layer is less than the critical thickness, then the
lattice mismatch strain between the InGaAs and GaAs can be accommodated
elastically, and the InGaAs layer is compressed to mirror the structure of the GaAs
and AlGaAs layers (hence the name “pseudomorphic”). This critical thickness is
dependent on the InAs molar fraction. For example, at 35% InAs molar fraction,
the critical thickness is about 5 nm. Since Ec increases and carrier confinement
and transport properties improve with higher InAs molar fraction it is desirable to
increase the InAs molar fraction to the highest possible level in the pseudomorphic
HEMT. However, the lattice mismatch strain between the InGaAs and GaAs layers
has precluded the use of a very high InAs molar fraction in the pseudomorphic
channel for device applications.

16.3.5. Other III-V Semiconductor HEMTs

In addition to the AlGaAs/GaAs HEMTs discussed above, HEMTs have also
been fabricated from InAlAs/InGaAs heterostructure on InP substrates. The ad-
vantages of using an In0.52Al0.48As/In0.53Ga0.17As lattice-matched material sys-
tem for HEMT fabrication include (1) a large Γ–L valley separation (EΓ–L =
0.55 eV) in In0.53Ga0.47As, which leads to low intervalley noise, (2) high den-
sity of 2-DEG with ns > 3 × 1012cm−2, (3) low sheet resistance of 2-DEG (ρ
≈ 150 �/squre) for lower thermal noise, and (4) high electron velocity in short-
channel GaInAs (vp ≈ 6–7 × 107 cm/s), which leads to high fT and gm. A transcon-
ductance gm equal to 800 mS/mm and a cutoff frequency fT of 130 GHz have been
demonstrated for an AlInAs/InGaAs on InP HEMT with a gate length of L =
0.2 μm and W = 25 μm, at a pinchoff voltage Vp = −1.3 V. A strained-channel
In0.52Al0.48As/In0.65Ga0.35As HEMT grown by the MBE technique has been re-
ported recently using 0.1 μm T-gate technology; this is shown in Figure 16.13. A
strained channel was used to enhance the fT performance due to its higher electron
mobility, velocity, sheet carrier concentration, and conduction band discontinu-
ity (Ec). An fT value as high as 220 GHz has been obtained for this device.
Figure 16.14 shows a comparison of the unity current gain cutoff frequency fT

versus gate length Lg for several III-V HEMTs, GaAs MESFET, and Si NMOS at
300 K. The results show that a value of fT greater than 300 GHz can be achieved
from AlInAs/GaInAs HEMTs with a gate length of 0.1 μm.

Power capabilities of HEMTs at microwave and millimeter-wave frequencies
have also made steady progress over the past few years. High-gain and high-
efficiency performance HEMTs operating from 10 to 60 GHz have been reported
in the literature. The advantages that a HEMT device has over a GaAs MESFET for
power applications are higher power gain and higher efficiency. These advantages
are due to higher current gain cutoff frequencies resulting from higher electron ve-
locities, which lead to greater output power. For example, a double heterojunction
(DH) type HEMT with a 1 μm gate length could generate 1.05 W output power at
20 GHz and 0.58 W at 30 GHz. Recently, millimeter-wave power HEMTs employ-
ing a single-chip multiple-channel AlGaAs/GaAs structure have generated output
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Figure 16.13. A typical InGaAs/InAIAs HEMT grown on InP substrates.The low-noise
performance can be improved by two approaches: (1) optimizing the indium content and
thickness of the channel layer and (2) shortening the gate length.

Figure 16.14. Comparison of fT versus gate length for several III-V semiconductor
HEMTs, GaAs MESFET, and Si NMOS devices. After Sze,6 with permission by John
Wiley.

power of 1.0 W with 3.1 dB gain and 15.6% efficiency at 30 GHz using a 0.5 μm
gate length and 2.4 mm gate periphery.

The conventional AlGaAs/GaAs HEMT has demonstrated significantly better
low-noise performance than the GaAs MESFET, at frequencies up to 60 GHz. It has
replaced the GaAs MESFET for microwave low-noise applications in many cases
at both room temperature and low temperatures. The conventional HEMT has also
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established technology for high-speed digital applications. It is expected that the
strong trend toward the integration of HEMTs into both hybrid and monolithic low-
noise circuits will continue to blossom. As HEMT fabrication technology matures
further, it is anticipated that GaAs MESFETs may be replaced entirely by HEMTs
for low-noise applications. As for the pseudomorphic HEMT, this device offers
even better noise performance than the conventional AlGaAs/GaAs HEMT, and
its power performance is also superior to that of either the conventional HEMT or
the GaAs MESFET. The GaAs-based pseudomorphic HEMTs, with higher carrier
density, are very attractive for microwave power applications.

The InP-based InAlAs/InGaAs HEMTs with extremely short gate length have
demonstrated excellent high-frequency performance. Since the unity current gain
cutoff frequency fT is almost inversely proportional to the gate length Lg, a fur-
ther improvement of high-frequency performance can be achieved with shorter
Lg. Using a T-shaped gate with gate length of 100 nm, a double-sided δ-doped
InAlAs/InGaAs HEMT grown on the InP substrate has achieved a maximum os-
cillating frequency fmax of 241 GHz and a unity gain cutoff frequency fT of 205
GHz. These InP-based InAlAs/GaInAs HEMTs will most likely make a great
impact on ultrahigh-speed digital and millimeter-wave low-noise applications. Fi-
nally, wide-band-gap AlGaN/GaN HEMTs formed on SiC substrate have also
been reported recently. The AlGaN/GaN modulation-doped heterostructure has
some unique features: (1) It is the only heterostructure system in wide-band-
gap semiconductors, and hence it can exploit the capabilities of wide-band-gap
semiconductors for high-power handling capability and modulation-doped struc-
tures for high-speed devices, and (2) the channel sheet charge in an AlGaN/GaN
HEMT could reach as high as 1013 electrons/cm2, which is about five times as
high as in an AlGaAs/GaAs HEMT; higher channel charge increases the device
current handling capability. Combining the features given above with the higher
breakdown voltage, it is clear that the AlGaN/GaN HEMT structure is well suited
for high-power and high-frequency applications. A typical layer structure of an Al-
GaN/GaN HEMT consists of a Si-doped AlGaN donor layer with source, drain and
gate contacts, a thin undoped AlGaN spacer layer, an undoped GaN layer, a tran-
sition layer (buffer), and a SiC substrate for the growth of the AlGaN/GaN HEMT
structure.

Finally, it is worth noting that the GaAs MESFET is still the workhorse for
MMIC technology and competes directly with advanced Si RF technologies. It is
mostly based on ion implantation into GaAs semi-insulating substrates. This is the
least expensive process concerning the raw material cost, since no epitaxial layers
are required. Current technologies in the market are processed with gate length
from 0.8 μm down to 0.25 μm. Values of fT in the range of 25 GHz are available
in production depending on the gate length used. These FETs can easily achieve
noise figures below 1 dB in the 1–2 GHz frequency range. The power performance
reaches into the 10 W class in x-band range for phased-array radar applications.
Most of the GaAs MESFET devices are of depletion mode type, which requires
negative bias to control the gate. Enhancement mode with shallow channel needs
single-polarity supply only. The GaAs HEMT technology in principle is similar
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to the GaAs MESFET structure, except that epitaxial wafers provide the active
layers. The epilayers could be grown by the MBE or MOCVD technique. These
GaAs HEMT structures incorporate single or double heterostructure transitions
that deliver high electron mobility in the 2-DEG channel. A gate length down to
0.12 μm is required for achieving an fT = 100 GHz value. For applications in the
mobile communications market the gate length is increased to 0.5 μm with values
of fT still up to the 30–40 GHz range. HEMT devices deliver the lowest noise
figure of the RF technologies together with high-gain performance.

16.4. Hot Electron Transistors

Hot electron transistors (HETs) are based on an old concept first proposed by C. A.
Mead in 1960. The main objective for the HET is to reduce both the base resistance
and transit time and to increase the current density of the BJTs for high-frequency
performance.7 To achieve these goals, various metal/insulator/semiconductor
structures have been proposed, but due to difficulty in fabricating these structures
success has so far been limited.

The capability of growing very thin epitaxial layers on semi-insulating substrates
has been greatly enhanced by the availability of the MBE growth technique. For
example, using GaAs substrate and lattice-matched large-band-gap Alx Ga1−x As,
it is possible to grow a high-resistivity undoped Alx Ga1−x As barrier layer on
a GaAs base layer with barrier height adjusted by the Al molar fraction x , or
using modulation doping to form a metal-like 2-DEG sheet charge on the GaAs
base layer. As a result, several different HET structures have been reported. The
main difference in these structures is the method by which the hot electrons (i.e.,
electrons with energies a few kBT above the conduction band edge) are injected
into the thin base region. The hot electron injection can be achieved by injection
over the barrier or by tunneling. For base thickness smaller than the mean free
path of hot electrons, the majority of hot electrons that inject into the thin base are
collected by the collector, where they are thermalized to lattice temperature. The
electrons lost in the base constitute the base current, which can usually be removed
very rapidly from the base in a HET since the base resistance rbb′ is very low, and
the transit time of the majority electrons across the thin base is extremely small.

Figure 16.15a shows cross-sectional view and conduction band diagram of an
AlGaAs/GaAs tunneling HET in equilibrium, and Figure 16.15b illustrates the
conduction band diagram under bias conditions. Figure 16.16 shows the conduction
band diagrams of a modified AlGaAs/GaAs HET with 2-DEG sheet charge in the
GaAs base formed by (a) modulation doping and (b) applied collector–base bias
voltage. The device structures shown in Figures 16.15 and 16.16 have a GaAs
base-layer thickness of 0.1 μm or less. In both cases, electrons in the base, being
hot, travel at such a high velocity (≈ 5 × 107 cm/s) that the base transit time
τB is negligible. One expects the speed of the HET to be limited by the emitter
capacitance charging time through the emitter resistance. Its value depends on the
current injection mechanism, and is larger for tunneling HETs. Although the base
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(a)

(b)

Figure 16.15. Conduction band diagrams of a tunneling hot electron transistor (HET) (a)
in equilibrium and (b) under bias conditions. After Capasso,8 by permission, c© IEEE-1988.

conductivity in both structures can be made very high by either heavy doping or
using 2-DEG, it is usually difficult to make good ohmic contacts to the base. HETs
are usually unsuitable for operation at room temperature due to high leakage current
caused by the thin injection barrier with low barrier height (i.e., φB ≈ 0.25 eV for
HETs versus 1.3 eV for HBTs). Thus, the predicted subpicosecond performance
has yet to be realized in a practical HET device.

The tunneling HET structure shown in Figure 16.15a consists of an n+-GaAs
emitter, an undoped thin (5 nm) Alx Ga1−x As barrier layer, an n−-GaAs base layer
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(a)

(b)

Figure 16.16. Conduction band diagrams of a modified HET with a 2-DEG in the base
region formed by (a) modulation doping and (b) base collector voltage. The undoped GaAs
base thickness is less than 0.1μm.

(100 nm), an undoped thick (300 nm) Alx Ga1−x As barrier layer, and an n+-GaAs
collector. As shown in this figure, the carrier injection from the emitter to the base
relies on tunneling through the AlGaAs barrier layer, which occurs when the base
is biased positively with respect to the emitter. The effective barrier width of the
AlGaAs barrier for electron tunneling in a HET structure can be controlled by the
applied bias voltage. It is noted that the emitter barrier must be thin enough to
allow tunneling, and the collector barrier thick enough to minimize the leakage
current. The common-base current gain α can be equal to 1 if losses due to the
spread of energy, scattering in the base, and reflection from the collector barrier
are prevented. The first HET based on this structure with a common emitter cur-
rent gain of 1.3 at 40 K was demonstrated recently. The low current gain may be
attributed to significant loss of carriers in the base, which can be minimized by
reducing the base width or collector barrier height. Reducing the base width will,
however, increase the base resistance. A new approach to solving the problems
associated with low current gain in such a tunneling HET has been reported re-
cently. This involves the use of a resonant tunneling double-barrier quantum-well
structure in such a HET. For example, a resonant tunneling HET can be obtained
if the AlGaAs injection barrier shown in Figure 16.15a is replaced by an AlGaAs
(5 nm)/GaAs (5.6 nm)/AlGaAs (5 nm) double-barrier quantum-well structure be-
tween the emitter and the thin base of this HET.
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Figure 16.17. Cross-sectional view of a GaAs permeable base transistor (PBT). The grating
tungsten/GaAs Schottky barrier contacts form the base region. After Bozler and Alley,9,10

by permission.

The second HET structure shown in Figure 16.16a has the potential to produce
a very small base resistance. In this structure, the GaAs base is undoped or lightly
doped; the AlGaAs barrier between the emitter and base is triangular in shape
and doped with donor impurities in Figure 16.16a and undoped in Figure 16.16b.
A 2-DEG charge sheet is formed in the base by modulation doping in Figure 16.16a
and by base collector voltage in Figure 16.16b, as in a HEMT. Since the base region
is undoped, the carrier mobility of the 2-DEG is very high (≈ 8000–9000 cm2 (V s)
at 300 K), and is much higher at 77 K due to the reduction in ionized impurity
scattering. With such high electron mobility, the base will behave like a metal and
the device will operate like a metal-base transistor (i.e., a permeable base transistor
(PBT)). Since the base is undoped or lightly doped (to form 2-DEG), one expects
the base resistance to be very high, which makes ohmic contact to the base very
difficult. To overcome this problem, the base region has to be doped heavily so
that the base resistance can be sharply reduced.

Another type of HET, which has been reported recently for high-speed and high-
frequency applications, is called the permeable base transistor (PBT). Figure 16.17
shows a cross-sectional view of a GaAs PBT. The PBT is basically a vertical
MESFET similar to a vacuum triode. The emitter and collector regions of the
device are separated by a parallel array of metal stripes, which are connected to
an external terminal of the base. The voltage applied to this terminal controls the
current flow from the collector to the emitter terminal. In a GaAs PBT, the metal
stripes are embedded in the GaAs by an epitaxial overgrowth process. The device
structure consists of an n+-GaAs substrate, an n-GaAs emitter, a thin tungsten
grating Schottky contact on GaAs that forms the base, and an n-GaAs collector.
The doping densities in the emitter and in the collector layers are adjusted so
that the depletion region due to the tungsten-GaAs Schottky barrier extends across
the openings in the grating. As an example, a tungsten grid consisting of a linewidth
and spacing of 160 nm in a 30-nm-thick layer of tungsten have been used in such
a structure. The flow of electrons from the emitter to the collector is only through
the tungsten grating and is controlled by varying the tungsten base potential.
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The advantages of a PBT for high-frequency and high-speed operation can be
explained in terms of its transconductance gm, output resistance R0, base resistance
RB, base–emitter capacitance CBE, and base–collector junction capacitance CBC,
which are due to the capacitive coupling across the depletion width surrounding
the Schottky barrier base electrode. The unity current gain cutoff frequency fT of
the PBT is given by

fT = gm

2π (CBE + CBC)
. (16.85)

The predicted value of fT for a GaAs PBT is greater than 200 GHz. The maximum
oscillation frequency fmax can be expressed by

fmax = fT

2

(
RB + RE

R0
+ RBgmCBC

CBE + CBC

)1/2 . (16.86)

Based on (16.86), a value of fmax near 1000 GHz and a power-delay product of less
than 1 fJ are predicted. A value of fmax around 100 GHz and a gain of 16 dB at 18
GHz have already been reported in the literature for a GaAs PBT.9 Although HETs
show promise for high-speed and high-frequency performance, many obstacles
remain to be solved before practical HETs can be built for high-frequency and
high-speed applications.

16.5. Resonant Tunneling Devices

Resonant tunneling through a double-barrier quantum-well structure (e.g.,
AlGaAs/GaAs/AlGaAs) was first reported by Chang et al.11 in 1974. Subsequently,
a variety of two- and three-terminal resonant tunneling devices (RTDs) have been
reported. In general, RTDs can be implemented with few devices per function,
and hence they have potential for high-speed applications with reduced circuit
complexity because the intrinsic speed of a tunneling device is much faster than
devices operating on a drift or diffusion process. Since carrier transport in a FET
or HBT is limited either by the drift or diffusion process, devices such as RTDs
operating on a tunneling process offer attractive advantages for high-speed ap-
plications. An RTD operates on the principle of quantum-mechanical tunneling
through a multibarrier structure consisting of alternating layers of potential bar-
riers (e.g., AlGaAs) and quantum wells (e.g., GaAs). In an RTD, the maximum
tunneling current occurs when the injected carriers have certain resonant energies,
which are determined by the Fermi energy in the doped cap region and the elec-
tron energy levels in the quantum wells. Energy band diagrams for a two-terminal
double-barrier AlGaAs/GaAs/AlGaAs RTD structure under different bias condi-
tions are shown in Figures 16.18a, b, and c, along with the resonance tunneling
process. The current–voltage characteristic of a HET is shown in Figure 16.18d.
Electrons originating in the conduction band of the doped GaAs are on the left-hand
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(a)

(b)

(c)

(d)

Figure 16.18. Energy band diagrams of a double-barrier (DB) AIGaAs/GaAs resonance
tunneling device (RTD) structure along with the resonance tunneling process: (a) in equilib-
rium (V = 0), (b) under bias conditions with a peak current flow (V1 = E1/q), (c) with a re-
duced current flow (V > E1/q), and (d) the current –voltage characteristic. After Capasso,8

by permission, c©IEEE-1988.
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side of the RTD, which is at the ground potential. These injected electrons tun-
nel through the AlGaAs barrier into the GaAs quantum well, and finally tunnel
through the second barrier into the unoccupied states of the doped GaAs at the
positive potential. Resonance occurs (i.e., the tunneling current reaches a maxi-
mum) when the energy of the electrons injected into the well becomes equal to
the discrete quantum states in the well, as shown in Figure 16.18b. The tunneling
current decreases rapidly when the discrete energy level in the well drops below
the conduction band edge of the left-hand-side GaAs layer due to an increase in
the applied bias voltage, as shown in Figure 16.18c. This leads to a negative dif-
ferential resistance (NDR) in the I–V characteristics, as shown in Figure 16.18d.
The solid circles shown in this figure correspond to different biases applied to
the RTD. The NDR effect becomes more prominent at low temperatures, and
hence it can be used for microwave generation and amplification. RTDs with a
negative differential resistance and a peak-to-valley ratio exceeding 15 have been
reported. Figures 16.19a, b, and c show the energy band diagrams of a three-
terminal resonant tunneling transistor (RTT) with an emitter tunneling injection
barrier and double-barrier quantum-well base under different bias conditions. Res-
onant tunneling occurs when the applied bias voltage is equal to the energy of the
ground state in the quantum-well base layer, as shown in Figure 16.19b. The I–V
characteristic curve similar to that of Figure 16.19d is expected for the RTT. A
room temperature current gain of 7 (i.e., β = IC/IB) has been obtained for
the AlGaAs/GaAs RTT shown in Figure 16.19. Other types of resonant tunneling
transistors, including a graded emitter RTT with electrons ballistically launched
into the base, an RTT with a parabolic quantum well in the base, and an RTT with
a superlattice base, have also been reported with improved performance over the
RTD.

Resonant tunneling devices (RTDs) are capable of achieving an intrinsic speed
as high as 10−1 fs and an oscillation frequency of a few hundred GHz against a
100-GHz limit set by a Gunn device, Impatt diode, and Esaki diode. Recently,
an AlGaAs/GaAs two-terminal negative differential resistance (NDR) RTD was
successfully used to generate an oscillation frequency of 18 GHz with an output
power of 5 μW at 200 K. Detecting and mixing studies at 2.5 THz demonstrated
that the charge transport was faster than 0.1 ps. The RTD has also been used as an
oscillator and in frequency-multiplier circuits.

Resonant tunneling transistors (RTTs) and circuit architectures with en-
hanced computational functionality are promising candidates for future nanoscale
integration. A threshold logic full adder cell based on the RTT’s multiple terminal
linear threshold gates has been proposed recently for nanoscale integrated circuit
applications. The threshold gate is composed of monolithically integrated resonant
tunneling diodes and heterostructure field effect transistors. Together with a bit-
level pipelining scheme, this leads to an efficient implementation with a minimal
logic depth. The RTTs and linear threshold gates based on monostable–bistable
logic transition elements (MOBILEs) are promising candidates for nanoscale
integrated circuits. Recently, a design methodology of RTT logic gates and
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Figure 16.19. Energy band diagrams of a resonant tunneling transistor (RTT) with
a tunneling emitter and double-barrier quantum-well base under different bias condi-
tions: (a) V = 0, (b) V = E1/q, and (c) V = E2/q. After Capasso,8 by permission, c©
IEEE-1988.

experimental results of a monolithically integrated NAND-NOR gate have been
reported.

16.6. Transferred-Electron Devices

The transferred-electron device (TED) has been widely used as a local oscillator
and power amplifier in the frequency range from 1 to 100 GHz. The TED, also
known as the Gunn-effect diode, was first discovered by J. B. Gunn in 1963.12

Gunn found that coherent microwave output was generated when a dc electric
field was applied across a short n-type GaAs or InP sample with a critical field
strength of a few thousand volts per cm. The oscillation frequency is approximately
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(a)

(b)

Figure 16.20. Energy band diagrams of
(a) GaAs and (b) InP showing the
transferred-electron (Gunn) effect from the
central Γ valley to the L-satellite valleys
along {111} axes. The energy separation
r−L is equal to 0.31 eV for GaAs and
0.53 eV for InP. The populations in the
Γ- and L-valleys are given by n1 and n2,
respectively.

equal to the reciprocal of the carrier transit time across the length of the sample.
The mechanism responsible for the negative differential resistivity (or mobility)
is due to a field-induced transfer of electrons from the low-energy, high-mobility
conduction band valley (i.e., the Γ -valley) to the higher-energy, lower-mobility
satellite conduction valleys (L-conduction valleys), as first proposed by Ridley,
Watkins, and Hilsum (RWH model).13,14 Therefore, the transferred-electron effect
has also been referred to as the Ridley–Watkins–Hilsum (RWH) effect. Several ex-
periments performed on GaAs and GaAs1−x Px samples revealed that the threshold
field decreases with decreasing energy separation between the valley minima. The
results provide convincing evidence that the transferred-electron effect is indeed
responsible for the Gunn oscillation observed in GaAs and other III-V compound
semiconductors.
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To understand the physical mechanisms of the transferred-electron effect, which
produces the negative differential resistance in a bulk semiconductor, let us con-
sider the energy–momentum diagrams for the GaAs and InP crystals shown in
Figure 16.20. The band structure consists of a low-energy, high-mobility central
conduction band valley located at the Γ-point and several satellite valleys of higher
energy and lower mobility located at L-points along the [111] axes of the first
Brillouin zone. The energy separation (EΓ−L ) between the upper satellite val-
leys (L-valleys) and the lower conduction valley (Γ- valley) is EΓ−L = 0.31 eV
for GaAs and 0.53 eV for InP. If the densities of electrons in the upper and lower
valleys are designated as n2 and n1, respectively, and the total carrier density is
given by n = n1 + n2, then the steady-state current density of the bulk semicon-
ductor is given by

J = q(μ1n1 + μ2n2)E = qnvd, (16.87)

where μ1 and μ2 denote the electron mobilities in the lower and upper conduction
valleys, respectively, and vd is the average drift velocity defined by

υd =
(

μ1n1 + μ2n2

n1 + n2

)
E ≈ μ1E

1 + (n2/n1)
. (16.88)

In (16.88) we have made use of the fact that μ1 
 μ2. The population ratio n2/n1

between the upper and lower conduction valleys separated by the energy of E21

is given by

n2

n1
= R exp (−E21/kBTe) , (16.89)

where

R =
(

ν2

ν1

) (
m∗

2

m∗
1

)3/2

is the density-of-states ratio for the upper (L-band) and lower (Γ-band) conduc-
tion band valleys, ν1 and ν2 denote the number of lower and upper valleys, and
m∗

1 and m∗
2 are the effective masses of electrons in the lower and upper valleys,

respectively. For GaAs, ν1 = 1 and ν2 = 4, m∗
1 = 0.067m0 and m∗

2 = 0.55 m0, and
R = 94.

The concept of energy relaxation time allows the electron temperature to be
expressed in the form

Te = T + 2qEυdτe

3kB
, (16.90)

where τe is the energy relaxation time, which is on the order of 10−12 s. We
note that the electron temperature Te given by (16.90) is larger than the lattice
temperature T , since the kinetic energy of an electron is increased by the acceler-
ated electric field. Now substituting vd from (16.88) and n2/n1 from (16.89) into
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Figure 16.21. Drift velocity versus
electric field curves for GaAs when T =
200, 300, and 350 K; also shown is the
population ratio n2/n1 versus electric
field at 300 K. After Sze,3 p. 647, with
permission by John Wiley & Sons Co.

(16.90) yields

Te = T +
(

2qτeμ1

3kB

)
E2

[
1 + R exp

(
−E12

kBT

)]−1

, (16.91)

which shows that the electron temperature will increase with the square of the
electric field above the critical field. For a given lattice temperature T , we can
calculate Te as a function of the electric field E using (16.91). The drift velocity
versus electric field relation can also be derived from (16.88) and (16.89), which
yields

υd = μ1E
1 + R exp (−E12/kBT )

. (16.92)

Figure 16.21 shows the drift velocity versus electric field curves calculated
from (16.92) for GaAs at three different lattice temperatures; also shown is the
population ratio n2/n1 versus electric field at 300 K. It is of interest to note that at
ε = 15 kV/cm approximately 70% of the total electron population is contributed
by the upper satellite valleys. As shown in Figure 16.21, in the low-field regime,
the velocity varies linearly with electric field (ohmic regime) and attains a peak
value at critical field strength (Ec). It then decreases with further increases in the
electric field strength, corresponding to the negative differential resistance region
(i.e., the NDR regime).

It is seen from the simple model presented above that (1) there is a well-defined
threshold field Ec at the onset of negative differential resistivity or mobility, (2) the
threshold field increases with increasing lattice temperature (see Figure 16.21), and
(3) the NDR disappears if the lattice temperature is too high or the energy separation
E12 between the satellite and central valleys is too small. Therefore, in order to
create an NDR effect via the electron transfer mechanism, the following conditions
must be met: (1) the lattice temperature must be low enough such that in thermal
equilibrium, most of the electrons reside in the lower conduction valley (i.e., the
Γ-band), or kBT < E12; (2) the electron mobility μ1 is much larger than μ2 (i.e.,
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m1 � m2), and the density of states for the upper valleys is much higher than for
the lower valleys, and (3) E12 � Eg, so that avalanche breakdown does not occur
before electrons are transferred into the upper satellite valleys by the applied field.
Among semiconductors satisfying these conditions, n-type GaAs and InP crystals
are the most widely studied materials for NDR devices. However, the transferred-
electron effect has also been observed in many other compound semiconductors.
Of particular interest are Gax In1−x Sb ternary compounds, which have very low
threshold fields and high electron velocities. For example, the critical field Ec for
Ga0.5In0.5Sb is only 600 V/cm and the peak velocity is vp = 2.5 × 107 cm/s.

Room-temperature experimental results show that the critical electric field,
which defines the onset of NDR, is approximately 3.2 kV/cm for GaAs and
10.5 kV/cm for InP. The peak velocities are about 2.2 × 107 and 2.5 × 107 cm/s for
high-purity GaAs and InP, respectively, while the maximum negative differential
mobilities are found equal to −2400 cm2/V·s for GaAs and −2000 cm2/V·s for
InP.

Fabrication of TEDs requires extremely pure and uniform materials with very
low defect densities. Early TEDs were fabricated using bulk GaAs and InP materi-
als with alloyed ohmic contacts. Modern TEDs are usually fabricated on epitaxial
films grown on n+ substrates using the VPE, MOCVD, or MBE technique. Typ-
ical donor densities are in the range of 1014 to 1016 cm−3, and device lengths
are in the range of a few microns to several hundred microns. Some high-power
TEDs are made using selective metallization and mesa etching. To improve de-
vice performance, injection-limited cathode contacts have been used instead of
the n+ ohmic contacts. By using injection-limited contacts (e.g., Schottky barrier
contact with low barrier height), the threshold field for the cathode current can
be adjusted to a value approximately equal to the threshold field at the onset of
NDR, resulting in uniform electric fields. For ohmic contacts, the accumulation
or dipole layer grows some distance from the cathode, due to finite heating of the
lower valley (Γ) electrons. This dead zone can be as large as 1 μm, which may limit
the minimum device length and hence the maximum operating frequency. In an
injection-limited contact, hot electrons are injected from the cathode, and hence the
dead zone is reduced. Since transit time effects can be minimized, the device can
exhibit a frequency-independent negative conductance shunted by its parallel-plate
capacitance. If an inductance and a sufficiently large conductance are connected to
the device, it can be expected to oscillate in a uniform-field mode at the resonance
frequency.

Figures 16.22a, b, and c show the cross-section, dopant density profile, energy
band diagram, and electric field distributions of three different cathode contacts of
a Gunn device: (a) ohmic, (b) Schottky barrier, and (c) two-zone Schottky-barrier
contacts. For the ohmic contact, there is always a low-field region near the cathode,
and the field is nonuniform across the length of the device, as is clearly shown
in Figure 16.22a. The Schottky barrier contact shown in Figure 16.22b consists
of a low-barrier-height (0.15–0.3 eV) contact, which is generally very difficult
to make in GaAs. The device in this case can be operated only in a very narrow
temperature range due to its exponential temperature-dependent injection current.
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Figure 16.22. Doping profiles (N), energy band diagrams (E), and electric field distributions
(E) of a Gunn-effect device for three different cathode contacts: (a) ohmic, (b) Schottky
barrier (low barrier), and (c) two-zone Schottky-barrier contact. After Sze,3 p. 699, with
permission by John Wiley & Sons.

The two-zone cathode contact shown in Figure 16.22c consists of a high-field zone
and an n+-zone. In this case, electrons are heated up in the high-field zone and
subsequently injected into the active region with a uniform field. The structure in
Figure 16.22c has been successfully used over a wide range of temperatures. The
maximum efficiency obtained from an InP TED with a two-zone cathode contact
is 24%. However, a GaAs TED with an injection-limited cathode contact has yet
to be realized because of the Fermi level pinning effect.

Although GaAs- and InP-based Gunn diodes, based on the transferred-electron
effect, have been successfully employed for microwave and millimeter-wave sig-
nal generation, the use of wide-band-gap material such as GaN with increased
electrical strength offers the possibility to increase frequency and power capa-
bility of semiconductor devices. For example, GaN-based HEMTs with a record
power density of 7 W/mm have been demonstrated recently. The high-frequency
capability offered by GaN Gunn diodes is due to its higher electron velocity and
reduced relaxation times in this material. Increasing electric field strength, which
allows operation with higher doping densities and at higher bias, contributes to the
high-power capability (> 105 W/cm2) of the devices. Theoretical analysis reveals
that GaN Gunn devices are expected to have twice the frequency and a hundred
times the power capability of GaAs Gunn diodes. This makes the GaN Gunn diodes
suitable for THz signal generation by means of multiplication of signal generated
in nitride semiconductor diodes or harmonic generation at much higher levels than
any other currently available semiconductor devices.
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Problems

16.1. Calculate the necessary thickness of an active n-channel layer with dopant
density of 2 × 1017 cm−3 grown on a semi-insulating GaAs substrate for a
GaAs MESFET with a threshold voltage of −2 V. Assume that the surface
states pin the Fermi level at 2/3Eg below the conduction band edge at the
metal-GaAs interface under the Schottky contact gate.

16.2. The lateral electric field in the channel of a GaAs MESFET under saturation
conditions is usually high enough for electrons to drift with their scattering
limited velocity νs.
(a) Show that the drain saturation current in this case is given by

IDsat = 1

3
G0Vp = 2

3
ZqbNDυs,

where b is the undepleted active layer thickness at VGS = 0.
(b) Calculate b for ND = 1.5 × 1017 cm−3 and IDsat = 250 mA/mm gate

width (Z ), assuming vs = 1.1 × 107 cm/s.
16.3. (a) Derive an expression for the threshold voltage VT in terms of channel

dopant density ND, channel height a, and built-in potential Vbi, for a
GaAs MESFET under pinch-off conditions.

(b) If the channel of a GaAs MESFET is uniformly doped to 2 × 1017

cm−3, and the built-in potential of the Ti-Pt-Au Schottky barrier gate
contact on n-GaAs is 0.8 V, find the channel thickness required to obtain
a threshold voltage of −1 V.

16.4. Using a three-piecewise linear relation between drift velocity and elec-
tric field, derive an expression for the current–voltage characteristics of a
HEMT device (see the paper5 by K. Lee et al.)

16.5. For a short-channel FET (i.e., gate length L ≤ 1μm), a semi-empirical
formula may be used to define the effective saturation velocity vs in the
channel, which is given by

vs = 59L−0.56 m/s,

where L is in meters.
(a) Calculate vs for L = 0.25, 0.50, and 1.0 μm.
(b) Calculate the unity current gain cutoff frequency fT (= vs/2π L) for

the gate lengths and saturation velocities given in (a).
16.6. (a) Show that the transconductance gm of a uniformly doped n-channel

MESFET is given by

gm = ε0εsvsat Z

Wd
.

(b) Show that the expression for gm for a nonuniform doping profile given
by ND(y) = K y for y < Wd is the same as for the uniform doping
profile given by (a).

(c) Derive an expression for the threshold voltage VT.
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(d) Calculate gm from (a) if ε0εs = 1 × 1−12 F/cm, vsat = 1.2 × 107 cm/s,
Z = 50 μm, and Wd = 0.1 μm.

16.7. (a) Draw a small-signal equivalent circuit diagram for a MESFET showing
both the extrinsic and intrinsic circuit elements.

(b) Show that fT (cutoff frequency for unity current gain with output of
FET shorted) of a MESFET can be expressed by

fT = vsat

2π L
,

where L is the gate length, and vsat is the saturation velocity of electrons.
(c) Calculate fT for L = 1.0, 0.5, 0.1μm and vsat = 1.2 × 107 cm/sec for

a GaAs MESFET.
(d) Derive an expression for the extrinsic transconductance gem and drain

conductance gds of a MESFET showing the effect of the source resis-
tance Rs.

16.8. (a) Discuss the second-order effects on the performance of a MESFET
(e.g., backgating, drain current lag, temperature, subthreshold current,
etc.).

(b) Draw a typical self-aligned process sequence of the GaAs MESFET
fabrication steps.

(c) Explain why p-channel MESFETs cannot be achieved in GaAs.
16.9. (a) Construct the energy band diagram for a depletion mode (D-)

AlGaAs/GaAs modulation doped FET (HEMT) including the spacer
layer, and explain how two-dimensional electron gas (2-DEG) is
formed in the undoped GaAs layer.

(b) Explain how high electron mobility is achieved in the 2-DEG GaAs
layer.

(c) Explain why the transconductance gm and cutoff frequency fT for a
HEMT can be much higher than those of MESFETs.

(d) Note that both the depletion (D-) and enhancement (E-) mode GaAs
HEMTs can be made, but D-HEMTs are more common. Plot the en-
ergy band diagram for an AlGaAs/GaAs E-HEMT when VGS = 0 and
VGS > VT.

16.10. Consider a GaAs MESFET with device parameters given by channel length
L = 3μm, channel height a = 1μm, ND = 2.6 × 1015 cm−3, and with
VGS = −1 V and VDS = 3 V applied to the device.
(a) Draw the cross-sectional view of this MESFET showing the depletion

region, the channel, and the Gunn domain region.
(b) Plot (i) electric field versus x , (ii) drift velocity versus x , and (iii)

space-charge versus x in the channel.
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Solutions to Selected Problems

Chapter 1

1.1. (a) Simple cubic; 1 atom per unit cell:
4

3
π

a2/2

a3
= π

6
.

(b) BCC: 2 atom per unit cell; 2 × 4

3
π

√
3a2/4

a3
=

√
3π

8
.

(c) FCC: 4 atoms per unit cell; 4 × 4

3
π

√
2a3/4

a3
=

√
2π

6
.

(d) HCP: 6 atoms per unit cell; 6 × 4

3
π

a3/2

6

√
3

2
a

a

2

√
8

3
a

=
√

2π

6
.

(e) Diamond: 8 atom per unit cell; 8 × 4

3
π

√
3a3/8

a3
=

√
3π

16
.

1.3. A fivefold axis of symmetry cannot exist in a lattice because it is impossible
to fill all space with a connected array of pentagons.

1.5. (a) A unit cell of the diamond lattice is constructed by placing atoms
a

4
,

a

4
,

a

4
from each atom in an fcc.

(b) Total number of atoms per unit cell = 8; the distance is 1.54 Å; and
2.43Å and 2.35Å for Ge and Si, respectively.

1.7. (a) 4.
(b) The basis of the diamond structure consists of two atoms at(

000,
a

4
,

a

4
,

a

4

)
. Therefore, the primitive vectors of the diamond struc-

ture are the same as those of the fcc.

664
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1.9.

1.11. (a) {100}, {200}: both have six planes.
{110}, {220}: both have twelve planes.
{111}: eight planes.

(b) The normal distances are

(100) : a; (110) :
√

2a/2; (111) :
√

3a/3; (200) : 0.5a; (220) :
√

2a/4.

1.13.



666 Solutions to Selected Problems

Chapter 2

2.1. (a) Let M be the mass of the atom and C the force constant. The equations
for this case are given as

M
d2 Xn,1

dt2
= −C(Xn,1 − Xn,2) − C(Xn,1 − Xn−1,2) (1)

and

M
d2 Xn,2

dt2
= −C(Xn,2 − Xn,1) − C(Xn,2 − Xn+1,1). (2)

The harmonic solutions are Xn,1 = A exp(iqna − iωt) and Xn,2 =
B exp[iq(n + 1

4
)a − iωt]. Now substituting Xn,1, Xn,2 given above into

(1) and (2) and solving the two simultaneous linear equations for ω

yields ω2 = 2(C/M)[1 ± cos(qa/2)].
(b) At the zone boundary, i.e., q = ±π/b, ω = √

2C/M and q = 0, ω0 =
2
√

C/M (optical phonon frequency). The dispersion curves are shown
in the figure below.

(c) From (a), one can find that the ratio of the amplitudes, B/A, is given
by

B

A
= − exp

(
iqb

4

)
.

Thus, for t = 0, the displacements for the (n, 1) and (n, 2) atoms are
given by

Xn,1 = A exp(inqb) and Xn,2 = −A exp

[
i

(
n + 1

2

)
qb

]
.

The plot of the atomic displacements for the TO modes are shown in the
figures below.
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2.3. (a) According to (2.5), ω = ωm sin(qa/2) and dω = ωm(a/2) × cos
(qa/2)dq . Therefore,

D(ω) = w(q)

(
dq

dω

)
= L

π

(
1

dω/dq

)
, D(ω) = 2L

πa
(ω2

m − ω2)−1/2,

and vg = a

2

√
ω2

m − ω2.

(b) D(ω) dω = L

π

dω

dω/dq
= Ldω

πvg
. Therefore, D(ω) = L

πvs

2.5. (a) Similar to Problem 2.1 except for different spring constants,

M
d2 X2n

dT 2
= K1(X2n−1 − X2n) + K2(X2n+1 − X2n)

and

M
d2 X2n+1

dt2
= K2(X2n − X2n+1) + K1(X2n+2 − X2n+1).

Solving these two equations, one obtains

ω2 =
(

K1 + K2

M

)
±

√
K 2

1 + K 2
2 + 2K1 K2 cos qa

M
.

2.7. (a) The fixed-boundary condition gives a standing wave solu-
tion Un = A exp(− jωt) sin(naq). At n = 0, U0 = 0 and at
n = N , UN = 0. Then, Naq = lπ, l = 1, 2, . . . , (N − 1), q =
π/Na, 2π/Na, . . . , (N − 1)π/Na.
There are (N − 1) allowed independent values of q; the density of states
in q-space equals L/π for q ≤ π/a and 0 for q > π/a.

(b) The periodic boundary condition gives a running wave solution Una =
Una+L with exp(i Lq) = 1, Lq = 2sπ ,where s = 0, ±1, ±2, . . . and
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q = 0, ±2π/L , ±4π/L , . . . , ±Nπ/L; the density of states in q-space
is equal to L/2π for −π/a ≤ q ≤ π/a, zero otherwise.

(c) See (a) and (b).

Chapter 3

3.1. 〈v〉 =
∫ ∞

0
vN (v)dv∫ ∞

0
N (v)dv

=
∫ ∞

0
v3 exp

(
− mv2

2kBT

)
dv

∫ ∞
0

v2 exp

(
− mv2

2kBT

)
dv

=
√

8kBT

πm
.

3.3. (a) According to Fermi–Dirac statistics,

〈E〉 =
∫ ∞

0
Eg(E) f (E)dE∫ ∞

0
g(E) f (E) dE

=
∫ ∞

0
C E3/2 f (E)dE∫ ∞

0
C E1/2 f (E) dE

assuming g(E) = C E1/2.
Since f (E) = 1 at T = 0 K, therefore 〈E〉 = ( 2

5
E2

f (0))/( 2
3

E f (0)) =
3
5

Ef(0).

For B-M statistics: 〈E〉 = 1
2
m〈v〉2 = 3

2
kBT .

(b) The difference between Problems 3.2 and 3.3 at T = 0 K is that F-D
statistics consider the Pauli exclusion principle and M-B statstics do not.

3.5.
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3.7. (a) g(Ef(0)) = 4π

h̄3
(2m0)3/2

√
Ef(0) = 4π

h̄3
(2m0)3/2

√
h̄2

8m0

(
3n0

π

)1/3

= 3n0

2Ef(0)
= 3n0

2kBTf

,

since U = U0 + π2

6
(kBT )2 3n0

2kBT ′
f

∂U

∂T
= π2kBT n0

2T f
.

Chapter 4

4.1. According to (4.56),

Ek = E0
k + �k j

H 2
kk ′(

E0
k − E0

j

) , and Hkk ′ = v
(π

a

)
+ v

(
−π

a

)
.

Therefore,

Ek = E0
k + [v(π/a)]2(

E0
k − E0

k ′
) + [v(−π/a)]2(

E0
k − E0

k

)
= E0

k + 2m0[v(π/a)]2

h̄2

[
1

k2 − (k − π/a)2
+ 1

k2 − (k + π/a)2)

]

≈ E0
k − 4m0[v(π/a)]2a2

(h̄π )2
− 16m0[v(π/a)]2a4k2

h̄2π4

= (h̄k)2

2m0

[
1 − 32m2

0[v(π/a)]2a4

h̄4π4

]
− 4m0[v(π/a)]2a2

(h̄π )2

= E0 + (h̄k)2

2m∗ ,

where

E0 = −4m0[v(π/a)]2a2

(h̄π )2
and m∗ = m0

1 − 32m2
0[v(π/a)]2a4

h̄4π4

.

4.3. Si : m∗
cn = 0.26m0; m∗

dn = 1.08m0.
Ge: m∗

cn = 0.12m0; m∗
dn = 0.56m0.

4.5. E(k) = E0 + B cos

(
kx a

2

)
cos

(
kya

2

)
; for kx , ky → 0, E(k) = E0 + B

×
[

1 −
(

kx a

2

)2
] [

1 −
(

kya

2

)2
]

,

where

[
1 −

(
kx a

2

)2
] [

1 −
(

kya

2

)2
]

= const. Therefore it is the equation

of a circle.
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4.7. Similar to Problem 4.6.

(a) vg = 2aβn

h̄
[sin(kx a)x̄ + sin(kya)ȳ + sin(kza)z̄].

(b) a = dvg/dt = F/m∗, where m∗ is in (c).

(c)

m∗
y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, where i �= j,
h̄

2a2βn

1

cos(k1a)
, i = j = 1,

h̄

2a2βn

1

cos(k2a)
, i = j = 2,

h̄

2a2βn

1

cos(k3a)
, i = j = 3.

4.9. For an fcc lattice, there will be twelve nearest neighbors, i.e., Ri j =
{±a/2, ±a/2, ±a/2}. Therefore,

Ek = En0 − An − 4βn

[
cos

(
kx a

2

)
cos

(
kya

2

)
+ cos

(
kya

2

)
cos

(
kza

2

)

+ cos

(
kx a

2

)
cos

(
kza

2

)]
.

4.11.

4.13. (a) A deep core potential can be neglected and a simple plane wave basis
will yield rapid convergence in a pseudopotential calculation.

(b) A pseudopotential is dependent not only on the energy eigenval-
ues, but also on the angular-momentum components present in the
core.

(c) A nonlocal correction to the local atomic potential term is adopted in a
nonlocal pseudopotential calculation.

(d) Once the nonlocal pseudopotential is determined, the eigenvalues and
eigenvectors can be found and calculation of the energy band spectrum
is straightforward.
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Chapter 5

5.1. (a) T = 300 K, exhaustion regime n0 = ND = σ/μnq = 4.6 × 1014 cm−3.

(b) n0 = ND − NA = Nc exp

(
− Ec − EF

kBT

)
; EF − Ec = −0.285 eV.

(c) EF − Ec = −0.293 eV.
(d) T = 20 K, according to (5.39). n0 = 3 × 1010 cm−3.
(e) T = 77 K, NA = 0 and p0 − n0 + ND − nD = 0,

n-type P0 � n0 → n0 = ND − nD and

n0 = ND

1 + g exp

(
ED − Ef

kBT

) , → n0 = 3.96 × 1014 cm−3 < ND.

5.3. According to (5.49) and (5.50), Ei = −0.0081 eV and r1 = 74 Å.

5.5. Equation (5.10); n0 = Nc exp

(
− Ec − EF

kBT

)
= Nc exp

(
− Ec − EI

kBT

)

× exp

(
Ef − EI

kBT

)
= ni exp

(
Ef − EI

kBT

)
.

Similarly, p0 = ni exp

(
EI − EF

kBT

)
.

5.7. Since RH = Ey/Bz Jx and Jx = e(n0μn + p0μp)Ex Jy = e(n0μn + p0μp),
Ey = en0μn Bz Vxn + ep0μp Bz Vxp = eBzEx (−n0μ

2
n + p0μ

2
p),

Ey = Ex Bz(−n0μ
2
n + p0μ

2
p)

n0μn + p0μp
. Thus RH = p0μ

2
p − n0μ

2
n

e(n0μn + p0μp)2
.

If RH = 0, then p0μ
2
p = n0μ

2
n .

5.9. According to charge neutrality, 0 = q(p0 − n0 + ND − nD − NA + pA);
for p-type, NA  ND  nD, p0 = n0 + NA − pA − ND and

pA = NA

1 + g−1 exp

(
Ea − EF

kBT

) .

At low T, EA − Ef  kBT, N 0
A = pA = NA.

As for the kinetic equation, one obtains

K A(T ) = Nvg−1
A exp

(
Ev − EA

kBT

)
, for NA − ND  p0, p0  n0, kA(T )

= p0(p0 + ND)

(NA − ND)
.

(a) Lightly compensated case, ND � p0,

p0 =
√

(NA − ND)Nvg−1
A exp

(
Ev − EA

2kBT

)
.
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(b) Heavily compensated case, ND  p0,

p0 = NA − ND

ND

Nvg−1
A exp

(
Ev − EA

2kBT

)
.

(c) Similar to Problem 5.4.
5.11.

Chapter 6

6.1. According to (6.27) and n0  p0  n1, p1, τ0 = τp0 + τn0

	p

n0 + 	p
, where

n0 = ND = 2 × 1015 cm−3, 	p = 	n, τp0 = τn0 = 10−8 s are all known.
6.3. Since the density of the trap is not small compared with the carrier density,

	n and 	p are not necessarily equal. Consider the case in which the dis-
turbance in carrier density is small enough that only first-order terms in 	n
and 	p need be considered. Therefore, the recombination rates are a linear
function of 	n and 	p:

Ucn = Ann	n + Anp	p and Ucp = Apn	n + App	p,

where

Ann = Cn

[
n1

n0 + nt

+ n0 + n1

Nt

]
, Anp = −Cn

n0 + n1

Nt

,

Apn = −Cp

p0 + p1

Nt

, App = Cp

[
p1

p0 + p1

+ p0 + p1

Nt

]
.

Steady state, Ucn = Ucp = U ,

τp = 	p

U
= App − Anp

Ann App − Anp Apn

, and τn = 	n

U
= Ann − Apn

Ann App − Anp Apn

.

To obtain A’s: Ucn = Cn[(1 − ft)	n − (n0 + n1)	 ft], Ucp = Cp[ ft	p +
(p0 + p1)	 ft], 	p − 	n = Nt	 ft, ft = 1

1 + n1/n0

= 1 − 1

1 + p1/p0

.
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6.5. Jn = 0 = qμnnE + q Dn

dn

dx
and

Dn

μn

= −E n

dn/dx
.

dn

dx
= Nc F−1/2(η)

−1

kBT
(qE). Therefore

Dn

μn

= kBT F1/2(η)

q F−1/2(η)
, where

η = Ef − Ec

kBT
.

6.7.

6.9. The theory is invalid if it is not exponential transients. (see the original paper
by Lang).

Chapter 7

7.1. (a) Since E is applied only in the x-direction, f (kx, ky, kz) =
f0(kx, 	kx, ky, kz) and

F = −q(E + v × B) = h̄
dk

dt
, dkx = −q Ex dt

h̄
if B = 0.

For small perturbation, dt = τ and dkx = 	kx. Therefore,

f (kx , ky, kz) = f0

(
kx − q Ex dt

h̄
, ky, kz

)
.

(b) According to (7.30) (BTE) we obtain

−ν∇ f = f − f0

τ
and − vτ

(E − Ef)

T
· ∂T

∂r
· ∂ f0

∂ E
= f − f0

= f0

(
f

f0

− 1

)
.
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For the nondegenerate case:
h̄3kfτ

2m∗2T
(k + kf)(k − kf)

∂T

∂r
· f0

kBT
=

f0

(
f

f0

− 1

)
.

In addition, f
f0

= exp

(
Eeq − Enoneq

kBT

)
= exp

(
	E

kBT

)
≈ 1 + 	E

kBT
if

	E

kBT
is small.

Therefore,
h̄3kfτ

2m∗2T
(k + kf)(k − kf)

∂T

∂rkBT
= 	E

kBT
and

h̄kfτ

m∗T
(k − kf)

∂T

∂r
= k − knoneq = 	k.

Thus, 	kx = h̄kfτ

m∗T
(k − kf)

dT

dx
.

(a) For s = − 3
2
, σn = 2e2τ0kBT 3/2 Nc F2(η)

m∗
n

and

Sn=−k

e

[
4F3(η)

F2(η)
− Ef

kBT

]
.

7.3. According to (7.53),

σn = ne2〈τ 〉
m∗

n

= ne2τ0

∫ ∞
0

Es+3/2∂ f0/∂ E ∂ E

m∗
n

∫ ∞
0

E3/2∂ f0/∂ E ∂ E

= ne2τ0(kBT )s(S + 3
2
)
∫ ∞

0
εs+1/2 f0 dε

m∗
n

3
2

∫ ∞
0

e1/2 f0 dε

= 2ne2τ0(kBT )s(S + 3
2
)Fs+1/2(η)

3m∗
n F1/2(η)

.

7.5. For the n-type semiconductor,

Jx =−nevx =−
∫ ∞

0

evx f (E)g(E) dE =−e
∫ ∞

0

vx

(
−vx Px

∂ f0

∂ E

)
g(E) dE

= −e
∫ ∞

0

v2
x

[
eτEx − τ

(
Ef − E

T

)
∂T

∂x

]
∂ f0

∂ E
g(E)∂ E

= −2e

3m∗2
n

∫ ∞

0

τ Eg(E)
∂ f0

∂ E

[
eEx − (Ef − E) ∂T

T ∂x

]
dE .

As for Qx, the derivation is similar to Jx except that Qx = nvx E .
7.7. For the longitudinal magnetic field Bx, Px(E) = −eτεx, where ∂T/∂x =

∂T/∂y = 0. Since

σn = Jx

Ex
= −nevx

Ex
= e

∫ ∞
0

v2
x Px (E)g(E) ∂ f0/∂ E dE

Ex

= e2
∫ ∞

0
τ Eg(E) f0 dE

m∗
n

∫ ∞
0

Eg(E) f0 dE
= ne2〈τ 〉

m∗
n

= σ0.

Thus, there is no longitudinal magnetoresistance effect.
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7.9. Let s = − 1
2

for lattice scattering, τL = aT −1 E−1/2, μL = a1T −3/2.

For s = 3
2
, ionized impurity scattering, τi = bE3/2, μi = a2T 3/2,

μ−1
n = μ−1

L + μ−1
i = a−1

1 T 3/2 + a−1
2 T −3/2.

Chapter 8

8.1. Using (8.18)–(8.20), σk′ (θ ′, φ′) can be reduced to∫ ∞

0

(N�)2(Hkk′ )2m∗δ(Ek′ − Ek)K ′ dk ′

(2πh̄)2
.

In addition, k = k ′ and Hkk′ for an isotropic elastic scattering process satisfies

σk′ (θ ′, φ′) = (N�)2(Hkk′ )2(m∗)2

(2πh̄)2h̄2

∫ ∞

0

δ(Ek′ − Ek) dEk′ .

Because
∫ ∞

0
δ(Ek′ − Ek) dEk′ = 1, it follows that

σk′ (θ ′, φ′) = (N�)2(Hkk′ )2(m∗)2

(2πh̄2)2
= (N�)2(Hkk′ )2k2

(2πh̄vk ′ )2
.

8.3. (a) For an acoustical phonon, ω/q = μs.
	E = Ek′ − Ek = ± h̄ωq = ± h̄μ, 2k sin(θ ′/2) due to conservation of
energy and momentum. The maximum energy change occurs at θ ′ = π .
Thus 	Emax = h̄μs2k = 2μsm∗ν = equation (8.43).

(b) For T = 100 K, ν = 5.5 × 106 cm · sec−1,
	E

Ee

= 0.218.

	E is still small compared with Ee. Therefore the assumption of elastic
scattering may be justified for T around 100 K.

8.5. Since τ−1
LI = τ−1

L + τ−1
l where τL = lL/νT

√
x ′ and τI = B(x)ν3

Tx ′3/2.
lL is the mean free path for the lattice scattering, B(x) is a slowly varying
function, νT = √

3kBT/m∗, and x ′ = ν2/ν2
T. Therefore,

τLI = τLx ′2

lL

B(x ′)ν4
T

+ x ′2
and μLI = e〈τLI〉

m∗ ,

and let X2 = 6μL/μi = lL/B(3)ν4
T,

μLI = eτL

m∗

∫ ∞

0

x ′2 exp(−x ′)
lL

B(3)ν4
T

+ x ′2
dx ′

= μL

{
1 + X2 [Ci X cos(X ) + sin(X )

(
Si X − π

2

)]}
.

8.7. Let τi = τ0 E3/2 and

μl = e〈τi 〉
m∗ = eτ0(kBT )3/2�(4)

m∗�( 5
2
)

= 64
√

πε2
0ε

2
r (2kBT )3/2

√
m∗e3 NI

L(2kλD)−1

= equation(8.36).
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Since L(2kλD) ≈ ln(4k2λ2
D) = ln

(
8m∗Eε0εrkBT

e2 Nih̄2

)
for kλD  1 and

E = 3kBT .
8.9

Chapter 9

9.1. (a) Aφ0 = AI0/hν = 4.52 × 1015 s−1.
(b) For ad = 64  1 and exp(−ax) = 0.1. Thus x = 0.00719 cm.
(c) Assume no reflection, GE = 3.616 × 1015 s−1.
(d) Assume Ln = Lp, 	G = 2.79 × 10−7 �.

9.3. (a) Equation (9.91), Iph =
[
eI0W Lμp(1 + b)τn(1 − R)V

l(L + sτn)hν

][
1 + sτn

L(1 + αL)

]
.

Assume αL  1, αL  sτn/L and 	n0 = I0(1 − R)τn/(L + sτn)hν.
Thus,

Iph = eW Lμp(1 + b)V 	n0

l
= 	GV, 	G = eW Lμp(1 + b)	n0

l
,

where L = √
Daτn and Da = 2Dn

1 + b
.

(b) According to (9.125),

IPME = eW (1 + b)μp B Da(	n0 − 	nd) = eW (1 + b)μp B Da	n0 ,

for αd  1, d  L , 	nd = 0 and Da = 2Dn/(1 + b).

(c) VPME = IPME

	G
=

√
Da

τn

Bl.

9.5. According to (9.91), Iph = 1.057 × 10−4 A for s = 0 cm · s−1.
Iph = 6.47 × 10−5 A for s = 100.
Iph = 2.47 × 10−4 A for s = 10, 000.

9.7. Since	p  n0 for the high-injection case, and B	n2 = gE. Therefore	n =√
α I0(1 − R)/Bhν. In addition, at high injection Iph ∝ 	n. Thus, Iph ∝ √

I0.
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Chapter 10

10.1. (a) For T = 1873 K, Js = 1 A · cm−2 and J ′
s = exp(4.39

√
ET −1) and

ln(J ′
s ) = 4.39

√
E/1873.

(b) At 873 K, ln(Js) = −24.40, ln(J ′
s ) = −24.40 + 4.39

√
E

873
.

At 1500 K, ln(Js) = −5.32, ln(J ′
s ) = −5.32 + 4.39

√
E

1500
.

10.3. According to (10.25),

W =

√√√√√2(8.85 × 10−14)(11.7)[0.81 − 0.026 ln

(
ND

2.88 × 1019

)
+ VR]

1.609 × 10−19 ND

.

10.5. Jsm =
∫

qvx dn, dn

= 4π (2m∗)3/2

h3

∫
(E − Ec)1/2 exp[−(E − Ef)/kBT ] dE,

(E − Ec)1/2 =
(

m∗

2

)1/2

v.dE = mv dv, 4πv2 dv = dvx dvy dvz,

v2 = v2
x + v2

y + v2
z ,

Jsm = 2q

(
m∗

h

)3

exp(−qVn/kBT )

∫
dvz

∫
dvy

∫ ∞

vmin

vx exp[−m

× (v2
x + v2

y + v2
z )/2kBT ] dvx

= 2q

(
m∗

h

)3

exp(−qVn/kBT )

[(
2kBT π

m∗

)1/2
]2

kBT

m∗ exp[−q

× (VD − Va)/kBT ]

= J0 exp(qVa/kBT ) .

Comparing with (10.42), we know that
VD  VR ⇒ J is the thermionic emission model,
VD � VR ⇒ J is the diffusion model.

10.7. Since TiW–P–Si: φBp = 0.55 eV, therefore for TiW–n–P–Si 	φBp =
0.90 − 0.55 = 0.35 eV and

	φBp = q

2ε0εs ND

(NAWp − NDWn)2, Wp = −Wn +
√

W 2
n + C,

C = ND

NA

W 2
n + 2ε0εs(φm − φp)

q NA

for NA = 1016 cm−3, (φm − φp) ≈ 0.365 eV. Since only two equations are
available, we should assume one of the three Wp, Wn, and ND unknowns
to solve for the other two.

10.9. (a) For Ds → ∞ ⇒ C2 → 0.
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The Fermi level at the interface is pinned down by the surface states at
the values qφ0 above the valence band. The barrier height is indepen-
dent of the metal work function.

(b) For Ds → 0 ⇒ C2 = 1,

qφBn = q(φm − χs) − q	φ.

The surface state is negligible.
(c) The information given is not enough.

Chapter 11

11.1. ∂2V

∂x
= ∂E

∂x
≈ q

εsε0

ax . Therefore, E =
∫ Wd/2

−Wd/2

q

εsε0

ax

= qa

2εsε0

(x2 − (Wd/2)2),

V (x) =
∫

E(x) dx = qa

2εsε0

(
x3/3 − W 2

d x/4 + W 3
d /12

)
Vbi =

∫ Wd/2

−Wd/2

= qaW 3
d

12εsε0

.

Therefore, Wd = equation (11.22),
For impurity concentration at depletion Wda/2.

Vbi ≈ kBT

q
ln

(
(aWd)(aWd)

n2
i

)
= equation (11.23).

11.3.

11.5. (a) According to (11.76); let Qs(toff) = 0.

τp Ip = τp(If + Ir) exp(−t/τp)

Therefore toff = τp ln[(If + Ir)/Ir] = τp ln(1 + If/Ir).

(b) Since
∂pn(x, t)

∂t
= Dp

∂2 pn(x, t)

∂x2
− pn(x, t) − pn0

τp

.

Boundary condition t = 0, the initial distribution of holes in a steady-
state solution to the equation Vj = VT ln(pn(0, t)/pn0).
Second boundary condition at toff or near toff, pn(0, toff) → 0, Vj →
−∞.
p(0, t) = pn0 = constant.
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The solution is given by Kingston, IRE, 1954(829) as erf

√(
toff

τp

)
=

If

If + Ir

.

11.7. (a) Jp = 5.8 × 10−10, 1.34 × 10−6, 3.03 × 10−3, and 6.85 A · cm−2 for
Vf = 0.1, 0.3, 0.5, and 0.7 V, respectively.

(b) Jn = 6.5 × 10−13, 1.50 × 10−9, 3.40 × 10−6, and 0.0076 A · cm−2 for
Vf = 0.1, 0.3, 0.5, and 0.7 V, respectively.

(c) J = Jn + Jp = 0, 5.3 × 10−6, and 0.0121 A · cm−2 for Va = 0, 0.3,

and 0.5 V, respectively.

11.9. (a) J0 = 7.45 × 10−3, 2.3 × 10−9, and 1.2 × 10−17 A · cm−2 for Ge, Si,
and GaAs, respectively.

(b) Because the Eg of GaAs is higher than the other two, and the J0 of
GaAs is the least of all.

11.11. If Na  Nd, then W ≈ xn.

|Em| = V

Xn

=
(

q Nd(φ0 + VR)

2ε0εs

)1/2

= 106 V · cm−1

Therefore, for NA = 5 × 1019 cm−3 and VR = 2V, Nd = 8 × 1018 cm−3;
and for NA = 1 × 1020 cm−3 and VR = 3V, Nd = 4 × 1018 cm−3.

Chapter 12

12.1.

λ(μm) η(x0 = 0.4 μm) η(x0 = 0.8 μm) η(x0 = 1.2 μm)

0.4 0.325 0.189 0.129
0.5 0.577 0.481 0.408
0.7 0.673 0.646 0.622
0.9 0.686 0.681 0.676
1.1 0.005 0.0019 0

12.3. Assuming 16% conversion efficiency at AM1 in our design.
Let ND = 5 × 1017 cm−3, NA = 1.5 × 1016 cm−3, τn = 10 × 10−6 s,
Dn = 27 cm2 · s−1, A = 1.07 cm2. Then Jsc = 31.6 mA · cm−2,
Voc = 0.592 V, FF = 0.861.

12.5.
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12.7 (a) ID = 18.35 × 10−6[exp(qV/nkBT ) − 1] for a Si Schottky barrier
solar cell.
ID = 1.59 × 10−11[exp(qV/kBT ) − 1] + 6.02 × 10−8[exp(qV/

2kBT ) − 1] for a Si-p-n junction solar cell.
(b) Voc = 0.231 V for the Schottky barrier solar cell in (a).

12.9. AR coating thickness:
λ

4 × n
= 0.84 μm

4 × 1.5
= 1.43 μm.

Cutoff frequency: 20 GHz = 1/2π RC , therefore RC = 7.96 × 10−12 s,
where R = (1/q NDμn) × (d/πr2), Cd = πr2(q NDε0εs/2Vd)1/2,
Vd = φBn − VT ln(Nc/Nd).
Let d = 1 μm, Nd = 1.6 × 1017 cm−3. To obtain 100 GHz,
Nd = 1019 cm−3.

12.11. (a) See Figure 12.35 for the schematic energy band diagrams for n-type
QWIPs due to the B-B, B-C, B-M, and B-QB transitions.

(b) The relative magnitude of the spectral response bandwidths for different
types of n-QWIPs is given as follows:

	λ/λ(B-B) < 	λ/λ(B-M) < 	λ/λ(B-QB) < 	λ/λ(B-C).

(c) The relative magnitude of the dark currents for different types of
n-QWIPs is given as follows:

I d(B-B) < Id(B-M) < Id(B-QB) < Id(B-C).

Chapter 13

13.1. The emission peak wavelength for band-to-band radiative recombination
can be calculated using λp = 1.24/Eg

GaAs: λp = 1.24/1.42 = 0.873 μm (IR); GaN, λp = 0.354 μm (UV/blue)
Ga0.3Al0.7As: Eg = 1.9 eV: λp = 0.654 μm (red), GaAs0.5P0.5,
Eg = 2.0 eV (red)
In0.5Ga0.5As, Eg = 0.88 eV, IR; In0.5Ga0.5P, Eg = 1.76 eV (red);
In0.5Al0.5 P, Eg = 1.85 eV (red).

13.3. λp = 1.24/(Ed − Ea) = 1.24/(2.26 − 0.43 − 0.04) = 0.693 μm (red).
13.5. Select your own designed parameters using the formula given in the

text.
13.7. From Figure 12.28 of S. M. Sze, Physics of Semiconductor Devices,

Jth = 120, 400, 2 × 104 A/cm2 and Eg = 1.51, 1.48, 1.43 eV, at T =
4, 77, and 300 K, respectively. Since Pth = JthVth/d, where d =
1 μm, Vth = Eg/q , thus, Pth = 1.81 × 106, 5.9 × 106, 2.8 × 108 J/s · cm2,
respectively. The rate of temperature rise RT = 0.01Pth/Cv D.

Therefore, RT = 9.7 × 104, 3.2 × 104, and 1.5 × 106 K/s, respectively.
13.9. Choose your own design parameters for this InP-base DH laser diode.

13.11. See Figure 13.30.
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Chapter 14

14.1.

14.3. (a) 1.768 μm.
(b) 1.15 × 1018 cm−3.

14.5. (a) Since

βT = IF

/ [
IF + q A

τp

∫ W

0

p(x)dx

]
= 1

/ [
1 + q A

τp Jp

∫ W

0

p(x)dx

]
,

where Ip = q Ap(x)v(x); v(x) is the effective minority carrier velocity
in the base and dx = v(x)dt . For uniformly doped base, the minority
carrier lifetime in the base is given by

τB =
∫ W

0

[dx/v(x)] = q A/Ip

∫ W

0

p(x)dx,

where p(x) = Ip

q ADp Nd

∫ W

0

Nd (x)dx (see problem 14.8)

Solving above equation for τB one obtains

τB = 1

D

∫ W

0

(1/Nd )

∫ W

0

Nd (x ′)dx ′ = W 2

2Dp

(b) Since a small τB means a shorter delay of signal or high-frequency
operation. Therefore, the transistor is designed with a small base width
in order to achieve a better frequency response.
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14.7. (a) 5 × 1016 cm−3.
(b) 6.32 × 1017 cm−3.

14.9. From (13.44) and (13.45),

IE = −αR IR + IES[exp(Vbe/VT) − 1],

IC = −αF IF + ICS[exp(Vbc/VT) − 1].

If the space-charge recombination current is negligible, then IR = IC,

IF, ≈ IE, and αF IES = αR ICS.
Therefore,

VBC = VT

(
IC − αF(IB + IC)

ICS

+ 1

)
,

VBE = VT

(−(IC + IB) + αR Ic

IES

+ 1

)

VCE = VBE − VBC = VT

[
ln

(
IES + αR IC − IB − IC

ICS − αF(Ib + IC) + IC

)
+ ln(αF/αR)

]

−Vce = given for proof.

Chapter 15

15.1.

Ec

Ec

Ev

Ev

EFM

EFM
qFs

qFB

qFS

qFB

EFS

EFS

E1

E1

M

(a) Accumulation (b) Depletion–Inversion

O S

charge
density

charge
density

M O S

x

electrons

x x
w

holes

ionized donors
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15.3. According to (14.45), (14.46), and (14.35), we obtain (14.47):

ID = C0xμn

Z

L

(
VG − Vth − VD

2

)
VD.

If considering (14.39) instead of (14.37), we include another term

− QB

C0x

=
√

2qε0εs NA(Vc + �si)

C0x

.

Integrating this additional term from y = 0 to y = L and from V = 0 to
V = VD, we obtain

2
√

2qε0εs NA

3C0x

[
(VD + �si)

3/2 − �
3/2
si

]
.

Therefore, adding this term to (14.47), we obtain (14.48).

15.5. IDS = C0xμn

Z

2L
(VG − Vth)2 = 28.7 × (3 − 0.5)2 = 0.18 mA for VG = 3V

and IDS = 0.58 mA for VG = 5 V.

15.7. Mobile sodium ion charges will move to the SiO2–Si interface, and thus Vth

will increase.
15.9. Solutions of the equations are:

φ = (VG − VFB) − ε0x(x + d), for − d < x < 0.

φ = φmax − q Nd

2ε0εs

(x − Wn)2 + c1(x − Wn), for 0 < x < Wn.

φ = q NA

2ε0εs

(x − Wn − Wp)2 + c2(x − Wn − Wp), for Wn < x < Wn + Wp.

In addition,

−ε0x = q ND

ε0εs

Wn,

(VG − VFB) − ε0xd = φmax − q ND

2ε0εs

W 2
n ,

−q NA

ε0εs

Wp + c2 = c1,

φmax = q NA

2ε0εs

W 2
p − c2Wp.

Therefore, φmax = q N 2
A

2ε0εs ND

W 2
p + q NA

2ε0εs

W 2
p = q NA

2ε0εs

W 2
p

(
NA

ND

+ 1

)
.

Chapter 16

16.1. Since q	 = kBT ln(Nc/Nd) = 0.022 ev and qVbi = 2
3

Eg − q	 =
0.924 eV, therefore d = 14.44 × 10−6 cm.
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16.3.

p-GaAs

ΔEc

ΔEv

ΔEv

qVb1

qVb2

Eg2

Eg1

Ec

Ec

Ef Ef2
Eg1

Eg3

Ef3

E11

Ev

Ev

n-InGaP

ba

Collector

Emitter
Base

ΔEc

16.5. (a) vs equals 2.22 × 106, 1.51 × 106, and 1.02 × 106 cm/s for L =
0.25, 0.50, and 1.0 μm, respectively.

(b) fT equals 14.1, 4.8, and 1.6 GHz, respectively.
16.7. (a)

(b) Since fT = gm

2π (Cgs + Cgd)
and Cgs + Cgd = ε0εs Z L

Wd

,

therefore,

fT = ε0εsvsat Z

Wd2π

Wd

ε0εs Z L
= vsat

2π L
.

(c) fT is 191 GHz and 19.1 GHz for L = 0.1 μm and 1 μm, respectively.

(d) gme = gmi

1 + gmi Rs

and gdse = gdxi

1 + gdsi Rs

.

16.9. (a)
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Due to modulation doping, a 2-DEG charge sheet can be formed in the
triangle well of the undoped GaAs buffer layer.

(b) Since no ionized impurity scatterings are expected in the 2-DEG
well.

(c) Due to high electron mobility.
(d)

16.11. (a)

Refer to Figure 16.1.
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(b)

Refer to Figure 16.4.



Appendix

Table A.1. Physical constants.

Avogadro’s number NA = 6.02214 × 1023 atoms/g mol
Bohr radius aB = 0.52917 Å
Boltzmann constant kB = 1.38066 × 10−23 J/K
Electronic charge e = 1.60218 × 10−19 C
Free electron rest mass m0 = 9.11 × 10−31 kg
Gas constant R = 1.98719 cal/mol K
Permeability in vacuum μ0 = 1.25664 × 10−8 H/cm (=4π × 10−9)
Permittivity in vacuum ε0 = 8.85418 × 10−14 F/cm
Planck constant h = 6.62607 × 10−34 J s
Reduced Planck constant h̄(h/2π ) = 1.05457 × 10−34 J s
Proton rest mass Mp = 1.67262 × 10−27 kg
Speed of light in vacuum c = 2.99792 × 108 m/s
Thermal voltage kBT = 0.025852 eV

Table A.2. International system of units (SI units).

Quantity Unit Symbol Dimension

Current ampere A
Length meter m
Mass kilogram kg
Time second s
Temperature kelvin K
Luminous intensity candela Cd
Luminous flux lumen lm
Frequency hertz Hz 1/s
Force newton N kg m/s2

Pressure pascal Pa N/m2

Energy joule J N m
Power watt W J/s
Electric charge coulomb C A s
Potential volt V J/C
Conductance siemens S A/V
Resistance ohm � V/A
Capacitance farad F C/V
Inductance henry H Wb/A
Magnetic flux weber Wb V s
Magnetic flux density tesla T Wb/m2
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A
acoustical phonon scattering, 183, 187, 189,

191, 192, 194, 195, 203, 223, 225, 226,
227, 228, 231, 234, 235, 239, 240, 241,
242, 243, 245

longitudinal mode, 218
amorphous silicon, 386, 388, 407, 417, 564

a – Si solar cells, 386, 388, 407, 417, 564
Auger recombination process, 135, 145,

531
band-to-band, 135, 143, 144, 146, 158
Auger recombination coefficient, 145

avalanche diode, 366
avalanche breakdown, 364
avalanche multiplication factor, 363
breakdown voltage, 363, 366
impact ionization, 142–144, 240, 358, 360,

431, 433
ionization coefficients, 363, 364

avalanche photodiode (APD), 323, 361, 386,
421, 433, 434, 435, 436, 437, 438, 439,
440, 455

separate absorption and multiplication (SAM)
APD, 437, 439

B
bipolar junction transistors (BJTs), 130

bandgap narrowing effects, 131, 132, 352,
531, 532

base transport factor, 558, 563, 568,
569

common-base current gain, 529, 541, 543,
544, 545, 568

common-emitter current gain, 529, 530, 532,
544, 545, 568

emitter current crowding effect, 562, 563
Early effect, 527, 528, 534, 535, 538

Ebers–Moll model, 518, 528, 532, 533, 534,
535, 536, 538, 539, 540

emitter injection efficiency, 518, 528, 529,
531, 552, 558, 563

Gummel number, 525, 530, 545, 558
Gummel–Poon model, 533, 538
minority carrier distribution, 338, 347, 348,

350, 352, 567
n–p–n BJT, 324, 518, 519, 534, 546, 547, 549,

550, 567
p–n–p BJT, 324, 519, 537, 545, 546, 547, 549,

550, 568, 569
Bloch–Floquet theorem, 67, 69

Bloch function, 67, 68, 70, 79, 83, 94, 216, 259
Bohr model, 65, 107, 125, 132

for hydrogen atom, 125
for hydrogenic impurities, 58
Bohr radius, 223

Boltzmann transport equation, 172, 174, 176,
177, 181, 182, 212

relaxation time approximation, 172, 181,
182, 183, 212, 213, 218, 229, 231, 233

collision term, 182, 183, 212, 213, 214
external force term, 182

Bragg diffraction condition, 79
Bravais lattice, 2, 3, 5, 6, 7, 11

unit cell, 2, 3, 5
primitive cell, 5, 7, 24

Brillouin zone, 1, 11, 12, 13, 14, 25, 29, 30, 32,
34, 73, 74, 86, 87, 88, 89, 90, 98, 99,
104, 111, 260, 484, 660, 671

Wigner–Seitz cell, 11, 12, 13

C
charge-coupled device (CCD), 322, 606, 607,

609, 610, 611, 612, 613, 614, 616
buried-channel CCD, 606, 612, 613
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charge-coupled device (cont.)
surface-channel CCD, 606
charge detection, 607, 611
charge injection, 611, 646
charge storage, 357, 607, 609, 612
charge transfer, 607, 612
charge transfer inefficiency, 611, 612

charge neutrality equation, 120, 132
conduction band, 34, 39, 54, 55, 58, 59, 74, 86,

88, 89, 90, 95–98, 106–115, 118,
121–124, 131, 133, 136–137, 143, 165,
170, 176, 177, 187, 188, 189, 190, 191,
195, 206, 214, 215, 224, 225, 227, 229,
239, 254, 255, 259, 260, 261, 262, 264,
265, 269, 343, 361, 366, 367, 368, 369,
370, 447, 448, 450, 452, 453, 465,
466–468, 482, 484, 492, 493, 496, 552,
557, 563, 569, 582, 636, 647, 648, 651,
655, 656, 659, 660, 664

continuity equations, 136, 148, 338, 348, 349,
357, 392, 522

for electrons, 136, 148
for holes, 148

crystal bindings, 14, 15, 17
for covalent crystal, 15, 17
for ionic crystal, 14, 15
for metallic crystal, 17
for molecular crystal, 17

crystalline solids, 1, 5, 14, 19, 28, 38, 62, 63, 66,
68, 74, 106

metals, 7, 11, 17
semiconductors, 7
insulators, 15, 17, 35

crystal planes, 9
Miller indices, 9, 10

crystal structures, 7, 8, 9, 187, 224, 330
cubic, 10
diamond, 8, 15, 118, 670
hexagonal closed-packed, 8, 25
wurtzite, 7, 8, 9, 90, 224, 228
zinc blende, 7, 8, 17, 87, 88, 104

current density, 126, 127, 130, 149, 175, 176,
177, 180, 181, 185, 197, 198, 209, 241,
242, 250, 278, 280, 281, 290–292, 297,
298, 299, 300–303, 308, 309, 326, 333,
334, 347, 350, 351, 352–357, 373, 374,
382, 383, 389, 391, 392, 393, 394, 402,
431, 432, 458, 463, 479, 496, 497, 498,
504, 505, 514, 515, 525, 552, 557, 560,
562, 563, 651, 660

for electrons, 126, 127
for holes, 197, 278

D
deep-level defect, 389, 391

density of, 162, 163
activation energy of, 165

deep-level transient spectroscopy
(DLTS), 123, 136, 163

density-of-states effective mass, 55, 108, 111,
114, 131

for electrons, 55, 102, 108, 111, 131, 132
for holes, 55, 111, 114, 132
for multivalley semiconductors, 58

density-of-states function, 54, 55, 59, 60,
99, 100, 107, 108, 109, 129, 261, 503

for the conduction band states, 58, 114, 120,
249, 268, 269

for phonons, 38
for quantum well, 374
for quantum dot, 369, 374
for the valence band states, 107, 109

diffusion model for Schottky diode, 296, 298
diffusion length, 166, 168, 169, 170, 272, 277,

282, 283, 300, 349, 350, 351, 356, 357,
397, 402, 431, 470, 471, 472, 521, 522,
530, 531, 545, 568, 598

for electrons, holes, 168, 169, 270, 280, 281,
346–348, 353, 386, 398, 427, 517, 518,
526, 541, 563

diffusion coefficients, 390
for electrons, 386
for holes, 169, 390, 431

dispersion relation, 14, 28, 29, 31, 34, 35, 39, 40,
43, 44, 55, 84

for phonons, 14
for electrons, 33, 54

distribution functions, 46, 47, 59, 107, 111, 173,
182, 212, 214, 493

Bose–Einstein (B–E), 37, 46, 57, 64
Fermi–Dirac (F–D), 42, 43, 46, 51, 52, 53, 54,

56, 107
Maxwell–Boltzmann (M–B), 46, 47, 48, 50,

51, 107
velocity, 47, 49, 50, 51

drift mobility, 136, 152, 154, 175, 201, 235, 236,
237, 238

for electrons, 175, 241, 244, 622
for holes, 154

drift velocity, 152, 154, 175, 182, 241, 243, 244,
271, 622, 625, 626, 644, 660, 661, 664,
665

E
effective density, 107, 110, 113, 164, 260
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of the conduction band states, 108, 111,
165

of the valence band states, 111, 114
Einstein relation, 170, 282, 300, 525

for electrons, 282
for holes, 148, 149, 153

elastic constants, 225
electronic specific heat, 26, 42

for metals, 42, 43, 61
energy band diagram, 72–74, 80, 84, 85, 90, 94,

118, 135, 159–161, 285, 286, 290, 294,
295, 298, 301, 312, 326, 335, 336, 341,
362–364, 367, 368, 385, 397, 399, 401,
446

for the one-dimensional periodic potential,
73

in reduced zone scheme, 14, 73, 74, 75, 81
in the first Brillouin zone, 12, 13, 14, 25, 29,

30, 32, 34, 73, 74, 86, 87, 88, 89, 90,
104, 111, 660, 671

for the superlattice, quantum well, 92, 97,
618

energy band structures, 86–93, 96–100
the conduction band minimum, 88, 89, 90, 95,

96, 97, 111, 229, 239, 260, 262
for semiconductors, 86–93
heavy-hole band, 90, 91, 92, 96, 103
light-hole band, 59, 90, 91, 92, 96,

103
split-off band, 91, 112
the valence band maximum, 88, 89,

260
�-valley, 643, 654, 655
X-valley, 93
L-valley, 90, 93

Energy band theory, 61–96
Kronig–Penney model for 1-D periodic

lattice, 63, 68, 69, 81, 98
for low-dimensional systems, 63, 97, 98, 101,

104, 100
the nearly-free electron (NFE) approximation,

63, 75, 76, 78, 80
the tight- binding (LCAO) approximation, 63,

81, 82, 84, 86, 87, 99, 102, 103
energy band gap, 80, 88, 89, 92, 93, 114, 116,

120, 144, 247, 274, 292, 351, 443, 460,
471, 474, 501, 569

direct-band-gap semiconductors, 88, 89, 97,
135, 142, 143, 260, 273, 409, 411, 465,
466, 477, 483, 484, 492, 505

indirect-band-gap semiconductors, 89, 143,
147, 477

excess carrier lifetimes, 137–139, 145, 269,
270

for electrons, 138
for holes, 138

extrinsic Debye length, 151, 170, 577, 579
extrinsic semiconductors, 107, 123

n-type, donor impurities, 107, 114, 118, 120,
121, 130, 132, 135, 139, 140, 145, 152,
153

p-type, acceptor impurities, 107, 123, 275,
328

F
Fermi–Dirac (F-D) distribution function,

109
Fermi energy, 53, 54, 56, 60, 101, 108, 110, 111,

133, 163, 172, 174, 191, 203, 209, 370,
641, 643, 655

for extrinsic semiconductors, 119
for intrinsic semiconductors, 162

Fermi integral, 108, 109, 133, 209
Fresnel reflection, 414, 466
free carrier absorption process, 252–255

plasma resonance frequency, 257, 258
polarizability, 255

fundamental absorption process, 246, 247, 252,
253, 255, 256

optical absorption coefficient, 142, 169, 251,
254, 263, 265, 284, 408

direct transition, 142, 143, 217, 258, 259, 260,
261, 495

indirect transition, 143, 261, 263
transition probability, 175, 212, 213, 214, 215,

216, 259, 260, 261, 494

G
galvanomagnetic effects, 173–180

electrical conductivity, 181, 183, 126, 128
average relaxation time, 128, 175, 186, 187,

188
conductivity effective mass, 102, 175, 187,

188, 190, 213, 227, 258
drift velocity, 241
electron mobility, 175, 187, 195, 213,

241
Hall coefficient, 180, 181, 183, 188, 189, 190,

196, 197, 199, 200, 201
Hall factor, 128, 129, 189, 190, 202, 210
Hall mobility, 126, 128, 129, 132, 189, 199,

201, 202
magnetoresistance, 174, 179, 181, 183, 192,

194, 195
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grain boundary effects, 18, 23
group velocity, 30, 31, 94, 95, 102, 103

for phonons, 39
for electrons, 40, 54, 104

H
Hall effect, 107, 123, 124, 126, 127, 128, 174,

178, 180, 190
for mixed conduction case, 196, 197, 198
for n-type semiconductors, 180
for p-type semiconductors, 180
Hall factor, 128, 129, 189, 190, 202, 210
Hall mobility, 126, 128, 129, 132, 189, 199,

201, 202, 204, 236
heterojunction diode, 366–371

built-in potential, 337, 338, 341, 343, 346,
371, 382, 599, 622, 624, 634, 664

conduction band offset, 369, 370, 450, 569
depletion layer width, 169, 294, 295, 316,

341, 342, 343, 344, 345, 367, 368, 372,
377, 379, 382, 383, 391, 393, 428

transition capacitance, 346, 347, 358, 372,
382, 427, 558,

valence band offset, 369, 370
heterojunction bipolar transistors (HBTs), 337,

369, 517
base-spreading resistance, 532, 538, 558,

562
base transit time, 530, 544, 545, 562, 563,

564, 568, 651
collector–base junction transit time, 540,

541
collector charging time, 561
current gain, 561, 562, 563, 564
emitter–base transition capacitance, 553
emitter charging time, 561, 651
Gummel number, 558, 560, 568
maximum oscillation frequency, 553, 563, 655
power gain, 558, 562
self-aligned process, 555
unity current gain cutoff frequency, fT,

597, 621, 629, 655
GaAs/AlGaAs HBT, 553
Si/GeSi HBT, 553, 565, 566
InP/InGaAs HBT, 548
GaN/InGaN HBT, 366

high-electron mobility transistors (HEMTs),
630, 631, 632

AlGaAs/GaAs HEMT, 630, 631, 632
InGaAs/AlGaAs HEMT, 630, 631
InAlAs/InGaAs HEMT, 630
GaN/InGaN HEMT, 630
channel conductance, 632

current–voltage (I–V) characteristics, 376
linear region, 376
saturation region, 376

drain conductance, 591, 623, 624, 627
gate length, 646, 626
mobility-field relation, 630
modulation-doped FETs (MODFETs), 319,

324, 366
pinch-off voltage, 375, 616
two-dimensional electron gas (2-DEG), 630,

631, 632, 634, 636
threshold voltage, 628, 638
unity gain cutoff frequency, fT, 626, 645
2-DEG in GaAs, 632
density of states for 2-DEG system, 633
sheet charge density, 631, 632, 633, 636
subband energy levels, 633
GaAs-based pseudomorphic (P-) HEMT, 614,

630, 642, 643, 645
Hooke’s law, 27, 30, 36
hot electron effects, 239–243

effective electron temperature, 240, 241
saturation velocity, 422, 557, 592, 616, 618,

621, 625, 627, 631, 641
hot electron transistors (HETs)

2-DEG in the base, 648
GaAs/AlGaAs HET, 437

I
impact ionization, 143, 144, 145, 242, 361–363,

435, 437, 605
intrinsic carrier density, 114–117, 121, 129, 130,

132, 142, 149, 170, 340, 353, 390, 531
intrinsic Fermi level, 115, 132, 149, 163, 352,

353, 574, 576
intrinsic semiconductors, 27, 117, 145
ionization energies, 119

for shallow-level impurities, 119, 122, 123
for deep-level defects, 106, 169

ionized impurity scattering, 183, 187, 189, 191,
192, 194, 195, 210, 212, 213, 218, 219,
220, 221, 222, 228, 232, 239, 240, 244,
245, 246, 636, 637, 654

electron mobility, 212, 226, 228, 229
relaxation time for, 212, 214, 217, 220, 221,

222, 223
interface state density, 294, 303, 307, 308, 329,

335, 470, 582, 583
distribution of, 292, 305

J
junction field effect transistors (JFETs), 337,

369, 380, 667
channel conductance, 373, 584, 585, 586
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current–voltage (I–V) characteristics, 376
gate voltage, 373, 375, 377, 575
linear region, 376
saturation region, 376, 531
pinch-off voltage, 375
transconductance, 377
source and drain electrodes, 371, 373

K
Kirk effect, 538

L
laser diodes (LDs), 89, 93, 119, 248, 337, 369,

374, 385, 462, 492, 506, 507
Fabry–Perot cavity, 490, 492
cavity decay time, 493
GaAs/AlGaAs, 495, 513, 549
GaInAsP/InP, 513
GRIN–SCH laser, 499
oscillation condition, 490, 491
carrier confinement factor, 491
population inversion region, 491, 492, 490
threshold current density, 459, 492, 493, 494,

500
slope efficiency, 507, 459

lattice constant, 8–10, 25, 29, 30, 74, 92–94,
477, 478, 647

lattice dynamics, 11, 27, 29, 45
lattice specific heat, 27, 28, 40–44

Debye model, 27, 39, 41, 42
Dulong–Petit law, 26, 39, 42
Einstein model, 43

lattice spectrum, 38
lattice vibrations, 27, 35, 37,

225
law of mass action, 114
lifetimes, 24, 107, 120, 136, 139, 141, 143,

146–148, 155–159, 163, 164, 170, 270,
271, 282, 356, 360, 391, 395, 396, 422,
488, 508, 560

Auger recombination, 144, 145
radiative, 141, 142
nonradiative, 135–140

light-emitting diodes (LEDs), 459–485
external quantum efficiency, 437, 465, 466,

467, 468, 476, 478
injection efficiency, 524
luminescent efficiency, 465
luminous intensity, 475, 477, 478, 482,

485
luminous flux, 679
white LEDs, 476, 482, 483
resonant cavity (RC)-LED, 459, 485,

486

GaN-based LEDs, 459, 460, 470
InGaAsP-based LEDs, 459, 460
GaP-LEDs, 459, 460
GaAs/AlGaAs LEDs, 459, 460
UV-LEDs, 459
solid state lamps, 472, 482, 488

line defects, 19, 22
edge dislocations, 21, 23
screw dislocations, 22

linear chain, 28, 30–32
diatomic linear chain, 27, 30, 31, 36,

42
monatomic linear chain, 27, 28, 30, 31

long-base diode, 349, 351, 352, 357, 358,
359

long-wavelength infrared photodiodes, 274, 320,
437

quantum-well infrared photodetectors
(QWIPs), 366, 371, 382, 448

quantum-dot infrared photodetectors (QDIPs),
450, 452

HgCdTe IR detectors, 448
extrinsic (impurity-band) photoconductors,

442

M
Maxwell equations, 249
metal work function, 287, 289
Miller indices, 1, 9–11, 25
miniband for superlattice, 97–100
minority carrer diffusion lengths, 165–167
minority carrier lifetimes, 22, 23, 106, 119, 135,

139, 142, 157, 275 322, 353, 355, 391,
418, 526, 536, 555

MIS diodes, 397
MIS solar cells, 401
metal-oxide-semiconductor (MOS) capacitor,

567, 582–593
accumulation layer, 597
bulk potential, 569, 571, 574
depletion capacitance, 557, 578, 600
depletion layer width, 557, 563, 574, 575,

586, 597, 604
metal–semiconductor-FETs (MESFETs),

614–628
GaAs MESFETs, 614–618, 620, 623, 624,

629, 630
electron affinity, 629
energy band diagram for, 489, 500
equivalent circuit of, 617, 619
flat-band condition, 568, 571, 574
flat-band voltage, 573, 582, 585, 604
interface trap charges, 577, 578, 579
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inversion layer, 590, 601, 607
metal work function, 323

metal-oxide-semiconductor FETs
(MOSFETs), 517, 572, 573, 587, 588,
591, 597, 598, 599, 600–606

Si MOSFETs, 567, 568, 569
n channel, 582, 583
p channel, 582, 583
channel conductance, 583–587, 590
current–voltage characteristics, 568, 586,

616
depletion mode, 583, 584, 593
drain conductance, 591, 616, 623, 627
enhancement mode, 595, 584, 593, 583
fixed charge, 580
gate length, 585, 592
maximum oscillation frequency, fmax, 632,

650
mobile charge, 585, 588
mutual transconductance, 590
onset of strong inversion, 575, 586
oxide capacitance, 573, 575, 577, 578, 581
oxide charge, 579, 580, 582
oxide trapped charge, 576
saturation velocity, 592
scaled-down, 568, 593, 595
short-channel effects, 592, 594, 597
small-signal equivalent circuit, 590, 591
structure and symbol, 584
threshold voltage, 586, 590, 592, 594, 596,

597
surface potential, 570, 571, 574, 577,

604
unity current gain cutoff frequency, fT , 592

N
Neutral impurity scattering, 183, 189, 212, 213,

222, 223

O
ohmic contacts, 286, 287, 304, 314, 326–328,

330, 332, 357, 429, 450, 555, 620
specific contact resistance, 324, 326, 328

optical phonon scattering, 213, 227, 229, 231,
239, 240, 241

intervalley scattering, 214, 215, 228, 233,
245, 302

carrier mobility for, 128, 200
nonpolar optical phonon scattering, 228, 229
polar optical phonon scattering, 228, 229,

230, 237
optical properties, 11, 62, 248, 251, 408

complex dielectric constant, 249, 253

dielectric constant, 247, 249, 251, 252
complex refractive index, 249

extinction coefficient, 247, 249, 251
refractive index, 249, 251

complex wave number, 28
reflection coefficient, 250, 251,

252
transmission coefficient, 268, 249

P
periodic crystal potential, 67, 75, 78, 79, 80–82,

98
permeable base transistor (PBT), 654

maximum oscillation frequency, fmax , 549,
558, 650

phonons, 12, 14, 19, 28, 37, 38, 40–42, 44–67,
57, 58, 59, 127, 136, 143, 181, 203, 205,
212, 213, 216, 218, 223–227, 229,
231–234, 239, 242–245, 254, 259

acoustical, 41
concept of, 36
optical, 33, 34
quantized lattice vibrations, 27, 36

photoconduction, 268, 269, 273, 274, 275, 276,
310

kinetics of, 271, 273
photoconductive (PC) effects, 248

excess carrier density, 137, 139, 141, 151,
168

external generation rate, 147, 151
extrinsic photoconductivity, 247, 266, 267,

272
intrinsic photoconductivity, 266, 267, 273
photoconductance, 275, 280, 281
photoconductive gain,
photocurrent, 268, 270, 271, 272, 274
photosensitivity factor, 269

photoconductivity decay
experiment, 155, 156, 158

minority carrier lifetimes, 275, 280
photodetectors, 89, 276, 287, 321, 322, 337,

369, 374, 385, 386, 421–426, 430, 432,
433, 434, 446, 452, 462

avalanche photodiode (APD), 321, 358,
429

multiplication factor, 432, 437
cutoff frequency, 422, 429, 437, 439

diffusion time, 422, 424
RC time constant, 422, 439, 440
transit time, 422, 424, 425, 429, 439,

440
detectivity, 418, 419, 420, 436, 444, 445
extrinsic photoconductors, 442, 443
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intrinsic photoconductors, 417
heterojunction photodiodes, 417, 439, 440
noise equivalent power (NEP), 419, 422, 448
photomultipliers, 382, 417, 440, 441
p-i-n photodiodes, 382, 417–419, 424, 426,

429
point contact photodiodes, 438, 439
quantum efficiency, 418–420, 433, 437, 439,

441, 444
QWIPs, 444, 445, 446, 448, 450
QDIPs, 450, 452
Schottky barrier photodiodes, 436, 437
SAM-APD, 433, 435, 436
shot noise, 422, 423, 431, 445
thermal noise, 422, 423, 424

photoemission method, 310, 313
Fowler’s theory, 308
Schottky barrier height, 292, 305, 306, 307,

310, 311
Photomagnetoelectric (PME) effect, 279, 281,

283, 285
PME short-circuit current, 279
PME open-circuit voltage, 277, 279

photonic devices, 237, 337, 385, 462
LEDs, 417
photodetectors, 417–425, 430, 436, 438, 442
solar cells, 381, 417, 420, 430, 431
laser diodes, 381, 458, 488

photovoltaic (PV) effect, 248
Dember effect, 247, 275

piezoelectric scattering, 224, 227, 228, 229, 245,
246

mobility formula, 229, 231
polar semiconductors, 226, 227

Planck blackbody radiation formula, 63
p-n junction diodes, 337, 339, 341, 343, 345,

347, 349, 351, 353, 355, 357, 359, 361,
363, 365, 367, 369, 371, 373, 376, 378,
380, 382, 384

abrupt (or step) junction, 335, 336, 337, 338,
341

built-in (or diffusion) potential, 338, 340, 367,
368

charge storage, 354
depletion layer width, 339, 340, 341, 344, 350
diffusion capacitance, 351, 352, 353, 355
diffusion conductance, 351–353
generation current density, 341, 350
linearly graded junction, 337, 343
long-base diode, 346, 348
maximum field strength, 298
quasi neutral region, 346
recombination current density, 350

saturation current density, 350
short-base diode, 348, 349, 355
space-charge (depletion) region, 335, 337,

338, 340, 343, 346
switching time, 119, 355
transition capacitance, 343, 344

p–n junction solar cell, 384–391
antireflection (AR) coatings, 384
conversion efficiency, 382, 383, 385, 392, 393

air-mass-zero (AM0), 384
air-mass 1.5 global (AM1.5G), 383, 413,

416
dark current, 114, 129, 317, 385

injection current, 354, 385, 386, 387, 391,
475

recombination current, 345, 347, 351
fill factor, 385, 392, 398, 399
open-circuit voltage, 384, 391, 397
quantum efficiency, 444, 450
short-circuit current, 402, 399, 393, 397, 384,

385
point defects, 18, 20, 21

Frenkel defect, 19, 20
impurities, 20, 21, 18, 19
interstitials, 18
Schottky defect, 18, 19, 20
vacancies, 18

Poisson equation, 150, 151, 602, 638, 639, 642
Pseudopotential method, 87, 90, 91, 103

Q
quantum oscillators, 34, 37
quantum well, 92, 97, 98, 100, 101, 369, 374,

447–451, 463, 492, 503, 504, 512, 636,
656

R
reciprocal lattice, 1, 11–14, 25, 30, 35, 73, 78,

79, 220, 670, 671
basis vector of, 11–14
Brillouin zone, 11–14
reciprocal space, 11–14

recombination process, 135, 136, 141, 145–147,
352, 353, 465–467, 482, 483, 485, 531,
532

band-to-band Auger recombination,
142–146

band-to-band radiative recombination,
140–141

nonradiative (SRH) recombination, 135–140
resonant tunneling devices (RTDs), 650, 655

double-barrier GaAs/AlGaAs RTDs, 650
resonant tunneling process, 650
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S
scattering by dislocations, 232
scattering mechanisms, 37, 128, 129, 181–183,

187, 189, 191, 192, 195, 198, 202, 203,
212, 213, 233, 234, 237, 239, 244

differential scattering cross section,
214–217

elastic scattering, 180, 211, 214, 217, 221
inelastic scattering, 215
relaxation time formula, 216, 218, 220, 221,

222, 223, 227
Schottky barrier diodes, 287, 303, 304, 306, 312,

313, 317, 318, 321, 325
field-plate structure, 301
guard-ring structure, 301–303, 321, 422
microwave mixers, 323
rectifying contacts, 284, 291

Schottky-clamped transistors, 321
Schottky contact, 287, 292, 298, 302, 303, 310,

314, 319, 321, 325, 327, 329, 335,
401–403, 443, 623, 642, 654, 664

barrier height, 97, 285, 290, 292, 296
enhancement of, 311–318

depletion layer width, 163, 292, 293, 298,
314, 331

depletion layer capacitance, 294, 573, 577
diffusion (or contact) potential, 292, 308, 324,

338
electron affinity, 290, 312, 367, 569, 609

Schottky (image lowering) effect, 286
Schrödinger equations, 62, 66–69, 78, 104, 216

time-dependent, 65, 66
time-independent, 65

semiconductors, 5, 7–9, 11, 15, 17, 19, 23, 24,
27, 28, 35, 37, 42, 54, 59, 63, 74, 75, 81,
87–97, 102–120, 125–131, 135,
143–146, 150, 166, 170, 174, 175, 183,
186–199, 203, 204, 212–215, 222–224,
227–237, 245, 248, 249, 254–58,
264–265, 275–78, 282, 287, 294, 307,
308, 318, 323–32, 337, 338, 352,
369–372, 385–388, 406, 413, 424, 427,
433, 434, 440–454, 462–64, 483–484,
505, 506, 517, 518, 587, 618, 650, 659,
662

compound, 7, 8, 9, 15, 17, 23, 62, 86, 91, 92,
110

degenerate, 128, 129
elemental, 8, 17, 88, 110, 252
extrinsic, 105, 106, 116, 117–119
intrinsic, 113–115
nondegenerate, 50, 58, 106, 109, 119, 140,

149
n-type, 182–184

multivalley, 58
p-type, 126, 127, 128, 138, 139, 179, 188, 190

semiconductor statistics, 45–59
Shockley–Read–Hall (SRH) model, 136–138,

140, 283, 352, 382, 391, 466
capture coefficient, 136, 138, 144, 162
emission rate, 136, 164, 165
excess carrier lifetime, 137, 139

short-base diodes, 349, 358
charge storage in, 355
diffusion capacitance in, 355
switching time, 355

Snell’s law, 470
solar cells, 24, 248, 279, 287, 319, 321, 324,

337, 369, 374, 385, 386, 387, 388, 389,
390, 399–403, 406–420, 459, 460

concentrator, 382, 384, 403
p-n junction, 337–384
Schottky barrier, 287, 303, 304, 306, 312,

313, 317, 318, 321, 325
MIS, 397
polycrystalline, 383, 384, 386
thin film solar cells, 403–408

a- Si (H) solar cells, 383
CdTe solar cells, 383
Cu(In,Ga)Se2 (CIGS) solar cells, 383

stationary perturbation theory, 75–78
statistics

Bose–Einstein (B–E), 37, 46, 57, 64
for phonons and photons, 45

Fermi–Dirac (F–D), 42–43, 46, 51–56, 107,
137, 172, 175, 209, 210, 214, 638, 675

for electrons in a metal, 50
for degenerate semiconductors, 50
for shallow impurity states, 57

Maxwell–Boltzmann (M–B), 46–48, 50, 107,
174

for nondegenerate semiconductors, 47
for ideal gas molecules, 48

surface accumulation, 302
surface inversion, 593, 612
surface potential, 162, 163, 575–579, 582–587,

590, 599, 609, 610
surface photovoltage (SPV) technique, 166, 168,

170
surface states, 136, 160, 161, 162, 297, 307, 664

fast, 159
slow, 159

surface recombination velocity, 156, 157,
161–163, 169, 171, 271, 273, 392, 399,
422, 428, 430, 465, 561

T
thermionic emission, 287, 290
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current density, 125, 147
Richardson constant, 288, 289, 297

thermionic emission model, 298, 301, 304
saturation current density, 129, 288, 295

thermoelectric effects, 27, 177, 179
Kelvin relations, 179
Peltier coefficient, 204
Seebeck coefficient, 174, 179–181, 190, 191,

197–199, 203–210
thermomagnetic effects, 172, 174, 177, 178

Ettinghausen coefficient, 179, 180
Nernst coefficient, 173, 179, 180, 190, 191,

197, 198, 683
thyristors, 542–548

current–voltage characteristics, 543
p–n–p–n devices, 542
silicon-controlled rectifier (SCR), 543

transferred electron devices (TEDs), 662, 666
Gunn-effect, 330
negative differential resistance (NDR), 656,

661, 662
translational operation, 2, 14, 30, 67, 68, 70

translational symmetry, 2, 5, 11, 29, 62, 72
translational basis vector, 2, 11

tunneling diode, 365
negative differential resistance, 656, 661,

662
peak and valley current, 365
tunneling current, 365

Z
Zener diode, 357, 365

junction breakdown, 357
tunneling probability, 363




