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Introduction:
Einstein’s Miracle Year

Everything should be made as simple as possible, but not simpler.
—Albert Einstein

Beginning on March 18th,1905, and ending on June 30th, at

roughly eight week intervals, the leading German physics jour-

nal Annalen der Physik received, in its editorial offices in Berlin,

three handwritten manuscripts. Written by a patent examiner in Bern,

Albert Einstein, they would in their totality define physics for the next

century and beyond. A fourth briefer paper—really an addendum to the

third—was received by the Annalen on the 27th of September. It con-

tains the one formula, E = mc 2, that everyone associates with Einstein.

These papers, which are the subject matter of this book, are remarkable
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in many ways. First, there is the manifestation of creative scientific ge-

nius. Nothing like this had been seen in science since the year 1666–the

annus mirabilis (the miracle year)—of classical science.1 That year, 23-

year-old Isaac Newton, who had sought refuge in his mother’s house

in Lincolnshire from an epidemic of plague that was devastating Cam-

bridge, created the basis for physics that endured for the next two-and-

half centuries. Second, there is the style. Einstein’s papers contain very

few references to the contemporary literature. They only rarely refer

to each other, something that, as I will explain later, would in at least

one significant instance have helped readers to comprehend them. This

paucity of discussion of contemporary literature is one of the reasons

why the papers appear so fresh. There were other very important papers

of the period, some having to do with the same general subject matter,

but they seem dated. One has to peel off the parts that are still valid

from the parts that are not. Although vast progress has been made in our

understanding of the physical world in the last century, nothing of any

importance in Einstein’s papers is wrong. One can teach the theory of

relativity from the third paper, and one can also teach the implications of

the quantum nature of light from the first. In all the papers, the writing

is elegant and economical. We feel that we are in the sure hands of a

master—a master who was, at the time just twenty-six.

It is not my intention to present a biography of Einstein. There

are innumerable biographies, and the number is growing. But I want

to describe the years leading up to 1905 to make clear the context in

which the papers were written. Einstein was born on March 15, 1879,

in the southern German city of Ulm at the foot of the Swabian Alps. His

parents, Hermann and Pauline Koch Einstein. were Jewish, although not

very practicing. There is no trace in Einstein’s genealogy of anyone with

scientific accomplishments. This certainly had something to do with the

professional restrictions that were placed on Jews in the ghettoes. In fact,

1Historians of science note that the term, which was originally used by the poet
John Dryden to describe the English victory over the Dutch in 1666, better
designates the period in Newton’s life from 1664 to 1666.
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it was only in 1871 that Jews were recognized as full citizens of Germany.

As a child, Einstein was very slow to speak. It worried his parents. In

1947, Einstein was persuaded by the philosopher Paul Schilpp to write a

sort of autobiography, something that Einstein referred to as writing his

own obituary. Actually he died in 1955. It is published as the introduction

to an extraordinary collection of essays written in his honor. Most of

his autobiography deals with his science, but a little of it describes his

early life. At the age of four or five his father gave him a compass whose

behavior made a lasting impression. He writes, “That this needle behaved

in such a determined way did not at all fit into the nature of events

which could find a place in the unconscious world of concepts (effect

connected with direct ‘touch.’) I can still remember—or at least I believe

I can remember—that this experience made a deep and lasting impression

upon me. Something deeply hidden had to be behind things.’’ Some years

later, in his early teens, Einstein discovered Euclidean geometry. In his

autobiography Einstein tells how he found for himself a proof of the

Pythagorean theorem which relates the sides of a triangle with a right

90◦ angle. This theorem will be one of our main mathematical tools and,

later in the book, I present my reconstruction of Einstein’s proof.

Einstein’s father was a not very successful businessman specializ-

ing in various electrical equipment enterprises. When Einstein was one

year old, the family moved to Munich so that his father could set up a

business with his younger brother. So, when Einstein was ready to go to

school, he entered a so-called “Gymnasium’’—in this case the Luitpold

Gymnasium. In this school, which was a state-supported Catholic school,

there was essentially a military discipline. The students wore uniforms

and were drilled. Einstein thoroughly disliked the place. It strengthened

the pacifist instincts he had had since early childhood and which he only

abandoned in the 1930s with the rise of Hitler. It is sometimes said that

he was a poor student, but he was, both in high school, and later when

he entered the Eidgenössische Technische Hochschule—the Swiss Federal In-

stitute of Technology in Zurich—which Einstein came to refer to as the

“Poly’’—a good student. He was never at the top of his class but he was

always above average.
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Einstein’s problems at the Gymnasium, and the Poly could be at-

tributed to what his teachers perceived as an attitude. He never had much

respect for authority, especially if it was associated with a manifest lack

of competence. It reached such a point at the Gymnasium that, by mu-

tual consent, Einstein withdrew in December of 1894. By this time, his

family had moved to Italy, where his father started another ultimately

unsuccessful business. Einstein had been left to live with relatives in

Munich, but in 1895 he joined his family in Italy where he spent what he

remembered as a delightful six months. Part of the time he studied for the

entrance examination to the Poly. He took it at age sixteen-and-a-half

and did well in the scientific parts but not very well in the rest which dealt

with languages. He was advised to take an additional year of study. For

this purpose, he chose a progressive school in Aarau, Switzerland. By

this time he had decided to give up his German citizenship, which really

meant giving up his citizenship in the state of Württemberg, which was

done for a payment of three German marks. He remained stateless until

1901, when he became a Swiss citizen. Like all Swiss men, this meant

that he was obligated to serve in the army. He was exempted because of

flat feet.

In 1896, he passed the entrance examination and spent the next

four years at the Poly. In his autobiography, however, he wrote that he

could have received a better education, especially in mathematics, than

he did, as there were very good mathematicians there whose courses

he was not interested in. He also decided the teaching of physics was

inadequate, so he spent most of his time teaching himself. He com-

plained, for example, that the electromagnetic theory of the Scottish

physicist James Clerk Maxwell, the greatest advance in physics since

Newton and which was then some twenty five years old, was not be-

ing taught. He had to learn it on his own. Einstein’s professors were

aware that he was not attending all his classes, and they did not ap-

preciate his attitude. Nonetheless, his grades were quite good because

he studied from the meticulous notes of his friend, Marcel Grossman,

who later became a mathematician with whom Einstein collaborated.

But when he graduated, he was not asked to stay on as an instructor
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or laboratory assistant, something that several of his fellow students were

invited to do. His teachers did not want him around. He then tried unsuc-

cessfully to find employment in several physics institutions in a variety

of European countries. This was certainly due in part to anti-Semitism,

but it was also the result of what were very likely not very enthusiastic

letters of recommendation.

Einstein began a two-year period of odd tutoring jobs. One won-

ders what would have happened if Marcel Grossman’s father had not

helped him to get a job in 1902 as a patent examiner at the Swiss Federal

Patent Office in Bern. He became a “technical expert third class,’’ with

an annual salary of 3,500 Swiss francs (see Figure I.1). I have read dif-

ferent accounts of how much time his job left him for doing physics. One

thing is certain. It was a serious job which he took seriously. A few of

his patent assessments are still extant. They are thorough and sometimes

sharply negative. Einstein may have, especially in his later years, looked

like a benign presence, but he had a very cutting tongue that also got

him in trouble. He had no time to actually carry out calculations dur-

ing patent office working hours, but that nothing could stop him from

Figure I.1. Einstein at the patent office. (Courtesy AIP Niels Bohr Library)
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thinking about physics. One reasons, why he did not have a better

knowledge of the contemporary physics literature was that the university

library in Bern was closed when Einstein was free on nights and week-

ends. I think it is also true that he did not much care and did not want to

waste his time reading about physics that he was quite sure was wrong.

With his new job he was able to get married. While at the Poly

he had met a fellow student, a somewhat older Serbian woman named

Mileva Marić. The Poly was one of the few places in Europe where a

woman could study science. Their relationship started as a school friend-

ship, but by 1898, they were considering marriage. Einstein’s mother was

vehemently opposed. By the end of 1901, Mileva became pregnant and

gave birth in Hungary to a daughter we only know by the nickname

“Lieserl.’’ Einstein never saw his daughter, and no one knows what hap-

pened to her. In any event, in 1902, Mileva and Einstein were married.

In 1904, they had the first of their two sons, Hans Albert. The second,

Eduard, was born six years later. The marriage ultimately ended in a

painful divorce. Einstein gave, as part of the settlement, the proceeds of

the Nobel Prize which he had won in 1921.2

This is the context in which the papers were written. I cannot imag-

ine where he found the time. He had a full-time job, family responsibili-

ties, and a social life. He played music—the violin—and had friends with

whom he spent time. When could he work on his papers? Each of them

has scores of equations. He must have been able to calculate with incred-

ible speed and precision. To add to everything else, he wrote them out

by hand for submission to the journal. Further, he was writing a doctoral

thesis, published the next year, also written by hand.

Now let me explain this book. There are four chapters and an

epilogue. The first is an account of the relevant physics history up to 1905,

especially as it deals with electromagnetism and Newtonian mechanics.

Other chapters recount the corresponding history for the subject matter

at hand. The second chapter is an account of Einstein’s papers on the

2He actually collected the Prize in 1922. The divorce was in 1919, after which
he married his cousin Elsa Löwenthal Einstein.
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theory of relativity, with additional relevant prehistory, and a sketch of

what happened to the theory after 1905. The third chapter deals with

what is known as “Brownian movement,’’ that is, the random motion of

microscopic particles suspended in liquids. This development, and the

experiments it led to, persuaded most of the skeptics—and there were

some important ones—that atoms existed as real physical objects and not

as mathematical abstractions. The last chapter deals with the quantum.

It was the first paper of the series chronologically; the relativity papers

were the last. This first paper was the only one Einstein thought truly

revolutionary. I will explain the reasons. The reader may be surprised

that this chapter begins with the history of the steam engine. You will

see why. It is important that I make clear my overall objective. I want to

explain all of this using mathematics no more difficult than that taught

in high school—simple geometry and algebra. This does not mean that

I skimp on the ideas. I think that they are all there, as simple as I can

make them—but no simpler. Before turning to the first chapter, let me

explain briefly how I got into all this. It will also enable me to introduce

you to someone you will meet from time to time in the book.

In the fall of 1947, I entered Harvard University as a freshman,

where I discovered there was a science requirement. If you were not a

prospective science major, which I was not, you had to take a Natural

Science course in the then rather newly created General Education pro-

gram. I took what was reputed to be the easiest one—Natural Sciences

3—which was taught by the late I. Bernard Cohen, a historian of sci-

ence and a Newton expert. That is how I first learned something about

Newton. Toward the end of the first semester, Cohen touched a little on

Einstein’s physics and a bit about his life. Einstein was then at the Insti-

tute for Advanced Study in Princeton. I learned that as people, Einstein

and Newton had almost nothing in common. Newton was austere and

virginal and spent at least as much time on biblical dating and alchemy

as he did on what we would call science. There is only one recorded

instance where he was heard to laugh. Einstein was bohemian, much

interested in women, and loved to laugh. When he heard a good Jewish

joke it was said that he had the laugh of a barking seal. Both men were

7



SVNY072-Bernstein August 27, 2005 11:38

S e c r e t s o f t h e O l d O n e

Figure I.2. Philipp Frank. (AIP Emilio Segré Archives)

in their ways profoundly religious. Both men were, and are, to historians

and biographers and to me, endlessly interesting.

Although I understood relatively little of the science, it took hold of

me, and I decided to learn more about it. Cohen told me that a successor

course was being taught that spring and that I could, if I wanted, take

both simultaneously. He also said it would be taught by a man named

Philipp Frank (see Figure I.2). Frank, he added, had known Einstein for

decades. Indeed, he had succeeded Einstein at the German University

in Prague when Einstein left in 1912 to return to Switzerland, and he

had just published a biography of Einstein, Einstein, His Life and Times. It

sounded perfect.

The class met once a week, on Wednesday afternoons as I recall, in

the large lecture hall in the Jefferson Laboratories. There were perhaps

fifty students. Professor Frank turned out to be a shortish man with

something of a limp acquired in an accident in his native Vienna, where

he had been born in 1884. What hair remained was distributed around the

side of his head in wisps. He had, I thought, the face of a very intelligent

basset hound. His accent was somewhat difficult to place. I used to say

that the languages he knew—God knows how many—were piled one

on top of each other like the cities of Troy, with shards belonging to

one popping through to the others. On one notable occasion in response

to a question from a student, he wrote on the black board a quotation

8



SVNY072-Bernstein August 27, 2005 11:38

I n t r o d u c t i o n : E i n s t e i n ’ s M i r a c l e Y e a r

in Persian, a language he later told me, he had learned in night school

in Vienna. He would lecture for about an hour and then announce that

he would now make a “certain interval.’’ After the interval, you could

return to ask questions. Sometimes he would give an answer that he

said could be understood “if you knew a little of mathematics.’’ The only

mathematics I knew was what I had learned in high school—a smattering

of algebra, trigonometry, and Euclidean geometry. That is all you needed

to know for his course. I decided to learn “a little of mathematics’’ and

ended up majoring in it.

I think that the reason Professor Frank could explain things so

clearly and simply is because he understood them so well. He had taken

his PhD in physics in 1906 under the direction of Ludwig Boltzmann,

about whom we will hear later. Professor Frank understood the impor-

tance of Einstein’s physics from the beginning, and was soon in contact

with him. He made significant contributions to the development of rel-

ativity. We owe to Professor Frank the term “Galilean relativity.’’ We

will soon examine Galileo’s relativity and learn what the term means. I

owe to Professor Frank my life-long interest in Einstein and his life and

times, which have led to this book. I dedicate it to his memory.
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1

The Prehistory

TH E SC I E N CE O F ME C H A N I C S
Absolute, true, and mathematical time of itself, and by its own nature,
flows uniformly on, without regard to anything external. It is also
called duration.

Relative, apparent and common time, is some sensible and
external measure of absolute time (duration), estimated by the mo-
tions of bodies, whether accurate or in equable, and is commonly
employed in place of true time; as an hour, a day, a month, a year. . . .

—Isaac Newton

Our study of the prehistory of relativity begins with Galileo Galilei

who was born in Pisa in 1564. We shall focus on one paragraph in

11
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one of his books, Dialogue Concerning the Two Chief World Systems. When

he published it in 1632, he must have known that there would be

trouble. He had brought the manuscript to Rome two years earlier

to get permission from the Church to publish it. When this was not

rapidly forthcoming, he returned to Florence, where he was living,

and published it anyway with a Florentine imprimatur. Not only that,

but he had written it in vernacular Italian as opposed to Latin, so

that it could be widely read. The “world systems” in question are the

Ptolemaic and the Copernican.1 Ptolemy–Claudius Ptolemaeus–was an

Alexandrine, probably of Greek origin, who lived in the second century

BC. His astronomical system was a response to two apparently discor-

dant requirements. On the one hand, he had inherited the notion from

Aristotle that the heavenly objects, being made out of a different

“essence” than earth, air, fire, and water, must move around the Earth

in uniform circular motions while attached to crystalline spheres. The

second requirement was that this system describe what one actually

observed. This came to be called “saving the appearances.” One of the

“appearances,” when it came to planetary motion, was that periodically,

as seen from the Earth, planets go backward in their orbits–something

that is known as “retrograde motion.” To deal with this, Ptolemy intro-

duced a remarkably ingenious system, which he adumbrated in his book

Almagest. To take the simplest case, imagine a “virtual” planet that moves

in a uniform circular motion around the Earth. Around this virtual planet

the actual planet moves with a uniform circular motion. The combined

orbits will show periodic retrograde motion. You can try this out by

making the circles. In fact, by adding up circles you can simulate any

observed planetary motion if you are willing to add up enough of them.2

1Galileo courted additional trouble by ignoring a third system that was currently
in favor by the Church. In this system, invented by the Danish Astronomer
Tycho Brahe, the Earth was at rest with the Sun in orbit around it, while the
planets were in orbit around the Sun.

2Mathematically speaking, what Ptolemy did, unknown to him, was to generate
what we would call a kind of Fourier analysis of the motion—an expansion in

12
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Figure 1.1. The Ptolemaic system.

Ptolemy used some fifteen for the Moon and planets.3 Figure 1.1 is a

rough idea of how it worked.

The second world system in the dialogues is the Copernican.

Copernicus had presented this in his great book De revolutionibus orbium

caelestium, which was published in 1543, the year of his death. People

who have not actually studied what Copernicus wrote often misunder-

stand what he was proposing. What is usually recalled is that Copernicus

moved the Sun to the center of the planetary system and made it station-

ary, with the Earth in motion. But, he also employed uniform circular

motions and needed epicycles–even more than Ptolemy; in fact, some

eighteen (see Figure 1.2). Figure 1.2 shows an additional complexity of

the scheme, namely a displacement of the centers of the circles.

trigonometric functions. If you keep enough terms in the Fourier series, you
can reproduce the original motion to any accuracy.

3I would like to thank Owen Gingerich for helpful communications.
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Mars

Earth

Sun

Center of
Earth's orbit

Figure 1.2. The treatment of Mars on the Copernican system. Thanks to Owen
Gingerich for the drawing.

The solar system that is often depicted as “Copernican,” with its

elliptical orbits, as opposed to the uniformly moving crystalline spheres,

was actually the discovery of Galileo’s contemporary Johannes Kepler,

whose diagram of the Martian orbit–an ellipse inside a circle for com-

parison, is shown in Figure 1.3. About the only thing it has in common

with Copernicus is the resting Sun.

Galileo’s concern in the “dialogues” was to show that the motion

of the Earth, which is at the heart of the Copernican or Keplerian sys-

tem, does not lead to absurdities. In the book, the dialogues, which take

place over four days, are among three people. The setting, Galileo tells

us, is in the palace of one Sagredo, who was modeled after a personal

friend. Sagredo acts as the host and intelligent layman. Then there is

Salviati, also modeled on a real person. Salviati, who is Galileo’s stand-in,

takes the Copernican side of the debate. Finally, there is Simplicius,

an Aristotelean pure et dure, who, as one might imagine from the name,

gets the worst of all the arguments. By this time the Aristotelean world

view had become Church doctrine. So no matter how much he denied

it, Galileo was challenging the Church. Indeed, in 1633, not long after

the dialogues were published, he was summoned to Rome to face the

14
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Figure 1.3. Kepler’s diagram of the Martian orbit.

Inquisition. He returned to Florence a broken man and died there in

1642, the year Newton was born. The purpose of the dialogues, as I read

them, is not to present the details of the Keplerian solar system. Indeed,

Galileo’s only interest in Kepler seems to have been to request from him

additional proofs of the Earth’s motion. In 1610, Kepler received from

Galileo a copy of his book Siderius nuncius, which described his telescopic

discoveries, such as mountains and craters on the moon and a system

of moons revolving around Jupiter, all of which showed that the heav-

enly bodies were not so different from the Earth. Kepler was able to

confirm these observations with a borrowed telescope. The purpose of

the dialogues is rather to show that the objections that were being made

to a moving Earth, at least the scientific objections, did not stand up to

scrutiny. It is in this context that they begin our preamble to Einstein.

On the second day, Sagredo makes the following observation,

“Ptolemy and his followers produce another experiment like that of pro-

jectiles, and it pertains to things, which separated from the earth, remain

in the air a long time, such as clouds and birds in flight. [For these pur-

poses projectiles also fall into this category.] Since of these it cannot be

said that they are carried by the earth, as they do not adhere to it, it does

15
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not seem possible that they could keep up with its swiftness, rather it

ought to look to us as they were being moved very rapidly westward.”

Why, in short, were objects aloft in the air not left behind by the moving

Earth? This very reasonable concern provokes an extensive response

from Salviati. In the course of it Salviati–Galileo–presents the following

simple but extraordinarily profound insight. Einstein liked to use trains

in his examples. Galileo used a sailing ship. Here is what he writes,

Shut yourself up with some friend in the main cabin below deck
on some large ship, and have with you some flies, butterflies, and
other small animals. Have a large bowl of water with some fish in
it; hand up the bottle that empties drop by drop into a narrow-
mouthed vessel beneath it. With the ship standing still, observe
carefully how the little animals fly with equal speed to all sides of
the cabin. The fish swim indifferently in all directions; the drops
fall into the vessel; and in throwing something to your friend, you
need throw it no more strongly in one direction than another, the
distances being equal; jumping with your feet together, you pass
equal spaces in every direction.

Now comes the crucial observation.

When you have observed all these things carefully (though there is
no doubt that when a ship is standing still everything must happen
this way), have the ship proceed with any speed you like so long
as the motion is uniform, and not fluctuating this way and that.
You will discover not the least change in all the effects named, nor
could you tell from any of them whether the ship was moving or
standing still.

This is the first time in which what we call a “relativity” principle

was described explicitly. We can restate Galileo’s charming folkloric

presentation somewhat more austerely as follows: In no experiment done

in a uniformly moving system, does the speed of that system with respect

to any other uniformly moving system, play a role. In other words, for

purposes of any experiment, we can take our uniformly moving system

to be at rest. It is called a “relativity principle” because, as far as uniform

16
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motions are concerned, all that is measurable is the “relative” velocity

of one system “relative” to another. In a uniformly moving train or car

or plane, we only know we are in motion when we view the tracks, the

road, or the ground. If we want to be perverse about it, we can say that

we are at rest and these reference systems are the one’s in motion. This

seems totally innocuous and commonsensical–but wait until we come to

Einstein. In the meanwhile let us see how the principle is realized in the

mechanics of Newton.

Newton’s mechanics were laid out formally in his seminal book

Phliosophiae naturalis principia mathematica, which was first published

in 1687. Newton not only created new science, but a new scientific

paradigm. He invented what we think of as theoretical physics. You

start with some general principles that aid you in formulating a set of

equations. You solve these equations as best you can and check the re-

sult against experiment. No one prior to Newton had done things in this

way. For example, Kepler did not try to derive the elliptical planetary

orbits. He showed empirically that this was how the planets move. In

the Principia, Newton was able to derive the planetary motions from a

few general principles. I will now present some of them, beginning with

Newton’s “second law,” not quite as stated in the Principia–we will come

to that shortly–but in a form that will be familiar to many of you. I will

write the formula and then say what the letters mean, or at least crudely

what they mean. A little later I am going to critically analyze these equa-

tions in the sprit of Einstein’s influential contemporary Ernst Mach,

the Austrian physicist-philosopher whose book The Science of Mechanics

played a very important role in Einstein’s thinking.

Put in the simplest language, Newton’s Second Law says that the

acceleration an object experiences is proportional to the force applied

to it. The constant of proportionality is the mass of the object. In short,

F = ma . I am assuming for the moment that we have some general idea

of what these terms mean. When I come to Mach’s critique, it is this we

will have to examine. I want to focus on the acceleration. To say that

an object is accelerated is to say that its motion has been changed. This

can mean that its direction has changed or that while moving in a given
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direction it changes its speed or both. To simplify, I will suppose that

the motion is along a one-dimensional straight line. This simplification

will not change anything essential. Let us consider two times–“initial”

and “final”–which we denote by t(initial) and t(final). If the motion is

accelerated, the speeds at these times, v(initial) and v(final), are different.

We can form the quantity (v(final) − v(initial))/(t(final) − t(initial)).

This gives a measure of how much the speed has changed in the interval

in question. What Newton did was to allow the interval to get smaller

and smaller so that, in the limit of an infinitesimally small interval, we

have the ratio at a single time somewhere in the middle. This limit is how

the acceleration at some arbitrary time is defined. This limiting process

is an example of the differential calculus which Newton invented for

this purpose. Now I want to persuade you that Newton’s law as we

have stated it obeys the relativity principle, at least in this example. The

argument can be generalized to any motion.

First, consider the right-hand side of the equation. How would this

look to an observer in uniform motion with a speed that we shall call

v(relative)? The speed, v(relative), in our one-dimensional example can

be positive or negative. Now, common sense tells us that to rewrite the

equation for the acceleration from the point of view of the moving ob-

server, we should simply add v(relative) to whatever velocities we have

at hand. Thus, the numerator in the Newton’s law equation becomes

v(final) + v(relative) − v(initial) − v(relative). We see that v(relative)

has canceled out so that the numerator takes exactly the same form

in both systems. Common sense also tells us that the times do not de-

pend on v(relative) so that the denominator does not change either. In

fact, both of these common sense observations turn out to be wrong,

as we will learn in the next chapter when we discuss Einstein’s rela-

tivity. What about the left-hand side of the equation? The forces that

Newton considered–primarily gravitation–do not depend on the veloc-

ities. For example, the gravitational attraction between two objects de-

creases as the square of the distance—as 1/d2–which does not depend

on which uniformly moving systems you view these objects from. Later

in this chapter we will consider electromagnetic forces that do depend
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on velocities. This introduces a new element into the discussion of rela-

tivity. It is not an accident that Einstein called his relativity paper “On

the Electrodynamics of Moving Bodies.” But we see here how relativity

is built into Newtonian mechanics. In our example, the equation has ex-

actly the same form in a system at rest and in a system moving uniformly

with respect to it. This is something that was after Einstein’s relativity

called the “covariance” of the equations—the fact that they take the same

form in different reference systems.

Newton’s mechanics were so successful that for the next two cen-

turies the foundation on which they were based was not critically ex-

amined. The first person to do this, at least the first person to do it

whose work had an impact, was the above-mentioned Mach. Before I

explain Mach’s objections let me say a bit about him. He was born Ernst

Walfried Joseph Wenzel Mach on 18 February 1838, in the Austro-

Hungarian town of Chirlitz. This makes him a good deal older than

Einstein who, remember, was born in 1879. Nonetheless, the two men

met in 1912, in Vienna, a meeting that Professor Frank arranged and

attended. Einstein and Mach, Professor Frank recalled, discussed the

“existence” of atoms, to which we shall devote the third chapter in which

I shall discuss why Mach thought that atoms did not exist. At the age

of nine, Mach was enrolled in a Benedictine Gymnasium near Vienna.

The fathers there rated him as “sehr talentlos”–more or less hopeless. He

was then tutored by his own father who used to shout at him impreca-

tions like “Norse brains” or “Head of Greenlander.” Mach decided that

he would become a cabinetmaker and move to America and, indeed, for

two years he was apprenticed to a cabinetmaker. If you read Mach’s

great polemic book, The Science of Mechanics, you will be struck by the

illustrations of mechanical devices that look like they could have been

built by a cabinetmaker.

At the age of fifteen he returned to the Gymnasium and later wrote,

With respect to social relations and the like I must have seemed
extremely immature and childish. Apart from my slight talent in
this direction, this is to be explained to some extent by the fact that
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I was fifteen years old before I ever engaged in social intercourse,
particularly with students of my own age . . . . At the beginning
things did not go especially well, since I lacked all of the school
cleverness and slyness which first have to be acquired in these
matters.

Despite this rather unpromising start, Mach was able to enter the

University of Vienna in 1855, where he received his PhD five years later

working on what seems to have been experimental aspects of electricity.

Mach, by his own admission, never had a strong background in mathe-

matics and never did any significant theoretical physics. After taking his

degree, Mach became a Privatdozent at the university, which allowed him

to lecture. The students paid him directly. Professor Frank held the same

position a few decades later. Mach really earned his living by giving pop-

ular and semipopular lectures–especially to medical students–that were

later published. After a period at the university in Graz, in 1866, Mach

became a professor at the German University in Prague. Both Einstein

and Frank became professors there. One of Mach’s early interests was

the Doppler shift. We are familiar with it because we hear the shift in

pitch of approaching sirens and train whistles–fairly rapidly moving ve-

hicles. But, when the Austrian physicist Christian Doppler proposed it

in 1842, on theoretical grounds, there was a great deal of skepticism that

lasted for many years. One of Mach’s own professors, Joseph Petzval,

claimed that it was impossible because of something he called the “law of

conservation of the period of oscillation.” In 1860, Mach built a simple

apparatus to demonstrate it. It consisted of a long tube that was free

to rotate around a central axis. A sound was produced in the tube by

forcing wind through it. If one was stationed in the plane of rotation of

the tube one heard the shift, while if one stationed oneself on the axis of

rotation, it disappeared. (As we shall see, this is a feature of the “clas-

sical” Doppler shift which no longer holds in Einstein’s theory.) Even

so, in 1878, Mach had to persuade a group of teachers and students to

sit on a hill overlooking some railroad tracks and listen to whistles of

approaching trains. Afterwards, they signed a document as a testament

to what they had heard.
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In presenting his critique of Newton’s formulation of his mechanics,

Mach did not argue that the physics was actually wrong and needed

to be replaced. His point was that Newton had assumed implicitly, or

explicitly, metaphysical or theological doctrines that made his theory

unscientific. What Mach wanted to do was to rid the theory of this

baggage–“harmful vermin”–as Einstein later referred to it. The Principia

begins with a series of definitions followed by a set of Laws. The first

definition already shows the problem. It reads:

Definition I. The quantity of any matter is the measure of it by
its density and volume conjointly. The quantity is what I shall
understand by the term mass or body in the discussions to follow. It
is ascertainable from the weight of the body in question. For I have
found, by pendulum experiments of high precision, that the mass
of a body is proportional to its weight; as will hereafter be shown.

Two things are evidently wrong with this definition. Density is mass

per unit volume, so the definition is circular. Secondly, he confounds mass

with weight. Didn’t Newton realize that, for example, on the Moon you

would weigh about a sixth of your earthly weight, even though your mass

would not have changed? However, one can see, that for many practical

purposes, this definition might serve, even though it is fundamentally

flawed. Mach writes,

. . . we do not find the expression “quantity of matter” adapted to
explain and elucidate the concept of mass, since that expression it-
self is not possessed of the requisite clearness. And this is so, though
we go back, as many authors have done, to an enumeration of the
hypothetical atoms. We only complicate, in so doing, indefensible
conceptions. . . .

Mach is saying that it is no good trying to explain masses in terms of

atoms, because these are themselves “indefensible conceptions. How-

ever, it is in terms of the ill-defined notion of mass, that Newton makes

his second definition;
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Definition II. Quantity of motion is the measure of it by the velocity
and quantity of matter conjointly.

“Quantity of motion” is what we would now call “momentum.” It

is usually designated by the letter “p.” What Newton is saying is that

by definition the momentum p is equal to mv, p = mv, where “v” is the

velocity and “m” is the mass. In terms of these definitions Newton then

stated the Second Law.

Law II. Change of motion [i.e., of momentum] is proportional to
the moving force impressed, and takes place in the direction of the
straight line in which such force is impressed.

This statement of the Second Law is more general than the one I

used before which was simply F = ma . Here, it is F = �p
�t , the change of

momentum as a function of time. So long as the mass does not depend on

time the two definitions are the same. If not, we must also take account

of the time-dependent mass change. In Einstein’s theory of relativity, as

we shall see, the mass can depend on time, so we must use the Newtonian

form of the Second Law. We must also use it, for example, in describing

rocket propulsion as the mass of the rocket diminishes because the pro-

pellant is being expelled. Mach has no problem with the generalization.

He does have a problem with the potential circularity of the law. There is

no independent definition of “force.” To see if a force has acted, and what

its characteristics might be, we must have an independent definition of

acceleration. From the way I have approached it earlier, it is clear that

this comes down to having a completely reliable measurement of time. If

we have a faulty clock–one that speeds up, or slows down, or even stops

erratically, during the time interval within which we are trying to mea-

sure the acceleration–we can get all sorts of results. We might attribute

these to an erratic clock, or to some new force. There would be no obvious

way of telling the difference. The Second Law would lose its content.

Newton seems to have been aware of this. It is presumably why he

felt that it was necessary to introduce “absolute” time, one of whose char-

acteristics was precisely that it did not require measurement by clocks.
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To this, Mach objects vigorously. He writes, “It would appear as though

Newton in the remarks here cited [on “absolute” time] still stood un-

der the influence of the medieval philosophy, as though he had grown

unfaithful to his resolves to investigate actual facts”

He goes on to conclude,

. . . But we must not forget that all things in the world are connected
to one another and depend on one another, and that we ourselves
and all our thoughts are also a part of nature. It is utterly beyond
our power to measure the changes of things by time. Quite the con-
trary, time is an abstraction at which we arrive by means of the
changes of things; made because we are not restricted to any one
definite measure, all being interconnected. A motion is termed uni-
form in which equal increments of space described by some motion
with which we form comparison, as the rotation of the earth. A mo-
tion, with respect to another motion, be uniform. But the question
whether a motion is in itself uniform, is senseless. With just as little
justice, also, may we speak of an “absolute time”–of a time indepen-
dent of change. This absolute time can be measured by comparison
with no motion; it has neither a practical nor a scientific value; and
no one is justified in saying that he knows aught about it. It is an
idle metaphysical conception.

One can only imagine the sense of liberation that the young

Einstein must have felt when he read these words.

Newton was much too great a scientist not to have understood

that uniform motion had no absolute meaning, at least scientifically. He

must have realized that the relativity principle was built into his theory.

However, he felt that acceleration was something different. He was sure

that absolute acceleration made sense. He gave two reasons for this; one

scientific and the other theological. Mach’s discussion of the former is

one of the most noted portions of his book. Newton makes a distinction

between “absolute” and “relative” motion. He writes,

Absolute motion is the translation of a body from one absolute place
to another absolute place; and relative motion the translation from
one relative place to another relative place . . . . And thus we use in
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common affairs, instead of absolute places and motions, relative ones;
and that without any inconvenience. But in physical disquisitions
we should abstract from the senses. For it may be that there is no
body really at rest, to which the places and motions of others can
be referred.

In short, Newton is claiming that these absolute motions should be

meaningful in empty space. To support this notion he brings in the matter

of circular motion whose effects, he claims, are manifestly absolute. He

writes,

The effects by which absolute and relative motions are distin-
guished from one another, are centrifugal forces, or those forces
in circular motion which produce a tendency of recession from
the axis. For in a circular motion which is purely relative no such
forces exist; but in a true and absolute circular motion they do exist;
and are greater or less according to the quantity of the [absolute]
motion.

Newton then clarifies this rather obscure pronouncement by citing

an experiment. He writes,

For instance. If a bucket, suspended by a long cord, is so often
turned about that finally the cord is strongly twisted, then is filled
with water, and held at rest together with the water; and after-
wards by the action of second force, it is suddenly set whirling
about the contrary way, and continues, while the cord is untwist-
ing itself, for some time in this motion; the surface of the water will
at first be level, just as it was before the vessel began to move; but,
subsequently, the vessel, by gradually communicating its motion
to the water, will make it begin sensibly to rotate, and the water
will recede little by little from the middle and rise up the sides of
the vessel, its surface assuming a concave form. (This experiment
I have made myself.)

In short, at first sight, it looks as if Newton has constructed an ex-

periment in which the effects of rotation seem not to depend on any
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reference system. You could imagine performing it in empty space.

Mach’s response is to point out that Newton’s experiment is not done in

empty space. He writes,

Newton’s experiment with the rotating vessel of water simply in-
forms us, that the relative rotation of the water with respect to the
sides of the vessel produces no centrifugal forces, but that such
forces are produced by its relative rotation with respect to the mass
of the earth and the other celestial bodies. No one is competent to
say how the experiment would turn out if the sides of the vessel
increased in thickness and mass till they were ultimately several
leagues thick. The one experiment only lies before us, and our
business is, to bring it into accord with the other facts known to
us, and not with arbitrary fictions of our imagination.

In 1916, Einstein published his theory of gravitation. In 1918, the

Austrian physicist Hans Thirring, using the theory, considered what

would happen if you had the equivalent of Newton’s bucket at the center

of a hollow sphere with a massive shell and you rotated the shell. He

found that you would have the same affect at the center as if you had

rotated the bucket. In short, Mach was right. You cannot have any

idea of what would happen in empty space, because space is not empty.

Newton, as I have mentioned, was a deeply religious man. For him, the

distinction between science and religion did not really exist. He noted,

that while absolute motions might not be observable to us, they were

well-defined in the sensorium of God. Newtonian mechanics rested on a

theological and metaphysical base which, because of its vast success, had

been overlooked.

Next we turn to light and electricity.

The Aether

Upon considering the phenomena of the aberration of stars, I am
disposed to believe that the luminiferous aether pervades the sub-
stance of all material bodies with little or no resistance as the wind
passes through a grove of trees.

—Thomas Young
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The first person to introduce into physics what later came to be

called the “aether” was the French polymath René Descartes. Descartes,

who was born in France in 1596, lived much of his life in Holland and died

in Sweden in 1650. His life overlapped with that of Newton, who used his

mathematics and was derisory about much of his physics. For example,

Newton used Descartes algebraic characterization of an ellipse–the one

we use today. Descartes took Galileo’s encounter with the Church as a

warning and concocted a kind of mixed Copernican universe. The Earth

was at rest at some kind of vortex which then went around the Sun.

Descartes and Kepler had in common the idea that this orbital motion

had to be explained by a “hands on” set of influences. In Kepler’s case it

was a magnetic force emanating from the Sun and for Descartes it was the

aether. This medium, which was not directly detectable, had vortices and

swirls (see Figure 1.4). They were forever changing and when the Earth

got caught in a vortex it was swept along like a boat in a turbulent stream.

This picture avoided what was thought to be the intolerable notion of

“action at a distance”–an influence propagated, perhaps instantaneously,

from a far off object, such as the Sun, to the Earth with nothing like a

discernible push or pull. One of the manifestations of the greatness of

Newton was that he resisted the temptation to “explain” gravitation. He

wrote down the law and then derived the consequences.

Over the next century the aether, or aethers, became a “theory of

everything.” There was an electrical aether that transmitted electrical

influences. There was a heat aether—caloric—that was the medium that

transported heat. Indeed, it was heat. It was well understood that sound

was transported in media like the air–a material aether. Beginning in the

time of Newton, there was also a “luminiferous aether” that, in one form

or other, transmitted light. Indeed, there were two theories of light. One

of them argued that light was transmitted, like arrows through the air, by

particles that penetrated the aether. The other held that light was in fact

a series of vibrations of the aether, resembling sound, but moving very

much faster. It was known that light, unlike sound, could be transmit-

ted through whatever vacua could be made in the laboratory–but these
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Figure 1.4. Descartes’ aether had vortices and swirls.

27



SVNY072-Bernstein August 27, 2005 11:2

S e c r e t s o f t h e O l d O n e

“vacua” were also permeated by the aether. Newton’s view of this is very

instructive. He was not entirely sure what light was. He wrote that light is

something of a different kind, propagated from lucid bodies. They,
that will, may suppose it an aggregate of various peripatetic quali-
ties. Others may suppose it multitudes of unimaginable small and
swift corpuscles of various sizes, springing from shining bodies
at great distances one after another; but yet without any sensi-
ble interval of time, and continually urged forward by a principle
of motion, which in the beginning accelerates them, till the resis-
tance of the aethereal medium equals the force of that principle,
much after the manner that bodies let fall in the water are ac-
celerated till the resistance of the water equals the force of grav-
ity . . . . But they, like not this, may suppose light any other cor-
poreal emanation, or any impulse or motion of any other medium
or aetherial spirit diffused through the main body of aether, or
what else they can imagine proper for this purpose. To avoid dis-
pute, and make this hypothesis general, let every man here take his
fancy; only whatever light be, I suppose it consists of rays differing
from one another in contingent circumstances, as bigness, form,
or vigour.

Newton, as I will now explain, had good scientific reasons for re-

jecting both the particle and wave theories of light as they were then

being expounded.

The particle theory appeared to make a clear prediction of how

objects cast shadows. They should be sharp since the object presum-

ably just blocked the particles. However, an Italian physicist named

Francesco Maria Grimaldi, whom Newton referred to as “Grimaldo,”

had made the discovery that these objects cast shadows that were too

large–larger than they “ought” to be–as Newton put it. He verified this

phenomenon–“diffraction”–for himself. This seemed very difficult to rec-

oncile with a particle theory of light. To understand Newton’s objections

to the wave theory we have to understand what was on offer, something

very different to the light waves we are familiar with. There was an un-

derstanding of how sound propagates in a medium—some of this due to
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Compressions

Rarefactions

Figure 1.5. A tuning fork emitting sound waves in, say, air.

Newton himself. I will put it baldly and then explain. Sound propagates

as a longitudinal pressure wave. What does that mean?

See what happens in Figure 1.5. As the tuning fork vibrates, the

vibrations push the adjacent air molecules. As shown, these move to

the right. Others can move in other directions, but for simplicity let us

consider the right-moving ones alone. Because of the motion of the air

and the tuning fork there will be regions of compression and rarefactions.

These regions will assume a periodic character reflecting the periodic

motions of the tuning fork. Newton described this picturesquely as “fits

of easy reflection” and “fits of easy transmission.” If you plot the pressure

measured at any point as a function of time it oscillates up and down

periodically. But the periodicity of the wave itself consists of the pattern

of compression and rarefaction that reflect the oscillations of the tuning

fork. Later I will discuss light waves more carefully, but here I will just

note that they oscillate in a plane at right angles to their movement, while

sound waves oscillate in the direction of their movement, hence the term

“longitudinal.” The way a wave-length is assigned to these longitudinal

waves is to measure the distance from, say, one compression to the next.

The frequency of such a wave is the number of compressions that pass

a given point per second. The product of the frequency and the wave

length measures the speed of propagation. I will shortly explain how

using waves explains optical phenomena like diffraction–something that

Newton seemed to understand. But here I want to indicate the problem

that Newton had with the wave theory of light. It came from an unlikely

source–Iceland.

Sometime in the 17th century a sailor brought back from Ice-

land to Copenhagen, beautiful crystals—really cleavage fragments of
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Figure 1.6. An example of the optical effect when viewing an object through
“Iceland Spar” crystal. (Photograph courtesy Joanna Edkins)

calcite–which were called “Iceland Spar.” He had collected them in the

Bay of Röerford.

A Dane named Erasmus Bartholin observed a remarkable opti-

cal effect. Small objects viewed through such a calcite crystal appear

doubled. Each of the rays seemed to have different optical properties

(Figure 1.6). The first person to make a significant study of this was

the Dutch physicist Christiaan Huygens. He was born in 1629 and died

in 1695, so he also overlapped with Newton. Huygens was a brilliant

scientist. He was the first person to make a quantitative estimate of the

distance to a star–Sirius. He assumed that it had the same intrinsic lumi-

nosity as the Sun and found it to be 2.5 trillion miles away, as opposed

to the actual distance which is twenty times farther, since Sirius is more

luminous than the Sun. His most important work was in the support

of the wave theory. He had a variety of objections to the particle the-

ory including the fact that light rays can cross over each other without

evident hindrance. Indeed, the most characteristic property of waves is

how they interact. When two waves meet they interfere to produce a

resultant wave. If crests meet crests then the waves are enhanced. If

crests meet troughs the waves can annihilate each other. Particles, at

least classical particles, do not annihilate each other. Huygens invented

a method for calculating the future progress of a light wave from its
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Figure 1.7. The two refracted rays passing through the Iceland Spar crystal are
polarized with perpendicular orientations.

characteristics at any prior time. I will come to it in a moment, but first

I want to discuss his observations with the Iceland Spar.

Huygens had the ingenious idea of using two of these crystals

in series. The first crystal split the beam into two. But Huygens no-

ticed that the second crystal did a variety of things if he let a single

beam from the first crystal go though it. Sometimes the single beam

would be split in two, and sometimes it would not. Sometimes, depend-

ing on the orientation of the two crystals–how they had been rotated

with respect to each other–the second crystal would not transmit the

beam at all. Figure 1.7 shows an anachronistic diagram of what hap-

pened in the first crystal. It is anachronistic because we know the an-

swer, which Huygens did not. It is what we call “polarization.” The

little arrows show how the light ray oscillates compared to the direc-

tion in which it propagates. What happens is that the first crystal acts

as a polarizer and the second crystal as an analyzer that only allows

transmission of light that has the proper orientation of its polarization.

Huygens did not know this. It was only fully understood in the nineteenth

century.

When Newton heard about Huygens’s result, he correctly drew

the conclusion that light could not be a longitudinal pressure wave like

sound. He does not seem to have considered any other kind of wave as

a possibility.
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Figure 1.8. Huygens wave construction.

The Huygens wave construction is the proposition that each point

on a wave front, at a given time, acts as a source for the future wave.

Suppose, as in Figure 1.8, that the wave fronts are planes—something we

call a “plane wave.” At each point on one of the planes we draw a circle,

part of which sticks out to where the wave will go. If we fix the radii of

the circles we fix the next moment in time. We then draw the envelope

of all these circles where they stick out into the future–a figure tangent

to each of the circles. In this case it will be a plane, as Figure 1.8 shows.

Huygens did not have the mathematics to work out his construction

in complex cases–this was left to the early 19th-century mathematical

physicist Augustin Fresnel–but he did see how to use it to explain many

of the optical phenomena he had observed.

Nonetheless, there were, even in the early 19th century, partisans

of both the particle and the wave theories of light. The matter was settled

to everyone’s satisfaction by the work of the British polymath Thomas

Young. We will meet Young again on the third chapter in which we

discuss the “existence” of atoms. He was the first person to make a
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quantitative measurement of the sizes of molecules. We would also meet

him if this was a book on Egyptian hieroglyphics. Using material brought

back from Egypt by the French, Young was able to make the start of a

Greek-demotic dictionary–demotic being an early Egyptian written lan-

guage. From this he was able to decipher a few of the hieroglyphs which

had demotic translations. The job, using Young’s work, was completed

by the French linguist Jean François Champollion. Young, who could

read at age two–he was born in 1773–and had read the Bible twice by age

six, had already started the study of Latin. By the time he was twenty,

he had mastered at least a dozen languages. Young began his career as

a doctor but soon wandered into science. At the turn of the century he

was defending the wave theory of light. By 1801, he had done the first of

his experiments that seemed to prove it once and for all (see Figure 1.9).

You notice that a plane wave is incident on a barrier with two slits

through which the light can pass. If the light consisted of particles they

would pass through the slits, when they do so, and leave simple spots on

the detector. But this is not what Young observed. He found a series of

fringes. He showed how this could be understood by the interference of

waves. Figure 1.9 shows two waves interfering which will produce bright

PLANE
WAVES

Figure 1.9. Young’s demonstration of the wave-nature of light.
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DIRECTION OF WAVE TRAVEL

Figure 1.10. Light is entirely transverse, as shown by the direction in which vibrations
travel.

lines on a detector. In 1810, Young learned of an experiment in which

reflected light was polarized similar to what happens in the Icelandic

Spar. Young made a suggestion that went part of the way towards an

explanation. He said that a light-ray might have a partially transverse

part. Later Fresnel showed that light was entirely transverse, meaning

that the direction of vibration was always at right angles to the direction

of propagation (Figure 1.10).

This posed a profound problem for the aether theorists with which

they were occupied for the rest of the century.

The reason that sound is a longitudinal wave is because the media

it travels through have little or no elastic resistance. It is like shooting

bullets through fog. There is no resistance to deformation. But light waves

are transverse which means that the aether must be some sort of elastic

solid! This seems quite mad. We are, it was pointed out, moving through

this hypothetical aether all the time, to say nothing of the other planets,

and we do not sense any resistance, and the planetary orbits are not af-

fected by it. It turned out that not much was known about elastic solids.

This dilemma inspired a mathematical development whose fruits we en-

joy to the present day, even though the motivation has long been lost. For

example, a British theoretical physicist named George Stokes presented

a theory that had analogies to the behavior of substances like shoemaker’s

wax, which were plastic but allowed bodies to pass through them. Per-

haps the aether was an extreme form of this which had these special prop-

erties because of the great speed of light and the small wavelengths. Visi-

ble light has wave lengths typically of about fifty thousandths of an inch,

while the shortest wavelength of sound audible to us is about a half inch.
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As we now shall see, by the end of the century, experiments had

been performed on light which had sufficient accuracy so that they should

have been able to detect the speed of the Earth through the aether. These

experiments detected nothing. This provoked a major crisis in physics

which was unresolved as the century closed.

CO NT RA C T I O N S
Einstein, following a suggestion originally made by Poincaré, then
proposed that all the physical laws should be of such a kind that they
remain unchanged under a Lorentz transformation.

—Richard Feynman

In the early 1970s, I wrote a brief biography of Einstein. He had

died on April 18, 1955, but his house in Princeton at 112 Mercer Street

was still occupied by his stepdaughter Margot, and by Helen Dukas, who

had been his secretary since the 1920s and had come here from Germany

in 1933 with Einstein. Professor Frank had known Miss Dukas for years,

so when I went to work at the Institute for Advanced Study at Princeton

in 1957, it was easy for me to meet her. When I began doing research

on my book, I asked if I could visit the house, and Miss Dukas was kind

enough to agree. Einstein lived in a small apartment on the second floor,

which was pretty much as he had left it. Miss Dukas said there were a

few more plants. The chair and table on which he worked were still there,

as was his small library of general books, which were pretty serious. I

noticed Frazer’s Golden Bough and Gandhi’s autobiography. On the wall

I noticed something that looked a little odd. There was an etching of the

Scottish physicist James Clerk Maxwell, whose work we are about to

discuss. Next to it was a frame of about the same size with a bit of modern

art. I asked Miss Dukas whether Einstein had chosen the art. She said

that what had happened is that there had been an etching of Newton

which had come out of its frame. This happened after Einstein’s death

and it had been replaced by the modern art. I found this very amusing.

As we shall see, Einstein’s theory of relativity leaves Maxwell intact, but

replaces Newton.
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The 17th century is often referred to as the age of Newton. I think

the 19th century might be called the age of Maxwell. It is not that the

two men did not have important predecessors and contemporaries,

but they towered over everyone else. In Newton’s case there were Galileo

and Kepler, and the mathematics of Descartes, to mention a few. In

Maxwell’s case, these people are probably best known to most of us be-

cause physical units that we still use are named after them. Here are a

few examples. In the late 18th century, the French physicist Charles-

Augustin Coulomb discovered that forces between charges fall off as the

inverse square of the distance between them–like the force of gravitation.

In 1819, the Danish physicist Hans-Christian Ørsted found that elec-

tric currents produce magnetic actions such as moving compass needles.

This was the first hint that electricity and magnetism might be related

phenomena. About the same time, the French physicist André Marie

Ampère found the law of magnetic force between two electric currents.

And then there is Michael Faraday. Faraday, was a poor boy, born near

London in 1791, who worked as a bookbinder’s apprentice. His intro-

duction to science was in reading some of the pages he was binding. In

1812, one of the customers gave Faraday tickets to hear lectures by the

chemist Humphry Davy. Faraday took detailed notes and sent Davy a

bound copy. This eventually led to a position as Davy’s assistant. Davy

took him on a trip to Europe where they met the scientists who were

studying electricity and magnetism. When Faraday returned to London,

he repeated all the experiments he had seen, and then began his own.

These ultimately led to Faraday’s idea of lines of force. Using iron fil-

ings, he mapped out how magnetic forces varied in space. This, in turn,

led to the notion of fields of force which became the basis of Maxwell’s

work. Faraday never learned much mathematics, but the one theory

he said he understood was Maxwell’s. Maxwell gave mathematical ex-

pression to Faraday’s discoveries. It is the mathematics we still teach

and use.

Maxwell was born in Edinburgh in June of 1831. He came from

a prominent Scottish family and ultimately inherited 1500 acres of

farmland in southwestern Scotland. He did much of his scientific writing
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on his estate. This began at the age of fourteen, when he published a

paper on a method for drawing a perfect oval. His next papers were on

geometrical subjects. Then he turned to optics. He studied at Cambridge

and began working on electricity shortly after he graduated in 1854. His

lifetime work on this culminated in his great book, Treatise on Electricity

and Magnetism, which was published in two volumes in 1873. It was to

this subject what Newton’s Principia was to the science of mechanics.

Volumes have been written about Maxwell’s work in physics, which

covered the entire range from a theory of Saturn’s rings to seminal work

in statistical mechanics. We shall discuss a bit of the latter in our chapter

on atoms. Here, I want to focus on a small part of his electromagnetic

work.

Maxwell first derived his equations using a baroque model of the

aether in which, for example, rotating vortices represented magnetic

fields. How he was able to see through the details of this model to the

underlying equations is a mystery to me. In any event, by the time he came

to write his book, the model had disappeared. The equations remain.

When contemplating his model, Maxwell asked himself how would

a disturbance in this aether propagate. How would the electric and mag-

netic fields generated by this disturbance evolve in time. He discovered

that they would propagate as transverse waves. In his model there was

an expression for the speed of the wave in terms of measurable electro-

magnetic parameters. When he put in the experimental values for them

he discovered that the speed that emerged was the speed of light, or

very nearly. His number was 3.1 × 1010 centimeters per second, while

the best measured number was, at the time, 3.15 × 1010 centimeters per

second. In the next chapter I will describe these experiments. Maxwell

drew the tentative, and then very radical, conclusion that light was an

electromagnetic wave. He did not suggest a way of testing this. This was

left to the German physicist, Heinrich Rudolf Hertz. Hertz published his

experiment in 1887, by which time Maxwell had been dead for several

years. He died of cancer in 1879, at the age of forty-eight. What Hertz

did was to produce electromagnetic waves using oscillating electric cur-

rents. One circuit was used as an emitter and another as a detector. In one
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instance he put the detector at the other end of a large room and watched

as sparks were created when the wave from the emitter arrived. By mov-

ing the detector around he could measure the wavelength and, ultimately,

the velocity of the waves–again finding the speed of light. That light was

an electromagnetic wave was now demonstrated.

Not long before his death, Maxwell wrote a letter to the American

Astronomer David Peck Todd, who was the director of the Nautical

Almanac Office in Washington, DC, which, despite its name, did some

basic work in astronomy. Maxwell had wondered if the speed of the Earth

through the aether was measurable. He had in mind using light coming

from the satellites of Jupiter. He explained the reason why he thought

using terrestrial light sources would not work. His argument is a template

for our future discussion which will get us closer to Einstein’s relativity.

So we should pay special attention to it. In the aether theory, the speed

of light is determined by the physical properties of the aether, just as the

speed of sound is determined by the properties of the medium in which

the sound is propagated. Once you introduce light in the resting aether, it

propagates with a speed that I shall call–using the common convention–
“c.” By the way, Maxwell used “v” for the speed of light and this was

adopted by Einstein in his 1905 paper. A few years later he switched to

“c.” This is the speed that would be measured by any observer at rest in

the aether. But, suppose you are not at rest. Common sense tells us that

if we are moving towards the advancing light with a speed v the light

would appear to be moving with respect to us with a speed c + v. On

the other hand, if we are moving away from the light the speed would be

c − v. This suggests a way of measuring v. We could set up a light emitter

somewhere and then go a distance “L” and time how long it takes for the

light to arrive there. This time depends on our motion with respect to the

aether. If we are moving towards the light the time is L
c + v

, while if we are

moving away from the light the time is L
c − v

. You may well object that, a

priori, we do not know in which direction we are moving in the aether.

I agree, but to get around this let us time the flight now, and then six

months from now, when the Earth is moving in the opposite direction.

We should see a difference if the aether theory is right. There is nothing
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wrong with this method in principle. In practice, it won’t work, at least

for the clocks that were available in the 19th century.4

To see why, recall that the orbital speed of the Earth is about 3×106

centimeters per second. What measures the size of the effect above for

a one-way trip, is the ratio of this speed to that of light—v/c—which

is about one ten thousandth. Putting the matter algebraically, L
c − v

=
L
c

[
1

1− v
c

]
≈ L

c

[
1 + v

c

]
.5 We see that the correction to the time it would

take if we were at rest in the aether, L/c , is of order v/c . The speed of

light is so fast that, with the clocks that were then at hand, you would

never observe this effect. For all practical purposes the transmission of

light between two points within a moderate distance from each other is

instantaneous. It may have occurred to the reader–it certainly occurred

to Maxwell–that there is a simple way to double the path-length and

perhaps make the passage of the light a little less instantaneous. You

simply put a mirror at the distance L, and time the round trip from the

source and back again. With our formulae we can see that the total time

for this round trip is

L

c − v
+ L

c + v
= 2c L

1
c 2 − v2

= 2L

c

1

1 − v2

c 2

≈ 2L

c
× (1 + v2

c 2
)

Thus, this effect is of order v2/c 2 relative to the time if we were at rest

which is 2L/c . We recall that v/c is one ten-thousandth, which means

that v2/c 2 is one hundred millionth! Maxwell argued, that since any

practical terrestrial measurement would have to involve a round trip for

the light, such a measurement was out of reach. As it happened, that

while Maxwell had the correct address on the envelope of his letter, he

had addressed it to the wrong person. He should have addressed it to a

young naval officer named Albert Abraham Michelson, who was then

spending a good deal of time at the Nautical Almanac Office.

4There are subtle issues involved in such time of flight measurements that I am
ignoring. Implicitly they assume that distant clocks can be synchronized. This
is just the sort of issue that Einstein raised in his discussion of the relativity of
time, the subject of the next chapter.

5In general for x much smaller than 1 we have 1
1 ± x = 1 ∓ x.
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In 1907, Michelson became the first American to win the Nobel

Prize in any science–physics in his case. Like many subsequent American

winners of the Prize, he was not born in this country. He was born on

December 1852, in what is now Strzelno, Poland. When he was three,

fleeing from anti-Semitic pogroms, he left Poland with his mother and

father for the United States. After arriving in New York, the family

set sail for California, where they heard that gold had been discovered.

Since there was no Panama Canal, this involved traversing the Isthmus

of Panama by mule and canoe. They ended up at Murphy’s Camp, a

mining settlement, at the foothills of the Sierra Nevada. Michelson’s fa-

ther set up a store to sell things like picks and shovels to the miners.

Michelson received a rudimentary education in a local school and then

was sent to San Francisco for his high school education. While there, he

began studying optics on his own. His father found a newspaper item

which said that there was a possible opening at the Naval Academy in

Annapolis. Michelson applied, and failed to get the appointment. How-

ever, he had heard that the President–Grant in this instance–had ten

appointments-at-large at his disposal. Michelson made the cross-county

trip to Washington alone and, remarkably, had an interview with Grant,

only to be told that the appointments had been made. But he was en-

couraged to go to Annapolis in case one of the appointees did not qualify,

which is what happened.

Michelson proved to be a brilliant student in science, less so in sea-

manship. After the obligatory sea duty, Michelson returned to Annapolis

where he was asked to assist in a physics course. While preparing, he

invented a method of improving the existing measurements of the speed

of light. He found the value 299,910 kilometers per second, which was

some two hundred times more accurate than any previous measurement.

This caught the attention of Simon Newcomb, a very distinguished as-

tronomer, who was then the director of the Nautical Almanac Office.

Newcomb invited Michelson to join him in an even better measurement

of the speed of light. It was during this period when Maxwell’s letter

to Todd arrived. Michelson, who was shown the letter, decided that

he would try to devise a method to measure the aether speed to a few
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mirrors
path 2

path 1

interference
pattern

incoming light

half-silvered
      mirror

Figure 1.11. A simplified Michelson inferometer.

parts in a hundred million. In 1880, Michelson was granted a years’

leave of absence from the navy to go to Germany and continue his re-

search. While there, he invented his most important piece of scientific

instrumentation—what came to be called the “Michelson interferome-

ter.” Figure 1.11 is a simplified diagram.

A beam of light enters the apparatus from the left. It encounters a

half-silvered mirror that splits the beam. As shown, half the beam follows

the path 1 and half path 2. Both beams encounter mirrors as shown and

are reflected back and rejoin. Suppose that the time of transit for the

two beams in their respective paths is somewhat different. This means

that when they rejoin, the light waves will be slightly displaced from

each other. A peak will no longer coincide with a peak, for example. The

two beams will interfere and produce an interference pattern that will

reflect this. This is how you can tell that there was a time difference in the

paths. It is a very sensitive method and Michelson was sure that it could

be adapted to measure the speed of the Earth in the aether. Before we

discuss what actually happened when he tried this, we need to explain

what the effect is. We have already done half the work. Suppose the Earth

is moving in the direction of the path 1 beam. This is just the setup we

discussed above. So we know that the round trip time which I will call τ1

is τ1 = 2L
c × 1(

1− v2

c 2

) ∼= 2L
c (1 + v2

c 2 ). Finding τ2 is a little more complicated.

We are going to need the Pythagorean theorem from Euclidean geometry,

which Einstein proved at the age of twelve and whose proof I give in the
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5

3

4

c b

a

a2 + b2 = c2 , 32 + 42 = 52

hypotenuse

Figure 1.12. A familiar example of Euclidian geometry and the Pythagorean theorem.

√c2 – u2

u

c

Figure 1.13. An example of the Pythagorean theorem at work.

next chapter. Here, I just want to remind you of what it says. Figure 1.12

may take you back to high school. The particular triangle with sides of

magnitude 3, 4, and 5 may, or may not, recall fond memories.

Here is how I am going to use the theorem. Suppose, as Figure 1.13

indicates, the Earth is moving with a speed u in the direction shown. Light

in the aether travels with the speed c . If I want to end up at the mirror I

have to alter path 2 to take this into account. Michelson explained that

this was like swimming with a stream flowing and trying to land on the

bank just opposite where you started. You have to point upstream. The

speed you have going in the direction you really want is the straight side

of the right triangle in Figure 1.13.
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The hypotenuse is c, and the other side is u, so by the Pythagorean

theorem the speed you have going in the direction you want is given

by v = √
c 2 − u2. If we factor out the c then the time it takes for the

trip across and back is τ2 = 2L
c × 1√

1− u2

c 2

∼= 2L
c (1 + 1

2
u2

c 2 ).6 The factor of

one-half comes from the square root. In our case u is the speed v of the

Earth through the aether. Thus for this case τ1 − τ2
∼= L

c × v2

c 2 . It was

this insanely small number that Michelson was proposing to measure or

nearly. In his original analysis Michelson was off by a factor of two. He

predicted an effect twice as large. But still, how can one measure it? I

make use of the correct expression which Michelson soon adopted.

If we multiply the expression for the time difference by the velocity

of light, c , we find the distance by which the two waves arriving back

at the observer have been shifted. The question is what to take for L. I

will shortly describe Michelson’s most precise interferometer where L is

approximately 10 meters–a thousand centimeters. It is not exactly this,

but close enough so that we can keep the arithmetic simple. Putting in

the numbers, we find an expected shift of about a hundred thousandth

of a centimeter–10−5 centimeters. To what should we compare this?

Michelson used yellow light from a sodium lamp. This light has a wave

length of about 5.9 ×10−5 centimeters which means that the shift ex-

pected is a substantial fraction of this and should be observable. A prob-

lem may have occurred to the reader. It certainly occurred to Michelson.

We have been assuming that the length L in the two arms is identical.

To make the experiment work this statement must be accurate to a ten

thousandth of a centimeter, or less. It was impossible for Michelson to

guarantee this kind of accuracy. But he had a very clever idea. He would

build the interferometer so that he could rotate the arms. If he rotated

by ninety degrees this would interchange the role of the two arms. If

he averaged the two readings, the difference in the path lengths would

drop out and any shift in the interference bands would be the effect he

was expecting to find. Thus Michelson was now prepared to build his

interferometer and to measure the speed of the Earth through the aether.

6We have used the small x expansion 1√
1−x

∼= 1 + 1
2 x.
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The work was carried out in the winter and spring of 1880 to

1881. The interferometer, which incidentally was partially financed by

Alexander Graham Bell, was located on the stone base of circular room

below the central tower of an observatory outside Berlin. This guaran-

teed there would be no unwanted vibrations. Michelson then began to

observe. He found nothing. There was no shift at all. After six months of

observation he summarized what he had found, or what he had not found.

The interpretation of these results is that there is no displacement of
the interference bands. The result of the hypothesis of a stationary
ether [Michelson’s spelling] is thus shown to be incorrect, and the
necessary conclusion follows that the hypothesis is erroneous.

The conclusion directly contradicts the explanation of the
phenomenon of aberration which has been hitherto generally ac-
cepted, and which presupposes that the earth moves through the
ether.

This latter is a reference to an observation made in 1725 by the

British astronomer James Bradley. A homey analogy to what Bradley ob-

served is a common experience of bicycle riders riding in the rain. If you

are at rest the rain comes straight down. If you are moving the same rain

comes at you from an angle, a result of compounding your velocity with

that of the rain drops. You might be led to think that the source of the rain

has shifted. Bradley observed a seasonal shift in the positions of the stars

that reflected the Earth’s motion, which he attributed to the fact that in

the stationary aether the light would come straight down to the Earth, if it

was not in motion. It would come in at an angle if the Earth was in motion

and the stars would appear displaced. Bradley used a particle theory of

light to describe what he saw. When we discuss relativity we will use the

wave theory which makes the description a little more complicated. From

the aether theory point of view this experiment showed that the Earth

is moving through the aether with little or no drag. If the Earth dragged

the aether along than the starlight would have come straight down.

Michelson felt obliged to explain to his patron Bell what had

happened—the negative result of his experiment. In his letter to Bell
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he offered his own explanation which seemed to ignore Bradley’s exper-

iment. It was a revival of an earlier idea of some of the aetherists that

the aether, in the neighborhood of the Earth, might at least be partially

dragged by it. This notion was largely abandoned because it seemed to

lead to contradictions. But, in desperation, Michelson clutched at this

straw.

In fairness to Michelson, there was some experimental evidence

that apparently suggested this. Following some earlier work by the

French physicist Augustin Fresnel, in 1851, the French physicist

Hippolyte Fizeau measured what became referred to as the “Fresnel

dragging coefficient.” It was well known that light in a medium like

water is slowed. A measure of this is the so-called “index of refraction”,

n, which in the simplest wave theory case, is just the ratio of the speed

of light, c , to the speed in the medium, v. In these cases n is greater than

one. For water, for example, it is 1.33. The question Fresnel raised is,

suppose the water is moving. Three possibilities presented themselves.

If the water does not drag the aether there is no effect. If it totally drags

the aether there is a maximum effect and if it partially drags the aether

then there is a partial effect. Fresnel proposed a formula which, as far as

I can see, was an educated guess. He said that the combined effects of the

dragging and the slowing down in the medium would produce an effec-

tive light velocity c′ given by c′ = v + (1 − 1/n2)w, where w is the speed of

the water and 1 − 1/n2 is the Fresnel dragging coefficient. This is what

Fizeau measured and found it to be about 0.44. Thus this experiment

seemed to show that the aether was partially dragged, while the Bradley

experiment seemed to show that it was not dragged at all. One of the

things that the pre-Einsteinian physicists tried to do, with considerable

difficulty, was to derive Fresnel’s formula. In relativity, as we shall see,

one can derive it in a single line. The confusion that these 19th-century

results engendered is eliminated. A hint, which was ignored, is that in

this example, the Newtonian addition of velocities has evidently broken

down. Naively one might think that c′ should be just the sum of the two

speeds vand w . It is not, and this, as we shall see in the next chapter, is

a feature of Einstein’s relativity.
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I am now going to go outside the chronology. I want to get

Michelson off the stage so I can bring in the last actors in this pre-

Einstein drama–the theorists. At the end of his German stay, Michelson

decided to leave the navy so he could concentrate completely on his sci-

entific work. He was offered a position at the recently founded Case

School of Applied Science–now Case Western Reserve university–in

Cleveland, Ohio. For a few years he did not make any further attempts

to measure the Earth’s velocity in the aether. But, in 1884, he was invited

to attend a conference in Montreal. Another attendee was the chemist

Edward Morley who was at Western Reserve University, also in

Cleveland. Morley, who was fourteen years older than Michelson, had

studied astronomy, and was interested in Michelson’s work. They de-

cided to join forces and began the construction of the mother of all in-

terferometers shown below (Figure 1.14).

Because of a fire at Case which destroyed much of his laboratory,

Michelson relocated the work to Western Reserve. He and Morley made

several improvements. Among them was floating the stone on which the

instrument lay, on mercury. This reduced vibrations and made it easy

Figure 1.14. Michelson and Morley’s 1887 inferometer built in the basement of
Western Reserve. (Photo courtesy of Case Western Reserve Archive)
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to turn. The arms were considerably longer and sixteen mirrors were

used rather than two. You can see the extra mirrors in the photograph.

These multiple reflections extended the path length of the light to twenty

two meters–nearly seventy feet. In July of 1887, they performed what is

known as the “Michelson-Morley” experiment. In fact, people who have

not studied this history, often write as if this was the entire enterprise–
ignoring what Michelson had done earlier. After two days of observation

they confirmed that there was no effect–which Michelson had already

found earlier with less accuracy. Michelson seemed to regard all of this as

a failure. It is not what he had expected, and he never seemed fully to rec-

oncile himself to it, or to the developments that followed. In 1889, he left

Case ending up eventually at the University of Chicago in 1892, where he

was a member of the faculty until his death in 1931. Now to the theorists.

There are three I want to discuss. The first is the Irish physicist

George Francis Fitzgerald. Fitzgerald had done a good deal of post-

Maxwellian electrodynamics. Apart from the historians of science, this

work is essentially forgotten. What is not forgotten is a one paragraph
note he published in the American journal Science in 1889. Here is what

he wrote,

I have read with much interest Messrs. Michelson and Morley’s
wonderfully delicate experiment attempting to decide the impor-
tant question as to how far the ether is carried along by the earth.
[This is an odd view of what Michelson was trying to do.] Their
result seems opposed to other experiments showing that the ether
in the air can be carried along only to an inappreciable extent. I
would suggest that almost the only hypothesis that can reconcile
this opposition is that the length of material bodies changes accord-
ing as they are moving through the ether or across it, by an amount
depending on the square of the ratio of their velocities to that of
light. We know the electric forces are affected by the motion of the
electrified bodies relative to the ether, and it seems a not improbable
supposition that the molecular forces are affected by the motion,
and that the size of a body alters consequently. It would be very
important if secular experiments on electrical attractions between
permanently electrified bodies, such as in a very delicate quadrant
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electrometer, were instituted in some of the equatorial parts of the
earth to observe whether there is any diurnal and annual variation
of attraction—diurnal due to the rotation of the earth being added
and subtracted from its orbital velocity, and annual similarly for
its orbital velocity and the motion of the solar system.

This is the entire the paragraph. I want to focus on the part about

the length of material bodies changing. What does Fitzgerald mean?

Let us go back to the two paths. The time it takes for the light to go

to travel back and forth on the path 2 is τ2 = 2L
c × 1√

1− v2

c 2

while for the

other path is τ1 = 2L
c × 1

1− v2

c 2

. It is on the path 1 where the arm is in

the direction of motion. What Fitzgerald is saying is that if the length

L in the direction of motion contracts by a factor of
√

1 − v2

c 2 , then the

two times become the same and Michelson’s result is explained. I do

not want to get into Fitzgerald’s suggested possible explanation for this

bizarre behavior. I want to ask if it contradicts our common experience.

We do not observe things contracting when they move, but our motions

are infinitesimally slow compared to the speed of light. It is instructive to

make the following little estimate. The mean radius of the Earth is given

as 251,106,299 inches, while v2/c 2 is about one hundred millionth. Thus

the contraction that Fitzgerald was asking for would shrink the radius

of the earth by less than three inches!

His suggestion became known to several physicists, among them the

Dutch physicist Hendrick Antoon Lorentz, who had had the same idea

independently. Of the physicists working in electromagnetism between

Maxwell and Einstein, Lorentz was the greatest. Einstein once noted that

of all the physicists he had met, Lorentz impressed him the most. Lorentz

was born in 1853 in Arnhem. He entered the University of Leyden in

1870. He obtained his doctors degree at age twenty-two and three years

later he was appointed to the Chair of Theoretical Physics which had

been newly created for him. He remained at the university, despite many

offers to go elsewhere, for the rest of his life. He died in 1928. Beginning

with his PhD thesis he was occupied during his whole long career with

electromagnetism. We are only going to focus on a small part.
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In 1897, the British physicist J.J. Thomson, who was studying

electrical discharges in a high vacuum glass tube, discovered that a stream

of particles was passing from the negatively charged to the positively

charged metal plates in the tube. He was able to deflect the particles

with electromagnetic fields and found that they were negatively charged

and had a smaller mass than any known atom. He had discovered what

came to be called the “electron.” What Lorentz did was to derive from

the Maxwell equations the force law that such an electron would obey

in electric and magnetic fields. We still use it today. The electric field

part is rather intuitive. The force exerted on the charge is proportional

to the field and in the direction of the field. The magnetic field part isn’t

at all intuitive. It depends on the velocity of the electron and the field.

When the electron is at rest, the magnetic force vanishes. Moreover, the

magnetic force is directed at right angles to the field and velocity. We

usually teach this with the so-called “right-hand rule” as illustrated in

Figure 1.15. If the index finger is in the direction of the velocity and

the middle finger is in the direction of the field, then the thumb is in the

direction of the force. This is for a positive charge. For a negative charge

like the electron the force would be in the opposite direction.

Figure 1.15. The right hand rule.
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This force violates the Galilean relativity principle discussed earlier

in the chapter. We argued that Newton’s laws obey this principle because

the forces that he considered, such as gravitation, do not depend on

velocities. This force does. What this tells us is that if we insist on a

relativity principle for electromagnetism, it will involve something new.

Lorentz was a believer in a stationary aether. He wanted to reconcile

this with the Michelson result. To this end he wanted to show explicitly

how the contraction could come about. He had an electromagnetic model

of molecules in mind, meaning that molecules were held together by

electromagnetic forces. His idea was to study how these forces would be

modified if the molecule was set in motion. He only considered uniform

motions with constant speeds much smaller than the speed of light. He

needed to study the Maxwell equations in this moving system. In the

course of doing this he discovered something very important. Figure 1.16

shows a rest system and a moving system. The prime coordinates refer

to the moving system. If a point in the rest system has a coordinate x,

then the same point in the moving system will have a coordinate x′. If we

relate this to the x coordinate we see from the diagram that x′ = x− vt,

where we are assuming that the prime system is moving to the right with a

speed v. This is the Galilean relativity transformation for the coordinate.

This will not leave the Maxwell equations in the same form they have in

the rest system. In other words, this transformation does not satisfy the

relativity principle for electrodynamics. Lorentz did not put it this way.

For purposes of his analysis, he wanted to have the Maxwell equations

the same in the moving system because then he could apply what he

Y

C O′

Y′

x′ P

X

x

vt

Figure 1.16. A rest system and a moving system.
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knew about the equations in the rest system. To accomplish this Lorentz

found that he had to transform the time!
Lorentz was considering slow speeds so he neglected terms of

higher order in v/c . With this assumption he found that the following

time transformation worked, t ′ = t − v
c 2 x. If he included this with the

transformation x′ = x − vt, the Maxwell equations for slow speeds re-

tained their form. Lorentz called t′ the “local time,” presumably because

it varied from point to point in space. For Lorentz the local time was an

artifact–a trick to make his calculations simpler. He never considered the

possibility that this local time might have some physical reality as, say,

a time measured by actual clocks in the moving system. He published

this transformation in 1895, in a book, Versuch einer Theorie der elektrischen

und optischen Erscheinungen in bewegten Körpern, which was published in

Leyden. It is quite certain that Einstein read this book. It is equally cer-

tain that he did not read any of the rest of Lorentz’s papers published

before 1905. They were all published in local Dutch journals to which

Einstein had no access.

Historians of science disagree on the extent that Lorentz anticipated

Einstein. Some say a great deal and some say rather little. I want to con-

sider the last paper Lorentz wrote before the revolution of 1905. It was

published in 1904. There was an English version which appeared in the

Academy of Sciences of Amsterdam. The title is “Electromagnetic Phe-

nomena in a System Moving with any Velocity Less than that of Light.”

The paper deals with the transformation of the Maxwell equations when

the speeds are not necessarily small. There is a generalization of the time

transformation for this situation. In all honesty I find this generalization

a bit opaque. I cannot readily connect it with the transformation that

Einstein was soon to derive. Lorentz discusses a number of phenomena

including the contraction of lengths. What struck me is what he assumed.

He states explicitly,—the italics are in the paper—“I shall now suppose

that the electrons, which I take to be spheres of radius R in the state of rest, have

their dimensions changed by the effect of a translation, the dimensions in the direc-

tion of motion becoming βl times and those in the perpendicular direction l times

smaller.” Here β =
√

1 − v2

c 2 . The quantity “l” is some sort of scale factor.
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One might well argue, on the basis of common sense, that there is no rea-

son why there should be a contraction in the direction perpendicular to

the speed, so that ‘l’ should be set equal to one. Why Lorentz includes this

factor I do not know. But note, he assumes the electron contraction. From

this he derives the contraction of the molecule, but it is all tied to this elec-

tromagnetic model and not to general principles. Here is where his work

vividly contrasts with that of Einstein. As we shall see, Einstein’s rela-

tivity does not depend on any specific molecular model. It depends on

a profound analysis of space and time. In this respect I would like to

emphasize the following. Lorentz devised his transformations so that

they would produce equivalent forms of the Maxwell equations in the

rest system and in any system moving uniformly with respect to it. But

the same transformations do not produce equivalent forms for Newton’s

law! Put graphically, the Lorentz transformations preserve the relativ-

ity principle for electromagnetism at the cost of not preserving it for

Newtonian mechanics. This did not seem to concern Lorentz. For him

the transformations were a mathematical artifact. The “local time” was

not something you would measure with a clock. It was just a change of

variables. Hence he never considered the possibility that to make the

relativity principle universal you would need a new form of mechanics.

The pre-Einstein figure who did seem to understand this was the French

polymathic genius Henri Poincaré to whom we now turn.

In our voyage through this history we have encountered several

geniuses. I would put Poincaré near the top. He seems to have had

knowledge of all the sciences and to have made profound contributions

to several, although he was nominally a mathematician. He was also a

wonderful stylist and wrote several books on the philosophy of science,

as well as more technical monographs. As far as I am concerned, he was

the one person before Einstein to really understand the issues. Poincaré

was born in 1854, in Nancy, France. He died in 1912, so that he was

able to witness the relativity revolution and to contribute to it. He spent

most of his career at the University of Paris and by the end of it he had

written some five hundred papers. I want to present three quotations

from Poincaré which I think tell the story. In 1899, in a lecture at the
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Sorbonne Poincaré stated that “I regard it as very probable that optical

phenomena depend only on relative motions of the material bodies, lumi-

nous sources, and optical apparatus concerned, and that this is true not

merely as far as quantities of the order of the squares of the aberrations

[v2/c2] but rigorously.” In short, in 1899, Poincaré is clearly stating that

what the Michelson experiment, and the others like it, show is that the

principle of relativity applies to these electromagnetic phenomena. Ac-

cording to this principle no effect was to be expected in the Michelson

experiments, and none was found. In 1900, Poincaré addressed an In-

ternational Congress of Physics in Paris and asked, “Our aether, does it

really exist? I do not believe that more precise observations could ever

reveal anything more than relative displacements.” Perhaps, he seems to

be saying, the entire issue of the aether is a chimera. Finally, in an in-

ternational congress held in St. Louis in 1904, he states, “According to

the Principle of Relativity the laws of physical phenomena must be the

same for a “fixed” observer as for an observer who has a uniform motion

of translation relative to him: so that we have not, and cannot possibly

have any means of discerning whether we are, or are not carried along

in such a motion.” He must have had a clear idea that the relativity of

Newtonian mechanics and this generalized relativity were incompatible,

for he adds, “From all these results there must arise an entirely new kind

of dynamics, which will be characterized above all by the rule that no velocity can

exceed the velocity of light.” We can be sure that Einstein did not read this

statement and we can also be sure that Poincaré did not know that there

was a twenty-six year old patent examiner in Bern who would create this

new dynamics. This is the subject of the next chapter.
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Einstein’s Theory
of Relativity

In the autumn of the same year, in the same volume of the Annalen
der Physik as his paper on Brownian motion, Einstein published a
paper which set forth the relativity theory of Poincaré and Lorentz
with some amplifications, and which attracted much attention.

—Sir Edmund Whittaker

Was Herr Einstein hat gesagt ist nicht so blöde (What Mister
Einstein has said is not so stupid.)

—The very young Wolfgang Pauli after an Einstein lecture

PRO L O G U E
True enough, physics was also divided into separate fields, each of
which was capable of devouring a short lifetime of work without
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having satisfied the hunger for deeper knowledge. The mass of in-
sufficiently connected experimental data was overwhelming here
also. In this field, however, I soon learned to scent out that which
was able to lead to fundamentals and to turn aside from everything
else, from the multitude of things which clutter up the mind and
divert it from the essential.

—Albert Einstein

In my sophomore year I took two more courses with Professor

Frank. The fall course was another lecture course that was more philo-

sophically oriented than the first I had taken. In the spring, I followed

with a reading course, just the two of us. Together, we read people like

Mach, Poincaré, and Wittgenstein. We also talked a great deal. He told

me about how he, and a like-minded group of young people in Vienna,

began a philosophical movement. They became known as the “Vienna

Circle’’ and the movement, “Logical Positivism.’’ The main idea was to

seek a unity of knowledge, physics, mathematics, and economics, which

would be free of what they considered to be extraneous metaphysics.

They met from time to time in various coffee houses in Vienna–
establishments that were tolerant of much discussion and relatively little

consumption of coffee. When I visited Vienna many years ago an elderly

waiter in one of the coffee houses claimed to have remembered them. The

only equivalent Professor Frank could find in Cambridge was a Hayes

Bickford cafeteria on Harvard Square. We often went there, and when

we did, I asked Professor Frank questions about Einstein himself, as well

as his physics. One question I asked may seem somewhat crazy. I wanted

to know if Einstein when young would have seemed smart. By this time

I had met several very smart people, some of whom seemed smart and

some did not. Years later I had the chance to meet and observe Niels Bohr

who, after Einstein, was probably the greatest physicist of the twentieth

century. He certainly did not seem smart. He was very slow of speech and

often incomprehensible. I wanted to know where Einstein would have

fitted in this spectrum. Professor Frank told me that the young Einstein

seemed very smart indeed. He was frequently given to, what Professor

Frank in his inimitable accent, called “krecks.’’ These “krecks’’ often
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got Einstein in trouble. People felt that he was a little too smart for his

own good.

By the end of that Spring I had taken an introductory course

in physics which I found incredibly dull after what I had learned in

Professor Frank’s courses. I had also taken a course in calculus. I then

had the lunatic idea that it would be nice to talk to Einstein. About

what, I cannot imagine. Professor Frank must have put a word in for

me because a letter arrived on June 3,1949, from Princeton. It was in

English, and typed, so I imagine that Helen Dukas must have typed it.

It reads,

Dear Mr. Bernstein

I am sending you enclosed paper in which I expressed opin-
ions from an epistological [sic] point of view. I do not give oral
interviews to avoid misinterpretation.

Sincerely yours,
A. Einstein

The paper in question, which I still have, was the Herbert Spencer

lecture Einstein gave at Oxford in June of 1933. He was, it turned out,

on his way to the United States and would never return to Europe. The

lecture was called “On the Method of Theoretical Physics’’ It was really

a description of his method, or what had become his method after his

discovery of general relativity with its new theory of gravitation. We will

discuss this briefly at the end of this chapter, but let me quote some of

what Einstein said,

Our experience hitherto justifies us in believing that nature is the
realization of the simplest conceivable mathematical ideas. I am
convinced that we can discover, by means of purely mathematical
constructions, these concepts and those lawful connections be-
tween them which furnish the key to the understanding of natural
phenomena. Experience may suggest the appropriate mathemati-
cal concepts, but they most certainly cannot be deduced from it.
Experience, remains of course, the sole criterion of physical utility
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of a mathematical construction. But the creative principle resides in
the mathematics. I hold it true that pure thought can grasp reality,
as the ancients dreamed.

The general theory of relativity is the only example I know of the

creation of a profound theory of physics that has been successfully con-

structed this way. There was essentially no experimental input. Einstein

was guided by criteria of symmetry and simplicity. It obviously made an

immense impression on him. It became his working method for the latter

part of his life when he was trying to construct a theory of everything.

As far as I can see, this attempt was a total failure, but he kept working

on it almost to his last breath.

After I graduated, I kept close contact with Professor Frank. When

he retired from Harvard I helped clean out his office. He had a roll top

desk with letters–many unopened–along with other miscellanea stuffed

in various pigeon holes. We opened a few of the letters. There was one

from Erwin Schrödinger, one of the architects of the quantum theory. It

was in German and Professor Frank translated. The first sentence began

“Just between us daughters of parsons . . . ’’ and was a complaint about

Einstein, with whom Schrödinger was having some sort of dispute. There

was also a very dusty scroll. We opened that. It was an etching of Einstein

done in 1932. The artist had signed it along with Einstein. Professor

Frank asked me if I wanted it. It hangs on a wall in my apartment.

We are now going to begin our exposition of Einstein’s relativity.

But before doing so, there is some unfinished business. I promised to

show you Einstein’s proof of the Pythagorean theorem. We are going to

use the theorem again, so I will now show you his proof. If you are happy

to accept the theorem, you can skip over this section.

A PY T H AG O RE A N INTE R L U D E
At the age of 12 I experienced a second wonder of a totally dif-
ferent nature [The first “wonder’’ occurred when he was four or
five and his father gave him a compass.]; in a little book dealing
with Euclidean plane geometry, which came into my hands at the
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beginning of a school year. Here were assertions, as for example,
the intersections of the three altitudes of a triangle in one point,
which–though by no means evident–could nevertheless be proved
with such certainty that any doubt appeared to be out of the ques-
tion. This lucidity and certainty made an indescribable impression
on me. That the axiom had to be accepted unproved did not disturb
me. In any case it was quite sufficient for me if I could peg proofs
upon propositions the validity of which did not seem to me to be
dubious. I remember than an uncle told me the Pythagorean theo-
rem before the holy geometry booklet came into my hands. After
much effort I succeeded in “proving’’ this theorem on the basis of
the similarity of triangles; in doing so it seemed “evident’’ that the
relations of the sides of a right-angled triangles would have to be
completely determined by one of the acute angles. . . .

To see what Einstein meant consider the similar right triangles in

Figure 2.1.

“Similar’’ means that all the sides of the triangles have been scaled

up, or down, by the same scale factor so the angles remain the same.

Let me call the length from A to C, “a ’’ and the length from A′ to C′,
“a ′’’ . Let me call the scale factor “l ’’. Then a = a ′l , and a similar relation

holds for the other sides with the same l . If we call the length from C to

B, “c ’’ and the length from C′ to B′ “c′,’’ then from our assumption we

have a/c = a ′/c ′, because the scale l cancels out. We can rewrite this as

c ′/c = a ′/a = b ′/b , where the “bs’’ are the hypotenuses of the triangles.

This will be the main tool we will need in proving the Pythagorean

theorem. We are now going to consider the triangle below. Before I

explain how, let me revise the notation for the lengths of the sides. Call

A

B

C

B′

C′A′

Figure 2.1. Similar right triangles.
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a

bA

C

B

c

n

m

H

Figure 2.2. Construction of two triangles from one.

the length from A to C, “a,’’ the length from C to H, “m,’’ the length

H to B, “n.’’ The length C to B, I call “c ’’ and, finally, the length B to A,

“b .’’ Note that m + n = c . I have constructed two triangles by dropping

a perpendicular line from A to the hypotenuse of the large triangle

(Figure 2.2). The two small triangles are similar to each other, and to

the large triangle. The way to see this is to take the angles at A arbitrary,

but adding up to 90◦, and then showing that they must be as drawn.

We can now finish off the argument. We have the similarity relations

(m + n)/b = b/n or b2 = n(m + n) = nc and (m + n)/a = a/m or a2 =
m(m + n). Adding these together we have a2 + b2 = c 2, which is the

Pythagorean theorem.

Despite the appeal of the “holy geometry book,’’ Einstein never had

much interest in pure mathematics for its own sake. Towards the end of

his life he wrote,

I saw that mathematics was split up into numerous specialties, each
of which could easily absorb the short lifetime granted to us. Con-
sequently I saw myself in the position of Buridan’s ass which was
unable to decide upon any specific bundle of hay. This was obvi-
ously due to the fact that my intuition was not strong enough in
the field of mathematics in order to differentiate clearly the funda-
mentally important, that which is really basic, from the rest of the
more or less dispensable erudition. Beyond this, however, my in-
terest in the knowledge of nature was also unqualifiedly stronger,
and it was not clear to me as a student that the approach to a more
profound knowledge of the basic principles of physics is tied up
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with the most intricate mathematical methods. This dawned upon
me only gradually after years of independent scientific work.

I think it is fair to say that the mathematics used in the “Miracle

Year’’ papers does not go beyond what a physics major would learn in the

first few years of study. The “mathematization’’ of the special theory of

relativity–the beautiful four-dimensional formulation presented in 1908,

by Hermann Minkowski, which we all now use, and which I will touch on

later in the chapter, caused Einstein to say that once the mathematicians

had gotten a hold of his theory he no longer understood it himself–one of

his “krecks.’’ Minkowski had been one of Einstein’s teachers at the Poly

in Zurich. When he discovered that it was Einstein who had created the

theory he was amazed that, that “lazy dog’’ could have done something

like this. Einstein cut many of Minkowski’s classes, which did not sit

well. When Einstein began working seriously on gravitation he had to

generalize what Minkowski had done, creating some new mathematics

along the way. With this prologue we can now begin our study of the

special theory of relativity.

SP A CE A N D TI M E
If, for instance, I say, “That the train arrives here at 7 o’clock,’’ I
mean something like this; “The pointing of the small hand of my
watch to 7 and the arrival of the train are simultaneous events.’’

—Albert Einstein

I have often asked myself what I would ask Einstein if I could meet

him now, now that I know so much more. There are many questions

that come to mind but one persistent one is, “What took you so long?’’

Here is what I have in mind. In 1949, Einstein published his “Autobi-

ographical Notes’’ from which I have been quoting. They are not very

autobiographical if you are looking for what Einstein called somewhat

disdainfully the “merely personal.’’ You will find nothing about his wives

and children for example. It is a scientific autobiography in which he tries

to explain how his ideas evolved. When it comes to relativity he writes

the following,

61



SVNY072-Bernstein August 27, 2005 11:35

S e c r e t s o f t h e O l d O n e

After ten years of reflection such a principle [relativity] resulted
from a paradox upon which I had already hit at the age of sixteen:
if I pursue a beam of light with the velocity c (velocity of light in a
vacuum), I should observe such a beam of light as a spatially oscil-
latory electromagnetic field at rest. However, there seems to be no
such thing according to Maxwell’s equations. From the beginning
it appeared intuitively clear to me that, judged from the standpoint
of such an observer, everything would happen according to the
same laws as for an observer who, relative to the earth, was at rest.
For how otherwise, should the first observer know, i.e., be able to
determine that he is in a state of fast uniform motion?1

Let me deconstruct this before I go on to quote the next paragraph.

In the first place, there is no evidence that Einstein knew much about

the Maxwell equations at the age of sixteen. There were no courses in

Maxwell’s electrodynamics taught at the Poly when Einstein was there

and which he entered at the age of seventeen. He began to learn this

material on his own a few years after he had matriculated. Whatever he

concluded from the Maxwell equations, must have come later. In the

second place, we have some idea of the physics Einstein was pursuing

around the age of sixteen. There is a document dated 1895 entitled. “On

the Investigation of the State of the Ether in a Magnetic Field.’’ Einstein

was then an aether physicist and remained so until at least 1901. That

year he wrote a letter to a friend that he had thought of a new experi-

ment to measure the motion of the Earth through the aether. There has

been much discussion of whether Einstein had heard of the Michelson-

Morley experiment. He said various things at various times. He noted,

for example, that if he had known of it he would have mentioned it in his

relativity paper. But his paper does not contain references to any other

paper or monograph, including the 1895, one of Lorentz which we know

he studied. Late in his life he said that he could no longer remember if

1Schilpp, op.cit., p. 53. My understanding of what Einstein meant here is that
if you could catch up with a light wave it would appear “frozen.’’ It would be
like coming across a pond which had a wavy surface but the waves did not
move. This would certainly appear “paradoxical.’’
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he had heard of it, but in any event, it would have played only a minor

role, if any, in his invention of the theory. The reason is, as we have

already seen in the last chapter, that what the Michelson-Morley ex-

periment shows is that the relativity principle applies to electromagnetic

phenomena–something that Einstein was convinced of anyway. So as to

why it took Einstein so long, one part of the answer, it seems to me, is

that he started much later than the age of sixteen and, indeed, as I noted,

was an aether theorist until at least 1901. Another part of the answer is

hinted at in the paragraph that follows the one I quoted:

One sees that in this paradox the germ of the special theory of rela-
tivity is already contained. Today everyone knows, of course, that
all attempts to clarify this paradox satisfactorily were condemned
to failure as long as the axiom of the absolute character of time,
viz., of simultaneity unrecognizably was anchored in the uncon-
scious. Clearly to recognize this axiom and its arbitrary character
really already implies the solution of the problem. The type of crit-
ical reasoning which was required for the discovery of this central
point was decisively furthered in my case by the reading of David
Hume’s [the 18th-century Scottish philosopher] and Ernst Mach’s
philosophical writings.

There is a lot to digest here. In the first place, what “paradox’’ are we

talking about? The following three things are incompatible; Newtonian

mechanics, Maxwell’s electromagnetic theory, and the relativity principle

extended to cover electromagnetism. This is the basic content of the

Michelson experiment. A paradox would arise if you insisted that all

three of these things be simultaneously true. To understand the rest of

the paragraph, let us ask ourselves how we got into this position. The

culprit is the common sense Newtonian addition theorem for velocities.

This is what persuaded Michelson that he could detect the Earth’s motion

through the aether. The speed of light as observed on the moving Earth

was supposedly affected by the Earth’s orbital velocity–so claimed the

addition theorem. We must then ask, how is this theorem derived? Below

I have a diagram that is also in the last chapter. In it you will see two
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coordinate systems–one in motion uniformly to the right with respect to

the other. Incidentally, Professor Frank told me a funny story. He went

to visit Einstein in Berlin just after Einstein had published his popular

exposition of relativity: “Relativity, the Special and the General Theory; A

Popular Exposition.’’ Einstein was by then remarried to his cousin Elsa

and was living with his two stepdaughters. Einstein explained that his

book was so clear that his young stepdaughters understood it all. When

Einstein left the room, Professor Frank asked one of them if it was true

that she really understood the book. “Yes,’’ she said, “Everything except

what is a coordinate system.’’ Anyway, below we have two of them.

Let us as a matter of convention call the X, Y system the “rest

system’’ and the x′, y′ system the “moving system.’’ We could carry out

the same analysis with the roles reversed with the moving system now

going backward. In the rest system the coordinate of the point of interest

is x. We will not bother with the y-coordinates. In the moving system

the coordinate of the same point is x′. In a time, t, the moving system

has moved a distance vt, if v is the relative velocity. So we must subtract

this distance to find x′. Thus x′ = x − vt. This supposes that the point

x is at rest. But let us suppose it is in motion with respect to the rest

system with a speed u. Thus x = ut. In Figure 2.3, I have assumed that

u is greater than v, so the point x has outrun the origin of the moving

C X

Y

vt

x = ut

P

y′

O′

x′ = wt

Figure 2.3. Example of a coordinate systems.
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system. As I have written the equations, they both start off at the same

place at t = 0. Thus x′ = t(u − v). But the distance traveled by the x ′,
y ′ origin with respect to the moving point x is wt = t(u − v), where w is

the speed of the point p as viewed in the x ′, y ′ system. Now if we cancel

the ts we have the addition theorem w = u − v that has gotten us into

all the trouble. What can possibly be wrong with this derivation? This

brings us to the crucial point.

In this derivation we have assumed that time as measured in the

moving system is the same as time measured in the X, Y system; the

“rest’’ system. We have bought the Newtonian notion of absolute time.

At some point, Einstein must have realized that this was the crux of

the matter. When this happened, I am not sure. I think it happened

not long before he wrote his relativity paper and I think it was clarified

in the course of conversations that he had with his friend and patent

office colleague Michele Besso. The only acknowledgment to anyone in

Einstein’s relativity paper is what he writes at the end; “In conclusion

I wish to say that in working at the problem dealt with I have had the

loyal assistance of my friend and colleague M. Besso, and that I am

indebted to him for several valuable suggestions.’’ A few words about

Besso.

Besso was born in Zurich in 1873, making him some six years older

than Einstein. He was a precocious child who, like Einstein, acquired

in the Gymnasium a reputation for disrespect. He complained about the

quality of the mathematics instruction. Like Einstein, he was educated

at the “Poly.’’ The two men seem to have met at a musical soirée and

immediately struck up a friendship that lasted their entire lives. Besso

died a month before Einstein in 1955. Besso was more of an engineer

than a physicist. As brilliant as he was, he had difficulty focusing. He had

a sister named Bice Margherita Louisa Besso who married a Florentine

count named Rusconi. They had a daughter Laura who married the New

Yorker writer Niccolò Tucci. In 1947, he went with his mother-in-law

to Princeton to visit Einstein. He wrote this visit up and recorded an

exchange between Bice and Einstein,
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“Herr Professor,’’ she asked, in German (the whole conversation,
in fact, was in German), “this I really meant to ask you for a long
time–why hasn’t Michele made some important discovery in math-
ematics?’’

“Aber, Frau Bice,’’ said Einstein laughing, “this is a very good
sign. Michele is a humanist, a universal spirit, too interested in too
many things to become a monomaniac. Only a monomaniac gets
what we commonly refer to as results.’’

Besso, with his lack of ego involvement, and his broadness of intel-

lect, must have made a perfect sounding board for Einstein’s new ideas.

What then is the point? Einstein’s observation was that the specification

of the time of an event involves, in fact, the specification of two simul-

taneous events. First, one must specify the event—the arrival of a train

“here,’’ to use Einstein’s example, and some marker, such as a pointer,

on the dial of a clock. For the moment I will not worry about what a

“clock’’ is. Shortly I will give you an example which illustrates the issues.

A Newtonian, who had not reflected deeply on the matter, would say

that the “simultaneity’’ of events has an absolute significance, so time is

universal. But is it?

Figure 2.4 shows Einstein’s favorite example–trains. There is a train

moving to the right with a speed v. With respect to an observer on the

ground, lightning bolts strike at points A and B simultaneously. How

do we know? We can station ourselves in the middle and note that the

light comes to us from the two sides simultaneously. In this discussion

we always assume that we can tell whether two events are simultaneous

when they occur at the same point in space. We infer from this that the

lightning bolts have struck simultaneously in our resting frame some time

in the past. But what about the moving train? What would an observer

in the middle of the train claim? I will give the answer that a Newtonian

might have given and then later, when we have done some relativity, I

will give the Einsteinian answer. What a Newtonian might have said is

that to the train observer the events will not appear to have been simul-

taneous. There are two effects. The Newtonian would say the speed of

light is different in the two directions; c + v, in one, and c − v in the
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AB

X

Y

Figure 2.4. In Einstein’s train example, the light from A will arrive at X before that
from B. Hence X will observe the lightning at A as happening before that at B. Y,
however, will observe the bolts of lightning to be simultaneous. This is an example
of how observations from reference frames moving relative to each other reveal a
different timing of events.

other. Moreover, the distances covered are different; shorter on one side

than the other. Thus the Newtonian who used the same operational defi-

nition simultaneity of these distant events—the light arriving at the same

time at the center—should have said that simultaneity is relative and

should have examined what this meant about the nature of time. Instead,

the Newtonian insisted on the use of “absolute’’ time which essentially

by definition makes these events–the striking of the two distant light-

ning bolts—simultaneous for both observers. Whether Einstein passed

through this Newtonian stage or whether he leapt right into relativity, I

do not know. But it is time that we take the leap.

In the introduction to his paper Einstein spells out his program. He

writes,

. . . the unsuccessful attempts to discover any motion of the earth
relative to the “light medium,’’ suggest that the phenomena of
electrodynamics as well as of mechanics possess no properties
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corresponding to the idea of absolute rest. They suggest rather
that, as has already been shown to first order in small quantities, the
same laws of electrodynamics and optics will be valid for all frames
of reference for which the equations of mechanics hold good. We
will raise this conjecture (the purport of which will hereafter be
called the “Principle of Relativity’’) to the status of a postulate, and
also introduce another postulate, which is only apparently irrec-
oncilable with the former, namely that light is always propagated
in empty space with a definite velocity c 2 which is independent
of the state of motion of the emitting body. These two postulates
suffice for the attainment of a simple and consistent theory of the
electrodynamics of moving bodies based on Maxwell’s theory for
stationary bodies. The introduction of a “luminiferous ether’’ will
prove to be superfluous inasmuch as the view here to be devel-
oped will not require an “absolutely stationary space’’ provided
with special properties. . . .

In deconstructing this remarkable paragraph several things strike

one. There is the sentence about the “luminiferous ether,’’ which is elimi-

nated by the stroke of a pen. A century’s worth of work by many very dis-

tinguished physicists is declared “superfluous’’ by a twenty-six year old

patent clerk. As you might imagine, this did not go down well. Some, like

Michelson, never really accepted relativity. It took Lorentz several years.

Entrenched ideas die hard. We have said enough so far, so that Einstein’s

formulation of the relativity principle should seem plausible. I would just

like to adumbrate the parts about “unsuccessful attempts to detect any

motion of the earth,” and the reference to “first order in small quantities.’’

Einstein does not tell us which “unsuccessful attempts’’ he is refer-

ring to. It could be the Michelson experiment, but it could also be to an

experiment that was begun in 1901 by the British physicist Frederick

2As I mentioned earlier, in the original paper Einstein uses “V ’’ for the speed
of light. “c ’’ is now universally used so I will also use it. Only Einstein’s
German original uses “V .’’ He also uses “V ’’ in his short paper in which he
derives E = mc 2 which he calls mV 2. The symbol “c ’’ comes from the Latin
celeritas—“swiftness.’’
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Thomas Trouton. The final version done in collaboration with H.R.

Noble was published in 1904. It did not use light but a different elec-

tromagnetic property.3 This experiment should have been capable of

detecting v2/c 2 effects and didn’t. We do not know what Einstein had

in mind. What about the reference to “first order in small quantities?’’

As I have indicated, the “paradox’’ in this discussion arises if we try to

maintain both the validity of the Newtonian form of the relativity prin-

ciple, with its absolute time, and the Maxwell equations. However, this

only manifests itself when we consider effects of order v2/c 2. So long as

we restrict ourselves to effects of order v/c there is no contradiction.

Let me take a specific example that is interesting in its own right—the

Doppler shift for light. We can envision two situations; the emitter of

the light is moving towards the observer, or the observer of the light

is moving towards the emitter. Common sense, let alone the relativity

principle, should tell us that these two situations are interchangeable,

that the only thing that should matter is our relative velocity. But this is

not what happens in the aether theory. If the emitter is moving towards

the observer one readily shows that the Doppler shift in wave length

is proportional to 1
1−v/c

∼= 1 + v/c , while, if the observer is moving to-

wards the emitter, the shift is simply 1 + v/c . Thus, to order v/c , the rel-

ativity principle is preserved. This is generally true about all these aether

theory electromagnetic and optical phenomena provided we accept this

approximation. But Einstein was not interested in an approximately true

relativity principle. He wanted an exact theory. That is why the relativity

principle is taken as a postulate.

When I first learned about this all those years ago, this assumption

seemed quite natural to me, as it surely did to Einstein. In a sense, at

the time that Einstein proposed it, it was in the air. Whether he was

3They used the fact that a so-called parallel plate capacitor would, if suspended,
change its orientation if it was in motion with respect to the aether. It would try
to line itself up perpendicular to the motion. This would have been observable
if a stationary aether existed. Interestingly this experiment was suggested by
Fitzgerald—he of the contraction.
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influenced by Poincaré, for example, or just his intuition, I do not know.

On the other hand, the constancy principle seemed quite mad to me. Just

think what it means. In our daily experience, if two objects approach each

other their relative velocity is the sum of their individual velocities. That is

why a head-on crash is so devastating. But this reasoning, the constancy

principle asserts, does not apply to light. If a light beam approaches you,

and you are moving towards it, its speed is the same as if you were at rest.

If two light beams approach each other each with a speed c, their relative

speed is still c . You can’t catch up with a light ray. This seemed to me, as

I said, quite mad. So I asked Professor Frank how Einstein could ever

have thought up such a thing. There is no clue in his paper. I did not

understand the answer Professor Frank gave me at the time. I did not

then know enough physics. But I remembered his answer, and gradually

came to understand it. He said it was in the mismatch of the physical

dimensions of electric and magnetic fields. Here is what he meant. You

recall from Chapter 1, that Lorentz derived from the Maxwell equations

the law of force for a charged particle like an electron, moving in electric

and magnetic fields. I noted that the force due to an electric field on,

say, an electron is proportional to the strength of the electric field which

I can call E . On the other hand, the force due to the magnetic field,

H , is proportional to the strength of the field and the speed v at which

the electron is moving. Because of the way these two terms enter the

force equation, they must have the same physical dimensions. They must

have the dimensions of a force. This is only possible if the dimension of

the electric field [E] equals the dimensions of some velocity [v] times

the dimensions of H , [H]. Thus [E] = [v][H] or [E]/[H] = [v]. This

velocity, whatever it turns out to be, has a universal significance. It is not

measured with respect to any motions. It is an intrinsic parameter of the

theory. But what is it?

This question was answered in 1857, by a beautiful experiment

performed by the German physicists, Rudolf Kohlrausch and Wilhelm

Weber. They made use of a device that is called a “Leyden jar’’–because

at least one of its mid 18th-century inventors was at the University of

Leyden. In its original form it was just a glass jar partially filled with
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water. It was soon realized that if you simply coated the inner and outer

surface of the glass with a metal coating that conducted electricity the

same function could be fulfilled, but better. A metal wire is inserted

through an opening in the top and attached to the inner wall. Then a

negative charge is generated on the inner wall through the wire. This

attracts positive charges from the outer metallic coating and the two

charges, which cannot interact through the glass, are built up and main-

tained. A very hefty charge was stored for several hours in these early

devices. What Kohlrausch and Weber did was to measure this charge

in two ways–one involving electric fields alone, and the other involving

magnetic fields. Basically, one can measure the size of the former by

seeing how test charges are attracted or repelled by the charge on the

jar. To measure the latter, they discharged the electric charge on the jar

through a wire which produced a current. Associated with this current

there is a magnetic field which can be measured by seeing how it affects

compass needles and the like. Comparing the two measurements they

found that the velocity that entered the field dimensions had the value of

about 3.1 × 1010 cm/sec–the speed of light! I do not know how Profes-

sor Frank concluded that this was Einstein’s reasoning. Maybe he asked

him. Although I can’t be sure, it seems plausible to me.

We are now in a position using these postulates to do some

Einsteinian relativity. I will not follow the steps in Einstein’s paper which

require more mathematical reasoning than is appropriate here. Instead

I will analyze the behavior of a particularly simple clock–the light clock.

It is simple because in relativity the propagation of light follows a very

simple law. It always propagates with the speed c. Figure 2.5 illustrates

what I have in mind.

As I mentioned, the “clock’’ in question takes advantage of the fact

that light in the vacuum obeys a very simple law of propagation. If the

propagation is in the x-direction then it obeys the equation x = c t, where

c is the speed of light in the vacuum. As we have said, Einstein’s postulate

is that every observer moving uniformly will measure the same speed of

light, c. The clock consists of two mirrors placed a distance w from each

other. If the mirrors are at rest with respect to each other and we have
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clock at rest clock moving at v

vt

ct
w w

Figure 2.5. The behavior of the light clock.

a light source at one of them, then the time it takes for a round trip is

2w/c. This is the “period’’ of the clock–the basic time unit. Now suppose

that the lower mirror is in motion to the right with a speed v. We could

just as well assume that the lower mirror is at rest and the upper mirror

is moving to the left. The analysis would be the same.

With the movement of the lower mirror an observer attached to the

“rest system’’ will see the light follow a triangular path as shown in the

second portion of the figure. This path is longer than the first path. If

we call the time it takes to make one leg of the trip t as measured by this

observer, then the period associated with this clock–the time it takes to

make the round trip, again as measured by the resting observer is 2t. It

is clear from the drawing that this period is longer than 2w/c which is

the period of the rest clock. So we know without doing any calculation

that the observer at rest will argue that the moving observer’s clock is

running slower! In relativity this is called “time dilation’’ and it has pro-

found consequences. To make this quantitative we use the Pythagorean

theorem. In using it we will assume that nothing happens to the distance

at right angles to the motion. This can be demonstrated with a relativ-

ity argument that I will not go into here. As mentioned Chapter 1, this

point seemed to elude Lorentz. Thus one leg of the triangle is w. If 2t

is the time dilated period, then the other leg of the triangle is vt, which

is the distance along the x-axis the clock travels in time t. The light,
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however, travels along the hypotenuse. By the Pythagorean theorem

this length is given by
√

w 2 + v2t2. But this must equal ct, the dis-

tance the light travels. Thus c t = √
w 2 + v2c 2 or solving for t we have

t = w
c × 1√

1−v2/c 2
. Let me call the rest period P0, the time it takes the

light to go back and forth in the rest system. Thus P0 = 2w/c. If P is the

period of the moving light-clock, as measured by the resting observer,

then P = P0√
1−v2/c 2

, which reflects the extra distance the light goes along

the hypotenuse. I keep insisting on putting in this reference to the rest-

ing observer, since the other observer will claim to be at rest and the

logic is then reversed. The two situations are symmetric. Note that since√
1 − v2/c 2 ≤ 1 we have P ≥ P0. This is the “time dilation.’’ How big

an effect is this? Let suppose that v is nine-tenths the speed of light. This

is a huge speed for everyday life, but not for particles in high energy

accelerators. They go a lot faster than this. With v/c = .9, the period

of the moving clock is somewhat more than doubled. Can we test this

result? Yes, and I will give two examples.

The first involves the so-called elementary particles. Most of them

are unstable. Eventually they decay into stable particles. Quantum me-

chanics, which tells us what we can know about these decays, cannot

predict when a given particle–the one you have in your hand–will decay.

It can predict the average lifetime of the particles. On the average they

will decay at some time t, their so called “life-time.’’ But whose time is

it? Which frame of reference? If we measure the life–time with a light

clock at rest with the particle we will get one answer, but if the particle

is moving with respect to the laboratory then this time will be dilated.

This means that the track of the particle that we observe is longer than

it would have been be if there was no time dilation. It has more time to

travel. This effect has been verified countless times in elementary parti-

cle laboratories. The second example involves an amusing irony. It deals

with an aspect of the Doppler shift.

In Chapter 1, I described a device Mach invented to demonstrate

the Doppler shift which, even several years after it had been postulated

theoretically, was still regarded with some skepticism. Mach, it will be

recalled, attached a tube, which functioned as a whistle, to a rotating
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wheel. If he stood in the plane of rotation he could hear the change in

pitch as the wheel rotated. But, if he stood at right angles to the wheel,

there was no shift. We would summarize this by saying that in classical

physics there is no “transverse’’ Doppler shift, no shift at right angles to

the motion. What about relativity? If a light wave goes by we can imagine

measuring the time it takes for the passage of the wave say from crest to

crest. This passage we can call the “period’’ of the wave. If we are at rest

with respect to the source of the wave we can use the resting light-clock to

calibrate this period, which I will call P0. But what if the source is moving?

We will then have to use the moving light clock with the longer path. So to

an observer at rest in the laboratory, this period will be time dilated. The

relativistic Doppler shift involves both this time dilation and the Lorentz

contraction. Figure 2.6 depicts a series of waves emanating from a point

source. As depicted, the source is in motion to the right. These waves in

the rest frame have wave fronts that are spheres. If the source is set in

motion then there will be, for the rest observer, a Doppler shift whose size

and sign depends on the angle from which you observe the wave relative

to the motion of the source. If you observe it head–on you will see a shift

to higher frequencies and shorter wave lengths–a “blue shift.’’ But if you

observe it at right angles–the transverse Doppler shift–the period will be

dilated by the factor 1√
1 − v2/c 2

. If we call this period P , then the Doppler

Higher
frequency

Lower
frequency

Moving source

Figure 2.6. The Doppler shift illustrated using a series of waves.
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shifted wave length is given by λ = P c = 1√
1 − v2/c 2

P0c . Since the square

root is always less than one, the transverse Doppler shift lengthens the

wave length–a “red shift.’’ This is an effect that only shows up at order

v2/c 2, so it is absent in classical physics. Because v/c is, as a rule, tiny,

it is a very tiny effect. But remarkably, it was measured by two Bell

Telephone Laboratory physicists, Herbert Ives and G.R. Stilwell. who

published their result in the Spring of 1938. Even more remarkably, they

did not believe in the relativity theory–this was 1938!–and were hoping to

disprove it. In fact they attempted alternate non-relativistic explanations

long after the experiment was done.4

I would like to turn now to a discussion of the relativity of

simultaneity–the Einsteinian version. This discussion will be qualitative.

Later on, we can put in a few formulae. Recall the Newtonian discussion

with the train and the lightning bolts. We will use the same set-up here.

We said that the lightning bolts struck the embankment simultaneously

at a time we can call t = 0. This means that from the point of view of the

embankment light arrives at the mid-point at the same time. It is from

this observation that we would argue that the striking of the lightning

bolts represented simultaneous events. Even the aether theory people

would admit that the observers at the midpoint on the train would not

see the arrival of the lightning bolts at the same time. What they should

have said is that this shows that simultaneity is relative, and that should

have raised questions about the absolute nature of time. But it did not,

with the exception of Poincaré, who seemed to understand the issues, al-

though he did not invent a new mechanics. But as Einsteinian relativists,

how should we view things?

4For those of you who know a little of mathematics the formula that gives
the Doppler shift as a function of angle-angle measured by the observer is
P = P0

1 − v/c cos(ϕ)√
1 − v2/c 2

. At ninety degrees this reduces to what we had before.
Note that at zero degrees the formula reduces to P = P0

√
1 − v/c
1 + v/c which is a

blue shift. Stilwell and Ives tested the angle formula at zero and one hundred
eighty degree using hydrogen atoms that moved with speeds the order of 108

centimeters per second and emitted light in all directions. They confirmed the
general formula for these angles as well.
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We have the same set-up with the lightning bolts striking at a time,

say t = 0 as measured by the embankment clocks, at two points equidis-

tant from the mid-point of the train. We now may ask, on what will the

embankment observers and the train observers agree, and on what will

they disagree? Both will agree that the lightning struck at points equidis-

tant from the center of the train. However, we had better not assume that

these distances are the same for both sets of observers. Remember length

contraction. Both will agree that the speed of light is c . Both will agree

that light from these strikes will not arrive at the midpoint of the train

simultaneously. But the two sets of observers will have different explana-

tions. The embankment observers will say that on one side the train was

moving towards the light and on the other side away from it. Even though

the velocity of light is the same in both directions, the distance traveled

differs, so the light will arrive earlier at the train’s midpoint on the side

on which the train is moving toward the light. The train observers will

have a different explanation. They will say that they are at rest, while

the embankment is moving to the left. Our clocks, they will maintain,

are all synchronized with each other, but are not synchronized with the

embankment clocks. According to these embankment clocks, lightning

struck simultaneously. But this is what their clocks say. Their clocks say

that the lightning did not strike simultaneously. Our clock on the right

reads an earlier time when the lightning bolt struck there than the clock on

the left reads. That is why that light from the right got to the center sooner.

It had a head start. Both sets of observers, embankment and train, are

correct, and if they do the analysis consistently, will agree on the answer.

In this respect, consider the example of the decaying particle. If we

call the life-time as measured on a system that is moving with the particle

the “proper life-time’’—t0—then the time observed in the laboratory is
t0√

1−v2/c 2
so that the distance traveled in the laboratory is d = v t0√

1−v2/c 2
.

But how do things look from the point of view of the moving particle? The

distance moved will in this system, be vt0. This will be equal to “d,’’ but

measured in the moving particles’ length units. The only way these two

answers can be consistent is if these units are contracted by
√

1 − v2/c 2

or, in other words, d
√

1 − v2/c 2 = vt0, which yields the same result.
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Thus, in one system it is time dilation that produces the answer and in

the other it is the Lorentz contraction.

This complementary action of space and time is typical of relativity.

We can see it at work in another example. This one will again involve

the train. Suppose we want to measure its length. If we are riding on it,

there is no problem. We can take a tape measure and do the job. This

length we will call the “proper length’’–L0. The problems arise when we

ask how an observer on the embankment will measure this length. I will

present two suggestions. You will then get the idea and can come up with

your own methods. If you find one that produces a different answer you

should book your hotel in Stockholm for the Nobel Prize awards. One

way that looks pretty simple is to station an observer on the embankment

with a clock. When the front of the train passes, start the clock. When the

back passes, stop it. Then take the time interval, multiply by the speed of

the train and you will have its length. Or will you? By now you will see

the problem–time dilation. The two observers will disagree on the time

interval with the result that the length expressed in the units of the moving

train will be contracted. Here is another method. Suppose that at a certain

time, say t = 0 as measured on the train, someone at the front and back

end of it agree to simultaneously put down a marker on the track. At their

leisure, observers on the embankment can measure the length between

these markers. The problem is that the embankment observers will insist

that, in their time units, the placement of these markers by the train

people was not done simultaneously. The second placement came after

the first. Because of this, the length of the moving train as given by this

method is again contracted. Space and time play complementary roles.

A beautiful example of the interweaving of space and time in rela-

tivity is the relativistic treatment of the phenomenon of stellar aberration.

You will recall that if a telescope on the moving Earth is used to observe

a star, it must be tilted slightly because the light rays from the star appear

to arrive at an angle. If the star is treated as a point source of light then

the light that is emitted emerges as spherical waves. The surfaces of the

advancing light rays are spheres. But the stars are so far away the by

the time the light reaches us these spheres are huge. For all practical
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wave fronts

Figure 2.7. The interweaving of space and time in relativity is shown in the relativistic
treatment of stellar aberration.

purposes we see so little of the surface that it appears flat. So we can

regard these waves as plane wave surfaces as shown in Figure 2.7.

In the aether theory, a moving star–as opposed to a moving earth–
would not show aberration (see Figure 2.8). This would be a violation

of the relativity principle which demands that the two situations be sym-

metric. This does not surprise us because we know the aether theory

violates the relativity principle. In Einstein’s theory what happens is that

the various points on the planar surface do not arrive at the telescope

simultaneously when the star is in motion (see Figure 2.9). Hence there

is aberration and the two situations, star at rest, Earth moving, and star

moving and Earth at rest are perfectly symmetric as relativity demands.

To make relativistic ideas quantitative we must, as Einstein did,

find the transformations of space and time that generalize the “Galilean

transformations’’–Professor Frank’s term—x′ = x − vt, t ′ = t. I will

always deal with motions in the x direction so that the other two
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Figure 2.8. As Figure 2.8 shows, no aberration occurs in the aether theory.

distant star 
 in motion

wave fronts

telescope
on resting
earth

Figure 2.9. In Einstein’s theory of relativity, aberration does occur.
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coordinates, y and z are not affected. As I have mentioned, the first person

to write down such a generalization, but with a different motive, was

Lorentz. His motive was to simplify calculations of the electrodynamics

of moving bodies by transferring the problem to a coordinate system in

which the body was at rest. He referred to this as finding “corresponding

states.’’ These transformations could not be the Galilean transformations

since those transformations do not preserve the form of the Maxwell

equations when you go from one system to the other. He found, as I

noted in the previous chapter that, if he ignored higher powers of v/c ,

a transformation that worked was x′ = x − vt and t ′ = t − v/c 2x, with

a new time, t ′, which he called the “local time’’ because it involved the

coordinate x. He did not attach any physical significance to this time. It

was just a mathematical artifact. As I also mentioned, in 1904, Lorentz

published his final prerelativity paper on this. In it he wrote down the

transformation for the general case where v/c is not small. But, in fact, it

is too general. He has a scale factor that allows distortions in all directions.

Since he does not adopt the relativity principle he has no argument

for setting this factor equal to one, so he is stuck with the distortion.5

But, in recognition for his pioneering work, the transformations I am

about to write down, without the scale factor, are called the “Lorentz

transformations’’ by everyone. Such is history. Incidentally, if you set

the speed of light equal to infinity in the Lorentz transformations you

revert to the Galilean transformations of Newtonian physics. This is not

surprising, since if electromagnetic communication was instantaneous,

there would be no relativity of simultaneity. You would have the absolute

5Einstein disposes of this factor in his 1905 paper. He argues that if you make
a Lorentz transformation, followed by its inverse–that is, you transform to a
system moving with v, followed by one moving with −v–you get back to the
original rest system. Allowing for the fact that l , the distortion factor, might be
a function of v you get the condition that l(v)l(−v) = 1. If you assume from
symmetry that l(v) = l(−v) you get l2 = 1. The negative root is ruled out by
continuity so you get the answer. Why Lorentz did not invoke this argument
I do not know. Poincaré, had his own proof.
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time of Newtonian physics and hence the Galilean transformations of

space and time.

Since Einstein’s 1905 paper, a veritable cottage industry has grown

up devoted to deriving these transformations. Rigor, or the lack thereof,

is the hallmark of these various derivations. I am not going to present

a real derivation. That would take us too deeply into mathematical wa-

ters. You can find real derivations galore in innumerable places. Many

of them follow Einstein’s original method, as expressed in his 1905 pa-

per. It uses the notion of spherical light waves emanating from a source.

These wave fronts propagate as a spherical surface. What Einstein noted

was that, according to the relativity and constancy principle, if there

is a moving observer at the source than he, or she, will also report a

spherical light wave expressed in the moving system’s space-time coor-

dinates. The relativity transformations must reflect this. Indeed, making

this demand and adjoining some other plausible mathematical assump-

tions, was how Einstein derived the Lorentz transformations. The trans-

formed time, t′, which I will shortly write down, is not in Einsteinian

relativity a mathematical artifact as Lorentz maintained. It is some-

thing measured by clocks. Furthermore, Einstein’s derivation has noth-

ing to do with any model of matter, such as the one that Lorentz fa-

vored. Einstein’s derivation is based on very general assumptions about

space and time. All acceptable models of matter must conform to these

assumptions.

As I said, I am not going to present a derivation of the transforma-

tions. Rather it will be a “derivation.’’ It is the one I first learned from

Professor Frank. It assumes the Lorentz contraction. That is why it is

a “derivation’’ and not a derivation. The real derivations do not make

this assumption and indeed the Lorentz contraction emerges as a conse-

quence. The “derivation’’ is based on the mismatch of units in the equation

x′ = x − vt. We have learned that primed units are Lorentz contracted.

To make the units match we should write
√

1 − v2/c 2x′ = x − vt. Thus

x′ = x − vt√
1 − v2/c 2

. This is the first of the Lorentz transformations. It replaces

the Galilean transformation x′ = x − vt to which it reduces when the

speed of light is infinite. We will now turn to the time transformation.
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 vt + x′   1− ν2/c2 = ct

O X

Y y′

O′

ct

vt

x′ (1 − ν2/c2)1/2

ct′= x′

Figure 2.10. The Lorentz time transformation.

We imagine a situation in which a light beam is generated at a time

t = t ′ = 0 at the common origins of the two systems shown in Figure

2.10. We suppose the light beam moves towards the right. After a time

t in the unprimed system it arrives at the point x. It has thus moved a

distance, as viewed in the unprimed system, which is given by x = c t.

If we translate this into the prime language the same distance is given

by vt + x′√1 − v2/c 2 or in other words c t = vt + x′√1 − v2/c 2. But

x′ = c t ′, light propagates from the origin of the prime system with the

speed c. Putting this in and solving we find that t ′ = t − v/c 2x√
1 − v2/c 2

. To the

leading order in v/c , this formula is identical to Lorentz’s 1895 version of

the “local time.’’ If we let c become infinite here we have t ′ = t, absolute

Newtonian time, If we complete the list with the transformations y′ = y

and z′ = z, we have the full set of Lorentz transformations—at least the

Einsteinian version.6

Before I discuss the rest of Einstein’s paper, here are a few ap-

plications of the Lorentz transformations. First there is the relativity of

6A courageous reader can verify using the Lorentz transformations that
x′2 + y′2 + z′2 − c 2τ ′2 = x2 + y2 + z2 − c 2τ 2. If we set either side equal to
zero we have the equation for a propagating spherical light wave. Most deriva-
tions, including Einstein’s, start with this invariance and using simplifying
mathematical assumptions arrive at the Lorentz transformations. With our
“derivation’’ we have gone about it backward.
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simultaneity. Let us go back to the train and the lightning bolts. In the em-

bankment system the bolts strike at points, say, plus and minus L at t = 0.

This means that the two places, +L and −L are equidistant from the ori-

gin of coordinates and the lightning bolts strike these points simultane-

ously. The Lorentz transformations tells us that, in the prime coordinates,

the coordinates of the moving system, the lightning strikes at points plus

and minus L√
1 − v2/c 2

, which are also equidistant from the origin. If we ap-

ply the time transformation then left-hand lightning bolt strikes at a time

v/c 2 × L√
1 − v2/c 2

while the right-hand bolt strikes at −v/c 2 × L√
1 − v2/c 2

.

Thus, in this frame, the two bolts do not strike simultaneously. The right-

hand one strikes first—this is what the negative sign means—which cor-

responds to our intuitive idea that the light from the bolt towards which

we are moving gets to the center first. It gets a head start.

The second example is taken directly from Einstein’s paper. It in-

volves the time dilation. We suppose a clock at the position x is mov-

ing to the right with a speed v. Thus the equation for the clock is

x = vt. If we put this into the time Lorentz transformation we have t ′ =
t 1 − v2/c 2√

1 − v2/c 2
= t

√
1 − v2/c 2 = t −

(
1 −

√
1 − v2/c 2

)
t. In the last term

we have added and subtracted t to make the time delay more transparent.

If v/c is small then this expression is approximately t(1 − 1/2v2/c 2). In

other words, the time delay is about 1/2v2/c 2. Einstein suggested a fan-

ciful experiment to test this. You put one clock at the North Pole and

another identical one at the Equator. At the Equator the Earth is going

around at a speed of about 0.46 kilometers per second. So the time di-

lation effect is predicted to cause a time delay of about one part in 1012.

What is amusing about this, is that if Einstein had been able to carry out

this experiment, he would have discovered that there was no time delay!

He did not realize this at the time, but there is an effect of gravity on the

clocks that just compensates for this time dilation. In fact, the experiment

has been done with atomic clocks flown in airplanes and this result is

confirmed.

Next I want to turn to the velocity addition theorem in relativity, the

one that replaces the Newtonian one that was based on absolute time. To

find it, we consider our usual diagram of the two coordinate systems. The
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prime system moves to right with the speed v. We will assume that the

point x moves to the right with the speed u; x = ut. Expressed in terms of

prime coordinates we have ut = vt + x′√1 − v2/c 2. In the prime system

x′ obeys the equation x′ = w t ′, where w is the speed of x′ in the prime

system. This is just the speed we are looking for. In the Newtonian case it

is simply u − v. If we solve for w here, we find, w = t/t ′ u − v√
1 − v2/c 2

. The

next step is to find t/t′. From the time Lorentz transformation we have

with the same substitution for x; i.e., x = ut, t/t ′ =
√

1 − v2/c 2

1 − uv/c 2 . This gives

us our addition formula, i.e., w = u − v
1 − uv/c 2 . This wonderful formula has

an interesting property. Suppose you let u = c . Then you have w = c .

The speed of light looks the same to the moving observer. You cannot

catch up to a light beam. You can rewrite the formula for two speeding

objects that approach each other by changing the sign of v. If you then

have two light beams that approach each other, their relative speed is

still c . You can’t go faster than the speed of light.7

In this respect I want to tell you a limerick. It is not the funniest

limerick I know, but it is the funniest limerick about relativity that I

know. It goes,

There was a young lady named Bright,

Who could travel faster than light.

She started one day,

7I am oversimplifying here. It is better to say that no information can be trans-
mitted faster than the speed of light in the vacuum. There are subtle issues, of
which I will not go into in detail here, as to what the speed of a wave means.
You can think of a single wave that is represented by a simple trigonometric
function. You might imagine that the whole wave is being displaced. On the
other hand it might be that successive portions simply move up and down,
something like the wave in a cheering section in a football stadium. In the lat-
ter case nothing is being displaced and the speed can be anything. To transmit
information you must be able to modulate waves. This involves introducing
packets of waves. These packets move with what is called the “group velocity.’’
There are exotic media in which this group velocity can exceed c. But for these
media it can be shown that no signal-transmitting information can travel faster
than c . In the early years of relativity the nature of wave propagation received
a good deal of attention. It has again become an active branch of research.
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In a relative way,

And arrived the preceding night.

Neither Miss Bright, nor anyone else, can travel faster than light.

But there is an interesting point here. Can you, by making Lorentz trans-

formations, change the time order of events? If one event follows another

in one frame of reference, is there another frame of reference reached

by Lorentz transformations that reverse the order? If so, in one frame

you might see a bank robbery followed by an arrest, while, in another,

it would be an arrest followed by a bank robbery. In relativity this sort

of cause and effect reversal is impossible. If you stick to speeds less than

light you cannot do this switch–fortunately. Causality is preserved. As a

friend of mine says about rock climbing, relativity may be ridiculous, but

it is not absurd.8

In the first part of Einstein’s paper, which he calls the “Kinematical

Part,’’ he discusses what we have been discussing. This is followed by

the “Electrodynamical Part.’’ Here Einstein makes use of the Maxwell

equations. He first shows that these retain their form under Lorentz

transformations, which is to be expected because this was one of the mo-

tivations for deriving them in the first place. The notation that Einstein

uses in this discussion is so cumbersome that strong men have been

known to weep when they read this part of the paper. The logic and

mathematics are, needless to say, correct. He then deals with such things

as the Doppler shift. The tenth section of this part needs our attention.

It is called “Dynamics of the Slowly Accelerated Electron.’’ The Special

Theory of Relativity, which has been our subject, is “special’’ because

it deals only with transformations among systems that are moving uni-

formly with respect to each other–so-called “inertial systems.’’ But to

make it a realistic physical theory we must allow forces to act. But forces

produce accelerations, so how to proceed? The idea is this. An acceler-

ation is a change in velocity. But at any instant of time the electron, for

8There has been some theoretical speculation as to whether particles that al-
ways move faster than light–so-called “tachyons’’–can exist. So far there is no
evidence for such exotic objects.
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example, will have some velocity. In the next instant of time it will have

a different velocity if it is being acted on by a force. What we do is, at an

instant of time, we make a Lorentz transformation from, say the labora-

tory, to a system moving with that instantaneous velocity. In this system

we apply Newton’s law, or at least the relativistic version, and then trans-

form back to the laboratory to find the equation of motion. In his paper,

Einstein’s treatment of this is somewhat peculiar. So I will not try to

reproduce it. Rather I will sketch how we would do this now. Soon after

his paper was written, Einstein accepted this improved formulation. The

first thing that we would do is to show that in relativity the momentum,

p , is not mv, where m is the mass. The correct expression in relativity

is p = mv√
1 − v2/c 2

. The ‘m’ that appears here is the so-called “rest mass.’’

This is the mass an object has if brought to rest. There are two interest-

ing things to note about the expression, m√
1 − v2/c 2

. In the first place, as v

approaches c , it gets larger and larger and finally becomes infinite when

v = c . When I first learned about this, those many years ago, I was very

puzzled. I had learned the Newtonian definition of mass as the quantity

of matter. How could this possibly increase? Were new atoms somehow

added? But this is not at all what mass means in this context. Mass is a

measure of the difficulty that a given force has to accelerate a particle–a

measure of its “inertia.’’ What this increase in mass means, is that, as a

particle approaches the speed of light, it becomes more and more difficult

for it to be accelerated. You can never accelerate it to the speed of light.

This is as it should be, because no massive particle can move with the

speed of light. This brings us to the second point. We know that there is

at least one thing that moves with the speed of light–namely light. In the

final chapter of this book I will point out that, in many contexts, light

behaves as if it is made up of particles–“photons’’ we call them now. At

the speed of light the denominator in the momentum expression is zero,

so the momentum makes no sense for such a particle, unless the numer-

ator is also zero. This can only happen if the mass, m, is zero. Thus the

photon must be a massless particle that moves with the speed of light.

You can never bring it to rest and you can never catch up with it. Since

the relativistic momentum depends on the velocity in this more complex
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way, Newton’s law in the form F = ma does not hold in relativity. The

form you have to use is F = �p
�t . This makes the equations a lot harder

to solve. When Einstein applied this new dynamics to electrons he noted

that the force that acted on them depended on the state of motion of

the electrons. An electron in a rest system might be subject only to an

electrostatic force–Coulomb’s law. But if you observed the same electron

from a moving system it would be subject to a magnetic force as well,

as a consequence of the Lorentz transformations. The two forces are

part of a common whole–“electromagnetism.’’ It is the first example of

what has become the Holy Grail of physicists–the unification of all the

forces.

In the beginning of his paper, Einstein cites a dilemma. On several

occasions he said that it was one of the things that impelled him to-

wards relativity. It is along the lines of what I have just been discussing.

Figure 2.11 has a permanent magnet and a conducting loop. The loop

is made of some kind of wire that conducts electrons. We can now, fol-

lowing Einstein, consider two situations. We can imagine moving the

magnet with a constant speed v in a direction out of the diagram. The

laws of electricity and magnetism that Einstein was familiar with from

+

–

SN

Figure 2.11. Einstein’s dilemma illustrated with a permanent magnet and a conduct-
ing loop.
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his student days, implied that an electric force would be induced by the

moving magnet. This force acts on the electrons in the loop, producing a

current in the loop. Now we can consider a second experiment in which

we move the loop with the same speed in the opposite direction. The

Lorentz law of force tells us that there is a magnetic interaction on the

electrons which again sets up a current in the loop. This current is identi-

cal to the one set up in the previous case. Indeed, the current depends on

the relative velocity of the magnet and the loop, which is the same in either

case. What troubled Einstein, he tells us, is that the same phenomenon

appeared to have different explanations—electric or magnetic—

depending on which part of the apparatus is being moved. He found

this intolerable. A modern physicist examining this situation would be

at a loss to understand what the fuss was about. But that is because we

now accept the theory of relativity. As I have indicated, this implies that

electricity and magnetism are the same phenomenon–electromagnetism–
and how these forces manifest themselves depends on which coordinate

system we are in. This is what Einstein taught us.

You will not find the most famous equation in relativity in Einstein’s

first paper. This is, of course, E = mc 2. It is there implicitly, but no at-

tention is called to it. But Einstein wrote a second small paper with the

ungainly title, “Does the Inertia of a Body Depend on its Energy Con-

tent?’’ He considers a particular example. He imagines a “body’’ that

can emit a pair of light waves in opposite directions. He examines this

process in two systems of coordinates moving relative to each other. By

comparing the results he concludes that if the light has carried off an

energy L–his notation–then the “body’’ has suffered a mass loss of L/c 2.

We know that c is a huge number. So a modest mass loss can be equiv-

alent to a large amount of energy. The success of nuclear weapons is

an unfortunate testimony to this. The first thing that struck me when I

heard about E = mc 2, was how did such a large amount of energy man-

age to remain concealed for such a long time. Why had nobody noticed

it? The explanation for this is not hard to come by. Until the beginning

of the twentieth century, typical processes one considered were billiard
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ball-like collisions in which the same particles left the collision as entered

it. The masses were the same initially and finally and the mass-energy

simply did not affect the energy balance. By the time Einstein wrote this

paper, radioactive elements were being studied. One of their great mys-

teries was where did the energy they were giving off come from? They

seemed to give off an unlimited amount. At the end of his paper Einstein

writes, “It is not impossible that with bodies whose energy-content is

variable to a high degree (e.g., with radium salts) the theory may be

successfully put to the test.’’ It was, and it passed. A radioactive decay

involves a loss of mass of the decaying particle. Put more precisely, the

particles into which it decays are less massive and this mass difference is

available as energy.

I now want to turn to how the relativity theory was received and

then finally to a brief summary of what happened to the physics after

1905.

RE A C T I O N S
I do not believe that there is any man now living who can assert with
truth that he can conceive of time which is a function of velocity or is
willing to go to the stake for the conviction that his “now’’ is another
man’s future or still another man’s past.

—W.F. Magie, Princeton University physics professor, in his
Presidential Address to the American Association for the

Advancement of Science, 1911

In the summer of 1949, Professor Frank gave me a job. He was

preparing an article on how Einstein’s relativity theory had been re-

ceived by both scientists and philosophers. He had a small grant and was

able to pay me a bit for doing some library research. One of the sources

I read was the French philosopher Henri Bergson who, for reasons be-

yond my comprehension, was awarded the Nobel Prize in Literature

in 1927. While I did not understand that much about relativity, I was

persuaded that I understood it a lot better than Bergson. Here is a tiny
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fraction of what he wrote in “Time and Free Will’’9 an essay he published

in 1889, but whose tenets he maintained long after relativity had been

discovered.

What duration is there existing outside us? The present only, or, if
we prefer the expression, simultaneity. No doubt external things
change, but their moments do not succeed one another, if we retain
the ordinary meaning of the word, except for a consciousness which
keeps them in mind. We observe outside us at a given moment a
whole system of simultaneous positions; of the simultaneities which
have preceded them nothing remains. To put duration in space is
really to contradict oneself and place succession within simultane-
ity. Hence we must not say that external things endure, but rather
that there is in them some inexpressible reason in virtue of which
we cannot examine them at successive moments of their own du-
ration without observing that they have changed. But this change
does not involve succession unless the world is taken in a new
meaning on this point we have noted the agreement of science and
common sense.

I duly noted quotations like this–the meanings of which, if any,

were beyond me–for Professor Frank. I have no idea what he did with

them. In 1921, Bergson published his Durée et Simultanéité: A Propos de la

Théorie d’Einstein. Einstein had the patience to point out the mistakes in

Bergson’s book, after which Bergson had the good sense to retire from

this particular field.

Einstein sent his 1905 relativity paper to the Annalen der Physik in

Berlin. The editor at the time was Paul Drude–a physicist known for his

work on classical optics. But there was an editorial council on which the

very distinguished German theoretical physicist, Max Planck, served.

It was Planck who was given the paper to referee. We will learn more

about him in the last chapter, but let me note here, that he was a deeply

conservative man, both in his science and everything else. One might

9Time and Free Will: An Essay on the Immediate Data of Consciousness, trans. by
F.L. Pogson. London: George Allen and Unwin, 1910.
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imagine him rejecting Einstein’s paper, because it was so radically new.

There was no outside refereeing system, so that this would have been the

first and last judgment. Instead, Planck embraced it with enthusiasm.

Fortunately, he did not ask for changes, such as putting in references

and explaining previous work on the aether. This would have helped the

historian, but dated the paper, which is as fresh as when Einstein wrote

it. Planck went further. His did his own work on the theory right away

and was probably the first person, beside Einstein, to publish a relativity

paper. Planck had a new assistant named Max von Laue, who had taken

his degree with him in 1903. When Laue took up his post in 1905, one of

the first talks he heard was Planck’s colloquium on Einstein’s relativity

theory. Either on his own, or with the encouragement of Planck, Laue

decided to visit Einstein in Bern, in 1906. He was astonished to find that

they were the same age. Laue seems to have been the first contemporary

physicist Einstein had ever met. Laue too began working on relativity,

and published the first technical monograph on the theory in 1909. In

1914, he won the Nobel Prize in physics for his work on x-ray studies

of the structure of crystals. When the Nazis came to power, Laue was

the only prominent German physicist I know of, who remained in the

country, and was outspoken in his opposition to the regime. He insisted

on teaching relativity as Einstein’s discovery even though it had been

categorized as “Jewish physics’’–only to be taught if Einstein was not

mentioned. After the war, a colleague of Einstein’s in the United States

was going to visit Germany. He asked Einstein if he would like to send

his greetings to any of the German scientists. In reply, Einstein asked that

his greetings be sent to Laue. The colleague asked if there were any other

German scientists Einstein wanted to greet. He gave the same answer.

Apropos of Laue, I want to return briefly to something I discussed

in Chapter 1–the Fresnel “dragging coefficient.’’ It will be recalled that

Fresnel produced what seems to have been an empirical formula that

described the speed of light passing through a moving medium like water.

It was expressed in terms of the index of refraction, n, of the medium

which in simple cases is just the ratio of the speed of light in the vacuum,

c, to the speed in the medium at rest, v, i.e., n = c/v. His formula claimed
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that the observed speed in a medium moving with a speed, w, would be

given by c ′ = v + (1 − 1/n2)w = v + (1 − v2/c 2)w = v + w − v2w/c 2.

The reason why I have written the formula this somewhat odd way

will be evident shortly. In the 19th century there were heroic efforts to

derive this formula. Lorentz, for example, produced a complex derivation

using the aether theory and his electrodynamical model of matter. While

Einstein never did give a full accounting of what led him to relativity,

in those accounts he did give, he mentioned the Fresnel formula. He

never said why it was so important to him. Perhaps it was another bit of

evidence of the uselessness of the aether concept. What is odd is that he

did not discuss it at all in his 1905 paper. He seemed not to have realized

that there was a one-line derivation using his velocity addition law. This

was found by Laue in 1907. It goes like this. We want to add v and w

relativistically. Thus c ′ = v + w
1 + vw

c 2
. But w is much smaller than c , so we

have approximately c ′ ≈ v + w − vw
c 2 v which is the same as the Fresnel

expression. End of story. It has nothing to do with the aether, or models

of matter. It is a general feature of the relativistic view of space and time.

The first experimental work on relativity was performed by the

German physicist Walter Kaufmann who was at Göttingen, which was

the mathematical capital of the world. He had been studying the behavior

of fast electrons in electric and magnetic fields for many years. Such

experiments enable one to measure the mass of the electron as a function

of its velocity. By 1905, in addition to Einstein’s theory, there were at

least two rival models that predicted that there would be such an effect

but, with a different functional form. Recall that relativity predicted that

the mass would increase as 1√
1 − v2/c 2

. In November of 1905, Kaufmann

published his results. Of the three models he tested, what he called the

“Einstein-Lorentz’’ model, came out the worst. There are philosophers

of science10 who assure us that what distinguishes science from other

disciplines is that its predictions are falsifiable. On this basis, the relativity

theory was dead. Indeed, this is what Lorentz thought and was in some

state of desperation as to what to do next. He wrote to Poincaré that he

10Notably, the late Karl Popper.
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was “at the end of his Latin’’–meaning that he was stuck. And Einstein?

He simply did not care about Kaufmann’s experiment. He was sure that

sooner or later it would go away. He did not make any public comment

until he wrote a review article in 1907. Of the other theories that seemed

to agree with experiment he noted, “However, the probability that their

theories are correct is rather small, in my opinion, because their basic

assumptions concerning the dimensions of the moving electron are not

suggested by theoretical systems that encompass larger complexes of

phenomena.’’ Einstein was right. A few years later, better experiments

confirmed his theory.

The next significant advance in relativity theory was made not by

Einstein, but by his old mathematics teacher at the “Poly,’’ Hermann

Minkowski. Minkowski was born in what was then Russia in 1864, how-

ever he was educated in Germany. He taught in a few places, including

Zurich, before he accepted a chair in Göttingen in 1902. Among his col-

leagues was David Hilbert, whom many people think was the greatest

mathematician of the twentieth century. Hilbert also had a deep inter-

est in physics and created some of the mathematical tools we still rely

on. He organized a seminar on electron theory at Göttingen in 1905, in

which Minkowski participated. Not long often he learned about relativ-

ity. Minkowski soon found a way of rewriting the theory. He presented

it in a lecture entitled “Space and Time,’’ that he gave in September of

1908, to the 80th Assembly of German Natural Scientists and Physicians

in Cologne. It is one of the most remarkable physics lectures ever given

by anyone. It transformed how we think about relativity. It put relativity

on the map.

Minkowski’s basic idea was that relativity is something that takes

place in a four-dimensional space. Each “event’’ is characterized by three

space coordinates x, y, and z and one time coordinate t. This was also true

of Newtonian mechanics, but the time coordinate was not interesting. It

has the same value in all the Galilean reference systems—absolute time.

On the contrary, in relativity, the time variable–the fourth dimension–is

interesting. Under Lorentz transformations it gets mixed up with space.

Minkowski began his lecture by saying,
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light travel path

world point

world point

world line

ct

x

Figure 2.12. A space-time picture with x and ct axes at right angles.

The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve independent reality.

To picture what is happening, Minkowski introduced diagrams for

what he called the “absolute world.’’ You cannot plot four dimensions

all at once, so Minkowski used one, or two, space dimensions and one

time dimension. We will stick with one space dimension which simplifies

things without losing anything essential. Instead of time it is customary

to plot “ct’’ where c is the speed of light. This gives space and time the

same physical dimensions and makes things more transparent to plot.

Figure 2.12 is a space-time picture. You will notice the x and ct axes

which are at right angles.

Because of our choice of units, light, which obeys the equation x =
c t, moves along the 45◦ line. All trajectories–“world lines’’–that represent

motion at less than the speed of light move in trajectories at larger angles.

No motion is represented by a straight line parallel to the time, or ct,

axis. You do not get anywhere, but just get older. From the origin in

Minkowski space you can, in two dimensions, draw what are known as

“light cones.’’ If you are at the origin your entire future is in the “forward

light cone’’ that goes up the axis, while your past is in the “backward light

cone.’’ Outside the light cones you have the “absolute elsewhere’’ with

which you can never communicate. See Figure 2.13.
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x

y

ct

Figure 2.13. Light cones in two-dimensional space.

It is somewhat more difficult to see how Lorentz transformations

are represented in the Minkowski diagrams. In essence what happens

is that the two axes are tilted as shown in Figure 2.14. The essential

point is that in the new coordinate system light will propagate with the

equation x′ = c t ′, so the light signal will travel along a line that bisects

the new time axis and the new space axis. Instead of axes we have drawn

Figure 2.14. Planes of simultaneity in the Lorentz frames.
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planes. Events located on any given plane will be simultaneous with all

the other events on the plane. The relativity of simultaneity is reflected by

the fact that in the two systems the planes of simultaneity are tilted with

respect to each other. By working out the geometry you can reproduce

all the algebraic results of the Lorentz transformations. A few months

after giving this lecture Minkowski died suddenly because of a ruptured

appendix. He was only forty-four years old.

Finally, I would like to mention the “traveling twins.’’ No discussion

of relativity is complete without the twins. Apparently the first person

to state this “paradox’’ was the French physicist Paul Langevin in 1911.

The first really satisfactory resolution was von Laue’s a year later. Since

then, forests have been cut down to supply the paper that has gone into

discussing this. In essence it is the following. You have twins. One stays

home at rest and the other goes on a round trip (see Figure 2.15). The

human heart is a kind of clock. so we have time dilation. No one seems

to have any trouble with the fact that, as seen by the resting twin, the

other twin will have aged less on its return. This, everyone agrees, is a

straightforward application of time dilation. The fun begins when one

attempts to get the same result as viewed by the traveling twin. The two

twins must agree on the aging of the traveling twin when they are re-

united. Naively from special relativity we might at first think that the

two situations are symmetrical so that the traveling twin will also report

that the stationary twin has aged less which leads to an absurdity. But, in

ct

x

stationary
twin

traveling
twin

simultaneity
planes 2

simultaneity
planes 1

Figure 2.15. The Minkowski diagram of the travelling twin.

96



SVNY072-Bernstein August 27, 2005 11:35

E i n s t e i n ’ s T h e o r y o f R e l a t i v i t y

fact, their situations are not symmetrical. The traveling twin experiences

acceleration. I will spare you a description of these learned arguments as

to how this works out in detail. It is easy to wander off the deep end here.

I think that if you keep your wits about you at the end of the day you will

find that there is no paradox. The twins will agree on the aging. Professor

Frank, when describing this, used to say, “Travel and stay young.’’

While I am on the subject of special relativity I would like to call

your attention to some work that was done in 1959, by the Los Alamos

physicist James Terrell. Before Terrell did his work, there were charming

drawings of the Lorentz contraction showing people squished as they

moved close to the speed of light. The implication was that if you could

actually observe these people this is what you would see. By examining

the relativistic optics, Terrell showed that this is not at all what you would

see. In fact, if you looked at a meter stick in relativistic motion you would

see an un-squished meter stick that was rotated. No one had thought to

do this bit of physics before. Einstein was no longer alive, but one can

imagine that he would have been very amused.

At first sight you might think that gravitation, which was the only

other force being considered at this time, would be straightforward to

include in the mix. You might approach it as follows. The force of gravi-

tation is like the electrostatic force–Coulomb’s law–in that it falls of with

the square of the distance between, say, two gravitating objects. You

might then do what you do in the Coulomb case, and Lorentz transform

to a moving system. The problem is that you do not have anything like

gravitational magnetism. The velocity dependent forces you generate this

way do not correspond to anything observed. So you must use a totally

different tack. Einstein described how, in November of 1907, he found

the clue which over the next eight years led to the answer. At first sight

what he says seems so bizarre that one is tempted to think that it may be

one of his “krecks.’’ Here is what he later said in a lecture: “I was sitting

in a chair in the patent office at Bern when all of a sudden a thought

occurred to me. ‘If a person falls freely he will not feel his own weight.’

I was startled. This simple thought made a deep impression on me. It

impelled me toward a theory of gravitation.’’
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Before I explain how this “simple thought’’ impelled Einstein to-

wards a theory of gravitation, let me explain the thought. Imagine that

you are standing on a scale on a platform weighing yourself. The platform

gives way and you, and the scale, and everything else begin a free fall

in the field of gravity. Every object, whatever its mass, will fall with the

same acceleration. (I ignore effects of air resistance.) We demonstrate

this in freshman physics by dropping a penny and a feather in an evac-

uated tube and watching them fall. This acceleration, g , is the famous

32 feet per second/per second. How do we derive this? We use Newton’s

F = ma . We won’t worry about relativistic effects here. In this equation,

F is the force of gravitation at the surface of the Earth whose radius we

will call ‘R.’ Thus F = Gm M
R2 = mg. Here “M” is the mass of the earth

and G is Newton’s gravitational constant that measures the strength of

the gravitational force and g the acceleration If we cancel the ‘m’ from

both sides of the equation we have g = R2

G M . The mass of the object being

accelerated has dropped out. Einstein noted that in making this cancel-

lation we have implicitly assumed something about the masses. On the

“mg’’ side of the equation, the mass is being used as a measure of the

inertia. Einstein called this the “intertial mass,’’ mi . On the force side of

the equation, the mass is a measure of the strength of the gravitational

attraction. He called this mass the “gravitational mass,’’ mg . What has

been assumed is that mi = mg . Einstein did not know at the time that a

Hungarian Baron named Roland Eötvös, had made for decades, a career

out of showing experimentally that these two masses were the same. The

best answer he got was that they were, to one part in a billion. Now it is

known that they are, to one part in a trillion.

Einstein realized that this equality of masses led to a new and differ-

ent kind of relativity principle. This one involving accelerations. He later

illustrated it with a little thought experiment. He imagined an observer

inside a “chest’’–a “spacious room’’– somewhere in space. He cautioned

that the observer should fasten himself to the floor with strings because

otherwise he was going to fly up and hit his head on the ceiling when the

chest was jarred. He then imagined a “being’’ who can pull up on the chest

with a rope. The being accelerates the chest upward with the gravitational
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acceleration g. The occupants of the chest-now usually called the “Ein-

stein elevator’’–will find that they feel the acceleration. In fact it will be

the same effect as if there was no “being’’ but the chest was in a uniform

gravitational field. Things will appear to fall with the acceleration, g ,

and a scale will give your weight. This observation Einstein elevated to

a principle–the Principle of Equivalence–the equivalence of a uniformly

accelerated system and a uniform gravitational field. Being Einstein, he

saw how to use this principle to draw some remarkable conclusions.

Figure 2.16 gives an example. A laser beam is injected into our elevator–
or rocket ship. The being pulls the elevator up with an acceleration, g.

As the figure shows, when the beam exits the elevator it will be at a

lower place. But we can view the same effect in a uniform gravitational

field. Now what has happened is that gravity has bent the laser beam.

When Einstein published his paper on this in 1911, “On the Influence of

Gravitation on the Propagation of Light,’’ he made a prediction. He said

that the Sun would bend starlight and that this might be observed in an

eclipse of the Sun because then you could observe starlight passing close

to the Sun, which you could not do in broad daylight. He gave a figure

for how much bending there would be–a tiny angle. In 1914, a group

of German astronomers went to Russia to observe the Sun during an

eclipse. The war broke out and they were lucky to get back to Germany,

minus their equipment. They never did get to do the observation. If they

had, they would have found an effect twice what Einstein predicted in his

1911 paper. Einstein had, by this time moved well beyond it.

There is a second consequence of the Principle of Equivalence I

would like to tell you about before I describe Einstein’s final theory of

gravitation. We can imagine that we have an atom that emits light in

our elevator. The “being’’ gets to work and the floor begins to accelerate

towards the atom. This will produce a Doppler shift in the light–a blue

shift as I have described it. But the Principle of Equivalence implies that

the same effect can be produced if you put the atom in a gravitational

field. This was first detected directly in an experiment done at Harvard

by R.V. Pound and collaborators, published in 1960. But the frequency

of this light beam is also a kind of clock. Thus the principle of equivalence
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Planet surface

View of the accelerating elevator in which the "being" has been replaced by a rocket propelling  the elevater upwards 
with in acceleration g. The beam of light travels in a straight line; it is the elevator that is accelerating. We can thus 
imagine that if we were standing in the elevator, the beam of light would thus appear to follow a curved path, as shown 
below (lower left).

Due to the "equivalence principle," if you were to stand inside the elevator, it would not be possible to tell whether you
were accelerating (above left) or whether you were instead placed in a gravitational field, on a planet's surface (above
right). Also, because we know that in an accelerating frame like that in the elevator on the left, a beam of light would
appear to follow a bent path, we ought to observe the same bending of light if we were on planet's surface, in the 
gravitational field.

Figure 2.16. The equivalence principle illustrated by the accelerating elevator.

demonstrates that gravitation also alters time as well as space. It was

this effect that Einstein had not included when he discussed clocks at

the North Pole and the Equator in his 1905 paper. It is what cancels out

the special relativity time dilation. Einstein spent the four years after

he published his equivalence paper doing the hardest work of his life.

The equivalence principle applies only to uniform gravitational fields.

Even the gravitational field at the surface of the Earth is not really

uniform. In his general theory of relativity, Einstein allowed any kind
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of gravitational field. At each point in space-time there is, in principle,

a different geometry depending on the gravitational fields present. The

short hand way of saying this is that gravitation “curves’’ space-time.

Objects follow the equivalent of the straight lines in these geometries.

In 1916, Einstein published perhaps the most remarkable physics paper

ever written, “The Foundation of the General Theory of Relativity.’’ In

it he had to invent, or resurrect, a whole new mathematics. We are still

living off the riches of this paper.

One of the predictions of this paper was that the Sun would bend

starlight, but through twice the angle his 1911 paper had predicted.

This was first confirmed by two British expeditions in 1919. Sir Arthur

Eddington, who was a Quaker, and thought that such an international

scientific effort might help to bring reconciliation among the warring

countries, was the leader of one of the expeditions. He sent a telegram

to Einstein congratulating him on the agreement of his theory with their

measurement. As it happened, soon after it came, he was with a student

named Ilse Rosenthal-Schneider. Her recollection of the occasion is my

favorite Einstein anecdote. She wrote,

He suddenly interrupted the discussion . . . reached for a telegram
that was lying on the windowsill, and handed it to me with the
words, “Here, this will perhaps interest you.’’ It was Eddington’s
cable with the results of the eclipse expedition. When I was giving
expression to my joy that the result coincided with his calculations,
he said quite unmoved, “But I knew that the theory is correct’’;
and when I asked what if there had been no confirmation of his
prediction, he countered, “Da könnt’ mir halt der Liebe Gott leid tun,
die Theorie stimmt doch” (Then I would have been sorry for the dear
Lord–the theory is corrrect).

We now leave relativity and turn to Einstein’s other 1905 papers.
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3

Do Atoms Exist?

SET T I N G T H E STAG E
The question whether atoms exist or not has but little significance
from a chemical point of view; its discussion belongs rather to meta-
physics. In chemistry, we have only to decide whether the assump-
tion of atoms is an hypothesis adopted to the explanation of chemical
phenomena. From a philosophical point of view, I do not believe in
the actual existence of atoms, taking the word in its literal signifi-
cance of indivisible particles of matter—I rather expect that we shall
some day find for what we now call atoms a mathematico-mechanical
explanation which will render an account of atomic weight, of atom-
icity, and of numerous other properties of the so-called atoms.

—F.A. Kekulé
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What made the greatest impression upon the student, however,
was less the technical construction of mechanics or the solutions to
complicated problems, than the achievements of mechanics in areas
which apparently had nothing to do with mechanics: the mechani-
cal theory of light, which conceived of light as a wave-motion of a
quasi-rigid elastic ether, and above all the kinetic theory of gases:
the independence of the specific heat of monatomic gasses of the
atomic weight, the derivation of the equation of state of a gas and its
relation to the specific heat, the kinetic theory of the dissociation of
gases, and above all, the quantitative connection of viscosity, heat-
conduction, and diffusion of gases, which also furnished the absolute
magnitude of the atom. These results supported at the same time me-
chanics as the foundation of physics and of the atomic hypothesis,
which latter was already firmly anchored in chemistry. However in
chemistry only the ratios of atomic masses played any rôle, not their
absolute magnitudes, so that atomic theory could be viewed more
as a visualizing symbol than as knowledge concerning the factual
construction of matter.

—Albert Einstein

Some decades ago there was a noted philosopher Morris Raphael

Cohen who taught at what was then known as the City College of New

York. The students were quite remarkable; future Nobel Prize winners,

mayors, legislators, and political scientists of every stripe. They had no

inhibitions about asking questions in class and their teachers had no

inhibitions in answering. In one of Cohen’s classes a student interrupted

and asked “Professor Cohen, how do I know that I exist?’’ Without

missing a beat Cohen replied, “And who’s asking?’’ When I first heard

this all those years ago, I thought that it was very funny, and I still do.

But I saw the point. If this student discovered that in a great variety of

independent encounters people addressed him by the same first name and

often asked after his only sister, he would probably decide that the notion

that this was all part of some chimera located in the mind of the Great

Over-Soul was, while logically possible, an unnecessary hypothesis. You

might as well admit that you exist and get on to something else. I am going

to show you that something rather like this occurred in the beginning of
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the twentieth century when it became generally accepted, after decades

of controversy, that atoms do exist. They are not simply “visualizing

symbols’’ for chemists. You will also see that Einstein was, once again, a

central figure.

The Greek word τ oµoσ–“tomos’’–means “cut’’ and when preceded

by an α to make ατ oµoσ means “without a cut’’ or “indivisible.’’ This

was the Greek atomic idea. Matter could be divided until one reached

the ατ oµoσ which were the ultimate constituents. Ultimately all that

existed were the atoms and the void. Sometime in the first half of the

first century BC–dates are uncertain–The Latin poet Titus Lucretius

Carus–“Lucretius’’–put this philosophy into an epic poem called “De re-

rum natura’’(On the Nature of Things),–which was based on the ideas of the

earlier atomists such as Epicurus–from whom the title came. The atoms of

the poem come in various sizes and shapes but have in common that they

were indivisible. They were also not directly observable with our senses–

only their cumulative effect. As an example he describes particles that are

seen “dancing in a sunbeam’’ noting that “their dancing is an actual indica-

tion of underlying movements of matter that are hidden from our sight.’’

I think that it is fair to say that nothing of scientific interest occurred

in atomic theory for the next seventeen hundred years. Newton seems to

have been an atomist. In his semipopular book Opticks, written in English,

unlike the Principia which was written in Latin, he notes that,

It seems probable to me, that God in the beginning form’d matter
in solid, massy, hard, impenetrable, Particles of such Sizes and
Figures, and with such other Properties and in such Proportion to
Space, as most conduced to the End for which he form’d them; and
that these primitive Particles being Solids, are incomparably harder
than any porous Bodies compounded of them; even so very hard,
as never to wear or break into pieces; no ordinary power being able
to divide what God himself made one in the first Creation.

Robert Boyle, who was a contemporary of Newton, and also an

atomist, confirmed with careful experiments what became known as

Boyle’s Law; the proposition that at a fixed temperature the product
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of the pressure and the volume of a gas is a constant. If you increase

the volume you will proportionately decrease the pressure. But the truly

singular work on atomism was done by Daniel Bernoulli. The Bernouillis,

who were originally Dutch, migrated to Switzerland where Daniel

was born in 1700. Mathematical brilliance seemed to run in the

Bernoulli blood. They all were mathematicians: father, sons, uncles,

the lot. But Daniel was certainly the greatest genius among them which

did not sit well with his father Johann, who often tried to take credit for

work his son had done. Daniel Bernoulli was not only a mathematician.

He studied medicine and published papers on the mechanics of breathing

among other things. In 1725 he went to St. Petersberg with one of his

brothers, Nikolaus, who was, of course, a mathematician. Nikolaus died

suddenly and Bernoulli then did everything he could to find a position

in Switzerland. In 1733, he went to Basel where he obtained a chair in

anatomy and botany. There he remained until his death in 1782.

His most famous work was a treatise he called Hydrodynamica or

“hydrodynamics’’–a term he invented–which was published in 1738. In

the final version there are thirteen chapters mostly devoted to the be-

havior of liquids. For example, he demonstrated that a stream of water

radially contracts. The tenth chapter, which is what concerns us, deals

with what Bernoulli referred to as “elastic fluids,’’ by which he meant

gasses. The questions that he discusses seem natural to us, but no one

had thought to look at things this way before and no one afterwards for

a century until people like Maxwell reopened the subject. Bernoulli ac-

cepted the atomic hypothesis. As he noted, a gas consists of “very minute

corpuscles which are driven hither and thither with a very rapid motion.’’

His concern was how to use this model to derive the macroscopic prop-

erties of gasses that we observe, properties such as Boyle’s law. First he

had to state what pressure was from this point of view. He imagined that

the gas was confined to a cylindrical vessel with a moveable piston at the

top. Then he noted that the piston will be held up “by repeated impacts’’

on it of the “corpuscles.’’ In short, the pressure is produced by the force

imparted by vast number of collisions of the molecules of the gas with the
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surface of the piston. With this picture in mind he was able to reproduce

Boyle’s law. He also understood that if the temperature of the gas were

to be increased the speed of the molecules would increase and that this

would increase the pressure if the volume was held constant. Some of

his argument is difficult to follow but, if rewritten in terms of modern

notation, it is something that you could present to a physics class. What I

find so odd about this, is that it stands alone. It came from nowhere and

went nowhere for a century. I thought of an analogy. It would be as if the

Malla kings of Nepal had erected a skyscraper in Medieval Kathmandu

which had both glass windows and air-conditioning.

It is also strange to me that neither Bernoulli, nor anyone else for

decades, thought to ask how big these corpuscles were, what was their

mass, and how many of them there were in some standard volume of

gas or liquid. To these people they were just “corpuscles.’’ The rest

of this chapter will be devoted, in one way or another, to these ques-

tions. But I want to begin with an instructive example of someone else

who failed to ask–in this case Benjamin Franklin. At the time–the late

1700s–Franklin was living near Clapham Common in London. He was

in correspondence with a physician and noted scientific amateur named

William Brownrigg. It seems that Brownrigg had written him about

someone who had observed that pouring oil on troubled waters has a

calming effect. In November of 1773, Franklin responded describing

his own observations on the matter. Among other things, he had put a

small amount of what must have been olive oil on the large pond in the

common. He speaks of using a teaspoon of oil. He noted that it spread

very rapidly. Indeed, the tea spoon of oil soon covered a half acre and

then stopped spreading. He also noticed that until the oil had spread

thin it produced what Franklin called “prismatic colors.’’ It didn’t seem

to occur to him to ask why the oil stopped spreading and why the

prismatic colors disappeared. The answer to both of these questions is

the same.

The oil spreads until it reached a thickness of the size of a single

molecule–a monomolecular layer. It cannot get any thinner than that.
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The “prismatic colors’’ are a little more subtle. If you have a thin layer

of, say oil, spread on a substance like water, and shine light on it, what

happens is that some of the light is reflected from the surface of the oil

and some having penetrated the layer is reflected by the water. The latter

follow a longer path and can get out of phase with the former. The two

wave forms will be displaced since one wave will arrive after the other.

This means that the maxima or minima of the wave will no longer overlap.

If the thickness of the layer is such that the difference of path length is

a whole number of wave lengths of the light, then the two beams are in

phase and reenforce each other. If the difference is say a half wave length

then the two beams are exactly out of phase and interfere destructively

with each other. Sunlight, as we know, consists of many wave lengths.

Looking at a given angle at the layer of oil will pick out that part of

the spectrum in which the beams are in phase. If we change the angle

then the path lengths change and another color will be picked out–thus

the “prismatic colors.’’ However if the layer of oil has a thickness that

is much less than the wave length of light there is no effect because the

path lengths are sensibly the same. The “prismatic colors’’ disappear. A

useful unit of length in this business is the “Angstrom.” One Angstrom—

1Å = 1/108 centimeters = 10−8cm = 1/100,000,000 cm. Visible light is

in the 4000 to 7500 Angstrom range so we can conclude that molecular

sizes must be a great deal smaller than 4000 Angstroms.

Film

Incident ray
Reflected rays

Observer

Figure 3.1. Why a thin film produces prismatic colors.
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We can do better than that if we pursue Franklin’s experiment a

little further. To do this we shall make a molecular model. Molecules

don’t really look like our model but using it we should be able to get

correct orders of magnitude. We shall suppose that each molecule is a

tiny cube whose sides have length L. I am not sure of the volume of

Franklin’s tea spoon, but an American teaspoon has a volume which is

given conventionally as 5 cm3. A British tea spoon is a little larger. Thus

there are a total number of molecules of oil, N , of about 5 cm3/L3. We are

thinking of the little cubes being stacked up to fill the teaspoon. These

same N molecules cover a half acre which is about 2 × 107 cm2.

Thus we have two equations

N = 5 cm3/L3

and

N = 2 × 107 cm2/L2

So dividing, we have that L is about 25 Angstroms. This is a large

molecule but still incredibly small by any ordinary measure. We may ask

about how many of them are in a cubic centimeter in the teaspoon. Using

the numbers above we find about 1020/cm3, a huge number. Shortly I

will give numbers that have a more universal character.

As I said, this experimental reasoning was not carried out by

Franklin, but a few decades later the first experiments were performed

explicitly to find the size of a molecule. They were carried out by Thomas

Young, the British polymath whom we met in Chapter I when dis-

cussing the evidence for the wave nature of light. In 1816, Young pub-

lished an article in the fourth edition of the Encyclopaedia Britannica on

what he called “cohesion.’’ He was studying the cohesive force between

water molecules and determined that the range of the force was about

an Angstrom. He conjectured that the size of the molecules must be less

than this but could not give a precise value. Actually the size is about
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two Angstroms. Here matters remained for the next half century. In the

meanwhile the chemists had gotten into the act.

John Dalton, who was born in 1766, was the second son of a mod-

est Cumberland weaver. Dalton might have spent his life as a day la-

borer if his brother had not found him a place in a newly established

Quaker boarding school. It was here that Dalton developed his interest

in science. He began his scientific career as an atomist, but for reasons

I will explain, developed doubts. He envisioned chemical reactions as

taking place as combinations of individual atoms which accounted for

the fact that elements seemed to combine in definite proportions. In

his great book, New System of Chemical Philosophy, which was first pub-

lished in 1808, he gave his rules for chemical combination. Inevitably he

got some things wrong. For example, he claimed that the reaction that

produces water was a combination of one hydrogen atom with one oxy-

gen atom to produce a water molecule of the form HO. The year after

Dalton published his book, the French chemist Joseph Louis Gay-

Lussac published his results on how volumes of gasses combine in simple

integer proportions. In particular, he found that two volumes of hydro-

gen combined with one volume of oxygen to give two volumes of water

vapor. This was incompatible with Dalton’s formula for water and caused

him to have doubts about the entire atomic theory of chemistry. In sci-

ence it sometimes happens that a genius appears just when he, or she, is

needed. In this case it was the Italian aristocrat Lorenzo Romano Amedeo

Carlo Avogadro di Quarenga e di Cerreto-Amedeo. Avogadro for

short.

Avogadro, who was born in Turin in 1776, was headed for a career

in the law but after a few years abandoned it for the study of physics

and mathematics. By 1811, he had made two of the most important dis-

coveries in the history of chemistry, which he published in the Journal

de Physique. He recognized that Gay-Lussac’s observations on combining

volumes of gasses could be explained if equal volumes of these gasses

had equal numbers of fundamental particles. But then how to explain

the results on water? For this Avogadro made the profound observa-

tion that these fundamental particles need not consist of a single atom.
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Indeed, both hydrogen and oxygen in this reaction are diatomic. The

basic unit in the gas–the molecule–we write as H2 and O2 respectively.

There are two atoms of each gas per molecule. The claim is that equal

volumes of gasses contain the same number of molecules. If we recog-

nize that the correct chemical formula for water is H2O, everything fits.

One volume of O2 plus two volumes of H2 yields two volumes of H2O.

It is rather amusing that the number of molecules in a cubic centimeter

of a gas under standard conditions of pressure and temperature–14.7

pounds per square inch of pressure, one atmosphere, and 32◦F–is usu-

ally not now called the Avogadro number, but rather the Loschmidt

number, which is incidentally is approximately 2.67 × 1019 molecules

per cubic centimeter. Loschmidt will come into our story next. What is

generally called the Avogadro number refers to the number of molecules

in what is called a gram molecule or “mole.’’ By definition, the mole of

any substance weighs in grams an amount equal to its molecular weight.

For example, the molecular weight of helium is 4, so a mole weighs four

grams. The molecular weight of diatomic oxygen is thirty two, so a mole

of oxygen gas would weigh thirty two grams and so on.1 The number of

molecules in a mole is a universal number and is measured to be 6.022 ×
1023. Avogadro never considered this quantity and the name entered

physics only early in the twentieth century. By the way, we can use

Avogadro’s number to find the mass in grams of, say, the hydrogen

atom. We can take the atomic weight of hydrogen to be approximately

one. If we call the mass of the hydrogen atom mH and Avogadro’s num-

ber NA then m H × NA = 1 so that solving we find that m H =1.6 × 10−24

grams.

There are a number of appealing characters in our story, but one

of my favorites is Jan Josef Loschmidt. Loschmidt was born into a poor

farming family, in what is now the Czech Republic, in 1821. If his abilities

1Atomic weights–the relative weights of elements–are generally nearly integers.
Strictly speaking they are defined by finding the atomic weights of the various
isotopes of the atom and averaging, taking into account the abundance of the
isotopes. We are ignoring this subtlety here.

111



SVNY072-Bernstein August 27, 2005 11:3

S e c r e t s o f t h e O l d O n e

had not been recognized by a local priest, who persuaded Loschmidt’s

family to allow him to have an education, no doubt he too would have

remained on the farm. Loschmidt went to high school and then for two

years to the Charles University in Prague where he studied philosophy

and mathematics. He then moved to Vienna where he supported himself

as a private tutor while taking the equivalent of a bachelor’s degree in

physics and chemistry. Then he needed a job. He looked everywhere,

including the newly created state of Texas. If Loschmidt had actually

gone to Texas the history of chemistry would very likely have been quite

different. In 1856, after some unsuccessful business enterprises, he got a

job teaching in a high school in Vienna where he was allowed to have a

small personal laboratory. It was as a high school teacher that in 1861, he

published, at his own expense, a booklet containing his first two papers on

chemistry. In them he gave the first formulae for the chemical structure

of hydrocarbons. Kekulé, who never acknowledged Loschmidt’s work,

became famous for his ring structure of the benzene molecule which had

been used previously by Loschmidt in a hundred hydrocarbons. In the

meanwhile, Loschmidt had become known to people at the University

and in 1868, he was made an associate professor of physical chemistry

and was given an honorary PhD. But it was in 1865, that he published the

paper “On the Size of Air Molecules’’ in the Proceedings of the Academy

of Science of Vienna to which we will now turn our attention.

From the references in his paper it is clear that Loschmidt was

familiar with the work of Maxwell and the German physicist Rudolf

Clausius on statistical mechanics. There is no reference to Young, so

Loschmidt seems unaware of his measurements of the size of molecules.

In his own analysis Loschmidt makes use of two results. The first is

an analysis by Maxwell as to why, for example, air, offers resistance

to objects projected into it—why air is “viscous.’’ Maxwell argued that

it came about because of collisions between faster and slower moving

molecules. Thus the essential determining factor was the frequency of

these collisions. Equivalently we can ask, on the average, what is the

distance traveled by a molecule before it collides with another. This
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distance is referred to as the “mean free path.’’ It is clear that it depends on

two things; how many molecules per centimeter cubed are encountered,

and the area that each molecule presents for a collision. In fact, the bigger

these numbers are, the smaller the mean free path. Ignoring all numerical

factors–Loschmidt does it more carefully–I will take the area to be L2

where, L is the size of the molecule. The number of molecules per cubic

centimeter I will call, NL–the Loschmidt number. If I call the mean free

path, l, and ignore all the numerical factors then

l = 1
NL L2

,

which says that the mean free path between collisions decreases with the

number of molecules available and the area cut out by each molecule. The

measured mean free path that Loschmidt got from the work of Maxwell,

and others, was about 0.000014 cm = 1.4 × 10−5cm. We can be sure that

the size of the molecule is substantially smaller than this. Our equation

for NL involves two unknowns, L and l , so we need another equation.2

To find the second equation Loschmidt reasoned essentially as fol-

lows. Suppose we could liquefy air. We could then think of the molecules,

like we did for the one’s in Franklin’s spoon, as being packed together

with the little cubes lying on top of each other. Each tube has a volume

of L3 so if we call the mass of the air molecule, m, then the density of the

liquid air, ρL , again ignoring all geometric factors, is given by ρL = m
L3 .

The density of ordinary air–that is, gaseous air–is given by ρA = m NL .

In a gas, the molecules are not packed together so the density is just given

2The existence of such a mean free path explains an apparent paradox in the
kinetic theory. Molecules in a gas have average speeds of several hundred
meters a second. Thus one might expect that introducing a gas in the corner of
a room would be noticed throughout the room in seconds rather than minutes.
The reason this delay happens is that the molecules are constantly colliding.
Multiplying the time between collisions by this average speed we get the mean
free path. Solving for the time we get about a billionth of a second implying
that the molecules collide billions of times a second.
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by the mass of a molecule multiplied by the number of them in a cubic

centimeter.

Thus, dividing the two expressions,

ρL

ρA
= 1

NL L3
.

Now we have two equations and can first solve them for L. Thus

L = l × ρL

ρA
.

Loschmidt used somewhat different quantities and took spherical

molecules, but this is the idea. At this point he was somewhat stymied

because air had never been liquefied. Indeed its components such as oxy-

gen, argon and nitrogen hadn’t been liquefied either. That would come

at the end of the century. So he used some indirect chemical arguments

to find what he needed to know. We can cheat and use the known values

ρA = 1.25 × 10−3g/c m3 and ρL = 880 × 10−3g/c m3. Thus, according

to this estimate, L is about 2 × 10−8 cm = 2Å. With his spherical air

molecule, Loschmidt found the radius of the sphere to be about twice

this size. The presently accepted value of the diameter of the sphere is

about 3 × 10−8 cm, that is, approximately 3Å. Molecules are not really

spheres but this gives a feeling for their size. Curiously, Loschmidt did

not use the same reasoning to find NL which is given in our simplified

form by

NL = ρG

ρL
× 1

L3
.

If we use Loschmidt’s value for L we find an answer for NL which is an
order of magnitude too large. Later Loschmidt did give some estimates

for NL, but these had a range of values. It would take a new generation

of experiments in the next century to arrive at the presently accepted

value.

From the way I have presented this discussion you might easily get

the impression that during this period atomic science was proceeding
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normally. It was not. There were pitched battles being fought between

atomists and nonatomists as to whether atoms even existed or whether

they were a burdensome theoretical construct. Chemists disputed with

chemists, physicists with physicists and the two groups disputed with

each other. A perfect microcosm of this is what happened in Loschmidt’s

own university, although the principals were not assembled under one

roof until after Loschmidt’s death in 1895. One of Loschmidt’s students

was Ludwig Boltzmann who became one of the great theoretical physi-

cists of his generation. Loschmidt presented him with a very deep puzzle.

In the statistical mechanical picture of gasses the molecules are colliding

with each other billions of time a second. It was by analyzing the average

behavior of these collisions that Maxwell, and others, were able to derive

some of the laws of thermodynamics such as Boyle’s law. But these colli-

sions are all reversible. If you take a given collision what happens is that

two molecules each with its individual initial momentum collide. Follow-

ing the collisions, the two molecules emerge with different momenta. But

we can imagine running the collision backwards. The two final momenta

become the initial momenta, and the two initial momenta become the fi-

nal momenta. In one of these gasses this collision is just as likely to occur

as the one we started with. This implies the microscopic reversibility of

the system. But then how does the system as whole evolve? To take a

specific example, suppose we have a container of water and put some

powdered dye in a corner. We know what will happen. The dye will

diffuse throughout the water and eventually color the whole container.

But how can the microscopically reversible collisions account for this?

Why does the dye not return to its initial corner? This was a problem that

Boltzmann spent much of his professional life resolving. In essence, it

comes down to less probable configurations evolving into more probable

ones until the system reaches a stasis–an equilibrium. The probability

of its reverting to its unlikely initial state is infinitesimal. In his analysis

Boltzmann treated the atoms and molecules as real entities.

His counterpart was Ernst Mach, the same Mach who influenced

Einstein. Nonhistorians of science largely remember him now because

of the Mach numbers, which give the ratio of the speed of a supersonic

115



SVNY072-Bernstein August 27, 2005 11:3

S e c r e t s o f t h e O l d O n e

object to the speed of sound. In 1886, he photographed the shock waves

generated by supersonic bullets. Mach spent his early career teaching in

a provincial Austrian university, followed as we have noted by several

years at the so-called German University in Prague. He returned to the

University of Vienna in 1895–the year of Loschmidt’s death, but as a

professor of philosophy. Despite his fairly undistinguished record as a

scientist Mach became on of the most influential physicists of his era.

This had to do with his philosophical and historical writing and above

all with his masterpiece The Science of Mechanics.

In The Science of Mechanics, as we have seen, Mach exposes the often

unstated metaphysical and even theological assumptions that underlay,

for example, the mechanics of Newton. It was, as I have mentioned,

Mach’s skepticism that helped to inspire Einstein to have the courage

to overthrow the Newtonian world view. But, even Einstein, felt that

Mach went too far. Mach was a positivist who believed that theories

in physics should be nothing more or less than the economical descrip-

tion of observed facts. For Mach, Boyle’s law was a model of such a

description. It was a relationship between observed quantities such as

the temperature, volume, and pressure of a gas. What Mach objected to

was the introduction of what he regarded as the extraneous complica-

tion of atoms and molecules to “explain’’ the law. Given his view, and

the fact that he and Boltzmann became colleagues, a collision was in-

evitable. Boltzmann later wrote, “I once engaged in a lively debate on

the value of atomic theories with a group of academicians, including

Hofrat Professor Mach, right on the floor of the academy [of science]

itself . . . Suddenly Mach spoke out from the group and laconically said:

‘I don’t believe that atoms exist.’ This sentence went round and round in

my head.’’ When the subject of atoms came up, Mach was fond of asking

“Have you seen one?’’ This is a fair question and at the end of this chapter

we shall return to it when we briefly consider the permanently confined

quarks. Now, we are going to have a mathematical interlude, then on to

Einstein. It is not an idle interlude because without it we cannot under-

stand Einstein.
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MAT H E M AT I C A L INTE R L U D E: TH E DR U N K A RD’S WA L K
When I was a kid I used occasionally to be taken to see horror movies,

the kind that starred Boris Karloff or Bela Lugosi. When it came to the

scary parts I would hide my eyes with my hands. In the really scary parts

I would close my eyes and put my fingers into my ears. For some of you

a mathematical interlude may seem like an experience of just this kind.

If you want, you can close your eyes and put your fingers in your ears

until its over. I think you will miss some of the fun. I also think that you

may find the part on Einstein less comprehensible than it should be. In

any event I am going to analyze, a little bit, one of the classic problems

in mathematics–the drunkard’s walk.

At the risk of being sexist I am going to take my drunkard to be

male. To make the analysis simpler, without sacrificing anything that is

essential, I am going to make his walk one dimensional–along a line. In

addition, this is what I am going to assume about the walk. It starts at

some origin–under a lamp post, say. At each step the drunkard will flip

a coin. If it comes up heads he will take one step to the right and if it

comes up tails he will take one step to the left. All the steps will be of the

same length–say one foot. If the coin is “fair,’’ the probability is a half for

a step to the right and half for a step to the left. Probabilities always add

up to one since something is sure to happen. Furthermore, nothing in the

previous history of the walk affects the probability of the next step. That

is why the walk is “random.’’ The question we want to discuss is what

will happen. We can see at the outset that there is no definite answer to

this question. There are many possible walks. We want to see what, at

least, some of them are.

The first step is very simple. The drunkard can end up at −1 or at

+1 as depicted in Figure 3.2.

These two outcomes are equally probable. Since there are two pos-

sible outcomes each one has a probability of one-half. The next step

becomes more interesting. The drunkard can end up in one of three

locations, +2, 0, or −2, as shown in Figure 3.3.
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0 1 2 3 4 5 6–1–2–3–4–5

(a)

0 1 2 3 4 5 6–1–2–3–4–5

(b)

Figure 3.2. In the first step drunkard’s walk can have different results, as in (a) −1
or (b) +1.

0 1 2 3 4 5 6–1–2–3–4–5

(a)

0 1 2 3 4 5 6–1–2–3–4–5

(b)

0 1 2 3 4 5 6–1–2–3–4–5

(c)

Figure 3.3. In the next step, the drunkard can find himself in one of three locations:
(a)+2, (b) 0, or (c) −2.

But note that at the second step there is one way to get to +2 or

−2 but two ways to get back to zero. That is what I mean by the two

crosses in the figure. Since the total number of possible walks at this step

is four, the probabilities of getting to plus or minus two is one-fourth,

while the probability of getting back where you started is one-half. You

may be comforted to know that there are general formulae for these

probabilities, and that I am not going to write them here. They can

be applied for an arbitrary number of steps. But there is a geometrical

construction that gives these outcomes. It is called Pascal’s triangle named

after the 17th-century French mathematician Blaise Pascal. It seems to

have been discovered much earlier by the Chinese. This is what it looks

like for the first few steps (Figure 3.4).

We can see the meaning of the triangle by considering a couple

of examples. As we have mentioned, in the second step there are two

ways of getting back to the center and one way to get to either ex-

treme. This is reflected in the entries 1, 2, 1 in the triangle. Now you
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1

11

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 3.4. The first few steps of Pascal’s triangle.

can see what the other entries mean. For example, in the sixth step there

are twenty different routes that take you back to the center. The to-

tal number of possible routes escalates with the increasing number of

steps N. For example for N = 6 we have, adding them up, 64 possible

routes. It is no coincidence that 64 = 26. We can show quite gener-

ally that the number of routes at the Nth step in 2N . Here is another

interesting thing about the triangle. Suppose we consider, for exam-

ple, the polynomial (a + b)5 = (a + b)(a + b)(a + b)(a + b)(a + b) =
a5 + 5a4b + 10a3b2 + 10a2b3 + b5. You will notice that these coeffi-

cients are the same numbers as you find in the fifth row of the triangle.

This is also not an accident. The coefficients of polynomial expansions

can be read off the triangle. I will spare you the proof which would re-

quire my writing down the formula for an arbitrary entry in the triangle.

Those of you who might be interested can find it on the web. Note also

we can find the entries on the next row by adding up adjacent entries on

the previous row.

The number of routes escalates as the number of steps increases.

So does the complexity of the routes (see Figure 3.5). What is plotted

here are the places where the steps take you, versus the number of steps.

There is a bit of artistic license here. The steps jump discontinuously, but

the in-between points have been filled in. As the number of steps gets

larger the in-between points become less significant and to all practical

purposes the curves do get filled in. I think it is fair to say that just looking

at these curves without explanation, one would be unlikely to come up

with the correct explanation. It is remarkable that such a simple rule as

the drunkard’s walk can generate curves of this complexity.
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–10

Figure 3.5. As the number of steps increases, so does the complexity of possible
routes.

1

1/2 1/2

1/4 2/4 1/4

1/8 3/8 3/8 1/8

1/16 4/16 6/16 4/16 1/16

1/325/3210/3210/325/321/32

1/64 6/64 15/64 20/64 15/64 6/64 1/64

Figure 3.6. The probability triangle.

In the triangle I have given the number of routes available to reach

a certain outcome of the walk. It is easy to convert this into a triangle of

probabilities. We just have to divide the entries on each row by the total

number of entries. For example on the fifth row we have the entries 1, 5,

10, 10, 5, 1 which give the number of routes that end up at distances of

5, 3, 1 or −1, −3−5 respectively. To get the probabilities of ending up

at a given place, we divide its number by 32, which is the total number

of routes when 5 steps are taken. We can plot these probability triangle

numbers as shown in Figure 3.6. The can be converted in a histogram

(Figure 3.7) and morphed into a Bell curve (Figure 3.8).
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x

y

Figure 3.7. The probability triangle converted into a histogram.

x

Figure 3.8. The morphing of the histogram into a bell curve as the number of steps
increases.

As the number of steps increases the histogram will gradually morph

into the bell-shaped curve above. In the limit in which the number of

steps becomes infinite the histogram becomes the bell-shaped curve. This

is an example of one of the most important theorems in statistics and

probability. It is called “the central limit theorem.’’ What it says is that if

you have a huge number of random events their probability distribution

becomes “normal’’, or “Gaussian normal,’’ which means that the curve
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that describes these probabilities becomes bell shaped. That is why the

bell-shaped curve is so ubiquitous in statistics.

Now I want to finish this interlude with something that I want you

to pay special attention to. I want to introduce a measure of how far on

the average the drunkard will travel away from where he started after

N steps. We could try to keep track of the positive and negative steps

which would be rather complicated. Instead we will perform the average

by averaging the squares of the distances which are all positive. This

will give us the “mean square distance.’’ Its square root will give the

“root mean square distance.’’ This may sound a little complicated, but

I think you will be charmed by the answer. I hope so because it is the

key to understanding Einstein’s results, which we come to shortly. To be

concrete I will consider N = 5. As mentioned before the drunkard can

end up at the distances −5, −3, −1, +1, +3, +5. The total number of

routes is 32 so looking at the triangle the probabilities of these outcomes

are 1/32, 5/32, 10/32 and 10/32, 5/32, 1/32 respectively. Note that the

probabilities add up to one as they are meant to. Now we can form the

average, which I will call for the Nth step 〈x2〉N . This is the average I get

by squaring each distance and multiplying by its respective probability.

Thus for five steps I get

〈x2〉5 = 1
32

× (1 × 25 + 5 × 9 + 10 × 1 + 10 × 1 + 5 × 9 + 1 × 25) = 5.

To be careful I should put in the unit in which I am measuring distances.

If the steps are a foot at a time then the unit that should be there is

feet squared. The unit for
√

〈x2〉5 = √
5 would be in feet. This simple

result is very general. If we repeat it for the Nth step we will find that√
〈x2〉N = √

N which in this case would be measured in feet. One last

thing. Let us suppose that to make the N steps took the drunkard a time

t. Let us imagine that this time is divided up into units, say �t, so that
t

�t = N . The result we have in terms of the time is that the root mean

square distance the drunkard goes in a random walk that takes the time

t to perform, increases as the square root of the time. In other words, if

122



SVNY072-Bernstein August 27, 2005 11:3

D o A t o m s E x i s t ?

the drunkard walks for four times the time he will, on the average, only

get twice as far. This is essential to understanding Einstein’s result.

BROW N I A N MOVE M E NT
In this paper it will be shown that according to the molecular-kinetic
theory of heat, bodies of microscopically-visible size suspended in a
liquid as a result of thermal molecular motions, will perform move-
ments of such magnitude that they can be easily observed in a mi-
croscope. It is possible that the movements to be discussed here are
identical with the so-called “Brownian molecular motion’’; however,
the information available to me regarding the latter is so lacking in
precision that I can form no judgment in the matter.

—Albert Einstein,1905

Robert Brown was born in Montrose, Scotland, in 1773 (see Figure

3.9). His father was a clergyman. But Brown studied to be a doctor and,

in 1795, he joined the Fifeshire Regiment of Fencibles as a surgeon’s

mate. His diary is still extant. An entry dated 13, January 1800, reads

At breakfast read part of the rules concerning the gender of
German nouns in Wendelborn’s grammar. After breakfast tran-
scribed into my botanical common place book part of my notes
on Sloane’s Herbarium on Jamaican Ferns. Attended the Hospital
from one till three o’clock. Drank about a pint of port in negus.
Conversation various . . . About twelve o’clock finished the tran-
scription of my notes on Sir Hans Sloane’s Ferns. This transcrip-
tion has not afforded me one new idea on the subject of Filices.3

At the end of 1800, Brown was offered the post of naturalist aboard

a sailing ship called Investigator for the very large sum of four hundred

twenty pounds. This had come about because Brown had met, and

impressed, Joseph Banks, an independently wealthy and well-known

botanist who had influence with the Admiralty. In the event, the voyage,

3Dictionary of Scientific Biography, op.cit., Vol.II, p.517. “Negus’’ was a popular
mixed after-dinner drink and “filices’’ is the Latin term for “ferns.’’
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Figure 3.9. Robert Brown. (Courtesy, Topham/The Image Works)

which went to Australia, lasted four years. Brown came back with a trea-

sure trove of some four thousand new botanical species as well as draw-

ings and zoological specimens. Dealing with this material took the next

several years. On Banks’ death in 1820, Brown was given an inheritance

that included a house and Banks’ library and zoological collection. He

was very busy with all of this and published very little for several years.

During this period Brown honed his skills as a microscopist. Among

other things he observed plant cells and identified a part he called the

“nucleus.’’ By 1827, he was studying pollen grains when he made the

discovery that has immortalized him.

He noticed that suspended in the fluid in the grains were tiny par-

ticles. Typically the particles had the size of a few ten thousandths of a

centimeter. They were indeed microscopic. They were also undergoing a

kind of St. Vitus dance–jigging in various apparently random directions.

He came to the conclusion that the movement did not have to do with

currents in the fluid, but seemed to belong to the particles themselves.

Movements like this had been reported previously but by no one with

Brown’s scientific curiosity. Among his specimens he had many differ-

ent kinds of fresh pollen to experiment with, and he noticed that the
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microscopic particles in all of them underwent the same kind of jittery

movement. Incidentally, Brown and his successors referred to this effect

as “movement’’ and not “motion,’’ so in this spirit I will always refer to

Brownian “movement.’’ Then he turned to dead pollen, some of which

had been preserved in the herbarium for a century. They too had parti-

cles that when suspended in water jittered. Next he tried truly inanimate

objects. These included London soot, and a finely powdered stone that

had been taken from the Sphinx. All of them, when ground into mi-

croscopic particles, showed the same movement. In 1828, he issued a

privately printed pamphlet with the cumbersome title A Brief Account of

Microscopical Observations Made in the Months of June, July and August of 1827,

on the Particles Contained in the Pollen of Plants; and on the General Existence of

Active Molecules in Organic and Inorganic Bodies. Brown was a curious mix-

ture of the social and antisocial. He never married, and lived alone for the

rest of his life in the house that Banks had bequeathed him. Nonetheless,

he joined various scientific bodies such as the Royal Society. He also

spent Sunday mornings with Darwin who had a great admiration for

him. Thus, despite the fact that Brown had only published his discovery

in a privately printed pamphlet to which he had never added anything,

it became rather widely known.

There were a variety of reactions including that of Maxwell, who

conjectured that if Brown had used a more powerful microscope the

movement would disappear. There have been, incidentally, some modern

commentators who have claimed that Brown never could have seen what

he claimed to have seen with the microscope at his disposal. But the

microscope is still extant and has been used to take moving pictures of

Brownian movement. It is quite visible. Figure 3.10 shows the actual

microscope.

The common explanation at the time was that the movement was

due to small currents in the liquid. By the end of the 19th century,

the idea that the motion was caused by the incessant collisions of the

larger particles with the invisible molecules of the liquid in which they

were suspended, began to take prominence. This, of course, required
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Figure 3.10. The microscope used by Brown in his experiments on the movement
of suspended particles. (Photo courtesy Brian J. Ford)

the “existence’’ of the molecules and that became part of the debate.

There were objections, some of the most interesting coming from a

distinguished German cell biologist named Karl von Nägli. Nägli sug-

gested two difficulties. Firstly, he said that because of the disparity of size

between the particles and molecules it would take millions of collisions

for the molecules to move the particles significantly. However, he seemed

to realize that there were enough collisions per second—quintillions in

fact–so that this was not a problem. But his second objection is more

interesting. He said that since these collisions are coming from all direc-

tions at random, the particles will never be able to move. One collision
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will be offset by another. Those of you who have read the mathematical

interlude will immediately see the flaw in this. We might also have said in

that example that since the drunkard at each step has equal probability

of going left or right, he will never get anywhere. But we have seen that

this is not true. He will move away from where he started from with a

root mean square distance that is proportional to the square root of the

elapsed time. Nägli’s contemporary the French physicist Léon Gouy did

a series of experiments that showed, among other things, that Brownian

movement took place in a wide variety of solvents and had nothing to

do with using water. Gouy insisted that the only possible explanation of

his experiments was that motion arose from the collisions of the parti-

cles with the invisible molecules of the solvent. Indeed, this phenomenon

was a proof of the validity of the kinetic theory. However, neither he

nor anyone else, had actually shown how to use the theory to derive the

properties of Brownian movement. Enter Albert Einstein.

Einstein’s connection with this problem is related to the somewhat

baroque story of his PhD thesis. At first sight one might be tempted to

ask why on earth did Einstein need a PhD? But one has to put oneself

back to 1903. Einstein was then recently married, and had been hired as

an “Expert III Class’’ at the patent office in Bern. He had started a thesis

for the Polytechnic in Zurich but had withdrawn it in 1902, when there

did not seem to be much enthusiasm from the faculty. At Bern, he decided

to take his PhD up again. He definitely wanted to start up the academic

ladder. This had been his hope in Zurich. The lowest rung was what

was privatdozent, which allowed one to teach at a university, earning only

the money that students paid for the lectures. Even this required a PhD.

Einstein had heard that the University of Bern would, in special cases,

forgo the PhD thesis if the candidate could offer the proof of significant

original work done prior to the demand for the degree. Einstein tried this

in 1903, and was turned down. This may also seem crazy but the papers

he submitted were a little strange.

By 1903, Einstein had published four papers, all of them in the

German journal Annalen der Physik. The first two he later referred to

as “beginners’ papers’’ and in retrospect he would not have submitted
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them. The next two had to do with the foundations of statistical mechan-

ics. They were very likely turned down as a substitute for a thesis for

the wrong reason–no one at the University of Bern understood them.

The right reason would have been that the work had been done inde-

pendently by Boltzmann and by the American physicist Josiah Willard

Gibbs who actually died in 1903. He summarized his work in a book he

published in 1902, but it was not translated into German until 1905. It

is unlikely that anyone in Germany knew anything about Gibbs. This

certainly included the then editor of the Annalen, Paul Drude, who could

accept or reject papers submitted to the journal. Drude, as I mentioned

in the last chapter, worked in optics and electromagnetism and not statis-

tical mechanics, which is probably why he did not realize that Einstein’s

work overlapped with what Boltzmann had already done. Einstein later

remarked that if he had known of this work there would have been

no need to publish his papers. Nonetheless, they gave him a mastery

of statistical mechanics that he made use of throughout his scientific ca-

reer. T.D. Lee, a Chinese-American physicist who won the Nobel Prize

in 1957, with his then collaborator C.N. Yang, told me an anecdote about

Einstein. At about the time that he and Yang were doing the work in

elementary particle physics for which they won the prize, they were also

doing fundamental work in statistical mechanics. Yang was at the In-

stitute for Advanced Study in Princeton where Einstein was resident.

They decided to see him and discuss with him their work. Lee had not

met Einstein before. Two things struck him. The first was Einstein’s

hands which Lee recalled were large and appeared to be very strong.

The second was Einstein’s immediate grasp of what they had done. He

asked relevant and fundamental questions. Statistical mechanics stayed

with him all his life.

When the University of Bern rejected his papers as a substitute for

a thesis, Einstein was really angry. He decided he had had enough of

academic politics and did not need a PhD anyway. But, by the spring of

1905, he had cooled off and decided to write a thesis for the Polytechnic

in Zurich, despite the fact that he had had a hard time with them earlier.

He was in the midst of working on the papers that would form the basis
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of twentieth-century physics, but he chose for his thesis topic something

that he thought would not be controversial–the size of molecules dis-

solved in a solvent. In this he got involved with the physics of osmosis.

On hearing the word “osmosis’’ you may have the image of putting a

CD with an Italian lesson on while you are sleeping, and learning Ital-

ian by “osmosis.’’ But in physical chemistry–which is what this subject

really is–the term has a definite meaning. We can illustrate it by an

example–sugar dissolving in water. What happens when sugar dissolves

in water is that the water molecules surround the glucose (simple sugar)

molecules in the sugar and tear them from the sugar crystals. Thus, when

the process is completed, you have a mixture of glucose molecules and

water molecules. Einstein studied the thermodynamics of this mixture

something that might sound somewhat mundane, but was not.

The effect that came to be called osmosis had been the subject of

some important work at the end of the century. On the instrumental

side, a German chemist and botanist named Wilhelm Pfeffer created

membranes that would allow, for example, the transport of water, but

block the transport of the glucose molecules that were larger. The mem-

branes he created were strong enough so that they could withstand fairly

high pressures. Membranes, which he knew were the natural analogues

of the artificial ones he had made, operated in plant cells. When one of

Pfeffer’s artificial membranes is inserted in water, and then sugar put on

one side of this barrier, what happens is that water will flow from the

side with no sugar into the side with the dissolved sugar. More generally,

the flow will be toward the side with the highest concentration of solute.

If before adding the solute the water levels were the same, then after

adding the solute the water level will rise. This produces pressure on the

membrane. This pressure is called the osmotic pressure and the process

of diffusion is called osmosis. This pressure can be measured. In fact it

can be quite large. A one percent solution of sugar can exert a pressure of

two thirds of an atmosphere, which is why you need a solid membrane.

Pfeffer did not propose a theory of this pressure. That was the work

of the Dutch physical chemist Jacobus van’t Hoff, who won the first

Nobel Prize in chemistry in 1901. Van’t Hoff showed how to connect
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this pressure to thermodynamic quantities such as the temperature of

the solution and the volumes involved. He had been directed to Pfef-

fer’s work by a plant physiologist at the University of Amsterdam named

Hugo de Vries who was looking for an explanation of it. Van’t Hoff rea-

soned that the source of the osmotic pressure was the same as an ordinary

gas pressure; namely the glucose molecules were colliding with the mem-

brane and transferring momentum. Both he, and the Nobel committee,

took the existence of these molecules as being self-evident. Van’t Hoff

further reasoned–or conjectured–that if the solution was fairly dilute,

the solute molecules–sugar in the example I mentioned–would obey a

perfect gas law. That is, at a fixed volume, the osmotic pressure would

be proportional to the temperature with the same constants that held for

a gas. This was in essence the state of knowledge that Einstein had avail-

able when he began working on his thesis. What Einstein did was to use

Van’t Hoff’s theory in his study of how the dissolved molecules flow in the

solvent. I will not try to adumbrate his model except to remark that from

it he was able to determine a value of Avogadro’s number of molecules in

a mole. As it happened, the value he determined was too low. It turned

out that he had made a mistake in the algebra that was corrected a few

years later, producing a value closer to the correct one. In his thesis he

also found a value for the molecular size which was also not quite correct,

a consequence of the same algebraic error. He finished the thesis at the

end of April but did not submit it until July. He was of course, dur-

ing this period, otherwise occupied creating twentieth-century physics.

The thesis, incidentally, was accepted, but the paper based on it was

not published until 1906, although logically it should have preceded the

Brownian movement paper.

Einstein’s first paper on Brownian movement, published in the

Annalen in 1905, is for lack of a better word, laconic. Indeed, it was

so opaque that he received a request from the chemists to write a sim-

pler version.4 This he published in 1908. It is certainly simpler than his

4It is amusing that in the translation of this paper found in Furth, op.cit., the
individual identified as having made this request is given as R. Lorentz [sic]
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1905 paper, but the mechanism that causes the motion, which Einstein

refers to as “the heat content of a substance,’’ is not exhibited explic-

itly. From what we presented in our mathematical interlude we know

what the mechanism is. The random bombardments of the molecules

of the solute by the molecules of the solvent cause the former to un-

dergo a drunkard’s walk. This is the Brownian movement. It was pre-

sented in just this way by Einstein’s contemporary the Polish theoretical

physicist Marian Smoluchowski. Smoluchowski informs us that he had

started his work around the year 1900, in response to several papers

on the subject. Indeed, Smoluchowski’s paper, unlike Einstein’s, refers

to this work. There is even a refutation of the argument of Nägli about

the Brownian particle not being able to get anywhere, along the lines

I have mentioned. But Smoluchowski did not publish anything until

after he had seen Einstein’s paper. In our profession priority goes to

those who publish. Smoluchowski recognized this. I think it is also fair

to say that while Einstein’s paper was more opaque it was also more

profound.

In the first part of the paper Einstein is concerned with a ther-

modynamic question. His work on osmosis had been based on van’t

Hoff’s observation that if the molecules in solution are not too dense

then thermodynamically they behave like a gas. What “not too dense’’

means is that the interactions among the molecules in the solution can

be ignored and only the interactions between molecules in the solution

and those of the solvent need be considered. The question Einstein asked

is why should it be any different for the Brownian particles? They are

just larger than, say, the glucose molecules in a water solution. What he

showed was that there was no difference and van’t Hoff’s laws should

apply here as well. He then presented two arguments that exhibited

how the Brownian particles should diffuse. The first is really a reprise

of his thesis. In the fourth part of his paper Einstein gives his second

argument. In the course of it he matter of factly introduces a probability

which might give the impression that it was H.A. Lorentz himself that made
the request. It surely came from the Austrian physical chemist Richard Lorenz.
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method that mathematicians and theoretical physicists have expanded

on ever since. What he does is to derive an equation from which one

can learn how the Brownian particles diffuse, given a rule that describes

the likelihood of changes in the positions of individual particles.5 We

used such a rule in the drunkard’s walk when we stipulated that it was

equally likely for the drunkard at any stage to take a step to the left or

right. Here is a small historical footnote. Unknown to Einstein, the same

equation had been derived five years earlier in a PhD dissertation by a

young French mathematician named Louis Bachelier. In the same thesis

Bachelier also did the problem in the way Smoluchowski did, thus antic-

ipating both Einstein and Smoluchowski. Bachelier was not interested

in the physics of Brownian movement which he does not mention in

his thesis, but rather in the fluctuations of the French stock market–the

bourse. He is now recognized as the father of financial engineering.

As it happened, Henri Poincaré was one of the examiners on the

thesis and wrote the report. Poincaré was also familiar with the work on

Brownian movement. It seems odd that when he and Einstein met at the

Solvay Congress in Brussels in 1911 for the first time, where Brownian

movement was discussed, he did not tell Einstein about Bachelier, who

was only rediscovered in the 1950s. However, we know from Einstein’s

correspondence about the conference that he felt that Poincaré did not

understand the new physics such as the quantum theory, and was dis-

appointed by him. It would not be surprising, given Einstein’s nature,

that he managed to communicate, in one way or another, these feelings

to Poincaré.

Those of you who read my little mathematical interlude may have

a question. In the interlude I dealt with a one-dimensional random walk.

The drunkard could move at each step either to the left or right with equal

probability. But here we have a three-dimensional situation. At every

5Technically what Einstein did was to present a version what later became
known as a Chapman-Kolmogorov relation. Both Chapman and Kolmogorov
acknowledged that were generalizing and rigorizing Einstein’s work.
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stage the suspended particle can move in any direction in space. At first

this would seem to hopelessly complicate the problem. But it is the very

randomness that saves us. Let us call the three directions, x, y, z. At each

step the particle will be moved by the molecular collisions in a random

direction. This implies that the mean square average distances in each

of these directions must be the same. In formulae 〈x2〉 = 〈y2〉 = 〈z2〉 .

Now we can imagine the following situation. We start the suspended

particle off at, say, time zero at some point in the liquid. We draw a

set of spherical surfaces, one inside the other, around this point. In due

course our particle will cross these surfaces. We cannot predict where

on the surface it will cross but we can, as I will now argue, predict at

a given time on which surface the crossing will take place. Let is call

the radius of one of these spheres, R. Then all the points on the surface

satisfy the equation x2 + y2 + z2 = R2. Now if we take the averages and

put in the time explicitly we have 〈x2(t)〉 + 〈y2(t)〉 + 〈z2(t)〉 = 〈R2(t)〉.
So if we use the result above and arbitrarily pick out the x direction we

have 3〈x(t)2〉 = 〈R(t)2〉. This tells us that we can use our results from

the one-dimensional case.

Einstein, of course, understood this. He does his analysis in

one dimension and then applies this result. We have argued that√
〈x2(t)〉 ≈ √

t. But Einstein is at great pains to find the coefficient that

multiplies the square root. He finds that this coefficient increases with

the temperature and decreases with the size of Avogadro’s number. This

is plausible. If you increase the temperature you will increase the agitation

of the molecules that cause the Brownian movement. If you increase the

number of molecules that the Brownian particles encounter, you will in-

crease the viscosity of the solvent. Einstein gives an estimate of how far

a Brownian particle would go in a minute–what the radius of the spher-

ical surface mentioned above would be if you took water at seventeen

degrees centigrade as the solvent. He puts in an approximate value of

Avogadro’s constant—6 × 1023 particles per mole. He takes the size

of the Brownian particle to be about a thousandth of a millimeter. He

finds that, in a minute, the average distance traveled by such a Brownian
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particle would be about a thousandth of centimeter–visible only under

a microscope. He ends the paper by saying that “It is to be hoped that

some inquirer may succeed shortly in solving the problem [of measuring

the motion] suggested here, which is so important in connection with the

theory of heat.’’ Later Einstein confessed that he did not think it would

be possible for any experimenter to do precise experiments on Brownian

movement. He did not reckon with the French physicist Jean Perrin.

Perrin was born in Lille in 1870. He died in New York City in 1942.

He had fled France for the United States after the German invasion. He

came from a very modest background. His father had been a professional

soldier who had been killed when Perrin was still a child. His mother

raised him, along with his two sisters. He was very fortunate because

the French educational system offered advanced educational possibili-

ties to gifted students, whatever their background. He was accepted in

1890 to the École Normale Supérieure–one of the grandes écoles. Here

he received a first class education in physics, surrounded by equally

gifted students. The existence of molecules was still a much debated

topic. Perrin’s teachers were strongly in the camp that accepted their

reality. Perrin decided that he would devote his career to proving this.

He first did work on x-rays but, after he was appointed to teach at the

Sorbonne, he gave a course in what was then the new subject of physical

chemistry. It was in preparing for this course that Perrin reviewed all

the pre-Einstein work on Brownian movement. By the time Einstein’s

paper appeared, Perrin was already considering how to do precision

experiments. By 1908, he had done experiments in which he could map

out the details of the jittery paths of individual molecules. When one

looks at his results one is struck by how much they resemble our drunk-

ard’s walk (Figure 3.11). He could control the external parameters of his

experimental set up well enough to get an excellent value for Avagadro’s

constant. By this time there were several values all done by different

methods and all in essential agreement. Perrin’s work was generally re-

garded as remarkable and in 1926, he was awarded the Nobel Prize in

physics.
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Figure 3.11. A diagram taken from Perrin’s Notebooks.

It is fair to say that after Perrin’s experiments most of the opposition

to the reality of atoms disappeared. An exception was Mach. Near the

end of his life–he died in 1916–Mach wrote a preface to his book on

physical optics in which he remarks, “But I must assuredly disdain to be

a forerunner of the relativists as I withhold from the atomistic belief of

the present day.’’ By this time no one much cared. What of the present?

How would a present-day physicist answer Mach’s question, “Have you

seen one?’’ Probably most—if not all—would answer “yes.’’ They might

have in mind the observations made by what is known as a “field ion

microscope’’ invented in 1951, by Erwin E. Mueller of Penn State. Here

is the idea. The specimen to be examined is in the form of a very sharp

tip–say tungsten. This is surrounded by a gas, say neon or argon. The

gas molecules bounce off the tungsten atoms and in the process lose

an electron. This ionizes a gas molecule which is then propelled by an

electric field onto a fluorescent screen. I simplify here. What appears

on the fluorescent screen is an image of the atoms of, say, the tungsten.

Is this seeing the tungsten atoms? Most physicists would say yes. Even

more striking is the work of the University of Washington physicist Hans

Dehmelt. In the late 1980s he managed to trap single atoms in a magnetic

field configuration. The atoms were made to fluoresce by shining lasers
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on them. You can see them. Does this prove, at long last, that atoms exist?

This is a question I leave to the philosophers. I also leave to them the

question of whether quarks exist. If present ideas are right, free quarks

can never be observed unless somehow we can recreate the conditions of

the very early universe. The arguments for them are even more indirect

that the ones that involve the field ion microscope. The arguments are

indirect but impressive. They never would have convinced Mach, but

they convince me.

Finally, there was yet another twist involving a thesis. Having a

PhD was necessary but not sufficient to take the first step up the academic

ladder. You also needed what was called a Habilitation—a kind of license.

This required yet another thesis. In 1908, after some reluctance, Einstein

submitted an Habilitation thesis to the dean at the University of Bern. He

also had to give a trial lecture. The subject of his lecture was On the

Limits of Validity of Classical Thermodynamics. The subject of his thesis

was Conclusions from the Energy Distribution Theorem of Black Body Radiation,

Concerning the Constitution of the Radiation. This had been the subject of the

first and most revolutionary of his 1905 papers, and it is the subject of

the next, and last, chapter of this book.
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The Quantum

Einstein’s office at the university [the German University in Prague]
overlooked a park with beautiful gardens and shady trees. He no-
ticed that there were only women walking about in the morning
and men in the afternoon, and that some walked alone sunk in deep
meditation and others gathered in groups and engaged in vehement
discussions. On inquiring what this strange garden was, he was told
that it was a park belonging to the insane asylum of the province of
Bohemia. The people walking in the garden were inmates of this in-
stitution, harmless patients who did not have to be confined. When
I first went to Prague, Einstein showed me this view, and said play-
fully: “Those are the madmen who do not occupy themselves with
the quantum theory.’’

—Philipp Frank
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ENT RO P Y
Einstein arrived in Bern in February of 1902. His job at the patent office

had not yet materialized so to support himself he decided to give private

lessons in physics. He put an ad in the Anzeiger der Stadt Bern, the local

newspaper, which read

Private lessons in mathematics and physics for students and pupils
is given with thoroughness by Albert Einstein, owner of the Swiss
polyt.subject teacher diploma, Gerechtigkeitsgasse 32.1st floor.
Trial lessons for free.

He got a few takers, one of whom was a Rumanian student of philos-

ophy named Maurice Solovine. Einstein enjoyed talking to Solovine so

much that he suggested that they forget about the lessons and simply talk.

Not long after they were joined by a young mathematician named Conrad

Habicht whom Einstein had already known. The three of them took to

meeting regularly in Einstein’s flat. A spartan dinner would be served–

sausages and the like–there was not much money–and then they would

discuss philosophers like Mach or David Hume or even Don Quixote

until early hours in the morning. They decided to call themselves as a

joke “Akademie Olympia’’–the Olympic Academy. On one of Einstein’s

birthdays Habicht brought caviar which Einstein had never eaten. How-

ever, Einstein began a discussion of Galileo’s principle of inertia and ate

all the caviar without paying any attention to what he had eaten.

By 1905, the Academicians had gone their separate ways. In May

of 1905, Habicht received a letter from Einstein which, every time I read

it, fills me with the same wonder. He explains that he has written, or is

about to write, four papers,

. . . the first of which I could send off soon, as I am to receive my free
copies very shortly. It deals with radiation and the energetic prop-
erties of light and is very revolutionary, as you will see provided
you send me your paper first. The second paper is a determination of
the true size of atoms by way of the diffusion and internal friction of
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diluted liquid solutions of neutral substances. [This was Einstein’s
PhD, thesis which was not published until the following year.]
The third proves that, on the assumption of the molecular theory
of heat, particles of the order of magnitude of 1/1000 millimeters
suspended in liquids must already perform an observable disor-
dered movement, caused by thermal motion. Movements of small
inanimate suspended bodies have in fact been observed by phys-
iologists and called by them “Brownian molecular motion.’’ The
fourth paper is in the draft stage and is on electrodynamics of mov-
ing bodies, applying a modification of the theory of space and time;
the purely kinematic part of this paper is certain to interest you.

One barely knows where to begin. Three things strike me at once.

First, there is the sheer magnitude of the work involved. Each of these

papers has many detailed calculations. He must have been able to per-

form these with amazing speed and precision. He was, after all, working

a full schedule at the patent office and had home responsibilities as well.

The second thing that strikes me is his absolutely lucid understanding

of what he had done, or was about to do. For example, there is the little

phrase “the purely kinematic part of this paper is certain to interest you.’’

“Purely kinematic part’’ means that part that applies independent of any

specified force. It is just here where Einstein separates himself from ev-

eryone else. People like Lorentz and Poincaré viewed the problem posed

by the Michelson-Morely experiment as a dynamical problem. Lorentz

in particular showed how the Michelson-Morely experiment could be

“explained’’ if the electrical forces holding matter together caused a con-

traction of a moving object like a ruler. As we have seen, these models

play no role in Einstein’s formulation of relativity. The contraction is a

consequence of a modified view of space and time. Finally, there is the

characterization of the first paper as being “very revolutionary’’–not rela-

tivity but radiation. The object of this chapter is to help you to understand

why this is so.

Not everyone would do so, but I start the road that finally led to

Einstein’s 1905 radiation paper, with the invention of the steam engine.

The first practical steam engine was invented early in the 18th century by
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Figure 4.1. Newcomen’s Atmospheric Fire Engine.

a British blacksmith named Thomas Newcomen. Like all such engines

it was designed to take advantage of the motive power of steam (Fig-

ure 4.1). When water is heated enough, it turns into steam. The steam,

if introduced into a container, will, like any gas, exert a pressure on the

walls of the container. If one of the “walls’’ is a piston then the steam

pressure will drive the piston which can be attached to a lever, and thus

perform a useful task. In this case the useful work was done when the

heavy lever pushed down on the piston with the force gravity. To do

anything interesting, the engine must be able to repeat this cycle again
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and again. In Newcomen’s engine, cool water was introduced into the

piston cylinder after the piston had been raised by the steam. This cooling

caused the steam to condense creating a vacuum so that the air pressure

above the piston would drive it down, and the cycle could begin again.

This form of the steam engine was actually used to drain water from coal

pits. But, as an engine, it was very inefficient. Part of the reason was

that cooling the cylinder meant that in the next cycle the steam remained

partially condensed. I have read that the Newcomen engine was less than

one percent efficient. More than 99 percent of the steam power did not

do useful work. Enter James Watt.

Watt was born in Greenock, Scotland, in 1736. His father was a

maker and supplier of nautical instruments. This is what Watt wanted

to do as well. In 1775, he went to London to study this trade, but after a

year came back to Scotland. The guild in Glasgow would not accept him.

He was fortunate to get a job at the University of Glasgow making and

repairing scientific instruments. One of these was a model of a Newcomen

engine which Watt was asked to repair. He took the opportunity to study

the model and realized how it could be transformed. The problem was

that there were two apparently contradictory requirements. On the one

hand, the cylinder that housed the piston had to be cooled down so the

steam would condense and, on the other hand, it had to be kept hot so

that on the next cycle the water would remain vaporized. Watt realized

that both requirements could be satisfied if the condenser for the steam

was in a vessel that was separate from the cylinder that housed the piston.

Figure 4.2 is Watt’s first drawing of this arrangement.

By 1765, Watt was writing to people that he had invented the “per-

fect’’ steam engine. It is true that the Watt steam engine with its many

adumbrations, some invented by Watt, became the basis of the industrial

revolution, but was it “perfect?’’ Indeed, what could such a question pos-

sibly mean? The answer was supplied by a French engineer–it is difficult

to know what else to call him–named Nicolas Léonard Sadi Carnot.

Carnot, who was born in Paris in 1796, was the son of the poly-

math Lazare Carnot who worked in a variety of things including math-

ematics for which he is best known. He also played an important role
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Figure 4.2. In Watson’s first drawing of a steam engine, the piston is at the top and
the condenser at the bottom.

in Napoleon’s government. His son showed considerable brilliance as

a student and at sixteen he entered the École Polytechnique in Paris1

which trained engineers for the military. When Carnot finished his stud-

ies he was commissioned as a second lieutenant doing garrison duty in

the provinces. In 1819, he was appointed to the army general staff corps

in Paris which gave him time to take courses at the Sorbonne and to

do his own research. During the next few years he did the work that

would become the basis of the later developments 19th-century thermo-

dynamics. In 1824, he published some of it in a 118-page monograph

with the long title, Reflexions sur la puissance motrice du feu et sur les machines

propre à développer cette puissance which I would translate as “Reflections

on the motive power of heat and on the machines that are appropriate to

making use of this power.’’ During his lifetime–he died of cholera in

1832 at the age of thirty-six–very few people read his monograph. It was

only discovered in mid-century along with some unpublished notes that

indicate that Carnot was beginning to develop ideas that might well have

led him to the kinetic theory of heat. As it was, and as I will now explain,

his monograph was written with a totally wrong theory of heat in mind,

and it did not matter. What was this wrong theory of heat?

1I spent the year 1959–1960 at the École Polytechnic which was still located
in its ancient buildings in the Latin Quarter in Paris. The students were all
in uniform. My patron, the late Louis Michel, a brilliant theoretical physicist,
was a graduate. He too served for a time as a military engineer.
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Carnot believed in the “caloric’’ theory of heat. He was in good

company. For example, Benjamin Franklin measured heat flow down

rods made of various materials to see how long it took to melt wax.

He came to the conclusion that heat was a weightless fluid—caloric—

which was conserved in all processes. He had correctly postulated that

electricity flowed in currents. This time he missed. It was well known

that friction produced heat. This was explained by arguing that when

the objects rubbed against each other, caloric was transferred. There

was, however, some evidence that argued against this. An American

named William Thompson ended up in Bavaria where he was knighted.

He became Count Rumford–Rumford being an old name for Concord,

New Hampshire. While in Bavaria, Rumford occupied himself with,

among other things, cannons. He was impressed by the amount of heat

that is generated in cannon barrels by the explosion of gun powder and

concluded that there could not be enough caloric stored to account for

this. He made the same observation when he drilled out metal to make the

barrels of cannons. Indeed, using the heat generated in such an operation

he made water boil. He decided that something like a molecular theory

of heat must be right and published this in 1798, to no effect. It took

until the middle of the next century before the caloric theory of heat was

finally disposed of. As it turned out, Carnot’s belief in an incorrect theory

of heat had no relevance to what he did.

Carnot was interested in what would constitute a perfect steam en-

gine. This was a conceptual engine, but he thought that it might play

some role in building a real steam engine. The key idea in Carnot’s

thinking about engines was the distinction he made between reversible

and irreversible processes. In real life the processes that we encounter

are irreversible. As the nursery rhyme has it, “All the king’s horses/And

all the king’s men/Couldn’t put Humpty together again.’’ Reversible pro-

cesses are, like Einstein’s trains or elevators, thought experiments that

illuminate laws of physics. In Carnot’s “engine’’ there was a cylinder and

a piston. The piston is assumed to work fictionlessly. In the cylinder was a

gas—steam if you like–that was assumed to obey Boyle’s law–a “perfect’’

gas. It turned out that Carnot’s results did not depend on the specific
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choice of the working gas. In addition there were two heat reservoirs

maintained at different temperatures. Heat–caloric in Carnot’s case–can

be added or subtracted from the reservoirs as needed. Two kinds of

processes were allowed. In the first process heat is absorbed from the

reservoir, which is at the same temperature as the ambient temperature

of the gas, in such a way that the temperature of the gas remains the same

while the pressure and volume adjust. This absorbed heat raises the pis-

ton. Such a process is called “isothermal’’ and, if carried out carefully,

is reversible. The second kind of process is called “adiabatic.’’ We now

decouple the cylinder from the heat source and let the piston expand very

slowly. This will reduce the temperature to that of the colder reservoir.

If we do this, again very carefully, then it is reversible. Now we can put

these two types of reversible processes together in a cycle which is a

conceptual model for a reversible engine. It does not matter where we

start the cycle or even in which direction we run it but conventionally it

works like this (Figure 4.3).

Step 1. This is an isothermal expansion that maintains the tempera-

ture but during which the gas expands. Heat is absorbed.

Step 2. We now make an adiabatic expansion which reduces the

temperature to that of the cold reservoir.

Step 3. We place the cylinder in contact with the cold reservoir and

draw off the heat absorbed in Step 1.

Step 4. We make an adiabatic compression of the gas so as to return

it to its initial condition.

Volume
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Figure 4.3. The four steps of Carnot’s cycle.
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These four steps are what is called the Carnot Cycle. Each of them

is reversible. This makes it an efficient engine but what Carnot went on

to show is that no engine can be more efficient than this.

To do this Carnot invoked a mantra that became a centerpiece for

all the 19th-century development of thermodynamics; there is no such

thing as perpetual motion. It is a curious statement if one thinks about

it. How would you prove it? It is true that all the motions we have

studied eventually come to a stop. But “eventually’’ is not “perpetual.’’

Nonetheless, this doctrine was, and is, taken as a law of physics. What

Carnot showed is that if there were a machine more efficient than his cycle

it could be hooked to his cycle, run backward, and operate perpetually.

Thus the Carnot cycle is the idealized limit of what can be achieved in

making an efficient engine.

As I have mentioned, Carnot died young and his work was for some

time not much appreciated. In midcentury he was rediscovered by a

German physicist named Rudolph Clausius, who was born in what was

then Prussia in 1822. It was in 1850, that Clausius wrote the paper

that laid the foundations for thermodynamics. Clausius started from two

principles. The first one was known as the mechanical equivalence of

heat, something that we would call the conservation of energy. This had

been established with some certainty by the experiments done by the

British physicist James Joule–pronounced “jowell’’–who was the son of

a prosperous Manchester brewer. Joule had become convinced that the

caloric theory was defective. It did not seem to account for the results

of his experiments. In particular, he churned water with a paddle and

found that this produced a measurable quantity of heat in an insulated

can. This was difficult to account for by a transfer of caloric. In our terms,

mechanical energy was being transformed into an equivalent amount of

heat energy. This was one of Clausius’s starting axioms.

His second principle was the proposition that you cannot transfer

heat from a cold body to a hotter one without supplying some sort of

energy. At first this seems crazy. How do you cool down soup? If one

thinks about it, the air is cooler than the soup so we are transferring heat

from a hot body to a cooler one, which is allowed. You can cool things
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in a refrigerator providing that you pay the electricity bill to run the

motor. After he published his 1850 paper, Clausius put his second law in

a different form. He introduced a concept that he named “entropy.’’ He

informs us that he took it from the Greek ητρoπη–meaning a transfor-

mation or a turning. In classical thermodynamics the concept of entropy

is somewhat slippery because what is well defined is the difference in

entropy of two thermodynamic states–states that are characterized by

quantities such as heat content and temperature.2 In particular, if we

have two identical heat reservoirs with heat content, Q , but at different

temperatures, T and T∗ then Clausius said that the difference in entropy

between these states �S is given by

�S = Q

(
1
T

− 1
T∗

)
.

You cannot prove that this is the difference of entropy. It is how

Clausius defined entropy. But how do you make use of this definition?

What Clausius realized was that if you demanded that in all processes

in a closed system entropy never decreased you could subsume in one

law–this is the “second law of thermodynamics,’’ the first being energy

conservation–all the strictures on perpetual motion and the impossibility

of transferring heat from a cold to a hotter reservoir without supplying

energy from the outside and the rest.

To see how this works in a couple of examples let us begin with

Carnot and his cycle. Carnot, as a consequence of his use of the caloric

theory of heat in which heat is conserved in every transaction, would say

2In thermodynamics there is a third law that was formulated by the chemist
Walther Nernst at the beginning of the 20th century. It says that as the tem-
perature falls to absolute zero the entropy also falls to zero. Thus, given the
third law, it is possible to define the absolute entropy of a system. The prob-
lem is that for, say, classical perfect gasses, the third law fails. For a classical
perfect gas the entropy goes as the logarithm of the temperature and thus the
third law is violated. Thus classically only the relative entropy is defined. I am
grateful to Freeman Dyson for discussions of this.
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that, at the end of his cycle, the reservoir would have exactly the heat

content it started with. Furthermore, you have the same temperature

initially and finally. Thus �S = 0. In other words, if the cycle consists

of reversible processes, then the change in entropy is zero. This is the

limiting case of the second law. Now suppose that you try to make a

transfer from a colder to a hotter reservoir without supplying additional

heat energy. In this case Q f = Q i = Q , since no heat has been trans-

ferred. Thus �S = Q ( 1
Tf

− 1
Ti

). Therefore, if the final temperature is

larger than the initial one, the change the change in entropy is nega-

tive which violates Clausius’s second law. Therefore the second law pro-

hibits such unassisted transfers. Clausius had his own mantra. It read Die

Energie der Welt ist constant. Die Entropie der Welt strebt einem Maximum zu.

“The energy of the universe is constant. The entropy of the universe

tends to a maximum.’’ By the time Clausius died in 1888, the first and

second laws of thermodynamics were accepted parts of physics.

By this time, you may be saying, while this is all very nice, what

does it have to do with the quantum? Patience.

Black bodies

On thermodynamic grounds Kirchhoff had concluded that the en-
ergy density and the spectral composition of radiation in a Hohlraum,
surrounded by impenetrable walls of the temperature T , would be
independent of the nature of the walls.

—Albert Einstein

We are now going to build a bridge between this 19th-century ther-

modynamics and the quantum. New actors will come on stage. The first

of these is the German physicist Gustav Robert Kirchhoff who was born

in 1824. He came from an socially conscious intellectual family who felt

that being a university professor filled a civil obligation. Kirchhoff stud-

ied at the University of Königsberg and, while a student, made his first

important discovery. His professor, Franz Neumann, was interested in

electric circuits so Kirchhoff became interested in them too. He developed

a set of relations that tell us how currents flow–“Kirchhoff’s laws’’–which

we teach to undergraduates to this day. Kirchhoff first acquired a post
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in Berlin, then in 1850, in Breslau, where he met the chemist Robert

Bunsen, who was somewhat older and was permanently attached to the

University of Heidelberg. In 1854, Bunsen invited Kirchhoff to join him

there. Bunsen was the inventor of the eponymous burner so beloved

of chemists. He was in the process of using the burner to heat various

elements to incandescence. Kirchhoff proposed that they use a spec-

trometer to measure the light spectrum, unique to each element, when

it becomes incandescent. Over the next few years they discovered ce-

sium and rubidium this way. They also used the spectrometer to extend

work done earlier by Joseph Frauenhofer to study light coming from

the Sun. Frauenhoffer had noticed that, at some wavelengths, instead

of seeing bright lines, there were dark ones. Bunsen and Kirchhoff ob-

served that if sodium vapor was put in front of the spectroscope these

lines became even darker. Indeed, if they studied incandescent sodium

through sodium vapor they saw the same effect. The conclusion they

drew was that sodium could both emit and absorb light at the same wave

length. They had no explanation for this, nor was any forthcoming until

the advent of the quantum theory.

It was this work that led Kirchhoff to do the analysis of radiation

that is most relevant to us. This analysis is philosophically somewhat akin

to what Carnot did for engines. It does not deal with something that can

be realized exactly in nature–although one must say that the background

radiation left over from the Big Bang comes pretty close. It is an idealized

situation that can teach us much. In his analysis he imagined a container

whose walls can be heated up. It will turn out from Kirchhoff’s analysis

that it does not matter what the container is made of. Of course you do

not want it to melt. Nor does its size and shape matter. I will now be a

little anachronistic in describing what happens–a little, because by the

end of the century this was the picture that had been adopted. Because

they are heated, the electrons in the atoms of the material that composes

the container walls will begin to oscillate. These oscillating electrons

will radiate, and this radiation will enter the container, where some of

it will be reabsorbed by the walls, and then reemitted. In due course, a
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situation of thermal equilibrium will be established in which the emission

and absorption will just balance. At equilibrium the radiation will be

characterized by some temperature T . When this happens there will be a

distribution of different wave lengths of the radiation in the cavity. Some

wave lengths will be favored and will be present with greater intensity

than the less favored wave lengths. There is no reason to think that any

wave length is excluded–from the longest to the shortest. It is just that

they will have different intensities.

Now, we can imagine measuring these intensities and plotting the

result in a graph. This graph will be representable by curve that, if we are

lucky, will have a simple functional form. The question that Kirchhoff

asked, and answered, is on what does this function depend? At first sight,

we can think of a lot of things. It might depend on the size and shape of

the cavity, or on what material it’s made of. We know it will depend on

the wave length, and surely it will depend on the temperature. As you

heat things up, the dominant light you see changes color. That’s what

you mean, for example, when you say something is “white hot.’’ What

Kirchhoff showed is that, in fact, wave length and temperature are all
this function depends on. Here is where the thermodynamics comes in.

Let us assume the contrary. Let us assume for the sake of argument

that two containers made of different materials, with different sizes and

shapes, have, at the same temperature different equilibrium radiation

distributions. In one container some wave lengths may be favored and

in the other, the same wave lengths will have, relatively speaking, less

intensity. Now what we can do is to build a contraption that puts these

containers together with a little door connecting them that we can open

and close. With the door open, radiation will pass from one container

to the other. Through the open door, radiation with the favored wave

lengths will enter the second container to fill out its distribution. This is

analogous to any kind of diffusion in which the diffusing material goes

from places of greater to lesser density. But, in this case, it has done so

between two regions at the same temperature with no external energy

being involved. Now, if we close the little door, the two regions will again

149



SVNY072-Bernstein August 27, 2005 11:36

S e c r e t s o f t h e O l d O n e

come to equilibrium, but at different temperatures, since the transport

of the radiation has also transported energy. We have as a result a hot-

ter and colder reservoir and can again open the little door. Heat will

be transported back across from the hotter to the cooler reservoir. It is

clear that we are starting to generate a perpetual motion machine, so the

premise must be wrong. The two distributions must be the same. We can

also draw a similar conclusion if we stick to one container and assume

that the radiation distribution varies from place to place within it. The

equilibrium distribution takes the same form no matter where we mea-

sure it in the container. Thus Kirchhoff drew the remarkable conclusion

that this equilibrium radiation distribution was a universal function that

depended only on wave length and temperature, and nothing else. But

this was not all.

To appreciate the next step, let us examine the emission and ab-

sorption processes a little more closely. The emission will be governed

by a relative probability function that tells us how likely the electrons

in the wall of the container are to emit radiation with some given set

of wave lengths. The walls of the container are at some temperature,

T , which will be implicit in the discussion that follows. Let us call this

function; “emission(λ),’’ where λ is the wave length. There will also be a

corresponding absorption function. Here, there is a little subtlety. You

can’t absorb radiation that is not present. What is present is determined

by Kirchhoff’s universal function which I will call “universal(λ).’’ Thus

the absorption is given by the product; absorption(λ) × universal(λ).

At equilibrium, emission and absorption balance so that emission(λ) =
absorption(λ)× universal(λ) or emission(λ)

absorption(λ) = universal(λ). Now comes the

punch line. Kirchhoff imagined an object, which in 1862 he named a

“black body,’’ that is, a perfect absorber. It absorbs all wave lengths

with equal avidity. In terms of our definitions absorption(λ) = 1. So that

emission(λ) = universal(λ). In nature there are no perfect black bodies,

although I will shortly give you two very good approximations. What

the equation says is that, for a black body which is in equilibrium with

its radiation, we can measure universal(λ) by measuring the emission
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spectrum. This is something we might be able to get our hands on if we

can identify something that acts at least approximately like a black body.

We should be able to study the emission coming from it.

Here are two examples of entities that act like black bodies. The

first is just a container with a small hole in it. Any radiation that falls on

the hole will be absorbed by it and will have great difficulty escaping.

Now, suppose you heat up the container. An equilibrium distribution will

develop. A bit of this radiation will be emitted by the hole. By Kirchhoff’s

result, this radiation will be characterized by universal(λ). Thus, by

measuring the radiation coming from the hole, we can measure the black-

body spectrum of radiation. This, in essence, is how it was determined

experimentally. The second example is much more exotic. It involves the

early universe. Until something like 400,000 years after the Big Bang,

matter in the early universe was in the form of a plasma. The electrically

charged particles that constitute the plasma were primarily electrons and

protons. There were also neutrinos and radiation left over from the origi-

nal explosion. Radiation scatters from these electrons and an equilibrium

is established. If you like, in this respect, the whole universe was a black

body. Until the temperature fell to less than about 3,000◦–which happens

at something like 400,000 years–the hot radiation will not let neutral

hydrogen atoms form. They would get ripped apart. But at a temperature

of about 3,000◦, the radiation is too cool to do this. Electrons and protons

can now form electrically neutral hydrogen atoms and the radiation is

free to expand with the universe. It has no charged particles to scatter

from. Since nothing interferes, whatever black body distribution it had

at the epoch of electron-proton combination, will be present now for us

to observe, but, of course, at a vastly lower temperature. Indeed, this

distribution has been observed with great precision. The black-body

curve which arises from the experiments–I will show one later–is so

good that, when you first see it, you think it must have been computer

generated. It corresponds to a present temperature of about 2.73◦ above

absolute zero, the average temperature of the present universe. With

these examples in mind, we can now return to our historical narrative.
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In 1879, the Austrian physicist Josef Stefan, who was Ludwig

Boltzmann’s teacher,3 took an important step. We have not discussed the

energy that a black body emits. To make the discussion not dependent

on the size or shape of the hole in the container, one discusses the energy

emitted per square centimeter of the surface of the hole, per second. One

would guess that this “flux’’ would depend on the temperature of the

container. The hotter it is, one would guess, the greater would be the

energy flux. It is unlikely, however, that one would guess just how radi-

cal this dependence is. Stefan found that to fit the limited experimental

data available, he had to assume that the flux varied as the fourth power

of the temperature–T4. If you, for example, double the temperature the

flux will go up by factor of sixteen. This means that by doubling the

temperature, a black body will radiate its energy away sixteen times as

fast. In 1884, using methods of kinetic theory, Boltzmann was able to

derive this result from first principles. But Stefan’s empirical result was

an important landmark.

The penultimate figure in this bridge building section is the German

physicist Wilhelm Wien, who was born in East Prussia in 1864. When

he was a young man he had difficulty deciding whether he wanted to be

a physicist or a farmer. Einstein used to say that the best profession for a

physicist would be as a lighthouse keeper, because you could just sit there

all day thinking about physics. Of course Einstein became a university

professor in some of the best universities in the world. Wien did not

want to be a farmer to do physics. He wanted to be a farmer, period. By

1890, his parents were forced to sell the family farm, and Wien became a

physicist for good. He took positions first at the University of Berlin, and

ultimately at the University of Munich, where he remained until his death

in 1928. From our point of view he did two essential things. One of them

followed from a thermodynamic argument that goes beyond what we

can present here, and the other from an inspired guess. Fortunately the

consequences of these arguments are easy to state. Both have to do with

3My teacher, Philpp Frank, was Boltzmann’s student. The chain gives me an
odd feeling.
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Figure 4.4. The short wave length end of the spectrum fits the Wien disiribution.

determining universal(λ). To appreciate the first one we have to recall that

universal(λ) is also a function of the temperature. It is more correct to write

is as universal(λ, T), a function of two variables. On its face this makes it

much more difficult to find the function. The possibilities are now in two

dimensions, which vastly widens the search. But, using thermodynamics,

Wien proved a remarkable result. He showed that universal(λ, T) takes

the form 1
λ5 × Universal(λT). This means that the unknown function,

which I have called “Universal’’ to distinguish it from “universal,’’ is

only a function of one variable, λT. This makes the problem of finding it

even more tantalizing. In fact, using inspired guessing, Wien wrote down

a form that turned out to be correct for part of the spectrum. Indeed, as

we shall see, this was the very part that Einstein analyzed. I have a graph

above that shows the full experimental spectrum at various temperatures.

We will discuss the full graph soon. But, for the moment, I just want you

to focus on the short wave length end (Figure 4.4). The long wave length

end is labeled, for reasons I will also explain, “classical theory.’’ At the

short wave length end, you see from the graph that the spectrum falls

rapidly to zero. This end of the spectrum is referred to as “ultraviolet’’—

beyond violet. Indeed, the fall at the ultraviolet end is exponential. This

is precisely is what Wien proposed. His argument was pretty shaky, but

his exponential form did seem to agree with whatever experimental data
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was available.4 The year is now approaching 1890, and we have made

some progress. But it is time introduce the last actor in this part of the

drama, Max Planck.

TH E RE L U C TA NT RA D I C A L
One should proceed as conservatively as possible in introducing the
quantum of action into the theory, making only those changes in the
existing theory that have proved to be absolutely necessary.

—Max Planck

In describing Planck the word “conservative’’ comes immediately to

mind. It was almost genetic. Planck, who was born in 1858, in Kiel, where

his father was a professor of civil law, came from a long line of lawyers

and clergymen. He, and they, were deeply immersed in German culture.

Planck was culturally, politically, and scientifically conservative. He and

Einstein were antipodes. What they had in common was that they lived

in troubled times. In World War I, a group of 93 very prominent German

intellectuals, including Planck, signed a manifesto entitled Appeal to the

Cultured World. It was a justification of German militarism. It indicted

the French and British for “having allied themselves with Russians and

Serbs, and presenting to the world the shameful spectacle of Mongols and

Negros being driven against the white race.’’ Needless to say, Einstein

did not sign this document. Planck’s oldest son Karl was killed in the war.

After Hitler came to power, Planck, who had won the Nobel Prize in

1918, and was certainly one of the most recognized scientists in Germany,

went to see him to try to convince him to temper his anti-Semitic laws

against Jewish scientists in the universities. At the mention of Einstein,

4In formulae what Wien proposed was that universal(λ) = a 1
λ5 exp(− b

λT ) where
a and b are constants that have to be adjusted to fit the data. He got this
expression by using as an analogy Maxwell’s formula for the way the energy is
distributed among the molecules in a heated gas. It never occurred to Wien that
if this analogy worked it might mean that black body radiation was behaving
like a gas of particles.
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Hitler went into a tantrum of rage. Planck retreated and spent the rest of

the Nazi period attempting to salvage what he could of German science.

In July of 1944, his younger son Erwin took part in an unsuccessful

attempt to assassinate Hitler. He was arrested and died a terrible death

at the hands of the Gestapo. Planck survived the war, dying in 1947.

As a child he was clearly gifted. He excelled in both music and

mathematics. When he graduated from the Gymnasium in 1874, he briefly

entertained the idea of becoming a pianist. However, he entered the

University of Munich to study physics. He spent the year 1877–1878 in

Berlin, where he attended lectures of Kirchhoff. Kirchhoff had moved

to Berlin, and given up his experimental work, because an accident had

left him crippled. He spent the later half of his life on crutches or in a

wheel chair. But he was still lecturing. Planck was somewhat less than

enthusiastic. He later wrote,

I must acknowledge that I gained little from the lectures. . . .
Therefore I could only still my need for continuing scientific ed-
ucation by reading works that interested me, and those naturally
were ones relating to the energy principle [the conservation of en-
ergy]. In this way I came upon the papers of Rudolph Clausius,
whose clarity of expression and thought made a powerful impres-
sion. With growing enthusiasm I worked my way deeply into them.
What I particularly admired was the exact formulation of the two
laws of thermodynamics. . . .

This is, of course a reference to the first law–the conservation of energy–

and the second law–that entropy never decreases. As Planck then viewed

these two laws they were on the same footing. Both were absolute state-

ments about nature, which appealed to Planck’s scientific conservatism.

Planck was also a Machian anti-atomist. He soon found himself in a

conflict with Boltzmann.

Boltzmann was a confirmed atomist who believed that the laws

of thermodynamics reflected the statistical behavior of molecules. Heat,

for example, was simply a manifestation of the disordered motion of

molecules. But, when it came to entropy there was a dilemma. It had

been posed to Boltzmann by his senior colleague and teacher Loschmidt.
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Molecular collisions were reversible. To any collision there was a re-

verse collision with the initial and final momenta interchanged. If you

filmed the collisions you could not tell whether the film was running

forward or backward. How then did what appeared to be an absolute

law of irreversibility–that entropy never decreased–arise? Boltzmann’s

solution was to argue that, unlike the first law which says that energy is

always conserved, the second law says only that entropy probably never

decreases. It is astronomically unlikely that “humpty’’ will spontaneously

be put together again, but it is not impossible. Boltzmann spent a number

of years showing explicitly how systems evolve towards more and more

probable configurations, which is what he meant by an increase in en-

tropy, always allowing for the possibility that there can be fluctuations.

This is what, according to Boltzmann, the second law means.5 This in-

terpretation was, in his early years, an anathema, to Planck. In 1882, he

wrote a paper in which he concluded,

Consistently developed, the second law of the mechanical theory
of heat is incompatible with the assumption of finite atoms. It can
therefore be foreseen that the further development of the theory
will lead to a battle of these two hypotheses in which one of them
will perish. An attempt to predict the conflict’s outcome with pre-
cision at this time would be premature. Nevertheless, a variety of
present signs seems to me to indicate that atomic theory, despite
its great success, will ultimately have to be abandoned in favor of
continuous matter.

By the turn of the century Planck had changed his mind.

It was almost inevitable that Planck would become involved with

black-body radiation. In 1889, after Kirchhoff’s death, he succeeded him

in Berlin. Berlin was the world center for the study of black-body ra-

diation. Wien was there when, in 1896, he proposed his form of the

5Boltzmann expressed this in a formula If, S, is the entropy of a state, and,
P , is the probability of that state’s occurrence then S = − klog(P ) where
k is a constant–Boltzmann’s constant. Boltzmann was so pleased with this
expression that he had a version of it engraved on his tombstone.

156



SVNY072-Bernstein August 27, 2005 11:36

T h e Q u a n t u m

distribution. In addition, there were two very powerful experimental

teams measuring the spectrum of the radiation, that of Otto Lummer and

Ernst Pringheim and that of Heinrich Rubens and Fernand Kurlbaum.

What experimental evidence there was when Planck began consider-

ing the problem, agreed with the Wien law. For Planck, the problem of

black-body radiation was therefore how to derive the Wien law from first

principles. For the next decade he produced various arguments each one

of which he was sure was definitive, and each one of which was flawed.

Whatever else, it gave him a mastery of the techniques. It also gave him

a constant. This is one of the strangest aspects of the story. The Wien

formula had two arbitrary constants that could be adjusted to fit the

data. One of them had the peculiar dimensions of energy × time. Planck

argued that it must be a fundamental constant of nature since the black-

body spectrum was universal. He realized that this constant enabled him

to complete a set of units that had universal meaning. What I mean is this.

Take, for example, the usual unit of length, the meter. It was originally

defined as a ten millionth of the length of the meridian through Paris

from a pole to the equator. How would you explain this to an extrater-

restrial? But you could explain the charge of the electron, or the strength

of the gravitational force. These are universal units. There are no refer-

ences to Paris. You could also explain Planck’s new constant, assuming

the extraterrestrial could construct a black body. As Planck wrote, his

units would be “independent of particular bodies or substances, would

necessarily retain their significance for all times and all cultures, includ-

ing extraterrestrial and non-human ones.’’ Planck, with his conservative

bent, and love of the universal, was enthralled by this new set of units.

We are enthralled by them too. To take an example, if we call Planck’s

constant h , The gravitational constant, G , and the speed of light c , then

the Planck length l p is given by l p =
√

Gh
c 3 
 4 × 10−33cm. As we will

now see, it was his new constant that heralded the onset of the quantum.

What is strange about this was that he discovered this unit before he

discovered that there was a quantum.

By the fall of 1900, it was becoming clear that the wheels were com-

ing off. Both of the experimental groups had been able to extend their
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measurements to longer wave lengths and these results did not agree with

Wien. Planck apparently learned about the new results on the afternoon

of October 7, when Rubens and his wife came for a visit. For long wave-

lengths the spectral function appeared to be going to zero proportional to

the wave length, i.e., universal(λT) ≈ λT . Thus at short wave lengths the

function went to zero exponentially, while at long wave lengths it went

to zero with λ. Planck’s problem was to find a distribution that did both

of these things. By that evening, Planck had come up with one, largely

inspired guess work, based on years of immersion in the problem.6 The

new distribution had two virtues. It agreed with Wien for small wave

lengths and with the new results at longer wave lengths. Indeed, it agreed

with experiment at all the wave lengths that had been measured. It still

does. Figure 4.4 showed Planck’s distribution for three temperatures.

The graphs were prepared using Planck’s formula–and not the exper-

iments. But Figure 4.5 is the measured black-body spectrum left over

from the radiation produced by the Big Bang, with the present temper-

ature of about 2.73 degrees above absolute zero. You cannot distinguish

the experimental from the theoretical curve.

Now Planck had a new problem; how to derive his distribution.

In accounting for what Planck did in 1900, and 1901, there is some

difficulty. Part of the problem is that Planck’s papers, taken on their own

terms, are opaque. But the real problem is that Planck was trying to do

something that was impossible. He was trying to derive his distribution

from classical physics. He spent a decade trying. Late in life he wrote a

scientific autobiography in which he says,

My futile attempts to fit the elementary quantum of action into
the classical theory continued for a number of years, and they
cost me a great deal of effort. Many of my colleagues saw in this
something bordering on tragedy. But I feel differently about it.

6In the notation of footnote 4 what Planck did was to replace e− b
λT by 1

e
b

λT −1
.

As my teacher Philipp Frank used to say, those of you who know a little of
mathematics can show that this distribution morphs into that of Wien when
the wave length becomes small.
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Figure 4.5. The experimental black-body spectrum, for the cosmic microwaves
cannot be distinguished from the theoretical.

For the thorough enlightenment I thus received was all the more
valuable. I now knew for a fact that the elementary quantum of
action played a far more significant part in physics than I had
originally been inclined to suspect.

What there is no disagreement about was how he went about the prob-

lem. It was an extension of what he had done to try to derive the Wien

distribution.

In the first place, there was the model. The electrons in the atoms

that make up the walls of the black body container are set into oscillation

when the walls are heated. These oscillating electrons–which Planck

referred to as “resonators’’—emit–and absorb–radiation. An equilib-

rium will be reached in which emission and absorption balance. At this

equilibrium the oscillators will have an entropy. Planck showed that if

he knew the functional form of the entropy he could use the laws of
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thermodynamics to work his way back to the distribution of radiation.

This is one of the things he came to understand in the decade he worked

on this problem before 1900. Thus it came down to finding this en-

tropy. By 1900, Planck had accepted Boltzmann’s idea that to find the

entropy you had to find the probability of various configurations of the

distribution of energy among the oscillators. As the system evolves to-

wards equilibrium the system evolves towards more probable states until

it reaches the state of maximum probability at equilibrium. So the prob-

lem came down to finding the most probable distribution of the energies

among the oscillators. This would be the black body distribution. It was

precisely at this point that the quantum came in.

Finding probabilities is a counting problem. You count the number

of faces on a die—six–and you conclude that the probability of throwing a

one is one-sixth. Planck was forced to reduce his probability question to a

counting problem. It is here that the historians disagree as to how he went

about it. I will tell you the story that I first learned from my teacher Philipp

Frank. It is the one that we tell our students. Put anachronistically,

according to this version, Planck “quantized’’ the oscillators. Here is

what this means. A classical oscillator can absorb and emit radiation of

any energy from zero to infinity. A quantized oscillator has restrictions.

Suppose we call the basic energy unit E, then the quantized oscillator

can only emit and absorb radiation that has the values E, 2E, 3E, 4E,

and so on. These units of energy Planck called “quanta.’’ Professor Frank

had a homely analogy. He said that it is like buying and selling beer in

pints and quarts. I suppose the classical oscillator was like buying and

selling beer on tap, although I do not recall Professor Frank as having

made that analogy. In terms of these quantized energies Planck could

carry out his counting to compute the probabilities. There was some

hanky-panky in his counting procedure as well. The full meaning of this

was not understood for many years.7 Be that as it may, with these rather

7Not to be too laconic about this, when Boltzmann did his counting he assumed
that his molecules were “distinguishable.’’ Metaphorically speaking they came
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odd assumptions Planck was able to derive his distribution provided

that he set E = hν. Here, ν is the frequency of the radiation and h is

the constant with the strange dimensions that Planck had introduced in

his version of the Wien distribution. Using his 1901 data, Planck found

h = 6.55 × 10−27erg. seconds, while the modern value is 6.63 × 10−27

erg. seconds. The “erg’’ being a standard unit of energy. Recall that there

was a second constant to be determined in the Wien distribution. This one

can be related to Loschmidt’s number; the number of molecules in a cubic

centimeter of a standard gas. From the data Planck found 2.76 × 1019

molecules per cubic centimeter to be compared to the modern value of

2.69 × 1019 molecules per cubic centimeter. It was at the time the most

accurate determination that had been made.

I have given you the standard version of how Planck made his dis-

covery, but historians who have studied his papers and correspondence

carefully do not think that it is correct. They may well be right. They

point out that nowhere in his early papers does Planck say anything about

quantizing individual oscillators. What he does do is to take a group of

oscillators and stipulate that their total energy is an integer multiple of a

basic quantum unit. This was a device that Boltzmann used when he com-

puted probabilities. But then, at the end of his calculations, Boltzmann

allowed the energies to become continuous again. Planck could not do

this because it gave him the wrong answer. If he did it he was lead back to

the Wien distribution. Planck was, at least temporarily he thought, stuck

with the quantum. Because of the way he did it, he did not think at first

that he had done anything radical. He was sure that if he kept working at

it he would find a way of deriving his distribution from classical physics.

The real revolutionary is now coming on stage.

in different colors. Planck, with no justification, assumed that his quanta were
“indistinguishable.’’ This completely changes the counting problem. If he had
not made this assumption he would have ended up with the wrong distribu-
tion. Nearly three decades later this was understood after the creation of the
quantum theory.
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PH OTO N S
It appears to me, in fact, that the observations on “black-body ra-
diation,’’ photoluminescence, the generating of cathode rays with
ultraviolet radiation, and other groups of phenomena related to the
generation and transformation of light can be understood better on
the assumption that the energy in light is distributed discontinuously
in space.’’

—Albert Einstein

Of Einstein’s four “Miracle Year’’ papers, his paper on black-body

radiation is to me the most miraculous. This is to take nothing away from

the other papers, but here he is truly groping in the dark. Here he is

at age twenty-six, with no academic job, barely known in the physics

community, and no other professional physicists to talk to, not even

an adequate library, about to take down the entire edifice of classical

physics. I have often thought that if Einstein and Maxwell had been able

to sit down and have a chat, Maxwell would have understood relativity

in an hour. With Newton you would have had to explain too much. The

Brownian movement paper was certainly a fine paper but, after all, it was

done almost as well by someone else—Smoluchowski. No one else could

have written the black-body paper and no one else believed the results.

When Planck, and three colleagues, proposed Einstein for membership

in the Prussian Academy they wrote the following:

In sum, one can say that there is hardly one among the great prob-
lems in which modern physics is so rich to which Einstein has
not made a remarkable contribution. That he may sometimes have
missed the target in his speculations, as, for example, in his hypoth-
esis of light-quanta cannot really be held too much against him, for
it is not possible to introduce really new ideas even in the most
exact sciences without sometimes taking a risk.

This was written in 1913! What enabled Einstein to get through

this maze was his incredible intuition. He seemed to have some kind of

internal guidance system that told him what was correct–a pipe line to
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the secrets of the Old One, Einstein’s affectionate way of referring to

God. You cannot be taught this. You have it or you do not, and the great

physicists have it–no one more than Einstein in these early years. The

title of the paper is interesting. In English translation, it is “Concerning a

Hueristic Point of View about the Creation and Transformation of Light.

“Heuristic’’– “heuristisch’’ in German– is such a curious choice of word. I

have never seen it in the title of any other physics paper. It seems to come

from the Greek. The dictionary definition is “Of or relating to a general

formulation that serves to guide investigation.’’8 Unlike relativity, he is

not offering here a full-blown theory. Part of his genius was to understand

that, at the time he wrote the paper, there was not, and could not be, such

a theory. He was proposing some guide as to what such a theory had to

explain.

The paper starts out with an introduction in which Einstein briefly

summarizes the successes of the classical theory of electromagnetism–

Maxwell’s theory.

This theory works with continuous distributions of electromagnetic

energy. It accounts for a vast domain of electromagnetic phenomena. It

is the theory that Einstein discusses in his relativity paper. In that paper,

written afterwards, there is only one hint that for some purposes the

theory has to be modified to allow for finite numbers of “energy quanta’’

instead of the continuous electric and magnetic fields. In the eighth sec-

tion of the relativity paper he computes the energy and frequency of what

he calls a “light complex.’’ He notes laconically that “It is noteworthy that

the energy and frequency of a light complex vary with the observer’s state

of motion according to the same law.’’ One waits in vain for the other

shoe to drop. Why does he not simply say that E = hν, something that

he had proposed a few months earlier? In this earlier paper he puts it

very starkly,

According to the presently proposed assumption the energy in a
beam of light emanating from a point source is not distributed

8This definition, and much more about the word, can be found at http://www.
websters-onlinedictionary.org/definition/english/he/heuristic.html.
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continuously over larger and larger volumes of space but consists of
a finite number of energy quanta, localized at points in space, which
move without subdividing and which are absorbed and emitted
only as units.

In terms of Professor Frank’s beer analogy, not only is beer bought

and sold in pints and quarts, but even in a barrel you would find it

localized in pints and quarts. No draft beer. It is clear how radical this

is. Nothing had prepared physicists for this. The rest of the paper is an

examination of “the proposed assumption.’’

Before doing this, Einstein has a section of the paper which he

calls “Concerning Certain Difficulties in the Theory of Black-Body

Radiation.’’ In this section he answers the question that Planck should

have answered. Suppose you do not know the “right answer’’–Planck’s

distribution–but simply apply classical physics consistently to the prob-

lem, what distribution of the radiation do you find? Einstein does this

and finds that the resulting distribution is neither Planck’s nor Wein’s.

It is plotted in Figure 4.4 under the label “Classical theory.’’ It is just the

long wave length distribution that Planck had used after he had spoken

with Rubens. This classical distribution which is simply proportional

to the wave length cannot be right at all wave lengths. Not only does it

not fit the data, but it leads to an absurdity. You can use it to compute

how much radiation energy is contained in any cubic centimeter in the

container. What you find is that the amount is infinite! This absurdity

came to be called the “ultra-violet catastrophe’’ in honor of that fact that

as λ gets smaller—goes towards the ultra-violet—the contribution to

the energy at these wave lengths goes off to infinity. Classical physics,

which is what is assumed to derive this distribution, has broken down.

Einstein was not the only one to have reached this conclusion. In

1900, John Strutt, better known a Lord Rayleigh, published a paper

in the British journal Philosophical Magazine in which he presented his

own radiation formula. It was an odd amalgam of the classical result and

Wien formula. He offered no real explanation of how he had arrived

at this formula. If Planck was aware of it he did not mention it in his

papers. Einstein certainly was not aware of it. Nor was he aware of
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Rayleigh’s 1905 paper in which he spells out in detail his derivation of

the classical distribution. This derivation is part of what we teach our

students. But we have to amend it to take account of the quantum effects.

Rayleigh did not bother with Planck’s radiation oscillators. He went right

to the radiation in the cavity. He wanted to count how many different

wavelengths of the radiation could be fitted into the cavity. The restriction

is that each wave has to fit inside the cavity with nothing slopping over.

The answer he got was off by a numerical factor that was later discovered

by James Jeans, the British astrophysicist. The resulting distribution is

usually referred to as the Rayleigh-Jeans distribution. I think it might

well be called the Rayleigh-Jeans-Einstein distribution. To make the

final step to get it, Rayleigh used a fact from classical physics that each of

these radiation “modes’’ in equilibrium has the same average energy. The

energy is equally partitioned among these modes. This law was embedded

in classical physics and led at once to the classical distribution and all the

attendant difficulties.9 Rayleigh and Jeans both understood this but were

unclear what to do about it. I do not think they saw in it the end of classical

physics. In the new physics the energy is not equally distributed among

the modes and this is what leads to the Planck distribution which Einstein

clearly understood. He discusses the meaning of Planck’s derivation in

the third section of the paper.

To me, the miraculous section of this paper is the fourth which has

the ponderous title, “Limiting Law of the Entropy of Monochromatic

Radiation for Small Radiation Density.’’ You can as much guess what

9Not to be overly mysterious about this, there was in classical physics a principle
that was called the “equipartition of energy.’’ In this instance what it implied
was that each of these modes had equal average energy and that this energy
was given by kT. Here T is temperature and k is the Boltzmann constant which
has a value of approximately of 1.38 × 10−16 ergs per degree. The important
point is that this energy did not depend on the frequency of the radiation,
which is what lead to the disaster. In the Planck case the energy does depend
on the frequency and is given by hν

e
hν
kT −1

. This expression has the property that

for low frequencies it goes over to the classical answer and for high frequencies
it is cut off by the exponential so that the catastrophe is avoided.
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this section is about from this than you can tell from the title of the

painting “La Giocanda’’ that you are about to see the Mona Lisa. As I have

discussed, Planck’s tactic for attempting to derive distributions was first

to derive an expression for the entropy from which he could derive the

distribution. Einstein turned this around. He started from the observed

distribution, in particular from the Wien end where the new physics was

to be found, and from it calculated the entropy. Planck had also found this

expression but he had not understood what it meant. Einstein shows that

it is the same expression you would find if you were considering a dilute

gas of particles. The difference is that these “particles’’ have energies

that are proportional to their frequencies; i.e., E = hν. They, are in this

respect, not like the molecules of, say, a volume of hydrogen gas where

the energy depends on the speeds of the particles. These “particles’’ all

move with the speed of light. Recall from the relativity chapter, this

means they are massless. Where does this leave us? The classical part

of the black-body distribution is derived from the assumption that the

radiation in the black body has a wave-like character. But the Wien part

of the distribution is derived from the proposition that the radiation has

a particle character. And in the middle? Here you have the first instance

of the wave-particle duality of light. It would haunt Einstein for the rest

of his life. He never came to terms with it.

In the next two sections of the paper Einstein sharpens his parti-

cle analogy and then come the last three sections of the paper in which

Einstein discusses tests for this new idea. The most famous section of

the entire paper is the eighth. It has the cumbersome title “On the Pro-

duction of Cathode Rays by Irradiation of Solid Bodies.’’ To explain it a

little history is in order. In 1886, the German physicist Heinrich Hertz

performed the experiments that successfully showed that Maxwell’s pre-

diction that light was an electro-magnetic wave was right. In the course

of this he found that a spark he was using to detect the radiation was

enhanced if ultra-violet light struck the metal of his detector. He had

no explanation for this but, being a good experimenter, noted it. As it

turned out, in the same set of experiments he had, unknown to him, de-

tected both the particle and wave properties of light. But that realization
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would only come later. In 1897, the British physicist J.J. Thomson iden-

tified the electron as the particle that was emitted from the cathode–the

negatively charged component of a vacuum tube. These electrons became

known as “cathode rays.’’ In 1899, he showed that these same cathode

rays were emitted when ultraviolet light was shone on a metal. What

Hertz had actually seen were these electrons. The next important step

was taken just after the turn of the century by the German physicist

Philipp Lenard. Lenard had a carbon arc light whose intensity he could

vary by a factor of a thousand. This light was shone on a metal plate and

the emitted electrons collected on a detector plate. He was able to measure

the energy of the electrons. The result was totally unexpected. Common

sense, and indeed classical physics, would have predicted that when the

intensity of the light was increased the emitted electrons would have a

higher energy. But this is not what happened. In general, the electrons

are emitted with various energies but one can focus on the maximum

energy. What Lenard found was that this energy did not change when

the intensity was increased. What happened was that number of emitted

electrons carrying this energy increased. He then very cleverly broke up

the light from his carbon arc into various frequencies using a spectrome-

ter. He seemed to find that the higher frequency components of the light

caused electrons of higher energies to be emitted, but the data was not

conclusive.

In this section of Einstein’s paper he explains everything in one

equation that is so simple that you could teach it to high school students.

It was this equation for which Einstein was awarded the Nobel Prize

for 1921, which he collected in 1922. The citation of the Royal Swedish

Academy that awards these prizes is quite marvelous. It reads,

ROYAL SWEDISH ACADEMY has at the assembly held on
November 9,1922, in accordance with the stipulation in the will
and testament of Alfred Nobel dated November 27, 1895, decided
to/independent of the value that/(after eventual confirmation) may
be credited to the relativity and gravitation theory/bestow the
prize/that for 1921 is awarded to the person within the field of
physics who has made the most important discovery or invention/
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to Albert Einstein being most highly deserving in the field of the-
oretical physics/particularly his discovery of the law pertaining to
the photoelectric effect.10

The “photoelectric’’ effect is the shorthand name for the phe-

nomenon of the emission of electrons by light. Incidentally, the Prize

was worth about 32,000, 1922 dollars, all of which went to his ex-wife

as part of a divorce settlement that had been made several years earlier.

What then is the equation? I will not use the notation of Einstein’s paper

since he has a way of rendering Planck’s constant “h ,’’ which is a conse-

quence of how he defines the Wien distribution, that is rather ungainly.

In modern notation the equation is simply

Emax = hν − P .

Here Emax is the maximum energy an electron can have when it is liber-

ated by a quantum that has energy hν. The reason that it cannot have all

the energy is that some is needed to allow the electron the escape from

its binding to the metal surface on which the light is incident. This is

what “P ’’ stands for. This equation is simply the conservation of energy.

It says that if N quanta of energy hν are incident on the surface then N

electrons with a maximum energy of Emax can be released. It furthermore

says that the energy of the electrons increases with the frequency of the

light. This explains Lenard’s results. The first sentence of this section of

Einstein’s paper reads, “The traditional view that the energy of light is

distributed continuously through the region illuminated by the light runs

into great difficulty in trying to explain photoelectric phenomena, as was

outlined in a trail-blazing paper by Lenard.’’ Two decades later Lenard

had become a rabid anti-Semitic Nazi and all of this was, according to

him, “decadent Jewish physics.’’

In the next, and final section, “Afterward,’’ I will describe the ex-

periments that confirmed this equation and end with a brief overview of

Einstein’s attitude towards the quantum theory as the theory evolved.

10I am grateful to Gerald Holton for supplying the translation of the Swedish
original.
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AF TE R WA RD
I cannot make a case for my attitude in physics which you would
consider at all reasonable. I admit, of course, that there is a consid-
erable amount of validity in the statistical approach which you were
first to recognize clearly as necessary given the framework of the
existing formalism. I cannot seriously believe in it because the the-
ory cannot be reconciled with the idea that physics should represent
a reality in time and space, free from spooky actions at a distance.

—Einstein to Max Born, 3 March 1947

The definitive experiments on the photoelectric effect were carried

out by the American physicist Robert Millikan in the years from 1914

to 1916. They confirmed Einstein’s equation and for them Millikan won

the Nobel Prize in 1923, two years after Einstein. One might think that

Millikan’s experiments would have settled the matter in the sense that the

quantum would have achieved universal acceptance. This was far from

the case and Millikan is a prime example. In 1917, Millikan published

a book called The Electron, in which he describes these experiments. He

writes,

Despite then the apparently complete success of the Einstein equa-
tion, the physical theory of which it was designed to be the symbolic
expression, is found so untenable that Einstein himself, I believe,
no longer holds to it, and we are in the position of having built a
very perfect structure and then knocked out entirely the underpin-
ning without causing the building to fall. It stands complete and
apparently well tested but without any visible means of support,
and the most fascinating problem of modern physics is to find them.
Experiment has outrun theory, or, better, guided by erroneous the-
ory, it has discovered relationships which seem to be of the greatest
interest and importance, but the reasons for them are as yet not at
all understood.

Millikan was correct in the sense that the quantum theory, which

was barely in its infancy, was not well understood. But his notion that
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Einstein had abandoned the quantum as an explanation of the photo-

electric effect is absurd. Indeed, typically, after having published his

explanation of the photoelectric effect Einstein found another applica-

tion of the quantum idea. This had to do with applying Planck’s oscillator

model with individually quantized oscillators to the study of the absorp-

tion of heat in solids. The history of this subject goes back to 1819, when

two young French physicists, Pierre Louis Dulong and Alexis Thérèse

Petit studied the heat absorption of a variety of materials—mostly metals.

They found that, taking a standard amount of the materiel, the amount of

heat needed to raise the temperature by, say, one degree, appeared to be

the same for all these elements and did not depend on the temperature of

the material. This law was readily derived from a model involving clas-

sical oscillators. The problem was that by the turn of century it seemed

to be breaking down at the lower temperatures. In 1906, Einstein sup-

posed that in reality the energies of the oscillators were “quantized.’’

Only integer multiples of the basic energy unit was allowed. Using this

assumption, he found a new law for the specific heat which agreed with

the old one at the higher temperatures and with the experimental data

at the lower ones. This study was the first to apply the quantum theory

to solids. It persuaded some people who had not taken the quantum se-

riously before to take it seriously now. The next great step was taken in

1913, by Niels Bohr. What Bohr did was to quantize the electron orbits

in atoms. The electrons were only allowed to travel in restricted orbits.

When an electron “jumped’’ from a higher to a lower orbit it emitted

a quantum of radiation equal to the energy difference between the two

orbits. This incidentally explained the results of Bunsen and Kirchhoff

on the dark sodium spectral lines. Absorption of light was subject to the

same quantum rules. For light to be absorbed it had to have the right

energy to induce of these quantum jump. Sodium light could be absorbed

by sodium vapor because it had the right energy. Einstein was extremely

enthusiastic about Bohr’s work.

In 1916, Einstein presented a new way of looking at Planck’s distri-

bution. It cannot exactly be described as a derivation because there was
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as yet no theory from which to derive it. But one of the basic ideas became

decades later the basis of the laser. The idea was to consider a model in

which, say, an electron, could be in one of two energy states. There was

a state of least energy, the so-called “ground state’’ and an excited state

of greater energy. This system was assumed to be in a bath of radiation

at some temperature. Two obvious things can happen. If an electron is

in the ground state it can absorb a radiation quantum and jump to the

excited state. Once in the excited state it can spontaneously emit a quan-

tum of radiation and jump back to the ground state. But Einstein dis-

covered that there was a third process. The radiation bath can stimulate

the excited electron to emit a quantum. It was this stimulated emission

that was exploited in the laser since it led to a method of amplifying the

intensity of the emitted radiation.

In 1923, the French theoretical physicist Louis de Broglie in a pro-

posed PhD thesis, suggested that particles like electrons might also have

a wave character. This completed the wave-particle duality. Light was

both a wave and a particle, and an electron was both a particle and a

wave. De Broglie’s thesis advisor, Paul Langevin, sent a copy of the the-

sis to Einstein, who replied that he found the ideas interesting. The wave

nature of the electron was demonstrated experimentally four years later.

At first, it was assumed that these were waves like light waves in that

they oscillated in ordinary space. They might act as “guides’’ for the par-

ticles. Indeed, in 1926, the Austrian physicist Erwin Schrödinger found

the equation that bears his name which described these waves. Einstein

was delighted with this until Max Born, and others, showed that these

waves were different. In fact they were waves of probability. Where they

had large amplitudes, a particle was most likely to be found. It was at this

point that Einstein and the quantum theory parted company. Indeed, in

1926, in a famous and often quoted letter to Born he wrote,

Quantum mechanics is certainly imposing. But an inner voice tells
me that it is not yet the real thing. The theory says a lot, but it does
not really bring us any closer to the secrets of the “Old One.’’ I, at
any rate, am convinced that He is not playing dice.
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Einstein then entered a period in which he tried to show that the

theory was wrong. This inspired monumental debates with Bohr which,

in truth, Einstein lost, but we all won since they clarified the theory.

Finally, Einstein decided that the theory was not a complete description

of “reality.’’ Usually when physicists begin talking about reality it is a

bad sign. He tried for the rest of his life to produce a theory that would

replace quantum theory. But he was doing this without any guidance

from experiment so there was little chance for success. Many people

tried to induce him back into the mainstream. John Wheeler told me

that when Feynman, who was his student, produced a new formalism

for the quantum theory Wheeler thought that it was so beautiful that

Einstein would surely be converted. Of course he was not. I think that

Einstein was in his heart a classical physicist. Poets, as Cocteau once said,

tend to sing from their family trees. Einstein’s family tree was classical

physics—the physics he learned as a student–and while quantum theory

was, in a sense, his child, it was not a child that he was able to adopt.

Our presentation of the four essays is now done. In the brief epi-

logue I will trace the arc of the remainder of Einstein’s life.
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When he spoke in Zurich in 1909 for the first time on special rela-
tivity, it was neither at a university nor at the ETH, but in a room
of the Carpenter’s Union at a town restaurant. For writing he had
only a small blackboard on which he drew a horizontal line; it was a
space of one dimension that he was going to relate to his new notion
of time. He began by saying, “Consider at each point of this straight
line a clock-that is, infinitely many clocks.’’ After having developed
his theory for more than an hour, he suddenly stopped and excused
himself for having spoken for so long. “How late is it, because I have
no clock?

—Louis Kollros a classmate of Einstein at the ETH

The theory of relativity to which Minkowski later gave an appropri-
ate mathematical form attracted the attention of many people to the

173



SVNY072-Bernstein August 27, 2005 11:4

S e c r e t s o f t h e O l d O n e

new mechanics. The overthrow of the fundamental conceptions of
kinematics surprised those who had not followed the historical evo-
lution of these problems which we have just sketched. The apparent
generality of the solution of the problem of space and time met the
desire of that period of unifying and synthesizing science. That is
why the theory of relativity excited the young devoted to the study
of mathematical physics; under the influence of that theory they
filled the halls and corridors of universities. On the other hand, the
physicists of the former generation, whose philosophy was formed
under the influence of Mach and Kirchoff, remained for the most
part skeptical of the audacious inventors who allowed themselves to
rely upon a small number of experiments, still debated by specialists,
to overthrow the fundamental tests of every physical measurement.

—Max Abraham, a theoretical physicist in 1914

One of the more striking things about the young Einstein is that

he had an absolutely clear understanding of the value of what

he had done. His communication to Conrad Habicht, which

I quoted in the last chapter makes this evident. He was also ambitious.

He expected that there would be considerable reaction to his four papers

from other physicists, and there was almost none. The only manifesta-

tion of interest that was apparent to Einstein was the visit to Bern by

the equally young Max von Laue. There was some interest–Max Planck

was an example–but this was not directly communicated to Einstein. This

had to do with relativity. As far as the quantum paper was concerned,

there was almost no interest. This may seem odd to us. We understand

that the quantum paper heralded the end of classical physics. Einstein

certainly understood this. But this is not how it appeared to the physics

community. The historian of science Thomas Kuhn made a study of the

number of papers published on black body radiation and the quantum

from 1905 to 1914 Until 1910, there were less than ten authors per year.

After 1910, the numbers begin to exponentiate. There was nonetheless

among the physicists of Einstein’s generation, a reluctance to accept the

radical consequences of the quantum theory. Einstein himself reflected

this. His last positive contribution to the theory was inspired by a letter he

received in 1924, from a young Indian physicist named Satynendra Nath
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Bose.1 Enclosed with the letter was a paper that Bose wanted Einstein’s

help in publishing in one of the German language physics journals. The

paper was written in English and Einstein thought that it was important

enough to translate himself into German. What Bose had done was to

derive the Planck distribution by making explicit the counting proce-

dures that Planck had used implicitly. But Einstein realized that there

was a consequence of these procedures that had gone unnoticed. There

was a class of particles-now known as Bose-Einstein particles—to which

the same counting procedures had to be applied. For example, the nu-

cleus of the common isotope of helium is such a particle. What Einstein

noticed was that if one lowered the temperature of a collection of these

particles there was a critical temperature at which they would condense

into one quantum state. This remarkable phenomenon—which is known

as Bose-Einstein condensation, although Bose had nothing to do with

it—is now a very active branch of theoretical and experimental physics.

The reception of relativity was also mixed. There were many physi-

cists such as W.F. Magie, whom I quoted before, who did not have

any understanding of the theory and were ineducable. But there were

also several physicists who actually worked in the theory, but who saw

it as simply an adumbration of what Lorentz had done. These people

did not grasp what Einstein referred to as the “kinematical’’ part of his

paper. They wanted to proceed from specific electron models of mat-

ter to derive such things as the Lorentz-Fitzgerald contraction. They

thought that what Einstein had done–to start with two axioms, relativ-

ity and constancy–and then to show how an analysis of space and time

led to these results, was almost a form of cheating. Where were the cal-

culations? Lorentz himself seemed to have mixed feelings about what

Einstein did. A perfect example is a statement, one of his last on this

subject, which he made in the course of some lectures he gave at the

California Institute of Technology in 1922. He noted that, “As to the

ether. . . though the conception of it has certain advantages, it must be

1People who know Bengali have informed me that the accepted pronunciation
of “Bose’’ is “Bosh.’’
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admitted that if Einstein had maintained it he certainly would not have

given us his theory, so we are grateful to him for not having gone along

old-fashioned roads.’’ What possible “advantages’’ did the conception of

the aether have in 1922? Established ideas die hard.

Poincaré is another curious example. Of Einstein’s predecessors he

was the only one who understood the issues. One would have thought

that he would have embraced the theory. In fact, he made some impor-

tant mathematical contributions to it. But in his papers he never once

mentioned Einstein. He too seemed to think that he was adumbrating

Lorentz. He was certainly aware of Einstein. Indeed, in 1911, he wrote a

very enthusiastic letter of recommendation to the ETH in Zurich which

was considering Einstein for a position. He wrote,

Einstein is one of the most original minds that I have known; despite
his youth he has already achieved a very honorable rank among
the foremost scholars of our time. What we can, above all, admire
in him is the facility with which he adapts himself to new concepts
and draws all the consequences from them. He does not remain
attached to classical principles and in the presence of a physics
problem is prompt to realize all of its possibilities. This translates
itself immediately in his mind by the prediction of new phenomena,
which can be verified by experiments. I do not mean that all of
his predictions will be confirmed when they are eventually tested.
Since he searches in all possible directions, one should, on the
contrary, expect that most of the paths that he follows will lead to
an impasse; but one may also hope that one of the directions that he
has pointed to will be the true one; and that is enough. This is the
way that one ought to proceed. The role of mathematical physics
is to ask questions; it is only experience that can answer them. The
future will show, more and more, the worth of Einstein, and the
university which is able to capture this young master is certain to
gain much honor from this operation.

It is interesting that this very generous recommendation was written

the year that the two men encountered each other for the first time at

the Solvay Congress. Recall that Einstein had gotten a rather negative

impression of Poincaré at this conference. The late Abraham Pais once
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told me an anecdote about Einstein and Poincaré. He had the occasion to

discuss Poincaré with Einstein. In 1905, Poincaré published an important

paper on Lorentz’s version of the theory of relativity. This paper appeared

before Einstein’s. One of the things that Poincaré did in this paper was

to show that the Lorentz transformations form what mathematicians call

a “group.’’ Two successive Lorentz transformations are equivalent to a

third. There is an inverse to any Lorentz transformation—that sort of

thing. This group is stilled called the Poincaré group. It turned out that

Einstein had never read this paper. Pais lent him his copy. There was

apparently no comment when Einstein returned it. He certainly knew its

contents. Michelson was another case. He and Einstein met only once,

in 1931. Michelson was then seventy-nine years old. On this occasion

he expressed regret that his work had given birth to this “monster’’–
relativity. Einstein, it seems, refrained from telling him that his work

had little or nothing to do with the creation of relativity.

Whatever immediate improvement there was in Einstein’s material

circumstances had nothing to do with his 1905 papers. It had to do

with the excellence of the work he was doing in the patent office. In

1906, he was promoted to technical expert second class and his salary

raised to 4,500 Swiss francs a year. Einstein’s first academic job was in

1908, when he became, in addition to a patent examiner, a Privatdozent

at the University of Bern. From what I have read, he was not a very

good lecturer at this level. He just had too many original ideas in his

mind to focus on teaching not very advanced students. It was in 1909,

when Einstein left the patent office to become an associate professor at

the University of Zurich with the same salary he had had at the patent

office. From that time on he made a meteoric rise in academia. In 1911,

he became a full professor at the German University in Prague. This was

an official government position and involved a swearing-in ceremony in

which a special uniform had to be worn. It seems as if Einstein wore it

once. When Professor Frank succeeded him the following year–Einstein

went to the ETH–he gave Professor Frank the uniform. Considerable

alterations must have been required considering the fact that Professor

Frank was substantially smaller.
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Einstein had barely unpacked in Zurich when he was on the move

again–this time to Berlin. There were several reasons why he made this

change. His job at the ETH required a considerable teaching commit-

ment. Einstein was now deep into the research that led to the general

relativity and did not want the distraction of teaching. The people in

Berlin, led by Planck, made him an offer he could not refuse. It was a

research position under the aegis of the Prussian Academy of Sciences

with no teaching requirement, which came with a professorship at the

University of Berlin. A new institute for theoretical physics was going

to be created for Einstein. In addition to this, he had already started a

relationship with his cousin Elsa which would lead to their marriage in

1919. It has also to be said that the scientists assembled in Berlin were the

most distinguished group anywhere in the world in all fields. There was a

physics colloquium that Einstein participated in which was internation-

ally famous. He chose to teach a seminar in statistical mechanics. I knew

a few people who had taken it–people like the late Eugene Wigner–who

recalled it as the high point of their scientific education. He also had a

small number of PhD students.

In 1919, word of the eclipse experiments that seemed to confirm

Einstein’s theory of gravitation, was disseminated. Einstein suddenly

found himself internationally famous. It went way beyond anything any-

one had known since the days of Newton. Unlike Newton, Einstein was

a colorful individual who readily expressed himself on a variety of sub-

jects. The image we have of Einstein is largely from his later years in

Princeton, where he was a rather reclusive and somewhat unkempt fig-

ure. The one time I saw him, the year before he died, he was getting into

a station wagon belonging to the Institute for Advanced Study. He was

wearing what looked like a navy surplus pea jacket, possibly with no

socks. But during his earlier years he seemed to enjoy at least some of

his celebrity. Here are two examples. There was in Berlin a fashionable

doctor named Janos Plesch. Plesch, who had been born in Hungary,

had put together a practice that included people like Marlene Dietrich.

The practice had made him rich, in addition to which he had married

a very wealthy woman. He lived in a mansion in Berlin where he gave
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“Herrenabends’’–stag-night dinners with fabulous menus and guests who

were at the forefront of Berlin cultural life. Einstein became a regu-

lar guest at these dinners. He soon became a patient. He was suffering

from pericarditus–an inflammation of the membranous sac that encloses

the heart. The fact that Einstein chose Plesch as his doctor scandalized

many of his Berlin acquaintances who regarded Plesch as an oppor-

tunistic quack. Nonetheless, Plesch managed to cure Einstein and they

remained close friends.

The second example involves Einstein’s second visit to the United

States. From December of 1930 until March of 1931, he spent most of

his time at the California Institute of Technology. During that visit he

got to know Charlie Chaplin, who invited him to the premier of his film

City Lights. The photograph of Einstein and his wife, in elegant formal

clothes, taken with Charlie Chaplin, shows, in my view, a man who was

thoroughly enjoying where his celebrity had gotten him (Figure E.2).

In 1932, Einstein was back once again at CalTech. It was becoming

clear that his situation in Germany had become impossible. There were

some rather confused negotiations as to whether Einstein would take

a permanent position at CalTech. I have often speculated as to what

his later career might have been like if he had. Robert Oppenheimer

was in the process of developing what became the preeminent school of

theoretical physics in this country. There were very active experimenters.

For example, Ernest Lawrence was inventing the cyclotron and, in 1932,

Figure E.2. Einstein, Charlie Chaplin, and Elsa Einstein at the premier of City Lights
in January 1931. (Courtesy Jewish Chronicle Limited/HIP/The Image Works)
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Carl Anderson observed the first antiparticle–the positron. If Einstein

had gone to CalTech would he have stayed more connected with the

advancement of physics? Would the presence of these young people

have stimulated him? We will never know, because at this time Abraham

Flexner, who was an educator who had a mandate to create a new kind

of research institution, what became the Institute for Advanced Study

in Princeton. Einstein would have no duties except to do his own work.

In 1932, he accepted this offer and from 1933, until his death in 1955,

Princeton became his home.

Einstein continued to do his own sort of physics until the day of his

death. His old friends such as Max Born tried to persuade him to accept

the quantum theory and return to the mainstream. Einstein’s response

was that he felt that he had earned the right to make his own mistakes. I

once asked Miss Dukas how she would describe Einstein’s last years. The

word that she used was “serene’’ (Figure E.3). He was very concerned

Figure E.3. Einstein in his later years. (Library of Congress, courtesy Emilio Segré
Archives)
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about the fate of mankind but little concerned about his own fate. What

always strikes me is how we are still in the thrall of his ideas. I will give

one final example that does not come from 1905, but rather from 1917.

Einstein decided to apply his new theory of gravitation to a study of

the universe at large–cosmology. At the time it was widely felt that the

universe was just the Milky Way galaxy alone. Einstein was concerned

as to what kept this universe stable–what kept it from collapsing under

the effects of gravitation. He decided that the only way to avoid this was

to add a new term to his equations of general relativity—a term that

he called the “cosmological member.’’ This term acted like a repulsive

force that counteracted gravity. In the next decade, especially with the

work of the astronomer Edwin Hubble, it became clear that the universe

was in fact expanding. There seemed to be no need for the cosmological

term and Einstein abandoned it. This is where things stood until a few

years ago when it became clear that the universe is now expanding at a

greater rate that can be accounted for by the conventional theory. The

cosmological term is back and is referred to as “dark energy.’’ With the

dark energy, the Old One has once again played a trick on us, something

that Einstein might have found wonderfully amusing. It seems as if the

Old One has no end of secrets.
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INT RO D U C T I O N
“the number is still growing.’’ Among them here is a personal list. For people
with the needed technical background Subtle is the Lord: The Science and the Life
of Albert Einstein, Oxford University Press, New York,1981, by Abraham Pais
is the best account of the science. For a general biography, I recommend Albert
Einstein: A Biography by Albrecht Fölsing, translated by Ewald Osers, Viking,
New York, 1997. For an older biography there is Einstein: His Life and Times, by
Philipp Frank, DaCapo Press, New York, 1953. Professor Frank knew Einstein
for much of their professional lives. For a shorter biographical sketch there is
my Albert Einstein and the Frontiers of Physics, Oxford University Press, New York,
1996. For a sensitive view of Einstein’s romantic life there is Einstein in Love by
Dennis Overbye, Penguin, New York, 2001.

“written in his honor.’’ Albert Einstein: Philosopher-Scientist, edited by P. A. Schilpp,
MFJ Books, New York, 1970.

“be behind things.’’ Schilpp, p. 9.
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“papers were written.’’ A reader who wants to see translations of these papers,
including the thesis, will find Einstein’s Miraculous Year, edited by John Stachel,
Princeton University Press, Princeton, 1998, very useful. Stachel’s introductory
essays are excellent, but require considerable technical background to follow.
This is not a book for the general reader.

CH A P TE R 1
“a month, a year.’’ This quotation is from Newton’s Principia, but I have taken
the translation from the Latin from The Science of Mechanics by Ernst Mach, Open
Court Publishing, Lasalle, 1974, p. 272. I will refer to this as “Mach.’’

“Two Chief World Systems.’’ The edition I use, with a forward by Einstein,
is published by the Modern Library, New York, 1966. I will refer to this as
“Galileo.’’

“rapidly westward.’’ Galileo, p. 153.

“standing still.’’ Galileo, pp. 216–217.

“bit about him.’’ This information and the quotations are taken from my essay,
“Ernst Mach and the Quarks’’ in the collection Cranks, Quarks, and the Cosmos,
Basic Books, New York, 1993, pp. 28–37.

“in these matters.’’ Bernstein 1993, p. 30.

“harmful vermin.’’ This quote can be found in Gerald Holton, “Mach, Einstein
and the Search for Reality,’’ Daedalus, Spring 1968, p. 657.

“hereafter be shown.’’ Mach, p. 298.

“indefensible conceptions.’’ Mach, p. 265.

“matter conjointly.’’ Mach, p. 298.

“is impressed.’’ Mach, p. 301.

“actual facts.’’ Mach, p. 272.
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“metaphysical conception.’’ Mach p. 273. The italics are in Mach.

“can be referred.’’ Mach, p. 277. The italics are in Mach.

“of the [absolute] motion.’’ Mach, p. 277

“our imagination.’’ Mach, p. 284.

“space is not empty.’’ As one might imagine the issues raised here are more
complex that I have indicated. The references to Thirring’s papers are Phys. ZS.
19, 33(1918), 22, 29 (1921). Arguments have been made that Thirring’s example
is too abstract, and that even if you grant his point, it does not prove that the
acceleration of rotation is not absolute. The discussion of this would take us way
beyond the intent of this book. An interested reader might consult, “On Mach’s
critique of Newton and Copernicus,’’ by H. Hartman and C. Nissam-Sabat,
American Journal of Physics 71, November 2003, pp. 1163–69.

“grove of trees.’’ This is quoted in Volume 1 of A History of Aether and Electricity,
by Sir Edmund Whittaker, Dover Publications, New York, 1989, pp. 108–109.
I will refer to these volumes as “Whittaker 1,2.’’

“form or vigour.’’ Quoted in Whittaker 1, p. 19.

“Lorentz transformation.’’ The Feynman Lectures on Physics, by Richard Feynman,
Addison-Wesley, Reading, Massachusetts, 1975, Vol. I, pp. 15–3.

“not born in this country.’’ Michelson’s youngest daughter, Dorothy Michelson
Livingston, wrote a very nice biography of her father–The Master of Light, Charles
Scribner, New York, 1973.

“through the ether.’’ Livingston, p. 82

“of the solar system’’ Pais, p. 122.

“l times smaller.’’ This can be found in the collection The Principle of Relativity,
by Einstein et al, Dover Press, New York, 1952, p. 21. There is also an earlier
paper in the collection dealing with the Michelson-Morely experiment. I will
refer to this collection as “Einstein et al.’’
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“but rigorously.’’ Whittaker 2, p. 30.

“relative displacements.’’ Whittaker 2, p. 30. Italics here and in the following
quotation are in Whittaker.

“velocity of light.” Whittaker 2, pp. 30–31. Poincaré does not explain how he
arrived that this conclusion about the speed of light being the maximum possible
speed, but it is not difficult to see how he might have. If you assume that the

Lorentz-Fitzgerald contraction is given for all speeds by the factor
√

1 − v2

c 2 it
follows that when v = c the object is contracted to zero. Moreover, if v becomes
greater than c, then we have the square root of a negative number which cannot
be interpreted as a length.

CH A P TE R 2
“much attention.’’ Whittaker 2, p. 40.

“Einstein lecture.’’ In 1921, at the age of twenty-one, Pauli published a masterful
monograph on relativity. It is still one of the best. The English translation is
Relativity Theory, Dover, New York, 1981.

“from the essential.’’ Schilpp, p. 15.

“Method of Theoretical Physics.’’ The lecture was apparently originally written
in German. The pamphlet Einstein sent me was in English. It can be found in
Essays in Science by Albert Einstein, Philosophical Library, New York, 1934.
The quote from it can be found on page 17.

“acute angles.’’ Schilpp, pp. 10–11.

“independent scientific work.’’ Schilpp, p. 15.

“simultaneous events.’’ The quote is from Einstein’s 1905 relativity paper
reprinted in Einstein et al, p. 39.

“philosophical writings.’’ Schilpp, p. 53.

“A Popular Exposition.’’ Methuen, London, 1920.
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“valuable suggestions.’’ Einstein et al, p. 65.

“as results.’’ This quotation can be found in my Quantum Profiles, Princeton Uni-
versity Press, Princeton, New Jersey, 1991 in an essay entitled “Besso,’’ which
has details about his life. The quotation is on p. 150.

“special properties.’’ Einstein et al, pp. 37–38.

“one readily shows.’’ See, for example, Modern Physics, by Jeremy Bernstein,
Paul Fishbane and Stephen Gasiorowicz, Prentice Hall, New Jersey, 2000, pp.
44–45. In my opinion the best textbook on relativity is Relativity: Special,General
and Cosmological by Wolfgang Rindler, Oxford University Press, New York,
2001.

“have in mind’’ For a very clear discussion of this and related matters at about
the same level as what I am trying to achieve see http:/www.phys.virginia.edu/
classes/252/srelwhat.html. This is a site created by Professor Michael Fowler of
the University of Virginia.

“go into here.’’ See, for example. Bernstein et al, pp. 54–55.

“stellar aberration.’’ A nice treatment of this at about the same level can be
found in “Einstein’s Special Theory of Relativity and the Problems in the of
Electrodynamics of Moving Bodies that Led him to it.’’ By John D. Norton,
Cambridge Companion to Einstein, edited by M. Janssen and C. Lehner, Cambridge
University Press, New York, 2005.

“innumerable places.’’ See, for example, Bernstein et al or Rindler, or Einstein
et al for the original derivation. For a reader with some technical background
Albert Einstein’s Special Theory of Relativity by Arthur I. Miller, Addison Wesley,
1981, is highly recommended both for its science and history.

“this result is confirmed.’’ For details see Bernstein et al Chapters 2 and 17.
The experiments were done by a team under the direction of Carroll O. Alley.
Professor Alley has summarized the work in “Proper Time Experiments in
Gravitational Fields with Atomic Clocks, Aircraft and Laser Light Pulses’’ in
Quantum Optics, Experimental Gravity and Measurement Theory, edited by Pierre
Meystre and Marlon O.Scully, Plenum, New York, 1983, pp. 363–427.
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“in the loop.’’ For a very clear discussion see Miller, Chapter 3.

“successfully put to the test.’’ Einstein et al, p. 71.

“another man’s past.’’ This is quoted in Understanding Relativity, by Stanley
Goldberg, Birkhäuser, Boston, 1984, p. 261. Magie took the odd position that
relativity could not be a fundamental theory since, he argued, that a fundamental
theory must be understandable to everyone.

“and common sense’’ Time and Free Will: An Essay on the Immediate Data of Con-
sciousness, translated by F.L. Pogson, George Allen and Unwin, London, 1910,
p. 2227

“end of his Latin.’’ The original of this extraordinary letter, which was writ-
ten in March of 1906 and is in French, can be found in Miller, pp. 336–
337.

“complexes of phenomena.’’ This is quoted in Fölsing, p. 206.

“in Cologne.’’ A translation of this lecture can be found in Einstein et al, pp.
75–91.

“independent reality.’’ Einstein et al, p. 75.

“learned arguments.’’ See, for example, Miller, pp. 257–274.

“theory of gravitation.’’ Pais, p. 179.

“somewhere in space.’’ A description of this can be found in Einstein’s popular
book, Relativity: The Special and General Theory, Crown Publishers, New York,
1961, Chapter XX.

“Propagation of Light.’’ See Einstein et al p. 99 et seq. This paper is an adum-
bration of a paper he wrote in 1907.

“General Relativity.’’ Einstein et al, p. 111.

“is correct.’’ This is quoted, for example in Bernstein 1982, p. 144.
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CH A P TE R 3
“so-called atoms.’’ This is quoted in Molecular Reality by Mary Joe Nye, American
Elsiever, New York, 1972, pp. 4–5. Kekulé was one of the greatest of the 19th-
century organic chemists.

“construction of matter.’’ Schilpp, p. 19

“our sight.’’ An excerpt from the poem can be found in the very useful two-
volume The World of the Atom, edited by Henry A. Boorse and Lloyd Motz, Basic
Books, New York, 1966. This quote is found in Vol. 1, p. 17.

“First Creation.’’ Boorse, Vol. 1, p. 102.

“very rapid motion.’’ Boorse, Vol. 1, pp. 112–116.

“cohesion.’’ This work is described in articles by G.D.Scott and I.G. MacDonald,
American Journal of Physics 33, 163, 1965 and A.P. French, American Journal of
Physics 35, 162, 1967. See also The Kind of Motion We Call Heat, by Stephen Brush,
North-Holland, New York, 1976, p. 75

“Journal de Physique.’’ An English translation of this paper can be found on the
Web site http://web.lemoyne.edu/∼giunta/avogadro/html.

“Jan Josef Loschmidt’’ A useful Web site is www.loschmidt.cz/biography.html.
The great 1865 paper can be found in translation on www.dbhs.wvusd.k12.
ca.us/webdocs/Chem-History/Loschmidt-1865.html.

“as follows.’’ For a more detailed version of what Loschmidt did, including
the factors, see The Dictionary of Scientific Biography, edited by Charles Gillespie,
Scribners, New York, 1973, Vol. VIII, pp. 505–511. The situation is complicated
by the fact that air is a mixture if gasses of which oxygen and nitrogen are the
most prominent. Loschmidt took this into account.

“in my head.’’ Bernstein, 1993, p. 34.

“judgement in the matter.’’ This is a translation taken from Einstein’s paper Die
von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
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Flügiskeiten suspendierten Teilchen published in Annalen der Physik, Ser. 4, vol. 17,
1905, pp. 549–560. The translation can be found in Albert Einstein Investigations
on the Theory of Brownian Movement, edited by R. Fürth and translated by A.D.
Cowper, Dover Publications, New York, 1956, p. 1.

“of a substance.’’ Fürth, p. 76.

“of Heat.’’ Fürth, p. 18.

“precision experiments.’’ For details of this and other aspects of Perrin’s life and
career, see Nye.

“the present day.’’ Nye, p. 168.

CH A P TE R 4
“the quantum theory.’’ Frank, p. 98.

“for free.’’ This advertisement and other information about the “Olympia
Academy’’ can be found on www.einstein-website.de/z biography/olympia.
html.

“interest you.’’ This translation I have taken from Fölsing, p. 120.

“maximum zu.’’ Excepts in English from Clausius’s papers on entropy can be
found at http://web.lemoyne.edu/-giunta/Clausius.html.

“nature of the walls.’’ Schilpp, pp. 37–38.

“Max Planck.’’ This is quoted in “Thermodynamics and Quanta in Planck’s
Work,’’ by Martin J. Klein, Physics Today, 19, No. 11, 1966, p. 24.

“race.’’ Fölsing, p. 345.

“laws of thermodynamics.’’ This is taken from Black Body Theory and the Quan-
tum Discontinuity, 1894–1912 by Thomas S. Kuhn, University of Chicago Press,
Chicago, 1978, p. 14.
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“continuous matter.’’ Kuhn, p. 23.

“non-human ones.’’ Kuhn, p. 26.

“inclined to suspect.’’ Kuhn, p. 31.

“that it is correct.’’ See for example Kuhn.

“in space.’’ This quotation is taken from Einstein’s 1905 paper. The German
reference is Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuris-
tischen Gesichtspunkt, Annlen der Physik,4, Vol. 17, 1905, pp. 132–148. I have used
the translation that can be found in Boorse, Vol.1, p. 545.

“taking a risk.’’ Pais, p. 382.

“guide investigation’’ This definition and more about the word can be found
at http://www.websters-online dictionary.org/definition/English/he/heuristic
.html.

“same law.’’ Stachel, p. 150.

“only as units.’’ Boorse, Vol. 1, p. 545.

Epilogue-afterword

“As to the ether’’ Bernstein, p. 105.

“Einstein is one ’’ Bernstein, p. 103.
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Absolute time, 67
Absolute world, 94
Acceleration, Einstein elevator, 98–100
Adiabatic process, 144
Aethers

light, theory of, 25–28, 38
movement of Earth, 44

Almagest (Ptolemy), 12
Ampère, André Marie, 36
Anderson, Carl, 180
Angstrom, 108–109
Annalen der Physik, 1–2, 55, 90, 127,

130
Appeal to the Cultured World, 154
Atomic theory, 104–136

ancient concepts, 105
Avogadro’s number, 110–111
Bernoulli’s theory, 106–107
Boyle’s Law, 105–106
Brownian movement, 123–136
Dalton’s formula, 110
Gay-Lussac, 110
Loschmidt’s number, 111–115

Mach on existence of atoms, 116, 135
Newton’s concept, 105
Young’s theory, 109–110

Atomic weights, defining, 111n
“Autobiographical Notes” (Einstein),

61–62
Avogadro, Avogadro number, 111, 133

B
Bachelier, Louis, 132
Banks, Joseph, 123–124
Bartholin, Erasmus, 30
Bell, Alexander Graham, 44–45
Bergson, Henri, on Principle of

Relativity, 90
Bernoulli, Daniel, atomic theory, 106–107
Besso, Bice Margherita Louisa, 65–66
Besso, Michele, and relativity theory,

65–66
Big Bang, black-body spectrum remains,

158
Black-body radiation

defined, 150
Einstein’s theory, 162–168
illustrations of, 150–151

193



SVNY072-Bernstein August 27, 2005 11:8

S e c r e t s o f t h e O l d O n e

Black-body radiation (Continued)
Kirchhoff’s analysis, 150–151
Planck formulations, 156–161,

164–165, 170
radiation of energy from, 152
Wien law, 152–153, 156–158, 161, 165

Bohr, Niels
electron quantized by, 170
first impression of, 56

Boltzmann, Ludwig, 115–116, 151–152
Boltzmann’s constant, 156n
computational method, 161
on increase in entropy, 155–156

Born, Max, 171, 181
Bose-Einstein condensation, 175
Bose, Satynendra Nath, Bose-Einstein

particles, 175
Boyle, Robert

Boyle’s Law, 105–107
Mach’s critique of, 116

Bradley, James, 44
Brownian movement, 123–136

defined, 7
discovery of, 124–125
Einstein’s writing on, 127–136, 139
Perrin’s work, 134–135
reactions to discovery, 125–127

Brownrigg, William, 107
Brown, Robert

biographical information, 123–125
Brownian movement, 123–136

Bunsen, Robert, 147–148, 170

C
California Institute of Technology,

Einstein at, 180
Caloric theory of heat, 143–145
Carnot, Lazare, 142
Carnot, Nicolas Léonard Sadi, Carnot

cycle, 143–146
Cathode rays, production of, 166
Central limit theorem, 121–122
Cesium, discovery, 148
Champollion, Jean Frañcois, 33
Chaplin, Charlie, 180
Chapman-Kolmogorov relation, 132n
Clausius, Rudolf, 112

principles of thermodynamics, 145–
147

Cohen, I. Bernard, 7–8
Cohen, Morris Raphael, 104
“Concerning a Hueristic Point of View

about the Creation and
Transformation of Light”
(Einstein), 162

“Conclusions from the Energy
Distribution of Black Body
Radiation Concerning the
Constitution of Radiation”
(Einstein thesis), 136

Constancy principle, and light, 70
Coordinate system

moving and rest system, 50–51, 64–65,
83–84

space-time coordinates, 94
Copernicus, world system of, 13–14
Cosmological number, 182
Coulomb, Charles-Augustin, 36

Coulomb’s law, 87, 97
Cyclotron, 180

D
Dalton, John, chemical combination

rules, 110
Dark energy, 182
De Broglie, Louis, 171
Dehmelt, Hans, 135
Demotic dictionary, 33
De revolutionibus orbium caelestium

(Copernicus), 13
Descartes, René, 26–27, 36
Dialogue Concerning the Two Chief World

Systems (Galilei), 11–12
“Does the Inertia of a Body Depend on its

Energy Content?” (Einstein), 88
Doppler, Christian

blue and red shifts, 74–75, 99
Mach critique of, 20

Doppler shift
for light, 69
Mach on, 20, 73–74
meaning of, 20
and time dilation, 72–75

Drude, Paul, 90, 128
Drunkard’s walk experiment, 118–122,

132–133
Dukas, Helen, 35, 181
Dulong, Pierre Louis, 170
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Durée et Simultanéité: A Propos de la Théorie
d’Einstein (Bergson), 90

Dyson, Freeman, 146n

E
E = mc2, 88–89
Eddington, Sir Arthur, 101
Einstein, Albert

birth of, 2
on black-body radiation, 162–168
at CalTech, 180
children of, 5
death of, 35
E = mc2, 88–89
education of, 3–4, 61, 127–128
on equivalence. See Principle of

Equivalence
fame, beginning of, 179–180
family background, 2–3
at German University, 20, 137, 177
gravitation, theory of, 97–101
last years, 181–182
on mathematics, 60–61
Maxwell’s influence on, 38, 85, 163
as musician, 6
Nobel Prize (1921), 6, 167
and Olympia Academy, 138
as patent office employee, 5, 127, 138,

177
personality traits, 4–5, 7–8, 56–57, 179
PhD thesis, 127–136, 139
prepublication description of papers,

138–139
at Princeton, 35, 128, 179, 181
publication of papers (Annalen der

Physik), 1–2, 55, 90, 127, 130
on Pythagorean theorem, 58–59
quantum theory, 162–172
reactions to papers, 89–101, 174–177
on relativity. See Principle of Relativity
on thermodynamics, 130–134
uniqueness of papers, 2
at University of Berlin, 179
at University of Zurich, 177
wives, 6, 64, 179, 179–180
See also related topics e.g. Principle of

Relativity
Einstein, Eduard (son), 5
Einstein elevator, 98–100

Einstein, Elsa Löwenthal (wife), 6, 64,
179–180

Einstein, Hans Albert (son), 5
Einstein, Hermann (father), 2–3
Einstein, Lieserl (daughter), 5
Einstein, Pauline Koch (mother), 2
Electricity

Ampère’s law, 36
Leyden jar, 70–71

“Electromagnetic Phenomena in a System
Moving with any Velocity Less
than that of Light” (Lorentz), 51

Electromagnetism
Einstein on black-body radiation,

163–164
forces in, 87–88
importance in physics, 87
Maxwell’s models, 37–39
and relativity principle, 87–88

Electrons
Big Bang leftovers, 151
in ground state and excited state,

170–171
measurement of energy, 167
quantized by Bohr, 170
wave-particle duality, 171

Electron, The (Millikan), 169
Entropy, 145–147, 155–156
Epicurus, 105
Equipartition of energy, 165n
Equivalence, Einstein’s theory. See

Principle of Equivalence

F
Faraday, Michael

biographical information, 36
on fields of force, 36

Feynman, Richard, 172
on Einstein, 35

Fitzgerald, George Francis, 47–48
Flexner, Abraham, 180–181
“Foundation of the General Theory of

Relativity, The” (Einstein), 101
Franklin, Benjamin

and caloric theory of heat, 142–143
oil on water experiment, 107–109

Frank, Philipp, 8–9, 19–20, 56–58, 64, 81,
89, 137, 160, 177

Frauenhofer, Joseph, 148
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Fresnel, Augustin, 32, 34
dragging coefficient, 91–92

Friction, and heat, 143

G
Galileo, 12–17, 36

and relativity principle, 16–17, 50
transformations, origins of, 81–82
world system of, 14–17

Gases
Bernoulli on, 106–107
Boyle’s Law, 105–107
Gay-Lussac’s model, 110

Gay-Lussac, Joseph Louis, 110
German University (Prague), Einstein

professorship at, 20, 137, 177
Gibbs, Josiah Willard, 128
Gouy, Léon, on Brownian movement,

127
Gravitation

compared to electrostatic force, 97
Einstein theory, 97–101
Newton’s law, 18–19, 26

Grossman, Marcel, 4–5
Group velocity, 84n

H
Habicht, Conrad, 138, 174
Heat

and adiabatic process, 144
caloric theory, 143–145
Carnot Cycle, 144–146
entropy, 145–147
and friction, 143
and isothermal process, 144
mechanical equivalence of, 145

Hertz, Heinrich, 166
Hertz, Heinrich Rudolf, electromagnetic

wave experiments, 37–38
Hilbert, David, 93
Hubble, Edwin, 182
Huygens, Christiaan, light wave

construction, 30–32
Hydrodynamica (Bernoulli), 106

I
Iceland Spar, 29–32
Interferometer, Michelson, 41–48
Isothermal process, 144
Ives, Herbert, 75

J
Jeans, James, Rayleigh-Jeans

distribution, 165
Joule, James, 145

K
Kaufmann, Walter, relativity models of,

92–93
Kekulé, F. A., 103, 112
Kepler, Johannes, 14–15, 17, 26, 36
Kirchhoff, Gustav Robert, 147–151

biographical information, 147–148,
155

black-body radiation, 150–151
Kirchhoff’s laws, 147, 170
radiation, analysis of, 148–151

Kohlrausch, Rudolf, 70–71
Kollros, Louis, 173
Kuhn, Thomas, 174
Kurlbaum, Fernand, 156

L
Langevin, Paul, 96, 171
Laue, Max von, 91–92, 174
Lawrence, Ernest, 180
Lee, T. D., 128
Lenard, Philipp, 166–168
Leyden jar, 70–71
Light

aether theory, 26–28, 38
cathode rays, 166
and constancy principle, 70
Doppler shift, 69
Fresnel formula on speed of, 34,

91–92
Huygens wave construction, 30–32
Maxwell’s models, 37–39
Newton on, 28–29
Young’s theory, 33–34

Light complex, 163
Light cones, in two-dimensional space,

94–95
Logical positivism, 56, 116
Lorentz, Hendrick Antoon, 48–52

Lorentz contraction, 81
Lorentz transformations, 81–85,

176–177
reactions to Einstein’s work,

175
on relativity, 50–52
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Löwenthal, Margo. See Marianoff, Margo

Löwenthal
Luitpold Gymnasium (Munich), 3–4
Lummer, Otto, 156

M
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biographical information, 19–20116
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critique of Newton, 17, 21–25, 116
on Doppler shift, 20, 73–74
on existence of atoms, 116, 135
Mach numbers, 115–116
personality traits, 19–20

Magie, W. F., 89, 175
Magnetic force

Ampère’s law, 36
Faraday’s work, 36
right-hand rule, 49

Marianoff, Margo Löwenthal, 35
Marić, Mileva (wife), 5
Mass

gravitational, 97–98
in relativity theory, 86, 98

Mathematics, Einstein on, 60–61
Maxwell, James Clerk, 4, 35–39

biographical information, 36–37
on Brownian movement, 125
influence on Einstein, 38, 85, 163
light as electromagnetic waves,

37–39
on molecules, 112–113

Mean free path, 113
Mechanics, Newton’s laws, 17–19
Michelson, Albert Abraham, 39–47

biographical information, 40–41
Michelson interferometer, 41–48
Michelson-Morley experiment, 47, 139
Nobel Prize (1907), 40

Millikan, Robert, on photoelectric effects,
169

Minkowski, Hermann, 61
relativity model, 93–95

Molecules
Maxwell on, 112–113
mean free path, 113

oil on water experiment, 107–109
size, Young’s estimation, 32–33, 110
See also Atomic theory

Morley, Edward, 46–47
Michelson-Morley experiment, 47, 139

Motion, Newtonian absolute and relative,
23–24

Moving system, 50–51, 64–65, 83–84,
97

Mueller, Erwin E., 135

N
Nägli, Karl von, on Brownian movement,

126–127, 131
Nazi Germany, 91, 154
Nernst, William, 146n
Neumann, Franz, 147
Neutrinos, Big Bang leftovers, 151
Newcomb, Simon, 40
Newcomen, Thomas, 140
New System of Chemical Philosophy

(Dalton), 110
Newton, Isaac, 26–31

on atoms, 105
on gravitational mass, 97–98
laws of mechanics, 17–19, 21–23
on light, 28–29, 31
Mach critique of, 17, 21–25, 116
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Nobel Prize (1901), to van’t Hoff,
129–130

Nobel Prize (1907), to Michelson, 40
Nobel Prize (1914), to von Laue, 91
Nobel Prize (1918), to Planck, 154
Nobel Prize (1921), to Einstein, 6, 167
Nobel Prize (1923), to Millikan, 169
Nobel Prize (1926), to Perrin, 134
Nobel Prize (1957), to Lee and Yang,

128

O
Old One, 162, 182
Olympic Academy, 138
“On the Electrodynamics of Moving

Bodies” (Einstein), 19
“On the Influence of Gravitation on the

Propagation of Light” (Einstein),
99

“On the Investigation of the State of the
Ether in a Magnetic Field”, 62
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“On the Method of Theoretical Physics”
(Einstein lecture), 57
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105
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Oppenheimer, Robert, 180
Opticks (Newton), 105
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Osmosis

process of, 129
research related to, 129–130

P
Pais, Abraham, 176
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experiment, 118–122
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145
Perrin, Jean, on Brownian movement,

134–135
Petit, Alexis Thérèse, 170
Petzval, Joseph, 20
Pfeffer, Wilhelm, 129–130
Philiosophiae naturalis principia mathematica

(Newton), 17, 21
Photoelectric effect

Einstein’s Nobel Prize, 167–168
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