
Martin Fränzle
Nicolas Markey (Eds.)

 123

LN
CS

 9
88

4

14th International Conference, FORMATS 2016
Quebec, QC, Canada, August 24–26, 2016
Proceedings

Formal Modeling
and Analysis
of Timed Systems

Lecture Notes in Computer Science 9884

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Martin Fränzle • Nicolas Markey (Eds.)

Formal Modeling
and Analysis
of Timed Systems
14th International Conference, FORMATS 2016
Quebec, QC, Canada, August 24–26, 2016
Proceedings

123

Editors
Martin Fränzle
Carl von Ossietzky Universität
Oldenburg
Germany

Nicolas Markey
LSV, ENS de Cachan
Cachan Cedex
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-44877-0 ISBN 978-3-319-44878-7 (eBook)
DOI 10.1007/978-3-319-44878-7

Library of Congress Control Number: 2016948265

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume of the Lecture Notes in Computer Science contains the papers presented at
FORMATS 2016, the 14th edition of the International Conference on Formal Modeling
and Analysis of Timed Systems, held during August 24–26, 2016, in Quebec City,
Canada.

Control and analysis of the timing of computations are crucial to many domains of
system engineering, be it, e.g., for ensuring a timely response to stimuli originating in
an uncooperative environment or for synchronizing components in VLSI. Reflecting
this broad scope, timing aspects of systems from a variety of domains have been treated
independently by different communities in computer science and control. Researchers
interested in semantics, verification, and performance analysis study models such as
timed automata and timed Petri nets, the digital design community focuses on prop-
agation and switching delays, while designers of embedded controllers have to take
account of the time taken by controllers to compute their responses after sampling the
environment, as well as of the dynamics of the controlled process during this span.

Timing-related questions in these separate disciplines have their particularities.
However, there is growing awareness that there are basic problems that are common to
all of them. In particular, all these subdisciplines treat systems whose behavior depends
upon combinations of logical and temporal constraints; namely, constraints on the
temporal distances between occurrences of events. Often, these constraints cannot be
separated, as intrinsic dynamics of processes couples them, necessitating models,
methods, and tools facilitating their combined analysis.

Reflecting this fact, the aim of FORMATS is to promote the study of fundamental
and practical aspects of timed systems, and to bring together researchers from different
disciplines that share interests in modeling and analysis of timed systems and, as a
generalization, hybrid systems. Typical topics include (but are not limited to):

– Foundations and Semantics: Theoretical foundations of timed systems and languages;
comparison between different models (such as timed automata, timed Petri nets,
hybrid automata, timed process algebra, max-plus algebra, probabilistic models)

– Methods and Tools: Techniques, algorithms, data structures, and software tools for
analyzing or synthesizing timed or hybrid systems and for resolving temporal
constraints (e.g., scheduling, worst-case execution time analysis, optimization,
model checking, testing, constraint solving)

– Applications: Adaptation and specialization of timing technology in application
domains in which timing plays an important role (real-time software, embedded
control, hardware circuits, and problems of scheduling in manufacturing and
telecommunication, etc.)

FORMATS 2016 continued the tradition of the events previously held inMadrid (2015),
Florence (2014), Buenos Aires (2013), London (2012), Aalborg (2011), Klosterneuburg
(2010), Budapest (2009), St. Malo (2008), Salzburg (2007), Paris (2006), Uppsala (2005),

Grenoble (2004), and Marseille (2003). It was co-located with the 27th International
Conference on Concurrency Theory (CONCUR 2016) and the 13th International Con-
ference on Quantitative Evaluation of Systems (QEST 2016), sharing invited speakers and
social events among these conferences, and with the workshops EXPRESS/SOS and
TRENDS.

This year FORMATS received 32 full submissions by authors coming from 26
different countries. Each submission had full reviews from three Program Committee
(PC) members and their sub-reviewers, plus additional comments from further PC
members during an intense discussion phase. The committee finally selected 14 sub-
missions for publication and presentation at the conference, which amounts to a 44 %
acceptance rate. In addition, the conference included invited talks by:

– Scott A. Smolka, State University of New York, Stony Brook: “V-Formation as
Optimal Control” (joint with Concur and QEST; abstract presented in the pro-
ceedings of CONCUR)

– Ufuk Topcu, University of Texas at Austin: “Adaptable yet Provably Correct
Autonomous Systems” (joint with QEST, which also includes the abstract in its
proceedings)

– Oleg Sokolsky, University of Pennsylvania: “Platform-Specific Code Generation
from Platform-Independent Timed Models”

We sincerely thank the invited speakers for accepting our invitation and for pro-
viding abstracts of their talks for inclusion in the different proceedings volumes. We are
grateful to the 27 PC members and their 33 associated reviewers for their competent
and timely reviews of submissions, which were instrumental in securing the scientific
standards of FORMATS. The EasyChair conference management system again pro-
vided reliable support in the submission phase, during the selection process, and while
preparing this volume. We would also like to thank the Steering Committee of
FORMATS for giving us the opportunity to put together this exciting event and for
their support throughout this process, and Josée Desharnais of the University of Laval,
Canada, for the competent and reliable local organization.

Last but not least, we are deeply grateful to all the authors for entrusting us with
their papers. Thanks to their contributions we were able to put together the inspiring
program reflected in these proceedings.

July 2016 Martin Fränzle
Nicolas Markey

VI Preface

Organization

Program Committee

S. Akshay IIT Bombay, India
Hanifa Boucheneb École Polytechnique de Montréal, Canada
Béatrice Bérard LIP6, Université Pierre et Marie Curie, France
Laura Carnevali University of Florence, Italy
Franck Cassez Macquarie University, Australia
Martin Fränzle University of Oldenburg, Germany
Gilles Geeraerts Université libre de Bruxelles, Belgium
Michael R. Hansen Technical University of Denmark
Boudewijn Haverkort University of Twente, The Netherlands
Franjo Ivancic Google, USA
Oded Maler VERIMAG, CNRS, France
Nicolas Markey LSV, CNRS, ENS Cachan, France
Chris Myers University of Utah, USA
Jens Oehlerking Robert Bosch GmbH, Germany
David Parker University of Birmingham, UK
Karin Quaas University of Leipzig, Germany
Stefan Ratschan Czech Academy of Sciences, Czech Republic
Cesar Sanchez IMDEA Software Institute, Spain
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Jeremy Sproston University of Turin, Italy
Jirí Srba Aalborg University, Denmark
Lothar Thiele ETH Zurich, Switzerland
Enrico Vicario University of Florence, Italy
Mahesh Viswanathan University of Illinois, Urbana-Champaign, USA
James Worrell University of Oxford, UK
Sergio Yovine CONICET-UBA, Argentina
Huibiao Zhu East China Normal University, China

Additional Reviewers

Basset, Nicolas
Bauer, Matthew S.
Berthomieu, Bernard
Bollig, Benedikt
Brenguier, Romain
Chen, Xin
Dang, Thao

Dubikhin, Vladimir
Frehse, Goran
Genest, Blaise
Gray, Travis
Ho, Hsi-Ming
Jensen, Peter Gjøl
Laroussinie, François

Mathur, Umang S.
Mikučionis, Marius
Muniz, Marco
Paolieri, Marco
Phawade, Ramchandra
Poplavko, Peter
Poulsen, Danny Bøgsted
Roohi, Nima
Ruijters, Enno
S., Krishna

Santinelli, Luca
Su, Wen
Sznajder, Nathalie
Ulus, Dogan
Van-Anh, Nguyen
Watanabe, Leandro
Wunderlich, Sascha
Xie, Wanling
Zhang, Zhen

VIII Organization

Platform-Specific Code Generation
from Platform-Independent Timed Models

(Invited Keynote)

Oleg Sokolsky

Department of Computer and Information Science, University of Pennsylvania
sokolsky@cis.upenn.edu

Model-based implementation has emerged as an effective approach to systematically
develop embedded software for real-time systems. Functional and timing behavior
of the software is modeled using modeling languages with formal semantics. We then
use formal verification techniques to demonstrate conformance of the model to the
timing requirements for the system. Code generation then automatically generates
source code from the verified model. The goal of this process is to guarantee that the
final implemented system, running on an embedded platform, also conforms to the
timing requirements. Several code generation frameworks have emerged, but they rely
on restrictive assumptions regarding code execution by the underlying platform or
require manual effort to integrate platform-independent code onto the platform. Both
may undermine formal guarantees obtained in the course of model-based development.

In this talk, we consider the well-known four-variable model of system execution
introduced by Parnas. The four-variable model makes a clear distinction between the
external boundary of the system and internal boundary of the software. Timing
requirements are typically verified on the external boundary, while generated code
operates at the internal boundary of the system. This distinction can lead to a semantic
gap between the verified model and generate code. We explore several complementary
approaches to account for the distinction between the two boundaries. One approach
composes the platform-independent model with a platform execution model for veri-
fication, but applies code generation to the platform-independent model only. Another
approach uses integer linear programming to calculate a transformation of timing
constants in the platform-independent model that keeps effects of platform delays on
the occurrence of observable events in the generated code as small as possible.

This talk presents results of a collaboration with my colleagues BaekGyu Kim
(currently at Toyota ITC), Insup Lee, Linh T.X. Phan, and Lu Feng. Material covered
in this talk relies on ideas published in [1, 2].

References

1. Kim, B., Feng, L., Phan, L., Sokolsky, O., Lee, I.: Platform-specific timing verification
framework in model-based implementation. In: Design, Automation and Test in Europe
Conference and Exhibition (DATE 2015), pp. 235–240 (2015)

2. Kim, B., Feng, L., Sokolsky, O., Lee, I.: Platform-specific code generation from platform-
independent timed models. In: IEEE Real-Time Systems Symposium (RTSS 2015), pp. 75–86
(2015)

X O. Sokolsky

Contents

Modeling Timed Phenomena

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency. . . . 3
Leonid W. Dworzanski

On the Expressiveness of Parametric Timed Automata. 19
Étienne André, Didier Lime, and Olivier H. Roux

Modelling Attack-defense Trees Using Timed Automata 35
Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen,
Axel Legay, Mads Chr. Olesen, and Danny Bøgsted Poulsen

Stochasticity and Hybrid Control

Input/Output Stochastic Automata: Compositionality and Determinism. 53
Pedro R. D’Argenio, Matias David Lee, and Raúl E. Monti

On Optimal Control of Stochastic Linear Hybrid Systems 69
Susmit Jha and Vasumathi Raman

Scheduling of Controllers’ Update-Rates for Residual Bandwidth
Utilization . 85

Majid Zamani, Soumyajit Dey, Sajid Mohamed, Pallab Dasgupta,
and Manuel Mazo Jr.

Real-Time Verification and Synthesis

Real-Time Synthesis is Hard! . 105
Thomas Brihaye, Morgane Estiévenart, Gilles Geeraerts, Hsi-Ming Ho,
Benjamin Monmege, and Nathalie Sznajder

A Boyer-Moore Type Algorithm for Timed Pattern Matching 121
Masaki Waga, Takumi Akazaki, and Ichiro Hasuo

Abstraction Strategies for Computing Travelling or Looping Durations
in Networks of Timed Automata . 140

Raymond Devillers and Hanna Klaudel

Distributed Algorithms for Time Optimal Reachability Analysis 157
Zhengkui Zhang, Brian Nielsen, and Kim G. Larsen

http://dx.doi.org/10.1007/978-3-319-44878-7_1
http://dx.doi.org/10.1007/978-3-319-44878-7_2
http://dx.doi.org/10.1007/978-3-319-44878-7_3
http://dx.doi.org/10.1007/978-3-319-44878-7_4
http://dx.doi.org/10.1007/978-3-319-44878-7_5
http://dx.doi.org/10.1007/978-3-319-44878-7_6
http://dx.doi.org/10.1007/978-3-319-44878-7_6
http://dx.doi.org/10.1007/978-3-319-44878-7_7
http://dx.doi.org/10.1007/978-3-319-44878-7_8
http://dx.doi.org/10.1007/978-3-319-44878-7_9
http://dx.doi.org/10.1007/978-3-319-44878-7_9
http://dx.doi.org/10.1007/978-3-319-44878-7_10

Workload Analysis

Scenario-Aware Workload Characterization Based on a Max-Plus Linear
Representation . 177

Gustavo Patino Alvarez and Wang Jiang Chau

A Novel WCET Semantics of Synchronous Programs 195
Michael Mendler, Partha S. Roop, and Bruno Bodin

Worst-Case Execution Time Analysis for Many-Core Architectures
with NoC. 211

Stefanos Skalistis and Alena Simalatsar

Timed Multiset Rewriting and the Verification of Time-Sensitive
Distributed Systems. 228

Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov,
and Carolyn Talcott

Author Index . 245

XII Contents

http://dx.doi.org/10.1007/978-3-319-44878-7_11
http://dx.doi.org/10.1007/978-3-319-44878-7_11
http://dx.doi.org/10.1007/978-3-319-44878-7_12
http://dx.doi.org/10.1007/978-3-319-44878-7_13
http://dx.doi.org/10.1007/978-3-319-44878-7_13
http://dx.doi.org/10.1007/978-3-319-44878-7_14
http://dx.doi.org/10.1007/978-3-319-44878-7_14

Modeling Timed Phenomena

Consistent Timed Semantics for Nested Petri
Nets with Restricted Urgency

Leonid W. Dworzanski(B)

National Research University Higher School of Economics,
Myasnitskaya ul. 20, 101000 Moscow, Russia

leo@mathtech.ru

Abstract. The nested Petri nets are a nets-within-nets formalism con-
venient for modelling systems that consist of distributed mobile agents
with individual behaviour. The formalism is supported by developed ver-
ification methods based on structural analysis and model checking tech-
niques. Time constraints are crucial for many safety critical and every-
day IoT systems. Recently, the non Turing-complete time semantics for
Time Petri nets based on restricted urgency was suggested; and, it was
shown that some behavioural analysis problems are decidable under the
semantics. In the paper, the semantics is extended to the nested Petri
nets formalism and it was demonstrated that some behavioural analysis
problems are still decidable. The semantics is illustrated by an example
of a health monitoring system.

Keywords: Nested petri nets · Time petri nets · Well structured
transition systems · Time semantics

1 Introduction

The ubiquitous propagation of mobile computational devices into the human
environment stimulated the rapid spread of distributed systems with mobile
agents-components. Not only software components become more distributed and
autonomous (web services, mobile agents, cloud applications, ubiquitous com-
puting), but computational devices become more powerful and more autonomous
due to intensive development of computing, data storing, and energy accumulat-
ing technologies. From safety critical to everyday “internet-of-things” systems —
wireless sensor networks, system for coordinating search and rescue operations,
corporate and social networks of personal computational devices, automated
urban metro subway systems [1] — consist of mobile software and hardware
agents moving in informational or physical spaces. The correctness of such sys-
tems is becoming more and more crucial to safety and quality of life of individu-
als. To model and rigorously check the safety of these systems, formal methods
techniques should be utilized.

Petri nets evolution resembles the evolution of software systems. From flat
unstructured nets, Petri nets have evolved into high-level nets with hierarchical
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-44878-7 1

4 L.W. Dworzanski

structure and tokens attributed with complex data and/or individual behaviour.
“Nets-within-nets” is a modern approach based on the object-oriented paradigm
that introduces individual behaviour to tokens by assigning marked Petri nets to
them [25]. The application of the approach for modelling active objects, mobility
and dynamics in distributed systems is extensively studied [14,17,24]. Nested
Petri nets (NP-nets) [18] are an extension of high-level Petri nets according
to the nets-within-nets approach. NP-nets formalism combines value semantics
with dynamical hierarchical structure.

An NP-net consists of a high-level system net that coordinates a number of
net tokens. Each token has its own behaviour determined by its internal marked
Petri net. The levels in an NP-net are synchronized via synchronized transi-
tions (simultaneous firing of transitions in adjacent levels of the net). Because
of a loosely-coupled multilevel structure, NP-nets can be used for effective mod-
elling of adaptive distributed systems [13], systems of mobile robots [20], sensor
networks of mobile agents [6], innovative space systems architectures [7].

The analysis methods for NP-nets are under active development. In the work
[9] the approach to checking properties of NP-nets by translating them into
coloured Petri nets was developed. The practical value of the translation is
determined by the comprehensive tool support for analysis of coloured Petri
nets. In [26] a verification method based on translating recursive NP-nets into
PROMELA language and applying SPIN model checker is provided. The compo-
sitional approach to inferring liveness and boundedness of NP-nets from liveness
and boundedness of NP-nets separate components was introduced in [10] and
received software support in [11]. Structural place invariants method for NP-nets
was suggested in [8].

For many real world software/hardware systems, time related aspects like
performance, time-outs, delays, and latency are crucial for correct functioning.
While NP-nets can express many behavioural aspects of distributed systems, the
formalism does not capture time constraints. In [6] a time semantics for NP-nets
was suggested. But the rigorous study of suggested semantics and the problem
of composing synchronization with time semantics was postponed for further
research.

The paper introduces Timed NP-nets formalism that incorporates the
recently suggested restricted urgency timed semantics into Nested Petri nets
formalism and demonstrates that decidability of coverability is preserved under
the new time semantics for NP-nets. The approach is illustrated with the model
of a health monitoring system.

In the Sect. 2 the model of a health monitoring system is described. The
Sect. 3 consists of preliminaries and NP-nets definition. The Sect. 4 introduces
Timed Arc NP-nets with restricted urgency (TANPU-nets). The Sect. 5 contains
proof of the decidability of coverability of TANPU-nets.

2 Motivating Example

Health monitoring systems allow detection and prevention of diseases on very
early stages. The medical microrobots technology widens horizons of such

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 5

systems and makes them minimally or completely noninvasive. Microrobots
systems consist of distributed intercommunicating agents, thus require correct
orchestration and choreography as well as any other distributed systems. The
lack of correct synchronization or behavioural flaws can easily lead to the loss of
expensive equipment and complications of treatment. In this section, we model
a health monitoring system with nested Petri nets formalism.

The modelled system is a medical system that monitor the state of a gullet,
a stomach, a heart and an intestine. It consists of the devices of three types — a
heart sensor, stomach bots, and transport bots. A heart sensor (h-sensor) mea-
sures the heart activity for abnormalities. Its behaviour is modeled with the
element net E1 depicted in the Fig. 2. In case of any abnormalities, it commu-
nicates with a passing transport bot. A stomach bot (s-bot) is mounted in the
stomach and can conduct chemical monitoring or perform a surgical operation
depending on the equipped actuator (the element net E2 in the Fig. 3). A trans-
port bot (t-bot) flows regularly through the human body to communicate with
deployed bots, and supply them with necessary equipment and resources (E3 in
the Fig. 2). The system net represents the coordinated behaviour of the agents
and the material flow of the system (SN in the Fig. 1). For brevity, by N :pl
(N :tr) we will denote the place pl (the transition tr) of the net N .

hulls

actuators

accumulators

pool

gullet

requeststimer

stomach1

stomach2

heart

intestinedisinfectioncharging

detect3

λ5

charge1

λ7; [0]

dismantle

λ8; [0]

deploy1

η1; [10′]

mount2

η2; [10′]

mount3

η3; [10′]

equip1

λ1; [0]
equip2

λ2; [0]
equip3

λ3; [0]

x + y

x + y

x

charge2

λ12; [0]

move7

λ14; [0]

x[2h; ∞]

x

x

x

move5

λ11; [0]

x

[5h;∞]
x

move4

λ10; [12h]

x

[12h;∞]
x x

move3λ9; [2h; 3h]

x

x

detect1
λ5

xmove1

λ4
x

x

move2

λ6; [5”]

x[5”; ∞]

x

y; [20′;∞]
x

y; [20′; ∞]x

cx; [30′; ∞]

y
x; [20′; ∞]

yx; [20′; ∞]

tick

[0]
[24h; ∞]

detect2

λ5; [0]

x

y

Fig. 1. The health monitoring system: the system net SN

In the initial state, transport bots residue in the external pool (SN:pool). A
t-bot starts its operating cycle when the timer (SN:timer) generates (SN:tick)
a request each 24 h. When a request is generated (SN:requests), a t-bot is put
({SN,E3}:move1) into the gullet (SN:gullet). While moving through the gul-
let, the t-bot may detect an anomaly ({SN,E3}:detect1) and store the data
in (E3:warning) for further processing. The diagnosis process is not consid-
ered here. Passing down the gullet usually takes from 5 to 10 s ({SN,E3}:move2).

6 L.W. Dworzanski

hull

actuator

accumulator

equip1

λ1

deploy1

η1

equip2

λ2

mount2

η2

equip3

λ3

mount3

η3

space

in pool

in gullet

in stomach

in testine

disinfecting

charging

charge

OKwarning

load hullload actuator

load
accumulator

ready

move1

λ4

detect1
λ5

detect2
λ5

move2

λ6

load2

dismantle λ8

load3

λ

move3

λ9

move4
λ10

move5

λ11

move7

λ14

charge2

λ12

charge1

λ7

Fig. 2. The element net E3 of a transport microbot

actuator

operating accumulator unpowered

acting

recharge

η5

dismantle

η7

mount1

η1

mount2

η3

discharged

[20h]

[180h;∞]

operating abnormality
found

alert

η5

abnormality

a) b)

Fig. 3. The element nets: (a) E2 of a stomach microbot; (b) E1 of a heart sensor.

In the stomach, the t-bot can receive an alert signal ({SN,E3}:detect2) from
the h-sensor (E1:alert). The alert signal has the highest urgency and shall be
processed as soon as possible. The t-bot can charge ({SN,E3}:charge1) the s-bot
(E2:recharge) deployed in the stomach. The charging process takes 20–30 min
and consumes the internal charge (E3:charge) of the t-bot. Then the t-bot moves
to the intestine ({SN,E3}:move3). It usually takes from 2 to 3 h. In the intestine
again the t-bot can detect ({SN,E3}:detect2) issues that require attention. The
t-bot flows through the intestine (SN:move4) for 12 to 24 h. After that the t-bot
spends 5 h in the disinfection plant (SN:disinfection,E1:disinfecting) and moves
({SN,E3}:move5) to the charging plant (SN :charging,E3:charging). If the inter-
nal charge (E3:charge) was expended, then the t-bot spends 2 h in the charging

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 7

plant and afterward moves to the pool ({SN,E3}:charge2). If charging is not
needed, the t-bot moves immediately to the pool ({SN,E3}:move7). In the pool
(SN:pool), the t-bot readings can be analysed to check if medical attention is
required (E3:warning) or not (E3:OK).

If an s-bot is fully discharged, then the t-bot must remove it from the stom-
ach and assembly a new s-bot inside the stomach. The practice of assembling
microbots on site was considered less invasive; in fact, it allows to transport
microbots to otherwise unreachable parts of the human body without surgi-
cal interference. If the t-bot while in the stomach finds an uncharged s-bot,
it dismantles ({SN,E2,E3}:dismantle) the s-bot and changes the state of the
internal trigger (from E3:ready to E3:load accumulator) to receive parts from
the pool (SN:pool) needed for a new s-bot assembly. If the trigger is in the state
E3:load accumulator, then the t-bot will be equiped (SN:equip3) with an accu-
mulator (SN:accumulators,E3:accumulator). Other two t-bots will be equiped
({SN,E3}:equip1) with a hull (SN:hulls,E3:hull) and ({SN,E3}:equip2) with an
actuator (SN:actuators,E3:actuator). When a t-bot with a hull is in the stomach,
it will deploy (SN:deploy1) the hull. When a t-bot with an actuator is in the
stomach, it will mount ({SN,E3,E2}:mount2) the actuator (E3:actuator) to the
hull. Then a t-bot with an accumulator will mount ({SN,E3,E2}:mount3) the
accumulator (E3:accumulator) to the s-bot.

3 Preliminaries

By N and Q≥0 we denote the sets of non-negative natural and non-negative
rational numbers correspondingly. The set of intervals over Q≥0∪{∞} is denoted
by I(Q≥0). For a set S, a bag (multiset) m over S is a mapping m : S → N.
The set of all bags over S is denoted by NS . We use + and − for the sum
and the difference of two bags, ‖m‖ for the number of all elements in m taking
into account the multiplicity, and =, <,>,≤,≥ for comparisons of bags, which
are defined in the standard way. We overload the set notation writing ∅ for the
empty bag and ∈ for the element inclusion.

Petri nets is a well-known formalism for concurrent systems modelling. In this
section, we give the definition of coloured Petri nets (CP-nets) parameterized
with a value universe U . We slightly adapted the classical definition of CP-nets
[15] by adding transition labels. A coloured function for places is defined using
the notion of types, and a coloured function for arcs is defined using expressions
over the simple additive language Expr. Each place is mapped to a type, which
is a subset of U . We assume a language Expr for arcs expressions over a set Var
of variables and a set Con of constants with some fixed interpretation I, such
that for any type-consistent evaluation ν : Var → U the value I(e, ν) ∈ NU of an
expression e ∈ Expr is defined. We also assume a set Lab of labels for transitions
such that τ
∈ Lab. The label τ is the “silent” label, while labels from Lab mark
externally observable firings. The τ labels are usually omitted on transitions.

Definition 1 (Coloured Petri net). A coloured net over the universe U is a
6-tuple (P, T, F, υ, γ, Λ), where

8 L.W. Dworzanski

– P and T are disjoint finite sets of places, respectively transitions;
– F ⊆ (P × T) ∪ (T × P) is a set of arcs;
– υ : P → 2U is a place typing function, mapping P to the subsets of U ;
– γ : F → Expr is an arc labelling function;
– Λ : T → Lab ∪ {τ} is a transition labelling function.

For an element x ∈ P ∪ T an arc (y, x) is called an input arc, and an arc (x, y)
an output arc; a preset •x and a postset x• are subsets of P ∪ T such that •x =
{y|(y, x) ∈ F} and x• = {y|(x, y) ∈ F}. Given a CP-net N = (P, T, F, υ, γ, Λ)
over the universe U , a marking in N is a function m : P → NU , such that m(p)
has υ(p) as a support set. A pair 〈N,m〉 of a CP-net and a marking is called a
marked net.

Let N = (P, T, F, υ, γ, Λ) be a CP-net. A transition t ∈ T is enabled in a
marking m iff ∃ν∀p ∈ P : (p, t) ∈ F ⇒ m(p) ≥ I(γ(p, t), ν). Here ν : Var → U
is a variable evaluation, called also a binding. An enabled transition t may fire
yielding a new marking m′(p) = m(p)−I(γ(p, t), ν)+I(γ(t, p), ν) for each p ∈ P

(denoted m
t→ m′). The set of all markings reachable from a marking m (via a

sequence of firings) is denoted by R(m). As usual, a marked coloured net defines
a transition system which represents the observable behaviour of the net.

Nested Petri nets (NP-nets) are coloured Petri nets over a special universe
[18]. This universe consists of elements of some finite set S (called atomic tokens)
and marked Petri nets (called net tokens). We consider here only two-level NP-
nets, where net tokens are classical place-transition nets.

Let S be a finite set of atomic objects. For a CP-net N by M(N,S) we denote
the set of all marked nets, obtained from N by adding markings over the uni-
verse S. Let then N1, . . . , Nk be CP-nets over the universe S. Define a universe
U(N1, . . . , Nk) = S ∪ M(N1, S) ∪ · · · ∪ M(Nk, S) with types S,M(N1, S), . . . ,
M(Nk, S). We denote Ω(N1, . . . , Nk) = {S,M(N1, S), . . . ,M(Nk, S)}. By abuse
of notation, we say that a place p with a type M(N,S) is typed by N .

Definition 2 (Nested Petri net). Let Lab be a set of transition labels and
let N1, . . . , Nk be CP-nets over the universe S, where all transitions are labelled
with labels from Lab ∪ {τ}.

An NP-net is a tuple NP = 〈N1, . . . , Nk, SN〉, where N1, . . . , Nk are called
element nets, and SN is called a system net. A system net SN = 〈PSN , TSN , FSN ,
υ, γ, Λ〉 is a CP-net over the universe U = U(N1, . . . , Nk), where places are typed
by elements of Ω = Ω(N1, . . . , Nk), transition labels are from Lab ∪ {τ}, and an
arc expression language Expr is defined as follows.

Let Con be a set of constants interpreted over U and Var – a set of variables,
typed with Ω-types. Then an expression in Expr is a multiset of elements over
Con ∪ Var of the same type with two additional restrictions for each transition
t ∈ TSN :

1. constants or multiple instances of the same variable are not allowed in input
arc expressions of t;

2. each variable in an output arc expression for t occurs in one of the input arc
expressions of t.

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 9

Note that removing the first restriction on system net arc expressions makes
NP-nets Turing-powerful [18], since without this restriction there would be a
possibility to check, whether inner markings of two tokens in a current marking
are equal, and hence to make a zero-test. The second restriction excludes infinite
branching in a transition system, representing a behavior of an NP-net.

The interpretation of constants from Con is extended to the interpretation
I of expressions under a given binding of variables in the standard way.

We call a marked element net a net token, and an element from S an atomic
token. A marking in an NP-net is defined as a marking in its system net. So, a
marking m : PSN → NU in an NP-net maps each place in its system net to a
multiset of atomic tokens or net tokens of appropriate type.

A behaviour of an NP-net is composed of three kinds of steps (firings). An
element-autonomous step is the firing of a transition t, labelled with τ , in one
of the net tokens of the current marking according to the usual firing rule for
coloured Petri nets. Formally, let m be a marking in an NP-net NP, α = (N,μ) ∈
m(p) — a net token residing in the place p ∈ PSN in m. Let also t be enabled in
α and μ

t→ μ′ in α. Then the element-autonomous step s = {t[α]} is enabled in
m and the result of s-firing is the new marking m′, such that for all p′ ∈ PSN \p:
m′(p′) = m(p′), and m′(p) = m(p) − α + (N,μ′). Note, that such a step changes
only the inner marking in one of the net tokens.

A system-autonomous step is the firing of a transition t ∈ TSN, labelled
with τ , in the system net according to the firing rule for coloured Petri nets, as
if net tokens were just coloured tokens without an inner marking. Formally, the
system-autonomous step s = {t} is enabled in a marking m iff there exists a bind-
ing ν : Var → U , such that ∀p ∈ PSN : (p, t) ∈ FSN ⇒ m(p) ≥ I(γ(p, t), ν). The
result of s-firing is the new marking m′(p) = m(p) − I(γ(p, t), ν) + I(γ(t, p), ν)
for each p ∈ PSN (denoted m

s→ m′). An autonomous step in a system net can
move, copy, generate, or remove tokens involved in the step, but does not change
their inner markings.

A (vertical) synchronization step is the simultaneous firing of a transition
t ∈ TSN, labelled with some λ ∈ Lab, in the system net together with firings of
transitions t1, . . . , tq (q ≥ 1) also labelled with λ, in all net tokens involved in
(i.e. consumed by) this system net transition firing.

Formally, let m be a marking in an NP-net NP, a transition t ∈ TSN be
labelled with λ and enabled in m via binding ν as a system-autonomous step.
We say that a net token α is involved in t-firing via binding ν iff α ∈ I(γ(p, t), ν)
for some p ∈ •t. Let then α1 = (Ni1, μ1), . . . , αq = (Niq, μq) be all net tokens
involved in the firing of t via binding ν, and for each 1 ≤ j ≤ q there is a
transition tj , labelled with λ in Nij , such that tj is enabled in μj , and μj

tj→ μ′
j

in Nij . Then the synchronization step s = {t, t1[α1], . . . , tq[αq]} is enabled in m
for NP, and the result of s-firing is the new marking m′ defined as follows. For
each p ∈ PSN: m′(p) = m(p) − I(γ(p, t), ν) + I(γ(t, p), ν′), where for a variable
x: ν(x) = (N,μ) implies ν′(x) = (N,μ′).

Figure 4 gives an example of a synchronization step. The left part of the
picture shows a marked fragment of a system net. A transition t has two input

10 L.W. Dworzanski

p1

p2

p3

p4

t

λ
x + z

y

2 · x

c + y

p1

p2

p3

p4

t

λ
x + z

y

2 · x

c + y

p5 p6
t1

λ

p5 p6
t1

λ

p5 p6
t1

λ

p5 p6
t1

λ

p7 p8
t2

λ

p7 p8
t2

λ

p7 p8
t2

λ

m: m′:

α1: α11:α12:

α2: α′
2:αc:

α3:

Fig. 4. An example of a synchronization step

places p1 and p2, and two output places p3 and p4. In the current marking,
the place p1 contains three net tokens; two of them, α1 and α3, are explicitly
depicted. The place p2 contains two net tokens, the structure and the marking of
one of them are shown in the picture. Only the synchronization step is allowed
here, since all transitions are labelled with the synchronization label λ. A possible
binding of variables x, y, z in the input arc expressions is x = α1, y = α2 and
z = α3. Then the transitions t in the system net, t1[α1], t1[α3], and t2[α2]
fire simultaneously. The resulting marking m′ is shown on the right side of the
picture. According to the output arc expressions after t-firing two copies of α1

appear in p3, the net token α3 disappears, α2 with a new marking is transported
into the place p4, and a new net token αc appears in p4 being a value of the net
constant c.

A transition labelled with λ ∈ Lab in a system net consumes net tokens with
enabled transitions labelled with λ. To exclude obviously dead transitions we
add to our definition of NP-nets the following syntactical restriction: for each
system net transition t labelled with λ
= τ , and for each p ∈ •t, p is typed by
an element net with at least one transition labelled with λ.

Thus a step is a set of transitions (a one-element set in the case of an
autonomous step). We write m

s→ m′ for a step s converting the marking m into
the marking m′. By Steps(NP) we denote the set of all (potential) steps in NP.

A run in an NP-net NP is a sequence ρ = m0
s1→ m1

s2→ . . . , where m0,m1, . . .
are markings, m0 is an initial marking, and s1, s2, . . . are steps in NP. For a
sequence of steps σ = s1, . . . sn we write m

σ→ m′, and say that m′ is reachable
from m, if m = m0

s1→ m1 . . .
sn→ mn = m′. By R(NP,m) we denote the set of all

markings reachable from m in NP, and by abuse of notations we write R(NP)
for the set of all markings reachable in NP from its initial marking.

Note that net tokens of the same type (i.e., with the same net structure) are
not distinguished in a system net autonomous firing. This follows from the first
input arc expressions restriction for NP-nets, which eliminates comparing inner

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 11

markings of net tokens. Moreover, since all tokens in a system net place are of
the same type, enabledness of an autonomous transition in a system net depends
only on the numbers of tokens in its input places, and a system net considered
as a separate component is actually similar to a p/t-net.

For further details on NP-nets see [18,19]. Note, however, that here we con-
sider a typed variant of NP-nets, where a type is instantiated to each place.

4 Timed-Arc Nested Petri Nets with Restricted Urgency

The real-time constraints are important for many aspects of physical, technical,
and information systems. Time constraints have different purposes: to repro-
duce the speed of modelled processes — biological, chemical, computational,
etc.; to impose timing requirements on system actions in order to ensure cor-
rect behaviour; to introduce time triggers such as clock generators, watchdog
timers, stopwatches, absolute timers. Therefore, many discrete event dynamic
formalisms adopted the notion of time [3,21,22].

While nested Petri nets can express many behavioural aspects of multi-agent
distributed systems, the formalism does not have means to express time con-
straints. In [6], a time semantics for nested Petri nets was suggested. But the
semantics was not formally grounded, and the problem of composing synchro-
nization with time semantics was suggested for further research. Inaccurate intro-
duction of time semantics may easily lead to intrinsic timing inconsistencies. In
[21], a state of a system when the passage of time is blocked due to operational
semantics is called a time-deadlock and considered as the timing inconsistency
of a specification. Such timing inconsistencies of NP-nets are illustrated in the
Fig. 5. If in the Fig. 5(a) transition t1 of the net token α1 is enabled at the ini-
tial moment of time and its timer is started, then after 1 time unit passed, t1
must fire. But due to the absence of a token in p2, the system net transition
t is disabled; and, t1 cannot fire according to the rule of synchronization step
execution. A similar inconsistency with the system net transition t can occur in
the Fig. 5(b). Such inconsistencies are result of contradictions between time and
synchronization constraints.

There are several possible approaches to address the issues with timing incon-
sistencies. The compositional approach is to introduce structural or behavioural
restrictions on the separate components of an NP-net that guarantee the absence
of inconsistencies in the composition of the components, i.e. in the whole sys-
tem. This may require resource consuming checking of behavioural properties
and will be the subject of further research. Another approach is syntactical —
to define time semantics such that inconsistencies are excluded syntactically. We
adopt the latter approach. Informally, only system net synchronization transi-
tions have urgency restrictions, while net tokens transitions with synchronization
labels do not. The clock of a system net transition t starts when there is a pos-
sible binding of t due to firing rules of NP-nets. As the result, timers start only
when corresponding transition is actually ready to fire. Thus, time-deadlocks are
excluded by the definition of semantics. The formal definition of the suggested
semantics is given in the end of the section.

12 L.W. Dworzanski

p1

p2

p3

t

λ

α1

p4 p5

t1

λ; [1]

p7

t2

[1]
[1;∞]

m:

α1:

a)

p1 p2

t

λ; [0; 1]

α1

p3 p4

t1

λ

m:

α1:

b)

Fig. 5. Two NP-nets with time inconsistencies

There is a lot of ways to introduce time constraints in Petri nets [4,5,22].
One of important notions of time semantics is “urgency” [21], i.e. an enabled
transition can be forced to fire by time constraints. While urgency enables to
express time-outs and clock signals, the unpleasant effect of adding urgency
notion is that it usually makes the Petri net formalism Turing-complete. The
cause is that urgency can be utilized to prioritize transitions. With prioritized
transitions, we can do zero-testing of a Petri net place as shown in the Fig. 6. The
timers of t1 and t2 start simultaneously, when a token appears at the if place.
If the place capacity contains tokens, then the transition t1 will fire when the
timer of t1 is equal to 1; otherwise, t2 will fire when the timer of t2 is 2. We can
model unbounded counters by combining zero-testing with unbounded places.
Consequently, three-counter Minsky machines can be immediately constructed
with a time Petri net [16]. The widely known time extensions of Petri nets —
Time Petri nets [22] and Timed (Duration) Petri nets [23] — are Turing-complete
as they admit urgency and allow to model counters.

(capacity > 0) (capacity == 0)

ifcapacity

t1
[1; 1]

t2
[2; 2]

increment

decrement

Fig. 6. A time Petri net models a counter.

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 13

To address the issue, a time semantics with restricted urgency was recently
suggested in [2]. The suggested approach is based on timed-arc Petri net seman-
tics and allows urgent transitions to consume tokens only from the bounded
places of a Petri net. As a result, only counters with limited capacity can be
modelled, Minsky machines cannot be modelled, and some classes of such Petri
nets regain decidability of behavioural properties such as coverability. The proof
idea is that as the Petri net fragment with urgency has only finite number of
states, it is therefore possible to unfold it to a timed automata, and then convert
to a time equivalent timed arc Petri nets without urgency. Then we may combine
the resulting timed arc Petri net without urgency with the unbounded residue
of the initial Petri net to get a final timed arc Petri net that is time equivalent
to the initial net. The absense of urgency in the final net results in monotonic-
ity, which makes it a well-structured transition system and yields decidability of
coverability. For further details see [2].

We extend the suggested semantics to NP-nets to obtain NP-nets with timing
constraints that still have decidable coverability and related properties. NP-nets
are strictly larger than classical Petri nets as they may simulate Petri nets with
reset arcs [18]. Consequently, reachability and other related problems are unde-
cidable for NP-nets. In [18] it was proven that coverability and termination prob-
lems are decidable for NP-nets using well known theory of well-structured tran-
sition systems [12]. It was demonstrated that it is possible to define well-quasi
ordering on NP-net markings using injective mapping on nested sets. And as the
ordering is transitive compatible with the NP-net transition system, coverability
and termination properties are decidable [12]. We omit futher details here.

Now we adapt the definition of Timed-Arc Petri nets with urgency from [2]
for NP-nets.

Definition 3 (Timed Arc Nested Petri net with Urgency). A Timed
Arc Nested Petri net with Urgency (TANPU-net) is a tuple TNP =
〈N1, . . . , Nk, SN,T〉, where

– S(TNP) = 〈N1, . . . , Nk, SN〉 is an NP-net called the skeleton of TNP;
– γt : PSN × TSN ∪ PE1 × TE1 ∪ · · · ∪ PEk

× TEk
→ I(Q≥0) is a set of token-age

constraints on arcs;
– U : TSN ∪TE1 ∪· · ·∪TEk

→ Q≥0 is a set of urgency constraints on transitions.

The γt and U functions have the following restrictions:

1. if an element net transition t is labelled with a synchronization label
(Λ(t)
= τ), then it has [0;∞] timing interval and U is undefined at t;

2. if a transition t has unbounded places in its preset •t, then U is undefined on t;

Boundedness of places can be determined by different means. Here we imply
that a place p is bounded iff it is bounded in the skeleton of TNP. The marking
m = 〈ms,mt,mu〉 of a TANPU-net TNP consists of a marking ms of the NP-net
S(TNP), a time marking mt : Tok∗(ms) → Q≥0 that assigns clocks to tokens,
and an urgency marking mU : T ∗(ms) → Q≥0 that assigns clocks to transitions,

14 L.W. Dworzanski

where T ∗(ms) comprises all transitions and Tok∗(ms) comprises all tokens of
the marked NP-net 〈S(TNP),ms〉. The urgency constraint U(t) means that t
must fire if t has been enabled for U(t) units of time. The token-age constraint
γt(p, t) means that t may fire only if there is an atomic or net token α in p with
mt(α) ∈ γt(p, t). The urgency U of a transition is depicted as a number near
the transition. The time constraints γt of an arc are depicted as an interval near
the arc.

The operational semantics of TANPU-nets is defined by incorporating time
constraints into the firing rules of NP-nets. A step s = {t1, . . . , tk} is enabled in
the marking m = 〈ms,mt,mu〉, if s is enabled in 〈S(TNP),ms〉 and for each ti
time constraints are satisfied, i.e. each token α from a place p involved in the
firing of ti satisfies mt(α) ∈ γt(p, ti). The step s can be an element-autonomous,
a system-autonomous, or a synchronization step.

A time elapsing step corresponds to elapsing δ time units in each clock of
the marking m. We assume that all arcs and transitions clocks run at the same
pace. We denote by m+δ the marking with all clocks increased by δ, i.e. for each
token α ∈ ms : (mt + δ)(α) = mt(α)+ δ and for each transition t : (mu + δ)(t) =
mu(t) + δ. Under urgency restrictions, time elapsing step δ is allowed if there
are no δ′ ∈ [0, δ) such that the m + δ′ marking has urgent transitions.

5 Consistency and “well-structuredness” of TANPU-nets

Time-deadlocks results from contradictions between synchronization and time
(urgent) restrictions of synchronized transitions.

Proposition 1. TANPU-nets are time-deadlock free.

By the restriction 1 of the Definition 3 of TANPU-nets, net tokens transitions
synchronization does not have urgency restrictions; consequently, such contra-
dictions are excluded syntactically. The obvious drawback of such syntactical
exclusion is that we are not able to express local time constraints on synchroniza-
tion actions of system components. But such local constraints can be modelled
indirectly, by introducing watchdog τ transitions with urgent constraints.

To show decidability of coverability for TANPU-nets without urgent tran-
sitions we use the notion of well-structured transition systems [12]. A well-
structured transition system is a transition system/structure induced by system
behaviour that is compatible with well-quasi ordering.

Definition 4. A well-quasi ordering (wqo) is a quasi ordering ≤ such that for
any infinite sequence x1, x2 . . . in a set X there exist indices i < j such that
xi ≤ xj.

Definition 5. A well-structured transition system (wsts) is a transition system
〈S,→,≤〉 with the wqo ordering ≤⊂ S ×S compatible with S, i.e. if s1 ≤ s2 and
s1 → s′

1, then there exist s′
2 such that s2 → s′

2 and s′
1 ≤ s′

2.

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 15

Markings of NP-nets can be represented as rooted trees. It is possible to
define wqo ordering on rooted trees based on injective mapping between set of
nodes of rooted trees.

Definition 6. Let NPN be an NP-net. For m1,m2 ∈ M(NPN) : m1 � m2 iff
for all p ∈ PSN there exists an injective function jp : m1(p) → m2(p) such that
∀α = 〈Ei, μ〉 ∈ m1(p): either jp(α) = α or jp(α) = 〈Ei, μ

′〉 and μ ≤ μ′.

By showing the compatibility of the j ordering with the transition system
induced by an NP-net, it was shown that NP-nets are well-structured transi-
tion systems, and decidability of coverability follows directly.

Theorem 1. TANPU-nets without urgent transitions are well-structured tran-
sition systems.

Proof sketch. The proof is conducted by common “freeze” argument. Let NPN
be a TANPU-net without urgent restrictions. If we have two markings m1,m2 ∈
M(NPN) such that m1 � m2, then m2 contains some extra atomic and net
tokens comparing to m1: Δ = m2 − m1. Let m1

s→ m′
1. As there are no urgent

transitions in NPN, we may forget about all extra tokens Δ, i.e. do not take into
account their presence and still execute step s in m2: m2

s→ m′
2 such that m′

2 =
m′

1 + Δ and m′
1 � m′

2. Thus, the wqo ordering j is compatible with TANPU-
nets; and, TANPU-nets are well-structured transition systems. Decidability of
coverability for TANPU-nets follows from this.

Now, we allow restricted urgency only in net tokens.

Theorem 2. Coverability is decidable for TANPU-nets with restricted urgent
transitions only in element nets.

Proof sketch. This can be proved by reduction the problem to the coverability
problem for TANPU-net without urgent transition. Let NPN be a TANPU-net
with restricted urgent transitions only in element nets. Element nets in two-level
NP-nets are classical place-transition nets. So we may directly apply translation
from [2] to obtain time equivalent timed-arc Petri nets without urgent transitions
from element nets with restricted urgency. When we apply the translation to all
element tokens with restricted urgency, we obtain TANPU-net NPN′ without
urgent transitions that is time equivalent to NPN. Due to the Theorem 1 we may
check the coverability for NPN′. As NPN′ is time equivalent to NPN, they have
the same reachability set, even if their transition systems can be very different.

Theorem 3. Coverability is decidable for TANPU-nets with restricted urgent
transitions.

Proof sketch. Let NPN be a TANPU-net with restricted urgent transitions. Prov-
ing coverability of NPN with urgent transitions in the system net is complex, as
the translation from [2] does not preserve the complex structure of the system
net. To remove urgency and preserve the structure of the system net we suggest
the following technique. We consider the system net as a flat timed arc Petri net.

16 L.W. Dworzanski

Then we apply the translation from [2] to obtain time equivalent timed arc Petri
net (TAPN) without urgent transition. Then we remove time constraints from
the transitions in the system net of NPN and fuse them with the corresponding
transitions of the obtained TAPN with the same names. As the result we obtain
the TANPU-net which preserve the structure of initial NPN net and has extra
TAPN without urgent transitions that guarantee time equivalence of NPN and
result net. As in the previous proof, the initial NPN and final nets may have
quite different transition system, but their reachability sets will be equal. This
concludes the proof.

Coverability problem allows to check many important behavioural properties
of distributed systems. As reachability problem is undecidable even for untimed
NP-nets, the problem is certainly undecidable for TANPU-nets. However, when
the net tokens of an NP-net are bounded, NP-net is as expressive as classical
P/T-net. So it is interesting to check if under some restrictions reachability
problem is decidable for TANPU-nets.

6 Conclusion

In this paper we have defined a consistent time operational semantics for Nested
Petri nets based on the recently suggested semantics of Timed Arc Petri nets with
restricted urgency. The suggested semantics enables to perform simulation and
rigorous analysis of TANPU-nets models. The coverability problem of TANPU-
nets is decidable. The work is the first step of combining Nested Petri nets with
timing constraints. The use of the formalism for modelling was demonstrated by
the example of a health monitoring system.

The timed-arc semantics with restricted urgency for two-level NP-nets can
be extended to multi-level NP-nets. It is possible to conduct such extension,
as synchronization transitions are structurally local, i.e. they synchronize only
transitions of two adjacent levels. Then time constraints should be allowed only
on the level, which is closer to the system net.

The further research directions are: to adapt algorithms for constructing state
classes and reachable essential integer states graphs of TANPU-nets; to study
other time semantics that preserve decidability of behavioural properties; to
develop compositional methods of composing separate timed components while
avoiding time inconsistencies.

Acknowledgments. This work is supported by Russian Foundation for Basic
Research, project No. 16-37-00482 mol a.

The authors would like to thank three anonymous referees for the very helpful and
insightful comments.

Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency 17

References

1. A Fleet of Self-Driving Trucks Just Completed a 1,000-Mile Trip Across Europe,
7 April 2016. http://www.popularmechanics.com

2. Akshay, S., Genest, B., Hélouët, L.: Timed-arc petri nets with (restricted) urgency.
In: Proceedings of Application and Theory of Petri Nets and Concurrency -
37th International Conference, PETRI NETS, Torun, Poland, 19–24 June 2016.
Springer, Berlin Heidelberg (2016)

3. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Springer,
Heidelberg (2013)

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of different
semantics for time petri nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005)

5. Brown, C., Gurr, D.: Timing petri nets categorically. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 571–582. Springer, Heidelberg (1992)

6. Chang, L., et al.: Applying a nested petri net modeling paradigm to coordination
of sensor networks with mobile agents. In: Proceedings of PNDS 2008, Xian, China,
pp. 132–45 (2008)

7. Cristini, F., Tessier, C.: Nets-within-nets to model innovative space system archi-
tectures. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347,
pp. 348–367. Springer, Heidelberg (2012)

8. Dworzanski, L.W., Lomazova, I.A.: Structural place invariants for analyzing the
behavioral properties of nested petri nets. In: Kordon, F., Moldt, D. (eds.) PETRI
NETS 2016. LNCS, vol. 9698, pp. 325–344. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-39086-4 19

9. Dworzański, L.W., Lomazova, I.A.: CPN tools-assisted simulation and verification
of nested petri nets. Autom. Control Comput. Sci. 47(7), 393–402 (2013)

10. Dworzański, L.W., Lomazova, I.A.: On compositionality of boundedness and live-
ness for nested petri nets. Fundamenta Informaticae 120(3–4), 275–293 (2012)

11. Dworzanski, L., Frumin, D.: NPNtool: modelling and analysis toolset for nested
petri nets. In: Proceedings of SYRCoSE 2013, pp. 9–14 (2013)

12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

13. van Hee, K.M., et al.: Checking properties of adaptive workflow nets. Fundamenta
Informaticae 79(3–4), 347–362 (2007)

14. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
268–288. Springer, Heidelberg (2005)

15. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

16. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in petri
nets. Theor. Comput. Sci. 4(3), 277–299 (1977)

17. Köhler, M., Farwer, B.: Object nets for mobility. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 244–262. Springer, Heidelberg (2007)

18. Lomazova, I.A.: Nested petri nets - a formalism for specification and verification of
multi-agent distributed systems. Fundamenta Informaticae 43(1), 195–214 (2000)

19. Lomazova, I.A.: Nested petri nets: multi-level and recursive systems. Fundamenta
Informaticae 47(3–4), 283–293 (2001)

20. Lopez-Mellado, E., Almeyda-Canepa, H.: A three-level net formalism for the mod-
elling of multiple mobile robot systems. In: IEEE International Conference on
Systems, Man and Cybernetics, vol. 3, pp. 2733–2738, October 2003

http://www.popularmechanics.com
http://dx.doi.org/10.1007/978-3-319-39086-4_19
http://dx.doi.org/10.1007/978-3-319-39086-4_19

18 L.W. Dworzanski

21. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In:
de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991.
LNCS, vol. 600, pp. 526–548. Springer, Heidelberg (1991)

22. Popova-Zeugmann, L.: Time and Petri Nets. Springer, Heidelberg (2013)
23. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed petri

nets. Technical report, Cambridge (1974)
24. Valk, R.: Object petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures

on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg
(2004)

25. Valk, R.: Petri nets as token objects: an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

26. Venero, M.L.F., da Silva, F.S.C.: Model checking multi-level and recursive nets.
Softw. Syst. Model. 15, 1–28 (2016)

On the Expressiveness of Parametric
Timed Automata

Étienne André1,2(B), Didier Lime2, and Olivier H. Roux2

1 Université Paris 13, Sorbonne Paris Cité, LIPN CNRS,
UMR 7030, 93430 Villetaneuse, France
Etienne.Andre@univ-paris13.fr

2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France

Abstract. Parametric timed automata (PTAs) are a powerful formal-
ism to reason about, model and verify real-time systems in which some
constraints are unknown, or subject to uncertainty. In the literature,
PTAs come in several variants: in particular the domain of parameters
can be integers or rationals, and can be bounded or not. Also clocks
can either be compared only to a single parameter, or to more complex
linear expressions. Yet we do not know how these variants compare in
terms of expressiveness, and even the notion of expressiveness for para-
metric timed models does not exist in the literature. Furthermore, since
most interesting problems are undecidable for PTAs, subclasses, such
as L/U-PTAs, have been proposed for which some of those problems
are decidable. It is not clear however what can actually be modeled
with those restricted formalisms and their expressiveness is thus a cru-
cial issue. We therefore propose two definitions for the expressiveness
of parametric timed models: the first in terms of all the untimed words
that can be generated for all possible valuations of the parameters, the
second with the additional information of which parameter valuations
allow which word, thus more suitable for synthesis issues. We then use
these two definitions to propose a first comparison of the aforementioned
PTA variants.

Keywords: Parametric timed automata · L/U-PTAs · Hidden
parameters

1 Introduction

Designing real-time systems is a challenging issue and formal models and reason-
ing are key elements in attaining this objective. In this context, timed automata
(TAs) [1] are a powerful and popular modeling formalism. They extend finite
automata with timing constraints, in which clocks are compared to integer con-
stants that model timing features of the system. In the early design phases

This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002).

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-44878-7 2

20 É. André et al.

these features may not be known with precision and therefore parametric timed
automata (PTAs) [2] allow these constants to be replaced by unknown parame-
ters, the correct values of which will be synthesized as part of the verification
process. Unfortunately, most interesting problems are undecidable for PTAs,
including the basic question of the existence of values for the parameters such
that a given location is reachable [2] (sometimes called EF-emptiness problem).

Since the seminal definition, many variants of PTAs have been defined in
the literature, both as an effort to further increase the convenience of modeling
by allowing complex linear expressions on parameters in the timing constraints
(such as in [11,12]), or in order to better assess the frontier of decidability for
PTAs. In the latter objective, parameters have been considered to be integers
[2,5,6,8,9,12,13] or rationals [2,5,10–13], possibly bounded a priori [12], or even
restricted to be used as either always upper bounds or always lower bounds,
giving so-called L/U-PTAs [8,11].

In order to be able to compare these definitions, one must first agree on a
notion of expressiveness for timed parametric models, since none exists in the
literature. This is the main objective of this work.

Contribution. We propose the following two definitions of expressiveness: (1)
as the union over all parameter valuations of the accepting untimed words
(“untimed language”); (2) as the pairs of untimed words with the parameter
valuations that allow them (“constrained untimed language”).

We first prove that considering rational parameter valuations or unbounded
integer parameter valuations in PTAs and L/U-PTAs is actually equivalent with
respect to the untimed language.

We also prove that, whereas the untimed language recognized by a PTA
with a single clock and arbitrarily many parameters is regular, adding a single
non-parametric clock (i. e., a clock compared at least once to a parameter), even
with a single parameter, gives a language that is at least context-sensitive, hence
beyond the class of regular languages.

We then compare the expressiveness, w.r.t. untimed language and constrained
untimed language, of several known subclasses of PTAs with integer parameters,
in particular L/U-PTAs, and PTAs with bounded parameters. It turns out that,
when considering the expressiveness as the untimed language, most subclasses of
PTAs with integer parameters (including PTAs with bounded parameters, and
L/U-PTAs) are in fact not more expressive than TAs. However, classical PTAs
remain strictly more expressive than TAs. We also show that adding fully para-
metric constraints (i. e., comparison of parametric linear terms with 0, without any
clock) does not increase the expressiveness of PTAs seen as the untimed language.

We also propose and focus on a new class of PTAs in which some para-
meters are hidden, i. e., do not occur in the constrained untimed language.
While adding hidden parameters does not increase the expressiveness w.r.t. the
untimed language (since in that case all parameters can be considered as hid-
den), when considering the expressiveness as the constrained untimed language,
we show that hidden parameters strictly extend the expressiveness of PTAs.

On the Expressiveness of Parametric Timed Automata 21

And interestingly, for this second definition of expressiveness, L/U-PTAs with
bounded parameters turn out to be incomparable with classical L/U-PTAs.

Outline. We introduce the basic notions in Sect. 2. We propose our two defini-
tions of expressiveness in Sect. 3. We then show that rational-valued parameters
are not more expressive than integer-valued parameters for the untimed lan-
guage (Sect. 4). Focusing on integer-valued parameters, we then classify PTAs,
their subclasses, and their extensions with hidden parameters w.r.t. the untimed
language (Sect. 5) and the constrained untimed language (Sect. 6). We conclude
and outline perspectives in Sect. 7.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, and R+ denote the sets of non-negative integers, integers, and non-
negative real numbers respectively. Let I(N) denote the set of closed intervals
on N, i. e., the set of intervals [a, b] where a, b ∈ N and a ≤ b.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation is a function
μ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, μ + d denotes the valuation such that (μ + d)(x) = μ(x) + d, for
all x ∈ X. Given R ⊆ X, we define the reset of a valuation μ, denoted by [μ]R,
as follows: [μ]R(x) = 0 if x ∈ R, and [μ]R(x) = μ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown integer-
valued constants (except in Sect. 4 where parameters can also be rational-
valued). A parameter valuation v is a function v : P → N.

In the following, we assume ≺ ∈ {<,≤} and ∼ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ Z. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A con-
straint C (i. e., a convex polyhedron) over X ∪ P is a conjunction of inequalities
of the form lt ∼ 0. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation μ, μ(v(C)) denotes the Boolean value obtained by replacing
each clock x in v(C) with μ(x).

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ∼ plt .

2.2 Parametric Timed Automata with Hidden Parameters

Parametric timed automata (PTAs) extend timed automata with parameters
within guards and invariants in place of integer constants [2].

We actually first define an extension of PTAs (namely hPTAs) that will allow
us to compare models with a different number of parameters, by considering that
some of them are hidden. We will define PTAs as a restriction of hPTAs.

22 É. André et al.

Definition 1 (PTA with hidden parameters). A parametric timed automa-
ton with hidden parameters (hereafter hPTA) A is a tuple (Σ,L, l0, F,X, P, I, E),
where: (i) Σ is a finite set of actions, (ii) L is a finite set of locations, (iii) l0 ∈ L
is the initial location, (iv) F ⊆ L is a set of accepting locations, (v) X is a finite
set of clocks, (vi) P = Pv
 Pv is a finite set of parameters partitioned into hid-
den parameters Pv and visible parameters Pv, (vii) I is the invariant, assigning
to every l ∈ L a guard I(l), (viii) E is a finite set of edges e = (l, g, a,R, l′)
where l, l′ ∈ L are the source and target locations, a ∈ Σ ∪{ε} (ε being the silent
action), R ⊆ X is a set of clocks to be reset, and g is a guard.

We define a PTA as an hPTA in which P = Pv.
Observe that we allow ε-transitions (or silent transitions), i. e., transitions

not labeled with any action.
Given an hPTA A and a parameter valuation v, we denote by v(A) the non-

parametric timed automaton where all occurrences of a parameter pi have been
replaced by v(pi).

Definition 2 (Concrete semantics of a TA). Given an hPTA A = (Σ,L, l0,
F,X, P, I, E), and a parameter valuation v, the concrete semantics of v(A) is
given by the timed transition system (S, s0,→), with S = {(l, μ) ∈ L × R

H
+ |

μ(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and (continuous)
delay transition relations:

– discrete transitions: (l, μ) e→ (l′, μ′), if (l, μ), (l′, μ′) ∈ S, there exists e =
(l, g, a,R, l′) ∈ E, μ′ = [μ]R, and μ(v(g)) is true.

– delay transitions: (l, μ) d→ (l, μ+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, μ+d′) ∈ S.

A (concrete) run is a sequence ρ = s1α1s2α2 · · · snαn · · · such that ∀i, (si,
αi, si+1) ∈ →. We consider as usual that concrete runs strictly alternate delays
di and discrete transitions ei and we thus write concrete runs in the form ρ =

s1
(d1,e1)→ s2

(d2,e2)→ · · · . We refer to a state of a run starting from the initial state
of a TA A as a concrete state (or just as a state) of A. Note that when a run is
finite, it must end with a state. The duration of a concrete run is the sum of all
the delays di appearing in this run.

An untimed run of v(A) is a sequence l1e1l2e2 · · · ln · · · such that for all i

there exist a clock valuation μi and di ≥ 0 such that (l1, μ1)
(d1,e1)→ (l2, μ2)

(d2,e2)→
· · · (ln, μn)

(dn,en)→ · · · is a run of v(A). Given a run ρ, we denote by Untime(ρ)
its corresponding untimed run.

The trace of an untimed run l1e1l2e2 · · · ln · · · is the sequence e1e2 · · · en · · · .
The (untimed) trace of a concrete run ρ is the trace of Untime(ρ).
A run ρ is accepted by v(A) if it is finite and the location of its last state

belongs to F . An untimed run is accepted by v(A) if it is finite and its last
location belongs to F .

The (untimed) language of v(A) is the set of the traces of runs accepted
by v(A).

On the Expressiveness of Parametric Timed Automata 23

2.3 Subclasses of Parametric Timed Automata

L/U-PTAs have been introduced as a subclass of PTAs for which the
EF-emptiness problem (i. e., the existence of values for the parameters such that
a given location is reachable) is decidable [11]:

Definition 3 (hL/U-PTA). An hL/U-PTA is an hPTA where the set of para-
meters is partitioned into a set of lower-bound parameters P− and a set of upper-
bound parameters P+. A parameter p belongs to P+ (resp. P−), if it appears in
constraints x ≤ plt or x < plt always with a non-negative (resp. non-positive)
coefficient, and in constraints x ≥ plt or x > plt always with a non-positive
(resp. non-negative) coefficient.

Just as for PTAs, we define an L/U-PTA as an hL/U-PTA in which P = Pv.
Decidability comes from the fact that in L/U-PTAs increasing the value of an

upper bound parameter or decreasing that of a lower bound parameter always
only increase the possible behavior:

Lemma 1 (monotonicity of hL/U-PTAs [11]). Let A be an hL/U-PTA
and v be a parameter valuation. Let v′ be a valuation such that for each upper-
bound parameter p+, v′(p+) ≥ v(p+) and for each lower-bound parameter p−,
v′(p−) ≤ v(p−). Then any run of v(A) is a run of v′(A).

Given an hL/U-PTA, we denote by v0/∞ the special parameter valuation
(mentioned in, e. g., [11]) assigning 0 to all lower-bound parameters and ∞ to
all upper-bound parameters.1

Let us now define a bounded PTA as a PTA where the domain of each
parameter is bounded, i. e., ranges between two integer-valued constants.

Definition 4 (bounded hPTA). A bounded hPTA is A|bounds , where A is
an hPTA, and bounds : P → I(N) assigns to each parameter p an interval
[min,max], with min,max ∈ N.

3 Defining the Expressiveness of PTAs

In the following, we denote by V(P), V(Pv), and V(Pv) the sets of valuations of
respectively all the parameters, the visible parameters, and the hidden parame-
ters of an hPTA.

Definition 5 (untimed language of an hPTA). Given an hPTA A, the
untimed language of A, denoted by UL(A) is the union over all parameter valu-
ations v of the sets of untimed words accepted by v(A), i. e.,

⋃

v∈V(P)

{
w | w is an untimed word accepted by v(A)

}

1 Technically, v0/∞ is not a parameter valuation, as the definition of valuation does
not allow ∞. However, we will use it only to valuate an L/U-PTA (or an hL/U-PTA)
with it; observe that valuating an L/U-PTA with v0/∞ still gives a valid TA.

24 É. André et al.

TA is a subclass of PTA, hence, given a TA A, we also denote UL(A) its
untimed language.

We propose below another definition of language for hPTAs, in which we
consider not only the accepting untimed words, but also the parameter valua-
tions associated with these words; this definition is more suited to compare the
possibilities offered by parameter synthesis. Note that we only expose the visible
parameter valuations.

Definition 6 (constrained untimed language of an hPTA). Given an
hPTA A, the constrained untimed language of A, denoted by CUL(A) is

⋃

v∈V(Pv)

{
(w, v) | ∃v′ ∈ V(Pv) s.t.w is an untimed word accepted by v(v′(A))

}

Note that since Pv and Pv are disjoint, we can write indifferently v(v′(A))
and v′(v(A)).

We use the word “constrained” because another way to represent the con-
strained language of an hPTA is in the form of a set of elements (w,K), where
w is an untimed word, and K is a parametric constraint such that for all v in K,
then w is an untimed word accepted by v(v′(A)) for some v′ ∈ V(Pv).

Example 1. Let us consider the hPTA A of Fig. 1a, where Pv = {p1} and Pv =
{p2}.

– Its untimed language is UL(A) = {a} ∪ {ban | n ∈ N} that we note with the
rational expression UL(A) = a + ba∗.

– Its constrained untimed language is CUL(A) =
{

(a, p1 = i) | 0 ≤ i ≤
1
} ⋃ {

(ban, p1 = i) | i ∈ N, n ∈ N

}
that we can also note CUL(A) =

{
(a, p1 ≤

1), (ba∗, p1 ≥ 0)
}

, with p1 ∈ N. Note that both the parameter p2 and the fact
that p2 must be at least 1 to go to l2 are hidden.

Definition 7 (regular constrained language). The constrained untimed lan-
guage of an hPTA A is regular if for all visible parameter valuations v ∈ V(Pv),
the language {w | (w, v) ∈ CUL(A)} is regular.

Remark 1. Since valuating a PTA with any rational parameter valuation gives
a TA, the constrained untimed language of any PTA is regular in the sense of
Definition 7.

Note that the idea of combining the untimed language with the parameter
valuations leading to it is close to the idea of the behavioral cartography of
parametric timed automata [4], that consists in computing parameter constraints
together with a “trace set”, i. e., the untimed language (that also includes in [4]
the locations).

In the following, a class refers to an element in the set of TAs, bounded
L/U-PTAs, L/U-PTAs, bounded PTAs and PTAs, and their counterparts with
hidden parameters. An instance of a class is a model of that class.

On the Expressiveness of Parametric Timed Automata 25

l1
x ≤ 1

l2

l3
x = 1
a

x := 0

x = 1
∧ x ≤ p2

b
x := 0

x = p1

a

(a) A PTA

l′0

x = 1
ε

x := 0

x = 0 ∧ y = p
ε

y := 0

(b) Gadget enforcing a non-negative integer
value for p

Fig. 1. An example of PTA, and a PTA gadget

A first class is strictly more expressive than a second one w.r.t. the untimed
language if (i) for any instance of the second one, their exists an instance of the
first one that has the same untimed language, and (ii) there exists an instance
of the first one for which no instance of the second one has the same untimed
language. Two classes are equally expressive w.r.t. the untimed language if for
any instance of either class, their exists an instance of the other class that has
the same untimed language. The comparison of the expressiveness w.r.t. the con-
strained untimed language can be defined similarly, with the additional require-
ment that the two instances must contain the same visible parameters (possibly
after some renaming).

4 An Equivalence Between Integer and Rational
Parameters

In the literature, some works focus on integer parameters [6,8,9], some others
on rational parameters [10,11], and also some propose constructions working in
both settings [2,5,12,13].

In this section, we prove that considering rational parameter valuations or
unbounded integer parameter valuations in PTAs and L/U-PTAs is actually
equivalent with respect to untimed languages.2

First, remark that any PTA with rational parameter valuations can be con-
strained to accept only non-negative integer parameter valuations. We just need
to insert a copy of the gadget in Fig. 1b for each parameter p before the initial
location. We connect them to each other in sequence, in any order, and x and y
can be clocks from the original PTA. In that gadget x is zero only when y is a
non-negative integer and therefore p must be a non-negative integer to permit
the exit from l′0. Clearly, when considering only non-negative integer parameter
valuations, both PTAs have the same untimed language.

With the above construction, we can filter out non-integer valuations.
We can actually go a bit further and establish the following result:

2 Comparing constrained languages would make no sense since obviously the parame-
ter valuations cannot match in general in the rational and integer settings.

26 É. André et al.

Lemma 2. For each PTA A, there exists a PTA A′ such that:

1. for all rational parameter valuations v of A there exists an integer parameter
valuation v′ of A′ such that v(A) and v′(A′) have the same untimed language.

2. for all integer parameter valuations v′ of A′ there exists a rational parameter
valuation v of A such that v(A) and v′(A′) have the same untimed language.

Proof. The idea of the proof is to scale all the expressions to which clocks are
constrained so that they are integers. However, since we do not know in advance
by how much we have to scale, we use an additional parameter to account for
this scaling factor.

Let A be a PTA. Let p be a fresh parameter and let A′′ be the PTA obtained
from A by replacing every inhomogeneous (i. e., constant) term c in the linear
expressions of guards and invariants by c ∗ p. For instance, the constraint x ≤
3p1 + 2p2 + 7 becomes x ≤ 3p1 + 2p2 + 7p.

We now build A′ as follows: we add a new location (which will be the initial
location of A′), from which two transitions, labeled ε and resetting all clocks,
exit. The first one has guard x �= 0 ∧ x = p and goes to the initial location
of A′′. The second has guard x = 0 ∧ x = p and goes to the initial location of
an exact copy of A. By construction the first one can be taken only if p �= 0 and
the second one only if p = 0.

1. Let v be a rational parameter valuation of A. Let m be the least common
multiple (LCM) of the denominators of the values assigned to parameters
by v. Let v′ be defined as: ∀pi �= p, v′(pi) = m ∗ v(pi) and v′(p) = m. Then,
by construction, v′ is an integer valuation of A′, v′(p) �= 0 and v′(A′′) is a
TA that is scaled by m from the TA v(A). Then by [1, Lemma 4.1], v(A) and
v′(A′′) have the same untimed runs up to renaming. And finally, v(A) and
v′(A′) have the same untimed language.

2. The opposite direction works similarly: let v′ be an integer parameter valuation
of A′. If v′(p) = 0, then in A′′ we can only go to the copy of A. We can therefore
choose v(pi) = v′(pi) and obtain the same untimed language. If v′(p) �= 0, we
define v by v(pi) = v′(pi)

v′(p) . Then v is a rational parameter valuation of A and
v(A) is a scaled down version of v′(A′′), which therefore has the same untimed
runs. And again, v(A) and v′(A′) have the same untimed language. ��
First remark that, in order to show the equivalence between integer- and

rational-valued parameters, we provided a construction that added one addi-
tional parameter, and possibly some parametric clocks. This is consistent with
the fact that PTAs with integer parameters typically have decidability results
for slightly more parametric clocks and parameters than with rational parame-
ters. For instance, the existence of a rational parameter valuation such that a
given location is reachable is undecidable for PTAs with 1 parametric clock (a
clock compared to parameters) and 3 normal clocks [13], while the existence of
an integer parameter valuation is decidable in that setting [6].

Second, in the construction, we need the integer parameters to be unbounded
because the LCM can be arbitrarily big.

On the Expressiveness of Parametric Timed Automata 27

Finally, this result is not directly applicable to L/U-PTAs as we cannot ensure
that the parameterized scaling factor would be the same for upper bound inho-
mogeneous terms as for lower bound ones. However, for L/U-PTAs, we can derive
the same result from the monotonicity property:

Lemma 3. For an L/U-PTA A, the set of untimed runs produced with only
integer parameter valuations or with all rational parameter valuations is the
same.

Proof. Clearly the set of untimed runs produced by considering only integer
parameter valuations is included in the one obtained by considering all rational
parameter valuations.

In the other direction: let v be a rational parameter valuation of A and let v′

be the integer parameter valuation obtained from v by rounding up the values
for upper bound parameters, and rounding down for lower bound parameters.
Then, by Lemma 1, v′(A) contains all the untimed runs of v(A). ��

Here also we need integer parameters to be unbounded because the rational
parameter valuations can themselves be arbitrarily big and we get accordingly
big integers when rounding up.

We can now conclude the following:

Proposition 1. PTAs (resp. L/U-PTAs) with rational parameters and PTAs
(resp. L/U-PTAs) with unbounded integer parameters are equivalent with respect
to the untimed language.

When the parameters are bounded, we will see in Proposition 2 that the integer
setting leads to regular languages. So, when bounded, PTAs with rational parame-
ters are obviously strictly more expressive than their integer parameter counter-
part. For L/U-PTAs, using again the monotonicity property, we trivially see that
the valuation setting all upper-bound parameters to the maximal value allowed by
the bounded domain, and lower-bound parameters to the minimal value gives all
the untimed runs that are possible with other valuations. That “extremal” valua-
tion is an integer valuation by definition. So, even when bounded, L/U-PTAs are
still equally expressive in the rational and integer settings.

5 Expressiveness as the Untimed Language

5.1 PTAs in the Hierarchy of Chomsky

Let us show that (without surprise) Turing-recognizable languages (type-0 in
Chomsky’s hierarchy) can be recognized by PTAs (with enough clocks and
parameters).

Lemma 4. Turing-recognizable languages are also recognizable by PTAs.

28 É. André et al.

Proof. Consider a Turing-machine: it can be simulated by a 2-counter machine
(with labelled instructions), which can in turn be simulated by a PTA. The tran-
sitions of the encoding PTA can be easily labeled accordingly (using also ε transi-
tions). Assume that a word is accepted by the machine when it halts (i. e., it reaches
lhalt). If the machine does not halt, lhalt is reachable for no parameter valuation,
hence the language of the machine is empty and that of the encoding PTA also. If
the machine halts, lhalt is reachable for parameter valuations correctly encoding
the machine (i. e., depending on the proof, large enough or small enough to cor-
rectly encode the maximum value of the two counters). Hence, by taking the union
over all parameter valuations of all untimed words accepted by the encoding PTA,
one obtains exactly the language recognized by the machine. ��

Lemma 4 only holds with enough clocks and parameters, typically 3 paramet-
ric clocks and 1 integer-valued or rational-valued parameter [6], or 1 parametric
clock, 3 non-parametric clocks and 1 rational-valued parameter [13].

For lower numbers, either decidability of the EF-emptiness problem is
ensured (in which case the language cannot be type-0), or this problem remains
open.

Let us point out a direct consequence of a result of [5] on PTAs with a single
(necessarily parametric) clock.

Lemma 5. The untimed language recognized by a PTA with a single clock and
arbitrarily many parameters is regular.

Proof. In [5, Theorem 20], we proved that the parametric zone graph (an exten-
sion of the zone graph for PTAs, following e. g., [12]) of a PTA with a single
(necessarily parametric) clock and arbitrarily many parameters is finite. This
gives that the language recognized by a PTA with a single clock is regular. ��

We now show that adding to the setting of Lemma 5 a single non-parametric
clock, even with a single parameter, may give a language that is at least context-
sensitive, hence beyond the class of regular languages.

Theorem 1. PTAs with 1 parametric clock, 1 non-parametric clock and 1 para-
meter can recognize languages that are context-sensitive.

l1

x1 ≤ 1
∧ x2 ≤ p

l2

x1 ≤ 1
∧ x2 ≤ p

l3

x1 ≤ 1
∧ x2 ≤ p

l4

x1 = 1
a

x1 := 0

x1 = 1
∧ x2 = p

a
x1, x2 := 0

x1 = 1
b

x1 := 0

x1 = 1
∧ x2 = p

b
x1, x2 := 0

x1 = 1
c

x1 := 0

x1 = 1
∧ x2 = p

c

Fig. 2. A PTA with untimed language anbncn

On the Expressiveness of Parametric Timed Automata 29

Proof. Consider the PTA A in Fig. 2. Consider an integer parameter valuation v
such that v(p) = i, with i ∈ N. The idea is that we use the parameter to first
count the number of as, and then ensure that we perform an identical number
of bs and cs; such counting feature is not possible in TAs (at least not for any
value of i as is the case here). Clearly, due to the invariant x1 ≤ 1 in l1, one
must take the self-loop on l1 every 1 time unit; then, one can take the transition
to l2 only after i such loops. The same reasoning applies to locations l2 and l3.
Hence, the language accepted by the TA v(A) is ai+1bi+1ci+1.

Hence the union over all parameter valuations of the words accepted by A is
{anbncn | n ≥ 1}. This language is known to be in the class of context-sensitive
languages (type-1 in Chomsky’s hierarchy), hence beyond the class of regular
languages (type-3). ��

This result is interesting for several reasons. First, it shows that adding a
single clock, even non-parametric, to a PTA with a single clock immediately
increases its expressiveness. Second, it falls into the interesting class of PTAs
with 2 clocks, for which many problems remain open: the PTA exhibited in
the proof of Theorem1 (1 parametric clock and 1 non-parametric) falls into the
class of 1 parametric clock, arbitrarily many non-parametric clocks and arbi-
trarily many integer-valued parameters, for which the EF-emptiness is known
to be decidable [6]. When replacing the integer-valued with a rational-valued
parameter (which does not fundamentally change our example), it also falls into
the class of 1 parametric clock, 1 non-parametric clock and 1 rational-valued
parameter, for which the EF-emptiness is known to be open [3]. In both cases,
it gives a lower bound on the class of languages recognized by such a PTA.

5.2 Comparison of Expressiveness

In this section, we compare the expressiveness of PTAs w.r.t. their untimed
language UL.

First, we show in the following lemma that the untimed language of an L/U-
PTA is equal to that of the same L/U-PTA valuated with v0/∞.

Lemma 6. Let A be an L/U-PTA. Then: UL(A) = UL(v0/∞(A)).

Proof. ⊆ Let us first show that any accepting run of A for some parameter
valuation is also an accepting run of v0/∞(A), in the spirit of [11]. Let v be
a parameter valuation. Let ρ be an accepting run of v(A). Observe that, by
definition, the guards and invariants of v0/∞(A) are more relaxed than that
of v(A). Hence, any transition of ρ is also enabled in v0/∞(A). Hence, ρ is also
an accepting run of v0/∞(A).

⊇ Conversely, let us show that, for any accepting run of v0/∞(A), there exists
a parameter valuation v such that this run is also an accepting run of v(A).
It suffices to show that, for a given run, there exists one parameter valuation
accepting this run, as we define UL as the union over all parameter valuations.

Let ρ : s0
(e0,d0)→ s1

(e1,d1)→ · · · (em−1,dm−1)→ sm be an accepting run of v0/∞(A).

30 É. André et al.

Let d be the duration of this run. Let k = �d� + 1. Let v0/k be the parameter
valuation assigning 0 to all lower-bound parameters, and k to all upper-bound
parameters. Now, observe that v0/∞(A) and v0/k(A) are identical TAs, with
the exception that some guards and invariants in v0/k(A) may include addi-
tional constraints of the form x ≤ i × k or x < i × k (for some clock x and
some i > 0, i ∈ N). Since the duration of ρ is strictly less than k, then no
clock will reach value k and therefore this run cannot be impacted by these
additional constraints; hence, ρ is an accepting run of v0/k(A) too. ��

Proposition 2. TAs, L/U-PTAs and bounded PTAs are equally expressive
w.r.t. the union of untimed languages.

Proof. L/U-PTAs = TAs Direct from Lemma 6, and the fact that any TA is
an L/U-PTA with no parameter.

bounded PTAs = TAs The untimed language of a PTA is the union of the
untimed language of the TAs over all possible parameter valuations. As we
consider integer-valued parameters, there is a finite number of valuations in a
bounded PTA. Since the language recognized by a TA is a regular language,
and the class of regular languages is closed under finite union, then bounded
PTAs also recognize regular languages, and are therefore equally expressive
with TAs. ��

Proposition 3. L/U-PTAs and hL/U-PTAs are equally expressive w.r.t. the
union of untimed languages.

Proof. Consider an L/U-PTA A. Let Ah be the hL/U-PTA that is identical
to A and contains no hidden parameters (i. e., Pv = P and Pv = ∅). Then
UL(Ah) = UL(A).

Conversely, consider an hL/U-PTA Ah with visible parameters Pv and hidden
parameters Pv. Let A be the L/U-PTA such that P = Pv ∪ Pv. Then UL(A) =
UL(Ah). ��
Proposition 4. PTAs are strictly more expressive than TAs w.r.t. the union of
untimed languages.

Proof. Since the untimed words recognized by TA form a regular language [1],
then the PTA exhibited in Theorem1 recognizes a language not recognized by
any TA. Conversely, any TA is a PTA (with no parameter) which gives that the
expressiveness of PTAs is strictly larger than that of TAs. ��

In the following, we show that neither hidden parameters nor fully parametric
linear constraints increase the expressive power of PTAs w.r.t. the union of
untimed languages.

Proposition 5. PTAs and hPTAs are equally expressive w.r.t. the union of
untimed languages.

Proof. Following the same reasoning as in Proposition 3. ��

On the Expressiveness of Parametric Timed Automata 31

Impact of the Syntax of the Guards. Recall that our guards and invariants
are of the form x ∼ plt , with plt a parametric linear term. Several alternative
definitions exist in the literature. In addition to the PTAs defined in Defini-
tion 1, we consider here two other definitions, one that can be seen as the most
restrictive (and used in e. g., [2]), and one that is very permissive, with even
constraints involving no clocks. We denote by a simple guard a constraint over
X ∪ P defined by inequalities of the form x ∼ z, where z is either a parame-
ter or a constant in Z. We define an AHV93-PTA as a PTA the guards and
invariants of which are all conjunctions of simple guards. We define a PTA with
fully parametric constraints (fpc-PTA) as a PTA the guards and invariants of
which are conjunctions of inequalities either of the form x ∼ plt (“guards”), or
plt ∼ 0 (“fully parametric guards”). Let us show that all three definitions are
equivalently expressive w.r.t. the untimed language.

Proposition 6. PTAs and AVH93-PTAs are equally expressive w.r.t. the union
of untimed languages.

This result extends in a straightforward manner to fpc-PTAs.

Proposition 7. PTAs and fpc-PTAs are equally expressive w.r.t. the union of
untimed languages.

6 Expressiveness as the Constrained Untimed Language

In this section, we compare the expressiveness of PTAs w.r.t. their visible con-
strained untimed language.

Proposition 8. Bounded PTAs are strictly less expressive than PTAs w.r.t. the
constrained untimed language.

Proof. Bounded PTAs can easily be simulated using a non-bounded PTA, by
bounding the parameters using one clock and appropriate extra locations and
transitions prior to the original initial location of the PTA. For example, if x is
reset when entering l′1, the gadget in Fig. 3a ensures that p ∈ [min,max]. All such
gadgets (one per parameter) must be added in a sequential manner, resetting x
prior to each gadget, and resetting all clocks when entering the original initial
location after the last gadget.

Now, it is easy to find a PTA that has a larger constrained untimed language
than any bounded PTA. This is the case of any PTA for which a word is accepting
for parameter valuations arbitrarily large (e. g., Fig. 3b). ��

We now show that, interestingly, this result does not extend to L/U-PTAs,
i. e., bounded L/U-PTAs are not strictly less expressive than but incomparable
with L/U-PTAs.

Proposition 9. Bounded L/U-PTAs are incomparable with L/U-PTAs w.r.t.
the constrained untimed language.

32 É. André et al.

l′1 l′2 l′3

x = min
∧ x ≤ p

ε

x = max
∧ p ≤ x

ε

(a) Bounding a PTA

l0 l1

x = 0
∧ x ≤ p

a

(b) PTA accepting a for any valuation

Fig. 3. A PTA gadget and a PTA

Proof. – Let us show that the constrained untimed language of a given bounded
L/U-PTA cannot be obtained for any L/U-PTA. Consider a bounded U-PTA
with a single parameter p+ with bounds such that p+ ∈ [0, 1], and accepting
a for any valuation of p+ ∈ [0, 1]. From Lemma 1, if this run is accepted in
an L/U-PTA A′, then this run is also accepted for any valuation v′ such that
v′(p+) ≥ 0, including for instance v′(p+) > 1. Hence accepting a only for
valuations of p+ ∈ [0, 1] cannot be obtained in an L/U-PTA, and therefore
no L/U-PTA yields this constrained untimed language.

– This converse is immediate: assume an L/U-PTA with a single parameter p+,
accepting a for any valuation of p+ ∈ [0,∞). From the definition of bounded
(L/U-)PTAs, all parameters must be bounded, and therefore there exists no
bounded L/U-PTA that can accept a run for p+ ∈ [0,∞). Hence no bounded
L/U-PTA yields this constrained untimed language. ��
We now show that hidden parameters do not extend the expressiveness of

L/U-PTAs.

Proposition 10. hL/U-PTAs are equally expressive with L/U-PTAs w.r.t. the
constrained untimed language.

Hidden parameters however strictly extend the expressiveness of PTAs.

Lemma 7. There exists an hPTA A such that CUL(A) is not regular.

Proof. Assume a PTA with no parameter. Its constrained untimed language is a
set of pairs (w, v), where v is a degenerate parameter valuation (i. e., a valuation
v : ∅ → N as this PTA contains no parameter). The projection of this set of pairs
onto the words (i. e., {w | (w, v) ∈ CUL(A)}) yields a regular language, as a PTA
without parameters is a TA, the class of language recognized by which is that
of regular languages. Now consider an hPTA where all parameters are hidden.
This time, from Theorem 1 the projection of its constrained untimed language
onto the words yields a language that goes beyond the class of regular languages.
Hence there exists an hPTA for which the constrained untimed language is not
regular. ��
Remark 2. The idea used in the proof of Lemma7 uses a PTA with no (visible)
parameter. But such a result can be generalized to a PTA with an arbitrary
number of visible parameters: assume such a PTA, and assume one of its para-
meter valuations v. We can extend this PTA into a PTA A′ with a single hidden

On the Expressiveness of Parametric Timed Automata 33

parameter such that, for the valuation v (of the visible parameters), the PTA
will produce anbncn using the construction in Theorem 1. Hence, the constrained
untimed language of A′ is not regular.

Proposition 11. hPTAs are strictly more expressive than PTAs w.r.t. the con-
strained untimed language.

Proof. From Remark 1 and Lemma 7. ��
Let us finally show that PTAs and fpc-PTAs (involving additionally plt ∼ 0)

are not more expressive than AHV93-PTAs with hidden parameters.

Proposition 12. PTAs and fpc-PTAs are not more expressive than AHV93-
PTAs with hidden parameters w.r.t. the constrained untimed language.

Proof. In Propositions 6 and 7, we used a construction to show the equivalent
expressiveness of the untimed language of PTAs, fpc-PTAs and AHV93-PTAs.
This construction transforms a PTA or an fpc-PTA into an AHV93-PTAs. Since
we use extra parameters in this construction, it suffices to hide these extra para-
meters, and we therefore obtain an AHV93-PTA with the same CUL as the
original (fpc-)PTA. ��

7 Conclusion and Perspectives

In this paper, we proposed a first attempt at defining the expressiveness of
parametric timed automata, also introducing the notion of hidden parameters
to compare models with different numbers of parameters. When considering the
union over all parameter valuations of the untimed language, it turns out that
all subclasses of PTAs with integer parameters are not more expressive than
TAs. However, PTAs are strictly more expressive than TAs (from 1 parametric
clock and 1 non-parametric clock); extending PTAs with hidden parameters or
fully parametric constraints does not increase their expressiveness. In addition,
integer-valued or rational-valued parameters turn out to be equivalent.

When considering the set of accepting untimed words together with their
associated parameter valuations, then subclasses of PTAs with integer para-
meters have a varying expressiveness. An interesting result is that bounded
L/U-PTAs turn out to be incomparable with L/U-PTAs. In addition, hidden
parameters strictly extend the expressiveness of PTAs.

Future Works. We compared so far general formalisms; it now remains to be
studied what consequences on decidability the forms of guards and invariants
together with a fixed number of clocks and parameters may have: a ultimate
goal would be to unify the wealth of (un)decidability results from the literature
with all different syntactic contexts.

We showed that rational-valued parameters are not more expressive than
integer-valued parameters; our construction makes use of an extra parameter.
It remains to be shown whether this construction is optimal or not.

34 É. André et al.

Finally, forbidding ε-transitions may also change our comparison of for-
malisms, as such silent transitions have an impact on the expressiveness of TAs
(see [7]).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
et al. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-29510-7 3

4. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010)

5. André, É., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Heidelberg (2015)

6. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015)

7. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2–3),
145–182 (1998)

8. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Meth. Syst. Des. 35(2), 121–151 (2009)

9. Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 123–134. Springer, Heidelberg (2014)

10. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208–213 (2007)

11. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002)

12. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. Trans. Softw. Eng. 41(5), 445–461 (2015)

13. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

http://dx.doi.org/10.1007/978-3-319-29510-7_3

Modelling Attack-defense Trees
Using Timed Automata

Olga Gadyatskaya1, René Rydhof Hansen2, Kim Guldstrand Larsen2,
Axel Legay3, Mads Chr. Olesen2, and Danny Bøgsted Poulsen2(B)

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
2 Department of Computer Science, Aalborg University, Aalborg, Denmark

dannybpoulsen@hotmail.com
3 Inria Rennes – Bretagne Atlantique, Rennes, France

Abstract. Performing a thorough security risk assessment of an organ-
isation has always been challenging, but with the increased reliance
on outsourced and off-site third-party services, i.e., “cloud services”,
combined with internal (legacy) IT-infrastructure and -services, it has
become a very difficult and time-consuming task. One of the traditional
tools available to ease the burden of performing a security risk assess-
ment and structure security analyses in general is attack trees [19,23,24],
a tree-based formalism inspired by fault trees, a well-known formalism
used in safety engineering.

In this paper we study an extension of traditional attack trees, called
attack-defense trees, in which not only the attacker’s actions are mod-
elled, but also the defensive actions taken by the attacked party [15]. In
this work we use the attack-defense tree as a goal an attacker wants to
achieve, and separate the behaviour of the attacker and defender from
the attack-defense-tree. We give a fully stochastic timed semantics for the
behaviour of the attacker by introducing attacker profiles that choose
actions probabilistically and execute these according to a probability
density. Lastly, the stochastic semantics provides success probabilitites
for individual actions. Furthermore, we show how to introduce costs of
attacker actions. Finally, we show how to automatically encode it all
with a network of timed automata, an encoding that enables us to apply
state-of-the-art model checking tools and techniques to perform fully
automated quantitative and qualitative analyses of the modelled system.

1 Introduction

In the past few years, we have witnessed a rapid increase in the number and
severity of security breaches, ranging from theft of personal information about
millions of US government employees1 to sophisticated targeted malware attacks
on security vendors2. This problem is exacerbated by the fact that it has become

Research leading to these results was partially supported by the European Union
Seventh Framework Programme under grant agreement no. 318003 (TREsPASS).

1 https://www.opm.gov/cybersecurity/cybersecurity-incidents/.
2 http://usa.kaspersky.com/about-us/press-center/press-releases/

duqu-back-kaspersky-lab-reveals-cyberattack-its-corporate-netwo.

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 35–50, 2016.
DOI: 10.1007/978-3-319-44878-7 3

https://www.opm.gov/cybersecurity/cybersecurity-incidents/
http://usa.kaspersky.com/about-us/press-center/press-releases/duqu-back-kaspersky-lab-reveals-cyberattack-its-corporate-netwo
http://usa.kaspersky.com/about-us/press-center/press-releases/duqu-back-kaspersky-lab-reveals-cyberattack-its-corporate-netwo

36 O. Gadyatskaya et al.

difficult to perform an adequate risk assessment of an organisation’s security
stance, with many organisations relying on a complex mix of off-site third party
IT-services, e.g., “cloud services” and internally supported IT services. One of
the tools available to help structure risk assessments and security analyses is
attack trees, recommended, e.g., by NATO Research and Technology Organisa-
tion (RTO) [20] and OWASP [22]. Attack trees [19,23,24] is a tree based formal-
ism inspired by fault trees, a well-known formalism used in safety engineering.
The formalism was initially introduced by [24] and given a formal definition by
Mauw and Oostdijk [19]. Kordy et al. [16] provide a survey on attack trees and
related formalisms. While basic quantitative analysis, i.e., a bottom-up compu-
tation for a single parameter (e.g., cost, probability or time of an attack), can be
performed directly on attack trees [4], several proposals exist to extend the basic
attack tree formalism in order to support better analysis. For example, Buldas
et al. [6], Jürgenson and Willemson [14] introduced multi-parameter attack trees
with interdependent variables; Dalton et al. [7] have proposed analysing attack
trees as Generalized Stochastic Petri Nets; Arnold et al. [2] applied interactive
Input/Output Markov Chains to enhance temporal and stochastic dependencies
analysis in attack trees. Kumar et al. [17] have considered priced timed automata
for analysis of attack trees. This work defines a translation for each leaf node and
each gate in an attack tree into a priced timed automaton. The approach allows
to translate the full attack tree into an automaton that can be analysed using
the uppaal Cora model checker. The research community interest in attack
trees has been recently reinvigorated by new techniques to automatically gen-
erate attack trees and attack-defense trees from socio-technical organizational
models [11,13], paving the way towards automating risk assessment.

Attack-defense trees are a notable extension of attack trees that include,
besides attacker’s actions, also defender’s actions and model their interplay
[3,15]. This extended formalism allows capturing more detailed scenarios, and
incorporating the defender’s perspective into an analysis. For example, burglar-
resistance classes for physical security mechanisms, such as doors and windows,
define how much time an attacker equipped with certain tools needs to spend
on the intrusion [25]. Explicit consideration of defenses in the analysis allows
the domain experts to get a better picture of the scenario [4,15]. Recently, Her-
manns et al. [12] have created the attack-defense-diagrams formalism extending
attacke-defense trees with trigger and reset gates, which allow expressing tem-
poral behaviours. The work [21] likewise introduces a sequential gate to attack-
defense trees and considers a two-player stochastic game interpretation of this.

Our paper introduces a framework for analysing complex temporal scenarios
of interactions of attackers and defenders, beyond the expressiveness of clas-
sic attack-defense trees. For doing this we develop a modelling framework for
expressing the temporal behaviour of the attacker with the formalism networks
of timed automata. Unlike the work of [17] the attack-defense-tree is not encoded
as a timed automata-instead it is encoded as a boolean formula, which the
attacker wishes to become true. This encoding allows us to apply state-of-the-art
model checking tools and techniques to perform fully automated analyses of the

Modelling Attack-defense Trees Using Timed Automata 37

modelled system, both qualitative (boolean) analysis and quantitative (prob-
abilistic) analysis. The modelling framework is accompanied by an auto-
matic translation script. The script reads an attack-defense-tree and outputs
a uppaal [18] timed automata model which can subsequently be queried several
questions: among these questions are “what is the probability that an attack
succeeds within τ” and “what is the expected cost of the attacker within τ time
units” for a specific behaviour of the attacker. Using Uppaal-Stratego [10], a
recent extension of uppaal, we are furthermore capable of finding an attacker
that minimises the expected cost of an attack.

2 Attack Defense Trees

We will now define an attack-defense tree (Definition 1), along with the stan-
dard boolean semantics for such a tree. Thereafter a temporal semantics with
time, cost and stochasticity is introduced. This temporal semantics is the first
contribution of this paper.

Definition 1 (AD-tree). An AD-tree over the attacker actions Aaand defender
actions Ad is generated by the syntax

t :== p | t ∧ t | t ∨ t |∼ t

where p ∈ Aa ∪ Ad. We denote by L(Aa, Ad) all AD-trees over Aa and Ad.

Let t ∈ L(Aa, Ad), let A ⊆ Aa be the set of selected attacker actins and let D ⊆ Ad

be the set of selected defender actions; then we inductively define �t�A,D as

– �p�D,A = tt if p ∈ A ∪ D, ff otherwise
– �t1 ∧ t2�D,A = (�t1�D,A) ∧ (�t2�D,A)
– �t1 ∨ t2�D,A = (�t1�D,A) ∨ (�t2�D,A)
– �∼ t�D,A = ¬(�t�D,A)

As an example of an attack-defense-tree consider Fig. 1. This tree explains
how an attacker may succefully remove an RFID-tag from a warehouse. Among
the possible ways is infiltrating management and order a replacement tag. The
example is lifted from [3].

To make attack-defense-trees well-formed, we follow Aslanyan and Nielson [3]
and impose a type system on top of the abstract syntax of Definition 1 – in this
system there are two types d and a corresponding to defender and attacker. The
type system is captured in Fig. 2. The negation operator ∼ acts like the switch
operator of Aslanyan and Nielson [3] and changes the type of the subtree. Unlike
Aslanyan and Nielson [3], we do not have a normal negation operator: the reason
is we only want an attacker (or defender for that matter) to do positive things
i.e. the attacker should only do something beneficial for him. In the remainder
we only consider well-formed trees according to this type-system and we restrict
our attention to trees t where t � a. The major interest of attack-defense trees
is whether there exists a set of defense measures such that an attack can never
occur.

38 O. Gadyatskaya et al.

Fig. 1. An example of an attack-defense-tree. Square items correspond to defender’s
actions and circles to the attacker.

Question 1. For an attack-defense tree t ∈ L(Aa, Ad), does there exist D ⊆ Ad,
such that for all A ⊆ Aa, �t�D,A = ff?

This encapsulates our view that defense measures are selected ahead of time
and fixed, while the attacker selects a set of attack measures. Our view is in
accordance with the classical definition of attack-defense trees by [15]. Let λ be
a symbol not in Aa, which indicates that an attacker chooses to do no actions.
We denote by Aλ

a the set Aa ∪ {λ}.

Definition 2. Let t ∈ L(Aa, Ad) be an AD-tree. The Attack-Defense-Graph over
t is the tuple Gt = (V, v0,→,→¬, ���,F) where

– V = 2Ad × 2Aa is a set of vertices containing currently true attacker and
defender actions,

– v0 = (∅, ∅) is the initial vertex,
– →⊆ (V × Aλ

a × V) is a set of edges where ((D,A), a, (D′,A′)) ∈→ if and only
if D = D′, A′ = A ∪ ({a} ∩ Aa) and a /∈ A,

– →¬⊆ (V × Aa ×V) is a set of edges where ((D,A), a, (D,A)) ∈→¬ if and only
if a /∈ A

– ���= {(v0,D,S) | D ∈ 2Ad ∧ S = (D, ∅)} is the “select defense” edges and
– F = {(D,A) ∈ V | �t�D,A = tt} is a set of final vertices.

An attack-defense graph is essentially laying out all the possible steps an attacker
may take to achieve a successful attack. Notice the edges in →¬ correspond to

Modelling Attack-defense Trees Using Timed Automata 39

Ad, Aa � p : a
, p ∈ Aa

Ad, Aa � p : d
, p ∈ Ad

Ad, Aa � t1 : r Ad, Aa � t2 : r

Ad, Aa � t1 ∧ t2 : r

Ad, Aa � t1 : r Ad, Aa � t2 : r

Ad, Aa � t1 ∨ t2 : r

Ad, Aa � t1 : r

Ad, Aa �∼ t1 : r−1 , r−1 =
a if r = d

d if r = a

Fig. 2. Type system to make attack-defense trees well-formed

trying to execute an atomic attack and failing. We allow this loop back as in
this way we are able to model an attacker who selects what action to perform
and an environment deciding whether that action succeeds.

For an attack-defense graph (ADG) Gt = (V, v0,→,→¬, ���,F) we write

v
D��� v′ whenever (v,D, v′) ∈��� and similarly we write v

a−→ v′ (v ¬a−−→ v′)
if (v, a, v′) ∈→ ((v, a, v′) ∈→¬). An attack-defense scenario (ADS) for Gt is a
sequence ω = v0Dv1α1v2α2 . . . αn1sn . . . , where v0 = v0, for all i, αi ∈ {a,¬a |
a ∈ Aa} ∪ {λ}, v0

D��� v1 and for all j > 0, vj
αj−→ vj+1. We call ω a successful

ADS if there exists j such that vj ∈ F , denoted ω � t, and we call it a failed
ADS if for all j, vj /∈ F , denoted ω �� t. We denote by Ω(t) all ADSs over t and

furthermore let ΩD(t) = {π = v0 D��� v0
a1−→ · · · | π ∈ Ω(t)} be all the ADSs

initiated by the defender selecting defense measure D.

Lemma 1. Let t ∈ L(Aa, Ad) be an attack-defense-tree and let D ⊆ Ad. If for all
ω ∈ ΩD(t), ω �� t then for all A ⊆ Aa �t�D,A = ff.

Lemma 2. Let t ∈ L(Aa, Ad) be an attack-defense-tree and let D ⊆ Ad. If there
exists ω ∈ ΩD(t), ω � t then there exists A ⊆ Aa such that �t�D,A = tt.

In reality we wish to analyse the possible attacks after the defender has
selected some defense measures. For this we remove the choice of defense mea-
sures from the ADG to get an attack graph (AG). Let Gt = (V, v0,→,→¬, ���,F)
be the ADG for t ∈ L(Aa, Ad); then the AG responding to D ⊆ Ad is the graph

(V, vA,→,→¬,F) where v0 D��� vA. We denote this AG by Gt
D. Due to Lemmas 1

and 2 then Question 1 is answerable by a pure reachability check on Gt
D for all

D ⊆ 2Ad .

2.1 Adding Timed Behaviour

Intuitively speaking, an attacker observes the state of an ADG and choose an
action. The attacker is memoryless and does, for instance, not remember how
many times a specific attack has been attempted. The execution time of an
action pa is given by interval [Lpa

,Upa
], and thus an abstract timed attacker

(Definition 3) is essentially a timed transition system.

40 O. Gadyatskaya et al.

Definition 3 (Abstract Timed Attacker). Let t ∈ L(Aa, Ad). An abstract
timed attacker over the ADG Gt = (V, v0,→,→¬, ���,F) is a tuple (S,M ,Ac)
where

– S is a set of states,
– M : V → S maps vertices to attacker states, and
– Ac : S → 2A

λ
a×R≥0 gives the possible actions and delays for an attacker, with

the requirements that
• if s = M(v) and (pa, r) ∈ Ac(s) then v

pa−→ v′ for some v′,
• if (pa, t) ∈ Ac(s) then Lpa

≤ t ≤ Upa
and {(pa, t′)|Lpa

≤ t′ ≤ Upa
} ⊆

Ac(s),
• if (λ, t) ∈ Ac(s) then Ac(s) = {(λ, t′) | t′ ∈ R≥0},
• if s = M(v), v = D,A, then (λ, 0) ∈ Ac(s) if and only if v ∈ F or A = Aa

and
• for all s ∈ s, Ac(s) �= ∅

Let Gt = (V, v0,→a,→¬, ���,F) be an ADG and let A = (S,M ,Ac) be an
abstract timed attacker for Gt. For D ⊆ Ad, we denote by Gt

D|A the transition
system with state space V × S, initial state (vA,M(vA)) and transition relation
defined by the rules

– (v, s)
pa,t−−→ (v′,M(v′)) if (pa, t) ∈ Ac(s) and v

pa−→ v′

– (v, s)
¬pa,t−−−→ (v′,M(v′)) if (pa, t) ∈ Ac(s) and v

¬pa−−→ v′

– (v, s)
λ,t−−→ (v′,M(v′)) if (λ, t) ∈ Ac(s) and v

λ−→ v′.

A timed attack over Gt
D|A, t ∈ L(Aa, Ad) is a sequence v0d0α0, v1d1α1 . . . ,

where v0 = vA, for all i, di ∈ R≥0, αi ∈ {pa,¬pa | pa ∈ Aa} ∪ {λ} and there

exists a sequence of states and transitions (v0,M(v0))
α0,d0−−−→ (v1, s1) We

denote by Ωτ (Gt
D|A) all timed attacks of Gt

D|A. Let ω = v0d0α0, v1d1α1 . . .
be a timed attack, then we write ω �τ t if there exists i, s.t. �t�v = tt and
∑i−1

i=0 di ≤ τ .
Having introduced time, a defender may consider to not guarantee that an

attack can never occur, but to make it very difficult time-wise i.e. that any
succeeding attack will require more than τ time units - captured by Question 2.
Obviously, an attacker wishes to find an attack in response to D ⊆ Ad that
succeeds before τ time units i.e. to answer Question 3.

Question 2. For an attack-defense tree t ∈ L(Aa, Ad), abstract timed attacker A
and time limit τ , does there exist a D ⊆ Ad, such that for all ω ∈ Ωτ (Gt

D|A),
ω ��τ t?

Question 3. For an attack-defense tree t ∈ L(Aa, Ad), abstract timed attacker A,
time limit τ and D ⊆ Ad does there exist ω ∈ Ωτ (Gt

D|A), such that ω �τ t?

Modelling Attack-defense Trees Using Timed Automata 41

2.2 Adding Stochasticity

A stochastic attacker is a tuple AS = (A, γ, {δpa
|pa ∈ Aλ

a}), where A is an
attacker defining allowed behaviour by the stochastic attacker, γ : S → Aλ

a →
R≥0 assigns a probability mass to attacker’s actions and for all pa ∈ Aλ

a ,δpa
: S →

R≥0 → R≥0 assigns a density to the execution time of pa. A few requirements
are in order here:

1.
∑

a∈Aλ
a

γ(s)(a) = 1,
2.

∫
R≥0

δa(s)(t) dt = 1 for all a ∈ Aλ
a ,

3. γ(s)(a) · δa(s)(t) �= 0 implies (a, t) ∈ Ac(s).

Requirement 1 states that γ(s) must be a probability mass function, 2
requires that δa(s) is a probability density, and finally the most interesting rule
3 requires that whenever a probability density is assigned to a pair (a, t) then
the attacker must in fact be able to do those according to the timed semantics.
Finally, to make a complete stochastic semantics we need to resolve the non-
determinism of selecting an outcome of performing an action pa. We assume
there is a static probability of an action succeeding, and thus we assume a prob-
ability mass function γSucc : Aa → {pa,¬pa} →]0, 1[that assigns success and
failure probabilities to actions with the requirement that any action must have
a non-zero probability of succeeding.

Forming the core of a σ-algebra over timed attacks of Gt
D|AS , consider the

finite sequence π = v0I0α0v1I1α1 . . . vn, where for all i; αi ∈ {pa,¬pa | pa ∈ Aa},
Ii is an interval with rational end-points and vi ∈ V. The set of runs (cylinder)
of this sequence is

CGt
D|AS (π) = {v0d0α0, v1d1α1 . . . vndnαn · · · ∈ Ωτ (Gt

D|A) | ∀i < di ∈ Ii}.

The probability of these timed attacks runs from (v, s) are recursively defined
by

F(v,s)(π) = (v0 = v) · γ(s)(c(α)) ·
∫

R≥0

δc(α)(s)(t) dt · γSucc(α)F[(v,s)]α,t(π1),

where π1 = v1d1α1 . . . vndnαn, c(pa) = c(¬pa) = pa and (v, s)
α,t−−→ [(v, s)]α,t and

base case F(v,s)(ε) = 1.

Remark 1. The stochastic semantics above is given for arbitrary time distrib-
utions. For the remainder we will however restrict our attention to stochastic
attacker using only uniform distributions.

Let Gt
D = (V, vA,→a,→¬,F) be an AG and let AS = ((S,M ,Ac), γ, {, δpa

|
pa ∈ Aλ

a}) then we let FGt
D|AS (π) = F(vA,M(vA)(π). With the above in place, the

probability of a succesful attack within a time-bound τ is

PGt
D|AS (♦≤τ t) =

∫

ω∈Ωτ (Gt
D|AS)

({
0 if ω ��τ t

1 if ω �τ t

)

dFGt
D|AS .

42 O. Gadyatskaya et al.

Question 4. Given an attack-defense tree t ∈ L(Aa, Ad), stochastic attacker AS

and time limit τ ; find D∗ = arg minD∈2Ad

(
PGt

D|AS (♦τ t)
)

Notice that Question 4 has the time bound requirement for how quickly an
attacker must succeed in an attack. If this time bound was not present and we
thus gave an attacker unlimited time, then if a successful attack exists (no matter
how unlikely) it would eventually succeed. This is evidenced by the plot in Fig. 3
with the time limit on the x-axis and the probabilities of an attack on the y-axis.
The dashed line in the figure is the lower bound of the 99% confidence level and
the solid line is the upper bound.

2.3 Adding Cost

Fig. 3. Plot of probabilities of a
successful attack for a uniform
attacker.

Considering that an attacker is not only con-
strained by time, but also by his available
resources e.g. money, we want to reflect the con-
cept of a resource in our modelling. For this pur-
pose we consider that an attacker only has one
resource and that each action has an associated
cost per attempted execution. We capture this
cost by a function C : Aλ

a → R≥0 that assigns
the cost to actions with the requirement that
C(λ) = 0.

Let ω = v0d0α0 . . . be a timed attack; then
we define the cost of ω up till step j as C(ω, j) =
∑j−1

i=0 C(c(αi)), where c(λ) = λ and c(pa) =
c(¬pa) = pa, i.e., we just sum up the individual costs along the attack before
the jth step. Now we can define the expected cost of a stochastic attacker, AS ,
responding to a set of defense measures D with a time limit τ

EGt
D|AS (C : ♦≤τ t) =

∫

ω∈Ωτ (Gt
D|AS)

({
C(π, j) if ω ��τ t ∧ j = max{i | ∑i

k=0 dk ≤ τ}
C(π, j) if ω �τ t ∧ j = min{i | �t�vi = tt}

)

dFGt
D|AS .

Question 5. Given an attack-defense tree t ∈ L(Aa, Ad), stochastic attacker AS ,
time limit τ and D ⊂ Ad, find EGt

D|AS (C : ♦≤τ t).

Consider that we fix the distribution over execution times and the suc-
cess probabilities of execution attacks, but let γ range freely among all pos-
sible probability mass functions. Thus, we have a range of possible stochastic
attackers, parameterised by γ, i.e. a range of attackers AS

1,AS
2 . . . , where

AS
i = (A, γi, {δpa

|pa ∈ Aλ
a}). Then we are interested in finding the attacker

that minimises the cost.

Question 6. Given an attack-defense tree t ∈ L(Aa, Ad) time limit τ , D ⊂ Ad

and a collection of attackers AS
1,AS

2 . . . parameterised by γ; find a stochastic
attacker, AS , minimising EGt

D|AS (C : ♦≤τ t).

Modelling Attack-defense Trees Using Timed Automata 43

3 Timed Automata

In this paper we use the expressive network of timed automata (TA) formalism [1]
extensively. An efficient model checking technique exists for this formalism, and
the tool uppaal [5,18] uses an extended version as its modelling language. As
an example consider the three automata in Fig. 4, modelling two persons and a
door.

(a) Thief (b) Resident (c) Door

Fig. 4. Model of a Thief, a Resident and a Door.

One of the persons is a Resident of a house and the other is a Thief who
wants to enter the house while the Resident is not home. The Resident is initially
at Home with the door locked for 14 h - indicated by the expression x <= 14.
The expression x <= 14 is an invariant expression and is something that should
always be true whenever the automata is in the given location. From Home the
resident may unlock! the door and go Outside, from where he can either Lock! the
door or just leave the location to go Away. The “U” in Outside means this location
is urgent and thus no time may pass while any automata is in such a location.
The Door is initially Locked – from here someone may request to enter?, after
which the Door responds with ok!: the “C” in the location means committed and
is similar to urgent locations, but in addition to stopping time, it also ensures
that only components in committed locations may move next. The door may be
lock?ed - from which it responds to an enter? with a nok!. The Thief chooses
some time, between 0 and 24 to attempt enter !ing – if he succeeds and gets an
ok? from the Door he is happy and enters Succ. In case he is unlucky he receives
an nok? and tries again later. Although simple, the above example contains the
key elements of timed automata. To summarise, a timed automaton consists
of locations and edges between locations. On locations one can write invariant
expressions based on the values of clocks, like x <= 14. A clock is a real-valued
counter that increases as time progresses. While moving along an edge, a TA
may synchronise with another over a set of channels: in uppaal the convention
is that a! means “send on a”, and a? means “receive on a”. Not shown in the
example is that edges can be “guarded” by expressions over clocks.

Let c be a clock then we call an element c ≤ n (c ≥ n) an upper (lower)
bound and denote by B≤(C) (B≥(C)) the set of all finite conjunctions of lower

44 O. Gadyatskaya et al.

(upper) bounds. For a finite set of channels Σ we denote by Σo = {a!|a ∈ Σ}
and Σi = {a?|a ∈ Σ} the output and input actions over Σ respectively.

Definition 4 (Timed Automaton). A timed automaton (TA) is a 6-tuple
A = (L, C, 0, A, →, I), where (1) L is a finite set of locations, (2) 0 ∈ L is the
initial location, (3) C is a finite set of clocks, (4) Σ is a finite set of channels, (5)
→ ⊆ L × G(C) × 2C × L is the (non-deterministic) transition relation. We write
 g,a,R−→ ′ for a transition, where is the source and ′ the target location, g ∈ B≤(C)
is a guard, a ∈ Σo ∪ Σi is a label, and R ⊆ C is the set of clocks to reset, and (6)
I : L → B≥(C) is an invariant function, mapping locations to a set of invariant
constraints.

A clock valuation is a function v : C → R≥0. We denote all clock valuations
over C with V(C). We need two operations on clock valuations: v ′ = v + d for a
delay of d ∈ R≥0 time units, s.t. ∀c ∈ C : v ′(c) = v(c) + d, and reset v ′ = v [R]
of a set of clocks R ⊆ C, s.t. v ′(c) = 0 if c ∈ R, and v ′(c) = v(c) otherwise. We
write v � g to mean that the clock valuation v satisfies the clock constraint g.

The semantics of a TA (L, C, 0, A, →, I) is a timed transition system with
states L×V(C) and initial state (0, v0), where v0 assigns zero to all clocks. From
a state (, v) the TA may transit via a discrete transition (, v) a−→ (′, v ′) if there
exists an edge

g,a,r−−−→ ′, v � g and v ′ = v [r]. Time-wise the TA can perform a
delay d ∈ R≥0 via a time transition (, v) d−→ (, v + d) if v + d � I().

Several TAs A1,A2, . . . ,An, Ai = (Li, Ci, i
0,Σ,→i, Ii) may be joined into a

network of timed automata. The state space of such a composition is the product
of the individual TAs state spaces. From a state (s1, s2, . . . , sn) the network can
do a

– discrete output transition (s1, s2, . . . , sn) a!−→ (s′
1, s

′
2, . . . , s

′
n), if there exists an

i, such that si
a!−→ s′

i and for all j �= i sj
a?−→ s′

j

– or it can can delay d time units, (s1, s2, . . . , sn) d−→ (s′
1, s

′
2, . . . , s

′
n), if for all i

si
d−→ s′

i.

Notice we are using broadcast synchronisation for accommodating the use of
uppaal SMC. Furthermore, we will assume that components are input-enabled
and action-deterministic thus for any action there is at most one successor and
for any input action there is at least one.

Stochastic Semantics. The stochastic semantics of networks of timed automata
was laid out by David et al. [8]. In a state, each timed automaton is given a
delay density and a probability mass function for selecting output actions. The
semantics is now race based: components select a delay, t, according to their delay
distribution, and the one with the smallest delay is selected the winner. After
the entire network performs the delay, the winner selects an output according
to its probability mass function. The remaining network respond to this output
by performing the corresponding input. Afterwards a new race commences. In
uppaal SMC bounded delays (i.e. the current location has an invariant) are

Modelling Attack-defense Trees Using Timed Automata 45

selected from a uniform distribution ranging from the minimal delay before some
guard is satisfied and the maximal delay, where the invariant is still satisfied.
For unbounded delays the delay is selected from an exponential distribution.

In the preceding example, the probability that the Thief enters the house
without the Resident being home within 12 time units is:

∫ 12

0

1
14

·
(∫ 24

t

1
24

dt′
)

· 1
2

·
∫ 12−t

0

1
24 − t

dτ dt ≈ 0.13

Game Semantics. In recent works [9,10] the simple stochastic timed automata
model has been given a game semantics. In this semantics the edges of timed
automaton A = (L, C, 0, A, →, I) are partitioned into a controllable set of edges,
→C , and uncontrollable set of edges →U . The uncontrollable edges are controlled
by stochastic environment behaving according to the stochastic semantics above,
while the controllable set of edges is controlled by an actor that tries to “drive”
the system into a given goal state. In Fig. 4 the dashed edges correspond to
uncontrollable edges and the controllable edges are the solid edges.

A tool like Uppaal-Stratego can, by using reinforcement learning, find
deterministic strategies for minimising the expected time (or cost) of reaching a
goal - taking the stochastic environment into account.

4 Timed Automata Encoding

The timed automata encoding of the attack-defense tree semantics given in the
previous sections consists of three automata; one encoding the attacker, one
encoding the defender and one encoding the environment selecting an outcome
for the execution of attacker actions (γSucc). Furthermore, the encoding has one
boolean variable b pa per atomic proposition, p, in the attack-defense tree. The
state of these boolean variables directly corresponds to the states of the ADG.

4.1 Environmental Modelling

Fig. 5. Environmental modelling.
In the figure p = 1-γSucc(pa)(pa).

Let Aa be the set of attacker actions in the
attack-defense-tree, then for each pa ∈ Aa

we create a channel c pa that is used by the
attacker to indicate that he wishes to exe-
cute pa. The environment responds to this by
deciding an outcome in accordance with γSucc.
Figure 5 depicts the modelling of the environ-
ment for an attack-defense tree, where there is
only one attacker action (pa); here 1 − p is the
probability that pa succeeds.

46 O. Gadyatskaya et al.

4.2 Defender Modelling

Fig. 6. Modelling the environ-
ment with two defender actions,
p1
d and p2

d.

Let Ad be the set of defender actions available
to the defender. For each D ∈ 2Ad the defender
has an edge, where he sets all boolean variables,
pd ∈ D, to true. In Fig. 6 an example modelling
of this is shown with two defender actions. As
the edges of this defender are uncontrollable, the
defender would select a set of defense measures
by a uniform choice among all the edges. For
analysing possible attack scenarios in response
to a specific set of defense measures D we would
delete edges of the defender until only the edge
corresponding to D remains.

4.3 Attacker Modelling

In the formal development of an attacker we just defined general requirements
that any attacker should respect. Firstly, we present a non-deterministic attacker
that is as general as possible, which can be used for learning; afterwards we
create one specific attacker profile, where the non-determinism is resolved by a
probability mass function.

Fig. 7. Non-deterministic attacker
modelling

Non-deterministic Attacker. Assume we have
Aa = {pa} as our set of attacker actions
and let each of the attacker propositions
have a lower execution bound (L pa) and
an upper execution bound (U pa) – an exe-
cution time that is not controllable by the
attacker and thus will be selected according
to a uniform distribution by the environment.
Figure 7 depicts an attacker with only one
action: from the initial state, the attacker can decide to perform pa, if it is
not already true and the tree is not already true (!{t}); after which it enters a
location, where the environment decides how long the execution takes according
to the uniform distribution. After this waiting time the environment is informed
of the attempt to execute pa and decides on the outcome. Also, during this tran-
sition the cost of executing pa is added to the variable i attCost. For the case
with several propositions, the cycle in Fig. 7 is added for each proposition.

In case the tree is true, the attacker only has one option, namely, to enter
the location, where he cannot do anything.

Uniform Attacker. The uniform attacker is essentially the non-deterministic
attacker, where the non-determinism of selecting an action is resolved by a uni-
form choice among all possible actions.

Modelling Attack-defense Trees Using Timed Automata 47

5 Tool Support

L U C F
i s 0 20 80 0.80
bs 0 20 100 0.70
t 0 20 700 0.70
b 0 20 700 0.70
st 0 20 50 0.50
ba 0 20 85 0.60
im 0 20 70 0.50
ot 0 20 0 0.60

Fig. 8. Experimental setup.

The translation into timed automata described
in the preceding section has been implemented
as a python script. This script takes the attack-
defense tree, the description of the cost of atomic
attacker actions, the execution time and their
probability of succeeding. Having translated into
timed automata, we can now take advantage of
the uppaal [5] model checking engine to answer
some of the questions raised in the previous sec-
tions. For instance, Question 3 is answerable by
a simple timed reachability check by uppaal. In
the following we focus on answering Questions 5
and 6. We consider the attack-defense tree in
Fig. 1. The success probability and cost of the
various attacker actions are summarised in Fig. 8. The L column is the lower
bound of the execution time, U is the upper bound, C is the cost of the actions
and F is the success probability.

5.1 Expected Cost

We first show how to answer Question 5 by finding expected cost of the uniform
attacker within 300 time units. The cost of the attacker is estimated by the
uppaalsmc with the query

E[<= 300; 1000](max : i attCost).

Table 1. Expected cost for the uniform attacker and for synthesised strategies.

The estimates for various defense measures are given in Table 1 in the “Uni-
form” row. From the results we can see that the highest cost (unsurprisingly) is
obtained when all possible defender’s actions are selected, and the smallest when
none of them are selected. Also the results indicate that by performing t2, t1, tf
the expected cost is equivalent to performing all of the defense measures. This
is because this set jointly blocks large parts of the attack-defense tree, leaving
only the expensive “threaten” and “blackmail” for an attacker to succeed.

48 O. Gadyatskaya et al.

5.2 Finding Good Attacker Profile

Next we answer Question 6 i.e. we focus on a stochastic attacker, who minimises
his costs in response to various defense measures. For doing this, we apply the
non-deterministic attacker of our encoding and use the Uppaal-Stratego to
minimise the cost variable. The queries for the Uppaal-Stratego are

strategy s = minE(bi attCost)[<= 300] :<> t

E[<= 300; 1000](max : bi attCost) under s,

where t is the attack-defense tree translated into the uppaal syntax.
The result of executing these queries for different defenders are reported in

Table 1 in the Uppaal-Stratego row. As can be seen, the synthesized attacker
generally obtains a reduced expected cost. The reason is that he can avoid
attempting attacks he knows are blocked due to the defender’s measures. Another
reason is that this attacker actively attempts to minimise his costs; meaning he
will not take the expensive “threaten” or “bribe” if it can be avoided.

6 Conclusion

In this paper we have shown how to separate the modelling of attacker’s and
defender’s behaviours from the attack-defense tree. In this way we allow mod-
elling complex temporal behaviours without compromising the intuitively simple
description of various ways of achieving an attack expressed in the attack-defense
tree. This stands in opposition with, for example, the work [12] that adds tem-
poral behaviours by introducing sequential gates, trigger gates and reset gates,
which may clutter the description of possible attacks. Experiments reported in
the paper have shown the different analyses that can be performed on our encod-
ing using the uppaal SMC and Uppaal-Stratego: among these are finding
an attacker who minimises his costs, and estimating the probability of an attack
for a specific attacker.

In the future we wish to extend the current framework by describing the
actual behaviour of the attacker in a more thorough way. This may include
incorporating parts of the work by Hermanns et al. [12], but we will maintain
them in a separate modelling language.

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 322–335.
Springer, Heidelberg (1990). ISBN: 3-540-52826-1

2. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack tree
modelling. In: Koornneef, F., van Gulijk, C. (eds.) Computer Safety, Reliability,
and Security. LNCS, vol. 9338, pp. 291–299. Springer International Publishing,
Switzerland (2015)

Modelling Attack-defense Trees Using Timed Automata 49

3. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7 6

4. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute decoration of
attack-defense trees. Int. J. Secure Softw. Eng. (IJSSE) 3(2), 1 (2012)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

6. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: López, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006)

7. Dalton, G.C., Mills, R.F., Colombi, J.M., Raines, R.A., et al.: Analyzing attack
trees using generalized stochastic petri nets. In: 2006 IEEE Information Assurance
Workshop, pp. 116–123. IEEE (2006)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

9. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F.
(eds.)ATVA2014. LNCS, vol. 8837, pp. 129–145. Springer,Heidelberg (2014). doi:10.
1007/978-3-319-11936-6 10. ISBN: 978-3-319-11935-9

10. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46681-0 16. ISBN: 978-3-662-46680-3

11. Gadyatskaya, O.: How to generate security cameras: towards defence generation
for socio-technical systems. In: Mauw, S., et al. (eds.) GraMSec 2015. LNCS,
vol. 9390, pp. 50–65. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29968-6 4

12. Hermanns, H., Krämer, J., Krcál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., et al. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49635-0 9

13. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graph-
ical system models to graphical attack models. In: Mauw, S., et al. (eds.) GraM-
Sec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29968-6 6

14. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter
attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1036–1051. Springer, Heidelberg (2008)

15. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014)

16. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014). doi:10.1016/j.cosrev.2014.07.001

17. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Heidelberg (2015)

18. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2),
134–152 (1997). doi:10.1007/s100090050010

19. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-662-46666-7_6
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-319-11936-6_10
http://dx.doi.org/10.1007/978-3-319-11936-6_10
http://dx.doi.org/10.1007/978-3-662-46681-0_16
http://dx.doi.org/10.1007/978-3-319-29968-6_4
http://dx.doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1016/j.cosrev.2014.07.001
http://dx.doi.org/10.1007/s100090050010

50 O. Gadyatskaya et al.

20. NATO Research and Technology Organisation (RTO). Improving Common Secu-
rity Risk Analysis. Technical report AC/323(ISP-049)TP/193, North Atlantic
Treaty Organisation, University of California, Berkeley (2008)

21. Nielson, F., Aslanyan, Z., Parker, D.: Quantitative verification and synthesis of
attack-defense scenarios. In: CSF 2016 (2016, to appear)

22. OWASP. CISO AppSec Guide: Criteria for managing application security risks
(2013)

23. Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a secure system engi-
neering methodology. In: Proceedings of the 1998 New Security Paradigms Work-
shop (NSPW 1998), pp. 2–10, Charlottesville, Virginia, US, September 1998

24. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. (1999)
25. SITEC. Burglar resistance. https://www.sitec.de/en/information-and-advice/

burglar-resistance/

https://www.sitec.de/en/information-and-advice/burglar-resistance/
https://www.sitec.de/en/information-and-advice/burglar-resistance/

Stochasticity and Hybrid Control

Input/Output Stochastic Automata

Compositionality and Determinism

Pedro R. D’Argenio1, Matias David Lee2, and Raúl E. Monti1(B)

1 CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
{dargenio,rmonti}@famaf.unc.edu.ar

2 LIP, Université de Lyon, CNRS, ENS de Lyon, Inria, UCBL, Lyon, France

Abstract. Stochastic automata provide a way to symbolically model
systems in which the occurrence time of events may respond to any con-
tinuous random variable. We introduce here an input/output variant of
stochastic automata that, once the model is closed —i.e., all synchro-
nizations are resolved—, the resulting automaton does not contain non-
deterministic choices. This is important since fully probabilistic models
are amenable to simulation in the general case and to much more effi-
cient analysis if restricted to Markov models. We present here a the-
oretical introduction to input/output stochastic automata (IOSA) for
which we (i) provide a concrete semantics in terms of non-deterministic
labeled Markov processes (NLMP), (ii) prove that bisimulation is a con-
gruence for parallel composition both in NLMP and IOSA, (iii) show
that parallel composition commutes in the symbolic and concrete level,
and (iv) provide a proof that a closed IOSA is indeed deterministic.

1 Introduction

The difficulty of the modeling and analysis of a system grows rapidly with the
size and complexity of the system itself. In this sense the advantages of com-
positional approaches to modeling complex systems are unquestionable: they
facilitate systematic design and the interchange of components, enable composi-
tional analysis and help for the compact representation of state spaces and other
ways of attacking the state explosion problem. Compositional modeling allows
the designer to focus on the modeling of the rather discernible operational behav-
iour of the components and the evident synchronization among them (compare
to the difficulty of figuring out the whole behaviour in a monolithic model).

If these models are aimed at performance and dependability analysis, there
is a need to consider general distributions. Although (negative) exponential dis-
tributions yield analytically tractable models (namely, continuous time Markov
chains), and are useful for many applications, they are not realistic for modeling
many phenomena. Phenomena such as timeouts in communication protocols,
hard deadlines in real-time systems, human response times or the variability of
the delay of sound and video frames (so-called jitter) in modern multi-media

Supported by ANPCyT PICT-2012-1823 and SeCyT-UNC 05/BP12 and 05/B497.

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 53–68, 2016.
DOI: 10.1007/978-3-319-44878-7 4

54 P.R. D’Argenio et al.

communication systems are typically described by non-memoryless distributions
such as uniform, log-normal, or Weibull distributions.

To attack the compositional modeling of this type of systems stochastic
process algebras with general continuous distributions have been devised (see
e.g. [4] and references therein), and notably the modeling language MODEST [3].
The problem with all these languages is that they introduce non-determinism. In
general, it is not possible to analyze generally distributed stochastic processes,
let alone if they are also non-deterministic. However, deterministic stochastic
processes can be simulated using discrete event simulation. Simulation is instead
not feasible in general if the models are non-deterministic. (Though there are
approaches to simulate Markov decission processes either by recognizing spu-
rious non-determinism [2,16] or by sampling schedulers [9], it is not clear how
these techniques scale to continuous settings.)

Starting from the notion of stochastic automata [7,8], we restrict this frame-
work to obtain input/output stochastic automata (IOSA). While stochastic
automata were constructed to naturally accept the non-determinism interact-
ing with continuous probabilities, we designed IOSA so that parallel composi-
tion works naturally and, moreover, the system becomes fully probabilistic (i.e.,
it does not contain non-determinism) as soon as the system is closed (i.e. all
interactions are resolved). Thus, we split actions into input and output and let
them behave in a reactive and generative manner respectively (see [15] for the
concepts of reactive and generative transitions), following ideas proposed in [22].
Since outputs behave generatively, we let their occurrence time be controlled
by a random variable (encoded in a clock). As inputs are reactive, they are
passive and hence their occurrence time can only depend on their interaction
with outputs. Thus, IOSA combines in a single model the two interpretations of
stochastic automata (either as open or as closed systems [7,8].)

The paper presents a theoretical introduction to IOSA. For this, we present
the model in Sect. 3 and give its concrete semantics in terms of non-deterministic
labeled Markov processes (NLMP) [10,21]. Next (Sect. 4) we define the parallel
composition on IOSA and show that the model is closed under composition.
We also define parallel composition on NLMPs and show that, when it is well
defined, bisimulation is a congruence for parallel composition on NLMPs. More-
over, we prove that parallel composition commutes in the symbolic (IOSA) and
concrete (NLMP) level through isomorphism and as a corollary have that bisim-
ulation is a congruence for parallel composition on IOSAs. In Sect. 5, we define
precisely what we mean by a deterministic IOSA, show several properties of the
underlying NLMP, and prove that a closed IOSA (i.e., a IOSA without input
actions) is indeed deterministic. In addition, we provide the essential background
on measure theory in Sect. 2, and conclude the paper in Sect. 6.

2 Preliminaries on Measure Theory

In this section, we recall some fundamental notions of measure theory that will
be useful throughout the paper.

Input/Output Stochastic Automata 55

Given a set S and a collection Σ of subsets of S, we call Σ a σ-algebra iff
S ∈ Σ and Σ is closed under complement and denumerable union. By σ(G)
we denote the σ-algebra generated by the family G ⊆ 2S , i.e., the minimal σ-
algebra containing G. Each element of G is called a generator and G is called the
generator set. We call the pair (S,Σ) a measurable space. A measurable set is a
set Q ∈ Σ. Let (L,Λ) and (S,Σ) be measurable spaces. A measurable rectangle
is a set A × B with A ∈ Λ and B ∈ Σ. The product σ-algebra on L × S is
the smallest σ-algebra containing all measurable rectangles, and is denoted by
Λ⊗Σ. The coproduct σ-algebra Λ⊕Σ of L and S is defined in the disjoint union
L � S and it is generated by the set Λ ∪ Σ.

A function μ : Σ → [0, 1] is a probability measure if (i) it is σ-additive, i.e.
μ(

⋃
i∈N

Qi) =
∑

i∈N
μ(Qi) for all countable family of pairwise disjoint measur-

able sets {Qi | i ∈ N} ⊆ Σ, and (ii) μ(S) = 1. By δa we denote the Dirac proba-
bility measure concentrated in {a}. Given measures μ and μ′ on (L,Λ) and (S,Σ)
respectively, the product measure μ × μ′ on the product space (L×S,Λ⊗Σ) is
defined as the unique measure such that (μ × μ′)(A × B) = μ(A) · μ′(B) for all
A ∈ Λ and B ∈ Σ. Any measure μ on (L,Λ) can be naturally extended into a
measure μ̂ in the coproduct space (L�S,Λ⊕Σ) by taking μ̂(A) = μ(A\S), and
similarly for measures on (S,Σ). Let Δ(S) denote the set of all probability mea-
sures over the measurable space (S,Σ). We let μ, μ′, μ1,. . . range over Δ(S). Let
(S1, Σ1) and (S2, Σ2) be two measurable spaces. A function f : S1 → S2 is said to
be measurable if for all Q2 ∈ Σ2, f−1(Q2) ∈ Σ1, i.e., its inverse image maps mea-
surable sets to measurable sets. In this case we denote f : (S1, Σ1) → (S2, Σ2).

A σ-algebra is Borel if it is generated by the set of all open sets in a topology.
Particularly, the Borel σ-algebra on the real line is B(R) = σ({(a, b) | a, b ∈
R and a < b}). Similarly, B([0, 1]) is the Borel σ-algebra on the interval [0, 1]
generated by the open sets in the interval [0, 1].

There is a standard construction by Giry [14] to endow Δ(S) with a σ-algebra
as follows: Δ(Σ) is defined as the σ-algebra generated by the sets of probability
measures Δ≥p(Q) .= {μ | μ(Q) ≥ p}, with Q ∈ Σ and p ∈ [0, 1]. We let ξ range
over Δ(Σ).

To give structure to non-determinism on NLMP, we will use hit σ-
algebras [10] on Δ(Σ). Thus, the hit σ-algebra H(Δ(Σ)) is defined to be the
minimal σ-algebra containing all sets H(ξ) .= {ζ ∈ Δ(Σ) | ζ ∩ ξ �= ∅} with
ξ ∈ Δ(Σ).

3 Input/Output Stochastic Automata (IOSA)

Stochastic automata [7,8] use clock variables to control and observe the passage
of time. Since in our context the time at which events occur is random, clocks
are in fact random variables. When a clock is set, it takes a random value whose
probability depends on the distribution function of the clock. As time evolves,
clocks count down synchronously, i.e., all do so at the same rate. When a clock
reaches the value zero, “the clock expires” and this may enable some events.
Starting from the notion of stochastic automata, we restrict this framework to

56 P.R. D’Argenio et al.

obtain IOSA. We split actions into inputs and outputs and let them behave
in a reactive and generative manner respectively (see [15] for the concepts of
reactive and generative transitions), somehow following ideas proposed in [22].
We could also think that inputs are externally controlled actions and outputs
are locally controlled actions. Precisely because of this, the occurrence time of
output actions is controlled by a random variable, while inputs are passive and
hence their occurrence time can only depend on their interaction with outputs.
A set of restrictions which we will explain later ensures that, almost surely, no
two outputs actions are enabled at the same time.

Definition 1. An input/output stochastic automaton (IOSA for short) is a
structure (S,A, C,−→, C0, s0), where S is a (denumerable) set of states, A is a
(denumerable) set of labels partitioned into disjoint sets of input labels AI , and
output labels AO, C is a (finite) set of clocks such that each x ∈ C has associated
a continuous probability measure μx on R (hence μx(d) = 0 for any d ∈ R) also
satisfying that μx(R>0) = 1, −→ ⊆ S × C × A × C × S is a transition function,
C0 is the set of clocks that are initialized in the initial state, and s0 ∈ S is the
initial state. In addition a IOSA should satisfy the following constraints:

(a) If s
C,a,C′

−−−−−→ s′ and a ∈ AI , then C = ∅.

(b) If s
C,a,C′

−−−−−→ s′ and a ∈ AO, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−−→ s1 and s

{x},a2,C2−−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) If s
{x},a,C−−−−−→ s′ then, for every transition t

C1,b,C2−−−−−→ s, either x ∈ C2, or

x /∈ C1 and there exists a transition t
{x},c,C3−−−−−−→ t′.

(e) If s0
{x},a,C−−−−−→ s then x ∈ C0.

(f) For every a ∈ AI and state s, there exists a transition s
∅,a,C−−−−→ s′.

(g) For every a ∈ AI , if s
∅,a,C1−−−−−→ s1 and s

∅,a,C2−−−−−→ s2, C1 = C2 and s1 = s2.

The occurrence of an action is controlled by the expiration of clocks. Thus,

whenever s
{x},a,C−−−−−→ s′ and the system is in state s, output action a will occur

once the value of clock x reaches 0. At this point, the system moves to state
s′ setting the values of every clocks y ∈ C to a value sampled according to the
distribution μy. For input transitions s

∅,a,C−−−−→ s′, the behaviour is similar, only
that its occurrence can potentially occur at any time which will become definite
once the action interacts with an output.

Restriction (a) states that every input is reactive and hence their occurrence
is controlled by the environment. Hence no internal clock controls its occurrence.
Restriction (b) states that each output is generative (or locally controlled) so
it has associated a clock which determines its occurrence time. We also limit
the set to exactly one clock, to have a clean definition. Restriction (c) forbids
that a single clock enables two different transitions, otherwise two output actions
would become enable simultaneously. Besides, notice that if clocks are used when
they have already expired they would immediately enable the respective output
transition, which may lead to a simultaneous enabling if the system arrives to a

Input/Output Stochastic Automata 57

states with two expired clocks enabling two different transitions. Restrictions (d)
and (e) ensure that a clock would never be used when it has already expired.
Particularly (d) states that an enabling clock x at state s should either be set
on arrival (x ∈ C2) or it has not been used immediately before (x /∈ C1) but
should be also enabling on the immediately preceding state. Since clocks are set
by sampling from a continuous random variable, the probability that the values
of two different clocks are equal is 0. This last fact, together with restrictions (c),
(d) and (e), guarantees that almost never two different output transitions are
enabled at the same time. Restrictions (f) and (g) are usual restrictions on I/O-
like automata: (f) ensures that outputs are not blocked in a composition, and
(g) that determinism is preserved after composition.

The semantics of IOSA is defined in terms of NLMP [10,21]. An NLMP is a
generalization of probabilistic transition systems with continuous domain. More
particularly, it extends LMP [11] with internal non-determinism.

Definition 2. A non-deterministic labeled Markov process (NLMP for short)
is a structure (S, Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L we have Ta : S → Δ(Σ) is measurable from Σ to the
hit σ-algebra H(Δ(Σ)).

The formal semantics of a IOSA is defined by an NLMP with two classes of
transitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and other describing the time
steps, that only records the passage of time synchronously decreasing the value
of all clocks. In order to simplify the definition, we assume that the set of clocks
has a particular order and their current values follow the same order in a vector.

Definition 3. Given a IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN}, its
semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

– S = (S ∪ {init}) × R
N , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

– Tinit(init, 	v) = {δs0 × ∏N
i=1 μxi

},
– Ta(s,	v) = {μ�v,C′,s′ | s

C,a,C′
−−−−−→ s′,

∧
xi∈C 	v(i) ≤ 0}, for all a ∈ A, where

μ�v,C′,s′ = δs′ × ∏N
i=1 μxi

with μxi
= μxi

if xi ∈ C ′ and μxi
= δ�v(i) otherwise,

and
– Td(s,	v) = {δ−d

(s,�v) | 0 < d ≤ min{	v(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}}
for all d ∈ R≥0, where δ−d

(s,�v) = δs × ∏N
i=1 δ�v(i)−d.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode the
random initialization of all clocks (it would be sufficient to initialize clocks in C0

but we decided for this simplification). Such encoding is done by transition Tinit.
The state space is structured in the usual Borel σ-algebra. The discrete step is

encoded by Ta , with a ∈ A. Notice that, at state (s,	v), the transition s
C,a,C′

−−−−−→ s′

will only take place if
∧

xi∈C 	v(i) ≤ 0, that is, if the current values of all clocks in
C are not positive. For the particular case of the input actions this will always

58 P.R. D’Argenio et al.

be true. The next actual state would be determined randomly as follows: the
symbolic state will be s′ (this corresponds to δs′ in μ�v,C′,s′ = δs′ × ∏N

i=1 μxi
),

any clock not in C ′ preserves the current value (hence μxi
= δ�v(i) if xi /∈ C ′), and

any clock in C ′ is set randomly according to its respective associated distribution
(hence μxi

= μxi
if xi ∈ C ′). The time step is encoded by Td(s,	v) with d ∈

R≥0. It can only take place at d units of time if there is no output transition
enabled at the current state within the next d time units (this is verified by

condition 0 < d ≤ min{	v(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}). In this
case, the system remains in the same symbolic state (this corresponds to δs in
δ−d
(s,�v) = δs ×∏N

i=1 δ�v(i)−d), and all clock values are decreased by d units of times
(represented by δ�v(i)−d in the same formula).

We still need to show that P(I) is indeed an NLMP. For this we have to
prove that Ta maps into measurable sets in Δ(B(S)) (Lemma 4), and that Ta is
a measurable function for every a ∈ L (Lemma 5).

Lemma 4. Ta(s,	v) ∈ Δ(B(S)) for all a ∈ L and (s,	v) ∈ S.

Proof. The proof makes use of Lemma 3.1 in [10], from which we know that for
all μ ∈ Δ(S), {μ} ∈ Δ(B(S)) (since B(S) is generated by a discrete π-system).

Notice that for any 	v ∈ R
N , Tinit(init, 	v) is a singleton set and hence measur-

able. Similarly, notice that for every d ∈ R, s ∈ S, and 	v ∈ R
N , Td(s,	v) is either

a singleton set or the empty set, and hence measurable. Finally, since there is
only a denumerable number of transitions in a IOSA, for every a ∈ A, s ∈ S,
and 	v ∈ R

N , Ta(s,	v) is a denumerable union of singleton sets, and hence also
measurable. ��
Lemma 5. For all a ∈ L, Ta is measurable from B(S) to H(Δ(B(S))).

Proof. We need to show that for every a ∈ L and every ξ ∈ Δ(B(S)),
T −1

a (H(ξ)) = {(s,	v) | Ta(s,	v) ∩ ξ �= ∅} is measurable.
We divide the proof in three cases depending on the nature of the label on the

transition function. First, notice that T −1
init (H(ξ)) = {init}×R

N if δs0×
∏N

i=1 μxi
∈

ξ and T −1
init (H(ξ)) = ∅ otherwise, and both sets are measurable.

We analyze now the case of a ∈ A, for which we can calculate

T −1
a (H(ξ)) = {(s,	v) | {μ�v,C′,s′ | s

C,a,C′
−−−−−→ s′,

∧
xi∈C 	v(i) ≤ 0} ∩ ξ �= ∅}

=
⋃

s
C,a,C′−−−→s′

{(s,	v) | ∧
xi∈C 	v(i) ≤ 0} ∩ {(s,	v) | μ�v,C′,s′ ∈ ξ}

Since the union is denumerable, it is sufficient to prove that the two intersecting
sets are measurable. First, notice that {(s,	v) | ∧

xi∈C 	v(i) ≤ 0} = {s} × ∏N
i=1 Vi

where Vi = (−∞, 0] if xi ∈ C and Vi = R otherwise. Hence, it is measurable.
For the second case, define fC′,s′ : R → Δ(S) by fC′,s′(v) = μ�v,C′,s′ . Then

{(s,	v) | μ�v,C′,s′ ∈ ξ} = {(s,	v) | fC′,s′(v) ∈ ξ} = {s} × f−1
C′,s′(ξ). So, it only

remains to prove that fC′,s′ is a measurable function. Using [20, Lemma 3.6], we

Input/Output Stochastic Automata 59

only have to prove that f−1
C′,s′(Δ≥q(A × ∏N

i=1 Vi)) with A ⊆ S and Vi ∈ B(R),
1 ≤ i ≤ N , is measurable, for which we can calculate

f−1
C′,s′(Δ≥q(A × ∏N

i=1 Vi)) = {	v | μ�v,C′,s′(A × ∏N
i=1 Vi) ≥ q}

= {	v | s′ ∈ A, (
∏

xi∈C′ μxi
)(

∏
xi∈C′ Vi) ≥ q,∀xi /∈ C ′ : 	v(i) ∈ Vi}

Then, if s′ ∈ A and (
∏

xi∈C′)(
∏

xi∈C′ Vi) ≥ q, f−1
C′,s′(Δ≥q(A × ∏N

i=1 Vi)) =
∏N

i=1 Vi with Vi = R if xi ∈ C ′, Vi = Vi if xi /∈ C ′, or f−1
C′,s′(Δ≥q(A×∏N

i=1 Vi)) =
∅ otherwise, and in both cases the sets are measurable.

For the case of d ∈ R, notice that

T −1
d (H(ξ)) = {(s,	v) | δ−d

(s,�v) ∈ ξ} ∩

{(s,	v) | 0 < d ≤ min{	v(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}

The second set is equal to S × ∏N
i=1 Vi where Vi = [d,∞) if s

{xi},a,C′
−−−−−−→ s′, and

Vi = R otherwise. Hence it is measurable. For the first set, define fd : S → Δ(S)
by fd(s,	v) = δ−d

(s,�v). Then {(s,	v) | δ−d
(s,�v) ∈ ξ} = f−1

d (ξ) and hence it suffices to
show that fd is measurable. So, we have to prove that f−1

d (Δ≥q(Q)) is measurable
for any Q ∈ B(S). But f−1

d (Δ≥q(Q)) = {(s,	v) | δ−d
(s,�v)(Q) ≥ q} = {(s,	v) |

(s,	v − d) ∈ Q ∧ q = 1}. That is f−1
d (Δ≥q(Q)) = {(s,	v) | (s,	v − d) ∈ Q} if q = 1

or f−1
d (Δ≥q(Q)) = ∅ otherwise, and in both cases the sets are measurable. ��

4 Composition and Bisimulation as a Congruence

In this section we define parallel composition of IOSAs and show that IOSAs
are closed for parallel composition. We also show that bisimulation is a con-
gruence for the parallel composition and we achieve it through defining parallel
composition on NLMPs.

Since we intend outputs to be autonomous (or locally controlled), we do not
allow synchronization between outputs. Besides, we need to avoid name clashes
on the clock, so that the intended behaviour of each component is preserved and
moreover, to ensure that the resulting composed automata is indeed a IOSA.
Thus we require to compose only compatible IOSAs.

Definition 6. Two IOSAs I1 and I2 are said to be compatible if they do not
share output actions nor clocks, i.e. AO

1 ∩ AO
2 = ∅ and C1 ∩ C2 = ∅.

Definition 7. Given two compatible IOSAs I1 and I2, the parallel composition
I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s

1
0||s20) where (i) AO = AO

1 ∪ AO
2 (ii)

AI = (AI
1 ∪ AI

2) \ AO (iii) C = C1 ∪ C2 (iv) C0 = C1
0 ∪ C2

0 and −→ is the smallest
relation defined by rules in Table 1 where we write s||t instead of (s, t).

The previous definition is only structural. We need to show that the seven
restrictions that define IOSAs also hold.

60 P.R. D’Argenio et al.

Table 1. Parallel composition on IOSAs

s1
C,a,C′

−−−−−→1 s′
1

s1||s2 C,a,C′−−−−−→ s′
1||s2

a ∈ A1\A2 (1)
s2

C,a,C′
−−−−−→2 s′

2

s1||s2 C,a,C′−−−−−→ s1||s′
2

a ∈ A2\A1 (2)

s1
C1,a,C

′
1−−−−−−→1 s′

1 s2
C2,a,C

′
2−−−−−−→2 s′

2

s1||s2 C1∪C2,a,C
′
1∪C′

2−−−−−−−−−−−→ s′
1||s′

2

(3)

Theorem 8. Let I1 and I2 be two compatible IOSAs. Then I1||I2 is indeed a
IOSA.

Proof. The proof of restrictions (a), (b), (f), (e), and (g) follow by straight-
forward inspection on the rules, considering that I1 and I2 also satisfy the
respective restriction, and doing some case analysis. Since I1 and I2 are com-
patible, restriction (c) also follows by inspecting the rules taking into account,
in addition, that I1 and I2 satisfy restriction (g).

So, we only focus on (d). Suppose s1||s2 {x},a,C−−−−−→ s′
1||s′

2. We analyze the case
in which a ∈ A1 and x ∈ C1. The other is symmetric. Moreover, we only consider
the case in which a ∈ A1 ∩ A2 since the case a ∈ A1 \ A2 follows similarly.

In this case, we have that s1
{x},a,C1−−−−−−→1 s′

1, s2
∅,a,C2−−−−−→2 s′

2, and C = C1 ∪C2.

Let t1||t2 C′,b,C′′
−−−−−→ s1||s2. We distinguish three cases:

(i) Suppose b ∈ A1 \ A2. Then t1
C′,b,C′′

−−−−−→ s1 and t2 = s2. Because I1 satis-

fies (d), then either x ∈ C ′′, or x /∈ C ′ and there exist t1
{x},c,C3−−−−−−→1 t′1. Hence

x ∈ C ′′, or x /∈ C ′ and there exist t′2 and C ′
3 such that t1||t2 {x},c,C′

3−−−−−−→ t′1||t′2
(which may occur either by rule (1) or (3) if c ∈ A1 ∩ A2).

(ii) If b ∈ A2 \ A1, then t2
C′,b,C′′

−−−−−→2 s2 and t1 = s1. Notice that C ′, C ′′ ⊆ C2

and hence x /∈ C ′ and x /∈ C ′′. Moreover, since I2 is input enabled
(restriction (f)), t2

∅,a,C3−−−−−→2 t′2 for some C3 and t′2. Then, by rule (3),

s1||t2 {x},a,C1∪C3−−−−−−−−−→ s′
1||t′2 which proves this case.

(iii) If b ∈ A1 ∩ A2, then, by rule (3), t1
C′

1,b,C′′
1−−−−−−→1 s1, t2

C′
2,b,C′′

2−−−−−−→2 s2, C ′ =
C ′

1 ∪ C ′
2 and C ′′ = C ′′

1 ∪ C ′′
2 . Because I1 satisfies (d), then either x ∈ C ′′

1 ,

or x /∈ C ′
1 and there exist t1

{x},c,C3−−−−−−→1 t′1. If x ∈ C ′′
1 , then x ∈ C ′ partially

proving this case. If instead x /∈ C ′
1 and there exist t1

{x},c,C3−−−−−−→1 t′1, then
x /∈ C ′′ (since x /∈ C ′′

2 by compatibility), and there exist t′2 and C ′
3 such

that t1||t2 {x},c,C′
3−−−−−−→ t′1||t′2 (which may occur either by rule (1) or (3) if

c ∈ A1 ∩ A2), finally proving this case. ��
To prove that bisimulation is a congruence on IOSAs, we first define a par-

allel composition on NLMPs, prove congruence in this setting, and then show

Input/Output Stochastic Automata 61

that the semantics of the parallel composition of two IOSAs is isomorphic to
the parallel composition of the semantics of each IOSA. From this, it follows
that bisimulation is also a congruence for the parallel composition of IOSAs.
An important consideration is that NLMPs are not closed for parallel composi-
tion [13] in general. So we will need to require that the parallel composition of
NLMPs is also an NLMP as a hypothesis of the congruence theorem on NLMP.

Definition 9. Let Pi = (Si, Σi, {T i
a | a ∈ Li}), i ∈ {1, 2}, be two NLMPs. We

define the parallel composition by P1||P2 = (S1×S2, Σ1⊗Σ2, {Ta | a ∈ L1∪L2})
where, writing s1||s2 instead of (s1, s2),

(i) Ta(s1||s2) = {μ1 × δs2 | μ1 ∈ T 1
a (s1)}, if a ∈ L1 \ L2,

(ii) Ta(s1||s2) = {δs1 × μ2 | μ2 ∈ T 2
a (s2)}, if a ∈ L2 \ L1, and

(iii) Ta(s1||s2) = {μ1 × μ2 | μ1 ∈ T 1
a (s1), μ2 ∈ T 2

a (s2)}, if a ∈ L1 ∩ L2.

Probabilistic bisimulation was introduced by Larsen and Skou [18] in a dis-
crete setting and adapted to a continuous setting like NLMP in [10,11]. The
idea behind the bisimulation equivalence is that from two equivalent states, an
a-transition should lead with equal probability to any measurable aggregate of
equivalence classes (properly speaking, to any measurable set that results from
an arbitrary union of equivalence classes).

Given a relation R ⊆ S×S, a set Q ⊆ S is R-closed if R(Q) ⊆ Q. If R is
symmetric, Q is R-closed iff for all s, t ∈ S such that s R t, s ∈ Q ⇔ t ∈ Q. Using
this definition, a symmetric relation R can be lifted to an equivalence relation
in Δ(S) as follows: μ R μ′ iff for every R-closed Q ∈ Σ, μ(Q) = μ′(Q).

Definition 10. A relation R ⊆ S×S is a bisimulation on the NLMP P =
(S, Σ, {Ta | a ∈ L}) if it is symmetric and for all a ∈ L, s R t implies that for
all μ ∈ Ta(s), there is μ′ ∈ Ta(t) s.t. μ R μ′. We say that s, t ∈ S are bisimilar,
denoted by s ∼ t, if there is a bisimulation R such that s R t.

We know that ∼ is an equivalence relation [10]. The next theorem states that
∼ is a congruence for parallel composition whenever the resulting composition
is indeed an NLMP.

Theorem 11. Let Pi = (Si, Σi, {T i
a | a ∈ Li}) i ∈ {1, 2}, be two NLMPs. If

P1||P2 is an NLMP, then for all s1, s
′
1 ∈ S1 and s2 ∈ S2, if s1 ∼ s′

1, then
s1||s2 ∼ s′

1||s2 and s2||s1 ∼ s2||s′
1.

Proof. We only prove that s1||s2 ∼ s′
1||s2. The other case is symmetric. Let

R ⊆ S1×S1 be a bisimulation relation. Define R′ ⊆ (S1×S2) × (S1×S2) by
R′ = {(s1||s2, s′

1||s2) | (s1, s′
1) ∈ R, s2 ∈ S2}. We prove that R′ is a bisimulation

by doing case analysis on the definition of the transition relation in the parallel
composition.

Suppose in general that s1||s2 R′ s′
1||s2, and consider the case in which

Ta(s1||s2) results from (i) in Definition 9. Let μ1 × δs2 ∈ Ta(s1||s2) with μ1 ∈
T 1
a (s1). Since s1 R s′

1, there exists μ′
1 ∈ T 1

a (s′
1) such that μ1 R μ′

1. Let Q ∈

62 P.R. D’Argenio et al.

Σ1 ⊗ Σ2 be R′-closed and define Q|s2 = {s1 | s1||s2 ∈ Q}. Q|s2 is measurable in
Σ1 [1], and can be easily proven to be R-closed. Now we can calculate:

(μ1 × δs2)(Q) = (μ1 × δs2)(Q|s2 × {s2}) = μ1(Q|s2)
(∗)
= μ′

1(Q|s2) = (μ′
1 × δs2)(Q|s2 × {s2}) = (μ′

1 × δs2)(Q)

where equality (∗) follows from μ1 R μ′
1, and hence (μ1 × δs2) R′ (μ′

1 × δs2).
Case (ii) in Definition 9 follows with a similar analysis, so we focus on case

(iii). Let μ1 × μ2 ∈ Ta(s1||s2) with μ1 ∈ T 1
a (s1). Since s1 R s′

1, there exists
μ′
1 ∈ T 1

a (s′
1) such that μ1 R μ′

1. Let Q ∈ Σ1 ⊗ Σ2 be R′-closed. Using Fubini’s
theorem [1], we calculate:

(μ1 × μ2)(Q) =
∫

S2

∫

S1

1Q(x, y) dμ1(x) dμ2(y) =
∫

S2

∫

S1

1Q|y (x) dμ1(x) dμ2(y)

=
∫

S2

μ1(Q|y) dμ2(y)
(∗)
=

∫

S2

μ′
1(Q|y) dμ2(y) = (μ′

1 × μ2)(Q)

where 1Q is the usual characteristic function, and (∗) follows from μ1 R μ′
1.

Therefore (μ1 × μ2) R′ (μ′
1 × μ2). ��

Next, we prove that the semantic interpretation of IOSAs and parallel com-
position commutes, that is, that the NLMP resulting from interpreting a parallel
composition of two IOSAs is isomorphic to the parallel composition of the two
NLMPs interpreting each of the IOSAs.

Theorem 12. Given two IOSAs I1 and I2, there is an isomorphism between
(the reachable parts of) P(I1||I2) and P(I1)||P(I2).

Proof. Let N and M be the number of clocks in I1 and I2, respectively. Let
S = ((S1 × S2) ∪ {init}) × R

N+M and S′ = ((S1 × R
N) × (S2 × R

M)) ∪ (({init} ×
R

N)× ({init}×R
M)) be the states of P(I1||I2) and P(I1)||P(I2), respectively1.

The isomorphism is given by function f : S → S′ defined by f(init, 	v1	v2) =
(init, 	v1)||(init, 	v2), and f((s1||s2), 	v1	v2) = (s1, 	v1)||(s2, 	v2) for all s1 ∈ S1, s2 ∈
S2, and vectors 	v1 and 	v2 which represent valuations on the sets of clocks C1

and C2 respectively. f is clearly bijective, and it can be proved straightforwardly
that both f and f−1 are measurable (i.e. f is bimeasurable). From this, it follows
that the measurable spaces (S,B(S)) and (S′,B(S′)) are isomorphic.

Following [12], f induces a map Δf : Δ(S) → Δ(S′) defined by Δf(μ) =
μ◦f−1. It is not difficult to prove that Δf is bijective and bimeasurable. Hence,
(Δ(S),Δ(B(S))) and (Δ(S′),Δ(B(S′))) are isomorphic.

1 Strictly speaking, P(I1)||P(I2) should also contain states of the form (s,�v1)||(init, �v2)
and (init, �v1)||(s,�v2) with s �= init. Nonetheless, these states are not reachable. Thus,
we do not consider them since otherwise the result would not be strictly an isomor-
phism and it would only add irrelevant technical problems to the proof.

Input/Output Stochastic Automata 63

We can lift f a second time to obtain an isomorphism on hit σ-algebras.
Define2 Hf : Δ(B(S′)) → Δ(B(S)) by Hf = (Δf)−1. Again Hf can be
proven to be bijective and bimeasurable and hence, (Δ(B(S)),H(Δ(B(S))))
and (Δ(B(S′)),H(Δ(B(S′)))) are isomorphic.

Now, it is not difficult to see that for all a ∈ L, Ta(r) = Hf(T ′
a(f(r)))

for all r ∈ S where Ta and T ′
a are the transition functions on P(I1||I2) and

P(I1)||P(I2), respectively. This proves that both NLMPs are isomorphic. ��
Given two NLMPs P1 and P2 with the same set of labels, the definition of

bisimulation can be extended to states in the different NLMPs by constructing
the NLMP induced by the coproduct σ-algebra. The NLMP P1 ⊕ P2 is defined
by the structure (S1 � S2, Σ1 ⊕ Σ2, {Ta | a ∈ L}) where, for all s ∈ S1 � S2 and
a ∈ L, Ta(s) = T 1

a (s) if s ∈ S1 and Ta(s) = T 2
a (s) if s ∈ S2. Thus, if s1 and

s2 are states of P1 and P2 respectively, s1 ∼ s2 whenever they are bisimilar in
P1 ⊕ P2.

By [12, Proposition 3.6], the next corollary follows immediately from
Theorem 12.

Corollary 13. For any 	v1 and 	v2 representing valuations of clocks in I1 and
I2, resp., (init, 	v1	v2) ∼ (init, 	v1)||(init, 	v2) and ((s1||s2), 	v1	v2) ∼ (s1, 	v1)||(s2, 	v2).

We say that two IOSAs I1 and I2 are bisimilar, notation I1 ∼ I2 whenever
(init, 	v1) ∼ (init, 	v2) for any vectors 	v1 and 	v2 representing the valuations of
clocks in I1 and I2, respectively.

Then, the fact that bisimulation equivalence is a congruence on IOSAs follows
from Theorem 11 and Corollary 13 and it is stated in the following theorem.

Theorem 14. Let I1 and I2 be two IOSAs such that I1 ∼ I2. Then, for any
IOSA I3, I1||I3 ∼ I2||I3 and I3||I1 ∼ I3||I2.

5 Closed IOSAs are Deterministic

A closed IOSA is a IOSA in which all synchronizations have been resolved
through parallel composition. Therefore, it has no input actions (i.e. AI = ∅).

In this section we show that a closed IOSA is deterministic in the sense that it
is amenable for discrete event simulation or, in case all its clocks are exponentially
distributed random variables, also amenable for analysis as a continuous time
Markov chain. We will say that a IOSA is deterministic if almost surely at most
one discrete transition is enabled at every time point. To avoid referring explicitly
to time, we say instead that a IOSA is deterministic if it almost never reaches a
state in which two different discrete transitions are enabled.

2 Note that the domain and image of Hf appear apparently inverted. This is necessary
in [12] since they only deal with morphisms, and we are following their definitions.
In our case, we could have also defined a direct map from Δ(B(S)) to Δ(B(S′))
since Δf is bimeasurable, namely H(f−1) = (Δ(f−1))−1.

64 P.R. D’Argenio et al.

Definition 15. A IOSA I is deterministic whenever in P(I) = (S,B(S), {Ta |
a ∈ L}), a state (s,	v) ∈ S such that

⋃
a∈A∪{init} Ta(s,	v) contains at least two

different probability measures, is almost never reached from any (init, 	v′) ∈ S.

By “almost never” we mean that the measure of the set of all paths leading
to a state (s,	v) ∈ S such that

⋃
a∈A∪{init} Ta(s,	v) contains at least two elements

is 0. A strictly formal definition of this requires a series of definitions related
to schedulers and measures on paths in NLMPs which is not crucial for the
developing of the result. (For a formal definition of scheduler and probability
measures on paths in NLMPs see [21, Chap. 7].)

The previous definition only makes sense if P(I) satisfies time additivity,
time determinism, and maximal progress [23]. Particularly, by maximal progress
we understand that time cannot progress if an output transition is enabled.

Theorem 16. For a IOSA I, its semantics P(I) = (S,B(S), {Ta | a ∈ L})
satisfies, for all (s,	v) ∈ S, a ∈ AO and d, d′ ∈ R>0,

maximal progress: Ta(s,	v) �= ∅ ⇒ Td(s,	v) = ∅

time determinism: μ, μ′ ∈ Td(s,	v) ⇒ μ = μ′, and
time additivity: δ−d

(s,�v)∈Td(s,	v) ∧ δ−d′
(s,�v−d)∈Td′(s,	v − d) ⇔ δ

−(d+d′)
(s,�v) ∈Td+d′(s,	v).

Proof. Notice that if Ta(s,	v) �= ∅, with a ∈ AO, then there exists a transition

s
{xj},a,C′

−−−−−−−→ s′ such that 	v(j) ≤ 0. Suppose by contradiction that Td(s,	v) �= ∅,

then 0 < d ≤ min{	v(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′} ≤ 	v(j) ≤ 0, which
is a contradiction.

Time determinism is immediate by Definition 3 since either Td(s,	v) = {δ−d
(s,�v)}

or Td(s,	v) = ∅.

For time additivity, let d̂ = min{	v(i) | ∃a∈AO, C⊆C, s′∈S : s
{xi},a,C−−−−−−→ s′}.

Suppose δ−d
(s,�v) ∈ Td(s,	v) and δ−d′

(s,�v−d) ∈ Td′(s,	v − d). By Definition 3, 0 < d ≤ d̂

and 0 < d′ ≤ d̂ − d, i.e. 0 < d + d′ ≤ d̂. Thus δ
−(d+d′)
(s,�v) ∈ Td+d′(s,	v). Suppose

now that δ
−(d+d′)
(s,�v) ∈ Td+d′(s,	v). Then 0 < d + d′ ≤ d̂ and thus 0 < d ≤ d̂ and

0 < d′ ≤ d̂ − d, which implies that δ−d
(s,�v) ∈ Td(s,	v) and δ−d′

(s,�v−d) ∈ Td′(s,	v − d). ��
The following is the main theorem of this section.

Theorem 17. Every closed IOSA is deterministic.

The rest of the section is devoted to proving this theorem. From now on,
we work with the closed IOSA I = (S, C,A,−→, s0, C0), with |C| = N , and its
semantics P(I) = (S,B(S), {Ta | a ∈ L}). We recall that IOSAs only admit
sampling clock values from continuous random variables, which is essential for
the validity of Theorem17.

For every state s ∈ S, let active(s) = {x | s
{x},a,C−−−−−→ s′} be the set of active

clocks at state s. By Definition 1(d) it follows that active(s′) ⊆ (active(s)\{x})∪
C whenever s

{x},a,C−−−−−→ s′.

Input/Output Stochastic Automata 65

The idea of the proof of Theorem17 is to show that the property that all
active clocks have non-negative values and they are different from each other is
almost surely an invariant of I, and that at most one transition is enabled in
every state satisfying such invariant. Formally, the invariant is the set

Inv ={(s,	v) | s ∈ S, 	v(i) �= 	v(j), and 	v(i) ≥ 0

for all xi, xj ∈ active(s) with i �= j} ∪ ({init}×R
N) (4)

therefore, its complement set is

Invc = {(s, 	w) | s ∈ S, 	w(i) = 	w(j) for some xi, xj ∈ active(s) with i �= j}
∪ {(s, 	w) | s ∈ S, 	w(i) < 0 for some xi ∈ active(s)} (5)

The next lemma states that Invc is almost never reached in one step from a state
satisfying the invariant.

Lemma 18. For all (s,	v) ∈ Inv, a ∈ L, and μ ∈ Ta(s,	v), μ(Invc) = 0.

Proof. We proceed analyzing by cases, according a is init, in A, or in R>0.
For a = init, we only consider states of the form (init, 	v) since Tinit(s,	v) �= ∅

iff s = init. So, let μ ∈ Tinit(init, 	v). Then μ = δs0 × ∏N
i=1 μxi

. Since each μxi
is a

continuous probability measure (hence the likelihood that two clocks are set to
the same value is 0) and μxi

(R>0) = 1, then μ(Invc) = 0.
For a ∈ A, take μ ∈ Ta(s,	v) with (s,	v) ∈ Inv. Notice that s ∈ S. By

Definition 3 and because I is closed, there exists s
{x},a,C−−−−−→ s′ with 	v(i) ≤ 0

and μ = μ�v,C,s′ = δs′ × ∏
i∈I μxi

× ∏
j∈J δ�v(j) where I = {i | xi ∈ C} and

J = {j | xj /∈ C}.
For each xi, xj ∈ active(s′) define Invc

ij = {(s′′, 	w) | s′′ ∈ S, 	w(i) = 	w(j)}
whenever i �= j, and Invc

i = {(s′′, 	w) | s′′ ∈ S, 	w(i) < 0}. Notice that Invc =⋃
Invc

ij ∪ ⋃
Invc

i and, since the unions are finite, μ(Invc) = 0 iff μ(Invc
ij) = 0 and

μ(Invc
i) = 0, for every i, j. In the following, we show this last statement.

Let xi ∈ active(s′). Then xi ∈ (active(s)\{x})∪C. If xi ∈ C, then μ(Invc
i) = 0

because μi(R≥0) = 1. If instead xi ∈ active(s)\{x}, then μ(Invc
i) = 0 because

δ�v(i)(R≥0) = 1, since (s,	v) ∈ Inv and hence 	v(i) ≥ 0.
Let xi, xj ∈ active(s′) with i �= j. Then xi, xj ∈ (active(s)\{x})∪C. If xi ∈ C

then μi is a continuous probability measure and hence μ(Invc
ij) = 0. Similarly if

xj ∈ C. If instead xi, xj ∈ active(s)\{x}, then δ�v(i) �= δ�v(j) because (s,	v) ∈ Inv
and hence 	v(i) �= 	v(j). Therefore μ(Invc

ij) = 0. This proves that μ(Invc) = 0 for
this case.

Finally, take d ∈ R>0 and suppose that Td(s,	v) = {δ−d
(s,�v)} with (s,	v) ∈ Inv.

Notice that s ∈ S. By Definition 3, 0 < d ≤ min{	v(k) | s
{xk},a,C′

−−−−−−−→
s′, a∈AO} and δ−d

(s,�v) = δs × ∏N
i=1 δ�v(i)−d. We take sets Invc

ij and Invc
i

as before and follow a similar reasoning. For xi ∈ active(s), 	v(i)−d ≥
min{	v(k) | s

{xk},a,C′
−−−−−−−→ s′, a∈AO} − d ≥ 0 and hence δ�v(i)−d(R≥0) = 1. There-

fore μ(Invc
i) = 0. For xi, xj ∈ active(s) with i�=j, δ�v(i)−d �= δ�v(j)−d because

66 P.R. D’Argenio et al.

(s,	v) ∈ Inv and hence 	v(i) �= 	v(j). So μ(Invc
ij) = 0. This proves that μ(Invc) = 0

for this case, and hence the lemma. ��
From Lemma 18 we have the following corollary.

Corollary 19. The set Invc is almost never reachable in P(I).

The proof of the corollary requires, again, the definitions related to schedulers
and measures on paths in NLMPs. We omit it here since the proof eventually
boils down to directly applying Lemma18 and seeing that the measure of all
paths leading to a state in Invc is 0 for all possible schedulers.

The next lemma states that any state in the invariant Inv has at most one
discrete transition enabled.

Lemma 20. For all (s,	v) ∈ Inv, the set enabled(s,	v) =
⋃

a∈A∪{init} Ta(s,	v) is
either a singleton set or the empty set.

Proof. By Definition 3, enabled(init, 	v) = Tinit(s,	v) = {δs0 × ∏N
i=1 μxi

}, which
proves this case. So, let (s,	v) ∈ Inv with s ∈ S and suppose that enabled(s,	v) �=
∅. By Definition 3, there is at least one transition s

{xi},a,C−−−−−−→ s′ such that
	v(i) ≤ 0. Because, (s,	v) ∈ Inv and xi ∈ active(s), then 	v(i) = 0 and for all
xj ∈ active(s) with i �= j, 	v(j) > 0. Condition (c) in Definition 1 ensures that

there is no other transition s
{xi},b,C′

−−−−−−→ s′′ and, as a consequence, enabled(s,	v)
is a singleton set. ��

Finally, the proof of Theorem17 is a direct consequence of Corollary 19 and
Lemma 20.

Proof (of Theorem 17). Let En≥2 = {(s,	v) ∈ S | |enabled(s,	v)| ≥ 2}. By
Corollary 19, En≥2 ⊆ Invc. Therefore, by Lemma 20, En≥2 is almost never
reachable. ��

6 Conclusion

We introduced IOSA, a stochastic and compositional modeling formalism which
turns to be deterministic when all synchronizations are resolved, i.e., the IOSA
models a closed system. It supports arbitrary continuous probability distribu-
tions to model the stochastic timed behavior of a system. These characteristics
make it highly suitable for modeling and simulating systems with more realis-
tic results than Markov models such as CTMCs. Moreover, in case the model
uses only exponential distributions, the closed IOSA is amenable to analysis as
a CTMC.

As we have already mentioned, our work is related to [22]. This work
presents an input/output variant of probabilistic automata where outputs are
locally controlled, and hence their occurrence time is governed by exponen-
tial distributions, while inputs are externally controlled. Thus it also has the

Input/Output Stochastic Automata 67

generative/reactive view. In these settings, a closed system forms a CTMC.
Our mathematical treatment and theirs is nonetheless very different since the
memoryless nature of the exponential distribution can be encoded directly rather
than through clocks. Also related to our work, it is the work on weak determin-
ism by Crouzen [6, Chap. 8]. Rather than ensuring by construction that the
model is deterministic, this work provides a technique based on Milner’s [19,
Chap. 11] that, by doing some static analysis, determines if a model, given as a
composite I/O-IMC (an input/output variant of IMCs [17]), is weak bisimilar to
a deterministic I/O-IMC. The technique may report false negatives.

Currently, we are using IOSA as input language for a discrete event sim-
ulation tool —a successor of Bluemoon [5]—that is being developed in our
group, and plan to use it as an intermediate language to compile from graphical
modeling languages.

Acknowledgments. We thank Pedro Sánchez Terraf for the help provided in measure
theory, and Carlos E. Budde for early discussions on IOSAs.

References

1. Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Academic Press,
Cambridge (2000)

2. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order
methods for statistical model checking and simulation. In: Bruni, R., Dingel, J.
(eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 59–74. Springer,
Heidelberg (2011)

3. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

4. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: concepts, discussions and
relations of stochastic process algebras with general distributions. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Sto-
chastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

5. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation with fully
automated importance splitting. In: Beltrán, M., Knottenbelt, W.J., Bradley, J.T.
(eds.) Computer Performance Engineering. LNCS, vol. 9272, pp. 275–290. Springer
International Publishing, Switzerland (2015)

6. Crouzen, P.: Modularity and Determinism in Compositional Markov Models. Ph.D.
thesis, Universität des Saarlandes, Saarbrücken (2014)

7. D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. Ph.D.
thesis, University of Twente, Enschede (1999)

8. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

9. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for light-
weight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

10. D’Argenio, P.R., Sánchez Terraf, P., Wolovick, N.: Bisimulations for non-
deterministic labelled Markov processes. Math. Struct. Comput. Sci. 22(1), 43–68
(2012)

68 P.R. D’Argenio et al.

11. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov
processes. Inf. Comput. 179(2), 163–193 (2002)

12. Doberkat, E.E., Sánchez Terraf, P.: Stochastic non-determinism and effectivity
functions. J. Logic Comput. (2015, to appear). doi:10.1093/logcom/exv049

13. Gburek, D., Baier, C., Klüppelholz, S.: Composition of stochastic transition sys-
tems based on spans and couplings. In: ICALP 2016. LIPICS (2016, to appear)

14. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics,
vol. 915, pp. 68–85. Springer, Heidelberg (1982)

15. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

16. Hartmanns, A., Timmer, M.: Sound statistical model checking for MDP using
partial order and confluence reduction. STTT 17(4), 429–456 (2015)

17. Hermanns, H.: Interactive Markov Chains: and the Quest for Quantified Quality.
Springer, Heidelberg (2002)

18. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

19. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

20. Viglizzo, I.: Coalgebras on Measurable Spaces. Ph.D. thesis, Indiana University,
Argentina (2005)

21. Wolovick, N.: Continuous Probability and Nondeterminism in Labeled Transition
Systems. Ph.D. thesis, Universidad Nacional de Córdoba, Argentina (2012)

22. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997)

23. Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR ’90 Theories of Concurrency: Unification and Extension.
LNCS, vol. 458, pp. 502–520. Springer, Heidelberg (1990)

http://dx.doi.org/10.1093/logcom/exv049

On Optimal Control of Stochastic
Linear Hybrid Systems

Susmit Jha(B) and Vasumathi Raman

United Technology Research Center, Berkeley, USA
{jhask,ramanv}@utrc.utc.com

Abstract. Cyber-physical systems are often hybrid consisting of both
discrete and continuous subsystems. The continuous dynamics in cyber-
physical systems could be noisy and the environment in which these
stochastic hybrid systems operate can also be uncertain. We focus on
multimodal hybrid systems in which the switching from one mode to
another is determined by a schedule and the optimal finite horizon control
problem is to discover the switching schedule as well as the control inputs
to be applied in each mode such that some cost metric is minimized over
the given horizon. We consider discrete-time control in this paper. We
present a two step approach to solve this problem with respect to convex
cost objectives and probabilistic safety properties. Our approach uses a
combination of sample average approximation and convex programming.
We demonstrate the effectiveness of our approach on case studies from
temperature-control in buildings and motion planning.

1 Introduction

Hybrid systems can be used to model cyber-physical systems with both discrete
and continuous components. Determining a low-cost strategy to control a hybrid
system to complete an objective while satisfying a set of safety constraints is a
common design challenge in cyber-physical systems. Further, the system dynam-
ics are often noisy in practice due to inherent uncertainty in physical plant as
well as modeling approximations. This can cause the system to violate any qual-
itative Boolean constraints under extreme situations which happen with very
low probability. For example, an autonomous airborne vehicle might have noisy
dynamics due to air drag in strong winds. Hence, only a probabilistic safety
guarantee of not colliding with obstacles is possible. Furthermore, the safety
constraints themselves could have uncertainty. For example, the obstacle map
perceived by an autonomous vehicle could be noisy due to sensor inaccuracies or
due to the presence of other mobile agents whose position is only approximately
known. Several other applications such as efficient energy management of build-
ings and robot-assisted surgery share these characteristics due to uncertainties
in process dynamics, sensor data and environment state. These uncertainties, in
addition to the mixed continuous and discrete nature of multimodal hybrid sys-
tems, make the task of determining an optimal control strategy for the system
extremely challenging.
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 69–84, 2016.
DOI: 10.1007/978-3-319-44878-7 5

70 S. Jha and V. Raman

In this paper, we address this challenge and present a novel approach to the
synthesis of low-cost control for stochastic linear hybrid systems. We focus on
hybrid systems with linear dynamics and a fixed time horizon. The synthesized
controller is a discrete-time controller. Our approach uses chance constrained
programming [37] to find a low-cost control strategy while satisfying probabilis-
tic safety constraints. Directly solving the chance constrained programs using
standard single-shot sampling techniques is impractical for hybrid systems due
to the large dimension of the optimization problem. Further, sampling based
approaches do not provide any guarantees on satisfaction of constraints, and
thus, the generated system might violate probabilistic safety requirements. We
split the task of synthesizing optimal control for hybrid systems into two steps.
The first step uses constant control approximation and sampling over a small
parameter space to determine a low-cost mode sequence and the schedule for
switching between different modes in the sequence. The second step synthesizes
control inputs in each mode to optimally connect the entry and exit states in each
mode. The chance constrained program in the second phase is reduced to a prob-
abilistically conservative but efficiently solvable convex program. This theoretical
reduction is key to making our approach practical and scalable. The proposed
approach provides a balance between efficiency and optimality (demonstrated
through case-studies) while guaranteeing the satisfaction of probabilistic safety
properties, and we apply it to a set of case studies from temperature control in
buildings and motion planning under uncertainty for autonomous vehicles.

2 Related Work

Automated synthesis of controllers for continuous and hybrid dynamical systems
has been widely studied [4,14,44]. Synthesis of continuous controllers and dis-
crete switching logic controllers for noise-free hybrid systems [5,17,19,27,38]
is also an active area of research. The control of stochastic systems has
been extensively investigated beginning with the work of Pontryagin [33] and
Bellman [7]. Its applications include optimal guidance for spacecrafts [3] and
flight-simulators [6]. Probabilistic reachability of discrete-time stochastic hybrid
systems has also been studied [10,24,34,36]. The focus has been on the safety
problem where the goal is to determine a control policy that maximizes the
probability of remaining within a safe set during a finite time horizon [2].
This safe control problem is reformulated as a stochastic optimal control
problem with multiplicative cost for a controlled Markov chain. Dynamic pro-
gramming is then used to solve this problem. The solution to value iteration
equations obtained using the dynamic programming approach cannot be writ-
ten out explicitly. In practice, the safety problem is solved using approximation
methods. Under appropriate continuity assumptions on the transition probabil-
ities that characterize the stochastic hybrid systems dynamics, [1] proposes a
numerical solution obtained by standard gridding scheme that asymptotically
converges as the gridding scale approaches zero. The computation burden asso-
ciated with this approach makes it less scalable and not applicable to realistic

On Optimal Control of Stochastic Linear Hybrid Systems 71

situations. This problem is partially alleviated in [22] where neural approxi-
mation of the value function is used to mitigate the curse of dimensionality
in approximate value iteration algorithm. The goal of these techniques is not
optimization of a cost function against probabilistic constraints but instead, the
maximization of the probability of staying within a safety condition described
by deterministic constraints.

An approximate linear programming solution to the probabilistic invariance
problem for stochastic hybrid systems is proposed in [29]. In [12], the authors
approximate the constraints in a feedback linearized model of an aircraft so
as to make them convex, thereby enabling on-line usage of model predictive
control. While we also extract a convex problem, it is based not on approximation
of constraints but rather on a practical assumption on the probability bound
in safety constraints. In [35], the authors propose a randomized approach to
stochastic MPC, for linear systems subject to probabilistic constraints that have
to be satisfied for all the disturbance realizations except with probability smaller
than a given threshold. At each time step, they solve the finite-horizon chance-
constrained optimization problem by first sampling a random finite number of
disturbance realizations, and then replacing the probabilistic constraints with
hard constraints associated with these extracted realizations only. In this work,
we avoid the computationally expensive step of sampling a large number of
disturbance realizations or constraints used in these approaches.

The optimization of control for satisfaction of probabilistic constraints can
be naturally modeled as chance constrained programs [11,30]. It has been used
in various engineering fields that require reasoning about uncertainty such as
chemical engineering [25] and artificial intelligence [41]. A detailed survey of
existing literature on chance constrained programming and different approaches
to solve this problem is given in [37]. Our work relies on solving the chance
constrained finite-horizon control problem for the case of uncertainty modeled
as Gaussian distribution and continuous dynamics in different modes of hybrid
system restricted to being linear. One of the key challenge to this problem arises
from evaluating an integral over a multivariate Gaussian. There is no closed form
solution to this problem. A table lookup based method to evaluate this integral
is possible for univariate Gaussians but the size of the table grows exponentially
with the number of variables. Approximate sampling techniques [8,25,26] and
conservative bounding methods [9,39] have been proposed to solve this problem.
While the number of samples required in sampling techniques grow exponentially
with the number of Gaussian variables, the conservative approach also suffers
from increased approximation error with an increase in the number of variables.

A conservative ellipsoidal set bounding approach is used to satisfy chance
constraints in [39]. This approach finds a deterministic set such that the state
is guaranteed to be in the set with a certain probability. An alternative app-
roach based on Boole’s inequality is proposed in [9,31]. Bounding approaches
tend to be over-conservative such that the true probability of constraint vio-
lation is far lower than the specified allowable level. Further, these approaches
have been applied only in the context of optimal control of continuous dynamical

72 S. Jha and V. Raman

systems. A two-stage optimization approach is proposed in [32] for continuous
dynamical systems. Our work uses a hybrid approach of combining sampling
and convex programming to find a low cost control of hybrid systems. The sam-
pling approach allows decomposition of hybrid control problem into a set of
continuous control problems by finding the right switching points. The convex
programming provides a scalable efficient solution to finding control parame-
ters for the continuous control problem. This ensures that we achieve a good
trade-off between optimization and scalability while guaranteeing satisfaction of
probabilistic specifications. The use of statistical verification and optimization
techniques for synthesis have also been explored in recent literature [43]. Auto-
matic synthesis of controllers from chance-constraint signal temporal logic [18]
for dynamical systems have also been proposed in literature.

3 Problem Definition

In this section, we formally define the problem of finding optimal finite time hori-
zon control for discrete-time stochastic hybrid systems where the mode switches
are controlled by a schedule. Let us consider a hybrid system consisting of m
modes. A finite parametrization of such a system assuming piecewise constant
control input sequence yields the following: xk+1 = Ajxk + Bjuk + Cjwk, where
j = j1 . . . jM denotes modes from the set ji ∈ [1,m], xk ∈ Rnx is the system
state in nx dimensions, uk ∈ Rnu denotes the nu control inputs and wk ∈ Rnw

denotes nw dimensional Gaussian noise vector wk ∼ N (0, Σw). M is the upper
bound on the number of mode switches. Further, the control inputs lie in a
convex region Fu, that is,

Fu �
Ng∧

i=1

(gT
i u ≤ ci);

∧

k

uk ∈ Fu

where Fu is represented as the intersection of Ng half-planes. The state variables
are restricted to be in a convex safe region Fx with a specified probability lower-
bound. This restriction to safe region being convex can be lifted using standard
branch and bound techniques [32].

Fx �
Nh∧

i=1

(hT
i x ≤ bi); Pr(

∧

k

xk ∈ Fx) ≥ 1 − αx

where hT
i x ≤ bi is i-th linear inequality defining the convex region and the

constant αx determines the probabilistic bound on violating these constraints.
The dynamics in each mode of the hybrid systems is described using stochastic
differential equations. The time spent in each mode is called the dwell-time of
that mode. The sum of the dwell times must be equal to the fixed time horizon
τ . The dwell-times, τ̂ = τ1τ2 . . . τM , can also be restricted to a convex space.
The synthesized control needs to be minimized with respect to a convex cost

On Optimal Control of Stochastic Linear Hybrid Systems 73

function f(x, u) over the state variables and the control inputs. Since the system
is stochastic, the optimization goal is to minimize the expected cost E[f(x, u)].

The corresponding chance constrained optimization problem is as follows:

min
m1..mM ,u1..uτ ,τ1..τM

Ew,x0 [f(x1..xτ , u1..uτ−1)] subject to

(1) xk+1 = Akxk + Bkuk + Ckwk for 0 ≤ k < τ where Ak = Amj ,Bk = Bmj ,Ck = Cmj

for

j−1∑

i=1

τi ≤ k <

j∑

i=1

τi, 1 < j ≤ M, and Ak =Am1 ,Bk =Bm1 ,Ck = Cm1 , for 0 ≤ k < τ1

w ∼ N (0, Σw), x0 ∼ N (xmean
0 , Σx0), m1 . . . mj is mode sequence and

M∑

i

τi = τ

(2)

Ng∧

i=1

gT
i uk ≤ ci and

Nl∧

i=1

(lTi τ̂ ≤ di) where gT
i , ci, di are given constants.

(3) Pr(

Nh∧

i=1

hT
i xk ≤ bi) ≥ 1 − αx for all 0 ≤ k ≤ τ where hi, bi are given constants.

The minimization is done with respect to following parameters:

• the sequence of modes m1 . . . mM ,
• the control parameters u1 . . . uτ ,
• the vector of dwell-times in each mode τ̂ = 〈τ1 . . . τM 〉.

The following observations highlight the challenges in solving the stochastic
optimization problem described above.

• Firstly, the overall system dynamics is nonlinear due to the discrete switching
between different linear systems.

• Second, the probabilistic safety constraint is not convex even when the dis-
tribution is assumed to be Gaussian. Standard sampling approach [20,37] to
solving such stochastic optimization problem requires sampling in O(nxτm)
dimensions to compute the multidimensional integral needed to evaluate
Pr(∧kxk ∈ Fx) even for a fixed mode sequence.

Thus, solving such a non-convex stochastic optimization problem with a large set
of optimization parameters is not tractable. We address these challenges using
mode-sequence discovery technique previously proposed in literature [15,19] and
a novel two-level optimization approach presented in Sect. 4. Sample average
approximation is used for coarse-level exploration to determine the dwell-times
of each mode. The problem of synthesizing optimal control in each mode is
reduced to a convex program, which in turn can be solved efficiently.

Illustrative Example Application. We consider temperature control in two
interconnected zones where the control objective is to maintain zone temper-
atures within a comfort range and minimize a quadratic cost function of the
control inputs. Let Ck be the aggregate thermal capacitance of the k-th zone,
Ra

1 and Ra
2 represent the thermal resistance of zone walls isolating zone air from

74 S. Jha and V. Raman

outside, Toa be the outside ambient temperature, R be the thermal resistance
of the walls separating both zones, T1 and T2 be the perceived air tempera-
ture of the two zones, and P1 and P2 represent the disturbance load of the two
zones induced by solar radiation, occupancy, electrical devices etc. The inputs
uh
1 and uh

2 represent the two heating agents in both zones. The model of system
dynamics is given by the following equations:

C1Ṫ1 = uh
1 +

Toa − T1

Ra
1

+
T2 − T1

R
+ P1

C2Ṫ2 = uh
2 +

Toa − T2

Ra
2

+
T1 − T2

R
+ P2

The system operates in four modes: M1,M2,M3,M4. M1 is the mode when
the zones are occupied and the heater is off, M2 is the mode when the zones are
occupied and the heater is on, M3 is the mode when the zones are unoccupied
and the heater is on, and M4 is the mode when the zones are unoccupied and
the heater is off. We couple the heaters together to reduce the number of modes.
The parameters P1 and P2 are assumed to be identical and their values are:
P{1,2} = Pconst+Pocc in M1,M2 and P{1,2} = Pconst in M3,M4. The control
inputs u1

h and u2
h are non-negative and lie in the [0.5, 8 kW] range in modes M2

and M3, defined by the physical constraints when the heaters are on. The control
inputs are 0 in modes M1 and M4 when the heaters are off. The parameter values
are based on data gathered from Doe library building in UC Berkeley [40]. The
outside temperature Toa is set using the weather information at UC Berkeley and
the uncertainty in prediction is Gaussian distributed with one standard deviation
of σToa

= 0.71 ◦C. The variable occupancy load Pocc is a Gaussian distribution
with mean 10 kW and standard deviation 0.63 kW . Thus, the uncertainty in
this example is due to the deviation of outside temperature from the weather
prediction, and the variation in occupancy load. The goal of the controller is to
maintain the perceived zone temperature T between 18 and 28 degrees Celsius
when the zones are unoccupied and between 21 and 25 degrees Celsius when the
zones are occupied. The zones are occupied from 7 AM to 5 PM every day, and
the zones are unoccupied for the remaining 14 h. The corresponding optimization
problem is as follows for the mode sequence M1,M2,M3,M4:

min
u,τ1,τ2,τ3,τ4

EP[

τ−1∑

k=0

uT
k uk] subject to

the state xk = (T1, T2) at k-th step is restricted by the dynamics equations presented

earlier, x0 = [22, 22], τ1 + τ2 = 10, τ3 + τ4 = 14, P r(xk ∈ Fx) ≥ 1 − αx, uk ∈ Fu

u = [uh
1 ; uh

2], w = [P1; P2; Toa], Fx = [18, 28]2 in M1, M2 and Fx = [21, 25]2 inM3, M4,

Fu = [0.5, 8]2in M2, M3 and [0, 0]2 in M1, M4 modes

On Optimal Control of Stochastic Linear Hybrid Systems 75

Param Value Param Value Param Value Param Value

C1 1.1e4 J/◦C C2 1.3e4 J/◦C R1 41.67 ◦C/W R2 35.71 ◦C/W

R 35.00 ◦C/W Δt 0.5 hr τ 48 ε 10−4

αx 0.05 τ 48 σToa 0.71 u1
h, u2

h(on) [0.5, 8] kW

Pconst 0.1 kW Pocc N (10, .6) kW

4 Synthesis Approach

First, we perform a high level design space exploration of control space by fix-
ing the control input in each mode to be a constant which intuitively repre-
sents the average input. The number of optimization parameters reduce from
O(τ + M) to O(M) and since the number of modes in the switching sequence
M is usually much smaller than the time horizon τ , we can now use sample
average approximation techniques coupled with existing greedy techniques for
finding mode sequence to solve the optimization problem in the first step. We
use the entry and exit states discovered at the end of the first step to formulate
decomposed chance-constrained problems for each mode of the system. We prove
that these decomposed problems can be conservatively approximated as convex
optimization problems, and thus, solved efficiently. Convexity ensures that any
local minimum of the decomposed problems is also a global minimum. We now
describe each of these two steps in detail.

4.1 Mode Sequence and Optimal Dwell Times

Mode deletion or insertion from an initial guess of mode sequence has been used
in [16,19,21] to synthesize the mode sequence for optimal control of hybrid sys-
tems. We use a similar approach here. We adopt addition of modes proposed in
[16] because it performed better experimentally that other techniques. Theoret-
ical guarantees of this approach with requisite assumptions on the dynamics can
be found in [16]. The approach begins with a mode sequence initialization which
can be just the initial mode as a single-mode sequence. New modes are greedily

Initialize mode sequence m0 with an initial guess or the initial state if no
guesses are available, and i = 0, done = false;
while i <= M and done = false do

For each length(mi) + 1 possible insertion position in the sequence mi,
create a new sequence mijk by adding mode j to the position k ;
Pick m∗ = mijk with the lowest cost fixedModeOpt(mijk) for all j, k;
if fixedModeOpt(m∗) < fixedModeOpt(mi) then

i = i + 1;mi = m∗;
else

done = true ;
end

end

Algorithm 1. Mode Sequence Selection Using Iterative Insertion [16]

76 S. Jha and V. Raman

added to the sequence if they reduce the cost. This is continued till either we
reach the maximum number of modes allowed in the sequence or addition of new
modes does not reduce the cost. Let fixedModeOpt(m) denote the cost obtained
for a given fixed mode sequence m , the mode insertion algorithm uses O(Mm)
calls to the optimization routine computing fixedModeOpt to find the low cost
mode sequence as shown below.

In order to compute fixedModeOpt, we modify the chance constrained pro-
gram presented in Sect. 3 by fixing the mode sequence and setting the control
inputs in each mode to be a constant. The revised cost metric for schedule
switched system:

minuμ
1 ..uμ

M ,τ1..τM
Ew,x0 [f(x1..xτ , u1..uτ−1)]

where τi denotes the dwell-time in the i-the mode of the fixed sequence and ui

denotes the constant control input for that mode. The dimension of the opti-
mization problem has been reduced from O(τ + M) to O(M). We can now
use sample average approximation to solve this optimization problem. This is a
standard technique to solve nonlinear stochastic optimization problems. We only
sketch the approach here, and details can be found in textbooks on stochastic
optimization [20,37]. The overall idea in sample average approximation is to use
sampling followed by deterministic optimization. The chance constrained formu-
lation presented earlier can be translated to the standard form:

minx∈X f(x) subject to Pr{G(x, ζ) ≤ 0} ≥ 1 − α [CCP]

where ζ are the random variables representing noise parameters and dwell time
for externally controlled hybrid systems, and only noise parameters for schedule
controlled systems, f is the optimization function and x includes all the variables
being optimized: the control variables for externally controlled hybrid systems,
and the control variables and dwell times for the schedule controlled systems.
Monte Carlo sampling can be used to generate N samples ζ1, . . . , ζN , and let
q̂N (x) denote the proportional of samples with G(x, ζj) > 0 in the sample. The
sample average approximation of the chance constrained problem has the fol-
lowing form:

minx∈X f(x) subject to q̂N (x) ≤ ε [SAA]

The above problem is a deterministic optimization problem which can be solved
using nonlinear optimization routines in packages such as CPLEX and Gurobi.
The following theorem from [23] relates the solution of this deterministic problem
to the original stochastic version.

Theorem 1 [23]. The solution to sample average approximation of the chance
constrained problem in Equation SAA approaches the solution of the original
problem in Equation CCP with probability 1 as the number of samples (N)
approaches infinity, provided the set X is compact, the cost function f is con-
tinuous and G(x, ·) is measurable.

On Optimal Control of Stochastic Linear Hybrid Systems 77

Thus, sufficiently sampling the initial states and the noise parameters yields
approximately optimal control parameters u and dwell times in each mode τi.
We now describe how the synthesized control parameters and dwell times can
be used to obtain the entry and exit states for each mode of the stochastic
hybrid system. Since the dynamics is linear, repeated multiplication of the system
matrices (described in [39]) can be used to lift the system dynamics to the
following form: xk = Akx0 + BkUk + CkWk where Uk = [u0u1 . . . uk−1]T is
obtained using the sample average approximation technique described above,
Wk = [w0w1 . . . wk−1]T is the vector of Gaussian noise, and the initial state x0

is a Gaussian distribution. Hence, xk is Gaussian with mean and variance given
by: xμ

k = Akxμ
0 + BkUk + CkW

μ
k , Σxk

= AkΣx0A
T
k + CkΣWk

C
T
k .

The cumulative time Ti is the sum of time spent in modes upto i-th mode
in the fixed mode sequence, that is, Ti =

∑i
j=1 τj for j ≥ 1 and T0 = 0. The

entry-state ini and exit-states outi for each mode i with dwell time τi, are:
ini = xTi−1 and outi = xTi

. Thus, the entry-state ini and exit-state outi are
also Gaussian distributions. We denote their respective means as inμ

i , outμ
i , and

the variances as Σini
, Σouti

.

4.2 Mode Tuning and Optimal Control Inputs

Given the entry and exit state distributions ini and outi, and the dwell time τi

for each mode i, the goal of second step is to find control inputs u such that the
trajectory in mode i starts from ini and exits at outi with minimum cost and
satisfies the probabilistic safety constraint. We define a new distance between
two states d(xi, xj) = (xμ

i −xμ
j)(xμ

i −xμ
j)T +(Σxi

−Σxj
)(Σxi

−Σxj
)T . We revise

the original cost metric f by adding the distance of the state reached at the end
of trajectory from the specified exit state to the cost. The revised cost metric is
f + Md where the constant M is set high enough to force the end state of the
trajectory to be the exit state. Both f and d are convex functions over the same
domain, and hence the revised cost is also convex. We can now formulate the
chance constrained problem for the second step of mode tuning. For each mode,
mode tuning is done separately. The chance constrained program for a mode i
is as follows:

min
uTi−1 ...uTi−1

Ew,x0 [f(xTi−1 . . . xTi
, uTi−1 . . . uTi−1) + Md(xTi

, outi)] subject to

1. xk+1 = Akxk + Bkuk + Ckwk 2.

Ng∧

i=1

gT
i uk ≤ ci

3. P r(
Nh∧

i=1

hT
i xk ≤ bi) ≥ 1 − αx for all Ti−1 ≤ k < Ti

Next, we show that the above chance constrained problem can be solved
using convex programming by a conservative approximation of the probabilistic
constraints as long as the violation probability bound αx < 0.5, that is, the prob-
abilistic constraint is required to be satisfied with a probability more than 0.5.

78 S. Jha and V. Raman

This assumption is very reasonable in many applications where the system is
expected to be mostly safe. In practice, the violation probability bounds αx are
often close to zero.

The key challenge in solving the above chance constraint program is due to
constraint (3). The probabilistic safety constraint is not convex. But we show how
to approximate it as a convex constraint. Firstly, let yik denote the projection
of xk on the i-th constraint, that is, yik = hT

i xk. A,B,C are fixed matrices
for dynamics in a given mode. Since xk is Gaussian distribution, yik is also a
Gaussian distribution with the following mean and variance:

yμ
ik = hT

i Akxμ
0 + hT

i BkUk + hT
i CkW

μ
k = hT

i

t−1∑

i=0

At−i−1Bui + hT
i Atxμ

0

Σyik = hT
i AkΣx0A

T
k hi + hT

i CkΣWkC
T
k hi = hT

i (

k−1∑

i=0

AiΣx0(A
T)i + AkΣwk (AT)k)hi

Thus, the probabilistic constraint can be rewritten as:

3′. P r(
Nh∧

i=1

yik ≤ bi) ≥ 1 − αx for all Ti−1 ≤ k < Ti

We can use Boole’s inequality [31] to conservatively bound the above proba-
bilistic constraint. The probability of union of events is at most the sum of the

probability of each event, that is, Pr(
Nh∨

i=1

yik > bi) ≤
Nh∑

i=1

Pr(yik > bi). Thus,

3
′′

. Pr(

Nh∧

i=1

yik ≤ bi)=1 − Pr(

Nh∨

i=1

yik > bi) ≥ 1 −
Nh∑

i=1

Pr(yik > bi) = 1 −
Nh∑

i=1

(1 − Pr(yik ≤ bi))

The above constraint can be now decomposed into univariate probabilistic con-
straints.

3.1 Pr(yik ≤ bi) ≥ 1 − αik
x for all Ti−1 ≤ k < Ti, 1 ≤ i ≤ Nh

3.2
Nh∑

i=1

αik
x ≤ αx for all Ti−1 ≤ k < Ti

We can show that the univariate probabilistic constraints over Gaussian vari-
ables in 3.1 is a linear constraint if the violation probability bound is smaller
than 0.5.

Lemma 1. Pr(yik ≤ bi) ≤ 1 − αik
x for a Gaussian variable yik and αik

x < 0.5 is
a linear constraint.

Proof. yik is a Gaussian random variable. So,

Pr(yik ≤ bi) ≤ 1 − αik
x iff yμ

ik ≥ √
2Σyik

erf−1(1 − 2αik
x)

On Optimal Control of Stochastic Linear Hybrid Systems 79

when αik
x < 0.5. erf−1 is the inverse of error function erf for Gaussian distribu-

tion: erf(x) = 2/
√

π
∫ x

0
e−t2dt. From Eq. 2, Σyik

does not depend on uk. So, the
right-hand side of the inequality can be computed using Maclaurin series or a look-
up table beforehand. Let this value be some constant δik. From Eq. 1, the left-hand
side yμ

ik is linear in the control inputs ui. So, the probabilistic constraint is equiv-
alent to the following linear constraint: hT

i

∑t−1
i=0 At−i−1Bui + hT

i Atxμ
0 ≥ δik
�

Theorem 2. If αx < 0.5, then the conservative chance-constrained formulation
above can be solved as a deterministic convex program.

Proof.
Nh∑

i=1

αik
x ≤ αx and αik

x are probability bounds and hence, must be non-

negative. Consequently, αik
x < 0.5 for all i, k if αx < 0.5. Consequently, all

constraints in (3.1) are linear constraints using Lemma 1. We can conservatively
choose αik

x = αx/Nk and the overall optimization problem becomes a convex
optimization problem which can be optimally solved using deterministic opti-
mization techniques.
�

In practice correctness constraints are modelled as likely probabilistic con-
straints with probability at least 0.5, and hence αi,j < 0.5.

Thus, solving a convex program yields the control inputs for each mode of
the hybrid system such that the cost is minimized and the system dynamics
starts from the entry state and ends in the exit state found in the first step of
our approach. Although our approach uses convex programming in the second
step, we can not make guarantees of global optimality for the overall control
synthesized by our approach. Nonetheless, the proposed method in this section
presents a more systematic alternative to existing sampling based approaches
for solving a very challenging problem of designing optimal control for stochastic
hybrid systems as illustrated in Sect. 5.

5 Case Studies

In this section, we present results on two other case-studies in addition to the
example application presented in Sect. 3. We use quadratic costs in the case-
studies and so, we can compare results obtained using the proposed method with
the results obtained by using probabilistic particle control [8] for mode selection
followed by linear quadratic Gaussian (LQG) control [42] to generate the control
inputs for each mode. But in general, the proposed approach (CVX) can be
used with any convex cost function while LQG control based approach (LQG)
are applicable only when the cost is quadratic. We consider three metrics for
comparison: the satisfaction of probabilistic constraints, the cost of synthesized
controller and the runtime of synthesis.

80 S. Jha and V. Raman

5.1 Two Zone Temperature Control

In Fig. 1, we compare the quality of control obtained using our approach and
that obtained directly from sampling. The comparison is done using 100 different
simulation runs of the system. The proposed approach (CVX) took 476 s to
solve this problem while the LQG took 927 s. The controller synthesized by
CVX satisfies the probabilistic constraint with a probability of 98.9 % which is
greater than required 95 %. On the other hand, the controller synthesize using
LQG satisfied the probabilistic constraint with a probability of 92 %. Further,
we observe that the proposed approach is able to exploit switching between the
heater being on and off when the zones are occupied to produce a more efficient
controller with 0.92 times the cost of controlled obtained using sample average
approximation.

(a) Using Our Approach CVX (b) Using LQG

Fig. 1. System behavior: Temperature vs Time

5.2 HVAC Control

The HVAC system is used to maintain air quality and temperature in a building.
It consists of air handling units (AHUs) and variable air volume (VAV) boxes
(see [28] for details). The temperature dynamics for a single zone is:

Tk+1 =
q=2∑

q=0

(p1,qT
oa
k−q + p2,qRk−q) + p3(T s

k − Tk)ṁk +
q=2∑

q=0

(p4,qTk−q) + p6 + pocc

where Tk is the temperature of the zone at time k, ṁk is the supply air mass flow
rate, T s

k is the supply air temperature, Rk denotes the solar radiation intensity
and pocc denotes the noise due to occupancy. All parameters were taken from
the model in [28]. The system dynamics can be linearized by introducing deter-
ministic virtual inputs us

k = ṁkT s
k and uz

k = ṁkTk. The goal is to minimize
power consumed by the HVAC system while ensuring temperature stays within

On Optimal Control of Stochastic Linear Hybrid Systems 81

zone 1 zone 2 zone 3Coil
AHU Cooling AHU Supply

Fan
AHU

Dampers

Return Air

Outside Air

Exhaust Air

VAV

Zone Dampers
VAV

Heating Coils

Fig. 2. Schematics of HVAC showing AHU and VAV

(a) Runtime (b) Cost (c) Probability of violation

Fig. 3. Comparison between proposed approach (CVX) and LQG for 1–5 zones

comfortable range. The probabilistic safety property modeling the comfort con-
straints is the same as Sect. 3. We scale the example from just a single zone to
five zones. CVX consistently outperforms LQG in terms of cost and runtime. It
is probabilistically more conservative. We compare the runtime, controller cost
and probability of violation obtained through 100 simulations in Fig. 3 (Fig. 2).

5.3 Motion Planning

We consider motion planning for an autonomous underwater vehicle moving
described in [13] with two modes: move and turn. The heading in the mode
move is constant while the propeller maintains a constant speed in the mode
turn. In practice, the heading and speed control are not perfect and we model
the uncertainty using Gaussian distribution. The system dynamics in the two
modes: move and turn, are: ε1,2 = N (0.5, 0.01), ε3 = N (0.02, 0.002), 0 ≤
v ≤ 10 in the mode move; pk is the control input. ε1,2 = N (0.2, 0.01), ε3 =
N (0.01, 0.002) 0 ≤ ω ≤ 0.5 in the mode turn; qk is the control input.

⎛

⎝
xk+1

yk+1

αk+1

⎞

⎠=

⎛

⎝
xk

yk

αk

⎞

⎠+

⎛

⎝
pk cos αk

pk sin αk

0

⎞

⎠+

⎛

⎝
ε1 cos αk

ε2 sin αk

ε3

⎞

⎠ ,

⎛

⎝
xk+1

yk+1

αk+1

⎞

⎠=

⎛

⎝
xk

yk

αk

⎞

⎠+

⎛

⎝
0
0
qk

⎞

⎠+

⎛

⎝
ε1
ε2
ε3

⎞

⎠

82 S. Jha and V. Raman

(a) Obstacle Map 1 (b) Obstacle Map 2

Fig. 4. Motion planning

We consider two different obstacle maps shown in Fig. 4. We require that the
system state is out of obstacle zone with a probability of 95 %. The trajectory
synthesized by our approach is shown in blue and the one synthesized by sample
average approximation is shown in red. We simulate the system 200 times to test
the robustness of paths. For the first obstacle map, the trajectories synthesized by
both approaches are close to each other. LQG is able to synthesize this trajectory
in 38 s compared to 98 s taken by our approach. For the second obstacle map,
our approach takes 115 s but LQG computes a probabilistically unsafe trajectory
even after 182 s.

6 Conclusion

In this paper, we proposed a two-step approach to synthesize low-cost control
for stochastic hybrid system such that it satisfies probabilistic safety properties.
The first step uses sample average approximation to find switching sequence of
modes and the dwell-times. The second step is used to tune the control inputs in
each mode using convex programming. The experimental evaluation illustrates
the effectiveness of our approach.

References

1. Abate, A., Amin, S., Prandini, M., Lygeros, J., Sastry, S.S.: Computational
approaches to reachability analysis of stochastic hybrid systems. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 4–17. Springer,
Heidelberg (2007)

2. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

3. Acikmese, B., Ploen, S.R.: Convex programming approach to powered descent
guidance for Mars landing. J. Guidance Control Dyn. 30(5), 1353–1366 (2007)

4. Alur, R.: Formal verification of hybrid systems. In: EMSOFT, pp. 273–278. IEEE
(2011)

On Optimal Control of Stochastic Linear Hybrid Systems 83

5. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of
switching controllers for linear systems. Proc. IEEE 88(7), 1011–1025 (2000)

6. Barr, N.M., Gangsaas, D., Schaeffer, D.R.: Wind models for flight simulator certi-
fication of landing and approach guidance and control systems. Technical report,
DTIC Document (1974)

7. Bellman, R.E.: Introduction to the Mathematical Theory of Control Processes,
vol. 2. IMA (1971)

8. Blackmore, L., Ono, M., Bektassov, A., Williams, B.C.: A probabilistic particle-
control approximation of chance-constrained stochastic predictive control. IEEE
Trans. Robot. 26(3), 502–517 (2010)

9. Campi, M.C., Garatti, S., Prandini, M.: The scenario approach for systems and
control design. Ann. Rev. Control 33(2), 149–157 (2009)

10. Cassandras, C.G., Lygeros, J.: Stochastic Hybrid Systems, vol. 24. CRC Press,
Boca Raton (2006)

11. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equiv-
alents: an approach to stochastic programming of heating oil. Manage. Sci. 4(3),
235–263 (1958)

12. Deori, L., Garatti, S., Prandini, M.: A model predictive control approach to air-
craft motion control. In: American Control Conference, ACC 2015, 1–3 July 2015,
Chicago, IL, USA, pp. 2299–2304 (2015)

13. Fang, C., Williams, B.C.: General probabilistic bounds for trajectories using only
mean and variance. In: ICRA, pp. 2501–2506 (2014)

14. Frank, P.M.: Advances in Control: Highlights of ECC. Springer Science & Business
Media, New York (2012)

15. Gonzalez, H., Vasudevan, R., Kamgarpour, M., Sastry, S., Bajcsy, R., Tomlin, C.:
A numerical method for the optimal control of switched systems. In: CDC 2010,
pp. 7519–7526 (2010)

16. Gonzalez, H., Vasudevan, R., Kamgarpour, M., Sastry, S.S., Bajcsy, R., Tomlin,
C.J.: A descent algorithm for the optimal control of constrained nonlinear switched
dynamical systems (2010)

17. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Synthesizing switching logic for safety
and dwell-time requirements. In: ICCPS, pp. 22–31 (2010)

18. Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control
under perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM
2016. LNCS, vol. 9690, pp. 117–132. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40648-0 10

19. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid
systems. In: EMSOFT, pp. 107–116 (2011)

20. Kall, P., Wallace, S.: Stochastic Programming. Wiley-Interscience Series in Systems
and Optimization. Wiley, New York (1994)

21. Kamgarpour, M., Soler, M., Tomlin, C.J., Olivares, A., Lygeros, J.: Hybrid optimal
control for aircraft trajectory design with a variable sequence of modes. In: 18th
IFAC World Congress, Italy (2011)

22. Kariotoglou, N., Summers, S., Summers, T., Kamgarpour, M., Lygeros, J.: Approx-
imate dynamic programming for stochastic reachability. In: ECC, pp. 584–589.
IEEE (2013)

23. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502
(2002)

http://dx.doi.org/10.1007/978-3-319-40648-0_10
http://dx.doi.org/10.1007/978-3-319-40648-0_10

84 S. Jha and V. Raman

24. Koutsoukos, X.D., Riley, D.: Computational methods for reachability analysis of
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 377–391. Springer, Heidelberg (2006)

25. Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming approach
to process optimization under uncertainty. Comput. Chem. Eng. 32(1–2), 25–45
(2008)

26. Li, P., Wendt, M., Wozny, G.: A probabilistically constrained model predictive
controller. Automatica 38(7), 1171–1176 (2002)

27. Liberzon, D.: Switching in Systems and Control. Springer Science & Business
Media, New York (2012)

28. Ma, Y.: Model predictive control for energy efficient buildings. Ph.D. Thesis,
Department of Mechanical Engineering, UC Berkeley (2012)

29. Margellos, K., Prandini, M., Lygeros, J.: A compression learning perspective to
scenario based optimization. In: CDC 2014, pp. 5997–6002 (2014)

30. Miller, B.L., Wagner, H.M.: Chance constrained programming with joint con-
straints. Oper. Res. 13(6), 930–945 (1965)

31. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained pro-
grams. SIAM J. Optim. 17(4), 969–996 (2006)

32. Ono, M., Blackmore, L., Williams, B.C.: Chance constrained finite horizon optimal
control with nonconvex constraints. In: ACC, pp. 1145–1152. IEEE (2010)

33. Pontryagin, L.: Optimal control processes. Usp. Mat. Nauk 14(3), 3–20 (1959)
34. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic

safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

35. Prandini, M., Garatti, S., Lygeros, J.: A randomized approach to stochastic model
predictive control. In: CDC 2012, pp. 7315–7320 (2012)

36. Prandini, M., Hu, J.: Stochastic reachability: theory and numerical approximation.
Stochast. Hybrid Syst. Autom. Control Eng. Ser. 24, 107–138 (2006)

37. Prékopa, A.: Stochastic Programming, vol. 324. Springer Science & Business
Media, New York (2013)

38. Sastry, S.S.: Nonlinear Systems: Analysis, Stability, and Control. Interdisciplinary
Applied Mathematics. Springer, New York (1999). Numrotation dans la coll. prin-
cipale

39. Van Hessem, D., Scherer, C., Bosgra, O.: LMI-based closed-loop economic opti-
mization of stochastic process operation under state and input constraints. In:
2001 Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5,
pp. 4228–4233. IEEE (2001)

40. Vichik, S., Borrelli, F.: Identification of thermal model of DOE library. Technical
report, ME Department, Univ. California at Berkeley (2012)

41. Vitus, M.P., Tomlin, C.J.: Closed-loop belief space planning for linear, Gaussian
systems. In: ICRA, pp. 2152–2159. IEEE (2011)

42. Xue, D., Chen, Y., Atherton, D.P.: Linear feedback control: analysis and design
with MATLAB, vol. 14. SIAM (2007)

43. Zhang, Y., Sankaranarayanan, S., Somenzi, F.: Statistically sound verification and
optimization for complex systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 411–427. Springer, Heidelberg (2014)

44. Zhu, F., Antsaklis, P.J.: Optimal control of switched hybrid systems: a brief survey.
Discrete Event Dyn. Syst. 23(3), 345–364 (2011). ISIS

Scheduling of Controllers’ Update-Rates
for Residual Bandwidth Utilization

Majid Zamani1(B), Soumyajit Dey2, Sajid Mohamed2, Pallab Dasgupta2,
and Manuel Mazo Jr.3

1 Technical University of Munich, Munich, Germany
zamani@tum.de

2 Indian Institute of Technology, Kharagpur, India
{soumya,sajidm,pallab}@cse.iitkgp.ernet.in

3 Delft University of Technology, Delft, The Netherlands
m.mazo@tudelft.nl

Abstract. We consider the problem of incorporating control tasks on
top of a partially loaded shared computing resource, whose current task
execution pattern is characterizable using a window based pattern. We
consider that the control task to be scheduled is allowed to switch
between multiple controllers, each with different associated sampling
rate, in order to adjust its requirement of computational bandwidth
as per availability. We provide a novel control theoretic analysis that
derives a Timed Automata (TA) based specification of allowable switch-
ings among the different controller options while retaining the asymptotic
stability of the closed loop. Our scheduling scheme computes a platform
level residual bandwidth pattern from individual task level execution
patterns. We then leverage the TA based controller specification and
the residual bandwidth pattern in order to synthesize a Linearly Priced
Timed Automata for which the minimum cost reachability solution pro-
vides realizable multi-rate control schedules. The provided scheduler not
only guarantees the asymptotic stability of the control loop but also
increases the robustness and control performance of the implementation
by maximizing the bandwidth utilization.

1 Introduction

Traditionally, digital implementations of controllers employ constant periodic
sampling and control update mechanisms. The engineers designing such imple-
mentations tend to over-provision (communication and/or computing) band-
width to the implemented controllers. Two main reasons justify sampling as fast
as possible in a controller implementation: (i) the control engineer is allowed to
design a controller with continuous time tools without worrying about the selec-
tion of sampling times; and, (ii) the faster the sampling, the quicker a controller

This work is partially supported by the German Research Foundation (DFG) through
the grant ZA 873/1-1.

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 85–101, 2016.
DOI: 10.1007/978-3-319-44878-7 6

86 M. Zamani et al.

can react to external disturbances. However, current trends for the implemen-
tation of complex cyber-physical systems are shifting from traditional federated
architectures, where each feature runs on a dedicated Electronic Control Unit
(ECU), to integrated architectures, where multiple features execute on a shared
ECU. These new architectures demand flexibility and efficiency in the use of
resources. In a modern automobile, for instance, features may be engaged and
disengaged dynamically depending on the state of the system (e.g. the processing
of data from the rear parking sensors is not necessary when moving forward).
When a feature is not engaged, the residual bandwidth made available by the
tasks omitted can be potentially harnessed by the other features running on the
same processor. Such plug-and-play nature of control features is recommended
by modern automotive standards like AUTOSAR [25], and is also being adopted
in cyber-physical system architectures beyond the automotive domain.

We consider architectures in which a simple ECU executes a set of tasks.
We assume that tasks are described by arrival patterns expressed in Real Time
Calculus (RTC), and the scheduling scheme is known for the system. This allows
us to find periodic upper bounds on the ECU utilization and compute a recur-
ring pattern of bandwidth availability. We address the problem of scheduling a
control task in such a shared ECU under the described assumptions. The goal
of the controller scheduler that we design is to maximize the use of the available
bandwidth by the newly added control task. We seek to maximize the use of
the available bandwidth in order to achieve the highest possible performance in
terms of disturbance rejection, as argued earlier. For a small set of tasks with
relatively simple periodic specifications, the methodology is lightweight enough
to be considered as an online scheduler which can deal with task characterization
changing dynamically.

In our solution, we consider control tasks with the ability to select their
update (periodic) frequency and we name them “variable-rate” control tasks.
This can be achieved by associating to each control task a set of controllers
among which one can switch, each requiring a different update frequency. This
differs from other aperiodic control alternatives, such as event-triggered [22]
(ETC) or self-triggered [2] (STC) control implementations, in that the execu-
tion times of our controllers is adjustable by the scheduler, as opposed to being
dictated by the plant, as in ETC or STC. Thus in our proposal, once the pat-
tern of ECU availability is known, the scheduler can select a sequence specifying
the controller, with its associated update frequency, active at each time inter-
val. The sequence provided shall guarantee the stability of the control task and
simultaneously maximize the available resource utilization. The choice of con-
troller sequences, unless exercised judiciously, can result in system instability
and suboptimal utilization of ECU bandwidth.

Technically, the variable-rate control systems we consider are switched
sampled-data systems. The switching signal determines the closed-loop dynam-
ics through the selection of a controller and an associated sampling time. The
stability of switched systems has been studied in depth [4,11] and, as pointed
out earlier, it is well known that not every possible switching sequence results

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 87

in stable closed-loops, even when switching between stable systems (as in our
case). Much work has also been devoted in recent years to the computation of
adequate sampling intervals to retain the stability of closed-loops under sample-
and-hold controller implementations [14,22]. We leverage ideas from both the
literature on switched systems and sampled-data systems, to construct a timed
automaton dictating when switching to a different controller (also termed mode)
is allowed in order to retain stability of the closed-loop. In turn, this automaton
implicitly defines a sequence of sampling rates that results in stable operation of
the system. In this sense, the type of abstraction provided in the current paper
resembles the one proposed in [19] for scheduling event-triggered systems. This
automaton can be referenced by the scheduler to affect the switching between
the sampling modes without having to compute dwell time constraints at run-
time. To this end we leverage tools from linearly priced timed automata [3,18]
to synthesize schedulers that maximize the resource utilization. In a related line
of work, [5] proposes adaptive assignment of sampling periods to different con-
trol loops based on external disturbances while assuming a constant available
bandwidth. However, our notion of adaptive switching builds on the premise of
time varying bandwidth availability due to other tasks loading the system.

The idea of using multiple sampling rates to schedule control loops has been
investigated previously. In [8] sampling schedules are synthesized first, and an
iterative procedure is proposed to synthesize a unique controller providing sta-
ble operation. However, the algorithm proposed is highly heuristic and there
is no guarantee of convergence. A different approach is taken in [17] by con-
structing automata that provide state-based conditions forcing a change of the
controller update frequency. The main shortcoming there is that no proof is given
for the stability of the system across transitions. Closer to our proposal are the
works [7,24] in which automata are constructed representing mode switches that
retain stability of the system. The work reported in [7,24] prescribes recurrent
controller scheduling patterns which satisfy exponential stability requirements
unlike our approach which derives asymptotically stable switched multi-rate
controller schedules that maximally utilize available computational bandwidth.
Moreover, unlike [7,24], our approach is directly applicable to non-linear sys-
tems. Also very closely related to our work and [7,24], is the work from [9,16],
and subsequent publications, developing anytime control algorithms. In that line
of work, schedulers are designed that are capable of resolving a trade-off between
quality of control (measured as a stochastic notion of stability) and bandwidth
utilization, under a stochastic scheduling framework which models channel avail-
ability in a probabilistic fashion. Again these developments are restricted to
linear time-invariant systems.

2 Notation and Preliminaries

2.1 Notation

The symbols N, N0, Q
+
0 , R, R

+, and R
+
0 denote the set of natural, non-

negative integer, nonnegative rational, real, positive, and nonnegative real

88 M. Zamani et al.

numbers, respectively. The symbols In, 0n, and 0n×m denote the identity matrix,
zero vector, and zero matrix in R

n×n, R
n, and R

n×m, respectively. Given a
vector x ∈ R

n, we denote by ‖x‖ the Euclidean norm of x. Given a matrix
M = {mij} ∈ R

n×m, we denote by ‖M‖ the induced two norm of M . A continu-
ous function γ : R+

0 → R
+
0 , is said to belong to class K if it is strictly increasing

and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞.
A continuous function β : R+

0 × R
+
0 → R

+
0 is said to belong to class KL if, for

each fixed s, the map β(r, s) belongs to class K with respect to r and, for each
fixed nonzero r, the map β(r, s) is decreasing with respect to s and β(r, s) → 0
as s → ∞. Given a measurable function f : R+

0 → R
n, the (essential) supremum

of f is denoted by ‖f‖∞. Given a tuple S, we denote by σ := (S)ω the infinite
sequence generated by repeating S infinitely, i.e. σ := SSSSS

2.2 Control Systems

The class of control systems considered in this paper is defined as:

Definition 1. A control system Σ is a tuple Σ = (Rn,U,U , f), where R
n is the

state space, U ⊆ R
m is the input set, U is the set of control inputs from intervals

in R
+
0 to U, and f is the vector field. A continuous curve ξ : R+

0 → R
n is said to

be a trajectory of Σ if there exists υ ∈ U satisfying ξ̇(t) = f (ξ(t), υ(t)) for any
t ∈ R

+
0 .

We write ξxυ(t) to denote the point reached at time t under the input υ
from the initial condition x = ξxυ(0). Here, we assume some standard regularity
assumptions on U and f guaranteeing existence and uniqueness of the point
ξxυ(t) at any t ∈ R

+
0 [20]. A control system Σ is said to be forward complete [1]

if every trajectory is defined on an interval of the form [0,∞[.
In the remainder of this paper we assume f(0n, 0m) = 0n which implies that

0n is an equilibrium point for the control system Σ = (Rn, {0m},U , f). Here, we
recall two stability notions, introduced in [12], as defined next.

Definition 2. A control system Σ = (Rn, {0m},U , f) is globally asymptotically
stable (GAS) if it is forward complete and there exists a KL function β such
that for any t ∈ R

+
0 and any x ∈ R

n, the following condition is satisfied:

‖ξxυ(t)‖ ≤ β (‖x‖ , t) , (2.1)

where υ(t) = 0m for any t ∈ R
+
0 .

Definition 3. A control system Σ = (Rn,U,U , f) is input-to-state stable (ISS)
with respect to inputs υ ∈ U if it is forward complete and there exist a KL
function β and a K∞ function γ such that for any t ∈ R

+
0 , any x ∈ R

n, and any
υ ∈ U , the following condition is satisfied:

‖ξxυ(t)‖ ≤ β (‖x‖ , t) + γ (‖υ‖∞) . (2.2)

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 89

It can be readily seen, by observing (2.1) and (2.2), that ISS implies GAS
by restricting the set of inputs to {0m}. Note that a linear control system ξ̇ =
Aξ + Bυ is GAS or ISS iff A is Hurwitz1 and the functions β and γ in (2.1) and
(2.2) can be computed as:

β(r, s) = ‖eAs‖r, γ(r) = ‖B‖
(∫ ∞

0

‖eAs‖ds
)

r.

One can characterize the aforementioned ISS property with respect to some
Lyapunov function, as defined next.

Definition 4. A function V : Rn → R
+
0 which is continuous on R

n and smooth
on R

n\{0n} is said to be an ISS Lyapunov function for the closed-loop system

ξ̇ = f(ξ,K(ξ + ε)), (2.3)

where K : R
n → R

m, if there exist K∞ functions α, α, γ, and some constant
κ ∈ R

+ such that for all x, e ∈ R
n the following inequalities are satisfied:

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (2.4)
∂V (x)

∂x
f(x,K(x + e)) ≤ −κV (x) + γ(‖e‖). (2.5)

The following theorem, borrowed from [21], characterizes the ISS property
for the closed-loop system (2.3) in terms of the existence of an ISS Lyapunov
function.

Theorem 1. The closed-loop system (2.3) is ISS with respect to measurement
errors ε if and only if there exists an ISS Lyapunov function for (2.3).

3 Problem Formulation

Consider a control system Σ and assume that there exist p different controllers
Ki : Rn → R

m, i ∈ S := {1, . . . , p}, rendering the closed-loop system

ξ̇ = f(ξ,Ki(ξ + ε)) (3.1)

ISS with respect to measurement errors ε : R
+
0 → R

n, with associated ISS
Lyapunov functions Vi and corresponding K∞ functions αi, αi, γi and positive
constants κi ∈ R

+ as in Definition 4. Now consider a variable-rate control system
Σ̂ = (Σ,P,S,S) representing a sample-and-hold implementation of the closed
loop of Σ with different controllers Ki with the associated sampling times hi,
where P = {K1, . . . ,Kp}, S = {1, . . . , p}, and

1 A square matrix A is called Hurwitz if the real parts of its eigenvalues are negative.

90 M. Zamani et al.

– S denotes a subset of the set of all piecewise constant cádlág (i.e. right-
continuous and with left limits) functions from R

+
0 to S with a finite num-

ber of discontinuities on every bounded interval in R
+
0 (no Zeno behaviour).

Each π ∈ S represents a schedule dictating which controller is active at any
time t ∈ R

+
0 . Given any π ∈ S, denoting the switching times as t0, t1, t2, . . .

(occurring at the discontinuity points of π), we denote by pi ∈ S the value
of the switching signal on the interval [ti, ti+1[. We assume also that the set
S contains only elements for which there exists constants τpipi+1 ∈ Q

+
0 such

that τpipi+1 ≤ ti+1 − ti, for any i ∈ N0, and τpipi+1 ≥ hpi
for any pi, pi+1 ∈ S.

Note that the previous assumption on the switching times ensures that the
switching signal dwells in mode pi for at least one associated sampling time
hpi

before switching to mode pi+1.

A continuous-time curve ξ : R+
0 → R

n is said to be a trajectory of Σ̂ if there
exists a switching signal π ∈ S satisfying:

ξ̇(t) = f(ξ(t), υ(t)) (3.2)
υ(t) = Kπ(t)(ξ(�hπ(t))), t ∈ [�hπ(t), (� + 1)hπ(t)[, ∀� ∈ N0.

We now introduce the main problem which we plan to solve in this paper.

Problem 1. Consider a set T of real-time tasks scheduled on a computing plat-
form and a control task defined as in (3.2). Determine the schedule π ∈ S of
controllers and associated sampling times (Ki, hi) for the control task so that
the utilization of the residue bandwidth left by the real-time tasks is maximal
on the average (thus increasing the robustness of the controller implementation
to external disturbances) while simultaneously guaranteeing the stability of the
control task.

4 Adaptive Scheduling of Variable-Rate Control Tasks

In order to compute a stability aware schedule for the incoming control task on
an existing platform, we need: (i) to construct an abstraction of the scheduling
constraints that need to be respected to guarantee stability of the control task;
(ii) to estimate the available processing bandwidth left by the real-time tasks
already present in the platform. We address these challenges in the following.

4.1 Control Task Scheduling Constraints

Consider a control task defined as in (3.2) satisfying the following assumption.

Assumption 2. Each of the pairs (Ki, hi), i ∈ S, of controller and associated
sampling times are such that each sampled-data control system (3.2) satisfies

∂Vi(ξ(t))
∂x

f(ξ(t), υ(t)) ≤ −κ̂iVi(ξ(t)), (4.1)

υ(t) =Ki(ξ(�hi)), t ∈ [�hi, (� + 1)hi[, ∀� ∈ N0,

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 91

for some κ̂i ∈ R
+, guaranteeing that each mode of the sampled-data closed-loop

system is GAS.

Remark 1. There is an abundant literature allowing to design together such
pairs of controllers and sampling times satisfying Assumption 2, see e.g. [15]
and references therein. Alternatively, one can consider that a continuous time
controller is available and compute an adequate sampling time under very mild
assumptions on the plant and controller (namely, continuity of the dynamics of
plant and controller) such that Assumption 2 holds, see e.g. [14]. Additionally,
the large bulk of literature on event-triggered control provides an alternative
way of computing sampling times hi satisfying our requirements through the
closely related methods to compute minimum inter-sample times, see e.g. [22].
Note also that the results hereby presented can be directly extended to the case
of locally asymptotically stable systems, if one instead assumes (4.1) only holds
on a compact set.

We define a timed automaton Tad = (L,L0, C,E, Inv), where L = S, L0 = L,
C = {ζ}, and

– the set E of edges is given by the collection of all tuples (i, g, r, j) such that
i, j ∈ S, g = {ζ | ζ ≥ τij} is the transition guard, and the clock reset set r is
given by {ζ};

– the (location) invariant for mode i is given by Inv(i) := {ζ | ζ ≥ 0}, ∀i ∈ S,

Mode 1
ζ̇ = 1
ζ ≥ 0

ζ := 0
Mode 2
ζ̇ = 1
ζ ≥ 0

ζ := 0

Mode 3
ζ̇ = 1
ζ ≥ 0

ζ := 0

ζ ≥ τ12
ζ := 0

ζ ≥ τ21
ζ := 0

ζ ≥ τ13
ζ := 0

ζ ≥ τ31
ζ := 0

ζ ≥ τ23
ζ := 0

ζ ≥ τ32
ζ := 0

Fig. 1. Timed automaton Tad for 3 con-
trollers.

describing the set, denoted by Sad, of
admissible switching policies between
different controllers Ki, i.e. Sad ⊆
S, guaranteeing GAS of the variable-
rate closed-loop system. An example
of such automaton for the case of S =
{1, 2, 3} is depicted in Fig. 1.

In the following, we establish which
properties τij , i ∈ S and j ∈ S\{i},
need to satisfy so that indeed Tad char-
acterizes a set Sad ⊆ S of stabilizing
switching sequences.

Assumption 3. For any pair of i, j ∈
S, there exits a constant μij ≥ 1 such
that

∀x ∈ R
n, Vi(x) ≤ μijVj(x). (4.2)

Theorem 4. Consider the variable-rate control system Σ̂ in (3.2) and let
Assumptions 2 and 3 hold. If log μij

ρ < κ̂jτji, for any i, j ∈ S, i
= j, and
some ρ ∈]0, 1[, then Σ is GAS and Tad using these τij characterizes a set Sad of
stabilizing switching sequences.

92 M. Zamani et al.

Proof. We show the result for the case of infinite number of switches. A proof
for the case of finite switches can be written in a similar way. Let a ∈ R

n be any
initial condition, t0 = 0, and let pi ∈ S denote the value of the switching signal
on the interval [ti, ti+1[, for i ∈ N0. For all i ∈ N0 and t ∈ [ti, ti+1[and using
inequality (4.1), one gets

V̇pi
(ξaυ(t)) ≤ −κ̂pi

Vpi
(ξaυ(t)) .

For all i ∈ N0, t ∈ [ti, ti+1], and by continuity of Vpi
, we have

Vpi
(ξaυ(t)) ≤ Vpi

(ξaυ(ti))e−κ̂pi
(t−ti). (4.3)

Particularly, for t = ti+1 ∀ i ∈ N0 and using inequality (4.2), one gets

Vpi+1(ξaυ(ti+1)) ≤ μpi+1pi
e−κ̂pi

(ti+1−ti)Vpi
(ξaυ(ti)).

Then, by induction, we have that for all i ∈ N0

Vpi
(ξaυ(ti)) ≤ μpipi−1e

−κ̂pi−1 (ti−ti−1)× (4.4)

μpi−1pi−2e
−κ̂pi−2 (ti−1−ti−2) . . . μp1p0e

−κ̂p0 (t1−t0)Vp0(a).

Combining (4.3) and (4.4), for all i ∈ N0 and t ∈ [ti, ti+1], one obtains

Vpi
(ξaυ(t)) ≤ e−κ̂pi

(t−ti)μpipi−1e
−κ̂pi−1 (ti−ti−1)×

μpi−1pi−2e
−κ̂pi−2 (ti−1−ti−2) . . . μp1p0e

−κ̂p0 (t1−t0)Vp0(a).

Since we consider only switching signals in S, i.e. such that ∃ τpipi+1 ∈ Q
+
0 :

τpipi+1 ≤ ti+1 − ti for any i ∈ N0, one can further bound as:

Vpi
(ξaυ(t)) ≤ e−κ̂pi

(t−ti)μpipi−1e
−κ̂pi−1τpi−1pi ×

μpi−1pi−2e
−κ̂pi−2τpi−2pi−1 . . . μp1p0e

−κ̂p0τp0p1 Vp0(a)

≤ μpipi−1e
−κ̂pi−1τpi−1pi ×

μpi−1pi−2e
−κ̂pi−2τpi−2pi−1 . . . μp1p0e

−κ̂p0τp0p1 Vp0(a).

Finally, since log μij

ρ < κ̂jτji, for any i, j ∈ S, i
= j, and some ρ ∈]0, 1[, we
obtain:

Vpi
(ξaυ(t)) ≤ ρiVp0(a). (4.5)

Using inequalities in (2.4) and (4.5), one gets

αpi
(‖ξaυ(t)‖) ≤ Vpi

(ξaυ(t)) ≤ ρiVp0(a) ≤ ρiαp0(‖a‖),

which reduces to

‖ξaυ(t)‖ ≤ α−1
pi

(ρiαp0(‖a‖)), (4.6)

due to αpi
∈ K∞. As t goes to infinity and since the number of switches are

infinite (i.e. i → ∞), from (4.6) we conclude that ‖ξaυ(t)‖ converges to zero
asymptotically which completes the proof.

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 93

4.2 Task Set Characterization

We consider an ECU platform for which the arrival pattern of each task in an
existing task set T is known. For a task θi ∈ T , the RTC arrival curves (αl

i, α
u
i)

are functions from R
+ to N [6,23] such that the number of instances of θi arriving

in any time window of size t is lower bounded by αl
i(n) and upper bounded by

αu
i (n). Let us consider the deadline of each instance of θi to be ei time units.

The maximum number of task instances of type θi that may arrive in a period
of size ei is given by ai where ai := αu

i (ei). A computational bandwidth which
allows sufficient scheduling slots for executing ai instances of θi in every interval
of length ei is sufficient for scheduling θi since ei represents the deadline of each
instance of θi.

Consider now the worst case execution time (WCET) of θi to be wi CPU
cycles. Thus, aiwi number of CPU cycles need to be made available for task θi in
every consecutive real-time interval of size ei. Let the total available bandwidth
offered by the CPU be given as H computation cycles per time unit. Assume that
the existing scheduling policy for the platform allocates a yi ∈ [0, 1] fraction of
the total bandwidth to θi. We consider an as late as possible (ALAP) scheduling
of the tasks in the period ei, meaning that the fraction of bandwidth y allocated
to task θi is provided in intervals of time of length δi := aiwi

Hyi
whose end coincides

with multiples of ei. We provide a formal definition of these utilization patterns
in the following.

Definition 5. The bandwidth utilization pattern of a task θi, with period ei,
bandwidth utilization fraction yi, and utilization time δi, is a function σ

(ei,yi,δi)
θi

:
R

+
0 → [0, 1] satisfying the following properties:

– σ
(ei,yi,δi)
θi

(t + ei) = σ
(ei,yi,δi)
θi

(t);

– σ
(ei,yi,δi)
θi

(t) = 0, t ∈ [0, ei − δi[;

– σ
(ei,yi,δi)
θi

(t) = yi, t ∈ [ei − δi, ei[.

Fig. 2. ALAP Bandwidth budgets

Given the task set T =
{θ1, . . . , θn} with correspond-
ing deadlines {e1, . . . , en} and
fraction of bandwidth allo-
cated {y1, . . . , yn}, one can
compute their respective δi’s
as indicated earlier. Adding
up the bandwidth utiliza-
tion scenarios of each of
those tasks a total band-
width utilization pattern can
be obtained σT =

∑n
i=1 σ

(ei,yi,δi)
θi

. Note that this bandwidth utilization pattern
is also a periodic function σT : R+

0 → [0, 1] with period ē = l.c.m.(e1, . . . , en),
where l.c.m. stands for least common multiple, but this is not necessarily a
bandwidth utilization pattern (the last two conditions of the definition may not

94 M. Zamani et al.

hold for σT). It may be noted that budgeting processor bandwidths in the way
as discussed above is useful for satisfying the bandwidth requirement for any
scheduling policy which do not allow deadline violation.

Example 1. Let us consider two tasks θ1, θ2 with e1 = 30 and e2 = 20 time units
so that a1 = αu

1 (30) = 2 and a2 = αu
1 (20) = 10. Let the WCET of θ1, θ2 be

30000 and 2000 CPU cycles, respectively. The CPU offers 10000 computation
cycles (H) per time unit and the scheduler offers 40 % and 20 % of overall CPU
bandwidth to θ1 and θ2, respectively, during execution (i.e. y1 = 0.4, y2 = 0.2).
This means θ1 and θ2 gets 4000 and 2000 computation cycles per time unit,
respectively, while executing. This results in the execution of every instance of
θ1 consuming 30000/4000 = 7.5 time units. Thus, to satisfy the total worst case
demand of θ1, i.e. 2 instances in periodic intervals of size 30 time units, we require
15 time units of CPU given a bandwidth of 40%. Similarly, we require 10 time
units in periodic intervals of size 20 given a bandwidth of 20% for θ2. Adding
up these requirements point-wise, a worst case bandwidth requirement pattern,
which recurs every l.c.m.(30, 20) = 60 time units, is computed. The resulting
bandwidth pattern is illustrated in Fig. 2.

4.3 Scheduler Design

Fig. 3. Admissible controllers

As discussed earlier, given a control sys-
tem with p different controllers (from a set
P = {K1, . . . ,Kp}) having sampling rates
{f1 < f2 < · · · < fp}, (fi = h−1

i), we can
construct a TA Tad having p number of
modes, where each mode 1 ≤ i ≤ p sig-
nifies the use of controller Ki. For every
possible mode switch from some mode i
to some mode j, the automaton provides
a timing constraint τij signifying what is
the minimum duration of using mode i
(using Ki) so that a switching can be per-
formed to mode j (start using Kj) guaran-
teeing that the overall closed loop system
is GAS. Let the WCET of controller Ki

be ωc
i (in CPU cycles), and thus its computational requirement is ωc

i fi cycles
per time unit. Given H available computing cycles per time unit, the fraction of
bandwidth required by the controller is ri = ωc

i fi

H , and so one can compute the
bandwidth requirements {r1, . . . , rp} of all controllers in P .

Given the total bandwidth utilization pattern σT for the task set T , with
period ē, denote by σT := 1−σT the residual bandwidth pattern. Let us consider
such a pattern σT and describe it by a string sT := ((l1, v1), . . . , (lν , vν))ω, with∑ν

i=1 vi = ē, denoting the infinitely repeating concatenation of time intervals of
length vi and associated fraction of bandwidth available li, with i = 1, . . . , ν.
We refer to the i-th tuple in the sequence as the i-th stage of the pattern and

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 95

to the period ē as the recurrence length of the pattern. We also denote by
sT [ē] := ((l1, v1), . . . , (lν , vν)). We use the sequence description sT and the avail-
ability pattern σT interchangeably in what follows. Consider now the available
bandwidth string sT , and define S := 〈S1, . . . , Sν〉 with Si ⊆ 2P , ∀i ∈ {1, . . . , ν},
such that Si = {Kj | rj ≤ li}. The list Si contains the controllers which are
schedulable at each of the i-th stages of sT in terms of the available bandwidth
(but possibly leading to an unstable closed-loop operation).

Example 2. Given the instance of σT as shown in Fig. 3, a possible list S
for the case of 4 controllers, could take the form S1 = {K1,K2}, S2 =
{K1,K2,K3}, S3 = {K1}, S4 = {K1,K2}, S5 = {K1,K2,K3,K4}, where we
have assumed that ri < rj if i < j.

We specify a switching sequence ς as a string ς = ((Ki1 , ti1), . . . ,
(Kik

, tik
), . . . , (Kin

, tin
)) indicating that controller Kik

is used inside the k-th
time interval

[∑k−1
j=1 tij

,
∑k

j=1 tij

]
, of duration tik

. We consider only nontrivial
sequences in the sense that Kij

= Kij+1 for all j in a sequence. The length of
such a sequence is given by |ς| =

∑n
j=1 tij

. One can therefore construct from
such a sequence ς a switching signal π ∈ S (c.f. Sect. 3) by letting π(t) = ik if
t ∈ [∑k−1

j=1 tij
+ ēs,

∑k
j=1 tij

+ ēs
]

for some s ∈ N0.
Note that the timed automaton Tad derived in Sect. 4.1, provides us with a

set of timing constraints {τij | 1 ≤ i ≤ p∧1 ≤ j ≤ p, i
= j} where a constraint τij

signifies the minimum amount of time controller Ki should execute (i.e. sojourn
in mode i of the automaton) before a switch to controller Kj is allowed. Given
σT , the list S, and Tad, an admissible switching sequence can be defined as
follows.

Definition 6. Given a bandwidth pattern σT described by the string sT :=
((l1, v1), . . . , (lν , vν))ω with recurrence length ē, the list S of admissi-
ble controllers, the timed automaton Tad, a switching sequence ς =
((Ki1 , ti1), . . . , (Kik

, tik
), . . . , (Kin

, tin
)) is considered admissible if:

– |ς| = l × ē, for some l ∈ N;
– ∀k ∈ N, 1 ≤ k ≤ n, if ∃m ∈ N, 0 ≤ m < l, and ∃q ∈ N, 1 ≤ q ≤ ν,

such that the intervals
[∑k−1

j=1 tij
,
∑k

j=1 tij

]
and

[
m × ē +

∑q−1
j=1 vj ,m × ē +

∑q
j=1 vj

]
intersect, i.e., for every k-th time interval in ς if there is a non-null

intersection with an interval vq of σT , then Kik
∈ Sq and tik

≥ τikik+1 .

We define the notion of bandwidth rejection by an admissible switching sequence
as follows.

Definition 7. Given a bandwidth pattern σT with recurrence length ē and the
list S of admissible controllers, the bandwidth rejection by an admissible switch-
ing sequence ς = ((Ki1 , ti1), . . . , (Kik

, tik
), . . . , (Kin

, tin
)) is given by rej(ς) =

∫ l×ē

0
(σT (t) − r(t))dt, where |ς| = l × ē, for some l ∈ N, and r : R+

0 → [0, 1] is
defined as r(t) = rik

for t ∈ [∑k−1
j=1 tij

,
∑k

j=1 tij

[
.

96 M. Zamani et al.

In order to formally capture the set of admissible switching sequences, we
construct a Linearly Priced Timed Automaton (LPTA) [3,18]. Given the list
S, σT , and the timing constraints for stable switching as captured by the timed
automaton Tad derived in Sect. 4.1, the LPTA T = (L,L0, C,E, Inv,P) is defined
as follows.

– L = {mi,j | ∃(i, j) ∈ {1, . . . , ν} × {1, . . . , p} s.t. Kj ∈ Si}. A location mi,j

denotes a possible choice of controller Kj inside the time interval vi.
– L0 = {m1,k ∈ L |Kk ∈ S1}.
– C = {c, x, cg}. Clock c is used to keep track of the total time elapsed using the

same controller mode across a sequence of intervals. Clock x tracks the time
spent on all locations inside the same stage while cg serves as a global clock.

– E contains three types of edges:
1. inter-stage edges: for mi,j ,mi+1,k ∈ L, (mi,j , φ, C ′,mi+1,k) ∈ E if (Kj ∈

Si) ∧ (Kk ∈ Si+1).
2. intra-stage edges: for mi,j ,mi,k ∈ L, (mi,j , φ, C ′,mi,k) ∈ E if (Kj ∈

Si) ∧ (Kk ∈ Si).
3. final stage edges: for mν,j ,m1,j ∈ L, (mν,i, φ, C ′,m1,j) ∈ E if Ki ∈ Sν ,

where vν is the last interval defining σT .
– An inter-stage edge (mi,j , φ, C ′,mi+1,k) ∈ E has a clock reset set C ′ = {c, x}

if j
= k and C ′ = {x} otherwise.
– An inter-stage edge (mi,j , φ, C ′,mi+1,k) ∈ E has a guard φ = (c ≥ τjk)∧ (x ≥

vi) if j
= k and φ = (x ≥ vi) otherwise.
– An intra-stage edge (mi,j , φ, C ′,mi,k) ∈ E shall always have j
= k by con-

struction. For such a transition, φ = (c ≥ τjk) and C ′ = {c}.
– A final-stage edge (mν,i, φ, C ′,m1,j) ∈ E has a clock reset set C ′ = {c, x} if

i
= j and C ′ = {x} otherwise.
– A final-stage edge (mν,i, φ, C ′,m1,j) ∈ E has a guard φ = (c ≥ τij) ∧ (x ≥ vi)

if i
= j and φ = (x ≥ vi) otherwise.
– Inv(mi,j) = {x ≤ vi}, ∀mi,j ∈ L. These invariants force the automaton to

leave mi,j after spending vi time in the mode. This takes care of the bandwidth
availability requirement.

– For a location (mode) mi,j , the cost rate function P is defined as, P(mi,j) =
(li − rj), ∀mi,j ∈ L \ {f}, and P(e) = 0 ∀e ∈ E. The cost rate at mi,j is
the difference between the bandwidth offered inside the interval vi, and the
bandwidth required by controller Kj , i.e. rj . We do not assign any costs to
the edge transitions.

Remark 2. By construction, any run of T with length being an integer multiple
of ē is an admissible switching sequence.

Based on the notion of on-the-average non-utilized bandwidth, we define a
switching sequence as optimal as follows.

Definition 8. An admissible switching sequence ς∗ is considered optimal if for
every other admissible switching sequence ς, we have rej(ς∗)

|ς∗| ≤ rej(ς)
|ς| .

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 97

It may be noted that in general an admissible switching sequence can be of length
which is any integer multiple of ē. Hence, it makes sense to consider optimality
among admissible switching sequences upto a maximum length.

Definition 9. An admissible switching sequence ς∗ = (K∗
i1

, t∗1)(K
∗
i2

, t∗2)
· · · (K∗

ik
, t∗k) with i1, . . . , ik ∈ S is considered optimal in N -unfolding of σT if

|ς∗| ≤ N × ē and among all admissible switching sequences with length ≤ N × ē,
ς∗ incurs the least (average) bandwidth rejection, i.e. for any other admissible
switching sequence ς with |ς| < N × ē, we have rej(ς∗)

|ς∗| ≤ rej(ς)
|ς| .

Computing Recurrent Schedules. As a scheduling solution, we are inter-
ested in switching sequences which follow a recurring pattern just like the band-
width pattern that recurs every ē time units.

Definition 10. Given a bandwidth pattern σT and the TA Tad, an admissi-
ble switching sequence ς∗ = (K∗

i1
, t∗1)(K

∗
i2

, t∗2) · · · (K∗
ik

, t∗k) with i1, . . . , ik ∈ S is
considered recurrent and optimal in N unfolding of σT if ς∗ is optimal in N
unfolding of σT and t∗k ≥ τiki1 .

The second condition captures the requirement to be satisfied by a finite
length pattern to be able to recur, according to the constraints imposed by Tad.
We denote such a sequence by ς∗

N .
Observe that the period ē of the repeating bandwidth pattern can be very

large by itself for a potentially large task set (it is the l.c.m of all task deadlines).
In this work, we restrict our search for recurrent optimal switching sequences to
some preset N levels of unfolding of the bandwidth pattern. Let us denote the
switching sequence corresponding to the run of T which leads to minimum cost
reachability of a state (location/vertex = l, clock valuation = v) by ς∗(T , (l,v)).
Similarly, for some initial vertex l ∈ L0, let ς∗

r (T , (l,V)) denote the recurring
switching sequence corresponding to the run which starts at l (with all clock
valuations being ‘0’) and reaches l with some valuation v ∈ V at minimal cost.
In our case, minimal cost implies minimal rejection of available bandwidth. Such
minimal cost runs, if exist, can be found by restricting the set of initial vertices
of T to {l} and applying minimum cost reachability analysis [3,18] for the vertex
l with the valuation set as per the specification of V.

Remark 3. For the LPTA T constructed from a bandwidth pattern σT of length
ē and TA Tad using methods outlined earlier, if ς∗

N is the admissible switching
sequence recurrent and optimal in N unfolding of σT , then

rej(ς∗
N)

|ς∗
N | = min

{
rej(ς)

|ς| | ς = ς∗
r (T , (l, {cg = i × ē})), l ∈ L0, i ∈ N, 1 ≤ i ≤ N

}

.

The quantity is non-trivial if there exists at least one switching sequence which
recurs with period ∈ {i × ē | i ∈ N, 1 ≤ i ≤ N}. For computing ς∗

N , the set {ς =
ς∗
r (T , (l, {cg = i × ē)) | l ∈ L0, i ∈ N, 1 ≤ i ≤ N} is enumerated. This essentially

means running N × |L0| number of minimum cost reachability analysis over
the LPTA where the time taken for each analysis is not uniform and increases
with cg.

98 M. Zamani et al.

5 Simulation Results

We are interested in using the residue ECU bandwidth to schedule a control loop
for which multiple controller options with different possible sampling rates are
available. We have applied the proposed approach to a Batch Reactor Process
Σ [10]. The dynamic of the system Σ is given by ξ̇ = Aξ + Bυ, for matrices
A and B of appropriate dimensions. For the system, we construct p stabilizing
controllers {K1, . . . ,Kp} using classical results in linear control theory. For any
i ∈ S, we find Lyapunov functions Vi(x) := xT Mix, for any x ∈ R

n and some
positive definite matrix Mi ∈ R

n×n, for the closed loop of Σ equipped with the
controller Ki. The computed Lyapunov functions Vi satisfy the inequality (4.1)
with κ̂i = i/2 and the associated sampling periods {h1, . . . , hp}. The controller
update rates are then obtained as fi = (1/hi). Using Theorem 4, we can compute
τij by choosing ρ = 0.5. We consider the WCET of controller Ki to be ωc

i (in CPU
cycles) and so one can compute the bandwidth requirements for the controllers,
i.e. {r1, . . . , rp}, as ri = ωc

i fi

H . Given the σT for the current platform load, we can
then compute the list S of admissible controllers. Using our modeling method
from Sect. 4.3, we create the LPTA specification for this scenario in UPPAAL
CORA [13] to obtain the minimum cost schedule. It may be noted that we have
implemented the entire methodology in the form of an automated tool-flow.

Table 1. A sample set of tasks

Task(θi) θ1 θ2
Deadline(ei) e1 = 30 e2 = 20
ai = αu(ei) 2 10
WCET (CPU cycles) 30000 2000
% Bandwidth Allocated 40 % 20 %

We revisit the task set T =
{θ1, θ2} with the parameters as
discussed in Example 1. The
different parameters for the
example are listed in Table 1.
Considering the overall available
bandwidth (H) to be 10000 cycles
per time unit with one time unit
being 0.1 seconds, the residual
bandwidth pattern is computed as
σT1 = ((l1, v1), . . .)ω = ((1, 10), (0.8, 5), (0.4, 5), (0.6, 10), (0.8, 10), (1, 5), (0.6, 5),
(0.4, 10))ω. Now consider as control task a Batch Reactor Process whose matrices
A and B are given in [10] as

A =

⎡

⎢
⎢
⎣

1.50 0 70 −5
−0.50 −4 0 0.50

1 4 −6 6
0 4 1 −2

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0 0
5 0
1 −3
1 0

⎤

⎥
⎥
⎦ .

We consider a maximum of p = 14 controllers. Due to lack of space, we do not
provide matrices Ki and Mi. For i ∈ S, the sampling periods are hi = 10−3 ×
{2.09, 2.33, 2.60, 2.71, 2.91, 3.25, 3.61, 4.17, 4.56, 4.95, 5.38, 5.49, 5.80, 6.04}. The
values of τij are not mentioned in order to save space. Consider the controllers
WCETs ωc

i = {23}. The bandwidth requirements for the controllers are
computed as ri = {0.96, 0.86, 0.77, 0.74, 0.69, 0.62, 0.59, 0.51, 0.49, 0.45, 0.41,
0.41, 0.40, 0.39}. The simulation results are summarized in Table 2 for a single
instance (no unfolding) of the bandwidth pattern.

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 99

Table 2. Results for batch reactor process with N = 1 (no unfolding).

p Controllers Switching sequence Cost

3 K4, K12, K14 [(K12, 15), (K14, 7), (K12, 28), (K14, 10)]
ω 14.74

4 K4, K12, K13, K14 [(K12, 15), (K14, 7), (K12, 28), (K14, 10)]
ω 1457

5 K4, K11, . . . , K14 [(K12, 15), (K13, 5), (K12, 10), (K14, 15), (K12, 5), (K13, 10)]
ω 1455

6 K4, K10, . . . , K14 [(K12, 15), (K11, 5), (K12, 30), (K11, 10)]
ω 12.75

9 K4, K7, . . . , K14 [(K12, 15), (K8, 7), (K12, 28), (K8, 10)]
ω 6.83

10 K4, K6, . . . , K14 [(K12, 15), (K7, 7), (K14, 8), (K12, 15), (K14, 5), (K7, 10)]
ω 593

11 K4, . . . , K14 [(K12, 15), (K6, 7), (K13, 8), (K12, 15), (K13, 5), (K6, 10)]
ω 383

12 K3, . . . , K14 [(K4, 15), (K5, 7), (K11, 8), (K4, 15), (K11, 5), (K5, 10)]
ω 1.43

13 K2, . . . , K14 [(K4, 10), (K12, 5), (K3, 7), (K10, 8), (K12, 10), (K4, 5), (K10, 5), (K3, 10)]
ω 308

14 K1, . . . , K14 [(K4, 10), (K14, 5), (K2, 7), (K9, 8), (K14, 10), (K4, 5), (K9, 5), (K2, 10)]
ω 1.58

Fig. 4. Closed-loop system trajectory for Batch Reactor Process.

Figure 4 shows a simulation of the closed loop batch reactor process with
p = 3 and step disturbances (of 0.1s width) at seconds 0, 2, and 4. It illustrates
how the schedule obtained for σT1 indeed retains the stability of the closed-loop
under the considered disturbances.

References

1. Angeli, D., Sontag, E.D.: Forward completeness, unboundedness observability, and
their Lyapunov characterizations. Syst. Control Lett. 38, 209–217 (1999)

2. Anta, A., Tabuada, P.: To sample or not to sample: self-triggered control for non-
linear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J.M.T., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

4. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

100 M. Zamani et al.

5. Cervin, A., Velasco, M., Marti, P., Camacho, A.: Optimal online sampling period
assignment: theory and experiments. IEEE Trans. Control Syst. Technol. 6(4),
902–910 (2011)

6. Chakraborty, S., Künzli, S., Thiele, L.: A general framework for analysing system
properties in platform-based embedded system designs. In: DATE, vol. 3, p. 10190
(2003)

7. D’Innocenzo, A., Weiss, G., Alur, R., Isaksson, A.J., Johansson, K.H., Pappas,
G.J.: Scalable scheduling algorithms for wireless networked control systems. In:
IEEE International Conference on Automation Science and Engineering, CASE,
pp. 409–414. IEEE (2009)

8. Goswami, D., Masrur, A., Schneider, R., Xue, C.J., Chakraborty, S.: Multirate con-
troller design for resource-and schedule-constrained automotive ECUs. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, pp. 1123–1126.
EDA Consortium (2013)

9. Greco, L., Fontanelli, D., Bicchi, A.: Design and stability analysis for anytime
control via stochastic scheduling. IEEE Trans. Autom. Control 56(3), 571–585
(2011)

10. Green, M., Limebeer, D.J.N.: Linear Robust Control. Prentice Hall, Englewood
Cliffs (1994)

11. Hespanha, J.P., et al.: Stability of switched systems with average dwell-time.
In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3,
pp. 2655–2660. IEEE (1999)

12. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall Inc., New Jersey (1996)
13. Larsen, K.G.: Priced timed automata: theory and tools. In: IARCS Annual Con-

ference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, pp. 417–425 (2009)

14. Nešic, D., Teel, A., Carnevale, D.: Explicit computation of the sampling period in
emulation of controllers for nonlinear sampled-data systems. IEEE Trans. Autom.
Control 54(3), 619–624 (2009)

15. Nešić, D., Teel, A.R., Kokotović, P.: Sufficient conditions for stabilization of
sampled-data nonlinear systems via discrete-time approximations. Syst. Control
Lett. 38(4), 259–270 (1999)

16. Quagli, A., Fontanelli, D., Greco, L., Palopoli, L., Bicchi, A.: Design of embedded
controllers based on anytime computing. IEEE Trans. Ind. Inf. 6(4), 492–502 (2010)

17. Raha, R., Hazra, A., Mondal, A., Dey, S., Chakrabarti, P.P., Dasgupta, P.: Syn-
thesis of sampling modes for adaptive control. In: IEEE International Conference
on Control System, Computing and Engineering (ICCSCE), pp. 294–299. IEEE
(2014)

18. Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using
priced timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 220–235. Springer, Heidelberg (2004)

19. Sharifi-Kolarijani, A., Adzkiya, D., Mazo, M., Jr.: Symbolic abstractions for the
scheduling of event-triggered control systems. In: Proceedings of 54st IEEE Con-
ference on Decision and Control, Osaka, Japan, December 2015

20. Sontag, E.D.: Mathematical Control Theory, vol. 6, 2nd edn. Springer, New York
(1998)

21. Sontag, E.D.: Input to state stability: basic concepts and results. In: Nistri, P.,
Stefani, G. (eds.) Nonlinear and Optimal Control Theory. Lecture Notes in Math-
ematics, vol. 1932, pp. 163–220. Springer, Berlin (2008)

22. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Trans. Autom. Control 52(9), 1680–1685 (2007)

Scheduling of Controllers’ Update-Rates for Residual Bandwidth Utilization 101

23. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: IEEE International Symposium on Circuits, Systems. Emerg-
ing Technologies for the 21st Century, vol. 4, pp. 101–104 (2000)

24. Weiss, G., Alur, R.: Automata based interfaces for control and scheduling. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416,
pp. 601–613. Springer, Heidelberg (2007)

25. Wiesbaden, S.A.M.: Autosar – The worldwide automotive standard for E/E sys-
tems. ATZextra worldwide 18(9), 5–12 (2013)

Real-Time Verification and Synthesis

Real-Time Synthesis is Hard!

Thomas Brihaye1, Morgane Estiévenart1, Gilles Geeraerts2, Hsi-Ming Ho1(B),
Benjamin Monmege3, and Nathalie Sznajder4

1 Université de Mons, Mons, Belgium
{thomas.brihaye,morgane.estievenart,hsi-ming.ho}@umons.ac.be

2 Université libre de Bruxelles, Brussels, Belgium
gigeerae@ulb.ac.be

3 Aix Marseille Univ, CNRS, LIF, Marseille, France
benjamin.monmege@lif.univ-mrs.fr

4 Sorbonne Universités, UPMC, LIP6, Paris, France
nathalie.sznajder@lip6.fr

Abstract. We study the reactive synthesis problem (RS) for specifica-
tions given in Metric Interval Temporal Logic (MITL). RS is known to
be undecidable in a very general setting, but on infinite words only; and
only the very restrictive BResRS subcase is known to be decidable (see
D’Souza et al. and Bouyer et al.). In this paper, we sharpen the decidabil-
ity border of MITL synthesis. We show RS is undecidable on finite words
too, and present a landscape of restrictions (both on the logic and on the
possible controllers) that are still undecidable. On the positive side, we
revisit BResRS and introduce an efficient on-the-fly algorithm to solve it.

1 Introduction

The design of programs that respect real-time specifications is a difficult problem
with recent and promising advances. Such programs must handle thin timing
behaviours, are prone to errors, and difficult to correct a posteriori. Therefore,
one road to the design of correct real-time software is the use of automatic
synthesis methods, that build, from a specification, a program which is correct
by construction. To this end, timed games are nowadays recognised as the key
foundational model for the synthesis of real-time programs. These games are
played between a controller and an environment, that propose actions in the
system, modelled as a plant. The reactive synthesis problem (RS) consists, given a
real-time specification, in deciding whether the controller has a winning strategy
ensuring that every execution of the plant consistent with this strategy (i.e., no
matter the choices of the environment) satisfies the specification. As an example,
consider a lift for which we want to design a software verifying certain safety
conditions. In this case, the plant is a (timed) automaton, whose states record

More technical details and proofs can be found in the full version of this paper [8].
This work has been supported by The European Union Seventh Framework Pro-
gramme under Grant Agreement 601148 (Cassting) and by the FRS/F.N.R.S. PDR
grant SyVeRLo.

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 105–120, 2016.
DOI: 10.1007/978-3-319-44878-7 7

106 T. Brihaye et al.

the current status of the lift (its floor, if it is moving, the button on which
users have pushed. . .), as well as timing information regarding the evolution
in-between the different states. On the other hand, the specification is usually
given using some real-time logic: in this work, we consider mainly specifications
given by a formula of MITL [2], a real-time extension of LTL. Some actions in
the plant are controllable (closing the doors, moving the cart), while others
belong to the environment (buttons pushed by users, exact timing of various
actions inside intervals, failures. . .). Then, RS asks to compute a controller that
performs controllable actions at the right moments, so that, for all behaviours
of the environment, the lift runs correctly.

In the untimed case, many positive theoretical and practical results have
been achieved regarding RS: for instance, when the specification is given as
an LTL formula, we know that if a winning strategy exists, then there is one
that can be described by a finite state machine [17]; and efficient LTL synthesis
algorithms have been implemented [3,13]. Unfortunately, in the real-time setting,
the picture is not so clear. Indeed, a winning strategy in a timed game might
need unbounded memory to recall the full prefix of the game, which makes
the real-time synthesis problem a hard one. This is witnessed by three papers
presenting negative results: D’Souza and Madhusudan [12] and Bouyer et al. [4]
show that RS is undecidable (on finite and infinite words) when the specification
is respectively a timed automaton and an MTL formula (the two most expressive
formalisms in Fig. 1). More recently, Doyen et al. show [11] that RS is undecidable
for MITL specifications over infinite words; but leave the finite words case open.

When facing an undecidability result, one natural research direction consists
in considering subcases in order to recover decidability: here, this amounts to
considering fragments of the logic, or restrictions on the possible controllers.
Such results can also be found in the aforementioned works. In [12], the authors
consider a variant of RS, called bounded resources reactive synthesis (BResRS)
where the number of clocks and the set of guards that the controller can use are
fixed a priori, and the specification is given by means of a timed automaton. By
coupling this technique with the translation of MITL into timed automata [7],
one obtains a 3-EXPTIME procedure (in the finite and infinite words cases).
Unfortunately, due to the high cost of translating MITL into timed automata and
the need to construct its entire deterministic region automaton, this algorithm
is unlikely to be amenable to implementation. Then, [4] presents an on-the-fly
algorithm for BResRS with MTL specifications (MTL is a strict superset of MITL),
on finite words, but their procedure runs in non-primitive recursive time.

Hence, the decidability status of the synthesis problem (with MITL require-
ments) still raises several questions, namely: (i) Can we relax the restrictions
in the definition of BResRS while retaining decidability? (ii) Is RS decidable on
finite words, as raised in [11]? (iii) Are there meaningful restrictions of the logic
that make RS decidable? (iv) Can we devise an on-the-fly, efficient, algorithm
that solves BResRS in 3-EXPTIME as in [12]? In the present paper, we provide
answers to those questions. First, we consider the additional IRS, BPrecRS and
BClockRS problems, that introduce different levels of restrictions. IRS requests

Real-Time Synthesis is Hard! 107

the controller to be a timed automaton. BPrecRS and BClockRS are further
restrictions of IRS where respectively the set of guards and the set of clocks of
the controller are fixed a priori. Thus, we consider the following hierarchy of

problems: RS ⊇ IRS ⊇ BPrecRS
BClockRS

⊇ BResRS. Unfortunately, while IRS, BPrecRS

and BClockRS seem to make sense in practice, they turn out to be undecidable
both on finite and infinite words—an answer to points (i) and (ii). Our proofs are
based on a novel encoding of halting problem for deterministic channel machines.
By contrast, the undecidability results of [4] (for MTL) are reductions from the
same problem, but their encoding relies heavily on the ability of MTL to express
punctual constraints like ‘every a event is followed by a b event exactly one
time unit later’, which is not allowed by MITL. To the best of our knowledge,
our proofs are the first to perform such a reduction in a formalism that disal-
lows punctual requirements—a somewhat unexpected result. Then, we answer
point (iii) by considering a hierarchy of syntactic subsets of MITL (see Fig. 1)
and showing that, for all these subsets, BPrecRS and BClockRS (hence also IRS
and RS) remain undecidable, on finite and infinite words. Note that the undecid-
ability proof of [12] cannot easily be adapted to cope with these cases, because
it needs a mix of open and closed constraints; while we prove undecidable very
weak fragments of MITL where only closed or only open constraints are allowed.
All these negative results shape a precise picture of the decidability border for
real-time synthesis (in particular, they answer open questions from [4,9,11]).
On the positive side, we answer point (iv) by devising an on-the-fly algorithm
to solve BResRS (in the finite words case) that runs in 3-EXPTIME. It relies on
one-clock alternating timed automata (as in [4], but unlike [12] that use timed
automata), and on the recently introduced interval semantics [7].

2 Reactive Synthesis of Timed Properties

Let Σ be a finite alphabet. A (finite) timed word1 over Σ is a finite word σ =
(σ1, τ1) · · · (σn, τn) over Σ×R

+ with (τi)1�i�n a non-decreasing sequence of non-
negative real numbers. We denote by TΣ� the set of finite timed words over Σ.
A timed language is a subset L of TΣ�.

Timed Logics. We consider the reactive synthesis problem against various real-
time logics, all of them being restrictions of Metric Temporal Logic (MTL) [14].
The logic MTL is a timed extension of LTL, where the temporal modalities are
labelled with a timed interval. The formal syntax of MTL is given as follows:

ϕ := � | a | ϕ ∧ ϕ | ¬ϕ | ϕUIϕ

where a ∈ Σ and I is an interval over R
+ with endpoints in N ∪ {+∞}.

We consider the pointwise semantics and interpret MTL formulas over timed
words. The semantics of a formula ϕ in MTL is defined inductively in the usual
1 In order to keep the discussion focused and concise, we give the formal definitions

for finite words only. It is straightforward to adapt them to the infinite words case.

108 T. Brihaye et al.

TAMTL

coFlat-MTLSafety-MTL MITL ECL

MITLns MITL[U0,∞] = ECLfut

MITLns[U0,∞] MITL[♦∞]

MITLns[♦∞]

Open-MITLns[♦∞] Closed-MITLns[♦∞]

Closed-MITL

Open-MITL

Fig. 1. All the fragments of MITL for which BPrecRS and BClockRS are undecidable
(hence also RS and IRS). A → B means that A strictly contains B.

way. We recall only the semantics of U: given σ = (σ1, τ1) · · · (σn, τn) ∈ TΣ�,
and a position 1 � i � n, we let (σ, i) |= ϕ1UIϕ2 if there exists j > i such that
(σ, j) |= ϕ2, τj − τi ∈ I, and (σ, k) |= ϕ1, for all i < k < j.

With ⊥ := ¬�, we can recover the ‘next’ operator ©Iϕ := ⊥UIϕ, and we
rely on the usual shortcuts for the ‘finally’, ‘globally’ and ‘dual-until’ operators:
♦Iϕ := �UIϕ, �Iϕ := ¬♦I¬ϕ and ϕ1ŨIϕ2 := ¬((¬ϕ1)UI(¬ϕ2)). We also use
the non-strict version of the ‘until’ operator ϕ1UIϕ2, defined as ϕ2∨(ϕ1∧ϕ1UIϕ2)
(if 0 ∈ I) or ϕ1 ∧ ϕ1UIϕ2 (if 0 /∈ I). This notation yields the corresponding non-
strict operators ♦ϕ and �ϕ in the natural way. When the interval I is the entire
set of the non-negative real numbers, the subscript is often omitted. We say that
σ satisfies the formula ϕ, written σ |= ϕ if (σ, 1) |= ϕ, and we denote by L(ϕ)
the set of all timed words σ such that σ |= ϕ.

We consider mainly a restriction of MTL called MITL (for Metric Interval
Temporal Logic), in which the intervals are restricted to non-singular ones. We
denote by Open-MITL the open fragment of MITL: in negation normal form, each
subformula ϕ1UIϕ2 has either I open or inf(I) = 0 and I right-open, and each
subformula ϕ1ŨIϕ2 has I closed. Then, a formula is in Closed-MITL if it is the
negation of an Open-MITL formula. By [7], Open-MITL formulas (respectively,
Closed-MITL formulas) translate to open (closed) timed automata [15], i.e., all
clock constraints are strict (non-strict). Two other important fragments of MTL
considered in the literature consist of Safety-MTL [16], where each subformula
ϕ1UIϕ2 has I bounded in negation normal form, and coFlat-MTL [5], where the
formula satisfies the following in negation normal form: (i) in each subformula
ϕ1UIϕ2, if I is unbounded then ϕ2 ∈ LTL; and (ii) in each subformula ϕ1ŨIϕ2,
if I is unbounded then ϕ1 ∈ LTL.

For all of these logics L, we can consider several restrictions. The restriction
in which only the non-strict variants of the operators (♦, �, etc.) are allowed
is denoted by Lns. The fragment in which all the intervals used in the formula
are either unbounded, or have a left endpoint equal to 0 is denoted by L[U0,∞].
In this case, the interval I can be replaced by an expression of the form ∼ c,
with c ∈ N, and ∼ ∈ {<,>,�,�}. It is known that MITL[U0,∞] is expressively
equivalent to ECLfut [18], which is itself a syntactic fragment of Event-Clock Logic

Real-Time Synthesis is Hard! 109

(ECL). Finally, L[♦∞] stands for the logic where ‘until’ operators only appear in
the form of ♦I or �I with intervals I of the shape [a,∞) or (a,∞).

Symbolic Transition Systems. Let X be a finite set of variables, called clocks.
The set G(X) of clock constraints g over X is defined by: g := � | g ∧ g | x �� c,
where �� ∈ {<,�,=,�, >}, x ∈ X and c ∈ Q

+. A valuation over X is a mapping
ν : X → R

+. The satisfaction of a constraint g by a valuation ν is defined in the
usual way and noted ν |= g, and �g� is the set of valuations ν satisfying g. For
t ∈ R

+, we let ν + t be the valuation defined by (ν + t)(x) = ν(x) + t for all
x ∈ X. For R ⊆ X, we let ν[R ← 0] be the valuation defined by (ν[R ← 0])(x) =
0 if x ∈ R, and (ν[R ← 0])(x) = ν(x) otherwise.

Following the terminology of [4,12], a granularity is a triple μ = (X,m,K)
where X is a finite set of clocks, m ∈ N \ {0}, and K ∈ N. A constraint g is μ-
granular if g ∈ G(X) and each constant in g is of the form α

m with an integer α �
K. A symbolic alphabet Γ based on (Σ,X) is a finite subset of Σ×Gatom

m,K (X)×2X ,
where Gatom

m,K (X) denotes all atomic (X,m,K)-granular clock constraints (i.e.,
clock constraints g such that �g� = �g′� or �g� ∩ �g′� = ∅, for every (X,m,K)-
granular clock constraint g′). Such a symbolic alphabet Γ is said μ-granular. A
symbolic word γ = (σ1, g1, R1) · · · (σn, gn, Rn) over Γ generates a set of timed
words over Σ, denoted by tw(γ) such that σ ∈ tw(γ) if σ = (σ1, τ1) · · · (σn, τn),
and there is a sequence (νi)0�i�n of valuations with ν0 the zero valuation, and for
all 1 � i � n, νi−1 +τi −τi−1 |= gi and νi = (νi−1 +τi −τi−1)[Ri ← 0] (assuming
τ0 = 0). Intuitively, each (σi, gi, Ri) means that action σi is performed, with
guard gi satisfied and clocks in Ri reset.

A symbolic transition system (STS) over a symbolic alphabet Γ based on
(Σ,X) is a tuple T = (S, s0,Δ, Sf) where S is a possibly infinite set of locations,
s0 ∈ S is the initial location, Δ ⊆ S×Γ ×S is the transition relation, and Sf ⊆ S
is a set of accepting locations (omitted if all locations are accepting). An STS
with finitely many locations is a timed automaton (TA) [1]. For a finite path
π = s1

b1−→ s2
b2−→ · · · bn−→ sn+1 of T (i.e., such that (si, bi, si+1) ∈ Δ for all

1 � i � n), the trace of π is the word b1b2 · · · bn, and π is accepting if sn+1 ∈ Sf .
We denote by L(T) the language of T , defined as the timed words associated to
symbolic words that are traces of finite accepting paths starting in s0. We say
that a timed action (t, σ) ∈ R

+ × Σ is enabled in T at a pair (s, ν), denoted
by (t, σ) ∈ EnT (s, ν), if there exists a transition (s, (σ, g,R), s′) ∈ δ such that
ν + t |= g. The STS T is time-deterministic if there are no distinct transitions
(s, (σ, g1, R1), s1) and (s, (σ, g2, R2), s2) in Δ and no valuation ν such that ν |= g1
and ν |= g2. In a time-deterministic STS T = (S, s0, δ, Sf), for all timed words
σ, there is at most one path π whose trace γ verifies σ ∈ tw(γ). In that case,
we denote by δ(s0, σ) the unique (if it exists) pair (s, ν) (where s ∈ S and ν is
a valuation) reached after reading σ ∈ tw(γ).

Example 1. A time-deterministic TA P with a single clock x is depicted in Fig. 2.
Intuitively, it accepts all timed words σ of the form w1w2 · · · wn where each wi

is a timed word such that (i) either wi = (b, τ); (ii) or wi is a sequence of a’s

110 T. Brihaye et al.

q0 q1 q2

b, x := 0 a, x � 1 a, x > 1, x := 0

a, x := 0

b, x := 0

a, x > 1, x := 0

a, x � 1

b, x := 0

(a) �0 �1

b a

a, z := 0

b, z = 1
(b)

Fig. 2. (a) A time-deterministic STS P with X = {x}. Instead of depicting a transition
per letter (a, g, R) (with g atomic), we merge several transitions; e.g., we skip the guard,
when all the possible guards are admitted. x := 0 denotes the reset of x. (b) A time-
deterministic STS T . It is a controller to realise ϕ = �(a ⇒ ♦�1b) with plant P.

(starting at time stamp τ) of duration at most 1; and wi+1 is either of the form
(b, τ ′), or of the form (a, τ ′) with τ ′ − τ > 1.

Reactive Synthesis with Plant. To define our reactive synthesis problems,
we partition the alphabet Σ into controllable and environment actions ΣC and
ΣE . Following [4,12], the system is modelled by a time-deterministic TA P =
(Q, q0, δP , Qf), called the plant2. Observe that the plant has accepting locations:
only those runs ending in a final location of the plant will be checked against
the specification. We start by recalling the definition of the general reactive
synthesis family of problems (RS) [10,11]. It consists in a game played by the
controller and the environment, that interact to create a timed word as follows.
We start with the empty timed word, and then, at each round, the controller
and the environment propose timed actions to be performed by the system—
therefore, they must be firable in the plant P—respectively (t, a) and (t′, b), with
t, t′ ∈ R

+, a ∈ ΣC and b ∈ ΣE . The timed action with the shortest3 delay (or
the environment action if the controller decides not to propose any action) is
performed, and added to the current play for the next round. If both players
propose the same delay, we resolve the time non-deterministically.

On those games, we consider a parameterised family of reactive synthesis
problems denoted RSb

s(F), where s ∈ {u, d}; b ∈ {�, ω}; and F is one of the
formalisms in Fig. 1. An instance of RSb

s(F) is given by a specification S ∈ F and
a plant P, which are interpreted over finite words when b = � and infinite words
when b = ω. The timed language L(S) is a specification of desired behaviours
when s = d and undesired behaviours when s = u. Then, RSb

s(F) asks whether
there exists a strategy for the controller such that all the words in the outcome
of this strategy are in L(S) (or outside L(S)) when we consider desired (or
undesired) behaviours (when s = ω, the definition of L(S) must be the infinite
words one). If this is the case, we say that S is (finite-word) realisable for the
problem under study. For example, RSω

u(MITL) is the reactive synthesis problem
2 We assume that for every location q and every valuation ν, there exists a timed

action (t, σ) ∈ R
+ × Σ and a transition (q, (σ, g, R), q′) ∈ δP such that ν + t |= g.

3 Observe that this is different from [4,12], where the environment can always prevent
the controller from playing, even by proposing a longer delay. We claim our definition
is more reasonable in practice but all proofs can be adapted to both definitions.

Real-Time Synthesis is Hard! 111

where the inputs are a formula of MITL and a plant, which are interpreted
over the infinite words semantics, and where the MITL formula specifies the
behaviours that the controller should avoid. Unfortunately, the variants RS are
too general, and a winning strategy might require unbounded memory:

Example 2. Consider the alphabet Σ = ΣC �ΣE with ΣC = {b} and ΣE = {a},
a plant P accepting TΣ�, and the specification defined by the MTL formula
ϕ = �

(
(a ∧ ♦�1a) ⇒ ♦=1b

)
. Clearly, a winning strategy for the controller is to

remember the time stamps τ1, τ2, . . . of all a’s, and always propose to play action b
one time unit later (note that if the environment blocks the time to prevent
the controller from playing its b, the controller wins). However this requires to
memorise an unbounded number of time stamps with a great precision.

Restrictions on RS. In practice, it makes more sense to restrict the winning
strategy of the controller to be implementable by an STS, which has finitely many
clocks (and if possible finitely many locations). Let us define formally what it
means for an STS T = (S, s0, δ) to control a plant P. We let TΣ�

T ,P be the set
of timed words consistent with T and P, defined as the smallest set containing
the empty timed word, and closed by the following operations. Let σ be a word
in TΣ�

T ,P , with (q, νP) = δP(q0, σ), T = 0 if σ = ε, and (c, T) ∈ Σ × R
+ be the

last letter of σ otherwise. Then, we extend σ as follows:

– either the controller proposes to play a controllable action (t, b), because it cor-
responds to a transition that is firable both in the controller and the plant. This
action can be played (σ is extended by (b, T + t)), as well as any environment
action (t′, a) with t′ � t (the environment can overtake the controller). For-
mally, if δ(s0, σ) = (s, ν) is defined and EnT (s, ν) ∩EnP(q, νP)∩(R+×ΣC) �= ∅:
for all (t, b) ∈ EnT (s, ν)∩EnP(q, νP)∩ (R+×ΣC), we let σ · (b, T + t) ∈ TΣ�

T ,P
and σ · (a, T + t′) ∈ TΣ�

T ,P for all t′ � t and a ∈ ΣE such that (t′, a) ∈
EnP(q, νP).

– Or the controller proposes nothing, then the environment can play all its
enabled actions. Formally, if δ(s0, σ) = (s, ν) is defined and EnT (s, ν) ∩
EnP(q, νP) ∩ (R+ × ΣC) = ∅ and EnP(q, νP) ∩ (R+ × ΣE) �= ∅, we let
σ · (a, T + t′) ∈ TΣ�

T ,P for all (t′, a) ∈ EnP(q, νP) ∩ (R+ × ΣE).
– Otherwise, we declare that every possible future allowed by the plant is valid,

i.e., we let σ · σ′ ∈ TΣ�
T ,P for all σ · σ′ ∈ L(P). This happens when the

controller proposes only actions that are not permitted by the plant while the
environment has no enabled actions; or when the controller lost track of a
move of the environment during the past.

Then, the MTL implementable reactive synthesis problem IRS�
d(MTL) (on finite

words and with desired behaviours) is to decide, given a plant P and a speci-
fication given as an MTL formula ϕ, whether there exists a set of clocks X, a
symbolic alphabet Γ based on (Σ,X), and a time-deterministic STS T over Γ
such that TΣ�

T ,P ∩ L(P) ⊆ L(ϕ) ∪ {ε}.4

4 Empty word ε is added for convenience, in case it is not already in L(ϕ).

112 T. Brihaye et al.

While the definition of IRS�
d(MTL) is more practical than that of RS�

d(MTL), it
might still be too general because the clocks and symbolic alphabet the controller
can use are not fixed a priori. In the spirit of [4,12], we define three variants
of IRS. First, the MTL bounded-resources synthesis problem BResRS�

d(MTL) is a
restriction of IRS�

d(MTL) where the granularity of the controller is fixed: given an
MTL formula ϕ, and a granularity μ = (X,m,K), it asks whether there exists a
μ-granular symbolic alphabet Γ based on (Σ,X), and a time-deterministic STS
T over Γ such that TΣ�

T ,P ∩ L(P) ⊆ L(ϕ) ∪ {ε}. Second, the less restrictive
MTL bounded-precision synthesis problem BPrecRS�

d(MTL) and MTL bounded-
clocks synthesis problem BClockRS�

d(MTL) are the variants of IRS where only
the precision and only the number of clocks are fixed, respectively. Formally,
BPrecRS�

d(MTL) asks, given an MTL formula ϕ, m ∈ N, and K ∈ N\{0}, whether
there are a finite set X of clocks, an (X,m,K)-granular symbolic alphabet Γ
based on (Σ,X), and a time-deterministic STS T over Γ such that TΣ�

T ,P ∩
L(P) ⊆ L(ϕ) ∪ {ε}. BClockRS�

d(MTL) is defined similarly with an MTL formula
ϕ, and a finite set of clocks X (instead of m, K) as input.

While we have defined IRS, BPrecRS, BClockRS and BResRS for MTL require-
ments, and in the finite words, desired behaviours case only, these definitions
extend to all the other cases we have considered for RS: infinite words, unde-
sired behaviours, and all fragments of MTL. We rely on the same notations as
for RS, writing for instance BPrecRS�

u(MITL) or BClockRSω
d (coFlat-MTL), etc.

Example 3. Consider the instance of IRS�
d(MITL) where the plant accepts TΣ�

and the specification is ϕ = �(a ⇒ ♦�1b). This instance is negative (ϕ is not
realisable), since, for every time-deterministic STS T , (a, 0) ∈ TΣ�

T ,P but is not
in L(ϕ). However, if we consider now the plant P in Fig. 2(a), we claim that the
STS T with one clock z depicted in Fig. 2(b) realises ϕ. Indeed, this controller
resets its clock z each time it sees the first a in a sequence of a’s, and proposes
to play a b when z has value 1, which ensures that all a’s read so far are followed
by a b within 1 time unit. The restrictions enforced by the plant (which can be
regarded as a sort of fairness condition) ensure that this is sufficient to realise ϕ
for IRS�

d(MITL). This also means that ϕ is realisable for BPrecRS�
d(MITL) with

precision m = 1 and K = 1; for BClockRS�
d(MITL) with set of clocks X = {z};

and for BResRS�
d(MITL) with granularity μ = ({z}, 1, 1).

3 BPrecRS and BClockRS are Undecidable

Let us show that all the variants of BPrecRS and BClockRS are undecidable,
whatever formalism from Fig. 1 we consider for the specification. This entails
that all variants of RS and IRS are undecidable too (in particular RS�

d(ECL)
which settles an open question of [11] negatively). To this aim, we show unde-
cidability on the weakest formalisms in Fig. 1, namely: coFlat-MTL, Safety-MTL,
Open-MITLns[♦∞] and Closed-MITLns[♦∞]. Similar results have been shown for
MTL (and for Safety-MTL as desired specifications) in [4] via a reduction from
the halting problem for deterministic channel machines, but their proof depends

Real-Time Synthesis is Hard! 113

crucially on punctual formulas of the form �(a ⇒ ♦=1b) which are not express-
ible in MITL. Our original contribution here is to adapt these ideas to a formalism
without punctual constraints, which is non-trivial.

Deterministic Channel Machines. A deterministic channel machine (DCM)
S = 〈S, s0, shalt,M,Δ〉 can be seen as a finite automaton equipped with an
unbounded fifo channel, where S is a finite set of states, s0 is the initial state,
shalt is the halting state, M is a finite set of messages and Δ ⊆ S×{m!,m? | m ∈
M}×S is the transition relation satisfying the following determinism hypothesis:
(i) (s, a, s′) ∈ Δ and (s, a, s′′) ∈ Δ implies s′ = s′′; (ii) if (s,m!, s′) ∈ Δ then it
is the only outgoing transition from s.

The semantics is described by a graph G(S) with nodes labelled by (s, x)
where s ∈ S and x ∈ M� is the channel content. The edges in G(S) are defined
as follows: (i) (s, x) m!−−→ (s′, xm) if (s,m!, s′) ∈ Δ; and (ii) (s,mx) m?−−→ (s′, x)
if (s,m?, s′) ∈ Δ. Intuitively, these correspond to messages being written to or
read from the channel. A computation of S is then a path in G(S). The halting
problem for DCMs asks, given a DCM S, whether there is a computation from
(s0, ε) to (shalt, x) in G(S) for some x ∈ M�.

Proposition 1 ([6]). The halting problem for DCMs is undecidable.

It should be clear that S has a unique computation. Without loss of generality,
we assume that shalt is the only state in S with no outgoing transition. It follows
that exactly one of the following must be true: (i) S has a halting computation;
(ii) S has an infinite computation not reaching shalt; (iii) S is blocking at some
point, i.e., S is unable to proceed at some state s �= shalt (with only read outgoing
transitions) either because the channel is empty or the message at the head of
the channel does not match any of the outgoing transitions from s.

Finite-Word Reactive Synthesis for MITL. We now give a reduction from
the halting problem for DCMs to RS�

d(MITL). The idea is to devise a suitable
MITL formula such that in the corresponding timed game, the environment and
the controller are forced to propose actions in turn, according to the semantics of
the DCM. Each prefix of the (unique) computation of the DCM is thus encoded
as a play, i.e., a finite timed word. More specifically, given a DCM S, we require
each play to satisfy the following conditions:

C1 The action sequence of the play (i.e., omitting all timestamps) is of the
form NilC� s0a0s1a1 · · · where NilC is a special action of the controller and
(si, ai, si+1) ∈ Δ for each i � 0.

C2 Each si comes with no delay and no two write or read actions occur at the
same time, i.e., if (ai, τ)(si+1, τ

′)(ai+1, τ
′′) is a substring of the play then

τ = τ ′ and τ < τ ′′.
C3 Each m? is preceded exactly 1 time unit (t.u.) earlier by a corresponding m!
C4 Each m! is followed exactly 1 t.u. later by a corresponding m? if there are

actions that occur at least 1 t.u. after the m! in question.

114 T. Brihaye et al.

To this end, we construct a formula of the form Φ ⇒ Ψ where Φ and Ψ are
conjunctions of the conditions that the environment and the controller must
adhere to, respectively. In particular, the environment must propose si’s accord-
ing to the transition relation (C1 and C2) whereas the controller is responsible for
proposing {m!,m? | m ∈ M} properly so that a correct encoding of the writing
and reading of messages is maintained (C2, C3, and C4). When both players obey
these conditions, the play faithfully encodes a prefix of the computation of S, and
the controller wins the play. If the environment attempts to ruin the encoding,
the formula will be satisfied, i.e., the play will be winning for the controller. Con-
versely, if the controller attempts to cheat by, say, reading a message that is not
at the head of the channel, the environment can pinpoint this error (by propos-
ing a special action Check←) and falsify the formula, i.e., the play will be losing
for the controller. In what follows, let ΣE = S ∪ {Check←,Check→,Lose,NilE},
ΣC = {m!,m? | m ∈ M} ∪ {Win,NilC}, ϕE =

∨
e∈ΣE

e, ϕC =
∨

c∈ΣC
c,

ϕS =
∨

s∈S s, ϕW =
∨

m∈M m!, ϕR =
∨

m∈M m? and ϕWR = ϕW ∨ ϕR. Let
us now present the formulas ϕ1, ϕ2, . . . and ψ1, ψ2, . . . needed to define Φ and Ψ .

We start by formulas enforcing condition C1. The play should start from s0,
alternate between E-actions and C-actions, and the controller can win the play if
the environment does not proceed promptly, and vice versa for the environment:

ϕ1 = ¬(
NilCU(ϕE ∧ ¬s0)

)
ψ1 = ¬(

NilCU(ϕC ∧ ¬NilC)
)

ϕ2 = ¬♦(ϕE ∧ ©�1ϕE) ψ2 = ¬♦(ϕC ∧ ©�1ϕC)

ϕ3 = ¬♦(ϕWR ∧ ©Win) ψ3 = ¬♦(ϕS ∧ ¬shalt ∧ ©Lose) .

Both players must also comply to the semantics of S:

ϕ4 =
∧

(s,a,s′)∈Δ
b/∈{s′,Check←,Check→}

¬♦(s ∧ ©a ∧ © © b) ψ4 =
∧

s �=shalt

∀s′ (s,a,s′)/∈Δ

¬♦(s ∧ ©a) .

Once the encoding has ended, both players can only propose Nil actions:

ϕ5 = ¬♦
(
(shalt ∨ Check← ∨ Check→ ∨ Lose ∨ Win) ∧ ♦(ϕE ∧ ¬NilE)

)

ψ5 = ¬♦
(
(shalt ∨ Check← ∨ Check→ ∨ Lose ∨ Win) ∧ ♦(ϕC ∧ ¬NilC)

)
.

For condition C2, we simply state that the environment can only propose
delay 0 whereas the controller always proposes a positive delay:

ϕ6 = ¬♦(ϕWR ∧ ©>0ϕE) ψ6 = �(ϕS ∧ ¬shalt ∧ ©ϕWR =⇒ ©>0ϕWR) .

Let us finally introduce formulae to enforce conditions C3 and C4. Note that
a requirement like ‘every write is matched by a read exactly one time unit later’
is easy to express in MTL, but not so in MITL. Nevertheless, we manage to
translate C3 and C4 in MITL by exploiting the game interaction between the
players. Intuitively, we allow the cheating player to be punished by the other.
Formally, to ensure C3, we allow the environment to play a Check← action after

Real-Time Synthesis is Hard! 115

any m? to check that this read has indeed occurred 1 t.u. after the corresponding
m!. Assuming such a Check← has occurred, the controller must enforce:

ψ← =
∨

m∈M

♦
(
m! ∧ ♦�1(m? ∧ ©Check←) ∧ ♦�1(m? ∧ ©Check←)

)
.

Now, to ensure C4, the environment may play a Check→ action at least 1 t.u.
after a write on the channel. If this Check→ is the first action that occurs more
than 1 t.u. after the writing (expressed by the formula ψ→

fst), we must check that
the writing has been correctly addressed, i.e., there has been an action exactly
1 t.u. after, and this action was the corresponding reading:

ψ→
fst = ♦(ϕW ∧ ♦<1θ

→
1 ∧ ♦�1θ

→
0)

ψ→ = ¬♦(ϕW ∧ ♦<1θ
→
1 ∧ ♦>1θ

→
0) ∧ ψ←[Check→/Check←]

where ψ←[Check→/Check←] is the formula obtained by replacing all Check←

with Check→ in ψ←, θ→
0 = ϕWR ∧©Check→ and θ→

1 = ϕWR ∧©ϕS ∧© © θ→
0 .

In the overall, we consider:

ϕ7 =
∧

m∈M

¬♦(m! ∧ ©Check←)

ψ7 = (♦Check← ⇒ ψ←) ∧ (
(♦Check→ ∧ ψ→

fst) ⇒ ψ→)
.

Now let Φ =
∧

1�i�7 ϕi, Ψ =
∧

1�i�7 ψi and Ω = Φ ⇒ Ψ .

Proposition 2. Ω is finite-word realisable if and only if either (i) S has a
halting computation, or (ii) S has an infinite computation not reaching shalt.5

Proof (Sketch). If (i) or (ii) is true, Ω can be realised by the controller faithfully
encoding a computation of S. If E proposes Check← or Check→, the play will
satisfy ψ7. Otherwise, if S has an infinite computation not reaching shalt, the
play can grow unboundedly and will satisfy all ψ’s, hence Ω.

Conversely, if S is blocking, then Ω is not realisable. Indeed, either the con-
troller encodes S correctly, but then at some point it will not be able to propose
any action, and will be subsumed by the environment that will play Lose. Or
the controller will try to cheat, by (1) inserting an action m? not matched by
a corresponding m! 1 t.u. earlier, or (2) writing a message m! that will not be
read 1 t.u. later. For the first case, the environment can then play Check← right
after the incorrect m?, and the play will violate ψ←, hence ψ7 and Ω. For the
second case, the environment will play Check→ after the first action occurring 1
t.u. after the unfaithful m! and the play will violate ψ→. ��

Now let Ω′ = Φ ⇒ Ψ ∧ �(¬shalt), i.e., we further require the computation
not to reach shalt. The following proposition can be proved almost identically.
5 Observe that the proof does not require any plant (or uses the trivial plant accept-

ing TΣ�). This entails undecidability of the ‘realisability problem’, which is more
restrictive than RS�

d and another difference with respect to the proof in [4].

116 T. Brihaye et al.

Proposition 3. Ω′ is finite-word realisable if and only if S has an infinite com-
putation not reaching shalt.

Corollary 1. S has a halting computation if and only if Ω is finite-word real-
isable but Ω′ is not finite-word realisable.

It follows that if RS�
d(MITL) is decidable, we can decide whether S has a halting

computation. But the latter is known to be undecidable. Hence:

Theorem 1. RS�
d(MITL) is undecidable.

Theorem 1 and its proof are the core results from which we will derive all other
undecidability results announced at the beginning of the section.

Remark 1. One may show that RSω
d is undecidable for formulas of the form Φ ⇒

Ψ where Φ and Ψ are conjunctions of Safety-MTL[U0,∞] formulas by rewriting
ϕi’s and ψi’s. This answers an open question of [9].

BPrecRSand BClockRSfor Safety-MTL, coFlat-MTL, and MITL. In the proof of
Proposition 2, if S actually halts, the number of messages present in the channel
during the (unique) computation is bounded by a number N . It follows that
the strategy of C can be implemented as a bounded-precision controller (with
precision (m,K) = (1, 1) and N clocks) or a bounded-clocks controller (with
precision (m,K) = (1

N , 1) and a single clock). Corollary 1 therefore holds also
for the bounded-precision and bounded-clocks cases, and BPrecRS�

d(MITL) and
BClockRS�

d(MITL) are undecidable. By further modifying the formulas used in
the proof of Proposition 2, we show that the undecidability indeed holds even
when we allow only unary non-strict modalities with lower-bound constraints and
require the constraints to be exclusively strict or non-strict, hence BPrecRS�

d and
BClockRS�

d are undecidable too on Open-MITLns[♦∞] and Closed-MITLns[♦∞].
This entails undecidability in the undesired specifications case because the nega-
tion of an Open-MITLns[♦∞] is a Closed-MITLns[♦∞] formula and vice-versa.
Finally, we can extend our proofs to the infinite words case, hence:

Theorem 2. RSb
s(L), IRSb

s(L), BPrecRSb
s(L) and BClockRSb

s(L) are undecidable
for L ∈ {Open-MITLns[♦∞],Closed−MITLns[♦∞]}, s ∈ {u, d} and b ∈ {�, ω}.
This result extends the previous undecidability proofs of [11] (RSω

d (ECL) is unde-
cidable), and of [12] (IRS�

d(TA) and IRS�
u(TA) are undecidable). In light of these

previous works, our result is somewhat surprising as the undecidability proof
in [12] is via a reduction from the universality problem for timed automata, yet
this universality problem becomes decidable when all constraints are strict [15].

Finally, it remains to handle the cases of Safety-MTL and coFlat-MTL. Con-
trary to the case of MTL, the infinite-word satisfiability problem is decidable for
Safety-MTL [16] and the infinite-word model-checking problem is decidable for
both Safety-MTL [16] and coFlat-MTL [5]. Nevertheless, our synthesis problems
remain undecidable for these fragments. In particular, the result on Safety-MTL
answers an open question of [4] negatively:

Theorem 3. RSb
s(L), IRSb

s(L), BPrecRSb
s(L) and BClockRSb

s(L) are undecidable
for L ∈ {Safety-MTL, coFlat-MTL}, s ∈ {u, d} and b ∈ {�, ω}.

Real-Time Synthesis is Hard! 117

4 Bounded-Resources Synthesis for MITL Properties

We have now characterised rather precisely the decidability border for MITL
synthesis problems. In light of these results, we focus now on BResRS�

d(MITL)
(since MITL is closed under complement, one can derive an algorithm for
BResRS�

u(MITL) from our solution). Recall that the algorithm of D’Souza and
Madhusudan [12], associated with the translation of MITL into TA [2] yields a
3EXPTIME procedure for these two problems. Unfortunately this procedure is
unlikely to be amenable to efficient implementation. This is due to the transla-
tion from MITL to TA and the need to determinise a region automaton, which
is known to be hard in practice. On the other hand, Bouyer et al. [4] present a
procedure for BResRS�

d(MTL) (which can thus be applied to MITL requirements).
This algorithm is on-the-fly, in the sense that it avoids, if possible to build a full
automaton for the requirement; and thus more likely to perform well in practice.
Unfortunately, being designed for MTL, its running time can only be bounded
above by a non-primitive recursive function. We present now an algorithm for
BResRS�

d(MITL) that combines the advantages of these two previous solutions: it
is on-the-fly and runs in 3EXPTIME. To obtain an on-the-fly algorithm, Bouyer
et al. use one-clock alternating automata (OCATA) instead of TA to represent
the MITL requirement. We follow the same path, but rely on the newly intro-
duced interval-based semantics [7] for these automata, in order to mitigate the
complexity. Let us now briefly recall these two basic ingredients.

OCATA and Interval Semantics. Alternating timed automata [16] extend
(non-deterministic) timed automata by adding conjunctive transitions. Intu-
itively, conjunctive transitions spawn several copies of the automaton that run
in parallel from the target states of the transition. A word is accepted iff all
copies accept it. An example is shown in Fig. 3, where the conjunctive transition
is the hyperedge starting from �0. In the classical semantics, an execution of
an OCATA is a sequence of set of states, named configurations, describing the
current location and clock valuation of all active copies. For example, a prefix
of execution of the automaton in Fig. 3 would start in {(�0, 0)} (initially, there
is only one copy in �0 with the clock equal to 0); then {(�0, 0.42)} (after let-
ting 0.42 time units elapse); then {(�0, 0.42), (�1, 0)} (after firing the conjunctive
transition from �0), etc. It is well-known that all formulas ϕ of MTL (hence, also
MITL) can be translated into an OCATA Aϕ that accepts the same language
[16] (with the classical semantics); and with a number of locations linear in the
number of subformulas of ϕ. This translation is thus straightforward. This is the
key advantage of OCATA over TA: the complexity of the MITL formula is shifted
from the syntax to the semantics—what we need for an on-the-fly algorithm.

Then; in the interval semantics [7], valuations of the clocks are not points
anymore but intervals. Intuitively, intervals are meant to approximate sets of
(punctual) valuations: (�, [a, b]) means that there are clock copies with valuations
a and b in �, and that there could be more copies in � with valuations in [a, b].
In this semantics, we can also merge two copies (�, [a1, b1]) and (�, [a2, b2]) into
a single copy (�, [a1, b2]) (assuming a1 � b2), in order to keep the number of

118 T. Brihaye et al.

�0 �1

b

a y := 0

a

y � 1, b

Fig. 3. An OCATA (with single clock y) accepting the language of �(a ⇒ ♦�1b).

clock copies below a fixed threshold K. It has been shown [7] that, when the
OCATA has been built from an MITL formula, the interval semantics is sufficient
to retain the language of the formula, with a number of copies which is at most
doubly exponential in the size of the formula.

Sketch of the Algorithm. Equipped with these elements, we can now sketch
our algorithm for BResRS�

d(MITL). Starting from an MITL formula ϕ, a plant P
and a granularity μ = (X,m,K), we first build, in polynomial time, an OCATA
A¬ϕ accepting L(¬ϕ). Then, we essentially adapt the technique of Bouyer et al.
[4], relying on the interval semantics of OCATA instead of the classical one. This
boils down to building a tree that unfolds the parallel execution of A¬ϕ (in the
interval semantics), P and all possible actions of a μ-granular controller (hence
the on-the-fly algorithm). Since the granularity is fixed, there are only finitely
many possible actions (i.e., guards and resets on the controller clocks) for the
controller at each step. We rely on the region construction to group the infinitely
many possible valuations of the clocks into finitely many equivalence classes that
are represented using ‘region words’ [16]. The result is a finitely branching tree
that might still have infinite branches. We stop developing a branch once a global
configuration (of A¬ϕ, P, and the controller) repeats on the branch. By the region
construction and the interval semantics, this will happen on all branches, and we
obtain a finite tree of size at most triply exponential. This tree can be analysed
(using backward induction) as a game with a safety objective for the controller:
to avoid the nodes where P and A¬ϕ accept at the same time. The winning
strategy yields, if it exists, a correct controller.

Experimental Results. We have implemented our procedure in Java, and
tested it over a benchmark related to a scheduling problem, inspired by an
example of [9]. This problem considers n machines, and a list of jobs that must

Table 1. Experimental results on the scheduling problem: realisable instances on the
left, non-realisable on the right.

T n # clocks exec. time (sec) / #nodes
1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

T n # clocks exec. time (sec) / #nodes
2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

Real-Time Synthesis is Hard! 119

be assigned to the machines. A job takes T time units to finish. The plant
ensures that at least one time unit elapses between two job arrivals (which are
uncontrollable actions). The specification asks that the assignment be performed
in 1 time unit, and that each job has T time units of computation time. We tested
this example with T = n, in which case the specification is realisable (no matter
the number of clocks, which we make vary for testing the prototype efficiency),
and with T = n + 1, in which case it is not. Table 1 summarises some of our
results.

These results show that our prototypes can handle small but non-trivial exam-
ples. Unfortunately—as expected by the high complexities of the algorithm—they
do not scale well. As future works, we will rely on the well-quasi orderings defined
in [4] to introduce heuristics in the spirit of the antichain techniques [13]. Sec-
ond, we will investigate zone-based versions of this algorithm to avoid the state
explosion which is inherent to region based techniques.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. T.C.S. 126(2), 183–235 (1994)
2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM

43(1), 116–146 (1996)
3. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL

synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012)

4. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464.
Springer, Heidelberg (2006)

5. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS
2007, pp. 109–120. IEEE (2007)

6. Brand, D., Zafiropulo, P.: On communicating finite state machines. J. ACM 30,
323–342 (1983)

7. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 47–61. Springer, Heidelberg (2013)

8. Brihaye, T., Estiévenart, M., Geeraerts, G., Ho, H.-M., Monmege, B., Sznajder,
N.: Real-time synthesis is hard! (full version) (2016). arXiv:1606.07124

9. Bulychev, P.E., David, A., Larsen, K.G., Li, G.: Efficient controller synthesis for a
fragment of MTL0,∞. Acta Informatica 51(3–4), 165–192 (2014)

10. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The ele-
ment of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

11. Doyen, L., Geeraerts, G., Raskin, J.-F., Reichert, J.: Realizability of real-time
logics. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol.
5813, pp. 133–148. Springer, Heidelberg (2009)

12. D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer,
Heidelberg (2002)

13. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

http://arxiv.org/abs/1606.07124

120 T. Brihaye et al.

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

15. Ouaknine, J., Worrell, J.B.: Universality and language inclusion for open and closed
timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp.
375–388. Springer, Heidelberg (2003)

16. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. LMCS 3(1), 1–27 (2007)

17. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)

18. Raskin, J.-F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, FUNDP (Belgium) (1999)

A Boyer-Moore Type Algorithm for Timed
Pattern Matching

Masaki Waga1(B), Takumi Akazaki1,2, and Ichiro Hasuo1

1 University of Tokyo, Tokyo, Japan
{mwaga,ultraredrays,ichiro}@is.s.u-tokyo.ac.jp

2 JSPS Research Fellow, Tokyo, Japan

Abstract. The timed pattern matching problem is formulated by Ulus
et al. and has been actively studied since, with its evident application
in monitoring real-time systems. The problem takes as input a timed
word/signal and a timed pattern (specified either by a timed regular
expression or by a timed automaton); and it returns the set of those
intervals for which the given timed word, when restricted to the interval,
matches the given pattern. We contribute a Boyer-Moore type optimiza-
tion in timed pattern matching, relying on the classic Boyer-Moore string
matching algorithm and its extension to (untimed) pattern matching by
Watson and Watson. We assess its effect through experiments; for some
problem instances our Boyer-Moore type optimization achieves speed-
up by two times, indicating its potential in real-world monitoring tasks
where data sets tend to be massive.

1 Introduction

Importance of systems’ real-time properties is ever growing, with rapidly diver-
sifying applications of computer systems—cyber-physical systems, health-care
systems, automated trading, etc.—being increasingly pervasive in every human
activity. For real-time properties, besides classic problems in theoretical com-
puter science such as verification and synthesis, the problem of monitoring
already turns out to be challenging. Monitoring asks, given an execution log
and a specification, whether the log satisfies the specification; sometimes we are
furthermore interested in which segment of the log satisfies/violates the specifi-
cation. In practical deployment scenarios where we would deal with a number of
very long logs, finding matching segments in a computationally tractable manner
is therefore a pressing yet challenging matter.

In this context, inspired by the problems of string and pattern matching of
long research histories, Ulus et al. recently formulated the problem of timed
pattern matching [20]. In their formalization, the problem takes as input a timed
signal w (values that change over the continuous notion of time) and a timed
regular expression (TRE) R (a real-time extension of regular expressions); and it
returns the match set M(w,R) = {(t, t′) | t < t′, w|(t,t′) ∈ L(R)}, where w|(t,t′)
is the restriction of w to the time interval (t, t′) and L(R) is the set of signals
that match R.
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 121–139, 2016.
DOI: 10.1007/978-3-319-44878-7 8

122 M. Waga et al.

Since its formulation timed pattern matching has been actively studied. The
first offline algorithm is introduced in [20]; its application in conditional perfor-
mance evaluation is pursued in [10]; and in [21] an online algorithm is introduced
based on Brzozowski derivatives. Underlying these developments is the funda-
mental observation [20] that the match set M(w,R)—an uncountable subset of
R

2
≥0—allows a finitary symbolic representation by inequalities.

Contributions. In this paper we are concerned with efficiency in timed pat-
tern matching, motivated by our collaboration with the automotive industry
on various light-weight verification techniques. Towards that goal we introduce
optimization that extends the classic Boyer-Moore algorithm for string matching
(finding a pattern string pat in a given word w). Specifically we rely on the exten-
sion of the latter to pattern matching (finding subwords of w that is accepted
by an NFA A) by Watson & Watson [24], and introduce its timed extension.

We evaluate its efficiency through a series of experiments; in some cases
(including an automotive example) our Boyer-Moore type algorithm outperforms
a naive algorithm (without the optimization) by twice. This constant speed-up
may be uninteresting from the complexity theory point of view. However, given
that in real-world monitoring scenarios the input set of words w can be literally
big data,1 halving the processing time is a substantial benefit, we believe.

Our technical contributions are concretely as follows: (1) a (naive) algorithm
for timed pattern matching (Sect. 4); (2) its online variant (Sect. 4); (3) a proof
that the match set allows a finitary presentation (Theorem 4.3), much like in [20];
and (4) an algorithm with Boyer-Moore type optimization (Sect. 5). Through-
out the paper we let (timed) patterns expressed as timed automata (TA), unlike
timed regular expressions (TRE) in [10,20,21]. Besides TA is known to be strictly
more expressive than TRE (see [12] and also Case 2 of Sect. 6), our principal rea-
son for choosing TA is so that the Boyer-Moore type pattern matching algorithm
in [24] smoothly extends.

Related and Future Work. The context of the current work is run-time
verification and monitoring of cyber-physical systems, a field of growing research
activities (see e.g. recent [11,14]). One promising application is in conditional
quantitative analysis [10], e.g. of fuel consumption of a car during acceleration,
from a large data set of driving record. Here our results can be used to efficiently
isolate the acceleration phases.

Aside from timed automata and TREs, metric and signal temporal logics
(MTL/STL) are commonly used for specifying continuous-time signals. Mon-
itoring against these formalisms has been actively studied, too [7–9,13]. It is
known that an MTL formula can be translated to a timed alternating automa-
ton [18]. MTL/STL tend to be used against “smooth” signals whose changes
are continuous, however, and it is not clear how our current results (on timed-
stamped finite words) would apply to such a situation. One possible practical
approach would be to quantize continuous-time signals.

1 For example, in [6], a payment transaction record of 300 K users over almost a year
is monitored—against various properties, some of them timed and others not—and
they report the task took hundreds of hours.

A Boyer-Moore Type Algorithm for Timed Pattern Matching 123

Being online—to process a long timed word w one can already start with
its prefix—is obviously a big advantage in monitoring algorithms. In [21] an
online timed pattern matching algorithm (where a specification is a TRE) is
given, relying on the timed extension of Brzozowski derivative. We shall aim
at an online version of our Boyer-Moore type algorithm (our online algorithm
in Sect. 4 is without the Boyer-Moore type optimization), although it seems hard
already for the prototype problem of string matching.

It was suggested by multiple reviewers that use of zone automata can fur-
ther enhance our Boyer-Moore type algorithm for timed pattern matching. See
Remark 5.6.

Organization of the Paper. We introduce necessary backgrounds in Sect. 2,
on: the basic theory of timed automata, and the previous Boyer-Moore algo-
rithms (for string matching, and the one in [24] for (untimed) pattern matching).
The latter will pave the way to our main contribution of the timed Boyer-Moore
algorithm. We formulate the timed pattern matching problem in Sect. 3; and a
(naive) algorithm is presented in Sect. 4 together with its online variant. In Sect. 5
a Boyer-Moore algorithm for timed pattern matching is described, drawing intu-
itions from the untimed one and emphasizing where are the differences. In Sect. 6
we present the experiment results; they indicate the potential of the proposed
algorithm in real-world monitoring applications.

Most proofs are deferred to the appendix in [23] due to lack of space.

2 Preliminaries

2.1 Timed Automata

Here we follow [1,3], possibly with a fix to accept finite words instead of infinite.
For a sequence s = s1s2 . . . sn we write |s| = n; and for i, j such that 1 ≤ i ≤ j ≤
|s|, s(i) denotes the element si and s(i, j) denotes the subsequence sisi+1 . . . sj .

Definition 2.1 (timed word). A timed word over an alphabet Σ is an element
of (Σ × R>0)∗—which is denoted by (a, τ) using a ∈ Σ∗, τ ∈ (R>0)∗ via the
embedding (Σ × R>0)∗ ↪→ Σ∗ × (R>0)∗—such that for any i ∈ [1, |τ | − 1] we
have 0 < τi < τi+1. Let (a, τ) be a timed word and t ∈ R be such that −τ1 < t.
The t-shift (a, τ) + t of (a, τ) is the timed word (a, τ + t), where τ + t is the
sequence τ1 + t, τ2 + t, . . . , τ|τ | + t. Let (a, τ) and (a′, τ ′) be timed words over Σ

such that τ|τ | < τ ′
1. Their absorbing concatenation (a, τ) ◦ (a′, τ ′) is defined by

(a, τ)◦(a′, τ ′) = (a◦a′, τ◦τ ′), where a◦a′ and τ◦τ ′ denote (usual) concatenation of
sequences over Σ and R>0, respectively. Now let (a, τ) and (a′′, τ ′′) be arbitrary
timed words over Σ. Their non-absorbing concatenation (a, τ)·(a′′, τ ′′) is defined
by (a, τ) · (a′′, τ ′′) = (a, τ) ◦ ((a′′, τ ′′) + τ|τ |). A timed language over an alphabet
Σ is a set of timed words over Σ.

124 M. Waga et al.

Remark 2.2 (signal). Signal is another formalization of records with a notion
of time, used e.g. in [20]; a signal over Σ is a function R≥0 → Σ. A timed word
describes a time-stamped sequence of events, while a signal describes values of
Σ that change over time. In this paper we shall work with timed words. This
is for technical reasons and not important from the applicational point of view:
when we restrict to those signals which exhibit only finitely many changes, there
is a natural correspondence between such signals and timed words.

Let C be a (fixed) finite set of clock variables. The set Φ(C) of clock con-
straints is defined by the following BNF notation.

Φ(C) � δ = x < c | x > c | x ≤ c | x ≥ c | true | δ ∧ δ where x ∈ C and c ∈ Z≥0.

Absence of ∨ or ¬ does not harm expressivity: ∨ can be emulated with nondeter-
minism (see Definition 2.3); and ¬ can be propagated down to atomic formulas
by the de Morgan laws. Restriction to true and ∧ is technically useful, too, when
we deal with intervals and zones (Definition 4.1).

A clock interpretation ν over the set C of clock variables is a function ν :
C → R≥0. Given a clock interpretation ν and t ∈ R≥0, ν + t denotes the clock
interpretation that maps a clock variable x ∈ C to ν(x) + t.

Definition 2.3 (timed automaton). A timed automaton (TA) A is a tuple
(Σ,S, S0, C,E, F) where: Σ is a finite alphabet; S is a finite set of states; S0 ⊆ S
is the set of initial states; C is the set of clock variables; E ⊆ S×S×Σ×P(C)×
Φ(C) is the set of transitions; and F ⊆ S is the set of accepting states.

The intuition for (s, s′, a, λ, δ) ∈ E is: from s, also assuming that the clock
constraint δ is satisfied, we can move to the state s′ conducting the action a and
resetting the value of each clock variable x ∈ λ to 0. Examples of TAs are in (7)
and Figs. 7, 8, 9, 10 and 11 later.

The above notations (as well as the ones below) follow those in [1]. In the fol-
lowing definition (1) of run, for example, the first transition occurs at (absolute)
time τ1 and the second occurs at time τ2; it is implicit that we stay at the state
s1 for time τ2 − τ1.

Definition 2.4 (run). A run of a timed automaton A = (Σ,S, S0, C,E, F)
over a timed word (a, τ) ∈ (Σ × R>0)∗ is a pair (s, ν) ∈ S∗ × ((R≥0)C)∗ of
a sequence s of states and a sequence ν of clock interpretations, subject to
the following conditions: (1) |s| = |ν| = |a| + 1; (2) s0 ∈ S0, and for any
x ∈ C, ν0(x) = 0; and (3) for any i ∈ [0, |a| − 1] there exists a transition
(si, si+1, ai+1, λ, δ) ∈ E such that the clock constraint δ holds under the clock
interpretation νi + (τi+1 − τi) (here τ0 is defined to be 0), and the clock inter-
pretation νi+1 has it that νi+1(x) = νi(x) + τi+1 − τi (if x /∈ λ) and νi+1(x) = 0
(if x ∈ λ). This run is depicted as follows.

(s0, ν0)
(a1,τ1)−→ (s1, ν1)

(a2,τ2)−→ · · · −→ (s|a|−1, ν|τ |−1)
(a|a|,τ|τ|)−→ (s|a|, ν|τ |) (1)

Such a run (s, ν) of A is accepting if s|s|−1 ∈ F . The language L(A) of A is
defined by L(A) = {w | there is an accepting run of A over w}.

A Boyer-Moore Type Algorithm for Timed Pattern Matching 125

There is another specification formalism for timed languages called timed
regular expressions (TREs) [2,3]. Unlike in the classic Kleene theorem, in the
timed case timed automata are strictly more expressive than TREs. See [12,
Proposition 2].

Region automaton is an important theoretical gadget in the theory of timed
automaton: it reduces the domain S × (R≥0)C of pairs (s, ν) in (1)—that is an
infinite set—to its finite abstraction, the latter being amenable to algorithmic
treatments. Specifically it relies on an equivalence relation ∼ over clock inter-
pretations. Given a timed automaton A = (Σ,S, S0, C,E, F)—where, without
loss of generality, we assume that each clock variable x ∈ C appears in at least
one clock constraint in E—let cx denote the greatest number that is compared
with x in the clock constraints in E. (Precisely: cx = max{c ∈ Z≥0 | x 	

c occurs in E, where 	
 ∈ {<,>,≤,≥}}.) Writing int(τ) and frac(τ) for the
integer and fractional parts of τ ∈ R≥0, an equivalence relation ∼ over clock
interpretations ν, ν′ is defined as follows. We have ν ∼ ν′ if:

• for each x ∈ C we have int(ν(x)) = int(ν′(x)) or (ν(x) > cx and ν′(x) > cx);
• for any x, y ∈ C such that ν(x) ≤ cx and ν(y) ≤ cy, frac(ν(x)) < frac(ν(y))

if and only if frac(ν′(x)) < frac(ν′(y)); and
• for any x∈C such that ν(x) ≤ cx, frac(ν(x)) = 0 if and only if frac(ν′(x)) = 0.

A clock region is an equivalence class of clock interpretations modulo ∼; as usual
the equivalence class of ν is denoted by [ν]. Let α, α′ be clock regions. We say α′

is a time-successor of α if for any ν ∈ α, there exists t ∈ R>0 such that ν+t ∈ α′.

Definition 2.5 (region automaton). For a timed automaton A = (Σ,S, S0,
C,E, F), the region automaton R(A) is the NFA (Σ,S′, S′

0, E
′, F ′) defined as

follows: S′ = S × (
(R≥0)C/∼)

; on initial states S′
0 = {(s, [ν]) | s ∈ S0, ν(x) =

0 for each x ∈ C}; on accepting states F ′ = {(s, α) ∈ S′ | s ∈ F}. The transition
relation E′ ⊆ S′ × S′ × Σ is defined as follows: ((s, α), (s′, α′), a) ∈ E′ if there
exist a clock region α′′ and (s, s′, a, λ, δ) ∈ E such that

• α′′ is a time-successor of α, and
• for each ν ∈ α′′, (1) ν satisfies δ, and (2) there exists ν′ ∈ α′ such that

ν(x) = ν′(x) (if x /∈ λ) and ν′(x) = 0 (if x ∈ λ).

It is known [1] that the region automaton R(A) indeed has finitely many states.
The following notation for NFAs will be used later.

Definition 2.6 (RunsA(s, s′)).Let A be an NFA over Σ, and s and s′ be its states.
We let RunsA(s, s′) denote the set of runs from s to s′, that is, RunsA(s, s′) =
{s0s1 . . . sn | n ∈ Z≥0, s0 = s, sn = s′,∀i.∃ai+1. si

ai+1→ si+1 in A}.

2.2 String Matching and the Boyer-Moore Algorithm

In Sects. 2.2 and 2.3 we shall revisit the Boyer-Moore algorithm and its adapta-
tion for pattern matching [24]. We do so in considerable details, so as to provide
both technical and intuitional bases for our timed adaptation.

126 M. Waga et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
str = H E R E I S A S I M P L E E X A M P L E
pat = E X A M P L E

1 2 3 4 5 6 7

Fig. 1. The string matching problem

String matching is a fun-
damental operation on strings:
given an input string str
and a pattern string pat ,
it asks for the match set{
(i, j)

∣
∣ str(i, j) = pat

}
. An example (from [17]) is in Fig. 1, where the answer is

{(18, 24)}.
A brute-force algorithm has the complexity O(|str ||pat |); known optimiza-

tions include ones by Knuth, Morris, and Pratt [15] and by Boyer and Moore [5].
The former performs better in the worst case, but for practical instances the lat-
ter is commonly used. Let us now demonstrate how the Boyer-Moore algorithm
for string matching works, using the example in Fig. 1. Its main idea is to skip
unnecessary matching of characters, using two skip value functions Δ1 and Δ2

(that we define later).
The bottom line in the Boyer-Moore algorithm is that the pattern string pat

moves from left to right, and matching between the input string str and pat is
conducted from right to left. In (2) is the initial configuration, and we set out
with comparing the characters str(7) and pat(7). They turn out to be different.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
H E R E I S A S I M P L E E X A M P L E
E X A M P L E
1 2 3 4 5 6 7 (2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
H E R E I S A S I M P L E E X A M P L E

E X A M P L E
1 2 3 4 5 6 7 (3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
H E R E I S A S I M P L E E X A M P L E

E X A M P L E
1 2 3 4 5 6 7 (4)

A naive algorithm would
then move the pattern to the
right by one position. We can do
better, however, realizing that
the character str(7) = S (that
we already read for compari-
son) never occurs in the pattern
pat . This means the position 7
cannot belong to any matching
interval (i, j), and we thus jump
to the configuration (3). Formally this argument is expressed by the value
Δ1(S, 7) = 7 of the first skip value function Δ1, as we will see later.

Here again we compare characters from right to left, in (3), realizing immedi-
ately that str(14) = pat(7). It is time to shift the pattern; given that str(14) = P
occurs as pat(5), we shift the pattern by Δ1(P, 7) = 7 − 5 = 2.

We are now in the configuration (4), and some initial matching succeeds
(str(16) = pat(7), str(15) = pat(6), and so on). The matching fails for str(12) =
pat(3). Following the same reasoning as above—the character str(12) = I does not
occur in pat(3), pat(2) or pat(1)—we would then shift the pattern by Δ1(I, 3) = 3.

Fig. 2. Table for computing Δ2

However we can do even better. Consider the
table on the right, where we forget about the
input str and shift the pattern pat one by one,
trying to match it with pat itself. We are specif-
ically interested in the segment MPLE from
pat(4) to pat(7) (underlined in the first row)—
because it is the partial match we have discov-
ered in the configuration (4). The table shows

A Boyer-Moore Type Algorithm for Timed Pattern Matching 127

that we need to shift at least by 6 to get a potential match (the last row); hence
from the configuration (4) we can shift the pattern pat by 6, which is more than
the skip value in the above (Δ1(I, 3) = 3). This argument—different from the
one for Δ1—is formalized as the second skip value function Δ2(3) = 6 (Fig. 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
H E R E I S A S I M P L E E X A M P L E

E X A M P L E
1 2 3 4 5 6 7 (5)

We are led to the config-
uration on the right, only to
find that the first matching trial
fails (str(22) = pat(7)). Since
str(22) = P occurs in pat as pat(5), we shift pat by Δ1(P, 7) = 2. This finally
brings us to the configuration in Fig. 1 and the match set {(18, 24)}.

Summarizing, the key in the Boyer-Moore algorithm is to use two skip value
functions Δ1,Δ2 to shift the pattern faster than one-by-one. The precise defini-
tion of Δ1,Δ2 is in Appendix A in [23], for reference.

2.3 Pattern Matching and a Boyer-Moore Type Algorithm

Pattern matching is another fundamental operation that generalizes string
matching: given an input string str and a regular language L as a pattern, it
asks for the match set

{
(i, j)

∣
∣ str(i, j) ∈ L

}
. For example, for str in Fig. 1

and the pattern [A − Z]∗MPLE, the match set is {(11, 16), (18, 24)}. In [24] an
algorithm for pattern matching is introduced that employs “Boyer-Moore type”
optimization, much like the use of Δ2 in Sect. 2.2.

Let str = cbadcdc be an input string and dc∗{ba | dc} be a pattern L, for
example. We can solve pattern matching by the following brute-force algorithm.

• We express the pattern as an NFA A = (Σ,S, S0, E, F) in Fig. 3. We reverse
words—w ∈ L if and only if wRev ∈ L(A)—following the Boyer-Moore algo-
rithm (Sect. 2.2) that matches a segment of input and a pattern from right to
left.

• Also following Sect. 2.2 we “shift the pattern from left to right.” This techni-
cally means: we conduct the following for j = 1 first, then j = 2, and so on.
For fixed j we search for i ∈ [1, j] such that str(i, j) ∈ L. This is done by com-
puting the set S(i,j) of reachable states of A when it is fed with str(i, j)Rev .

Fig. 3. The automaton A and skip values Fig. 4. A brute-
force algorithm

128 M. Waga et al.

The computation is done step-by-step, decrementing i from j to 1:

S(j,j) = {s | ∃s′ ∈ S0. s
′ str(j)→ s} , and S(i,j) = {s | ∃s′ ∈ S(i+1,j). s

′ str(i)→ s} .

Then (i, j) is a matching interval if and only if S(i,j) ∩ F = ∅. See Fig. 4.
The Boyer-Moore type optimization in [24] tries to hasten the shift of j. A

key observation is as follows. Assume j = 4; then the above procedure would
feed str(1, 4)Rev = dabc to the automaton A (Fig. 3). We instantly see that this
would not yield any matching interval—for a word to be accepted by A it must
start with abd, cdd, abc or cdc.

Precisely the algorithm in [24] works as follows. We first observe that the
shortest word accepted by A is 3; therefore we can start right away with j = 3,
skipping j = 1, 2 in the above brute-force algorithm. Unfortunately str(1, 3) =
cba does not match L, with str(1, 3)Rev = abc only leading to {s3} in A.

Fig. 5. Table
for Δ2(s3)

We now shift j by 2, from 3 to 5, following Fig. 5. Here

L′ =
{ (

w(1, 3)
)Rev ∣

∣ w ∈ L(A)
}

= {dba,ddc, cba, cdc}; (6)

that is, for str(i, j) to match the pattern L its last three charac-
ters must match L′. Our previous “key observation” now trans-
lates to the fact that str(2, 4) = bad does not belong to L′; in
the actual algorithm in [24], however, we do not use the string
str(2, 4) itself. Instead we overapproximate it with the informa-
tion that feeding A with str(1, 3)Rev = abc led to {s3}. Similarly
to the case with L′, this implies that the last two characters of
str(1, 3) must have been in L′

s3
= {ba,dc}. The table shows that

none in L′
s3

matches any of L′ when j is shifted by 1; when j is
shifted by 2, we have matches (underlined). Therefore we jump from j = 3 to
j = 5.

This is how the algorithm in [24] works: it accelerates the brute-force algo-
rithm in Fig. 4, skipping some j’s, with the help of a skip value function Δ2. The
overapproximation in the last paragraph allows Δ2 to rely only on a pattern L
(but not on an input string str); this means that pre-processing is done once
we fix the pattern L, and it is reused for various input strings str . This is an
advantage in monitoring applications where one would deal with a number of
input strings str , some of which are yet to come. See Appendix B in [23] for the
precise definition of the skip value function Δ2.

In Fig. 3 we annotate each state s with the values ms and L′
s that is used in

computing Δ2({s}). Here ms is the length of a shortest word that leads to s; m =
mins∈F ms (that is 3 in the above example); and L′

s = {w(1,min{ms,m})Rev |
w ∈ L(As)}.

It is not hard to generalize the other skip value function Δ1 in Sect. 2.2 for
pattern matching, too: instead of pat we use the set L′ in the above (6). See
Appendix B in [23].

A Boyer-Moore Type Algorithm for Timed Pattern Matching 129

3 The Timed Pattern Matching Problem

Here we formulate our problem, following the notations in Sect. 2.1.
Given a timed word w, the timed word segment w|(t,t′) is the result of

clipping the parts outside the open interval (t, t′). For example, for w =(
(a, b, c), (0.7, 1.2, 1.5)

)
, we have w|(1.0,1.7) =

(
(b, c, $), (0.2, 0.5, 0.7)

)
, w|(1.0,1.5) =(

(b, $), (0.2, 0.5)
)

and w|(1.2,1.5) =
(
($), (0.3)

)
. Here the (fresh) terminal character

$ designates the end of a segment. Since we use open intervals (t, t′), for example,
the word w|(1.2,1.5) does not contain the character c at time 0.3. The formal defi-
nition is as follows.

Definition 3.1 (timed word segment). Let w = (a, τ) be a timed word over
Σ, t and t′ be reals such that 0 ≤ t < t′, and i and j be indices such that
τi−1 ≤ t < τi and τj < t′ ≤ τj+1 (we let τ0 = 0 and τ|τ |+1 = ∞). The timed
word segment w|(t,t′) of w on the interval (t, t′) is the timed word (a′, τ ′), over
the extended alphabet Σ � {$}, defined as follows: (1)

∣
∣w|(t,t′)

∣
∣ = j − i + 2; (2)

we have a′
k = ai+k−1 and τ ′

k = τi+k−1− t for k ∈ [1, j − i+1]; and (3) a′
j−i+2 = $

and τ ′
j−i+2 = t′ − t.

Definition 3.2 (timed pattern matching). The timed pattern matching
problem (over an alphabet Σ) takes (as input) a timed word w over Σ and
a timed automaton A over Σ � {$}; and it requires (as output) the match set
M(w,A) =

{
(t, t′) ∈ (R≥0)2 | t < t′, w|(t,t′) ∈ L(A)

}
.

s0start s1 s2

a, true
/t := 0 $, t ≥ 2

(7)

Our formulation in Definition 3.2 slightly differs
from that in [20] in that: (1) we use timed words
in place of signals (Remark 2.2); (2) for specifi-
cation we use timed automata rather than timed
regular expressions; and (3) we use an explicit terminal character $. While none
of these differences is major, introduction of $ enhances expressivity, e.g. in
specifying “an event a occurs, and after that, no other event occurs within 2s.”
(see (7)). It is also easy to ignore $—when one is not interested in it—by having
the clock constraint true on the $-labeled transitions leading to the accepting
states.

Assumption 3.3. In what follows we assume the following. Each timed automa-
ton A over the alphabet Σ � {$} is such that: every $-labeled transition is into an
accepting state; and no other transition is $-labeled. And there exists no transition
from any accepting states.

4 A Naive Algorithm and Its Online Variant

Here we present a naive algorithm for timed pattern matching (without a
Boyer-Moore type optimization), also indicating how to make it into an online
one. Let us fix a timed word w over Σ and a timed automaton A = (Σ �
{$}, S, S0, C,E, F) as the input.

130 M. Waga et al.

First of all, a match set (Definition 3.2) is in general an infinite set, and we
need its finitary representation for an algorithmic treatment. We follow [20] and
use (2-dimensional) zones for that purpose.
Definition 4.1 (zone). Consider the 2-dimensional plane R

2 whose axes are
denoted by t and t′. A zone is a convex polyhedron specified by constraints of
the form t 	
 c, t′ 	
 c and t′ − t 	
 c, where 	
 ∈ {<,>,≤,≥} and c ∈ Z≥0.

It is not hard to see that each zone is specified by three intervals (that may
or may not include their endpoints): T0 for t, Tf for t′ and TΔ for t′ − t. We let
a triple (T0, Tf , TΔ) represent a zone, and write (t, t′) ∈ (T0, Tf , TΔ) if t ∈ T0,
t′ ∈ Tf and t′ − t ∈ TΔ.

In our algorithms we shall use the following constructs.
Definition 4.2 (reset, eval, solConstr, ρ∅,Conf). Let ρ : C ⇀ R>0 be a partial
function that carries a clock variable x ∈ C to a positive real; the intention is that
x was reset at time ρ(x) (in the absolute clock). Let x ∈ C and tr ∈ R>0; then
the partial function reset(ρ, x, tr) : C ⇀ R>0 is defined by: reset(ρ, x, tr)(x) = tr
and reset(ρ, x, tr)(y) = ρ(y) for each y ∈ C such that y = x. (The last is Kleene’s
equality between partial functions, to be precise.)

Now let ρ be as above, and t, t0 ∈ R≥0, with the intention that t is the current
(absolute) time and t0 is the epoch (absolute) time for a timed word segment
w|(t0,t′). We further assume t0 ≤ t and t0 ≤ ρ(x) ≤ t for each x ∈ C for which
ρ(x) is defined. The clock interpretation eval(ρ, t, t0) : C → R≥0 is defined by:
eval(ρ, t, t0)(x) = t − ρ(x) (if ρ(x) is defined); and eval(ρ, t, t0)(x) = t − t0 (if
ρ(x) is undefined).

For intervals T, T ′ ⊆ R≥0, a partial function ρ : C ⇀ R>0 and a clock
constraint δ (Sect. 2.1), we define solConstr(T, T ′, ρ, δ) =

{
(t, t′)

∣
∣ t ∈ T, t′ ∈

T ′, eval(ρ, t′, t) |= δ
}
.

We let ρ∅ : C ⇀ R>0 denote the partial function that is nowhere defined.
For a timed word w, a timed automaton A and each i, j ∈ [1, |w|], we

define the set of “configurations”: Conf (i, j) =
{
(s, ρ, T)

∣
∣ ∀t0 ∈ T.∃(s, ν). (s, ν)

is a run over w(i, j)−t0, s|s|−1 = s, and ν|ν|−1 = eval(ρ, τj , t0)
}
. Further details

are in Appendix C in [23].

a2a1 a3 a4 a5 a6

τ1 τ2 τ3 τ4 τ5 τ6

...
i = 4

j→
i = 3

j→
...

Fig. 6. i, j in our algo-
rithms for timed pattern
matching

Our first (naive) algorithm for timed pattern match-
ing is in Algorithm 1. We conduct a brute-force breadth-
first search, computing

{
(t, t′) ∈ M(w,A)

∣
∣ τi−1 ≤

t < τi, τj < t′ ≤ τj+1

}
for each i, j, with the aid of

Conf (i, j) in Definition 4.2. (The singular case of ∀i. τi ∈
(t, t′) is separately taken care of by Immd .) We do so in
the order illustrated in Fig. 6: we decrement i, and for
each i we increment j. This order—that flips the one in
Fig. 4—is for the purpose of the Boyer-Moore type opti-
mization later in Sect. 5. In Appendix C in [23] we pro-
vide further details.

Theorem 4.3 (termination and correctness of Algorithm 1)

1. Algorithm 1 terminates and its answer Z is a finite union of zones.

A Boyer-Moore Type Algorithm for Timed Pattern Matching 131

2. For any t, t′ ∈ R>0 such that t < t′, the following are equivalent: (1) there is
a zone (T0, Tf , TΔ) ∈ Z such that (t, t′) ∈ (T0, Tf , TΔ); and (2) there is an
accepting run (s, ν) over w|(t,t′) of A.

��
As an immediate corollary, we conclude that a match set M(w,A) always

allows representation by finitely many zones.
Changing the order of examination of i, j (Fig. 6) gives us an online variant of

Algorithm 1. It is presented in Appendix D in [23]; nevertheless our Boyer-Moore
type algorithm is based on the original Algorithm 1.

Algorithm 1. Our naive algorithm for timed pattern matching. See Def. 4.2
and Appendix C in [23] for details.
Require: A timed word w = (a, τ), and a timed automaton A = (Σ, S, S0, C, E, F).
Ensure:

⋃
Z is the match set M(w, A) in Def. 3.2.

1: i ← |w|; CurrConf ← ∅; Immd ← ∅; Z ← ∅ � Immd and Z are finite sets of zones.
2: for s ∈ S0 do � Lines 2–5 compute Immd .

3: for sf ∈ F do

4: for (s, sf , $, λ, δ) ∈ E do

5: Immd ← Immd ∪ solConstr([0, ∞), (0, ∞), ρ∅, δ)
6: Z ← Z ∪ { (T0 ∩ [τ|w|, ∞), Tf ∩ (τ|w|, ∞), TΔ)

∣
∣ (T0, Tf , TΔ) ∈ Immd

}

7: � We have added
{
(t, t′) ∈ M(w, A)

∣
∣ t, t′ ∈ [τ|w|, ∞)

}
to Z.

8: while i > 0 do
9: Z ← Z ∪ {(T0 ∩ [τi−1, τi), Tf ∩ (τi−1, τi], TΔ) | (T0, Tf , TΔ) ∈ Immd}
10: � We have added

{
(t, t′) ∈ M(w, A)

∣
∣ t, t′ ∈ [τi−1, τi]

}
to Z.

11: � Now, for each j, we shall add
{
(t, t′) ∈ M(w, A)

∣
∣ t ∈ [τi−1, τi), t

′ ∈ (τj , τj+1]
}
.

12: j ← i

13: CurrConf ← {(s, ρ∅, [τi−1, τi)) | s ∈ S0}
14: while CurrConf �= ∅ & j ≤ |w| do
15: (PrevConf ,CurrConf) ← (CurrConf , ∅) � Here PrevConf = Conf (i, j − 1).
16: for (s, ρ, T) ∈ PrevConf do

17: for (s, s′, aj , λ, δ) ∈ E do � Read (aj , τj).

18: T ′ ← {t0 ∈ T | eval(ρ, τj , t0) |= δ}
19: � Narrow the interval T to satisfy the clock constraint δ.

20: if T ′ �= ∅ then

21: ρ′ ← ρ

22: for x ∈ λ do

23: ρ′ ← reset(ρ′, x, τj) � Reset the clock variables in λ.
24: CurrConf ← CurrConf ∪ (s′, ρ′, T ′)
25: for sf ∈ F do � Lines 25–31 try to insert $ in (τj , τj+1].

26: for (s′, sf , $, λ′, δ′) ∈ E do

27: if j = |w| then
28: T ′′ ← (τj , ∞)

29: else
30: T ′′ ← (τj , τj+1]
31: Z ← Z ∪ solConstr(T ′, T ′′, ρ′, δ′)
32: j ← j + 1

33: i ← i − 1

132 M. Waga et al.

5 A Timed Boyer-Moore Type Algorithm

Here we describe our main contribution, namely a Boyer-Moore type algorithm
for timed pattern matching. Much like the algorithm in [24] skips some j’s in
Fig. 4 (Sect. 2.3), we wish to skip some i’s in Fig. 6. Let us henceforth fix a timed
word w = (a, τ) and a timed automaton A = (Σ � {$}, S, S0, C,E, F) as the
input of the problem.

Let us define the optimal skip value function by Opt(i) = min{n ∈ R>0 |
∃t ∈ [τi−n−1, τi−n).∃t′ ∈ (t,∞). (t, t′) ∈ M(w,A)}; the value Opt(i) designates
the biggest skip value, at each i in Fig. 6, that does not change the outcome of
the algorithm. Since the function Opt is not amenable to efficient computation
in general, our goal is its underapproximation that is easily computed.

Towards that goal we follow the (untimed) pattern matching algorithm
in [24]; see Sect. 2.3. In applying the same idea as in Fig. 5 to define a skip value,
however, the first obstacle is that the language L′

s3
—the set of (suitable prefixes

of) all words that lead to s3—becomes an infinite set in the current timed set-
ting. Our countermeasure is to use a region automaton R(A) (Definition 2.5) for
representing the set.

We shall first introduce some constructs used in our algorithm.

Definition 5.1 (W(r),W(s, α)). Let r be a set of runs of the timed automaton A.
We define a timed language W(r) =

{
(a, τ)

∣
∣ in r there is a run of A over (a, τ)

}
.

For the region automaton R(A), each run (s, α) of R(A)—where sk ∈ S and
αk ∈ (R≥0)C/∼, recalling the state space of R(A) from Definition 2.5—is natu-
rally identified with a set of runs of A, namely {(s, ν) ∈ (

S × (R≥0)C
)∗ | νk ∈

αk for each k}. Under this identification we shall sometimes write W(s, α) for a
suitable timed language, too.

The above definitions of W(r) and W(s, α) naturally extends to a set r of par-
tial runs of A, and to a partial run (s, α) of R(A), respectively. Here a partial run
is a run but we do not require: it start at an initial state; or its initial clock inter-
pretation be 0.

The next optimization of R(A) is similar to so-called trimming, but we leave
those states that do not lead to any final state (they become necessary later).

Definition 5.2 (Rr(A)). For a timed automaton A, we let Rr(A) denote its
reachable region automaton. It is the NFA Rr(A) = (Σ,Sr, Sr

0, E
r, F r) obtained

from R(A) (Definition 2.5) by removing all those states which are unreachable
from any initial state.

We are ready to describe our Boyer-Moore type algorithm. We use a skip
value function Δ2 that is similar to the one in Sect. 2.3 (see Figs. 3 and 5),
computed with the aid of ms and L′

s defined for each state s. We define ms and
L′

s using the NFA Rr(A). Notable differences are: (1) here L′
s and L′ are sets of

runs, not of words; and (2) since the orders are flipped between Figs. 4 and 6,
Rev e.g. in (6) is gone now.

A Boyer-Moore Type Algorithm for Timed Pattern Matching 133

Fig. 7. An example of a timed automaton A, and the values ms, L
′
s, L

′

The precise definitions are as follows. Here s ∈ S is a state of the (original)
timed automaton A; and we let Rr(s) = {(s, α) ∈ Sr}.

m = min{|w′| | w
′ ∈ L(A)} ms = min

{ |r| ∣∣ β0 ∈ S
r
0, β ∈ R

r
(s), r ∈ RunsRr(A)(β0, β)

}

L
′
=
{

r(0, m − 1) | β0 ∈ S
r
0, βf ∈ F

r
, r ∈ RunsRr(A)(β0, βf)

}

L
′
s =

{
r(0,min{m, ms} − 1)

∣∣ β0 ∈ S
r
0, β ∈ R

r
(s), r ∈ RunsRr(A)(β0, β)

}
(7)

Note again that these data are defined over Rr(A) (Definition 5.2);
RunsRr(A)(β0, βf) is from Definition 2.6.

Definition 5.3 (Δ2). Let Conf be a set of triples (s, ρ, T) of: a state s ∈ S of A,
ρ : C ⇀ R>0, and an interval T . (This is much like Conf (i, j) in Definition 4.2.)
We define the skip value Δ2(Conf) as follows.

d1(r) = minr′∈L′ min{n ∈ Z>0 | W(r) ∩ (⋃

r′′∈pref
(
r′(n,|r′|)

) W(r′′)
) = ∅ }

d2(r) = minr′∈L′ min{n ∈ Z>0 | (⋃
r′′∈pref(r) W(r′′)

) ∩ W(
r′(n, |r′|)) = ∅ }

Δ2(Conf) = max(s,ρ,T)∈Conf minr∈L′
s
min{d1(r), d2(r)}.

Here r ∈ RunsRr(A); L′ is from (7); W is from Definition 5.1; r′(n, |r′|) is a
subsequence of r′ (that is a partial run); and pref(r) denotes the set of all
prefixes of r.

Theorem 5.4 (correctness of Δ2). Let i ∈ [1, |w|], and j = max{j ∈ [i, |w|] |
Conf (i, j) = ∅}, where Conf (i, j) is from Definition 4.2. (In case Conf (i, j) is
everywhere empty we let j = i.) Then we have Δ2(Conf (i, j)) ≤ Opt(i). ��

The remaining issue in Definition 5.3 is that the sets like W(r) and W(r′′)
can be infinite—we need to avoid their direct computation. We rely on the usual
automata-theoretic trick: the intersection of languages is recognized by a product
automaton.

Given two timed automata B and C, we let B×C denote their product defined
in the standard way (see e.g. [19]). The following is straightforward.

134 M. Waga et al.

Proposition 5.5. Let r = (s, α) and r′ = (s′, α′) be partial runs of R(B) and
R(C), respectively; they are naturally identified with sets of partial runs of B
and C (Definition 5.1). Assume further that |r| = |r′|. Then we have W(r) ∩
W(r′) = W(r, r′), where (r, r′) is the following set of runs of B × C: (r, r′) ={ (

(s, s′), (ν, ν′)
) | (s, ν) ∈ (s, α) and (s′, ν′) ∈ (s′, α′)

}
. ��

The proposition allows the following algorithm for the emptiness check
required in computing d1 (Definition 5.3). Firstly we distribute ∩ over

⋃
; then

we need to check if W(r) ∩ W(r′′) = ∅ for each r′′. The proposition reduces
this to checking if W(r, r′′) = ∅, that is, if (r, r′′) is a (legitimate) partial run
of the region automaton R(A × A). The last check is obviously decidable since
R(A × A) is finite. For d2 the situation is similar.

We also note that the computation of Δ2 (Definition 5.3) can be accelerated
by memorizing the values minr∈L′

s
min{d1(r), d2(r)} for each s.

Finally our Boyer-Moore type algorithm for timed pattern matching is Algo-
rithm 3 in Appendix E in [23]. Its main differences from the naive one (Algo-
rithm 1) are: (1) initially we start with i = |w| − m + 1 instead of i = |w| (line 1
of Algorithm 1); and (2) we decrement i by the skip value computed by Δ2,
instead of by 1 (line 33 of Algorithm 1).

It is also possible to employ an analog of the skip value function Δ1 in
Sects. 2.2 and 2.3. For c ∈ Σ and p ∈ Z>0, we define Δ1(c, p) = mink>0{k − p |
k > m or ∃(a, τ) ∈ W(L′). ak = c}. Here m and L′ are from (7). Then we can
possibly skip more i’s using both Δ1 and Δ2; see Appendix E in [23] for details.
In our implementation we do not use Δ1, though, following the (untimed) pattern
matching algorithm in [24]. Investigating the effect of additionally using Δ1 is
future work.

One may think of the following alternative for pattern matching: we first for-
get about time stamps, time constraints, etc.; the resulting “relaxed” untimed
problem can be solved by the algorithm in [24] (Sect. 2.3); and then we intro-
duce the time constraints back and refine the interim result to the correct one.
Our timed Boyer-Moore algorithm has greater skip values in general, however,
because by using region automata R(A), Rr(A) we also take time constraints
into account when computing skip values.

Remark 5.6. It was suggested by multiple reviewers that our use of region
automata be replaced with that of zone automata (see e.g. [4]). This can result
in a much smaller automaton R(A) for calculating skip values (cf. Definition 5.3
and Case 2 of Sect. 6). More importantly, zone automata are insensitive to the
time unit size—unlike region automata where the numbers cx in Definition 2.5
govern their size—a property desired in actual deployment of timed pattern
matching. This is a topic of our imminent future work.

6 Experiments

We implemented both of our naive offline algorithm and our Boyer-Moore type
algorithm (without Δ1) in C++ [22]. We ran our experiments on MacBook Air

A Boyer-Moore Type Algorithm for Timed Pattern Matching 135

Mid 2011 with Intel Core i7-2677M 1.80 GHz CPU with 3.7 GB RAM and Arch
Linux (64-bit). Our programs were compiled with GCC 5.3.0 with optimization
level O3.

An execution of our Boyer-Moore type algorithm consists of two phases: in
the first pre-processing phase we compute the skip value function Δ2—to be
precise the value minr∈L′

s
min{d1(r), d2(r)} for each s, on which Δ2 relies—and

in the latter “matching” phase we actually compute the match set.
As input we used five test cases: each case consists of a timed automaton

A and multiple timed words w of varying length |w|. Cases 1 and 4 are from a
previous work [20] on timed pattern matching; in Case 2 the timed automaton A
is not expressible with a timed regular expression (TRE, see [12] and Sect. 2.1);
and Cases 3 and 5 are our original. In particular Case 5 comes from an automotive
example.

Our principal interest is in the relationship between execution time and the
length |w| (i.e. the number of events), for both of the naive and Boyer-Moore
algorithms. For each test case we ran our programs 30 times; the presented
execution time is the average. We measured the execution time separately for the
pre-processing phase and the (main) matching phase; in the figures we present
the time for the latter.

We present an overview of the results. Further details are in Appendix G
in [23].

Case 1: No Clock Constraints. In Fig. 8 we present a timed automaton A
and the execution time (excluding pre-processing) for 37 timed words w whose
lengths range from 20 to 1,024,000. Each timed word w is an alternation of
a, b ∈ Σ, and its time stamps are randomly generated according to a certain
uniform distribution.

s0start s1 s2 s3
a, true b, true $, true

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

E
xe

cu
tio

n
T

im
e

[m
s]

Number of Events [×10000]

naive
Boyer-Moore (without pre-processing)

Boyer-Moore (with pre-processing)

Fig. 8. Case 1: A and execution time

s0start s1 s2 s3

s4s5s6s7

a, 1 < x
/x := 0

a, 0 < x < 1
/x := 0

a, 0 < x < 1
/x := 0

a, 0 < x < 1
/x := 0

a, 0 < x < 1
/x := 0

a, 1 < x
/x := 0

a, 0 < x < 1/x := 0a, 1 < x/x := 0

$, x = 1

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

E
xe

cu
tio

n
T

im
e

[m
s]

Number of Events [×100000]

naive
Boyer-Moore (without pre-processing)

Boyer-Moore (with pre-processing)

Fig. 9. Case 3: A and execution time

136 M. Waga et al.

s0start s1 s2 s3

a, true/y := 0

a, x = 1

a, true

a, y = 1 $, true

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

E
xe

cu
tio

n
T

im
e

[m
s]

Number of Events [×100]

naive
Boyer-Moore (without pre-processing)

Boyer-Moore (with pre-processing)

Fig. 10. Case 2: A and execution time

s0start s1 s2 s3

s4s5s6s7

low , true
/x := 0

high,
0 < x < 1

high,
0 < x < 1

high,
0 < x < 1high,

0 < x < 1
high,
1 < x

high, true

$, true

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500
E

xe
cu

tio
n

T
im

e
[m

s]
Number of Events [×10000]

naive
Boyer-Moore (without pre-processing)

Boyer-Moore (with pre-processing)

Fig. 11. Case 5: A and execution time

The automaton A is without any clock constraints, so in this case the prob-
lem is almost that of untimed pattern matching. The Boyer-Moore algorithm
outperforms the naive one; but the gap is approximately 1/10 when |w| is large
enough, which is smaller than what one would expect from the fact that i is
always decremented by 2. This is because, as some combinatorial investigation
would reveal, those i’s which are skipped are for which we examine fewer j’s

The pre-processing phase (that relies only on A) took 6.38 · 10−2 ms. on
average.

Case 2: Beyond Expressivity of TREs. In Fig. 10 are a timed automaton
A—one that is not expressible with TREs [12]—and the execution time for 20
timed words w whose lengths range from 20 to 10,240. Each w is a repetition
of a ∈ Σ, and its time stamps are randomly generated according to the uniform
distribution in the interval (0, 0.1).

One can easily see that the skip value is always 1, so our Boyer-Moore algo-
rithm is slightly slower due to the overhead of repeatedly reading the result
of pre-processing. The naive algorithm (and hence the Boyer-Moore one too)
exhibits non-linear increase in Fig. 10; this is because its worst-case complexity
is bounded by |w||E||w|+1 (where |E| is the number of edges in A). See the proof
of Theorem 4.3 (Appendix F.1 in [23]). The factor |E| in the above complexity
bound stems essentially from nondeterminism.

The pre-processing phase took 1.39 · 102 ms. on average.

Case 3: Accepting Runs are Long. In Fig. 9 are a timed automaton A and
the execution time for 49 timed words w whose lengths range from 8,028 to
10,243,600. Each w is randomly generated as follows: it is a repetition of a ∈ Σ;
a is repeated according to the exponential distribution with a parameter λ; and
we do so for a fixed duration τ|τ |, generating a timed word of length |w|. See
Table 3 in Appendix G in [23].

A Boyer-Moore Type Algorithm for Timed Pattern Matching 137

In the automaton A the length m of the shortest accepting run is large;
hence so are the skip values in the Boyer-Moore optimization. (Specifically the
skip value is 5 if both τi − τi−1 and τi+1 − τi are greater than 1.) Indeed, as
we see from the figure, the Boyer-Moore algorithm outperforms the naive one
roughly by twice.

The pre-processing phase took 7.02 ms. on average. This is in practice negli-
gible; recall that pre-processing is done only once when A is given.

Case 4: Region Automata are Big. Here A is a translation of the TRE〈((〈p〉(0,10]〈¬p〉(0,10]

)∗∧(〈q〉(0,10]〈¬q〉(0,10]

)∗)
$
〉
(0,80]

. We executed our two algo-
rithms for 12 timed words w whose lengths range from 1,934 to 31,935. Each w is
generated randomly as follows: it is the interleaving combination of an alterna-
tion of p,¬p and one of q,¬q; in each alternation the time stamps are governed
by the exponential distribution with a parameter λ; and its duration τ|τ | is fixed.

This A is bad for our Boyer-Moore type algorithm since its region automaton
R(A) is very big. Specifically: the numbers cx in Definition 2.5 are big (10 and
80) and we have to have many states accordingly in R(A)—recall that in ∼ we
care about the coincidence of integer part. Indeed, the construction of Rr(A)
took ca. 74s., and the construction of R(A × A) did not complete due to RAM
shortage. Therefore we couldn’t complete pre-processing for Boyer-Moore. We
note however that our naive algorithm worked fine. See Table 4 in Appendix G
in [23].

Case 5: An Automotive Example. This final example (Fig. 11) is about
anomaly detection of engines. The execution time is shown for 10 timed words
w whose lengths range from 242,808 to 4,873,207. Each w is obtained as a
discretized log of the simulation of the model sldemo enginewc.slx in the
Simulink Demo palette [16]: here the input of the model (desired rpm) is gener-
ated randomly according to the Gaussian distribution with μ = 2,000 rpm and
σ2 = 106 rpm2; we discretized the output of the model (engine torque) into two
statuses, high and low , with the threshold of 40N · m.

This test case is meant to be a practical example in automotive applications—
our original motivation for the current work. The automaton A expresses: the
engine torque is high for more than 1 s (the kind of anomaly we are interested
in) and the log is not too sparse (which means the log is a credible one).

Here the Boyer-Moore algorithm outperforms the naive one roughly by twice.
The pre-processing phase took 9.94 ms on average.

Lacking in the current section are: detailed comparison with the existing
implementations (e.g. in [20], modulo the word-signal difference in Remark 2.2);
and performance analysis when the specification A, instead of the input timed
word w, grows. We intend to address these issues in the coming extended version.

Acknowledgments. Thanks are due to the anonymous referees for their careful read-
ing and expert comments. The authors are supported by Grant-in-Aid No. 15KT0012,
JSPS; T.A. is supported by Grant-in-Aid for JSPS Fellows.

138 M. Waga et al.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Pro-
ceedings of the LICS 1997, pp. 160–171. IEEE Computer Society (1997)

3. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)

5. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

6. Colombo, C., Pace, G.J.: Fast-forward runtime monitoring — an industrial case
study. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 214–228.
Springer, Heidelberg (2013)

7. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23820-3 4

8. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Heidelberg (2014)

9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013)

10. Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 322–337.
Springer, Heidelberg (2015)

11. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and bayesian net-
work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 215–230. Springer, Heidelberg (2014)

12. Herrmann, P.: Renaming is necessary in timed regular expressions. In: Pandu Ran-
gan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 47–59.
Springer, Heidelberg (1999)

13. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Heidelberg (2014)

14. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime monitor-
ing of an autonomous research vehicle (ARV) system. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23820-3 7

15. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

16. Simulink User’s Guide. The MathWorks Inc., Natick (2015)
17. Boyer-Moore Fast String Searching Example. http://www.cs.utexas.edu/users/

moore/best-ideas/string-searching/fstrpos-example.html
18. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal

logic over finite words. Logical Meth. Comput. Sci. 3(1), 1–27 (2007)

http://dx.doi.org/10.1007/978-3-319-23820-3_4
http://dx.doi.org/10.1007/978-3-319-23820-3_4
http://dx.doi.org/10.1007/978-3-319-23820-3_7
http://dx.doi.org/10.1007/978-3-319-23820-3_7
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/fstrpos-example.html
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/fstrpos-example.html

A Boyer-Moore Type Algorithm for Timed Pattern Matching 139

19. Pandya, P.K., Suman, P.V.: An introduction to timed automata. In: Modern Appli-
cations of Automata Theory, pp. 111–148. World Scientific (2012)

20. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Heidelberg (2014)

21. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 736–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 47

22. Waga, M., Akazaki, T., Hasuo, I.: Code that Accompanies “A Boyer-Moore Type
Algorithm for TimedPattern Matching”. https://github.com/MasWag/timed-
pattern-matching

23. Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore Type Algorithm for Timed Pattern
Matching (2016). CoRR, abs/1606.07207

24. Watson, B.W., Watson, R.E.: A Boyer-Moore-style algorithm for regular expression
pattern matching. Sci. Comput. Program. 48(2–3), 99–117 (2003)

http://dx.doi.org/10.1007/978-3-662-49674-9_47
https://github.com/MasWag/timed-pattern-matching
https://github.com/MasWag/timed-pattern-matching

Abstraction Strategies for Computing
Travelling or Looping Durations
in Networks of Timed Automata

Raymond Devillers1 and Hanna Klaudel2(B)

1 Département D’Informatique,
Université Libre de Bruxelles, City of Brussels, Belgium

rdevil@ulb.ac.be
2 Laboratoire IBISC, Université D’Evry-Val D’Essonne, Evry, France

hanna.klaudel@ibisc.univ-evry.fr

Abstract. This paper shows how to abstract networks of timed
automata in order to accelerate the analysis of quantitative properties
such as path or cycle duration, that would otherwise suffer from the state
space explosion. Two approaches are introduced, a single step strategy
and an iterative one, where a part of the network of timed automata
is merged and abstracted. As a consequence, the state space is reduced
and model-checking is simplified. These approaches are illustrated on a
case study, where the comparison is done by calculating the cycle time
of one automaton in the network, both on the real network and on the
two abstracted ones, showing that the method reduces significantly the
runtime, or simply renders feasible the analysis of the system.

Keywords: Timed automata · State space explosion · Duration ·
Approximation

1 Introduction

Timed automata [1] are a powerful formalism useful to model and analyse real-
time concurrent systems. They extend finite state machines by adding real-valued
variables, called clocks, which evolve linearly and can be compared with integer
constants in states (yielding invariants), called here locations, and along transi-
tions (yielding guards), where some clocks may also be reset to zero; additional
(Booleanor integer) variablesmayalsobe introduced, checked in guards and invari-
ants, and updated along transitions. Networks are sets of timed automata, which
may synchronise through binary communication channels, meaning that a com-
munication involves exactly two components, one performing an emission k! and
the other one performing a reception k? on the same channel k. Model checking
may be performed on such models, in particular with tools like UPPAAL [9,12].

It is well known that the automated analysis of complex systems, with many
communicating components and different orders of magnitude in the used con-
stants, quickly faces a state explosion problem, making the analysis extremely
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 140–156, 2016.
DOI: 10.1007/978-3-319-44878-7 9

Abstraction Strategies for Computing Travelling or Looping Durations 141

time and/or memory demanding, or even unfeasible. In such a context, this
paper focuses on the computation of upper/lower bounds for the travelling time
of various paths or loops in timed automata components. The objective here is
to determine if the timing characteristics of the considered system are satisfac-
tory or not, rather than to compute exact bounds (even if it may often lead to
tight bounds). We use approximations, which are based on the analysis of the
involved communication structure of the network and replace some parts of it
by suitable abstractions. We present two approaches (a one step and an iterative
one) accelerating and often simply making it possible to achieve these compu-
tations. We shall use as a running example a network of timed automata that
occurred in the field of mixed reality applications [2].

Related Work. The problems arising from the fragmentation of the state
space due to different orders of magnitude in the constants have already been
addressed, for various variants of timed automata, and the solutions have some-
times been incorporated in tools [8,10]. The problems due to the complexity
of some components have been handled in [6], for instance, where locations are
merged in such a way that the added behaviours do not impact the property at
hand, or in [7], where UPPAAL has been used in an industrial case study as a
“structured testing” tool in order to find bounds for some activities. By contrast,
the fact that the size of the state space of distributed systems increases in an
exponential way with the number of components is seldom considered, except
maybe in [11] where, in a very specific framework, two kinds of components may
be distinguished and each kind may be analysed individually, allowing to inject
the results in the analysis of the other kind, iteratively until convergence; and
in [3] where the authors exploit the specificities of a 2-level real-time scheduling
on a single platform. The idea we shall develop here is rather different: in order
to simplify the system and make it more adequate for quantitative analyses, we
shall consider subsystems and abstract the rest by simple computation nodes.

Paper’s Structure: The next sections present first the necessary definitions, then
introduces our running example and recalls how one may use UPPAAL to
analyse a network of timed automata. Section 5 presents an abstraction strat-
egy, available when only a few components are out of reach of a direct analy-
sis. Section 6 shows how to proceed when no (or too few) components may be
analysed. The last section concludes and discusses some possible extensions.

2 Preliminaries

Syntactically, a timed automaton is an annotated directed (and connected)
graph, provided with a finite set of non-negative real variables called clocks;
additional (Boolean or integer) variables may also be introduced. The nodes
(locations) are annotated with invariants, (predicates allowing to enter or stay
in a location); they may also have some qualifiers, like an urgency indication. The
arcs are annotated with guards (predicates allowing to perform a move) or com-
munication actions, and possibly with some clock resets and variable updates.

142 R. Devillers and H. Klaudel

We shall not detail here the exact syntax allowed for the predicates, adopting
the one used in UPPAAL. As usual, the empty predicate is interpreted as true.

In order to glue together the various components of a network of timed
automata, some arcs will be classically annotated with communication actions
(variable updating may also serve to materialise interactions between compo-
nents, but also inside a component) which may be either of the form k!, meaning
the emission of a signal on a channel k, or a complementary k?, meaning the recep-
tion of some signal on channel k, supposed to synchronise with a k!. A channel may
also have some qualifiers, like an urgency indication. The absence of synchronisa-
tion action on an arc indicates an internal activity of the automaton.

Definition 1. A timed automaton is a tuple A = (S, s0,X,K, V,E, I), where

– S is a set of locations and s0 ∈ S is the initial one,
– X is the set of clocks,
– K is the set of communication actions,
– V is the set of variables,
– E ⊆ S × (K × B × U × 2X) × S is a set of arcs between locations, possibly

annotated with a communication action in K, a guard in B, a variable update
U , and a set of clock resets in 2X ,

– I : S → B assigns invariants to locations.

Definition 2. A network of timed automata is a set A = {A1, . . . , An} where
each Ai = (Si, s

0
i ,Xi,Ki, Vi, Ei, Ii) is an individual timed automaton, the sets

Si being disjoint.

The semantics of a network of timed automata is that of the underlying
timed automaton (synchronising together through channels and possibly also
interacting through common variables and clocks) as recalled below, with the
following notations. A location vector is a vector s̄ = (s1, . . . , sn); the initial
location vector is s̄0 = (s01, . . . , s

0
n). We denote by si

k,b
r,u→ s′

i the arcs between
locations, where k is a communication action (which may be absent), b a guard
(empty guard is interpreted as true), r is a set of clocks to be reset (possibly
empty), and u is an update of variables (also possibly empty). The invariant
predicates are composed of predicates over location vectors I(s̄) =

∧
i Ii(si). We

write s̄[s′
i/si] to denote the vector where the ith element si of s̄ is replaced by s′

i,
and s̄[s′

i/si, s
′
j/sj] to denote the vector where the ith element si of s̄ is replaced

by s′
i while the jth element sj of s̄ is replaced by s′

j . A valuation is a function ν
from the set of clocks to the non-negative reals, and from the set of variables to
Boolean or integer values. Let V be the set of all clock and variable valuations,
ν0(y) = 0 for each clock or integer variable y, and ν0(b) = false for each Boolean
variable b. We shall denote by ν � F the fact that the valuation ν satisfies (makes
true) the formula F . If r is a clock reset and u a variable update, we shall denote
by ν[r, u] the valuation obtained after applying clock reset r and the variables
update u to ν; and if d ∈ R>0 is a delay, ν + d is the valuation such that, for
any clock x, (ν + d)(x) = ν(x) + d, the variables being left unchanged.

Abstraction Strategies for Computing Travelling or Looping Durations 143

Definition 3. The semantics of a network A = {A1, . . . An} is defined as a
timed transition system (St, st0,→), where St = (S1×, . . . × Sn) × V is the set
of states, st0 = (s̄0, ν0) is the initial state, and →⊆ St × St is the transition
relation defined by:

– (silent): (s̄, ν) → (s̄′, ν′) if there exists si
b

r,u→ s′
i, for some i, such that s̄′ =

s̄[s′
i/si], ν � b, ν′ = ν[r, u] and ν′ � I(s̄′),

– (sync): (s̄, ν) → (s̄′, ν′) if there exist two arcs si
k?,bi
ri,ui

→ s′
i and sj

k!,bj
rj ,uj

→ s′
j

with i �= j, such that ν � bi ∧ bj, s̄′ = s̄[s′
i/si, s

′
j/sj], ν′ = ν[ri ∪ rj , ui;uj]

(assuming the updates ui and uj commute) and ν′ � I(s̄′),
– (timed): (s̄, ν) → (s̄, ν + d) if ∀x ∈ [0, 1] : ν + x · d � I(s̄), there is no urgent

synchronisation possible (they have precedence on time passing), and there is
no urgent location in s̄ (time may not progress in an urgent location).

3 Running Example

In order to illustrate our techniques, we shall use along the paper the running
example, originated from [2] and depicted in Fig. 1 modelling an augmented
reality system with a sensor I (for inertial), two cooperating processing units
P (for priority) and L (for lower), a memory component M and two rendering
loops G (for graphical) and H (for haptical).

Component I, once initialised in s0, cyclically acquires data in s1 and sends
it on channel kI to processing unit P . After initialisation (between s0 and s3),
component P cyclically awaits synchronisations with components I (if available)
and L (mandatory), processes data in location s5 and sends its results to com-
ponent L on channel kP . Component L acquires data from component P , then
processes them in location s1 (which takes at least 20 and at most 60 time units),
synchronises with memory M (on channel lock), writes data in it, which lasts
between 10 and 20 time units (in location s3), and unlocks M . Two render-
ing components G and H access cyclically M , read and update data in s1 and
process them in s3.

The underlying communication/synchronisation scheme is represented in
Fig. 2.

This kind of system may be handled by UPPAAL. Note that in this example
all the communication channels are urgent, i.e., when one or more communica-
tions may take place, one of them must occur immediately, and we resume until
no more communication is allowed (but other moves may occur before the time
progresses): then the time may continue to progress. It is easy to see that no Zeno
phenomenon may occur here1. Each component is essentially looping, possibly
after an initialisation part. We shall here consider the timing characteristics of
components L and G, and in particular the bounds of durations for performing
their loops.

1 i.e., a situation where infinitely many moves may/must occur in a finite/zero delay.

144 R. Devillers and H. Klaudel

s0 s1 s2

x < 600 x < 1000

x := 0

x ≥ 400 x ≥ 900

x := 0

kI !
I

s0 s1

s2 s3

s4

s5 s6

x < 60

x < 60
kI?

x := 0

x ≥ 40

kP !

kI?

x := 0

kL?

kL?

x := 0

x ≥ 40

kP !

P

s0 s1 s2

s3s4s5

x < 60

x < 20

kP ?

x := 0

x ≥ 20

lock! x := 0

x ≥ 10unlock!

kL!

L s0 s1

lock?

unlock?
M

s0 s1

s2s3

x < 750

x < 1000

lock!

x := 0

x ≥ 500

unlock!

x := 0

x ≥ 800

G s0 s1

s2s3

x < 30

x < 120

lock!

x := 0

x ≥ 20

unlock!

x := 0

x ≥ 80

H

Fig. 1. Network of timed automata of Example 1 (all clocks are local and all channels
are urgent).

I P L M

H

G

kI kP

kL

un
loc

k
lock

unlock lock

unlock

lock

Fig. 2. Communication/synchronisation schema of the running example. The nodes
represent components (individual timed automata) and the arcs the synchronisations
with the direction from emitting to receiving component.

4 Timing Analysis

Before starting an estimation of the time needed to reach some location s′ from
location s in a component C, we may first wonder if it may not happen that one
gets stuck during the travel (this phenomenon may have various causes - local
or global deadlock, starvation, infinite waiting – analysed in [2,5]). This may be
checked with a leads to property ϕ - ->ϕ′, verifying if when ϕ is true it is certain
that ϕ′ will eventually become true also, for which UPPAAL has an efficient
algorithm. One may thus use a query C.s - ->C.s′ to check if it is certain to
reach s′ from s in C. A variant of this kind of formula is C.s - ->¬C.s, allowing
to check that we cannot get stuck in location s. Applying this kind of formula
to a loop needs however to instrument a bit the considered component, i.e., to
add some features which do not modify the component’s behaviour but allow

Abstraction Strategies for Computing Travelling or Looping Durations 145

Fig. 3. Some instrumented versions of L: L1 with added urgent location s̃0, L2 with
added urgent location s̃0, local clock y and Boolean variable b; L3 with added local
clock y, and Boolean variable b; and instrumented version G1 of G with added urgent
location s̃0 and local clock y.

to analyse it. Indeed, the formula C.s - ->C.s will always return true, because
it is satisfied by the empty path, hence does not correspond to a true looping
behaviour. A general technique to solve this kind of problem is to introduce an
urgent location s̃ (where time may not progress, represented in dark blue in the
figures) before the considered location s, with all the arcs to s redirected to s̃.
This technique is general, but even if it does not modify the original behaviour, it
increases the size of the state space since it introduces a new location. However,
in some circumstances, if there is a location s1 such that it is not possible to
loop without visiting it, it is enough to check the pair of formulas C.s - ->C.s1
and C.s1 - ->C.s.

As an example, the instrumented version L1 of component L is illustrated in
Fig. 3, and the first three lines of Table 1 give the liveness results for L and L1.

In order to evaluate timing characteristics, we may use UPPAAL queries of
the kind sup{ϕ} : x to compute the supremum (respectively, inf{ϕ} : x to com-
pute the infimum) of clock x when formula ϕ is true. Note that there may be
an asymmetry in their usage; for instance, sup{C.s} : C.x computes the supre-
mum of clock x when leaving location s in component C, while inf{C.s} : C.x
computes the infimum of clock x when entering location s in component C.

However, to make a good use of those queries it may again be necessary to
instrument a bit the considered components. First, one should add new clocks
allowing to measure the interesting paths, with resets put on the arcs entering
the starting point(s), unless existing clocks already do the job. Next, one may
need to add urgent locations, for instance when we need to consider the maximal
time to enter a location and not the time to leave it. This may also be used to
differentiate the various ways to enter a location, when there are many ones.
Finally, one may introduce Boolean variables (initialised to false) to select paths
satisfying some constraints.

146 R. Devillers and H. Klaudel

Table 1. Model checking results, and execution times observed for a system with Intel
Core i5 1.4 GHz and 4GB RAM. We denote by ex1-Li, for i = 1, 2, 3, the specification
composed of all the automata of Example 1 where component L is replaced by its
instrumented version Li allowing to perform the desired request. The interpretation of
ex1-G1 is analogous.

Model Query Result Time [s] Interpretation

ex1 L.s0 - ->L.s2 true 208 first half loop of L feasible

ex1 L.s2 - ->L.s0 true 139 second half loop of L feasible

ex1-L1 L1.s0 - ->L1.s̃0 true 345 loop feasible

ex1-L2 inf{L2.s̃0} : L2.y > 70 148 lower bound of looping time

ex1-L2 sup{L2.s̃0} : L2.y < 2550 150 upper bound of looping time

ex1-L2 inf{L2.s̃0 ∧ ¬L2.b} : L2.y ≥ 1330 148 lower bound of the first loop

ex1-L2 sup{L2.s̃0 ∧ ¬L2.b} : L2.y < 2550 157 upper bound of the first loop

ex1-L2 inf{L2.s̃0 ∧ L2.b} : L2.y > 70 158 lower bound of the next loops

ex1-L2 sup{L2.s̃0 ∧ L2.b} : L2.y < 950 159 upper bound of the next loops

ex1-L3 inf{L3.s2 ∧ ¬L3.b} : L3.y > 1320 110 lower bound of s0→s2 in the
first loop

ex1-L3 sup{L3.s1 ∧ ¬L3.b} : L3.y < 1720 111 upper bound of s0→s2 in the
first loop

ex1-L3 inf{L3.s2 ∧ L3.b} : L3.y > 60 112 lower bound of s5→s2 in the
next loops

ex1-L3 sup{L3.s1 ∧ L3.b} : L3.y < 120 113 upper bound of s5→s2 in the
next loops

ex1-G1 inf{G1.s̃0} : G1.y – int. 1h lower bound of looping in G1

ex1-G1 sup{G1.s̃0} : G1.y – int. 1h upper bound of looping in G1

ex1-G1 G1.s0 - ->G1.s̃0 – int. 1h loop feasible?

For instance, for the timing analysis of component L of Example 1, one
may consider its instrumented version L2, as shown in Fig. 3, and use the pair
of queries inf{L2.s̃0} : L2.y and sup{L2.s̃0} : L2.y to get the lower and upper
bounds (respectively) of the looping time: this is also illustrated in Table 1.
However, since component P has an initialisation phase before entering its true
looping part, one may suspect that the first loop of L and the next ones behave
differently: this is confirmed by the next four queries in the table, where the
Boolean variable b in L2 allows to distinguish the first loop from the next ones
(it is also possible to unroll explicitly the first iteration(s) of the loop in order
to analyse them successively; this amounts for instance to replace a looping
structure α∗ by a structure α(α∗) if we want to isolate the first iteration from
the next ones; we shall not do it here, but a partial unrolling will be used in the
next two sections, for other reasons). For further use, we are also interested in
the time to go from s5 to s2, and in the time to first enter s2 (from the initial
state); this may be analysed with the instrumented version L3 of L, also shown

Abstraction Strategies for Computing Travelling or Looping Durations 147

on Fig. 3 and illustrated in Table 1: the Boolean variable b is used to distinguish
the first time one enters s2 (from s0) from the next ones (from s5).

Similarly, the bounds of the looping times of components G may be obtained
from the instrumented version G1, also shown on Fig. 3, and the results are
detailed at the end of Table 1.

All the computations succeeded, except for the looping times of G, for which
the executions were stopped after 1 hour, and the accelerations by over/under-
approximations offered by UPPAAL do not help. It could happen that the
bounds for the looping time of G may be obtained by allowing more execution
time (and/or a much more powerful computer), but in any case this would likely
be considered unsatisfactory by the end user, who probably would like to analyse
many variants of the model.

Note that, to get bounds for the time needed to follow some path, one may
also add the bounds for sub-paths, but the result is generally less accurate than
the global estimation; this is due to the well known property that the inf(f1 +
f2) ≥ inf(f1)+ inf(f2) and sup(f1 +f2) ≤ sup(f1)+ sup(f2) for any two functions
f1 and f2, the equality being only obtained if the two functions are independent,
or by mere chance, because the extrema are reached at the same points.

5 Direct Abstraction Strategy

We have seen in the previous section that the computation of timing character-
istics may blow up. This is usually due to a combination of a complex system,
in particular a highly distributed one, and ill balanced constants in the invari-
ants and guards. We shall now consider strategies allowing to get around this
unfortunate phenomenon in some circumstances, at least partly.

First, it may be observed that it is usually not necessary to know the exact
infima and suprema, but only to be able to assert that some traveling time is not
higher than some value, and possibly also not lower than some other value. Hence
it is sufficient to determine an (approximate) interval [min,max] encompassing
the traveling time under consideration, i.e., to get an over-approximation of the
true bounds. We here considered a closed interval, but sometimes we shall use
open or semi-closed ones, when it is known that some extremum may not be
reached.

Since one of the main sources of computation failure is the size of the system,
we shall delineate a subsystem including the component we want to analyse and
abstract away the interactions of this subsystem with the rest of the system, in
order to isolate the subsystem and make its analysis feasible. This subsystem
should be chosen with care: it should be small enough to allow the computations,
but not too small to avoid uselessly large approximations (knowing that the
travel time is in interval [0,∞] is not very useful). This may also be used to
only keep in the subsystem components with similar constants. Also, we shall
assume that the only interactions of the subsystem with the exterior is through
rendez-vous on channels (no shared clock or variable), and that we are able to
analyse the times taken by these communications.

148 R. Devillers and H. Klaudel

In such a subsystem, we may distinguish internal components, which do not
communicate with the exterior, and border components, which communicate
both with the subsystem and with the exterior. The intuitive idea behind the
method is then to replace those communications in the border components by one
or more computation arcs, of the kind illustrated in Fig. 5, over-approximating
the true time needed by those communications: guard x ≥ min and invariant
x ≤ max ensure a delay in the interval [min,max]. Strict inequalities are also
possible, for example guard x > min and invariant x < max ensure a delay
in the interval (min,max), and analogously for other combinations. The values
min and max, as well as the choice between strict or weak inequalities, should
be provided by the analysis of the abstracted communication in the border com-
ponent behaving in the full system.

In our example, since we want to analyse component G, we shall consider the
subsystem ss1 (with the interior composed of M , H and G, and border compo-
nent L), illustrated on top of Fig. 4. Note that the choice of the actual boundary
of ss1 is quite arbitrary provided that it contains G, does not communicate with
the rest of the system through clocks or variables, (which is the case here since
all the clocks and variables are local) and the border may be analysed in the full
system (which is the case in our example, as detailed in Table 1).

In general, if all the bordering components may be analysed in the full system,
in order to abstract away the interactions with the exterior of the subsystem, the

I P La M

H

G

ss1
kI kP

kL

unl
ocklock

unlock lock

unlock

lock

s0

s5

s2

s3s4

x < 120

x < 1720

x < 20

lock! x := 0

x ≥ 10unlock!

x := 0

x > 60

x > 1320

La

Fig. 4. Subsystem ss1 of Example 1, depicted within the communication scheme, and
the border component La (obtained from L by abstracting the exterior of ss1, i.e.,
components I and P).

Abstraction Strategies for Computing Travelling or Looping Durations 149

s s′

(c ≤ max) ∨ I

(c ≥ min) ∧ (c ≤ max) ∧ b

r, u
c := 0

Fig. 5. A computation arc over-approximating (by an interval [min, max] on some
‘computation’ clock c, with the guard b, the final clock resets r and the global variable
updates u) the traveling through a communication arc or phase. Clock c is reset on all
the incoming arcs to s and should not be reset by other components; it is in principle
a new clock introduced for the abstraction, but it may also be an existing one that is
available at that point. I materialises the invariants driving the other ways to leave s,
usually in the form of a disjunction of inequalities of the kind c ≤ max′ or c < max′.

most direct technique is simply to replace each communication arc (k! or k?) with
the exterior by an adequate computation arc, i.e., with an interval [min,max]
if we know from the analysis of the component that the communication takes
between min and max time units. (see Fig. 5; note that constraints of the kind
0 ≤ c and c ≤ ∞ may be simply dropped, and that we assumed here to have
inclusive extrema, while they may be exclusive.) Also, as already noticed, in
order to avoid too large approximations due to an initialisation phenomenon, it
may be useful to unroll the first loop execution(s).

It may happen that a same communication arc allows to interact both with
the interior and the exterior of the subsystem (in our example, if the left border of
ss1 was shifted right so that the border becomes component M and component L
is now in the exterior, channels lock and unlock connect M both to the exterior
L and to the interior G and H). In this case, we should duplicate those arcs
in order to separate the communications (in our modified example, this would
mean replace the lock in M by a choice between lock1 and lock2, lock1 being
used in L and lock2 in G and H, and similarly for unlock).

The technique we just sketched is general but it uses the least possible gran-
ularity for the abstraction of the communications with the exterior of the sub-
system, which unfortunately multiplies the intermediate computations (to eval-
uate the min/max values) and accumulates the propagations of approximations
(due to the fact already mentioned that the sum of two mins/maxs may be
lower/higher than the min/max of the sum). Hence, instead of abstracting away
the outside communication arcs individually, we may search the coarsest possible
abstraction. This amounts to search for the largest possible phases of commu-
nications with the exterior (see Definition 4) and to abstract each phase by a
computation arc of the kind described in Fig. 5 for the individual abstractions.

Definition 4. A communication phase is a part of a component with a first
location s and a last one s′ (possibly the same) together with intermediate loca-
tions and arcs: the arcs are either computation ones or communications with the
exterior of the considered subsystem; they link locations of the phase, and all arcs
to/from the intermediate locations belong to the phase; moreover, all the inter-
actions with the exterior of the phase (through clock resets, variable updates and
guards) should be equivalent to what happens with a single arc, so that traveling

150 R. Devillers and H. Klaudel

through the phase may be over-approximated by a single computation arc of the
form described in Fig. 5.

For instance, for each clock reset during the phase, if its value is used outside
the phase (before a further reset), one must have a reset on each arc to s′ inside
the phase (hence terminating the phase): all those resets yield the reset r. For each
variable modified in the phase whose value is used outside the phase but in the
same component (before a further modification), the final modification must be
the same whatever the path from s to s′; if the value of the variable is used in
another component of the subsystem, the (same) modification should only occur
on all the arcs to s′ inside the phase: those final modifications yield the updates
u. Finally, the guard b used to summarise the guards inside the phase, should be
implied by all the guards on the arcs from s inside the phase, and its value should
not change during the rest of the phase. Note that we may have various phases
between the same end locations s and s′, and that a single communication arc
always constitutes a phase by itself, but not often a maximal one.

For our example, in the (unique) border component L of subsystem ss1, the
outside channels are kL and kP , and we may abstract the phase constituted by
the whole path from s5 to s2, by a single computation arc. However, since the
initial state is inside the abstracted path, we must also abstract the first time
the path from s0 to s2 is ran; by the way, this also constitutes a partial unrolling
of the first loop. We thus get the abstracted component La illustrated on the
bottom of Fig. 4: the timing constraints for the computation arcs originating at
locations s0 and s5 (depicted in blue) are those obtained by the analysis of L3 in
Table 1. The bounds for the looping time of G are then computed in the system
ss1-La (i.e., ss1 with border component La). The results for the corresponding
queries are presented in Table 2.

Table 2. Model checking results of G with the direct abstraction method. Notations
for models are as in Table 1.

Model Query Result Time [s] Interpretation

ss1-La G1.s0 - ->G1.s̃0 true 284 loop feasible

ss1-La inf{G1.s̃0} : G1.y ≥ 8100 16 lower bound of looping in G1

ss1-La sup{G1.s̃0} : G1.y < 11750 16 upper bound of looping in G1

It may be observed that, while the computation of the looping time of com-
ponent G exploded for the full system, it becomes quite immediate in the sim-
plified and abstracted subsystem ss1. Of course, it is not sure that the bounds
we obtained are very tight with respect to the true infimum/supremum, but
they may be satisfactory with respect to the question the practitioner will ask
about the behaviour of G. In particular that means that there is no deadlock or
starvation phenomena.

Abstraction Strategies for Computing Travelling or Looping Durations 151

Proposition 1. Soundness of the direct strategy
The direct strategy, consisting in replacing each arc or phase of the subsystem

communicating with the exterior of the considered subsystem by a computation
arc with an interval encompassing the actual delay needed to cross it in the full
system, provides a correct over-approximation of the subsystem.

Proof. Obvious since the true evolutions of the components in the subsystem
(in the full system) are compatible with the ones in the isolated subsystem. As
a consequence, if a traveling time in a component is larger than some constant
and/or smaller than another one in the isolated subsystem, this is also true in
the full system; in other words, the intervals obtained for the isolated subsystem
are over-approximations of the true ones, in the full system. Similarly, if it is
sure from some location to reach another one in the isolated subsystem, this is
also true in the full system, since this means it is not possible to escape visiting
the second location. � 1

6 Iterated Abstraction Strategy

When one or more boundary components are too complex to be directly
analysed, the technique developed in the previous section may be inefficient,
because the only bounds we may use for them is [0,∞]. However, we may cir-
cumvent the problem by analysing their abstractions as viewed both from the
interior and the exterior of the considered subsystem.

Let us thus assume that, in a complex system to be model-checked, we con-
sider a subsystem ss1 such that the direct analysis of some of its bordering
components fails. Besides subsystem ss1, we shall also consider the subsystem
ss2 composed of the components exterior to ss1 and the bordering one(s), as
illustrated in the upper part of Fig. 6. If ss2 is still too complex, we may cut it in
the same way, and at the end we shall get a family of small subsystems covering
the whole system, with interior components, and with border ones communicat-
ing with at least two subsystems.

For each subsystem and each of its border components, we may then build
the abstracted version of the latter, as viewed from this subsystem, in a way
similar to what we have explained in the previous section.

The general idea of the iterated abstraction strategy is then to proceed in a
succession of rounds. In each round, we consider successively each subsystem in
some order, with each of its border components abstracting the exterior of the
considered subsystem, replacing the communications with each exterior subsys-
tem (arc or phase) by computational arcs, possibly after duplicating channels
and unrolling the main loop. If the border component is analysable, the bounds
and invariants will be derived as in the previous section; otherwise, they will be
parameterised, and those parameters will be initialised in such a way that we
are sure the induced behaviour encompasses the actual one (for instance we may
use the interval [0,∞]). When analysing this simplified component in its isolated
subsystem, we may then estimate bounds for the communications between the

152 R. Devillers and H. Klaudel

I P La2 La1 M

H

G′

ss1ss2
kI kP

kL

unl
ocklock

unlock lock

unlock

lock

s0 s1 s2

s5

x < 60 x < max2

kP ?

x := 0

x ≥ 20

x := 0

x ≥ min2

y := 0, b := true

kL!

La2
s0

s5

s2

s3s4x ≤ max1
2

x < max1
1

x < 20

lock! x := 0

x ≥ 10unlock!

x := 0

x ≥ min1
2

y := 0

x ≥ min1
1

y := 0
La1

Fig. 6. Two subsystems ss1 and ss2 of Example 1’ used for the iterated abstraction
strategies, and the two versions of component L, abstracted as viewed from ss2 (La2)
and from ss1 (La1). The superscripts for parameters mini and maxi refer to subsys-
tems, while subscripts identify different mins and maxs if necessary.

border component and this subsystem: this will be used to get better bounds
for the abstractions of the same component when viewed from the subsystems
to be considered next.

We proceed that way until no improvement is obtained when going from
one round to the next one, i.e., when no bound is improved when analysing the
various borders of the various subsystems, or when the practitioner considers
the approximation obtained up to now is satisfactory with respect to his needs
(in general, this means all the upper bounds are considered low enough), or
desperate (in general because one of the lower bounds is too high, so that the
situation will never be satisfactory, and it will be necessary to adapt the structure
of the system).

One then may estimate bounds for the looping times (or traveling times) one
is interested in. Note that, again, there is no guarantee that the obtained bounds
will be very tight: all we know is that the true interval will be inside the result.

This is summarised in Algorithm 1.

Proposition 2. Soundness of the iterated strategy
Starting with [0,∞] intervals, Algorithm 1 terminates, and the successive

stages of the successive rounds produce correct over-approximations of the
original system.

Abstraction Strategies for Computing Travelling or Looping Durations 153

Proof. Let us assume that, at the end of the first round, the obtained intervals
are smaller or equal to the initial ones (this will in particular be the case if we
start with [0,∞] intervals). Then, since the intervals at the beginning of the
second round are the same than at the end of the first round, during the second
round the possible evolutions are compatible with the specifications of the first
round, so that at the end of the second round, the obtained intervals are smaller
or equal to the ones obtained at the end of the first round. Iterating the reasoning
we get that the successive rounds will yield a series of nested intervals.

If, moreover, the initial intervals encompass the ones in the original system
(again, this will in particular be the case if we start with [0,∞] intervals), the
same kind of argument as the one used in the proof of Proposition 1 shows
that, at each stage, the evolutions of the original system are compatible with
the approximate components (be it internal to a subsystem or a bordering one),
so that the bounds obtained for the latter are correct.

If the bounds stabilise, the algorithm terminates (possibly before, if a sat-
isfactory situation is reached). Since the bounds of each abstracted interval at
each stage are natural numbers (or ∞ for the upper bound), the only way we
shall have non-stabilisation is when the successive values of an interval are of
the form [ki,∞] with increasing but unbounded ki’s (this corresponds to a very
particular case where it is impossible to reach the end of an abstracted part).
But then the algorithm will terminate because the situation will be considered
as desperate by the end user at some point. (Note that in our experiences, we
always got stabilisation, and quite fast.) � 2

In order to illustrate this technique, let us replace in our running example
the component G by a slower one; we shall thus consider a system Example 1’,
which is as Example 1 except for G which has been replaced by G′, in which the

Algorithm 1. Iterated abstraction method
Data: network of timed automata N , a property φ to be analysed in a

subsystem S of N
Result: analysis of φ in an approximated subsystem S
Construct a family of subsystems including S, covering N ;
foreach subsystem do

Determine the bordering components of it and construct its abstracted
version ;

end
Choose the initial values of the min/max parameters;
Choose an ordering of the subsystems;
repeat

Analyse the subsystems cyclically, following the chosen ordering, and
determine new approximate values for the min/max parameters;

until no progress is made, or the situation is judged satisfactory or desperate by
the end user ;
Analyse φ in the abstracted version of S, approximated with the final parameter
values;

154 R. Devillers and H. Klaudel

computation interval for s1 has been changed to [3100, 4200), and that of s3 to
[5000, 7500). We also consider the instrumented version G′

1, defined in the same
way as G1.

Since automatic analyses are usually made complicated, even unfeasible,
when there are different orders of magnitudes in the constants of a system,
we may expect new difficulties with respect to the case of Example 1: indeed,
all the queries of Table 1 now blow up.

We shall use the decomposition in subsystems illustrated on top of Fig. 6.
There is thus still a unique border, L, and its (parameterised) abstracted variants
as viewed by subsystems ss1 and ss2 are shown on the bottom of this figure.

The iteration then takes the form of rounds, which stabilise very fast:

Round 1:
Step 1: Since the problem arises from G′, we shall first consider subsystem

ss2, with L replaced by La2 (see Fig. 6), with the initial parameters min2 = 0
and max2 = ∞ (which amounts to drop the constraints on min2, max2). (Note
that we could have used min2 = 10, since a closer look at L shows that at least
10 time units are spent between lock! and unlock!, but this will not be neces-
sary). We may then use the queries shown on top of Table 3 to obtain a first
estimation of min1

1, max1
1, min1

2 and max1
2.

Step 2: With the bounds obtained in the previous step, analyse component
La1 in ss1, and search for the bounds min2 and max2 with the next two queries
in Table 3.

Round 2:
Step 1: With the bounds obtained in step 2 of round 1, analyse compo-

nent La2 in ss2, and search for the next estimation of the bounds min1
1, max1

1,
min1

2 and max1
2 with the next four queries in Table 3. Since no improvement

is obtained with respect to the results of round 1, we may stop the iterations,
and estimate the bounds for the looping time of G′ and La1 in ss1, as shown
by the last queries in Table 3 (for L, we do not need true computations: the
approximate bounds for the loop, after some initialisation, is given by the sums
of the bounds of the two half-loops, from s2 to s5 and from s5 to s2).

We may observe that, while none of the components L and G were analysable
in the original system of Example 1’, with our iterated abstraction strategy no
computation took more than a few seconds (but the loop feasibility which takes
a few minutes), leading to bounds that satisfied the practitioners at the origin
of this kind of system.

Abstraction Strategies for Computing Travelling or Looping Durations 155

Table 3. Results and execution times of the iterative abstraction process for
Example 1’. Notations for models as in Table 1.

Round 1 Step1

model query result time [s] interpretation

ss2-La2 inf{La2.s2 ∧ ¬La2.b} : La2.y ≥ 1320 < 1 min1
1

ss2-La2 sup{La2.s1 ∧ ¬La2.b} : La2.y < 1720 < 1 max1
1

ss2-La2 inf{La2.s2 ∧ La2.b} : La2.y ≥ 60 < 1 min1
2

ss2-La2 sup{La2.s1 ∧ La2.b} : La2.y < 120 < 1 max1
2

Round 1 Step2

model query result time [s] interpretation

ss1-La1 inf{La1.s5} : La1.y > 10 2 min2

ss1-La1 sup{La1.s4} : La1.y < 4280 2 max2

Round 2 Step1

model query result time [s] interpretation

ss2-La2 inf{La2.s2 ∧ ¬La2.b} : La2.y ≥ 1320 < 1 min1
1

ss2-La2 sup{La2.s1 ∧ ¬La2.b} : La2.y < 1720 < 1 max1
1

ss2-La2 inf{La2.s2 ∧ La2.b} : La2.y ≥ 60 < 1 min1
2

ss2-La2 sup{La2.s1 ∧ La2.b} : La2.y < 120 < 1 max1
2

Final analysis

model query result time [s] interpretation

ss1-La1 G′
1.s0 - ->G′

1.s̃0 true 2125 loop of G′ feasible

ss1-La1 inf{G′
1.s̃0} : G′

1.y ≥ 8100 18 lower bound of looping
in G′

ss1-La1 sup{G′
1.s̃0} : G′

1.y < 11750 18 upper bound of looping
in G′

ss1-La1 min1
2 + min2 > 70 0 lower bound of looping

in La1

ss1-La1 max1
2 + max2 < 4400 0 upper bound of looping

in La1

7 Conclusion and Future Work

We proposed and showed the soundness of two abstraction methods allowing to
accelerate (or make possible) the model-checking analysis of timed properties of
components of networks of timed automata. We illustrated on a typical example
how the abstraction strategy may help in analysing the timing properties of a
network of timed automata when a state space explosion occurs. We also applied
our iterative strategy on the behaviour of component L in our first example,
with the same decomposition since the system has the same structure, and we
observed that only a fraction of second is necessary to analyse each of the three

156 R. Devillers and H. Klaudel

steps, compared to a few minutes in the direct analysis summarised in Table 1
(and in this case the obtained bounds are exactly the same).

Example 1 has not been chosen on purpose: it arose in one of our previous
works, as a solution to deadlock problems occurring in a small but realistic
model of augmented reality application, but we should of course examine how
our techniques apply to larger realistic systems. We should also derive good ways
to decompose a large system into subsystems of adequate size and characteristics.
Finally, in addition to local analyses like the loop or travelling time bounds, we
could be interested in the time needed to transfer an information from a source
component to a consumer one, like in our example from a sensor to a rendering
loop.

Acknowledgements. We are grateful to Jean-Yves Didier, Mathieu Moine and Johan
Arcile for their ideas in the early stage of this work. We would like also to thank the
anonymous referees for their careful reading and inspiring suggestions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Arcile, J., Didier, J., Klaudel, H., Devillers, R., Rataj, A.: Indefinite waitings
in MIRELA systems. ESSS 2015, pp. 5–18 (2015). http://dx.doi.org/10.4204/
EPTCS.184.1

3. Carnevali, L., Pinzuti, A., Vicario, E.: Compositional verification for hierarchical
scheduling of real-time systems. IEEE Trans. Softw. Eng. 39(5), 638–657 (2013)

4. Devillers, R., Didier, J.-Y., Klaudel, H.: Specifications, Implementing Timed
Automata: The “Sandwich” Approach. ACSD 2013, pp. 226–235. IEEE (2013)

5. Devillers, R., Didier, J.-Y., Klaudel, H., Arcile, J.: Deadlock and temporal prop-
erties analysis in mixed reality applications. ISSRE 2014. IEEE, pp. 55–65 (2014)

6. Finkbeiner, B., Peter, H.-J., Schewe, S.: Synthesising certificates in networks of
timed automata. IET Softw. 4(3), 222–235 (2010)

7. Hendriks, M., Verhoef, M.: Timed automata based analysis of embedded system
architectures. In: Workshop on Parallel and Distributed Real-Time Systems (2006)

8. Hendriks, M., Larsen, K.: Exact acceleration of real-time model checking. Electr.
Notes Theor. Comput. Sci. 65(6), 120–139 (2002)

9. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

10. Möller, M.O.: Parking can get you there faster- model augmentation to speed up
real-time model-checking. Electr. Notes Theor. Comput. Sci. 65(6), 202–217 (2002)

11. Perathoner, S., et al.: Influence of different abstractions on the performance analy-
sis of distributed hard real-time systems. Design Autom. Emb. Sys. 13(1–2), 27–49
(2009)

12. UPPAAL. http://www.uppaal.org/

http://dx.doi.org/10.4204/EPTCS.184.1
http://dx.doi.org/10.4204/EPTCS.184.1
http://www.uppaal.org/

Distributed Algorithms for Time Optimal
Reachability Analysis

Zhengkui Zhang(B), Brian Nielsen, and Kim G. Larsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{zhzhang,bnielsen,kgl}@cs.aau.dk

Abstract. Time optimal reachability analysis is a novel model based
technique for solving scheduling and planning problems. After modeling
them as reachability problems using timed automata, a real-time model
checker can compute the fastest trace to the goal states which constitutes
a time optimal schedule. We propose distributed computing to acceler-
ate time optimal reachability analysis. We develop five distributed state
exploration algorithms, implement them in Uppaal enabling it to exploit
the compute resources of a dedicated model-checking cluster. We experi-
mentally evaluate the implemented algorithms with four models in terms
of their ability to compute near- or proven-optimal solutions, their scala-
bility, time and memory consumption and communication overhead. Our
results show that distributed algorithms work much faster than sequen-
tial algorithms and have good speedup in general.

1 Introduction

Time optimal reachability (TOR) analysis is a novel model based technique for
solving scheduling and planning problems [1,16]. After modeling these problems
using timed automata, a real-time model checker such as Uppaal [6] and Kro-
nos [12] can compute the fastest trace to the goal states which constitutes a
time optimal schedule, because the trace carries actions of the model and timing
information of these actions to the goal states. TOR allows natural modeling of
real-time behavior, constrains and interactions of components, as well as flexible
choices of efficiently implemented search algorithms inside model checkers.

However the well-known state-space explosion problem may arise when the
number of components in the model is large. In [20] we developed swarm algo-
rithms to mitigate this problem and accelerate TOR. The core idea is employing
a large number of parallel Uppaal instances or agents with randomized search
strategies to search the state spaces independently, thus finding different traces
to the goal state in parallel and avoiding local optimality. The advantages of this
approach are: (1) easy to implement; (2) find optimal (or near optimal) results
fast without exploring the full state-space. A weak point however is the lack of
data parallelism nor sharing of the explored state-space, thus the execution time
is hardly reduced and memory is limited to that of a single instance.

This work has been supported by Danish National Research Foundation – Center
for Foundations of Cyber-Physical Systems, a Sino-Danish research center.

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 157–173, 2016.
DOI: 10.1007/978-3-319-44878-7 10

158 Z. Zhang et al.

In this paper, we extend our previous work in [20] by developing distributed
algorithms that may accelerate TOR in three ways. First, the state-space is now
partitioned and distributed among distributed CPU and memory resources so
that multiple worker processes now share the state-space exploration workload,
thus the execution time may potentially be shortened greatly. Second, more
traces/state-space will be explored in parallel, thus the fastest trace will be
potentially found even faster than the swarm algorithms. Third, the disjoint
parts of state-space are stored in the distributed memory, allowing fully use the
memory of a cluster and handle even larger models than swarm algorithms.

Related Work. Because time optimal reachability involves the notion of cost
and optimality, branch and bound (B&B) is used for efficient state-space explo-
ration. By a bounding function and the current best solution to the goal states,
B&B can effectively prune parts of the state-space that guarantee not to lead
to an optimal solution [13] thus avoiding enumerating the entire state-space.
Behrmann et al. presented a branch-and-bound minimal-cost reachability algo-
rithm on the priced timed automata (PTA) in [7,8].

The earliest and monumental distributed model checker is the parallel
Murϕ verifier proposed in 1997 [17]. Its design delineated the cornerstone upon
which other distributed model checkers were built thereafter such as distrib-
uted Uppaal [5,9], DiVinE [3], LTSmin [11], etc. Meanwhile, enormous research
efforts have been made to improve the state-space generation algorithm, the par-
tition algorithm, the state storage data structure, the communication and control
mechanism, as well as many other technical issues. Since 2006 multi-core CPUs
became pervasive inside PC, HPC and embedded markets, DiVinE, LTSmin
and FDR3 [14] exploit multi-core shared memory technique to achieve even
better performance on the modern hardware architecture. DiVinE also made
fruitful attempts to accelerate model checking using GPUs from 2009 [4].

Contribution. We developed five distributed TOR algorithms and implemented
them in the Uppaalmodel checker to accelerate TOR analysis. In addition to
sharing explored states, worker processes exchange computed better costs to the
goal states. This enables each worker to prune its local state-space efficiently by
B&B, hence need less execution time and memory consumption.

D-BFS: distributed breath-first search. Each worker runs local BFS while
exchanging states with other workers.

D-BFSS: distributed strict order BFS (also named level synchronized BFS).
A synchronization protocol will ensure all workers completely explore states on
the same current BFS level before moving on to the next level.

D-DFS: distributed depth-first search. Same principle as D-BFS except travers-
ing depth-first.

D-DFSG: distributed greedy DFS. In addition to D-DFS, each worker always
picks the successor state of the lowest cost in each iteration.

D-RDFS: distributed random depth-first search. Same principle as D-DFS with
a randomly picked successor state.

Distributed Algorithms for Time Optimal Reachability Analysis 159

It is worth noting that in distributed BFS/DFS/DFSG/RDFS, their global
search orders only approximate BFS/DFS/DFSG/RDFS. Due to the varying
communication delay or workload on computing nodes, states are received in
nondeterministic order from run to run. This influences the successor states gen-
eration locally and changes the number of states explored [9]. Another important
observation is that in UppaalBFS often completes explorations much faster
than DFS/RDFS because DFS/RDFS can cause higher degree of fragmentation
of the underlying symbolic state-space requiring many more symbolic states.
The motivation of D-BFSS is to keep this strong point of BFS. However BFS
has an inherent drawback that it typically only reports results late when it has
searched nearly all states, making it infeasible for very large state-spaces.

We employ the following metrics to compare the algorithms:

Metric 1: time to find the optimal result (topt). The minimum runtime to find
the fastest trace (or schedule) to the goal states. Users wish to get the optimal
result fast even before an algorithm terminates.

Metric 2: time to completely explore the state-space and terminate thus proving
the optimal result (tprov). Users prefer an algorithm to terminate fast.

Metric 3: time to progressively improved solutions (a.k.a. near optimal solu-
tions). It shows how fast the results converge to the optimal as a function of run-
ning time. In scheduling problems, the absolute optimal solution is not always
required, but a sufficiently good one may suffice. Particularly when algorithms
cannot terminate due to time or memory constrains, faster converge speed pro-
duces better near optimal results that are closer to the optimality.

Metric 4: memory consumption and communication overhead of algorithms.
Smaller memory consumption improves scalability by allowing bigger state-
space. Smaller communication overhead improves computing speed.

Outline. The rest of the paper is organized as follows. Section 2 recalls the
definitions of timed automata and sequential TOR algorithm. Section 3 explains
the distributed TOR algorithms. Section 4 shows benchmark experiment results
of the sequential and distributed TOR algorithms. Section 5 concludes.

2 Sequential Time Optimal Reachability

This section recalls timed automaton and the sequential time-optimal reachabil-
ity algorithm. For brevity parallel composition of timed automata is omitted.

2.1 Timed Automata

Let X = {x, y, ...} be a finite set of clocks. We define B(X) as the set of clock
constraints over X generated by grammar: g, g1, g2 ::= x �� n |x−y �� n | g1 ∧g2,
where x, y ∈ X are clocks, n ∈ N and ��∈ {≤, <,=, >,≥}.

160 Z. Zhang et al.

Definition 1. A Timed Automaton (TA) [2] is a 6-tuple A = (L, �0,X,Σ,
E, Inv) where: L is a finite set of locations; �0 ∈ L is the initial location; X
is a finite set of non-negative real-valued clocks; Σ is a finite set of actions;
E ⊆ L × B(X) × Σ × 2X × L is a finite set of edges, each of which contains
a source location, a guard, an action, a set of clocks to be reset and a target
location; Inv : L → B(X) sets an invariant for each location. For simplicity an
edge (�, g, a, r, �′) ∈ E is written as �

g,a,r−−−→ �′.

Definition 2. The semantics of a timed automaton A is a Timed Transition
System (TTS) SA = (Q,Q0, Σ,→) where: Q = {(�, v) | (�, v) ∈ L×R

X
≥0 and v |=

Inv(�)} are states, Q0 = (�0, 0) is the initial state, Σ is the finite set of actions,
→⊆ Q × (Σ ∪ R≥0) × Q is the transition relation defined separately for action
a ∈ Σ and delay d ∈ R≥0 as:

(1) (�, v) a−→ (�′, v′) if there is an edge (�
g,a,r−−−→ �′) ∈ E such that v |= g,

v′ = v[r 	→ 0] and v′ |= Inv(�′);

(2) (�, v) d−→ (�, v + d) such that v |= Inv(�) and v + d |= Inv(�).

Definition 3. A trace ρ of A can be expressed in SA as a sequence of alternative
delay and action transitions starting from the initial state: ρ = q0

d1−→ q′
0

a1−→
q1

d2−→ q′
1

a2−→ · · · dn−→ q′
n−1

an−→ qn · · · , where ai ∈ Σ, di ∈ R≥0, qi is state
(�i, vi), and q′

i is reached from qi after delay di+1. State q (or q′) is reachable if
there exists a finite trace with the final state of q (or q′). Let ExecA denotes the
set of traces of A and ExecfA denotes the set of finite traces.

Definition 4. The span of a finite trace ρ ∈ ExecfA is defined as the finite
sum Σn

i=1di. For a given state (�, v), the minimum span of reaching the state
MinSpan(�, v) is the infimum of the spans of finite traces ending in (�, v). For a
given location �, the minimum span of reaching the location MinSpan(�) is the
infimum of spans of finite traces ending in (�, v) for all possible v.

2.2 Sequential Time Optimal Reachability Algorithm

The real-time model checker Uppaalworks by exploring a finite symbolic reacha-
bility graph, where the nodes are symbolic states. A symbolic state is a pair (�, Z),
where � ∈ L is a location, and Z = {v | v |= gz, gz ∈ B(X)} is a convex set of clock
valuations called zone [15], which is normally efficiently represented and stored in
memory as difference bound matrices (DBM) [10]. Besides, we denote the action
and delay transitions between symbolic states uniformly as �.

Definition 5. The cost function on a symbolic state (�, Z) is defined as
MinCost(�, Z) = inf{MinSpan(�, v) | v ∈ Z}. It is the span of a finite sym-
bolic trace ending in (�, Z).

Distributed Algorithms for Time Optimal Reachability Analysis 161

Algorithm 1. Sequential Time Optimal Reachability
Waiting ←− {(�0, Z0)},Passed ←− ∅,Cost ←− ∞
Procedure Main()

1 while Waiting �= ∅ do
2 select (�, Z) from Waiting
3 if (�, Z) |= Goal then
4 if MinCost(�, Z) < Cost then
5 Cost ←− MinCost(�, Z)

6 else if (�, Z) �∈ Passed and MinCost(�, Z) < Cost then
7 add (�, Z) to Passed
8 forall the (m, D) such that (�, Z) � (m, D) do
9 add (m, D) to Waiting

10 return Cost

Uppaal keeps track of the trace span by including an implicit clock ψ in
addition to the original set of clocks X of the model. Clock ψ drifts as the global
elapsing time and remains unaffected from resets or guards or invariants in the
model. Thus the zone Z is now over X ∪ {ψ}; and MinCost(�, Z) is calculated
on-the-fly by evaluating the lower bound of ψ in Z.

Algorithm 1 shows the sequential TOR algorithm that computes the mini-
mum span to reach the goal states satisfying the proposition Goal. Waiting and
Passed keep unexplored and explored symbolic states respectively; and Wait-
ing has the initial state. Cost maintains the current best result that is infinity
initially. Inside procedure Main, whenever Waiting is not empty, an unexplored
state is popped from Waiting in a loop. If the state is a goal state, Cost is
updated. This implies a near optimal schedule to the goal is found. If the state
is not goal state, it is subject to symbolic state inclusion checking and B&B
elimination rule at line 6. A symbolic state (�, Z) is included in Passed and dis-
carded if ∃(�,H) ∈ Passed s.t. Z ⊆ H [10,15]. That is, a previously explored
state with the same location has an equal or larger zone than the current state.
The same state is pruned if its cost function is no less than the current Cost. If
the state gets through the two tests on line 6, it is added to Passed as already
explored, and then its successor states are generated and added to Waiting.

3 Distributed Time Optimal Reachability

This section describes the distributed time optimal reachability algorithms that
extends the sequential version with state-space partitioning and message passing.
Each algorithm is uniform and executed by all worker processes in a cluster.

3.1 Distributed Algorithm

Algorithm 2 shows the distributed algorithms: D-BFS, D-DFS, D-DFSG and
D-RDFS. A key activity of this algorithm is partitioning and distributing the

162 Z. Zhang et al.

state-space. A partition function uniquely computes the ID of a process that
a symbolic state belongs to, hence divides the entire state-space into disjoint
subsets on all processes. We use a hash function to partition; and the hash value
is only calculated on the location �1. The reason is that the inclusion checking of
a symbolic state requires looking up all states with the same location in Passed.
Therefore, in distributed settings all states of the same location will destine to
the same process for deterministic and easy inclusion checking. The other key
work of this algorithm is message passing and handling. We define two messages:
(1) UPDATE carries better costs; (2) STATE carries symbolic states.

Definition 6. Let N be the set of worker processes and p denote the local process
ID. The partition function is a total mapping: Hash : L → N from the set of
locations to the set of processes. Process p is the owner of a symbolic state (�, Z)
if Hash(�) = p. A symbolic state is a local state if it is generated on its owner
process, otherwise it is an emigrant state.

Definition 7. A process is active when doing local search or receiving messages.
Initially all processes are active. A process is idle when its waiting list is empty
and receiving no messages. Computation can terminate if all processes are idle
and the network has no message in transit.

Three new variables are used: Ecost maintains external better cost received
from the network, Active specifies process status (active or idle), and Termi-
nate controls the Main loop. At the beginning of each iteration, Ecost compares
with Cost. If Ecost is smaller, a better cost has been found by another process,
and Cost is updated. If Cost is smaller, the current process finds a better cost,
which is assigned to Ecost and then broadcasted. Line 5 marks process to idle
according to Definition 7. The remaining lines inside Main resembles the local
search in the sequential algorithm, except at line 14 a successor state is hashed
to compute its owner process ID and sent out if it does not belong to the cur-
rent process p. When the root process becomes idle, it invokes the termination
detection procedure CheckTerm based on the well-known token-based Safra pro-
tocol [18]. Line 20 updates Ecost on reception of a cost message. Line 21 adds
a received emigrant state into Waiting.

The computation starts at the process p that owns the initial state s0 =
(�0, Z0) determined by Hash. Successor states s′

i are generated by local search
on s0, meanwhile Hash computes the owner process ID of s′

i. If s′
i belongs to a

different process r than p, it is sent to process r. Otherwise it is stored locally for
future exploration. Once process r receives a state, it stores it in its Waiting and
eventually starts to generate successors from it; and the partition function works
in a similar fashion. Gradually all processes start to work. Finally the entire state-
space is generated, and no unexplored successor states could be found. When all
processes become idle and no message is in transit, the computation can stop.

1 For real Uppaalmodels, the location is a vector of locations from each parallelly
composed timed automata and the values of all discrete variables in the model.

Distributed Algorithms for Time Optimal Reachability Analysis 163

Algorithm 2. Distributed Time Optimal Reachability for
D-BFS/D-DFS/D-DFSG/D-RDFS
(Local Variables)

Waiting ←−
{ {(�0, Z0)} if p = Hash(�0),

∅ otherwise.
Passed ←− ∅,Cost ←− ∞

Terminate ←− False,Active ←− True,Ecost ←− ∞
(Message Types)
UPDATE, STATE

Procedure Main()

1 while ¬Terminate do
2 if Ecost < Cost then Cost ←− Ecost
3 if Cost < Ecost then UpdateE(Cost), Broadcast(UPDATE,Cost)
4 if Waiting = ∅ then
5 if receive no message then Active ←− False, CheckTerm()
6 continue

7 select (�, Z) from Waiting,Active ←− True
8 if (�, Z) |= Goal then
9 if MinCost(�, Z) < Cost then

10 Cost ←− MinCost(�, Z)

11 else if (�, Z) �∈ Passed and MinCost(�, Z) < Cost then
12 add (�, Z) to Passed
13 forall the (m, D) such that (�, Z) � (m, D) do
14 if (r ←− Hash(m)) �= p then Send(STATE, (m, D), r)
15 else add (m, D) to Waiting

16 return Cost

Procedure UpdateE(NewCost)
17 if NewCost < Ecost then Ecost ←− NewCost

Procedure CheckTerm() // Safra protocol [18]

18 if p = root and all processes are idle and no message in transit then
19 Terminate ←− True on all processes

(Message Processing Rules)
20 When receive UPDATE〈Ncost〉: UpdateE(Ncost), Active ←− True.
21 When receive STATE〈(n, F)〉: add (n, F) to Waiting,Active ←− True.

3.2 Distributed Algorithm for Strict BFS

Algorithm 3 highlights the changes on Algorithm 2 to make a distributed strict
BFS. Nlq stands for the next level queue that collects the states on the next
BFS level. Waiting keeps states on the current BFS level. Lines 2 to 5 explore
states on one level and generate successor states for the next level, which are
either sent out or stored in Nlq. The emigrant states received from the network
are also stored in Nlq at line 13. After exhausting the states on the current
level in Waiting, all processes synchronize on the condition that each process

164 Z. Zhang et al.

Algorithm 3. Distributed Time Optimal Reachability for D-BFSS

Nlq ←− ∅
Procedure Main()

1 while ¬Terminate do
2 while Waiting �= ∅ do

same code as lines 2 to 3 and 7 to 12 in Algorithm 2
3 forall the (m, D) such that (�, Z) � (m, D) do
4 if (r ←− Hash(m)) �= p then Send(STATE, (m, D), r)
5 else add (m, D) to Nlq

6 Await(Synchronize(receive all STATE messages) or Terminate)
7 if Terminate then break
8 Swap(Waiting,Nlq)
9 if Waiting = ∅ and receive no message then

10 Active ←− False, CheckTerm()

11 if Ecost < Cost then Cost ←− Ecost
12 return Cost

13 When receive STATE〈(n, F)〉: add (n, F) to Nlq,Active ←− True.

has completely harvested all STATE messages from the network into Nlq. After
line 8 Waiting contains the states for the next BFS level and Nlq is empty.

4 Experiments

We developed a new version of Uppaal implementing the distributed algorithms.
The implementation involves three key tasks: (1) build a communication module
by the Mpi library; (2) interact with Uppaal’s internal memory management
to fetch send-out states or insert received states; (3) implement the distributed
search orders with the support from (1) and (2). We applied several optimization
techniques [19] to improve communication such as: asynchronous communica-
tion, buffering states and sending them in packets, and packet compression.

We ran benchmark experiments in a cluster with 9 computing nodes. Each
node has 1 Tb memory (NUMA architecture) and 64 cores at the frequency of
2.3 GHz (4 AMD Opteron 6376 Processors each with 16 cores), a 1 TB SATA
disk and the Infiniband interconnection. All five distributed algorithms were
executed 10 runs for every core setting: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512.
These core settings follow an even mapping topology as the (nodes, cores-per-
node) pairs: 1 → (1, 1), 2 → (2, 1), 4 → (4, 1), 8 → (4, 2), 16 → (4, 4), 32 →
(4, 8), 64 → (4, 16), 128 → (4, 32), 256 → (4, 64), 512 → (8, 64). For instance, 2
cores are mapped to 2 nodes with 1 core on each node; 32 cores are mapped to
4 nodes with 8 cores on each node.

Distributed Algorithms for Time Optimal Reachability Analysis 165

4.1 Models

We use the same models as in [20]. The first three models are up-scaled versions
of those in normal Uppaal distribution by adding more parallel components.
The last model is transformed from an industrial task graph benchmark2.

Job-Shop-6 (jb-6). Six people want to read a single piece of four-section news-
paper. Each person has his own preferred reading sequence, and can spend dif-
ferent time on each section. When one person is reading a section, others who
are also interested in it must wait. The objective is to find the time optimal
schedule for all six people to finish reading.

Aircraft-Landing-15 (alp-15). 15 aircrafts need to land on two runways. Each
aircraft has a preferred target landing time. It can also speed up and land earlier
or stay longer in the air and land later if necessary. Furthermore, aircrafts cannot
land back to back on the same runway due to wake turbulence by the previous
aircraft. Thus there are certain minimum constraints on the separation delay
between aircrafts of different sizes. The objective is to find the time optimal
schedule for all aircrafts to land safely.

Viking-Bridge-15 (vik-15). 15 vikings want to cross a bridge in the darkness.
The bridge is damaged and can only carry two people at the same time. To find
the way over the bridge the vikings need to bring a torch, but the group has only
one torch to share. The 15 members of the group need different time to cross
the bridge (one-way), which for simplicity is classified into four levels: 5, 10, 20
and 25 time units. The objective is to find the time optimal schedule for those
15 vikings to cross the bridge safely.

Task-Graph-88 (task-88). A robot control program has 88 computational
tasks each of which has precedence constraints (predecessor tasks) among [0,3]
and processing time among [1,111]. A task can start only if all its predecessor
tasks complete. Now the control program is going to be assigned to four het-
erogeneous processors at the speeds of [1,1,2,4]. The objective is to compute a
non-preemptive schedule that minimizes the time for all tasks to terminate.

4.2 Time to Find or Prove Optimal Result (Metric 1 & 2)

Tables 1, 2, 3 and 4 show for models Job-Shop-6, Job-Shop-8 and Viking-Bridge-
15 the median runtime to reach optimal cost (topt corresponding to metric 1),
and the median runtime to prove optimal cost (tprov corresponding to metric
2). We want to know how the distributed algorithms scale with an increasing
number of cores denoted by #C (#C=1 for sequential algorithms). We set the
4-h time bound for the experiments; and “-” indicates timeout.

Job-Shop-6. For the sequential algorithms, DFSG has the best topt and BFS
has the best tprov . DFS is the slowest for both topt and tprov .

2 http://www.kasahara.elec.waseda.ac.jp/schedule/stgarc e.html.

http://www.kasahara.elec.waseda.ac.jp/schedule/stgarc_e.html

166 Z. Zhang et al.

Table 1. Runtime (sec) of Job-Shop-6

#C BFS DFS DFSG RDFS

topt tprov topt tprov topt tprov topt tprov

1 100 100 7411 9309 6 175 616 2125

#C D-BFS D-BFSS D-DFS D-DFSG D-RDFS

topt tprov topt tprov topt tprov topt tprov topt tprov

2 246 246 153 153 467 1398 301 842 532 1505

4 346 390 88 88 53 419 15 311 23 401

8 98 129 33 33 1 199 1 158 2 187

16 58 73 23 23 1 116 1 88 1 112

32 28 38 16 16 1 62 1 63 1 60

64 18 31 14 14 1 34 1 32 1 34

128 12 15 16 16 1 17 1 21 1 17

256 8 11 38 39 2 11 1 9 2 11

512 6 10 70 72 2 17 1 10 2 19

Table 2. Runtime (sec) for
cores on same node

#C D-BFS D-BFSS

topt tprov topt tprov
2 195 195 95 95
4 340 352 53 53
8 107 118 29 29

For the distributed algorithms, D-BFS runs
slower than BFS at lower core settings (2 to 8),
and a speed-up requires more cores. D-BFSS is
much more competitive. We note that Uppaal is
highly optimized for single core execution, and
therefore requires several cores to offset initial-
ization and message passing overhead. Further,
the core mapping topology leads to high com-
munication latency especially at 2 and 4 cores
where each core is mapped to one computing
node using an (infiniband) network that is relatively slower than the internal
bus within a node. The intensive state exchange on the single channel between 2
cores will also incur a communication channel congestion. The congestion fades
when using more cores. If we map 2 and 4 cores on the same computing node as
shown in Table 2, tprov is improved by 40 % for D-BFSS, and 15 % for D-BFS.

The difference between BFS (D-BFS) and D-BFSS is caused by the symbolic
states. BFS is good at building larger zones (see Sect. 1). But since D-BFS only
approximates BFS, it causes more fragmentation at 2 and 4 cores where workers
consequently generate and communicate more symbolic states. Using more cores
from 16 to 512 cores, D-BFS steadily reduces execution time for topt and tprov .
D-BFSS runs faster than D-BFS at core settings (2 to 64). Above 128 cores topt
and tprov slow down indicating higher level synchronization overhead.

Comparing the three remaining depth-first based distributed algorithms, they
all have a noticeable topt of merely 1 or 2 s above 8 cores. D-DFSG seems overall
to be a good choice, despite sligtly less speedup.

Distributed Algorithms for Time Optimal Reachability Analysis 167

Table 3. Runtime (sec) of Job-Shop-8

#C BFS DFSG

topt tprov topt tprov
1 - - 849 -
#C D-BFS D-BFSS D-DFSG

topt tprov topt tprov topt tprov
2 - - - - 6249 -
4 - - 9295 9295 366 -
8 - - 4900 4900 1 -
16 8881 13050 2568 2568 1 -
32 5390 7276 1315 1315 1 13293
64 3157 4623 693 663 2 7956
128 2052 2470 450 450 2 4406
256 1335 1495 260 260 4 2547
512 1012 1231 365 365 11 1773
“-”: denotes 4-h timeout.

Job-Shop-8. This is an enlarged
version of Job-Shop-6. This
experiment shows that when all
sequential algorithms confront
timeout, the distributed algo-
rithms can terminate normally
and prove the optimal result. D-
BFSS can already terminates at
4 cores while other algorithms
need more than 16 cores. It also
has the best tprov ; and shows
a linear speedup from 4 to 128
cores. D-DFSG has extremely
good topt .

Aircraft-Landing-15. All dis-
tributed algorithms show sim-
ilar pattern as Job-Shop-6. A
difference is that D-BFS has much faster topt above 8 cores and somewhat faster
tprov than D-BFSS at higher core settings (in AppendixA).

Viking-Bridge-15. This model is good for BFS, but extremely bad for
DFS/RDFS that suffer timeout. We observed from the log files that this model
produces solutions with a wide cost spectrum from 638195 to 220 and decre-
ment step of just one. This explains why DFSG is also 30 times slower than BFS
because it gets trapped by the fine grained local optimal (as depicted in Fig. 2).

No distributed algorithms could beat BFS without using enough many cores.
D-BFS and D-BFSS show pool speedup. The good news is that D-DFS and D-
RDFS can complete in half an hour above 4 cores and present linear speedup
in topt and tprove until 128 cores. D-DFSG confronts heavy fragmentation and
timeout at 2 and 4 cores. But using enough many workers avoids local optimal,
and D-DFSG gains the best topt and tprov among all algorithms.

Task-Graph-88. The table for this model is absent because the model is too
large for all algorithms to complete within the 4-h time bound. But we show
how the near optimal results converge according to runtime in Sect. 4.3.

Conclusions. (1) D-DFSG can find the optimal result very fast in general fol-
lowed by D-DFS/D-RDFS. (2) D-DFS/D-RDFS have good speedup on the time
to prove. (3) For larger models, distributed algorithms provide results while
the sequential algorithms cannot, with D-BFSS in many cases being the fastest
to terminate. (4) D-BFS/D-DFSG may be slower than the optimized sequential
BFS/DFSG at low core settings due to fragmentation. (5) The exact performance
may depend on the characteristics of the model.

168 Z. Zhang et al.

Table 4. Runtime (sec) of Viking-Bridge-15

#C BFS DFS DFSG RDFS

topt tprov topt tprov topt tprov topt tprov

1 66 66 - - 2016 2146 - -

#C D-BFS D-BFSS D-DFS D-DFSG D-RDFS

topt tprov topt tprov topt tprov topt tprov topt tprov

2 533 559 125 125 - - - - - -

4 308 314 106 106 956 1058 - - 868 980

8 400 430 70 70 439 515 181 267 458 520

16 165 196 41 41 216 280 71 115 173 246

32 115 120 31 31 116 183 28 69 82 132

64 64 69 23 23 40 63 14 32 41 69

128 32 36 61 61 20 49 8 24 17 34

256 50 55 113 114 15 24 6 11 14 23

512 21 25 165 168 16 34 13 18 17 36

“-”: denotes 4-h timeout.

4.3 Results Versus Time (Metric 3)

Figures 1, 2 and 3 show how near optimal results improve with running time for
Job-Shop-6, Viking-Bridge-15 and Task-Graph-88. The sample window is 2 min.
For the distributed algorithms, we look at the intermediate core setting of 32.

Job-Shop-6. For the sequential algorithms, DFSG is the fastest in finding the
optimal result of 62 at 6 s. BFS reports 62 at 100 s. DFS reports no results
within the sample window. RDFS only reports near optimal results from 72 to
68. For the distributed algorithms, D-DFS/D-DFSG/D-RDFS reach the optimal
result immediately at 1 s. D-BFS/D-BFSS reach the optimal result at 28 s and
16 s respectively. Compared with the best of our swarm algorithms (S-Agent)
presented in [20], finding the optimal took 13 s.

Aircraft-Landing-15. It shows the similar pattern as Job-Shop-6.

Viking-Bridge-15. For the sequential algorithms, BFS finds the optimal result
of 220 at 66 s. DFS/RDFS are omitted because they only report results far
exceeding 220. DFSG gets trapped by the local optimal within the cost range
from 285 to 265. For the distributed algorithms, D-DFSG reports the best quality
near optimal results and reaches the optimal at 28 s. D-BFSS finds the optimal
result at 31 s. Both are faster than sequential BFS. D-RDFS/D-DFS/D-BFS
report near optimal results from high to low quality.

Task-Graph-88. BFS based algorithms BFS/D-BFS/D-BFSS are omitted
because they report no result even in 4 h. Only DFS based algorithms can
report near optimal results. For the sequential algorithms, DFSG/RDFS/DFS
find results from high to low quality. For the distributed algorithms, D-DFS is

Distributed Algorithms for Time Optimal Reachability Analysis 169

Fig. 1. Cost vs. Runtime for Job-Shop-6

Fig. 2. Cost vs. Runtime for Viking-Bridge-15

superior among all algorithms. Compared with the best of our swarm algorithms
(S-Agent, included in the plot) presented in [20], D-DFS finds better solutions
faster and reaches the highest quality result of 328 as early as 46 s.

Conclusions. D-DFS/D-DFSG/D-RDFS are generally very fast at finding near
optimal results.

170 Z. Zhang et al.

Fig. 3. Cost vs. Runtime for Task-Graph-88

4.4 Memory and Communication (Metric 4)

Table 5 shows statistics about memory consumption and communication over-
head. For each model, column M shows the total memory (in GB) consumed
by all Uppaal processes. Distributed algorithms will generate more states than
sequential algorithms, because emigrant states are generated by multiple work-
ers and then sent to the owner process. These emigrant states contribute to the
computation and communication overhead. Column R compares the amount of
emigrant states generated and transmitted against the state-space size. Taking
jb-6 as an example, D-BFS generates a large amount of emigrant states that is
14.7 times the state-space, but the factor is only 3.9 for D-BFSS.

Table 5. Resident memory (GB) and communication overhead

Models jb-6 alp-15 vik-15 Models jb-6 alp-15 vik-15

M M M M R C% M R C% M R C%

BFS 0.19 0.15 0.48 D-BFS 1.71 14.7 26.3 1.17 14.7 23.5 3.25 15.4 63.3

D-BFSS 0.67 3.9 62.5 0.67 4.0 56.3 1.31 2.8 77.4

DFS 2.54 0.16 19.51 D-DFS 1.77 14.9 45.2 1.14 22.0 45.8 6.22 20.9 64.5

DFSG 0.22 0.12 2.57 D-DFSG 1.82 14.6 27.6 1.33 23.1 44.7 3.93 10.8 58.0

RDFS 0.85 0.25 19.47 D-RDFS 1.82 14.5 36.7 1.18 21.3 47.6 5.15 16.1 59.8

Distributed algorithms are at 32 cores. Italic font denotes 4-h timeout.

Distributed Algorithms for Time Optimal Reachability Analysis 171

Column C shows the portion of the communication time out of the total
execution time in percentage. Because a lot of emigrant states are transmitted,
the communication overhead of distributed algorithms is also high (up about
47 % of the total execution time). For D-BFSS, this may be even higher due to
the level synchronization overhead.

Distributed algorithms normally consume more memory than their sequen-
tial counterparts. The average scale ratio is 5 times for the three models. There
are three reasons. First, when a Uppaal process initiates prior to local search,
it consumes about 13 MB memory for core data structures and libraries. Then
32 Uppaal processes will consume 416 MB that already double the size of some
sequential algorithms’ peak memory usage. Second, Mpi allocates system buffers
for message passing. Third, Uppaal’s internal memory management only marks
obsolete memory slots for re-use to store newly explored states rather than
returning them to the operation system (quite sensibly expecting to save time for
repeated page (re-)allocation). When a distributed algorithm is running however,
more memory is used mainly because it receives and stores a large number of
emigrant states from the network as indicated by the R columns which approx-
imate 14 times the size of the state-space for most distributed algorithms.

Conclusions. The distributed algorithms have memory, computation and com-
munication overhead. There may be several ways to optimize memory manage-
ment and communication (e.g. caching more emigrant states locally). However,
we have currently decided against implementing these, in part because the per-
formance is quite reasonable, and in part because we envision that the most
effective approach will be to incorporate multi-core shared memory techniques
that provides more fine-grained parallelism, better locality and lower communi-
cation and synchronization overhead. However, implementing an efficient (lock-
less or lock-free) multi-core and thread-safe version of the internal exploration
and optimized memory layout in Uppaal requires great care.

5 Conclusions

We developed five distributed algorithms to accelerate timed optimal reachability
analysis. We performed four benchmark experiments in terms of ability to com-
pute near- or proven-optimal solutions, scalability, time and memory consump-
tion and communication overhead. The experiment results are very promising.
Based on the evaluation we conclude: (1) D-BFSS can terminate fast thus prove
the optimal result for large models; (2) D-DFS/D-DFSG/D-RDFS are good at
finding (near-) optimal results. For the future work, we will develop parallel and
distributed algorithms applying multi-core shared memory as the significant opti-
mization. We will develop hybrid algorithms that combine the benefits as well as
the state-of-the-art advances from distributed and swarm verification [20].

172 Z. Zhang et al.

A Results for Runtime

Table 6. Runtime (sec) of Aircraft-Landing-15

#C BFS DFS DFSG RDFS

topt tprov topt tprov topt tprov topt tprov

1 155 155 71 419 5 135 184 935

#C D-BFS D-BFSS D-DFS D-DFSG D-RDFS

topt tprov topt tprov topt tprov topt tprov topt tprov

2 422 454 134 135 77 408 13 351 193 628

4 71 243 69 69 1 345 < 1 207 2 326

8 4 86 42 42 < 1 139 < 1 123 < 1 140

16 7 39 26 26 < 1 80 < 1 66 < 1 82

32 11 34 16 16 < 1 48 < 1 47 < 1 42

64 5 14 11 11 1 22 < 1 21 1 23

128 2 10 15 16 1 12 < 1 14 1 14

256 1 8 28 29 < 1 9 < 1 7 < 1 9

512 1 8 49 51 < 1 17 < 1 10 < 1 15

Fig. 4. Cost vs. Runtime for Aircraft-Landing-15

Distributed Algorithms for Time Optimal Reachability Analysis 173

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Barnat, J., Brim, L., Češka, M., Ročkai, P.: DiVinE: parallel distributed model
checker (tool paper). In: HiBi/PDMC, pp. 4–7. IEEE (2010)

4. Barnat, J., Bauch, P., Brim, L., Ceska, M.: Designing fast LTL model checking algo-
rithms for many-core gpus. J. Parallel Distrib. Comput. 72(9), 1083–1097 (2012)

5. Behrmann, G.: Distributed reachability analysis in timed automata. STTT 7(1),
19–30 (2005)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

7. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J.M.T.: Efficient guiding towards cost-optimality in UPPAAL. In: Margaria, T.,
Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer, Heidelberg
(2001)

8. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J.M.T., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

9. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed model checking
- how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)

10. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

11. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010)

12. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427. Springer, Heidelberg (1998)

13. Fehnker, A.: Bounding and Heuristics in Forward Reachability Algorithms. UB
Nijmegen [Host] (2000)

14. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

15. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
FCT, pp. 62–88 (1995)

16. Niebert, P., Tripakis, S., Yovine, S.: Minimum-time reachability for timed
automata. In: IEEE Mediteranean Control Conference (2000)

17. Stern, U., Dill, D.L.: Parallelizing the Murϕ verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–267. Springer, Heidelberg (1997)

18. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, New York (2001)

19. Verstoep, K., Bal, H.E., Barnat, J., Brim, L.: Efficient large-scale model checking.
In: IPDPS, pp. 1–12 (2009)

20. Zhang, Z., Nielsen, B., Larsen, K.G.: Time optimal reachability analysis using
swarm verification. In: SAC SVT, pp. 1634–1640 (2016)

Workload Analysis

Scenario-Aware Workload Characterization
Based on a Max-Plus Linear Representation

Gustavo Patino Alvarez1(&) and Wang Jiang Chau2

1 SISTEMIC Group, University of Antioquia, Medellin, Colombia
adolfo.patino@udea.edu.co

2 Laboratory of Microelectronics (LME), University of São Paulo,
São Paulo, Brazil

jcwang@lme.usp.br

Abstract. This paper describes an event analytical model for the workload
characterization of multimedia applications with several scenarios of operation.
This model describes the application tasks as timed actors of a Scenario-Aware
Dataflow Graph (SADF), so that the multiple application scenarios are defined
in terms of the variable execution times previously identified in the timing
characterization of every application task. A Max-Plus linear representation
between the input and output event sequences of the SADF Graph states the
basis of a model of scenario-based workload curves and a model of
scenario-based service curves that allow to characterize the behavioral dyna-
mism of the application in its design phase. By a detailed study, we show the
applicability of our model for the performance evaluation of a multimedia
application, whose tasks are implemented in general purpose processors.

Keywords: Application scenarios � Max-plus algebra � Linear time-varying
system � Multimedia application � Network calculus � Service curves � Variable
execution time � Workload curves

1 Introduction

Nowadays, the performance evaluation in the design of complex embedded real-time
systems is assessed through extensive system-level simulations, regardless of how
many, and which, workload scenarios are simulated. Such simulations can never
achieve, in a reasonable time, the total coverage required for complete performance
verification. To verify that an embedded system meets the time constraints imposed on
all possible workload scenarios, such workload can be characterized by formal ana-
lytical approaches which usually return performance limits of worst-case.

Many multimedia and stream processing applications are implemented as a main
loop that read, process and write individual event streams. An event can be a bit
(belonging to a bitstream), a JPEG marker, a macroblock, a video frame, an audio
sample or a network packet. The data-flow model of computation called Synchronous
Dataflow (SDF) has traditionally been used in the modeling of digital signal processing
applications (DSP) [1]. Due to the similar structure between DSP applications and
multimedia applications, the SDF graphs also provide a good degree of expressiveness

© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 177–194, 2016.
DOI: 10.1007/978-3-319-44878-7_11

for modeling multimedia applications [2]. The SDF model has great potential analysis
to measure accurate performance metrics, which are very important in the worst-case
performance evaluation of such systems. However, the limitation of this model is its
inability to represent variable execution times in the set of actors corresponding to the
application tasks; from this fact, the universe of the executions of such application is
represented by a single scenario of execution, usually referred to as one of the worst
case. As result, any measure of performance, or workload characterization, is often
distant from what the application will actually exposes, when implemented in a
hardware platform.

In multimedia applications, a scenario is defined as the behavior of a task for a
specific type of input event/data, such that the set of scenarios should cover all possible
input events. The concept of scenarios has been used for long time in different design
approaches, including hardware and software design for embedded systems [3]. In this
paper, we concentrate on so-called application scenarios [4], so that a characterization
algorithm of application tasks identifies the different application scenarios according to
the amount of execution time estimated for the several operation flows in the source
code that implements each application task.

The techniques introduced in [5–7] and also in this paper, allow these scenarios to
be treated individually within an analytical characterization. The Scenario-Aware
Dataflow (SADF) model [6] characterizes each scenario, or operation mode, individ-
ually by a specific Synchronous Dataflow (SDF) graph, so that each SDF graph models
the tasks with constants rates associated with their worst-case execution times (WCET)
[8]. A SADF model is also characterized by an explicit specification of the possible
order in which certain scenarios are executed in the application. Thus, the SADF model
can specify a sequence of scenarios by means of a Finite State Machine [7], or
stochastically by means of a Markov chain [6]. In both cases, each state is marked with
a scenario; and different states can be marked with the same scenario.

The fundamental characteristics of the workload to be captured in a workload
model of these multimedia applications are the ones that affect the timing properties of
resources and request flows, as well as their respective interactions. One must take into
account the dynamic behavior, viewed upon as a collection of the different tasks
behaviors [8]. The authors of [10] have proposed a dynamic solution of the SDF graph
viewed as a linear model in Max-Plus Algebra [9], which has features of a linear
discrete time-varying system in order to make explicit the dynamic behavior of certain
application.

In this paper we extend the previous solution to the SADF graph; from a mathe-
matical point of view, it is described a way to derive formal analytical expressions
based on a linear model in Max-Plus Algebra in order to depicts the generation of event
sequences, according to the iterations of a SADF graph and considering the collection
of the different application scenarios and the variable execution demand found in the
characterization of each application task. Thus, with such linear model it is possible to
characterize all scenario sequences using the concepts of scenario-based workload
curves and scenario-based service curves.

The remaining of this paper is organized as follows: Sect. 2 explains some pre-
liminary concepts about timing characterization using Variability Characterization
Curves. Also in Sect. 2 some important definitions related to Synchronous Dataflow

178 G.P. Alvarez and W.J. Chau

Graph are briefly described. Section 3 presents the SADF graph as a Linear Max-Plus
Model, and the dynamical representation of this graph by a state space model, whose
solution states the basis for the scenario-based workload curves and scenario-based
service curves explained in Sect. 4. Section 5 summarizes the timing characterization
proposed in this paper, describing a workload characterization analysis flow consid-
ering the mathematical concepts shown in the previous sections. Section 6 exposes the
analysis of a JPEG decoder used as a use case in our experiments. Finally, Sect. 7
concludes our paper.

2 Preliminaries

In this Section we will discuss some specification formalisms and their relationships.

2.1 Variability Characterization Curves

The Variability Characterization Curves (VCCs) can be used to quantify the charac-
teristics of the best-case and worst-case in some kind of sequences [11]. These
sequences may be consecutive stream objects belonging to a streaming, or sequences of
consecutive time intervals of a specific length. A VCC V is defined as a pair
ðV lðkÞ;VuðkÞÞ, where k represents the length of the sequence. Let the function P be the
measure of some property within a sequence, such that PðnÞ denotes the increasing
measure of this property for the first n elements of the sequence [11].

Definition - Upper VCC: An upper VCC for the set of increasing functions P is an
increasing function VuðkÞ which satisfies the condition:

Vu kð Þ ¼ sup
i� 0

P iþ kð Þ�P ið Þf g ð2:1aÞ

Definition – Lower VCC: A lower VCC for the set of increasing functions P is an
increasing function VuðkÞ which satisfies the condition:

V lðkÞ ¼ inf
i� 0

P iþ kð Þ�P ið Þf g ð2:1bÞ

Therefore, V lðkÞ and VuðkÞ provide an upper and lower limit of the measure P for
all its subsequences of length k within a larger sequence [11].

A single VCC can serve as a compact abstraction of a whole class of sequences, or
functions, with a similar variability of worse-case or better-case. Thus, the VCCs
represent an attractive way to capture various aspects of the behavior of a system in the
context of heterogeneous embedded systems-design [12].

Scenario-Aware Workload Characterization 179

2.2 SDF Model

In the dynamic execution of SDF graphs, two essential operations characterize their
timed behavior: Synchronization and Delay. Synchronization is observed each time a
specific actor needs to wait for sufficient input tokens to be able to fire; while the Delay
is observed each time an actor begins a firing and takes a fixed amount of time before
completing and producing the respective output tokens. This fixed amount of time is
defined as the actor execution time. These two features correspond to the Maximum
and Addition operations of the Max-Plus Algebra [9]. If T is the number of tokens
required for an actor to start a firing, and for each s 2 T , ts is the time when the token
becomes available, then the start time of the actor firing is given by:

max
s2T

ts ð2:2aÞ

Let e be the execution time of this actor, then the output tokens produced by the
actor become available for consumption by other actors at:

max
s2T

ts þ e ð2:2bÞ

which is a Max-Plus expression [13].
As an illustration of the behavior of a SDF graph, Fig. 1 depicts a graph which

shows an iteration composed by four fires, one from each actor in the graph.

In the initial state (a), the second actor from the left consumes the tokens marked
with t1 and t2. Consequently, the fire occurs at a time maxðt1; t2Þ and ends at a time
max t1 þ 2; t2 þ 2ð Þ creating two new tokens with such timestamp. At the same state, the
fourth actor consumes the token marked with t4 and a fire occurs at a time maxðt4Þ and
ends at a time max t4 þ 3ð Þ creating two new tokens with this timestamp in state (b).
Once in state (b), the first actor fires consuming the token marked with max t4 þ 3ð Þ, so
that the firing ends at max t4 þ 4ð Þ creating a new token in state (c). Since in state (b) the
third actor also has tokens on its inputs, it can fire consuming the tokens marked with
max t1 þ 2; t2 þ 2ð Þ and t3. This fire occurs at a time max t1 þ 2; t2 þ 2; t3ð Þ and ends at a

Fig. 1. Example of a self-timed execution of a SDF graph.

180 G.P. Alvarez and W.J. Chau

time max t1 þ 3; t2 þ 3; t3 þ 1ð Þ, thus creating a new token with this timestamp in state
(c). Due to these fires, the graph takes back to the original state, but with the symbolic
tokens representing the temporal impact of a single iteration. This graph dynamics is
called a self-timed execution of an SDF graph [14].

The dynamics of this SDF graph, considering the production times of each token in
a single iteration, can be described by the next Max-Plus representation:

t kþ 1ð Þ ¼
max t1 �1; t2 �1; t3 �1; t4 þ 4ð Þ
max t1 þ 2; t2 þ 2; t3 �1; t4 �1ð Þ
max t1 �1; t2 �1; t3 �1; t4 þ 3ð Þ
max t1 þ 3; t2 þ 3; t3 þ 1; t4 �1ð Þ

2
664

3
775

¼
�1 �1 �1 4
2 2 �1 �1

�1 �1 �1 3
3 3 1 �1

2
664

3
775

t1 kð Þ
t2 kð Þ
t3 kð Þ
t4 kð Þ

2
664

3
775

Thus, tðkþ 1Þ ¼ MtðkÞ, where M is the Max-Plus matrix of the SDF graph.
According to execution of the SDF graph, a em;n value in the column m and row n of
the matrix M specifies that there is a minimum distance em;n between the timestamps of
the token m, in the previous iteration k, to the token n, in the new iteration kþ 1,
considering the dependencies in the graph. An entry �1 means that there is no any
dependency between such tokens. Thereby, in our example, e1;4 means that between
the timestamps of tokens t1 kþ 1ð Þ and t4 kð Þ there is a distance of 4 clock cycles.

2.3 SADF Model

The Fig. 2a describes a FSM-based Scenario-Aware Dataflow (FSM-SADF) model [7],
which consists of a directed graph representing the connection between tasks A;B, C
and D of the application, and the execution times for each task with respect to the two
possible scenarios a and b, such that task B has an execution time of 2 clock cycles
when performed in the scenario a, and an execution time of 3 clock cycles when
performed in the scenario b. The Finite State Machine (FSM) shown in Fig. 2b is the
possible execution sequence of the scenarios a and b within the overall implementation
of the application.

Fig. 2. Example of a SADF graph.

Scenario-Aware Workload Characterization 181

Initially, the SADF graph has a specific distribution of its initial tokens along the
graph. This distribution remains unchanged with the individual iterations performed by
the graph, regardless of the scenario that is being executed. At the end of an iteration,
the production times of this collection of initial tokens capture the starting point for the
next iteration, whenever the application is running in the same or in another scenario.

As it was shown in Sect. 2.2, a SDF graph without explicit input and output actors
is simply characterized by its matrix M, so that the timed behavior is governed by the
following equation i kþ 1ð Þ ¼ Mi kð Þ, where i kð Þ is the vector of production times of
tokens in the graph [5]. In a SADF graph, each individual scenario is modeled by a
SDF graph, such that a matrix MðrÞ characterizes every scenario r 2 R, where r is the
set of all possible scenarios in the SADF. Thus, if the iteration k is performed in the
scenario r, then,

i kþ 1ð Þ ¼ MðrÞi kð Þ ð2:3Þ

which is a Max-Plus expression for the vector of production times of tokens, i kþ 1ð Þ.
For instance, related to Fig. 2, the matrices associated with each scenario are as
follows:

M að Þ ¼
�1 �1 �1 4
2 2 �1 �1

�1 �1 �1 3
3 3 1 �1

2
664

3
775 MðbÞ ¼

�1 �1 �1 4
3 3 �1 �1

�1 �1 �1 2
4 4 1 �1

2
664

3
775

Formally, a SADF graph is modeled as a set of all scenarios and their corresponding
SDF graphs modeled by matrices MðrÞ. The combination of the state machine, and the
multiplication of Max-Plus matrices, is called Max-Plus Automata [9], which represents
a system with linear dynamic variation with time, according to the different scenarios of
operation related to the automata states.

A Max-Plus automata is a tuple A ¼ ðR;M;MÞ consisting of a finite set R of
scenarios, a mapping M, which assigns to each scenario r 2 R a Max-Plus matrix
MðrÞ, and a morphism M on finite sequences of scenarios, which maps such
sequences to a Max-Plus matrix, such that:

M r1; � � � rkð Þ ¼ M rkð Þ � � �M r1ð Þ ð2:4Þ

The Eq. (2.4) is the matrix product in the Max-Plus notation, between the various
matrices associated with each scenario within the sequence �r ¼ r1; � � � rk, a product
defined from the matrix related to the last scenario rk, until the matrix related to the
first scenario r1.

Thus, Mð�rÞi 0ð Þ captures the production times of tokens in the SADF after the
scenario sequence �r, where i 0ð Þ is the initial condition of production times of tokens.

182 G.P. Alvarez and W.J. Chau

3 Max-Plus Linear Representation of a SADF Graph

In the case of the SADF graphs, the linear Max-Plus model is represented in Fig. 3,
where the system matrix varies according to the scenario sequence executed in the
application up to the iteration k. In view of this Max-Plus linear representation pro-
posed for the SADF graph, where the graph matrix varies with each iteration according
to the matrix product defined by the morphism M, the linear model in Max-Plus has
features of a time-varying system [10], but in our case the new set of state equations is
defined as:

iðkþ 1Þ ¼ Mðrkþ 1ÞiðkÞ � Bðrkþ 1ÞxðkÞ
yðkÞ ¼ CiðkÞ � DxðkÞ ð3:1Þ

where the matrices M, B, C and D represent the mutual dependencies between inputs,
outputs and internal state of the graph, such that, in each iteration of an execution of the
SADF graph, the matrixM defined must be the one related to the scenario performed in
that moment by the graph, the same denoted in Eq. (2.3) and considering that the initial
condition for each new scenario corresponds to the state vector of the last execution in
the previous scenario.

Due to this mathematical description for the state space of the SADF graph, which
corresponds to a discrete time-varying linear model in Max-Plus, the analytical treat-
ment that can be given is similar to that found in classical linear discrete time-varying
systems [10].

3.1 Solution to the State-Space Equations in SADF

The solution for the state vector in Eq. (3.1) can be described by a Max-Plus finite
product, where for an iteration k of the SADF graph, the state vector is defined by

i kð Þ ¼ b
k

s¼1
M rsð Þi 0ð Þ �a

k�1

n¼0
b
k

s¼nþ 2
M rsð Þ

" #
Bðrnþ 1Þx nð Þ ð3:2aÞ

Or also:

i kð Þ ¼ b
k

s¼1
M rsð Þi 0ð Þ �a

k

n¼1
b

k�nþ 2

s¼k
M rsð Þ

" #
B rk�nþ 1ð Þx k � nð Þ ð3:2bÞ

Fig. 3. Max-Plus linear representation of a SADF graph.

Scenario-Aware Workload Characterization 183

By using Eq. (3.2b) in the output variable of the SADF graph in Eq. (3.1), the
resulting expression for the output set is

yðkÞ ¼ Cb
k

s¼1
MðrsÞið0Þ � DxðkÞ

� Ca
k

n¼1
½ b
k�nþ 2

s¼k
MðrsÞ�Bðrk�nþ 1Þxðk � nÞ

ð3:3Þ

As with the classic linear time-varying systems, it is possible to define a state
transition matrix U k; pð Þ described by:

U k; pð Þ ¼ M rkð ÞM rk�1ð Þ � � �M rp
� �

; k� p� 0
E; p[k

�
ð3:4Þ

Or also:

U k; pð Þ ¼ b
k

s¼p
M rsð Þ; k� p� 0

E; p[k

8<
: ð3:5Þ

where E is the identity matrix in Max-Plus Algebra [9]. In this way, substituting
Eq. (3.5) in Eq. (3.3), the new expression to describe the graph output becomes:

yðkÞ ¼ CUðk; 1Þið0Þ � DxðkÞ

a
k

n¼1
Uðk; k � nþ 2ÞBðrk�nþ 1Þxðk � nÞ ð3:6Þ

From Eq. (3.6), it is possible to modify the summation index to include within the
series the response component associated with matrix D. Thus, we define the function
h k; nð Þ as:

h k; nð Þ ¼ D n ¼ 0

CU k; k � nþ 2ð ÞB rk�nþ 1ð Þ n[0

(
ð3:7Þ

And the output of the SADF graph can be rewritten as:

y kð Þ ¼ CU k; 1ð Þi 0ð Þ �a
k

n¼0
h k; nð Þx k � nð Þ ð3:8Þ

This equation represents the Max-Plus vector of the output traces of a SADF graph
for each iteration k, given a specific sequence of scenarios �r ¼ r1; � � � rk, defined
possibly by a finite state machine.

184 G.P. Alvarez and W.J. Chau

4 Variability Characterization Curves for SADF Graphs

In this Section, the concept of Variability Characterization Curves (VCCs) described in
Sect. 2.1 will be used to present the workload curves and service curves based on
scenarios, whose definitions are contribution of this paper.

4.1 Scenario-Based Workload Curve

Given a multimedia application represented by a SADF graph, characterized by a set of
possible scenarios R, and where each execution of the application corresponds to the
execution of a sequence of scenarios �r ¼ r1; � � � rk related to the execution of k iter-
ations within the graph, every scenario in this sequence has associated one Max-Plus
matrix specified in terms of the execution times of the multiple application tasks. These
execution times are assumed as variables according to each executed scenario [5, 8].

Let mi;j be the task execution time related to node i; j of the SADF graph, when it is
referred to the scenario rs. Thus, given any subsequence of a scenarios covered in
descending order from each scenario rb performed as the last one in the sequence, the
following expression defines the component i; j of the matrix that results of the matrix
product associated to this subsequence of a scenarios within the SADF graph:

wi;j a; bð Þ ¼ b
b�aþ 1

s¼b

mi;j rsð Þ 0� i; j� n; n; a; b 2 Z[0 ð4:1Þ

In this way, a matrix of n� n, denoted by W a; bð Þ, covers these real components.
In Max-Plus notation, the matrix W a; bð Þ is defined as:

W a; bð Þ ¼ b
b�aþ 1

s¼b

M rsð Þ a; b 2 Z[0 ð4:2Þ

Given a sequence of scenarios �r ¼ ra; � � � rk, the matrix W a; bð Þ is a product with
decreasing sub-index related to the given sequence, containing an a number of
matrices. Thus, rb is the scenario associated with the first matrix evaluated within each
subsequence of scenarios. As an example, consider the sequence of scenarios
�r ¼ r2; � � � r5, such that the matrix W a; bð Þ is the product of Max-Plus matrices,
M rsð Þ. In this case, the number of matrices in the sequence is a ¼ 4, and the last
scenario in the sequence is rb ¼ r5, so that the matrix W a; bð Þ is evaluated as:

W 4; 5ð Þ ¼ M r5ð ÞM r4ð ÞM r3ð ÞM r2ð Þ

In order to find the maximum and the minimum for the Max-Plus product of
execution times between all the possible sequences of scenarios, it is defined the
workload curves based on scenarios, which consider the maximum and minimum of
each component wi;j a;bð Þ for all possible scenarios where rb corresponds to the last
scenario in every possible subsequence.

Scenario-Aware Workload Characterization 185

wu
i;j að Þ ¼ max

8b
wi;j a; bð Þ� �

0� i; j� n; n; a;b 2 Z[0 ð4:3Þ

In this expression,wu
i;j að Þ is defined as the upper workload curve based on application

scenarios for the task i; j, given a sequence of scenarios of length a. This set ði; jÞ of upper
workload curves based on scenarios refers to the matrix Wu að Þ described by Eq. (4.4):

Wu að Þ ¼ max
8b

W a; bð Þð Þ a; b 2 Z[0 ð4:4Þ

In a simpler way, the matrix Wu að Þ is the one containing the larger elements
resulting from the Max-Plus product of execution times for every application task,
given each subsequence of size a, finished in the scenario rb. With this consideration,
the matrix Wu að Þ can be defined as an upper matrix curve of scenarios.

In the same way, it is possible to define the set of lower curves based on application
scenarios for the task i; j:

wl
i;j að Þ ¼ min

8b
wi;j a; bð Þ� �

0� i; j� n; n; a; b 2 Z[0 ð4:5Þ

such that it also defines a lower matrix curve of scenarios Wl að Þ, composed by the
several lower curves wl

i;j að Þ.

Wl að Þ ¼ min
8b

W a; bð Þð Þ a; b 2 Z[0 ð4:6Þ

These concepts described here about workload curves based on application sce-
narios and matrix curves of scenarios, are closely related to the concept of workload
curve defined in [8], so that the mathematical expressions of Eq. (4.1) to Eq. (4.6) are an
extension of the mathematical specification used to define the workload curves in [8].

4.2 Scenario-Based Service Curve

Such as in classical linear systems, in the Max-Plus linear model the impulse response
also allows a fully characterization of an application or systemmodeled by the graph SDF
[5], such that various features and performance measures can be assessed by knowing the
explicit representation of the impulse response. One of these features is the service that is
provided by the system modeled as a dataflow graph. In [15] the service curve model
defined within the theoretical framework of Network Calculus was described in a way
that a system is said to offer a service curve SðtÞ if, for all t� 0, it satisfies:

D tð Þ� min
s2 0;t½ �

A sð Þþ S t � sð Þf g ¼ A	 S tð Þ ð4:7Þ

where A tð Þ is the cumulative function of packet arrival at a network, D tð Þ is the
cumulative function of packet departure in the network, and the operator 	 is referred
in this case as the Min-Plus convolution [15].

186 G.P. Alvarez and W.J. Chau

The service curves can be regarded as the impulse response of a linear system, such
that in case of the Network Calculus model the description of services curves is based
on the Min-Plus Algebra. If a system implements SðtÞ both as the lower and the upper
service curve, the Eq. (4.7) only describes the equality, and SðtÞ is referred as an exact
service curve [15].

Nevertheless, one of the main characteristics of the classical linear time-varying
systems is that they do not have an impulse response in the usual sense of its definition
[10]. Thus, in the case of SADF graph it is necessary to define an approximation of the
function h k; nð Þ in Eq (3.7), so that it may be likely to know an approach to a possible
impulse response, which may lead to the definition of limits of the service provided by
the application or system modeled by a SADF graph.

Considering the expression that describes the function h k; nð Þ, the following
expression is an expansion of Eq. (3.7):

h k; nð Þ ¼
D n ¼ 0
CB rk�nþ 1ð Þ n ¼ 1
CW n� 1; kð ÞB rk�nþ 1ð Þ n[1

8<
: ð4:8Þ

In order to find the maximum and minimum limits of h k; nð Þ for all possible options
of the initial scenario rk, it is necessary to define two functions hu nð Þ and hl nð Þ to
represent, respectively, the maximum and minimum limit of function h k; nð Þ, for all k.
This is,

hl nð Þ� h k; nð Þ� hu nð Þ ð4:9Þ

Thus hu nð Þ is defined as:

hu nð Þ ¼ max
8k

D n ¼ 0
CB rk�nþ 1ð Þ n ¼ 1
CW n� 1; kð ÞB rk�nþ 1ð Þ n[1

8<
: ð4:10Þ

and hl nð Þ is defined as:

hu nð Þ ¼ min
8k

D n ¼ 0
CB rk�nþ 1ð Þ n ¼ 1
CW n� 1; kð ÞB rk�nþ 1ð Þ n[1

8<
: ð4:11Þ

Grouping these analyzes and approximations, the upper limit of h k; nð Þ is described
by:

hu nð Þ ¼
D n ¼ 0
CBmax n ¼ 1
CWu n� 1ð ÞBmax n[1

8<
: ð4:12Þ

This expression summarizes all possible sequences of length n� 1, so that the
elements of the matrix Wu n� 1ð Þ correspond to the greatest multiplications of

Scenario-Aware Workload Characterization 187

execution times of every task, given each scenario sequence of length n� 1 assessed.
In the same way, it is possible to obtain the lower limit of h k; nð Þ defined as:

hl nð Þ ¼
D n ¼ 0
CBmin n ¼ 1
CWl n� 1ð ÞBmin n[1

8<
: ð4:13Þ

Thus, for an application represented by a SADF graph, the service SðkÞ has the
following limits:

Sl kð Þ� S kð Þ� Su kð Þ ð4:14Þ

where, according to Eqs. (4.12) and (4.13),

SlðkÞ ¼ hl nð Þ and,
SuðkÞ ¼ hu nð Þ ð4:15Þ

5 Workload Characterization Analysis Flow Based
on Application Scenarios

Step A: This step corresponds to the Characterization Analysis Flow of the variable
execution times of each application software task under analysis [16] (Fig. 4).

Step B: In this step, the specification of the application by a KPN model, or by a
generic Application Tasks Graph (APTG), communicated via FIFO channels, is used to
model the application as a SADF graph.

Step C: This step is basically to build the several matrices associated to each appli-
cation scenario.

Step D: Given the SADF graph and the set of matrices associated to the scenarios, the
step D computes the workload matrix curves defined by Eq (4.4) and (4.6).

Step E: Using the workload matrix curves computed in step D, step E determines the
scenarios-based service curves, defined in Eqs. (4.15), (4.12) and (4.13), which give an
upper and lower limit of the time the application may take to process k consecutive
events (Sect. 4.2).

Step F: Finally, in step F, the service curve model and an arrival events function are
used to estimate the limits on the output events generated from the application, and the
limits of performances measures like throughput. Finally, the result of this analysis
flow is a numerical estimation of these limits.

188 G.P. Alvarez and W.J. Chau

6 Use Case

6.1 The JPEG Decoder

The JPEG decoder is a process capable of reconstructing image data from a stream of
compressed image data, encoded under the JPEG standard [17].

The decoder takes the compressed image data as its input and subsequently applies
a variable length decoding (VLD), zigzag scan and inverse quantization (IQZZ),
inverse discrete cosine transform (IDCT), a color conversion (CC) and a last process
(Raster) for putting the pixel values for the minimal coded unit (MCU) in place in the
image, writing the image to disk when the conversion is complete. Figure 5 shows the
JPEG decoder depicted as a Kahn Process Network (KPN) [18], annotated with buffer

Fig. 4. Analysis flow developed for this paper.

Scenario-Aware Workload Characterization 189

sizes between tasks. The compressed image data forms a byte stream input for the
decoder. This byte stream contains so-called markers. A marker is a two-byte com-
bination, which identifies a structural part of the compressed image data. Table 1
summarizes the most common markers used in the JPEG standard [17].

In the JPEG decoder, the sequence of markers can be considered as the sequence of
input events that trigger the decoder, such that the finite state machine shown in Fig. 6
represents the order how markers happen and activate every scenario inside of Demux
task.

Fig. 5. KPN of the JPEG decoder

Table 1. Markers supported by JPEG decoder

Fig. 6. Event automata for the input event sequence of the JPEG decoder

190 G.P. Alvarez and W.J. Chau

Considering the values of these execution times for each task, as given in Table 2,
twelve different matrices associated with each scenario are set for the JPEG encoder.
Every execution time has been defined in clock cycles considering a Simplescalar
processor running at 100 MHz [16].

6.2 Scenario-Based Services Curves

From the matrices of the several scenarios, and considering a certain input event
sequence, the expressions Eqs. (4.3) and (4.5) were implemented in ScicosLab [19] to
obtain the scenario matrix curves. With these curves, it is possible to calculate the
sequences of service curves (lower and upper) for the JPEG decoder shown in the
graph of Fig. 6.

The calculation was made in Scicoslab implementing the proposed expressions for
each curve SlðkÞ and SuðkÞ, explained in Sect. 4.2 by Eqs. (4.15), (4.12) and (4.13).
Figs. 7 and 8 depict the curves calculated considering a maximum of iterations of
k ¼ 10 and k ¼ 50, respectively. They describe the service provided by the application,
such that this service is defined as the execution time the application needs to process a
sequence of events related to a sequence of scenarios executed in the application up to
the iteration k. Consequently, Figs. 7 and 8 show the upper and lower limit of the time
the application may take to process k consecutive events associated to k consecutive
scenarios executed in the application.

Table 2. Extreme execution times of every task according to the multiple JPEG application
scenarios.

Scenario-Aware Workload Characterization 191

Fig. 7. Scenario-based service curves for JPEG decoder ðk ¼ 1::10Þ:

Fig. 8. Scenario-based service curves for JPEG decoder ðk ¼ 1::50Þ:

192 G.P. Alvarez and W.J. Chau

7 Conclusions

In consideration of the different operation scenarios that make explicit the dynamic
behavior of certain application, the modeling based on a SADF model of computation
shows a timing behavior that has been analyzed as a linear model in a state space based
on Max-Plus Algebra, so that the presence of several scenario sequences over time adds
a timing variation to the linear model. From a mathematical point of view, it is possible
to derive formal analytical expressions that describe the generation of event sequences
by according to the iterations of a SADF graph. Also considering the full range of
possible application scenarios and the variable execution demand that is found in the
characterization of each application task, it is possible to characterize the set of all
scenario sequences using the concepts of scenario-based workload curves and
scenario-based service curves described in this paper, which allow to characterize the
behavioral dynamism of an application in its design phase by describing the service (or
execution time) that the application requires to process a sequence of events associated
to a sequence of scenarios executed in the application. A JPEG decoder was used to test
our methodology.

Acknowledgement. The given work was supported by CAPES (in Brazil), University of São
Paulo (USP), and by CODI at the University of Antioquia (UdeA).

References

1. Schaumont, P.: A Practical Introduction to Hardware/Software Codesign -, 2nd edn.
Springer, Heidelberg (2013). ISBN 978-1-4614-3736-9

2. Stuijk, S., Basten, T., Mesman, B., Geilen, M.: Predictable embedding of large data
structures in multiprocessor networks-on-chip. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2005, vol. 1, pp. 254–255. IEEE Computer Society,
Washington (2005). doi:http://dx.doi.org/10.1109/DATE.2005.244

3. Rosson, M.B., Carroll, J.M.: Scenario-based design. In: Jacko, J.A., Sears, A. (eds.) The
human-computer interaction handbook, pp. 1032–1050. L. Erlbaum Associates Inc.,
Hillsdale (2002)

4. Gheorghita, S.V., Basten, T., Corporaal, H.: Application scenarios in streaming-oriented
embedded-system design. IEEE Des. Test 25(6), 581–589 (2008). doi:10.1109/MDT.2008.
158

5. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow scenarios.
In: Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES/ISSS 2010), pp. 125–134.
ACM, New York (2010). doi:http://dx.doi.org/10.1145/1878961.1878985

6. Theelen, B.D., Geilen, M.C.W., Basten, T., Voeten, J.P.M., Gheorghita, S.V., Stuijk, S.: A
scenario-aware data flow model for combined long-run average and worst-case performance
analysis. In: Proceedings of the 4th ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), pp. 185–194. IEEE Computer Society
Press (2006)

Scenario-Aware Workload Characterization 193

http://dx.doi.org/10.1109/DATE.2005.244
http://dx.doi.org/10.1109/MDT.2008.158
http://dx.doi.org/10.1109/MDT.2008.158
http://dx.doi.org/10.1145/1878961.1878985

7. Skelin, M., Wognsen, E.R., Olesen, M.C., Hansen, R.R., Larsen, K.G.: Model checking of
finite-state machine-based scenario-aware dataflow using timed automata. In: 10th IEEE
International Symposium on Industrial Embedded Systems (SIES), Siegen (2015). doi:10.
1109/SIES.2015.7185065

8. Maxiaguine, A., Künzli, S., Thiele, L.: Workload characterization model for tasks with
variable execution demand. In: Proceedings of the Conference on Design, Automation and
Test in Europe, DATE 2004, vol. 2. IEEE Computer Society, Washington (2004)

9. Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity: An
Algebra for Discrete Event Systems. Wiley, Hoboken (2001). http://www.rocq.inria.fr/
metalau/cohen/SED/book-online.html

10. Addad, B., Amari, S., Lesage, J.-J.: Linear time-varying (Max, +) representation of conflicting
timed event graphs. In: 10th International Workshop on Discrete Event Systems, August
2010, pp. 310–315, Berlin, Germany (2010)

11. Maxiaguine, A., Zhu, Y., Chakraborty, S., Wong, W.-F.: Tuning SoC platforms for
multimedia processing: identifying limits and tradeoffs. In: Proceedings of the 2nd IEEE/
ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis,
08–10 September 2004, Stockholm, Sweden (2004)

12. Liu, Y., Chakraborty, S., Ooi, W.T.: Approximate VCCs: a new characterization of
multimedia workloads for system-level MpSoC design. In: Proceedings. 42nd Design
Automation Conference, 2005, pp. 248–253 (2005) doi:10.1109/DAC.2005.193810

13. Geilen, M.: Synchronous dataflow scenarios. ACM Trans. Embed. Comput. Syst. 10(2),
Article 16, 31 pp. (2011). doi:http://dx.doi.org/10.1145/1880050.1880052

14. Geilen, M.: Reduction techniques for synchronous dataflow graphs. In: Proceedings of the
46th Annual Design Automation Conference (DAC 2009), pp. 911–916. ACM, New York
(2009). doi:http://dx.doi.org/10.1145/1629911.1630146

15. Fidler, M.: Survey of deterministic and stochastic service curve models in the network
calculus. IEEE Commun. Surv. Tutorials 12(1), 59–86 (2010)

16. Gustavo, A.P.A., Gonzalez, J., Chau, W.J., Strum, M.: Workload and task characterization
based on operation modes timing analysis. In: 2012 IEEE International SOC Conference
(SOCC), pp. 248–253, 12-14 September 2012

17. Meijer, S., Kienhuis, B., Turjan, A., de Kock, E.: A process splitting transformation for kahn
process networks. In: 2007 Design, Automation & Test in Europe Conference & Exhibition,
Nice, pp. 1–6 (2007)

18. Kahn, G.: The semantics of a simple language for parallel programming. Inf. Process. 74,
471–475 (1974). North-Holland

19. SCICOSLAB. http://www.scicoslab.org

194 G.P. Alvarez and W.J. Chau

http://dx.doi.org/10.1109/SIES.2015.7185065
http://dx.doi.org/10.1109/SIES.2015.7185065
http://www.rocq.inria.fr/metalau/cohen/SED/book-online.html
http://www.rocq.inria.fr/metalau/cohen/SED/book-online.html
http://dx.doi.org/10.1109/DAC.2005.193810
http://dx.doi.org/10.1145/1880050.1880052
http://dx.doi.org/10.1145/1629911.1630146
http://www.scicoslab.org

A Novel WCET Semantics
of Synchronous Programs

Michael Mendler1, Partha S. Roop2,4(B), and Bruno Bodin3

1 Bamberg University, Bamberg, Germany
2 University of Auckland, Auckland, New Zealand

p.roop@auckland.ac.nz
3 University of Edinburgh, Edinburgh, UK

4 Mercator Fellow, Bamberg University, Bamberg, Germany

Abstract. Semantics for synchronous programming languages are well
known. They capture the execution behaviour of reactive systems using
precise formal operational or denotational models for verification and
unambiguous semantics-preserving compilation. As synchronous pro-
grams are highly time critical, there is an imminent need for the devel-
opment of an execution time aware semantics that can be used as the
formal basis of WCET tools. To this end we propose such a compositional
semantics for synchronous programs. Our approach, which is algebraic
and based on formal power series in min-max-plus algebra, combines
in one setting both the linear system theory for timing and construc-
tive Gödel-Dummet logic for functional specification of synchronisation
behaviour. The developed semantics is illustrated using a running exam-
ple in the SCCharts language.

1 Introduction

The synchronous paradigm [4] is ideal for designing safety critical, real-time
systems in aviation, automotive and industrial automation. The issue of timing
correctness is at the heart of such systems and is the topic of our interest. In
this paper, we concentrate on Esterel [5] style imperative synchronous languages
(ISP) and their graphical counter parts such as Argos [17], SyncCharts [2], and
SCCharts [23]. Semantics of such languages are well known [5,17,23]. These
semantics primarily express execution behaviour using unambiguous mathemat-
ical notation. However, these semantics are time-abstract and unsuitable from
the point of view of worst case execution time (WCET) analysis.

Existing WCET techniques for ISP [20,21,24] have been largely guided by
heuristics using general-purpose analysis tools such as ILP, model-checking, SAT-
solving, and micro-architectural modelling. The evaluations of the methods are
based on empirical benchmarking. Systematic studies of semantic soundness and
computational complexity of WCET heuristics are rare. To master the complex-
ity of the WCET problem for ISP, so we believe, it will be necessary to balance
the trade-off between efficiency and precision in a semantic model that per-
mits the tight coupling of function and timing and is applicable at all levels of
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 195–210, 2016.
DOI: 10.1007/978-3-319-44878-7 12

196 M. Mendler et al.

abstraction, from high-level ISP programs down to low-level assembly or hard-
ware, while also being abstract and language-independent. This paper proposes
such a WCET semantics of synchronous languages based on logic and alge-
bra. The application of this semantics outlined here is based on some, arguably
strong, assumptions. First, we consider that programs are executed on precision
timed architectures [10]. These simplify static timing analysis without sacrificing
throughput by using thread-interleaved pipelines without pipeline speculation.
They also use scratchpad memories instead of caches and are devoid of timing
anomalies. This assumption may be relaxed to some extent by compositional
use of techniques for architecture modelling [7]. Second, we assume that for each
synchronous thread there is sufficient computation between two state bound-
aries. This assumption is essential for the annotation of timing cost with every
transition of a synchronous thread. Third, we assume that concurrency is mod-
elled by thread interleaving rather than multi-processing. Note, however, that
this work is mainly theoretical. Our motivating running example does not nec-
essarily demonstrate the most general use of the proposed algebraic semantics.

An overview of the paper is as follows. We introduce a running example with
hierarchy, concurrency, and reactivity using an SCChart [23], which is presented
in Sect. 2. We propose input-output Boolean tick cost automata (IO-BTCA)
as an intermediate representation of synchronous threads. This is presented in
Sect. 3. As our main contribution we develop an expressive constructive logic of
formal power series extending Gödel-Dummett’s intuitionistic logic as an alge-
braic semantics for IO-BTCA and their compositions. The theory is expounded
in Sect. 4 and its application is illustrated Sect. 5 using the running example.
Conclusions relative to related work is presented in Sect. 7.

2 Illustrative SCCharts Example

We use the SCCharts language to model the running example as shown in
Fig. 1a. The figure is annotated with the key features of the language used in
this example. This language is a synchronous Statecharts [14] and the reader is
referred to [23] for a detailed discussion on the language. The sequencer needs a
start input signal to make progress from its initial state Disabled to the state
Enabled. The state Enabled implements the actual specification of reaction:
after two ticks receiving the input a, the output done is emitted. The sequencer
uses local signals b, c and d to synchronize three concurrent threads cC, cA and
cB (also called regions). Each thread is specified using a finite state machine with
a unique start state e.g. A0, B0 and C0, indicated using bold circumferences.
Each transition is labelled as i/o, where i is the guard that must be true for the
transition to trigger, and o is the output part that is emitted when the transition
is taken. Transitions are non-immediate and cannot be taken in the same tick
when their source state is entered, except when they are marked as immediate
using a dotted arrow as seen in Fig. 1b. Concurrent regions are nested within a
higher-level region. The first thread cA synchronizes with the second thread cB
and the third thread cC using the local signals b, c, d. The three concurrent

A Novel WCET Semantics of Synchronous Programs 197

Sequencer_signal
input signal a,start
output signal done

[-]
Enabled

signal b,c,d

[-] cC

C1C0
b

d

[-] cB

B1B0
a / b

c / done

[-] cA

A1

A0 A2

Disabled
start

done

b / d

/ c

Region "Enabled"

Concurrent regions

Initial state

(a) The hierarchical, concurrent sequencer
as it is seen in a SCChart visualizer.

sequencer_signal_transformed
input signal a,start
output signal done
[-]

Enabled
signal b,c,d, disabled, enabled

[-] hierarchyControler [-] cB

[-] cC [-] cA

1:start/10/enabled

2:/1/disabled

1:done/1/disabled

2:/1/enabled
B0

B1

BD

1:disabled/1/enabled/1/

2:a/17/b c/6/done

C0

C1

CD

1:disabled/13/enabled/1/

2:b/4/ d/3/

A0

A2

AD

1:disabled/1/enabled/1/

2:b/16/

/8/cA1

/40/d

Disable

Enable

(b) Sequencer flattened with timing back-
annotations.

Fig. 1. Running sequencer example.

threads have 36 possible configurations. Due to synchronous execution, how-
ever, only the three combinations A0/B0/C0, A1/B1/C1 and A2/B1/C0 are
feasible. WCET analysis techniques for synchronous programs must detect such
infeasibility to ensure tightness.

Intermediate representation without preemption. The hierarchical transition in
Fig. 1a is a weak preemption transition enabled by done. When this happens,
all three threads are preempted and the behaviour moves to the initial state
Disabled. Weak preemptions indicate causality i.e. the body terminates by
generating an event that leads to the preemption transition being taken. Pre-
emptions are handled in conventional semantics by introducing a separate hier-
archical concurrency operator [17]. However, in the compilation chain towards
executable sequential code, structural translation rules typically “compile away”
the hierarchical transitions, which simplify WCET analysis.

Figure 1b shows the model generated after this structural translation. Each
hierarchical region may be restructured by introducing one concurrent region per
level of hierarchy. The concurrent region acts as a controller to activate and
deactivate the appropriate sub-region (in the original specification). For example,
we have introduced the region hC (hierarchyController) that waits until the
start event to send an enable command to the other three concurrent regions.

198 M. Mendler et al.

These regions have an additional state AD/BD/CD to indicate their disabled
status. These regions can progress to their enabled state state A0/B0/C0 only
when the enable event is provided by the controller. We have used immediate
transitions from A0/B0/C0 to their respective disable state AD/BD/CD upon
receipt of the done event. This emulates the weak preemption in the original
specification in Fig. 1a.

To aid WCET analysis, transitions are annotated with upper bound timing
cost. For instance the transition tC1C0 leading from state C1 to state C0 has
an upper bound timing cost of wcet(tC1C0) = 3 while tB0B1 has wcet(tB0B1) =
17. The timing annotations seen in Fig. 1b are entirely fictive though technical
feasibility of obtaining these values has been illustrated earlier in [11,16].

3 Intermediate Level Semantics: Tick Cost Automata

WCET analysis is formulated over graph representations of conventional pro-
grams. We propose to model the timing-enriched behaviour of a sequential
(single-threaded) synchronous program as an input-output Boolean tick cost
automaton (IO-BTCA). Following the convention in SCCharts, we will draw
non-immediate transitions as solid arrows and immediate transitions as dashed
arrows, in the graphical representation of an IO-BTCA. Also, we label a transi-
tion t with the triple grd(t)/del(t)/act(t). A state which has at least one non-
immediate transition exiting from it is called a pause state. All other states are
transient states. We say an automaton pauses if control reaches a pause state
and the guards of all immediate transitions leaving the state, if any, are false.
An immediate transition whose guard is true must be taken in the same tick
in which the state is entered. The activation of a non-immediate transition is
checked only in the next tick.

Definition 1. An input-output Boolean tick cost automaton (IO-BTCA) is
M = 〈Q, e, I,O,→, e〉, where Q = states(M) is a finite set of states with a
distinguished entry state e = entry(M) ∈ Q. I = In(M) and O = Out(M)
denote the set of input and output signals, respectively. The transition relation
→ is partitioned into the set of immediate transitions →i and non-immediate
transitions →n, i.e., → = →i � →n. Each type of transitions is a relation
→ ⊆ Q × B(I) × N × 2O × Q, where B(I) denotes the set of Booleans over I. A
transition t = (q1, b, d, o, q2) ∈ → connects a source state q1 with a target state
q2. It is labelled by a Boolean guard b = grd(t) over I specifying the condition
under which the transition triggers, a delay d = del(t) describing its worst case
timing cost and a set of emitted signals o = act(t).

WCET of an IO-BTCA. An example of an IO-BTCA is shown in Fig. 2. This
automaton A has transient states A0, A5 and A6 drawn as solid circles, and
pause states A1, A2, A3 and A4 drawn as two half-circles. The transient entry
node A6 is indicated by a transition arrow without source state. Each pause
state is split into two parts. The upper half of each pause state represents the
surface of the state. When the surface is reached, it can be left immediately in

A Novel WCET Semantics of Synchronous Programs 199

Fig. 2. A IO-BTCA A to illustrate the different features of the model. Immediate
transitions are dashed arrows and non-immediate transition are plain arrows.

the same tick. As an example, on the state A2, if the condition ¬v is true, it goes
directly to A4. If there is no activated transition out of the surface, the control
flow pauses there to wait for the clock tick. The occurrence of the clock tick
switches activation to the lower half of the state, called the depth, from where
the successive tick then is started. To express the synchronising behaviour of the
clock tick we always use q for the surface and tick(q) for the depth of a pause
state in an IO-BTCA. This is indicated only for state A2 in Fig. 2 but applies
to all other pause states, too.

Following the terminology of [19] we distinguish two types of execution paths
in an IO-BTCA. A sink path starts in entry(A), passes through immediate tran-
sitions ends in a pause state. An internal path starts the automaton in some
pause state tick(Ai) (the depth part) at the beginning of the tick, then acti-
vates a sequence of transitions and finally pauses in the surface of another pause
state Aj.

Parallel composition of IO-BTCAs. Consider the synchronous multi-
threaded composition cA‖cB‖cC shown in Fig. 3. The IO-BTCAs run concur-
rently and signals emitted by one machine are broadcast to the others. This
may trigger a chain reaction of transition executions which are all executed in
the same tick. The ticks are synchronised so that when one component pauses
it stops and waits for the others to complete any sequence of enabled immedi-
ate transitions they may have. The composition cA‖cB‖cC pauses when each of
cA, cB and cC pauses. For simplicity we look at the subsystem cA‖cB only. Note
that from the 12 possible joint configurations of cA‖cB only 5 are actually reach-
able, while 7 state pairs do not align. The states which do align are indicated
in Fig. 3 by the horizontal lines connecting the three automata. Without consid-
eration of this alignment the possible maximum WCET for this example would
be over-approximated 40 + 17 + 13 = 70, induced by the transitions A1 → A2,
B0 → B1 and C0 → CD. But this is infeasible. As the tick lines show no two of

200 M. Mendler et al.

Fig. 3. Three IO-BTCAs representing the threads cA, cB and cC in our running exam-
ple of Fig. 1b.

them can occur in the same tick. The actual WCET of cA‖cB‖cC in arbitrary
environments is 43.

4 Min-Max-Plus Semantics of IO-BTCA

Here we present the semantics of IO-BTCA in terms of denotational fixed point
equations. We show that the synchronous reaction behaviour and tick cost of
every IO-BTCA can be described as a recursive equation system in the algebra
of max-plus formal power series [3]. More details on these semantics can be found
in an additional report [18].

4.1 Min-Max-Plus Algebra

Semi-ring structure. Our timing analysis will be expressed in the discrete
max-plus structure over natural numbers (N∞,⊕,
,0,1) where N∞ =df N ∪
{−∞,+∞} and ⊕ stands for the maximum and
 for addition on N∞. Both
binary operators are commutative, associative and have the neutral elements
0 =df −∞ and 1 =df 0, respectively, i.e., x ⊕ 0 = x and x
 1 = x.
The constant 0 is absorbing for
, i.e., x
 0 = 0
 x = 0. In particular,
−∞
 +∞ = −∞. Addition
 distributes over max ⊕, i.e., x
 (y ⊕ z) =
x + max(y, z) = max(x + y, x + z) = (x
 y) ⊕ (x
 z). However, ⊕ does
not distribute over
, for instance, 4 ⊕ (5
 2) = max(4, 5 + 2) = 7 while
(4 ⊕ 5)
 (4 ⊕ 2) = max(4, 5) + max(4, 2) = 9. This induces on N∞ a (com-
mutative, idempotent) semi-ring. The choice of notation1
 and ⊕ highlights
the multiplicative and additive nature, respectively, of the operators. Following
convention, multiplicative expressions x
 y are written also without
 simply
as x y and
 is assumed to bind more strongly than ⊕.

1 In [3] the constants −∞ and 0 are symbolised as ε and e, respectively. Alain Girault
suggested to us the notation 0 and 1 which we find more suggestive.

A Novel WCET Semantics of Synchronous Programs 201

Logical interpretation. N∞ is not only a semi-ring but also a lattice structure
with the natural ordering ≤. Meet and join, respectively, are x ∧ y = min(x, y)
and x ∨ y = max(x, y) = x ⊕ y. With its two infinities −∞ and +∞ the order
structure (N∞,≤,−∞,+∞) is a complete lattice. This means we can construct
least and greatest solutions of fixed-point equations by taking infinite join

∨
and

meet
∧

, respectively.
Max-plus algebra (over integers and real numbers) is well-known and widely

exploited for discrete event system analysis (see, e.g., [3,12]). What is rarely
exploited, however, is the fact that the lattice structure of this algebra also
supports logical reasoning, built around the min operation. The logical view is
natural for our application where the values in N∞ represent stabilisation times
and measure the presence or absence of a signal during a tick. The bottom
element 0 = −∞ indicates that a signal is absent, i.e., is never going to become
active. Logically, this corresponds to falsity, usually written ⊥. A signal with an
upper bound stabilisation time of +∞ on the other hand is known to become
present eventually, though we cannot give an upper bound. This is simple logical
truth, normally written �. All other stabilisation values d ∈ N codify bounded
presence which are forms of truth stronger than �. On these multi-valued forms
of truth (aka “presence”) the minimum operation ∧ acts like logical conjunction
while the maximum ⊕ is logical disjunction ∨. The behaviour of � = +∞ and
⊥ = −∞ = 0 with respect to ∧ and ∨ follows the classical Boolean truth
tables. However, a logic is not a logic without negation. The natural implication
operation ⊃ is given such that x ⊃ y = y if y < x, +∞ otherwise. This defines
the residual with respect to minimum ∧, i.e., x ⊃ y is the largest element z
such that x ∧ z ≤ y. Implication internalises the ordering relation in the sense
that x ⊃ y = � iff x ≤ y. It generates a negation operation in the usual way as
¬x =df x ⊃ ⊥ with the property that ¬x = � if x = ⊥ and ¬x = ⊥ if x ≥ 0.
This turns the lattice N∞ into an intuitionistic logic or a (complete) Heyting
algebra [22]. In fact, the specific Heyting algebra (N∞,∧,∨,⊃,⊥,�) is Gödel-
Dummet logic, called LC, which is decidable and completely axiomatised by the
laws of intuitionistic logic plus the linearity axiom (x ⊃ y) ∨ (y ⊃ x), see [9].

Intuitionistic logic. For us both the semiring structure (N∞,⊕,
,0,1) and the
logical interpretation (N∞,∧,∨,⊃,⊥,�) are equally important. The former to
calculate WCET timing and the latter to express signals and reaction behav-
iour. Both are overlapping with the identities ⊕ = ∨ and 0 = ⊥. Every element
in N∞ is at the same time a delay value and a constructive truth value. Every
algebraic expression is at the same time the computation of a WCET and a
logical activation condition. This makes min-max-plus algebra an ideal candi-
date to specify the constructive semantics of synchronous programming, at the
exception that negation does not behave like in classical logic. Specifically, the
law of the excluded middle x ∨ ¬x = � fails to hold. For instance, if an Esterel
program has a feedback cycle in which it emits a signal a if a is absent, this
would be specified by ¬a ⊃ a. In classical logic we could prove (by case analysis)
that necessarily a = �, i.e., a is present (eventually). This is inconsistent with
the constructive semantics of Esterel in which the program would be rejected as

202 M. Mendler et al.

non-causal. Intuitionistic Gödel-Dummet logic is causality-sensitive: ¬a ⊃ a has
an infinite number of solutions, viz. all a ≥ 0. So, the program has no unique
(bounded) response on signal a, thus explaining why it must be rejected. In this
paper we do not expand on constructiveness analysis and so do not exploit the
intuitionistic nature of the logic.

4.2 Formal Max-Plus Power Series

The structure N∞ plays the role of scalars in the algebra of IO-BTCAs where
automata are specified with formal power series over N∞. These are obtained
by freely adjoining to N∞ a formal variable X to represent the synchronous tick
that separates one instant from the next. More specifically, a (max-plus) formal
power series, fps for short, is a (finite or ω-infinite) sequence

A =
⊕

i≥0

aiX
i = a0 ⊕ a1 X ⊕ a2 X2 ⊕ a3 X3 · · · (1)

with ai ∈ N∞ and where exponentiation is repeated multiplication, i.e., X0 = 1
and Xk+1 = X Xk = X
 Xk. A formal power series stores an infinite sequence
of numbers a0, a1, a2, a3, . . . as the scalar coefficients of the base polynomials Xi.

Such a power series may model an automaton’s timing behaviour measuring
the time cost to complete each tick or to reach a given state in given tick. If
ai = 0 then this means that A is not executed during the tick i and thus not
contributing to the tick cost, or that a given state A is not reachable during this
tick. This contrasts with ai = 1 which means A is executed during tick i but
with zero cost, or that the state A is active at the beginning of the tick. If ai > 0
then automaton A is executed taking at most ai time to finish tick i, or state
A is reached within ai-time during the selected tick. We can evaluate A with
X = 1, written A[1], and obtain the worst-case reaction time across all ticks.

However, A could also be used to model a signal. In this context, ai = 0 is
equivalent to the signal being absent in tick i, ai = 1 implies that s is present
from the beginning of the tick, and ai > 0 would mean that A becomes present
during tick i with a maximal delay of ai.

The tick sequences we will generate from finite state IO-BTCA are rational,
i.e., ultimately periodic. These have the form A = Aτ ⊕ Xk Aφ where the first
part Aτ = t0 ⊕ t1X ⊕ · · · ⊕ tkXk is a finite initial transient sequence and the
second part Aφ = r0X ⊕ · · · ⊕ rn−1X

n ⊕ XnAφ a finite recurrent loop. For
notational convenience we will write such a rational series A in short form as A =
t0:t1: · · · :tk:(r0 r1 · · · rn−1)ω. When n = 1 we call A an ultimately constant fps.

5 Modelling Signal-Dependent WCET

We will now show how our min-max-plus algebra can fully express the synchro-
nous semantics of a IO-BTCA, in particular how it captures signal dependency
and tick alignment of the timing, at different levels of precision. Rather than

A Novel WCET Semantics of Synchronous Programs 203

presenting a general semantic translation we illustrate the procedure using the
example in Fig. 1b. We will derive for each automaton M a fps wcet(M) for
the sequence of tick costs generated by M when started in its initial state.
Moreover, we will derive for each state S ∈ states(M) its worst case activation
behaviour. This is a fps wcet(S) that gives for each tick the maximum waiting
time for S to become active. If S is reachable in tick n then wcet(S)(n) ≥ 1,
otherwise wcet(S)(n) = 0. The value wcet(S)(i) = � would indicate unbounded
reachability but without a specified upper bound. These fps are defined purely
algebraically by recursive equation systems following the automaton’s structure.
The reason why wcet(M) and wcet(S) exist as unique least fixed point solutions
is that (N∞[X],≤,0) is a complete partial ordering and the operations appearing
in the recursion are continuous.

5.1 The WCET of IO-BTCAs

Let us now consider the IO-BTCA cC, seen in Fig. 3. Since no state in cC is
visited more than once during any tick, the cost wcet(cC)(i) of tick i is the worst
case delay wcet(S)(i) of reaching any state S ∈ {CD,C0, C1} in cC during tick
i. Once we have wcet(S) =

⊕
i wcet(S)(i) for each state S ∈ {CD,C0, C1} we

obtain the total tick cost as the sum (tick-wise maximum)

wcet(cC) = wcet(CD) ⊕ wcet(C0) ⊕ wcet(C1). (2)

Observe how the Eq. (2) later repeated in the Eq. (11) can constitute a max-
plus definition of the WCET timing of our parallel system Enabled. Crucially
for precision, however, this is the max-plus on formal time series and also these
time series are parametric in signals.

We specify the timings wcet(S) of the states S inside cC in reaction to the
input signals in terms of a mutually recursive system of min-max-plus recurrence
equations. Here is state CD:

wcet(CD)(0) = 1 (3)

wcet(CD)(n + 1) = (¬en(n + 1) ∧ (0
 (1 ∧ wcet(CD)(n))))
⊕ (dis(n + 1) ∧ (13
 wcet(C0)(n + 1)))
⊕ (dis(n + 1) ∧ (13
 (1 ∧ ¬dis(n) ∧ wcet(C0)(n)))). (4)

These equations are directly extracted from the structure of cC. The first Eq. (3)
says that state CD can be reached before the first tick with max cost 1 = 0.
This is correct since CD is the initial state of cC and we assume that the start
up is delay-free. The second Eq. (4) looks at the cost of activating CD in some
later tick n + 1. If CD is reachable at all in tick n + 1, then there are only two
possibilities for where the control flow can arrive from:

204 M. Mendler et al.

(i) Control has already paused in state CD in the previous tick n and signal
en is absent now in tick n + 1. This activates the delay-free self-loop on
CD.

(ii) Control has reached C0 in the same tick n + 1 and immediately continues
along immediate C0 → CD with additional cost 13.

(iii) Control has paused in C0 in tick n with dis being absent, while now in tick
n + 1 signal dis is present.

The recurrences (3)–(4) can be lifted to fps, thus eliminating tick count n:

wcet(CD) = 1 ⊕ (¬en ∧ (0
 tick(wcet(CD)))) ⊕ (dis ∧ (13
 wcet(C0)))
⊕ (dis ∧ (13
 tick(¬dis ∧ wcet(C0)))) (5)

where tick(A) =df X
(1ω ∧A) computes a “start time” for state A in each tick:
We have tick(A)(n + 1) = 1 if A(n) ≥ 1 and tick(A)(n + 1) = 0 if A(n) = 0.

The equations for cost series wcet(C0) and wcet(C1) are obtained similarly:

wcet(C0) = (¬b ∧ ¬dis ∧ (0
 tick(¬dis ∧ wcet(C0))))
⊕ (d ∧ (3
 tick(wcet(C1)))) ⊕ (en ∧ (1
 tick(wcet(CD))))(6)

wcet(C1) = (¬dis ∧ b ∧ (4
 tick(¬dis ∧ wcet(C0))))
⊕(¬d ∧ (0
 tick(wcet(C1)))). (7)

The simultaneously recursive Eqs. (5)–(7) can be vectorised

(wcet(CD),wcet(C0),wcet(C1)) = [[cC]](wcet(CD),wcet(C0),wcet(C1)),

in which [[cC]], for any fixed signals en, dis, b, d is a continuous function in
the complete semi-lattice (N∞[X]3,≤,⊕, (0,0,0)). Its least solution is obtained
by fixed point iteration

⊕
n≥0[[cC]]n where [[cC]]0 = (0,0,0) and [[cC]]n+1 =

[[cC]]([[cC]]n).

Approximative WCET. With (5)–(7) at hand the cost series (2) is com-
pletely specified in reaction to the signals in the environment in which cC is
running. Using the Eqs. (5)–(7) directly is possible via the equational laws of
min-max-plus algebra over N∞[X] but computationally costly. Therefore we are
now going to discuss two natural abstractions that introduce over-approximation
on the tick costs for the benefit of computational efficiency. The first and
most drastic abstraction ignores signals dependency altogether giving tick costs
wcetabs(M) ≥ wcet(M) and wcetabs(S) ≥ wcet(S). This will give polynomial
complexity. The second abstraction keeps signal dependencies for local analysis
but ignores the environment. This gives local costs wcetloc(M) and wcetloc(S)
which are worst-case over all environments. This yields more precise results,
wcetabs(M) ≥ wcetloc(M) ≥ wcet(M) and wcetabs(S) ≥ wcetloc(S) ≥ wcet(S)
but has NPTIME complexity.

Signal abstraction. We start with full signal abstraction where we do not
bother to make any assumption on signals. Branching on signals is modelled

A Novel WCET Semantics of Synchronous Programs 205

by full non-determinism. We exploit monotonicity of [[cC]] and abstract from
the signals using the upper approximations s ≤ �ω and ¬s ≤ �ω for every
signal s ∈ In(cC). This simplifies the Eqs. (5)–(7) for wcet(s) into equations for
approximations wcetabs(s) ≥ wcet(s):

wcetabs(CD) = 1 ⊕ tick(wcetabs(CD)) ⊕ 13
 wcetabs(C0)
⊕ 13
 tick(wcetabs(C0)) (8)

wcetabs(C0) = tick(wcetabs(C0)) ⊕ (3
 tick(wcetabs(C1)))
⊕(1
 tick(wcetabs(CD))) (9)

wcetabs(C1) = (4
 tick(wcetabs(C0))) ⊕ tick(wcetabs(C1)), (10)

considering that � ∧ x = x, 0 ⊕ x = x and 0
 x = x. This abstracted sys-
tem [[cC]]abs corresponds to the automaton cC from Fig. 3 stripped of all IO
signals. By direct calculations unfolding (8)–(10) we find that the sequence
[[cC]]1abs , [[cC]]2abs , [[cC]]3abs , . . . has the limit solution

wcetabs(CD) = 0:14:14:16ω wcetabs(C0) = 0:1:1:3ω wcetabs(C1) = 0:0:4ω.

From this we get the approximation wcet(cC) ≤ wcetabs(cC) where wcetabs(cC) =
wcetabs(CD) ⊕ wcetabs(C0) ⊕ wcetabs(C1) = 0:14:14:16ω. Solving the equa-
tion system for wcetabs(S) amounts to computing the longest path, between
all reachable states for a given tick. Let reachable(M,n) =df {S ∈ states(M) |
wcetabs(S)(n) ≥ 1} be all of M ’s reachable states in tick n. One can show that
wcetabs(S)(n+1) is the maximal length of any internal path of M starting in any
state in Rn = reachable(M,n) and ending in S. This is computable in polynomial
time. However, determining the sequence of subsets R0, R1, R2, . . . reachable in
each tick incurs a potential combinatorial explosion. In principle, every subset of
states can occur as the set Rn. As we increase the tick count, exponentially many
such state combinations may appear. Hence, it is not clear if the initial transient
part of a cost series wcetabs(s) is polynomially bounded for general IO-BTCA.
However, we can show it is in PTIME for the special automata generated from
SCCharts such as Enabled. The special feature is that the initial states CD,
BD, AD (in fact all states) have self loops in which the environment can idle
the automaton for as many ticks as it wants. As a consequence, the reachability
of a state is monotonic. We call these patient IO-BTCA.

Tick alignment abstraction. For general IO-BTCAs a polynomially solvable
WCET problem is obtained if we not only abstract from signals but also from
the tick alignment of costs. This is a single worst case value wcetabs(S)[1] ∈
N∞ over all ticks. First consider that tick(wcetabs(S))[1] = 1 iff S is reach-
able from the initial state by any path and tick(wcetabs(S))[1] = 0 other-
wise. Thus, tick(wcetabs(S))[1] is computable in polynomial time. The laws
(A ⊕ B)[1] = A[1] ⊕ B[1] and (d
 A)[1] = d
 A[1] permit us to replace all
references to tick(wcetabs(S))[1] by 0 or 1 in equation system for [[M]]abs . The
result is merely a max-plus equation system in variables wcetabs(S)[1] ∈ N∞
which can be solved by a max path algorithms in polynomial time. This is the

206 M. Mendler et al.

same as finding the max cost internal path from the set of reachable states.
From the Eqs. (8)–(10) we obtain wcetabs(CD)[1] = 16, wcetabs(C0)[1] = 3
and wcetabs(C1)[1] = 4. The polynomial efficiency is achieved by solving the
abstracted equation system in N∞ rather then solving the original system over
N∞[X] and then abstracting the result. On the other hand, of course, the
tick aligned solutions wcetabs(CD) = 0:14:14:16ω, wcetabs(C0) = 0:1:1:3ω and
wcetabs(C1) = 0:0:4ω are more informative and more precise in compositional
WCET analysis.

Environment abstraction. This leads us to our second level of abstraction:
Let wcetloc(S) be the worst case under arbitrary environment signals. In gen-
eral, wcet(S) ≤ wcetloc(S) ≤ wcetabs(S). Computing wcetloc(S) is the same as
solving a max cost executable path problem for each of the sets reachable(M,n)
of reachable state combinations, where we check sensitisation conditions arising
from the transition guards. In a worst-case environment there is no coupling
between ticks and so this satisfiability problem can be solved independently at
every tick. In summary, for each tick n the feasibility of a state S being a possible
starting state S ∈ reachable(M,n) can be expressed by a logical expression in a
polynomial number of Boolean signal statuses. The key observation again is that
for patient IO-BTCA, even under signal control, the reachable set is monoton-
ically increasing reachable(M,n) ⊆ reachable(M,n + 1). More concretely, by
induction, if we know the set reachable(M,n) of states reachable in tick n, then
these are the feasible start states of tick n + 1. We replace each occurrence of
wcet(S)(n + 1) in the system equations of M by 1 if S ∈ reachable(M,n) and
by 0 otherwise. We then search for the maximal cost feasible path beginning in
any state from reachable(M,n), taking into account the signals conditions and
the signals emitted by M in this tick. Solving the Boolean satisfiability condi-
tions can be done in NPTIME. In the other direction, it is easy to show that
the computation of wcet(S) is NP-hard. Any SAT can be coded into a patient
IO-BTCA using only immediate transition so that wcet(S) = 1 if the SAT is
satisfiable and wcet(S) = 0, otherwise.

Contextual dependency. The sequence wcetloc(cC) is obtained by local analy-
sis and it describes the worst-case under all possible environments. For spe-
cific environments the cost may be smaller. For instance, if en and dis are
both constant true, expressed by the condition en ∧ dis = �ω, then cC cycles
along transitions between CD and C0 in each tick. This yields the cost series
wcetcond(CD) = 0:14ω ≤ wcetloc(CD) = 0:14:14:16ω.

5.2 The WCET of a Composition of IO-BTCAs

The cost series wcet(Enabled) =
⊕

i≥0 wcet(Enabled)(i)Xi of the node Enabled
in Fig. 1b is the parallel composition (tick-wise addition) of the constituent
automata’s tick cost series,

wcet(Enabled) = wcet(hC) ‖ wcet(cA) ‖ wcet(cB) ‖ wcet(cC). (11)

A Novel WCET Semantics of Synchronous Programs 207

Following the previously defined worst case in an arbitrary environment wcetloc ,
we calculate those abstracted series wcetloc(hC) = 0:10ω, wcetloc(cA) =
0:2:16:40ω, wcetloc(cB) = 0:2:17ω and wcetloc(cC) = 0:14:14:16ω. For patient
IO-BTCA the length of these sequences is polynomial.

Modelling a max-plus approach. At the top-level we are not actu-
ally interested in the cost series but merely its worst-case wcet(Enabled) =
wcet(Enabled)[1] over all ticks. Instead of computing the parallel composition
of the time sequences in N∞[X] we may compose their worst-case values in N∞.
Specifically,

wcetloc(Enabled)[1]
= (wcetloc(hC) ‖ wcetloc(cA) ‖ wcetloc(cB) ‖ wcetloc(cC))[1]
≤ wcetloc(hC)[1]
 wcetloc(cA)[1]
 wcetloc(cB)[1]
 wcetloc(cC)[1]
= 10 + 40 + 17 + 16 = 83.

This is the so-called max-plus approach [19], which takes sum of the maximal
tick cost from each parallel component. This calculation can be done in linear
time but incurs a loss of precision in general.

Modelling a tick alignment sensitive approach. Both the locally abstracted
series wcetloc(M) and their collapsed worst case wcetloc(M)[1] suffer from one
major deficiency compared to the exact specification wcet(M): The local view
does not account for tick alignment. The worst case depends on the environment
sensitising in one and the same tick all the transitions whose cost adds up to the
value wcetloc(M)[1]. But in a parallel system the environment of M is constrained
and may not be able to exercise the sequence of sensitisations to reach the worst
case configuration. In order to get tighter WCET results practical approaches
have used full state space exploration [1], context-sensitive WCET analysis [15]
or iterative narrowing using flow facts generated by model checking [20], or tick
expressions [24]. All these approaches depend on preserving some or all of the
sequencing information of the IO-BTCAs and their synchronisation via signals
to detect incompatibility of local states or transitions.

Indeed, for Enabled in Fig. 1b to exhibit the worst case wcetloc(Enabled)[1] =
83 we must activate in the same tick the transitions Disable → Enable from hC,
C1 → C0 → CD from cC, B0 → B1 in cB and A1 → A2 in cA. However, these
transitions do not align. As indicated by the horizontal tick lines in Fig. 3, it is
not possible for the environment of Enabled to drive the automata so the states
DisableC , A1, B0 and C0 become simultaneously active in the same tick.

Practically, let us define clk(S) = �ω
 wcet(S) as the clock of S giving full
reachability information for a state S across all ticks and depending on all signals.
If clk(S)(n) = ⊥ = −∞ then S is not reachable in tick n, while if clk(S)(n) =
� = +∞ then S is reachable. We intersect the two clocks clk(DisableC)∧clk(A1)
and use the recursive definitions from the specification of hC and cA to find that
clk(DisableC) ∧ clk(A1) = ⊥ω, i.e., both clock are incompatible.

We exploit this pairwise incompatibility information to run a second iteration
of our local analysis, this time however, tracking the states DisableC and A1.

208 M. Mendler et al.

We use wcetA1(S) which retains information on the dependency on (the clock
of) state A1. It is more informative than wcetabs(S) but less informative than
wcet(S). Recalculating the abstraction for the full program

wcet(Enabled) ≤ (wcetDisableC (hC) ‖ wcetA1(cA)) ‖ wcetabs(cB) ‖ wcetabs(cC)
= 0:12:26:41ω ‖ 0:2:17ω ‖ 0:14:14:16ω = 0:28:57:74ω

yields a tighter worst-case abstraction than the max-plus result 0:28:57:83ω.

6 Related Work

The algebraic formulation of [19] for Esterel is closest to our approach. How-
ever, this does not consider the issue of tick alignment and signal dependencies.
Logothetis et al. [16] show how to instrument the compilation process of Quartz
for back-annotations of WCET timing into timed Kripke structures (TKS) mod-
elling synchronous programs. However, timing semantics is not integrated into
the algebraic semantics unlike our model.

Our work may be seen in the tradition of data-flow analyses for general imper-
ative programs. Blieberger [6] presents WCET analysis using generating func-
tions in plus-mult linear algebra considering loop counts. However, this semantics
is not developed for signal dependencies and tick alignment, unlike the proposed
approach. Max-plus algebra is also used for streaming applications to model
actor firing times and execution dependencies [12]. Those techniques have been
used, among other things, to solve throughput evaluation. The throughput of a
streaming application is comparable to the WCET of a synchronous language.
More recently, those techniques were extended using iterative narrowing [13]
that, we believe, follows a similar direction as the iterative feasibility analysis
we presented in Sect. 5.2.

Unlike the above references, it is essential to also consider architectural mod-
elling for effective timing analysis. In our framework, we have assumed the pre-
cision timed architectures [10]. These architectures are non-speculative and have
enabled us to focus on the nuances of synchronous programming instead of archi-
tectural modelling. However, our formulation could be extended in the future,
along the lines of [7,8]. UPPAAL is used for precise micro-architectural mod-
elling, including the modelling of architectures with timing anomalies, as illus-
trated in [7]. These works consider a network of timed automata for such models,
unlike a network of IO-BTCAs considered in our semantics. Hence in our for-
mulation it will be sufficient to consider model checking using bounded integers
rather than real-valued clocks, as illustrated already in [21].

7 Conclusions

Design of safety-critical systems need both functional and timing correctness.
Synchronous languages offer a deterministic concurrency model that is ideal for

A Novel WCET Semantics of Synchronous Programs 209

the design of such systems. To ensure timing correctness, several WCET analy-
sis techniques have been developed. However, the study of timing correctness,
from a semantic viewpoint is lacking, which could provide a sound basis for
the design of WCET analysis tools. This paper, for the first time, develops a
comprehensive semantics of synchronous languages using min-max-plus Gödel-
Dummett algebra. The proposed semantics is compositional and may be used
to describe the WCET behaviour of an individual thread (an automaton) or the
composition of a set of threads. To facilitate precise analysis, the approach for-
malises the modelling of signals and the signal dependency between the threads.
It also models, precisely, the tick-based lock-step execution of the threads, by
formalising the tick alignment problem [21]. While the semantics enables precise
approaches for analysis, it also facilitates abstractions and over-approximations.
By abstracting a given feature, the designer may trade-off precision for scal-
ability. Thus, the approach paves the way for the design of suitable analysis
algorithms for WCET computation, that are founded on these sound semantics.
In the near future, we will develop timing analysis tools for the SCCharts lan-
guage by leveraging the developed semantics. We will also consider architectural
modelling to support complex pipelines and memory architectures, unlike the
PRET approach followed in this proposal. Another direction of future research
would involve operational semantics of IO-BTCA structures and notions of sim-
ulation and equivalence among these structures unlike the fps-based semantics
developed here.

Acknowledgment. We thank our anonymous reviewers and Insa Fuhrmann for
the constructive feedback. We acknowledge the Precision-Timed Synchronous Reac-
tive Processing (PRETSY2) project by the German Research Foundation DFG (ME
1427/6-2, HA 4407/6-2). Partha Roop acknowledges the research and study leave
from Auckland University. Bruno Bodin acknowledges funding from the EPSRC grant
PAMELA EP/K008730/1.

References

1. Andalam, S., Roop, P.S., Girault, A.: Pruning infeasible paths for tight wcrt analy-
sis of synchronous programs. In: Design, Automation Test in Europe Conference
(DATE), pp. 1–6, March 2011

2. André, C.: Synccharts: A visual representation of reactive behaviors. Rapport de
recherche tr95-52, Université de Nice-Sophia Antipolis (1995)

3. Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronisation and Lin-
earity. Wiley, Chichester (1992)

4. Benvenist, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

5. Berry, G.: The foundations of Esterel. In: Proof, Language, and Interaction, pp.
425–454 (2000)

6. Blieberger, J.: Data-flow frameworks for worst-case execution time analysis. Real-
Time Syst. 22(3), 183–227 (2002)

7. Cassez, F., Béchennec, J.-L.: Timing analysis of binary programs with UPPAAL.
In: ACSD, pp. 41–50 (2013)

210 M. Mendler et al.

8. Dalsgaard, A.E., Olesen, M., Toft, M., Hansen, R.R., Larsen, K.G.: Metamoc:
modular execution time analysis using model checking. In: OASIcs-OpenAccess
Series in Informatics, vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2010)

9. Dummett, M.: A propositional calculus with a denumerable matrix. J. Symbolic
Logic 24, 97–106 (1959)

10. Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In:
Proceedings of the 44th Annual Design Automation Conference, pp. 264–265. ACM
(2007)

11. Fuhrmann, I., Broman, D., Smyth, S., von Hanxleden, R.: Towards interactive tim-
ing analysis for designing reactive systems. Reconciling performace and predictabil-
ity (RePP 2014) satellite event of ETAPS 2014. Technical report, Also as Technical
report: EECS Department, University of California, Berkeley, UCB/EECS-2014-26
(2014)

12. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow
networks. In: CODES+ISSS 2010, Scottsdale, Arizona, USA, ACM, October 2010

13. De Groote, R., Hölzenspies, P.K.F., Kuper, J., Smit, G.J.M.: Incremental analysis
of cyclo-static synchronous dataflow graphs. ACM Trans. Embed. Comput. Syst.
(TECS) 14(4), 68 (2015)

14. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

15. Ju, L., Huynh, B.K., Chakraborty, S., Roychoudhury, A.: Context-sensitive timing
analysis of Esterel programs. In: Proceedings of the 46th Annual Design Automa-
tion Conference, DAC 2009, pp. 870–873. ACM, New York, NY, USA (2009)

16. Logothetis, G., Schneider, K., Metzler, C.: Generating formal models for real-time
verification by exact low-level runtime analysis of synchronous programs. In: Inter-
national Real-Time Systems Symposium (RTSS), pp. 256–264. IEEE Computer
Society, Cancun, Mexico (2003)

17. Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language.
Comput. Lang. 27(1), 61–92 (2001)

18. Mendler, M., Roop, P.S., Bodin, B.: A novel wcert semantics of synchronous pro-
grams. Technical report, University of Bamberg, Nr. 101 (2016)

19. Mendler, M., von Hanxleden, R., Traulsen, C.: WCRT algebra and interfaces for
Esterel-style synchronous processing. In: Proceedings of the Design, Automation
and Test in Europe Conference (DATE 2009), Nice, France, April 2009

20. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F., Asavoae, M.: Tim-
ing analysis enhancement for synchronous programs. Real-Time Syst. 51, 192–220
(2015)

21. Roop, P.S., Andalam, S., von Hanxleden, R., Yuan, S., Traulsen, C.: Tight WCRT
analysis of synchronous C programs. In: Proceedings of the 2009 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems -
CASES 2009, p. 205 (2009)

22. van Dalen, D.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. III, pp. 225–339. Reidel, Dordrecht (1986). Chap. 4

23. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado,
J., Mercer, S., O’Brien, O.: SCCharts: sequentially constructive statecharts for
safety-critical applications. In: Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2014). ACM, Edinburgh,
UK, June 2014

24. Wang, J.J., Roop, P.S., Andalam, S.: ILPc: a novel approach for scalable timing
analysis of synchronous programs. In: CASE 2013 (2013)

Worst-Case Execution Time Analysis
for Many-Core Architectures with NoC

Stefanos Skalistis(B) and Alena Simalatsar

École Polytechnique Fédérale de Lausanne, Station 14, 1015 Lausanne, Switzerland
{stefanos.skalistis,alena.simalatsar}@epfl.ch

Abstract. The optimal deployment of data streaming applications onto
multi-/many-core platforms providing real-time guarantees requires to
solve the application partitioning/placement, buffer allocation, task map-
ping and scheduling optimisation problem using the tasks Worst-Case
Execution Time (WCET). In turn, task WCET varies due to interfer-
ences that tasks experience when accessing shared resources, which vary
depending on the solutions of the optimisation problem. To break this
cyclic dependency we propose a detailed interference-based method that
first over-approximates WCET based on the solution for application par-
titioning/placement and then tightens it by pruning out the interferences
from tasks not overlapping in memory access and time. We prove that
the derived bounds are safe. We have found that interferences on average
amount to 10% ofWCET, and were able to improve the latency-guarantee
up to 34%.

1 Introduction

In the last several years there has been an increasing demand for novel method-
ologies for safe and efficient deployment of data-streaming applications into
many-core architectures. Many-core architectures, having up to several hundreds
of processing elements, are often organised as a set of clusters interconnected with
a network-on-chip (NoC), with each cluster implementing a multi-core architec-
ture. In many-core architectures, any data-exchange between two processing
cores residing on the same cluster is performed through a shared memory, simi-
larly to multi-core architectures. On the contrary, exchanging data across clus-
ters is carried out by copying data from the source cluster shared memory to the
target cluster memory, utilising the NoC.

The optimal deployment of a data streaming application, i.e. applications
with data-dependent tasks which process data and exchange them via commu-
nication buffers, on a many-core architecture is a multi-criteria optimisation
problem. To provide real-time guarantees on task deployment such optimisation
must be based on the estimation of safe and tight bounds for the tasks’ WCET.
We consider that the WCET of such tasks is composed of (i) their Worst-Case
Computation Time (WCCT) when executed in isolation, which includes the
time to fetch/deposit data, plus (ii) the delay due to interferences from other
tasks when accessing shared resources, i.e. memory banks, buses and/or the
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 211–227, 2016.
DOI: 10.1007/978-3-319-44878-7 13

212 S. Skalistis and A. Simalatsar

NoC. However, computing the interferences requires the knowledge of (i) the
task scheduling and mapping into cores, and (ii) the communication buffers
mapping into memory banks. This results in a vicious cycle, with WCETs and
the solutions of the optimisation problem depending on each other. To address
this problem some approaches, e.g. [8], assume that two parallel tasks sharing
a resource at any time of execution will definitely interfere. In [14] the WCET
is acquired by static analysis tools such as aiT [1]. Approaches like [12] allocate
resources such that there are no interferences at all. The first two approaches can
largely overestimate the WCET, while the third one may result in undermining
the overall performance.

In this paper we propose a simple and accurate interference-based WCET
analysis of tasks for a data steaming application deployed on a many-core archi-
tecture. Considering that breaking the vicious cycle is not the main focus of
this paper, we only briefly present an approach to solve the multi-criteria opti-
misation problem so as to outline our interference-based WCET analysis. The
multi-criteria optimisation problem is decomposed into two stages partition-
ing/placement and buffer allocation, task mapping and scheduling the solutions
of which we acquire, using methods of [15]. There, the problem is formulated in
terms of constraints and given to an SMT solver to provide solutions. Given the
solution of the partitioning/placement, derived using the WCCT, we compute a
safe over-approximation of the WCET of every task by accounting for all pos-
sible interferences. The over-approximated WCETs are then used to derive the
buffer allocation and task mapping and scheduling. Subsequently, we use these
solutions to tighten task WCET, by excluding interferences from tasks that do
not overlap in space, i.e. memory and bus arbiters, and time. The scheduling is
then updated to account for the tighter WCET, by adjusting the starting time
of tasks but preserving the order of task execution. We prove that the derived
WCET bound is safe. As an example of a many-core architecture in this paper
we consider the architecture of Kalray MPPA-256 [10].

The main contribution of this paper is an accurate interference-based WCET
analysis for many-core architectures with NoC, applied to break the vicious cycle
between WCET estimation and buffer allocation, task mapping and scheduling.

The rest of the paper is organised as follows. Section 2 discusses the related
work. Section 3 presents the models, functions and notation used throughout
the paper. Section 4 presents the WCET analysis applied for the Kalray MPPA-
256 architecture [10], and the iterative method to tighten the WCET bounds is
presented in Sect. 4.4. The evaluation of the approach is presented in Sect. 5.

2 Related Work

The evolution from single core to multi- and many-core architectures has raised a
question of optimal use of shared resources, e.g. processing cores, memories, buses
and NoCs. Thus, optimal deployment of tasks with data dependencies, onto a
many-core platform is regarded as a multi-criteria optimisation problem [5,9,11,
15,16]. We will focus on works that, similarly to ours, consider that the WCET
of a task is composed of (i) their WCCT plus (ii) the delay due to interferences.

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 213

In [13] the authors propose an ILP formulation of the task scheduling and
mapping problem for multi-core architectures with caches. They consider differ-
ent communication times for data exchange between the tasks mapped to the
same core (e.g. when communication happens through caches) and two different
cores (e.g. with the access to shared memory). In [3] the authors are present-
ing an upper bound estimation of the WCET for a memory-centric architecture
by proposing a memory-aware execution to compute the delays due to memory
contention. They consider a hierarchical memory organisation with one shared
memory block and dedicated caches for each processing element (PE), where
groups of PEs are organised in a small number of clusters. The access to the
shared memory is realised through Data Memory Access (DMA) units, while
the access delays are derived experimentally for different sizes of memory blocks.
The approaches of [3,13] are suitable for architectures with a small number of
clusters having simple inter-cluster communication, e.g. TI Keystone IITM [17].
There have been works dedicated to WCET analysis for the tasks with data
dependencies deployed onto a many-core architecture. In [7] authors present the
approach to compute the WCET of tasks running on Kalray MPPA-256 plat-
form by assuming that the maximum number of interfering tasks when accessing
the shared memory within a cluster is equal to the number of cluster cores; this
assumption does not hold as we have noticed in our experiments.

In [8] the authors are presenting a theory for mixed-criticality scheduling on
cluster-based many-core architectures with shared resources developed within the
CERTAINTY project. To derive a feasible schedule the authors are estimating
the Worst-Case Response Time (WCRT) of tasks, in our paper called WCET.
The tasks are scheduled with the FTTS mixed-criticality scheduling policy that
repeats over a hyper-cycle divided into frames and sub-frames, the beginning of
which is synchronised among each core of a cluster. Each sub-frame contains only
the tasks of the same criticality level, which ensures that resource contention may
happen only among the tasks with the same criticality level. The tasks’ WCRT,
for the same level of criticality, is composed of their worst-case execution time
(i.e. WCCT in our paper), the total delay due to memory accesses with no inter-
ference from other tasks, and the worst-case delay encountered due to contention
on shared resources. However, the approach to the computation of such delays
depends on the application and the architecture models, the mapping of the tasks
and buffers onto processing elements and memory blocks, respectively, as well
as on the set of considered shared resources. In [8] the authors are considering
a mixed-criticality periodic task set that resembles the Cycle-Static Dataflow
(CSDF) model [2] enhanced with criticality levels. Our model considers one iter-
ation with no criticality levels but with a detailed representation of the communi-
cation mechanism over the NoC. Also, in addition to the collisions when accessing
shared memory blocks accounted in [8], we are considering the collisions happen-
ing at shared buses. Moreover, we are presenting a mechanism of tightening the
upper bound of the WCET by reducing the set of potentially interfering tasks
using the task scheduling, pruning out the tasks non-overlapping in time, which
is considered highly complex for the models used in [8].

214 S. Skalistis and A. Simalatsar

3 Preliminaries

In this section we present the models for the application and the many-core
platform considered in our analysis with the set of functions defining application
partitioning/placement, used to derive the unified system model, and mapping
and scheduling on a platform that serves as an input to our analysis.

In the rest of the paper, for any tuple, e.g. Y = (A,B,C), we will use a
superscript notation to denote its respective components, e.g. AY , BY , and CY .
We will also denote with N0 (resp. N+) the set of natural numbers that contains
(resp. does not contain) zero.

3.1 The Platform Architecture Model

We define a many-core architecture as a set of identical multi-cores, hereafter
clusters, interconnected via a NoC. Within a cluster, processing cores exchange
data through a shared memory, hereafter cluster memory. The data transfer
between cores located on different clusters is handled by the NoC. We will call
the data exchange between processing cores on different clusters as inter-cluster
and between cores on the same cluster as intra-cluster communication. Similarly
to [15,16] we model the platform architecture as:

Definition 1 (Platform architecture model). A platform architecture model
is a tuple P = (X,K,M,N) where:

– X is the set of clusters
– K is the set of processing cores per cluster
– M is the set of memory banks per cluster
– N is the set of NoC channels of a NoC interface.

We assume that each cluster has one NoC interface connected, with multiple
channels, to a single dedicated NoC router [4]. Notice that the set of all cores
(resp. NoC channels) in the architecture is X × K (resp. X × N).

Memory Access Model. The cluster memory is organised in several sets of
memory banks where each set is arbitrated by a single arbiter accessible through
data buses, the access to which is also arbitrated. Thus for any memory opera-
tion, we consider two arbitration points: (i) one before the data bus that connects
a core to the set of memory banks and (ii) another one before a set of memory
banks arbitrated by a dedicated arbiter. The data fetch and deposit from/to
the memory is performed as sequence of word-by-word memory operations. A
single-word memory operation is called a request. The memory requests delays
for a task with no interference in any of the arbiters is accounted in the WCCT
of the task. However, if a request interferes with other requests either in the
bus or memory arbiter, extra delays will be introduced due to conflicts, which
is proportional to the number of conflicting requests. Since the extra delays are
caused by the interference at the arbitration points, we consider each set of
memory banks coordinated by the same arbiter as a single memory bank.

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 215

Definition 2 (Arbitration constants). The following single-conflict arbitra-
tion constants are defined in cycles:

– adBus ∈ N+ is the arbitration delay for a request to access a shared bus
– adMem ∈ N+ is the arbitration delay for a request to access a memory bank

A single-conflict arbitration delay is the worst-case delay that any request
may incur if it conflicts with only one other request. If n + 1 requests conflict
at the same time, then in the worst-case any request will suffer n times the
single-conflict arbitration delay.

The NoC Model. The NoC is composed of a set of routers, connected in a
mesh topology. Each cluster has a dedicated NoC interface [4] with a dedicated
router. Each NoC interface has several channels handling multiple data-flows in
parallel and two dedicated elements to transmit and receive data, respectively,
thus avoiding interference between these two processes.

In our model the data transfer between two clusters occurs in three stages.
The first stage is initialisation, when the NoC interface is configured with the
memory addresses from where to fetch/deposit the data and the NoC channel
that should be used for the transfer. During the initialisation phase, both the
core and the NoC interface are considered to be “busy” for a constant amount of
time, called initialisation delay. The second stage is the transfer, during which
the NoC channel fetches the data, forms the packets and forwards them to the
target cluster over the NoC. The NoC interface of the target cluster receives the
data and places them in the memory. The transfer time depends on the data
size and distance between two clusters. The third stage is finalisation when the
core that initialised the transfer polls the NoC interface to check if all the data
have been transferred, so as to release the memory space occupied by the data.
The act of polling, if it is non-blocking, keeps both processing core and the NoC
interface “busy” for a constant time, called polling delay ; otherwise, the core is
blocked until all data are injected into the NoC, in addition to the polling delay.

This way, the NoC model accounts for several platform-dependent constants
related to communication over the NoC, which are considered in our analysis.
For two clusters x, x′ ∈ X, we define the distance ‖x, x′‖ as the minimum number
of routers that a packet, sent from x to x′, has to traverse.

Definition 3 (NoC constants). For a platform architecture model P , we
define the following timing constants (in cycles):

– idNoC ∈ N+ is the initialization delay of the NoC interface
– dpb

‖x,x′‖
NoC ∈ N+ is the delay per byte for transferring data between two clusters

with distance ‖x, x′‖
– pdNoC ∈ N+ is the NoC interface polling delay

We assume, that these values are known and bounded for a platform P .

216 S. Skalistis and A. Simalatsar

3.2 Application Model

An application composed of a set of computation tasks with dependencies is
modelled as a task graph that is a directed acyclic graph (DAG) G = (V,E),
with V being a set of tasks and E a set of dependencies among these tasks. The
tasks communicate through bounded FIFOs, one for each e ∈ E of the graph.

Definition 4 (Annotated task graph). An annotated task graph is a tuple
(V,E, d, σ) where (V,E) is a task graph and:

– d : V → N+ is the delay function, which represents the execution time d(v)
for a task v ∈ V when executed in isolated environment with no interference.

– σ : E → N0 is the data-size function which represents the amount of data, in
words, sent from the source to the target task, that is for e = (v, v′) ∈ E, σ(e)
denotes the amount of data produced by v and consumed by v′, respectively.

An application is an annotated task graph A = (VC , EC , dC , σC), containing
only computation tasks (V A

C) and their dependencies (EA
C).

3.3 Application Deployment onto the Platform

The deployment of an application onto a platform is the mapping of tasks to
processing cores and their dependencies to communication elements or memory
blocks. For tasks placed on different clusters which communicate through FIFOs,
we duplicate the FIFOs, one for each clusters, and introduce communication
tasks that handle data transfer over NoC. We will call the unified system model,
this communication-aware model which accounts for system computation and
communication behaviours.

Given an application model A and a placement function p, we derive a unified
system model (see Fig. 1).

Deriving the Unified System Model. To derive the unified system model
the solution to the partitioning/placement stage is required. Given a task graph
G and a platform model P we denote with p : V → X, the placement function
that assigns tasks to clusters. For an application model A, a platform model P ,
and a placement function p, let EA

in (resp. EA
ex) denote the data-exchange among

tasks residing in the same cluster (resp. in different clusters):

EA
in = {(v, v′) ∈ EA | p(v) = p(v′)}, EA

ex = E \ EA
in

According to our NoC model, for two tasks (v, v′) ∈ EA
ex, we denote with

iv,v′ , tv,v′ , and fv,v′ new communication tasks performing the NoC interface
initialisation, the data transfer and the NoC interface polling, respectively. Let
I, T and F denote their full sets, respectively. Since there exists only one NoC
interface per cluster, which can execute only one initialisation communication
task at a time, every per cluster projection of I, i.e. Ix as defined in Table 1,
must be totally ordered.

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 217

Table 1. Projections of sets and task graph G = (V, E)

Per cluster x Vx
def
= {v ∈ V | p(v) = x} Ex

def
= E ∩ (Vx)

2 Gx
def
= (Vx, Ex)

Per element ε Vε
def
= {v ∈ V | pμE(v) = ε} Eε

def
= E ∩ (Vε)

2 Gε
def
= (Vε, Eε)

⇒

Fig. 1. Application model (left) and corresponding unified system model (right).

Definition 5 (Unified system model). Given an application model A, a plat-
form model P and a placement function p, the system model is an annotated
task graph S = (V,E, d, σ), such that:

– V = V A
C ∪VT where V A

C is the set of computation tasks of the application and
VT = {iv,v′ , iv′,v, tv,v′ , tv′,v, fv,v′ | (v, v′) ∈ EA

ex} is the set of communication
tasks introduced for the data-exchange among clusters;

– E = EA
in ∪ ES

T ∪ ES
I , where ES

T = {(v, iv,v′), (iv,v′ , tv,v′), (tv,v′ , v′), (v′, iv′,v),
(iv′,v, tv′,v), (tv,v′ , fv,v′) | (v, v′) ∈ EA

ex} is the set of dependencies introduced,
among computation and communication tasks, by dependent computation tasks
placed on different clusters and ES

I = {(ii, ii+1) | ii, ii+1 ∈ Ix,∀i ∈ [1, |Ix| −
1],∀x ∈ X}, is a totally ordered set of dependencies for NoC initialisation
tasks for each cluster;

– The delay function d : V → N+ is defined as:

d(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dA(v) v ∈ V A,

idNoC v = iv1,v2 ,

dpb
‖p(v1),p(v2)‖
NoC ∗ σA(v1, v2) v = tv1,v2 ,

pdNoC v = fv1,v2 ;

for v1, v2 ∈ V A, such that (v1, v2) ∈ EA
ex;

– The data-size function σ : E → N+ is defined as:

σ(v, v′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σA(v, v′) (v, v′) ∈ EA
in,

σA(v1, v′) v = tv1,v′ ∧ (v1, v′) ∈ EA
ex,

σA(v, v1) v′ = iv,v1 ∧ (v, v1) ∈ EA
ex,

0 otherwise.

The unified system model is build based only on the solution of the appli-
cation partitioning and placement, which are computed using methods of [15]

218 S. Skalistis and A. Simalatsar

based on the WCCT of tasks. This model serves as an input to the first over-
approximations of the tasks’ WCET. The WCET tightening requires the solu-
tions for optimal buffer allocation or memory mapping and task mapping and
scheduling functions of the corresponding optimisation problem.

Given a unified system model S and a platform model P we denote with
μE : V → (K ∪ N) the task mapping function, which maps tasks to a platform
element, i.e. either processing cores or NoC channels. Given a placement function
p and the task mapping function μE , we derive the global task mapping function
pμE : V → X × (K ∪ N) as the product of p and μE .

With s : V S → N+ we denote the scheduling function which associates a start
time to each task, such that for each ε ∈ X × (K ∪ N) and each (v, v′) ∈ Eε,
the inequality s(v) + d(v) < s(v′) holds, since any platform element ε, i.e. core
or NoC channel, can execute only one task at any time.

4 Interference-Based WCET Analysis

To perform WCET analysis for a task, one needs to estimate the amount of
interferences introduced by other tasks when accessing shared resources, e.g.
buses, memory, NoC, etc. We distinguish two types of interference:

– Intra-cluster: where two tasks v, v′, either computation or communication,
placed to the same cluster compete for shared resources;

– Inter-cluster: where a computation task v and a transfer task t of different
clusters are trying to access the same memory bank.

Potentially, any pair of tasks v, v′ mapped on the same cluster can inter-
fere when simultaneous accessing the same data-bus and/or the same memory
bank. Therefore, the first WCET over-approximation is computed as the sum
of the tasks WCCT time and the delays caused by the over-approximation of
interference sets done based on the unified system model.

For a unified system model S and a task v ∈ V S , both its predecessors and
successors can not possibly interfere with v due to the data dependencies.

Definition 6. Given a task graph G = (V,E) and a task v ∈ V , we denote by
pred(v) (resp. succ(v)) its immediate predecessor (resp. successor) set and with
pred∗(v) (resp. succ∗(v)) its transitive closure.

Given a unified system model S, let Pv denote the set of tasks possibly
executed in parallel with v as:

Pover
v =

{
v′ ∈ V S \ v |v′ 	∈ pred∗(v) ∪ succ∗(v)

}

and Pover
v x = Pover

v ∩ V S
x its projection on cluster x ∈ X.

For a task v ∈ V S mapped onto a cluster x ∈ X, let the intra-cluster, i.e.
memory and bus, and inter-cluster interference sets of tasks potentially conflicting
with v on a memory bank and/or a bus Mover

v , Bover
v , and Cover

v , respectively, be:

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 219

Mover
v = {v′ ∈ Pover

v x } Bover
v = {v′ ∈ Pover

v x }
Cover

v = {tv1,v2 ∈ Pover
v ∩ (T \ Tx) | p(v2) = p(v)}

Notice that Cover
v does not include transfer tasks placed to the same cluster

as v, since the interference from them is accounted in the Mover
v and Bover

v sets.
From this point we analyse interferences for the Kalray MPPA-256 platform

and its arbitration policies, but can be adapted for other architectures as well.

4.1 Kalray MPPA-256 Architecture

The architecture of Kalray MPPA-256 consists of 256 processing cores grouped
in compute clusters each comprising 16 processing cores and 2MB of shared
memory, which consists of 16 independent memory banks organised in two sides,
left and right. The memory bank arbiter gives priority to requests received from
NoC (NoC Rx), while all other requests, e.g., from processing cores and NoC
transmit (NoC Tx), are arbitrated in a round robin fashion.

Processing cores are organised in pairs, each pair shares two data-buses, one
for each of the memory sides. This way, when one core of a pair accesses one
memory side and the other core of the same pair accesses the other memory side,
there is no conflict [6]. For instance, a request from a core k to memory bank m
will get an interference delay (i) due to the bus arbiter if the other core paired
with k is accessing a memory bank of the same side as m, and (ii) due to the
memory arbiter if any core or the NoC interface accesses memory bank m at the
same time (see Fig. 2).

Fig. 2. Compute cluster reference architecture with arbitration points (RR stands for
Round Robin and FP for Fixed Priority).

The NoC of the Kalray MPPA-256 performs the data transfers with guaran-
teed services by network traffic shaping that bounds the communication delay
under certain threshold for the amount of communicated data [6]. We consider
the packet transfer over NoC and packet handling by the NoC Rx as a unique
operation performed within the transfer tasks t.

Wemodel theKalray platformasP = (X,K,M,N), whereX = {x0, . . . , x15},
K = {pe0, . . . , pe15}, M = {m0, . . . ,m15}, and N = {c0, . . . , c7}. We also consider
the memory sides of Kalray as separate sets Left = {m2k|0 ≤ k ≤ 7} and Right =
{m2k+1|0 ≤ k ≤ 7}).

220 S. Skalistis and A. Simalatsar

4.2 Intra-cluster Interference

To identify the tasks interferences when accessing the same memory banks or
buses, we introduce the memory mapping and shared bus functions. Recall that
for a data-dependency e between two tasks, the amount of memory required
for that data exchange is σ(e). For clarity we assume that each data exchange
occurs using a single memory bank.

Given a task graph G = (V,E), let Eσ>0 be the set of non-zero data-size
dependencies; we denote with μM : Eσ>0 → M the memory mapping function
which associates a dependency, i.e. a buffer, to a memory bank. We extend the
memory mapping function for tasks, i.e. μM : V → 2M , such that it defines the
set of memory banks that a given task accesses to fetch or deposit data:

μM (v) =
⋃

e∈({v}×succ(v))∪(pred(v)×{v})
μM (e)

We also define the global memory mapping function pμM : V → 2X×M as the
product of p and μM .

Given a set of processing cores K and memory banks M , we define an archi-
tecture specific shared buses predicate sbus : K × K × M × M → B as:

sbus(k, k′,m,m′) =

{
1 same pair(k, k′) ∧ (m,m′ ∈ Left ∨ m,m′ ∈ Right)
0 otherwise,

where same pair(k, k′) is true iff k, k′ belong to the same processing pair, i.e.
pe0 and pe1, pe2 and pe3, etc.

Given the task and buffer mapping, i.e. solutions for pμE and pμM func-
tion, and sbus predicate we tighten the interference sets by excluding tasks not
interfering in space:

Pv = {v′ ∈ P over
v |pμE(v) 	= pμE(v′)}

Mv = {v′ ∈ Pvx | pμM (v) ∩ pμM (v′) 	= ∅}

Bv =
{

v′ ∈ Pvx

∣
∣
∣
∣

∀m ∈ μM (v),∀m′ ∈ μM (v′),
sbus(μE(v), μE(v′),m,m′) = 1

}

In the Kalray architecture, the memory arbiter allows to read or write only
one word at a time. Therefore, we introduce a function σ̃m(v) that defines the
number of times task v ∈ V S accesses memory bank m to read or write data:

σ̃m(v) =
∑

v′∈pred(v)∧pμM((v′,v))=m

σ(v′, v) +
∑

v′∈succ(v)∧pμM((v,v′))=m

σ(v, v′)

For two tasks v, v′ mapped to pe0, pe1 belonging to the same pair using the
same memory bank m the worst-case interference due to the bus (resp. memory)
arbitration is the sum of all the requests to banks of the same side (resp. to the
common memory bank) times the arbitration delay adBus (resp. adMem).

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 221

Definition 7 (Memory/Bus interference). Given a unified system model S
the memory interference function ifmem(v,V) defines the interference of task
v ∈ V S caused by taskset V ⊆ V S \ v on memory arbiters:

ifmem(v,V) = adMem ∗
∑

v′∈V

∑

m∈(pμM (v)∩pμM (v′))

min (σ̃m(v), σ̃m(v′))

Similarly, the bus interference function ifbus(v,V) defines the interference of
task v caused by taskset V on bus arbiters:

ifbus(v,V) = adBus ∗
∑

v′∈V

∑

m∈pμM (v)

∑

m′∈pμM (v′)

(
sbus(pμE(v), pμE(v′), m, m′)
∗min (σ̃m(v), σ̃m(v′))

)

For every v, the two functions are monotonically nondecreasing in V S \ v.

Based on Mv, Bv we can compute the maximum intra-cluster interference
for the execution of task v as the sum of ifmem(v,Mv) and ifbus(v,Bv). Appar-
ently this is still a safe over-approximation of the actual interference, since the
execution of some tasks in the memory and bus may not overlap in time.

4.3 Inter-cluster Interference

Inter-cluster interference occurs when a communication transfer task tv1,v2

placed on cluster x′ writes to the memory of cluster x thus interfering with
the tasks placed on cluster x. In Kalray MPPA-256, these write requests have
priority over any other request.

Similarly to Sect. 4.2, given the memory mapping function we exclude tasks
that do not interfere in space:

Cv = {tv1,v2 ∈ Cover
v | pμM (v) ∩ pμM (tv1,v2) 	= ∅}

Definition 8 (Communication interference delay). Given a unified sys-
tem model S the communication interference function ifcom : (v,V) defines the
interference of task v ∈ V S caused by taskset V ⊆ T \ Tp(v) on the memory
arbiter:

ifcom(v,V) = adMem ∗
∑

v′∈V

∑

m∈pμM (v)∩pμM (v′)

σ̃m(v′)

Using Cv we can compute the inter-cluster interference as ifcom(v, Cv), which
is an over-approximation that will be improved in Sect. 4.4

4.4 Deriving Tight WCET Estimations

For a task v we can derive its WCET, i.e. dwc(v), by computing the delay due
to interferences with other tasks and adding them to the tasks WCCT, i.e. d(v).

222 S. Skalistis and A. Simalatsar

For a task v ∈ V S , given the Mv, Bv, Cv, the corresponding memory, bus
and communication-induced memory interference sets, respectively, we compute
the WCET of v, similarly to [7,8], as:

dwc(v)
def
= d(v) + ifmem(v,Mv) + ifbus(v,Bv) + ifcom(v, Cv) (1)

Prior to the solutions of task mapping and scheduling, we acquire the WCET
over-approximation of task v, denoted as dover

wc (v), by applying Eq. 1 using the
interference sets Mover

v , Bover
v and Cover

v .
To tighten this WCET estimation, given a solution of task mapping and

scheduling, we reduce the interference sets by excluding tasks that do not overlap
(i) in space, using the interference sets Mv, Bv and Cv established in the previous
sections, and (ii) in time using the scheduling function s. We consider that the
execution of tasks v and v′ overlaps in time if the task v′ start or ends within the
execution of v and vice versa, which is formalised with the following predicate:

ini(v, v′) = max (s(v), s(v′)) ≤ min
(
s(v) + di

wc(v), s(v′) + di
wc(v

′)
)

This way we introduce an iterative method to improve the initial interference
sets. For every task v ∈ V S , let Mi

v, Bi
v, Ci

v be the corresponding interference
sets at the i-th iteration; we can calculate the worst-case delay time di

wc(v) by
applying Eq. 1 to those sets.

Starting from the first iteration we can compute, the updated interference
sets for every task v ∈ V S according to the following equations:

Mi+1
v = Mi

v \ {v′ ∈ Mi
v | ini(v, v′)} M0

v = Mv

Bi+1
v = Bi

v \ {v′ ∈ Bi
v | ini(v, v′)} with B0

v = Bv

Ci+1
v = Ci

v \ {v′ ∈ Ci
v | ini(v, v′)} C0

v = Cv

The method iterates until it converges, that is when none of the sets is updated,
yielding the reduced interference sets Mtight

v , Btight
v and Ctight

v for any task
v ∈ V S . Applying Eq. 1 using these interference sets we acquire the tighetened
WCET dtight

wc (v) for each task v ∈ V S .

Lemma 1. At each iteration, only non-interfering tasks are excluded and the
interference sets do not increase in size.

Proof. Two tasks v, v′ can interfere iff their execution overlaps. By definition
of the in predicate only non-overlapping, and thus non-interfering tasks, are
excluded from the interference sets. Also, since the method does not update the
schedule, at every iteration each set either remains the same or it is reduced. ��
Theorem 1 (Convergence). The iterative method will eventually converge.

Proof. Since interference sets do not increase in size, the method will converge. ��
Lemma 2. For any task v ∈ V S at iteration i, the WCET estimation of task v
di

wc(v) is less than or equal the WCET di−1
wc (v) at the previous iteration.

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 223

Proof. Lets assume that there exists a task v ∈ V S such that di
wc(v) > di−1

wc (v);
then by applying Eq. 1 we deduce that at least one of the following holds:

ifmem(v,Mi
v) > ifmem(v,Mi−1

v)

ifbus(v,Bi
v) > ifbus(v,Bi−1

v)

ifcom(v, Ci
v) > ifcom(v, Ci−1

v)

By monotonicity of the ifmem, ifbus and ifcom we conclude that either Mi
v ⊃

Mi−1
v or Bi

v ⊃ Bi−1
v or Ci

v ⊃ Ci−1
v holds, which contradicts with Lemma 1. ��

Theorem 2 (Safety). The iterative method is safe, that is for every task v ∈
V S, the actual task execution time dact(v) is less than or equal to dtight

wc (v) which
is less than or equal to dover

wc (v).

Proof. For any task v ∈ V S , since dover
wc (v) is a safe over-approximation, implies

that dact(v) ≤ dover
wc (v) holds. Due to Lemma 2 we deduce that dtight

wc (v) ≤
dover

wc (v). We also know from Lemma 1 that the tight WCET dtight
wc (v) has not

excluded any interfering task v′. Therefore, dact(v) ≤ dtight
wc (v) which combined

with the previous statements leads to dact(v) ≤ dtight
wc (v) ≤ dover

wc (v). ��
Corollary 1 (Latency guarantee). Let L = max

v∈V S
(s(v) + d(v)) be the total

latency; the tighetened latency Ltight
wc is greater than the actual latency Lact and

less than the overestimated latency Lover
wc , i.e. Lact ≤ Ltight

wc ≤ Lover
wc .

For each solution of the SMT solver the scheduling function is updated to account
for the tight WCET, such that the tasks’ starting time is updated, without
introducing new interference, while preserving the order of tasks execution.

5 WCET Analysis Evaluation

To evaluate the applicability and benefits of the interference-based WCET analy-
sis method, we conducted experiments on a subset of StreamIt [18] benchmarks
and a JpegDecoder. The benchmark set used consists of 8 distinct applications,
differing in the amount of computation for a single element of input, mem-
ory requirements and access patterns, etc. Specifically, the sorting algorithms
(InsertionSort, MergeSort and CompCount) have complicated memory access
patterns, but are not as heavy computationally, compared to Beamformer, DCT
and JpegDecoder. We also modelled DCT in 10 different ways, to study the
impact of different levels of model parallelism.

The WCCT of tasks was obtained by profiling them on a single core of the
Kalray MPPA-256, with disabled caches and instruction prefetch buffer. We
chose to profile instead of using existing tools, to avoid the over-approximation
of interferences that such tools introduce. The arbitration constants used for
Kalray platform are summarised in Table 2.

To acquire solutions for the partitioning/placement and the mapping and
scheduling subproblems, we used the StreamExplorer tool [15], which provides

224 S. Skalistis and A. Simalatsar

Table 2. Kalray MPPA-256 constants

Memory arbiter adMem 7 cycles

Bus arbiter adBus 4 cycles

Initialization delay idNoC 1000 cycles

Polling delay pdNoC 100 cycles

near-optimal solutions. Each of the solutions, varying in size from 3 up to 200
tasks, is analysed with our method acquiring an over-approximated (dover

wc) and
a tight (dtight

wc) WCET for each task; for some solutions there was no interference
at all, due to small number of tasks being deployed, or solutions with low par-
allelisation resulting in almost serialised schedules. Such cases are not included
as they provide no significant information for our evaluation. In all figures the
benchmarks are in increasing order of average number of tasks.

To outline the impact of interference, in Fig. 3, for each benchmark, we present
the ratio between the delay due to interference (if tight) and the average WCET
(dtight

wc) over all tasks of a particular benchmark. The average delay over all bench-
marks is approximately 7 % if we exclude matrix multiplication (MatrixMult),
which raises the total average delay up to 10 %. The MatrixMult benchmark is a
special case, since it uses simple computational operations but requires that a sig-
nificant amount of data shared among tasks. This results in having many parallel
tasks accessing the same memory bank, and thus an increased number of mutual
interference. Based on that, we can conclude that in several cases the interference
introduced by the parallel execution of tasks can have a significant impact on the
worst-case execution time of tasks, especially in highly-parallel applications where
data can not be partitioned nicely.

Notice that, in Fig. 3, a set of the benchmarks (e.g. InsertionSort, Dct9, etc.)
have if tight/dtight

wc ratio equal to zero. This is the result of excluding sources
of interference through our iterative method, the impact of which is illustrated

Fig. 3. Interference/execution-time
ratio.

Fig. 4. Avg. % reduction of intefer-
ence.

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 225

Table 3. Average worst-case (over-approximated) latency of all benchmarks
(in Kcycles)

Benchmark Lat. Benchmark Lat. Benchmark Lat. Benchmark Lat.

Dct1 (6) 91 Dct6 (60) 177 InsertionSort (14) 64 Fft (96) 253

Dct2 (9) 153 Dct7 (62) 174 RadixSort (31) 138 BeamFormer (110) 159

Dct3 (29) 130 Dct8 (80) 147 Comp.Count (49) 106 MatrixMult (159) 1087

Dct4 (53) 106 Dct9 (86) 125 JpegDecoder (50) 516

Dct5 (55) 170 Dct10 (103) 190 MergeSort (82) 87

in Fig. 4, which shows the percentage of interference excluded from the original
over-approximation. In some cases, e.g. RadixSort (not included), our method
did not detect any interferences due to the absence of shared resources after the
application deployment onto the platform. In general, however, our approach was
able to exclude on average approximately 73 % of the initially over-approximated
interferences, with a peak of 100 % for all solutions of four benchmarks.

The number of sources of interference has a direct impact on the estimated
value of the WCET, thus a reduction of the interference sets leads to tightening
the WCET estimation. We observed on average a tightening of 5 % up to 10 % of
the tasks’ WCET. This is illustrated in Fig. 5, where the average WCET reduc-
tion, over all tasks of each benchmark, is presented. MatrixMult, which exhibits
the highest degree of interference, experiences the most dramatic reduction. In
most cases the results show that the count of interfering tasks is less than the
number of cluster elements (i.e. ≤ 15), but for MatrixMult up to 22.

Recall that after the WCET tightening we recompute the scheduling function
to account for WCET reduction. In Fig. 6, we compare the latency of the whole
application computed with the over-approximated WCET (the values of which
are in Table 3 for reference) to the latency computed with the tightened WCET.
We can observe that the latency improvement varies significantly. For some cases,

Fig. 5. Avg. % reduction of execution
time.

Fig. 6. Avg. % reduction of latency.

226 S. Skalistis and A. Simalatsar

e.g. MergeSort, even though there was noticeable reduction of tasks’ WCETs,
the latency improvement is still less than 1 %. Similarly, for all benchmarks, the
latency improvement is slightly lower than the WCET estimiation tightening.
This is expected since the WCET reduction can have at most a linear effect
on overall latency if those tasks are in the schedule’s critical path. This is an
important finding as it proves that a significant amount of interference has no
impact on the total guaranteed latency. Still, we achieve an average latency-
guarantee improvement of 5 %, up to 34 %, which is significant when providing
latency guarantees.

6 Conclusion

We have presented an accurate estimation of the upper bound for the WCET
of tasks for an application with data dependencies deployed onto a many-core
architecture. Our proposal yielded an improvement of the WCET upper bound
by 5 % to 10 % compared to the over-approximation methods commonly used
in literature. We can also conclude that excluding sources of interferences can
have significant impact on tasks’ WCET, most of which is also reflected in a
corresponding improvement of overall application latency.

Acknowledgment. The research work of this paper was funded by the Swiss Con-
federation through the UltrasoundToGo project of the Nano-Tera.ch initiative.

References

1. aiT: the industry standard for static timing analysis. http://www.absint.com/ait/
2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow.

IEEE Trans. Sig. Process. 44(2), 397–408 (1996)
3. Burgio, P., Marongiu, A., Valente, P., Bertogna, M.: A memory-centric approach

to enable timing-predictability within embedded many-core accelerators. In: 2015
CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST),
pp. 1–8, October 2015

4. Cota, É., de Amory, A.M., Lubaszewski, M.S.: Reliability, Availability and Ser-
viceability of Networks-on-chip. Springer Science & Business Media, New York
(2011)

5. Cotton, S., Maler, O., Legriel, J., Saidi, S.: Multi-criteria optimization for map-
ping programs to multi-processors. In: 2011 6th IEEE International Symposium
on Industrial Embedded Systems (SIES), pp. 9–17. IEEE (2011)

6. de Dinechin, B.D., van Amstel, D., Poulhiès, M., Lager, G.: Time-critical comput-
ing on a single-chip massively parallel processor. In: Proceedings of the Conference
on Design, Automation & Test in Europe, DATE 2014, pp. 97:1–97:6. European
Design and Automation Association, 3001 Leuven, Belgium (2014)

7. Dkhil, A., Louise, S., Rochange, C.: Worst-case communication overhead in a many-
core based shared-memory model (regular paper). In: Junior Researcher Workshop
on Real-Time Computing, Nice, pp. 53–56. University of Amsterdam, 16/10/2013-
18/10/2013, Octobre 2013. http://www.uva.nl

http://www.absint.com/ait/
http://www.uva.nl

Worst-Case Execution Time Analysis for Many-Core Architectures with NoC 227

8. Giannopoulou, G., Stoimenov, N., Huang, P., Thiele, L., de Dinechin, B.: Mixed-
criticality scheduling on cluster-based manycores with shared communication and
storage resources. Real-Time Syst. 51, 1–51 (2015)

9. Kadayif, I., Kandemir, M., Sezer, U.: An integer linear programming based app-
roach for parallelizing applications in on-chip multiprocessors. In: DAC 2002,
pp. 703–706. ACM, New York (2002)

10. Kalray. Kalray MPPA-256 (2015)
11. Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the pareto front of

multi-criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 69–83. Springer, Heidelberg (2010)

12. Nelson, A., Goossens, K., Akesson, B.: Dataflow formalisation of real-time stream-
ing applications on a composable and predictable multi-processor soc. J. Syst.
Archit. 61(9), 435–448 (2015)

13. Nguyen, V.A., Hardy, D., Puaut, I.: Scheduling of parallel applications on many-
core architectures with caches: bridging the gap between WCET analysis and
schedulability analysis. In: 9th Junior Researcher Workshop on Real-Time Com-
puting (JRWRTC 2015), Lille, France, November 2015

14. Srinivasan, A., Baruah, S.: Deadline-based scheduling of periodic task systems on
multiprocessors. Inf. Process. Lett. 84(2), 93–98 (2002)

15. Tendulkar, P., Poplavko, P., Galanommatis, I., Maler, O.: Many-core scheduling of
data parallel applications using smt solvers. In: 2014 17th Euromicro Conference
on Digital System Design (DSD), pp. 615–622. IEEE (2014)

16. Tendulkar, P., Poplavko, P., Maler, O.: Symmetry breaking for multi-criteria map-
ping and scheduling on multicores. In: Braberman, V., Fribourg, L. (eds.) FOR-
MATS 2013. LNCS, vol. 8053, pp. 228–242. Springer, Heidelberg (2013)

17. Texas Instruments Inc. The 66AK2H12 keystone II Processor
18. Thies, W., Amarasinghe, S.: An empirical characterization of stream programs

and its implications for language and compiler design. In: Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques,
PACT 2010, pp. 365–376. ACM, New York (2010)

Timed Multiset Rewriting and the Verification
of Time-Sensitive Distributed Systems

Max Kanovich1,5, Tajana Ban Kirigin2, Vivek Nigam3(B), Andre Scedrov4,5,
and Carolyn Talcott6

1 University of London and University College, London, UK
mik@dcs.qmul.ac.uk

2 University of Rijeka, Rijeka, Croatia
bank@math.uniri.hr

3 Federal University of Paráıba, João Pessoa, Brazil
vivek@ci.ufpb.br

4 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

5 National Research University Higher School of Economics, Moscow, Russia
6 SRI International, Menlo Park, USA

clt@csl.sri.com

Abstract. Time-Sensitive Distributed Systems (TSDS), such as appli-
cations using autonomous drones, achieve goals under possible environ-
ment interference (e.g., winds). Moreover, goals are often specified using
explicit time constraints which must be satisfied by the system perpet-
ually. For example, drones carrying out the surveillance of some area
must always have recent pictures, i.e., at most M time units old, of some
strategic locations. This paper proposes a Multiset Rewriting language
with explicit time for specifying and analysing TSDSes. We introduce two
properties, realizability (some trace is good) and survivability (where, in
addition, all admissible traces are good). A good trace is an infinite trace
in which goals are perpetually satisfied. We propose a class of systems
called progressive timed systems (PTS), where intuitively only a finite
number of actions can be carried out in a bounded time period. We
prove that for this class of systems both the realizability and the sur-
vivability problems are PSPACE-complete. Furthermore, if we impose a
bound on time (as in bounded model-checking), we show that for PTS,
realizability becomes NP-complete, while survivability is in the Δp

2 class
of the polynomial hierarchy. Finally, we demonstrate that the rewriting
logic system Maude can be used to automate time bounded verification
of PTS.

1 Introduction

The recent years have seen an increasing number of applications where comput-
ing is carried out in all sorts of environments. For example, drones are now being
used to carry out tasks such as delivering packages, monitoring plantations and
railways. While these distributed systems should still satisfy well-known safety
c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 228–244, 2016.
DOI: 10.1007/978-3-319-44878-7 14

Timed Multiset Rewriting and the Verification of TSDS 229

(e.g., drones should not run out of energy) and liveness properties (e.g., free-
dom of livelock), they are also subject to quantitative constraints leading to new
verification problems with explicit time constraints.

Consider, as our running example, the scenario where drones monitor some
locations of interest such as infested plantation areas1, whether rail tracks are
in place2, or locations with high risk of being trespassed. Drones should take a
picture of each one of these points. Moreover, for each point, there should be
a recent picture, i.e., not more than M time units old for some given M . That
is, the drones should collectively have a set of recent pictures of all sensitive
locations. In order to achieve this goal, drones may need to fly consuming energy
and they may need to return to the base station to recharge their batteries. The
environment may interfere as there might be winds that may move the drone to
some direction or other flying objects that may block a drone’s progression.

When designing such as system, engineers should specify the behavior of
drones, e.g., where to move, when to take a picture, when to return to a base sta-
tion, etc. A verification problem, called realizability problem, is to check, whether
under the given time constraints, the specified system can achieve the assigned
goal, e.g., always collect a recent picture of the sensitive locations.

In many settings, the drones themselves or the environment may behave non-
deterministically. For example, if a drone wants to reach a point to the northeast,
it may first chose to either move north or east, both being equally likely. Similarly,
there might be some wind at some location causing any drone under the wind’s
effect to move in the direction of the wind. A stronger property that takes into
account such non-determinism is to check whether for all possible outcomes (of
drone actions or environment interference), the specified system can achieve the
assigned goal. We call this property survivability.

In our previous work [12,13,16], we proposed a timed Multiset Rewriting
(MSR) framework for specifying compliance properties which are similar to quan-
titative safety properties investigating the complexity of a number of decision
problems. These properties were defined over the set of finite traces, i.e., the
execution of a finite number of actions. Realizability and survivability, on the
other hand, are similar to quantitative liveness problems, defined over infinite
traces.

The transition to properties over infinite traces leads to many challenges
as one can easily fall into undecidability fragments of verification problems. A
main challenge is to identify the syntatical conditions on specifications so that
the survivability and feasibility problems fall into a decidable fragment and at
the same time interesting examples can be specified. Also the notion that a
system satisfies a property perpetually implies that the desired property should
be valid at all time instances independent of environment interference. Another
issue is that systems should not be allowed to perform an unbounded number of
actions in a single time instance a problem similar to the Zeno paradox.

1 See (http://www.terradrone.pt/) – In Portuguese.
2 See http://fortune.com/2015/05/29/bnsf-drone-program/.

http://www.terradrone.pt/
http://fortune.com/2015/05/29/bnsf-drone-program/

230 M. Kanovich et al.

The main contribution of this paper is threefold:

1. We propose a novel class of systems called progressive timed systems (PTS)
(Sect. 2), specified as timed MSR theories, for which, intuitively, only a finite
number of actions can be carried out in a bounded time. We demonstrate
that our drone example belongs to this class (Sect. 3). We define a language
for specifying realizability and survivability properties (Sect. 4) demonstrat-
ing that many interesting problems in Time-Sensitive Distributed Systems
(TSDS) can be specified using our language;

2. We investigate (Sect. 5) the complexity of deciding whether a given system
satisfies realizability and survivability. While these problems are undecidable
in general, we show that they are PSPACE-complete for PTS. We also show
that when we bound time (as in bounded-model checking) the realizability
problem for PTS is NP-complete and survivability is in the Δp

2 class of the
polynomial hierarchy (PNP) [22].

3. Finally (Sect. 6), we show that the rewriting logic tool Maude [6] can be
used to automate the analysis of TSDS. We implemented the drone scenario
described above following the work of Talcott et al. [25] and carried out a
number of simulations with different instances of this scenario. Our simu-
lations demonstrate that specifiers can quickly find counter-examples where
their specifications do not satisfy time bounded survivability.

We conclude by discussing related and future work (Sect. 7). All missing
proofs can be found in our companion technical report [15].

2 Timed Multiset Rewriting Systems

Assume a finite first-order typed alphabet, Σ, with variables, constants, function
and predicate symbols. Terms and facts are constructed as usual (see [9]) by
applying symbols of correct type (or sort). We assume that the alphabet contains
the constant z : Nat denoting zero and the function s : Nat → Nat denoting the
successor function. Whenever it is clear from the context, we write n for sn(z)
and (n + m) for sn(sm(z)).

Timestamped facts are of the form F@t, where F is a fact and t ∈ N is natural
number called timestamp. (Notice that timestamps are not constructed by using
the successor function.) There is a special predicate symbol Time with arity
zero, which will be used to represent global time. A configuration is a multiset
of ground timestamped facts, S = {Time@t, F1@t1, . . . , Fn@tn}, with a single
occurrence of a Time fact. Configurations are to be interpreted as states of the
system. Consider the following configuration where the global time is 4.

S1 = {Time@4, Dr(d1, 1, 2, 10)@4, Dr(d2, 5, 5, 8)@4, P (p1, 1, 1)@3, P (p2, 5, 6)@0} (1)

Fact Dr(dId, x, y, e)@t denotes that drone dId is at position (x, y) at time t with
e energy units left in its battery; fact P (pID, x, y)@t denotes that the point to
be monitored by pId is at position (x, y) and the last picture of it was taken

Timed Multiset Rewriting and the Verification of TSDS 231

at time t. Thus, the above configuration denotes a scenario with two drones
at positions (1, 2) and (5, 5) and energy left of 10 and 8, and two points to be
monitored at positions (1, 1) and (5, 6), where the former has been taken a photo
at time 3 and the latter at time 0.

Configurations are modified by multiset rewrite rules which can be inter-
preted as actions of the system. There is only one rule that modifies global time:

Time@T −→ Time@(T + 1) (2)

where T is a time variable. Applied to a configuration, {Time@t, F1@t1, . . . ,
Fn@tn}, it advances global time by one, resulting in {Time@(t + 1), F1@t1, . . . ,
Fn@tn}.

The remaining rules are instantaneous as they do not modify global time, but
may modify the remaining facts of configurations (those different from Time).
Instantaneous rules have the form:

T ime@T,W, F1@T ′
1, . . . , Fn@T ′

n | C −→ T ime@T,W, Q1@(T +D1), . . . , Qm@(T +Dm)

(3)
where D1, . . . , Dm are natural numbers, W = W1@T1, . . . ,Wn@Tn is a set
of timestamped predicates possibly with variables, and C is the guard of
the action which is a set of constraints involving the variables appearing
in the rule’s pre-condition, i.e. the variables T, T1, . . . , Tp, T

′
1, . . . , T

′
n. Fol-

lowing [8] we say that F1@T ′
1, . . . , Fn@T ′

n are consumed by the rule and
Q1@(T + D1), . . . , Qm@(T + Dm) are created by the rule. (In a rule, we color
red the consumed facts and blue the created facts.)

Constraints may be of the form:

T > T ′ ± N and T = T ′ ± N (4)

where T and T ′ are time variables, and N ∈ N is a natural number. All variables
in the guard of a rule are assumed to appear in the rule’s pre-condition. We use
T ≥ T ′ ± N to denote the disjunction of T > T ′ ± N and T = T ′ ± N .

A rule W | C −→ W ′ can be applied on a configuration S if there is a ground
substituition σ, such that Wσ ⊆ S and Cσ is true. The resulting configuration is
(S \W)∪W ′σ. We write S −→r S1 for the one-step relation where configuration
S is rewritten to S1 using an instance of rule r.

Definition 1. A timed MSR system A is a set of rules containing only instan-
taneous rules (Eq. 3) and the tick rule (Eq. 2).

A trace of a timed MSR A starting from an initial configuration S0 is a
sequence of configurations where for all i ≥ 0, Si −→ri

Si+1 for some ri ∈ A.

S0 −→ S1 −→ S2 −→ · · · −→ Sn −→ · · ·
In the remainder of this paper, we will consider a particular class of timed

MSR, called progressive timed MSR (PTS), which are such that only a finite
number of actions can be carried out in a bounded time interval which is a natural
condition for many systems. We built PTS over balanced MSR taken from our

232 M. Kanovich et al.

previous work [11,17]. The balanced condition is necessary for decidability of
problems (such as reachability as well as the problems introduced in Sect. 4).

Definition 2. A timed MSR A is balanced if for all instantaneous rules r ∈ A,
r creates the same number of facts as it consumes, that is, in Eq. (3), n = m.

Proposition 1. Let A be a balanced timed MSR. Let S0 be an initial configu-
ration with exactly m facts. For all possibly infinite traces P of A starting with
S0, all configurations Si in P have exactly m facts.

Definition 3. A timed MSR A is progressive if A is balanced and for all instan-
taneous rules r ∈ A:

– rule r creates at least one fact with timestamp greater than the global time,
that is, in Eq. (3), at least one Di ≥ 1;

– rule r consumes only facts with timestamps in the past or at the current time,
that is, in Eq. (3), the set of constraints C contains the set Cr = {T ≥ T ′

i |
Fi@T ′

i , 1 ≤ i ≤ n}.
The following proposition establishes a bound on the number of instances of

instantaneous rules appearing between two consecutive instances of Tick rules,
while the second proposition formalizes the intuition that PTS always move
forward.

Proposition 2. Let A be a PTS, S0 an initial configuration and m the number
of facts in S0. For all traces P of A starting from S0, let

Si −→Tick−→ Si+1 −→ · · · −→ Sj −→Tick−→ Sj+1

be any sub-sequence of P with exactly two instances of the Tick rule, one at the
beginning and the other at the end. Then j − i < m.

Proposition 3. Let A be a PTS. In all infinite traces of A the global time tends
to infinity.

For readability, we will assume from this point onwards that for all rules r,
the set of its constraints implicitly contains the set Cr as shown in Definition 3,
not writing Cr explicitly in our specifications.

Finally, notice that PTS has many syntatical conditions, e.g., balanced con-
dition (Definition 2), time constraints (Eq. 4), instantaneous rules (Eq. 3). Each
one of these conditions have been carefully developed as without any of them
important verification problems, such as the reachability problem, becomes unde-
cidable as we show in our previous [13]. Thus these conditions are needed also
for infinite traces. The challenge here of allowing infinite traces is to make sure
time advances. The definition of PTS is a simple and elegant way to enforce this.
Moreover, as we show in Sect. 3, it is still possible to specify many interesting
examples including our motivating example and still prove the decidability of
our verification problems involving infinite traces (Sect. 5).

Timed Multiset Rewriting and the Verification of TSDS 233

3 Programming Drone Behavior Using PTS

Figure 1 depicts the macro rules of our motivating scenario where drones are
moving on a fixed grid of size xmax × ymax, have at most emax energy units and
take pictures of some points of interest. We assume that there are n such points
p1, . . . , pn, where n is fixed, a base station is at position (xb, yb), and that the
drones should take pictures so that all pictures are recent, that is, the last time
a photo of it was taken should not be more than M time units before the current
time of any moment.

Clearly if drones choose non-deterministically to move some direction without
a particular strategy, they will fail to achieve the assigned goal. A strategy is
specified by using time constraints. For this example, the strategy would depend
on the difference T − Ti, for 1 ≤ i ≤ n, specifying the time since the last picture
of the point pi that is the set of time constraints:

T (d1, . . . , dn) = {T − T1 = d1, . . . , T − Tn = dn}
where for all 1 ≤ i ≤ n we instantiate di by values in {0, . . . , M}.

Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E + 1)@T | doMove(Id,X, Y,E + 1, T, T1, . . . , Tn, north) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y + 1, E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id,X, Y + 1, E + 1)@T | doMove(Id,X, Y + 1, E + 1, T, T1, . . . , Tn, south) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id,X + 1, Y, E + 1)@T | doMove(Id,X + 1, Y, E + 1, T, T1, . . . , Tn, west) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E + 1)@T | doMove(Id,X, Y,E + 1, T, T1, . . . , Tn, east) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id, xb, yb, E)@T | doCharge(Id, E, T, T1, . . . , Tn) −→
Time@T,P(p1, . . . , pn), Dr(Id, xb, yb, E + 1)@(T + 1)

Time@T, Pt(p1, X1, Y1)@T1, . . . , P t(pi, X, Y)@Ti, . . . , P t(pn, Xn, Yn)@Tn, Dr(Id,X, Y,E)@T
| doClick(Id,X, Y,E, T, T1, . . . , Ti, . . . , Tn) −→

Time@T, Pt(p1, X1, Y1)@T1, . . . , P t(pi, X, Y)@T , . . . , P t(pn, Xn, Yn)@Tn, Dr(Id,X, Y,E − 1)@(T + 1)

Time@T,Dr(Id,X, Y,E)@T | hasWind(X,Y, north) −→ Time@T,Dr(Id,X, Y + 1, E)@(T + 1)

Time@T,Dr(Id,X, Y + 1, E)@T | hasWind(X,Y, south) −→ Time@T,Dr(Id,X, Y,E)@(T + 1)

Time@T,Dr(Id,X + 1, Y, E)@T | hasWind(X,Y,west) −→ Time@T,Dr(Id,X, Y,E)@(T + 1)

Time@T,Dr(Id,X, Y,E)@T | hasWind(X,Y, east) −→ Time@T,Dr(Id,X + 1, Y, E)@(T + 1)

Fig. 1. Macro rules specifying the scenario where drones take pictures of points of
interest. Here P(p1, . . . , pn) denotes P (p1, X1, Y1)@T1, . . . , P (pn, Xn, Yn)@Tn. More-
over, we assume that the Drone stay in a grid of size xmax × ymax and have at most
emax energy units.

For example, the macro rule with doMove(Id,X, Y,E + 1, T, T1, . . . , Tn,
north) in Fig. 1 is replaced by the set of rules:

Time@T, P(p1, . . . , pn), Dr(d1, 0, 0, 1)@T | T (0, . . . , 0), DoMv(d1, 0, 0, 1, 0, . . . , 0, north) −→
Time@T, P(p1, . . . , pn), Dr(Id, 0, 1, 0)@(T + 1)

Time@T, P(p1, . . . , pn), Dr(d1, 0, 0, 1)@T | T (0, . . . , 1), DoMv(d1, 0, 0, 1, 0, . . . , 1, north) −→
Time@T, P(p1, . . . , pn), Dr(Id, 0, 1, 0)@(T + 1)

· · ·
Time@T, P(p1, . . . , pn), Dr(d2, xmax, ymax − 1, emax)@T

| T (M, . . . , M), DoMv(d2, xmax, ymax − 1, emax, M, . . . , M, north) −→
Time@T, P(p1, . . . , pn), Dr(Id, xmax, ymax, emax − 1)@(T + 1)

234 M. Kanovich et al.

where doMove is function that returns a boolean value depending on the desired
behavior of the drone.

Finally, there are macro rules for moving the drone, taking a picture, charg-
ing, and macro specifying winds. While most of the rules have the expected
result, we explain the click and wind rules. The click rule is applicable if the
drone is at the same position, (X,Y), as a point of interest pi. If applied, the
timestamp of the fact P (pi,X, Y) is updated to the current time T . The wind
rule is similar to the move rules moving the drone to some direction, but does
not cause the drone to consume its energy.

In our implementation, we used a more sophisticated approach described
in [25] using soft-constraints to specify a drone’s strategy. It can be translated
as a PTS by incorporating the strategy used as described above.

Other Examples. Finally, there are a number of other examples which we have
been investigating and that can are progressive. In [24], we model a simplified
version of a package delivery systems inspired by Amazon’s Prime Air service.
In [25], we model a patrolling bot which moves from one point to another. All
these examples seem to be progressive.

Other examples besides those involving drones also seem to be progressive.
For example, in our previous work, we specify a monitor for clinical trials [13]
using our timed MSR framework with discrete time. This specification seems to
be also progressive.

4 Quantitative Temporal Properties

In order to define quantitative temporal properties, we review the notion of
critical configurations and compliant traces from our previous work [16]. Critical
configuration specification is a set of pairs CS = {〈S1, C1〉, . . . , 〈Sn, Cn〉}. Each
pair 〈Sj , Cj〉 is of the form:

〈{F1@T1, . . . , Fp@Tp}, Cj〉
where T1, . . . , Tp are time variables, F1, . . . , Fp are facts (possibly containing vari-
ables) and Cj is a set of time constraints involving only the variables T1, . . . , Tp.
Given a critical configuration specification, CS, we classify a configuration S as
critical if for some 1 ≤ i ≤ n, there is a grounding substitution, σ, mapping time
variables in Si to natural numbers and non time variables to terms such that:

– Siσ ⊆ S;
– all constraints in Ciσ are valid.

where substitution application (Sσ) is defined as usual [9].

Example 1. We can specify usual safety conditions which do not involve time.
For example, a drone should never run out of energy. This can be specified by
using the following set of critical configuration specification:

{〈{Dr(Id, X, Y, 0)@T}, ∅〉 | Id ∈ {d1, d2}, X ∈ {0, . . . , xmax}, Y ∈ {0, . . . , ymax}}

Timed Multiset Rewriting and the Verification of TSDS 235

Example 2. The following critical configuration specification specifies a quanti-
tative property involving time:

{〈{P (p1, x1, y1)@T1, T ime@T}, T > T1 + M〉, . . . , 〈{P (pn, xn, yn)@Tn, T ime@T}, T > Tn + M〉}

Together with the specification in Fig. 1, this critical configuration specification
specifies that the last pictures of all points of interest (p1, . . . , pn located at
(x1, y1), . . . , (xn, yn)) should have timestamps no more than M time units old.

Example 3. Let the facts St(Id)@T1 and St(empty)@T1 denote, respectively,
that at time T1 the drone Id entered the base station to recharge and that the
station is empty. Moreover, assume that only one drone may be in the station to
recharge, which would be specified by adding the following rules specifying the
drone landing and take off, where st is a constant symbol denoting that a drone
landed on the base station:

T ime@T,Dr(Id, xb, yb)@T , St(empty)@T1 −→ T ime@T,Dr(Id, st, st)@(T + 1), St(Id)@T

T ime@T,Dr(Id, st, st)@T , St(Id)@T1 −→ T ime@T,Dr(Id, xb, yb)@(T + 1), St(empty)@T

Then, the critical configuration specification {〈{St(Id)@T1, T ime@T}, T > T1+
M1〉 | Id ∈ {d1, d2}} specifies that one drone should not remain too long (more
than M1 time units) in a base station not allowing other drones to charge.

Definition 4. A trace of a timed MSR is compliant for a given critical config-
uration specification if it does not contain any critical configuration.

We will be interested in survivability which requires checking whether, given
an initial configuration, all possible infinite traces of a system are compliant. In
order to define a sensible notion of survivability, however, we need to assume
some conditions on when the Tick rule is applicable. With no conditions on
the application of the Tick rule many timed systems of interest, such as our
main example with drones, do not satisfy survivability as the following trace
containing only instances of the Tick rule could always be constructed:

S1 −→Tick S2 −→Tick S3 −→Tick S4 −→Tick · · ·
Imposing a time sampling is a way to avoid such traces where the time simply

ticks. They are used, for example, in the semantics of verification tools such as
Real-Time Maude [21]. In particular, a time sampling dictates when the Tick
rule must be applied and when it cannot be applied. This treatment of time is
used both for dense and discrete times in searching and model checking timed
systems.

Definition 5. A (possibly infinite) trace P of a timed MSR A uses a lazy time
sampling if for any occurrence of the Tick rule Si −→Tick Si+1 in P, no instance
of any instantaneous rule in A can be applied to the configuration Si.

In lazy time sampling instantaneous rules are given a higher priority than
the Tick rule. Under this time sampling, a drone should carry out one of the
rules in Fig. 1 at each time while time can only advance when all drones have

236 M. Kanovich et al.

carried out their actions for that moment. This does not mean, however, that
the drones will satisfy their goal of always having recent pictures of the points
of interest as this would depend on the behavior of the system, i.e., the actions
carried out by the drones. Intuitively, the lazy time sampling does not allow
the passing of time if there are scheduled drone actions at the current time. Its
semantics reflects that all undertaken actions do happen.

In the remainder of this paper, we fix the time sampling to lazy time sampling.
We leave for future work investigating whether our complexity results hold

for other time samplings.

4.1 Verification Problems

The first property we introduce is realizability. Realizability is useful for increas-
ing one’s confidence in a specified system, as clearly a system that is not real-
izable can not accomplish the given tasks (specified by a critical specification)
and therefore, the designer would need to reformulate it. However, if a system
is shown realizable, the trace, P, used to prove it could also provide insights on
the sequence of actions that lead to accomplishing the specified tasks. This may
be used to refine the specification reducing possible non-determinism.

Definition 6. A timed MSR A is realizable (resp., n-time-bounded realizable)
with respect to the lazy time sampling, a critical configuration specification CS
and an initial configuration S0 if there exists a trace, P, that starts with S0 and
uses the lazy time sampling such that:

1. P is compliant with respect to CS;
2. Global time tends to infinity (resp., global time advances by exactly n time

units) in P.

The second condition that global time tends to infinity, which implies that
only a finite number of actions are performed in a given time. Another way of
interpreting this condition following [1] is of a liveness condition, that is, the
system should not get stuck. The first condition, on the other hand, is a safety
condition as it states that no bad state should be reached. Thus the feasibility
problem (and also the survivability problem introduced next) is a combination
of a liveness and safety conditions. Moreover, since CS involve time constraints,
it is a quantitative liveness and safety property.

The n-time-bounded realizability problem is motivated by bounded model
checking. We look for a finite compliant trace that spreads over a n units of
time, where n is fixed.

As already noted, realizability could be useful in reducing non-determinism
in the specification. In many cases, however, it is not desirable and even not
possible to eliminate the non-determinism of the system. For example, in open
distributed systems, the environment can play an important role. Winds, for
example, may affect drones’ performances such as the speed and energy required
to move from one point to another. We would like to know whether for all possible
decisions taken by agents and under the interference of the environment, the

Timed Multiset Rewriting and the Verification of TSDS 237

given timed MSR accomplishes the specified tasks. If so, we say that a system
satisfies survivability.

Definition 7. A timed MSR A satisfies survivability (resp., n-time-bounded
survivability) with respect to the lazy time sampling, a critical configuration
specification CS and an initial configuration S0 if it is realizable (resp., n-time-
bounded realizable) and if all infinite traces (resp. all traces with exactly n
instances of the Tick rule), P, that start with S0 and use the lazy time sam-
pling are such that:

1. P is compliant with respect to CS;
2. The global time tends to infinity (resp., no condition).

5 Complexity Results

Our complexity results, for a given PTS A, an initial configuration S0 and a
critical configuration specification CS, will mention the value Dmax which is an
upper-bound on the natural numbers appearing in S0, A and CS. Dmax can be
inferred syntactically by simply inspecting the timestamps of S0, the D values
in timestamps of rules (which are of the form T + D) and constraints in A and
CS (which are of the form T1 > T2 + D and T1 = T2 + D). For example, the
Dmax = 1 for the specification in Fig. 1.

The size of a timestamped fact F@T , written |F@T | is the total number of
alphabet symbols appearing in F . For instance, |P (s(z), f(a,X), a)@12| = 7. For
our complexity results, we assume a bound, k, on the size of facts. For example, in
our specification in Fig. 1, we can take the bound k = |xmax|+|ymax|+|emax|+5.
Without this bound (or other restrictions), any interesting decision problem is
undecidable by encoding the Post correspondence problem [8].

Notice that we do not always impose an upper bound on the values of
timestamps.

Assume throughout this section the following: (1) Σ – A finite alphabet with J
predicate symbols and E constant and function symbols; A – A PTS constructed
over Σ; m – The number of facts in the initial configuration S0; CS – A critical
configuration specification constructed over Σ; k – An upper-bound on the size of
facts; Dmax – An upper-bound on the numeric values of S0,A and CS.

5.1 PSPACE-Completeness

In order to prove the PSPACE-completeness of realizability and survivability
problems, we review the machinery introduced in our previous work [13] called
δ-configuration.

For a given Dmax the truncated time difference of two timed facts P@t1 and
Q@t2 with t1 ≤ t2, denoted by δP,Q, is defined as follows:

δP,Q =
{

t2 − t1, provided t2 − t1 ≤ Dmax

∞, otherwise

238 M. Kanovich et al.

Let S = Q1@t1, Q2@t2, . . . , Qn@tn, be a configuration of a timed MSR A
written in canonical way where the sequence of timestamps t1, . . . , tn is non-
decreasing. The δ-configuration of S for a given Dmax is

δS,Dmax
= [Q1, δQ1,Q2 , Q2, . . . , Qn−1, δQn−1,Qn

, Qn] .
In our previous work [13,16], we showed that a δ-configuration is an equiv-

alence class on configurations. Namely, for a given Dmax, we declare S1 and S2

equivalent, written S1 ≡Dmax
S2, if and only if their δ-configurations are exactly

the same. Moreover, we showed that there is a bisimulation between (compliant)
traces over configurations and (compliant) traces over their δ-configurations in
the following sense: if S1 −→ S2 and S1 ≡Dmax

S ′
1, then there is a trace S ′

1 −→ S ′
2

such that S2 ≡Dmax
S ′
2. This result appears in [16, Corollary 7].

Therefore, in the case of balanced timed MSRs, we can work on traces con-
structed using δ-configurations. Moreover, the following lemma establishes a
bound on the number of different δ-configurations.

Lemma 1. Assume Σ,A,S0,m, CS, k,Dmax as described above. The number of
different δ-configurations, denoted by LΣ(m, k,Dmax) is such that

LΣ(m, k,Dmax) ≤ (Dmax + 2)(m−1)Jm(E + 2mk)mk.

Infinite Traces. Our previous work only dealt with finite traces. The challenge
here is to deal with infinite traces and in particular the feasibility and surviv-
ability problems. These problems are new and as far as we know have not been
investigated in the literature (see Sect. 7 for more details).

PSPACE-hardness of both the realizability and survivability can be shown
by adequately adapting our previous work [17]. We therefore show PSPACE-
membership of these problems.

Recall that a system is realizable if there is a compliant infinite trace P in
which the global time tends to infinity. Since A is progressive, we get the con-
dition on time from Proposition 3. We, therefore, need to construct a compliant
infinite trace. The following lemma estrablishes a criteria:

Lemma 2. Assume Σ,A,S0,m, CS, k,Dmax as described above. If there is
a compliant trace (constructed using δ-configurations) starting with (the δ-
representation of) S0 with length LΣ(m, k,Dmax), then there is an infinite com-
pliant trace starting with (the δ-representation of) S0.

Assume that for any given timed MSR A, an initial configuration S0 and a
critical configuration specification CS we have two functions N and X which
check, respectively, whether a rule in A is applicable to a given δ-configuration
and whether a δ-configuration is critical with respect to CS. Moreover, let T
be a function implementing the lazy time sampling. It takes a timed MSR and
a δ-configuration of that system, and returns 1 when the tick must be applied
and 0 when it must not be applied. We assume that N , X and T run in Turing
time bounded by a polynomial in m, k, log2(Dmax). Notice that for our examples
this is the case. Because of Lemma 2, we can show that the realizability prob-
lem is in PSPACE by searching for compliant traces of length LΣ(m, k,Dmax)

Timed Multiset Rewriting and the Verification of TSDS 239

(stored in binary). To do so, we rely on the fact that PSPACE and NPSPACE
are the same complexity class [23].

Theorem 1. Assume Σ a finite alphabet, A a PTS, an initial configuration
S0, m the number of facts in S0, CS a critical configuration specification, k an
upper-bound on the size of facts, Dmax an upper-bound on the numeric values
in S0,A and CS, and the functions N ,X and T as described above. There is an
algorithm that, given an initial configuration S0, decides whether A is realizable
with respect to the lazy time sampling, CS and S0 and the algorithm runs in
space bounded by a polynomial in m, k and log2(Dmax).

The polynomial is in fact log2(LΣ(m, k,Dmax)).
We now consider the survivability problem. Recall that in order to prove that

A satisfies survivability with respect to the lazy time sampling, CS and S0, we
must show that A is realizable and that for all infinite traces P starting with S0

(Definition 7):

1. P is compliant with respect to CS;
2. The global time in P tends to infinity.

Checking that a system is realizable is PSPACE-complete as we have just shown.
Moreover, the second property (time tends to infinity) follows from Proposition 3
for progressive timed MSR. It remains to show that all infinite traces using the
lazy time sampling are compliant, which reduces to checking that no critical
configuration is reachable from the initial configuration S0 by a trace using the
lazy time sampling. This property can be decided in PSPACE by relying on
the fact that PSPACE, NPSPACE and co-PSPACE are all the same complexity
class [23]. Therefore, survivability is also in PSPACE as states the following
theorem.

Theorem 2. Assume Σ,A,S0,m, CS, k,Dmax and the functions N ,X and T
as described in Theorem1. There is an algorithm that decides whether A satisfies
the survivability problem with respect to the lazy time sampling, CS and S0 which
runs in space bounded by a polynomial in m, k and log2(Dmax).

Corollary 1. Both the realizability and the survivability problem for PTS are
PSPACE-complete when assuming a bound on the size of facts.

5.2 Complexity Results for n-Time-Bounded Systems

We now consider the n-time-bounded versions of the Realizability and Surviv-
ability problems (Definitions 6 and 7).

The following lemma establishes an upper-bound on the length of traces
with exactly n instances of tick rules for PTS. It follows immediately from
Proposition 2.

Lemma 3. Let n be fixed and assume Σ,A,S0,m, CS, k,Dmax as described in
Theorem1. For all traces P of A with exactly n instances of the Tick rule, the
length of P is bounded by (n + 2) ∗ m + n.

240 M. Kanovich et al.

We can check in polynomial time whether a trace is compliant and has exactly
n Ticks. Therefore, the n-time-bounded realizability problem is in NP as stated
by the following theorem.

Theorem 3. Let n be fixed and assume Σ,A,S0,m, CS, k,Dmax and the func-
tions N ,X , T as described in Theorem1. The problem of determining whether
A is n-time-bounded realizable with respect to the lazy time sampling, CS and S0

is in NP with S0 as the input.

For NP-hardness, we encode the NP-hard problem 3-SAT as an n-time-
bounded realizability problem as done in our previous work [14].

Recall that for n-time-bounded survivability property, we need to show that:

1. A is n-time-bounded realizable with respect to CS;
2. All traces using the lazy time sampling with exactly n ticks are compliant

with respect to CS.

As we have shown, the first sub-problem is NP-complete. The second sub-
problem is reduced to checking that no critical configuration is reachable from
S0 by a trace using the lazy time sampling with less or equal to n ticks. We do
so by checking whether a critical configuration is reachable. This is similar to
realizability which we proved to be in NP. If a critical configuration is reach-
able then A does not satisfy the second sub-problem, otherwise it does satisfy.
Therefore, deciding the second sub-problem is in co-NP. Thus the n-timed sur-
vivability problem is in a class containing both NP and co-NP, e.g., Δp

2 of the
polynomial hierarchy (PNP) [22].

Theorem 4. Let n be fixed and assume Σ,A,S0,m, CS, k,Dmax and the func-
tions N ,X , T as described in Theorem1. The problem of determining whether
A satisfies n-time-bounded survivability with respect to the lazy time sampling,
CS and S0 is in the class Δp

2 of the polynomial hierarchy (PNP) with input S0.

6 Bounded Simulations

For our bounded simulations, we implemented a more elaborated version of our
running scenario in Maude using the machinery described in [25]. Our prelimi-
nary results are very promising. We are able to model-check fairly large systems
for the bounded survivability.

We consider N drones which should have recent pictures, i.e., at most M
time units old, of P points distributed in a grid xmax × ymax, where the base
station is at position (xmax/2�, ymax/2�), and drones have maximum energy of
emax. Drones use soft-constraints, which take into account the drone’s position,
energy, and pictures, to rank their actions and they perform any one the best
ranked actions. Drones are also able to share information with the base station.

Our simulation results are depicted in Table 1. We model-checked the n-timed
survivability of the system where n = 4 × M . We varied M and the maximum

Timed Multiset Rewriting and the Verification of TSDS 241

Table 1. N is the number of drones, P the number of points of interest, xmax×ymax the
size of the grid, M the time limit for photos, and emax the maximum energy capacity
of each drone. We measured st and t, which are, respectively, the number of states and
time in seconds until finding a counter example if F (fail), and until searching all traces
with exactly 4 × M ticks if S (success).

Exp 1: (N = 1, P = 4, xmax = ymax = 10)

M = 50, emax = 40 F, st = 139, t = 0.3
M = 70, emax = 40 F, st = 203, t = 0.4
M = 90, emax = 40 S, st = 955, t = 2.3

Exp 3: (N = 2, P = 9, xmax = ymax = 20)

M = 100, emax = 500 F, st = 501, t = 6.2
M = 150, emax = 500 F, st = 1785, t = 29.9
M = 180, emax = 500 S, st = 2901, t = 49.9
M = 180, emax = 150 F, st = 1633, t = 25.6

Exp 2: (N = 2, P = 4, xmax = ymax = 10)

M = 30, emax = 40 F, st = 757, t = 3.2
M = 40, emax = 40 F, st = 389, t = 1.4
M = 50, emax = 40 S, st = 821, t = 3.2

Exp 4: (N = 3, P = 9, xmax = ymax = 20)

M = 100, emax = 150 F, st = 3217, t = 71.3
M = 120, emax = 150 F, st = 2193, t = 52.9
M = 180, emax = 150 S, st = 2193, t = 53.0
M = 180, emax = 100 F, st = 2181, t = 50.4

energy capacity of drones emax. Our implementation [25] finds counter examples
quickly (less than a minute) even when considering a larger grid (20 × 20) and
three drones.3

We can observe that our implementations can help specifiers to decide how
many drones to use and with which energy capacities. For example, in Exp 3,
drones required a great deal of energy, namely 500 energy units. Adding an
additional drone, Exp 4, reduced the energy needed to 150 energy units. Finally,
the number of states may increase when decreasing M because with lower values
of M , drones may need to come back more often to the base station causing them
to share information and increasing the number of states.

7 Related and Future Work

This paper introduced a novel sub-class of timed MSR systems called progressive
which is defined by imposing syntactic restrictions on MSR rules. We illustrated
with examples of Time Sensitive Distributed Systems that this is a relevant class
of systems. We also introduced two verification problems which may depend on
explicit time constraints, namely realizability and survivability, defined over infi-
nite traces. We showed that both problems are PSPACE-complete for progressive
timed systems, and when we additionally impose a bound on time, realizabil-
ity becomes NP-complete and survivability is in Δp

2 of the polynomial hierarchy.
Finally, we demonstrated by experiments that it is feasible to analyse fairly large
progressive systems using the rewriting logic tool Maude.
3 Although these scenarios seem small, the state space grow very fast: the state space
of our largest scenario has an upper bound of (400×399×398)× (150×150×150)×
(180 × 4) × (180)9 ≥ 3.06 × 1037 states.

242 M. Kanovich et al.

Others have proposed languages for specifying properties which allow explicit
time constraint. We review some of the timed automata, temporal logic and
rewriting literature.

Our progressive condition is related to the finite-variability assumption used
in the temporal logic and timed automata literature [2,3,10,18,19]: in any
bounded interval of time, there can be only finitely many observable events or
state changes. Similarly, progressive systems have the property that only a finite
number of instantaneous rules can be applied in any bounded interval of time
(Proposition 2). Such a property seems necessary for the decidability of many
temporal verification problems.

As we discussed in much more detail in the Related Work section of our pre-
vious work [13], there are some important differences between our timed MSR
and timed automata [2,3] on both the expressive power and decidability proofs.
For example, a description of a timed MSR system uses first order formulas with
variables, whereas timed automata are able to refer only to transition on ground
states. That is, timed MSR is essentially a first-order language, while timed
automata are propositional. If we replace a first order description of timed MSR
by all its instantiations, that would lead to an exponential explosion. Further-
more, in contrast with the timed automata paradigm, in timed MSR we can
manipulate in a natural way the facts both in the past, in the future, and in the
present. Finally, our model uses discrete times, while timed automata uses dense
times. It seems, however, possible to extend our results to dense times given our
previous work [12]. We leave this investigation to future work.

The temporal logic literature has proposed many languages for the specifi-
cation and verification of timed systems. While many temporal logics include
quantitative temporal operators, e.g. [18,19], this literature does not discuss
notions similar to realizability and survivability notions introduced here. In addi-
tion to that, our specifications are executable. Indeed, as we have done here, our
specifications can be executed in Maude.

The work [1,5] classifies traces and sets of traces as safety, liveness or prop-
erties that can be reduced to subproblems of safety and liveness. Following this
terminology, properties relating to both of our problems of realizability and
survivability (that involve infinite traces) contain elements of safety as well as
elements of liveness. Properties relating to the n-time-bounded versions of real-
izability and survivabilty could be classified as safety properties. We do not see
how to express this in the terms of [1,5]. We intend to revisit this in future work.

Real-Time Maude is a tool for simulating and analyzing real-time systems.
Rewrite rules are partitioned into instantaneous rules and rules that advance
time, where instantaneous rules are given priority. Time advance rules may
place a bound on the amount of time to advance, but do not determine a spe-
cific amount, thus allowing continual observation of the system. Time sampling
strategies are used to implement search and model-checking analyses. Ölveczky
and Messeguer [20] investigate conditions under which the maximal time sam-
pling strategy used in Real-Time Maude is complete. One of the conditions
required is tick-stabilizing which is similar to progressive and the finite variabil-
ity assumption in that one assumes a bound on the number of actions applicable
in a finite time.

Timed Multiset Rewriting and the Verification of TSDS 243

Cardenas et al. [4] discuss possible verification problems of cyber-physical
systems in the presence of malicious intruders. They discuss surviving attacks,
such as denial of service attacks on the control mechanisms of devices. We
believe that our progressive timed systems can be used to define sensible intruder
models and formalize the corresponding survivability notions. This may lead
to the automated analysis of such systems similar to the successful use of the
Dolev-Yao intruder model [7] for protocol security verification. Given the results
of this paper, for the decidability of any security problem would very likely
involve a progressive timed intruder model.

Finally, we believe it is possible to extend this work to dense times given
our previous work [12]. There we assume a Tick rule of the form Time@T −→
Time@(T + ε). However, we do not consider critical configuration specifications.
We are currently investigating how to incorporate the results in this paper with
the results of [12].

Acknowledgments. Kanovich’s research was partially supported by EPSRC.
Scedrov’s research was partially supported by ONR and by AFOSR MURI. Kanovich’s
and Scedrov’s work on this paper was partially carried out within the framework of
the Basic Research Program at the National Research University Higher School of
Economics (HSE) and partially supported within the framework of a subsidy by the
Russian Academic Excellence Project ‘5–100’. Talcott was partially supported by NSF
grant CNS-1318848 and ONR grant N00014-15-1-2202. Nigam and Talcott were par-
tially supported by Capes Science without Borders grant 88881.030357/2013-01. Nigam
was partially supported by Capes and CNPq.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX Workshop. LNCS,
vol. 600, pp. 74–106. Springer, Heidelberg (1991)

3. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004)

4. Cárdenas, A.A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-
physical systems. In: ICDCS, pp. 495–500 (2008)

5. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude: A High-Performance Logical Framework. LNCS. Springer,
Heidelberg (2007)

7. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

8. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the
complexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004)

9. Herbert, B., Enderton, H.B.: A Mathematical Introduction to Logic. Academic
Press, Salt lake city (1972)

244 M. Kanovich et al.

10. Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic.
Electron. Notes Theoret. Comput. Sci. 220(3), 61–77 (2008)

11. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A.: Bounded memory Dolev-Yao
adversaries in collaborative systems. Inf. Comput. 238, 233–261 (2014)

12. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.: Discrete vs. dense
times in the analysis of cyber-physical security protocols. In: Focardi, R., Myers,
A. (eds.) POST 2015. LNCS, vol. 9036, pp. 259–279. Springer, Heidelberg (2015)

13. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.: A rewriting
framework and logic for activities subject to regulations. Math. Struct. Comput.
Sci. (2015). (online) doi:10.1017/S096012951500016X

14. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A.: Bounded memory protocols
and progressing collaborative systems. In: Crampton, J., Jajodia, S., Mayes, K.
(eds.) ESORICS 2013. LNCS, vol. 8134, pp. 309–326. Springer, Heidelberg (2013)

15. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.: Timed mul-
tiset rewriting and the verification of time-sensitive distributed systems. CoRR,
abs/1606.07886 (2016)

16. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L., Perovic, R.:
A rewriting framework for activities subject to regulations. In: RTA, pp. 305–322
(2012)

17. Kanovich, M.I., Rowe, P., Scedrov, A.: Collaborative planning with confidentiality.
J. Autom. Reason. 46(3–4), 389–421 (2011)

18. Laroussinie, F., Schnoebelen, P., Turuani, M.: On the expressivity and complexity
of quantitative branching-time temporal logics. Theoret. Comput. Sci. 297(1), 297–
315 (2003)

19. Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics: PSPACE and
below. In: TIME, pp. 138–146 (2005)

20. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for real-time maude.
Electron. Notes Theoret. Comput. Sci. 176(4), 5–27 (2007)

21. Ölveczky, P.C., Meseguer, J.: The real-time maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008)

22. Papadimitriou, C.H.: Computational Complexity. Academic Internet Publ,
Ventura (2007)

23. Savitch, W.J.: Relationship between nondeterministic and deterministic tape
classes. J. Comput. Syst. Sci. 4, 177–192 (1970)

24. Talcott, C., Arbab, F., Yadav, M.: Soft agents: exploring soft constraints to model
robust adaptive distributed cyber-physical agent systems. In: De Nicola, R., Hen-
nicker, R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 273–290. Springer,
Heidelberg (2015)

25. Talcott, C., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis
of robust adaptive distributed cyber-physical systems. In: Formal Methods for the
Quantitative Evaluation of Collective AdaptiveSystems (2016)

http://dx.doi.org/10.1017/S096012951500016X

Author Index

Akazaki, Takumi 121
Alvarez, Gustavo Patino 177
André, Étienne 19

Ban Kirigin, Tajana 228
Bodin, Bruno 195
Brihaye, Thomas 105

Chau, Wang Jiang 177

D’Argenio, Pedro R. 53
Dasgupta, Pallab 85
Devillers, Raymond 140
Dey, Soumyajit 85
Dworzanski, Leonid W. 3

Estiévenart, Morgane 105

Gadyatskaya, Olga 35
Geeraerts, Gilles 105

Hansen, René Rydhof 35
Hasuo, Ichiro 121
Ho, Hsi-Ming 105

Jha, Susmit 69

Kanovich, Max 228
Klaudel, Hanna 140

Larsen, Kim Guldstrand 35, 157
Lee, Matias David 53

Legay, Axel 35
Lime, Didier 19

Mazo Jr., Manuel 85
Mendler, Michael 195
Mohamed, Sajid 85
Monmege, Benjamin 105
Monti, Raúl E. 53

Nielsen, Brian 157
Nigam, Vivek 228

Olesen, Mads Chr. 35

Poulsen, Danny Bøgsted 35

Raman, Vasumathi 69
Roop, Partha S. 195
Roux, Olivier H. 19

Scedrov, Andre 228
Simalatsar, Alena 211
Skalistis, Stefanos 211
Sznajder, Nathalie 105

Talcott, Carolyn 228

Waga, Masaki 121

Zamani, Majid 85
Zhang, Zhengkui 157

	Preface
	Organization
	Platform-Specific Code Generation from Platform-Independent Timed Models (Invited Keynote)
	Contents
	Modeling Timed Phenomena
	Consistent Timed Semantics for Nested Petri Nets with Restricted Urgency
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Timed-Arc Nested Petri Nets with Restricted Urgency
	5 Consistency and ``well-structuredness'' of TANPU-nets
	6 Conclusion
	References

	On the Expressiveness of Parametric Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Clocks, Parameters and Constraints
	2.2 Parametric Timed Automata with Hidden Parameters
	2.3 Subclasses of Parametric Timed Automata

	3 Defining the Expressiveness of PTAs
	4 An Equivalence Between Integer and Rational Parameters
	5 Expressiveness as the Untimed Language
	5.1 PTAs in the Hierarchy of Chomsky
	5.2 Comparison of Expressiveness

	6 Expressiveness as the Constrained Untimed Language
	7 Conclusion and Perspectives
	References

	Modelling Attack-defense Trees Using Timed Automata
	1 Introduction
	2 Attack Defense Trees
	2.1 Adding Timed Behaviour
	2.2 Adding Stochasticity
	2.3 Adding Cost

	3 Timed Automata
	4 Timed Automata Encoding
	4.1 Environmental Modelling
	4.2 Defender Modelling
	4.3 Attacker Modelling

	5 Tool Support
	5.1 Expected Cost
	5.2 Finding Good Attacker Profile

	6 Conclusion
	References

	Stochasticity and Hybrid Control
	Input/Output Stochastic Automata
	1 Introduction
	2 Preliminaries on Measure Theory
	3 Input/Output Stochastic Automata (IOSA)
	4 Composition and Bisimulation as a Congruence
	5 Closed IOSAs are Deterministic
	6 Conclusion
	References

	On Optimal Control of Stochastic Linear Hybrid Systems
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Synthesis Approach
	4.1 Mode Sequence and Optimal Dwell Times
	4.2 Mode Tuning and Optimal Control Inputs

	5 Case Studies
	5.1 Two Zone Temperature Control
	5.2 HVAC Control
	5.3 Motion Planning

	6 Conclusion
	References

	Scheduling of Controllers' Update-Rates for Residual Bandwidth Utilization
	1 Introduction
	2 Notation and Preliminaries
	2.1 Notation
	2.2 Control Systems

	3 Problem Formulation
	4 Adaptive Scheduling of Variable-Rate Control Tasks
	4.1 Control Task Scheduling Constraints
	4.2 Task Set Characterization
	4.3 Scheduler Design

	5 Simulation Results
	References

	Real-Time Verification and Synthesis
	Real-Time Synthesis is Hard!
	1 Introduction
	2 Reactive Synthesis of Timed Properties
	3 BPrecRS and BClockRS are Undecidable
	4 Bounded-Resources Synthesis for MITL Properties
	References

	A Boyer-Moore Type Algorithm for Timed Pattern Matching
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 String Matching and the Boyer-Moore Algorithm
	2.3 Pattern Matching and a Boyer-Moore Type Algorithm

	3 The Timed Pattern Matching Problem
	4 A Naive Algorithm and Its Online Variant
	5 A Timed Boyer-Moore Type Algorithm
	6 Experiments
	References

	Abstraction Strategies for Computing Travelling or Looping Durations in Networks of Timed Automata
	1 Introduction
	2 Preliminaries
	3 Running Example
	4 Timing Analysis
	5 Direct Abstraction Strategy
	6 Iterated Abstraction Strategy
	7 Conclusion and Future Work
	References

	Distributed Algorithms for Time Optimal Reachability Analysis
	1 Introduction
	2 Sequential Time Optimal Reachability
	2.1 Timed Automata
	2.2 Sequential Time Optimal Reachability Algorithm

	3 Distributed Time Optimal Reachability
	3.1 Distributed Algorithm
	3.2 Distributed Algorithm for Strict BFS

	4 Experiments
	4.1 Models
	4.2 Time to Find or Prove Optimal Result (Metric 1 & 2)
	4.3 Results Versus Time (Metric 3)
	4.4 Memory and Communication (Metric 4)

	5 Conclusions
	A Results for Runtime
	References

	Workload Analysis
	Scenario-Aware Workload Characterization Based on a Max-Plus Linear Representation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Variability Characterization Curves
	2.2 SDF Model
	2.3 SADF Model

	3 Max-Plus Linear Representation of a SADF Graph
	3.1 Solution to the State-Space Equations in SADF

	4 Variability Characterization Curves for SADF Graphs
	4.1 Scenario-Based Workload Curve
	4.2 Scenario-Based Service Curve

	5 Workload Characterization Analysis Flow Based on Application Scenarios
	6 Use Case
	6.1 The JPEG Decoder
	6.2 Scenario-Based Services Curves

	7 Conclusions
	Acknowledgement
	References

	A Novel WCET Semantics of Synchronous Programs
	1 Introduction
	2 Illustrative SCCharts Example
	3 Intermediate Level Semantics: Tick Cost Automata
	4 Min-Max-Plus Semantics of IO-BTCA
	4.1 Min-Max-Plus Algebra
	4.2 Formal Max-Plus Power Series

	5 Modelling Signal-Dependent WCET
	5.1 The WCET of IO-BTCAs
	5.2 The WCET of a Composition of IO-BTCAs

	6 Related Work
	7 Conclusions
	References

	Worst-Case Execution Time Analysis for Many-Core Architectures with NoC
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The Platform Architecture Model
	3.2 Application Model
	3.3 Application Deployment onto the Platform

	4 Interference-Based WCET Analysis
	4.1 Kalray MPPA-256 Architecture
	4.2 Intra-cluster Interference
	4.3 Inter-cluster Interference
	4.4 Deriving Tight WCET Estimations

	5 WCET Analysis Evaluation
	6 Conclusion
	References

	Timed Multiset Rewriting and the Verification of Time-Sensitive Distributed Systems
	1 Introduction
	2 Timed Multiset Rewriting Systems
	3 Programming Drone Behavior Using PTS
	4 Quantitative Temporal Properties
	4.1 Verification Problems

	5 Complexity Results
	5.1 PSPACE-Completeness
	5.2 Complexity Results for n-Time-Bounded Systems

	6 Bounded Simulations
	7 Related and Future Work
	References

	Author Index

