
Leila Ribeiro
Thierry Lecomte (Eds.)

 123

LN
CS

 1
00

90

19th Brazilian Symposium, SBMF 2016
Natal, Brazil, November 23–25, 2016
Proceedings

Formal Methods:
Foundations
and Applications

Lecture Notes in Computer Science 10090

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Leila Ribeiro • Thierry Lecomte (Eds.)

Formal Methods:
Foundations
and Applications
19th Brazilian Symposium, SBMF 2016
Natal, Brazil, November 23–25, 2016
Proceedings

123

Editors
Leila Ribeiro
Universidad Federal do Rio Grande do Sul
Porto Alegre
Brazil

Thierry Lecomte
ClearSy
Aix en Provence
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-49814-0 ISBN 978-3-319-49815-7 (eBook)
DOI 10.1007/978-3-319-49815-7

Library of Congress Control Number: 2016958976

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at SBMF 2016: the 19th Brazilian Sym-
posium on Formal Methods. The conference was held in Natal, Brazil, during
November 23–25, 2016. The Brazilian Symposium on Formal Methods (SBMF) is an
event devoted to the dissemination of the development and use of formal methods for
the construction of high-quality computational systems, aiming to promote opportu-
nities for researchers with interests in formal methods to discuss the recent advances in
this area. SBMF is a consolidated scientific-technical event in the software area. Its first
edition took place in 1998, reaching the 19th edition in 2016. The proceedings of the
last editions have been published in Springer’s Lecture Notes in Computer Science
series as volumes 5902 (2009), 6527 (2010), 7021 (2011), 7498 (2012), 8195 (2013),
8941 (2014), and 9526 (2015).

The conference included two invited talks, given by Augusto Sampaio (UFPE,
Brazil) and Michael Leuschel (University of Düsseldorf, Germany), and a tutorial,
given by Ana Cristina Vieira Melo (USP, Brazil). A total of 12 papers were presented
at the conference and are included in this volume. They were selected from 22 sub-
missions that came from ten different countries: Algeria, Argentina, Brazil, Canada,
Equador, Estonia, Finland, Italia, Portugal, South Africa, and Venezuela. The Program
Committee comprised 47 members from the national and international community of
formal methods. Each submission was reviewed by three Program Committee mem-
bers. The process of submissions by the authors, paper reviews, deliberations of the
Program Committee, as well as proceedings elaboration were all assisted by EasyChair,
which provided excellent support for these tasks.

We are grateful to the Program Committee, and to the additional reviewers, for their
hard work in evaluating submissions and suggesting improvements. We are very
thankful to the general chair of SBMF 2016, Marcel Oliveira (UFRN), and the local
organization team, who made everything possible for the conference to run smoothly,
and to IMD (Instituto Metrópole Digital) that kindly hosted the event. SBMF 2016 was
organized by Federal University of Rio Grande do Norte (UFRN), promoted by the
Brazilian Computer Society (SBC), and sponsored by the following organizations,
which we thank for their generous support: CAPES, CNPq, UFRN, and ClearSy
System Engineering. Finally, we would like to thank Springer for agreeing to publish
the proceedings as a volume of Lecture Notes in Computer Science.

November 2016 Leila Ribeiro
Thierry Lecomte

Organization

Program Committee

Aline Andrade Federal University of Bahia, Brazil
Luis Barbosa Universidade do Minho, Portugal
Christiano Braga Fluminense Federal University, Brazil
Michael Butler University of Southampton, UK
Sergio Campos Federal University of Minas Gerais, Brazil
Ana Cavalcanti University of York, UK
Simone André Da Costa

Cavalheiro
Federal University of Pelotas, Brazil

Márcio Cornélio Federal University of Pernambuco, Brazil
Andrea Corradini Università di Pisa, Italy
Jim Davies University of Oxford, UK
Ana De Melo University of Sao Paulo, Brazil
Leonardo de Moura Microsoft Research
David Deharbe ClearSy, Aix-en-Provence, France
Ewen Denney SGT/NASA Ames, USA
Clare Dixon University of Liverpool, UK
Rachid Echahed CNRS and University of Grenoble, France
Rohit Gheyi Federal University of Campina Grande, Brazil
Stefan Hallerstede Aarhus University, Denmark
Reiko Heckel University of Leicester, UK
Rolf Hennicker Ludwig-Maximilians-Universität München, Germany
Juliano Iyoda Federal University of Pernambuco, Brazil
Peter Gorm Larsen Aarhus University, Denmark
Thierry Lecomte ClearSy, Aix-en-Provence, France
Michael Leuschel University of Düsseldorf, Germany
Patricia Machado Federal University of Campina Grande, Brazil
Marcelo Maia Federal University of Uberlândia, Brazil
Narciso Marti-Oliet Universidad Complutense de Madrid, Spain
Anamaria Martins Moreira Federal University of Rio de Janeiro, Brazil
Tiago Massoni Federal University of Campina Grande, Brazil
Alvaro Moreira Federal University of Rio Grande do Sul, Brazil
Alexandre Mota Federal University of Pernambuco, Brazil
Arnaldo Moura IC/UNICAMP
David Naumann Stevens Institute of Technology, USA
Daltro Jose Nunes Federal University of Rio Grande do Sul, Brazil
Jose Oliveira Universidade do Minho, Portugal
Marcel Vinicius Medeiros

Oliveira
Federal University of Rio Grande do Norte, Brazil

Fernando Orejas UPC, Spain
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro Federal University of Rio Grande do Sul, Brazil
Augusto Sampaio Federal University of Pernambuco, Brazil
Leila Silva Federal University of Sergipe, Brazil
Adenilso Simao ICMC/USP, Brazil
Neeraj Singh McMaster University, Canada
Gabriele Taentzer Philipps-Universität Marburg, Germany
Sofiene Tahar Concordia University, Canada
Matthias Tichy University of Ulm, Germany
Jim Woodcock University of York, UK

Additional Reviewers

Julia, Stéphane
Lopes, Bruno
Lucero, Giovanny
Siddique, Umair

VIII Organization

Contents

Invited Talks

Formal Model-Based Constraint Solving and Document Generation. 3
Michael Leuschel

Formal Testing from Natural Language in an Industrial Context 21
Augusto Sampaio and Filipe Arruda

Analysis and Verification

Application of Formal Methods to Verify Business Processes 41
Luis E. Mendoza Morales, Carlos Monsalve, and Mónica Villavicencio

An Approach for Verifying Educational Robots . 59
Sidney Nogueira, Taciana Pontual Falcão, Alexandre Mota,
Emanuel Oliveira, Itamar Moraes, and Iverson Pereira

Verigraph: A System for Specification and Analysis of Graph Grammars. . . . 78
Andrei Costa, Jonas Bezerra, Guilherme Azzi, Leonardo Rodrigues,
Thiago Rafael Becker, Ricardo Gabriel Herdt, and Rodrigo Machado

Modeling and Logic

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 97
Andrew Edmunds and Marina Waldén

Algebraic Foundations for Specification Refinements. 112
Pablo F. Castro and Nazareno Aguirre

On Interval Dynamic Logic . 129
Regivan H.N. Santiago, Benjamín Bedregal, Alexandre Madeira,
and Manuel A. Martins

An Evolutionary Approach to Translate Operational Specifications
into Declarative Specifications . 145

Facundo Molina, César Cornejo, Renzo Degiovanni, Germán Regis,
Pablo F. Castro, Nazareno Aguirre, and Marcelo F. Frias

A Refinement Repair Algorithm Based on Refinement Game
for KMTS Models. 161

Efraim Machado and Aline Andrade

http://dx.doi.org/10.1007/978-3-319-49815-7_1
http://dx.doi.org/10.1007/978-3-319-49815-7_2
http://dx.doi.org/10.1007/978-3-319-49815-7_3
http://dx.doi.org/10.1007/978-3-319-49815-7_4
http://dx.doi.org/10.1007/978-3-319-49815-7_5
http://dx.doi.org/10.1007/978-3-319-49815-7_6
http://dx.doi.org/10.1007/978-3-319-49815-7_7
http://dx.doi.org/10.1007/978-3-319-49815-7_8
http://dx.doi.org/10.1007/978-3-319-49815-7_9
http://dx.doi.org/10.1007/978-3-319-49815-7_9
http://dx.doi.org/10.1007/978-3-319-49815-7_10
http://dx.doi.org/10.1007/978-3-319-49815-7_10

Massive Open Online Courses and Monoids. 179
Hugo Farias, Christiano Braga, and Paulo B. Menezes

Model Checking

A Bounded Model Checker for Three-Valued Abstractions of Concurrent
Software Systems . 199

Nils Timm, Stefan Gruner, and Matthias Harvey

Model Checking Requirements . 217
Sérgio Barza, Gustavo Carvalho, Juliano Iyoda, Augusto Sampaio,
Alexandre Mota, and Flávia Barros

Refinement Verification of Sequence Diagrams Using CSP 235
Lucas Lima, Juliano Iyoda, and Augusto Sampaio

Author Index . 253

X Contents

http://dx.doi.org/10.1007/978-3-319-49815-7_11
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_13
http://dx.doi.org/10.1007/978-3-319-49815-7_14

Invited Talks

Formal Model-Based Constraint Solving
and Document Generation

Michael Leuschel(B)

Institut Für Informatik, Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

leuschel@cs.uni-duesseldorf.de

Abstract. Constraint solving technology for formal models has made
considerable progress in the last years, and has lead to many applications
such as animation of high-level specifications, test case generation, or
symbolic model checking. In this article we discuss the idea to use formal
models themselves to express constraint satisfaction problems and to
embed formal models as executable artefacts at runtime. As part of our
work, we have developed a document generation feature, whose output
is derived from such executable models. This present article has been
generated using this feature, and we use the feature to showcase the
suitability of formal modelling to express and solve various constraint
solving benchmark examples. We conclude with current limitations and
open challenges of formal model-based constraint solving.

1 Animation and Constraint Solving for B

The B-Method [2] is a formal method rooted in predicate logic and set the-
ory, supporting the generation of code “correct by construction” via successive
refinement. Initially, the B-method was supported by two tools, BToolkit [4] and
Atelier B [7], which both provided automatic and interactive proving environ-
ments, as well as code generators. To be able to apply the code generators, one
has to refine an initial high-level specifications into lower-level B (called B0).
It is of course vital that the initial high-level specification correctly covers the
requirements of the application being developed. To some extent suitability of
the high-level specification can be ensured by stating and proving invariants and
assertions. In addition, the BToolkit provided an interactive animator, where the
user had to provide values for parameters and existentially quantified variables,
the validity of which was checked by the BToolkit prover. However, quite often
these techniques are far from satisfactory and sufficient. The ProB validation
tool [24,25] was developed to satisfy this need in the tooling landscape, and pro-
vide a more convenient and extensive validation of high-level specifications. The
first problem that ProB set out to solve was to provide automatic animation,
freeing up the user from providing values for parameters and quantified vari-
ables. This was achieved by providing a constraint solver for the B language. On
top of the animator, a model checker was developed, in order to automatically
construct the state space of a formal B model and check temporal properties.
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 3–20, 2016.
DOI: 10.1007/978-3-319-49815-7 1

4 M. Leuschel

Constraint Solving, Execution and Proof

What distinguishes constraint solving from proof and execution (e.g., of gener-
ated code) in the context of B:

– the expression {2, 3, 5} ∩ 4..6 can be executed, yielding the value {5}. The
characteristics of execution for B are: no non-determinism arises, no search
is required, and there is a clear procedure on how to obtain the result. An
example for execution is the running of code generated from B0.

– The sequent or proof obligation x ≥ 0 ∧ n > 0 � x + n > 0 can be proven.
The characteristics of proof for B are: usually a non-deterministic search for
a proof is required; human intervention is also often required. Proof can deal
with infinite values and infinitely many possibilities; e.g., the above sequent
holds for infinitely many values for x and n. A proof attempt either yields a
proof or it does not. In the latter case, we do not know the status of the proof
obligation and in either case no values are obtained.

– The predicate x ≥ 0 ∧ n > 0 ∧ x + n ∈ {2, 3} can be solved yielding a solution
x = 0, n = 2. The characteristics of constraint solving are that, in contrast
to execution and just like for proof, a non deterministic search for possible
solutions is required. In contrast to proof, the process is fully automatic and
provides concrete values. On the downside, constraint solving usually can only
deal with a bounded number of finite values for the variables.

Challenge. The major challenge of animating or validating B is the expressive-
ness of its underlying language. B is based on predicate logic, augmented with
arithmetic (over integers), (typed) set theory, as well as operators for relations,
functions and sequences. (A similar point can be made for other formal meth-
ods who share a similar foundation, such as TLA+ [21] or Z [38].) As such, B
provides a very expressive foundation which is familiar to many mathematicians
and computer scientists. For example, Fermat’s Last Theorem can be written in
B as follows:

∀n.(n > 2 ⇒ ¬(∃(a, b, c).(an + bn = cn)))

In B’s ASCII syntax (AMN or Abstract Machine Notation) this is written as
follows:

!n.(n>2 => not(#(a,b,c).(a**n + b**n = c**n)))

A more typical example in an industrial formal specifications would be the
integer square root function, which can be expressed in B as follows:

isqrt = λn.(n ∈ N|max ({i |i2 ≤ n}))

Here, the λ operator allows us to construct an infinite function, whose domain
are the natural numbers and whose result is the largest integer whose square is
less or equal to the function parameter n.

Formal Model-Based Constraint Solving and Document Generation 5

Due to arithmetic and the inclusion of higher-order functions, the satisfia-
bility of B formulas is obviously undecidable. As such, animation is also unde-
cidable, as operation preconditions or guards in high-level models can be arbi-
trarily complex. We cannot expect to be able to determine the truth value of
Fermat’s Last Theorem automatically, but ProB is capable of computing with
the integer square root function above, e.g., determining that isqrt(101) = 10 or
isqrt(1234567890) = 35136.1 The relational composition operator “;” can actu-
ally be used as the higher-order “map” function in functional programming, and
ProB can compute ([99, 100, 101]; isqrt) = [9, 10, 10].

In essence, the challenge and ultimate goal of ProB is to solve constraints,
for an undecidable formal method with existential and universal quantification,
higher-order functions and relations, unbounded variables. Ideally, infinite func-
tions should be dealt with symbolically, while large finite relations should be
stored efficiently. Moreover, we generally need not just to find one solution for a
predicate, but all solutions. For example, when evaluating a set comprehension,
all solutions must be found. Similarly, when using model checking we need to
find all solutions for the guard predicates, to ensure that the complete state
space gets constructed.

Applications of Constraint Solving

Over the years the constraint solving kernel of ProB has been improved, e.g.,
making use of the CLP(FD) library of SICStus Prolog [6] or using CHR [12].
This opened up many additional applications:

– Constraint-based invariant or deadlock checking [14].
E.g., for deadlock checking, we ask the constraint solver to find a state of a B
model satisfying the invariant, such that no event or operation is enabled.

– Model-based testing [16,31,34].
Here we ask the constraint solver to find values for constants and operation
parameters to construct test cases.

– Disproving and proving [17].
Here we ask the constraint solver to find counter examples to proof obligations.
Sometimes, when no counter example is found, the constraint solver can return
a proof, e.g., when only finite domain variables occur.

– Enabling analysis [10].
Here the constraint solver determines whether an event can disable or enable
other events. The result is used for model comprehension, inferring control
flow and for optimising the model checking process.

– Symbolic model checking [18].
Here the constraint solver is used to find counter example traces for invariance
properties.

1 This is one of the specifications which is given as an example of a non-executable
specification in [15].

6 M. Leuschel

2 Model-Based Constraint Solving

We now want to turn our focus from constraint solving technology for validating
B models towards using B models to express constraint satisfaction problems.

The idea is to use the expressivity of the B language and logic to express
practical problems, and to use constraint solving technology on these high level
models. In other words, the B model is not refined in order to generate code but
is “executed” directly.

Data validation in the railway domain [1,5,22,26,27] was a first practical
application where B was used in this way, i.e., properties where expressed in B
and checked directly by a tool such as ProB, PredicateB or Ovado. Here the
B language was particularly well suited, e.g., to express reachability in railway
networks. The constraint solving requirements are typically relatively limited
and could still be solved by naive enumeration.

In the article [28] we later argued that B is well suited for expressing con-
straint satisfaction problems in other domains as well. This was illustrated on
the Jobs puzzle challenge [37] and we are now using this approach at the Uni-
versity of Düsseldorf to solve various time tabling problems [35], e.g., determine
whether a student can study a particular combination of course within a given
timeframe.

A question is of course, why not encode these constraint satisfaction problems
in a dedicated programming language such as CLP(FD) [6] or Zinc [29]. Some
possible answers to this question are:
– By using B we obtain constraint programming with proof support B. For

example, we can add assertions about our problem formulation and discharge
them using proof. We also hope that optimisation rules can be written in B
and proven for all possible values.

– B is a very expressive language, many problems can be encoded more elegantly
in B than in other languages [28].

– we want to use a formal model not just as a design artefact but also at runtime;
B can also be a very expressive query language, thereby enabling introspection,
monitoring and analysis capabilities at runtime.

– We also wanted to stress test the constraint solver of ProB, identify weak-
nesses and improve the tool in the process.

– Finally, we hope to use B in this way for teaching mathematics, theoretical
computer science and obviously B itself.

In the SlotTool project [35] we will compare the formal model based approach
with a traditional constraint programming implementation, but it is still to early
in the project to draw any conclusions.

In Sect. 4 we will present a few more constraint satisfaction benchmarks and
problems which can be stated in the logic of the B notation. To this end, we will
use another new feature of ProB: being able to generate “executable” Latex
documentation. This feature was developed out of the necessity to understand
complex models and complex situations in [35], as well as out of the need to
generate validation reports and summaries for data validation. This new feature
is described in the following section.

Formal Model-Based Constraint Solving and Document Generation 7

3 Model-Based Document Generation

In this section we present a new feature of ProB, allowing one to generate
readable documents from formal models. ProB can be used to process Latex
[20] files, i.e., ProB scans a given “raw” Latex file and replaces certain ProB
Latex commands by processed results, yielding a “proper” Latex file with all
ProB commands replaced by evaluated results.

probcli FILE -init -latex RawLatex.tex FinalLatex.tex

The FILE and -init parameters are optional; they are required in case one
wants to process the commands in the context of a certain model. Currently the
ProB Latex commands mainly support B and Event-B models, TLA+ and Z
models can also be processed but all commands currently expect B syntax. You
can add more commands if you wish, e.g., set preferences using -p PREF VAL or
run model checking --model-check. The Latex processing will take place after
most other commands, such as model checking.

To some extent this feature was inspired by Z, where models are written in
Latex format from the start. The Z Word Tools [13] were later developed to
enable one to write Z models in Microsoft Word. A difference with our approach
is that the B model is still kept separate from the Latex document, and that the
Latex document may also contain commands to derive additional data, tables
or figures. Moreover, multiple Latex documents can be attached to a B model
and can also be re-used for the same model, with varying data inputs.

Applications. We hope that some of the future applications of this Latex
package are:

– Model documentation: generate an executable documentation for a formal
model, that shows how to operate on the model. Moreover, provided ProB’s
Latex processing runs without errors, the documentation is guaranteed to be
up-to-date with the current version of the model.

– Worksheets: for certain tasks the Latex document can replace a separate for-
mal B model, the model is built-up incrementally by Latex commands and the
are results shown in the final Latex output. This is probably most appropriate
for smaller, isolated mathematical problems in teaching.

– Validation reports: on can automatically construct a summary of a valida-
tion task such as model checking or assertion checking.

– Model debugging or information extraction: here the processing of the
executable document extracts and derives relevant information from a formal
model, and presents it in a user friendly way. We use this feature regularly for
our time tabling application [35] to depict conflicts either graphically or in a
tabular fashion.

– Finally, we also plan to use the Latex package to produce documentation
for some of ProB’s features (such as this latex package or ProB’s external
functions).

8 M. Leuschel

Some Commands. The \probexpr command takes a B expression as argument
and evaluates it. By default it shows the B expression and the value of the
expression, for example:

– \probexpr{{1}\/{2**100}} in the raw Latex file will yield:
{1} ∪ {2100} = {1, 1267650600228229401496703205376}
The \probrepl command takes a REPL command and executes it. By

default it shows only the output of the execution, e.g., in case it is a predicate
TRUE or FALSE.

– \probrepl{2**10>1000} in the raw Latex file will yield:
TRUE

– \probrepl{let DOM = 1..3} outputs a value and will define the variable DOM
for the remainder of the Latex run:
{1, 2, 3}

– there is a special form for the let command: \problet{DOM}{1..3}, it has the
same effect as the command above, but also prints out the let predicate itself:
let DOM = 1..3 � {1, 2, 3}
The \probprint command takes an expression or predicate and pretty prints

it, for example:

– \probprint{bool({1|->2,2|->3}|>>{4}:NATURAL+->INTEGER)} yields:
bool({(1 �→ 2), (2 �→ 3)} �− {4} ∈ N �→ Z)

The \probif command takes an expression or predicate and two Latex texts.
If the expression evaluates to TRUE the first branch is processed, otherwise the
other one is processed. Here is an example:

– \probif{2**10>1000}{\top}{\bot} in the raw Latex file will yield:
�
The \probfor command takes an identifier, a set expression and a Latex text,

and processes the Latex text for every element of the set expression, setting the
identifier to a value of the set. For example, below we embed the command:
\probfor{i}{2..3}{\item square of\probexpr{i}: $\probexpr{i*i}$}
within an itemize environment to generate a list of entries:

– square of i = 2: i ∗ i = 4
– square of i = 3: i ∗ i = 9

The \probtable command takes a B expression as argument, evaluates it
and shows it as a table. For example, the command:

\probtable{{i,cube|i:2..3 & cube=i*i*i}}{no-row-numbers} in the raw
Latex file will yield:

Finally, the \probdot command takes a B expression or predicate as argu-
ment, evaluates it and translates it into a graph rendered by dot [3].

Formal Model-Based Constraint Solving and Document Generation 9

i Cube

2 8

3 27

4 A Portfolio of Constraint Solving Examples in B

The following examples were generated (on 1/10/2016−11h383s) using the Latex
package described in Sect. 3 with ProB version 1.6.1 − beta4.

4.1 Graph Colouring

The graph colouring problem consists in assigning colours to nodes of a graph,
such that any two neighbours have different colours. Let us first define some
arbitrary directed graph gr = {(1 �→ 3), (2 �→ 4), (3 �→ 5), (5 �→ 6)} (using
integers as nodes). Suppose we want to color this graph using the colours cols =
{red, green}. We now simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

∃col .(col ∈ 1..6 → cols ∧ ∀(x , y).(x �→ y ∈ gr ⇒ col(x) �= col(y)))

The graph and the first solution found by ProB for col are shown in Fig. 1
using the \probdot command.

Fig. 1. A solution to a graph colouring problem

4.2 Graph Isomorphism

Let us define two directed graphs g1 = {(v1 �→ v2), (v1 �→ v3), (v2 �→ v3)} and
g2 = {(n1 �→ n2), (n3 �→ n1), (n3 �→ n2)}. The nodes of g1 are V = {v1, v2, v3}

10 M. Leuschel

and of g2 are N = {n1, n2, n3}. These two graphs are isomorphic if we can find
a bijection between V and N , such that the successor relation is preserved. We
can compute the successors of a node by using the relational image operator [.],
e.g., the successors of v1 in g1 are g1 [{v1}] = {v2, v3}. In B we can thus check
g1 and g2 for isomporhism by trying to find a solution for:

∃iso.(iso ∈ V �� N ∧ ∀v .(v ∈ V ⇒ iso[g1 [{v}]] = g2 [iso[{v}]]))

The graph and the first solution found by ProB for iso are shown in Fig. 2
using the \probdot command.

Fig. 2. A solution to a graph isomorphism problem

An industrial application of this constraint solving task — expressed in B —
for reverse engineering can be found in [8].

4.3 N-Queens and Bishops

The N-Queens puzzle is a famous benchmark within constraint programming.
The task is to place n queens on a n×n chessboard so that no two queens attack
each other. Initially, we solve the puzzle for n = 6.

In a first step, we place one queen on each row and column by using a total
injection constraint:

∃queens.(queens ∈ 1..n � 1..n)

Here, queens is a function which for every queen stipulates the column it is
placed on. By stipulating that the function is injective, we ensure that no two
queens can be on the same column. By numbering queens from 1 to n, we have
implicitly placed one queen on each row.

Formal Model-Based Constraint Solving and Document Generation 11

We still need to ensure that queens cannot attack each other on the diagonals,
above we have actually described the N-Rook problem. The first solution found
by ProB is shown below \probfor command and the skak package.2

Dealing with the diagonals requires a more involved universal quantification:
queens ∈ 1..n � 1..n ∧ ∀(q1 , q2).(q1 ∈ 1..n ∧ q2 ∈ 2..n ∧ q2 > q1 ⇒

queens(q1) + (q2 − q1) �= queens(q2) ∧ queens(q1) + (q1 − q2) �= queens(q2))
The first solution found by ProB is

queens = {(1 �→ 5), (2 �→ 3), (3 �→ 1), (4 �→ 6), (5 �→ 4), (6 �→ 2)}
which can be depicted graphically as follows:

For n = 17 we obtain the following first solution (after about 20 ms):

2 See https://www.ctan.org/pkg/skak.

https://www.ctan.org/pkg/skak

12 M. Leuschel

Related to the N-Queens puzzle is the Bishops problem: how many bishops
can one place on an n by n chess board without any bishop attacking another
bishop. In this case one can place multiple bishops on the same row and col-
umn; hence our encoding in B must be slightly different. Below we represent the
placement of the bishops as a subset of (1..n) × (1..n) and solve the puzzle for
n = 8. The following constraint encodes the proper placement of the bishops:

∃bshp.(bshp ⊆ (1..n) × (1..n) ∧ ∀(i , j).({i , j} ⊆ 1..n ⇒ (i �→ j ∈ bshp ⇒
∀k .(k ∈ i + 1..n ⇒ (k �→ (j + k) − i) �∈ bshp ∧ (k �→ (j − k) + i) �∈ bshp))))

To find the optimal solution one can solve the above predicate with an addi-
tional constraints about the cardinality of bshp, and continuously use the size
of the previous solution as a strict lower bound for the next solution. Below is
solution of the above with 14 bishops (found in about half a second); there is no
solution with 15 bishops.

We can also try to solve these various puzzles together, e.g., place 8 queens,
8 rooks and 13 bishops on the same eight by eight board. For this, we simply
conjoin the four problems above and add constraints linking them, to ensure
that a square is occupied by one piece at most. This is a simplified version of
the crowded chess board problem from [11].

A solution found after about 0.4 s is shown below. Note, that while ProB can
solve the problem quite efficiently for 13 bishops, solving time for the optimal 14
bishops together with 8 queens and rooks is dramatically higher (about 560 s).
Here, a custom low-level encoding will probably be much more efficient than the
B version (but also more tedious to write).

4.4 Golomb Ruler

Another well-known constraint solving benchmark is the Golomb ruler. The task
is to set marks on a ruler of a given length so that no two marks have the same

Formal Model-Based Constraint Solving and Document Generation 13

distance. The marks have to be put at integer positions and the ruler is also of
integer length.

We now solve this puzzle for n = 7 marks and a length len = 25.
The following expresses the problem in B:
∃a.(a ∈ 1..n → 0..len ∧ ∀i .(i ∈ 2..n ⇒ a(i − 1) < a(i)) ∧ ∀(i1 , j1 , i2 , j2).(i1

> 0 ∧ i2 > 0 ∧ j1 ≤ n ∧ j2 ≤ n ∧ i1 < j1 ∧ i2 < j2 ∧ (i1 �→ j1) �= (i2 �→ j2) ⇒
a(j1) − a(i1) �= a(j2) − a(i2)))

The first solution found by ProB (in about 130 ms) is the following one:

a = {(1 �→ 0), (2 �→ 2), (3 �→ 6), (4 �→ 9), (5 �→ 14), (6 �→ 24), (7 �→ 25)}
The solution is depicted graphically below, using the \probfor command

within a Latex picture environment.

It takes 320 ms to compute all 10 solutions using a set comprehension. Note
that some of the rulers can be obtained from the other rules by reversing the
order of the marks.

We can filter out these rulers using the B function λr .(r ∈
seq(Z)|rev((r ;λi .(i ∈ Z|25 − i)))) yielding the table below:

a

[0, 2, 6, 9, 14, 24, 25]

[0, 1, 4, 10, 18, 23, 25]

[0, 2, 3, 10, 16, 21, 25]

[0, 1, 7, 11, 20, 23, 25]

[0, 3, 4, 12, 18, 23, 25]

4.5 Sudoku and Latin Squares

Sudoku is a popular puzzle in constraint programming circles. We first define
the domain for our numbers: let D = 1..9. Let us first construct a 9 × 9 square
containing numbers in D, such that on all rows and columns we have different
numbers, i.e., we just construct a Latin square of order 9.

We first compute the pairs of positions on columns that need to be different:

let Diff1 = {x1 , x2 , y1 , y2 |{x1 , x2 , y1} ⊆ D ∧ x1 < x2 ∧ y1 = y2}
This gives rise to card(Diff1) = 324 pairs of positions. Now we do the same

for rows:

let Diff2 = {x1 , x2 , y1 , y2 |{x1 , y1 , y2} ⊆ D ∧ x1 = x2 ∧ y1 < y2}
A solution to the constraint ∃Board .(Board ∈ D → (D → D) ∧ ∀(x1 , x2 , y1 ,

y2).(x1 �→ x2 �→ y1 �→ y2 ∈ Diff1 ∪ Diff2 ⇒ Board(x1)(y1) �= Board(x2)(y2)))
is depicted below, again using the \probfor command:

14 M. Leuschel

2 5 4 1 3 6 7 8 9

1 4 2 3 6 5 9 7 8

4 9 3 2 1 8 5 6 7

3 1 8 7 9 2 4 5 6

6 3 9 8 7 1 2 4 5

5 2 1 9 8 7 6 3 4

7 6 5 4 2 9 8 1 3

8 7 6 5 4 3 1 9 2

9 8 7 6 5 4 3 2 1

Now we take into account difference constraints on the nine relevant 3 × 3
sub squares. We define a set containing three sets of indices:

let Sub = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
Observe that this is a set of sets. We can now compute the pairs of positions

that need to be different within each sub square:
let Diff3 = {x1 , x2 , y1 , y2 |x1 ≥ x2 ∧ (x1 �→ y1) �= (x2 �→ y2) ∧

∃(s1 , s2).(s1 ∈ Sub ∧ s2 ∈ Sub ∧ {x1 , x2} ⊆ s1 ∧ {y1 , y2} ⊆ s2)}
Observe that above we have quantified over sets (for s1 and s2). The con-

straint x1 ≥ x2 is not strictly necessary; it just reduces the number of conflict
positions to be checked. As a further improvement, one could add the additional
symmetry breaking constraint that x1 = x2 ⇒ y1 > y2.

To conclude, we simply combine all position pairs into a single set:

let Diff = Diff1 ∪ Diff2 ∪ Diff3

To generate a valid Sudoku solution we now need to solve the following
constraint:

∃Board .(Board ∈ D → (D → D) ∧ ∀(x1 , x2 , y1 , y2).(x1 �→ x2 �→ y1 �→ y2 ∈
Diff ⇒ Board(x1)(y1) �= Board(x2)(y2)))

The first solution found in about 50 ms is shown below:

2 7 5 1 4 3 8 6 9

1 3 6 7 9 8 2 4 5

8 4 9 5 6 2 7 1 3

7 1 2 8 3 5 4 9 6

4 6 3 2 1 9 5 7 8

5 9 8 4 7 6 1 3 2

6 5 4 3 2 1 9 8 7

3 2 1 9 8 7 6 5 4

9 8 7 6 5 4 3 2 1

Formal Model-Based Constraint Solving and Document Generation 15

4.6 Coins Puzzle

This is a puzzle from chap. 7 of [32]. One interesting aspect is the use of an
aggregate constraint (Σ) and the fact that decision variables are in principle
unbounded.

The puzzle is as follows. A bank has various bags of money, each containing
differing number of coins coins = {16, 17, 23, 24, 39, 40}. In total 100 coins are
stolen; how many bags are stolen for each type of bag?

We can express this puzzle in B as the solution to the following predicate:

∃stolen.(stolen ∈ coins → N ∧ Σ(x).(x ∈ coins|x ∗ stolen(x)) = 100)

A solution found by ProB is: stolen = {(16 �→ 2), (17 �→ 4), (23 �→ 0), (24 �→
0), (39 �→ 0), (40 �→ 0)}, also depicted as a table as follows:

Coins 16 17 23 24 39 40

Stolen 2 4 0 0 0 0

All solutions can be found by computing the following set comprehension:

{s|s ∈ coins → N ∧ Σ(x).(x ∈ coins|x ∗ s(x)) = 100}
The solution computed by ProB contains just the single solution already

shown above: {{(16 �→ 2), (17 �→ 4), (23 �→ 0), (24 �→ 0), (39 �→ 0), (40 �→ 0)}}.
Observe that here the constraint solver needs to find all solutions the predicate
inside the set comprehension. This is made more difficult by the fact that the
range of the coins variable is not bounded explicitly, and only bounded implicitly
by the summation constraint. The bounds on coins can only be inferred during
the constraint solving process itself.

5 External Data Sources and Data Validation

The core B language does not provide any features for input and output. More-
over, the operations for data types such as strings are quite limited (only equality
and inequality are provided). This has lead us to extend the B language via so-
called external functions. Basically, these are B DEFINITIONS which get
mapped to code in the ProB kernel. Some of these functions have been taken
over and implemented by ClearSy in their PredicateB secondary toolchain. Here
we briefly showcase these features, in particular in the context of data validation.

5.1 External Data Sources

ProB can read in XML and CSV files using various external functions. In this
section we read in a CSV file called “elementdata.csv” containing data about
chemical elements:

let data = READ CSV STRINGS(“elementdata.csv”)

16 M. Leuschel

The read in data is of type seq(STRING �→ STRING) and contains
size(data) = 118 entries.

The first entry has card(data(1)) = 20 fields in total, for example the fields
(“Atomic Number” �→ “1”), (“Atomic Weight” �→ “1.00794”), as well as the
fields (“Name” �→ “Hydrogen”) or (“Symbol” �→ “H”).

Note that the external read function is generic: it works for any CSV file
where the field names are stored in the first row; empty cells lead to undefined
fields in the B data.

5.2 Data Validation Example

Data validation is one area where B’s expressivity is very useful, and we illustrate
this on the data we have read in above. We can check that the index in the data
sequence correspond to the atomic number using the following predicate:

∀i .(i ∈ dom(data) ⇒ i = STRING TO INT (data(i)(“Atomic Number”)))

This property is TRUE. STRING TO INT is another external function, con-
verting strings to integer. DEC STRING TO INT is a variation thereof, also dealing
with decimal numbers and expects a precision as argument. It is often useful
for a user to define other auxiliary functions. In that respect, B is almost like a
functional programming language:

let aw = λi .(i ∈ dom(data)|DEC STRING TO INT (data(i)(“Atomic Weight”), 4))

The above function can now be applied, e.g., aw(1) = 10079.
We can check if the atomic weights are ordered by atomic number:

∀(i , j).(i ∈ dom(aw) ∧ j ∈ dom(aw) ∧ i < j ⇒ aw(i) ≤ aw(j)) � FALSE

Maybe surprisingly, this property has been evaluated to false. One counter
example is i = 18∧ j = 19∧awi = 399480∧awj = 390983∧namei = “Argon”∧
namej = “Potassium”. All counter examples are shown in the table below:

Element1 aw1 Element2 aw2

“Argon” “39.948” “Potassium” “39.0983”

“Cobalt” “58.9332” “Nickel” “58.6934”

“Plutonium” “244.0642” “Americium” “243.0614”

“Tellurium” “127.6” “Iodine” “126.90447”

“Thorium” “232.0381” “Protactinium” “231.03588”

“Uranium” “238.0289” “Neptunium” “237.048”

In summary, in this section we have shown how to read in and manipulate
data in B, how to validate properties in the data and how validation reports
with counter example tables can be generated.

Formal Model-Based Constraint Solving and Document Generation 17

6 Discussion

Above we have shown the promises of using the B language to express constraint
satisfaction problems. In practice, there are of course still limitations to this app-
roach. The B approach will often engender a computational overhead compared
to a direct encoding in a lower-level constraint programming language. Future
research will try to minimise this overhead.

A crucial aspect of the constraint solving is the treatment of quantifiers
and (nested) set comprehensions. ProB has techniques to expand quantifiers
of bounded scope, or some special forms such as ∀x.(x ∈ S ⇒ ...).3 When
these cannot be applied, the quantifiers will delay until all relevant variables are
known: this can lead to performance degradations.

Debugging is another issue, which is problematic for constraint programming
in general and B is no exception here. We have added external functions for
debugging, e.g., to print values or observe how values are instantiated. ProB
can now also provide performance warning messages, e.g., when universal or
existential quantifiers cannot be dealt with efficiently.

Below we discuss some related approaches (and repeat some of the points
made in the not easily accessible article [23]).

Comparison with Non-constraint Solving Tools. We have already dis-
cussed the proof-based BToolkit animator. A variety of other tools have been
developed for animating or model checking high-level specifications: Brama [36]
and AnimB [30] for Event-B or TLC [40] for TLA+. These tools rely on naive
enumeration and can be used if the models are relatively concrete. However,
there is little chance in using such tools for more challenging constraint solving
tasks. For example, TLC takes hours to find an isomorphism for two graphs with
9 nodes (see [27]). TLC on the other hand can be very efficient for concrete mod-
els, where the overhead of constraint solving provides no practical advantage.

Comparison with Other Technologies. In the past years we have also inves-
tigated a variety of alternative technologies to replace or complement the con-
straint solver of ProB: BDD-Datalog based approaches, SAT- and SMT-solving
techniques. For SAT, we have implemented an alternative backend for first-order
B in [33] using the Kodkod interface [39]. For certain complicated constraints,
in particular those involving relational operators, this approach fared very well.
The power of clause learning and intelligent backtracking are a distinct advantage
here over classical constraint solvers. However, for arithmetic the SAT approach
usually has problems scaling to larger integers.

Quite often, the SAT approach is better for inconsistent predicates, while the
ProB constraint solver fared better when the predicates were satisfiable. Also,
the SAT approach typically has problems dealing with large data and cannot

3 See, https://www3.hhu.de/stups/prob/index.php/Tips: Writing Models for ProB
for more details.

https://www3.hhu.de/stups/prob/index.php/Tips:_Writing_Models_for_ProB

18 M. Leuschel

deal with unbounded values or with infinite or higher-order functions. Here, an
SMT-based approach could be more promising. We have also experimented with
SMT-solvers, in particular a SMT-plugin for Event-B [9] and now also provide a
Z3 backend for ProB[19]. For proof, SMT solving has proven very useful for B.
In [18] have also used SMT to complement ProB for symbolic model checking.
But for constraint solving, the results are thus far still rather disappointing.

In conclusion, constraint solving has provided the foundation for many novel
tools and techniques to validate formal models. While SAT and SMT-based
techniques also have played an increasingly important role in this area, constraint
solving approaches have advantages when dealing with large data. In future, we
are striving for an approach which can reconcile the advantages of all of these
approaches.

Acknowledgements. I would like to thank all those people who have contributed
towards the development of ProB and without whom the tool would not be where
it is now: Jens Bendisposto, Michael Butler, Ivaylo Dobrikov, Marc Fontaine, Fabian
Fritz, Dominik Hansen, Philipp Körner, Sebastian Krings, Lukas Ladenberger, Daniel
Plagge, David Schneider, Corinna Spermann, and many more. I also thank Stefan
Hallerstede for feedback and discussions about this article.

References

1. Abo, R., Voisin, L.: Formal implementation of data validation for railway
safety-related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM
2013. LNCS, vol. 8368, pp. 221–236. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-05032-4 17

2. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
3. AT&T Labs-Research. Graphviz - open source graph drawing software. http://

www.research.att.com/sw/tools/graphviz/
4. B-Core (UK) Ltd, Oxon, UK. B-Toolkit. https://github.com/edwardcrichton/

BToolkit
5. Badeau, F., Doche-Petit, M.: Formal data validation with Event-B. CoRR,

abs/1210.7039 (2012). Proceedings of DS-Event-B 2012, Kyoto
6. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint

solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). doi:10.1007/BFb0033845

7. ClearSy: Atelier B, User, Reference Manuals. Aix-en-Provence, France (2009).
http://www.atelierb.eu/

8. ClearSy: Data Validation & Reverse Engineering, June 2013. http://www.
data-validation.fr/data-validation-reverse-engineering/

9. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for rodin. In: Derrick,
J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene,
E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-30885-7 14

10. Dobrikov, I., Leuschel, M.: Enabling analysis for event-B. In: Butler, M., Schewe,
K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 102–118.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-33600-8 6

http://dx.doi.org/10.1007/978-3-319-05032-4_17
http://dx.doi.org/10.1007/978-3-319-05032-4_17
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
https://github.com/edwardcrichton/BToolkit
https://github.com/edwardcrichton/BToolkit
http://dx.doi.org/10.1007/BFb0033845
http://www.atelierb.eu/
http://www.data-validation.fr/data-validation-reverse-engineering/
http://www.data-validation.fr/data-validation-reverse-engineering/
http://dx.doi.org/10.1007/978-3-642-30885-7_14
http://dx.doi.org/10.1007/978-3-319-33600-8_6

Formal Model-Based Constraint Solving and Document Generation 19

11. Dudeney, H.E.: Amusements in Mathematics (1917). https://www.gutenberg.org/
ebooks/16713

12. Frhwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

13. Hall, A.: Integrating Z into large projects tools and techniques. In: Börger, E.,
Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 337–337.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87603-8 26

14. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. TPLP 11(4–5), 767–782 (2011)

15. Hayes, I., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330–338 (1989)

16. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25423-4 20

17. Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB disprover
for B and Event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol.
9276, pp. 199–214. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22969-0 15

18. Krings, S., Leuschel, M.: Proof assisted symbolic model checking for B and Event-B.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol.
9675, pp. 135–150. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33600-8 8

19. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-33693-0 23

20. Lamport, L.: Latex: A Document Preparation System. Addison-Wesley Longman
Publishing Co., Inc., Boston (1986)

21. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Salt Lake City (2002)

22. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR, abs/1210.6815. Proceedings of DS-Event-B 2012, Kyoto (2012)

23. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.-L. (ed.)
Formal Methods Applied to Complex Systems: Implementation of the B Method,
chap. 14, pp. 427–446. Wiley ISTE, Hoboken (2014)

24. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45236-2 46

25. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

26. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 708–723. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 45

27. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011)

28. Leuschel, M., Schneider, D.: Towards B as a high-level constraint modelling lan-
guage. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp.
101–116. Springer, Heidelberg (2014)

29. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

30. Métayer, C.: AnimB: Animator of B system model in the Rodin platform (2010).
http://wiki.event-b.org/index.php/AnimB

https://www.gutenberg.org/ebooks/16713
https://www.gutenberg.org/ebooks/16713
http://dx.doi.org/10.1007/978-3-540-87603-8_26
http://dx.doi.org/10.1007/978-3-319-25423-4_20
http://dx.doi.org/10.1007/978-3-319-22969-0_15
http://dx.doi.org/10.1007/978-3-319-33600-8_8
http://dx.doi.org/10.1007/978-3-319-33693-0_23
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-642-05089-3_45
http://wiki.event-b.org/index.php/AnimB

20 M. Leuschel

31. Moreira, A.M., Hentz, C., Déharbe, D., Matos, E.C.B., Neto, J.B.S., Medeiros,
V.: Verifying code generation tools for the B-method using tests: a case study.
In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015. LNCS, vol. 9154, pp. 76–91.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21215-9 5

32. Murty, K.G.: Optimization Models For Decision Making, vol. 1 (2005). http://
www-personal.umich.edu//∼murty/books/opti model/

33. Plagge, D., Leuschel, M.: Validating B, Z and TLA+ Using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 31

34. Savary, A., Frappier, M., Leuschel, M., Lanet, J.-L.: Model-based robustness test-
ing in Event-B using mutation. In: Calinescu, R., Rumpe, B. (eds.) SEFM
2015. LNCS, vol. 9276, pp. 132–147. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-22969-0 10

35. Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university
timetable validation and improvement. In: Bjørner, N., de Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 487–495. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19249-9 30

36. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer,
Heidelberg (2006). doi:10.1007/11955757 28

37. Shapiro, S.C.: The jobs puzzle: a challenge for logical expressibility and automated
reasoning. In: AAAI Spring Symposium: Logical Formalizations of Commonsense
Reasoning (2011)

38. Spivey, J.M., Notation, T.Z.: A Reference Manual. Prentice-Hall, Upper Saddle
River (1992)

39. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

40. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999). doi:10.1007/3-540-48153-2 6

http://dx.doi.org/10.1007/978-3-319-21215-9_5
http://www-personal.umich.edu//~murty/books/opti_model/
http://www-personal.umich.edu//~murty/books/opti_model/
http://dx.doi.org/10.1007/978-3-642-32759-9_31
http://dx.doi.org/10.1007/978-3-319-22969-0_10
http://dx.doi.org/10.1007/978-3-319-22969-0_10
http://dx.doi.org/10.1007/978-3-319-19249-9_30
http://dx.doi.org/10.1007/978-3-319-19249-9_30
http://dx.doi.org/10.1007/11955757_28
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/3-540-48153-2_6

Formal Testing from Natural Language
in an Industrial Context

Augusto Sampaio(B) and Filipe Arruda

Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
acas@cin.ufpe.br

1 Overview

We present some results on developing formal testing strategies and tools for
mobile applications, in the context of a partnership with Motorola, a Lenovo
company. Actually, the overall scope is much larger, encompassing image process-
ing, optimisation algorithms, sentiment analysis, energy-aware software design,
and other research areas.

Our focus here is on testing. The input to the process are text documents
written in natural language. There are two major scenarios. In the first one (see
Fig. 1), the text documents specify requirements written in a (controlled) natural
language, with well-defined syntax and semantics. A formal model is automati-
cally derived from these requirements, from which test cases are automatically
generated. These test cases can be expressed in natural language (for manual
execution) or as scripts of an automation framework, like UIAutomator [7].

The second scenario is more challenging: the text documents are test cases
written in natural language following no standard whatsoever (Fig. 2). There is
no independent requirements specification; the test cases are the requirements.
In this case, for the purpose of automation, we use natural language process-
ing techniques to match test steps in natural language with test actions already
automated in a database. When there is no match, we adopt capture & replay
techniques to carry out automation and execute the test cases in the mobile
phone; these actions with their respective scripts are then included in the data-
base for further reuse.

Our major, medium-term, objective is to build a single and integrated frame-
work to support the generation, selection automation and execution of test cases
from natural language requirements, as displayed in Fig. 3. In this framework,
the input to the automation step might be automatically generated as in the
first scenario, Test Cases (CNL) in the figure, or input by a tester: Textual Test
Cases, in the figure. In the first case, the test case descriptions follow a standard
and the automation can be fully mechanised. Nevertheless, the option for the
tester to use the framework to automate textual test cases coming from other
sources must be available, as test cases for manual execution are also produced
without requirements, based on the test designer expertise.

In the next section, we present the current status of the tools (Sect. 2) that
independently mechanise these two scenarios. The underlying formalisms are

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 21–38, 2016.
DOI: 10.1007/978-3-319-49815-7 2

22 A. Sampaio and F. Arruda

Fig. 1. First scenario

Fig. 2. Second scenario

Formal Testing from Natural Language in an Industrial Context 23

Fig. 3. Proposed framework

considered in Sect. 3. In Sect. 3.1 we show how the CSP process algebra is used
as a basis to the test generation strategy; we emphasise the modularity of the
approach. In Sect. 3.2 we propose a notion of test step consistency and show how
it can be automated in Alloy. In the final section we discuss ongoing work and
the remaining steps to the full development of the proposed framework.

2 Tools

The two scenarios introduced in the previous section are supported by practi-
cal tools, although at present they are not integrated. These tools are briefly
described below.

2.1 Test Generation with TaRGeT

This section is based on material presented in [12,14]; particularly, we use a
simplified version of the illustrative example given in [14]. Our focus is on the
generation of black-box (functional) test cases. The input to the process are
use case templates, which describe interaction of a user with the system through
natural language sentences of three kinds: user actions, system states and system
responses. All these sentences must follow a writing standard defined in terms of
a controlled natural language (CNL). An example is presented in Fig. 4, which
describes a use case to move a message to an important folder.

A template, as the one in Fig. 4, describes a use case that is part of the
specification of a feature (mobile device functionality). A use case defines several
execution flows (main, alternative or exception flows) each one representing a
relevant scenario. The main one describes the happy path. In our example, the
main flow successfully captures moving a message to the important folder.

An alternative flow involves a choice; during the execution of a flow it might
be relevant to engage in an alternative behaviour. If an event from an alterna-
tive flow happens, the execution proceeds behaving according to the specified

24 A. Sampaio and F. Arruda

Fig. 4. Use case template

alternative behaviour. In our example, the alternative flow captures the situation
when a message cannot be moved because there is no more storage space.

Templates like this one are the input to the TaRGeT tool [8,12], whose pur-
pose is to mechanise a test case generation strategy that supports the steps pre-
sented in the first scenario discussed in the previous section. The tool generates
test cases, also written in CNL, which include the test procedure, a description
and related requirements. Moreover, the tool can exhibit traceability information
relating test cases, use cases and requirements.

TaRGeT inputs and processes information in use case templates, first check-
ing adherence to the CNL and, if the sentences obey the CNL, it generates test
suites. An overview of the input and output artifacts is presented in Fig. 5, which
shows a use case template as the input to the tool, and the output is a test suite
with CNL test cases for manual execution, in the form of an excel file. The tool
also implements several selection mechanisms, based on similarity algorithms
and test purposes; this latter selection criteria is discussed in Sect. 3.1.

2.2 Test Automation with Zygon

As mentioned before, there is a challenging testing scenario in which the text
documents provided as input are test cases written in natural language. Because

Formal Testing from Natural Language in an Industrial Context 25

Fig. 5. The TaRGeT tool

there is no formal standard to write these test cases, it becomes difficult to define
a meaningful mapping between the text descriptions and an automation code
script. Thus, code scripts become scattered because there is no straightforward
means to match and reuse test cases already automated.

Therefore, we proposed an intermediate-layer notation called test action to
fill this gap and implemented it in a tool called Zygon; the description pre-
sented in this section (including the figures) is closely based on [2]. A test action,
based upon the composite pattern, is a recursive structure that supports sev-
eral abstraction layers, composition and code-level interpretation for the atomic
actions (Fig. 6).

Fig. 6. Overall architecture

The idea behind this proposition is to represent every piece of information
(that ranges from a simple test step to a complete TC or even a test suite)
uniformly, allowing their retrieval or execution regardless the artifact category.
In short, we have shifted from a monolithic (Fig. 7) to a hierarchical (Fig. 8)
mapping between natural language descriptions and GUI operations.

The test action representing the TC illustrated in Fig. 7, that checks whether
an email can be sent, could be composed by several actions, which in turn could
also be a composition of other atomic actions (screen interactions), as shown
in Fig. 8. This potentialises the reuse and reduces effort by only mapping code
scripts to atomic actions.

26 A. Sampaio and F. Arruda

Fig. 7. Typical TC automation based on capture & replay

Fig. 8. Test case automation using hierarchical test actions

Because test actions may be organized and composed in any order to create
others yet more complex, we employ an algorithm to mach each test step with
a similar action description stored in the database. In this way, as more actions
are automated and stored, the greater is the chance to find a similar one instead
of spending time to generate the automation code script. In previous work, for
instance, we reported a reuse ratio up to 71% in an industrial context [2].

However, in order to assist testers when there is no previously saved test
action that is similar enough, the Zygon tool is able to capture user interactions
on the phone and store them as test actions, also giving them a natural language
description. It is worth noting that the application UI is web-based and the
process is transparent to the user (Fig. 9). In summary, we developed a full-
stack solution by which a tester is able to automate an entire test suite without
any programming skills during her common activities, reducing both time and
effort to automate tests.

Similar to traditional Capture & Replay tools, Zygon also captures user
inputs to reproduce them later. However, instead of capturing low-level events
in order to strictly reproduce them, the tool listens to the Android accessibility
events1, yielding high-level descriptions of what was performed on the device,
mitigating issues with different screen sizes, besides being more meaningful to the

1 http://developer.android.com/intl/en-us/reference/android/view/accessibility/
AccessibilityEvent.html.

http://developer.android.com/intl/en-us/reference/android/view/accessibility/AccessibilityEvent.html
http://developer.android.com/intl/en-us/reference/android/view/accessibility/AccessibilityEvent.html

Formal Testing from Natural Language in an Industrial Context 27

Fig. 9. Capture screen (Zygon)

end user. For instance, instead of “Press the screen at the coordinate (100,250)”,
Zygon captures “Click the button with description ‘Apps’”.

A custom keyboard is also installed during the capturing in order to get what
the user is typing. However, the user can transform the text typed in a variable
to reuse the same action in other situations, as shown in Fig. 9.

3 Underlying Formalisms

In this section we discuss how the underlying formalism (particularly, the process
algebra CSP) supports an incremental strategy for test generation (first sce-
nario), and how contracts and Alloy models support a consistent automation
strategy for the second scenario; we propose a new notion of test step concis-
tency, and its mechanisation, in the context of test automation.

3.1 Process Algebraic Approach to Test Generation

In this section we briefly introduce an approach to test case generation based
on the CSP process algebra. The details can be found in [14]; the purpose here
is to emphasise the modularity supported by this approach, and particularly
the fact that it has been conservatively extended to capture several facets of
test generation, like control behavior, data, quiescence and time. We explain the
CSP notation and the test case generation strategy on demand.

As previously explained, the first step is to translate the (input) use case
template into CSP. For the example presented in Fig. 4, the corresponding CSP
model is given below.

28 A. Sampaio and F. Arruda

I 1 = START ; I 1
START1 = scrollToAMsg → msgHighlighted → selMoveToIMOpt →

reqStoInfo → (ALT1 � ALT2)
ALT1 = msgStoIsNotFull → msgMovedToIMDisp → Skip
ALT2 = msgStoIsFull → performCleanUp → reqCleanUp → cleanUpOk →

msgMovedToIMDisp → Skip

The process I 1 recursively behaves as the START process (semicolon is
sequential composition). The process START engages in a sequence of events
captured using the prefix operator; the process a → P communicates the event a
and then behaves like P . After communicating the last event, reqStoInfo, START
offers a choice (�) between the processes ALT1 and ALT2; the decision is taken
by the environment; in CSP terms, this is called external choice. The process
ALT1 captures the happy path, when the storage is not full and the message
can be moved to the Important Messages folder. The process ALT2 captures
a full storage state; some cleaning up is performed so that the message can be
moved to the same folder. These two processes terminate successfully (behaving
like Skip); when any of them terminates, I 1 recurses.

As a rich process algebra, CSP offers several additional operators for combin-
ing processes; here we use only parallelism and hiding. The process P |[X]| Q
is the generalised parallel composition of the processes P and Q with synchro-
nisation set X . This means that, regarding events in X , P and Q can only
communicate when both are ready to engage in the same events; for the events
not in X , each one behaves independently. The interleaved composition P ||| Q
is a particular case of parallel composition when the synchronisation set is empty.
In this case, both processes can evolve totally independently. The process P \ X
behaves as P , but hides all events in X , making them internal.

The test case generation strategy under consideration is based on the CSP
traces model and traces refinement. A process Q refines another process, say P ,
in the traces model, denoted P �T Q , if, and only if, traces[[Q]] ⊆ traces[[P]].
Traces refinement can be automatically verified using, for instance, the FDR
tool [9]. If the refinement does not hold, the tool produces a trace (the shortest
counter-example), say ce, such that ce ∈ traces[[Q]] but ce �∈ traces[[P]]. Some
facilities are available to make FDR generate subsequent counterexamples, if
there are any can be obtained. Two other classical and more elaborate semantic
models of CSP are the failures and the failures-divergences models. The first one
captures deadlock situations, whereas the latter captures livelock traces as well.
Further details can be found, for example, in [16].

Selection criteria can be used to guide the test case generation. The main
selection mechanism is via the definition of a test purpose, which allows marking
certain traces of the specification; this is also specified as a process in CSP.
The effect of marking the relevant traces is achieved by parallel composition of
the specification with the test purpose. Consider that a given test purpose, say
TP , is defined to select some test scenarios from a specification S .The parallel

Formal Testing from Natural Language in an Industrial Context 29

composition of S and TP (denoted parallel product), with synchronisation set
αS , is STP = S |[αS]|TP .

Note that, with this synchronisation set (the entire alphabet of S), the test
purpose TP synchronises in all events of S until there are no further events
to synchronise, when TP communicates an event mark ∈ MARKS , and then
both S and TP deadlock. As a result, the parallel product will have the traces
of the form ts = t � 〈mark〉, for t ∈ tracesS , where each ts is a test scenario
of interest. Because ts �∈ traces[[S]] (due to the mark event), then the shortest
counterexample of the refinement S �T STP , say ts1, is generated. If TP does
not select any scenario from S , no mark is included in the parallel product STP ,
and so this will be the same as S ; in this case no counterexample is generated.

In the context of our example, the shortest scenario for moving a message is:

〈scrollToAMsg ,msgHighlighted , selMoveToIMOpt ,msgStoreHasSpace,
msgMovedToIMDisp, accept〉

The conformance notion adopted in this approach is the relation cspio,
intended to capture the ioco [21] relation in the CSP setting. As an informal
intuition, consider an arbitrary trace σ of the specification. Then I cspioS holds
provided, for all such traces, the set of output events of the implementation, after
performing σ, is a subset of the outputs performed by S after σ. The standard
semantic models of CSP do not distinguish between inputs and outputs, but
this is essential in testing. Here we assume that the alphabet of a process is split
into disjoint input and output sets of events. In the formulation, it is enough
to reference the set of output events, which we denote O. The relation cspio is
formalised by the following definition.

Definition 1 (CSP input-output conformance).

I cspioS =̂ ∀σ : traces[[S]] • out(I , σ) ⊆ out(S , σ)

where out(R, σ) = {a : O | σ � 〈a〉 ∈ traces[[R]] }
cspio fully captures ioco if the CSP processes (S and I) are annotated with
quiescence (δ).

Theorem 1 [14] below captures cspio using process refinement.

Theorem 1 (Verification of cspio).

I cspioS ⇔ S �T (S �ANY (O,STOP)) |[Σ]| I

where ANY (X ,R) = � a : X • a → R.

With the result established by Theorem 1, it is possible to mechanically verify
I cspioS using a tool like FDR, provided, of course, there is an implementation
model I .

30 A. Sampaio and F. Arruda

The relation ioco is defined in a model called Straces [21]. This model explic-
itly includes a special event to represent quiescence (δ). Although there is no
implementation of suspension traces in any refinement checker for CSP, it is
possible to automate verification via an encoding as standard traces refinement.
As shown in [17], if all quiescences are identified in the traces as the special
output δ, then the relations cspio and ioco coincide.

Although the refinement assertion in Theorem 1 captures cspio conformance,
it does not show how quiescent states (δ) of S and I are effectively signaled. To
take advantage of Theorem 1 in a mechanisation of conformance verification for
ioco, we use a notion of priority for CSP processes in [15]. We define, for a
process P , a corresponding process Pδ that outputs δ in all quiescent states of
P [5].

Definition 2.

Pδ =̂ prioritise(P ||| RUN ({δ}), 〈O, {δ}〉)

The behaviour of prioritise(P ,R) is similar to that of P , but it prevents any
event in Xi in the relation R (represented as an ordered sequence), for i > 1,
from taking place when τ (an internal event), � (termination) or an event in
some Xj , with j < i , is possible. The events in X1 have the same priority as that
of τ and �. Events not in R are incomparable to all other members of R.

The fact that the event δ happens only in the absence of output is captured
by the order of the sets 〈OUT , {δ}〉 in the prioritise operator, which prioritises
output events over δ.

The following theorem [5] captures our proposed strategy for cspio taking
quiescence into account. We use Oδ as an abbreviation of O ∪ {δ}. Similarly,
Σδ stands for Σ ∪ {δ}.

Theorem 2 (Verification of cspio).

I cspioS ⇔ Sδ �T (Sδ � ANY (Oδ,STOP)) |[Σδ]| Iδ
Regarding soundness, initially, we proved that the encoding in the traces

model captures ioco [14]. Currently, we are defining a new Straces model for CSP,
including the definition of all operators and the relevant healthiness conditions.
Some initial results are presented in [5].

The mechanised verification of conformance, captured as a refinement expres-
sion, is an important advantage of a formalisation using a process algebra like
CSP. Unlike an explicit algorithm for checking conformance, as presented in [22]
for ioco, we benefit from the expressive power of the refinement notions and the
model checker for CSP to verify conformance in a simple way.

An example of the modularity of this approach is that quiescence is han-
dled in an orthogonal way, preserving the structure of the conformance verifi-
cation theorem. Similarly, as shown in [14], state can also be incorporated as a

Formal Testing from Natural Language in an Industrial Context 31

conservative extensions of the presented conformance verification strategy. The
model that specifies the control behaviour of a use case is composed in paral-
lel with a process that represents an abstract memory to record the state of
variables. Despite this model increment, the test generation strategy is entirely
reused.

We have also explored another application domain (timed reactive systems).
In [4], we discuss how the test generation strategy can be incrementally evolved
to address time aspects (in addition to control and data), in an orthogonal
way.

We are currently considering the extension of the strategy to handle hybrid
systems; this is very challenging, as there is a shift of paradigm, due to the
complexity inherent to dynamic systems. This produces a vertical impact on
the overall strategy. For the CNL, the main change is to add structure so that
the requirements engineering is able to write differential equations, in addition
to the textual presentation. However, the other steps of the strategy require
more radical adaptations. We are currently working on the definition of a con-
formance relation that combines the discreet features of ioco with tolerance
(output and timed values) margins as is common in relations for dynamic
systems [1,6].

3.2 Contract Based Approach to Consistent Automation

Regarding test automation from test cases described in natural language, despite
the fact that we were able to uniformly represent every test artifact improving
the reuse among them, we still faced some problems concerning consistency and
dependency management. There was no way to guarantee, for instance, that
a sequence of test actions could actually be correctly executed. It was sorely
dependent on the tester or test engineer experience and individual knowledge
about the given domain.

Further subtle problems appeared in the execution stage when multiple test
cases, although consistently composed, rely upon prior configurations that could
also interfere or even cancel other dependencies. For that matter, we had to
develop a strategy to automatically check consistency of individual test actions as
well as their dependencies, in order to provide a coherent (and possibly optimal)
execution order.

The strategy consists on defining: which actions are individually valid; what
are their dependencies and behaviors; and how to correctly dispose actions or
what actions can be inserted to allow the execution of a set of test cases. The
valid actions and their dependencies are represented as a domain model that
is automatically translated into Alloy [11] signatures, facts and predicates, see
Listing 1.1. Then, for every execution request, a predicate is evaluated to find a
valid sequence of test actions including those requested.

32 A. Sampaio and F. Arruda

Listing 1.1. Alloy model

open util/ordering[State]

2 sig State{conditions : set Action , current : one Action} {

some this.next implies migrate[this , this.next]

4 dependenciesAreSatisfied [current , conditions]

}

6 sig Action {operation : Operation , patient : Patient }{

operationIsValid [operation ,patient]

8 }

abstract sig Operation{ dependsOn : set Operation ,

10 cancels : set Operation }

abstract sig Patient {}

12 [. . .] // Placeholder ∀ operations and patients

// Example

14 one sig Logout extends Operation {}{

cancels = Login and dependsOn = Login

16 }

[. . .]
18 pred directDependenciesAreSatisfied (action : Action ,

conditions : set Action) {

20 let directDependencies = action.operation.dependsOn •
directDependencies = none or (

22 ∀ directDependency : directDependencies •
some condition : conditions •

24 condition.operation in directDependency

and condition.patient in action.patient

26)

}

28 pred extrasDependenciesAreSatisfied (a : Action ,
conditions : set Action){

30 let extraRel = extraDependencies[a.operation][a.patient] •
no extraRel or some cond : conditions •

32 (cond.operation -> cond.patient) in extraRel

}

34 pred new(a : Action , o : Operation , patient : Patient){
a.operation in o and a.patient in patient

36 }

pred migrate(s : State , s’ : State) {

38 s.current in s’. conditions

s’. conditions - s.current in s.conditions

40 removeCanceledActions(s, s’)

}

42 pred dependenciesAreSatisfied (action : Action ,
conds : set Action){

44 extrasDependenciesAreSatisfied [action , conds]

directDependenciesAreSatisfied [action , conds]

46 }

pred addStep(s : State , action : Action){
48 s.current = action

}

Formal Testing from Natural Language in an Industrial Context 33

By referring to Listing 1.1 from lines 2 to 5, we define the concept of the state
of a system for the purpose of test case execution. A state comprises a set of
conditions (actions that were executed in past states) and the current action to
be executed. An action, in turn, is an operation over a patient (lines 6–11) such
as “Send an Email” or “Press a button”. All operations and patients from the
domain model would be automatically rendered between lines 12 and 17.

It is worth mentioning that some operations have inherent dependencies:
A “logout” operation can only be performed after “login”; similarly, to “delete”
a message, one has to have been created before (via Operation.dependsOn). On
the other hand, if a “delete” operation is performed, we have to remove the
action “create” from the conditions of the next state (via Operation.cancels).

We check these inherent dependencies evaluating the predicate defined
between the lines 18 and 27: the direct dependencies are satisfied if a given
action has no dependencies or if its dependencies are present in the set of con-
ditions of the current state. Besides these direct dependencies, we have to also
check indirect ones, such as: to send an email, one has to ensure first that there
is an active connection to the internet. These “extra” dependencies are checked
by evaluating the predicate defined between lines 28 and 33. With a valid action
and all dependencies satisfied (a valid state of the system), then the migration
to the next state happens. This is covered by the predicate defined between lines
37 and 41, by which all conditions plus the current action become the conditions
of the next state, but removing the actions from the conditions of the next state
that were canceled by the current action.

Example. A very simple example of finding a correct sequence of execution
can be illustrated by trying to execute the action “Send an email”. Testers with
no experience could naively try to build a sequence with “Turn the WiFI on
and then Send an email”, but considering a default scenario that no action was
performed before, and by analysing the dependency graph in Fig. 10, such a test
sequence is considered inconsistent. The proposed consistency analysis strategy
can easily warn the tester that this sequence cannot be executed, by evaluating
the predicate referred in Listing 1.2.

Listing 1.2. Testing consistency

pred test{

2 let s=first , s’=s.next•
s.conditions = none and

4 some activateWiFi , sendEmail : Action • {

new[activateWiFi , Activate , WiFi]

6 new[sendEmail , Send , EmailMessage]

addStep[s, activateWiFi]

8 addStep[s , sendEmail]

}

10 }

12 run test for 10

34 A. Sampaio and F. Arruda

Fig. 10. Dependency graph

Since the given sequence is detected as inconsistent, one can ask the Alloy
Analyzer to find a valid one, which is achieved by evaluating the predicate in
Listing 1.3. In this predicate, it is first assured that no actions were performed
in the initial state and, for every state in the system, a valid action must be
performed. Then, we declare that one of these valid actions should be “Send
an Email”. In this case, the Alloy Analyzer finds an instance of the model that
satisfies this predicate: Turn WiFI On –> Login Email –> Send Email, which
give us the final state described in Fig. 11.

Listing 1.3. Finding dependencies

pred findDependencies {

2 first.conditions = none

∀ s : State•
4 some anyAction : Action • {

new[anyAction , Operation , Subject]

6 addStep[s, anyAction]

}

8 some s : State •
some sendEmail : Action •{

10 new[sendEmail , Send , EmailMessage]

addStep[s, sendEmail]

12 }

}

In summary, a simple dependency analysis can both detect inconsistent
sequences, as well as automatically insert actions to turn an inconsistent sequence
into a consistent one. The main challenge here is scalability; this and other con-
cerns are considered in the next section.

Formal Testing from Natural Language in an Industrial Context 35

Fig. 11. Instance of our model with a valid sequence to “Send an email”

4 Ongoing Work: Integrated Framework

We are currently working on the integration of the strategies and tools for test
case generation and automation, as already summarised in Fig. 3. The main
activities involved are discussed below.

Controlled Natural Languages. In order to be able to automate the textual
test cases generated by TaRGeT, we need to revise the current use case tem-
plates so that the descriptions are presented in sufficient detail to allow Zygon
to match all the steps with actions in the database, without requiring capture.
Therefore, we need a writing standard common to both TaRGeT and Zygon,
which, currently, is not the case. The challenge relies on how to connect both
languages since they have different abstraction levels: the former is usually speci-
fied in general terms while the latter is tightly coupled to the UI implementation
and describe concrete actions in full.

The CNL for representing test actions (as these are stored in a database)
is heavily built upon the concept of a frame, which is a structure to store data
about a previously known situation [13]. These frames contain prefixed slots or
terminals that, when filled, represent an instance of a specific situation. There-
fore, we can automatically build the frames from the use cases, but the frames
would still miss some important properties, such as the default values for all pos-
sible slots (in order to allow generic statements) and rules for valid instances.
To fill this gap, we have two choices under analysis: (1) compel users to give
sufficient details yet inside use cases or (2) build a detached domain knowledge
model to provide a bridge between use case and test action CNLs, with the
missing information.

Soundness and Consistency Notions. The approach to test generation is
based on a well-defined conformance relation (cspio). As usual, this assumes as
test hypothesis that both the model and the implementation can be specified in
the formal model (in our case, as CSP processes), so that they can be related.
Soundness of the generated test cases, in this context, means that if the execution
of a test case gives a fail verdict, then the implementation is non-conforming.

36 A. Sampaio and F. Arruda

On the other hand, concerning the capture & replay approach, there are
no requirements or models, so there is no reference for defining conformance.
As explained in the previous section, we defined a consistency notion to check
whether the sequence of test actions in a test case is coherent in the sense that
the set up for executing a given action is ensured by previous actions in the
sequence.

An interesting aspect to consider is whether it makes sense to promote this
notion to the use case level. This would allow to ensure that the steps of the gen-
erated test cases be consistent by construction. This is a complementary notion
to that of soundness, already proved. However, as discussed in the previous topic
on considerations about the CNL, this consistency notion can be associated with
a detailed use case template or with a detached domain knowledge model.

Populating the Database. Assuming that we have a finite number of (non-
recursive) frames, it becomes feasible to pre-populate the database with auto-
mated actions prior to the test case generation, since the (parametrised) test
action will be executed the same way in spite of variations of slot values (similar
to the behavior of variables in a program) [13]. In complex systems, however,
this approach might not be practical because we would lose too much time try-
ing to automate all the frames at once. As an alternative, we can employ an
interactive, on demand approach, as it is currently used in existing projects.

Scalability. The evaluation carried out by the Alloy Analyzer to find a valid
sequence of steps may me impractical, specially when the domain model has a
huge number of different actions and patients. For a model representing only a
specific application, the time to find a valid sequence for an Alloy scope of 10
instances is usually negligible, but that is not the case when testing multiple
apps in a mobile platform. For that matter, we are exploring the alternative
of partitioning the dependency graph to consider only reachable nodes for par-
ticular applications, in order to reduce the Alloy model and consequently the
number of combinations to be analysed.

Some Related Approaches. The proposed framework integrates textual test
case generation from use case descriptions and an approach to test case automa-
tion, based on capture & replay, from textual test case descriptions. A detailed
comparison of work related to each strategy can be found in [2,14]. Here we
mention just a few examples.

Concerning textual test case generation from use case descriptions, with the
aim of GUI testing, some relevant approaches are, for instance, [3,10,19]. The
approach described in [19] is closely related to ours, since it uses natural language
for the specification of use cases, maps use cases to a formal model (FSM) and
generates textual test cases.

The search for an optimal mapping between natural language descrip-
tion and concrete tests has also been an active research area. Some examples

Formal Testing from Natural Language in an Industrial Context 37

are [18,20,23]. Cucumber [18], for instance, assists the writing of acceptance
tests in a behavior driven development environment: parameterised scenarios
are written in natural language and semi-automatically mapped to a source
code or stub, in order to accelerate the process and provide a better tracking.
However, besides the implementation being developer-centric, in-depth reuse and
consistency/dependency checking are outside the scope of the tool.

The distinguishing feature of the proposed framework is to integrate two
promising strategies (and related tools), which have been used in an industrial
context; together, they allow a mechanised generation of automated test cases
from natural language use cases, benefiting from the extensibility of both strate-
gies, as well as from soundness and consistency notions, as previously explained.
Nevertheless, each strategy and tool can still be used in isolation.

Acknowledgments. The work described here had the contribution of several col-
leagues: Hugo Araujo, Flavia Barros, Ana Cavalcanti, Gustavo Carvalho, Alexandre
Mota and Sidney Nogueira, among others.

References

1. Abbas, H., Hoxha, B., Fainekos, G., Deshmukh, J.V., Kapinski, J., Ueda, K.: Con-
formance testing as falsification for cyber-physical systems (2014). arXiv preprint:
arXiv:1401.5200

2. Arruda, F., Sampaio, A., Barros, F.: Capture and replay with text-based reuse and
framework agnosticism. In: Proceedings of the 28th International Conference on
Software Engineering and Knowledge Engineering. KSI Research Inc. http://dx.
doi.org/10.18293/SEKE2016-228

3. Bertolino, A., Gnesi, S.: Use case-based testing of product lines. ACM SIGSOFT
Softw. Eng. Notes 28(5), 355–358 (2003)

4. Carvalho, G., Sampaio, A., Mota, A.: A CSP timed input-output relation and a
strategy for mechanised conformance verification. In: Groves, L., Sun, J. (eds.)
ICFEM 2013. LNCS, vol. 8144, pp. 148–164. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41202-8 11

5. Cavalcanti, A., Hierons, R.M., Nogueira, S., Sampaio, A.: A suspension-trace
semantics for CSP. In: 10th International Symposium on Theoretical Aspects of
Software Engineering, TASE 2016, Shanghai, China, 17–19 July 2016, pp. 3–13
(2016). http://dx.doi.org/10.1109/TASE.2016.9

6. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Methods Syst. Des. 34(2), 183–213 (2009)

7. Android Developers: UiAutomator (2016)
8. Ferreira, F., Neves, L., Silva, M., Borba, P.: TaRGeT: a model based product line

testing tool. In: Tools Session of CBSoft (2010)
9. Goldsmith, M., Roscoe, B., Armstrong, P.: Failures-divergence refinement-FDR2

user manual (2005)
10. Hartmann, J., Vieira, M., Foster, H., Ruder, A.: A UML-based approach to system

testing. Innov. Syst. Softw. Eng. 1(1), 12–24 (2005)
11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,

Cambridge (2012)

http://arxiv.org/abs/1401.5200
http://dx.doi.org/10.18293/SEKE2016-228
http://dx.doi.org/10.18293/SEKE2016-228
http://dx.doi.org/10.1007/978-3-642-41202-8_11
http://dx.doi.org/10.1007/978-3-642-41202-8_11
http://dx.doi.org/10.1109/TASE.2016.9

38 A. Sampaio and F. Arruda

12. Machado, P., Sampaio, A.: Automatic test-case generation. In: Borba, P.,
Cavalcanti, A., Sampaio, A., Woodcook, J. (eds.) PSSE 2007. LNCS, vol. 6153,
pp. 59–103. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14335-9 3

13. Minsky, M.: A framework for representing knowledge (1975)
14. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case

models. Form. Asp. Comput. 26(3), 441–490 (2014). http://dx.doi.org/10.1007/
s00165-012-0258-z

15. Roscoe, A.W.: Understanding Concurrent Systems. Springer Science & Business
Media, London (2010)

16. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall Series in Com-
puter Science. Prentice-Hall, Englewood Cliffs (1998)

17. Sampaio, A., Nogueira, S., Mota, A., Isobe, Y.: Sound and mechanised composi-
tional verification of input-output conformance. Softw. Test. Verif. Reliab. 24(4),
289–319 (2014). http://dx.doi.org/10.1002/stvr.1498

18. Soeken, M., Wille, R., Drechsler, R.: Assisted behavior driven development
using natural language processing. In: Furia, C.A., Nanz, S. (eds.) TOOLS
2012. LNCS, vol. 7304, pp. 269–287. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30561-0 19

19. Some, S.S., Cheng, X.: An approach for supporting system-level test scenarios
generation from textual use cases. In: Proceedings of the 2008 ACM Symposium
on Applied Computing, pp. 724–729. ACM (2008)

20. Thummalapenta, S., Sinha, S., Singhania, N., Chandra, S.: Automating test
automation. In: 2012 34th International Conference on Software Engineering
(ICSE), pp. 881–891. IEEE (2012)

21. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools (TR-CTIT-96-26) (1996)

22. Weiglhofer, M., Wotawa, F.: On the fly input output conformance verification. In:
Proceedings of the IASTED International Conference on Software Engineering, pp.
286–291. ACTA Press (2008)

23. Wong, E., Zhang, L., Wang, S., Liu, T., Tan, L.: Dase: document-assisted symbolic
execution for improving automated software testing. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, pp. 620–631. IEEE
(2015)

http://dx.doi.org/10.1007/978-3-642-14335-9_3
http://dx.doi.org/10.1007/s00165-012-0258-z
http://dx.doi.org/10.1007/s00165-012-0258-z
http://dx.doi.org/10.1002/stvr.1498
http://dx.doi.org/10.1007/978-3-642-30561-0_19
http://dx.doi.org/10.1007/978-3-642-30561-0_19

Analysis and Verification

Application of Formal Methods to Verify
Business Processes

Luis E. Mendoza Morales1,2(B), Carlos Monsalve1, and Mónica Villavicencio1

1 Facultad de Ingenieŕıa Eléctrica y Computación, FIEC, Escuela Superior
Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vı́a Perimetral,

P.O. Box 09-01-5863, Guayaquil, Ecuador
{lemendoza,monsalve,mvillavi}@espol.edu.ec

2 Processes and Systems Department, Simón Boĺıvar University, Valle de Sartenejas,
P.O. Box 89000, Caracas, Venezuela

lmendoza@usb.ve

Abstract. Formal specifications and modeling languages can be used to
provide support for Business Process (BP) analysts and designers to ver-
ify the behavior of BPs with respect to business performance indicators
(i.e., service time, waiting time or queue size). This article presents the
application of the Timed Automata (TA) formal language to check BPs
modeled with Business Process Model and Notation (BPMN) using the
model checking verification technique. Also, a set of transformation rules
and two algorithms are introduced to obtain TA-networks from BPMN
models, allowing the formal specification of a BP-task model equivalent
to the BPMN model. The approach presented here contributes to con-
duct the qualitative analysis of BPMN models.

Keywords: Qualitative analysis · Business Process · Task model ·
Timed automata · Model checking

1 Introduction

Some approaches [4,8] have been proposed to try to solve the lack of formal
definition of time in Business Process Model and Notation (BPMN) [9]. However,
when several participants are involved in a Business Process (BP) execution,
BPMN does not deal well enough with temporal and concurrency constraints.
BPMN models do not provide mechanisms to quantify the computational/human
effort required to perform the activities established by a BP, nor the response
time of a BP when resources (e.g., a BP-worker) are concurrently shared among
multiple BPs. In previous work presented in [2], it was proposed an approach
to obtain an executable model (i.e., a BP-task model) that can be analyzed
qualitatively from a BP conceptual one (i.e., a BPMN model). The analysis is
based on the model checking (MC) verification technique, which is the most
suitable in the case of BP diagrams [5].

In this work, we describe an approach to generate a BP-task model as a
timed automata network (TA-network), which conforms with the semantics of the
BPMN standard [9] and the business time and concurrency constraints. Then,
with the support of the model-checker Uppaal [1], the behavioral aspects and
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 41–58, 2016.
DOI: 10.1007/978-3-319-49815-7 3

42 L.E. Mendoza Morales et al.

temporal constraints in a BP-task model are simulated and verified. In particular,
we can verify safety properties and constraints (stating that no unsafe state
can be reached), schedulability properties (stating that a BP will be completed
within a given deadline), and response properties (stating that, whenever a task
is executed, another task will be executed within a given time). As a result, BP
designers and business analysts can verify BPs efficiently through the following
steps: (1) description of BPs and their constraints with a formal temporal logic;
(2) systematic transformation into timed automata (TA) with the transformation
rules and algorithms; and (3) running the model-checker Uppaal. With the
verification results, the BP analysts and designers can perform improvements
and adjustments to the BPs and their constraints. This helps to solve problems
related to temporal constraints and to assure the quality of BPMN models.

Some works are found in the literature related to the specification and veri-
fication of the temporal perspective of BPMN. It is worth mentioning the work
in [3], which presents a novel approach enabling the formal specification and
verification of advanced temporal constraints of BPs, using TA. The authors
provided a specification for relative and absolute related temporal constraints
while relying on the dependencies that can exist between theses constraints. It is
also important to mention the work in [12], which proposes an automatic map-
ping of the extended BPMN onto TA. This last approach aims at verifying some
features, such as deadlocks and bottlenecks; but the scope of this paper is lim-
ited to a small subset of BPMN elements and does not consider timed properties
related to a set of activities (e,g., inter-activities temporal constraints). Finally,
the work in [6] focuses on the application of Uppaal in order to verify interop-
erability requirements for a given collaborative BPMN model. However, this last
approach is limited to detect interoperability problems without providing solu-
tions to them [6]. In contrast to the works mentioned before, the work presented
here allows us to analyze the decisions made at design-time of a BP-task model.
That is, performing the qualitative analysis of the behavior of BP-workers as
part of a verification approach. In this way, the results about the performance
of the workers (e.g., waiting time or queue size) and some business performance
indicators (e.g., service time or attention time) of a BP can be evaluated.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground that support this work. Section 3 explains our concept of BP-task model.
Section 4 presents a set of mapping rules to transform BPMN models into TA
and explains the steps to specify and verify BPMN models. Section 5 shows how
we use the model-checker Uppaal [1] to verify the corresponding BP-task model
with an instance of a Customer Relationship Management (CRM) strategy, while
the concluding remarks are presented in Sect. 6.

2 Theoretical Framework

2.1 Timed Automata (TA)

According to the TA theory, a timed automaton is a finite directed graph anno-
tated with conditions over states and resets of non-negative integer valued clocks;

Application of FMs to Verify BPs 43

and a system is modeled as a collection of finite state machines and a finite set of
clocks. In the standard scheme, the clocks are synchronized and can be reset by
the transition from one state to another. Clocks are also used as invariants and
guards for TA. Let C be a set of clocks, a temporal constraint is a conjunction of
expressions that compares the value of a clock c ∈ C to a non-negative integer
constant a ∈ Z≥0. The set of constraints over C, denoted Ψ(C), is defined by
the following BNF notation: Ψ(C) � θ = a < c | a > c | a ≤ c | a �= c | true | θ ∧ θ,
where c ∈ C and a ∈ Z≥0. Transitions are defined to be instantaneous and hence
it is possible to model behaviors that are not easily implementable. Where there
are two or more possible transitions from a state then each is a valid transition.

For example, according to the in Fig. 1 the transition out of state S cannot
be taken before time 3. In this example, T is a clock; it is resetting when the
state S is achieve. In a simple model (i.e., the invariant T < 5 do not exist) the
only exit from the state S is when T is greater than 3; i.e., the example therefore
illustrates the imposition of a delay. A state can also have a temporal invariant
to force an exit transition. Figure 1 illustrate this because the state S cannot
leave before T = 3 but must leave before T = 5. If for some reason the transition
cannot be taken then the automata contains an error condition (deadlock).

Fig. 1. Example of a TA.

Next are presented the basic definitions for TA, Union of TA, and TA-
network, which are important for our purposes.

Definition 1 (Timed Automata). A timed automaton TA is a tuple A =
〈S,Σ,C, T, s0, Inv〉, where S is a finite set of states, Σ is a finite alphabet or
set of actions, C is a finite set of clocks, T ⊆ S × Σ × Ψ(C) × 2C × S is a set
of transitions between states with an action, Ψ(C) is the set of Boolean clock
constraints involving clocks from C, s0 ∈ S is the initial state, and Inv : S →
Ψ(C) is a function that assigns invariants to states. An edge 〈s, a, g, r, s′〉 ∈ T
is a transition from state s to s′ with action a, guard g and clock resets r.

In this work, we use Uppaal [1], a model-checker that supports the graphical
representation of TA and allows the user to interact with a window editing
program to create and modify models. Then, according with the syntax and
semantic of TA in Uppaal, given t = 〈s, λ, γ, r, s′〉 ∈ T , s is the source state,
λ is the synchronization action, γ is the guard, r is the set of clocks to reset,
and s′ is the target state. Su is used to denote the subset of urgent states in S
(Su ⊆ S). An urgent state is a state where no delay is allowed. Expressions in
Uppaal range over clocks and integer variables, and clocks and clock differences
are only compared to integer expressions; also, guards over clocks are essentially
conjunctions (disjunctions are allowed over integer conditions).

44 L.E. Mendoza Morales et al.

Since each TA (representing the BP-workers) will be constructed iteratively,
incorporating—gradually—the tasks that they perform, it is necessary to define
the union of TAs.

Definition 2 (Union of TA). Let A and A′ be two TA. The union of two
TA is a tuple A′′ = 〈S′′, Σ′′, C ′′, T ′′, s′′

0 , Inv′′〉 = 〈S,Σ,C, T, s0, Inv〉 � 〈S′, Σ′,
C ′, T ′, s′

0, Inv′〉 with S′′ = S ∪ S′, Σ′′ = Σ′ ∪ Σ′′, s′′
0 = s0 ∪ s′

0, C ′′ = C ∪ C ′,
T ′′ = T ∪ T ′, and Inv′′ = Inv ∪ Inv′.

To model concurrent systems (as the BPs), TA can be extended with parallel
composition. This algebraic operator can be adopted in TA, which allows inter-
leaving of actions as well as hand-shake synchronization. Essentially, the parallel
composition of a set of TA is the product of TA, just called TA-network.

Definition 3 (TA-network). A TA-network is the parallel composition
TAN = A1 ‖ · · · ‖ An of a set of timed automata A1 . . . An, called processes,
combined into a single system by a parallel composition operator with all inter-
nal actions hidden. Synchronous communication between the processes is done by
hand-shake synchronization using input and output actions. The action alphabet
is assumed to consist of symbols for input actions denoted a?, output actions
denoted a!, and internal actions represented by the distinct symbol τ .

2.2 Business Process Model and Notation (BPMN)

BPMN provides organizations with the capability of specifying and depicting
their BPs using a graphical notation with an emphasis on control-flow. BPMN
2.0 [9] aims to be a graphical notation to communicate BPs in a standard manner.
The BPMN models incorporate constructs adequate to BP modeling, such as
events, tasks, gateways and flows, and defines more advanced constructs, such
as task looping, parallel multinstances, inclusive OR decision, subprocesses and
exception handling. Hence, a language of this type will include the modeling
concepts necessary to describe certain aspects of a BP at a certain abstraction
level, as labels to capture temporal constraints of the process.

An event is something that happens during the course of a process and affects
the flow of the process. The start event indicates where a process will start, and
end event indicates where a process will end. An activity is a generic term for
work performed in the process; it can be atomic (called task) or compound. In
this work, the term activity refers to an atomic activity or task. A sequence flow
is used to show the order in which activities will be performed. A gateway is used
to control the divergence and convergence of sequence flows. Gateways can have
several behavior controls and each type of control affects both the incoming and
outgoing flow: exclusive, parallel, and inclusive gateways. In a parallel between
BPMN objects and the workflow terminology, an exclusive gateway corresponds
to a XOR-split/join, a parallel gateway corresponds to an AND-split/join, and
an inclusive gateway corresponds to an OR-split/join. A Pool typically repre-
sents an organization or business entity and a Lane represents a department or

Application of FMs to Verify BPs 45

BP-worker within that organization, or other modeling entities like functions,
applications, and systems. Both, pools and lanes, represent BP participants.
A message flow represents the communication between two asynchronous orga-
nizations or business entities; i.e., two asynchronous pools. An association is used
to link information with graphical elements. Text annotations provide additional
information for readers of the BPMN diagrams.

Consider, for instance, the BPMN example of the leave application process1

shown in Fig. 2. There are altogether three participants in this ABC Company,
the employee, the manager as well as the human resources (HR). On the diagram,
the start event symbol is drawn on the lane labelled Employee to indicate that he
initiates the process. Then, a sequence flown indicates the process flow direction
and shows that the first thing that the employee needs to do is to Fill in the
Leave Application Form. After that, he has to submit the form to the manager
for approval.

Fig. 2. Example of a BPMN diagram.

The task Submit Leave Application for Approval is linked to the task Evaluate
Leave Application on the Manager lane, which is responsible for the process.
After the manager will evaluate on it in order to decide whether to approve the
leave request or not. At this point, a gateway symbol is drawn on the diagram
to diverge the process into two ends. That is, if the application is rejected, the
manger will need to inform the employee and the application process terminates.
So, the task Inform Employee the Request is Declined is connected to an end
event symbol. On the other hand, if the application is accepted, the manager will
inform the employee and the application process will continue to follow to the
lane of HR where he needs to manage the application. Finally, what is left in the
process is for the employee to take the leave. The end event symbol is connected
to the last task Take the Leave to indicate the whole process completes.

1 This example was taken from: http://www.visual-paradigm.com/tutorials/bpmn-
tutorial-with-example.jsp.

http://www.visual-paradigm.com/tutorials/bpmn-tutorial-with-example.jsp
http://www.visual-paradigm.com/tutorials/bpmn-tutorial-with-example.jsp

46 L.E. Mendoza Morales et al.

Formally, a structured BPMN model is defined as follows2:

Definition 4 (BPMN model or process graph). Let Γ be a set of types of
flow objects, a BPMN model or process graph is a tuple M = 〈N,T, γ, μ,N , Θ, τ,
P, L〉, where: N ⊆ A×E ×G is a set of flow objects, where A is a non-empty set
of activities and tasks, E is a non-empty set or events, G is a set of gateways;
T ⊆ N ×N is the set of sequence flows and defines the control flows; γ : N → Γ
is a function that maps flow objects to their types; μ : A → N is a function that
assigns each activity and task a name, N is the set of names; Θ : A → θ is a
function that assigns temporal constraints (i.e., min and max text annotations)
to activities and tasks, θ is the set of temporal constraints labels of the process;
P ⊆ N × T is a non-empty set of pools where process is contained; L ⊆ P is the
set of lanes in which the process is organized within each pool (e.g., representing
roles, systems, or departments); for all Pi, Pj ∈ P : Pi ∩ Pj = ∅ and for all
Li, Lj ∈ L : Li ∩ Lj = ∅.

In this work, we assume that a structured BP modeled with BPMN is con-
tained in at least one pool and composed of flow objects (tasks, events, and gate-
ways) and control flow relations; all of them depicted over a set of lanes within
the pools. Additionally, we explore only BPMN orchestration-oriented models
[9]; this means that we abstract away from other BPMN notational elements
such as artifacts, annotations, associations, groups, message flows, sub-process
invocations and attributes associated with sub-process invocations. Nonetheless,
the proposed algorithms can be applicable, even if these types of elements are
present in the model.

2.3 Clocked Computation Tree Logic (CCTL)

Property specification languages are used to obtain a formal specification of the
expected BP behavior according to the business requirements. CCTL [11] is a
propositional temporal logic that extends Computation Tree Logic (CTL) with
quantitative time bounds for expressing real time properties (e.g., bounded live-
ness). CCTL is used to deal with sequences of states, where a state gives a tempo-
ral interpretation of a set of atomic propositions (AP) within time intervals, and
time instants are isomorphic to the set of non-negative integers. CCTL includes
the CTL specification language with the operators until (U) and next (X), and
other derived operators in Linear Temporal Logic (LTL), such as release (R), weak
until (W), cancel (C), since (S), and finally (F). All of them have proved to be
useful for facilitating the definition of the properties included in reactive systems
requirements specification [11]. All LTL-like temporal operators are preceded by
a run quantifier (A universal, E existential) which determines whether the tempo-
ral operator must be interpreted over one run (existential quantification) or over
every run (universal quantification). For this paper, we will only use the semantics
2 We agree with [3] to specify a structured BPMN model as a process graph to conduct
the transformation (presented in Sect. 4).

Application of FMs to Verify BPs 47

for the AG and EF-operators (Always Globally and Eventually, respectively). For
more details about the semantics for every CCTL operator see [11].

3 BP-Task Model

Taking into account that any business comprises several BPs, a BP-task model
is a set of groups of tasks, representing a large number of possible real-world
scenarios of a BP expressed in compact form. A BP-task model associated with
a set of BPs combines the behaviors of every BP-worker involved in these BPs.
Under the BPMN standard, for modeling completely every BP of a company
is required one BPMN model for each BP. Each of these models represents
a scenario where each BP-worker carries out the tasks set up in the BP. In
this work, (1) each task is performed by only one BP-worker at a time, and
(2) a BP-worker is either the person that performs tasks or the system that
automates tasks. Formally, based on the definition of a (nondeterministic) finite
state machine, a BP-task model is defined as follows:

Definition 5 (BP-task model). A BP-task model is a tuple B = 〈A,Σ, δ,A0,
F 〉, where: A is a non-empty set of tasks; Σ is a finite set of input actions;
δ : A × (Σ ∪ {λ}) → 2A is the transition function (λ represents the empty string
Σ0 = {λ}), which returns for a given task and a given input action, the set of
(possible) tasks that can be reached; A0 is the set of initial states with A0 ∈ A;
and F is the set of final (accepting) tasks with F ⊆ A.

We are focused here on the BP-task model and the set of overlapping sce-
narios, which allow us to obtain a description of the majority of tasks that a
BP-task model must take into account [10]. Due to a BP-worker can be concur-
rently involved in several BPs into a company, the BP-task model is obtained
taking into account the behavior of these BP-workers according to each BP. The
BP-workers are the ones who execute the tasks and are responsible of BP behav-
ior. Thus, the BP-task model gives us a cross-BP view of the business behavior,
unlike the partial view showing by the BPMN models. Some non-functional
requirements (i.e., deadlock-freeness, reliability) and temporal constraints (i.e.,
timeliness, deadlines) that the BP-task model must fulfill are modeled using a
TA for each BP-worker or business entity. In this sense, the verification carried
out here exclusively refers to the BP-task model behavior modeled by the TA-
network that describes the behavior of the collaboration among BP-workers to
perform the BPs. The TA formal language have proved very useful to describe
this behavior [3,4,6].

4 Mapping Rules to Specify and Verify BPMN Models
Using TA

By applying our proposal of mapping rules (see Table 1), we can transform an
original BPMN model into an equivalent executable BP-task model using TA.

48 L.E. Mendoza Morales et al.

The current BPMN specification (version 2.0) [9] defines at least 34 types of
events, 7 kinds of activities or tasks, 8 types of gateways, and 7 types of sequence
flows; this list does not include the possible variations that can have each of the
flow objects proposed by BPMN. Given the large number of notational elements
covered by BPMN and due to space limitations, we are only presenting a sample
of 10 mapping rules.

Table 1. Some mapping rules of BPMN into TA.

With the mapping rules, behavioral aspects and temporal constraints of
BPMN models are formally specified by using the TA formal specification lan-
guage. As a result, we obtain a set of detailed TA, to which the BP-task model

Application of FMs to Verify BPs 49

conforms as a TA-network, and which completely describes the temporal behav-
ior of the BP represented by the BPMN model. After obtaining the BP-task
model, we can check its correctness through the model-checker Uppaal [1]; with
respect to formally specified properties of the BP-task model, derived from the
business rules and goals usually given by business designers and analysts. To
proceed with the transformation, we take into consideration the following:

– A TA should be constructed for each BP-worker (represented by a lane in a
BPMN model), which describes how the BP-worker perform the tasks as part
of a BP. The events, tasks, and decisions (i.e., gateways) that a BP-worker
performs are specified by states in the TA, whereas sequences of tasks (defined
by sequence flows) are specified by transitions in the TA (see Table 1).

– The temporal parameters denoted in a BPMN model corresponds to invari-
ants, guards, and assignments in the TA. For instance, to specify the behavior
of a BPMN task Nj (within the lane Li) annotated with the maxNj and
minNj temporal parameters in the BPMN model (see Task mapping rule in
Table 1), we use the following expressions in the corresponding TA: the invari-
ant is cij <= maxNj and the guard condition is cij >= minNj are defined on
the location and the outside edge of the corresponding TA; the assignment or
clock reset is cij:= 0 is defined in the inside edge coming from the location
Nj-1. Thus, cij is a clock variable that holds the elapsed time of the task.
The invariant and the guard specify that the transition from the task Nj to
any BPMN flow object Nj+1 (i.e., event, task, gateway) can never occur until
the minimum execution time (minNj) has elapsed, and must occur before the
maximum execution time (maxNj) has elapsed. Graphically, this mapping is
shown at center-left in Table 1.

– Since a BP-worker can participate in many processes, the TA that brings
together all these behaviors will result from the union of all the tasks that
the BP-worker perform for each BPMN model in which it participates. For
every BP in which a BP-worker is involved, the TA representing the com-
plete behavior of the BP-worker will contain a single path that specifies that
participation; i.e., in the TA will be the same number of paths from the ini-
tial state representing the number of BPMN models in which the BP-worker
participates.

– Always, within a BP, the BP-workers interact with each other to perform
completely a BP. In addition, BP-workers can also interact with others outside
of the BPs in which they participate to achieve the correct execution of a BP.
In any case, this collaboration is specified through the synchronization actions
(i.e., akj? and ajk!) between TAs, as is shown in the second row of Table 1.
According to BPMN, this kind of interactions corresponds to those sequence
flows that come or go to another lane, or when the BP-worker is part of a
choreography [9] via message flows (not yet covered by this work).

– The formal representation of the BP-task model corresponds to the product
of the TAs that specifies and deals with behavioral aspects and temporal
constraints of the BP-workers involved into the BPMN model. As a result, we
obtain a TA-network. Synchronous communication between the BP-workers is

50 L.E. Mendoza Morales et al.

by hand-shake synchronization using input and output actions (as is shown in
second row in Table 1). The action alphabet is assumed to consist of symbols
for input actions denoted akj?, output actions denoted ajk!, and internal
actions represented by the distinct symbol τ .

Given the mapping rules, the steps to perform the specification and verifica-
tion of BPMN models are the following:

(1) Include Temporal Constraints to BPMN Models. For the verification
of temporal properties of BPs, such as response time of business services; and
temporal constraints, such as execution time of activities; the temporal proper-
ties and constraints must be specified in the BPMN models to carry out their
verification. Since there is no attribute for specifying these in BPMN, we use
text annotations associated to each task to define the min and max time val-
ues representing the minimum and maximum durations of a task Nj . In this
way, we incorporate temporal constraints on the BPMN model. For the case of
timer start event, timer intermediate event, and timer exception flow, the busi-
ness modeler must specify the maximum duration T, as it is established by the
BPMN notation. We consider that it is sufficient to use the text annotations
defined by BPMN to include temporal constraints to BPMN models.

(2) Obtain the BP-Task Model. By applying the mapping rules intro-
duced in Table 1, the TA-network that corresponds to the BP-task model is
obtained. This model specifies and deals with behavioral aspects and tempo-
ral constraints of the BP-workers involved into the BP-task model. The Cre-
ate BP-task model function, described by Algorithm1, is the main function
of this specification step. The objective of this function is to return a TA-network
(denoted with the TAN variable in Algorithm1) from a process graph or BPMN
model. The function calls the Create TA of BP-workers function given by
Algorithm 2, which constructs the TA of each BP-worker involved in the BPMN
model. As a result, the TA-network is composed in an easy way, at an adequate
level of formality (see Fig. 5).

Algorithm 1. function Create BP-task model

Require: M = 〈N, T, γ, μ, N , Θ, τ, P, L〉
Ensure: TAN = A1 ‖ · · · ‖ Ai

1: for all pool Pm ∈ P do
2: for all lane L ∈ Pm do
3: Create TA of BP − workers(Mm = 〈N, T, γ, μ, N , Θ, τ, Pm, L〉)
4: TAN = TAN ‖ Ai

5: end for

6: end for

Throughout the execution of the Algorithm2, the Create TA of BP-
workers function generates a TA for each BP-worker. We differentiate between
three major parts of this algorithm. The first one (lines 4–17) is devoted to nodes

Application of FMs to Verify BPs 51

which are at the beginning of each lane. In case of the first node corresponds
to the BPMN start event (i.e., START) the TA representing the BP-worker
is created with this initial state (i.e., s0 ← Initial). Otherwise, the TA is cre-
ated with the state ‘Idle’ as initial state (i,e., s0 ← Idle) and is specified the
synchronization transition between the automata Ak (which corresponds to the
BP-worker represented by the lane Lk) and the automata Ai (which it is being
created at the time the algorithm runs), because the sequence flow comes from
another lane of the process graph.

Algorithm 2. function Create TA of BP-workers

Require: Mm = 〈N, T, γ, μ, N , Θ, τ, Pm, L〉
Ensure: Ai = 〈S ∪ Su, Σ, C, T, s0, Inv〉
1: local A = 〈S, Σ, C, T, s0, Inv〉
2: for all lane Li ∈ L do
3: Reach the first node Nj ∈ Li

4: if γ(Nj , Mm) = START then
5: s0 ← Initial
6: Su = {Initial}
7: S ← Nj+1 where Nj+1 ∈ Li of the sequence flow
8: T = T ∪ (s0, ∅, ∅, ∅, S)
9: Ai = Ai � A

10: Reach the next node of the sequence flow
11: else
12: s0 ← Idle
13: Su = {Idle}
14: S ← Nj

15: T = T ∪ (s0, akj?, ∅, ∅, S) {akj? denotes a synchronisation between Ak and Ai}
16: Ai = Ai � A
17: end if
18: while node Nj ∈ Li of the sequence flow do
19: if γ(Nj , Mm) = EXC FLOW then
20: S ← Nj

21: S′ ← Nj+1
22: S′′ ← Nj−1
23: S′′′ ← Ne

24: C = C ∪ cij
25: T = T ∪ (S′′, ∅, ∅, cij , S)
26: T = T ∪ (S, ∅, cij ≥ minNj ∧ cij ≥ T, ∅, S′)
27: T = T ∪ (S, ∅, cij > T, ∅, S′′′)
28: Inv(S) = {cij ≤ maxNj}
29: Ai = Ai � A
30: end if
31: Reach the node Nj+1 of the sequence flow
32: if node Nj+1 �∈ Li then
33: S ← Nj

34: T = T ∪ (S, ajk!, ∅, ∅, s0) {ajk! denotes a synchronisation between Ai and Ak}
35: Ai = Ai � A
36: end if
37: end while

38: end for

The second part (lines 18–37) deals, one by one, with the nodes Nj in the
sequence flow of each lane Li of the process graph. Due to space limitations, the
presented version of Algorithm 2 here only describes the processing of the BPMN
node exception flow (i.e., EXC FLOW , lines 19–30), which is a composition
of BPMN nodes task and timer intermediate event mapping rules (see Table 1).
Note the use of the minNj , maxNj , and T time values (attached to the tasks and

52 L.E. Mendoza Morales et al.

timer intermediate events in the BPMN model, respectively) as invariants and
guards in the construction of TA. Finally, the lines 32–36 are devoted to specify
when a process flow goes to another lane Lk; i.e., generates the synchronization
action ajk! between the automata Ai (created at the time the algorithm runs)
and the automata Ak, which corresponds to the another BP-worker represented
by the lane Lk.

(3) Define the BPs Properties. The requirements and temporal constraints
(i.e., timeliness, deadlines) that the target BP must fulfill are specified in a
set of CCTL formulas. These formulas comprise the formal specification of the
BP temporal properties that the BP-task model must fulfill. Concurrent aspects
of BPs, such as temporal consistency between tasks and temporal BP rules
(including task timeliness and performance) are specified in this step. As a result,
the set of temporal logic formulas that will be introduced in Uppaal [1] is
obtained.

(4) Verify the BP-Task Model. Once the TA-network is obtained, we can
proceed to the BP-task model verification using Uppaal. In this way, it is pos-
sible to check if a BP-task model satisfies the expected temporal behavior spec-
ified with a set of CCTL formulas. We obtained the verification of a BP-task
model by the interpretation of boolean expressions (True, False), according to
the expected behavior properties for the model. From the business analysts and
designers viewpoint, Uppaal is easy to use; although for non-trivial models
considerable computing power is required by the model checker.

5 CRM Application Example

CRM is a strategy by which a company seeks to establish and maintain rela-
tions with its customers [7]. CRM is considered to be a complex combination
of business and technical factors that should be aligned according to a strategy
[7]. Briefly, the CRM’ BP modeling obtained the following set of BPs: Inform-
ing Customer, Customizing Service, Studying behavior Pattern, Product/Service
Produce, Product/Service Sell and Assisting Customers, which represents a min-
imum functionality of the CRM strategy. Due to space limitations, we have
mainly focused on two key CRM BPs: Product/Service Sell and Product/Service
Produce. The information needed to perform the BP-task model verification is
on the BPMN models depicted on Figs. 3 and 4; these contain the temporal
properties and constraints that the BP-task model must comply to meet the
CRM business goals.

The Logistic worker is located in the execution of both Product/Service
Sell BP and Product/Service Produce BP. This means that the Logistic worker
must perform tasks associated with the Product/Service Produce BP having
the responsibility of providing the materials required to create a new prod-
uct/service. Also, the Logistic worker must perform (in collaboration with the

Application of FMs to Verify BPs 53

Fig. 3. BPMN model of the Product/Service Sell BP.

Fig. 4. BPMN model of the Product/Service Produce BP.

Attention Channel worker) the tasks associated with the Product/Service Sell
BP when he receives a purchase order from a customer. In this sense, the Logis-
tic worker should conform the time execution and synchronization established
in the BP-task model associated to both BPs. In addition, the Logistic worker
should work closely with the Product/Service and Purchase workers to perform
the Product/Service Produce BP. Hence, he must not be in conflict with other
BP-workers as this could cause a deadlock ; i.e., all BP-workers cannot perform
any task.

54 L.E. Mendoza Morales et al.

5.1 CRM Task Model

We now proceed to model the BP-task model; i.e., the execution and syn-
chronization of the BP-workers tasks implicated with the Product/Service Sell
and Product/Service Produce BP-task model. To obtain this model, the Algo-
rithms 1 and 2 presented in Sect. 4 were applied. Figure 5 shows the simulator tab
of Uppaal, where the TA-network conformed by the Logistic, Sale, Attention
Channel, Product/Service, Purchase, Marketing, and Finances workers; and the
StockBD entity, are represented by means of their corresponding TAs. Through
the simulator tab, we can observe the CRM BP-task model execution.

Fig. 5. TA-network of CRM BP-worker.

For the sake of simplicity, we comment only the behavior of the Logistic
worker tasks (see the TA in Fig. 5), which is the most important for this applica-
tion, because it is concurrently involved in the execution of both BPs. The most
important aspect of the Logistic worker execution is that the transitions are mod-
eled to accurately represent the possible execution of the Logistic worker tasks;
i.e., this worker can attend a request for an available product/service from the
Attention Channel worker while he is waiting for the Purchase worker to acquire
the materials that the Product/Service worker requires to build/assemble a new
product/service. The TA at center-right of Fig. 5 presents the states entered by
the Logistic worker when he is seeking information from the StockDB entity and

Application of FMs to Verify BPs 55

collaborating with the Purchase worker, respectively. The BusyA, BusyB, BusyC
states were added to represent the situation when the Logistic worker is updat-
ing information in the StockDB entity, while the DispatchA, DispatchB, and
DispatchC states are reached when it is working with the Purchase worker. In
Fig. 5, when the Logistic worker is in the IdleL state, concurrently requests from
the Attention Channel and from Product/Service workers can both be attended.
The Logistic worker leaves the IdleL state in the following cases:

1. When it receives the Sen disp req? synchronization from the Attention
Channel worker. In this case, the Logistic worker enters the BusyA state
and captures the reception time of the request in the tw variable. Then,
it sends the Upd ex! synchronization to the StockDB entity. When the Logis-
tic worker is in the BusyA state, it may not be able to receive requests from
Product/Service worker remaining in the current state while: (a) the Logistic
worker is receiving from StockDB entity, within the time interval [tw,tw+2),
the Ex upd? synchronization and dispatching to the Attention Channel worker
the task execution results (Disp prod! synchronization) and then passing to
the IdleL state; or (b) the Logistic worker is in the waiting time for Ex upd?
synchronization defeat; i.e., the time instant [tw+2,tw+2] is reached and a
timeout is provoked, returning the Logistic worker to the IdleL state.

2. When the Logistic worker is addressing the Mat req? synchronization from
the Product/Service worker. In this case, the Logistic worker passes to the
Consulting state, storing in the td variable the time instant at which the
request is received and initiates the execution of the action to satisfy it.
This latter situation then presents two alternatives: (a) when the items
required are available and the Show aval? synchronization is received; then,
the Logistic worker delivers the required results (Deliver! synchronization)
within the time interval [td,td+2), and again returns to the IdleL state; or
(b) when the items required are not available and the Show aval? synchro-
nization is received; then, the Logistic worker sends the material purchase
request (Purch req! synchronization) to the Purchase worker and continues
waiting within the [td,td+17) time interval to receive the notification of the
material purchase.

Note that the temporal constraints, discussed in the previous paragraph and
assigned to the TA in Fig. 5, corresponds to the text annotations previously
associated to the tasks in the BPMN models depicted on Figs. 3 and 4.

5.2 CRM Properties

We can now define what is expected to be accomplished by the CRM BP-workers
when they receive a specific request from the Customer. To show an example,
a few properties are presented in Table 2, in which an instance of the business
rules are specified by CCTL formulas, according to the Quality of Service (QoS)
contract level set by the CRM business.

The formulas in Table 2 describe the CRM BP-task model timed abstract
behavior, which gives a high level of insight into what is expected of a CRM

56 L.E. Mendoza Morales et al.

Table 2. Some CRM properties – BP-task model expected behavior

Property CCTL specification

The BP-task model satisfies the tasks order and
never execute tasks asynchronously

φ1 := AG(not deadlock)

The BP-task model can always satisfy the
creation of a new Product/Service in 44 units of
time up.

φ2 := EF[44](Prom inf)

A new Product/Service will be eventually
available in 44 units of time up. If the new
Product/Service is not feasible, its cancellation
will be eventually notified to the Customer in 24
units of time up.

φ3 := AG[44](Wait new PS →
[EF[44](Prom inf)∧
EF[24](Can PS)])

An available Product/Service will be eventually
delivered in 23 units of time up.

φ4 := AG[23](Wait PS → Deliv)

BP-worker to deliver and how long would it take when it receives a Customer
request. On the other hand, these CCTL formulas specify the task order and
the execution time required for each task (or set of tasks) expected from the
Product/Service Sell and Product/Service Produce BP-task model to accomplish
the BPs Quality of Service (QoS) contract level.

Note that the deadlock concept is being transferred from the software veri-
fication field to the BP world to obtain the φ1 formula. Thus, we say that the
BP-task model is deadlock-free if the CRM BP-workers are never blocked; i.e., a
time deadlock-freeness reflects that the time constraints of the two composed TA
are compatible. In other words, the BP-task model is deadlock-free because the
tasks are always executed in order, which is the result of the correctness of the
CRM BP-workers synchronization. Thus, when we check that the BP-task model
is deadlock-free, we are proving that the BP-task model satisfies tasks timely
and orderly, i.e., the CRM BP-workers do not perform tasks asynchronously.

5.3 CRM Verification

To proceed to the CRM BP-task model verification, we introduce each one
of the CCTL formulas (see Sect. 5.2) in the Query field below Overview
(see Fig. 6), using the Uppaal notation. According to the Uppaal nota-
tion, the CCTL temporal formula φ2 := EF[44](Prom inf) corresponds to the
E<>Product service. Prom inf imply ta<=44 query, and it should be under-
stood as it is possible to reach the location Prom inf in process Product service
in 44 units of time up. The bullet in the overview section will turn green indicat-
ing that the property indeed is satisfied. In addition, the messages “Property is
satisfied” or “Property is not satisfied” will appear in the status section
depending on whether the property pass or not the verification.

The most important result to highlight is that the BP-task model passes the
verification of the property φ1 := AG(not deadlock) (i.e., A[](not deadlock),

Application of FMs to Verify BPs 57

Fig. 6. Screen shot of the CRM BP-task model verification with Uppaal.

according to the Uppaal notation). This indicates that the BP-task model is
deadlock-free (i.e., in the BP-task model does not occur a deadlock situation by
which the BP-workers remain waiting indefinitely for communication between
each other). Additionally, the BP-task model has satisfied the φ3 and φ4 (see
Table 2) properties verification, which means the BP-task model always met the
Customer requests within the time stipulated by the QoS contract level for the
Product/Service Sell and Product/Service Produce BPs (i.e., the BP-task model
modeled completely satisfied the CRM business rules).

6 Conclusion and Future Work

In this work is introduced a set of mapping rules and two algorithms to trans-
form BPMN models into TA-networks. This transformation is the main step
to conduct the qualitative analysis of a BP. The TA-network generated by the
transformation corresponds to the BP-task model, which can be analyzed with
the model-checker Uppaal to provide results about some BP performance indi-
cators (e.g., service time, waiting time, or queue size).

Our proposal was applied to a real project related to the CRM business,
showing its usefulness. As it was seen in the application example, our proposal
ensures the preservation of the individual properties associated with independent
task-sets within the BP-task model into which they are integrated; i.e., the

58 L.E. Mendoza Morales et al.

resulting BP-task model (modeled as a TA-network) can be used to conduct
qualitative analysis of BPMN models.

Future work is aimed at the formalization of the mapping rules and algo-
rithms introduced here, and to discuss about their soundness. Also, we planned
to propose a practical way to translate and specify the temporal proper-
ties derived from the BP rules and QoS contracts, according to the Uppaal
notation.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004). doi:10.1007/978-3-540-30080-9 7

2. Capel, M., Mendoza, L., Benghazi, K.: Automatic verification of business process
integrity. Int. J. Simul. Process Model. 4(3/4), 167–182 (2008)

3. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Enhancing formal speci-
fication and verification of temporal constraints in business processes. In: Proceed-
ings of 2014 IEEE International Conference on Services Computing, SCC 2014, pp.
701–708. IEEE Computer Society, Washington (2014). http://dx.doi.org/10.1109/
SCC.2014.97

4. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: The temporal perspec-
tive in business process modeling: a survey and research challenges. Serv. Oriented
Comput. Appl. 9(1), 75–85 (2015). http://dx.doi.org/10.1007/s11761-014-0170-x

5. Kossak, F., et al.: How the semantic model can be used. In: A Rigorous Semantics
for BPMN 2.0 Process Diagrams, pp. 153–159. Springer International Publishing,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-09931-6 5

6. Mallek, S., Daclin, N., Chapurlat, V., Vallespir, B.: Enabling model check-
ing for collaborative process analysis: from BPMN to ‘Network of Timed
Automata’. Enterp. Inf. Syst. 9(3), 279–299 (2015). http://dx.doi.org/10.1080/
17517575.2013.879211

7. Mendoza, L., Marius, A., Pérez, M., Grimán, A.: Critical success factors for a
customer relationship management strategy. Inf. Softw. Technol. 49(8), 913–945
(2007)

8. Morimoto, S.: A survey of formal verification for business process model-
ing. In: Bubak, M., Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2008. LNCS, vol. 5102, pp. 514–522. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69387-1 58

9. OMG: Business Process Model and Notation - v2.0. Object Management Group,
Massachusetts (2011). http://www.omg.org/spec/BPMN/2.0/PDF

10. Paternò, F.: Task models in interactive software systems. In: Handbook of Soft-
ware Engineering and Knowledge Engineering: Recent Advances. World Scientific
Publishing Co., Inc., River Edge (2001)

11. Rüf, J., Kropf, T.: Symbolic model checking for a discrete clocked temporal logic
with intervals. In: Proceedings of IFIP WG 10.5 International Conference on Cor-
rect Hardware Design and Verification Methods, pp. 146–163. Chapman & Hall
Ltd, London (1997)

12. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of business processes
with temporal and resource constraints. In: 2011 IEEE International Conference
on Systems, Man, and Cybernetics (SMC 2011), pp. 1173–1180. IEEE Computer
Society, Los Alamitos (2011)

http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1109/SCC.2014.97
http://dx.doi.org/10.1109/SCC.2014.97
http://dx.doi.org/10.1007/s11761-014-0170-x
http://dx.doi.org/10.1007/978-3-319-09931-6_5
http://dx.doi.org/10.1080/17517575.2013.879211
http://dx.doi.org/10.1080/17517575.2013.879211
http://dx.doi.org/10.1007/978-3-540-69387-1_58
http://dx.doi.org/10.1007/978-3-540-69387-1_58
http://www.omg.org/spec/BPMN/2.0/PDF

An Approach for Verifying Educational Robots

Sidney Nogueira1(B), Taciana Pontual Falcão1, Alexandre Mota2,
Emanuel Oliveira1, Itamar Moraes1, and Iverson Pereira1

1 Universidade Federal Rural de Pernambuco, Recife, Brazil
sidney.nogueira@ufrpe.br

2 Universidade Federal de Pernambuco, Recife, Brazil

Abstract. Virtual robot programming environments provide a visual
interface for programming and simulating educational robots. Nowadays,
simulation is the only way to assess the robot behaviour inside such envi-
ronments, as there is no approach that supports the automatic analysis of
the correctness of robot programs. This paper introduces an automatic
approach for verifying robot programs written in the educational pro-
gramming language ROBO. We give semantics for ROBO programs in
the setting of CSP process algebra and automatically verify the proper-
ties of the programs using the FDR refinement checker. The verification
approach has been defined considering programming exercises proposed
in the literature on educational robotics. We illustrate the approach using
sample programs written in ROBO and discuss how to integrate such an
approach with educational tools.

Keywords: Educational robotics · Program verification · CSP

1 Introduction

Educational robotics had its origins in the 80’s, with the launch of LOGO, a
computer language for children, associated with a physical turtle robot which
moved according to simple algorithmic commands [13]. Nowadays, more than
30 years later, many Brazilian schools have included programs of educational
robotics as extra-curricular activities and a lot of research is being performed
in the area [1]. The benefits of engaging students in robotics include promoting
autonomy and creativity within constructionist learning environments [12]; and
developing computational thinking, i.e. problem solving strategies through for-
mal logical reasoning [18]. Furthermore, robot programming environments pro-
vide a clear mapping between abstract concepts represented by programming
languages and concrete outcomes represented by the robot’s movement, helping
students to understand computer programming logic [6].

Traditionally, educational robotics consists in controlling a physical robot
through software commands. Virtual environments that provide simulations of
the robot’s movement — replacing the actual physical robot — have emerged
as viable alternatives that decrease cost and complexity of physical robots, thus

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 59–77, 2016.
DOI: 10.1007/978-3-319-49815-7 4

60 S. Nogueira et al.

broadening the reach of educational robotics. Robomind [3,5] is an example
of a virtual robotic environment, used in the present research, and where the
digital representation of a robot moves across a bi-dimensional grid according to
commands written in the educational scripting language named ROBO.

Observing the effect of executing ROBO programs using simulation has high
pedagogical value, although the final result of the execution is only known after
the completion of commands. This means that the only way to verify a robot
behaviour is throughout observation: there is no automatic way to state whether
the robot behaves as expected.

This paper introduces an automatic approach for verifying robot programs
written in a subset of ROBO. We give semantics for the ROBO language by
defining a mapping from the specification of the robot environment and the robot
program source code to elements in the notation of CSP [14,15]. The notation of
CSP was chosen since it has a rich set of operators for combining processes that
facilitated the definition of the mapping from ROBO to CSP, moreover, it has
mature tools like the FDR [4] refinement checker. The robot formal specification
is characterised by a CSP process that is input by the FDR refinement checker
that performs automatic analysis of refinement between processes. We formalise
as CSP refinement expressions the properties of robot programs that are valid
solutions for exercises proposed in the literature for teaching robotics. Thus, the
correctness of a robot with respect to the exercises can be automatically verified
using FDR. The outputs of the refinement checker are used to give feedback to
the learner about the robot behaviour. Moreover, using FDR we can analyse
deadlock behaviour, whose presence in the specification indicates that the robot
programs do not loop forever (terminates). Finally, we discuss how the proposed
verification approach can be used as backend solution for the verification of
ROBO programs in the context of educational tools.

The next section presents the problem of verifying robots using simulation in
the RoboMind environment, and overviews the proposed verification approach.
Section 3 shows the concepts of CSP used in this work and the CSP specification
for the robot’s program and environment. Section 4 presents the characterisation
of the properties of the programs as CSP refinements expressions and how to
analyse then using FDR. Possible ways to integrate the verification approach
within educational tools are discussed in Sect. 5. Finally, Sect. 6 presents the
conclusions, related and future work.

2 Simulating Robot Programs

The RoboMind (www.robomind.net) environment enables programming and
simulating a virtual robot in a map for learning programming logic and develop-
ing computational thinking. Figure 1 shows a screenshot of RoboMind software
for desktops. The left-hand side of the figure depicts a program with thirteen
lines of code written in the ROBO language. An arrow is pointing to the next
command (line 4) to be executed by the simulation. The right-hand side of the
same figure shows a bi-dimensional map and the robot’s position and orienta-
tion for the current step of the simulation. The bottom of the figure shows the

www.robomind.net

An Approach for Verifying Educational Robots 61

Fig. 1. RoboMind programming environment

main simulation controls: a button to start the simulation, a button to advance
a single step, two buttons to pause and stop, a button to restart the simulation
and a scroll to set the simulation speed. The software has predefined maps and
also enables loading maps defined by the user.

Figure 2 shows screenshots of the initial state of two different simulations.
Those maps are used to test robot programs that do not know the location of
a simulation object called beacon, and aim at exploring the environment until
the robot faces the beacon. In Fig. 2, beacons are displayed as round objects
surrounded with spikes.

Fig. 2. Initial state of simulations

We introduce the elements of the ROBO language considered in this paper
through sample programs. Programming a robot to find an object in a map is
a typical exercise proposed in the literature on educational robotics [3,5]. List-
ing 1.1 shows a program written in ROBO [5] to move the robot in the map until
it faces a beacon. Such a program uses predefined functions and commands of

62 S. Nogueira et al.

the ROBO language. The boolean function frontIsBeacon() evaluates to true if
the robot faces a beacon; otherwise, it evaluates to false. The boolean function
frontIsClear() returns true if the robot faces an empty cell. The function flipCoin()
represents the toss of a coin; it yields a random boolean value as the result of
an internal choice of the robot. The commands forward(n), backward(n), right()
and left() make the robot move forward (and backward) the number of cells
specified as parameter, and change the robot orientation to its left (and to its
right), respectively. Like any imperative language, the syntax of ROBO has con-
ditionals (for instance, if/else) and looping structures (for instance, repeatWhile)
for controlling the program flow. The program in Listing 1.1 repeats the loop
while the robot is not in front of a beacon (line 1). Inside the loop, the program
calls the forward command (line 4) if there is no obstacle in front of the robot;
otherwise, if there is some obstacle, the robot steps back (line 6) and turns its
direction to the right (or left) depending on the result of “flipping the coin” (line
7) (true or false) (lines 8 and 10). The expected behaviour for this program is
that the robot stops in front of the beacon, when executed considering the two
maps in Fig. 2.

Listing 1.1. Program 1
�

repeatWhile (not (f ront I sBeacon ()))
2 {

i f (f r o n t I sC l e a r ()) {
4 forward (1)

} else {
6 backward (1)

i f (f l i pCo i n ()){
8 r i g h t ()

} else {
10 l e f t ()

}
12 }

}
� �

Listing 1.2. Program 2
�

repeatWhile (not (f ront I sBeacon ()))
2 {

i f (f r o n t I sC l e a r ()) {
4 forward (1)

} else {
6 i f (f l i pCo i n ()){

r i g h t ()
8 } else {

l e f t ()
10 }

}
12 }

� �

When executing the programs in Listings 1.1 and 1.2 (Programs 1 and 2)
with Map 1 (Fig. 2(a)), we can observe that the robot moves until it reaches the
beacon, then the programs conclude. Because flipCoin() is an internal decision
of the program, the time required to reach the program conclusion can vary
according to these internal results, which depends on the implementation of
RoboMind that is programmed in Java [11]. If the same programs are run with
Map 2 (Fig. 2(b)), we can observe the conclusion of Program 2 but cannot see
the conclusion of Program 1, even after observing a huge number of simulation
steps (more than 100). One way to ensure Program 1 terminates is to perform an
exhaustive and systematic analysis of this program, however there is no approach
that automatically verifies termination or other properties of the robot program.

Program 1 and Program 2 present the core of the ROBO language. Addi-
tionally, the language includes commands for moving the robot according to the
cardinal directions, for painting the floor in black or white, and for grabbing and
releasing beacons. The language has further functions that simulate the usage of
robot sensors for detecting beacons, walls and colours. Moreover, the language

An Approach for Verifying Educational Robots 63

allows the definition of constants, procedures parameterised by constants, and
global integer variables. For a complete definition of ROBO please consult [5].

2.1 Overview of the Verification Approach

The approach proposed in this paper uses refinement checking to exhaustively
verify the states of a ROBO program that runs in a specific map. For instance,
we can verify that Program 1 never terminates in Map 2, i.e. the robot does
not find the beacon. We are also able to verify that Program 2 (Listing 1.2)
terminates, i.e. the robot eventually finds the beacon in the two maps displayed
in Fig. 2. In this approach, a program never terminates if its simulation model
satisfies the property of deadlock-freedom.

Figure 3 overviews the verification approach. Its inputs are ROBO programs,
maps in the RoboMind format and the properties to be verified. A program
is manually translated into a CSP process following translation rules; the map
is automatically translated into a data structure and the properties are man-
ually specified as assertions to be verified by FDR. The formal specification is
the composition of the CSP processes that represent predefined commands and
functions of ROBO, the robot program itself and the map. The specification and
the properties are inputs to the FDR refinement checker that performs the auto-
matic analysis of the program properties. The results of the verification are used
by the programmer to confirm the program works as expected or for debugging.

Fig. 3. Approach workflow

3 Formalising the Robot

This section presents the CSP formalisation of the robot and its environment. We
start showing the main elements of CSP and next the robot’s formal specification.

3.1 Communicating Sequential Processes

In this paper we define the semantics of the ROBO language in terms of the
process algebra CSP [14]. CSP is a formal language mainly designed to spec-
ify and verify concurrent and distributed systems. It is composed of events,

64 S. Nogueira et al.

processes, and operators. We present CSP using the notation of CSPM , the
machine readable version of CSP used in FDR [17].

Events are used to abstract the occurrence of facts. For instance, the event
right could mean the fact that a robot has turned right. Events in CSP are
atomic and instantaneous. That is, they cannot be broken after being started and
they do not consume time. When an event can communicate values, it is named a
channel and has an associated type. For instance, the syntax channel forward
: { 1,2 } defines a channel that is able to communicate the events forward.1
and forward.2. The CSP syntax forward?x specifies that the process can com-
municate an event forward.x such that the value of x is selected by the process
environment. The set of all events present in a CSP specification is denoted by
the set Events.

The CSP primitive process STOP specifies a broken process (deadlock), and
the primitive SKIP a process that terminates successfully. Prefix, external choice
and conditional are basic CSP operators. The CSP prefix operator P = ev ->
Q specifies that event ev can be communicated by P, and upon its occurrence
the process behaves as the process Q. The external choice operator, as in P =
Q [] R, indicates that the process P can behave as the processes Q or R; the
choice is made by the environment. The process if exp then P else Q uses
the conditional operator to express it is equivalent to P if the boolean expression
exp holds, and behaves as Q otherwise.

The mapping from ROBO programs into CSP presented in this work is very
concise due to the compositionality of CSP operators. Particularly, the sequential
composition operator was essential for the definition of the mapping introduced
in the next section. The sequential composition operator P = Q; R behaves like
Q until it terminates successfully, when the control passes to R.

The parallel composition is a CSP operator used to combine process in par-
allel. Consider the process P [|X|] Q that denotes the generalised parallel com-
position of the processes P and Q with synchronisation set X. This expression
states that P and Q must synchronise on events that belong to X. Each process
can evolve independently for events that are not in X.

The CSP notation P \ X defines a process that behaves like P, communi-
cating all its events, except the events that belong to X, which become internal
(invisible). The operator \ stands for the hiding operator.

Moreover, consider the replicated external choice construction of CSP
[] x:X @ F(x), where x ranges over the values in the set X, and F(x) is
any process expression involving x. This construction behaves as the process
F(x 1) [] ...[] F(x k), for X = {x 1,...,x k}.

Finally, consider the process RUN(A) = [] ev:A @ ev -> RUN(A) that con-
tinuously offers the events from the set A, and P /\ Q which indicates that Q
can interrupt the behaviour of P if an event offered by Q is communicated.

The formal semantics of a CSP processes is given in terms of three main
semantic models: traces (T), failures (F), and failures-divergences (FD). In this
paper it is enough to work with the traces model. The traces of a process P,
say T (P), records the sequences of events that can be communicated by P.

An Approach for Verifying Educational Robots 65

For example, T (STOP) = {〈〉} and T (forward.1 -> right -> STOP) = {〈〉, 〈
forward.1〉, 〈 forward.1, right 〉}.

CSP processes can be verified using the FDR refinement checker [4]. A refine-
ment checker is a variant of a model checker where verifications are performed by
means of refinements. A CSP refinement is defined by behaviour containment.
Thus a process Q trace refines a process P iff T (Q) ⊆ T (P). In FDR, refinement
is denoted as the expression P [T= Q. If a refinement checking fails, FDR yields
the shortest trace (counterexample) produced by Q that cannot be observed in P.
We can also ask FDR to check whether a process P can exhibit deadlock, livelock
or non-determinism.

3.2 Robot Formal Specification

We show how to translate the robot program and the map into the respective
elements in CSP. Translating the map into its CSP representation is a very
straightforward process. Listing 1.3 shows the RoboMind representation for the
map displayed in Fig. 2(a), which has eleven columns and nine lines. Letters
represent the different formats of walls displayed in the RoboMind interface.
The character @ (line 3) represents the initial position of the robot, and the
character * (line 7) indicates the initial position of the beacon. In [9], one can
find the textual representation for Map 2 (Fig. 2(b)), as well as the complete
CSP specification for the examples in this paper.

Consider the constants Start, Obs and Beacon, which are members of a CSP
datatype named Things. This datatype represents the elements of a map. In
CSP, the map is represented by a constant named MAP, which is bound to a set
of triples in the form (x,y,element), associating one element to its position in
the map. The value for x (y) belongs to the set of values between 0 and XMAX
(YMAX), which is a constant in the CSP model that denotes the maximum value
for x (y). The map in Listing 1.3 has XMAX (YMAX) equals to ten (eight). For
instance, the map in Listing 1.3 shows the robot in position (7,2), i.e. column
number 7 (eighth column) and line number 2 (third line). Hence, (7,2,Start)
is a triple that belongs to the set MAP. Other examples are the triples (0,2,Obs)
and (2,6,Beacon) that represent a wall (letter A) and the initial position for
the beacon. Regardless of its format, every wall is semantically identical in the
specification so all walls are represented by the same constant (Obs).

Listing 1.3. Textual representation for Map 1
�

AAAAAAAAAAA
2 A A A

A @ A
4 A CD A

A CKLHD A
6 A BFJNI A

A ∗ BFE A
8 A A

AAAAAAAAAAA
� �

66 S. Nogueira et al.

Beacons and the robot can change their state. So they should be represented
as variables. CSP does not have variables but they can be emulated through
recursive processes that represent memory, as presented in [8]. A memory process
binds values to identifiers and uses get and set channels to simulate reading and
writing values to the variables. The declaration of such channels is as follows.

nametype TX = {1..XMAX-1}
nametype TY = {1..YMAX-1}
nametype TO = {NORTH_,EAST_,SOUTH_,WEST_}
datatype VarType = X.TX | Y.TY | ORIENTATION.TO | BX.TX | BY.TY
channel get,set : VarType

The types TX, TY and TO define the range for column and line indexes, and
for the robot orientation, respectively. The notation {1..XMAX-1} represents a
set whose members are integers between 1 and XMAX-1. The ranges of TX and TY
exclude 0 and XMAX (YMAX) because these indexes are only occupied by obstacles.
The constants NORTH ,EAST ,SOUTH ,WEST encode the robot orientation; they
are aliases for the numbers 0, 1, 2 and 3. The datatype VarType is the type for
the values communicated by channels get and set. It is a set whose members
have the form VarName.Binding, where VarName is a variable name and Binding
is a possible value bound to the variable. The variables X, Y and ORIENTATION
represent the current position and orientation of the robot. The variables BX and
BY are the current position of the beacon. The CSP process MEMORY is presented
in the sequel. It is the interleaving of memory cells, which are recursive processes
parameterised by the name of a variable and its current binding. Such a process
offers the choice of events produced by channels get and set. It uses the get
channel to communicate the current value of the variable to the environment,
and the channel set to receive from the environment a new value for the variable;
the new value is carried as a parameter of the process. The initial state of the
process MEMORY considers the initial position of the robot and the beacon in the
map. The robot initial orientation is always NORTH .

Mcel(v,val) = get!v!val -> Mcel(v,val)
[] set!v?val_ -> Mcel(v,val_)

MEMORY = Mcel(X,7) ||| Mcel(Y,2) ||| Mcel(ORIENTATION,NORTH_)
||| Mcel(BX,2) ||| Mcel(BY,5)

Painting is a dynamic element of the specification. However, in the current
specification we deal only with programs that do not paint the floor. So paintings
are represented as members of the set MAP.

Each command of ROBO is directly represented as a CSP process with the
same name and parameters. For instance, the ROBO command right() is char-
acterised by the CSP process RIGHT.

channel right
RIGHT = right -> get!ORIENTATION?o -> set!ORIENTATION!(o+1)%4 ->

SKIP

An Approach for Verifying Educational Robots 67

The behaviour of the process RIGHT starts by trying to communicate the
event right, which indicates the robot has turned to the right and that the robot
orientation is to the right as well. Formally, this process uses the get channel to
read the current value for the orientation, which is bound to the variable o. Then,
the channel set communicates the new value for the orientation: an increment
in the value of o module 4 (recall the robot orientation are values between 0 and
3). Finally, the process terminates successfully. As another example, the ROBO
command forward(n) is represented as CSP process FORWARD(n).

FORWARD(n) = get!ORIENTATION?o -> MOVE_STEPS(n,o)

The behaviour of the process FORWARD(n) is to read the current robot ori-
entation using the get channel and behaving as the process MOVE STEPS(n,o),
which receives as parameters the number of steps (n) to move and the current
robot orientation (o). The partial description for this process is as follows.

channel forward : {1}
MOVE_STEPS(0,o) = SKIP
MOVE_STEPS(n,o) =

get!X?x -> get!Y?y -> get!BX?bx -> get!BY?by ->
if(o == NORTH_) then (

if(frontIsClear(x,y,o,bx,by)) then
forward!1 -> set.Y!(y - 1) -> MOVE_STEPS(n-1, o)

else
forward!1 -> MOVE_STEPS(0, o)

) else if(o == EAST_) then (
...

) else if(o == SOUTH_) then (
...

) else (
...

)

In the description of MOVE STEPS, consider frontIsClear(x,y,o,bx,by) is a
boolean function that inputs the current robot position and orientation, and, the
current position for the beacon. Such a function consults the tuples in MAP and
evaluates to true if there is no impediment for the robot moving forward. The
process MOVE STEPS terminates successfully if there are no steps to go forward,
otherwise, it reads the current position for the robot and updates the position
of the robot considering the existence of obstacles that may block the robot
movement. For instance, if the robot points towards north, this process verifies
whether the next position in the map is free from obstacles. If it is true, the event
forward.1 is communicated, the robot line is decreased by one, and the process
behaves as MOVE STEPS(n-1,o). Otherwise, if there is an obstacle in front of the
robot its position is not updated, the event forward.1 is communicated and the
process behaves as MOVE STEPS(n-1,o). The event forward.1 represents the
calling of the command to go forward, so it is communicated if the robot is able

68 S. Nogueira et al.

to move forward or not. The behaviour is analogous if the robot points to other
directions, hence the details of the process MOVE STEPS are omitted.

The behaviour of a robot program, say PROGRAM DEBUG, is formalised as the
parallel composition of the CSP process that represents the robot program con-
trol (COMMANDS) flow with the memory process (MEMORY). The synchronisation
set contains all the events communicated by channels get and set. The notation
{|get,set|} represents the union of the extensions of the channels get and set.
For instance, the element get.X.5 is a member of the extensions of the channel
get, and the element set.ORIENTATION.0 is a member of the extensions of the
channel set.

PROGRAM_DEBUG = COMMANDS [|{|get,set|}|] MEMORY

The CSP process COMMANDS formalises the flow of commands of the robot
program. The translation of the flow of commands to CSP follows a composi-
tional mapping that is presented in Table 1. Such a mapping inputs a sequence
of ROBO commands and outputs CSP processes. In Table 1, consider that cmd
represents a ROBO command, and seq, seq1 and seq2 sequences of ROBO com-
mands. Moreover, consider the notation exp represents a boolean expression in
ROBO, and TE(exp) the respective representation of exp in CSP. Additionally,
consider that T (seq) denotes a transformation function that inputs a sequence
of commands and outputs its CSP representation. Finally, consider R is a robot
program written in ROBO. Thus the definition COMMANDS is the result of T (R).

Table 1. Mapping from ROBO to CSP

ROBO syntax CSP syntax

〈〉 SKIP

repeatWhile(exp) {seq} WHILE =

get.X?x -> get.Y?y ->

get.ORIENTATION?o ->

get.BX?bx -> get.BY?by ->

if (TE(exp)) then (T (seq) ; WHILE)

else (SKIP)

if(exp) {seq1} else {seq2} get.X?x -> get.Y?y ->

get.ORIENTATION?o ->

get.BX?bx -> get.BY?by ->

if (TE(exp)) then T (seq1)

else T (seq2)

〈cmd〉�seq T (〈cmd〉) ; T (seq)

Each line in Table 1 represents a possible input for the function (column
ROBO syntax) and the function output (column CSP syntax). The CSP repre-
sentation for an empty sequence of commands is the process SKIP. The mapping

An Approach for Verifying Educational Robots 69

of a command (sequence with size one) that is neither a conditional (i.e. if/else)
nor a loop (i.e. repeatWhile) is very straightforward and is omitted in the table.
For instance, the expression T (〈forward(1)〉) yields the process FORWARD(1). Sim-
ilarly, the CSP representation for boolean expressions is very direct so is omitted.
As an illustration, the expression TE(frontIsBeacon()) yields the CSP expression
frontIsBeacon(x,y,o,bx,by).

As exhibited in Table 1, the CSP representation for the ROBO command
repeatWhile is a recursive process whose initial behaviour is to read the variables
in the memory and to evaluate the loop enter condition. If the loop condition
holds, the process behaviour is the CSP representation for the commands in
the body of the loop sequential composition with the process that represents
the loop. If the condition does not hold, the behaviour is equivalent to SKIP.
The CSP representation for a conditional command in ROBO is a process that
initially reads the variables from the memory and subsequently evaluates the if
condition. If the condition holds, the process behaves as the CSP specification
for the commands in the body of the if. Otherwise, the behaviour is equiva-
lent to the specification for the commands in the body of the else. Finally, the
CSP specification for a non-empty sequence of commands is the mapping of
the first command, sequential composition with the mapping of the subsequent
commands in the sequence.

As an example of applying the mapping in Table 1, the function T applied
to Program 1 (Listing 1.1) yields a CSP process that is equivalent to the process
WHILE specified as follows.

WHILE =
get.X?x -> get.Y?y -> get.ORIENTATION?o ->
get.BX?bx -> get.BY?by ->
if(not(frontIsBeacon(x,y,o,bx,by))) then (

IF1; WHILE
) else (

SKIP
);SKIP

The process WHILE represents the program loop. Thus, COMMANDS = WHILE
represents the flow of the Program 1. If the loop condition holds, this process
behaves as the process IF1, which is the CSP representation obtained using the
mapping in Table 1 to the if/else in Program 1 (lines 3 to 12). Otherwise, the
process behaves as SKIP. The specification for the process IF1 is as follows.

IF1 =
get.X?x -> get.Y?y -> get.ORIENTATION?o -> get.BX?bx ->
get.BY?by ->
if(frontIsClear(x,y,o,bx,by)) then

FORWARD(1); SKIP
else

BACKWARD(1); IF2

70 S. Nogueira et al.

In IF1, if the evaluation of the function frontIsClear(.) holds the process
behaves as FORWARD(1); SKIP. Otherwise, behaves as the process BACKWARD(1)
sequential composition the process IF2. This last process has been obtained
using the mapping in Table 1 to the lines 7 to 12 of the Program 1. The CSP
representation for BACKWARD(1) is very similar to that for the process FORWARD
so is omitted. The process IF2 shows how to represent in CSP the call of the
function flipCoin() in the context of Program 1. In IF2, the boolean expression
c represents the calling of flipCoin(). The channel coin communicates events in
the form coin.c, such that c belongs to the set {true,false}. The environment
defines the value bind to c in the communication coin?c. Thus, in IF2, if(c)
is the CSP representation for if(flipCoin()). If c equals true, IF2 behaves as the
process RIGHT; SKIP. Otherwise, behaves as LEFT; SKIP. The CSP representa-
tion for LEFT is very similar to that for the process RIGHT and it is omitted.

channel coin : Bool
IF2 =

get.X?x -> get.Y?y -> get.ORIENTATION?o -> get.BX?bx ->
get.BY?by -> coin?c ->
if(c) then

RIGHT; SKIP
else

LEFT; SKIP

In the general case, consider exp a boolean expression in ROBO that contains
k occurrences of flipCoin(), and TE(exp) the representation for exp in CSP.
Moreover, consider there are channels channel coin i, such that i belongs to
{1, . . . , k}. So the ith occurrence of flipCoin() in exp is represented in TE(exp)
as c i, which is communicated by the environment in coin i?c i.

Finally, we show the complete CSP specification for the Program 1 that is
represented by the process PROGRAM defined as follows.

PROGRAM = PROGRAM_DEBUG \ {|get,set,coin|}

In the process PROGRAM, the communications of the channels get, set and
coin are hidden and only the events that represent the robot actions are kept
visible. For instance, the events forward.1 and right. Moreover, due to the
hiding, the choice for the value for a coin flip becomes an internal choice.

4 Verifying Robot Programs

We show how to verify robot programs using their CSP specifications. Table 2
presents the exercises proposed for the learners of RoboMind collected from [3,5]
that we are able to formalise and verify. We have assigned ids to the exercises
and organised them in categories. The ids follow the format source level name,
where source identifies the source from which the exercise has been collected (rmn
stands for [5] and furb for [3]); level identifies the student level (es stands for

An Approach for Verifying Educational Robots 71

elementary school, hs for high school and he for high education) and name is an
abbreviation for the exercise name. Moreover, in Table 2 exercises are classified
in five categories: moving the beacon to a target location (Move beacon), moving
the robot trough predefined navigation paths (Navigator), following trails using
robot colour sensor (Follow trails), searching the beacon location (Finder), and,
avoiding obstacles while following a path (Avoid obstacles). Following this clas-
sification, Program 1 introduced in Sect. 2 belongs to the category Finder and
is a possible solution for the exercise rmn hs findBeacon considering the maps
provided by the exercise (Maps 1 and 2 in Fig. 2). The complete description for
the exercises and their respective maps can be downloaded in [9].

Table 2. Categories of exercises in RoboMind

Category Exercises

Move beacon furb es foodChain, furb es mathPuzzle, furb es recycling

Navigator furb es cardinalPoints,

furb hs concordiaBlumenauBus,

furb he studentInstruction, rmn hs mazeSolving

Follow trails furb es cartesianCoordinates, rmn hs lineFollowing,

rmn roboExercises

Finder rmn hs findBeacon

Avoid obstacles furb hs dodgingBoxes, furb he contouringBoxes1,

furb he contouringBoxes2, furb he contouringBoxes3

The exercises that we are not able to formalise and verify are those whose
solution manipulates variables or the robot needs to paint the floor. Fortunately,
a variety of exercises does not require variables and painting, so the approach can
be used for verifying exercises similar to those displayed in Table 2. We discuss
how to verify the exercises in Table 2.

All the exercises implicitly expect that the robot program terminates after
completing some tasks. Thus a basic property for every robot program is
that it eventually ends. This is equivalent to check the existence of dead-
lock behaviour in the process PROGRAM introduced in the previous section. For
instance, consider the exercise rmn hs findBeacon in Table 2 (category Finder).
As explained in Sect. 2, in this exercise, the robot must find the beacon in
the maps displayed in Fig. 2. Listings 1.1 and 1.2 show two candidate solu-
tions, Program 1 and Program 2, which are expected to terminate only if
the robot faces the beacon. Remember these programs contain a loop. Such
a loop reduces to SKIP (the program terminates) if the function frontIsBea-
con() evaluates to true. Otherwise, the loop executes again, potentially for-
ever. Consider that PROGRAM represents the specification of Program 1 in Map
1. The verification of the FDR assertion assert PROGRAM :[deadlock free
[F]] yields false as the result. This indicates the program is not deadlock

72 S. Nogueira et al.

free (it contains a deadlock) so terminates. The counterexample provided by
FDR in this verification is the shortest execution path that leads the robot to
find the beacon forward.1, backward.1, left, forward.1, forward.1,
forward.1, forward.1, forward.1, forward.1, backward.1, left,
forward.1, forward.1, forward.1, say ce. Consider that PROGRAM 2 is the
specification for Program 1 in Map 2. Checking the assertion assert PROGRAM 2
:[deadlock free [F]], the result given by FDR is true, which indicates the
CSP specification for the program does not contain a deadlock. Thus, the pro-
gram does not exit the loop and does not find the beacon. We can observe a
different behaviour for Program 2. Consider PROGRAM2 1 and PROGRAM2 2 are
the specifications for Program 2 in Map 1 and Map 2, respectively. Using FDR
we can check that Program 2 terminates (so is able to find the beacon) when
run in Maps 1 and 2 by checking the assertions assert PROGRAM2 1 :[deadlock
free [F]] and assert PROGRAM2 2 :[deadlock free [F]] that yield false as
result.

Program termination is a useful property but it is not strong enough to
assess the correctness of robot programs with respect to the exercises require-
ments. On the other hand, checking whether the specification reaches specific
states can check whether programs conform (or not) to the exercises in Table 2.
For instance, an alternative form to verify if Program 1 finds the beacon located
in position (2,6) in Map 1 is to check the existence of a specification state such
that the robot faces the beacon. In Map 1, (2,5) is a possible position for the
robot to face the beacon pointing southbound. Recall that the CSP specifica-
tion communicates get events like get.X.2, which represents the reading of the
current variable binding from memory. If we can find a specification state for
which the memory communicates the sequence of events get.X.2, get.Y.5,
get.ORIENTATION.2 (recall that 2 represents south in the model) then we are
sure the robot eventually reaches the beacon.

We perform the verification of the eventual states reached by the CSP specifi-
cation using CSP test purposes [8,10]. A CSP test purpose is a CSP process that
describes the property of the traces that we want to automatically select from
a CSP process. For instance, we can describe a CSP test purpose that selects
the traces of the specification for Program 1 in Map 1, such that the traces
communicate the sequence of events get.X.2, get.Y.5, get.ORIENTATION.2.
In order the test purpose can read the memory states, we have to create a copy
of the channel get in the memory, say get2. The process MEMORY GET2 is the
adaptation of the process MEMORY to include get2 events. The definitions of the
channel get2, the process MEMORY GET2 and the process PROGRAM DEBUG GET2 are
as follows. The last process represents the specification adapted for test selection.

channel get2 : VarType
MEMORY_GET2 = MEMORY [[get.x <- get.x,

get.x <- get2.x | x <- {|get|}]]
PROGRAM_DEBUG_GET2 = (COMMANDS

[|{|get,set|}|]
MEMORY_GET2) \ {|get,set,coin|}

An Approach for Verifying Educational Robots 73

The channel get2 has the type of the channel get. The process MEMORY GET2
is defined using the CSP renaming operator applied on the process MEMORY.
The renaming defines a mapping of the events in the form get.x into them-
selves and into events in the form get2.x, such that x belongs to the exten-
sions of get. Hence, the process MEMORY GET2 communicates the same events
of MEMORY; additionally, it communicates get2.x events whenever the process
MEMORY communicates get.x events. The process PROGRAM DEBUG GET2 is defined
as the parallel composition of the program control flow (COMMANDS) with the
process MEMORY GET2. The events that belong to the channels get, set and coin
are hidden, so only events that represent commands (for instance, backward.1)
and get2 events are visible.

A CSP test purpose is a process, say TP, that is constructed using the auxil-
iary CSP processes that follow. Such processes are a simplification of the prim-
itive processes introduced in [8]. The process ACCEPT communicates the event
accept and deadlocks. The behaviour of the process MATCH(ev, NEXT) is to
communicate ev and to behave as the process NEXT. Consider the function
diff(s1,s2) yields the difference between the sets s1 and s2. The process
NOT(ev, NEXT) offers the choice of the events that belong to the alphabet of
the specification (represented by the set Events) that are different from ev and
accept. After communicating an event the process behaves as NEXT. The process
UNTIL(ev,NEXT) behaves as the process RUN(diff(Events,{ev,accept}))
interrupted by the process MATCH(ev, NEXT). This process can communicate
the events that belong to the set diff(Events,{ev,accept}) until the event ev
is communicated, then it behaves as NEXT.

channel accept
ACCEPT = accept -> STOP
MATCH(ev, NEXT) = ev -> NEXT
NOT(ev, NEXT) = [] ev_ : diff(Events,{ev,accept}) @ ev_ -> NEXT
UNTIL(ev,NEXT) = RUN(diff(Events,{ev,accept})) /\ MATCH(ev,NEXT)

The test purpose TP specified in the sequel is used to verify if specification
communicates the sequence of events get.X.2, get.Y.5, get.ORIENTATION.2.
If this sequence is found this process behaves as ACCEPT.

TP = UNTIL(get2.X.2, (MATCH(get2.Y.5, TP_) [] NOT(get2.Y.5, TP)))
TP_ = MATCH(get2.ORIENTATION.SOUTH_, ACCEPT) []

NOT(get2.ORIENTATION.SOUTH_, TP)

PP = PROGRAM_DEBUG_GET2 [|diff(Events,{accept})|] TP
assert RUN(diff(Events,{accept})) [T= PP

The initial behaviour of the process TP it to wait for the communication
of the event get2.X.2. Then it behaves as the choice between the processes
MATCH(get2.Y.5, TP) and NOT(get2.Y.5, TP). The test purpose behaves as
the process MATCH(get2.Y.5, TP) if the event get2.Y.5 is communicated.
Then, the process behaves as the process TP . The test purpose behaves as

74 S. Nogueira et al.

the process NOT(get2.Y.5, TP) if an event different to get2.Y.5 is commu-
nicated. Next, the test purpose behave as TP. The behaviour of TP is the
choice between the processes MATCH(get2.ORIENTATION.SOUTH , ACCEPT) and
NOT(get2.ORIENTATION.SOUTH , TP). The process TP behaves as the process
MATCH(get2.ORIENTATION.SOUTH , ACCEPT) if get2.ORIENTATION.SOUTH is
communicated. In the sequel, it behaves as ACCEPT. Finally, the test purpose
behaves as the process NOT(get2.ORIENTATION.SOUTH , TP) if an event differ-
ent to get2.ORIENTATION.SOUTH is communicated. Afterwards, it behaves as
TP.

The parallel product, say PP, is the CSP process defined as the par-
allel composition of the process TP with the process PROGRAM DEBUG GET2
with a synchronisation set that includes all events except accept. This
process communicates an accept event only if the the test purpose finds a
trace in the specification that matches the test purpose specification. Since
RUN(diff(Events,{accept})) communicates every event except accept, the
refinement assertion assert RUN(diff(Events,{accept})) [T= PP does not
hold iff the specification presents a trace that matches the test purpose descrip-
tion. If the refinement does not hold, the counterexample is the shortest trace
of PP that ends with accept. Running in FDR this refinement expression yields
a false result and a counterexample trace that equals ce concatenated with the
sequence get.X.2, get.Y.5, get.ORIENTATION.2,accept. This ensures Pro-
gram 1 moves the robot until it faces the beacon in Map 1.

5 Integrating the Approach with Educational Tools

This section discusses how the proposed verification approach can be used as
a backend solution for the verification of ROBO programs in the context of
educational tools.

First of all, the mechanisation of the translation from ROBO to CSP, as well
as the complete abstraction of the CSP notation (i.e., hiding all formal details)
is required for the adoption of the approach. One way to hide the CSP notation
for the definition of the CSP test purposes (presented in previous section) is to
implement a graphical interface that allows the teacher to specify points of the
map that are expected for the robot to pass through and the expected orientation
for the robot in each point. This information would consist of the specification
for the robot’s expected behaviour for a given map and would be automatically
translated into CSP test purposes. Another alternative is to develop a Con-
trolled Natural Language (CNL) for abstracting CSP test purposes inspired in
the CNL introduced in [10]. The teacher then could describe the properties for
the expected ROBO solutions using such a CNL that would be translated into
CSP test purposes similarly to the translation approach presented in [10].

Another action towards the integration of the approach within educational
processes is the development of graphical user interfaces. One possibility is to
integrate the automatic verification as an option in the interface of Robomind
(Fig. 1). The expected properties for each map would be included as additional

An Approach for Verifying Educational Robots 75

information in the map specification (Listing 1.3) and loaded together with the
map. New interface elements would be added into Robomind to allow the exe-
cution of the approach’s steps in background. Upon the conclusion of the veri-
fication, Robomind would show whether the program conforms (or not) to the
expected properties. Another possibility is to create a tool, independent of Robo-
mind, with a web interface following the style of Online Judge Systems [2], which
are used for testing programs submitted during programming contests. Possibly,
there would be two different interfaces, for tutors and students. The tutors’
interface would enable the inclusion of new problems, maps and expected prop-
erties for programs written in ROBO (or, as an extension of this work, in other
similar educational programming languages for robots). The students’ interface
would enable the submission of programs to be automatically verified using the
proposed approach. Feedback about submitted programs would be given to the
students, allowing resubmissions until the program meets the expected proper-
ties.

6 Conclusions

This paper has presented an approach for the verification of educational robots
programmed using the ROBO language. We have shown how to systematically
translate maps and the syntactical elements of the robot program into CSP
using a well defined set of compositional transformation rules. Moreover, we
show how to use the FDR tool to automatically verify program properties as
termination as well as safety properties expressed as CSP test purposes. We
have presented a catalogue of exercises collected from the literature for teaching
robot programming that we are able to verify using the approach. Finally, we
have discussed how the approach can be integrated with educational tools.

Verification approaches have been used for providing automatic feedback
about the correctness of programs for educational purpose. However, neither
there is a formalisation of languages for programming robots nor approaches
for model checking robot programs. Nonetheless, our approach is very similar
to the approach of the SVA tool [16] that supports the teaching of concurrent
programming. SVA compiles shared variables programs written in an imper-
ative language into CSP processes, and uses FDR to verify the properties of
the programs. The LTSA tool [7] is another educational tool that supports the
teaching of concurrency programming and uses model checking. However, while
our approach hides the formal specification from the programmer, in LTSA the
programs are directly expressed in a process algebra.

The main limitation of dealing with a subset of the ROBO language is that
programs that use variables and commands for painting the floor are not con-
sidered. Such a drawback will disappear with the formalization of variables and
painting, which are left as future work.

A classical drawback of using refinement checking is the exponential growth
in the number of states of the model (the state-space explosion problem). In our
context, the number of states to be analysed by FDR increases very fast with

76 S. Nogueira et al.

the size of the maps. A future work is to perform a detailed analysis on the
efficiency of the approach and study ways to make it more efficient.

The proposed approach is a complement to robot simulation environments.
It would represent a relevant support for the apprentices of robot programming
if the translation approach is fully automated and the approach becomes inte-
grated with educational tools, as discussed in Sect. 5. Future works include the
mechanisation of the translation from ROBO to CSP, implementation of tools
and performing controlled experiments to assess the educational contribution.

The notation of CSP was very useful for the definition of the compositional
mapping from ROBO to CSP. Nonetheless, another potential advantage of using
CSP is the possibility to use the CSP refinement notions for establishing notions
of equivalence between ROBO programs, and explore refinement notions between
robots for educational purposes. This research is left as future work as well.

Acknowledgements. This research project is supported by CNPq under grant
442859/2014-7.

References

1. Anais do XXVI Simpósio Brasileiro de Informática na Educação (SBIE 2015)
(2015)

2. Online judge, February 2016. https://en.wikipedia.org/wiki/Online judge
3. RoboMind FURB (2016). http://robolab.inf.furb.br/
4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a

modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

5. Kitchen, R., Amsterdam, U.V.: RoboMind. http://robomind.net/
6. Lessa, V., Forigo, F., Teixeira, A., Licks, G.P.: Programação de computadores e

robótica educativa na escola: tendências evidenciadas nas produções do workshop
de informática na escola. In: Anais do Workshop de Informática na Escola, vol. 21,
p. 92 (2015)

7. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. Wiley, New
York (1999)

8. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects Comput. 26(3), 441–490 (2014)

9. Nogueira, S., et al.: Exercises Catalog and Paper Samples, August 2016. http://
bit.ly/2aYR2Q4

10. Nogueira, S., Araujo, H.L.S., Araujo, R.B.S., Iyoda, J., Sampaio, A.: Automatic
generation of test cases and test purposes from natural language. In: Cornélio, M.,
Roscoe, B. (eds.) SBMF 2015. LNCS, vol. 9526, pp. 145–161. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-29473-5 9

11. Oracle: Java JSE, August 2016. http://www.oracle.com/
12. Papert, S.: A máquina das crianças. Artmed, Porto Alegre (1994)
13. Papert, S., Valente, J.A., Bitelman, B.: Logo: computadores e educação. Brasiliense

(1980)
14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper

Saddle River (1998)

https://en.wikipedia.org/wiki/Online_judge
http://robolab.inf.furb.br/
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://robomind.net/
http://bit.ly/2aYR2Q4
http://bit.ly/2aYR2Q4
http://dx.doi.org/10.1007/978-3-319-29473-5_9
http://www.oracle.com/

An Approach for Verifying Educational Robots 77

15. Roscoe, A.W.: Understanding Concurrent System. Springer, Heidelberg (2011)
16. Roscoe, A.W., Hopkins, D.: SVA, a tool for analysing shared-variable programs.

Proc. AVoCS 2007, 177–183 (2007)
17. University of Oxford: FDR3 Web Site, May 2015
18. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

Verigraph: A System for Specification
and Analysis of Graph Grammars

Andrei Costa(B), Jonas Bezerra, Guilherme Azzi, Leonardo Rodrigues,
Thiago Rafael Becker, Ricardo Gabriel Herdt, and Rodrigo Machado

Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
{acosta,jsbezerra,ggazzi,lmrodrigues,trbecker,rgherdt,rma}@inf.ufrgs.br

Abstract. Graph grammars are models that allow for a visual represen-
tation of both static and dynamic aspects of a system. There are several
tools that allow the edition, simulation and analysis of graph grammars,
each of them focusing on one kind of analysis technique or graph model.
In this paper we present a new tool for simulation and analysis of graph
grammars, called Verigraph, built with the following design principles: an
implementation as direct as possible of formal concepts (to ease correct-
ness arguments), a generic implementation of core algorithms (to allow
its application for several graph models), and a reasonable running time.
In this paper we present architectural aspects of Verigraph, together with
a comparison with other similar tools in terms of available features.

1 Introduction

Graph grammars are a rule-based framework, suitable for modelling both static
and dynamic aspects of complex systems in an intuitive yet formal manner [3,14].
They arose from the observation that graphs are well-suited for specifying the
states of a system, describing the entities currently present and their current
relations. In order to specify the transitions between such states, rewriting rules,
also called productions, are employed. Besides having an intuitive and visual
representation, graph grammars have a solid formal background, which enables
several analysis techniques.

The theory of graph transformation is still an active field of research, with
more expressive notions of rewriting being explored [1]. The algebraic approach
to graph transformation [3] uses notions of category theory to describe graph
transformation rules and rule application. One of the advantages of this app-
roach is that these definitions and the underlying theory are applicable not
only to graphs, but also to other kinds of high-level structures such as labelled
graphs, typed graphs, attributed graphs [3] and even transformation rules them-
selves [11].

This formalism has found multiple applications. The spread of model-based
software development, where transformation of visual models is an important
part of the process, provides a natural application for graph grammars. Being
rule-based, data-driven and non-deterministic, graph grammars are also a good
match for modelling concurrent and distributed systems.
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 78–94, 2016.
DOI: 10.1007/978-3-319-49815-7 5

Verigraph: A System for Specification and Analysis of Graph Grammars 79

In order to support the use of graph grammars for modelling, however, appro-
priate tools are necessary. Many such tools exist (AGG [16], Groove [13], among
others), nonetheless they are generally focused on a particular kind of analysis.
Also, the lack of interoperability between them hinders the integration of the
complementary analysis techniques that they provide. On top of that, research
on variations of Graph Transformation, such as Second-Order Graph Gram-
mars [11] and AGREE [1] may often benefit from tools that are easy to extend.

Furthermore, existent tools are generally tied to a particular high-level struc-
ture and implemented at a concrete rather than categorical level, making their
extension to deal with novel approaches quite difficult. The Verigraph tool we
will present in this paper was constructed to address these issues.

This paper is organized as follows: Sect. 2 presents the basic theory of alge-
braic graph transformations using the Double Pushout, Sect. 3 gives an overview
of the architecture and some basic implementation details of Verigraph, Sect. 4
presents the analysis techniques that were implemented in the tool, Sect. 5 shows
an overview of related work and tools, Sect. 6 presents the conclusions and finally
the references.

2 Algebraic Graph Transformation

In this section, we review the basic definitions of algebraic graph transformation
according to the double pushout approach [4]. These definitions are standard in
the area, and more details can be found in [3].

A graph G = (V,E, s, t) consists of a set V of nodes (vertices), a set E of
edges, and two functions, s, t : E → V , the source and target functions.

Given two graphs, G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), a graph
morphism f : G1 → G2 is a pair f = (fV , fE) where fV : V1 → V2 and
fE : E1 → E2 are total functions such that fV ◦s1 = s2◦fE and fV ◦t1 = t2◦fE .

A pair (G, t) where G is a graph and t : G → T is a graph morphism is a
T -typed graph. Nodes (resp. edges) of T are considered node types (resp. edge
types). The morphism t associates to each node and edge in G (instance graph)
a corresponding node type and edge type in T (type graph). Notice that any
graph morphisms f : G1 → G2 can be viewed as a G2-typed graph G1.

Given two T -typed graphs t1 : G1 → T and t2 : G2 → T , a T -typed graph
morphism f : t1 → t2 is a graph morphism f : G1 → G2 such that t2 ◦ f = t1.
This condition establishes that nodes/edges of G1 can only be mapped by f
to nodes/edges of the same type in G2. The category with T -typed graphs as
objects and T -typed graph morphisms as morphisms is known as GraphsT .

A graph production (also referred as a graph transformation rule or simply
graph rule) describes a local modification over a portion of a graph. In the DPO
approach, a (T -typed) graph production is defined as a pair p = (l, r) where
l : K → L and r : K → R are (T -typed) graph monomorphisms (injective
morphisms) with the same source K. The typed graphs L, K and R are known
as left-hand (deleted and preserved elements), interface (preserved elements) and
right-hand (preserved and created elements) graphs, respectively.

80 A. Costa et al.

Productions can be applied over typed graphs at certain places, inducing
local modifications. These modifications are called graph transformations, graph
rewritings or rule/production applications. The definition of transformation is
based on the categorical operation called pushout [4]. Given a production p =
L

l←− K
r−→ R and a (T -typed) graph G, a match m : L → G is an arbitrary

T -typed graph morphism from L to G. A graph transformation G
p,m
==⇒ H

from G to H via production p and match m exists if the diagram below can be
constructed in the category GraphsT , where squares (1) and (2) are pushouts.

Intuitively, the graph D is obtained from G by
removing all elements marked for deletion by p, and
the graph H is obtained from D by adding elements
according to p. The rewriting induced by produc-
tion p and match m depends on the existence of the
pushout (1), which is not guaranteed for all possi-
ble matches: there are two additional conditions (named gluing conditions) that
must be satisfied in order to be able to construct pushout (1). The dangling con-
dition ensures that the graph D does not have dangling edges, which occurs when
the match deletes a node and does not delete some incident edge to this node.
The identification condition only applies to non-injective matches and ensures
that the match does not identify a deleted element with a preserved one.

Besides the structural gluing conditions, pro-
ductions can also be enriched with a set of neg-
ative application conditions (NAC) [7]. These
negative application conditions act as guards,
disabling a rewriting G

p,m
==⇒ H in the presence of

a pattern in G and m. Let p = L ← K → R be a production. A negative appli-
cation condition (NAC) n is an arbitrary typed graph morphism n : L → N .
A match m : L → G satisfies NAC n : L → N , written G � n, if and only if
�q : N → G such that q is injective and q ◦ n = g. A production with NACs is
a pair (p,N) where p is a production and N is a set of NACs for p. A match
m : L → G satisfies N if and only if m � n for all n ∈ N .

A typed graph grammar with NACs is a tuple G = (T,G0, P, π) where
T is a (type) graph, G0 is a T -typed graph, P is a set of rule names and π is a
function that associates each rule name to a T -typed graph production.

2.1 Example

We present an example of a Graph Grammar (with NACs) for transforming a
binary tree into a list: The binary trees are modelled with a single node type
and two possible edges types that represent, respectively, a tree node and the
left and right relationship of nodes, which results in the following type graph:
l r .

Verigraph: A System for Specification and Analysis of Graph Grammars 81

Fig. 1. Set of productions

The productions in Fig. 1 represent the possible cases for the right rotations
on a tree, so that after applying successive transformations, the binary trees
become lists1.

Fig. 2. NAC for the production in Fig. 1(a)

As stated in their names, there
are certain conditions under which
these productions must not be
applied, i.e. the production in 1(a)
may only be applied if its node a
is a root (it does not have incident
edges), and the node b does not have
a right child. These negative conditions are modelled as NACs, such as the one
shown in Fig. 2 forbidding the application when node b has a right child. The
remaining NACs are omitted due to lack of space2.

This graph grammar is used in the next sections to exemplify some concepts,
therefore we leave the choice of initial graph open in this section. Note that any
binary tree represented as a typed graph may be used as initial graph.

2.2 Generalization and Other Approaches

Although the definitions presented in the previous sections are restricted to
graphs, they are generalizable to categories that satisfy certain properties. This
has led to the theory of High-Level Rewriting (HLR), which was linked with
the notion of adhesive categories [5]. Examples of structures that fit into this
framework include variations on graphs (e.g. typed, attributed, labelled), Petri
nets and algebraic specifications [3]. Another particularly interesting example are
Second-Order Graph Grammars [11], where graph rewriting rules are themselves
transformed in a rule-based manner. This is a promising approach for modelling
the evolution of systems.

1 For simplicity, lists are modelled as right degenerate trees.
2 The complete grammar of the example is available along with the Verigraph source

code.

82 A. Costa et al.

Besides variations on the transformed structures, multiple transformation
approaches exist. DPO itself has a few variations, relaxing the requirement
that the morphisms in rules be monomorphic and/or requiring that matches are
monomorphic. Other approaches include the single-pushout approach [6], which
relaxes the dangling and identification conditions, as well as sesqui-pushout
rewriting [2] and AGREE [1], which allow cloning of nodes and edges.

3 Architecture Overview and Data Structures

This section introduces how the Verigraph tool was implemented, the complete
source code can be found in the Verigraph repository3. The chosen programming
language was Haskell, aiming especially to have as little mismatch as possible
between theory and code.

Fig. 3. Implementation of graphs

The simplest structure imple-
mented in Verigraph is the Graph
type, which consists of association
lists for nodes and edges. Its defin-
ition may be seen in Fig. 3. Nodes
and edges have numeric identifiers
that are unique within a graph,
and they may also carry a payload.
The whole structure is polymorphic
on the types of payloads, allow-
ing graphs to be easily extended
by adding additional information
to nodes and edges, which should
be used in the future to imple-

ment attributed graphs, for example. We intentionally omit the declara-
tion and implementation of many basic functions for manipulating graphs,
such as insertNode, insertEdge, removeNode, removeEdge, incidentEdges,
neighbourNodes, among others.

Fig. 4. Implementation of graph morphisms

The next fundamental
building blocks for graph
transformation are graph
morphisms. The correspond-
ing type GraphMorphism,
whose definition may be seen
in Fig. 4, closely matches the
formal definition. It consists
of domain and codomain
graphs, as well as two relations for nodes and edges.

In order to efficiently represent and manipulate mappings, the polymorphic
Relation type was implemented, as well as utility functions such as compose,
inverse, domain, image and apply. The choice of implementing relations rather
3 Link to Verigraph repository https://github.com/verites/verigraph.

https://github.com/verites/verigraph

Verigraph: A System for Specification and Analysis of Graph Grammars 83

Fig. 5. Implementation of typed graphs and their morphisms

than just functions is due to many algorithms needing the inverse relation of a
non-injective function.

Fig. 6. Type class for morphisms

Typed graphs are imple-
mented exactly as their for-
mal definition: a graph mor-
phism whose codomain is the
type graph. Indeed, TypedGraph
is just a type synonym for
GraphMorphism, as may be seen
in Fig. 5. Typed graph mor-
phisms (TGMs) also follow the
formal definition: they consist of
a domain and codomain typed
graphs, as well as an untyped
graph morphism.

We have presented the implementation of morphisms of two different cate-
gories, Graphs (graphs as objects and their morphisms as arrows) and GraphsT
(introduced in the Sect. 2). Therefore, a whole class of operations relative to
morphisms is relevant for both data types. In order to uniformly deal with both

Fig. 7. AdhesiveHLR class

84 A. Costa et al.

morphism types, the type class Morphism was defined. It may be seen in Fig. 6.
Since every morphism type has an associated type for representing objects of that
category, standard Haskell would not suffice to express these ideas. We there-
fore employed the GHC extension allowing type families, which are essentially
functions at the type level [15].

Besides the basic operations for morphisms of general categories, many of the
algorithms implemented in Verigraph depend on operations available in Adhesive
High-Level Replacement (HLR) categories [5], such as pushouts and pullbacks.
Morphisms of such categories must therefore implement the operations of the
AdhesiveHLR type class, which may be seen in Fig. 7. These type classes decouple
the implementation of DPO rewriting from the implementation of the category
in which it occurs.

Fig. 8. Data production

Having an abstract notion of morphism, the
implementation of productions may be polymor-
phic on the morphism type, as may be seen in
Fig. 8. The operations related to productions,
such as checking the applicability of a match
(existence of gluing condition and satisfiability
of NACs) and doing the actual transformation,
are implemented in terms of the AdhesiveHLR
class.

Also, two different notions for checking the NAC satisfiability were imple-
mented: the classical one (as presented earlier in this paper) and the partial
injective version as defined in [9] and implemented in AGG.

The last type is DPO. This abstract class has two functions: inverse to invert
a production, and shiftNac to shift a set of NACs over a production.

Note that the Graph, GraphMorphism, TypedGraph and Production types
allow malformed instances (e.g. a Graph with an edge that references an unde-
fined node as source or target). Therefore, a well-formedness condition must
be implemented, which was done by defining the type class Valid, instantiated
for those types, providing a single predicate valid for its verification. In order
to reduce the runtime overhead of such checks, the algorithms implemented in
Verigraph are designed to construct and preserve well-formedness. Thus, it must
only be checked when values are obtained from external sources.

The implementation explained in this section suffices for performing graph
transformations. Although this functionality is not new, we aimed to create an
architecture were the transformation logic is cleanly separated from the category
in which it is performed. This allows us to easily adapt Verigraph for transfor-
mation on other Adhesive HLR categories, which is done in Sect. 4.5.

4 Implemented Analysis Techniques

A few analysis techniques are implemented in Verigraph. The focus is on static
analysis, such as Critical Pair/Sequence Analysis and the calculation of Con-
current Rules. A proof-of-concept implementation of model checking is also
included. Given that Verigraph was extended to support second-order graph
grammars, conflict analysis specific to this model was also implemented.

Verigraph: A System for Specification and Analysis of Graph Grammars 85

4.1 Critical Pair Analysis

A common static analysis technique is checking whether rewriting rules are in
conflict: intuitively, when the application of one disables the application of the
other. More formally, two productions are in conflict if there is a valid match for
each of the productions into the same graph, but after transforming with one of
those matches, the other match is invalidated. Note that it is possible for a pair
of rules to have multiple conflicts. The complete definitions and main results for
conflicts are found in [9,10].

Since there may be an infinite amount of conflicts between any two produc-
tions, generating all possible conflicts is not feasible. The notion of critical pairs,
however, allows the detection of canonical forms for every possible conflict [10],
and the number of critical pairs is guaranteed to be finite when dealing with
finite graphs. The implemented approach for finding all critical pairs consists of
generating all possible overlappings between two graphs, then checking if such
pairs configure a conflict. Such overlappings are specified categorically as jointly
epimorphic pairs of morphisms [10].

When checking if two transformations are in conflict, we consider asymmetry
between the pairs of productions. Because of this, there are three possible causes
for a conflict: (1) one transformation deletes an element used by the other (delete-
use); (2) one transformation enables some NAC of the other (produce-forbid);
(3) one transformation invalidates the gluing conditions for the other (produce-
dangling). The first two kinds of conflict are well known in the literature, and we
implement their calculation based on the traditional algorithms for such. The
third kind appears only when considering asymmetric conflicts, since it always
occurs together with a delete-use conflict in the reverse direction. We need to
account for produce-dangling conflicts since we count critical pairs considering
direction (i.e. the number of critical pairs between p1 and p2 may differ from
the number of critical pairs between p2 and p1 in our implementation). For
this reason we propose next a characterization for this conflict and show the
respective algorithm to calculate it.

Produce-Dangling Conflict Characterization. Let p1 = (l1, r1, [n1]) and
p2 = (l2, r2, [n2]) be productions, as shown in the diagrams below. Note that p1
is presented from right to left. The starting point is the object G4, obtained by
the combination of the L1 and L2. The existence of a morphism h21 : L2 → D1 is
required (in the case of non existence it is a delete-use conflict), which means that
after deleting the elements of p1, the production p2 still is applicable. Through
h21 we come (by composition) to the m′

2 morphism, that is the object after
the creation step of p1. Even if m′

2 exists, it may not be an applicable match
for p2, and this case is called produce-dangling. The following two conditions
characterize a (produce-dangling) conflict between G

p1,m1===⇒ P1 and G
p2,m2===⇒ P2.

4 The � indicates that m1 and m2 are jointly surjective, i.e. m1(L1) ∪ m2(L2) = G.

86 A. Costa et al.

Definition 1 (Produce-Dangling). Two conditions determine the existence
of the Produce-Dangling:
(i) There exists h21 : L2 → D1 : d1◦h21 = m2, and m′

2 : L2 → P1 : h21◦e1 = m′
2.

(ii)Morphism m′
2 is a match where all NACs are sat-

isfied (�q : N2 → P1, with q injective), but other
application conditions do not hold: let (1) the initial
pushout of m′

2, there is no b∗
2 : B2 → K2 : l2 ◦ b∗

2 =
b2, and (m1,m2) jointly surjective.

The simplest case of this conflict in DPO is when p1 deletes a particular
node, and p2 creates an incident edge on the same node. After the application
of p2, p1 is unable to delete the node. An example is shown in Fig. 9, where p1
is the right and p2 the left productions. In DPO, this conflict follows from the
requirement that deleted nodes have no incident edges outside the match.

Fig. 9. Example of produce-dangling conflict

The implementation of these
algorithms was done entirely in
terms of categorical operations,
and is therefore polymorphic on
the types of objects and mor-
phisms, as long as they are

instances of the appropriate type classes. The proximity of implementation and
theory may be seen in Fig. 10, which shows a function that checks if a partic-
ular overlapping induces delete-use or produce-dangling conflicts. Variables are
named consistently with the previously presented diagrams.

The matrix M in Fig. 11(a) summarizes the results of Critical Pair Analysis
for the graph grammar presented in Fig. 1. This matrix has dimensions N × N ,
where N is the number of rules of the specification, which we name R1, . . . , RN .
Each entry Mi,j shows the number of potential conflicts between rules Ri and Rj

for all pairs of productions in the given graph grammar. Notice that this matrix
is not symmetric because we consider the direction of the conflicts between rules.
Also notice that there is at least one critical pair between almost all pairs of rules
(Ri, Rj) in this particular example. When analysing the individual conflicts,
however, we observe that some of the conflicts occur only when a node has two
right children, which does not correspond to a valid binary tree. This is due the
static aspect of this analysis, since it does not consider the initial conditions.

Verigraph: A System for Specification and Analysis of Graph Grammars 87

Fig. 10. Delete-use and produce-dangling verification algorithms

Fig. 11. Results of critical pair analysis and critical sequence analysis

4.2 Critical Sequence Analysis

Dependency analysis is analogous to conflict analysis, considering sequential
rather than parallel transformations. Given two productions t1 and t2 (applied in
this order), the possible dependencies are divided in two kinds, which intuitively
are: triggered, where t2 is not applicable before t1 is applied; and irreversible,
where after the sequential application of t1 and t2, the transformation t1 can not
be undone [9].

Dependencies are also tied to a notion of critical sequence, analogous to
critical pairs, which captures all sources of dependencies in a finite number of
canonical forms. The definition and characterization of critical sequences is very
similar to that of critical pairs [10], enabling the same implementation strategy.
In fact, the diagrams for dependencies are mostly the same as those for conflicts,
except that the overlappings are created between the left-side of one production
and the right-side of the other.

88 A. Costa et al.

Fig. 12. Example of dependent transformations

Figure 11(b) shows the results of Critical Sequence Analysis for the graph
grammar presented in Fig. 1. One such dependency is presented in Fig. 12, involv-
ing the productions Rotate-WithRightChild-Root and Rotate-NoRightChild-
NoRoot, respectively. This dependency indicates a case when the first production
enables the second (produce-use type).

4.3 Calculation of Concurrent Rules

Another common technique for static analysis may be used when the behaviour
of individual rewriting rules is less important than the overall effect of applying
multiple rules. In order to capture this notion, one may calculate a single rule
(named concurrent rule) which summarizes the combined effect of a complete
derivation whose individual transformations are induced by the ordered list of
productions (rule sequence) p0, . . . , pn−1, pn [3,9]. The construction of such rules
is done by recursively combining pairs of subsequent rules, where the pairwise
combination is defined as follows:

For n = 0: The concurrent rule pc for the single rule p0 is p0 itself. If p0 has a
set of NACs it will be preserved.

For n � 1: A concurrent rule pc = p′
c ∗E pn with NACs for the rule sequence

p0, . . . , pn−1, pn is defined as pc = (lc ◦ kc : K → L, rn ◦ kn : K → R) where:

Verigraph: A System for Specification and Analysis of Graph Grammars 89

− p′
c : L′

c ← K ′
c → R′

c is a concurrent rule for the sequence p0, . . . , pn−1

− E is an overlapping of R′
c and Ln with (e′

c, en) jointly surjective
− (1)-(3) and (2)-(4) are valid double-pushout rewritings
− (5) is a pullback
− All the NACs Ni of the production p′

c are shifted over the morphism l′,
resulting in a set of NACs n′

i : L → N ′
i

− All the NACs Nj of the production pn are shifted over the morphism e2
and then over the span q′

c = lc : Cc → L, rc : Cc → E, resulting in a set
of NACs n′

j : L → N ′
j
5

As an example, Fig. 13 shows one of the concurrent rules generated from
the rule sequence [Rotate-WithRightChild-Root,Rotate-NoRightChild-NoRoot].
This particular concurrent rule represents the overall effect of the derivation
shown in Fig. 12.

Fig. 13. Example of concurrent rule

Presently, AGG is the main tool for calculating the concurrent rules of a
Graph Grammar. It does not, however, produce all possible concurrent rules for
a particular rule sequence, considering only the cases where dependencies exist
between all subsequent transformations. Verigraph does calculate all possible
concurrent rules. Nonetheless, this is an expensive operation, since there exists a
concurrent rule for each different overlapping between a R′

c and a Ln in each step
of the induction, which may result in a combinatorial explosion. Also, the shifting
of NACs adds considerably to this cost. We also implement the calculation based
on dependencies, as it is done in AGG.

The number of possible overlappings may also be significantly reduced when
non-injective matches are forbidden. Using the least disjoint overlappings for
each step may also provide enough information for analysis, while greatly reduc-
ing the number of concurrent rules. Both options are already available in Veri-
graph.

4.4 State Space Exploration and Model Checking

Although static analysis helps understanding the interactions between produc-
tions, dynamic analysis is often useful as a complementary technique. Manual
5 Both the algorithms for shifting NACs over a morphism and over a span are omitted

here due to lack of space, but can be found in [9].

90 A. Costa et al.

exploration of the state space induced by an initial graph and by a set of trans-
formation rules helps build an intuitive understanding of the modelled system.
Another important technique is model checking, which may provide guaran-
tees that are not ensured by static analysis, since it only considers potential
interactions.

A practical tool for graph transformation should, therefore, provide both sta-
tic and dynamic analysis techniques. Even though the current focus of Verigraph
is on static analysis, its architecture should also be suitable for the implementa-
tion of dynamic analysis. In order to ensure this, a preliminary implementation
of these techniques is provided in Verigraph.

The core of dynamic analysis techniques is the generation of a state space
from an initial graph and a set of productions. Therefore, a depth-limited search
on the state space was implemented in Verigraph, collapsing isomorphic graphs
as a single state. Both the transition system and the individual states are
exported as .dot files, allowing their visualization. Since this implementation
is only intended as a proof of concept, the efforts to optimize this exploration,
such as improving the search for isomorphic graphs, are left for future work.

Having the exploration of the state space, Verigraph also implements model
checking of CTL expressions. The atomic predicates are defined is a similar
approach to GROOVE [13]: productions that don’t change the instance graph
are considered predicates, and such predicates hold in a graph if and only if the
production is applicable. The model checking itself is completely decoupled from
the generation of the state space, using the algorithm described in [8].

An example application is checking that the grammar presented in Fig. 1
eventually linearises the tree (AF noLeftChildren) and terminates if and only
if that is the case (AG(¬EX true ↔ noLeftChildren)). Given the little effort
invested in optimizing this analysis, running times of the tool are prohibitively
large. Checking the aforementioned properties, with a full binary tree of depth
three as starting graph, took over 3 min (as shown in Table 3) in an Intel i5-3330
processor, running at 3 GHz with 16GiB of RAM.

4.5 Inter-Level Conflict Analysis

Second-Order Graph Grammars (SOGG) were proposed and studied in [11,12].
This new kind of transformation can be seen as modelling the evolution of typed
graph grammars. Due to the fact that SOGG form an adhesive HLR category, the
analysis proposed in the sections above are also valid for this type. Besides usual
analysis techniques, two kinds of Inter-Level Conflicts were proposed in [12] to
analyse the interaction between first- and second-order rules. Particularly, two
new analysis come from the Inter-Level layer. The first is named critical pair
evolution, it defines how match overlaps in the original system behave after an
evolution (application of second-order production). The second is named second-
order critical pairs analysis, it captures all situations where a transformation by
a second-order production inserts a conflict in the system.

Formal definitions and implementation will be omitted due to lack of space,
but they can be found in [11] and in the Verigraph repository, respectively. Both

Verigraph: A System for Specification and Analysis of Graph Grammars 91

analysis techniques are implemented, however the process of generating all situ-
ations that are relevant to analyse requires a large computational effort, which
causes a combinatorial explosion. However, to our knowledge, no implementation
of SOGG and their analysis has been reported in the literature.

5 Related Work

The known graph transformation tools published so far differ widely on their
features, due mainly to the different fields of research that they come from.
We selected two tools to compare with Verigraph based on the transformation
system and analysis they perform. These tools employ approaches related to
ours as well as some reconcilable features with our tool.

A more detailed comparison between the tools is shown in Table 1.

5.1 AGG

The Attributed Graph Grammar System (AGG) [16] is a graph transformation
tool that supports the development of typed graph grammars. The rewriting sys-
tem is based on the SPO approach, but the user can configure the application to
run a simulated version of the DPO approach. AGG supports attributed graphs,
which means that elements of a graph can be enriched with algebraic types,
provided mainly by the Java types. This tool is focused on static analysis having
some features mentioned in this paper, such as critical pair/sequence analysis
and concurrent rules, but also several others like termination and consistency
checking.

5.2 GROOVE

The Graphs for Object-Oriented Verification (GROOVE) Tool Set [13] aims
for modelling graph grammars, its rewriting engine also implements the SPO
approach. The focus of this tool is generation and exploration of state space,
implementing many exploration strategies as well as an efficient search for iso-
morphic states. Graphs in GROOVE are untyped, however the tool does support
labelling to simulate types in complex systems.

5.3 Preliminary Performance Evaluation

Besides the comparison of features, we performed basic performance evaluations.
In Verigraph, the execution time was not the central point of the implementation.
However, many of the analysis performed are intractable in theory, they are
only made possible due to the use of some restrictions, such as graph typing.
Therefore, the algorithms implemented need to be at least comparable to the
existing tools.

We compared the execution time of Critical Pairs/Sequences Analysis
between AGG and Verigraph. Two graph grammars were used: treeToList

92 A. Costa et al.

Table 1. Comparison between tools

Feature AGG GROOVE Verigraph

Rewriting SPO/DPO
simulation

SPO DPO

NAC strategy Partial injective Arbitrary injectivity Partial or
total injective

Transformation
objects

Typed attributed
graphs

Typed attributed
graphs

Typed graphs or
typed graph rules

Critical pair
analysis

Yes No Yes

Model-checking No Yes Work in progress

GUI Yes Yes No: import from and
export to AGG

Attributes Yes Yes No

Second order No No Yes

Language Java Java Haskell

defined in the Fig. 1), and mutex, a grammar with 16 productions that was
used as a benchmark in [17]. The same entry files were used for testing both
tools6.

Table 2 shows the results of the comparison. The timed execution of Verigraph
involved reading the grammar from a file, computing the analysis and saving
the conflict matrix to a file. The execution time of AGG, on the other hand,
involves the analysis of an already loaded grammar and displaying the computed
matrix on the GUI. The results were obtained averaging the running time of ten
executions in an Intel i5-3330 processor, running at 3 GHz with 16GiB of RAM.

Table 2. Critical pairs and sequences analysis performance

Tool treeToList mutex

Critical Pairs Critical Sequences Critical Pairs Critical Sequences

Time (s) Time (s) Time (s) Time (s)

AGG 1.704 6.156 10.874 47.717

Verigraph 0.822 3.489 1.036 3.224

There are two major issues that can affect the fairness of these evaluations.
First, the execution process in the tools is not equal: while in Verigraph the
grammar is read, processed and written in a file, in AGG the GUI already
has the grammar loaded and only has to show a matrix of conflicts after they
are processed. Second, AGG supports attributed graphs, which may lead to an
overhead in the critical pair analysis algorithm due to the handling of attributes.
6 treeToList.ggx and mutex.ggx are available on Verigraph Repository.

Verigraph: A System for Specification and Analysis of Graph Grammars 93

Table 3. Model checking performance

Initial graph Number of states Time (s)

GROOVE Verigraph

Complete binary tree of depth 3 370 1.217 199.957

Since Verigraph does not support attributed graphs, its algorithm is not affected
by the same overhead.

6 Conclusions

In this paper, we have introduced Verigraph, a new tool for simulating and ver-
ifying graph grammars. The Verigraph tool is implemented in the purely func-
tional programming language Haskell and it currently implements important
techniques such as critical pair analysis, construction of concurrent rules from
rule sequences, construction of state space from graph grammar and (currently
not optimized) model checking using CTL. Important algorithms are imple-
mented in a generic style, inspired by the framework of adhesive HLR systems.
Most of the constructions are implemented in a style which is close to the formal
definitions, which makes it easier to inspect for correctness. Although formal
proofs of correctness are not yet provided, we claim this style of code (purely
functional) favours the effort of proving correctness, and we intend to do so for
our implementation in the future.

When compared to established tools such as AGG and GROOVE, Verigraph
is still lacking in some aspects. Verigraph currently does not have a GUI: it
has a Command Line Interface (CLI) and utilizes the .ggx file format, also
used by AGG, in order to import and export specifications and to visualize
the result of our analysis. Another limitation is that our graph model does not
support attributes. To solve these issues is current and future work. On the
other hand, as far as we know, Verigraph is the only tool that integrates both
static and dynamic analysis and the only one that has support for second-order
specifications. Another positive aspect is that our initial evaluation shows that
it is competitive with current tools in terms of performance, at least in the realm
of static analyses for non-attributed graph grammars.

Acknowledgements. The authors would like to acknowledge the brazilian agencies
CNPq, CAPES and FAPERGS for their support in the form of financial aid (VeriTes
project/CNPq) and scholarships (CAPES, CNPq and FAPERGS).

References

1. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21145-9 3

http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/978-3-319-21145-9_3

94 A. Costa et al.

2. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). doi:10.1007/
11841883 4

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, New York (2006)

4. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic app-
roach. In: IEEE Conference Record of 14th Annual Symposium on Switching and
Automata Theory, SWAT ’08, pp. 167–180, October 1973

5. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30203-2 12

6. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation: part ii: single pushout approach and
comparison with double pushout approach. In: Handbook of Graph Grammars, pp.
247–312 (1997)

7. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26(3,4), 287–313 (1996)

8. Huth, M.R.A., Ryan, M.: Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, New York (2000)

9. Lambers, L.: Certifying rule-based models using graph transformation. Ph.D. the-
sis, Berlin Institute of Technology (2009)

10. Lambers, L., Ehrig, H., Orejas, F.: Conflict detection for graph transformation
with negative application conditions. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer,
Heidelberg (2006). doi:10.1007/11841883 6

11. Machado, R.: Higher-order graph rewriting systems. Ph.D. thesis, Instituto de
Informática - Universidade Federal do Rio Grande do Sul (2012)

12. Machado, R., Ribeiro, L., Heckel, R.: Rule-based transformation of graph rewriting
rules: towards higher-order graph grammars. Theoret. Comput. Sci. 594, 1–23
(2015)

13. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-25959-6 40

14. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations. World Scientific Publishing Co., Inc.,
River Edge (1997)

15. Schrijvers, T., Jones, S.P., Chakravarty, M., Sulzmann, M.: Type checking with
open type functions. In: Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2008, pp. 51–62. ACM, New York
(2008)

16. Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–
488. Springer, Heidelberg (2000). doi:10.1007/3-540-45104-8 41

17. Varro, G., Schurr, A., Varro, D.: Benchmarking for graph transformation. In:
2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’05), pp. 79–88. IEEE (2005)

http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/978-3-540-30203-2_12
http://dx.doi.org/10.1007/11841883_6
http://dx.doi.org/10.1007/978-3-540-25959-6_40
http://dx.doi.org/10.1007/3-540-45104-8_41

Modeling and Logic

Modelling ‘Operation-Calls’ in Event-B
with Shared-Event Composition

Andrew Edmunds and Marina Waldén(B)

Faculty of Science and Engineering,
Åbo Akademi University, Turku, Finland

marina.walden@abo.fi

Abstract. Efficient reuse is a goal of many software engineering strate-
gies and is useful in the safety-critical domain where formal develop-
ment is required. Event-B can be used to develop safety-critical sys-
tems, but could be improved by a component-based reuse strategy. In
previous work, we outlined a component-based reuse methodology for
Event-B. The methodology provides a means for bottom-up scalability,
and can also be used with the existing top-down approach. We devel-
oped a process for creating library components, composing them, and for
specifying new properties (involving the composed elements). We intro-
duced Event-B component interfaces and propose to use a diagrammatic
representation of component instances. However, in that approach, the
communication between components is modelled in an abstract manner.
In this paper, we describe a more concrete specification approach which
includes interfaces with ‘callable’ interface events. These events model
operations, and additional syntactic constructs model their invocation.

Keywords: Event-B · Formal modelling · Interface events · Operation
calls

1 Introduction

Formal methods can play a useful role in the development of safety-critical sys-
tems. Having flexibility in formal approaches will make them more useful in the
development process. We are seeking to improve the flexibility and adaptabil-
ity of Event-B [4] developments by enhancing the methodology and improving
the supporting tools [17]. In recent work, we proposed a method of creating
a library of components, with interfaces, and a way to assemble them based
on shared-event composition [13]. We believe that this approach provides an
intuitive abstraction for the encapsulation that is often seen in object-oriented
software components. The ideas are facilitated by extending the existing iUML-
B class-diagram tool [21,25], and by extending the composition work of [22–24].
iUML-B is a graphical modelling approach, influenced by UML [18], for speci-
fying state-machines and class diagrams. The diagrammatic representations are
embedded in a machine and contribute to its content by making use of automatic

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 97–111, 2016.
DOI: 10.1007/978-3-319-49815-7 6

98 A. Edmunds and M. Waldén

translators to generate Event-B from the diagrams. State-machine diagrams are
used to impose an ordering on the occurrence of a machine’s events. They can be
animated to improve understanding of a model’s behaviour. Class diagrams are
used to define data entities and their relationships. The system specification is
undertaken at a relatively high level of abstraction, and it uses a notion of event
synchronization inspired by the CSP semantics of synchronization [16]. To facil-
itate component composition, we proposed new diagrammatic representations,
enabling us to specify which machines and components are combined, and the
(communication) relationships between them.

In order to provide a more concrete description of the interaction between
components, we propose to use ‘callable’ interface events which are similar in
principle to the callable operations of the modularisation approach [2]. The spec-
ification of the interface events are at a sufficiently low level of abstraction to
allow them to be related, in a clear way, to the normal programming concept of
operations and of operation calls.

In the remainder of the paper we describe the interface events which model
programming operations, and we describe interface event calls which model syn-
chronous operation calls. We also show how some types of interface event calls
can be nested in the terms of Event-B expressions. In Sect. 2 we provide a brief
introduction to Event-B, and in Sect. 3 there is an overview of the recent Event-B
components work. In Sect. 4 we introduce, using a simple example, the notion of
procedure-style interface events. In Sect. 5 we expand on this to describe nested
event calls, using function-style interface events that can be used as terms in
expressions. In Sect. 6 we discuss related work, and in Sect. 7 we conclude. This
work is being undertaken as part of the ADVICeS project1 [26].

2 Event-B

Event-B is a specification language and methodology [1,4] with tool support
provided by the Rodin tool [17]. Event-B has received interest from industry, for
the development of railway, automotive, and other safety-critical systems [20].
In Event-B, the system, and its properties, are specified using set-theory and
predicate logic. It uses proof and refinement [19] to show that the properties
hold as the development proceeds. Refinement iterations add detail to the devel-
opment. Event-B tools are designed to reduce the amount of interactive proof
required during specification and refinement steps [15]. Proof obligations in the
form of sequents are automatically generated by the Rodin tool. The automatic
prover can discharge many of the P.O.s, and the remainder can be tackled using
the interactive prover. The basic Event-B elements are contexts, machines and
composed-machines. Contexts define the static parts of the system using sets,
constants and axioms which we denote by s, c, and a. Machines describe the
dynamic parts of a system using variables and events: v and e, and use invariant
predicates I to describe the properties that should hold. We specify an event in
the following way,
1 The ADVICeS Project, funded by Academy of Finland, grant No. 266373.

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 99

e � ANY p WHERE G(p, s, c, v) THEN A(p, s, c, v) END,

where e has parameter names p; a guarding predicate G; and actions A. State
updates (described in the action) can take place only when the guard is true.
Guards and actions can refer to the parameters, sets, constants and variables
of the machine and seen contexts. For events to occur, the environment non-
deterministically chooses an event from the set of enabled events. In the simpler
case, where there are no parameters, we write

WHEN G(s, c, v) THEN . . .END

If there is no guard clause either, we write,

BEGIN A(s, c, v) END

As development proceeds, the models can become very detailed. There-
fore, complex systems can be broken down into more tractable sub-units using
shared-event [23,24] or shared-variable [5] decomposition. With the shared-event
composition style [22], variables are distributed between (and encapsulated by)
machines. Communication between components is modelled by event synchro-
nization which is inspired by CSP [16]. Synchronizing events are combined in the
combined events clause of a composed machine. With shared variable composi-
tion/decomposition, the events are distributed between machines. Updates to
the shared variables models communication between components since variables
in one machine can be read and updated by another machine.

3 An Overview of Event-B Components

In our previous work [13], we describe how events and parameters of Event-
B components are displayed to other machines and components which allows
them to synchronize. We propose a composed machine diagram, see Fig. 1, based
on [24]. Here, the composed machine CM is represented by the annotated box.
The diagram describes the relationships between the included machine(s) M
which are under development and the included machines L which are library
components that have been developed for reuse. A class-diagram, such as the
FIFO component example at the lower left of Fig. 1, can be annotated with inter-
face information. The public part of the interface machine is identified using the
annotation i, showing which events of a component are allowed to synchronize
with other, external, events. The unmarked events are assumed to be hidden and
are, therefore, not able to synchronize with other events. Synchronized events
have communicating parameters that model the communication between mod-
ules. It is an abstraction of what happens during an operation call and is exactly
the technique used in [12]. On the right-hand side of the figure, we can see
synch1, which is a combined event, and an example of synchronization between
two machines. This aspect of the diagram captures the fact that there is commu-
nication occurring across the component boundaries, but disregards information
about the number of component instances.

100 A. Edmunds and M. Waldén

Fig. 1. Composition of library components [13]

In order to describe the component instances, and the communication across
their boundaries, we introduce a new component instance diagram. A user will
connect components to their callers by linking component instances with connec-
tors as seen in an example from our previous work [13], and reproduced in Fig. 2.
Solid, arrowed lines represent instance containment. Dashed lines represent com-
munication across interfaces. Each dashed line can be associated with two, or
more, synchronizing events. Using this information, stubs (a programming term
for place-holders) for modelling communication can be generated in the caller,
if required. We can add input (output) parameters that match output (input)
parameters in the component and create typing guards to match. Of course, we
can strengthen the guard of any output parameter since the pre-condition-style
PO’s will still hold. This approach will also work for communication between
two pre-existing library components (as indicated in the diagram in Fig. 1).

Fig. 2. A component instance diagram [13]

In the modularisation approach [2], module interfaces are specified using an
entirely different concept. Firstly, an interface module is defined using a pre- and
post-condition syntax. Then a machine that ‘implements’ the interface is defined
which must refine the interface. The approach allows an interface operation to

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 101

be called and updates to take place. Refinement rules require the generation
of proof obligations to show that an interface is correctly implemented. In our
approach, since an interface machine is just a machine (but with associated
interface annotations) any valid refinement of the machine is a valid refinement
of the interface. However, we do produce additional proof obligations to show
that the event’s communicating parameters are within certain constraints; i.e.,
the set of values of any output parameter should be compatible with the set of
values of the corresponding input parameter. A more detailed comparison of the
two approaches is provided in Sect. 6.1.

4 Procedure-Style Interface Events

In order to clarify the use of interface event calls in guards and actions, we refer
to the constraints imposed by Ada [7] on function calls and procedure calls. Ada
distinguishes between the two, based on the fact that functions can be used in
expressions, whereas procedures cannot. Ada functions are side effect free and
return a single value which is substituted for the call on its return. Side effects
are updates that persist after the return of a call. Procedures do allow side effects
and can return multiple values, therefore, they cannot be used in expressions.

We choose to apply constraints on function- and procedure-style inter-
face events in the same way that Ada does. We relate Ada function calls to
function-style interface events and Ada procedure calls to procedure-style inter-
face events. We consider these to be useful abstractions of safe implementa-
tions. In addition to this, we consider that it will be useful to add an anno-
tation to describe an interface event as either a function-style interface event
or procedure-style interface event. This will help a developer determine how
suitable a component is for use in a particular situation.

In the remainder of the section, we describe the new syntax for procedural-
style interface events and for procedure-style calls. In Sect. 5 we describe
function-style interface events.

4.1 Procedural Interface Events

We begin by showing the public part of an interface event. This simply describes
the event name and input and output parameters, in the style of a Java inter-
face [14]. It has no behavioural information associated with it and takes the
following form (with syntactic sugared parameters),

Procedural Interface Event evt(ip? ∪ op!) �
WHEN G(ip, op) END

(1)

Here, evt is the event name, ip? is the set of input parameters, op! is the set of
output parameters, and ip? ∪ op! is an ordered set since we will need to match
formal parameter names with actual parameter values. G consists only of typing
predicates. The annotations “?” and “!”, for input and output sets, are not part

102 A. Edmunds and M. Waldén

of the name. They simply inform us about the direction of data flow into, and
out of, events. Therefore, they do not appear in guard and action clauses. The
annotation might alternatively be written using the Ada parameter mode style
‘p : in’ for input, and ‘p : out’ for output. We do not have an equivalent of
the Ada mode inout, which allows a parameter to be used as both input and
output parameters. Events may legitimately have parameters without input or
output specifiers, these are the local variables of an event, but we ignore them
for the purposes of the discussion that follows.

Below, we show a concrete example of Eq. 1, it is an interface event called
i callee that we will use as a running example.

Procedural Interface Event i callee(fp1?, ret!) �
WHEN fp1 ∈ N ∧ ret ∈ N

END

This interface has two parameters; fp1? is an input parameter, and ret! is an
output parameter. Both are typed as natural numbers. The underlying Event-B
representation of the interface is shown below,

i callee �
ANY fp1? ret!
WHERE fp1 ∈ N ∧ ret ∈ N

END

(2)

Having defined an interface, we can add a behavioural description, either
in the same machine or in a refinement (depending on our adopted strategy).
We specify the return behaviour of the component, by adding the guard in a
refinement. We also show the increment of a machine variable count, in the
action clause, as an illustration of a side effect.

callee �
REFINES i callee

ANY fp1? ret!
WHERE fp1 ∈ N ∧ ret ∈ N ∧ ret ∈ 10 .. (20 + fp1)

THEN count := count+ 1

END

The event has a non-deterministic definition of a return value. The output para-
meter ret! should satisfy the guard ret ∈ 10 .. (20 + fp1). Notice that we also
retain the weaker typing guard (although it may appear to be redundant) since
we may wish to apply separate annotations to typing guards, to assist with later
processing. This would be the case when using the models to generate code, as
in [12] for instance.

A procedure-style interface event call can be used anywhere that an assign-
ment expression can appear (that is, an expression involving the := operator).

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 103

Thus, calls can be composed in parallel, provided the assigned variables are
unique in the composition, but they can not otherwise be nested in an expres-
sion. A call takes the following form,

iEventName(v)

where iEventName is the name of an interface event, and v is the list of machine
variables that are passed as actual parameters. We show a concrete example,
below, where a refinement of the interface event i callee, named callee, will be
‘invoked’ in the caller event. Again we use syntactic sugar to hide the underlying
Event-B. We can add the call, as an action, in the caller event. An iUML-B
class diagram would be a suitable place to do this, since we can generate the
underlying Event-B representation when the iUML-B translators run.

caller � BEGIN callee(var1, var2) END (3)

The event shown in Eq. 3 shows a call to an event named callee, with actual para-
meters var1 and var2. Here, var1 is a machine variable representing a required
input, and var2 is a machine variable that holds (or is assigned) the return
value. Note that this representation of assignment to var2 is like the Ada style
out parameter, which allows multiple return values. The Java style would be
var2 := callee(var1). This Java call style is exactly the one presented in [11].
However, in [12], the single assignment, performed on return, is omitted, with
a preference for multiple assignments of return parameters, using Ada style out
parameters.

4.2 Translation of the Call

The call, described above, is syntactic sugar for the following event which can
be generated automatically by translation tools.

caller �
ANY fp1! ret?
WHERE fp1 ∈ N ∧ ret ∈ N ∧ fp1 = var1 ∧ ret = var2
END

In the generated caller event we introduce input and output parameters that
correspond to the input and output parameters of the i callee interface. We can
automatically generate the parameter direction annotations, the i callee’s input
fp1? is matched to an output in the caller fp1!, and the return value ret? is
matched to ret! in the same way. The guards constraining the input fp1 = var1,
and the output var2 = ret, model the relationship between formal and actual
parameters. The parameters’ typing guards correspond to the i callee interface.

We propose to make use of the composition semantics of [8] where the call
is modelled by a merge of (conjoined) guards and (parallel) actions. The whole
caller and callee update is atomic.

104 A. Edmunds and M. Waldén

4.3 The Combined Event Representation

The complete behaviour of an event call involving the caller and callee events
can be described by a merge, or parallel composition, of the two events. We
call this two-way synchronization since it involves two events. We propose to
use shared-event composition to model the call, so in practice it is not nec-
essary for the merge to actually take place. The composed machine construct
records the composition details using a combined-events clause, and an actual
merged machine can be generated from this if required. The merged machine
representation, however, provides a useful way for us to describe the result of
a composition since all the details are contained in a single event. A combined
event, such as caller‖callee, encapsulates the atomic synchronization of the two,
separate events.

callee ‖ caller �
ANY fp1 ret

WHERE

fp1 ∈ N ∧ ret ∈ N

∧ fp1 = var1 ∧ ret = var2
∧ ret ∈ 10 .. (20 + fp1)
THEN count := count + 1
END

In the combined event, we do not duplicate parameters and guards. Parameters
are matched by name, and the direction annotations can be removed, since the
event models both the caller and callee.

5 Function-Style Interface Events for Use in Expressions

In the next step we introduce a functional interface specification. A functional
interface specification is restricted to return a single value op!. It may have an
ordered set of input parameters ip? which will be replaced with actual parame-
ters, and any refinement should have no side effects – as explained in Sect. 4.

Functional Interface Event op! ← evt(ip?) �
WHEN G(ip, op) END

(4)

5.1 Functional Interface Events

In order to demonstrate how a call is used as a (nested) term we extend our
example, introducing a functional interface specification i callee2. The i callee2
interface event is so-named because of its similarity to i callee from the previous
example.

Functional Interface Event ret2! ← i callee2(fp1?) �
WHEN fp1 ∈ N ∧ ret2 ∈ N

END

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 105

We can then introduce a refinement of i callee2, a new event callee2, which is a
more concrete version of the interface event. In traditional programming terms
it might be said to be an implementation of the interface. In the Event-B world
it is a refinement of i callee2, where we provide a more precise definition of the
return value (highlighted in bold font).

callee2 �
REFINES i callee2
ANY fp1? ret2!
WHERE fp1 ∈ N ∧ ret2 ∈ N ∧ ret2 = 2 ∗ fp1

END

Now, to show the use of the call in an expression we introduce the newCallee
event of Eq. 5. It refines the i callee interface that first appeared in Eq. 2. We
can see the call, to the callee2 event, in the highlighted expression.

newCallee �
REFINES i callee

ANY fp1? ret!
WHERE fp1 ∈ N ∧ ret ∈ N

∧ ret ∈ 10 .. callee2(fp1)

END

(5)

During a call, actual parameters replace formal parameters, and we model this
in the guard. As previously mentioned, the interface event used in an expression
is a function with exactly one return parameter. In the expression, we substitute
callee2(fp1) with the return parameter ret2, to get . . . ∧ ret ∈ 10 .. ret2. This
will be observable in the final merge of Eq. 6 described later. The flow of data
throughout the whole call sequence, via the parameters, is observable in Fig. 3
on Page 11.

5.2 Translation of the Call

We are now at the point where we consider the call of the newCallee interface
event, itself. We write,

caller � BEGIN var2 := newCallee(var1) END

As in the previous examples, this is syntactic sugar, and a translation will be
performed to generate the following Event-B,

caller �
ANY fp1! ret?
WHERE fp1 ∈ N ∧ ret ∈ N

∧ fp1 = var1 ∧ ret = var2
END

106 A. Edmunds and M. Waldén

In the caller, the formal and actual parameter assignments are modelled by the
constraints in the guard, fp1 = var1∧ret = var2. Once again, we pair input and
output parameters. Parameters fp1! and ret? are added to caller, to complement
the parameters fp1? and ret! in the i callee interface and its implementation,
newCallee.

5.3 The Combined Event Representation

As in the procedural-style example, when all the callers, and callees are com-
posed, we can represent this as a three-way merge with the following result,

caller ‖ callee2 ‖ newCallee �
ANY fp1 ret ret2
WHERE

fp1 ∈ N − In Parameter Type

∧ fp1 = var1 − Actual parameter subst.

on entry to caller

∧ ret ∈ 10 .. ret2 − Subst. call for return

parameter

∧ ret2 ∈ N − Out Parameter Type

∧ ret2 = 2 ∗ fp1 − Nested return value

∧ ret = var2 − Final assignment

END

(6)

Since we use matching parameter names, with input-output direction annota-
tions, to identify the communication that takes place across interface boundaries,
we have to consider a new scenario. With the two-way synchronization, found
in the procedural-style, we simply match a pair of parameters “p?” and “p!”
and this defines a pair engaging in communication. However, by introducing the
three-way synchronization, caused by nesting in function-style calls, we can see
that the input parameter fp1? can be used to communicate its value across two
component (interface) boundaries. The combined event models two operation
calls. However, since input parameters cannot be assigned to, the value of fp1?
will always remain the same. This avoids us having to redefine the parameter on
‘entry’ to the operation, and the value percolates down through successive calls,
as can be seen in Fig. 3. For multi-way synchronizations, we can freely pass input
parameters across component boundaries by reusing the formal input parame-
ter name. This is not the case for returning output parameters however, as can
be seen in Fig. 3. Returning parameters involve assignment, or substitution in
expressions. As the ‘calls’ return, we model the substitutions, and are required
to use the return parameters to record the changes. In the figure, var2′ relates
to the value of var2 after the assignment has taken place.

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 107

Fig. 3. Call parameters as guards

6 Discussion and Related Work

Much of our approach is comparable to the callable operations of the modularisa-
tion approach [2], which we describe in more detail in Sect. 6.1. But to summarize
the differences briefly, we note that the underlying Event-B model is different.
In the modularisation approach operation calls are modelled by separate events.
The events model the steps of assigning actual parameters to formal parame-
ters, evaluating the action, and then assigning a value to the return parameter.
In our approach we model the call at a higher level of abstraction, in a single
event. The modularisation approach makes use of pre- and post-conditions. In
our interface events, we use guards to specify the types of the input and output
parameters. Since, in an interface, we are only interested in the data crossing the
components boundary, we do not refer to machine variables in the guards. The
pre-conditions of the modularisation approach can be used to type operation
parameters. However, they may also access machine variables, so they provide
a more general mechanism for under-specification than our use of guards for
typing.

Operation calls are an integral feature of the B-method [3], this is because the
B method was designed as an approach for modelling software systems. Event-
B is a direct descendant of the B method, but it was primarily devised as a
means for modelling systems at a higher level of abstraction, so it does not have
operations as an integral feature. Nevertheless, if the development is to proceed
towards the implementation, it is necessary to introduce implementation level
specifications, as we have done here.

Actions systems, are a precursor of the Event-B method, and were devised
for the specification of parallel programs. Back and Sere describe the use of
remote procedure calls, which use parameters for communication between par-
allel compositions of action systems modules, in [6]. This is similar to our use
of parameters to share information between Event-B components, in interface
event calls. Procedure-style calls were also introduced by Walden in [27], where
they discuss a distributed load balancing algorithm, in the B-Action Systems

108 A. Edmunds and M. Waldén

paradigm. B-Action Systems are related to Event-B, also. Butler et al. describe
the modelling of synchronous operation calls, within a single B operation, in [10].
This is similar to what is achieved by merging individual events, as described
in Sect. 5.3. In further work [9], Butler and Leuschel describe using CSP [16] to
schedule B operations. The combination of CSP events and B operations behave
in a similar way to the merged events, when one of the merged events models a
particular schedule, and uses flow control variables. Schedules of this kind, that
include models of operation calling, can also be found in the implementation
level specifications of [11].

When considering composition of components, extra care should be taken to
assess the effect of adding non-typing guards to refinements of interface events.
One might logically expect to be able to take an off the shelf component with an
implementation, compose it with another machine, and make use of the exist-
ing implementation. At this stage we simply highlight that this may not be so
straightforward, due to the effect of false guards in the called implementation.
Now, interface event calls (including the nested calls) model a single, atomic
operation call. But, if the translation makes use of a sequential implementation,
some state updates may already have occurred before the operation call. In the
event of a false guard in a call, this would require some form of roll-back, to undo
any previous changes made before the call. This might be overcome by restrict-
ing the use of guards in the interface events, but this could be too restrictive
to be useful. It could also be overcome by doing the automatic code generation
using the composed machines (using the actual combined event clauses). This
might negate any benefits of having a certified ‘module’, since composition may
change its behaviour.

6.1 A Comparison with the Modularisation Approach – in More
Detail

The work that we present here is an alternative to the existing modularisation
approach [2], so we will provide a more detailed comparison of the two. The
modularisation approach introduces a new interface module construct, which is
based on specifying pre- and post-conditions. We do not introduce a ‘separate’
specification, as such, preferring to extend iUML-B class-diagrams to include the
required detail. In our approach a syntactically-sugared version (a pretty-print
view) of the interface specification could be shown to the user if required. This
could indeed be presented as a pre- and post-condition specification, since these
details can be derived from our specification. Our components can have events
containing actions, and actions are a form of post-condition, so we consider
that they do not require separate specification. We prefer the idea that inter-
faces (communication across component boundaries) should be kept separate
from the behavioural aspects (that is, behaviour of the component). Modularisa-
tion contains the interface description in the pre-condition, and the behavioural
description in the post-condition. Our interface approach is driven by the ’pro-
gramming view’ of an interface, one that describes the data flow across the com-

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 109

ponent boundary, such as with Ada [7] or Java [14]. Our behavioural description
is contained in the Event-B actions of the refinements of the interface events.

The pre-conditions that are introduced in the modularisation approach are
not explicitly defined in our approach. Since we take the view that the interface
specification should refer only to input and output parameters, we do not need a
separate specification for them. This is because parameters are typed in guards,
and are associated with direction annotations. We can then reason about the
suitability of input-output ranges, as described in [13]. We can generate pre-
style proof obligations, to show the feasibility of communication. We could also
derive a pre-condition specification from this information, by interpreting input
parameter guards as pre-conditions. We know that the corresponding output
parameters would satisfy the pre-conditions. Generally, for any guard G and
pre-condition P ; when G = P , G =⇒ P is true.

Modularisation is based on shared-variable style decomposition [5]. In this
approach the shared variables can be exposed by the interface, to allow mod-
ification from outside the component. It could be argued that, in relation to
the encapsulation techniques used in higher-level programming languages, this
is a departure from the normal practice of component encapsulation through its
interface, since direct modification of variables is usually prohibited. Our app-
roach, using shared-event composition, is much more in keeping with the usual
interpretation of encapsulation.

In the modularisation approach the underlying Event-B model is different in
that they model three steps of an operation call in three separate events. The
steps are those of assigning actual parameters to formal parameters, evaluating
the action, and assigning a value to the return parameter. This requires special
ordering guards, and variables, to ensure that no other event takes place while
this sequence of events takes place. In our approach, this is specified by a merge
of events, modelling the call in a single, atomic step – no additional guards and
variables are required. It is also the case that modularisation operations allow
side effects. We consider that this is acceptable when the call is not nested in
an expression; but it is much less clear that this should be permitted when the
calls are nested in expressions. It is usually advised against in programming cir-
cles, due to concerns about order of evaluation of terms. Our initial stance is
to prohibit side effects in the interface event calls that are used in expressions,
and acknowledge that it may warrant further investigation. We, therefore, con-
sider it to be useful to distinguish between function-style interface events, and
procedure-style interface events, using additional annotations.

7 Conclusions

The aim of the work described in this paper is to improve reuse of Event-B
artefacts, as part of an effort to make Event-B more agile and easier to use in
the development of safety-critical systems. In this paper we describe an extension
of Event-B components and interfaces, that we introduced in [13]. Previous work
relies on diagrammatic representations to facilitate instantiation of pre-existing

110 A. Edmunds and M. Waldén

components. Diagrams also describe machine and component inclusion, in a
composition; and describes the communications between them. It is based on
an abstract description of the interaction between communicating components,
and models operation calling, using interface events, at a relatively high level
of abstraction. Any machine with an interface, we can describe as an interface
machine.

The extension, presented here, describes how a more concrete specification of
communication can be provided. Using a programming-like notation, we intro-
duce ‘callable’ interface events, a low-level description, facilitating the modelling
of operations. These are further categorized as procedure-style or function-style
interface events, where procedure-style interface events model operations that
allow state updates (similar to Ada procedures). Function-style interface events
model side effect free operations, for use as terms nested in expressions. We also
introduce a new syntax for ‘calling’ the interface events.

In future work we would like to provide tool support for our approach. Then
we could perform some experiments to evaluate the usability, and applicability,
for solving various problems in an industrial setting. We are also interested in
deriving a behavioural description from a component specification, and combin-
ing it with the interface specification, for the purposes of improving location and
retrieval of relevant components from component libraries.

Acknowledgements. Many thanks to Sergey Ostroumov for insightful comments.

References

1. The Rodin User’s Handbook. http://handbook.event-b.org/
2. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,

Latvala, T.: Supporting reuse in Event B development: modularisation approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ
2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11811-1 14

3. Abrial, J.R.: The B Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

5. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fundam. Inform. 77(1–2), 1–28 (2007)

6. Back, R.-J., Sere, K.: From action systems to modular systems. Softw. - Concepts
Tools 17(1), 26–39 (1996). http://dblp.uni-trier.de/rec/bib/journals/stp/BackS96

7. Barnes, J.: Ada 2012 Rationale, The Language, The Standard Libraries. LNCS,
vol. 8338, 1st edn. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45210-9

8. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00255-7 2

9. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol.
3582, pp. 221–236. Springer, Heidelberg (2005). doi:10.1007/11526841 16

http://handbook.event-b.org/
http://dx.doi.org/10.1007/978-3-642-11811-1_14
http://dx.doi.org/10.1007/978-3-642-11811-1_14
http://dblp.uni-trier.de/rec/bib/journals/stp/BackS96
http://dx.doi.org/10.1007/978-3-642-45210-9
http://dx.doi.org/10.1007/978-3-642-00255-7_2
http://dx.doi.org/10.1007/978-3-642-00255-7_2
http://dx.doi.org/10.1007/11526841_16

Modelling ‘Operation-Calls’ in Event-B with Shared-Event Composition 111

10. Butler, M., Petre, L., Sere, K.: Integrated Formal Methods. LNCS, vol. 2335.
Springer, Heidelberg (2002)

11. Edmunds, A.: Providing concurrent implementations for Event-B developments.
Ph.D. thesis, University of Southampton, March 2010

12. Edmunds, A., Rezazadeh, A., Butler, M.: Formal modelling for ada imple-
mentations: tasking Event-B. In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe
2012. LNCS, vol. 7308, pp. 119–132. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30598-6 9

13. Edmunds, A., Snook, C., Walden, M.: On component-based reuse for Event-B. In:
5th International ABZ Conference ASM, Alloy, B, TLA, VDM, Z, 2016. Accepted
paper - to be published

14. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification. Java (Addison-Wesley). Addison Wesley (2014)

15. Hallerstede, S.: Justifications for the Event-B modelling notation. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 49–63. Springer, Heidelberg
(2006). doi:10.1007/11955757 7

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

17. Abrial, J.R., et al.: Rodin: an open toolset for modelling and reasoning in Event-B.
Softw. Tools Technol. Transf. 12(6), 447–466 (2010)

18. Object Management Group (OMG). UML 2.0 Superstructure specification. http://
www.omg.org/technology/uml/index.htm

19. Back, R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer Science & Business Media, Heidelberg (2012)

20. Romanovsky, A., Thomas, M.: Industrial Deployment of System Engineering Meth-
ods. Springer, Heidelberg (2013)

21. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and
state machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05089-3 37

22. Silva, R.: Towards the composition of specifications in Event-B. In: B 2011, June
2011

23. Silva, R.: Supporting development of Event-B models. Ph.D. thesis, University of
Southampton, May 2012

24. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:
Aichernig, B.K., Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25271-6 7

25. Snook, C.: Event-B Statemachines (2011). http://wiki.event-b.org/index.php/
Event-B Statemachines

26. The ADVICeS Team. The ADVICeS Project. https://research.it.abo.fi/ADVICeS/
27. Waldén, M.: Distributed load balancing. In: Sekerinski, E., Sere, K. (eds.) Program

Development by Refinement. Formal Approaches to Computing and Information
Technology FACIT, pp. 255–300. Springer, London (1999)

http://dx.doi.org/10.1007/978-3-642-30598-6_9
http://dx.doi.org/10.1007/978-3-642-30598-6_9
http://dx.doi.org/10.1007/11955757_7
http://www.omg.org/technology/uml/index.htm
http://www.omg.org/technology/uml/index.htm
http://dx.doi.org/10.1007/978-3-642-05089-3_37
http://dx.doi.org/10.1007/978-3-642-05089-3_37
http://dx.doi.org/10.1007/978-3-642-25271-6_7
http://wiki.event-b.org/index.php/Event-B_Statemachines
http://wiki.event-b.org/index.php/Event-B_Statemachines
https://research.it.abo.fi/ADVICeS/

Algebraic Foundations for Specification
Refinements

Pablo F. Castro1,2(B) and Nazareno Aguirre1,2

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina

{pcastro,naguirre}@dc.exa.unrc.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),

Buenos Aires, Argentina

Abstract. In this paper we present a mathematical framework tailored
for reasoning about specification/program refinements. The proposed
framework uses formal concepts coming from Institution Theory and
Category Theory, such as theories and morphisms, to capture the notion
of specification/program refinement. The main benefits of the proposed
mathematical theory are its generality and compositionality, that is, it is
based on abstract concepts that can be used to reason about refinements
in different formal settings (such as Z, B, VDM, Alloy, statecharts and
others), as well as it heavily relies upon the notion of component, thus
enabling modular reasoning over the process of specification/program
refinement.

1 Introduction

Software Verification, i.e., the rigorous evaluation of a formal specification
against a corresponding implementation, is perhaps the most widely acknowl-
edged advantage of formal specification notations over their informal counter-
parts. Still, the task of formally verifying that a system correctly implements a
specification is in general a complex task (although under certain restrictions,
it can be algorithmically decided, e.g., via model checking), since systems and
specifications are usually of a very different nature: the former are intrinsically
operational and verbose, while the latter tend to be declarative and more concise.

An alternative to verification, strongly based on formal specification, con-
sists of avoiding having to formally prove that an implementation complies with
a specification, and instead generate a correct-by-construction implementation
from a specification. Of course, this cannot be completely automated, but via
a series of small, step by step, sound refinement steps, one may transform a
declarative specification into an operational implementation complying with it.
This has an obvious impact in scalability, since the “large” problem of system
verification is modularised in a number of small sound steps, made by employing
proved-correct refinement rules.

For most formal specification languages, such as Z [29], B [1] and VDM [19],
the notion of refinement is usually a critical component. In effect, the B Method
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 112–128, 2016.
DOI: 10.1007/978-3-319-49815-7 7

Algebraic Foundations for Specification Refinements 113

provides the possibility of refining a specification, until an implementation is
reached. Each refinement step generates a set of proof obligations, whose valid-
ity guarantees the correctness of the refinement. Z does not provide a language
for refinement within the Z notation, but “external” notations can be system-
atically employed for refining Z specifications, as is described for instance in
[6,29]. In general, the approaches to refinement tend to be language/formalism
dependent, since refinement rules depend on the specification language’s con-
structs. In this work, we present an abstract categorical formulation of
refinement, allowing us to capture the essentials of refinements in model based
specification languages. Our approach, based on well known concepts from the
theory of institutions, is defined at a level of abstraction that makes it formalism-
independent, and enables us to capture what is the precise semantic relationship
that must hold between a (structured) specification and its refinements, whatever
the language these specifications and refinements correspond to. It also allows us
to distinguish the more traditional refinement based on reducing nondetermin-
ism, from an orthogonal kind of refinement, that of (abstract) state representa-
tion/implementation, and understand the relationship between them. We believe
that an important aspect of the framework presented below is that its level of gen-
erality allows one to apply refinement over heterogeneous specifications, that is,
specifications that are made using different formal languages; an example of this
is CSP-Z [12] which uses Z for producing specification of states and operations
and CSP for expressing the dynamic behavior of the systems; another important
characteristic of our approach is that it enables compositional reasoning about
refinements, that is, specifications that are structured in a collection of compo-
nents can be refined by reasoning at the component level, simplifying in this way
the task of refining.

The paper is structured as follows. In Sect. 2 we introduce the basic back-
ground assumed throughout this paper, we introduce the framework in Sects. 3
and 4, together with its properties. In Sect. 5 we present some conclusions and
further work.

2 Preliminaries

In the following we use some basic notions of category theory. A category is a
mathematical structure composed of two collections: a collection a, b, c, . . . of
objects, and a collection f , g , h, . . . of arrows (or morphisms). Every arrow has
two associated objects, its domain and codomain; we write f : a → b to indicate
that a (resp. b) is the domain (resp. codomain) of arrow f . There are two basic
operations involving arrows: the identity, that given an object a, it returns an
arrow ida : a → a, and the composition which, given arrows f : a → b and
g : b → c, returns an arrow f ; g : a → c. Arrow composition is associative;
identity arrows satisfy: f ; ida = f and idb ; f = f , for every f : a → b. A natural
example of category is Set, made up of the collection of sets and the collection
of functions between sets. A functor is essentially a homomorphism between
categories. Given a category C, we denote by |C| its collection of objects, and
by ||C|| its collection of arrows.

114 P.F. Castro and N. Aguirre

Given a category C, a bicategory [5] is composed of: (i) a collection of objects,
called 0-cells; (ii) a category C(A,B), for each pair of 0-cells A,B , whose objects
are called 1-cells and whose arrows are called 2-cells; and (iii) a (bi)functor:
� : C(A,B) × C(B ,C) → C(A,C), which satisfies some coherence properties:
it must have an identity, and it must be associative. In bicategories, there are
two kinds of arrows: the horizontal and the vertical ones. We refer the interested
reader to [3], for an introduction to category theory. We will assume throughout
the paper that the reader has some basic knowledge of category theory.

Since our main goal is to introduce the framework in an abstract language-
independent manner, we do not use a particular logic to introduce the concepts;
instead, we use the abstract setting of Institutions. It is useful to recall the
definition of Institution:

Definition 1. An institution [13] is given by: (i) a category Sign of signatures;
(ii) a functor sen : Sign → Set, that sends each signature to its set of formulas;
(iii) a functor Mod : Signop → Cat, that sends each signature to the cate-
gory of its models1; and (iv) a collection of relations �Σ (satisfaction relations
relating models of a signature to formulas of the signature), that satisfies the
following requirement: Mod(σ)(M ′) �Σ φ ⇔ M ′ �Σ sen(σ)(φ) for any formula
φ ∈ sen(Σ) and σ : Σ → Σ′.

Institutions are an abstract formulation of Model Theory. The last requirement
in Definition 1 captures the fact that truth does not depend on notation.

Example 1 (Higher Order Logic). Let us give a standard example of Institution,
Higher Order Logic (or simply HOL) is one of the basic institutions used in
computer science. Here we follow the definition given in [9]. Given a set of sorts
S , the set of types of S (denoted S) is the least set such that: S ⊆ S , if s1, s2 ∈ S
then s1 → s2. A HOL signature is a tuple (S ,F) where S is a set of sorts and
F is a set of typed constants {Fs | s ∈ S}. A morphism between signatures
σ : (S ,F) → (S ′,F ′) is a function σ : S → S ′, and a family of functions
{σs : Fs → F ′

σ∗(s) | s ∈ S}, where σ∗ is the inductive extension of σ to S . On
the other hand, models in HOL are given by interpreting each type as a set. A
model M of a signature (S ,F) maps each type s to a set Ms (mapping types of
the form s → s ′ to functions). A morphism between (S ,F) models is a collection
of functions ms : Ms → Ns , such that for any f ∈ Ms→s′ (for s, s ′ ∈ S) we have:
ms′ ◦f = ms→s′(f)◦ms . Terms of HOL are defined as usual, any f ∈ Fs is said to
be a term of type s; and t(t ′) is a term of type s2, when t is of type s1 → s2 and
t ′ is of type s. Sentences of signature (S ,F) are built up from equations by using
the usual boolean connectives and quantifiers, the functor sen : Sign → Set,
sends each signature to the sets of its sentences. It is direct to define the relation
�. The institution HOL is the tuple (SignHOL, senHOL,ModHOL,�) as defined
above.

1 Signop denotes the dual category of Sign, obtained by reversing arrows. This is so
since reducts and translations go in different directions.

Algebraic Foundations for Specification Refinements 115

A restricted version of the institution HOL is obtained by requiring signature
morphisms to preserve types. We have used this institution to capture construc-
tions coming from the Z notation [7].

Example 2 (Z Notation). We describe briefly this institution, the technical
details can be found in [7]. The institution Z = (Zign, sen,Mod ,�) is as fol-
lows. Signatures in Zign are tuples (V ,T) where V is a collection of typed
variables, and T the basic types. A morphism σ : Σ → Σ′ between signatures is
defined as in Example 1, but we require that, for any variable v , the translated
variable σ(v) has the same type as v . The functor sen is defined as in HOL, we
consider the standard mathematical operators usual in Z (see [29]), which can
be defined in HOL. The models and the � relation are the same as Example 1.

We assume the reader is familiar with the Z notation, standard references
are [26,29]. Another interesting example is the institution of communicating
sequential processes [23] (named CSP), let us introduce the basics of this formal
construction which will be useful in the rest of the paper.

Example 3 (Communicating Sequential Processes). The category of CSP signa-
tures (denoted SignCSP) has as objects tuples (A,N), where A is an alphabet
of communications, and N = (N , sort , param) contains the basic descriptions of
processes: N is a collection of process names, sort is a function indicating the
collection of possible communication in a given process (i.e., sort(p) ⊆ A); and
param, for each process, returns the collection of its parameters. A morphism
σ : (A,N) → (A′,N ′) is given by functions α : A → A′ (translating alphabets)
and ν : N → N ′ (translating processes), respectively. Obviously, some coherence
conditions are imposed over α and ν (e.g., preservation of parameters types,
etc.) the interested reader is referred to [23]. There are different ways of giving
semantics to CSP, one of them is to consider the set of possible traces of each
process, this is called the trace model, model reducts can be defined directly over
models, and model morphisms are captured as set inclusions; this gives rise to
the category ModCSP of CSP models. On the other hand, sentences are given by
standard CSP definitions by means of equations (see [15] for examples). The rela-
tion M � p(x0, . . . , xk) = P holds when the interpretation of process p refines
the set of traces defined by P2. For the sake of clarity we omit the technical
definitions here, but them can be consulted in [23].

3 A Category of Refinements

Before describing our formalization of refinement, let us we introduce the formal
vehicle we use to express system specifications. The basic notion we employ to
specify the states of a system is that of theory presentation [10].

2 In [23] this definition is stronger and the authors require that the sets of traces of
both terms have to be the same, here we focus on refinement, and since that we only
require an inclusion between the corresponding set of traces.

116 P.F. Castro and N. Aguirre

Definition 2. Given an Institution I = 〈Sign, sen,Mod ,�〉, a theory presenta-
tion S = 〈Σ,Φ〉 is made up of a signature Σ ∈ |Sign| and a set Φ ⊆ sen(Σ) of
formulas (the axioms of the theory).

Intuitively, a theory presentation is used to formally describe the states of the
system. We have used the concept of theory presentation in [7] to capture the
notion of schema employed in the Z notation; the generality of this concept allows
us to give semantics to schema calculus through categorical constructions. Note
also, that the given definition is independent of the logic used to described the
state of the system, other logics can be used, some examples are show below.
Let us give a simple example of how we can use theory presentation to express
state specifications:

Example 4. Let us give a first example of theory and morphism in an Institution.
Consider a simple specification of a memory, it can be written in the Institution
of Z specifications (Z), as follows:

Mem = (({Data,Nat}, {mem : Nat 	→ Data}), {{true}})

which contains two types Data and Nat and a term of type Nat 	→ Data, rep-
resenting a function that maps naturals to data; there is no axioms. From now
on, we write Z specifications using Z notation, that is:

Mem =̂ [Data : N; mem : N 	→ N | True]

On the other hand, a morphism between theory presentations is a translation of
symbols that preserves properties:

Definition 3. A theory morphism τ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature morphism
σ : Σ → Σ′ that satisfies the following condition: ∀ φ ∈ Φ • Φ′ � sen(σ)(φ).

Intuitively, a morphism between two specifications corresponds to two important
concepts: specification embedding, that is, putting a specification into a wider
system; and specification strengthening. Let us give an example in the Institution
CSP, as presented in Sect. 2.

Example 5. Consider the following specification of a process:

Γ0 = {VDM 1 = coin → (choc → VDM 1 | coffee → VDM 1)}
a vending machine that, after receiving a coin, serves chocolate or coffee. The
signature of this process is given by A = {coin, choc}, we have a unique process
name: VDM 1, where sort(VDM 1) = {choc, coin} and param(VDM 1) = ().
Indeed, we can devise a more restrictive version of the vending machine:

Γ1 = {VDM 2 = coin → choc → VDM 2}
where the functions sort and param are defined as above. As can be verified,
The identity translation σ : VDM 1 → VDM 2 is a morphism between these two
specifications, it represents the refinement of VDM 1 achieved by removing some
internal non-determinism.

Algebraic Foundations for Specification Refinements 117

For any institution I, it is direct to prove that specifications and morphisms
are a category (see [10] for the technical details).

Definition 4. Given an institution I = 〈Sign, sen,Mod ,�〉, PresI, is the cate-
gory composed of: 1. Theory presentations (see Definition 2) as objects, 2. Theory
morphisms (see Definition 3) as morphisms.

We just write Pres instead PresI, when I is clear by context. Given any presen-
tation s, we denote by Ax (s) its sets of axioms, and Sign(s) its signature. Note
that, for any institution, Sign : Pres → Sign is a functor.

Another important concept when constructing software specifications is that
of operation, usually operations are specified by stating their pre and post con-
ditions. In our setting, operations are also logical theories, capturing their cor-
responding pre-post relations via formulas. Consider the following diagram in
PresI (for any institution I):

Op

S

i
������

S ′

j
������

In this diagram, S is an state specification, i : S → Op is an inclusion (the
embedding of S into the operation), while S ′ (denoting the states after the
operation execution) is a theory obtained by priming the symbols in S , and
j : S ′ → Op is the embedding of S ′ into the operation specification.

Let us give an example of operation for the specification of a memory given
above.

Example 6. Given the state specification Mem the following is an operation
over it:

Write =̂ [ΔMem; a? : N; i? : Data | Mem ′ = Mem ⊕ {a 	→ d}]

Here note that ΔMem means that the signature of Mem and its axioms are
included as part of Write and similarly for Mem ′, i.e., the inclusions i : Mem →
Write and j : Mem ′ → Write are just the identity mappings.

In order to put together data domain and operation specifications, the latter
understood as the above diagrams, the concept of bicategory [5] can be used. In
effect, domain specifications (theories) correspond to 0-cells, whereas operations
are diagrams of the form S → Op ← S ′, called cospans. The morphisms between
cospans, that make the corresponding diagram commute, are the 2-cells. Cospans
are in fact one of the typical examples of bicategories, where the two classes of
arrows are the operations (horizontal arrows) and the morphisms between these
operations (vertical arrows).

Let us see how we build this construction. Given any institution I, we define
the bicategory of states and operations over I as the bicategory of cospans over
PresI (a proof that it is already a bicategory can be found in [5]).

118 P.F. Castro and N. Aguirre

Definition 5. Spec is the bicategory of I-specifications, defined as the struc-
ture composed of: (i) the set |Pres| as its set of objects; (ii) for each pair of
theory presentations S ,S ′, the category OP(S ,S ′) of cospans between S and S ′

(called 1-cells), and morphisms between cospans (called 2-cells); and (iii) the
composition between 2-cells is defined as usual by using the composition (i.e.,
pushouts) of cospans (denoted by �).

A specification is a subcategory of Spec, the subcategory generated by the
corresponding schemas and operations. We denote by Op : S ⇒ S ′ the existence
of operation Op from S to S ′, i.e., the cospan S → Op ← S ′. From now on, we
assume that Sign is an adhesive category [20]. Roughly speaking, this means
that pushouts (generalized unions) are well-behaved ; this, for example, ensures
us that Sign has nice properties that allow us to put together different parts
of a specification. Examples of adhesive categories are the categories of sets,
graphs, labelled graphs, trees, amongst others. We also assume that Sign has a
strict initial object (that is, any arrow Σ → ∅ is an isomorphism). This holds
for most logics; for instance, in propositional logic, the empty set is the initial
signature (which is strict). These basic assumptions imply, among other things,
that Sign has finite colimits; this is important since the colimit is the standard
construction to put together specifications [13].

Now, let us start dealing with the problem of refinement. Operation refine-
ment is typically understood as a kind of strengthening. As we already men-
tioned, arrows in PresI capture the concept of specification strengthening. How-
ever, these morphisms are not adequate for formalizing the notion of operation
refinement, since the strengthening associated with operations make a distinc-
tion between preconditions and postconditions: they correspond to weakening
preconditions and strengthening postconditions. First, we need to distinguish
preconditions from postconditions, thus we require that any operation Op has
to be an extension of the coproduct S + S ′ of S and S ′, that is, we assume the
following situation regarding any operation Op:

Op

S + S ′
u

��

S

i
������

��

S ′

j
������

��

and we require that the arrow u be monic, i.e., symbols from S and S ′ are
not mixed in Op. This will be useful for calculating pre and postconditions. An
essential property that we must guarantee is that, under this characterization of
operation specification, operations can be composed3. This is guaranteed by the
following Theorem.

3 Note that this is straightforward to prove for standard cospans when we have a
finitely cocomplete category.

Algebraic Foundations for Specification Refinements 119

Theorem 1. Given an institution I, if Sign : Pre → Sign is faithful, then,
given operations Op1 : S ⇒ S ′ and Op2 : S ′ ⇒ S ′′, the composition (denoted by
Op1 � Op2) exists, and is obtained by taking the colimit of the diagram composed
by solid arrows below:

Op1 � Op2

Op1

		�
�

�
S + S ′

u

���
�

Op2

�
�
�

S

��				

��

S ′

�����
		�����

S ′′

��� � � �

Proof. Since the category Pre is finitely cocomplete (Sign reflects colimits [13]),
we know that the colimit of the diagram exists. We have to prove that the arrow
u : S + S ′′ → Op1 � Op2 is mono. Since Sign is adhesive and has strict initial
elements, the injection morphisms of a coproduct are monos, i.e., the arrows
i : Op1 → Op1 +Op2 and j : Op2 → Op1 +Op2 are monos. Now, since Op1 �Op2
is a colimit, we have an arrow Op1 � Op2 → Op1 + Op2; therefore, by properties
of monic arrows, the morphisms Op1 → Op1 � Op2 and Op2 → Op1 � Op2 are
monos. That is, the arrows f : S → Op1 �Op2 and g : S ′′ → Op1 �Op2 are monos
(since they are compositions of monic arrows). Therefore, the arrow [f , g] = u
is monic (since Sign is adhesive and Sign reflects monos).

As we explained, we need to factor the precondition and postcondition from
an operation specification, to describe what a refinement is. Let us first deal
with preconditions. A precondition is a predicate prescribing for which states
an operation is correctly defined. Categorically, and given a component S , this
concept of precondition over S corresponds to an arrow pre : S → P . That is, pre
is an extension of S which characterizes the states where the precondition is true.
We require that pre preserves language; that is: Sign(pre) must be iso in Sign.
Now, preconditions can be weakened during the refinement of an operation.
This corresponds to a construction called coslice category. The coslice category
S ↓ Presop has arrows Pre : S → P as objects; its morphisms are arrows
f : pre → pre ′ that make the following diagram commute in Pre:

S
pre

����
�� pre′

���
��
�

P P ′
f

��

Notice that we used Presop , since arrows go “in the opposite direction” for
preconditions. We will denote by pre(S) the subcategory S ↓ Presop , of pre-
conditions of S . The same observations that we made for preconditions can
be extrapolated to postconditions. More precisely, a postcondition is an arrow
post : S +S ′ → Q describing the correct final states of a given operation. Notice
that, for postconditions, we include the language of the initial state (i.e., S). The
reason for this is that, in model based specification languages, it is customary to

120 P.F. Castro and N. Aguirre

often describe the “post states” in relation to the “pre states”, i.e., to describe
the transition relation of the operation as the postcondition of the operation.
Using the (inclusion) arrows i : S → S + S ′ and j : S ′ → S + S ′, we obtain the
cospan:

Q

S

i;Post
������

S ′

j ;Post
������

We require these two arrows to be extensions; furthermore, i ; post must be con-
servative (see [11] for the definition of these concepts); intuitively this means
that a postcondition does not add any restrictions on initial states.

The category S + S ′ ↓ Pres gives us the base category to reason about
postconditions of operations transforming S . We denote by post(S ′) the sub-
category of S +S ′ ↓ Pres of postconditions. Notice that, as opposed to the case
of preconditions, in this case the arrows go in the usual direction.

As we mentioned previously, in order to be able to refine operations we
need to express them as composed by preconditions postconditions. Notice that,
given a precondition pre : S → P and a postcondition: post : S + S ′ → Q of an
operation Op, we can compose these as follows:

Op

[pre, post]

u
����

P

���������
Q

���������

S

Pre
�������

��

S

Pre
�����������

j ;Post
�����������

S ′

i;Post�������

��

where [pre, post] is the colimit of the above diagram. When the (unique) arrow
u : [pre, post] → Op is conservative, we say that the operation Op : S ⇒ S ′

can be factorized in Pre : S → P and Post : S + S ′ → S ′; in this case, we
write Op as [pre, post]. The following theorem allows us to guarantee that every
operation can be factorized, and therefore to treat operations as defined by pre
and postconditions.

Theorem 2. For any given institution I, every operation in SpecI can be fac-
torized in a unique way (up to isomorphism).

Proof. Let us first prove that there is at least one factorization. Given Op :
S ⇒ S ′, suppose that S = 〈ΣS , ΦS 〉. Let us define pre : S → P, where P =
〈ΣP , i−1(ΦOp ∩ i(ΦΣS

))〉, where i : S → Op, i−1 is the usual pre image over sets
and ΦΣS

denotes the set of all formulas generated from Σ. Note that pre : S → P
is mono, since Sign reflects monos. Let us prove that it is a morphism between
presentations. If we have that φ ∈ i−1(ΦOp ∩ i(ΦΣS

)), then i(φ) ∈ ΦOp ∩ i(ΦΣS
)

but therefore ΦOp � i(Φ). Now, let us define the postcondition post : Σ+Σ′ → Q;
we define Q as 〈ΣS + ΣS ′ , j−1(ΦOp \ i(ΦPre))〉. By using the identity ΣS +

Algebraic Foundations for Specification Refinements 121

ΣS ′ → ΣS + ΣS ′ , the proof that post : Σ + Σ′ → Q is an arrow between theory
presentations is similar to that of pre. Now, we need to prove that [pre, post] is
the unique (up to isomorphism) factorization. Consider the following diagram:

Op

[Pre,Post]

f
���������

[Pre ′,Post ′]

g
���������

P

�������
x

���
�

� �
�

P ′

������������

x−1

 �
��

�
� Q

������������
y

���

� �

Q ′

�����

y−1

 �

�

�

S

��!!!!

��""""""""""""""
S

������

��###############

��$$$$

 %%%%%%%%%%%%%%%
S ′′

������

!!&&&&&&&&&&&&&&&

Let us show that there exist arrows x and y as shown above. Note that, since
Sign(pre) : Sign(S) → Sign(P), and Sign and Sign(pre ′) : Sign(S) → Sign(P ′)
are iso in Sign, we can define the following arrow x = Sign(pre)−1;Sign(pre ′) :
P → P ′. Note that we have the following diagram which commutes, since P and
P ′ are pre-conditions:

Op

P

f
��$$$$

P ′

g
""����

S

pre

��'''' pre′
��((((

The arrows (f ; pre) : P → [P ,Q] and (g ; pre ′)P ′ → [P ′,Q ′] are conservative.
Furthermore, since Sign(pre) and (pre ′) are iso, we have an arrow in Sign
x : Sign(P) → Sign(P ′) which is iso. Let us prove that this arrow is a morphism
between theory presentations: if φ ∈ P, then (f ;pre)(φ) ∈ Op. Then, since these
arrows commute (see the diagram above), we have that (g ; pre ′)(φ) ∈ Op, and
therefore (g ;pre ′)−1(φ) ∈ P ′. So, by the commutativity of the diagram above, we
get x (φ) ∈ P ′. Similarly, we can find a iso morphism y : Q → Q ′. Finally, by
properties of colimit we get that [P ,Q] and [P ′,Q ′] are isomorphic.

We are now ready to define operation refinement. Given two operations Op
and Op′, factorized as [pre, post] and [pre ′, post ′], respectively, a refinement is
composed of two arrows f and g , in the situation, involving the cospans of the
two operations, captured in the following diagram:

[pre, post]

[f ,g]
##

[pre ′, post ′]

S

$$)))))

%%

S ′

��

Arrow f is in pre(S), while arrow g is in post(S ′). According to the definitions
of these subcategories, an operation refinement is composed of a precondition

122 P.F. Castro and N. Aguirre

weakening and a postcondition strengthening, precisely as we expected. The
following result, stating that operations and operation refinements constitute
a category, is an important one: it implies that operation refinements can be
composed, an essential property for step by step refinement.

Theorem 3. Given two theories S and S ′, the collection of operations Op(S ,S ′)
between S and S ′, and refinement arrows between the corresponding factoriza-
tions, is a category, denoted by Ref(S ,S ′).

Furthermore, given factorizations [pre, post] : S → S ′ and [pre ′, post ′] : S ′ → S ′′,
we can consider the following diagram:

C

P

&&+++++++++++ Q

���
�

�
P ′

���
�

�
Q ′

'', , , , , , , , , , ,

S

pre
��������

S

pre
((������

i;post
��������

S ′

j ;post
((������

pre′ ��������
S ′

pre′((������
i′;post′ ��������

S ′′

j ′;post′��������

where C is the colimit of the base of the diagram (called cocone). Taking the
factorizations of arrows S → C and S ′′ → C , we obtain an object of Ref(S ,S ′′).
We can then define a bifunctor (composition) of factorizations � : Ref(S ,S ′) ×
Ref(S ′,S ′′) → Ref(S ,S ′′). It is not hard to see that this bifunctor satisfies the
coherence properties required for composition in bicategories (it is defined by
using colimits in a similar way that it is done in cospan categories).

Let us present an example, illustrating our above construction. We have
already introduced a specification of memories, with some operations. Consider
an additional operation, called Choose, whose purpose is to nondeterministically
choose an address, and returns the data stored in it. An implementation, or
more concrete specification, of this operation may reduce nondeterminism, for
instance by deterministically choosing a specific address to be read. A possible
implementation would be to use the minimum of the addresses, and return the
value read in it. This specification, called MinChoose, together with the more
abstract Choose, their pre/postcondition factorizations and the refinement, are
shown in the diagram below, together with the corresponding arrows. Notice
that the arrows between schemas Q and Q ′ imply that any model of Q ′ would
be a model of Q (semantic arrows go in the other direction).

Let us finally put together specifications, operations, and operation refine-
ments. Note that bicategory Pres is unsuitable to subsume refinement, since

Algebraic Foundations for Specification Refinements 123

arrows between cospans (the vertical arrows) capture the notion of specifica-
tion strengthening, not refinement. In order to deal with this issue, we define a
new class of arrows between cospans: given operations Op,Op′, with factoriza-
tions [Pre,Post] and [Pre ′,Post ′], respectively, we define the bicategory Spec
of specifications as follows.

Definition 6. The structure of specifications (called Ref) and refinements is
defined as follows:

– The collection of 0-cells is given by the collection of theory presentations.
– For each pair of theories S and S ′, we have the category Ref(S ,S ′) as defined

in Theorem3, where cospans are the 1-cells, and refinements are the 2-cells.
– The composition � : Ref(S ,S) × Ref(S ′,S ′′) → Ref(S ,S ′′) is as defined

above.

The following result shows the coherence of the above structure.

Theorem 4. Ref is a bicategory.

Proof. That Ref(S ,S ′) is a category follows from Theorem4. The key of the
proof is showing that � behaves as a composition. In order to show this, it suffices
to take the factorization of the colimit of the factorizations.

3.1 Heterogeneous Refinements

Let us give a simple example of how the framework described in the section above
can be used to combine notions of refinements coming from different formal
systems. Consider the combination of Z with CSP, this formal system can be
defined in diverse ways, we take the definition of the institution CZP (that
combines CSP with Z) specifications given in [7].

Definition 7. The institution CZP is defined as follows:

– Signatures are tuples (ΣZ , ΣCSP), where ΣZ is a Z signature, and ΣCSP is a
CSP signature, and signature morphisms are pairs of signature morphisms.

– sen is defined pointwise: sen(ΣZ , ΣCSP) = (sen(ΣZ), sen(ΣCSP)),
– Given a signature ΣCZP , a model is this signature is a subset of the set:

{〈a0, . . . , an〉, 〈I0, . . . , In+1, 〉) | 〈a0, . . . , a1〉 ∈ Mod(σZ) ∧ Ij ∈ Mod(ΣZ)},

that is collection of traces together with a set of interpretations in Z repre-
senting the state changes of the system during the given execution.

– The satisfaction relation is defined as follows: M � 〈π, φ〉 iff π1(M) � π and
for every 〈I1, . . . , In+1〉 ∈ π2(M) we have Ii � φ,

In this institution, a theory presentation is defined as follows [7]:

124 P.F. Castro and N. Aguirre

Definition 8. A theory in CZP is a tuple 〈ΣCSP , ΣZ ,S ,Ops, events, π〉, where:
1. ΣCSP = 〈A,N 〉 is a signature in CSP, 2. ΣZ is a signature in Z, 3. S is a
collection of formulas, 4. OPS = {op0 : S ⇒ S ′, . . . opn : S ⇒ S ′} is a collection
of operations over presentation 〈ΣZ ,S 〉. 5. event : A → OPS is a function
mapping events to operations, 6. π is a set of CSP processes.

Now, we can define the notion of refinement of specification in CZP:

Definition 9. Given theories presentations Pi = 〈Σi
CSP , Σi

Z ,S ,Ops i , events i ,
πi〉, for i ∈ {0, 1} a CZP refinement r : P0 → P1 is given by: 1. An arrow
z : 〈Σ0

Z ,S 0〉 → 〈Σ1
Z ,S 1〉 in PresZ, 2. An arrow p : 〈Σ0

CSP , π0〉 → 〈Σ1
CSP , π1〉 in

PresCSP, 3. A mapping i : Ops0 → Ops1, such that, for each o ∈ Ops, there are
arrows r : o → i(o) in RefZ, and the following holds: i ◦ events0 = events1 ◦ p.

Roughly speaking, a refinement in CZP is composed of refinements of processes
and refinements of schemas and operations satisfying certain coherence proper-
ties, basic properties of category theory imply that specifications and refinements
in CZP conform a category.

4 Data Refinement

We have described a category of refinements that allows us to reason about
the process of refining operations and strengthening state descriptions. Another
mechanism for refining specifications is the so-called data refinement [14]. This
form of refinement is achieved by adding details to the datatypes used in the spec-
ifications. In this way, specifications get closer to the data structures available in
programming languages. Categorically, data refinements can be characterized by
the so-called institution representations. Intuitively, a data refinement is a map-
ping between specifications that preserve basic properties. First, let us introduce
the notion of institution representation, as presented in [27].

Definition 10 (Institution representation). Let I = 〈Sign, sen,Mod , {|=Σ

}Σ∈|Sign|〉 and I ′ = 〈Sign′, sen ′,Mod ′, {|=′
Σ}Σ∈|Sign′|〉 be institutions. The

structure 〈γSign , γsen , γMod 〉 : I → I ′ is an institution representation if and
only if:

1. γSign : Sign → Sign′ is a functor,
2. γsen : sen → sen ′ ◦ γSign , is a natural transformation,
3. γMod : Mod ′ ◦ (γSign)op → Mod, is a natural transformation,

Moreover, for any Σ ∈| Sign |, the function γSen
Σ : sen(Σ) → sen ′(γSign(Σ))

and the functor γMod
Σ : Mod ′(γSign(Σ)) → Mod(Σ) preserve the following

satisfaction condition: for any α ∈ sen(Σ) and M′ ∈| Mod(γSign(Σ)) |,
M′ |=γSign (Σ) γSen

Σ (α) iff γMod
Σ (M′) |=Σ α.

An institution representation captures an embedding of a given logic in a richer
logic. Data abstractions correspond to endo institutions representations, that is,

Algebraic Foundations for Specification Refinements 125

they describe how a specification can be mapped into another one within the
same formalism.

First, let us note that given a (endo) representation map such that γMod is
epi can be extended to a endofunctor between the corresponding categories of
theory presentations.

Theorem 5. Let I be an institution, and an institution representation abs =
〈γSign , γSen , γMod 〉 : I → I, with γMod epi, then the mapping abs : Pres → Pres,
defined as follows:

– For any theory presentation 〈Σ,Ax 〉, abs(〈Σ,Ax 〉) = 〈γSign(Σ), γSen
Σ (Ax)〉

– For any theory morphism σ : 〈Σ,Ax 〉 → 〈Σ′,Ax ′〉,
abs(σ) = 〈γSign(σ),Sen(γSign(σ))〉

is a functor.

Proof. The proof is straightforward by resorting to properties of institution rep-
resentations, and the fact that abs is an endofunctor and γMod is epi.

Finally, the concept of data refinement can be formally defined using the
notion of lax functor (homomorphisms between bicategories).

Definition 11. Given specifications C0,C1 (subcategories of the bicategory
Spec) a data refinement is a lax functor a : C0 → C1 composed by:

– A mapping between the 0-cells (theory presentations), defined by an (endo)
representation map 〈γSign , γSen , γMod 〉 such that γMod is epi.

– Mappings between cospans (1-cells): fS ,S ′ : OpC0(S ,S ′) → OpC1(S ,S ′). For
any operation Op we call abs(op) its corresponding operation obtained by
applying the data refinement.

As in any lax functor, mappings fS ,S ′ are subject to some coherence laws, roughly
speaking, identity and composition must be preserved [5].

Intuitively, a data refinement is composed of a mapping between specifications
(that preserves properties) and a mapping between operations. In this case the
natural transformation γMod can be thought of as the usual abstraction function
[14]; the requirement that such mappings be surjective (epi) is standard for
abstraction mappings.

Let us now present an example of data refinement. We use the Z notation to
illustrate the above defined concepts, using an example of memories and mem-
ories with cache based on that described in [17]. A memory is, as we explained
before, simply a mapping from addresses to data. A cache memory is composed
of two memories: one smaller memory playing the role of the cache, and a main
memory. The assumption is that the cache is faster, and thus can be used to speed
up memory writing and reading. In Fig. 1 we have the specification of memories
with cache, and their operations. In that figure, we can observe two specifications
of a memory; the arrows between Memory (resp. Memory ′) and CacheMemory
(resp. Memory ′) are obtained by mapping the function data : N → Data to a

126 P.F. Castro and N. Aguirre

Fig. 1. An example of data refinement

pair of functions mdata : N → Data and cdata : N → Data. The abstraction
function in this case is obtained by the union of the two functions (see [17]).
The mappings between the corresponding operations are represented by the big
arrows between the squares.

5 Related Work and Conclusions

We have proposed an abstract, language independent, mathematical foundation
for refinements. The abstract setting that we presented was developed using well
established abstract notions of logical systems. Indeed, the notions that we used
in this formalisation have been employed to structure concurrent system spec-
ification languages and algebraic specification languages, and other formalisms
[10]; we think that one of the main benefits of this abstract framework is the
possibility of combining different refinement calculi in a simple way by resorting
to categorical constructions.

With respect to related work, various formalizations of refinement calculi
have been previously presented. Most of these are concrete, language or formal-
ism specific (e.g., [2,24,29]). In [2], there is a categorical treatment of refinement,
but is restricted to the use of categories to capture semantic domains. In [4], a
categorical framework of allegories is used to deal with program calculation, in
the functional programming sense (as opposed to our case, where we consider the
notion of state to be inherent to model based specification). In [25], an abstract
treatment of refinement is presented, using the theory of π-institutions. How-
ever, [25] does not deal with the notions of operation or component, in the sense
of component based specification, as we do in this paper. In [21], refinement is
studied in comparison with composition, in the context of action-based systems;
the treatment is categorical, but the approach is different from ours: [21] employs
a category where objects are software components, and different arrows capture

Algebraic Foundations for Specification Refinements 127

superposition and refinement between components. This work concentrates on
action refinement, and does not deal with data refinement.

Unifying Theories of Programming (UTP) [16] provides a common notion
of refinement for different programming paradigms, and it is used for providing
the semantics of heterogeneous specification languages such as Circus [28]. It is
worth noting that UTP mainly uses first-order logic and fixpoint constructions,
whereas the framework described in this paper does not depend on any partic-
ular logic, it is based on the abstract notion of logical theory; thus, it can be
employed to capture the notion of refinement in other settings, examples of this
are specification languages using higher-order logics, infinitary logics, etc.

Finally, it is worth mentioning that there exist a broad literature on struc-
turing algebraic specifications that may be applied to refinement as a particular
case. For instance, [18] describes a categorical formulation of data refinement
using lax transformations, this approach focuses on the semantics of an imper-
ative language, even though the authors propose extensions to cope with more
expressive languages. On the other hand, Institution theory has been used to
provide heterogeneous specification formalisms, for instance, those described in
[8,22], although none of them particularly deal with specification refinements.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Springer, New York (1998)
3. Barr, M., Wells, C.: Category Theory for Computer Science. Centre de Recherches

Mathématiques, Université de Montréal, Montreal (1999)
4. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Upper Saddle River

(1997)
5. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, Encyclo-

pedia of Mathematics and its Applications, vol. 1. Cambridge University Press,
Cambridge (1994)

6. Cavalcanti, A.L.C.: A Refinement calculus for Z. Ph.D. thesis, Oxford University
Computing Laboratory, Oxford, UK (1997)

7. Castro, P., Aguirre, N., Lopez Pombo, C., Maibaum, T.: Categorical foundations
for structured specifications in Z. Form. Asp. Comput. 27(5–6), 831–865 (2015)

8. Diaconescu, R.: Grothendieck institutions. Appl. Categ. Struct. 10(4), 383–402
(2002)

9. Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser Verlag, Basel
(2008)

10. Fiadeiro, J.: Categories for Software Engineering. Springer, Heidelberg (2004)
11. Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D.,

Tarlecki, A. (eds.) ADT 1987. LNCS, vol. 332, pp. 44–72. Springer, Heidelberg
(1988). doi:10.1007/3-540-50325-0 3

12. Fischer, C.: Combining CSP and Z. Technical report, University of Oldenburg
(1996)

13. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. J. ACM 39(1), 95–146 (1992). ACM Press

http://dx.doi.org/10.1007/3-540-50325-0_3

128 P.F. Castro and N. Aguirre

14. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In:
Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196.
Springer, Heidelberg (1986). doi:10.1007/3-540-16442-1 14

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Upper Saddle River (1985)

16. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science. Prentice-Hall, Upper Saddle River (1998)

17. Jackson, D.: Data Abstractions. Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

18. Johnson, M., Naumann, D., Power, J.: Category theoretic models of data refine-
ment. Electr. Notes Theor. Comput. Sci. 225, 21–38 (2009)

19. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice
Hall, New York (1990)

20. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24727-2 20

21. Lopes, A., Fiadeiro, J.: Superposition: composition vs refinement of non-
deterministic, action-based systems. Form. Asp. Comput. 16(1), 5–18 (2004).
Springer

22. Mossakowski, T.: Heterogeneus specification and the heterogeneous tool set. Habil-
itation thesis (2005)

23. Mossakowski, T., Roggenbach, M.: Structured CSP – a process algebra as an insti-
tution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 92–110. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71998-4 6

24. Morgan, C.C.: Programming from Specifications. Prentice-Hall, Upper Saddle
River (1990)

25. Rodrigues, C., Martins, M., Madeira, A., Barbosa, L.: Refinement by interpretation
in π-institutions. In: Proceedings of the 15th International Refinement Workshop
(2011)

26. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, Upper Saddle
River (1992)

27. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl,
O.-J. (eds.) ADT/COMPASS -1995. LNCS, vol. 1130, pp. 478–502. Springer,
Heidelberg (1996). doi:10.1007/3-540-61629-2 59

28. Woodcock, J., Cavalcanti, A.L.C.: The semantics of Circus. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp.
184–203. Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1 10

29. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall, Upper Saddle River (1996)

http://dx.doi.org/10.1007/3-540-16442-1_14
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-71998-4_6
http://dx.doi.org/10.1007/3-540-61629-2_59
http://dx.doi.org/10.1007/3-540-45648-1_10

On Interval Dynamic Logic

Regivan H.N. Santiago1, Benjamı́n Bedregal1, Alexandre Madeira2,
and Manuel A. Martins3(B)

1 Group for Logic, Language, Information, Theory and Applications—LoLITA,
Dep. de Informática e Matemática Aplicada—DIMAp,

Univ. Federal do Rio Grande do Norte—UFRN, Natal, RN, Brazil
2 HASLab, INESC-TEC, Dep. Informática, Univ. Minho, Braga, Portugal

3 CIDMA - Dep. Mathematics, Univ. Aveiro, Aveiro, Portugal
martins@ua.pt

Abstract. The wide number of languages and programming paradigms,
as well as the heterogeneity of ‘programs’ and ‘executions’ require
new generalisations of propositional dynamic logic. The dynamisation
method, introduced in [20], contributed on this direction with a system-
atic parametric way to construct Many-valued Dynamic Logics able to
handle systems where the uncertainty is a prime concern. The instanti-
ation of this method with the �Lukasiewicz arithmetic lattice over [0, 1],
that we derive here, supports a general setting to design and to (fuzzy-)
reason about systems with uncertainty degrees in their transitions.

For the verification of real systems, however, there are no de facto
methods to accommodate exact truth degrees or weights. Instead, the
traditional approach within scientific community is to use different kinds
of approximation techniques.

Following this line, the current paper presents a framework where the
representation values are given by means of intervals. Technically this is
achieved by considering an ‘interval version’ of the Kleene algebra based
on the [0, 1] �Lukasiewicz lattice. We also discuss the ‘intervalisation’ of �L
action lattice (in the lines reported in [28]) and how this class of algebras
behaves as an (interval) semantics of many-valued dynamic logic.

1 Introduction

Dynamic Logics (DL) are extensions of modal logic. They are recognised as the
most adequate logics to reason about computational systems in an assertional
way [12]. In its origin, DL was introduced by Pratt [26] as a modal logic suitable
to represent and reason about Hoare triples. Since then, DL assumed a central
role in the programs verification. Today, not only in response of the explosion
of programming and specification languages, but also in the emerging heteroge-
neous nature that a program can assume, a wide family of DL were defined to
be applied to more general complex behaviors. This ranges from the standard
versions for sequential imperative programmes (e.g. [12]) to other versions tai-
lored for new computing paradigms, either probabilistic systems, following the
original work of Kozen [17], hybrid systems with the differential dynamic logic
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 129–144, 2016.
DOI: 10.1007/978-3-319-49815-7 8

130 R.H.N. Santiago et al.

by Platzer [25] or even quantum versions due to Baltag and Smets [1]. Within
this variety of dynamic logics, in [20], it is studied a method for a systematic
construction of many–valued dynamic logics. The method is parametrised by
an action lattice that supports both the computational paradigm and the truth
space, combining in just one structure the underlying Kleene algebra for the
computations and residuated lattices for the proposition assertions.

On the other hand, logics with many-valued semantics are applied in a variety
of fields like Decision Making, Image Processing, Clustering, etc. One of such
logics, which is a very important logic, is that of �Lukasiewicz [8], which semantics
is based on the residuated lattice �L = 〈[0, 1],→, 0, 1〉—where a → b = min(1, 1−
a+b). In this logic the truth-values may be thought of as arising from normalized
measurements of bounded physical observables, just as Boolean truth-values
arise from yes/no-observables [24, Sect. 1.6]. In this context, it is worth to look
into the instantiation of the ‘dynamisation’ parametrised by the �Lukasiewicz
action lattice �L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉. The space of values [0, 1] models
exact measurements which is far from the real-world. In fact, any measurement
presupposes an uncertainty which is not encoded by the elements of [0, 1]. For
instance, there is no machine representation of irrational numbers. This justifies
the use of approximations to those practices. In order to capture and deal with
such uncertainty the indicated approach is to represent the space [0, 1] by the
space of closed intervals of its elements I([0, 1]) = {[a, b] | [a, b] ⊆ [0, 1]} (cf.
[4]). Representation here means correction in the sense of interval mathematics
[13,28] and can be summarised by the following expressions:

If a ∈ A and b ∈ B, then:

1. a∗ ∈ A∗, a → b ∈ A → B,
2. max(a, b) ∈ max(A,B), min(a, b) ∈ min(A,B) and
3. a � b ∈ A � B

Many interesting questions arise in the interval setting. Since I([0, 1]) extends
[0, 1], what are the action lattices properties which are maintained or destroyed?
Actually, we proved that the obtained interval structure is a Kleene Algebra
(see Theorem 1). This paper’s contribution can be useful on the specification and
analysis of programs involving uncertainty degrees in the execution (transitions).
Moreover, based on the Conway matrix constructions [9], we have a support for
the composition under the Kleene operations (sequential composition, choice and
∗-closure) of transition systems weighed by intervals.

However, the notion of action lattice is not enough to abstract the resulting
structure. Namely, the residuum property does not hold (see Proposition 3).
Although, we still can derive a many-valued dynamic logic from such structure
such that the semantics behaves as expected: the value of a sentence in the
standard case belongs to the respective interval interpretation.
Outline of the paper. The paper is structured as follows: Sect. 2 introduces a
Many-valued Dynamic Logic built on the �L-action lattice, following the ‘dynami-
sation’ method of [20]. Then, Sect. 3 makes an overview on the interval arith-
metics and applies it to the ‘intervalisation’ of �L. It is also proved that this
structure is, in fact, a Kleene algebra. In Sect. 4, we discuss the properties which

On Interval Dynamic Logic 131

are preserved and lost in this procedure. Finally, in Sect. 5 we present some
direction for future work.

2 An �L-Fuzzy Dynamic Logic

Many-valued versions of Modal Logics have been discussed in the literature along
the times; the purposed logics vary in the focus where the many-valueless is
presented: in accessibility relations, in propositions interpretation or in both. The
latter is the case of the works [10,11] of M. Fitting suggest a logic with many-
valueness evaluated in finite Heyting algebras. Later it was deeply investigated
by Bou et al. in [6], who adopted the more generic truth support of finite integral
commutative residuated lattices.

The literature is not so rich at respect of Many-Valued Dynamic Logics.
Hughes et al. introduced in [14] a propositional dynamic logic over the contin-
uum truth (0, 1)-lattice with the standard fuzzy residues. However, from the
perspective of dynamic logic, this formalism is quite restrictive, since it lefts
behind both transitive closure and non deterministic choice. In the context of
rational decision theory, Liau [19] introduced also another different many-valued
dynamic logic w.r.t. the specific continuum truth (0, 1)-lattice.

A systematic method to build Many-valued Dynamic Logics was then intro-
duced in [20,21]. This method is parametrized by an action lattice [16], an alge-
braic structure that provides a generic support for computational space (as a
Kleene algebra) and for truth space (as residuated lattice). The logic introduced
in this section is based on this work and can be captured as an instantiation of
this method.

2.1 The �Lukasiewicz Action Lattice

The role or the �Lukasiewicz residuated lattice, i.e., the algebraic structure

�L = ([0, 1],max,�, 0, 1,→)

with

– x → y = min(1, 1 − x + y) and
– x � y = max(0, y + x − 1),

is taken as the standard fuzzy truth space [30]. Moreover, as stated above, we are
looking for a structure suitable to support a fuzzy computational model. When-
ever the max and the � operators are used to model the choice and composition
of atomic actions, we need to consider a Kleene operator to model the recursive
iteration of programs. These constitute the components of an action lattice [16],
the structure taken in [20,21] as a generic parameter for a many-valued logic
definition. More precisely:

132 R.H.N. Santiago et al.

Definition 1. An action lattice is a tuple

A = (A,+, ; , 0, 1, ∗,→, ·)

where A is a set, 0 and 1 are constants, * is an unary operation in A and
+, ; ,→ and · are binary operations in A satisfying the axioms enumerated in
Fig. 1, where the relation ≤ is induced by +: a ≤ b iff a + b = b.

Fig. 1. Axiomatisation of action lattices (from [16])

Note that, by (19) and (20), the natural order ≤ can be equivalently
defined by a ≤ b iff a · b = a. Observe that by restricting the definition
of A to the structure (A,+, ; , 0, 1, ∗) axiomatised by (1)–(12) we obtain the
definition of a Kleene algebra [9,18]. In the context of this work, this will be
called the underlying Kleene algebra of A. Moreover, by considering structure
(A,+, ; , 0, 1,→, ∗) axiomatized by (1)–(15) we obtain the definition of (left-
residuated) action algebra [27].

For the illustration of the structure with several examples and properties
we suggest [20]. Just as example, we can consider a discrete 3-valued lattice
underling the 3-valued logic:

Example 1 (3 - linear three-value lattice). The explicit introduction of a deno-
tation for unknown gives rise to the the following three elements linear lattice

3 = ({
, u,⊥},∨,∧,⊥,
, ∗,→,∧)

where

∨ ⊥ u

⊥ ⊥ u

u u u

∧ ⊥ u

⊥ ⊥ ⊥ ⊥
u ⊥ u u

 ⊥ u

→ ⊥ u

⊥

u ⊥

 ⊥ u

∗
⊥

u

On Interval Dynamic Logic 133

It is easy to observe that, as a consequence of axiom (10), whenever
 = 1, we
have that x∗ = 1, for all x. Hence we have all the ingredients to introduced the
�Lukasiewicz arithmetic lattice, a structure that plays a main role in the theory
developed in the sequel:

Definition 2 (�L - the �Lukasiewicz arithmetic lattice). The �Lukasiewicz
arithmetic lattice is the structure

�L = ([0, 1],max,�, 0, 1, ∗, → , min)

where

– x → y = min(1, 1 − x + y),
– x � y = max(0, y + x − 1) and
– x∗ = 1.

2.2 The �L-Fuzzy Dynamic Logic

Signatures of �LDL are exactly the same of the ones of Propositional Dynamic
Logic: signatures are pairs (Π,Prop) of disjoint sets of atomic programs Π and
of propositions symbols Prop.

Formulas of �LDL consists in the positive fragment of Propositional Dynamic
Logic: the set of Π -programs, denoted by Prg(Π), consists of all expressions
generated by

π � π0 |π;π |π + π |π∗

for π0 ∈ Π. Given a signature (Π,Prop), we define the �LDL-formulæ for
(Π,Prop), denoted by Fm�LDL(Π,Prop), as the ones generated by the gram-
mar

ρ �
 |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ → ρ | ρ ↔ ρ | 〈π〉ρ | [π]ρ

for p ∈ Prop and π ∈ Prg(Π).
Semantics. As expectable, the interpretation of atomic programs are Kripke
structures with weighted transitions. For instance, atomic programs Π = {π, π′}
can be realized by the structures

Aπ : �������	s1

√
2

3
��
�������	s2

0.7

��

Aπ′ : �������	s1

√
2

2
��
�������	s2

0.5

��

√
3

2

�� (21)

where that tags mention the uncertainty level of each states transitions. These
weighted transition systems are usually represented by the underlying adjacency
matrices

Aπ =
[

0
√
2
3

0 0.7

]

Aπ′ =

[

0
√
2
2√

3
2 0.5

]

134 R.H.N. Santiago et al.

Moreover, we need a mathematical framework to interpret composed pro-
grams, i.e., regular expressions of atomic programs. In other words, we need to
consider a computational space for �LDL where the programs are interpreted.
Based on the classic matricial constructions over Kleene algebras (see [9,18]) we
consider the structure

Mn(�L) = (Mn(�L),max,�, 0, 1, ∗) (22)

as follows:

1. Mn(�L) is the space of (n × n)-matrices over �L
2. for any A,B ∈ Mn(�L), define M = max(A,B) by Mi j = max(Ai j , Bi j),

i, j ≤ n.
3. for any A,B ∈ Mn(�L), define M = A � B by taking

max
(

Ai 1 � B1 j ,max(Ai 2 � B2 j , (· · · ,max(Ai n � Bn j) · · ·))

4. the matricial 1 and 0 are the (n×n)-matrices defined by 1i,j =

{

1 if i = j

0 otherwise
and 0i,j = 0, for any i, j ≤ n.

5. for any M = [a] ∈ M1(A), M∗ = [a∗];

for any M =
[

A B
C D

]

∈ Mn(A), n > 1, where A and D are square matrices,

define

M* =
[

F ∗ F ∗ � (B � D∗)
(D∗ � C) � F ∗ max(D∗, (D∗ � (C � (F ∗ � (B � D∗)))))

]

where F = max(A,B � (D∗ � C)). Note that this construction is recursively
defined from the base case (where n = 2) where the operations of the base
action lattice A are used.

A classic result (e.g. [9,18]) establishes that Kleene algebras are closed under
formation of matrices. This justifies the adoption of Mn(�L) as a well behaved
computational space for �LDL.

Theorem 1. The structure Mn(�L) = (Mn(�L),max,�, 0, 1, ∗) defined above is a
Kleene algebra.

�LDL-models for a set of propositions Prop and programs Π, denoted by
Mod�LDL(Π,Prop), consists of tuples

A = (W,V, (Aπ)π∈Π)

where W is a finite set (of states), V : Prop × W → [0, 1] is a function, and
Aπ ∈ Mn(�L), with n standing for the cardinality of W .

The interpretation of programs in these models belongs to the space of the
matrices over the underlying Kleene algebra of �L. Each matrix represents the

On Interval Dynamic Logic 135

effect of a program executing from any point of the model. Formally, the interpre-
tation of a program π ∈ Prg(Π) in a model A ∈ Mod�LDL(Π,Prop) is recursively
defined, from the set of atomic programs (Aπ)π∈Π , as follows:

Aπ;π′ = Aπ � Aπ′ ,Aπ+π′ = max(Aπ,Aπ′) and Aπ∗ = A∗
π.

together with the constants interpretations A1 = 1 and A0 = 0.
Returning to our running example, we are able to calculate the interpretation

of the program Aπ+π′ by making

Aπ+π′ = max(Aπ,Aπ′) = max

(

[

0
√
2
3

0 0.7

]

,

[

0
√
2
2√

3
2 0.5

])

=

[

0
√
2
2√

3
2 0.7

]

(23)

that represents the following weighted transition system:

Aπ+π′ : �������	s1

√
2

2
��
�������	s2

0.7

��

√
3

2

��

By considering the interpretation of the propositions Prop = {p, q}
as V (p, s1) = 0.1, V (q, s1) = 0.5, V (p, s2) = π

4 and V (q, s2) = 0.75
we have a compete description of a concrete ({π, π′}, {p, q})-model A =
({s1, s2}, V, (Ap)p∈{π,π′}).

Satisfaction. As mentioned above, the carrier of �L corresponds to the space of
truth degrees for �LDL. Hence, the graded satisfaction relation for a model
A ∈ Mod�LDL(Π,Prop), consists of a function

|= : W × Fm�LDL(Π,Prop) → �L

recursively defined as follows:

– (w |=
) = 1
– (w |= ⊥) = 0
– (w |= p) = V (p,w), for any p ∈ Prop
– (w |= ρ ∧ ρ′) = min

{

(w |= ρ), (w |= ρ′)
}

– (w |= ρ ∨ ρ′) = max
{

(w |= ρ), (w |= ρ′)
}

– (w |= ρ → ρ′) = (w |= ρ) → (w |= ρ′)
– (w |= 〈π〉ρ) = max

{Aπ(w,w′) � (w′ |= ρ)
∣

∣w′ ∈ W
}

– (w |= [π]ρ) = min
{Aπ(w,w′) → (w′ |= ρ)|w′ ∈ W

}

In order to illustrate the definition, the calculation of the truth degree of the
formula 〈π + π′〉(p → q)) in the introduced model A can be achieved as follows:

136 R.H.N. Santiago et al.

(s1 |= 〈π + π′〉(p → q)) = max(0 � (0.1 → 0.5),
√
2
2 � (0.75 → π

4))
=

√
2
2 � (0.75 → π

4)
=

√
2
2 � min(1, 1 − 0.75 + π

4)
=

√
2
2

Therefore, we conclude with a degree of certainty
√
2
2 that, after executing π+π′

from the state s1, we have p → q.

3 �L-Interval Algebra

As stated before, the space of values [0, 1] models exact measurements/truth
values which is far from the real-world. In fact, any measurement presupposes
an uncertainty which is not encoded by the elements of [0, 1]. Another situa-
tion arises whenever an expert is unable to supply an exact membership of an
object in a fuzzy set, in this case he can provide a closed subinterval of [0, 1] as an
expression of his inability to supply an exact answer [7]. Such closed subintervals
can also be used as the resulting abstraction of the exact values provided by var-
ious experts about the same membership. Therefore, assuming the �Lukasiewcz
arithmetic lattice �L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉 as a natural space of mea-
surements/truth values [24, Sect. 1.6] it is reasonable to investigate its interval
counterpart. But what would be such interval counterpart? Before we proceed
to answer this question, let’s expose a little about the interval counterpart of
real numbers algebra: 〈R; +,−, /,×, 1, 0〉.

In the 50’s Ramon Moore [22,23] and Teruo Sunaga [29] proposed the so
called interval arithmetics. Interval arithmetics is a set of operations on the
set of all closed intervals [a, b] ⊆ R. They defined the arithmetic in the following
way:

1. [a, b] + [c, d] = [a + c, b + d]
2. −[c, d] = [−d,−c]
3. [a, b] · [c, d] = [min P,max P]—where P = {a · c, a · d, b · c, b · d}
4. [a, b]−1 = [1/b, 1/a]; provided that 0 /∈ [a, b]
5. [a, b] − [c, d] = [a − d, b − c]
6. [a, b]/[c, d] = [a, b] · ([c, d]−1)

Observe what happens with each operation:

1. If x ∈ [a, b] and y ∈ [c, d], then (x + y) ∈ [a, b] + [c, d],
2. If x ∈ [a, b] and y ∈ [c, d], then (x · y) ∈ [a, b] · [c, d],
3. If x ∈ [a, b] and y ∈ [c, d], then (x/y) ∈ [a, b]/[c, d], and
4. If x ∈ [a, b], then (−x) ∈ −[a, b].

The arithmetic on intervals reveals two desired properties: (a) Correctness
and (b) Optimality.

On Interval Dynamic Logic 137

“Correctness. . . . when an expression is evaluated using intervals, it
yields an interval containing all results of pointwise evaluations based on
point values that are elements of the argument intervals.

. . .
Optimality. By optimality, we mean that the computed floating-point

interval is not wider than necessary.”
Hickey et al. [13, p. 1040]

The term Correctness connects n-ary interval operations F with n-ary real
operations f and means that if F is correct with respect to f , then we can enfold
any exact value r ∈ R in a closed interval [a, b], such that r ∈ [a, b], and then
simply operate with such “envelopes” by using F , because the resulting interval
F ([a, b]) will enfold the desired result f(r). Formally a function F is correct with
respect to a real function f whenever:

r ∈ [a, b] ⇒ f(r) ∈ F ([a, b]) (24)

In practice, exact values are replaced by intervals which are operated with
correct interval functions. Intervals enfold the exact values and provide a measure
of impreciseness through its width.

Santiago et al. [2,28] investigated the notion of Correctness. Instead of cor-
rectness the authors used the term representation, since interval expressions
could be faced not just as machine representations of an exact calculation, but
also as an instance of a “mathematical representation of real numbers”1. Beyond
correctness these interval operations are also optimum; namely the resulting
intervals contain only the values of real operations. We could say that the pro-
posed algebra of intervals is the best interval representation for the arith-
metic of real numbers.

One side-effect of this process of intervalization is the loss of algebraic prop-
erties. The resulting structure is not an Euclidean field; for example X − X is
not always equal to [0, 0]. In this paper we will also lose some properties of �L.

3.1 On the Interval �Lukasiewicz Lattice

The �Lukasiewicz arithmetic lattice �L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉 contains
non-finitely representable elements; e.g. irrational numbers. In a similar way we
can think of an interval algebra for �L. A piece of such algebra was introduced
by Bedregal and Santiago in [4]. There, the authors proposed a correct interval
implication for “→”. In what follows we propose the interval counterpart for
�L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉 in such a way that the resulting operations
are correct and optimal, i.e. they are best interval representations.

Definition 3. Consider the real unit interval U = [0, 1] ⊆ R and the set U =
{[a, b] | 0 ≤ a ≤ b ≤ 1} of subintervals of U . For any interval X ∈ U, X is the

1 This idea is confirmed in some Representation Theorems of Euclidean continuous
functions.

138 R.H.N. Santiago et al.

minimum of X and X the maximum of X; i.e. X = [X,X]. Given two intervals
X,Y ∈ U, let be the following partial orders on U:

(i) The product or Kulisch-Miranker order :

X ≤ Y ⇔ X ≤ Y ∧ X ≤ Y ; (25)

(ii) The set inclusion order: for all X,Y ∈ U,

X ⊆ Y ⇔ Y ≤ X ∧ X ≤ Y . (26)

Definition 4 [28]. An interval X ∈ U is a representation of any real number
α ∈ X. Considering two interval representations X and Y for a real number α, X
is said to be an interval representation of α better than Y , if X ⊆ Y . This notion
can also be naturally extended for n-tuples of intervals. A function F : Un −→ U

is said to be an interval representation of a real function f : Un −→ U if, for
each X ∈ U

n and x ∈ X, f(x) ∈ F (X). F is also said to be correct with respect
to f . An interval function F : Un −→ U is said to be an interval representation
of a real function f : Un −→ U better than an interval function G : Un −→ U,
if F (X) ⊆ G(X), for each X ∈ U

n. The best interval representation of a
real function f : Un −→ U is the interval function ̂f : Un −→ U, defined by

̂f(X) = [inf{f(x) | x ∈ X}, sup{f(x) | x ∈ X}]. (27)

In what follows we show the best interval representation for the �Lukasiewicz
arithmetic lattice �L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉. Almost all of the resulting
interval representations comes from previous works. Before we go further it is
noteworthy that the following resulting structure is the best possible
interval structure to represent the �Lukasiewicz arithmetic lattice.

Definition 5. Given X,Y ∈ U.

1. Max(X,Y) = [max(X,Y),max(X,Y)]
2. Min(X,Y) = [min(X,Y),min(X,Y)]
3. X

⊙

Y = [(X � Y), (X � Y)] = [max(0,X + Y − 1),max(0,X + Y − 1)]
4. X⇒>Y = [(X → Y), (X → Y)] = [min(1, 1 − X + Y),min(1, 1 − X + Y)]
5. X� = [X∗,X

∗
] = [1, 1].

Proposition 1. All of these interval operations are the best interval represen-
tations of the operations in �L; i.e. Max = m̂ax, Min = ̂min,

⊙

= ̂�, ⇒> = →̂,
and � = ∗̂.
Proof. The operations min and � are T-norms on [0, 1] and the interval rep-
resentations of T-norms, according to [5, Theorem 4.3], is given by ̂T (X,Y) =
[T (X,Y), T (X,Y)]. The max operation is a T-conorm on [0, 1] and the inter-
val representations of T-conorms, according to [3, Theorem 5.2], is given by
̂S(X,Y) = [S(X,Y), S(X,Y)]. According to [4, Proposition 4.4] ⇒> = →̂.
Finally, it is trivial that � = ∗̂.

On Interval Dynamic Logic 139

Proposition 2. X ≤ Y iff Max(X,Y) = Y .

Proof. X ≤ Y iff X ≤ Y and X ≤ Y iff max(X,Y) = Y and max(X,Y) = Y iff
Max(X,Y) = Y .

The structure 〈U,Max,Min, [0, 0], [1, 1]〉 is a bounded lattice.

Theorem 2. The structure K(̂�L) = 〈U, m̂ax, ̂�, [0, 0], [1, 1], ∗̂〉 is a Kleene alge-
bra.

Proof. m̂ax trivially satisfies Eqs. (1)–(4). According to [5, p. 3224]
⊙

satis-
fies Eqs. (5)–(6). Equation (7) requires the result that every T-norm distributes
over the maximum [15, Proposition 2.22], the rest of the proof is an exercise.
Equation (8) comes from Eq. (7) and the commutativity of ̂�. Equation (9) is
also easily proved. Since for every A ∈ U, A∗ = [1, 1], and [1, 1] is the top ele-
ment in U, then inequation (10) is trivially satisfied. Again, since A∗ = [1, 1],
then A∗

̂�x = x and implication (11) is satisfied. A similar argument applies to
implication (12).

Since K(̂�L) is a Kleene algebra, we can canonically construct, as in (22), the
space of matrices Mn(K(̂�L)) (which is also a Kleene algebra).

Observation: According to Proposition 1 every operation of the
Kleene algebra K(̂�L) is the best interval representation of the respective
operation of K(�L). Therefore, we can say that K(̂�L) and Mn(K(̂�L)) are,
respectively, the best interval representation of the Kleene alge-
bras �L and Mn(K(�L)).

Notation: In order to simplify the notation we use the
same symbols for the operations of �Lukasiewicz Kleene algebra:
�L = 〈[0, 1],max,�, 0, 1, ∗〉, its interval representation K(̂�L) =
(U,max,�, 0, 1, ∗) and the corresponding spaces of matrices: Mn(K(�L)) =
(Mn(�L),max,�, 0, 1, ∗) and Mn(K(̂�L)) = (Mn(K(̂�L)),max,�, 0, 1, ∗).

The next automata are the interval representation of (21)

Aπ : �������	s1

[0.4,0.5]
��
�������	s2

[0.7,0.7]

��

Aπ′ : �������	s1

[0.6,0.8]
��
�������	s2

[0.5,0.5]

��

[0.7,0.9]

��

Their interval matrices are:

Aπ =
[

(0, 0) (0.4, 0.5)
(0, 0) (0.7, 0.7)

]

Aπ′ =
[

(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.5, 0.5)

]

The interpretation of the program Aπ+π′ is

max
([

(0, 0) (0.4, 0.5)
(0, 0) (0.7, 0.7)

]

,

[

(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.5, 0.7)

])

=
[

(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.7, 0.7)

]

140 R.H.N. Santiago et al.

which represents the following weighted transition system:

Aπ+π′ : �������	s1

[0.6,0.8]
��
�������	s2

[0.7,0.7]

��

[0.7,0.9]

��

4 The Price

Before we proceed, it must be clear why do we use intervals. Intervals are used
in a variety of situations when it is not possible to use exact values. If the exact
values can be used, then it does not make sense to use intervals.

Although it is possible to use a near exact value to represent a desired point;
e.g. 3.14 would be used to represent π, the information about impreciseness is
not codified by such exact value. Intervals provide such kind of information and
the quality of such representation can be measured by the width of the interval:
the tight is the interval the better is the representation.

Sometimes intervals are the only representation available to work with; e.g.
(1) some magnetic resonance machines provide intervals for non-exact values
(2) some applications in Fuzzy Systems provide intervals as inexact membership
degree or as the abstraction of several membership degrees provided by different
experts.

In any case, intervals are the entities provided instead of exact values. To deal
with intervals a price must be paid; namely: not all properties of the space
containing the exact values are preserved in the interval space. For example, in
the case of real numbers, the respective interval representation does not satisfy
the property: x − x = 0.

As we will see the same happens with the interval representation of the action
lattice �L. Some properties stated in Fig. 1 are satisfied by �L, but are not by its
interval representation ̂�L. Since these properties are connected with Dynamic
Logics, there will be impacts of interval representation on the logical axioms.
Some of these impacts are discussed below:

Observe that in the �Lukasiewicz action lattice, �L, the equation “x → x = 1”
is satisfied while this is not true in its interval representation: ̂�L. But this is
a crucial feature of ̂�L ! Take the following example: [0.5, 0.6] → [0.5, 0.6] =
[0.6 → 0.5, 0.5 → 0.6] = [0.9, 1] �= [1, 1]. Although 1 ∈ [0.9, 1], what is happening
here? Suppose that the interval [0.5, 0.6] is the tightest machine interval which
represents the non-finitely representable exact values in �L: π

6 = 0.523598775 . . .

and
π
6 +0.6

2 = 0.5617993875 Then, in order to calculate the implications:
π
6 → π

6 ,
π
6 +0.6

2 → π
6 +0.6

2 , π
6 → π

6 +0.6

2 and
π
6 +0.6

2 → π
6 , the only way is to

calculate: [0.5, 0.6] →̂ [0.5, 0.6]. In this case, π
6 → π

6 = 1,
π
6 +0.6

2 → π
6 +0.6

2 = 1,
π
6 → π

6 +0.6

2 = 1,
π
6 +0.6

2 → π
6 = 0.9617993875 . . ., and [0.5, 0.6] →̂ [0.5, 0.6] =

[0.6 → 0.5, 0.5 → 0.6] = [0.9, 1]. Therefore, all the previous implications are
contained in the implication [0.5, 0.6] →̂ [0.5, 0.6]. In other words, unless an

On Interval Dynamic Logic 141

interval X has the form [a, a], it does not make sense to impose X → X =
[1, 1], since the same interval can be used to represent two different exact values.
Therefore, the known logical laws of Dynamic Logic must be reviewed.

The price to be paid for using intervals does not stop here, in what follows we
show that the structure ̂�L = 〈U,max,�, 0, 1, ∗, →̂ , min〉 is not an action lattice.
This means that to propose a Dynamic Logic which deals with interval values
some properties of action lattices must be generalized.

Proposition 3. 1. Equation (13) a;x ≤ b ⇔ x ≤ a → b (Left-residuation) fails.
2. Equation (15) (x → x)∗ = x → x fails, instead x → x ≤ (x → x)∗.

Proof. 1. Make x = [1, 1], then a � x ≤ b ⇔ x ≤ a → b becomes a ≤ b ⇔ a →
b = [1, 1] which is not true, since x ≤ x, but, as we saw, x → x is not always
equal to [1, 1]; make x = [0.5, 0.6].

2. Make x = [0.5, 0.6]. By definition (x → x)∗ = [1, 1], but x → x = [0.9, 1].
More generally, since x → x = x → x ≤ 1 and x → x = 1, then x → x ≤
[1, 1] = (x → x)∗.

Proposition 4. Equations (16)–(20) are satisfied.

Proof. It is well-known that the structure 〈U,max,min〉 is a lattice.

However, it is possible to observe that some fragment of the logic generated
by action lattices remains untouched and behaves as expected. For example, by
considering the interpretation of the propositions Prop = {p, q} as V (p, s1) =
[0.1, 0.1], V (q, s1) = [0.5, 0.5], V (p, s2) = [0.7, 0.8] and V (q, s2) = [0.75, 0.75] we
have:
(s1 |= 〈π + π′〉(p → q))

= max([0, 0] � ([0.1, 0.1] → [0.5, 0.5]), [0.6, 0.8] � ([0.5, 0.5] → [0.7, 0.8]))
= max([0, 0], [0.6, 0.8] � [0.5 → 0.7, 0.5 → 0.8])
= [0.6, 0.8] � [1, 1]
= [0.6, 0.8] �

√
2
2 .

5 Conclusion and Further Work

Dynamic logics are very important to specify and verify properties on programs’
executions. Nowadays, Dynamic logics refers to a large family of logics that have
been intensively used in the verification of computational systems, that have
been able to evolve and adapt to new, and complex validation challenges.

In [20,21] there was introduced a generic method to build propositional many-
valued dynamic logics, parametrized by an action lattice. Moreover, it is shown
that, from beyond of these generic constructions, only the ones parametrized by
action lattices behave well, in the sense of the respect of the classic axiomatic of
propositional dynamic logic [12].

We start this work by looking in a such special case, namely the �Lukasiewski
lattice over [0, 1] (it is well known that it can be expanded to an Action lat-
tice). This structure support a suitable framework to design and reason about

142 R.H.N. Santiago et al.

systems with uncertainty degrees in transitions. However, for implementation
purposes or in the verification of real systems, it is not possible to deal with
exact degrees (for instance irrational numbers), being hence mandatory the use
approximations. In this view we proposed in Sect. 3.1 an interval version of the
�Lukasiewski lattice. Also here, it can be defined a closure operations in order to
obtain a Kleene Algebra and then the Conway’s matricial constructions [9] can
be applied. Although, not all works perfectly. Actually, the interval �Lukasiewski
Kleene algebra is not an action lattice (see Proposition 3).

This is the price to have intervals. In Sect. 4 we discuss some important
questions related to this situation. In particular, we explain some non intuitive
phenomena: for instance the implication [a, b] → [a, b] is not necessarily the top
element of the lattice.

This work paves the way for an interesting research agenda. The next step
will the generalization of the intervalising process to an arbitrary Kleene algebra
and to find the axiomatisation for the abstract interval pseudo-action algebras.
We have already worked on this subject and some weakening of the residuum
adjunction must be considered. Another important question, that we shortly
consider at the end of Sect. 4, is how these structures constitute a sound (interval)
semantics for Dynamic Logic. It can be proved that this semantics is correct
in the sense that the value of a sentence in the standard case belongs to the
respective interval interpretation.

Acknowledgements. R. Santiago and B. Bedregal are supported by Marie Curie
project PIRSES-GA-2012-318986 GetFun funded by EU-FP7 and by the Brazilian
National Council for Scientific and Technological Development (CNPq, Portuguese:
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico) under the Projects
304597/2015-5 and 307681/2012-2. This work is also financed by the ERDF – Euro-
pean Regional Development Fund through the Operational Programme for Competi-
tiveness and Internationalisation - COMPETE 2020 and by National Funds through
the Portuguese funding agency, FCT-Fundação para a Ciência e a Tecnologia within
project POCI-01-0145-FEDER- 016692. A. Madeira and M. Martins are also supported
by the FCT BPD individual grant SFRH/BPD/103004/2014 and UID/MAT/04106/2013

at CIDMA, respectively.

References

1. Baltag, A., Smets, S.: Quantum logic as a dynamic logic. Synthese 179(2), 285–306
(2011)

2. Bedregal, B., Santiago, R.: Some continuity notions for interval functions and rep-
resentation. Comput. Appl. Math. 32(3), 435–446 (2013)

3. Bedregal, B.C., Takahashi, A.: Interval valued versions of t-conorms, fuzzy nega-
tions and fuzzy implications. In: 2006 IEEE International Conference on Fuzzy
Systems , pp. 1981–1987 (2006)

4. Bedregal, B.R.C., Santiago, R.H.N.: Interval representations, �Lukasiewicz implica-
tors and Smets-Magrez axioms. Inf. Sci. 221, 192–200 (2013)

5. Bedregal, B.R.C., Takahashi, A.: The best interval representations of t-norms and
automorphisms. Fuzzy Sets Syst. 157(24), 3220–3230 (2006)

On Interval Dynamic Logic 143

6. Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.O.: On the minimum many-valued
modal logic over a finite residuated lattice. J. Log. Comput. 21(5), 739–790 (2011)

7. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedregal, B.,
Montero, J., Hagras, H., Herrera, F., Baets, B.D.: A historical account of types of
fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24(1), 179–194 (2016)

8. Cignoli, R., d’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued
Reasoning. Trends in Logic. Springer, Netherlands (1999)

9. Conway, J.H.: Regular Algebra and Finite Machines. Printed in GB by William
Clowes & Sons Ltd, London (1971)

10. Fitting, M.: Many-valued modal logics. Fundam. Inform. 15(3–4), 235–254 (1991)
11. Fitting, M.: Many-valued model logics II. Fundam. Inform. 17(1–2), 55–73 (1992)
12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
13. Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: from principles to imple-

mentation. J. ACM 48(5), 1038–1068 (2001)
14. Hughes, J., Esterline, A.C., Kimiaghalam, B.: Means-end relations and a measure

of efficacy. J. Log. Lang. Inf. 15(1–2), 83–108 (2006)
15. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer, Berlin

(2000)
16. Kozen, D.: On action algebras (manuscript). In: Logic and Flow of Information,

Amsterdam (1991)
17. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Inf. Comput. 110(2), 366–390 (1994)
19. Liau, C.-J.: Many-valued dynamic logic for qualitative decision theory. In: Zhong,

N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp.
294–303. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48061-7 36

20. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-
valued dynamic logics. J. Log. Algebraic Methods Program. 85(5), 1011–1037
(2016)

21. Madeira, A., Neves, R., Martins, M.A., Barbosa, L.S.: A dynamic logic for every
season. In: Braga, C., Mart́ı-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp.
130–145. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15075-8 9

22. Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing.
Ph.D. dissertation, Department of Mathematics, Stanford University, Stanford,
CA, USA, November 1962. (Also published as Applied Mathematics and Statistics
Laboratories Technical report No. 25)

23. Moore, R.E., Yang, C.T.: Interval analysis I. Technical document LMSD-285875,
Lockheed Missiles and Space Division, Sunnyvale, CA, USA (1959)

24. Mundici, D.: Advanced �Lukasiewicz Calculus and MV-Algebras. Trends in Logic.
Springer, Netherlands (2011)

25. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, Berlin (2010)

26. Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science, Houston, Texas, USA, 25–27 October
1976, pp. 109–121. IEEE Computer Society (1976)

27. Pratt, V.: Action logic and pure induction. In: Eijck, J. (ed.) JELIA 1990. LNCS,
vol. 478, pp. 97–120. Springer, Heidelberg (1991). doi:10.1007/BFb0018436

28. Santiago, R.H.N., Bedregal, B.R.C., Acióly, B.M.: Formal aspects of correctness
and optimality of interval computations. Formal Aspects Comput. 18(2), 231–243
(2006)

http://dx.doi.org/10.1007/978-3-540-48061-7_36
http://dx.doi.org/10.1007/978-3-319-15075-8_9
http://dx.doi.org/10.1007/BFb0018436

144 R.H.N. Santiago et al.

29. Sunaga, T.: Theory of an interval algebra and its application to numerical analysis
[reprint of Res. Assoc. Appl. Geom. Mem. 2, 29–46 (1958)]. Japan J. Ind. Appl.
Math. 26(2–3), 125–143 (2009)

30. Xu, Y., Ruan, D., Qin, K., Liu, J.: Lattice-Valued Logic: An Alternative Approach
to Treat Fuzziness and Incomparability. Studies in Fuzziness and Soft Computing.
Springer, Berlin (2012)

An Evolutionary Approach to Translate
Operational Specifications into Declarative

Specifications

Facundo Molina1(B), César Cornejo1, Renzo Degiovanni1,3, Germán Regis1,
Pablo F. Castro1,3, Nazareno Aguirre1,3, and Marcelo F. Frias2,3

1 Department of Computer Science, FCEFQyN,
National University of Ŕıo Cuarto, Ŕıo Cuarto, Argentina

{fmolina,ccornejo,rdegiovanni,gregis,pcastro,naguirre}@dc.exa.unrc.edu.ar
2 Department of Software Engineering,

Buenos Aires Institute of Technology (ITBA), Buenos Aires, Argentina
mfrias@itba.edu.ar

3 National Council for Scientific and Technical Research (CONICET),
Buenos Aires, Argentina

Abstract. Various tools for program analysis, including run-time asser-
tion checkers and static analyzers such as verification and test generation
tools, require formal specifications of the programs being analyzed. More-
over, many of these tools and techniques require such specifications to be
written in a particular style, or follow certain patterns, in order to obtain
an acceptable performance from the corresponding analyses. Thus, hav-
ing a formal specification sometimes is not enough for using a particular
technique, since such specification may not be provided in the right for-
malism. In this paper, we deal with this problem in the increasingly
common case of having an operational specification, while for analysis
reasons requiring a declarative specification. We propose an evolutionary
approach to translate an operational specification written in a sequen-
tial programming language, into a declarative specification, in relational
logic. We perform experiments on a benchmark of data structure imple-
mentations, that show that translating representation invariants using
our approach and verifying invariant preservation using the resulting
specifications outperforms verification with specifications obtained using
an existing semantics-preserving translation. Also, our evolutionary com-
putation translation achieves very good precision in this context.

1 Introduction

Many software validation and verification activities, both formal and informal,
require a description of the software under analysis, since many analyses typically
consist in checking compliance of the software against some prescribed intended
behavior [12]. In the last few decades, formal specifications have gained an impor-
tant notoriety in such contexts, mainly due to their unambiguous interpretation
and the increasing availability of technologies for their automated analysis, which
are making them part of effective software analysis approaches.
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 145–160, 2016.
DOI: 10.1007/978-3-319-49815-7 9

146 F. Molina et al.

Among the broad variety of formal notations, some styles or specification
paradigms can be identified. For instance, in the context of program specifi-
cation via pre- and postconditions, representation invariants, and the like, two
distinguishing styles are the operational, and the declarative. In the operational
style, specifications are captured through code, e.g., via a routine that checks
whether the internal representation of a given object is consistent [19]. On the
other hand, the declarative style often uses a logical formalism for expressing
the same kind of property. A well-established approach is based on using a first-
order logic complemented with closure operators, as put forward by notations
such as JML [3] and Alloy’s relational logic [14].

A problem that arises with the proliferation of notations and, more impor-
tantly, with the above described different specification styles, is that different
tools adopt different styles, and provide optimizations and enhancements that
only become available for such particular notations or styles. For instance, the
test generation tool Korat [2] requires a specification to be provided operationally
(as a repOK routine) to automatically produce test inputs; it implements “per-
fect” symmetry-breaking and search pruning techniques that are particularly tied
to such representation, and thus makes it very difficult (and ineffective) to gen-
erate tests for, say, an object-oriented program equipped with a JML contract.
On the other hand, tools for verification based on declarative notations, e.g.,
TACO [10], can exploit mechanisms such as tight bounds [9], whose computa-
tion are also strongly tied to declarative notations, and cannot straightforwardly
(nor effectively) be computed from operational specifications. This situation is
combined with the increasing need for cross-usage of automated analysis tools. A
sample scenario arises with current techniques for fault localization and program
repair, that require tests for their application; combining such tools with auto-
mated test generation is an obvious approach that combines automated analysis
technologies. This problem leads to a clear demand to be able to translate spec-
ifications across different styles and notations.

Notice that even when semantics-preserving translations are available
between different formalisms, in many cases these produce translated specifi-
cations that, although “correct” in the sense that they preserve the semantics of
the original specifications, are ineffective for the analysis mechanisms of the tar-
get notations, due to the violation of (many times implicit) patterns for optimal
exploitation of analysis. For instance, Korat requires repOK methods to “fail as
soon as possible”, in the sense that these methods should try to decide when
a structure does not satisfy the predicate visiting the least possible elements of
the structure, for test generation to be effective. Similarly, the efficiency of tools
like Alloy are in many cases very dependent on how specifications are written;
analyzing specifications with large numbers of (existential) quantification often
fails during preprocessing (e.g., in translation to CNF to use SAT-based verifica-
tion), while expressing equivalent specifications through simple transformations
(e.g., skolemizations) can have a drastic impact in analysis efficiency. Thus, in
some cases the existence of semantics-preserving syntax-guided translations are
still unsatisfactory.

An Evolutionary Approach to Translate Operational Specifications 147

In this paper, we deal with a particular instance of the above described situa-
tion, namely the translation from an operational specification of a representation
invariant, written in an imperative sequential programming language, to a declar-
ative invariant specification, in relational logic. While there exists a semantics
preserving translation from one to the other, we show that the resulting specifica-
tions are inadequate for analysis. We then propose an evolutionary approach to
produce relational logic specifications from imperative ones, based on a genetic
algorithm especially designed for this purpose. We evaluate our approach on a
benchmark of data structure implementations, translating their corresponding
representation invariants for verification. As our experiments show, translating
specifications using our approach and verifying invariant preservation using the
resulting specifications outperforms invariant preservation verification directly
with specifications obtained using the semantics-preserving translation, and our
evolutionary computation translation achieves very good precision in this con-
text.

The remainder of the paper is organized as follows. In Sect. 2, we motivate
our approach by presenting an illustrating example, that in particular shows the
need to translate across different specification styles. In Sect. 3 we present our
evolutionary algorithm for learning declarative specifications from operational
ones, including detailed descriptions of how candidate specifications are captured
as chromosomes, and how these are evaluated during the genetic algorithm’s
search. In Sect. 4 we experimentally evaluate our approach, on a benchmark
composed of various data structure implementations. Section 5 compares our
technique with related work, and finally, in Sect. 6, we present our conclusions
and lines for further work.

2 A Motivating Example

In order to motivate our approach, let us consider an analysis scenario involving a
simple data structure, singly linked lists. This data structure is captured through
classes SinglyLinkedList and Node, as defined in Fig. 1. Assume, for instance,
that we would need to verify that a routine manipulating such data structure,
e.g., an insertion routine, preserves the representation invariant of lists, i.e.,
inserting an element in a valid list retrieves also a valid list. In order to proceed
with this verification, we then need a specification of what it means for singly
linked lists to be valid. A particular specification, with a style put forward in
[19], consists in capturing the representation invariant of the structure (i.e., the
intended validity condition for singly linked lists) through a boolean routine, that
checks whether the condition holds or not for a given structure. An example of
such method, named repOK() as is usual, indicating that singly linked lists must
be acyclic and their number of nodes must coincide with the value in the size
field, is shown in Fig. 2.

A substantially different approach to the operational style of using code to
write specifications, is based on the use of some suitable logical formalism, for
the same task. This alternative approach has been extensively used, from the

148 F. Molina et al.

Fig. 1. Java classes defining singly linked lists.

Fig. 2. Operational version of the representation invariant for singly linked lists.

seminal work of Hoare and Floyd, where first-order logic is used to express
assertions regarding program states, to more modern languages such as JML [3]
and Alloy [14], which due to further expressive power needs, have extended first-
order logic with closure or reachability predicates. In particular, notice that first-
order logic is not sufficiently expressive to capture the acyclicity on singly linked
lists, in our example. A declarative predicate, expressed in Alloy’s relational
logic, and capturing exactly the same property as method repOK() in Fig. 2, is
shown in Fig. 3. Notice how reflexive-transitive and transitive closures (denoted
by operators * and ^, respectively) are employed to capture reachability and
acyclicity.

To illustrate the need for effective translations across different specifica-
tion styles, suppose that we only count with the operational invariant, specified
through method repOK() in Java. While this specification is suitable for gen-
erating test inputs using Korat (in fact, this particular example is taken from
Korat’s set of case studies [17]), if we want to perform bounded verification
using a tool like TACO [9,10], then this specification becomes unsuitable, since
TACO expects a logical specification. However, it is possible to translate an
operational specification into an equivalent declarative specification (equivalent
in bounded contexts), e.g., using the translations embedded in tools like TACO
[9,10] and CBMC [18]. The logical specification resulting from the translation

An Evolutionary Approach to Translate Operational Specifications 149

Fig. 3. Declarative version of the representation invariant for singly linked lists, in
Alloy’s relational logic.

of the repOK() method shown in Fig. 2 is shown in Fig. 4. This specification,
while correct with respect to the semantics of the original (again, for a partic-
ular bounded scope), is unsuitable for verification. For instance, verifying that
method insert preserves the representation invariant for lists of size at most

Fig. 4. Declarative representation invariant for singly linked lists, obtained using a
semantics-preserving translation from repOK in Fig. 2.

150 F. Molina et al.

12 takes 3839 seconds when using the invariant in Fig. 2, whereas it takes 1648
seconds when using the invariant in Fig. 3. As we will show later on in this
paper, such difference in efficiency becomes more notorious in more complex
data structure invariants (see the Validation Section).

The above described problem is the motivation for our approach. As we
explain in the following section, we will develop an evolutionary algorithm to
translate from operational specifications into declarative ones, with the aim
of obtaining better suited specifications, from the point of view of analysis.
More precisely, our aim is to obtain, from operational specifications such as
that in Fig. 2, declarative specifications closer to that in Fig. 3 (as opposed to
that in Fig. 4), that would allow us to perform certain automated analyses more
efficiently.

3 An Evolutionary Algorithm for Learning Declarative
Specifications

As we mentioned in previous sections, our objective is to compute a declarative
specification Φ in relational logic, from an operational specification Φop, written
in a sequential programming language. To do so, we design a genetic algorithm,
that we describe below. Genetic algorithms [13] are non-exhaustive guided search
algorithms, based on a hill climbing strategy [24]. The search space is composed
of a generally very large set of individuals (the candidates), and the search
objective is to find an individual with sought-for features. As opposed to classic
search algorithms, genetic algorithms maintain a set of individuals, called the
population, and search progresses by iteratively selecting a number of individuals
in the population, using these for evolution (building new individuals out of
these), and leaving out some individuals of the whole set (the “old” ones and
the “new” ones). Selection of individuals for population evolution, as well as
individuals’ removal, are guided by a fitness function, the heuristic function
used to guide the search. This function applies to individuals, and its result
is generalizable to the population too (e.g., the fitness of the population may
be taken as the fitness of its “fittest” individual). This function captures the
features sought for in the search, and thus can be used as a halting criterion
(e.g., algorithm stops after finding an individual with fitness above a certain
threshold). Finally, individuals are often called chromosomes, and represented
as vectors of genes that capture their characteristics. This idea is strongly related
to how new individuals are constructed: by representing candidates as vectors of
independent characteristics, one can build new candidates by combining part of
the characteristics of an individual with part of the characteristics of another, or
by arbitrarily changing a characteristic of a given individual. These two forms of
evolution are called crossover and mutation, respectively, and are the traditional
mechanism to build new candidates out of existing ones in genetic algorithms.
For further details, we refer the reader to [20].

An Evolutionary Approach to Translate Operational Specifications 151

Fig. 5. Type graph for singly linked lists.

3.1 Genes and Chromosomes to Represent Candidate Specifications

In order to capture candidate specifications, we start by taking the structure’s
signature, i.e., its type description, and building a type graph. A type graph for
a structure is automatically built from its fields and their types; nodes represent
types, while arcs capture fields. As an example, consider the type graph for
linked lists, as defined in Fig. 1, shown in Fig. 5.

Type graphs are used to form expressions, that will constitute the candidate
specifications. Expressions are built out of paths in the graph. To make expres-
sions finite, recursive fields are traversed at most once, and further “iteration”
is represented through closure operators. For instance, from the type graph in
Fig. 5, the following expressions are computed:

thiz
thiz.size
thiz.header
thiz.header.next
thiz.header.element
thiz.header.next.element
thiz.header.*next
thiz.header.*next.element

Moreover, in type graphs with multiple arcs connecting the same source and
target nodes, their “union” is also considered for building expressions. Thus, for
instance, for binary trees, there will be expressions of the form thiz.root.left,
thiz.root.right, as well as thiz.root.(left+right).

These expressions are complemented with constants, e.g., Null, 0, none
(empty set), to build expressions (integer expressions are also generated by
applying the cardinality operator to non-singleton expressions). Also, the expres-
sions cardinalities are taken into account (notice that the first 6 expressions above
denote singletons, whereas the last two denote sets of any cardinality). Genes,
the basic (independent) units that characterize chromosomes (in our case, rep-
resenting candidate specifications) can be:

152 F. Molina et al.

– boolean constant true,
– an atomic formula built from the expressions originating in the type graph

(including considered constants), respecting relational logic’s grammar and
taking into account types and cardinalities (e.g., thiz.header != Null,
thiz.header.*next = none, etc.),

– a quantified formula, involving a (bound) variable x, and two expressions,
one for x’s scope, the other for “predicating” in relation to x (e.g., all
n: thiz.header.*next.element | n != 0, the two expressions here being
thiz.header.*next.element and 0); the first of these expressions is con-
strained to be a “set” expression, not a singleton.

Notice that, according to Alloy’s grammar, the second item above includes, for
every atomic formula α, its negation ¬α. This is due to the fact that “boolean”
operators in Alloy include their negated counterparts (e.g., = and !=, in and
!in) [14].

Chromosomes are simply vectors of the previously described genes, and rep-
resent conjunctions of the corresponding genes. As opposed to what is common
in genetic algorithms, our chromosomes have varying lengths, and genes’ posi-
tions are disregarded (i.e., if a gene belongs to a chromosome, it is part of the
corresponding conjunction, independently of whether it is at the beginning of
the conjunction, or in any other position; this is of course due to the well known
associativity and commutativity properties of conjunction). Genes’ positions do
play a role in crossover; we use one-point crossover to build new chromosomes,
by randomly selecting points to “split” two chromosomes, and combining the
initial (resp., final) part of one of them with the final (resp., initial) part of the
other. If both chromosomes have size 1, then their crossover is the union of their
genes.

Our genetic algorithm has a very rich set of mutations. The sim-
plest changes a randomly picked gene to true (equivalent to removing
the gene). The others include changing an operator by another (e.g., =
replaced by !=), changing a quantifier (e.g., all n: ... changed into some
n: ...), adding or substracting from an integer in an expression (e.g.,
changing #thiz.header.*next by #thiz.header.*next+1 in an expression),
and inserting/removing closure operators from expressions (e.g., changing
thiz.header.next to thiz.header.*next and vice versa).

3.2 Fitness of Candidate Specifications

Our fitness function applies to chromosomes representing candidate specifica-
tions, and is meant to assess how close are the corresponding candidates to the
desired specification. Of course, we do not have the desired specification (it is
what we are trying to build), so a direct comparison is impossible. However, we
do have the operational specification Φop, so we can (indirectly) compare candi-
date specifications against this one. In order to do so, we automatically generate
from Φop a set of positive and negative examples. These are instances that satisfy
and do not satisfy Φop, respectively. These instances can be generated using any

An Evolutionary Approach to Translate Operational Specifications 153

test input generation mechanism that requires an operational specification, e.g.
[2,26]. We use an ad hoc variant of Korat, that generates inputs using a field-
exhaustive approach [23]. Intuitively, this generation skips structures that cover
the same values for fields than previously generated structures, and produces
more variability with fewer inputs (cf. [23]). The number of generated positive
and negative cases is limited to a provided bound k.

Fitness f(c) for a chromosome c is computed as follows. First, we build
the specification Φc corresponding to c (conjunction of its genes), and evaluate
whether the positive and negative cases (recall that these are positive or negative
according to Φop) satisfy Φc. If any positive case fails with Φc, meaning that
there are cases that should be accepted but our specification rejects them, then
f(c) = 0. Instead, if the candidate has only negative cases (cases that should
not pass the specification but do so), fitness is defined as follows:

f(c) = (MAX− neg(c)) +
(

1
len(c) + 1

)

where MAX is a constant larger than k, the total number of negative cases; neg(c)
is the number of negative cases that satisfy Φc; and len(c) is the length of c, i.e.,
its number of non-trivial genes (genes that are not the constant true).

The rationale for this definition of the fitness function has to do with the
fact that we attempt to over approximate to the sought-for specification. This
motivates also how we capture candidate specifications. Thus, when a positive
case is not accepted by a candidate, we will simply consider it unfit. Fitness
for other candidates has two parts. First, the fewer the “counterexamples”, the
better; second, the smaller the specification, the better. This last part can be
thought of as a penalty related to formula length, that will make the genetic
algorithm tend towards producing smaller formulas. Of course, this is a secondary
issue, and this is why it contributes a fraction to the fitness value, as opposed to
the actual driving acceptance criterion, namely, the number of counterexamples
approaching to zero.

3.3 Overall Structure of the Genetic Algorithm for Learning
Specifications

The previously described elements are the constituting parts of our genetic algo-
rithm. These are put together following the general structure of a genetic algo-
rithm, namely: producing the initial population, and then iteratively select indi-
viduals for evolution (crossover/mutation), produce the ampled population, and
discard some individuals to control population size, until a maximum number of
evolutions is reached, or a suitable individual is produced. The initial popula-
tion is generated by producing size 1 chromosomes, covering combinations of the
previously described expressions. Both the initial population and the succeeding
ones are limited in size to 100 individuals.

The selection of chromosomes for crossover and mutation is based on a
“fittest-first” policy. We select the fittest 10% for crossover and mutation, and

154 F. Molina et al.

randomly pick pairs from these for crossover; a small proportion of these, less
than 10% (i.e., about 1% of the size of the population), are selected for mutation.

Finally, the algorithm stops after 20 evolutions, or generations, have been
produced. Whenever a satisfying specification is generated (i.e., one that thas
no counterexamples), it is stored and the time measured, but the algorithm is
not stopped, in an attempt to produce shorter (i.e., more concise) specifications.

The rationale behind our selection of the above values for the genetic algo-
rithm’s parameters (population size, number of generations, percentage of indi-
viduals used for evolution, etc.) is not arbitrary. We learned adequate values for
these parameters from trial-and-error runs of our genetic algorithm, on a single
case study, namely singly linked lists. Trial-and-error is a common mechanism
used, in the context of evolutionary computation, to appropriately set parame-
ters of the evolutionary search. It is important to remark that, while we selected
these values based on experimentation, a single case study was involved in the
experiments leading to parameter selection, and the same selected values were
employed on all cases of our experimental validation.

4 Validation

In this section we perform an experimental assessment of our evolutionary app-
roach to learning declarative specifications from operational ones. All experi-
ments were run on a workstation with Intel Core i7 2600, 3.40 Ghz, and 16 Gb
of RAM. The genetic algorithm has been implemented using JGAP [15], running
on Java OpenJDK 1.7, on an Ubuntu 16.04 LTS x86 64 operating system. The
first part of our evaluation analyzes how fast our algorithm is able to learn a
declarative specification from an operational one. We do so for data structure
invariants, on a number of data structure implementations with increasingly
complex invariants. These are implementations of

– singly linked lists;
– sorted singly linked lists;
– circular linked lists;
– binary trees;
– heaps;
– (binary) directed acyclic graphs; and
– red-black trees.

All these structures and their corresponding operational invariants have been
taken from Korat’s set of accompanying examples, or are simple variants of
these. For each case study, we ran the algorithm 10 times, with a limit of 20
generations (evolutions of the genetic algorithm population). We report the min-
imum, maximum and average runs, indicating the number of generations that
were necessary, and the time in seconds required for learning the correspond-
ing invariant. We report the cost of computing the first invariant (the time and
generations required to get a suitable invariant), and the cost of computing the
“best” invariant (the algorithm continues running after an invariant has been

An Evolutionary Approach to Translate Operational Specifications 155

Table 1. Experimental results corresponding to learning declarative invariants from
operational ones, using our evolutionary algorithm.

First Invariant Found Best Invariant Found

Data structure Min Max Avg Min Max Avg

Gen Sec. Gen Sec. Gen Sec. Gen Sec. Gen Sec. Gen Sec.

s. linked lists 0 1 2 8 1 4 0 1 2 10 1 4

s. linked sort. lists 1 10 4 27 2 15 2 13 5 35 3 23

s. circular lists 0 1 1 7 0 3 0 1 2 11 0 3

Binary trees 1 10 4 31 2 18 1 10 4 31 2 19

Heaps 2 27 7 73 4 44 2 27 11 105 5 55

Binary DAGs 0 2 2 15 1 7 0 2 2 15 1 7

Red-black trees 4 56 8 112 6 85 4 82 12 165 8 119

found, to try to optimize it, e.g., making it more concise). These results are
summarized in Table 1.

The second part of the experiments compares our approach with a semantics
preserving translation from operational specifications into declarative ones, in
verification scenarios. More precisely, we verify, for increasingly larger scopes
(i.e., maximum sizes of the corresponding structures), that the insertion routine
of the corresponding structure preserves the structure’s representation invariant.
We use DynAlloy [8] for this task, using the original operational specification
translated into relational logic as described in [8,9], and our learned declarative
specification. Running times are reported in minutes:seconds, in Table 2. Notice
that we used different scopes for different kinds of structures. In particular, linear
data structures admit larger scopes for analysis, compared to tree-like structures.

Finally, we analyze the precision of the obtained invariants. We compare our
learned invariants with automatically inferred ones using Daikon [7]. Daikon
computes likely invariants from run-time information, and thus requires tests to
exercise the program under analysis, and perform the inference. We fed Daikon

Table 2. Comparison of operational invariants vs our computed declarative invariants,
verifying invariant preservation in bounded scenarios.

Data structure Rel.Spec. Op.Spec. Rel.Spec. Op.Spec. Rel.Spec. Op.Spec. Rel.Spec. Op.Spec.

Scopes 5 12 15 20

s. linked lists < 00:01 < 00:01 00:01 00:03 00:07 00:10 01:46 01:38

s. linked sorted lists < 00:01 < 00:01 00:30 01:54 03:25 10:16 21:51 TO

s. circular lists < 00:01 < 00:01 00:02 00:04 00:10 00:22 01:37 02:18

Scopes 5 7 8 9

Binary trees < 00:01 00:01 00:01 01:05 00:10 28:06 01:25 TO

Heaps 00:01 00:03 00:48 02:45 01:54 49:52 06:54 TO

Binary DAGs < 00:01 00:03 00:01 00:54 00:06 07:14 00:43 50:15

Red-black trees < 00:01 00:01 00:01 01:40 00:13 36:22 01:16 TO

156 F. Molina et al.

with randomly produced tests, computed using Randoop [21]. Daikon computes
invariants for all involved classes; when an invariant refers to an auxiliary class,
e.g., Node, we report the inferred invariant as being a property of all nodes of the
structure. Invariants inferred by Daikon are JML expressions. We show these as
relational logic expressions for easier comparison. The obtained invariants are
summarized in Table 3.

4.1 Assessment

Let us now evaluate our experimental results. First, consider the running times
for our genetic algorithm. For most structures and in most runs, we are able
to compute invariants in a few seconds. Our most complex data structure con-
sidered, red-black trees, takes in some cases a few minutes (about 2.5 min in
the worst case) to compute an invariant. In general, our algorithm runs very
efficiently.

Regarding the efficiency of our computed invariants as opposed to the oper-
ational ones for bounded verification, declarative invariants show a substantial
profit in analysis, with the sole exception of our simplest case study, singly
linked lists. In this case study, and for our largest considered scope, the opera-
tional invariant is actually better than the declarative one, in verification time
(although very slightly). In all other cases, verification with the declarative
invariant outperforms verification with the operational one. Notice that learning
pays off exceedingly, comparing the time taken in learning and the speed up
achieved when replacing the operational invariant with the declarative one.

Of course, neither of the first two parts of our analysis is meaningful if our
invariants are imprecise. Our third part of the analysis confirms that our learned
invariants are rather precise, compared to the expected outcome. Indeed, in all
cases except red-black trees, we learn an invariant that is actually equivalent
to the repOK. In order to check equivalence, besides manually inspecting the
obtained invariants, we bounded-exhaustively enumerated instances satisfying
repOK using Korat, for various selected bounds, and compared the number of
obtained instances with the number of bounded instances satisfying our obtained
Alloy specification, for the corresponding bounds. In the case of red-black trees,
we are able to learn most of the expected invariant, except for the “black height”
portion of it. This part of the invariant states that “the number of black nodes in
all paths from the root to a leaf is the same”. Such constraint is not expressible
with the expressions that our genetic algorithm considers, and thus constitutes
a limitation of our approach. In relation to the alternative mechanism to learn
invariants that we considered for comparison, namely the Daikon approach, our
approach computes more precise specifications. Indeed, as our third table shows,
Daikon is able to compute weaker invariants (sometimes erroneous ones, resulting
from properties that consistently hold for the tests used for inference, but are
not true in the general case), compared to our computed specifications.

An Evolutionary Approach to Translate Operational Specifications 157

Table 3. Comparison of our learned invariants with automatically inferred ones using
Daikon.

5 Related Work

Translating between formal languages has a long tradition both in Logic and
in Computer Science. There exist translations and mappings between logical
systems that have been used for automated analysis purposes, as well as for

158 F. Molina et al.

complexity and decidability arguments (see, e.g., [4]). This kind of approach has
been borrowed by formal methods, in particular heavyweight ones, whose asso-
ciated analysis mechanism is in general deductive verification, with the aim of
using a proof system for a given formalism to reason about specifications in a
different one (see, e.g., [1]). In general, the emphasis has been in sound, many
times partial, syntactic mechanisms to define semantics-preserving translations,
that enable conservative analyses of the source specifications in the target for-
malism. With the advent of lightweight formal methods, the conservativeness
requirement can sometimes be dropped, as is the case e.g., with the (incom-
plete) SAT-based checking of Alloy specifications [14]. In these works the use of
imprecise search based techniques such as the one presented in this paper is not
observed, as far as we are aware of. However, learning techniques associated with
formal specification has been applied in the past. Some examples are the use of
the L* algorithm to assist assume-guarantee reasoning [22] and the inference of
loop invariants through a combination of mutation (as in genetic programming)
and static checking [11]. The first attempts to learn specifications of a routine
from calls it receives from the environment, while the second applies specifically
to loop invariants, thus differing from our presented work. Model synthesis is
also an active line of research related to our work. In the general case, synthesis
techniques assume a specification, and work on synthesizing operational models
that satisfy it (cf. [5,6,16,25]), thus working on a different direction compared
to our presented work.

6 Conclusions and Future Work

The increasing availability of automated technologies based on formal methods is
evidencing a lack of formal specifications accompanying software systems, while
at the same time contributes to showing their necessity. Indeed, many tools for
program analysis, including run time assertion checkers, and static analysis tools
for verification, fault localization, test generation and bug finding, require for-
mal specifications. In this paper, we argued about the fact that, even in cases
in which one has a formal specification available, many times this specification
is unsuitable for the kind of analysis, tool or technique, one is interested in. We
studied this situation in the particular case in which an operational specifica-
tion, represented as code, is available, but one requires such specification to be
provided in a logical setting. We proposed an evolutionary algorithm that pro-
duces such declarative specifications from operational ones, and showed that,
for a benchmark composed of data structures of varying complexities, the algo-
rithm is able to learn adequate declarative representation invariants, from their
operational counterparts. Moreover, we showed that these learned invariants are
better suited for analysis, in particular bounded verification, than perfoming an
existing semantics preserving translation of the operational ones and using those
for the same analysis. We also showed that our algorithm produces, for the ana-
lyzed case studies, specifications that are significantly more precise than those
generated by related specification inference tools.

An Evolutionary Approach to Translate Operational Specifications 159

The presented work opens several lines for future work. As we explained
in the paper, we have concentrated on properties of linked structures, and the
whole design of our algorithm and the expressions it supports makes it infea-
sible to learn some relevant properties (the color invariant for red-black trees
is an example of this situation illustrated in the paper). An obvious line of
research is work on a generalization of our approach, to enable learning a richer
set of specifications. Our case studies are so far limited to data structure repre-
sentation invariants, so analyzing our approach on other kinds of programs, is
also part of our plans. In particular, in attempting to learn specifications from
larger programs we will come into scalability issues, that will need to be tackled.
Finally, our operational-to-declarative approach enables interconnecting analysis
techniques and tools, some of which we have mentioned in the paper. We plan
to take advantage of our evolutionary algorithm to implement such tool cross
usages.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. This work was partially supported by the Argentinian Agency
for Scientific and Technological Promotion (ANPCyT), through grants PICT 2012 No.
1298, PICT 2013 No. 2624 and PICT 2013 No. 0080.

References

1. Bicarregui, J., Bishop, M., Dimitrakos, T., Lano, K., Maibaum, T., Matthews, B.,
Ritchie, B.: Supporting co-use of VDM and B by translation. In: Proceedings of
VDM in 2000! (2nd VDM workshop) (2000)

2. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: Proceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2002. ACM (2002)

3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T.,
Rustan, K., Leino, M., Poll, E.: An overview of JML tools and applications. STTT
7(3), 212–232 (2005). Springer

4. Cranen, S., Groote, J.F., Reniers, M.: A linear translation from CTL* to the first-
order modal mu-calculus. Theor. Comput. Sci. 412(28), 3129–3139 (2011). Elsevier

5. Demasi, R., Castro, P.F., Maibaum, T.S.E., Aguirre, N.: Synthesizing masking
fault-tolerant systems from deontic specifications. In: Hung, D., Ogawa, M. (eds.)
ATVA 2013. LNCS, vol. 8172, pp. 163–177. Springer, Heidelberg (2013). doi:10.
1007/978-3-319-02444-8 13

6. Emerson, E.A., Samanta, R.: An algorithmic framework for synthesis of concurrent
programs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
522–530. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24372-1 41

7. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007). Elsevier

8. Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: DynAlloy: upgrading alloy
with actions. In: Proceedings of International Conference on Software Engineering,
ICSE 2005. ACM (2015)

9. Galeotti, J.P., Rosner, N., López Pombo, C., Frias, M.F.: Analysis of invariants for
efficient bounded verification. In: Proceedings of the 19th International Symposium
on Software Testing and Analysis, ISSTA 2010. ACM (2010)

http://dx.doi.org/10.1007/978-3-319-02444-8_13
http://dx.doi.org/10.1007/978-3-319-02444-8_13
http://dx.doi.org/10.1007/978-3-642-24372-1_41

160 F. Molina et al.

10. Galeotti, J.P., Rosner, N., Pombo, C.L., Frias, M.: TACO: efficient SAT-based
bounded verification using symmetry breaking and tight bounds. IEEE Trans.
Softw. Eng. 39(9), 1283–1307 (2013). IEEE

11. Galeotti, J.P., Furia, C.A., May, E., Fraser, G., Zeller, A.: Inferring loop invari-
ants by mutation, dynamic analysis, and static checking. IEEE Trans. Softw. Eng.
41(10), 1019–1037 (2015). IEEE

12. Ghezzi, C., Jazayeri, M., Mandiroli, D.: Fundamentals of Software Engineering,
2nd edn. Prentice-Hall, Upper Saddle River (2003)

13. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Salt Lake City (1989)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

15. Web site of the Java Genetic Algorithms Package (JGAP). http://jgap.sourceforge.
net

16. Klein, U., Piterman, N., Pnueli, A.: Effective synthesis of asynchronous sys-
tems from GR(1) specifications. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI
2012. LNCS, vol. 7148, pp. 283–298. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27940-9 19

17. Home Page of the Korat test generation tool. http://korat.sourceforge.net
18. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,

E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54862-8 26

19. Liskov, B., Guttag, J.: Program Development in Java: Abstraction, Specification,
and Object-Oriented Desig. Addison-Wesley, Salt Lake City (2000)

20. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
Springer, Heidelberg (1996)

21. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: Proceedings of the 29th International Conference on Software Engi-
neering, ICSE 2007. IEEE (2007)

22. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M.,
Barringer, H.: Learning to divide and conquer: applying the L* algorithm
to automate assume-guarantee reasoning. Formal Methods Syst. Des. 32(3),
175–205 (2008). Springer

23. Ponzio, P., Aguirre, N., Frias, M., Visser, W.: Field-exhaustive testing. In: Pro-
ceedings of International Symposium on the Foundations of Software Engineering
FSE 2016, Seattle (WA), USA. ACM (2016, to appear)

24. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Upper Saddle River (2003)

25. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009). IEEE

26. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2004. ACM (2004)

http://jgap.sourceforge.net
http://jgap.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-27940-9_19
http://dx.doi.org/10.1007/978-3-642-27940-9_19
http://korat.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-54862-8_26

A Refinement Repair Algorithm
Based on Refinement Game for KMTS Models

Efraim Machado and Aline Andrade(B)

Distributed Systems Laboratory (LaSiD), Computer Science Department,
Federal University of Bahia, Salvador, Bahia 40170-110, Brazil

efraimmachado@gmail.com, aline@ufba.br

http://www.lasid.ufba.br

Abstract. In a perspective of an incremental and iterative formal devel-
opment of software, models should preserve a refinement relation with
already existing specifications models. In cases where a model is not a
refinement of a specification model, it should be modified in order to
create a refinement relation between them. This paper proposes a refine-
ment repair algorithm guided through an analysis of the refinement game
between a specification model and another model that is not related by
a refinement relation. We are interested in models expressed as Kripke
Modal Transitions Systems (KMTS) which are appropriate to represent
partial information of systems.

Keywords: Model refinement · Model repair · Refinement game ·
KMTS · Partial information

1 Introduction

Nowadays, software can be developed in an incremental and iterative way so as
to rapidly accommodate changing requirements and mitigate the risks of long
development cycles. The user’s knowledge about how the system should behave is
initially partial and will hopefully evolve into stable and complete requirements
as new versions are released.

Mechanisms to support software development in the presence of partial and
incomplete knowledge are important in order to reduce the impact of changes
in such scenario. The explicit representation of indeterminations in the mod-
els facilitates the analysis of the software requirements in relation not only to
necessary but also possible requirements. This means not having to take hasty
decisions very early in the development process.

KMTS is a Kripke structure that describes required and possible behaviors
through indefinitions in states and modalities in transitions, enabling more accu-
rate models regarding underdetermined software requirements.

A. Andrade—This author is supported by the grant # 447178/2014-8, Brazilian
Research Council (CNPq).

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 161–178, 2016.
DOI: 10.1007/978-3-319-49815-7 10

162 E. Machado and A. Andrade

In an incremental development new requirements can produce new models
which should preserve a correctness relation with other models. Refinement con-
cepts are used to guarantee a correctness relation between models, even partial
behavior models, such as example in [10]. Most studies define and characterize
refinement for various modal structures other than KMTS and use techniques,
such as parity games, to analyse whether there is a refinement relation between
two models as in [2–4]. The games used in these works are adaptations of the
games presented in [8] or [9] which analyses whether there is a bisimulation
relation between two models.

However, the presented works, as far as we know, do not focus on a common
problem in software development: how to fix (or repair) a model in order for
it to be a refinement of a specification. In this context, this paper proposes an
algorithm to repair a model in order for it to be a refinement of a specification
model, returning a set of repaired models as output. The algorithm is guided
by the analysis of the refinement game in order to do the modifications by
identifying the causes of the model not to be a refinement of another model.
The refinement game presented in this work is an adaptation of [4] for KMTS
models.

To the best of our knowledge the refinement repair as presented here, over
KMTS partial models and based on refinement game, has not been proposed
before.

This paper is organized as follows. Section 2 presents the main concepts
related with this research which are important for understanding the refine-
ment repair. Section 3 presents the refinement game approach. In Sect. 4, the
theoretical foundation of refinement repair is developed and a refinement repair
algorithm is presented. Section 5 presents the conclusions and future work.

2 KMTS Refinement

A KMTS is a modal Kripke structure that expresses required and possible behav-
iors by modalities in its transitions and indefinitions is its states.

Definition 1 (KMTS). Let AP be a set of atomic propositions and Lit =
AP Y {¬p | p P AP} the set of literal over AP and Act a finite set of action
symbols. A Kripke modal transition system (KMTS) is a tuple M = (AP,
Act, S, s0, R

+, R−, L), where S is a set of finite sates, s0 P S is the initial state,
R+ Ď S×Act×S e R− Ď S×Act×S are transition relations such that R+ Ď R−,
and L : S → 2Lit is a label function, such that for all state s P S and p P AP , at
most one between p and ¬p occurs.

The transitions R+ and R− are called must and may transitions, respectively.
From now on, for readability in some propositions, we define that s

a−→ s′

represents (s, a, s′) P R+ and s
a��� s′ represents (s, a, s′) P R−.

The purpose of this paper is restricted to KMTS models where there is at
most one outgoing transition for each action in a given state. We call this specific
type of KMTS as Deterministic KTMS (DKMTS).

A Refinement Repair Algorithm Based on Refinement Game 163

Definition 2 (Deterministic KMTS). A KMTS is deterministic iff for every
s P S and a P Act there is at most one s′ P S such that s

a��� s′.

From now on, all references to KTMS refers to DKMTS, except when explic-
itly defined.

Informally, the concept of refinement over partial models introduces the idea
of model evolution by removing uncertainties. This relation ensures that relative
to a specifitation model, a more refined model, i.e. the model with less unknowns,
should preserve all the required behavior of the specification and can preserve
or not possible behaviors, making them mandatory or removing them. Our def-
inition of KMTS refinement is based on Strong Modal Refinement because this
is the basis for all other existing refinement concepts.

Definition 3 (Strong Modal Refinement). Given M = (APM , ActM , SM ,
sM0, R

+
M ,R−

M , LM) and N = (APN , ActN , SN , sN0, R
+
N , R−

N , LN) two KMTS. N
refines M iff there is a relation R Ď SM ×SN such that (sM0, sN0) P R, and for
any pair (m,n) P R, the following hold:

1. LM (m) � LN (n)
2. For all (m,a,m′) P R+

M , there is (n, a, n′) P R+
N with (m′, n′) P R

3. For all (n, a, n′) P R−
N , there is (m,a,m′) P R−

M with (m′, n′) P R

where LM (m) � LN (n) iff for all p P LM (m) then p P LN (n) and the truth value
of p in m is the same as the truth value of p in n. The symbol LM (m) � LN (n)
is used when LM (m) � LN (n) does not holds.

We use M � N to denote that N is a refinement of M and M � N to denote
that N is not a refinement of M. In similar way, we define the refinement notion
between states of two KMTS.

Definition 4. Given M = (APM , ActM , SM , sM0, R
+
M , R−

M , LM) and N =
(APN , ActN , SN , sN0, R

+
N , R−

N , LN) two KMTS, R a refinement relation between
them. A state n is a refinement of m (m � n) iff (m,n) P R.

We ilustrate the KMTS refinement through the following adapted example
from [7]. In this example the behavior of a camera with three main behaviors
is considered: shutter open or closed, flash on or off and auto focus or not. The
following properties are considered: s - represents whether the shutter is opened
(T) or closed (F); fo - represents whether the auto focus is being applied (T)
or not (F); and fl - indicates whether the flash is on (T) or off (F). The camera
has three actions: a - represents the user pressing a button to take a photo; b -
represents the user pressing a button to start auto focus; c - represents the user
pressing a button to cancel the photo shooting; and r - represents the automatic
action to make the camera ready for shooting again.

Figure 1(A) shows the KMTS that represents the shutter behavior and the
possibility of face focus, i.e., a feature that automatically focuses on the faces
of people. Let’s assume that stakeholders have decided that the face focus func-
tionality will not be avaliable in the camera. Figure 1(B) shows a KMTS that is
a possible refinement of the specification presented in Fig. 1(A).

164 E. Machado and A. Andrade

Fig. 1. KMTSs representing possible camera behaviors. In (A) the camera behavior
specification. In (B) a possible refinement of the specification in (A). In (C) a camera
behavior model that is not a refinement of the specification in (A).

The refinement relation is defined over two different models. In a same model
it is more useful to identify which states are equivalent. Two states are equivalent
if they have the same value for their propositions and achieve equivalent states
from transitions of same modality (must or may).

Definition 5 (Equivalence between states). Let M = (AP,Act, S, s0, R+,
R−, L) a KMTS. The states m and n of S are equivalent iff (m,n) P E Ď S ×S
such that:

1. L(m) = L(n)
2. if m

a−→ m′, there is n
a−→ n′ with (m′, n′) P E

3. if n
a��� n′, there is m

a��� m′ with (m′, n′) P E

4. if n
a−→ n′, there is m

a−→ m′ with (n′,m′) P E

5. if m
a��� m′, there is n

a��� n′ with (n′,m′) P E

Proposition 1. Let M = (AP,Act, S, s0, R
+, R−, L) a KMTS and E the equiv-

alence relation between states (Definition 5). Then E is an equivalence relation.

Proof. The proof follows directly from Definition 5.

Proposition 2 shows that equivalent states of M are mapped in a same state
of N by the refinement relation such that M � N .

Proposition 2. Given M = (APM , ActM , SM , sM0, R
+
M , R−

M , LM) and N =
(APN , ActN , SN , sN0, R

+
N , R−

N , LN) two KMTS, R a refinement relation between
M and N and E an equivalence relation between states of M . If (m,n) P R and
(m,m′) P E then (m′, n) P R.

Proof. The proof follows directly from Definitions 3 and 5. ��

A Refinement Repair Algorithm Based on Refinement Game 165

The concept of equivalent states is used to find out how many states are
actually distinct in a specific partial model. In the present work this information
is used to analyze how many states at least a model must possess in order to be
a refinement of a specification. This information is obtained from the size of the
quocient set defined by the equivalence relation E over the set of states of the
specification. The quocient set is denoted by S/E where S is the set of states of
the specification model.

2.1 Preserving Refinement Through KMTS Modifications

In general when there is not a refinement relation between a specification S
and a model M it is possible to change M to generate a model M ′ such that
M ′ refines S. Structural changes over the KMTS can be produced from some
primitive changes such as removing a transition, adding a state or modifying the
value assigned to a literal in a state.

Definition 6 (Primitive Change). A primitive change x is a structural oper-
ation over a KMTS M = (AP,Act, S, s0, R

+, R−, L) defined as:

RT-(s, a, s′): removes (s, a, s′) from R− and from R+ (if (s, a, s′) P R+);
RT+(s, a, s′): removes the transition (s, a, s′) from the relation R+;
AT-(s, a, s′): adds the element (s, a, s′) in R−;
AT+(s, a, s′): adds the element (s, a, s′) of R− in R+;
AL(s, l): assigns a literal l to the state s of the model if l �P L(s);
RL(s, l): removes a literal l from the state s of the model if l P L(s);
CL(s, l, v): changes a value of a literal l to v in the state s, where v P
{true, false};
CT(s, a/b, s′): transforms the transition (s, a, s′) into (s, b, s′);
AS(s): adds the state s in M .

The application of a primitive change x over M is represented by x(M) and the
application of a set of primitive changes X is represented by X(M). In both cases
a KMTS, that represents the model M modified, is the result of the application.
For example, consider the addition of a must transition (s, a, s′) in a KMTS
M . This is performed by a change X that comprises two primitive changes: one
of type AT− to add a may transitition in M ; and another of type AT+ to
transform the may transition into a must transition. It is important to perform
AT− before AT+ although the notation X(M) abstracts the execution order,
but in the implementation it must be considered.

Given two primitive changes p0 and p1 we say that p0 and p1 are consistent
with each other if one does not interfere in the modification of the other. For
example p0 = RT + (s, a, s′) and p1 = RT − (s, a, s′) are not consistent with
each other because p1 removes the transition (s, a, s′) added by p0. As will be
shown later, this consistency concept between primitives changes is important
to prevent the repair algorithm from going to an infinite loop configuration.

The primitive changes can be use to modify a KMTS to satisfy the conditions
of refinement relation. Proposition 3 shows that is possible to modify a KMTS

166 E. Machado and A. Andrade

to satisfy the condition (1) of Definition and Proposition 4 shows that always is
possible to add a may/must transitions to satisfy the conditions (2) and (3) of
Definition.

Proposition 3. Given M = (APM , ActM , SM , sM0, R
+
M , R−

M , LM) and N =
(APN ,ActN , SN , sN0, R

+
N , R−

N , LN), m P SM , n P SN and LM (m) � LN (n).
There is a set of changes X applicable over n such that LM (m) � LN (X(n)).

Proof. By Definition 7, LM (m) � LN (n) is true iff for all p P LM (m) and
p P LN (n) if p valuation in m is true or false the valuation of p in n must have
the same value. It is possible to apply the primitive change of the type AL to add
all literals p such that p P LM (m) and p /P LN (n). After applying these changes,
the state n has all the literals that the state m has (and may even have more
literals). Now just applying primitive changes type CL makes the valuation of all
literals of m and n equal. ��
Proposition 4. Given M = (AP,Act, S, s0, R

+, R−, L), m and m′ P S such
that (m,a,m′) /P R+ (or /P R−). There is a set of primitive changes X such that
X(M) = M ′ = (AP,Act′, S,R′+, R′−, L) and (m,a,m′) P R′− (or, if necessary,
(m,a,m′) P R′+).

Proof. It is possible to apply primitive changes of type AT- (to add in R−
M)

and AT+ (to add in R+
M) to add the desired transition according to the desired

modality. As the KMTS is deterministic, if there is a transition such that
(m,a,m′′) P R′− and m′ �= m′′ it is possible to remove it (with primitive changes
of the type RT-) or change it (with primitive changes of the type CT). ��

From Propositions 3 and 4 one of the main results of this paper can be shown:
given M and N two KMTS such that M � N , there is a set of primitive changes
that can transform N into a refinement of M if the number of states equivalence
classes in M is less than or equal to the number of states in N. The number of
states equivalence classes represents the number of distincts states in M. Thus,
this restriction guarantees that N can have at least one state corresponding to
each distinct state of M, i.e., states of N can be used to represent every state of M.

In the proof of Theorem 1 there are cases (worst cases) where the primitives
changes applied over N makes N to be a copy of M, while in better cases N is
modified to M � N without N being a copy of M. It is worth mentioning that to
ensure the refinement relation between M and N, in the proof of this theorem,
states are only added in model N, complying with the limit of the number of
equivalence classes over the states of M. The model M is not modified because
M represents the specification and it is assumed to be correct.

Theorem 1. Given M = (APM , ActM , SM , sM0, R
+
M , R−

M , LM), N = (APN ,
ActN , SN , sN0, R

+
N , R−

N , LN) and EM an equivalence relation between states
of M . Let SM/EM an equivalence classes set defined by EM over SM and
| SM/EM | the number of equivalence classes of the quocient set SM/EM . Sup-
pose that M � N and | SM/EM |�| SN | then there is a set X of primitive
changes over N such that M � X(N).

A Refinement Repair Algorithm Based on Refinement Game 167

Proof. Let’s create a relation RM that maps states of M in states of N (1) and
modifies N by a set X of primitive changes generating N’ (2). We show that RM
is a refinement relation between M and N’ (3).

1. Let RM = {(sM , sN) | sM P SM and sN P SN} that relates every state of M
with a state of N such that the initial state of M is mapped to the initial state
of N and two states of M are mapped to a same state of N iff they belong to
a same equivalent class. As | SM/RM |�| SN | then each element of SM/EM

is mapped in a different state of N.
2. Let (m,n) P RM , by Proposition 3 it is possible to apply a set of changes Xp in

n such that L(m) � L(Xp(n)). Based on Proposition 4 we can create a clone
operation to copy transitions from R+

M to R+
N such that if (m,a,m′) P R−

M

then the cloned transition in n is a transition (n, a, n′) P R−
N and (m′, n′) P

RM . It is noteworthy that when there is more one state of M mapped by RM
in a state n P Sn, any state of M can be taken to modify n leading to the
same result because only equivalent states of M are mapped in a same state
of N. Finally, it is possible to apply primitive changes to remove existing
transitions in N which have not been created by the cloning operation. Let
X be the set of all primitive changes used to modify N as described, then
X(N) = N ′ = (AP ′

N , ActN , SN , sN0, R
+
N , R−

N , LN).
3. RM is a refinement relation:

(a) The initial states are mapped by RM, i.e. (sM0, sN0) P RM ;
(b) Let (m,n) P RM . We have LM (m) � L′

N (n); for all (m,a,m′) P R+
M ,

there is (n, a, n′) P R′+
N with (m′, n′) P RM ; and for all (n, a, n′) P R′−

N ,
there is (m,a,m′) P R−

M with (m′, n′) P RM by Item 1 and 2. ��

3 Refinement Game

A refinement game is a turn based game between two players whose goal is to find
out whether a model N is a refinement of a specification M . The game players
are the spoiler and the duplicator. The purpose of the spoiler is to execute a
movement that the duplicator can not imitate. The aim of the duplicator is to
imitate all movements performed by the spoiler.

A game represents all possibles matches, where a match is represented by
one sequence of game configurations. A game configuration is a pair (s, t) where
s and t are states of M and N , respectivelly. The current configuration of a
match is represented by a game configuration (m,n) which means that m is the
current state of M and n is the current state of N . If the spoiler/duplicator
moves from a configuration (m,n) then we say (m, n) is a spoiler/duplicator
configuration respectively. A match is composed of several turns until a player
wins the match. In each turn the players modify the current state of the match,
through a movement from transitions in M or N that leads them to other states
of the models. A match is characterized by the following rules:

168 E. Machado and A. Andrade

1. The match initial state is the pair (m0, n0) where m0 and n0 are the initial
state of M and N , respectively;

2. If LM (m0) � LN (n0) does not hold then the spoiler wins the match;
3. A match is composed of rounds which comprises two turns: a spoiler turn and

a duplicator turn in this order;
4. In its turn, the spoiler must choose one of the models to execute his move-

ment. If he chooses M then he must execute the movement represented by
a transition t = (m,a,m′) P R+

M . If he chooses N then he must execute the
movement represented by a transition t′ = (n, a, n′) P R−

N ;
5. After the spoiler’s turn, the current match state is (m′, n) if he moved in M

or (m,n′) if he moved in N ;
6. In its turn, the duplicator must execute a movement in the model that was

not chosen in the last spoiler movement. If he executes the movement in M
then the movement must represent the transition t = (m,a,m′) P R+

M and
LM (m′) � LN (n′) must hold. If he executes the movement in N then the
movement must represent the transition t′ = (n, a, n′) P R−

N and LM (m′) �
LN (n′) must hold;

7. After the duplicator’s turn, the new current state is (m′, n′) and the match
continues to a new round.

The match ends in two situations: when it is infinite, i.e. all possible move-
ments set the current game state to a previous game state, in this case the
duplicator wins the match; or when one of the players cannot move, in this case
the player who cannot move loses the game. As previously mentioned, a game
can contain several matches. If the duplicator wins in all matches then there is a
refinement relation between M and N . In the other case, there is no refinement
relation between M and N . A game can be characterized by all possible matches
in a graph.

Definition 7 (Refinement Game). A refinement game between the models
M = (APM , ActM , SM , sM0, R

+
M , R−

M , LM) and N = (APN , ActN , SN , sN0, R
+
N ,

R−
N ,LN) is a graph RGM,N = (VS , VD, E) where VD is the set of vertexes wherein

the duplicator plays, VS is the set of vertexes wherein the spoiler plays and E Ď
(VD Y VS) × (VD Y VS) is the set of edges such that:

VS = {(m,n) | m P SM ^ n P SN ^ L(m) � L(n)}
VD = VD1 Y VD2 where:

– VD1 = {(m,m′, n) | m P SM ^ m′ P SM ^ n P SN ^ L(m) � L(n) ^ m
a−→

m′ ^ a P ActM}
– VD2 = {(m,n′, n) | m P SM ^ n′ P SN ^ n P SN ^ L(m) � L(n) ^ n

a���
n′ ^ a P ActN}
E = E1 Y E′

1 Y E2 Y E′
2 where:

– E1 = {[(m,n)S , (m,m′, n)D] | m
a−→ m′ ^ a P ActM}

– E2 = {[(m,n)S , (m,n′, n)D] | n
a��� n′ ^ a P ActN}

– E′
1 = {[(m,m′, n)D, (m′, n′)S] | m

a−→ m′ ^ a P ActM ^ n
a−→ n′ ^ a P ActN ^

L(m′) � L(n′)}

A Refinement Repair Algorithm Based on Refinement Game 169

Fig. 2. Two refinement games: (A) between the models of Fig. 1(A) and Fig. 1(B);
(B) between the models of Fig. 1(A) and Fig. 1(C)

– E′
2 = {[(m,n′, n)D, (m′, n′)S] | m

a��� m′ ^ a P ActM ^ n
a��� n′ ^ a P

ActN ^ L(m′) � L(n′)}
where (i, j)S represents spoiler vertices and (w, x, k)D represents duplicator ver-
tices with i, j, w, x, k P SM Y SN .

Considering the refinement game RGM,N = (VS , VD, E), the spoiler move-
ments are represented by the union of the subsets E1 Y E2 such that E1 Ď E
represents the movements of the spoiler in the model M and E2 Ď E rep-
resents the movements of the spoiler in the model N. In a similar way, the
duplicator movements are represented by the union of the subsets E′

1 Y E′
2

such that E′
1 Ď E represents the movements of the duplicator in the model

N and E′
2 Ď E represents the movements of the duplicator in the model M. As

E = E1YE′
1YE2YE′

2 (Definition 7) we can refer the game RGM,N = (VS , VD, E)
as RGM,N = (VS , VD, E1, E

′
1, E2, E

′
2).

A finite or infinite path in the refinement game graph represents a match and
this satisfies the match conditions presented before in this section. For example,
suppose the refinement game shown in Fig. 2(B). The path S0−D0−S1−D2−
S2 − D4 is a finite match whereas the path S0 − D0 − S1 − D3 − S0 − ... is an
infinite match.

Definition 8 (Match). A match φ of a refinement game RGM,N = (VS , VD, E)
is a finite or infinite sequence v0v1...vn... of vertexes such that (vi, vi+1) P E and
v0 = (m0, n0) where m0 and n0 are the initial states of M and N respectively.

It is possible to deduce a set of properties relating a match and the type of
transitions which connect the vertexes of this match. We can identify the type of
transition that represents the movement of the duplicator in a round analyzing
the type of transition that represents a movement of the spoiler in the same
round.

170 E. Machado and A. Andrade

Proposition 5. Let φ = v0v1...vn... a match of a game RGM,N =
(VS , VD, E1, E

′
1, E2, E

′
2) where vi P VS. The following is true:

– if (vi, vi+1) P E1 then (vi+1, vi+2) P E′
1;

– if (vi, vi+1) P E2 then (vi+1, vi+2) P E′
2.

Proof. Let (vi, vi+1) P E1, by Definition 7, E1 represents the movements per-
formed by the spoiler. When the spoiler moves by a transition E1, he played in
model M . Also by definition, E′

1 and E′
2 represent the movements performed

by the duplicator. When the duplicator moves by an transition E′
1, he played in

model N and when it moves in the transition E′
2 he played in model M . Thus,

by Definition 7 if (vi, vi+1) P E1 then (vi+1, vi+2) P E′
1. The proof of Item (2)

follows the same reasoning. ��
Theorem 2 establishes a relationship between the refinement game and the

existence of a refinement relation.

Theorem 2 (Relation between a refinement and a game). Let M =
(APM , ActM , SM , sM0, R

+
M , R−

M , LM) and N = (APN , ActNSN , sN0, R
+
N , R−

N ,
LN), N is a refinement of M , M � N , iff the duplicator wins in all matches of
the refinement game RGM,N = (VS , VD, E).

Proof. (⇒) Suppose by contradiction that there is at least one match where the
duplicator loses. So, two cases can occur:
(i) LM (m0) � LN (n0) does not hold. This case contradicts the hypothesis
that M � N (where LM (m0) � LN (n0)); or
(ii) the duplicator cannot imitate the spoiler movement. Consider that the cur-
rent state game in the spoiler’s turn is (m,n). So, the spoiler can move from:
(a) a transition t = (m,a,m′) P R+

M ; or
(b) a transition t = (n, a, n′) P R−

N ;
In both cases we get to a contradiction. Let’s show the case (a) (case (b) is
similar):
The spoiler moves from (m,a,m′) P R+

M and there is no transition in R+
N

such that the duplicator can imitate this movement. As M � N , so there is
a refinement relation R between M and N and (m,x) P R for some x P SN

((m, x) there is because m is reachable from m0 in the model M, otherwise
(m, n) cannot be a game configuration (hypothesis)). By the refinement defi-
nition, if (m,x) P R then for all transition (m,a, k) P R+

M exists a transition
(x, a, x′) P R+

N such that LM (k) � LN (x) where the duplicator can move,
i.e., there is always a transition where the duplicator can imitate the spoiler
movement �.

(⇐) Suppose the duplicator wins in all matches of the refinement game RGM,N .
Let 	 = {(a, b)|(a, b) is a spoiler configuration}. Let’s prove that 	 is a refine-
ment relation between M and N. Suppose by contradiction that 	 is not a
refinement relation, i.e., (a) (m0, n0) /P 	; or (b) for some pair (m,n) P 	
one of following items does not hold: (i) LM (m) � LN (n); or (ii) exists
(m,a,m′) P R+

M and there is no (n, a, n′) P R+
N with (m′, n′) P 	; or

(iii) there is (n, a, n′) P R−
N and there is no (m,a,m′) P R−

M with (m′, n′) P 	.

A Refinement Repair Algorithm Based on Refinement Game 171

(a): By game def. (m0, n0) is the initial spoiler configuration, so (m0, n0) P
	, which contradicts (a);
(b)(i): By game def. if (m, n) is a spoiler configuration then LM (m) �
LN (n), which contradicts (b)(i);
(b)(ii) and (b)(iii): when the spoiler plays from configuration (m, n), there
are two possible duplicator configurations: (m’, n) or (m, n’). As the dupli-
cator wins all matchs, in both cases the duplicator can imitate the spoiler
movement, i.e., if the spoiler changes the configuration to (m’, n) from any
transition (m,a,m′) P R+

M then the duplicator will change the match config-
uration to (m’, n’) from a transition (n, a, n′) P R+

N with LM (m′) � LN (n′)
(according to game definition rules). So, for all transitions t P R+

M that rep-
resents the changing of a match configuration from (m, n) to (m’, n) in the
spoiler turn, there is a transition t′ P R+

N that represents the changing of
a match configuration from (m’, n) to (m’, n’) in the duplicator turn with
LM (m′) � LN (n′) and (m′, n′) P 	 ((m’, n’) is a spoiler configuration),
which contradicts the item (b)(ii). If we take the configuration (m, n’) as
the match configuration after the spoiler movement, it is possible to get to a
contradiction with item (b)(iii) following a similar reasoning used to obtain
the contradiction in item (b)(ii).

Figure 2 shows two refinement games between the specification of Fig. 1(A)
and the other models. In Fig. 2(A) it is possible to see the refinement game where
the duplicator wins (all matches are infinite) and in Fig. 2(B) it is possible to
see the refinement game where the spoiler wins because the duplicator cannot
move from state D4. The state (or configuration) where the duplicator cannot
move is called failure witness (Dwf). For example, the state D4 of the game
in Fig. 2(B) is a failure witness. The Proposition 6 affirms that if there is no
refinement between two models then there is a spoiler movement such that in
the next turn the duplicator cannot move.

Proposition 6. Let M = (APM , ActM , SM , sM0, R
+
M , R−

M , LM) and N =
(APN , ActN , SN , sN0, R

+
N , R−

N , LN) two KMTS such that M � N and the refine-
ment game RGM,N = (VS , VD, E). Then there is a failure witness Dwf P VD,
s P VS such that (s,Dwf) P E but there is no s′ P VS such that (Dwf , s′) P E.

Proof. By Theorem2 if M � N then there is at least a finite match wherein the
duplicator cannot move. If the duplicator cannot move then there is Dwf P VD

such that there is no a transition from Dwf to any vertex s P VS.

As shown above there is a pattern in the type of transitions of the game. The
type of the transition responsible for a duplicator movement depends on the type
of the transition of the last movement of the spoiler. Given two models M and
N and a game RGM,N = (VS , VD, E1, E

′
1, E2, E

′
2). If the spoiler moves through

an E1 transition then the duplicator will move through an E′
1 transition. If the

spoiler moves through an E2 transition then the duplicator will move throught
a E′

2 transition. Based on this, it is possible to obtain, according to the game
definition, the transition that should exist to connect the failure witnesses with
another vertice allowing the duplicator to keep playing.

172 E. Machado and A. Andrade

Proposition 7. Given M and N such that M � N , the refinement game
RGM,N = (VS , VD, E1, E

′
1, E2, E

′
2) and (s, p) P E where p is a failure witness

vertice and s′ P VS. It is true:

– If(s, p) P E1 then there is no (p, s′) P E′
1;

– If(s, p) P E2 then there is no (p, s′) P E′
2.

Proof. This proof is a direct consequence of the Propositions 5 and 6. ��

4 Refinement Repair

Refinement repair should be applied when a model is not a refinement of the
specification. Refinement repair is based on the refinement game and consists of
modifying the model so that the duplicator can continue to play. The changes
to be applied in the model are determined by information obtained from failure
witnesses which characterize the causes for the duplicator loss in the failure
witness configurations.

Definition 9 (Cause of Failure). Given two models M = (APM , ActM , SM ,
sM0, R

+
M , R−

M , LM) and N = (APN , ActN , SN , sN0, R
+
N , R−

N , LN) such that M �
N , the refinement game RGM,N = (VS , VD, E1, E

′
1, E2, E

′
2), an edge (s, p) P E

and a failure witness p = (sM , sN). A cause of failure is defined by existent
conditions in the models expressed by:

1. (sN , a, s′
N) /P R+

N ∨ L(sM) � L(s′
N) if (s, p) P E1; or

2. (s′
N , a, sN) P R−

N if (s, p) P E2.

Where s′
N is any state of SN .

The condition (s, p) P E1 in item (1) expresses that the spolier plays in M
and it is in state sM . So, the duplicator must play in N from state sN to a state
s′
N which is a refinement of sM . However, there is no such a transition because

(sM , sN) is a failure witness. The condition (s, p) P E2 in item (2) expresses that
the spoiler plays in N from state s′

N to a state sN . So, the duplicator must play
in M. But there is not a possible movement in M because (sM , sN) is a failure
witness. So, in this case the transition where the spoiler plays is the cause of
failure.

Proposition 8. Given M and N two KMTS. If M � N then there is at least
one cause of failure in the refinement game RGM,N .

Proof. According to Proposition 6 if M � N then there is at least one failure wit-
ness in the refinement game between M and N and consequently by Definition 9
at least one cause of failure.

The negation of a cause of failure indicates what should be true to prevent
the duplicator from losing the game in that configuration and can be used to
define a set of primitive changes to be applied in the model to remove the cause
of failure.

A Refinement Repair Algorithm Based on Refinement Game 173

We denote the set of causes of failures of the refinement game RGM,N as
CF (M,N) = {cf | cf is a cause of failure from the refinement game RGM,N}.

For any cause of failure it is possible to change the model through primitive
changes to remove it as specified in Proposition 9.

Proposition 9. Given M = (APM , ActM , SM , sM0, R
+
M , R−

M , LM) and N =
(APN , ActN , SN , sN0, R

+
N , R−

N ,LN) and a cause of failure cf P CF (M,N) such
that cf follows from failure witness (s, p) where p = (m,n). There is a set X of
primitives changes such that X(N) = N ′ and cf /P CF (M,N ′).

Proof. Take a cf P CF (M,N). It is suffice to apply primitive changes to N such
that item 1 and 2 are satisfied (according Definition 9):

1. (n, a, n′) /P R+
N ∨L(m′) � L(n′) if (s, p) P E1:by Propositions 3 and 4 there is

a set of primitive changes composed of types RT-, AT-, AT+, AL, CL, CT
such that (n, a, n′) P R+

N ^ L(m′) � L(n′) is satisfied;
2. (n, a, n′) P R−

N if (s, p) P E2: it is possible to use a primitive change of type
RT- to remove a transition from R−

N such that (n, a, n′) /P R−
N is satisfied.

Thus, for any cf P CF (M,N), there is at least one set of primitive changes
that applied in N make cf not satisfied. ��

From Proposition 9 it is possible to remove a cause of failure with a set
of primitive changes. However, there are several possibilities for each primitive
change. For example, suppose that the cause of failure has the form (n, a, n′) /P
R+

N . In this case, it is possible to create a state n′ through a primitive change
of type AS and add a transition to n′ through primitive change of type AT+
or AT−. Another alternative is the application of a primitive change CT to
modify the action of the transition and several actions in ActN can be used. The
refinement algorithm computes every possible change for every cause of failure.

4.1 Refinement Repair Algorithm

Given two models that do not satisfy a refinement relation, the algorithm pro-
posed in this paper uses the refinement game to find out all possible causes of
failures and for each one it explores all possible changes to remove the failure
from the model. The algorithm returns a set of possible KMTS generated from
the model which are the refinement of the specification.

Figure 3 shows a structure that represents the refinement repair algorithm
execution between a specification M and a model N. Each cause of failure found
(CF1, CF2,. . . ,CFn) can be removed by applying different sets of primitive
changes (X1, X2,. . . ,Xk). Every set of primitive changes is a possible change.
The application of each set Xi over N generates models which can be a refine-
ment of M (X1(N), X2(N),. . . ,Xw(N)). For each modified model, the algorithm
checks if it is a refinement of M. If the modified model is not a refinement,
the algorithm is repeated recursively. It is worth noting that each branch can
produce a model that is a refinement of M.

174 E. Machado and A. Andrade

Fig. 3. Example of the execution of the repair algorithm for M and N

The pseudocode presented below shows the main part of the algorithm. The
abstract data structures Set<X>, Pair<X,Y> and Vector<X> represent respec-
tively: a set of elements of the type X; a pair of elements, where the first element
is of type X and the second is of type Y; and a vector of elements of type X. The
types CF and PC represent Cause of Failure and Primitive changes respectively.

The RefinementRepair function is initially called receiving as input the spec-
ification M and the model N. The first step of it is to find the causes of failure
between M and N calling the function findCausesOfFailure(M, N) (line 3). This
function returns all causes of failure from the refinement game.

The next step in the algorithm is to find the possible changes for each cause of
failure (line 8). An important part of this step is that the algorithm must know
what changes have been applied in the model to avoid undoing any changes
with the new changes found, otherwise the algorithm can go into an infinite
loop if it undoes any change. In this step, the concept of consistency is used to
avoid undo applied changes. Another important aspect of this step is the use
of primitive changes SA to add new states. The algorithm only adds new states
while the restriction of Theorem 1 is false, i.e. the model N has fewer states than
the number of equivalence classes of M.

Different changes can remove a single cause of failure. As it is not possible
to figure out the best change to be applied, the algorithm processes every pos-
sible set of changes separately saving the resulting model as well as the applied
changes in a pair (resulting model, applied changes) (line 10). For example, if it
is necessary to add a transition, and model N has |SN | as the number of states,
so the algorithm creates |SN | possibilities (one for each state).

Finally, RefinementRepair is called recursively (line 12), for each pair (result-
ing model, applied changes) receiving as input the specification M, the modified
model (N’) and all already applied changes over it (XN ′). If the modified model
is a refinement of M this recursive call returns only the modified model (the
expression in line 04 is false and go to line 14). Otherwise, the algorithm repeats
the process.

Returning to the example in Fig. 2(B), the failure witness is the vertice D4.
It is possible to show that the cause of failure is (t2, t, t0) /P R+

N ∨ L(t2) � L(t0)
and one of the possible changes suggested by the algorithm to remove this cause
of failure is AT-(t2, t, t0) and AT+(t2, t, t0) to add the transition in R−

N and in
R+

N , respectively. From this change the algorithm returns a model equal to the
model presented in Fig. 1(B).

A Refinement Repair Algorithm Based on Refinement Game 175

Algorithm 1. RefinementRepair
Data: KMTS M and N such that M � N and a set XA of already applied

primitive changes over N
Result: R = {N’ | M � N ′ e X(N) = N ′ for some set X of primitive changes}

1 begin
2 R ←− ∅
3 causesOfFailure ←− findCauseOfFailures(M,N)
4 if causesOfFailure �= ∅ then
5 Set < V ector < PC >> possiblePrimitiveChanges ←− ∅
6 Set < Pair < KMTS, Set < PC >>> modelsAndChanges ←− ∅
7 for cf P causesOfFailure do
8 possiblePrimitiveChanges ←−

findPossiblePrimitiveChanges(N, cf,XA)
9 if possiblePrimitiveChanges �= ∅ then

10 modelsAndChanges ←−
applyPossibleChanges(N, possiblePrimitiveChanges)

11 for pair = (N ′, XN′) P modelsAndChanges do
12 R ←− R Y {RefinementRepair(M,N ′, XN′)}

13 else
14 R ←− R Y {N}

We can show that the algorithm terminates. This is because the algorithm
does not try to repair a model infinitely because the changes already made
can not be undone. So as the set of changes and the model are finite there
is a situation where the set of possible changes is empty (the expression in
line 09 is false). The number of changes is finite because the number of states
is finite and the number of primitive changes that can be done in a state
(without undoing any applied change) is finite. Suppose a state s of a model
N = (APN , ActN , SN , sN0, R

+
N , R−

N , LN). Considering the state s it is only pos-
sible to apply at most two primitive changes (to add a proposition and assign a
value to it) because if any other primitive change is done over the same proposi-
tion the primitive changes will not be consistent. Then, the number of primitive
changes can be applied over s related to propositions is 2×|APN |. Using the same
reasoning it is possible to see that the maximum number of primitive changes
related to transitions to the state s is 2 × |SN | × ActN which means adding a
transition for every action in R−

N and R+
N for each state in SN . Then, the max-

imum number of primitive changes that can be applied in N is the sum of the
maximum number of primitive changes applied over each state. The expression
that represents the sum is (|SN |)2×2× (1+ActN). Also note that the algorithm
only adds new states while the restriction of the Definition 1 is not satisfied.
Thus, even adding states, the maximum number of primitive changes that can
be applied into a model is finite.

176 E. Machado and A. Andrade

Moreover, the models returned by the algorithm are always a refinement of
the specification because it only returns refinement models when there is no
failure witnesses in the refinement game (expression in line 04 is false then go to
line 19). Therefore, according to Theorem2 the algorithm only returns models
that are refinements of the specification.

The implementation of the algorithm as well as several tests are available in
[1]. A set of seventy test cases has been generated and each test was composed to
one specification model M and another model N. All models in these tests have
10 states, 3 transitions per state and 4 propositions per state. These tests have
been arranged in blocks according to the number of failure causes presented in
the refinement game between M and N. The measured average (and standard
deviation) of the algorithm execution time to solve the test cases per block is
shown in Table 1.

Table 1. Average execution time (milliseconds) per number of causes of failures

Number of cause of failures

0 1 2 3 4 5 6

Average 432,18 8512,65 11345,11 12987,65 15672,89 22463,11 35234,17

Standard deviation 774,17 1111,76 3000,22 600,12 5512,22 1233,55 4425

Figure 4 shows a graph of average execution time per number of causes of
failures corresponding to Table 1. This graph shows an exponential growth in
time in function of the number of failure causes.

The high value of the standard deviation can be explained due to the com-
plexity (resulting in a high execution time) to solving some specific cases in which
the size of the execution tree is increased because many changes are needed for
the model repair. Although preliminary tests confirm the exponential nature
of the algorithm, more tests should be performed, for example, the number of

Fig. 4. Graph of average execution time (milliseconds) per number of causes of failures

A Refinement Repair Algorithm Based on Refinement Game 177

states, transitions and propositions for examining the impact of these variables
in the peformance of the algorithm.

Considering an exponential nature of the algorithm, there are several points
which could be improved: (1) The algorithm finds solutions for each cause of
failure, working with an in depth search and this process can be improved by
identifying a minimum set of changes to remove all causes of failures at once,
reducing the number of combinations to be analyzed by the algorithm; (2) It
is possible to use dynamic programming techniques in order to reuse solutions
already produced in relation to the cause of failures already considered in order
to ensure a refinement relation.

5 Conclusions and Future Works

In this paper we propose an algorithm to modify a KMTS model in order to
preserve a refinement relation with a specification represented also as a KMTS.
To the best of our knowledge this is the first algorithm proposed to repair a
KMTS model in the context of refinement between models. In [11] the authors
define a repair algorithm for bisimulation relation. This algorithm is based on
maximal bisimulation but this solution is not applicable to partial models. The
proposed solution calculates the largest subgraph of a model that is bisimilar to
the specification. Then the model elements that do not belong to this subgraph
are removed from the model and the specification elements that are not mapped
to a bisimilar subgraph are added from the specification subgraph. Unlike this
our proposal treats refinement instead of bisimulation and is based on a refine-
ment game considering the failure of the refinement game to find the changes
to be applied to the model in order to ensure a refinement relation with the
specification.

The works [5,6] propose algorithms to repair a KMTS in order to make it
satisfy a required property specified as a temporal logic formula based on model
checking. Unlike these works, our work aims to repair a model to ensure a refine-
ment relation with another model, using an algorithm based on a refinement
game. Thus, we belive that our work contributes to the perspective of incremen-
tal and iterative software modeling behavior in which a refinement relation is
required between models of components with partial information.

Although we have not analyzed the complexity of the refinement repair prob-
lem we suspect that this problem is difficult in terms of complexity (possibly it
is an exponential problem). We are interested in investigating some heuristics
to improve the efficiency of the algorithm in some cases. In addition, we believe
that there are cases where the set of changes used to guarantee refinement is
not minimal, i.e., the algorithm can return two models N’ and N” as output
such that the set of changes used to generate N”, for example, is contained in
the set of changes used to generate N’ then only N” should be considered as
the solution. We are analysing this problem in order to improve the algorithm.
Another line of research is to define the refinement game repair for other types
of refinement such as weak and branching refinements.

178 E. Machado and A. Andrade

We also believe that this work can be used to give support to the area of
change impact analysis in the context of iterative and incremental software devel-
opment. The impact of changes can be measured by assigning weight to each type
of primitive change and calculating the cost of change in each model produced
by refinement repair.

References

1. Refinement repair algorithm. https://sourceforge.net/projects/kmtsframework/.
Accessed 10 Aug 2016

2. Beneš, N., Křet́ınskỳ, J., Larsen, K.G., Srba, J.: On determinism in modal tran-
sition systems. Theoret. Comput. Sci. 410(41), 4026–4043 (2009). Festschrift for
Mogens Nielsens 60th birthday

3. Bozzelli, L., van Ditmarsch, H., French, T., Hales, J., Pinchinat, S.: Refinement
modal logic. Inf. Comput. 239, 303–339 (2014)

4. Bulychev, P., Konnov, I., Zakharov, V.: Computing (bi) simulation relations pre-
serving ctl* x. for ordinary and fair kripke structures. Math. Methods Algorithms
Inst. Syst. Program. Russ. Acad. Sci. 12 (2007)

5. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract
model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 341–355. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28891-3 32

6. Guerra, P.T., Andrade, A., Wassermann, R.: Toward the revision of CTL models
through kripke modal transition systems. In: Iyoda, J., de Moura, L. (eds.) SBMF
2013. LNCS, vol. 8195, pp. 115–130. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41071-0 9

7. Sabetzadeh, M., Easterbrook, S.: Analysis of inconsistency in graph-based view-
points: a category-theoretical approach. In: 18th IEEE International Conference
on Automated Software Engineering, pp. 12–21. IEEE (2003)

8. Stirling, C.: Local model checking games (extended abstract). In: Lee, I.,
Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer,
Heidelberg (1995). doi:10.1007/3-540-60218-6 1

9. Thomas, W.: On the Ehrenfeucht-Fräıssé game in theoretical computer science. In:
Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 559–568.
Springer, Heidelberg (1993). doi:10.1007/3-540-56610-4 89

10. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios.
IEEE Trans. Softw. Eng. 29(2), 99–115 (2003)

11. Wang, F., Cheng, C.-H.: Program repair suggestions from graphical state-transition
specifications. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.)
FORTE 2008. LNCS, vol. 5048, pp. 185–200. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68855-6 12

https://sourceforge.net/projects/kmtsframework/
http://dx.doi.org/10.1007/978-3-642-28891-3_32
http://dx.doi.org/10.1007/978-3-642-41071-0_9
http://dx.doi.org/10.1007/978-3-642-41071-0_9
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1007/3-540-56610-4_89
http://dx.doi.org/10.1007/978-3-540-68855-6_12
http://dx.doi.org/10.1007/978-3-540-68855-6_12

Massive Open Online Courses and Monoids

Hugo Farias1, Christiano Braga1(B), and Paulo B. Menezes2

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
hugofs@id.uff.br, cbraga@ic.uff.br

2 Instituto de Informática,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

blauth@inf.ufrgs.br

Abstract. Massive open online courses (MOOC) allows for distributed
long-distance learning for extremely large student enrollment. Nowadays
most universities throughout the world have their courses online. Web
portals such as Coursera or edX join together courses from many of them.
Even though there are many platforms to support the development of
MOOC, such as Moodle or XBlock, it does not seem to be the case
that there are many languages to help course descriptions. Moreover, we
would like to allow the description of different paths to teach and learn
a given subject. We propose Learn, a declarative language for course
descriptions. The contribution of this paper is manyfold: (i) we exem-
plify Learn descriptions, (ii) formalize the meaning of Learn descriptions
and teaching strategies, that allows for different teaching paths, and (iii)
discuss the implementation of a toolkit to specify, analyze and generate
a course in a MOOC platform from Learn descriptions.

1 Introduction

Massive open online courses (MOOC) portals such as Coursera [4] or edX [15]
make it easy to access courses from the finest universities throughout the world.
However, building, preparing and deploying a course in a platform such as Moo-
dle [3] is not an easy task. It does not appear to be the case that there are many
languages to ease this task so one can focus on preparing the lectures and not
wasting time on the idiosyncrasies of a technology.

One such language is the eLesson Markup Language (eLML, [5,6,14]). A
markup language for course descriptions with tools to transform eLML courses
into DocBook, PDF, ODF and other document formats. Despite the apparent
lack of support to MOOC platforms such as Moodle and XBlock [10], eLML
does not support the description of different paths for teaching a given set of
subjects, the so-called learning objects [13] in eLML terminology. They can only
be viewed (or studied) in the way they are declared in a course, that is, there
is no tool support to enable different paths to teach a subject. Moreover, to
the best of our knowledge, eLML does not have a formal semantics. Of course,
one can manually create teaching paths directly in a MOOC platform, through
its visual interface or as HTML code to be imported by the MOOC platform,

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 179–195, 2016.
DOI: 10.1007/978-3-319-49815-7 11

180 H. Farias et al.

for instance, but this is clearly a laborious error prone task, as there can be a large
quantity of such paths, with no support whatsoever from the underlying tool.
A course description language language, with an associated generative process
targeting MOOC platforms, appears to be a better and more robust approach
than the manual one.

In this paper we propose Learn, a language to describe courses that allows
for the description of different ways of teaching learning objects. Using Learn,
one may teach learning objects in different ways. For instance, when teaching
formal languages, one could start on the applications of regular languages, teach
their formalization and then get a glimpse of computability. In class teaching of
context-free grammars could perhaps benefit from a presentation of Greibach’s
normal form right before studying the equivalence between context-free gram-
mars and push-down automata. A book presentation of these subjects, however,
would gather both Chomsky’s normal form and Greibach’s with other proper-
ties of context-free grammars and only later on discuss the relationship between
context-free grammars and push-down automata. The “in-class way” of present-
ing formal languages and the “book way” can be described in Learn as teaching
strategies that constraint all possible paths of teaching a given set of subjects.

Perhaps it is clear from this example that a course in Learn has an automaton
semantics. Moreover, it has a monoidal structure that may be constrained by
a partial order. The states of such an automaton are given by a set of learning
objects that may be taught in a given moment, depending on a chosen teaching
path, that may fulfill the dependencies of learning objects and enable them to be
chosen in a forthcoming state. A transition denotes a choice of a learning object
to be taught from a given set. A computation then represents a path one may
take to teach a given set of learning objects, as long as ordering constraints are
fulfilled. The contributions of this paper are manyfold: (i) the language Learn,
that supports teaching paths by means of teaching strategies, (ii) its monoidal
semantics as partially-ordered monoids a new monoidal structure, and (iii) the
Learn Maude Toolkit, a prototype execution environment in the rewriting logic
language Maude [2,9] where computations are identified with rewritings in a
suitable rewrite system.

Plan of the Paper. In Sect. 2 we give some examples of Learn descriptions, present
Learn’s monoidal semantics and prove that Learn languages, induced by Learn
descriptions, are regular. In Sect. 3, we discuss the Maude language and its
metaprogramming facilities. Section 4 introduces the Learn Maude Toolkit: how
Learn’s descriptions are represented as rewrite theories in Maude, a transfor-
mation from Learn to Maude using the latter’s metaprogramming facilities and
a transformation from Learn descriptions to HTML documents together with
JavaScript. In Sect. 5 we discuss related work. We conclude our paper in Sect. 6
with our final remarks and future work.

Massive Open Online Courses and Monoids 181

2 Examples, Semantics and Chomsky Classification

In this Section we illustrate Learn descriptions and give them a formal semantics.
Three examples are detailed in Sect. 2.1: (i) the simplest example is the most
general one, from the teaching paths perspective, where a set of learning objects
are declared and a course teaches it without any strategies - all possible com-
binations of learning objects are possible then; (ii) the second example declares
an order among the learning objects taught in a course by means of before
teaching strategy combinator; and (iii) finally, a course with a teaching strategy
that makes use of all-but, a more elaborated teaching strategy combinator. In
Sect. 2.2 we discuss a monoidal semantics for Learn descriptions.

2.1 Learn Syntax: Formal and by Example

In this Section we formalize Learn’ syntax, illustrate its descriptions and its
informal semantics with three examples using the teaching scenarios from the
introductory Section.

Learn Grammar. The syntax of Learn descriptions is formalized by the following
grammar, where ID is the syntactical class for identifiers, STR for strings, and
? denotes an optional syntactic class.

DESCR :: = course on STR teaches ID+(and ID)?STRAT ?LO∗

STRAT -DECL :: = with teaching strategy STRAT+

STRAT :: = BASIC | COMB
BASIC :: = (ID before ID)∗ | (ID after ID)∗

COMB :: = SET PREC all but TSET
TSET :: = the SET | SET
SET :: = ID∗(and ID)?

PREC :: = before | after
LO :: = learning object ID has T I X

T :: = title STR
I :: = image STR

X :: = text STR

Course Without Teaching Strategies. A learning object is declared below using
a homonymous keyword, it must be identified with a quoted identifier (‘int3 in
the example), has a title and optional attributes such as a text (body) and an
image.

1 title ‘‘Introduction to Chapter 3’’
2 image ‘‘auto.png’’
3 text ‘‘The study of regular languages . . .’’

An example course entitled “Formal Languages” is declared in Listing 1.1. It
states that the set of learning objects declared after keyword teaches are the

182 H. Farias et al.

ones to be studied. In this example, since no teaching strategies are declared,
all possible teaching paths are allowed, that is, any combination (even infinite)
of learning objects is possible. For instance, one may start with learning object
’ex3 2, which may as well be an exercise in the course’s text book, then move on
to learning object ’sec3 2 which may as well be the the section 3.2 of the course’s
text book, and only then read the introduction, possibly identified by ’int3.

1 course on ‘‘Formal Languages’’
2 teaches <’int3 >, <’sec3 2 >, <’sec3 1 >, <’fig3 2 >, <’ex3 1 > and <’

ex3 2 >

Listing 1.1. Course declaration example.

A Course with Two Teaching Strategies. A course with teaching strategies con-
straints the case with no teaching strategies by constraining it with a partial
order among the learning objects. In Listing 1.2, when teaching strategy’class is
chosen, learning object’int3, for instance, must be studied before learning object
’sec3 1, since the before combinator was used. Similarly, the after combinator
can be used. Therefore, if the path with chosen learning objects does not include
’int3 then learning object’sec3 1 may not be chosen. If a course declares two
or more teaching strategies, its semantics is the choice between them, that is,
a teaching strategy must be chosen from the beginning and followed until the
end. (In automata terms, is the disjoint union of the automata induced by each
strategy.)

1 course on ‘‘Formal Languages’’
2 teaches <’sec2 1 >, <’sec2 2 >, . . . and <’ex3 2 >
3 with
4 teaching strategy <’class >
5 <’int3 > before <’sec3 1 >,
6 <’sec3 1 > before <’sec3 2 >, . . .
7 teaching strategy <’book >
8 <’sec2 1 > before <’sec2 2 >,
9 <’sec2 2 > before <’sec2 4 >,

10 <’sec2 4 > before <’int3 >,
11 <’int3 > before <’sec3 1 >,
12 <’sec3 1 > before <’sec3 2 >, . . .

Listing 1.2. Course with teaching strategies using before combinator.

A course illustrating the use of all-but strategy combinator. In Listing 1.3 we
exemplify how new combinators can be used in Learn. Combinator all-but is a
ternary combinator that defines a strategy where a set of learning objects, given
by its first parameter, must be taught before or after a subset of the declared
learning objects given as third parameter. In the example of Listing 1.3, the set
exercises is defined to be {ex3 1, ex3 2} and the teaching strategy ex makes
use of it to define an order on the learning objects: it simply states that exercises
come last, after all learning objects but the exercises.

Massive Open Online Courses and Monoids 183

1 course on ‘‘Formal Languages”
2 teaches <’int3 >, <’sec3 2 >, <’sec3 1 >, <’fig3 2 >, <’ex3 1 > and <’

ex3 2 >
3 with
4 exercises <’ex3 1 > and <’ex3 2 >
5 teaching strategy <’ex > exercises after all but the exercises

Listing 1.3. Course with a teaching strategy using after-but combinator.

Finally, note that such a teaching strategy can be equivalently described as
a strategy using the before combinator as in Example 1.2: we would simply list
all possible orderings (since they form a finite set) using the before combinator.

2.2 Learn Descriptions Are Partially-Ordered Monoids

Definition 1 (Partially-ordered monoid). The tuple (S, ·, ε,≤) denotes a
partially-ordered monoid where S is a finite set, (S, ·, ε) is a monoid, and (S,≤)
a partial order such that, for all x, y, wi, 1 ≤ i ≤ 3,

(ordered prefixing) x ≤ y =⇒ w1 · x · w2 · y · w3 (1)

where x, y ∈ S,wi ∈ S∗, x and y are not subwords of w1.

Lemma 1. The language whose elements are elements of a finite monoid is
regular.

Proof. Let M = (Σ, ·, ε) be a finite monoid, that is, M = 2Σ . Every finite
language is regular.

Lemma 2. Any partially-ordered monoid is regular.

Proof. A partially-ordered monoid P = (S, ·, ε,≤) is a subset of the finite monoid
M = (S, ·, ε). Order ≤ excludes the elements of M that do not satisfy (1). By
Lemma 1, P is regular since finite regular languages are closed under inclusion.

Definition 2 (Non-stuttering partially-ordered monoid). A non-
stuttering partially-ordered monoid is a partially-ordered monoid P = (S, ·, ε,≤)
such that for all w ∈ P, σ ∈ S,

(non-stuttering) w · σ · σ �∈ P.

Corollary 1. Non-stuttering partially-ordered monoids are regular.

Proof. Every non-stuttering partially-ordered monoid is a subset of a partially-
ordered monoids and both are finite sets. ��
Definition 3 (Learn descriptions and non-stuttering partially-ordered
monoids). The teaching paths of a Learn description L = (C,O,

⊎

i ςi),
i ∈ N, are the elements of a non-stuttering partially-ordered monoid PL =
(O, ·, ε,⊎i ≤ςi

) such that for every declaration o1 before o2 in a teaching strat-
egy ςi in L there exists a pair o1 ≤ςi

o2 in PL.

Fact 1. Learn descriptions are regular languages.

184 H. Farias et al.

3 Maude

Maude is a high-level language and high-performance system supporting both
equational and rewriting computations. Rewriting Logic [9] is the underlying
logical framework of the Maude system. Deduction rules for Rewriting Logic are
given in Fig. 1. Given two states [u], [v] ∈ TΣ/E,k, [v] can be reached from [u] by
some possibly complex concurrent computation iff it can proven that u −→ v in
the logic. This provability is denoted by R 	 u −→ v.

Fig. 1. Deduction rules for rewriting logic.

To specify a system in Maude its static part (state structure) and its dynamics
(state transitions) are distinguished. The static part is specified by means of
an equational theory (many-sorted, order-sorted or MEL), while the dynamics
are specified by means of rules. Computation in a transition system is then
precisely captured by the term rewriting relation using the given rules, where
terms represent states of the given system.

The distinction between the static part and the dynamic part is realized
in Maude by means of functional and system modules. Functional modules in
Maude correspond to membership equational theories (Σ,E) which are assumed
to be Church-Rosser (confluent and sort decreasing) and terminating. Their
operational semantics is equational simplification. Rewriting is applied until a
canonical form is obtained and a given term can not be further rewritten. Equa-
tions are used to define functions over static data as well as properties of states.
The set of equations E is the union of a set A of structural axioms (such as
associativity, commutativity, or identity), also known as equational attributes,
for which matching algorithms exist in Maude, and a set E′ of equations that
are Church-Rosser and terminating modulo A.

System modules in Maude correspond to rewrite theories (Σ,A∪E′, R) where
rewriting with R is performed modulo the equations A∪E′. Moreover, the rules
R must be coherent with respect to the equations E′ modulo A. Coherence
means that the interleaving of rewriting with rules and rewriting with equations

Massive Open Online Courses and Monoids 185

will not loose rewrite computations, that is, failing to perform a rewrite that
otherwise would have been possible before an equational deduction step was
taken. By assuming coherence, Maude always reduces to canonical form using
E before applying any rule in R.

A Maude Example. In the following example, we illustrate the syntax of Maude
modules by representing the computations of a non-deterministic automaton in
terms of associative-commutative-identity rewriting. Module AUTOMATON in
Listing 1.4 declares sort Alphabet* for words in an alphabet with an homonymous
sort, constructed with an associative-commutative juxtaposition operation (line
8) with identity given by constant empty of sort Alphabet*. Configurations of
an automaton are given by the current state of the automaton together with a
subword of the input word. Configurations are constructed with an associative
comma operator (line 9).

1 fmod AUTOMATON is
2 sort Alphabet Alphabet∗ InitialState FinalState State Configuration .
3 subsort InitialState FinalState < State .
4 subsort Alphabet < Alphabet∗ .
5 subsort State Alphabet∗ < Configuration .
6

7 op epsilon : → Alphabet∗ .
8 op : Alphabet∗ Alphabet∗ → Alphabet∗ [assoc id: epsilon] .
9 op , : Configuration Configuration → Configuration [assoc comm] .

10 endfm

Listing 1.4. AUTOMATON functional module.

Listing 1.5 gives an example of a non-deterministic automaton that represents
computations of an automaton that accepts words that have “aa” or “bb” as
subwords of a given word over the alphabet {a, b}. After including the functional
module AUTOMATON, module AA-BB-SUBWORD declares (in lines 4 and 5)
‘a’ and ‘b’ to be constants of sort Alphabet, and ‘q0’, ‘q1’, ‘q2’, and ‘qf’ to
be constantes of sort State. Moreover, constants ‘q0’ and ‘qf’ are declared to
be of sorts InitialState and FinalState, respectively, by means of membership
equational axioms (in lines 7 and 8). Finally, rules (in lines 12 to 17) specify the
transition rules of the automaton that check if a given word have “aa” or “bb”
as subwords of a given word in an automaton configuration.

1 mod AA−BB−SUBWORD is
2 ex AUTOMATON .
3

4 ops a b : → Alphabet .
5 ops q0 q1 q2 qf : → State .
6

7 mb q0 : InitialState .
8 mb qf : FinalState .
9

10 var sigma : Alphabet . var W : Alphabet∗ .

186 H. Farias et al.

11

12 rl q0 , sigma W ⇒ q0 , W .
13 rl q0 , a W ⇒ q1 , W .
14 rl q0 , b W ⇒ q2 , W .
15 rl q1 , a W ⇒ qf , W .
16 rl q2 , b W ⇒ qf , W .
17 rl qf , sigma W ⇒ qf , W .
18 endm

Listing 1.5. AA-BB-SUBWORD system module.

Now, given a term of sort Configuration representing the initial configuration
of a given automaton, acceptance can be implemented by searching for a term
of sort Configuration that contains a FinalState and the empty word epsilon.
Listing 1.6 exemplifies that word “a b b a” is accepted by the automaton whose
computations are specified in module AA-BB-SUBWORD since the final state
‘qf’ is reached with the empty word. (All symbols were read.) Since there is no
solution for a search starting from configuration ‘q0, a b a’ it means that the
word “a b a” is not accepted by the automaton.

1 ==
2 search in AA−BB−SUBWORD : q0,a b b a ⇒∗ epsilon,F:FinalState .
3

4 Solution 1 (state 10)
5 states: 11 rewrites: 17 in 0ms cpu (0ms real) (93406 rewrites/second)
6 F:FinalState −→ qf
7

8 No more solutions.
9 states: 11 rewrites: 17 in 0ms cpu (0ms real) (79812 rewrites/second)

10 ==
11 search in AA−BB−SUBWORD : q0,a b a ⇒∗ epsilon,F:FinalState .
12

13 No solution.
14 states: 7 rewrites: 10 in 0ms cpu (0ms real) (196078 rewrites/second)

Listing 1.6. Word acceptance as search.

An Example of Metaprogramming in Maude. Maude modules can be treated as
terms in META-LEVEL, a predefined Maude module that represents an uni-
versal theory of meta-represented modules. The module META-LEVEL defines
many data structures to manipulate terms and modules at the meta-level. The
so-called descent functions in such data structures allow for performing different
meta-level computations.

Listing 1.7 illustrates the same search done at object level (as opposed to
meta-level) in Listing 1.6 for the initial configuration ‘q0 , a b b a’ calling
metaSearch in the context of a module that includes modules META-LEVEL
and AA-BB-SUBWORD. Function metaSearch has a number of parameters: (i)
the meta-module where the meta-search will be performed, (ii) the meta-level

Massive Open Online Courses and Monoids 187

representation of the initial state of the search, (iii) the meta-level representation
of a pattern denoting the states to be reached, (iv) a condition for the meta-
seach (which in Listing 1.7 is empty), (v) an identifier denoting the rewriting
relation to be used (’* is used in Listing 1.7 denoting zero or more rewrites), (vi)
a bound for the search, denoting the maximum depth of the search and (vii) the
solution number. The result of metaSearch is a term of sort ResultTriple with
a meta-term denoting a reachable state, its meta-represented type and a set of
substitutions with respect to the pattern in parameter (iii).

1 mod META−LEVEL−EXAMPLE is
2 pr META−LEVEL . pr AA−BB−SUBWORD .
3 endm
4 ==
5 reduce in META−LEVEL−EXAMPLE :
6 metaSearch(upModule(’AA−BB−SUBWORD, false), upTerm(q0,a b b a),
7 upTerm(epsilon,F:FinalState), nil,’∗, 4, 0) .
8 rewrites: 19 in 0ms cpu (0ms real) (34608 rewrites/second)
9 result ResultTriple:

10 {’ ‘, [’epsilon.Alphabet∗,’qf.FinalState],’Configuration,
11 ’F:FinalState ←’qf.FinalState}
12 ==
13 reduce in META−LEVEL−EXAMPLE :
14 downTerm(getTerm(metaSearch(upModule(’AA−BB−SUBWORD, false),
15 upTerm(q0,a b b a), upTerm(epsilon,F:FinalState), nil,’∗, 4, 0)),
16 error:[Configuration]) .
17 rewrites: 22 in 0ms cpu (0ms real) (194690 rewrites/second)
18 result Configuration: epsilon,qf

Listing 1.7. Word acceptance by an automaton as metaSearch.

Functions upModule and upTerm, also used in Listing 1.7 are also meta-
functions. Not surprisingly, they produce the meta-level representations of a
given module and a given term, respectively. The output of metaSearch can
be brought to object level using functions getTerm and downTerm. The former
projects the first component out of a ResultTriple (the output of metaSearch)
and downTerm produces the object level representation of a meta-term or its
second argument when it fails to produce the object level representation of the
first argument.

Section 4 uses the meta-level API discussed in this Section to implement a
transformer from Learn descriptions to Maude modules.

4 Learn Maude Toolkit

In this Section, we discuss a prototype executable environment for Learn in
Maude. It is available for download at https://github.com/HugoFarias/learn/.
We have implemented two transformers:1 (i) Learn to Maude transformer
1 A transformer from Learn descriptions to regular grammars is also available in

Learn’s Git Hub repository. It implements a formalization of Learn descriptions
as right-linear grammars discussed in [12].

https://github.com/HugoFarias/learn/

188 H. Farias et al.

(see Sect. 4.2) produces a Maude system module implementing a mapping from
Learn descriptions to rewrite theories as described in Sect. 4.1, and (ii) Learn to
HTML describes a transformer (see Sect. 4.3) from Learn descriptions to HTML
code with JavaScript that can be imported into Moodle, a MOOC platform.

4.1 Learn Descriptions as Rewrite Theories

Recall from Sect. 2.2 that a Learn description L is a triple (C,O,
⊎

i ςi) where
i ∈ N.

Definition 4 (Learn strategies as rewrite theories). A rewrite theory
Rςi

= (Σ,E,R) is associated with a Learn strategy ςi. The signature Σ includes:
(i) a sort State with constructor state : Strategy LOSet LOList → State, where
Strategy is the sort for strategy identifiers, LOSet is the sort for sets of learning
objects identifiers, that is, terms of LOSet denote elements in 2O, constructed
by juxtaposition of learning object identifiers; (ii) LOList is the sort for lists of
learning objects identifiers such that for every l1 · l2 · . . . ln ∈ LOList we have
li ∈ O, 1 ≤ i ≤ n, and operator pred : Strategy LearningObject → LOSet where
terms in LearningObject denote elements of O. The set E of equations defines
equalities for operator pred of the general form

ceq pred(S, l) = L . (2)

where S ∈ Strategy, denoting a teaching strategy ςi, l is a LearningObject, and
L is an LOSet representing the set {o | o ≤ςi

l}, that is, the set of predecessors
of l. The set of rules R includes two conditional rules

crl state(S,AS, ε) ⇒ state(S, (AS − A), A) if

choose(AS) ⇒ A ∧ pred(S,A) = ∅ . (3)

crl state(S,AS,AL) ⇒ state(S, ((AS − A)B), (AL · A)) if

(choose(AS) ⇒ A) ∧ (B := all − AS) ∧ (AL �= ε) ∧
[∀σ ∈ pred(S,A)(σ is subword of AL)] . (4)

where S is a strategy identifier, AS and B are a sets of learning objects identi-
fiers, A is a learning object identifier, AL is a list of learning objects identifiers,
constant all is declared in Σ with sort LOSet and is identified with set O in
the equation set E, ε denotes the empty list of learning objects identifiers and ∅
denotes the empty set of learning object identifiers.

Let ςi be a teaching strategy of a given Learn description L, Pςi
is the non-

stuttering partially-ordered monoid of ςi according to Definition 3, Rςi

State the
rewrite theory of ςi given by Definition 4, w ∈ O∗

L, o ∈ OL, T Rςi

S be the initial
algebra of sort S induced by rewrite theory Rςi

, AS ∈ T Rςi

LOSet, AL ∈ T Rςi

LOList,
π3 : State → LOList be the third projection of terms constructed with state :
Strategy LOSet LOList → State, and π̂3 : 2T Rςi

State → 2T Rςi
LOList to be π3 lifted

to sets of terms of sort State.

Massive Open Online Courses and Monoids 189

Lemma 3 (Pςi
⊆ π̂3(T Rςi

State)).

∀ςi∃Pςi
,Rςi

[(w · o) ∈ Pςi
=⇒ state(ςi, pred(ςi, o) ∪ AS,w · o) ∈ T Rςi

State]

Proof. By induction on the size n of words in Pςi
. For n = 0, Definition 4 identi-

fies ε ∈ Pςi
with state(ςi,Ωςi

, ε) where Ωςi
= {ω | pred(ςi, ω) = ∅}. When n = 1,

every symbol word o ∈ Pςi
is such that �o′(o′ ≤ςi

o). Such words are obtained
with Rςi

by a one step rewrite with Rule 3 applied to term state(ςi,Ωςi
, ε). The

inductive case

w · o ∈ Pςi
=⇒ state(ςi, AS,w · o) ∈ T Rςi

State

is proved assuming as induction hypothesis w ∈ Pςi
=⇒ state(ςi, AS1 ∪

{o}, w) ∈ T Rςi

State such that the rewriting relation ⇒Rςi
preserves ordered prefix-

ing (Definition 1) and non-stuttering (Definition 2) up to w. The application of
Rule 4 to state(ςi, AS,w) produces the set of terms T =

⋃

∀a∈AS{state(ςi, (AS −
{a}) ∪ (OL − AS), w · a)}. Given a word w · o ∈ Pςi

, we need to prove that: (i)
o ∈ AS, (ii) T preserves ordered prefixing and (iii) T preserves non-stuttering.
Property (i) holds by induction hypothesis. Property (ii) holds by condition
∀σ ∈ pred(S, o)(σ is subword of AL) of Rule 4. Finally, Property (iii) is proved
the right-hand side of Rule 4, that is, o �∈ AS where AS = AS1 ∪ (OL − AS1).��
Lemma 4 (π̂3(T Rςi

State) ⊆ Pςi
). Given a Learn description L = (C,O,

⊎

i ςi),

∀ςi∃Pςi
,Rςi

(state(ςi, AS,AL) ∈ T Rςi

State =⇒ AL ∈ Pςi
).

Proof. By induction on the length of rewrites of Rςi
from the initial term

state(ςi, T Rςi

LearningObject, ε)

where T Rςi

LearningObject denotes the initial algebra of sort LearningObject in Rςi
,

which is a finite set. Zero length rewrites reach terms of the same form of the
initial term by reflexivity of the rewriting logic calculus and ε ∈ Pςi

. Rewrites of
length 1 reach terms of the general form

state(ςi, AS − {A}, A)

such that pred(ςi, A) = ∅, by application of Rule 3. Since ςi and Rςi
share the

set of learning objects, A is ςi since A is trivially a non-stuttering and partially-
ordered word. Rewrites with length > 1 reach terms of the general form

state(ςi, AS − {A}, AL · A)

by Rule 4 and transitivity of the rewriting relation. By induction hypothesis, AL
is non-stuttering and ordered prefixed. Pattern AS −{A} on the right-hand side
of Rule 4 guarantees that there is no such term as AL ·A ·A thus preserving non-
stuttering. Moreover, condition ∀σ ∈ pred(S,A)(σ is subword of AL) guarantees
ordered prefixing. Therefore, AL·A ∈ Pςi

. Rewritings are always on the top since
there are no nested terms of sort State. Congruence is never applied. ��

190 H. Farias et al.

Theorem 1 (Correctness of Learn strategies as rewrite theories).

Pςi
= π̂3(T Rςi

State)

Proof. By Lemmata 3 and 4. ��
Section 4.2 discusses the implementation of this translation in Maude.

4.2 Learn to Maude Transformer

This Section explains the structure and main aspects of the Learn to Maude
transformer prototype.

The main modules of the transformer are: (i) LEARN-SIG, that defines the
grammar for Learn descriptions as illustrated in Sect. 2.1, (ii) STRATEGY, that
implements the set of rules described in Sect. 4.1, (iii) TRANSFORM-LEARN,
that implements the meta-function that generates Maude system modules from
Learn descriptions, and (iv) CMD, that allows for executing meta-level computa-
tions using Learn syntax. In what follows we exemplify some of the declarations
of each module.

A Learn course is a course declaration followed by learning objects
declarations.

1 op : CourseDecl LearnObjDecls → LearnCourse .
2 op course on teaches and with : CourseID SetObj LearnID CourseSpecs →

CourseDecl .

Terms such as

1 course on ‘‘Formal Languages’’
2 teaches <’sec2 1 >, . . . and <’ex3 2 >
3 with . . .
4

5 learning object <’int3 > has . . .

can be written due to these declarations.
As mentioned before, module STRATEGY essentially defines the rules

described in Sect. 4.1. Apart from auxiliary declarations, it defines operation
init declared with the following operator

1 op init : Strategy → State .

with an equation that identifies it with a state containing all learning objects
identifiers.

1 eq init(S) = state(S, all, ε) .

The main declaration of module TRANSFORM-LEARN is perhaps function
transformLearnCourse that given a term in sort LearnCourse produces a system
module in Maude, a term of sort SModule, where Cid is a quoted identifier, SObj
is a set of learning object identifiers, Lid is a learning object identifier, CS is
a set of teaching strategies and LOdecls are learning object declarations. Note
that the generated module includes module STRATEGY.

Massive Open Online Courses and Monoids 191

1 op transformLearnCourse : LearnCourse → SModule .
2 eq transformLearnCourse(course on Cid teaches SObj and Lid with CS

LOdecls) =
3 (mod q(Cid) is
4 (including’BOOL . including’STRATEGY .)
5 sorts none
6 none
7 none
8 none
9 (eq’all.LOSet = transformOverSetObj(SObj, Lid) [none] .)

10 transformCourseSpecs(CS) transformLearnObjDecls(LOdecls)
11 none
12 endm) .

Finally, module CMD declares functions to help animate Learn declarations.
Function search calls metaSearch composed with getTerm and downTerm, as in
Listing 1.7, thus encapsulating the meta-representation of Learn modules from
the user.

1 op search : LearnCourse Qid Bound Nat → State .
2 eq search(LC, Q, B, N) = downTerm(getTerm(metaSearch(transform(LC),

’init[’st[upTerm(string(Q))]], ’S:State, nil, ’∗, B, N)), st) .

Learn to Maude Examples. Let us consider now the Learn description
in Listing 1.2. After loading module theory transformer.maude into the Maude
interpreter we may execute the command in Listing 1.8 where eg3 is a constant
of sort LearnCourse identified with the Learn description in Listing 1.2. It will
return the meta-representation of the Learn description in Listing 1.2. (We have
removed some of the equations for readability.)

1 Maude> red transform(eg3) .
2 reduce in TEST : transform(eg3) .
3 rewrites: 507 in 0ms cpu (0ms real) (1701342 rewrites/second)
4 result SModule: mod’Formal‘Languages is
5 including’BOOL .
6 including’STRATEGY .
7 sorts none .
8 none
9 none

10 none
11 eq’all.LOSet =’ [’ [’lo[’”ex3 1”.String],’ [’lo[’”fig3 2”.String],’ [’lo[’”int3”.

String],’ [’lo[’”sec2 1”.String],’ [’lo[’”sec2 2”.String],’ [’lo[
12 ’”sec2 4”.String],’ [’lo[’”sec3 1”.String],’ [’lo[’”sec3 2”.String],’ [’lo[’”sec3 3”.

String],’lo[’”sec3 7”.String]]]]]]]]]],’lo[’”ex3 2”.String]] [none] .
13 eq’image[’lo[’”fig3 2”.String]] =’”fig3.2.png”.String [none] .
14 . . .
15 ceq’pred[’st[’”book”.String],’LO:LearningObject] =’lo[’”ex3 1”.String] if’

subset [’LO:LearningObject,’lo[’”ex3 2”.String]] =’true.Bool [none] .

https://github.com/HugoFarias/learn/blob/master/theory_transformer.maude

192 H. Farias et al.

16 ceq’pred[’st[’”class”.String],’LO:LearningObject] =’lo[’”ex3 1”.String] if’
subset [’LO:LearningObject,’lo[’”ex3 2”.String]] =’true.Bool [none] .

17 . . .
18 none
19 endm

Listing 1.8. Meta-representation of the Learn description in Listing 1.2.

We may now use the search command from module CMD to animate the
Learn description in Listing 1.2. Listing 1.9 displays the execution of command
search(eg3,’class, 4, 7) which produces a path from learning object ‘int3 to
‘fig3 2 as the third projection of the resulting state.

1 Maude> reduce in TEST : search(eg3,’class, 4, 7) .
2 rewrites: 572 in 0ms cpu (0ms real) (1692307 rewrites/second)
3 result State: state(st(”class”), lo(”ex3 1”) lo(”ex3 2”) lo(”int3”) lo(”sec2 1”) lo(”

sec2 2”) lo(”sec2 4”) lo(”sec3 1”) lo(”sec3 2”) lo(”sec3 3”) lo(
4 ”sec3 7”), lo(”int3”) ; lo(”sec3 1”) ; lo(”sec3 2”) ; lo(”fig3 2”))

Listing 1.9. Animating a Learn description with search.

4.3 Learn to HTML Transformer

Learn Maude Toolkit (LMT) provides a way to integrate course descriptions
into MOOC by transforming Learn descriptions into HTML with JavaScript:
HTML provides standard formatting and anchorage support while JavaScript
code implements ordering prefix control. In this Section we describe this
transformer.

LearnHTML generates HTML with JavaScript in the single-page application
model from a Maude module as described in Sect. 4.2. Operator convertHTML
is the one responsible for transforming a Maude system module into a string
encoding its HTML representation which can then be saved into a text file.

1 op convertHTML : SModule → String .
2 eq html(LC) = convertHTML(transform(LC)) .

Module CMD offers a function that concatenates the output of operation trans-
formLearnCourse and convertHTML and then generate HTML code from a
Learn description.

1 op html : LearnCourse → String .

Figures 2a and b illustrate HTML pages representing the class and book
strategies, respectively, declared in Example 1.2. We emphasize that different
links are made available at each point depending on the chosen teaching path.
Figure 3 shows an example page inside Moodle.

Massive Open Online Courses and Monoids 193

Fig. 2. HTML pages representing the class and book strategies.

Fig. 3. A Learn course for formal languages in moodle.

5 Related Work

To the best of our knowledge, Learn’s teaching strategies are unique. Moreover,
there are not many languages that allows for course descriptions in a declarative
way and none with a formal semantics.

The eLesson Markup Language [6] is a markup language that can be trans-
formed into PDF, LATEX, ODF, DocBook and other formats. It appears that it
can not be integrated with MOOC platforms and does not provide any support

194 H. Farias et al.

similar to Learn’s teaching paths. Only a sequential view of its constituents in
the order they were declared.

Learn Maude Toolkit allows for the generation of different representations of
Learn descriptions. Only HTML for the moment but there are no restrictions
for other formats. SCORM and IMS Learning Design [11]. SCORM is actually
a set of technical standards and appears to be widely used. IMS Learn Design
allows for the modeling of the learning process as whole.

The free generation of teaching paths in Learn together with an automaton
semantics for online courses are inspired by previous work of the third author and
others. The latter came from studying the monoidal semantics of non-sequential
automata [8] and the former from hyperautomata [7].

Duolingo [1] allows for referring a user to past exercises when one starts
failing a subject. It appears that this could be described as a strategy in Learn.

6 Conclusions

We propose Learn, a language for course description. Learn courses have an
automata semantics. The states of such an automaton are given by a set of learn-
ing objects that may be taught. A transition denotes a choice of a learning object
to be taught from a given set. A computation then represents a path one may
take to teach a given set of learning objects. We have contributed with the lan-
guage Learn, its formal semantics as non-stuttering partially-ordered monoids,
a prototype execution environment in the Maude language where computations
are identified with rewritings in a suitable rewrite system, and a transformer
from Learn descriptions into code that can be imported into the Moodle MOOC
platform.

Future work includes defining, in the implementation, LearnCourses as exten-
sions of a module representing partially-ordered monoids, extending Learn with
new combinators. In this paper we have discussed before, a basic one, where
a complete set of combinators, such as all-but, can be normalized to, together
with the possibility of defining subsets of a given set of learning objects. Further
extensions should have a pre-order semantics such that they can be incorpo-
rated into non-stuttering partially-ordered monoids introduced in this paper.
New transformations, to different representations, can be easily integrated into
the Learn Maude Toolkit.

Acknolwdgements. The authors would like to thank Bruno Lopes and the reviewers
of SBMF 2016 for their constructive comments on a draft of this paper.

References

1. Duolingo. https://www.duolingo.com/
2. Clavel, M., Eker, S., Durán, F., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.: All

About Maude - A High-performance Logical Framework: How to Specify, Program,
and Verify Systems in Rewriting Logic. Programming and Software Engineering,
vol. 4350. Springer, Heidelberg (2007)

https://www.duolingo.com/

Massive Open Online Courses and Monoids 195

3. Dougiamas, M.: Moodle learning platform. https://moodle.org
4. Koller, D., Ng, A.: Coursera online courses portal. http://coursera.org
5. Lütolf, G.: eLML - eLesson Markup Language. http://www.elml.org
6. Lütolf, G.: Zugänglichkeit von geographischen E-learning-Kursen für Sehbe-

hinderte und Blinde am Beispiel von GITTA. Master’s thesis, University of
Zurich (2006) http://www.gitta.info/website/en/download/gitta/luetolf/gluetolf
diplomarbeit.pdf

7. Menezes, P.B., Machado, J.P.: Web courses are automata: a categorial framework.
In: Proceedings of 2nd Workshop of Formal Methods, pp. 79–88 (1999)

8. Menezes, P.B., Sernadas, A.S.C., Costa, J.F.: Nonsequential automata semantics
for concurrent, object-based language. In: 2nd US-Brazil Joint Workshops on the
Formal Foundations of Software System. ENTCS, vol. 14, pp. 245–273 (1997).
doi:10.1016/S1571-0661(05)80239-7.

9. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
Theor. Comput. Sci. 96(1), 73–155 (1992). http://www.sciencedirect.com/science/
article/pii/030439759290182F

10. Open edX: Xblock: Open edx courseware components. https://xblock.readthedocs.
org/en/latest/

11. Qu, K., He, W.: SCORM versus IMS-LD: discussion on development trends of e-
learning. In: International Conference on Computational Intelligence and Software
Engineering, CiSE 2009, pp. 1–4. IEEE (2009)

12. Silva, H.F.: Learn - a language for the declaration of online courses. Technical
report, UFF (2016). http://www2.ic.uff.br/∼cbraga/learn-monografia.pdf

13. Sosteric, M., Hesemeier, S.: When is a learning object not an object: a first step
towards a theory of learning objects. Int. Rev. Res. Open Distrib. Learn. 3(2)
(2002). http://www.irrodl.org/index.php/irrodl/article/view/106

14. Weibel, R., Bleisch, S., Nebiker, S., Fisler, J., Grossmann, T., Niederhuber, M.,
Collet, C., Hurni, L.: Achieving more sustainable e-learning programs for
GIScience. Geomatica 63, 109–118 (2009)

15. xConsortium: edX on line courses portal. http://www.edx.org

https://moodle.org
http://coursera.org
http://www.elml.org
http://www.gitta.info/website/en/download/gitta/luetolf/gluetolf_diplomarbeit.pdf
http://www.gitta.info/website/en/download/gitta/luetolf/gluetolf_diplomarbeit.pdf
http://dx.doi.org/10.1016/S1571-0661(05)80239-7.
http://www.sciencedirect.com/science/article/pii/030439759290182F
http://www.sciencedirect.com/science/article/pii/030439759290182F
https://xblock.readthedocs.org/en/latest/
https://xblock.readthedocs.org/en/latest/
http://www2.ic.uff.br/~cbraga/learn-monografia.pdf
http://www.irrodl.org/index.php/irrodl/article/view/106
http://www.edx.org

Model Checking

A Bounded Model Checker for Three-Valued
Abstractions of Concurrent Software Systems

Nils Timm(B), Stefan Gruner, and Matthias Harvey

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. We present a technique for verifying concurrent software sys-
tems via SAT-based bounded model checking. It is based on a direct
transfer of the system and an LTL property into a formula that encodes
the corresponding model checking problem. In our approach we first
employ three-valued abstraction. The state space of the resulting abstract
system is then logically encoded, which saves us the expensive construc-
tion of an explicit state space model. The verification result can be
obtained via two SAT checks. Our work includes the definition of the
encoding and a theorem which states that the SAT result for an encoded
verification task is equivalent to the result of the corresponding model
checking problem. We also introduce an extension of the encoding by
fairness constraints, which facilitates the verification of liveness proper-
ties. We have implemented our technique in an automatic verification
tool that supports bounded LTL model checking under fairness.

1 Introduction

Three-valued abstraction (3VA) [12] is a well-established technique in software
verification. It proceeds by generating an abstract state space model of the sys-
tem to be analysed over the values true, false and unknown, where the latter
value is used to represent the loss of information due to abstraction. For concur-
rent software systems composed of many processes, 3VA does not only replace
concrete variables by predicates. It also abstracts away entire processes by sum-
marising them into a single approximative component [11], which allows for a
substantial reduction of the state space. The evaluation of temporal logic prop-
erties on models constructed via 3VA is known as three-valued model checking
(3MC) [2]. In 3MC there exist three possible outcomes: true and false results
can be immediately transferred to the modelled system, whereas an unknown
result reveals that abstraction refinement is necessary [15].

Verification techniques based on 3VA and 3MC typically assume that an
explicit three-valued state space model corresponding to the system to be
analysed is constructed and explored [2]. However, explicit-state model checking
is known for its high memory demands in comparison to symbolic model checking
techniques like BDD-based model checking [3] and SAT-based bounded model
checking (BMC) [1]. The benefits of BMC are that its compressed state space
representation allows to handle larger systems than explicit-state techniques, and
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 199–216, 2016.
DOI: 10.1007/978-3-319-49815-7 12

200 N. Timm et al.

that its performance profits from the advancements in the SAT solver technology.
Although there exist a few works on three-valued bounded model checking, these
approaches are either solely defined for hardware systems [5], or they require an
explicit state space model as input which is then symbolically encoded [16]. It is
however not efficient to translate a given system first into an explicit state space
model before encoding it symbolically for BMC.

In this paper we present an approach to the verification of concurrent software
systems based on an immediate transfer of the input system and the property
to be verified into a propositional logic formula that encodes the corresponding
bounded model checking problem. Our approach first employs 3VA and thus
profits from the state space reduction capabilities of this technique. The state
space of the resulting abstract system is then directly encoded in propositional
logic, which saves us the expensive construction of an explicit state space model.
Finally, the verification result can be obtained via two satisfiability checks.

Our work includes the definition of the immediate encoding as well as a
proven theorem which states that the SAT result for an encoded verification task
is equivalent to the result of the corresponding model checking problem. More-
over, we introduce an extension of the encoding by weak and strong fairness
constraints, which facilitates the verification of liveness properties of concurrent
systems under realistic conditions. We have integrated the steps abstraction,
encoding and SAT solving into a fully-automatic verification tool (available at
www.cs.up.ac.za/cs/ntimm/tool.zip) that supports bounded LTL model check-
ing under fairness. Preliminary experiments show promising performance results.

2 Concurrent Software Systems

We start with a brief introduction to the systems that we consider in our work.
A concurrent software system Sys consists of a number of possibly non-uniform
processes P1 to Pn composed in parallel: Sys = ‖n

i=1 Pi. It is defined over a set
of variables V ar = V ars ∪ ⋃n

i=1 V ari where V ars is a set of shared variables
and V ar1, . . . , V arn are sets of local variables associated with the processes
P1, . . . , Pn, respectively. The state space over V ar corresponds to the set SV ar

of all type-correct valuations of the variables. Given a state s ∈ SV ar and an
expression e over V ar, then s(e) denotes the valuation of e in s. An example for
a concurrent system implementing mutual exclusion is depicted below.

y : semaphore where y = 1;

P1 ::

⎡
⎣
loop forever do[

0: acquire (y, 1);
1: release (y, 1);

]
⎤
⎦ ‖ P2 ::

⎡
⎣
loop forever do[

0: acquire (y, 1);
1: release (y, 1);

]
⎤
⎦

Here we have two processes operating on a shared semaphore variable y.
Processes Pi can be formally represented as control flow graphs (CFGs) Gi =
(Loci, δi, τi) where Loci = {[0]2, . . . , [|Loci|]2} is a set of control locations given
as binary numbers, δi ⊆ Loci×Loci is a transition relation, and τi : Loci×Loci →
Op is a function labelling transitions with operations from a set Op.

www.cs.up.ac.za/cs/ntimm/tool.zip

A Bounded Model Checker for 3VA of Concurrent Software Systems 201

Definition 1 (Operations). Let V ar = {v1, . . . , vm} be a set of variables. The
set of operations Op on these variables consists of all statements of the form
assume(e) : v1 := e1, ..., vm := em where e, e1, ..., em are expressions over V ar.

Hence, every operation consists of a guard and a list of assignments. For conve-
nience, we sometimes just write e instead of assume(e). Moreover, we omit the
assume part completely if the guard is true. The control flow graphs G1 and G2

corresponding to the processes of our example system are depicted below. G1 and
G2 also illustrate the semantics of the operations acquire(y, 1) and release(y, 1).

y : semaphore where y = 1;

0

G1

1

y < 1

y > 0 : y := y − 1 ‖y := y + 1

0

G2

1

y < 1

y > 0 : y := y − 1y := y + 1

A concurrent system given by n individual control flow graphs G1, . . . , Gn can
be modelled by one composite CFG G = (Loc, δ, τ) where Loc = ×n

i=1 Loci. G is
the product graph of all individual CFGs. We assume that initially all processes
of a concurrent system at location 0. Moreover, we assume that a deterministic
initialisation of the system variables is given by an assertion φ over V ar. In our
example we have that φ = (y = 1). Now, a computation of a concurrent system
corresponds to a sequence where in each step one process is non-deterministically
selected and the operation at its current location is attempted to be executed. In
case the execution is not blocked by a guard, the variables are updated accord-
ing to the assignment part and the process advances to the consequent control
location. For verifying properties of concurrent systems typically only fair com-
putations where all processes infinitely often proceed are considered. We will
discuss our notion of fairness in more detail in Sect. 5. The overall state space S
of a concurrent system corresponds to the set of states over V ar combined with
the possible locations, i.e. S = Loc × SV ar. Hence, each state in S is a tuple
〈l, s〉 with l = (l1, . . . , ln) ∈ Loc and s ∈ SV ar.

Control flow graphs allow to model concurrent systems formally. For an
efficient verification it is additionally required to reduce the state space com-
plexity. For this purpose, we use three-valued predicate abstraction [11]. Such
an abstraction is an approximation in the sense that all definite verification
results (true, false) obtained for an abstract system can be transferred to
the original system. Only unknown results necessitate abstraction refinement
[15]. In abstract systems operations do not refer to concrete variables but
to predicates Pred = {p1, . . . , pm} over V ar with the three-valued domain
{true, unknown, false}. Unknown, typically abbreviated by ⊥, is a valid truth
value as we operate with the three-valued Kleene logic K3 [4] whose semantics
is given by the following truth tables.

202 N. Timm et al.

∧ true ⊥ false
true true ⊥ false
⊥ ⊥ ⊥ false
false false false false

∨ true ⊥ false
true true true true
⊥ true ⊥ ⊥
false true ⊥ false

¬
true false
⊥ ⊥
false true

Operations in abstract systems are of the following form:

assume(choice(a, b)) : p1 := choice(a1, b1), . . . , pm := choice(am, bm)

where a, b, a1, b1, . . . , am, bm are logical expressions over Pred and choice(a, b)-
expressions have the following semantics:

Definition 2 (Choice Expressions). Let s be a state over a set of three-valued
predicates Pred. Moreover, let a and b be logical expressions over Pred. Then

s (choice (a, b)) =

⎧

⎨

⎩

true iff s(a) is true (and s(b) is false),
false iff s(b) is true (and s(a) is false),
⊥ else.

The application of three-valued predicate abstraction ensures that for any state s
and for any expression choice(a, b) in an abstract control flow graph the following
holds: s(a) = true ⇒ s(b) = false and s(b) = true ⇒ s(a) = false. In partic-
ular, this implies that s(a) and s(b) are never both true. Moreover, the follow-
ing equivalences hold: choice(true, false) ≡ true, choice(false, true) ≡ false,
choice(false, false) ≡ ⊥, choice(a,¬a) ≡ a, choice(¬a, a) ≡ ¬a, choice(a, b) ≡
(a ∨ ¬b) ∧ (a ∨ b ∨ ⊥), and ¬choice(a, b) ≡ choice(b, a).

A three-valued expression choice(a, b) over Pred approximates a Boolean
expression e over V ar, written choice(a, b) � e, iff a logically implies e and b
logically implies ¬e. The three-valued approximation relation can be straight-
forwardly extended to operations as described in [11]. An abstract system Sys′

approximates a concrete system Sys, written Sys′ � Sys, if the systems have
isomorphic CFGs and the operations in the abstract system approximate the
corresponding ones in the concrete system. An example for an abstract system
that approximates the concrete system on the previous page is depicted below.

(y > 0) : predicate where (y > 0) = true;

0

G′
i

1

¬(y > 0)

(y > 0) : (y > 0) := choice(false, ¬(y > 0))‖2
i=1 (y > 0) := choice((y > 0), false)

For illustration: the abstract operation (y > 0) := choice((y > 0), false) sets
the predicate (y > 0) to true if (y > 0) was true before, and it never sets the
predicate to false. This is a sound three-valued approximation of the concrete
operation y := y + 1 over the predicate (y > 0).

A Bounded Model Checker for 3VA of Concurrent Software Systems 203

The state space of an abstract system is defined as S = Loc × SPred where
SPred is the set of all possible valuations of the three-valued predicates in Pred.
The state space corresponding to the abstraction of our example system is thus

S = { 〈(0, 0), (y > 0) = true〉, 〈(0, 0), (y > 0) = ⊥〉, 〈(0, 0), (y > 0) = false〉
〈(1, 0), (y > 0) = true〉, 〈(1, 0), (y > 0) = ⊥〉, 〈(1, 0), (y > 0) = false〉
〈(0, 1), (y > 0) = true〉, 〈(0, 1), (y > 0) = ⊥〉, 〈(0, 1), (y > 0) = false〉
〈(1, 1), (y > 0) = true〉, 〈(1, 1), (y > 0) = ⊥〉, 〈(1, 1), (y > 0) = false〉 }.

So far we have seen how concurrent systems can be formally represented and
abstracted. Next we will take a look on how model checking of abstracted systems
is defined.

3 Three-Valued Bounded Model Checking

CFGs allow us to model the control flow of a concurrent system. The verification
of a system additionally requires to explore a corresponding state space model.
Since we use three-valued abstraction, we need a model that incorporates the
truth values true, false and unknown. Three-valued Kripke structures are models
with a three-valued domain for transitions and labellings of states:

Definition 3 (3-Valued Kripke Structure). A three-valued Kripke struc-
ture over a set of atomic predicates AP is a tuple M = (S, 〈l0, s0〉, R, L) where

– S is a finite set of states and 〈l0, s0〉 ∈ S is the initial state,
– R : S × S → {true,⊥, false} is a transition function with ∀〈l, s〉 ∈ S :

∃〈l′, s′〉 ∈ S : R(〈l, s〉, 〈l′, s′〉) ∈ {true,⊥},
– L : S × AP → {true,⊥, false} is a labelling function that associates a truth

value with each atomic predicate in each state.

A simple example for a three-valued Kripke structure M over AP = {p} is
depicted below.

〈l0, s0〉M ::

〈l2, s2〉

〈l1, s1〉

p = ⊥

p = true

p = false

true

true

⊥

true

true

A path π of a Kripke structure M is a sequence of states 〈l0, s0〉〈l1, s1〉〈l2, s2〉 . . .
with R(〈lk, sk〉, 〈lk+1, sk+1〉) ∈ {true,⊥}. π(k) denotes the k-th state of π,
whereas πk denotes the k-th suffix π(k)π(k + 1)π(k + 2) . . . of π. By ΠM we

204 N. Timm et al.

denote the set of all paths of M starting in the initial state. Paths are consid-
ered for the evaluation of temporal logic properties of Kripke structures.

As defined in [11], a concurrent system Sys = ‖n
i=1 Pi abstracted over a set of

predicates Pred can be represented as a three-valued Kripke structure M over
AP = Pred ∪ {(loci = li) | i ∈ [1..n], li ∈ Loci} where the predicate (loci = li)
denotes that the process Pi is currently at control location li. The number of
states of a Kripke structure corresponding to a given system is exponential in
the number of its locations and variables. State explosion is the major chal-
lenge in software model checking. One approach to cope with the state explosion
problem is to use a symbolic and therefore more compact representation of the
Kripke structure. In SAT-based bounded model checking [1] all possible path
prefixes up to a bound b ∈ N are encoded in a propositional logic formula. The
formula is then conjuncted with an encoding of the temporal logic property to be
checked. In case the overall formula is satisfiable, the satisfying truth assignment
characterises a witness path of length b for the property in the state space of
the encoded system. Hence, bounded model checking can be performed via SAT
solving. We now briefly recapitulate the syntax and bounded semantics of the
temporal logic LTL:

Definition 4 (Syntax of LTL). Let AP be a set of atomic predicates and
p ∈ AP . The syntax of LTL formulae ψ is given by

ψ ::= p | ¬p |ψ ∨ ψ |ψ ∧ ψ |Gψ |Fψ |Xψ.

The temporal operator G is read as globally, F is read as finally (or eventually),
and X is read as next. Due to the extended domain of truth values in three-
valued Kripke structures, the bounded evaluation of LTL formulae is based on the
Kleene logic K3 (compare Sect. 2). Based on K3, LTL formulae can be evaluated
on b-bounded path prefixes of three-valued Kripke structures. Such finite prefixes
π(0) . . . π(b) can still represent infinite paths if the prefix has a loop, i.e. the last
state π(b) has a successor state that is also part of the prefix.

Definition 5 (b-Loop). Let π be a path of a three-valued Kripke structure M
and let r, b ∈ N with r ≤ b. Then π has a (b, r)-loop if R(π(b), π(r)) ∈ {true,⊥}
and π is of the form v · wω where v = π(0) . . . π(r − 1) and w = π(r) . . . π(b). π
has a b-loop if there exists an r ∈ N with r ≤ b such that π has a (b, r)-loop.

For the bounded evaluation of LTL formulae on paths of Kripke structures we
have to distinguish between paths with and without a b-loop.

Definition 6 (Three-Valued Bounded Evaluation of LTL). Let M =
(S, 〈l0, s0〉, R, L) over AP be a three-valued Kripke structure. Moreover, let b ∈ N

and let π be a path of M with a b-loop. Then the b-bounded evaluation of an
LTL formula ψ on π, written

[

π |=k
b ψ

]

where k ≤ b denotes the current position
along the path, is inductively defined as follows:

A Bounded Model Checker for 3VA of Concurrent Software Systems 205

[π |=k
b p] ≡ L(π(k), p)

[π |=k
b ¬p] ≡ ¬L(π(k), p)

[π |=k
b ψ ∨ ψ′] ≡ [π |=k

b ψ] ∨ [π |=k
b ψ′]

[π |=k
b ψ ∧ ψ′] ≡ [π |=k

b ψ] ∧ [π |=k
b ψ′]

[π |=k
b Gψ] ≡ ∧

k′≥k(R(π(k′), π(k′ + 1)) ∧ [π |=k′
b ψ])

[π |=k
b Fψ] ≡ ∨

k′≥k([π |=k′
b ψ] ∧ ∧k′−1

k′′=k R(π(k′′), π(k′′ + 1)))
[π |=k

b Xψ] ≡ R(π(k), π(k + 1)) ∧ [π |=k+1
b ψ]

If π is a path without a b-loop then the b-bounded evaluation of ψ is defined as:

[π |=k
b Gψ] ≡ false

[π |=k
b Fψ] ≡ ∨b

k′=k([π |=k′
b ψ] ∧ ∧k′−1

k′′=k R(π(k′′), π(k′′ + 1)))
[π |=k

b Xψ] ≡ if k < b then R(π(k), π(k + 1)) ∧ [π |=k+1
b ψ] else false

The other cases are identical to the case where π has a b-loop. The universal
bounded evaluation of ψ on an entire Kripke structure M is [M |=U,b ψ] ≡
∧

π∈ΠM
[π |=0

b ψ]. The existential bounded evaluation of ψ on a Kripke structure
is [M |=E,b ψ] ≡ ∨

π∈ΠM
[π |=0

b ψ].

Checking temporal logic properties for three-valued Kripke structures is what
is known as three-valued model checking [2]. Universal model checking can
always be transformed into existential model checking based on the equation
[M |=U,b ψ] = ¬ [M |=E,b ¬ψ]. From now on we only consider the existential
case, since it is the basis of satisfiability-based bounded model checking. Bounded
model checking [1] is typically performed incrementally, i.e. b is iteratively
increased until the property can be either proven or a completeness threshold [7]
is reached. In the three-valued scenario there exist three possible outcomes: true,
false and ⊥. For our example Kripke structure M we have that [M |=E,0 Fp]
evaluates to ⊥ and [M |=E,1 Fp] evaluates to true, which is witnessed by the
1-bounded prefix 〈l0, s0〉〈l2, s2〉.

It was shown in [11] that for a three-valued Kripke structure M modelling a
concurrent system Sys abstracted over Pred and an LTL formula ψ the following
holds: [M |=E,b ψ] = true implies that there exists an execution path of length b
in Sys that satisfies ψ, and [M |=E,b ψ] = false implies that no execution path
of length b in Sys satisfies ψ. Hence, all definite model checking results obtained
under three-valued abstraction can be immediately transferred to the concrete
system Sys modelled by M , whereas an unknown result tells us that the current
level of abstraction is too coarse.

In the next section we define a propositional logic encoding of three-valued
bounded model checking tasks for abstracted concurrent systems. Our encoding
allows to immediately transfer verification tasks into a propositional logic formu-
lae that can be then processed via a SAT solver. Thus, the expensive construction
of an explicit Kripke structure is not required in our approach. The state space
of the system under consideration as well as the property to be checked will be
implicitly contained in the propositional logic encoding, and the model checking
result will be equivalent to the result of the corresponding satisfiability test.

206 N. Timm et al.

4 Propositional Logic Encoding

In our previous work [13] we showed that the three-valued bounded model check-
ing problem [M |=E,b ψ], where M is given as an explicit Kripke structure, can
be reduced to two classical SAT problems. Here we show that for a given system
Sys abstracted over Pred, a temporal logic property ψ, and a bound b ∈ N, it is
not even necessary to consider the corresponding model checking problem. We
can immediately construct a propositional logic formula [[Sys, ψ]]b such that:

[M |=E,b ψ] =

⎧

⎨

⎩

true if SAT([[Sys, ψ]]b[⊥/false]) = true
false if SAT([[Sys, ψ]]b[⊥/true]) = false
⊥ else

Here [⊥/false] resp. [⊥/true] denotes the substitution of all occurrences of ⊥
with false resp. true. Hence, it is not required to construct and explore an
explicit Kripke structure M modelling the state space of Sys. All we need to do
is to construct [[Sys, ψ]]b and check its satisfiability in order to obtain the result
of the corresponding model checking problem.

The formula [[Sys, ψ]]b is defined over a set of Boolean atoms and the con-
stants true, false and ⊥. We now give a step-by-step description on how [[Sys, ψ]]b
can be constructed for a concurrent system Sys = ‖n

i=1 Pi abstracted over a set of
predicates Pred and given by a number of control flow graphs Gi = (Loci, δi, τi)
with 1 ≤ i ≤ n, a temporal logic property ψ ∈ LTL, and a bound b ∈ N. The
construction of [[Sys, ψ]]b is divided into the translation of the abstract system
into a formula [[Sys]]b and the translation of the property ψ into a formula [[ψ]]b.

We start with the encoding of the system, which first requires to encode its
states as propositional logic formulae. Since a state of a concurrent system is a
tuple 〈l, s〉 where l is a composite location and s is a valuation of all predicates
in Pred, we encode l and s separately. First, we introduce a set of Boolean
atoms for the encoding of locations. A composite location (l1, . . . , ln) ∈ Loc is
a list of single locations li ∈ Loci where Loci = {0, . . . , |Loci|} and i is the
identifier of the associated process Pi. Each li is a binary number from the
domain {[0]2, . . . , [|Loci|]2}. We assume that all these numbers have di digits
where di is the number required to binary represent the maximum value |Loci|.
We introduce the following set of Boolean atoms:

LocAtoms := {li[j] | i ∈ [1..n], j ∈ [1..di]}
Hence, for each process Pi of the system we introduce di Boolean atoms, each
referring to a distinct digit along the binary representation of its locations. The
atoms now allow us to define the following encoding of locations:

Definition 7 (Encoding of Locations). Let the location li ∈ {0, . . . , |Loci|}
be given as a binary number. Moreover, let li(j) be a function evaluating to true
if the j-th digit of li is 1, and to false otherwise. Then li can be encoded in
propositional logic as follows:

enc(li) :=
∧di

j=1
((li[j] ∧ li(j)) ∨ (¬li[j] ∧ ¬li(j)))

A Bounded Model Checker for 3VA of Concurrent Software Systems 207

Let l = (l1, . . . , ln) be a composite location. Then enc(l) :=
∧n

i=1 enc(li).

Note that since the function li(j) evaluates to true or false an encoding enc(li)
can be always simplified to a conjunction of literals over LocAtoms. For instance,
the initial location (0, 0) of our example system will be encoded to ¬l1[1]∧¬l2[1].

Next, we encode the predicate part of states. Let s ∈ SPred where Pred =
{p1, . . . , pm}. We introduce the following set of Boolean atoms:

PredAtoms := {p[j] | p ∈ Pred, j ∈ {u, t}}
Hence, for each three-valued predicate p we introduce two Boolean atoms. The
atom p[u] will let us indicate whether p evaluates to unknown, and p[t] will let
us indicate whether it evaluates to true or false:

Definition 8 (Encoding of States over Predicates). Let p ∈ Pred and let
val ∈ {true,⊥, false}. Then (p = val) can be logically encoded follows:

enc(p = val) :=

⎧

⎨

⎩

¬p[u] ∧ p[t] if val = true
¬p[u] ∧ ¬p[t] if val = false

p[u] if val = ⊥
Let s be a state over Pred. Then enc(s) :=

∧

p∈Pred enc(p = s(p)).

For an overall state 〈l, s〉 ∈ S we consequently get enc(〈l, s〉) := enc(l)∧ enc(s).
Since enc(〈l, s〉) yields a conjunction of literals, there exists exactly one satisfy-
ing truth assignment α : LocAtoms ∪ PredAtoms → {true, false} for a state
encoding. We denote the assignment characterising an encoded state 〈l, s〉 by
α〈l,s〉. For instance, the initial state 〈(0, 0), (y > 0) = true〉 of our abstracted
example system will be encoded to Init = ¬l1[1] ∧ ¬l2[1] ∧ ¬p[u] ∧ p[t] where
p = (y > 0), i.e. we abbreviate (y > 0) by p. The assignment characterising Init
is α〈(0,0),(y>0)=true〉 : l1[1] �→ false, l2[1] �→ false, p[u] �→ false, p[t] �→ true.

The encoding function enc can be extended to logical expressions in negation
normal form (NNF), which we require for our later transition encoding:

Definition 9 (Encoding of Logical Expressions). Let p ∈ Pred and
e, e′ logical expressions in NNF over Pred ∪ {true,⊥, false}. Let val ∈
{true,⊥, false}. Then the encoding of a logical expression is inductively defined
as follows:

enc(val) := val
enc(¬val) := ¬val
enc(p) := (p[u] ∧ ⊥) ∨ (¬p[u] ∧ p[t])
enc(¬p) := (p[u] ∧ ⊥) ∨ (¬p[u] ∧ ¬p[t])
enc(e ∧ e′) := enc(e) ∧ enc(e′)
enc(e ∨ e′) := enc(e) ∨ enc(e′)
enc(choice(e, e′)) := enc((e ∨ NNF (¬e′)) ∧ (e ∨ e′ ∨ ⊥))

Next, we take a look at how the transition relation of an abstracted system can
be encoded. We will construct a propositional logic formula [[Sys]]b = Init0 ∧

208 N. Timm et al.

Trans0,1 ∧ . . . ∧ Transb−1,b that exactly characterises path prefixes of length
b ∈ N in the system Sys abstracted over Pred. Since we consider states as
parts of such prefixes, we have to extend the encoding of states by index values
k ∈ {0, . . . , b} where k denotes the position along a path prefix. For this we
introduce the notion of indexed encodings. Let F be a propositional logic formula
over Atoms = LocAtoms ∪ PredAtoms and the constants true, false and ⊥.
Then Fk stands for F [a/ak | a ∈ Atoms]. Our overall encoding will be thus
defined over the set Atoms[0,b] = {ak | a ∈ Atoms, 0 ≤ k ≤ b}. An assignment
α〈l,s〉 to the atoms in a subset Atoms[k,k] ⊆ Atoms[0,b] thus characterises a state
〈l, s〉 at position k of a path prefix, whereas an assignment α〈l0,s0〉...〈lb,sb〉 to the
atoms in Atoms[0,b] characterises an entire path prefix 〈l0, s0〉 . . . 〈lb, sb〉. Since
all execution paths start in the initial state of the system, we extend its encoding
by the index 0, i.e. we get Init0 = ¬l1[1]0 ∧¬l2[1]0 ∧¬p[u]0 ∧p[t]0. The encoding
of all possible state space transitions from position k to k+1 is defined as follows:

Definition 10 (Encoding of Transitions). Let Sys = ‖n
i=1 Pi over Pred be

an abstracted concurrent system given by the single control flow graphs Gi =
(Loci, δi, τi) with 1 ≤ i ≤ n. Then all possible transitions for position k to k + 1
can be encoded in propositional logic as follows:

Transk,k+1 :=
n
∨

i=1

∨

(li,l′i)∈δi

(enc(li)k ∧ enc(l′i)k+1 ∧
∧

i′ 	=i

idle(i′)k,k+1 ∧ enc(τi(li, l′i))k,k+1)

where idle(i′)k,k+1 :=
∧di′

j=1 (li′ [j]k ↔ li′ [j]k+1)

and enc(τi(li, l′i))k,k+1 := enc(choice(a, b))k

∧ ∧m
j=1((enc(aj)k ∧ enc(pj = true)k+1)

∨(enc(bj)k ∧ enc(pj = false)k+1)
∨(enc(¬aj ∧ ¬bj)k[⊥/true] ∧ enc(pj = ⊥)k+1))

assuming that τi(li, l′i) = assume(choice(a, b)) : p1 := choice(a1, b1), . . . , pm :=
choice(am, bm).

Thus, we iterate over the system’s processes Pi and over the processes’ control
flow transitions δi(li, l′i). Now we construct the k-indexed encoding of a source
location li and conjunct it with the (k + 1)-indexed encoding of a destination
location l′i. This gets conjuncted with the sub formula

∧

i′ 	=i idle(i′)k,k+1 which
encodes that all processes different to Pi are idle, i.e. do not change their control
flow location, while Pi proceeds. The last part of the transition encoding con-
cerns the operation associated with δi(li, l′i): The sub formula enc(τi(li, l′i))k,k+1

evaluates to true for assignments α〈l,s〉〈l′,s′〉 to the atoms in Atoms[k,k+1] that
characterise pairs of states s and s′ over Pred where the guard of the operation
τi(li, l′i) is true in s and the execution of the operation in s definitely results in
the state s′. The operation encoding evaluates to ⊥ for states s and s′ where the
guard of the operation is ⊥ in s or where it is unknown whether the execution

A Bounded Model Checker for 3VA of Concurrent Software Systems 209

of the operation in s results in the state s′. In all other cases enc(τi(li, l′i))k,k+1

evaluates to false. Our transition encoding requires that an operation τi(li, l′i)
assigns to all predicates in Pred: Thus, if a predicate p is not modified by the
operation we assume that p := p is part of the assignment list.

The encoding of the control flow transition δ1(0, 1) of our abstract exam-
ple system with τ1(0, 1) = (assume(p) : p := choice(false,¬p)) (where p
abbreviates (y > 0)) yields the following:

enc(0)k = ¬l1[1]k
∧ ∧
enc(1)k+1 = l1[1]k+1

∧ ∧
idle(2)k,k+1 = (l2[1]k ↔ l2[1]k+1)
∧ ∧
enc(τ1(0, 1))k,k+1 = ((p[u]k ∧ ⊥) ∨ (¬p[u]k ∧ p[t]k))∧

((false ∧ (¬p[u]k+1 ∧ p[t]k+1))
∨(((p[u]k ∧ ⊥) ∨ (¬p[u]k ∧ ¬p[t]k)) ∧ (¬p[u]k+1 ∧ ¬p[t]k+1))
∨(((p[u]k ∧ true) ∨ (¬p[u]k ∧ p[t]k)) ∧ (p[u]k+1)))

The encoding of the operation only evaluates to true for assignments to the
atoms in Atoms[k,k+1] that characterise a predicate state s at position k with
s(p) = true and a state s′ at position k + 1 with s′(p) = ⊥. An overall satis-
fying assignment for this encoding is α〈(0,0),(y>0)=true〉〈(1,0),(y>0)=⊥〉 character-
ising the definite transition between the pair of states 〈(0, 0), (y > 0) = true〉
and 〈(1, 0), (y > 0) = ⊥〉. The assignments α〈(0,l2),(y>0)=true〉〈(1,l2),(y>0)=false〉,
α〈(0,l2),(y>0)=⊥〉〈(1,l2),(y>0)=false〉, α〈(0,l2),(y>0)=⊥〉〈(1,l2),(y>0)=⊥〉 with l2 ∈ {0, 1}
yield unknown for the encoding and hereby correctly characterise ⊥-transitions
in the abstract state space. All other assignments yield false indicating that
corresponding pairs of states do not characterise valid transitions.

The encoding definitions now allow us to construct the propositional logic
formula [[Sys]]b = Init0 ∧ Trans0,1 ∧ . . . ∧ Transb−1,b that characterises all pos-
sible path prefixes of length b ∈ N in the state space of the encoded system.
Each assignment α : Atoms[0,b] → {true, false} that satisfies the formula char-
acterises a definite path prefix, whereas an assignment that makes the formula
evaluate to unknown characterises a prefix with some ⊥-transitions.

The second part of the encoding concerns the LTL property to be checked.
The three-valued bounded LTL encoding has been defined in [13] before. Here
we adjust it to our encodings of predicates and locations. Again, we distinguish
the cases where the property is evaluated on a path prefix with and without a
loop. The LTL encoding for the evaluation on prefixes with a loop is defined as:

Definition 11 (LTL Encoding with Loop). Let p and (loci = li) ∈ AP ,
ψ and ψ′ LTL formulae, and b, k, r ∈ N with k, r ≤ b where k is the current
position, b the bound and r the destination position of the b-loop. Then the LTL
encoding with a loop, r[[ψ]]kb , is defined as follows:

210 N. Timm et al.

r[[(loci = li)]]kb ≡ enc(li)k r[[¬(loci = li)]]kb ≡ ¬enc(li)k

r[[p]]kb ≡ enc(p)k r[[¬p]]kb ≡ enc(¬p)k

r[[ψ ∨ ψ′]]kb ≡ r[[ψ]]kb ∨ r[[ψ′]]kb r[[ψ ∧ ψ′]]kb ≡ r[[ψ]]kb ∧ r[[ψ′]]kb
r[[Gψ]]kb ≡ ∧b

k′=min(k,r) r[[ψ]]k
′

b r[[Fψ]]kb ≡ ∨b
k′=min(k,r) r[[ψ]]k

′
b

r[[Xψ]]kb ≡ r[[ψ]]succ(k)
b

where succ(k) = k + 1 if k < b and succ(k) = r else.

For a path prefix without a loop the LTL encoding is defined as:

Definition 12 (LTL Encoding without Loop). Let ψ be an LTL formula
and b, k ∈ N with k ≤ b where k is the current position and b the bound. Then
the LTL encoding without a loop, [[ψ]]kb , is defined as follows:

[[Gψ]]kb ≡ false [[Fψ]]kb ≡ ∨b
k′=k [[ψ]]k

′
b

[[Xψ]]kb ≡ if k < b then r[[ψ]]k+1
b else false

The LTL encoding without a loop of the other cases is identical to the LTL
encoding with a loop.

An example encoding is [[Fp]]02 = enc(p)0∨enc(p)1∨enc(p)2 which expresses that
a predicate p holds eventually, i.e. at position 0, 1 or 2 along a 2-prefix. Remember
that a prefix 〈l0, s0〉 . . . 〈lb, sb〉 has a b-loop if there exists a transition from 〈lb, sb〉
to a previous state 〈lr, sr〉 along the prefix with 0 ≤ r ≤ b. Hence, we can
define a loop constraint based on our transition encoding: A prefix characterised
by an assignment α〈l0,s0〉...〈lb,sb〉 has definitely resp. maybe a b-loop if the loop
constraint

∨b
r=0 Transb,r evaluates to true resp. unknown under α〈l0,s0〉...〈lb,sb〉.

This now allows us to define the overall encoding of whether a concurrent system
Sys satisfies an LTL formula ψ: [[Sys, ψ]]b := [[Sys]]b ∧ [[ψ]]b with [[ψ]]b := [[ψ]]0b ∨
∨b

r=0(Transb,r ∧ r[[ψ]]0b). We have proven the following theorem that establishes
the relation between the satisfiability result for [[Sys, ψ]]b and the result of the
corresponding model checking problem:

Theorem 1. Let M be a three-valued Kripke structure representing the state
space of an abstracted concurrent system Sys, let ψ be an LTL formula and
b ∈ N Then:

[M |=E,b ψ] ≡
⎧

⎨

⎩

true if SAT([[Sys, ψ]]b[⊥/false]) = true
false if SAT([[Sys, ψ]]b[⊥/true]) = false
⊥ else

Proof. See http://www.cs.up.ac.za/cs/ntimm/ProofTheorem1.pdf.

Hence, via two satisfiability tests, one where the constant ⊥ is substituted by
true and one where it is substituted by false, we can determine the result of the
corresponding model checking problem. Our encoding can be straightforwardly
built based on the concurrent system, which saves us the expensive construction
of an explicit state space model. In the next section we show that our encoding
can be also easily augmented by fairness constraints, which allows us to check
liveness properties of concurrent systems under realistic conditions.

http://www.cs.up.ac.za/cs/ntimm/ProofTheorem1.pdf

A Bounded Model Checker for 3VA of Concurrent Software Systems 211

5 Extension to Fairness

Our approach allows to check LTL properties of concurrent software systems via
SAT solving. While the verification of safety properties like mutual exclusion does
not require any fairness assumptions about the behaviour of the processes of the
system, fairness is essential for verifying liveness properties under realistic con-
ditions. The most common notions of fairness in verification are unconditional,
weak and strong fairness: An unconditional fairness constraint claims that in
an infinite computation, certain operations have to be infinitely often executed.
A weak fairness constraint claims that in an infinite computation, each opera-
tion that is continuously enabled has to be infinitely often executed. A strong
fairness constraint claims that in an infinite computation, each operation that
is infinitely often enabled has to be infinitely often executed. All these types of
constraints can be straightforwardly expressed in LTL. We now define these con-
straints for characterising fair, i.e. realistic, behaviour of our concurrent systems
Sys = ‖n

i=1 Pi over Pred. Our unconditional fairness constraint is defined as:

ufair ≡
∧n

i=1

∨

(li,l′i)∈δi
GF(executed(li, l′i))

Hence, for each process some operation has to be executed infinitely often, i.e.
each process proceeds infinitely often. Note that we model termination via a loca-
tion with a self-loop. Thus, terminated processes can still proceed. The expres-
sion executed(li, l′i) can be easily defined in LTL. For this we extend the set Pred
by a progress predicate for each process: Pred := Pred∪{progressi | i ∈ [1..n]}.
Moreover, we extend each operation as follows: τi(li, l′i) sets progressi to true
and all progressi′ with i′ �= i to false. Now executed(li, l′i) is defined as follows:

executed(li, l′i) ≡ (loci = li) ∧ X((loci = l′i) ∧ progressi).

Thus, an operation associated with a control flow transition (li, l′i) is executed
if (loci = li) holds in the current state and (loci = l′i) ∧ progressi holds in the
next state. Next, we define our weak fairness constraint:

wfair ≡
∧n

i=1

∧

(li,l′i)∈δi
(FG(enabled(li, l′i)) → GF(executed(li, l′i)))

Hence, for each process, each continuously enabled operation has to be infinitely
often executed. Instead of incorporating each operation in this type of constraint
it is also possible to restrict the operations to crucial ones, which results in
a shorter constraint and thus also restrains the complexity of model checking
under fairness. For our running example it is for instance appropriate to just
incorporate operations in wfair that correspond to the successful acquisition of
the semaphore. Note that wfair can be easily transferred into negation normal
form via the common propositional logic transformation rules such that it is
conform with the definition of LTL. The expression enabled(li, l′i) can be defined
as an LTL formula over locations and Pred as follows:

enabled(li, l′i) ≡ (loci = li) ∧ choice(a, b)

212 N. Timm et al.

assuming that τi(li, l′i) = assume(choice(a, b)) : p1 := choice(a1, b1), . . . , pm :=
choice(am, bm). Thus, an operation associated with a control flow transition
(li, l′i) is enabled if (loci = li) holds and the guard of the operation holds as well.
Finally, we define our strong fairness constraint:

sfair ≡
∧n

i=1

∧

(li,l′i)∈δi
(GF(enabled(li, l′i)) → GF(executed(li, l′i)))

Hence, for each process, each operation that is enabled infinitely often has to be
executed infinitely often. In model checking under fairness we can either check
properties under specific constraints or we can combine all to a general one

fair ≡ ufair ∧ wfair ∧ sfair .

Existential bounded model checking under fairness is now defined as:

[M |=fair
E,b ψ] ≡ [M |=E,b (fair ∧ ψ)]

Thus, we check whether there exists a b-bounded path that is fair and satisfies
the property ψ. Such a model checking problem can be straightforwardly encoded
in propositional logic based on our definitions in the previous section. We get

[[Sys, fair ∧ ψ]]b := [[Sys]]b ∧ [[fair ∧ ψ]]b,

which can be fed into a SAT solver in order to obtain the result of model check-
ing ψ under fairness. Next, we present the implementation of our encoding-based
model checking technique and we discuss example verification tasks that illus-
trate the capability of our approach.

6 Implementation

We have implemented a SAT-based bounded model checker for three-valued
abstractions of concurrent software systems. Our tool employs the abstractor
3Spot [11] that builds abstract control flow graphs for a given concurrent system
Sys and a set of predicates Pred. 3Spot supports almost all control structures
of the C language as well as int, bool and semaphore as data types. Based on
the CFGs and an input LTL formula ψ, our tool automatically constructs an
encoding [[Sys, ψ]]b of the corresponding verification task. The model checker
now iterates over the bound b starting with b = 0, until a definite result can
be obtained or a predefined threshold for b is reached: In each iteration the two
instances of the encoding are processed by a solver thread of the SAT solver Sat4j
[9]. A false result for [[Sys, ψ]]b[⊥/true] and a true result for [[Sys, ψ]]b[⊥/false]
can be immediately transferred to the corresponding model checking problem
[M |=E,b ψ]. In case of a true resp. unknown result, a witness path for ψ in
the form of an assignment satisfying [[Sys, ψ]]b is additionally returned. The tool
chain of our model checker is depicted below.

A Bounded Model Checker for 3VA of Concurrent Software Systems 213

Abstractor Encoder

LTL
formula

SAT Solver

concurrent
system

abstract
CFGs

PL
encoding

verification
result

The abstractor 3Spot can construct finite abstractions of fix-sized systems with
non-uniform processes as well as of parameterised systems with an unbounded
number of uniform processes [14]. A finite abstraction of a parameterised sys-
tem Sys = ‖n

i=1 Pi implementing a solution to the dining philosophers problem is
depicted below. All processes continuously attempt to acquire the two resources
p and q. Once a process has successfully acquired both resources it releases them
in a single step and attempts to acquire them again. The order in which a process
requests the resources is non-deterministically determined. 3Spot does not only
use predicate abstraction, it also allows to abstract away entire processes by
summarising them into a single approximative process G⊥. The loss of informa-
tion due to abstraction is modelled by the truth value ⊥. In our example G1

and G2 are abstractions of two individual processes while G⊥ approximates the
behaviour of an unbounded number of additional processes.

p, q : predicate where p = t; q = t;

00

G1

01 10

11

p := t
q := t

¬p ∧ ¬p

¬q ¬p

p : p := choice(f ,¬p) q : q := choice(f ,¬q)

q : q := choice(f ,¬q) p : p := choice(f ,¬p)

00

G2

01‖ 10

11

p := t
q := t

¬p ∧ ¬p

¬q ¬p

p : p := choice(f ,¬p) q : q := choice(f ,¬q)

q : q := choice(f ,¬q) p : p := choice(f ,¬p)

00

G⊥

p := choice(f ,¬p)
q := choice(f ,¬q)

‖

We now illustrate how our tool verifies properties of concurrent systems. We
search for violations of desirable properties. For the dining philosophers the
violation of mutual exclusion can be expressed as

ψ = F((loc1 = 11) ∧ (loc2 = 11)).

Hence, we check whether the processes represented by G1 and G2 will be ever at
their critical location 11 at the same time. Based on the abstract CFGs and ψ our
encoder automatically constructs [[Sys, ψ]]b. Next, our tool iterates over b until
a completeness threshold is reached1. Via SAT solving we obtain false results in
1 Completeness thresholds for checking safety properties are linear in the size of the
abstraction, i.e. in the number of abstract states [7].

214 N. Timm et al.

all iterations, which allows to conclude that mutual exclusion is not violated for
the processes abstracted by G1 and G2. Receiving this overall result takes 20 s
on a 2.93 GHz Intel Core i3 system with 7 GB. The LTL formula ψ characterises
a local property since it refers to particular processes of a parameterised system.
However, as shown in [14] symmetry arguments allow us to transfer this result
to arbitrary pairs of processes in the system. We can conclude that

ψglobal = ∃1 ≤ i, j ≤ n, i �= j : F((loci = 11) ∧ (locj = 11))

does not hold as well for the dining philosophers, i.e. no pair of processes will be
ever at their critical location at the same time. In the same manner, we can verify
global liveness properties of concurrent systems under fairness assumptions. The
formula

ψ′ = F((loc1 = 00) ∧ G¬(loc1 = 11))

characterises the violation of a liveness property. It states that eventually philoso-
pher 1 is at its initial location and will never successfully acquire both resources.
Our tool constructs [[Sys, fair ∧ ψ′]]b. Within two iterations over b and a time of
0.37 s we can already detect a satisfying assignment for the encoding that char-
acterises a fair path where G1 has reached location 01 while G2 has reached loca-
tion 10 and no further progress in the entire system is possible (only self-loops).
Again, symmetry arguments [14] allow us to transfer this result to arbitrary
processes. We can conclude that

ψ′
global = ∃1 ≤ i ≤ n : F((loci = 00) ∧ G¬(loci = 11))

holds, i.e. there is a violation of global liveness in the dining philosopher system.
With our tool we could also verify generalisations of the dining philosophers

system with significantly more than two resources. Our tool was particularly
efficient when property violations could be detected. Nevertheless, we were even
able to prove the absence of violations by setting the bound to the completeness
threshold [7]. A more extensive experimental evaluation of our model checker is
in preparation. Although our preliminary experiments already showed promising
results, we expect that we can further enhance the performance of our tool based
on optimisations that we mention in the conclusion of this paper.

7 Related Work

Our SAT-based software verification technique is related to a number of existing
approaches in the field of bounded model checking for software. The bounded
model checker CBMC [8] supports the verification of sequential C programs. It is
based on a Boolean abstraction of the input program and it allows for checking
buffer overflows, pointer safety and assertions, but not full LTL properties. A
similar tool is F-Soft [6]. This bounded model checker for sequential programs is
restricted to the verification of reachability properties. While CBMC and F-Soft

A Bounded Model Checker for 3VA of Concurrent Software Systems 215

support a wider range of program constructs like pointers and recursion, our
approach focusses on the challenges associated with concurrency and the verifi-
cation of liveness properties under fairness. The tool TCBMC [10] is an extension
of CBMC for verifying safety properties of concurrent programs. TCBMC intro-
duces the concept of bounding context switches between processes, which is a
special abstraction technique for reducing concurrency. In our approach we use
the process summarisation abstraction of 3Spot [11], which allows us to reduce
the complexity induced by concurrency in a different way. In contrast to the
above mentioned tools, we employ three-valued abstraction, which preserves true
and false results in verification. Three-valued BMC is addressed in [5,16]. How-
ever, only in the context of hardware verification [5] resp. assuming that an
explicit three-valued Kripke structure is given [16]. To the best of our knowledge,
our approach is the first that supports software verification under fairness via
an immediate propositional logic encoding and SAT-based BMC.

8 Conclusion and Outlook

We introduced a verification technique for concurrent software systems via three-
valued abstraction and SAT-based BMC. We defined a direct propositional logic
encoding of software verification tasks and we proved that our encoding is sound
in the sense that SAT results can be straightforwardly transferred to the corre-
sponding model checking problem. Hence, the expensive construction and explo-
ration of an explicit state space model is not necessary. Our fully-automatic tool
enables the verification of safety and liveness properties under fairness. Due to
the efficiency of modern SAT solvers we achieve promising performance results.

As future work we plan to experimentally evaluate our approach based on
case studies on concurrent software systems. Moreover, we intend to optimise our
technique by integrating incremental SAT solving and by developing SAT solving
heuristics tailored to the structure of our encodings. Finally, we want to extend
our tool by a mechanism for counterexample-guided abstraction refinement [15].

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Handb. Satisf. 185, 457–481 (2009)

2. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6 25

3. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

4. Fitting, M.: Kleene’s 3-valued logics and their children. Fund. Inf. 20(1–3), 113–131
(1994)

5. Grumberg, O.: 3-valued abstraction for (bounded) model checking. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, p. 21. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04761-9 2

http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1007/978-3-642-04761-9_2

216 N. Timm et al.

6. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.:
F-Soft: software verification platform. In: Etessami, K., Rajamani, S.K. (eds.)
CAV 2005. LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005). doi:10.
1007/11513988 31

7. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear complete-
ness thresholds for bounded model checking. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV 2011. LNCS, vol. 6806, pp. 557–572. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22110-1 44

8. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 26

9. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7, 59–64 (2010)

10. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005). doi:10.1007/11513988 9

11. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 8

12. Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf.
Comput. 206(11), 1313–1333 (2008)

13. Timm, N.: Bounded model checking für partielle systeme. Master’s thesis, Univer-
sity of Paderborn (2009)

14. Timm, N., Wehrheim, H.: On symmetries and spotlights – verifying parameterised
systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 534–548.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16901-4 35

15. Timm, N., Wehrheim, H., Czech, M.: Heuristic-guided abstraction refinement for
concurrent systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635,
pp. 348–363. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34281-3 25

16. Wehrheim, H.: Bounded model checking for partial Kripke structures. In:
Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol.
5160, pp. 380–394. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85762-4 26

http://dx.doi.org/10.1007/11513988_31
http://dx.doi.org/10.1007/11513988_31
http://dx.doi.org/10.1007/978-3-642-22110-1_44
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://dx.doi.org/10.1007/11513988_9
http://dx.doi.org/10.1007/978-3-642-05089-3_8
http://dx.doi.org/10.1007/978-3-642-16901-4_35
http://dx.doi.org/10.1007/978-3-642-34281-3_25
http://dx.doi.org/10.1007/978-3-540-85762-4_26

Model Checking Requirements

Sérgio Barza(B), Gustavo Carvalho, Juliano Iyoda, Augusto Sampaio,
Alexandre Mota, and Flávia Barros

Centro de Informática - Universidade Federal de Pernambuco,
Recife, PE 50740-560, Brazil

{sb,ghpc,jmi,acas,acm,fab}@cin.ufpe.br

Abstract. In software engineering, system requirements are written in
a natural language such as English. Later in the design phase, these
requirements are usually translated to a semi-formal language such as
UML. This design model gives support to the development of the system
in a programming language. Although natural language is easy to use,
it is intrinsically ambiguous. Undesired effects may arise, as the errors
generated by misinterpretation of the requirements can lead to a late
discovery of a problem with a costly solution. In this paper, we propose
the use of a Controlled Natural Language (CNL) (a subset of English
that obeys a formal grammar) as a language for writing requirements.
Moreover, we developed a translator from a CNL to the modelling lan-
guage of the NuSMV model checker. In addition, we propose another
CNL to describe properties in the style of a temporal logic. A second
translator transforms this CNL into Computation Tree Logic. There-
fore, our toolset allows the user to benefit from the user-friendliness of a
natural language and to perform a formal analysis on the requirements
using the NuSMV model checker. We are thus able to assert whether
the requirements satisfy a property. The user only deals with CNLs as
we hide all formal languages involved in the inputs of a model checker.
Counter-examples are produced in the NuSMV notation, but they are
fairly intuitive to understand. We illustrate our work in a case study.

1 Introduction

In software engineering, it is common to write system requirements in a natural
language such as English, for example. Subsequently, these requirements are
interpreted and refined in the design phase in semi-formal languages (like UML1)
and then are implemented in a particular programming language. Occasionally,
also in the design phase, a designer may use a formal model and tool such as
Isabelle/HOL [20] depending on how critical the system is.

Natural language is user-friendly and is a widely used vehicle to communicate
and describe requirements. Unfortunately, natural language is ambiguous and
therefore susceptible to multiple interpretation. Due to this problem, a mechani-
cal analysis of the requirements becomes infeasible. Moreover, the use of natural

1 http://www.omg.org/spec/UML.

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 217–234, 2016.
DOI: 10.1007/978-3-319-49815-7 13

http://www.omg.org/spec/UML

218 S. Barza et al.

language in the requirements phase also brings consequences to other stages of
development: requirement misunderstanding leads engineers to produce incorrect
designs and implementation. Late discovery of these problems has considerable
impact on a system architecture and project schedule and budget.

In this paper, we propose the use of a Controlled Natural Language (CNL)
to write requirements and perform model checking on them. CNLs are subsets of
natural languages that obey a formal grammar [18]. As they are free from ambi-
guities, they can be compiled and, consequently, they can be analysed automat-
ically while still preserving, to a great extent, the user-friendliness of a natural
language. We propose requirements to be written in SysReq-CNL, previously
developed by Carvalho et al. [12]. Here we develop a translator from SysReq-
CNL to the modelling language of the model checker NuSMV [13]. In order to
check properties concerning requirements, we also designed another CNL called
Natural-CTL, and implemented a translator of it to Computation Tree Logic
(CTL). With these two languages and two translators, we are able to write and
formally verify properties of the requirements on the level of CNLs without the
need of direct manipulation of the formal notation required by a model checker.
Only when the model checker produces a counterexample the user has to deal
with the native NuSMV counterexample notation. However, such notation is
intuitive and easy to understand. Finally, a case study illustrates the use of our
languages and translators.

Previous works reported by Aceituna et al. [1] and Cavada et al. [14] describe
translations from description and specification languages to the NuSMV lan-
guages, while Holt [19] and Badger et al. [4] aim to translate temporal logic
formulas from CNLs. The work done by Choi and Heimdahl [15] proposes and
implements a tool that translates from a specific formal notation to NuSMV
models. Our work is more complete than previous works in the sense that we
provide solutions to translate requirements and desired properties both written
in CNLs to the model and the temporal logic formula of NuSMV. This allows
formal methods to be introduced very early in the software development process
while preventing the user from learning formal notations.

The main contributions of this paper are listed below.

– We propose the use of two CNLs in the requirements phase: SysReq-CNL
(introduced in our previous work [12]) and Natural-CTL, which was developed
to write CTL-like properties. With this approach, requirements continue to
be written in a language that is similar to a pure natural language in addition
to allowing property specification to be used in fully automatic verification of
the requirements;

– We developed two translators that hide from the user the need of learning
and manipulating formal modelling languages (such as NuSMV) and property
languages (such as CTL). In particular, the translators deal with constructions
of the CNL that are not conventional for a model checker, like references to
past states;

Model Checking Requirements 219

– A case study that illustrates all contributions of this work. In particular, we
show that a subtle change in a property turns it false — such verification
would be quite challenging to do by hand.

This paper is organised as follows. Section 2 briefly introduces the first two
phases of our strategy, the syntactic and the semantic analyses of the SysReq-
CNL. Section 3 explains how SysReq-CNL is translated to the NuSMV mod-
elling language. Section 4 presents the Natural-CTL and how it is translated to
CTL formulas. Section 5 illustrates our translators considering a Coffee Vending
Machine as a case study. Section 6 presents the main related works and Sect. 7
concludes.

2 Syntactic and Semantic Analyses of Requirements

SysReq-CNL was created in the context of the NAT2TEST strategy [8] to gen-
erate test cases from natural-language requirements based on different internal
and hidden formal languages. It provides a flexible structure to describe actions
guarded by conditions. The grammar of this CNL is fully available in [12]. Here,
we rely on the first two phases of the NAT2TEST strategy: the syntactic and
the semantic analyses. The syntactic analysis phase receives as input the system
requirements in order to verify whether these requirements are in accordance
with the SysReq-CNL grammar, a CNL specially tailored for editing require-
ments of data-flow reactive systems [10].

Initially, we have designed and tested SysReq-CNL considering examples pro-
vided by our industrial partner Embraer2 [11]. We have later also considered
different examples provided by different companies. These include an example
provided by Mercedes [9], a consolidation function, also in the aerospace domain,
and the Ford car-alarm system reported by Aichernig et al. [3]. In all these cases
the considered SysReq-CNL was basically the same. So, we have some evidence
that, although the CNL has a controlled structure, it is not limited to particular
examples; rather, it seems flexible enough to express requirements of reactive
systems more generally. In order to illustrate the SysReq-CNL grammar, let us
present a semaphore example written according to its grammar.

Example 1. The Semaphore

Requirement 1: When the counter is 6 or the counter is lower than 3, the
system shall assign green to the semaphore.

Requirement 2: When the counter is greater than or equal to 3, and the counter
is lower than 5, the system shall assign yellow to the semaphore.

Requirement 3: When the counter is 5, the system shall assign red to the
semaphore.

Requirement 4: When the counter is 6, the system shall reset the counter.
2 www.embraer.com.br.

www.embraer.com.br

220 S. Barza et al.

Requirement 5: When the counter is greater than or equal to 0, the system shall
add 1 to the counter.

The semantic analysis phase maps the syntax trees generated by the previous
phase into an informal natural-language semantic representation based on the
Case Grammar linguistic theory [17]. In this theory, a sentence is analysed in
terms of the thematic roles (semantic roles) played by each word, or group of
words in the sentence.

The verb is associated to a thematic role, which is aggregated into a struc-
ture named as case frame (CF). Each verb in a requirement natural language
specification gives rise to a different CF. All derived CFs are joined afterwards
to compose what we call a requirement frame (RF). The NAT2TEST strat-
egy considers nine thematic roles: action (ACT) – the action performed if the
requirement conditions are satisfied; agent (AGT) – the entity which performs
the action; patient (PAT) – the entity which is affected by the action; and TOV –
the patient value after action completion. Similar roles are defined for the verbs
used in conditions (guards): condition action (CAC), condition patient (CPT),
condition from value (CFV), condition to value (CTV), and condition modifier
(CMD). Table 1 shows the requirement frame for Requirement 2.

Table 1. Requirement frame corresponding to the Requirement 2.

1 Condition #1 - main verb (CAC): is

2 CPT: the counter CFV: -

3 CMD: greater than or equal to CTV: 3

4 Condition #2 - main verb (CAC): is

5 CPT: the counter CFV: -

6 CMD: lower than CTV: 5

7 Action - main verb (ACT): assign

8 AGT: the system TOV: yellow

9 PAT: the semaphore

3 CNL to NuSMV

In this section, we describe how requirement frames are translated to a NuSMV
model. The translation process is introduced in terms of its main tasks: require-
ment frame pre-processing, variable mapping, type inference and transition
building.

Model Checking Requirements 221

3.1 Requirement Frame Pre-processing

We are not able to use a requirement frame exactly as generated by the semantic
analysis of the NAT2TEST strategy. Thus we apply two main pre-processing
functions to a requirement frame. The first pre-processing function assigns the
field TOV (the final value of a patient) to 0 whenever the action verb is reset. By
making the meaning of the verb reset explicit, we are able to apply the remaining
tasks of the translation uniformly regardless what the action verb is. The second
main pre-processing function concatenates patient and agent names into a single
word.

3.2 Mapping Variables

Once the pre-processing task is done, we map elements of a requirement frame
to NuSMV variables. Firstly, let us define the sets that give support to the
construction of the set of variables.

Definition 1. Let CPTSET be the set of all CPTs (condition patients) associ-
ated with a condition, and PATSET be a set of all PATs (patients) affected by
any action. Then VARSET is the set of all variables of the system requirements.

VARSET = CPTSET ∪ PATSET

Using Table 1 as reference, we have

VARSET = {thecounter} ∪ {thesemaphore} = {thecounter, thesemaphore}.

3.3 Inferring the Types of the Variables

When a variable is declared in NuSMV, its type must be defined since a model
checker expands all values that the variable might have. This section describes
how we infer the type of variables and how we use data abstraction to reduce
the set of values of a type. By reducing the set of values of a type, we avoid as
much as possible the state explosion problem. In this paper, type inference and
data abstraction are presented as a single procedure.

Definition 2. Let var ∈ VARSET . Let CFVSETvar be the set of all CFVs (con-
ditions from value) of the variable var. Let CTVSETvar be the set of all CTV
(condition to value) values of the variable var. Let TOVSETvar be the set of all
TOV (patient value) values that are assigned to the variable var. Such values are
constant integers, boolean values or enumeration values, i.e. they do not come
from expressions involving addition and subtraction.

The set of all values related to a variable var is defined as

VALUESETvar = CFVSETvar ∪ CTVSETvar ∪ TOVSETvar .

222 S. Barza et al.

Let us illustrate the construction of VALUESETthecounter from Table 1. We
have CFVSETthecounter = TOVSETthecounter = ∅, CTVSETthecounter = {5, 3}.
Hence, VALUESETthecounter = ∅ ∪ ∅ ∪ {5, 3} = {5, 3}. This process needs to be
done for all requirement frames related to all requirements of Example 1. So, the
complete set of values for thecounter is {0, 3, 5, 6}.

System requirements specification written in CNL are restricted to use a
small number of verbs. Two of them, “to add” and “to subtract”, are different in
the context of typifying: all the possible values of the variables that are operands
of an addition and subtraction are not explicit in the requirements. Due to this
fact, we need to define a superset of VALUESETvar that includes values from
additions and subtractions. We assume that additions and subtractions are of
the form var + k and var − k, where k is an integer constant. For instance,
Requirements 5 in Example 1 shows the variable thecounter being assigned to
thecounter + 1.

Definition 3. Let v ∈ VALUESETvar , where var is an operand of an addition
or a subtraction (or both). Let a and b be the additive and subtractive constant
terms, respectively, and min and max be the minimum and maximum values of
an integer range, respectively (provided by the user), where v, a, b,min,max ∈ Z,
and min ≤ v ≤ max. The set of all possible values of var, ADDSUBSETvar ,
is defined below. The notation gcd(a, b) denotes the greatest common divisor
between a and b.

ADDSETvar (v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∅, ifa = 0
� max−v
gcd(a, b) �

⋃

k=0

{v + gcd(a, b) · k}, if a �= 0

SUBSETvar (v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∅, ifb = 0
� v−min
gcd(a, b) �

⋃

k=0

{v − gcd(a, b) · k}, ifb �= 0

ADDSUBSETvar (v) = ADDSETvar (v) ∪ SUBSETvar (v), and

ADDSUBSETvar =
⋃

v∈VALUESETvar

ADDSUBSETvar (v)

The set ADDSETvar contains all values v that might be produced from an addi-
tion of a in the range min ≤ v ≤ max, where min and max are values provided
by the user (not shown in Example 1 for conciseness). However, if the same vari-
able var is also used in a subtraction from b, then the values must change over
increments of gcd(a, b). A similar reasoning is applied to SUBSETvar . For con-
ciseness, this definition applies to a single addition and a single subtraction. If
more than one addition or more than one subtraction takes place for the same
variable (in different requirements), we can adopt the same reasoning except
that the gcd() is generalised to more than two arguments.

A variable var that has been assigned neither to additions nor to subtractions
is of type VALUESETvar . Otherwise its type is ADDSUBSETvar .

Model Checking Requirements 223

In Example 1, by analysing all requirements, VALUESETthecounter = {0 , 3 ,
5 , 6}. As it is added to 1 in Requirement 5, and assuming thatmin = 0 andmax =
6, its type is ADDSUBSETthecounter = {0, 1, 2, 3, . . . , 6}.

3.4 Building Transitions

A transition is the main constructor of the NuSMV description language. It is
characterised by a set of variables and how their values change. Here we define
a transition as relation between a variable var , and action over var and the
conditions (guards) for this action to happen.

In Table 1 the variable thesemaphore is assigned to the value yellow provided
two conditions are satisfied. For this particular requirement frame, the following
relation tuple is produced.

(thesemaphore,Action, {Condition1,Condition2})

Action, Condition1 and Condition2 refer to the rows 7–9, 1–3, 4–6, in Table 1,
respectively. The complete set of transitions of thesemaphore is produced by
constructing similar tuples from requirements 1, 3, 4, and 5.

As SysReq-CNL grammar allows the use of the actions to become and to
change in the requirements, our approach needs to capture which changes were
done for this statements. In this way, we are processing them before the construc-
tion of these transitions. In these cases, the field CFV (condition from value — a
guard of the action) is stored with an explicit condition that guarantees that the
assigned value is different from the previous value. For instance, suppose that a
requirement says that the variable thesemaphore must change to yellow. Then,
the CFV must hold the value thesemaphore �= yellow . If the requirements say
that the value must change from green to yellow, then the CFV must hold the
value thesemaphore = green. This guarantees that the new value is consistent
with the semantics of the verbs to become and to change.

3.5 NuSMV Code Generation

Once we have the set of all variables, their types, and the set of all transitions,
we can now produce the NuSMV model.

The general strategy is to transform each requirement variable into a NuSMV
module that contains the variables past and value. The NuSMV variable past
stores the previous value of the requirement variable, while value stores its cur-
rent value. This approach allows us to build correct NuSMV models when verbs
such as to become and to change appear, as they need previous information.

Currently, our NuSMV automatic generated model is less efficient than a
manually produced model. For instance, the creation of the variables past and
value might not be needed in some domains. However, this is an intrinsic problem
of automatic code generation. As this project evolves, code optimisations will be
developed and the generated model can become as good as a model produced
by hand.

224 S. Barza et al.

The translation algorithm starts from the set of variables and creates a mod-
ule for each variable. Inside the module, the NuSMV variables past and value
are declared. Finally the state transitions are defined in terms of the NuSMV
case statements using the transitions built previously (Sect. 3.4). Code 1 shows
the NuSMV code for the variable thesemaphore.

Code 1: The NuSMV module for the variable thesemaphore.
1 MODULE m thesemaphore(thecounter)
2 VAR past : {green, yellow, red};
3 value : {green, yellow, red};
4 ASSIGN
5 next(past) := value;
6 next(value) := case
7 ((thecounter.value = 6) ∨ (thecounter.value < 3)) : green;
8 ((thecounter.value ≥ 3) ∧ (thecounter.value < 5)) : yellow;
9 (thecounter.value = 5) : red;

10 TRUE: {green, yellow, red};
11 esac;

It is important to note that if all conditions in the case block fail, the TRUE
guard guarantees that the variable is assigned to either green, yellow, or red as
NuSMV requires that all possible assignments for variables need to be explicit,
even though this choice is done non-deterministically.

4 CNL to CTL

The task of translating properties in CNL to CTL formulas is different from
the approach described in Sect. 3 as we can map CNL to CTL in a one-to-one
mapping. For this, we use Syntax-Directed Translation (SDT) [2]. This section
presents the grammar of Natural-CTL and shows the use of Syntax-Directed
Translation in our strategy.

4.1 Natural-CTL

Natural-CTL allows the user to describe CTL-like sentences in a subset of Eng-
lish. Its grammar is illustrated in Fig. 1, where we can see the two types of CTL
expressions: binary and unary expressions.

A BinaryExpr is either a For All Until, an Exists Until, any logical expression,
or an arithmetic relation. A For All Until specifies a property that must be true
for all paths in the future until something else becomes true. Similarly, Exists
Until specifies a property that must be true to some paths in the future until
something else becomes true. A UnaryExpr is either a ForAllGloballyExpr, an
ExistGloballyExpr, a ForAllFinallyExpr, an ExistFinallyExpr, a ForAllNextExpr,

Model Checking Requirements 225

Fig. 1. Extended BNF specification of the Natural-CTL grammar.

an ExistNextExpr, a NotExpr, or an Expr. A ForAllGloballyExpr states that a
property must be true for paths in the model. An ExistsGloballyExpr states that
a property must be true for some path in the model. A ForAllFinallyExpr states
that a property is eventually true for all paths. An ExistsFinallyExpr states that
a property must eventually be true for some paths. A ForAllNextExpr states that
a property must be true for all paths in the next state. An ExistsNextExpr states
that a property must be true for some paths in the next state. Finally, Expr is
an expression and NotExpr is the negation of an expression.

To illustrate the use of Natural-CTL, let us write a sentence that describes
a desired property about the Example 1 (the names of requirement variables
like the semaphore must be written without spaces in the current version of the
Natural-CTL translator).

check sentence: it is not true that for some path, in the future, thesemaphore is
equal to red and thecounter is equal to 0.

4.2 Implementation of a Syntax-Directed Translation

Computation Tree Logic (CTL) is a branching-time logic in which the future is
modelled as a tree-like structure. The CTL used in our work is the CTL accepted
by NuSMV (for more detail about this CTL, see the NuSMV user manual [13]). In
order to translate Natural-CTL to CTL we use a Syntax-Directed Translation.
We embed semantic actions in the Natural-CTL grammar in order to parse

226 S. Barza et al.

input sentences to CTL specifications. In this section we rewrite the Natural-
CTL grammar with some code snippets. Each piece of code is inserted between
braces (we omit some grammar productions for conciseness).

Whenever “check sentence:” is found, the NuSMV keyword “CTLSPEC” is
printed.

CtlSpec → (“check sentence:” CtlExpr “.” {print “CTLSPEC” ||
BinaryExpr.str || “.”})+

The symbol || denotes an infix operator for concatenation of strings. The expres-
sion BinaryExpr.str is a string of the top-level binary expression of the specifi-
cation. The attribute str is present in all non-terminals of the grammar.

Let us see how this grammar handles a temporal logic operator. For example,
a specification that states that, for all paths, p1 must be true until p2 becomes
true inserts p1 and p2 in the string A[p1Up2].

ForAllUntilExpr → CtlExpr “,for all paths, until” CtlExpr
{ForAllUntilExpr.str := “(A [” || CtlExpr.str || “U” || CtlExpr.str || “])”}

To illustrate the family of unary temporal logic operators, let us see the
production of ForAllFinallyExpr, which is declared below.

ForAllFinallyExpr →”for all paths, in the future,” CtlExpr
{ForAllFinallyExpr.str := “(AF ” || CtlExpr.str || “)”}

The CTL formula obtained from the property presented in Sect. 4.1 is shown
below (the term CTLSPEC is the command of NuSMV to verify the CTL for-
mula that follows).

CTLSPEC (¬(EF((thesemaphore.value = red) ∧ (thecounter.value = 0))))

5 Case Study

In this section, we present a case study to illustrate the main steps required
to generate NuSMV models from requirement frames. In addition to that, we
illustrate the translation of properties written in Natural-CTL to CTL.

5.1 Example: The Coffee Vending Machine

A Coffee Vending Machine is an automatic coffee machine that produces either
weak or strong coffee. The requirements listed below specify how this machine
behaves. Table 2 illustrates the outcome of the requirement frame pre-processing
applied to Requirement 2.

Example 2. The Coffee Vending Machine

Requirement 1: When the system mode is idle, and the coin sensor changes to
true, the coffee machine system shall: reset the request timer, assign choice to
the system mode, assign 100 to the coffee counter.

Model Checking Requirements 227

Requirement 2: When the system mode is choice, and the coffee request button
changes to pressed, and the request timer is lower than or equal to 30, the
coffee machine system shall: reset the request timer, assign preparing weak
coffee to the system mode, add 3 to the coffee counter.

Requirement 3: When the system mode is choice, and the coffee request button
changes to pressed, and the request timer is greater than 30, the coffee machine
system shall: reset the request timer, assign preparing strong coffee to the
system mode, subtract 6 to the coffee counter.

Requirement 4: When the system mode is preparing weak coffee, and the
request timer is greater than or equal to 10, and the request timer is lower than
or equal to 30, the coffee machine system shall: assign idle to the system mode,
assign weak to the coffee machine output.

Requirement 5: When the system mode is preparing strong coffee, and the
request timer is greater than or equal to 30, and the request timer is lower than
or equal to 50, the coffee machine system shall: assign idle to the system mode,
assign strong to the coffee machine output.

Requirement 6: When the system mode changes to idle, the coffee machine
system shall assign undefined to the coffee machine output.

Table 2 illustrates the outcome of the requirement frame pre-processing
applied to Requirement 2.

Lines 1–3, 4–6, and 7–9 describe conditions, while lines 10–12, 13–15, and
16–18 describe actions.

5.2 Retrieving the Variables

We are now able to retrieve all variables needed to build the NuSMV model.
Recall that the set of all variables VARSET is obtained from CPTSET and
PATSET . Thus, let us first produce the CPTSET and PATSET sets. The sub-
scripts in each set range from 1 to 6 and are related to each requirement.

CPTSET1 = {thecoinsensor , thesystemmode};CPTSET2 = CPTSET3 =
{therequesttimer , thecoffeerequestbutton, thesystemmode}
CPTSET4 = CPTSET5 = {therequesttimer , thesystemmode}
CPTSET6 = {thesystemmode}
CPTSET =
{thecoinsensor , thesystemmode, therequesttimer , thecoffeerequestbutton}

PATSET1 = PATSET2 = PATSET3 =
{therequesttimer , thesystemmode, thecoffeecounter}
PATSET4 = PATSET5 = {thesystemmode, thecoffeemachineoutput}
PATSET6 = {thecoffeemachineoutput}
PATSET = {therequesttimer , thesystemmode, thecoffeecounter ,

thecoffeemachineoutput}

228 S. Barza et al.

Table 2. Requirement frame corresponding to the Requirement 2 of Example 2.

1 Condition #1 - main verb (CAC): is

2 CPT: therequesttimer CFV: -

3 CMD: lower than or equal to CTV: 30

4 Condition #2 - main verb (CAC): changes

5 CPT: thecoffeerequestbutton CFV: -

6 CMD: - CTV: pressed

7 Condition #3 - main verb (CAC): is

8 CPT: thesystemmode CFV: -

9 CMD: - CTV: choice

10 Action - main verb (ACT): reset

11 AGT: the coffee machine system TOV: 0

12 PAT: therequesttimer

13 Action - main verb (ACT): assign

14 AGT: the coffee machine system TOV: preparingweakcoffee

15 PAT: thesystemmode

16 Action - main verb (ACT): add

17 AGT: the coffee machine system TOV: 3

18 PAT: thecoffeecounter

The set of all variables is the union of CPTSET and PATSET .

VARSET = CPTSET ∪ PATSET = {thecoinsensor , thesystemmode,
therequesttimer , thecoffeerequestbutton, thecoffeecounter , thecoffeemachineoutput}.

5.3 Inferring the Types of the Variables

Recall that the set of values of the variable var VALUESETvar is defined as the
union of CFVSETvar , CTVSETvar and TOVSETvar . Below we illustrate how
the values of thesystemmode and thecoffeecounter are produced.

For thesystemmode, the same notation concerning the subscripts ranging
from 1 to 6 is considered here — and we omit the name of the variable in
the subscript for clarity.
thesystemmode:

– CFVSET1 = CFVSET2 = CFVSET3 = CFVSET4 = CFVSET5 =
CFVSET6 = ∅;

– CTVSET1 = {idle}; CTVSET2 = CTVSET3 = {choice};
CTVSET4 = {preparingweakcoffee}; CTVSET5 = {preparingstrongcoffee};
CTVSET6 = {idle};

– TOVSET1 = {choice}; TOVSET2 = {preparingweakcoffee};
TOVSET3 = {preparingstrongcoffee}; TOVSET4 = TOVSET5 = {idle};
TOVSET6 = ∅;

Model Checking Requirements 229

We can now define VALUESET for the variable thesystemmode.

VALUESET thesystemmode = {idle, choice, preparingweakcoffee, preparingstrongcoffee}

As the variable thecoffeecounter is assigned to an addition and sub-
traction, in order to generate a range of integers such that the result of
addictions and subtractions are contained in this set, we need to compute
ADDSUBSET thecoffeecounter . We assume the following values.

– Additive term, a, is equal to 3 (a �= 0);
– Subtractive term, b, is equal to 6 (b �= 0);
– Minimum value, min, is equal to 80 ;
– Maximum value, max , is equal to 130 .

As the gcd(3, 6) = 3, we produce the following values.

ADDSETthecoffeecounter (100) =
{100 , 103 , 106 , 109 , 112 , 115 , 118 , 121 , 124 , 127 , 130}.
SUBSETthecoffeecounter (100) = {100 , 97 , 94 , 91 , 88 , 85 , 82}.
ADDSUBSETthecoffeecounter =
ADDSETthecoffeecounter (100) ∪ SUBSETthecoffeecounter (100) =
{82 , 85 , 88 , 91 , 94 , 97 , 100 , 103 , 106 , 109 , 112 , 115 , 118 , 121 , 124 , 127 , 130}.

5.4 Code Generation

The last phase in the translation is the generation of the transitions and the sub-
sequently generation of the NuSMV model. Code 2 shows the final code generated
by this phase for the variables the coffee request button and the coffee machine
output .

Variable the coffee request button stores inputs from the user. Its module
simply keeps its past and current value. The implementation of the variable
the coffee machine output is more elaborate. In addition to storing the past
and current value of the variable, it also specifies how the value of the variable
changes in terms of the past and current states of the variables the system mode
and the request timer .

5.5 Specifying Properties

Once the model has been created, we can now check some properties and ver-
ify whether the system requirements satisfy them. Let us see two examples of
sentences written in Natural-CTL.

check sentence: for all paths, globally, thecoffeerequestbutton changes to pressed
implies for some path, in the next state, therequesttimer is equal to 0.

check sentence: for all paths, globally, thecoffeerequestbutton changes to pressed
implies for all paths, in the next state, therequesttimer is equal to 0.

230 S. Barza et al.

Code 2: The NuSMV module for the Coffee Vending Machine.
1 MODULE m thecoffeerequestbutton
2 VAR past : {pressed};
3 value : {pressed};
4 ASSIGN
5 next(past) := value;
6 MODULE m thecoffeemachineoutput (thesystemmode, therequesttimer)
7 VAR past : {weak, strong, undefined};
8 value : {weak, strong, undefined};
9 ASSIGN

10 next(past) := value;
11 next(value) :=
12 case
13 ((therequesttimer.value ≤ 50) ∧
14 (therequesttimer.value ≥ 30) ∧
15 (thesystemmode.value = preparingstrongcoffee)) : strong;
16 ((therequesttimer.value ≤ 30) ∧
17 (therequesttimer.value ≥ 10) ∧
18 (thesystemmode.value = preparingweakcoffee)) : weak;
19 (((!(thesystemmode.past = idle)) ∧
20 (thesystemmode.value = idle))) : undefined ;
21 TRUE : {weak, strong, undefined};
22 esac;

The difference between these sentences is subtle. The first one refers to some
path in the next state, while the second one refers to all paths in the next state.
Such analysis is not trivial to do manually with requirements written in natural
language. Note that the user does not need to know that each variable is, in
fact, a NuSMV module which contains two variables, called past and value (the
translator is responsible for performing this task). The only minor inconvenience,
in the current version of the translator, is that the user needs to concatenate
each composite name, as occurred in thecoffeerequestbutton, for example. The
specification, below, shows these sentences translated to the corresponding CTL
formulas.

CTLSPEC (AG(((!(thecoffeerequestbutton.past = PRESSED)) &
(thecoffeerequestbutton.value = PRESSED)) → (EX(therequesttimer.value =
0))))

CTLSPEC (AG(((!(thecoffeerequestbutton.past = PRESSED)) &
(thecoffeerequestbutton.value = PRESSED)) → (AX(therequesttimer.value =
0))))

The Natural-CTL translators save these formulas in the same NuSMV model
file. Once the model and the temporal logic properties are stored in the same
file, the NuSMV model checker is able to check and verify if the model satisfies

Model Checking Requirements 231

the set of temporal logic formulas written in CTL. A good way to see step-by-
step what is happening to the model for each execution is to run the model
checker interactively [13]. In particular, only the first property holds. Checking
the second property produces the counter-example (partially) shown below.

-> State: 1.1 <-
thecoffeerequestbutton.past = PRESSED
thecoffeerequestbutton.value = PRESSED
thecoinsensor.past = FALSE
thecoinsensor.value = FALSE
...
-> State: 1.2 <-
thecoffeerequestbutton.value = PRESSED
thecoinsensor.value = TRUE
thesystemmode.value = CHOICE
...

In this case, the user has to interpret the output of the model checker as shown
above. It is not so hard to read it and to understand how the states change before
reaching an inconsistent state (with respect to the property provided). As we
can see, it reveals implementation details like the past and value variables. It
remains as future work to translate the counter-example notation of NuSMV
back to a controlled natural language.

6 Related Work

Previous works have already addressed the generation of formal models from
(controlled) natural languages. Some works do not impose any writing struc-
ture to the requirements, and thus require heavier user intervention to extract,
categorise and provide additional information during the translation process.
For instance, in [6], the translation from requirements to logical notation is
assisted by the user. In approaches like this one, it is not required to (re)write
the requirements according to the grammar of the adopted controlled, which is
an advantage.

Differently, other studies impose a standardized (controlled) way for writing
natural-language requirements that allow for automatic information retrieval to
guide the translation process, and thus requiring less user intervention when
deriving formal models. Some standards are more restrictive, whereas others
provide a more flexible writing structure. For example, in [16], the requirements
must adhere to a strict if-then sentence template. Similarly, the approach pro-
posed in [7] rely on boilerplated requirements (text with placeholders to be filled
in), from which Alloy specifications are generated. The SysReq-CNL is more
flexible, since it does not consider predefined writing templates (boilerplated
requirements), but at the same time still allowing for automatic generation of
formal models.

Therefore, there is a trade-off between imposing writing standards and the
degree of user intervention. Ideally, a compromise between these two possibilities
should be sought to provide a useful degree of automation along with a natural-
language specification feasible to be used in practice. Now, we compare our work

232 S. Barza et al.

with other studies that also generate NuSMV models or CTL/LTL formulae from
natural-language requirements.

The work reported by Aceituna et al. [1] presents a systematic translation
from requirements to the NuSMV model checker language by using a modelling
scheme called CCM. The user has to provide information about the system
variables, transitions and variable values, i.e., the user needs to detect all this
information manually in order to define a Kripke structure needed to generate
NuSMV code.

Holt presents how to translate a CNL to CTL specifications [19]. This is
achieved through a parser that extracts a semantic representation from state-
ments written in a restricted subset of English. However, there is no translation
related to models, leaving to the user the task of producing the formal model.
Similarly, Badger et al. addresses the use of CNL in order to generate LTL speci-
fications. A tool called Requirements Conversion Engine automatically converts,
via Natural Language Processing techniques, formalised requirements written in
a CNL into LTL.

Cavada et al. [14] propose the use of a tool called EuRailCheck to formalise
and analyse requirements using, in one of its steps, a model checker. In this
approach, temporal logic formulas are derived from statements written in a CNL.
In order to create models, the user has to categorise requirements fragments and
create dependencies among them.

Choi and Heimdahl [15] describe how to translate automatically require-
ments written in a formal notation called RSML−e to the NuSMV model checker
description language. An interesting fact is that this translator handles old val-
ues of variables. There is no mention about automatic translation to LTL or
CTL formulas.

This work differs from previous works in the sense that it is more compre-
hensive (both the model and the properties are covered by controlled natural
languages) and it is mechanised (the only user interaction is to provide mini-
mum and maximum values of integer variables).

7 Conclusions

We propose the application of the model checking technology to the require-
ments phase of the software development without loss of the user-friendliness
of a natural language description. We employ two controlled natural languages:
SysReq-CNL for requirement specification, and Natural-CTL for property spec-
ification. Two translators have been developed for these languages: the NuSMV
model generator and the CTL Translator. In combination, they allow us to auto-
matically model check requirements written in SysReq-CNL. This work differs
from previous works in the level of automation provided to the user and in the
application of controlled natural languages to both modelling (SysReq-CNL)
and analysis (Natural-CTL). The user has to interact with our translators only
to provide minimum and maximum values for integer variables. No input from
the user is needed with respect to the generation of the modelling language in

Model Checking Requirements 233

NuSMV or in the property description in CTL. The case study presented illus-
trates the main phases of the translation to NuSMV and CTL. More importantly,
it illustrates how difficult it could be to analyse by hand requirements written
in natural language. Subtle changes in the property to be verified ends up in
producing a different answer from the model checker.

As future work, we intend to prevent the user to have to concatenate com-
posite names of variables in the description of the properties in Natural-CTL. In
addition to that, it would be interesting to advise the user whenever there are
unspecified conditions associated to an specific system variable instead of repre-
senting this situation into TRUE guards. This goes better with the idea of using
natural language to model and verify systems than to translate sentences from
English to NuSMV. Concerning properties, the current Natural-CTL reflects
too closely the syntactical structure of CTL. As future work we intend to devise
a new version of it that abstracts away the logic from the language as much
as possible. We will also design a controlled natural language to describe the
counter-examples provided by NuSMV. Finally, we will investigate how a model
checker like UPPALL [5] can be used in our strategy. As SysReq-CNL deals nat-
urally with timing properties, it will be interesting to see how real-time systems
could be modelled and verified in the context of our project.

Acknowledgements. This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES), funded by CNPq and
FACEPE, grants 573964/2008-4, 560256/2010-8 and APQ-1037-1.03/08.

References

1. Aceituna, D., Do, H., Srinivasan, S.: A systematic approach to transforming system
requirements into model checking specifications. In: Companion Proceedings of the
36th International Conference on Software Engineering, ICSE Companion 2014, pp.
165–174. ACM, New York (2014)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

3. Aichernig, B., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Softw. Test. Verif. Reliab. 25(8), 716–
748 (2015)

4. Badger, J., Throop, D., Claunch, C.: Vared: verification and analysis of require-
ments and early designs. In: 2014 IEEE 22nd International Requirements Engi-
neering Conference (RE), pp. 325–326, August 2014

5. Behrmann, G., David, A., Larsen, K.: A Tutorial on UPPAAL 4.0. Department of
Computer Science, Aalborg University, Denmark (2006)

6. Boddu, R., Guo, L., Mukhopadhyay, S., Cukic, B.: RETNA: from requirements to
testing in a natural way. In: Proceedings of the RE, pp. 262–271 (2004)

7. Cadete, D., Cunha, A., Faria, J., Oliveira, J., Passos, A.: From boilerplated require-
ments to alloy: half-way between text and formal model. Technical report, Univer-
sidade do Minho (2012)

234 S. Barza et al.

8. Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., Sampaio, A.:
NAT2TEST tool: from natural language requirements to test cases based on CSP.
In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 283–290.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-22969-0 20

9. Carvalho, G., Barros, F., Lapschies, F., Schulze, U., Peleska, J.: Model-based test-
ing from controlled natural language requirements. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2013. CCIS, vol. 419, pp. 19–35. Springer, Heidelberg (2014a). doi:10.
1007/978-3-319-05416-2 3

10. Carvalho, G., Cavalcanti, A., Sampaio, A.: Modelling timed reactive systems from
natural-language requirements. Formal Aspects Comput. 28(5), 725–765 (2016)

11. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L.,
Blackburn, M.: Test case generation from natural language requirements based on
SCR specifications. In: Proceedings of Symposium on Applied Computing, Coim-
bra, Portugal, vol. 2, pp. 1217–1222 (2013a)

12. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L.,
Blackburn, M.: NAT2TESTSCR: test case generation from natural language
requirements based on SCR specifications. Sci. Comput. Program. 95(Part 3(0)),
275–297 (2014)

13. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: NuSMV 2.6 User Manual. FBK-irst - Via Sommarive
18, 38055 Povo (Trento), Italy (2010)

14. Cavada, R., Cimatti, A., Mariotti, A., Mattarei, C., Micheli, A., Mover, S.,
Pensallorto, M., Roveri, M., Susi, A., Tonetta, S.: Supporting requirements val-
idation: the EuRailCheck tool. In: 24th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2009, pp. 665–667, November 2009

15. Choi, Y., Heimdahl, M.P.: Model checking RSML-e requirements. In: Proceedings
of the 7th IEEE International Symposium on High Assurance Systems Engineering,
pp. 109–118. IEEE (2002)

16. Esser, M., Struss, P.: Obtaining models for test generation from natural-language
like functional specifications. In: International Workshop on Principles of Diagno-
sis, pp. 75–82 (2007)

17. Fillmore, C.: The case for case. In: Bach, E., Harms, R. (eds.) Universals in Lin-
guistic Theory, pp. 1–88. Holt, Rinehart, and Winston, New York (1968)

18. Fuchs, N.: Controlled Natural Language. LNCS, vol. 5972. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14418-9

19. Holt, A.: Formal verification with natural language specifications: guidelines, exper-
iments and lessons so far. S. Afr. Comput. J., 253–257 (1999)

20. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

http://dx.doi.org/10.1007/978-3-319-22969-0_20
http://dx.doi.org/10.1007/978-3-319-05416-2_3
http://dx.doi.org/10.1007/978-3-319-05416-2_3
http://dx.doi.org/10.1007/978-3-642-14418-9

Refinement Verification of Sequence Diagrams
Using CSP

Lucas Lima1(B), Juliano Iyoda2, and Augusto Sampaio2

1 Departamento de Estat́ıstica e Informática,
Universidade Federal Rural de Pernambuco, Recife, Brazil

lucas.albertins@deinfo.ufrpe.br

http://www.deinfo.ufrpe.br/
2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil

{jmi,acas}@cin.ufpe.br
http://www.cin.ufpe.br/

Abstract. During the design of systems, models usually evolve from
a conceptual level to a more concrete level that is close to how the
implementation should be. In a stepwise development, it is required that
lower-level models conform to the properties of higher-level models. In
this work, we propose a strategy for verifying the refinement of UML
sequence diagrams that uses a formal semantics defined in terms of CSP.
In order to allow designers to benefit from this strategy we have imple-
mented it in a modelling tool. Such a tool analyses if a sequence diagram
is refined by another, that is, we check if the latter preserves the traces of
the former sequence diagram. The main contributions of this paper are:
(i) the definition of four different notions of sequence diagrams refine-
ment; (ii) an approach to verify the refinement of sequence diagrams
in CSP; and (iii) the development of a tool that allows our refinement
notions to be verified without any knowledge of the underlying formal
semantics. We illustrate our analysis with a text messaging case study.

Keywords: Sequence diagram · UML · Semantics · Refinement · CSP

1 Introduction

A stepwise design of a system starts from an abstract model and evolves to a
concrete one as the system concepts mature. Such design task is usually carried
out by producing a series of design models, where each model is a refinement of
the previous. Design models can have informal or formal semantics. Whenever a
design model has an informal semantics, it is up to the designer to judge whether
a concrete model is a refinement of an abstract one. The designer relies solely
on intuition and experience, which may lead to an error. Informal models like
UML [14] are, however, easier to learn and adequate to capture initial ideas.
Formal models are more difficult to learn as it requires the understanding and
manipulation of mathematical concepts. But they are safer because they are

c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 235–252, 2016.
DOI: 10.1007/978-3-319-49815-7 14

236 L. Lima et al.

unambiguous and allow tools to automatically verify whether one design is the
refinement of another.

This work introduces an approach to put together the best of both worlds. A
UML sequence diagram is a widespread informal design model used to describe
interaction scenarios of a system. We propose four notions of refinement and
describe how these notions are captured in terms of the Communicating Sequen-
tial Process (CSP) [7] refinement. For this, we make use of the formal semantics
for sequence diagrams defined in our previous work [9,10].

We have also implemented a tool that provides a fully automatic refinement
checker for sequence diagrams. If the refinement does not hold, our tool outputs
a counter-example in terms of a sequence diagram that describes a scenario
that captures where the refinement went wrong. This facility conceals from the
designer the formal notation of CSP throughout the design phase. We illustrate
our ideas in an industrial case study.

Concerning related work, broadly speaking, there are two kinds of
approaches: (i) the definition of a semantic model to formalise Sequence Dia-
grams [16] and (ii) the translation to an existing formalism such as Z, B, CSP
and Petri-Nets [2,3]. The main advantage of the latter is the reuse of existing
tools. A few works also discuss refinement of the sequence diagrams, especially,
from the point of view of system designers. Our work distinguish in defining
a semantics that is supported by tools in order to translate the models to the
formal notation and for providing refinement automated reasoning at the dia-
grammatic level that is based on the needs of the UML practitioners.

This paper is organised as follows. Section 2 presents sequence diagrams and
CSP. Section 3 introduces the semantics of sequence diagrams in terms of CSP
and four notions of refinement. Section 4 describes how our tool for sequence
diagrams refinement checking works. Section 5 illustrates our refinement notions
in a case study. Related works are presented in Sect. 6 and Sect. 7 concludes.

2 Background

This section introduces both sequence diagrams [14] and Communicating
Sequential Processes [7].

2.1 Sequence Diagrams

Interactions are the abstract syntax elements in UML used to represent commu-
nications between several entities. The most common kind of interaction diagram
is the sequence diagram, which focuses on the message interchange between a
number of lifelines, which are the lifespans of every object in the diagram.

Figure 1 shows the main syntactical elements of sequence diagrams. Each dia-
gram is called an interaction as it describes relationships along the lifelines of the
participants: Classes and Objects. Such elements communicate with each other
through messages. A message is classified according to the type of communica-
tion: synchronous communication (synch call), reply (the return of a synch call) or

Refinement Verification of Sequence Diagrams Using CSP 237

Fig. 1. Concrete Syntax of a Sequence Diagram.

asynchronous communication (asynch call). A synchronous communication may
refer to an operation call of a block, while an asynchronous message may be a sig-
nal. An occurrenceSpecification is the basic semantic unit of interactions. Its spe-
cialisations determine the meaning for the main tasks in sequence diagrams. For
example, the duration of an execution fired by a message call is delimited by the
two ExecutionOccurrenceSpecifications (start and finish), where both are associ-
ated with an ExecutionSpecification. MessageOccurrenceSpecifications delineate
the act of sending or receiving a message. The order of these occurrences deter-
mines the traces of the diagram and must conform with the following restrictions:

– Occurrences on the same lifeline must preserve the order they are specified.
– The act of receiving a message must always occur after the sending of the

same message.

In addition to the events of sending and receiving messages, the flow of exe-
cution may be further elaborated with the use of combined fragments. Their
use allows behaviours such as parallel execution, alternatives (typically, if-then-
else constructions), loops and other facilities. Each one possesses an interac-
tion operator from an interaction operator kind that specifies the behaviour of
the fragment. They may have one or more interaction operands, which may be
guarded by interaction constraints. InteractionUse allows us to reuse other inter-
actions as part of a diagram. They may have parameters and the lifelines used
in the interactionUse must match the ones contained by the enclosing interac-
tion. Messages exchanged by the interactionUse and the enclosing interaction
are connected through gates, which link two parts of a message. Finally, state
invariants are constraints attached to lifelines that check a particular property
during runtime. When such a property is evaluated to false the generated trace
is invalid. More details will be presented on demand.

238 L. Lima et al.

Each element of a particular diagram (like a message) has a unique identifier
that, most of the time, is not depicted on the diagram. However, it is always
stored in its internal representation.

2.2 CSP

A process algebra like CSP can be used to describe systems composed of inter-
acting components, which are independent self-contained processes with inter-
faces used to interact with the environment. Such formalisms provide a way to
explicitly specify and reason about interactions between different components.
Furthermore, phenomena that are exclusive to the concurrent world, that arise
from the combination of components and not individual components, like dead-
lock and livelock, can be more easily understood and controlled using such for-
malisms. Tool support is another reason for the success of CSP in industrial
applications, and consequently, for our choice to use it as the formal notation.
For instance, FDR3 [4] provides an automatic analysis of model refinement and
of properties like deadlock and divergence.

A process is the basic unit for describing behaviour. It is defined in terms
of events and other processes. The function α(P) returns the alphabet of a
process, that is, the events that this process may communicate. A process may
have its events renamed using the rename operator P [[b/a]], which means that
all occurrences of a in P are renamed to b. The parallel composition P1 ‖

cs
P2

synchronises P1 and P2 on the channels in the set cs; events that are not in
cs occur independently. Processes composed in interleaving P1 ||| P2 run
independently. The event hiding operator P \ cs encapsulates the events that
are in the channel set cs, which become no longer visible to the environment.

In this work, we use the traces denotational model of CSP (T). Let Σ be the
alphabet of all possible events, and Σ∗ the set of all possible finite sequences
of events in Σ. Then, a trace of a process P is a member of Σ∗, and T (P)
denotes the set of all finite traces of P. For example T (e1 -> e2 -> STOP) =
{〈〉, 〈e1〉, 〈e1, e2〉}. It is possible to compare the trace semantics of two processes
by set inclusion: process Q refines process P, in the traces model, denoted P �T Q,
if, and only if, T (Q) ⊆ T (P). This can be mechanically checked using FDR [4].
In case the refinement does not hold, FDR yields a trace (the shortest counter-
example), say ce, such that ce ∈ T (Q) but ce /∈ T (P). We can also check
equivalence between two process in the traces model. Thus, P ≡T Q verifies if
T (P) ≡ T (Q).

3 Semantics and Refinement

This section overviews the semantics of sequence diagrams in terms of a CSP
process and introduces four notions of sequence diagrams refinement.

Refinement Verification of Sequence Diagrams Using CSP 239

3.1 Semantics

A sequence diagram is defined in terms of a CSP process. Figure 2 shows an
example of how the semantics of a sequence diagram is captured by CSP ele-
ments. Each lifeline is represented by a CSP process defined by the sequen-
tial composition of other processes that represent fragments that happen in the
lifeline: message occurrences, combined fragments, state invariants and inter-
actionUse elements. Each type of fragment has a corresponding translation in
our semantics. And the environment where the messages flow is the process
MessagesBuffer. The lifelines that exchange messages synchronise in parallel
among themselves and the environment.

Fig. 2. Semantic representation of sequence diagrams in CSP.

The CSP process that models a sequence diagram is parameterised by the
identifiers (of type ID) of the class instances that either are used in a lifeline or
send messages through gates. This makes the model of the diagram as generic
as the diagram itself, which is valid for any instances of the types used in the
diagram.

Each message exchange is represented in CSP by two events: one correspond-
ing to the moment when the message is sent and another to the moment when
it is received. The channels used are mOP and mSIG, which correspond to oper-
ations and signals, respectively. For simplicity, we assume that operations and
signals are synchronous and asynchronous messages, respectively. The mOP and
mSIG channels communicate a data structure with five fields: (i) a unique iden-
tifier of the message; (ii) the event type of the message, which can be either s
for a sending event, or r for a receiving event; (iii) the sender identifier; (iv)
the receiver identifier; and (v) the contents of the message itself including any
arguments needed.

240 L. Lima et al.

The asynchronous nature of the sending and receiving of the messages
requires an intermediate component to model the environment through which
the messages flow. The CSP process MessagesBuffer plays the role of the envi-
ronment and coordinates the message exchanging between lifelines by relaying
messages from one lifeline to another. For each message there is a CSP process
that synchronises on a sending event of the sender and then communicates the
receiving event with the receiver. The behaviour of the MessagesBuffer is the
interleaving of all these message communications.

Each message exchange is coordinated by an internal process that is part of
MessageBuffer. Such message exchange process (for example, msg m1, msg m2
and msg m3 in Fig. 2) synchronises on the sending communication with the sender
lifeline and then on the receiving communication with the receiver lifeline. In case
of a synchronous message, the sending communication is immediately followed
by the reply communication, so that the sender stays blocked until the reply is
received. For asynchronous messages, the sender is ready to proceed after the
sending communication happens.

The CSP process corresponding to the entire sequence diagram composes
in parallel the lifeline processes together with the MessagesBuffer process and
they synchronise on the message events, which are represented in the channel
sets cs1 and cs2 in Fig. 2. This parallel composition is enclosed by two events:
beginInteraction and endInteraction. The beginInteraction signals the
start of the diagram and endInteraction signals its termination.

As the focus of this paper is not the semantics of a sequence diagram we do
not describe the translation of each constructor, for example, operation parame-
ters, to CSP in detail. However, the complete set of translation rules is available
elsewhere [9,10].

3.2 Refinement

Engineers usually perform refinements on artefacts along the development
process. However, depending on the semantic domain we are working, the term
refinement can have different meanings. For instance, CSP formally defines what
is a refinement between two specifications according to the semantic model
used, which can be traces, failures, and failures-divergence. Considering the
traces model, a specification P is refined by a specification Q, whose notation is
P �T Q, if, and only if, the traces of Q are a subset of the traces of P .

UML determines refinement as a relationship between model elements at dif-
ferent semantic levels, e.g. analysis and design, and uses a stereotype constructor
	 refine
 to visually link the refined elements. However, the semantics of such
a refinement is not clear. Assuming that a sequence diagram SD1 is refined
(in UML) by another sequence diagram SD2, we do not know what would be
the precise relation among the traces of such diagrams. Therefore, in order to
precisely characterise different interpretations for refinement, we have defined
four refinement notions for sequence diagram based on industry practices. They
are all mapped to the CSP traces model refinement in order to benefit from the
automated reasoning provided by FDR. Next, we detail each one of these notions
and their correspondence to CSP refinement.

Refinement Verification of Sequence Diagrams Using CSP 241

Strict Behaviour Incrementing Refinement. This is the most common
refinement where a conceptual sequence diagram displays some high-level sce-
nario and a more concrete sequence diagram displays another scenario closer to
the implementation. The latter must preserve the traces of the former, however,
it usually adds new messages that are relevant at this point because it shows fea-
tures of how the system should be implemented. Nevertheless, apart from these
new messages, the refined version should not have any trace that differs from
those of the specification. For instance, consider the following scenario displayed
in Fig. 3. It illustrates a specification behaviour from a text messaging appli-
cation for mobile phones where a user simply sends a text message to another
mobile phone.

Fig. 3. The scenario for sending a message.

In this scenario, the user sends a text message to one of his contacts using his
mobile phone (submitText()). In turn, the mobile phone requests the messaging
server to send the message (sendText()) to the contact’s mobile phone. Then,
the server processes the request and sends the message to the desired phone,
which replies with an acknowledgement (ack()). Afterwards, the server sends
the message status to the user phone (sendStatus()), which can be viewed by
the user in his mobile phone (showStatus()).

Next, we show how this specification can be refined by the introduction of
implementation details. Figure 4 illustrates the same scenario with more details
that are needed for the implementation of this scenario.

The refined scenario adds the message identifier that must be sent to the
mobile phone once the server receives the request for sending the text message
(sendMsgId()) and the message status request that must be made by the sender
phone prior to receiving any message status (requestStatus()). This is a typical
case where a specification scenario is refined by an implementation scenario.
Although more implementation details were added, the flow of events of the

242 L. Lima et al.

Fig. 4. The refined scenario for sending a message.

refined version must conform to the one of the specification, that is, the order of
events of the traces of the specification must be kept intact regardless of what was
added. The specification scenario abstracts away events from the implementation
scenario (i.e. the behaviour of the specification can be regarded as a projection
of that of the implementation).

In order to automatically verify this conformance we translate both sequence
diagrams to CSP specifications in order to use the tooling capability of this
language for verifying refinements. However, we cannot apply the CSP refinement
directly because, as stated earlier, it checks if the traces of the refined diagram
are a subset of the set of traces of the specification, which is not true in this case.
The trace of the refined diagram might include more events than the traces of
the specification diagram. Therefore, we propose a refinement notion, which is
shown in Definition 1, for this specific case using the CSP notation.

Let t sd() be a translation function that takes a sequence diagram and
returns its corresponding CSP process. We say that a sequence diagram SD1 is
refined by a sequence diagram SD2, written SD1 �SIR

Interaction SD2, if, and only
if, t sd(SD1) has the same traces as t sd(SD2) after hiding all events that are
present only in SD2 but not in SD1. The intuition here is that when we hide
the events related to the new messages in the refined sequence diagram, it has
the same traces of the specification diagram.

Definition 1 (Strict increment refinement). Let SD1 and SD2 be sequence
diagrams, then

SD1 �SIR
Interaction SD2 ⇔

t sd(SD1) ≡T (t sd(SD2) \ diff (α(t sd(SD2)), α(t sd(SD1)))

Refinement Verification of Sequence Diagrams Using CSP 243

The function diff returns the difference between two sets. We consider only
the traces model because we cover only what the interaction can indeed perform.
We do not deal with invalid traces in this approach. We are aware that the hiding
operator of CSP may introduce nondeterminism, however, as our analyses are on
the traces model this is not a concern. We only hide the additional behaviour of
the refined diagram and this part is not relevant because we just want to make
sure that the traces of the specification are still present in the refined version.

Weak Behaviour Incrementing Refinement. In addition to conforming
to the traces of the specification diagram, sometimes the refined diagram also
includes new traces that were not predicted in the specification, for instance,
due to technological issues that only appeared in the design phase, to cover
alternative and exception flows of a use case or to cover error handling situations.
Thus, the refined diagram must still conform to the traces of the specification,
however, it can add new traces. Figure 5 illustrates another refined scenario of
Fig. 3.

Fig. 5. The refined scenario adds new traces.

The scenario depicted in Fig. 5 has the same traces of the specification dia-
gram in addition to some new traces that are not present in the high-level dia-
gram of Fig. 3. In this case, the parallel combined fragment interleaves the mes-
sages of its operands. Therefore, this diagram has a trace where the message
ack() happens before the message sendStatus() (conforming with the specifi-
cation diagram) but it can also have a trace where the opposite happens (due
to the interleaving of the parallel combined fragment).

244 L. Lima et al.

This is another possible type of refinement considered by development teams.
The implementation satisfies the specification according to the Strict Behaviour
Incrementing Refinement in some traces, but it also creates new behaviours
that are relevant only during the design phase. Thus, we have defined another
refinement notion to cover this case. We consider it weak due to the relaxation
of the restriction of not adding any new traces.

Definition 2 (Weak increment refinement). Let SD1 and SD2 be sequence
diagrams, then

SD1 �WIR
Interaction SD2 ⇔

t sd(SD2) \ diff (α(t sd(SD2)), α(t sd(SD1))) �T t sd(SD1)

Note that the formal notion captured by Definition 2 is trace refinement in the
inverse direction. The intuition here is that we want to assure that the traces
of the specification are present in the traces of the refined diagram, however,
the latter may have new traces that can capture, for instance, alternative (or
exceptional) behaviour not considered in the more abstract models. We also are
aware that the introduction of new traces may produce nondeterminism in CSP.
Again, this is not relevant for our analysis as we work on the traces model.

Renaming Refinement. We introduce a complementary refinement notion to
the two notions introduced above that is related to the possibility of updating the
signature of messages. This is also a very common possibility during the evolution
of the models, where the name of the messages exchanged between different
entities may change during the development process. For instance, consider that
in one of the refined versions of the diagram in Fig. 3 the message sendText() has
been updated to sendSMS(). When we translate the diagrams to CSP we create
a new event for the message with the new signature. The refinement checking
fails because the refinement tool cannot understand that sendText and sendSMS
are the same event. Therefore, we provide two refinement notions for renaming
messages when checking the refinement of two sequence diagrams. Although
the rename of CSP is relational, here we restrict it to be functional, that is, a
message can only be mapped to exactly one other message. Definition 3 presents
the renaming refinement notion related to the strict increment refinement. The
refinement has a set of pairs of elements (a, b) that must be renamed where a is
a message in SD1 and b is a message in SD2.

Definition 3 (Strict renaming refinement). Let SD1 and SD2 be sequence
diagrams, then

SD1 �SRR{(a,b)|a←b,a∈α(SD1),b∈α(SD2)}
Interaction SD2 ⇔

t sd(SD1)[[b/a]] ≡T t sd(SD2) \ diff (α(t sd(SD2)), α(t sd(SD1)))

Refinement Verification of Sequence Diagrams Using CSP 245

This refinement in CSP is the direct application of the CSP renaming opera-
tor. Therefore, the process of the specification sequence diagram SD1 has its
events passed as arguments (represented by a) renamed to the ones present in
the process of SD2 (represented by b). Definition 4 is the analogous rename
refinement considering now the weak increment refinement.

Definition 4 (Weak renaming refinement). Let SD1 and SD2 be sequence
diagrams, then

SD1 �WRR{(a,b)|a←b,a∈α(SD1),b∈α(SD2)}
Interaction SD2 ⇔

t sd(SD2) \ diff (α(t sd(SD2)), α(t sd(SD1))) �T t sd(SD1)[[b/a]]

Overall, the Renaming refinement notion described in Definition 3 follows the
same trace refinement of Definition 1, but further allowing message renaming.
The same happens between Definitions 2 and 4, respectively.

Fig. 6. The relationships between the refinement notions.

Figure 6 illustrates how the different refinement notions are related. Defini-
tion 1 is the strongest notion, that is, the more restrictive one. This definition
implies Definitions 2 and 3. On the other hand, Definition 4 is the weakest notion,
which means that it covers more cases than the others, and it is implied by
Definitions 2 and 3, and by transitivity it is also implied by Definition 1.

4 Tool

In order to automate the refinement checking of sequence diagrams we have
implemented a tool that, given two diagrams, verifies if one is refined by the

246 L. Lima et al.

other according to the refinement notions presented in Sect. 3.2. It has been
developed as a plug-in of a modelling tool in order to allow the users to check
refinements in the same environment they create diagrams. The Astah modelling
environment [6] has been chosen due to several facts: its extension capabilities
that facilitates the creation of modelling plug-ins, UML models can be created
using several diagrams that allow us to extend our approach to other model
elements in the future, and it has a large community of active users. Also, our
plug-in requires the installation of the FDR3 tool, which is a CSP refinement
checker. Once the plug-in is installed the user gets the capabilities to inform the
FDR3 installation directory.

We do not describe how to create models using Astah; however, this task is
considerably intuitive for UML practitioners. Once the models are created, the
user has a view where the refinement of two sequence diagrams can be verified.
Figure 7 depicts this view where the modeller must select the refinement notion
to be used (either Strict or Weak), and must select the abstract sequence diagram
and its refined version.

Fig. 7. The refinement plug-in.

In the case of refinement involving renaming, the user needs to press the
Rename messages button to provide a mapping between messages of the two
sequence diagrams chosen. Finally, by pressing the Check button the tool verifies

Refinement Verification of Sequence Diagrams Using CSP 247

the refinement. If the refinement is valid the tool presents a success message,
otherwise, the tool generates a counterexample in terms of a sequence diagram
to make it easier to understand the trace that invalidates the refinement. This
way, the CSP notation is concealed from the user.

Internally, the Check button generates the CSP specifications related to each
of the sequence diagrams according to the semantics discussed in Sect. 3.1, and
then invokes the FDR3 tool to verify the refinement according to the notions
described in Sect. 3.2. If no counterexample is returned, then the refinement is
valid, otherwise the tool collects the generated counterexample and translates
it to a sequence diagram that can be viewed in the Astah tool. Hence, all four
notions described so far are supported in the tool.

This way the UML practitioners can check the evolution of their models in an
automated way and without any knowledge of the underlying formal language.

5 Case Study

In order to evaluate the refinement approach we have performed some case stud-
ies using the example described in Sect. 3.2 regarding the text message appli-
cation for mobile phones. First we have checked all the refinements previously
described regarding the strict increment, the weak increment and the renaming
notions, and all of them indeed hold.

In order to evaluate the scenarios where refinements were not valid we have
used variations of those scenarios. For instance, assume that the order of the
messages whose indexes are two (sendText()) and three (sendMsgId()) in Fig. 4
are swapped. When we check if this new diagram refines the one in Fig. 3 using
the strict notion, a counterexample is returned. This happens because the trace
that goes up to the new message 2 (sendMsgId()) is not part of the trace of
Fig. 3. Therefore, this counterexample is generated as a sequence diagram, which
is displayed in Fig. 8.

Fig. 8. The generated counterexample for the strict increment refinement.

248 L. Lima et al.

Regarding the weak increment refinement notion, assume that the designer
has forgotten to add the message seven (sendStatus()) in Fig. 5. When we
check if this new diagram refines the one in Fig. 3, the counterexample in Fig. 9
is generated.

Fig. 9. The generated counterexample for the weak increment refinement.

Recall that, in the weak increment refinement, the refined version must pre-
serve the traces of the specification or add new traces. In this case, the counterex-
ample shows a trace that goes up to the message sendStatus, which is not part
of the refined version, hence, this trace is not part of the traces generated by the
refined version and should be considered in order to make the refinement valid.
If the user adds the forgotten message at the correct point, then the refinement
is successfully verified.

These simple examples show the applicability of the tool in the activities of
system analysts and designers. With the increasing complexity of the diagram,
the difficulty in identifying refinement problems also grows. Therefore, such a tool
becomes useful because it automates the refinement analysis providing results
at the same level of expressiveness that the designers work.

6 Related Work

There are numerous works providing semantics for sequence diagrams. Usually
there are two kinds of approaches: (i) the definition of a semantic model to
formalise diagrams [16] and (ii) the translation to an existing formalism such
as Z, B, CSP, and Petri-Nets [2,3]. The main advantage of the latter is the
existing tool support used to apply reasoning on the translations. Some related
works discuss the refinement of the diagrams. However, they usually describe
refinements from the point of view of the formal notation without leveraging

Refinement Verification of Sequence Diagrams Using CSP 249

it to the graphical level. In addition, few works provide tools to automate the
refinement verification process.

Storrle presents an exhaustive work on formalising sequence diagrams using
trace semantics [16]. Many constructs used in UML 2, including combined frag-
ments, are covered. Storrle’s semantics briefly discuss some interpretations for
refinement using his semantics but no concrete definition is proposed, besides
for refinement time elements. This work reports the problem of dealing with
negative traces when considering refinement because the set of invalid traces is
not clearly defined in UML.

Haugen et al. present another work that covers some of the Sequence Diagram
elements we are interested in [5]. They also propose an approach based on a trace
semantics in which refinement is used as a foundation for compositional analysis,
verification and testing. However, only one notion of refinement is given, which is
similar to our strict increment refinement. Lund gives an operational semantics
for the Haugen’s denotational semantics [11], which is implemented in the Maude
language [1].

Although the approaches by Storrle and by Haugen et al. do not use a seman-
tic model similar to CSP, they are inspiring works as they provide some impor-
tant discussions over complete and partial traces, global versus local view, besides
discussing strategies for refinement.

Dan and Danning [2] present an approach to semantic mapping specified
using the language QVT [13] relations to CSP [7]. As their approach uses the
CSP notation we could benefit from some of the ideas of their work. However,
very few constructs of UML 2 are covered and they do not provide advances
regarding refinement nor automated reasoning.

Kaizu et al. [8] provides a formal sequence diagrams semantics in CSP and
tool support to translate the corresponding model to CSP. Also, the proposed
approach uses FDR to check refinement of the diagrams. However, it is not clear
what is the refinement notion at the diagrammatic level and how FDR is used
to verify the models.

Shen et al. propose a formalisation using template semantics for UML 2
Sequence Diagrams [15]. The approach gives an operational semantics for which
the basic computation model is hierarchical transition systems (HTS), however,
the work does not provide any refinement strategies nor tool support for the
semantics.

Most of these works differ regarding three main aspects: the number of con-
structions they cover, the semantics of constructions whose official meaning is
vaguely defined, and the semantic domain used to formalise the semantics. The
interesting aspect to notice is that when defining a semantics for sequence dia-
grams, some semantic decisions must be taken in order to allow its use. Micskei
and Waeselynck have provided an excellent survey on these semantic choices [12].
We developed our work according to their classification and categorisation of
semantic meanings for sequence diagrams. Whenever the meaning of an opera-
tor is vaguely defined, we have chosen one that is more convenient for modelling
and for checking diagram consistency. For instance, the choice on synchronisation

250 L. Lima et al.

before evaluating guards of combined fragments in order to avoid inconsistency,
and the unique identification of the messages.

Table 1. Comparison with related work.

Formalism Ref. notions Tool support Automated analysis

[16] Traces semantics 2 × ×
[5,11] Maude 1 � �
[2] CSP 0 × ×
[8] CSP 1 � �
[15] HTS 0 × ×
Our work CSP 4 � �

Table 1 presents a comparison of the coverage of our formalisation and strat-
egy with some of available literature. The works are compared according the for-
malism used to represent sequence diagrams, the number of refinement notions,
and whether they provide tool support for the semantics and the analysis process
is automated. The � indicates that the feature is covered by the work on the
column, and × indicates it is not.

As can be seen, only two of the works provide a mechanised translation,
automated analysis and discuss refinement notions. However, most of the refine-
ment notions discussed are not provided according to the needs of designers. Our
work is distinctive not only for the automated strategy, but also for providing
refinement approaches that are relevant for system modellers.

7 Conclusion

Sequence diagrams are widely used in industry during the development of a
system. During the design phase, many versions of a sequence diagram are pro-
duced, where each version is a refinement of the previous. These versions reflect
how our understanding of the system evolves. Unfortunately, there is no stan-
dard definition for what a sequence diagram refinement is. UML provides the
	 refine
 constructor, but its meaning is not clear.

We have proposed four notions of refinement for sequence diagrams. They
are defined based on two foundational concepts: (i) the CSP traces model refine-
ment; and (ii) the CSP semantics for sequence diagrams [9,10]. Strict Behaviour
Incrementing refinement states that a sequence diagram SD2 is a refinement
of SD1 whenever a projection of some of SD2 events result in SD1. (i.e. SD2
adds new events to the traces of SD1). Weak Behaviour Incrementing refine-
ment allows traces of SD2 to be either projections of SD1 or new traces that
implement new features not explicitly specified by SD1. Finally, the renaming
refinements allow SD2 to rename events of SD1.

Refinement Verification of Sequence Diagrams Using CSP 251

We have developed a refinement checker as a plugin of the Astah modelling
environment [6] that makes use of the CSP FDR3 refinement checker. If a refine-
ment does not hold, the tool produces a counter-example as a sequence diagram.
This way, we conceal from the user all the formal concepts underlying the veri-
fication.

As future work, more industrial case studies will be carried out together
with experiments to evaluate the performance and scalability of our tool. We
also plan to allow the renaming of a message to a sequence of other messages
in the future. Finally, another perspective of future work is to handle data, for
instance, attributes of blocks and arguments of messages, when used in guards
of combined fragments. We envision the usage of solvers to provide a minimum
set of values to be used in these guards in order to avoid state space explosion.

Acknowledgement. This work was partially supported by the National Institute of
Science and Technology for Software Engineering (INES (http://www.ines.org.br)),
funded by CNPq and FACEPE, grants 573964/2008-4, 560256/2010-8 and APQ-1037-
1.03/08.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-performance Logical Framework: How to Specify.
Program and Verify Systems in Rewriting Logic. Springer, Berlin (2007)

2. Dan, L., Danning, L.: Towards a formal behavioral semantics for UML interactions.
In: Proceedings of 2010 3rd International Symposium on Information Science and
Engineering, ISISE 2010, pp. 213–218. IEEE (2010)

3. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional
semantics for UML 2.0 sequence diagrams using Petri Nets. In: Prinz, A., Reed,
R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 133–148. Springer, Heidelberg
(2005). doi:10.1007/11506843 9

4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

5. Haugen, O., Husa, K.E., Runde, R.K., Stolen, K.: Stairs towards formal design
with sequence diagrams. Softw. Syst. Model. 4(4), 355–367 (2005)

6. Hiranabe, K.: Astah. http://astah.net/. Accessed 09 Aug 2016
7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper

Saddle River (1985)
8. Kaizu, T., Isobe, Y., Suzuki, M.: Refinement and verification of sequence diagrams

using the process algebra CSP. IEICE Trans. 96–A(2), 495–504 (2013)
9. Lima, L.: Formalisation of SysML design models and an analysis strategy using

refinement. Ph.D. thesis, Universidade Federal de Pernambuco, Recife, March 2016
10. Lima, L., Iyoda, J., Sampaio, A.: A formal semantics for sequence diagrams and a

strategy for system analysis. In: Proceedings of International Conference on Model-
Driven Engineering and Software Development (MODELSWARD) (2014)

11. Mass Soldal Lund: Operational analysis of sequence diagram specifications. Ph.D.
thesis, University of Oslo (2007)

http://www.ines.org.br
http://dx.doi.org/10.1007/11506843_9
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://astah.net/

252 L. Lima et al.

12. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a
survey. Softw. Syst. Model. 10(4), 489–514 (2011)

13. OMG: MOF QVT Final Adopted Specification. OMG, June 2005
14. OMG: OMG Unified Modeling Language (OMG UML), superstructure, version

2.3. Technical report, OMG (2010)
15. Shen, H., Virani, A., Niu, J.: Formalize UML 2 sequence diagrams. In: Proceedings

of 2008 11th IEEE High Assurance Systems Engineering Symposium, HASE 2008,
Washington, DC, USA, pp. 437–440 (2008)

16. Storrle, H.: Trace semantics of interactions in UML 2.0 abstract (2004, preprint)

Author Index

Aguirre, Nazareno 112, 145
Andrade, Aline 161
Arruda, Filipe 21
Azzi, Guilherme 78

Barros, Flávia 217
Barza, Sérgio 217
Becker, Thiago Rafael 78
Bedregal, Benjamín 129
Bezerra, Jonas 78
Braga, Christiano 179

Carvalho, Gustavo 217
Castro, Pablo F. 112, 145
Cornejo, César 145
Costa, Andrei 78

Degiovanni, Renzo 145

Edmunds, Andrew 97

Falcão, Taciana Pontual 59
Farias, Hugo 179
Frias, Marcelo F. 145

Gruner, Stefan 199

Harvey, Matthias 199
Herdt, Ricardo Gabriel 78

Iyoda, Juliano 217, 235

Leuschel, Michael 3
Lima, Lucas 235

Machado, Efraim 161
Machado, Rodrigo 78
Madeira, Alexandre 129
Martins, Manuel A. 129
Mendoza Morales, Luis E. 41
Menezes, Paulo B. 179
Molina, Facundo 145
Monsalve, Carlos 41
Moraes, Itamar 59
Mota, Alexandre 59, 217

Nogueira, Sidney 59

Oliveira, Emanuel 59

Pereira, Iverson 59

Regis, Germán 145
Rodrigues, Leonardo 78

Sampaio, Augusto 21, 217, 235
Santiago, Regivan H.N. 129

Timm, Nils 199

Villavicencio, Mónica 41

Waldén, Marina 97

	Preface
	Organization
	Contents
	Invited Talks
	Formal Model-Based Constraint Solving and Document Generation
	1 Animation and Constraint Solving for B
	2 Model-Based Constraint Solving
	3 Model-Based Document Generation
	4 A Portfolio of Constraint Solving Examples in B
	4.1 Graph Colouring
	4.2 Graph Isomorphism
	4.3 N-Queens and Bishops
	4.4 Golomb Ruler
	4.5 Sudoku and Latin Squares
	4.6 Coins Puzzle

	5 External Data Sources and Data Validation
	5.1 External Data Sources
	5.2 Data Validation Example

	6 Discussion
	References

	Formal Testing from Natural Language in an Industrial Context
	1 Overview
	2 Tools
	2.1 Test Generation with TaRGeT
	2.2 Test Automation with Zygon

	3 Underlying Formalisms
	3.1 Process Algebraic Approach to Test Generation
	3.2 Contract Based Approach to Consistent Automation

	4 Ongoing Work: Integrated Framework
	References

	Analysis and Verification
	Application of Formal Methods to Verify Business Processes
	1 Introduction
	2 Theoretical Framework
	2.1 Timed Automata (TA)
	2.2 Business Process Model and Notation (BPMN)
	2.3 Clocked Computation Tree Logic (CCTL)

	3 BP-Task Model
	4 Mapping Rules to Specify and Verify BPMN Models Using TA
	5 CRM Application Example
	5.1 CRM Task Model
	5.2 CRM Properties
	5.3 CRM Verification

	6 Conclusion and Future Work
	References

	An Approach for Verifying Educational Robots
	1 Introduction
	2 Simulating Robot Programs
	2.1 Overview of the Verification Approach

	3 Formalising the Robot
	3.1 Communicating Sequential Processes
	3.2 Robot Formal Specification

	4 Verifying Robot Programs
	5 Integrating the Approach with Educational Tools
	6 Conclusions
	References

	Verigraph: A System for Specification and Analysis of Graph Grammars
	1 Introduction
	2 Algebraic Graph Transformation
	2.1 Example
	2.2 Generalization and Other Approaches

	3 Architecture Overview and Data Structures
	4 Implemented Analysis Techniques
	4.1 Critical Pair Analysis
	4.2 Critical Sequence Analysis
	4.3 Calculation of Concurrent Rules
	4.4 State Space Exploration and Model Checking
	4.5 Inter-Level Conflict Analysis

	5 Related Work
	5.1 AGG
	5.2 GROOVE
	5.3 Preliminary Performance Evaluation

	6 Conclusions
	References

	Modeling and Logic
	Modelling `Operation-Calls' in Event-B with Shared-Event Composition
	1 Introduction
	2 Event-B
	3 An Overview of Event-B Components
	4 Procedure-Style Interface Events
	4.1 Procedural Interface Events
	4.2 Translation of the Call
	4.3 The Combined Event Representation

	5 Function-Style Interface Events for Use in Expressions
	5.1 Functional Interface Events
	5.2 Translation of the Call
	5.3 The Combined Event Representation

	6 Discussion and Related Work
	6.1 A Comparison with the Modularisation Approach -- in More Detail

	7 Conclusions
	References

	Algebraic Foundations for Specification Refinements
	1 Introduction
	2 Preliminaries
	3 A Category of Refinements
	3.1 Heterogeneous Refinements

	4 Data Refinement
	5 Related Work and Conclusions
	References

	On Interval Dynamic Logic
	1 Introduction
	2 An Ł-Fuzzy Dynamic Logic
	2.1 The Łukasiewicz Action Lattice
	2.2 The Ł-Fuzzy Dynamic Logic

	3 Ł-Interval Algebra
	3.1 On the Interval Łukasiewicz Lattice

	4 The Price
	5 Conclusion and Further Work
	References

	An Evolutionary Approach to Translate Operational Specifications into Declarative Specifications
	1 Introduction
	2 A Motivating Example
	3 An Evolutionary Algorithm for Learning Declarative Specifications
	3.1 Genes and Chromosomes to Represent Candidate Specifications
	3.2 Fitness of Candidate Specifications
	3.3 Overall Structure of the Genetic Algorithm for Learning Specifications

	4 Validation
	4.1 Assessment

	5 Related Work
	6 Conclusions and Future Work
	References

	A Refinement Repair Algorithm Based on Refinement Game for KMTS Models
	1 Introduction
	2 KMTS Refinement
	2.1 Preserving Refinement Through KMTS Modifications

	3 Refinement Game
	4 Refinement Repair
	4.1 Refinement Repair Algorithm

	5 Conclusions and Future Works
	References

	Massive Open Online Courses and Monoids
	1 Introduction
	2 Examples, Semantics and Chomsky Classification
	2.1 Learn Syntax: Formal and by Example
	2.2 Learn Descriptions Are Partially-Ordered Monoids

	3 Maude
	4 Learn Maude Toolkit
	4.1 Learn Descriptions as Rewrite Theories
	4.2 Learn to Maude Transformer
	4.3 Learn to HTML Transformer

	5 Related Work
	6 Conclusions
	References

	Model Checking
	A Bounded Model Checker for Three-Valued Abstractions of Concurrent Software Systems
	1 Introduction
	2 Concurrent Software Systems
	3 Three-Valued Bounded Model Checking
	4 Propositional Logic Encoding
	5 Extension to Fairness
	6 Implementation
	7 Related Work
	8 Conclusion and Outlook
	References

	Model Checking Requirements
	1 Introduction
	2 Syntactic and Semantic Analyses of Requirements
	3 CNL to NuSMV
	3.1 Requirement Frame Pre-processing
	3.2 Mapping Variables
	3.3 Inferring the Types of the Variables
	3.4 Building Transitions
	3.5 NuSMV Code Generation

	4 CNL to CTL
	4.1 Natural-CTL
	4.2 Implementation of a Syntax-Directed Translation

	5 Case Study
	5.1 Example: The Coffee Vending Machine
	5.2 Retrieving the Variables
	5.3 Inferring the Types of the Variables
	5.4 Code Generation
	5.5 Specifying Properties

	6 Related Work
	7 Conclusions
	References

	Refinement Verification of Sequence Diagrams Using CSP
	1 Introduction
	2 Background
	2.1 Sequence Diagrams
	2.2 CSP

	3 Semantics and Refinement
	3.1 Semantics
	3.2 Refinement

	4 Tool
	5 Case Study
	6 Related Work
	7 Conclusion
	References

	Author Index

