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Preface

The International Conference on Formal Engineering Methods (ICFEM) is a premier
conference for research in all areas related to formal engineering methods, such as verifi-
cation and validation, software engineering, formal specification and modeling, software
security, and software reliability. Since 1997, ICFEM has been serving as an international
forum for researchers and practitioners who have been seriously applying formal methods
to practical applications. Researchers and practitioners, from industry, academia, and
government, are encouraged to attend, present their research, and help advance the state
of the art.We are interested inwork that has been incorporated into real production systems,
and in theoretical work that promises to bring practical and tangible benefit.

In recent years, ICFEM has taken place in Luxembourg (2014), Queenstown, New
Zealand (2013), Kyoto, Japan (2012), Durham, UK (2011), Shanghai, China (2010),
and Rio de Janeiro, Brazil (2009). The 17th edition of ICFEM took place in Paris during
November 3–5, 2015. The Program Committee (PC) received 78 full research papers
and four tool papers. Each paper received at least three reports from PC members or
external reviewers. On the basis of these reports, each submission was extensively
discussed in the virtual meeting of the PC, and the PC decided to accept 27 papers,
among them two tool papers. The proceedings also include short presentation from the
three keynote speakers, Ana Cavalcanti (York University), Sava Krstic (INTEL), and
Rupak Majumdar (MPI).

ICFEM 2015 was organized and supported by the LRI and the CNAM Paris. The
conference would not have been possible without the contributions and the support
of the following organizations: The Digiteo-Digicosme foundation, the CNRS Scien-
tific Research Group GDR GPL, the French National Agency of Research (ANR), the
Systematic Paris Region Systems and ICT Cluster, the W4 software company, and
OCamlPRO. We thank also the Local Organizing Committee for their hard work in
making ICFEM 2015 a successful and exciting event.

The main event was followed by the 4th International Workshop on Formal Tech-
niques for Safety-Critical Systems (FTSCS 2015) and the 5th International Workshop
SOFL+MSVL.

We would like to thank the numerous people who contributed to the success of
ICFEM 2015: the Steering Committee members, the PC members and the additional
reviewers for their support in selecting papers and composing the conference program,
and the authors and the invited speakers for their contributions without which, of
course, these proceedings would not exist. We would like also to thank Springer for
their help during the production of this proceedings volume and the EasyChair team for
their great conference system.

July 2015 Michael Butler
Sylvain Conchon

Fatiha Zaïdi
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Can Java Ever Be Safe?
The hiJaC Project Abstract

Ana Cavalcanti

University of York, UK

For its popularity, both in academia and industry, Java [11] is a language that dispenses
introductions. It has a wide base of programmers, an impressive collection of libraries, and
continues to evolve with the support of a very large number of companies. The real-time
community has, however, at first, completely rejected it. Issues included poor support for
absolute time, timeouts, management of threads waiting on a lock, and priorities.

Ten years later, the tremendous success of Java lead to a reversal of this situation:
the Real-Time Specification for Java (RTSJ) [28] was developed to address the main
concerns of the community. It adapts and extends the programming model of Java to
support real-time programming abstractions. It also has adequate memory management
based on the use of scoped memory areas, which are not subject to garbage collection.
With these developments, it is possible to write Java programs with predictable time
properties.

This is essential to allow the use of Java in the context of safety-critical applica-
tions, since the requirements for many of them involve timed as well as functional
properties. RTSJ is not enough in this application domain, though. Some sort of
certification is typically needed, and that prescribes a controlled engineering process to
obtain programs that are reliable, robust, maintainable, and traceable. For that, the
safety-critical industry usually resorts to controlled language subsets [1, 22]. In this
context, RTSJ is far too rich, encompassing the whole of Java as well as the novel
constructs to support real-time programming.

To address this issue, an international effort has been more recently producing an
Open Group standard for a high-integrity real-time version of Java: Safety-Critical Java
(SCJ) [17]. It is a subset of the RTSJ; its execution model is based on missions and
event handlers, and it restricts the memory model to prohibit use of the heap and define
a policy for the use of memory areas. The SCJ design is organised in Levels (0, 1, and
2), with a decreasing amount of restrictions.

The standardisation work includes the production of a reference implementation,
but no particular design or verification technique. We have addressed this using the
Circus [4] family of languages for refinement [7] as part of the hiJaC (High-Integrity
Java Applications using Circus) project. The Circus languages are based on a flexible
combination of elements from Z [31] for data modelling, CSP [24] for behavioural
specification, and standard imperative commands from Morgan’s calculus [21]. Vari-
ants and extensions of Circus include Circus Time [25], which provides facilities for
time modelling from Timed CSP [23], and OhCircus [5], which is based on the Java
model of object-orientation. The most recent variant is SCJ-Circus [20], which caters



for modelling using the abstractions of the SCJ paradigm: missions, handlers, memory
areas, and so on.

Circus has been used for modelling and verification of control systems specified in
Simulink [3, 19], including virtualisation software by the US Naval Research Labo-
ratory [10]. The semantics of the Circus family of languages is based on the Unifying
Theories of Programming (UTP) [15]. This is a framework that supports
refinement-based reasoning in the context of a variety of programming paradigms. It
supports the independent treatment of programming theories, with associated tech-
niques for their combination. This makes it possible for us to consider a rich language
for refinement that supports the use of object-oriented and SCJ constructs as well as the
modelling and verification of time properties.

A Circus-based formalisation of the SCJ execution model [32] and a UTP theory
for the SCJ memory model [6] are available. In [7], we have presented a refinement
strategy for deriving SCJ programs from Circus specifications that builds on these
results and UTP theories for references [5, 13, 30].

Our refinement strategy supports the stepwise development of SCJ Level 1 pro-
grams based on specification models that do not consider the details of either the SCJ
mission or memory models. SCJ Level 1 corresponds roughly to the Ravenscar profile
for Ada [2]. It is not as restrictive as Level 0, which is based on a cyclic executive
programming model, but is controlled enough to impose a reasonable challenge in the
development of a programming theory.

As shown in Figure 1, four Circus specifications characterise the major develop-
ment steps of our strategy. We call them anchors, as they identify the (intermediate)
targets for refinement and the design aspects treated in each step. Each anchor is written
using a different combination of the Circus family of notations. The first anchor is the
abstract specification model. The last is so close to an SCJ program as to enable
automatic code generation. It is written in SCJ-Circus, a new version of Circus
extended with constructs that correspond to the components of the SCJ programming
paradigm. They are syntactic abbreviations for definitions introduced in [32] to

Fig. 1. Our approach to development and verification
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characterise the SCJ infrastructure and applications; they use a combination of the
variants of Circus to cater for time, object-orientation, and the SCJ memory model.

Our development strategy establishes, by construction, that the SCJ-Circus model
is a refinement of the specification used as the first anchor. This means that safety,
liveness, and timing properties are preserved. Safety requires that the sequences of
interactions (traces) of the program are possible for the specification. Liveness requires
that deadlock or divergence in the program can occur only if allowed in the specifi-
cation. Finally, preservation of the timing properties requires that the deadlines and
budgets defined in the specification are enforced by the deadlines and budgets defined
for the components of the program. Our long-term goal is to provide for Safety-Critical
Java at least the same level of support that the SPARK tools, for instance, provide
for Ada.

Regarding time, our strategy makes use of decomposition via refinement. It is
inspired by the work in [14], which introduces time into Morgan’s refinement calculus
so that derivation of code from specifications is similar to that for untimed specifica-
tions. In our approach, the requirements in the first anchor are localised in the SCJ
components of the final target anchor. It is, in this way, annotated with the
machine-independent timing requirements that every correct implementation (for a
specific platform) needs to satisfy. Verifying that they do may require, for instance,
schedulability analysis.

By extending Circus with SCJ constructs, we can model SCJ programs in the
unified framework of a refinement language. We are tackling translation from
SCJ-Circus model to Java code as separate work in line with what we have previously
achieved for low-level Circus models and corresponding Java implementations [9].
Another interesting line of work uses the part of the model of an SCJ-Circus program
that gives an abstract specification of the SCJ paradigm to support verification of an
SCJ virtual machine (SCJVM).

Ongoing work includes formalisation of the requirements for an SCJVM and the
verification of the only SCJVM that is publicly available and up to date with the SCJ
standard [26]. We are also pursuing the extension of our approach to SCJ Level 2 [29].
Our starting point is the extension of the model in [32] for the SCJ infrastructure and
applications.

Complementary efforts in the SCJ community provide support for static analysis of
SCJ programs. There are annotation-based [8, 27] and annotation-free [18] techniques
for checking memory safety. The use of JML to support worst case execution time
analysis considers an important non-functional property [12]. Testing has also been
investigated [16].

So, can Java ever be safe? Can we ever consider the use of Java for programming
safety-critical applications? The answer is “a version of Java, namely, SCJ, is already
being used in this domain”. As explained, it is necessary to perform some essential
changes and restrictions to Java. With these, however, it is possible to achieve certi-
fication and it is possible to develop a programming theory to support formal devel-
opment and verification.

Acknowledgements. This work is funded by EPSRC grant EP/H017461/1. Much of
what is described here has been developed jointly with James Baxter, Leo Freitas,
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Matthew Luckcuck, Chris Marriott, Alvaro Miyazawa, Pedro Ribeiro, Andy Wellings,
Jim Woodcock, and Frank Zeyda.
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Specification and Analysis of SoC Flows
(Abstract)

Sava Krstić

Intel Corporation

Systems-on-chip are mindbogglingly complex mass-produced machines with a set of
characteristics that make them worthy of dedicated, domain-specific study. We build
these machines with a lot of effort, per specs that are largely informal, and they work
more-or-less as desired. The hope is that with better understanding of what we’re
creating, it can be created more efficiently and it will work better.

As a state machine, a system-on-chip (SoC) is composed of multiple IP blocks
(state machines themselves) that communicate by messaging. Thus, at the top level
of the SoC specification, we have a graph whose nodes are IP blocks and whose edges
represent interfaces over which messages get passed from block to block. The role of
messages is central: at any point in the SoC execution, every IP block contains a set of
messages, and these (structured) sets are a crucial part of the SoC state. Message
creation, destruction, and transfer from block to block are basic state changes that
happen in an SoC. The only other kind of a basic state change is an update of the value
of an IP block’s repository (register or memory range).

When can an agent (IP block) send a specific message, and what should an agent do
when it receives a specific message? Answers to these questions define the most
important aspects of global SoC behavior. Consider for a moment just one aspect:
powering down of an agent. It gets accomplished by a sequence of messages and
actions of several participants, including the agent itself, the power management
engine, and perhaps the memory module where the current state of the agent is saved in
order to be restored later when the agent is powered up again. It’s a protocol, and at
Intel the architects would typically specify it as a “flow diagram”—an informal mes-
sage sequence chart with perhaps some additional information, that in one picture
shows the messages involved, their ordering etc. Specification of other protocols, like
cache coherence, may require a large number of flow diagrams.

The number of protocols executed in a given SoC is huge and no single person
understands them all. Multiple protocols and multiple instances of the same protocol
may execute concurrently in an SoC. Things can easily go wrong here, and when they
go wrong it is not always clear even who is responsible. For example, if two con-
currently executing protocols can lead to a deadlocked state (where none of the two can
make progress towards completion), the deadlock bug may be possible to fix by
making a change in either of the protocols, which may mean making a change in either
of two agents. Lack of programming and logic rigor in SoC protocol specification
makes parts of SoC system-level validation and debugging nightmarish and costly.

At Intel, we are trying to raise the level of precision and analyzability of SoC
protocol specs by promulgating the use of the in-house experimental graphical



language IFLOW. The basic compilation unit of the language is the flow (protocol
fragment), with an example shown in Figure 1. A flow has a graphical part consisting
of various geometric shapes (agent “lanes”, control-flow arcs, message arcs, “task”
rectangles, etc.) and the textual part which the user supplies in shape annotations, and
which becomes visible by mouse clicking on the shape. (English text written on the
shapes is just comments.)

IFLOW has a well-developed semantics and a compiler that creates an executable
system given any set of flows as input. The more information the user puts in the
annotations, the more detailed model gets generated.

In our presentation, we will cover the elements of the IFLOW language and its
semantics, and show its use on two examples: (1) model checking with Spin back-end
that finds a subtle security vulnerability of the protocol in Figure 1, which manifests
itself only when three instances of the flow are executing concurrently; (2) a static
analysis method for deadlock detection in systems of flows, which extracts depen-
dencies between flow events and was capable of finding vicious cycles responsible for
some of the most pernicious SoC deadlocks at Intel.

Acknowledgment. Thanks to Flemming Andersen, Jesse Bingham, Sylvain Conchon,
John Erickson, John O’Leary, David Palmer, Eran Talmor, and Jin Yang for their
flows-related work and thoughts.

Fig. 1. IFLOW for a version of the firmware load protocol for a microcontroller (Device) in an SoC.
Attributes of one flow task and one message are shown in boxes on the right.
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Algorithmic Analysis for Asynchronous
Programs

Rupak Majumdar

MPI-SWS, Germany

Asynchronous programming is a generic term for concurrent programming with
co-operative task management. Asynchronous programs allow efficient resource
management and low-latency management of concurrent requests and are used in many
diverse settings. For example, asynchronous programming is used in smartphone
applications, in clientside web programming, in high-performance systems software
such as servers, in GUIs, and in embedded systems.

There are several different programming models that are all clubbed together by the
term “asynchronous programming.” For example, in one implementation, the under-
lying programming system exposes an asynchronous procedure call construct (either in
the language or using a library), which allows the programmer to post a procedure for
future execution in case a certain event occurs. An event scheduler manages asyn-
chronously posted procedures. When the corresponding event occurs, the scheduler
picks the associated procedure and runs it to completion. These procedures are
sequential code, possibly with recursion, and can post further asynchronous proce-
dures. This model is used, e.g., in systems software such as memcached or nginx. In a
different implementation, asynchronous tasks provide a way for pipelined processing of
requests, and asynchronously posted tasks are processed first-in-first-out but without
any external event management. This model is used, e.g., in low level embedded
systems. In yet another implementation, several concurrent worker threads may run in
parallel, each with its own queue of events, and the threads can send tasks to each
other. This model is used, e.g., in Android and iOS.

In all these scenarios, while programs can be very efficient, the manual manage-
ment of resources and asynchronous procedures can make programming quite difficult.
The natural control flow of a task is obscured and the programmer must ensure correct
behavior for all possible orderings of external events. Specifically, the global state
of the program can change between the time an asynchronous procedure is posted and
the time the scheduler picks and runs it.

In this talk, I will describe algorithmic analysis techniques for asynchronous pro-
grams. On the one hand, I will talk about formal models for different styles of asyn-
chronous programs and their decidability properties. On the other, I will talk about our
attempts to build model checking and program analysis tools for programs written in
this style.

For formal models, I will describe a surprising decidability result for a rich model
of asynchronous programming by showing a connection between the model and Petri
data nets, a well-studied infinite-state concurrency model.



For tool development, I will describe three recent attempts: one using coverability
analysis of Petri nets, one using rely-guarantee reasoning, and one using systematic
exploration with partial order refinement.
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Domain-Specific Languages with Scala
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Abstract. Domain-Specific Languages (DSLs) are often classified into
external and internal DSLs. An external DSL is a stand-alone language
with its own parser. An internal DSL is an extension of an existing pro-
gramming language, the host language, offering the user of the DSL
domain-specific constructs as well as the constructs of the host language,
thus providing a richer language than the DSL itself. In this paper we
report on experiences implementing external as well as internal formal
modeling DSLs with the Scala programming language, known in partic-
ular for its support for defining DSLs. The modeling languages include
monitoring logics, a testing language, and a general purpose SysML
inspired modeling language. We present a systematic overview of advan-
tages and disadvantages of each option.

Keywords: External and internal domain-specific language · DSL ·
Scala · Modeling · Programming · Language design · Evaluation

1 Introduction

A domain-specific language (DSL) is a language specialized to a particular
domain [10]. DSLs are for example popular in the formal methods and testing
communities. A DSL is designed to make the modeling or programming task eas-
ier and sometimes eliminates the need for a full-fledged programming language
altogether. DSLs are classified into external and internal DSLs. An external DSL
is a stand-alone language with a customized parser. Examples are XML [7] for
representing data and DOT [12] for drawing graphs, for example state machines.
In contrast to this, an internal DSL extends an existing programming language,
the host language. A user may employ the host language in addition to the DSL.
On the implementation side, the compiler and run-time environment of the host
language are reused. Internal DSLs are furthermore divided into shallow and
deep embeddings. In a shallow embedding, the host language’s features are used
directly to model the DSL. The constructs have their usual meaning. Conversely,
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in a deep embedding, a separate internal representation is made of the DSL (an
abstract syntax), which is then interpreted or compiled as in the case of an exter-
nal DSL. The reuse of an existing programming language reduces development
time but can also manifest itself as a constraint for an internal DSL.

Both external and internal DSLs therefore have their own trade-offs. In this
paper, we systematically examine these advantages and disadvantages, based on
our own practical experience in building numerous external as well as internal
modeling and testing DSLs with the Scala programming language. Scala is a
modern strongly typed programming language combining object-oriented and
functional programming [22]. Scala has several libraries and features that make it
suited for DSL development. For external DSLs these include parser combinators,
and for internal DSLs these include implicit function definitions, which allow
values of one type to be lifted to values of a different type, the ability to call
methods on objects without dots and parentheses, case classes, partial functions,
call-by-name, user-defined operators composed of symbols, operator overloading,
as well as other features such as higher-order functions and lambda expressions.

Our contributions are: (a) a report on our experiences on using Scala to
implement external and internal DSLs for formal modeling, three of which have
been incorporated into real production systems, (b) a summary of the pros and
cons of each type of DSL, and (c) a survey of the various tools and techniques
used for creating DSLs with Scala. A higher-level contribution is the message
that Scala, as a high-level programming language, can be used for modeling in
general, possibly augmented with internal modeling DSLs.

Much work has been carried out studying the development of DSLs [10,21].
The literature is too vast to be surveyed here. Other programming languages have
been popular as a platform for DSLs, such as Ruby, Python, and Haskell. One
of our through-going themes is DSLs for event monitoring. Such internal DSLs
have also been developed in Haskell [29] and Java [6]. Focusing specifically on
Scala, an internal DSL for rule-based programming, which we will also present,
is presented in [11]. Numerous internal DSLs have been developed in Scala for
testing, including for example ScalaTest [30]. Technologies that we have not
yet explored, and therefore will not evaluate, include Scala macros [28], Scala
virtualized [25], and SugarScala [19], a framework for extending Scala’s syntax.

The paper is organized as follows: Sect. 2 covers the design and implemen-
tation of external DSLs, while Sect. 3 covers internal DSLs. Section 4 compares
the key points of different approaches, and Sect. 5 concludes.

2 External DSLs

An external DSL is a stand-alone language. With Scala, one can develop an
external DSL using either a parser library or a parser tool.

2.1 The Parser Library Approach

Existing parser libraries for Scala include parser combinators [13,24] and parsing
expression grammars [23]. A parser combinator is a higher-order function that
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accepts zero or more parsers and returns a new parser. A parser is a function that
accepts a string and returns a user-defined data object, typically a parse tree.
Parser combinators are based on recursive descent and facilitate modular con-
struction.1 Generalized LL (GLL) combinators [13] are an alternative to Scala’s
original parser combinators. The GLL algorithm allows left-recursion and ambi-
guity, and also provides more elegant handling of semantic actions. Note that
the parser combinator libraries in Scala themselves are internal DSLs for writ-
ing grammars. A yet different library is Parboiled2, a high-performance Parsing
Expression Grammar library [23]. It uses macros to generate a parser at compile
time from a grammar written in an internal Scala DSL.

Example: Data Automata. Data Automata (Daut) [15] monitor program exe-
cutions at run time; execution traces are checked against specifications in Daut’s
logic. A trace is a sequence of events, each of which is a named tuple of values.
The logic is defined using Scala’s original parser combinators [24]. Assume as an
example that a multi-threaded program has been instrumented to emit events
reflecting the acquisition and release of locks: acquire(t, l) and release(t, l) rep-
resent events where thread t acquires or releases lock l, respectively. A simple
way of detecting deadlock potentials between two threads is to monitor whether
threads take locks in a circular manner: one thread acquiring some lock l1 and
then some lock l2 without having released l1, and another thread acquiring these
two locks in the opposite order. Even if a deadlock does not occur, the circu-
lar pattern represents a potential for it to occur. The monitor shown in Fig. 1,
formulated in the DSL named Daut, detects such potentials.

Fig. 1. External Daut DSL: lock order monitor.

Constructing a parser for a language usually begins with designing an abstract
syntax: data structures that represent the result of parsing. In Scala we usually
define such as case classes, as shown in Fig. 2 (top) for the first few top-level
case classes for this DSL.2 In this example, a specification is a list of automata;
an automaton has a name and contains a lists of states. A state is defined by a
collection of state modifiers (specifying the kind of state, for example whether

1 The standard Scala library [26] originally included a parser combinator package.
However, because it is rarely used, it was moved to an external library [24].

2 A case class in Scala is like a class with the additional properties that it supports
pattern matching over objects of the class, that the new keyword is not needed to
create objects of the class, and equality is pre-defined based on the arguments.
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it is an initial state or final state); a name; possible formal parameters (states
can be parameterized with data); and transitions. A transition in turn consists
of a pattern that must successfully match an incoming event, and an optional
condition which must evaluate to true, for the transition to be taken, resulting
in the right-hand side (a state expression) to be executed.

Fig. 2. External Daut DSL: part of the Scala AST and parser combinator grammar.

Figure 2 (bottom) shows part of the parser expressed using Scala’s parser
combinator library. The parser generates an abstract syntax tree (AST) in the
above-mentioned data structure. A specification is a Parser, which when
applied to an input (as in specification(input)) produces an object of the
(case) class Specification. A specification consists of zero or more (rep)
automaton. The code after the ^^ symbol is a function, which takes as argument
the parsed sub-data structures and returns the Specification object, in this
case obtained by a transformation. An automaton is introduced by the keyword
monitor, followed by an identifier, and a block delimited by { and }, which
contains a sequence of transitions and a sequence of state definitions. Finally, a
transition consists of a pattern, an optional guard condition, and one or more
target states following the arrow. Transitions at the top level of a monitor rep-
resent an initial state. The symbols , and are methods in the parser
combinator DSL that are used to represent spaces. This illustrates one of the
drawbacks of using an internal DSL such as parser combinators: the notation
can get slightly inconvenient, lowering readability.
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2.2 The Parser Tool Approach

In the parser tool approach, a tool generates the parser program from a grammar.
Parser tool frameworks that can be used with Scala include ScalaBison [27] and
ANTLR [1]. ScalaBison [27] is a Scala parser generator, and hence allows Scala
code to be written directly as the actions generating Scala objects. ANTLR
[1] is Java-based and generates a parse tree as a Java object. This then has
to be traversed (visited) by a Scala program and translated into a Scala tree.
The advantage of ANTLR is its robust parsing algorithm. We use ANTLR for
implementing the K language—a SysML-inspired language for specifying both
high-level system descriptions as well as low-level implementations of a system.
Note that ANTLR itself provides an external DSL for writing grammars.

Fig. 3. External K DSL: example of a model and ANTLR grammar.

Example: The K Language. Figure 3 shows an example model in K. Class
Instrument specifies the instrument id, name, and power level. Class Spacecraft
models the spacecraft, which contains several instruments with a unique id, as
specified by constraint InstrumentsCount. Definition SpacecraftInstrument
specifies that each Spacecraft can be associated with a maximum of 10 instru-
ments, i.e., each Instrument contains a reference to the Spacecraft and the
Spacecraft contains references to all instruments that are a part of it.
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Using ANTLR, we create a tool chain to parse and process K artifacts.
ANTLR accepts grammars specified in Extended Backus-Naur-Form (see Fig. 3).
Patterns are specified using rules and sub-rules that can be marked optional
(?) and repetitive (*, +). Each rule can also be named using the # notation
at the end of a rule. Keywords are specified in single quotes. In the exam-
ple, rule classDeclaration specifies how classes are defined by an identifier,
an optional extends declaration, and an optional class member declaration list
enclosed within curly brackets. Similarly, we define the grammar for associations.
The expression rule specifies how expressions can be constructed in K. Rule
precedence is determined by the order of the occurrence of the rules.

Given a grammar, ANTLR produces a lexer and parser (in Java). ANTLR
further enables one to create a visitor to visit the nodes in the generated parse
tree. We implement a visitor in Scala by importing the required Java libraries and
stitching the code together to access the ANTLR parse tree in Scala. Figure 4
shows a snippet of the visitor for the K language. The visitor makes use of
classes defined in the K AST, also shown in Fig. 4. Both snippets correspond to
visiting expression nodes in the parse tree and creating expression declarations
in the AST. For example, the visitor function visitDotExp takes as input a
context ctx of type DotExpContext. This is used to extract the expression e
and the identifier ident from the ANTLR parse tree. Together, these are used
to create an instance of DotExp, which is defined in the K Scala AST. The K
Scala visitor produces the complete AST, which can be used for code generation
and analysis. We currently use the AST to transform K code to JSON and back.
The robustness of ANTLR is a benefit, but there is also significant effort involved
in creating the visitor that produces the Scala AST from the Java AST. A small
change in the grammar can produce a cascading series of changes to the visitor.

Fig. 4. External DSL: part of the ANTLR visitor and AST for K.

3 Internal DSLs

An internal DSL extends the host language with custom constructs. We cover
three variants: Annotations, shallow embedding, and deep embedding.
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With annotations, a host program is annotated with information on existing
language constructs. The host language needs to permit annotations, as is the
case for Java and Scala. When using embedding, the extension is implemented
as a library in the host language without any additional techniques. Here we dis-
tinguish between shallow and deep embedding. Shallow embedding uses the host
language’s features directly to model the DSL. The constructs have their usual
meaning. In contrast, in a deep embedding one creates a separate representation
of the DSL: an abstract syntax (AST), which is then interpreted or translated,
as in the case of an external DSL.

3.1 Annotations

Annotations in Java or Scala associate extra information with classes, fields,
and methods. Java annotations accept a possibly empty list of key-value pairs
of parameters, where parameters can be of primitive types, strings, classes, enu-
merations, and arrays of the preceding types. To be used at run-time with Scala,
annotations have to be defined as Java annotations with run-time retention since
Scala’s annotations currently do not persist past the compilation stage.

Example: Modbat’s Configuration Engine. Many command line programs
allow options to be set via environment variables or command line arguments.
Existing libraries parse command line arguments, but still leave it to the user to
check semantic correctness, such as whether a value is within a permitted range.
This problem also occurs for Modbat, a model-based test tool [2].

Fig. 5. Example of annotations for configuration variables.

In Modbat, configuration options are expressed as annotated Scala variables.
An internal library analyzes the annotations and parses command line argu-
ments, checking whether a parameter matches the name of an annotated variable.
If so, the default value of the right variable is overridden by the new value. For
example, the value for defaultProbability can be overridden by command line
option --default-probability=0.6. Figure 5 shows an example. @Doc provides
a documentation string for a usage/help output; @Choice limits options to a pre-
determined set; @Range defines the allowed range of a value; and @Shorthand
defines a one-letter shorthand for a command line option.

It is also possible to use inheritance, naming conventions, or library calls, to
represent or set certain attributes. However, these solutions are more limiting
than annotations or require more code. Indeed, when Java annotations became
available, many tools (such as JUnit [20]) adapted them.
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3.2 Shallow Embedding

In a shallow embedding the host language’s features are used directly, with their
usual meaning, to model the DSL, which is typically presented as an application
programming interface (API).

Example: Data Automata. Recall the lock order monitor expressed in an
external DSL in Fig. 1. Figure 6 shows a version of this monitor expressed in an
internal shallow DSL, also described in [15], and variants of which are described
in [4,14]. Event types are defined as case classes sub-classing a trait Event.3

The monitor itself is defined as a class sub-classing the trait Monitor, which is
parameterized with the event type. The trait Monitor offers various constants
and methods for defining monitors, including in this case the methods whenever
and state, and the constants ok and error, which are not Scala keywords. The
LockOrder monitor looks surprisingly similar to the one in Fig. 1.

Fig. 6. Internal shallow Scala DSL: lock order event definitions and monitor.

The complete implementation of the internal DSL is less than 200 lines
of code, including printing routines for error messages. Conversely, the simi-
lar external DSL is approximately 1500 lines (nearly an order of magnitude
more code) and less expressive. The parts of the implementation of the internal
shallow DSL directly relevant for the example in Fig. 6 are shown in Fig. 7.

A monitor contains a set of currently active states, the frontier. All the states
have to lead to success (conjunction semantics). A transition function is a partial
function (a Scala concept), which maps events to a set of target states. A state
object (of the case class state) contains a transition function, which is initialized
with the when function. A state is made to react to an event using apply.4 There
are several forms (sub-classes) of states, including error, ok, and always states

3 A trait in Scala is a module concept closely related to the notion of an abstract class,
as for example found in Java. Traits, however, differ by allowing a more flexible way
of composition called mixin composition, an alternative to multiple inheritance.

4 The apply method in Scala has special interpretation: if an object O defines a such,
it can be applied to a list of arguments using function application syntax: O(...),
equivalent to calling the apply method: O.apply(...).
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Fig. 7. Internal shallow Scala DSL: part of implementation.

that stay active even if the transition function applies to an event. Functions
state and always take a transition function and return a new state object with
that transition function. Function whenever creates an always state from the
transition function and adds it to the set of initial states of the monitor.

The type of a transition function suggests that it returns a set of states. In
Fig. 6, however, the result of transitions (on the right of =>) are single states,
not sets of states. This would not type check was it not for the definition of the
implicit function convSingleState, which lifts a single state to a set of states,
here shown together with a selection of other implicit conversion functions:

These other implicit functions support lifting for example a Boolean value
to an ok or error state (such that one can write a Boolean expression on the
right-hand side of =>); the Unit value to ok (such that one can write statements
with side-effects on the right-hand side); and finally a state to a Boolean, testing
whether the state is in the set of active states, used in conditions.

Example: CSPE . CSPE (CSP for events) is a run-time verification tool that uses
a notation similar to Hoare’s Communicating Sequential Processes (CSP) [18].
CSPE allows specification of “concurrent” processes. The top of Fig. 8 shows the
lock order monitor in CSPE . Compared to the lock monitor of Fig. 1, the major
difference is that parallel composition of the top level process (p || ...) is required
to run the monitor continuously. The similarity to data automata in the previous
example is evident. The role of p || ... is similar to always and process is similar
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Fig. 8. Example monitor written in CSPE and partial implementation.

to whenever in data automata. The pattern match clauses are almost the same,
except for ??.

In CSPE , recursive definitions are implemented by functions that take a
process and return a new process (see Fig. 8, bottom). Function ?? takes a partial
function from events to processes (monitors), and creates a new process. That
process evaluates the given function if it is defined for a given event, and waits
otherwise. The monitor specification supplies the event as the first argument of a
process (before =>) and the behavior of the process to be executed after receiving
the event, as the second one. Internally acceptPrim takes the first argument and
executes f to continue monitoring the right-hand side of the expression.

CSPE is implemented as an internal DSL. The main reason for this is to
interface with external logging tools. The shallow embedding furthermore sim-
plifies the implementation. However, due to this, the grammar of CSPE slightly
deviates from the standard CSP notation. For example, parametric events and
the recursive definition of processes are more complicated than in standard CSP.

3.3 Deep Embedding

In a deep embedding, a DSL program is represented as an abstract syntax tree
(AST), which is then interpreted or translated as in the case of an external DSL.
The AST is generated via an API. We shall show two deep DSLs, one for writing
state machine driven tests, and one for rule-based trace monitoring.

Example: Modbat. The model-based test tool Modbat generates test cases
from extended finite-state machines [2]. Modbat has been used to verify a Java
model library and a SAT solver [2]. A Modbat model contains definitions of
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Fig. 9. Implementation of a deep DSL: a miniaturized version of Modbat, given as an
example (Example.scala) and two classes showing a partial implementation.

transitions: source and target states, and transition actions (code to be executed
when a transition is taken). Figure 9 shows a simple example model and a mini-
malist implementation that registers the model data at run time. The key Scala
features that are used for deeply embedding the DSL are the definition of a
custom operator := in Transition.scala, together with an implicit conversion of
a string pair "a" -> "b", to a transition (in Model.scala).

The design of Modbat’s DSL mixes deep embedding for transitions, with
annotations and shallow embedding for code representing transition actions on
the system under test. The main goal is to make the syntax more declarative
and concise where possible (e. g., to declare transitions), while avoiding too many
new constructs when Scala code is used (hence the use of annotations and API
functions where appropriate). Shallow embedding is ideal for transition actions as
they have to interact with the Java run-time environment during test execution.

Example: LogFire. LogFire is an internal (mostly) deep Scala DSL [16]. It was
created for writing trace properties, as were the earlier described data automata
DSLs in Sects. 2.1 and 3.2 respectively. LogFire implements the Rete algorithm
[9], modified to process instantaneous events (in addition to facts that have a life
span), and to perform faster lookups in a fact memory. A monitor is specified as
a set of rules, each of the form:

Figure 10 illustrates the lock order property expressed as rules in LogFire.
The rules operate on a database of facts, the fact memory. Rule left-hand sides
check incoming events, as well as presence or absence of facts in the fact mem-
ory. Right-hand sides (actions) can modify the fact memory, issue error mes-
sages, and generally execute any Scala code (here the DSL becomes a shallow
DSL). Class Monitor defines features for writing rules, for example the functions:
event, fact, --, &, |->, insert, remove, and fail. Recall that in Scala, method
names can be sequences of symbols, and dots and parentheses around method
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Fig. 10. Internal deep Scala LogFire DSL: lock order monitor.

arguments are optional. Each rule definition in the monitor above is a sequence
of method calls, that last of which is the call of the method |->, which produces
an internal representation (an abstract syntax tree) of the rule as an object of
a class Rule, which is then passed as argument to a method addRule(rule:
Rule) in the Rete module. The abstract syntax class Rule is in part defined as:

A rule consists of a name; a left-hand side, which is a list of conditions,
interpreted as a conjunction; and a right-hand side, which is an action. Condi-
tions use deep embedding for optimization purposes. Actions are implemented
as Scala code using a shallow embedding (functions from Unit to Unit).

Fig. 11. Internal deep Scala LogFire DSL: rule syntax implementation.

The definitions in Fig. 11 support the transformation of a rule entered by the
user to an AST object of the class Rule. The implicit function R, lifts a string (a
rule name) to an anonymous object. That object defines the -- operator, which
when applied to a condition returns an object of the class RuleDef. This class in
turn defines the condition conjunction operator & and the action operator |->
defining the transition from left-hand side to right-hand side of the rule. This
operator calls addRule, which adds the rule to the Rete network. The implicit
function R gets invoked by the compiler automatically when a string is followed
by the symbol --, to resolve the type “mismatch” (as no -- operator is defined
on strings). The individual conditions in a rule are similarly constructed with
the help of the following implicit function, which lifts a symbol (the name of an
event or fact) to an object, which defines an apply function:
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The complete interpretation by the Scala compiler of the rule "release" in
Fig. 10 becomes:

4 Discussion

We discuss the characteristics of five approaches to DSL implementation from
our experience with DSLs for formal modeling (see Table 1 for a summary).

Table 1. Characteristics of different DSL implementation approaches. Signature:
√

means yes, × means no, ⊗ means no unless an effort is made to make it happen, and
++, +, −, −− rank different approaches from best to worst.

External Internal

Tool Lib Annotations Deep Shallow

Parser generation
√ × × × ×

AST generation
√ √ √ √ ×

Enables transformation, analysis
√ √ √ √ ×

Directly executable × × × × √

Turing complete ⊗ ⊗ × √ √

Ease of development −− − ++ + ++

Flexibility of syntax ++ ++ −− − −−
Quality of syntax error messages + + ++ −− −
Ease of use ++ ++ + − −−

Parser Generation. The external tool approach requires an extra parser gener-
ation and compilation stage, where a parser is first generated from a grammar
specification, and then compiled. The other approaches have no code generation
stage, which slightly facilitates development.

AST Generation. All approaches except the internal shallow approach generate
ASTs. AST generation can complicate matters and at the same time be a facili-
tator. It influences topics such as transformation analysis, executability, Turing
completeness, ease of development, and flexibility of syntax, as discussed below.

Enables Transformation and Analysis. An AST allows us to transform and ana-
lyze the DSL. Specifically, it allows us to optimize any code generated from
the AST, a capability particularly important for the shown monitoring DSLs.
This is not directly possible in the internal shallow approach, which is one of its
main drawbacks. One could potentially use reflection, but the Scala reflection
API does not support reflection on code. Alternatively one can use a bytecode
analysis library such as ASM [8] or the Scala compiler plugin. However, these
solutions require a great level of sophistication of the developer.
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Directly Executable. The internal shallow approach has the advantage that the
DSL is directly executable since the host language models the DSL. There is no
AST to be interpreted/translated. This again means that internal shallow DSLs
are faster to develop, often requiring orders of magnitudes less code.

Turing Complete. Annotations typically carry simple data, and are usually not
Turing complete (although they can be made to be). Internal DSLs are by defin-
ition Turing complete since they extend a Turing complete host language (in our
case, Scala). For internal shallow DSLs the host language is directly part of the
DSL, thus making the DSL itself Turing complete. Our experience with internal
DSLs is that the user of the DSL will use the host language constructs in case
the DSL is not applicable to a particular problem. As an example, an internal
DSL lends itself to writing “glue code” to connect the DSL with another system,
such as the system under test in case of a test DSL. It is more challenging to
turn external DSLs into Turing complete languages.

Ease of Development. External DSLs developed using a library (such as Scala’s
parser combinators) seem easier to develop than using a parser generator tool
(such as ANTLR) due to the reduced parser generator step. However, using a
parser generator such as ANTLR facilitates grammar development itself since
ANTLR accepts more grammars than for example Scala’s parser combinators.
Annotations-based DSLs are easy to develop since the Java compiler and the core
libraries support annotations. However, it is not possible to extend the syntax
or scope of annotations in any way. It furthermore appears that internal DSLs
are easier to develop than external DSLs, and that internal shallow DSLs are
the easiest to develop.

Flexibility of Syntax. Our experience with internal DSLs is that it can be a strug-
gle to achieve the optimal syntax. This is mostly due to limitations in operator
composition and precedence in Scala. In an external DSL one is completely free
to create any grammar as long as it is accepted by the parser.

Quality of Syntax Error Messages. External DSLs have a potential for good
error messages, depending on the toolkit used. Internal DSLs often result in
error messages that can be intimidating to users, especially if not used to the
host language. In the case of deep internal DSLs, conversion functions may show
up in compiler errors; or a missing symbol may result in a lack of conversion, in
which case no error message is shown or a completely wrong one. Furthermore,
for a deep internal DSL a type checker has to be developed from scratch. In
contrast, shallow internal DSLs have the advantage that Scala’s type system
takes care of type checking.

Ease of Use. Annotations and internal DSLs are usually adopted easily if the
users are already host language programmers. As an illustration, in spite of
being originally a research tool, TraceContract [4], a variant of the internal data
automaton DSL illustrated in Sect. 3.2, was used throughout NASA’s LADEE
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Moon mission for checking all command sequences before being sent to the space-
craft [5]. Similarly, the internal DSL LogFire [16], illustrated in Sect. 3.3, also
originally a research tool, is currently used daily for checking telemetry from
JPL’s Mars Curiosity Rover [17]. These adoptions by NASA missions were not
likely to have happened had these DSLs been external limited stand-alone lan-
guages. On the other hand, if a user is not already a host language programmer
(and is not willing to learn the host language), it may be easier to adopt an exter-
nal DSL. For example, we developed an external monitoring DSL much along
the lines of data automata, and had non-programmers use it for testing with-
out much training [3]. More interestingly perhaps, the SysML-inspired external
modeling DSL K, illustrated in Sect. 2.2, is planned to be adopted by a JPL’s
future mission to Jupiter’s Moon Europa, for modeling mission scenarios.

5 Conclusions

We have presented five approaches to implementing domain-specific languages
(DSLs) in Scala, illustrated by application to formal modeling and testing lan-
guages. External DSLs use either (1) a parser generator, or (2) a parser library.
Internal DSLs extend the host language by (3) annotations of existing language
elements, (4) deep embedding where an abstract representation of the program
is computed, or (5) shallow embedding of functions that directly execute. Our
experience shows that each approach has its strengths; in particular, external
DSLs can offer a fully flexible syntax while internal DSLs are easier to develop
and in the case of shallow embedding, are directly executable. Mixed approaches
are common, in particular for internal DSLs. Future work includes leveraging
macro-based and compiler-based approaches, which promise to combine some of
the strengths of the techniques discussed here.
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LRI, Bâtiment 650, Inria, Université Paris-Sud, 91405 Orsay Cedex, France
Sylvie.Boldo@inria.fr

Abstract. The most well-known feature of floating-point arithmetic is
the limited precision, which creates round-off errors and inaccuracies.
Another important issue is the limited range, which creates underflow
and overflow, even if this topic is dismissed most of the time. This article
shows a very simple example: the average of two floating-point numbers.
As we want to take exceptional behaviors into account, we cannot use the
naive formula (x+y)/2. Based on hints given by Sterbenz, we first write
an accurate program and formally prove its properties. An interesting
fact is that Sterbenz did not give this program, but only specified it. We
prove this specification and include a new property: a precise certified
error bound. We also present and formally prove a new algorithm that
computes the correct rounding of the average of two floating-point num-
bers. It is more accurate than the previous one and is correct whatever
the inputs.

1 Introduction

Floating-point computations are everywhere in our lives. They are used in control
software, used to compute weather forecasts, and are a basic block of many
hybrid systems: embedded systems mixing continuous, such as sensors results,
and discrete, such as clock-constrained computations. Which numbers and how
operations behave on them is standardized in the IEEE-754 standard [13] of
1985, which was revised in 2008 [14].

Computer arithmetic [11], is mostly known (if known at all) to be inaccu-
rate, as only a finite number of digits is kept for the mantissa. A more ignored
fact is that only a finite number of digits is kept for the exponent. This cre-
ates the underflow and overflow exceptions, that are often dismissed, even by
floating-point experts. We are here mostly interested in handling overflow, even
if underflow will also play its part.

The chosen example is very simple: how to compute the average of two
floating-point numbers:

x + y

2
.
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The naive formula (x+y)/2 is quite accurate, but may fail due to overflow,
even if the correct result is in the range. For example, consider the maximum
floating-point number M , then (M+M)/2 overflows while the correct result is M .
This problem has been known for decades and has been thoroughly studied by
Sterbenz [17], among some examples called “carefully written programs”.

This study is especially interesting as Sterbenz does not fully give a correct
program: he specified what it is required to do, such as symmetry and gives
hints about how to circumvent overflow. We are interested in writing and prov-
ing the behavior of such a program, that produces an accurate result without
overflowing. And of course, we look for an improved algorithm which would give
a correct result, also without overflowing.

All the theorems stated in this article correspond to Coq theorems. This
development, meaning the C codes and full proofs are available from the following
web page https://www.lri.fr/∼sboldo/research/.

The outline of this article is as follows. Basics about floating-point arith-
metic are given in Sect. 2. The methodology of the verification, and what is
supposed to be verified are in Sect. 3. The formal proofs about the algorithms
are described in Sect. 4. The annotations of the C programs and the correspond-
ing proofs, including overflow, are in Sect. 5. Section 6 concludes and gives a few
perspectives.

2 Basics About Floating-Point Arithmetic

The IEEE-754 standard [13] of 1985, which was revised in 2008 [14] describes the
floating-point formats, numbers and roundings and all modern processors comply
with it. We adopt here the level 3 vision of the standard: we do not consider bit
strings, but the representation of floating-point data. The format will then be
(β, p, emin, emax), where emin and emax are the minimal and maximal unbiased
exponents, β is the radix (2 or 10), and p is the precision (the number of digits
in the significand).

In that format, a floating-point number is then either a triple (s, e,m), or an
exceptional value: ±∞ or a NaN (Not-a-Number). For non-exceptional values,
meaning the triples, we have additional conditions: emin ≤ e ≤ emax and the
significand m has less than p digits. The triple can be seen as the real number
with value

(−1)s × m × βe.

We will consider m as an integer and we therefore require that m < βp.
The other possibility is that m is a fixed-point number smaller than β. In this
setting, the common IEEE-754 formats are binary64, which corresponds to (2,
53, −1074, 971) and binary32, which corresponds to (2, 24, −149, 104).

Non-exceptional values give a discrete finite set of values, which can be rep-
resented on the real axis as in Fig. 1. Floating-point numbers having the same
exponent are in a binade and are at equal distance from one to another. This
distance is called the unit in the last place (ulp) as it is the intrinsic value of the
last bit/digit of the significand of the floating-point number [15]. When going

https://www.lri.fr/~sboldo/research/
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from one binade to the next, the distance is multiplied by the radix, which gives
this strange distribution. Around zero, we have the numbers having the smallest
exponent and small mantissas, they are called subnormals and their ulp is that
of the smallest normal number.

Fig. 1. Distribution of the floating-point numbers over the real axis.

Floating-point arithmetic tries to mimic real arithmetic but, in many cases,
the exact result of an operation on two floating-point numbers is not a floating-
point number. For example, in binary64, 1 and 2−53 are floating-point numbers,
but 1 + 2−53 is not, as it would require 54 bits for the significand. The value
therefore needs to be rounded. The IEEE-754 standard defines 5 rounding modes.
We will here only use the default rounding mode: rounding to nearest ties to even,
denoted by ◦. Rounded addition will be denoted by ⊕, rounded subtraction by
� and rounded division by �.

The main rule of the IEEE standard of floating-point computation for basic
operations is the following one, called correct rounding: each operation gives the
same result as if it was first performed with infinite precision, and then rounded
to the desired format. This is a very strong mathematical property that has two
essential consequences: portability and accuracy. It also implies that rounding is
non-decreasing. A last property is the fact that division by the radix is an exact
operation, provided the input is not subnormal.

For some ugly details, as for the difference between signaling and quiet NaNs,
the sign of 0 − 0 or the value of

(√−0
)
, we refer the reader directly to the

standard [14]. Other major references are an article by Goldberg [11] and the
Handbook of Floating-Point Arithmetic [15].

3 Methodology and Desired Specification

3.1 Methodology

To give a high guarantee on our mathematical results and programs, we rely on
formal methods. Floating-point arithmetic that has been formalized since 1989
in order to formally prove hardware components or algorithms [8,12,16]. We use
the Flocq library [7], a formalization in Coq which offers a multi-radix and multi-
precision formalization for various floating- and fixed-point formats (including
floating-point with or without gradual underflow, meaning subnormals) with a
comprehensive library of theorems.

Following the methodology described in [3–5], we use the Frama-
C/Jessie/Why3 chain and the ACSL language to perform formal verification
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of C programs at the source-code level. Frama-C is an extensible framework
which combines static analyzers for C programs, written as plug-ins, within a
single tool. In this work, we use the Jessie plug-in for deductive verification. C
programs are annotated with behavioral contracts written using the ANSI C
Specification Language [1] which tries to be as near C statements as possible.
The Jessie plug-in translates them to the Why3 verification platform [2]. Finally,
the Why3 platform computes verification conditions from these programs, using
traditional techniques of weakest preconditions, and emits them to a wide set of
existing theorem provers, ranging from interactive proof assistants to automated
theorem provers. In this work, we use the Coq proof assistant, the automated the-
orem prover Gappa [10] which uses interval arithmetic to prove properties that
occur when verifying numerical applications, and the SMT prover Alt-Ergo [9].

3.2 Desired Specification

The first point we want to specify is the accuracy of the ideal average function.
In principle, we would like an error less than half a unit in the last place, which
corresponds to correct rounding. But this is very difficult to achieve while pre-
venting overflow as noted by Sterbenz [17]. This requirement will be weakened
to a few ulps for the first program, as long as several other properties are kept.
More precisely, we require:

– the program never overflows,
– average(x, y) is within a few ulps of x+y

2 ,
– min(x, y) ≤ average(x, y) ≤ max(x, y),
– average(x, y) = average(y, x),
– average(−x,−y) = −average(x, y),
– average(x, y) has the same sign as x+y

2 .

Sterbenz specified two facts related to underflow. First, average(x, y) = 0 if and
only if y = −x, except in case of underflow. Second, the program should not
underflow unless 0 <

∣
∣x+y

2

∣
∣ < η, where η = 2p−1+Ei is the smallest normalized

positive number. Our specifications are stronger than Sterbenz’s and will be
detailed in Sect. 4.

This paper will formally prove the previous assumptions, and will determine
and prove the accuracy of two programs: an accurate one based on Sterbenz’s
hints and a correct one. We will also weaken the underflow assumptions. For
that, we will first need to write a correct program. Sterbenz suggested several
ways to compute the average:

– (x ⊕ y) � 2, which is very accurate (see below for the error bound), but may
overflow when x and y share the same sign.

– (x � 2) ⊕ (y � 2) is also accurate, and may underflow. Moreover, it requires
an additional operation.

– x ⊕ ((y � x) � 2) is less accurate than the first one, but it does not overflow
if x and y have opposite signs.

– As for underflow, Sterbenz suggests a scaling. We will prove that it is useless.
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On the internet, we found a reference to Sterbenz’s book and a corresponding
program in the user notes on Fortran programming1. An excerpt of this program
is given:

real function average (x, y)

real x, y, zero , two , av1 , av2 , av3 , av4

logical samesign

parameter (zero = 0.0e+00, two = 2.0e+00)

av1(x,y) = (x + y) / two

av2(x,y) = (x / two) + (y / two)

av3(x,y) = x + ((y - x) / two)

av4(x,y) = y + ((x - y) / two)

[... definition of samesign ...]

if (samesign) then

if (y .ge. x) then

average = av3(x,y)

else

average = av4(x,y)

endif

else

average = av1(x,y)

endif

return

end

The problem is that this program is incorrect: it does not fulfill one of Ster-
benz’s requirement: average(−x,−y) = −average(x, y). For example, consider
the IEEE binary64 format and the values x = −253 and y = −1.25, then
average(−x,−y) = average(253, 1.25) = average4(253, 1.25) = 252 + 1, but
−average(x, y) = −average(−253,−1.25) = −average3(−253,−1.25) = 252.
The reason is the test y ≥ x that should be |y| ≥ |x| to preserve the symmetry.

4 Formal Proof of the Algorithms

This formal proof was done in the FLT format of the Flocq library [7]. This
corresponds to a generic floating-point format with gradual underflow and no
overflow. This may seem strange as we are mostly interested in overflow here,
but overflow will be taken into account at the program level in the next Section.
The reason is that underflow happens and can be handled, while overflow must
be prevented. We will use radix 2 and rounding to nearest, ties to even ◦. We
will denote by p the precision and Ei the minimal exponent, so that 2Ei is
the smallest positive floating-point number and 2p−1+Ei is the smallest normal
positive floating-point number.
1 http://www.ibiblio.org/pub/languages/fortran/ch4-9.html.

http://www.ibiblio.org/pub/languages/fortran/ch4-9.html
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We will here define the algorithms at the Coq level, and prove that they fulfill
all the stated properties. For that, we will study all the algorithms in all the
different cases. But we will be smarter as far as formal proofs are concerned: as
average4(x, y) is exactly average3(y, x), we will only have to study the average1,
average2 and average3 functions.

The interesting points here will be first the rounding error of the functions,
and then the handling of underflow. In fact, we will prove that scaling is useless
and that gradual underflow behaves perfectly. For sign correctness, the most
problematic case is computing the average of 0 and 2Ei which gives 0, even if
computed correctly, as rounding is to nearest, ties to even. In the other cases,
the sign is correct. We will therefore prove the following properties concerning
underflow: if the average is exactly 0, then the algorithm returns 0. If the absolute
value of the average is greater or equal to 2Ei , then the returned value is non-zero.

4.1 The average1 Function

The average1 function is the simplest one, the naive one to compute the average.

Definition average1 (x y : R) := round_flt(round_flt(x+y)/2).

That is to say average1(x, y) = (x ⊕ y) � 2.
In fact, this function is correct: it computes the correctly-rounded exact average.

Theorem 1. For all floating-point numbers x and y,

(x ⊕ y) � 2 = ◦
(

x + y

2

)
.

This holds in our algorithmic model without overflow.

Proof. Let us denote by r the floating-point number r = (x ⊕ y) � 2. We have
two sub-cases. When |x + y| ≤ 2p+Ei , then x ⊕ y has the minimal exponent,
meaning a subnormal number or just above. It is therefore computed without
error [7,11]. Then, r = (x ⊕ y) � 2 = (x + y) � 2 = ◦ (

x+y
2

)
.

When |x + y| > 2p+Ei , then |x ⊕ y| ≥ 2p+Ei . In this case, the division by 2
is exact as x ⊕ y is a normal number. Then r = (x ⊕ y) � 2 = x⊕y

2 = ◦ (
x+y
2

)
. 
�

This correct rounding easily implies all the basic requirements on this func-
tion: average1(x, y) = average1(y, x), average1(−x,−y) = −average1(x, y),
average1(x, y) has the same sign as x+y

2 . The fact that average1(x, y) is between
min(x, y) and max(x, y) is slightly more difficult as rounding is involved. The
facts that x+y

2 = 0 implies average1(x, y) = 0 and that 2Ei ≤ ∣
∣x+y

2

∣
∣ implies

average1(x, y) �= 0 are also quite simple from basic floating-point properties of
the rounding.

The rounding error here is very small as it is equivalent to only one rounding:
∣
∣
∣
∣average1(x, y) − x + y

2

∣
∣
∣
∣ ≤ 1

2
ulp

(
x + y

2

)
.
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An interesting point is the fact that this algorithm requires x and y to be of
different signs in order to not overflow. But the preceding proofs do not require
it and are valid (in our model without overflow) whatever the values of x and y.

4.2 The average3 Function

The average3 function is the more complex one, designed to prevent overflow
when x and y share the same sign.

Definition average3 (x y : R) :=

round_flt(x+round_flt(round_flt(y-x)/2)).

That is to say average3(x, y) = x ⊕ ((y � x) � 2).
Some of the basic requirements on this function are not difficult to prove:

average3(−x,−y) = −average3(x, y) is easy, so is the fact that x+y
2 = 0 implies

average3(x, y) = 0 and vice versa. Proving that average3(x, y) has the same
sign as x+y

2 is slightly more difficult.

The fact that min(x, y) ≤ average3(x, y) ≤ max(x, y) is more difficult as
many roundings are involved, including possible underflows. Without loss of
generality, we assume that x ≤ y. We have left to prove that x ≤ x⊕((y�x)�2) ≤
y. The first inequality is simple: as y ≥ x, then y � x ≥ 0, then (y � x) � 2 ≥ 0.
Then x ≤ x + ((y � x) � 2), and then x ≤ x ⊕ ((y � x) � 2) as x is in the
floating-point format.

The difficult part is x⊕((y�x)�2) ≤ y. We split into two different subcases:
either the rounding down of y − x, that is denoted by (y − x) equals 0, or is
positive. It is non-negative as y ≥ x. When (y − x) > 0, this amounts to
prove that ◦

(
◦(y−x)

2

)
≤ y − x. When y − x is in the format, this is trivial.

When not, then we prove that ◦
(

◦(y−x)
2

)
≤ (y −x) by real number inequality

manipulations, and the study of whether ◦(y − x) is the rounding up or down.
Then we have left to prove that (y − x) ≤ y − x, which holds by definition.
When (y − x) = 0, we have two cases: if x = y, the result holds. The only
remaining case corresponds to x < y and (y − x) = 0. As x and y are in the
floating-point format, this is impossible as y − x ≥ 2Ei .

Another difficult point is that 2Ei ≤ ∣
∣x+y

2

∣
∣ implies average3(x, y) �= 0. This

relies on the intermediate fact that, for all positive floating-point number f , then
◦(f/2) < f , even when underflow occur.

The proof of ◦(f/2) < f for a positive floating-point number f is a case split:
if the exponent of f is greater than Ei, then ◦(f/2) = f/2 < f . When f = n2Ei

with |n| < 2p, then we have left to prove that the integer rounding to nearest
even of n/2 is strictly smaller than n. This is done by studying n: as f > 0, then
n ≥ 1. When n = 1, the result holds as 0 < 1. For bigger n, we prove that this
integer rounding is smaller than n/2 + 1/2 which is smaller than n.

Given this lemma, we assume that x and y share the same sign and that
2Ei ≤ ∣

∣x+y
2

∣
∣. Without loss of generality, we assume x ≤ y. We prove that x ⊕

((y �x)�2) �= 0 by contradiction. If a floating-point addition is zero, it is exact,
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therefore we know that x + ((y � x) � 2) = 0. Therefore x = −((y � x) � 2) ≤ 0
as y − x ≥ 0. We split into two subcases: if x < 0, we will prove the contrary
of the previous lemma applied to −x. We have left to prove that −x ≤ −x � 2.
But −x = ((y � x) � 2). As y ≤ 0, we have y − x ≤ −x, then y � x ≤ −x, hence
the result. Now, we assume that x = 0. Then the hypotheses are rewritten into
2Ei ≤ ∣

∣y
2

∣
∣ and y � 2 = 0, which is impossible as 2Ei cannot round to 0. This

property is the first to rely on the fact that x and y share the same sign.

The last property is the bound on the rounding error. The first subcase is
when

∣
∣x+y

2

∣
∣ is exactly 2Ei

2 . It corresponds to x = 0 and y = ±2Ei or vice versa.
This very special case is not difficult, but must be studied differently from the
general case. The general case corresponds to average3(x, y) being non-zero.
Then, following the idea of the previous subsection, we have either ◦(y − x) or
◦
(

◦(y−x)
2

)
that is computed exactly. The final rounding error is therefore small

and bounded as follows:
∣
∣
∣
∣average3(x, y) − x + y

2

∣
∣
∣
∣ ≤ 3

2
ulp

(
x + y

2

)

provided x and y share the same sign.
The last missing property is the link between the values of average3(x, y)

and average3(y, x). But they may not be equal, contrary to what happens with
average1. Symmetry is achieved otherwise, by the sign study.

4.3 The average2 Function

The average2 function is rather simple, even if it contains 2 multiplications. This
is not a problem on recent architectures as the cost of addition and multiplication
is nearly the same.

Definition average2 (x y : R) :=

round_flt(round_flt(x/2) + round_flt(y/2)).

That is to say average2(x, y) = (x � 2) ⊕ (y � 2).
In fact, this function is correct provided x is not too small: it computes the

correctly-rounded exact average.

Theorem 2. For all floating-point numbers x and y such that 2Ei+2p+1 ≤ |x|,

(x � 2) ⊕ (y � 2) = ◦
(

x + y

2

)
.

This holds when x is not too small. Consider for example x = y = 2Ei . Then,
the average is also 2Ei while the algorithm returns 0.
Note also that the assumption 2Ei+2p+1 ≤ |x| can be replaced by 2Ei+2p+1 ≤ |y|
by symmetry.

Proof. Let us denote by r the floating-point number r = (x � 2) ⊕ (y � 2). As
x is big enough, we have x � 2 = x

2 . Then we have two subcases, depending on
the magnitude of y.
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If |y| ≥ 2p+Ei , then we have the same property: y � 2 = y
2 . Then r =

(x � 2) ⊕ (y � 2) = x
2 ⊕ y

2 = ◦ (
x+y
2

)
.

If |y| < 2p+Ei , then it is subnormal and the division may be inexact. But x
is big enough so that this error is too small to impact the result. More precisely,
we prove that r = (x � 2) ⊕ (y � 2) = x

2 ⊕ (y � 2) = x
2 = ◦ (

x+y
2

)
.

This is proved by using twice the following result: given a floating-point
number f and a real h such that 2p+ei ≤ |f | and |h| ≤ ulp(f)

4 , then
◦(f + h) = f . 
�

As for the average1 function, the correct rounding implies all the previous
requirements and gives a half ulp error bound. This hold provided either x or y
is big enough.

4.4 Putting All Parts Together: The Average Functions

Accurate Sterbenz Algorithm. Following Sterbenz’s ideas and the previous
definitions, here is the definition of an accurate average function:

if x and y do not have the same sign
return (x ⊕ y) � 2

else
if |x| ≤ |y|

return x ⊕ ((y � x) � 2)
else

return y ⊕ ((x � y) � 2)

Then the properties are easily derived from the properties of average1
and average3. They may be sometimes long as many subcases have to be
studied, but the proofs are straightforward. The worst case is the proof that
average(−x,−y) = −average(x, y), as all sign possibilities (positive, negative
and zero) have to be considered. The formal proof of the whole algorithm is a
Coq file about 1,400 lines long.

What is left to prove is that no overflow occurs. Another difficulty is the
specification of this program that will be described in Sect. 5.

Correct Algorithm. From the previous properties of average1 and average2,
another algorithm can be defined, that will return the correctly-rounded average:
let C :=2Ei+2p+1

if C ≤ |x|
return (x � 2) ⊕ (y � 2)

else
return (x ⊕ y) � 2

This program returns ◦ (
x+y
2

)
. This means that the specification reduces

to this property, as it easily implies everything Sterbenz could wish for a cor-
rectly written average function. What is left to prove is that no overflow occurs.
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Another point is the value of C. The correct rounding will hold whatever C
greater or equal to 2Ei+2p+1 in our model without overflow. We may therefore
increase this value as long as overflows are prevented. The advantage is efficiency:
it would more often use 3 operations instead of 4.

5 Specifications and Formal Verification of the Programs

5.1 Absolute Value

Both programs require an absolute value for tests. This may come from a stan-
dard library or playing with the first bit. As long as the specification is the same,
any function will make the following programs work. We choose to define and
prove it using a condition.

/∗@ ensures \ result == \abs ( x ) ; ∗/
double abs (double x ) {

i f ( x >= 0) return x ;
else return (−x ) ;

}
The corresponding proof is automatically done by Alt-Ergo.

5.2 Accurate Average

The accurate program to be proved is the following one, written in C. It corre-
sponds to Sterbenz’s hints.
1 /∗@ axiomatic Floor {
2 @ logic integer f l o o r ( real x ) ;

3 @ axiom f l o o r p r op : \ f o ra l l real x ; f l o o r (x ) <= x < f l o o r (x)+1;

4 @ } ∗/

5

6 /∗@ logic real ulp d ( real x ) =

7 @ \ l et e = 1+ f l o o r (\ log (\abs ( x ) ) / \ log ( 2 ) ) ;

8 @ \pow(2 ,\max( e −53 ,−1074)); ∗/

9

10 /∗@ logic real l a v e r ag e ( real x , real y ) =

11 @ \ l et same sign =

12 @ (x >= 0) ? ( ( y >=0) ? \true : \ fa l se ) : ( ( y >=0) ? \ fa l se : \true ) ;

13 @ ( same sign ) ? ( (\abs ( x ) <= \abs ( y ) ) ?

14 @ \round double (\NearestEven , x+\round double (\NearestEven ,

15 @ \round double (\NearestEven , y−x )/2 ) ) :

16 @ \round double (\NearestEven , y+\round double (\NearestEven ,

17 @ \round double (\NearestEven , x−y ) /2 ) ) ) :

18 @ \round double (\NearestEven ,\ round double (\NearestEven , x+y ) / 2 ) ;

19 @ ∗/

20

21 /∗@ lemma average sym : \ f o ra l l double x ; \ f o ra l l double y ;

22 @ l av e r ag e (x , y ) == l av e r ag e (y , x ) ;

23 @ lemma average sym opp : \ f o ra l l double x ; \ f o ra l l double y ;

24 @ l av e r ag e (−x,−y ) == − l a v e r ag e (x , y ) ;

25 @

26 @ lemma average props : \ f o ra l l double x ; \ f o ra l l double y ;

27 @ \abs ( l a v e r ag e (x , y ) − ( x+y )/2) <= 3./2∗ ulp d ( ( x+y )/2)

28 @ && (\min(x , y ) <= l ave r ag e (x , y ) <= \max(x , y ) )

29 @ && (0 <= (x+y)/2 ==> 0 <= l ave r ag e (x , y ) )

30 @ && (( x+y)/2 <= 0 ==> l a v e r ag e (x , y ) <= 0)

31 @ && (( x+y)/2==0 ==> l a v e r ag e (x , y)==0)

32 @ && (0x1p−1074 <= \abs ( ( x+y )/2) ==> l a v e r ag e (x , y ) != 0 ) ;
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33 @ ∗/

34

35

36 /∗@ ensures \ result == l ave r ag e (x , y ) ;

37 @ ensures \abs ( (\ result − ( x+y )/2 ) ) <= 3./2∗ ulp d ( ( x+y ) / 2 ) ;

38 @ ensures \min(x , y ) <= \ result <= \max(x , y ) ;

39 @ ensures 0 <= (x+y)/2 ==> 0 <= \ result ;

40 @ ensures ( x+y)/2 <= 0 ==> \ result <= 0;

41 @ ensures ( x+y)/2 == 0 ==> \ result == 0;

42 @ ensures 0x1p−1074 <= \abs ( ( x+y )/2) ==> \ result != 0 ;

43 @ ∗/

44

45 double average (double x , double y ) {
46 int same sign ;

47 double r ;

48 i f ( x >= 0) {
49 i f ( y >=0) same sign=1;

50 else same sign=0; }
51 else {
52 i f ( y >=0) same sign=0;

53 else same sign=1; }
54 i f ( same sign ==1) {
55 i f (abs ( x ) <= abs ( y ) ) r=x+(y−x )/2 ;

56 else r=y+(x−y )/2 ; }
57 else r=(x+y )/2 ;

58 //@ assert r==l av e r ag e (x , y ) ;

59 return r ;

60 }

The full annotated program is given above. Here are some details about the
annotations. We only consider the double type meaning the binary64 type of
the IEEE-754. First, the floor function, which rounds down a real number to an
integer, is specified at lines (1–4). The ulp function, which gives the unit in the
last place in double precision ulp d, is then defined at lines (6–8). An interesting
point is that it takes a real number as input, and not only a floating-point
number. We want to compare the result to the ulp of the exact result.

The next big block at lines (10–19) defines a logic function that computes
the average following the algorithm described in Sect. 4.4 (Accurate Sterbenz
Algorithm). In the ACSL syntax, it exactly describes what the program does.
Why is it needed? The reason is that we want to prove that average(x, y) =
average(y, x) and this means two calls of the function. As a generic C function
may have side effects, this cannot be stated as is. Therefore, we had to define
a logic function, that has forcefully no side effects and prove properties on this
logic function called l average. We will also of course prove it is equivalent to
the real C program. Then comes the various properties of the l average function:
symmetry, sign, rounding error, and so on at lines (21–33).

Next comes the specification of the average C function: its equivalence with
the logical function, the rounding error, the fact that the result is between the
minimum and the maximum of x and y, the fact that the sign is correct and
that the result is non-zero when the exact average is big enough. Last is the C
program with an assertion at line (58), that serves as logical cut to ensure the
program is equivalent to its logical counterpart.

Now that the program is fully written, specified and annotated, we have to
prove it. The toolchain generates a bunch of theorems, we have to prove all of
them in order to verify that the program will not fail, and that it will respect
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its specification. The “not fail” point is crucial here as it will require to prove
there is no overflow, without assuming range values for the inputs.

Proof obligations Alt-Ergo Coq Gappa
Nb lines

Previous Coq proof (spec + proof) 7.83 1,432
VC for model lemmas Lemma average sym 5.39 3

Lemma average sym opp 5.45 6
Lemma average props 7.60 125

VC for average ensures default 1. assertion 0.17
2. postcondition 0.61
3. assertion 0.23
4. postcondition 0.42
5. assertion 0.06
6. postcondition 0.04
7. assertion 0.06
8. postcondition 0.06
9. assertion 0.06
10. postcondition 0.06
11. assertion 0.08
12. postcondition 0.99
13. assertion 0.05
14. postcondition 0.06
15. assertion 0.06
16. postcondition 0.06
17. assertion 0.09
18. postcondition 1.21
19. assertion 0.06
20. postcondition 0.51
21. assertion 0.07
22. postcondition 0.54
23. assertion 0.06
24. postcondition 0.04

VC for average safety 1. floating-point overflow 0.00
2. floating-point overflow 0.00
3. floating-point overflow 10.43 8
4. floating-point overflow 0.00
5. floating-point overflow 0.00
6. floating-point overflow 9.41 8
7. floating-point overflow 0.00
8. floating-point overflow 0.00
9. floating-point overflow 0.00
10. floating-point overflow 0.00
11. floating-point overflow 0.00
12. floating-point overflow 0.00
13. floating-point overflow 0.00
14. floating-point overflow 0.00
15. floating-point overflow 0.00
16. floating-point overflow 0.01
17. floating-point overflow 0.00
18. floating-point overflow 0.00
19. floating-point overflow 0.00
20. floating-point overflow 0.00
21. floating-point overflow 0.00
22. floating-point overflow 0.01
23. floating-point overflow 0.00
24. floating-point overflow 0.00
25. floating-point overflow 0.00
26. floating-point overflow 0.00
27. floating-point overflow 9.72 8
28. floating-point overflow 0.00
29. floating-point overflow 0.00
30. floating-point overflow 9.75 8
31. floating-point overflow 0.00
32. floating-point overflow 0.00
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Let us now detail the VC (verification conditions) we have to prove. The list
of theorems is given in the table above. Timings are in seconds, and the number
of lines of Coq proofs is also given. The previous proofs described in Sect. 4 are
given, just to give an order of magnitude of the respective proofs. Then comes the
proofs of what is in the logic annotations: the lemmas. There are three of them
and all are easily proved using the previous algorithm proofs. Two difficulties
arose: the first one is to prove that the ulp defined in the C annotations is the
same as in the Coq formalization. The second difficulty is to prove that the Coq
definition is the same as the logical definition in the annotations. Then comes
the postconditions of the average C function. Given the previous lemmas, they
are straightforward and proved automatically.

Last but not least, are the proofs related to overflow, as this is the only
possible way for this program to fail (for example, there is no pointer access
or division by zero). Near all of them are proved automatically. Indeed, most
operations do not overflow due to the case study of the signs of x and y and this
is handled automatically using Gappa. For a few operations, it is not sufficient
and we need to rely on the fact that min(x, y) ≤ average(x, y) ≤ max(x, y), and
a small Coq proof is then necessary.

5.3 Correct Average

The correct program for computing the average is the following one, with
hypotheses on the value of C.
1 /∗@ requires 0x1p−967 <= C <= 0x1p970 ;

2 @ ensures \ result == \round double (\NearestEven , ( x+y )/2) ;

3 @ ∗/
4

5 double average (double C, double x , double y ) {
6 i f (C <= abs ( x ) )

7 return x/2+y /2 ;

8 else

9 return ( x+y )/2 ;

10 }
This specification is quite simpler. The result is the correct rounding of the
average. Note that the value of C must be between 2−967 and 2970. The 2−967

exactly corresponds to 2Ei+2p+1 in the binary64 format as Ei = −1074 and
p = 53. As for 2970, the reason is overflow (see below).

Proof obligations Alt-Ergo Coq Gappa
Nb lines

Previous Coq proof (spec + proof) 3.82 536
VC for average ensures default 1. postcondition 5.96 20

2. postcondition 2.71 9
VC for average safety 1. floating-point overflow 0.00

2. floating-point overflow 0.00
3. floating-point overflow 0.00
4. floating-point overflow 14.32 64
5. floating-point overflow 0.00

Proofs of behavior are quite simple as they are calls to the previously studied
average1 and average2 functions. The difficult part, as expected, is overflow.
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It is handled automatically by Gappa, except the proof that x + y does not
overflow, provided that |x| < C ≤ 2970. More precisely, even if y is the biggest
floating-point number, if |x| < 2970, then x ⊕ y will not overflow as it will round
to y.

6 Conclusion and Perspectives

The initial goal was to prove a program computing the average without over-
flow. This has first been achieved using Sterbenz’s hints. This program has been
successfully written, specified and proved. All the wanted properties have been
proved, and a very good error bound on the rounding error is given. Even if the
program is tricky, the proofs are not that long, even if some are tricky. Then
another program is presented, which is both new, simpler to write and to prove.
It is more efficient and more accurate. It handles all overflow and underflow
cases, and gives the most accurate possible result: a correct rounding of the
exact average.

The usual method to handle exceptional cases is scaling. This means com-
puting the order of magnitude of the inputs (for example their exponent), and
multiplying by a chosen power of the radix before and after the computation, in
order to prevent any underflow or overflow during the computation. In particu-
lar, Sterbenz recommends scaling on this example to prevent underflow. We have
proved this scaling to be useless, which causes a much more efficient program as
scaling is costly.

An interesting point is that the overhead to prove the program, compared to
the algorithm proofs, is rather low. When the program is specified (which was a
difficult task), the proof is either automatic, or simple calls to the previous proofs.
Surprisingly, the overflow proofs were not difficult: they were either automatic
using Gappa or easily deduced from previous properties. The only difficult one
was explained in the previous Section. We did not expect the other 36 theorems
to be so easily handled. This case study shows that the difficult point about
overflow is not proving it does not happen, but finding the algorithms such
that it does not happen. This example is among Sterbenz’s “carefully written
programs”, and this is the reason why it behaves as expected. We did not expect
this well-behavior to extend to the overflow proofs.

An unexpected difficulty was in the formalizations that describe the average
computation of the accurate program. There are three of them:

– the Coq formalization, written directly in Coq and given in Sect. 4. It was
written to be short and easily used in the formal proof assistant.

– the l average logic function, written in the ACSL syntax in the annotations
of the C program. It was written to ensure that this function is free from
side effects, so that we can state that l average(x,y) == l average (y,x). Its
translation in Coq is much longer and much more tedious to use.

– the average C function, written in the C program. Its translation in Coq
depends upon the path taken in the program and its definition is based on
floating-point operation postconditions. On a typical goal, the definition of
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the result of the C function average relies on about 20 hypotheses and 40
lines, which makes it difficult to read.

In the proofs, we handle these three different formalizations. They are very
near, so the equivalence proofs are straightforward, but rather long and cumber-
some.

As for the perspectives, the first one is to consider radix 10. Unfortunately,
the same properties do not hold with the same algorithm. More precisely, the
accurate program can produce a result smaller than the minimum of the val-
ues when using radix 10 [17] and the correct program is not correct anymore.
Therefore, other algorithms have to be created, so that they could fulfill all the
requirements, without overflowing. Correct rounding may probably be achieved
using odd rounding [6], but it will probably be much more costly than in radix 2.

Another perspective is how to handle overflow in everyday programs.
A method for the formal verification is to put preconditions that give ranges
on the inputs and let Gappa prove the overflow requirements. This method is
sometimes not optimal, but it works very well with satisfactory results. But on
basic blocks from libraries, such as Two-Sum or Fast-Two-Sum, we want the best
possible results. It means we want to have the tightest precondition, in order to
cover all cases that do not fail. And this requires additional work.

Unfortunately, programs are often not carefully written with overflow in
mind. There are overflowing examples in an overwhelming proportion of them.
Our work is therefore either to give precise conditions for them to work correctly,
or to rewrite them.
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Abstract. Automation of cloud system operations, for example, which
set up, monitor, and back up such systems, is called Cloud Orchestra-
tion. A standard specification language, TOSCA (Topology and Orches-
tration Specification for Cloud Applications), has been proposed to define
topologies of cloud applications. A topology is a static structure of
resources, such as VMs and software components, and a TOSCA con-
forming tool is expected to automate system operations based on the
topologies. The current TOSCA standard, however, does not yet explic-
itly provide any way to formally define behavior of a topology (how to
automate a topology). This paper proposes how to specify behavior of
TOSCA topologies as state transition systems and to verify that orches-
trated operations always successfully complete by proving the transition
systems enjoys leads-to (a class of liveness) properties. We report on a
case study in which we have specified and verified a setup operation to
demonstrate the feasibility and usefulness of the proposed solution.

1 Introduction

Cloud computing has recently emerged as an important infrastructure support-
ing many aspects of human activities. In former days, it took several months to
make system infrastructure resources (computer, network, storage, etc.) avail-
able, while in these days, it takes only several minutes to do so. This situation
accelerates the whole life cycle of system usage where much flexible automation
is required for system operations. Correctness of automated operations of cloud
systems is much more crucial than that of the former systems because cloud sys-
tems serve to much more people in much longer time than the former systems
used mainly inside of companies.

A system on cloud consists of many “parts,” such as virtual machines (VMs),
storages, and network services as well as software packages, configuration files,
and user accounts in VMs. These parts are called resources and the management
of cloud resources is called resource orchestration, or cloud orchestration.
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The most popular cloud orchestration tool is CloudFormation [1] provided
as a service by Amazon Web Services (AWS) and a compatible open source
tool is being developed as OpenStack Heat [10]. CloudFormation can manage
resources provided by the IaaS platform of AWS, such as VMs, block storages
(EBS), and load balancers (ELB). CloudFormation automatically sets up these
resources according to declaratively defined dependencies of resources. However,
CloudFormation does not directly manage resources inside VMs and instead
it allows to specify any types of scripts for initially setting up VMs, such as
installing Apache Httpd package, creating configuration files, copying HTML
contents, and activating an Httpd component. Shell command scripts were com-
monly used for this layer of management and recently several open source tools
become popular such as Puppet [11], Chef [4], and Ansible [2].

Currently people have to learn and use these several kinds of tools in actual
situations, which results in much elaboration to guarantee its correctness. In an
actual commercial experience of the first author, more than 50 % of troubles are
caused by defects in those dependency definitions and scripts.

While orchestration tools are specialized into two management layers on
IaaS and inside VMs, there is a unified standard specification language, OASIS
TOSCA [7] that can be used to describe the structure of any type of resources.
The resource structure is called a topology and a TOSCA tool is expected to auto-
mate system operations based on resource dependencies declaratively defined
in topologies. Currently, however, there is no practical implementation of declar-
ative specifications of TOSCA because it has not yet explicitly provided any way
to specify behavior of a topology, i.e. how to automate a topology.

The contributions of this paper are as follows; (1) modeling and specifying
automation of TOSCA topologies as state transition systems in CafeOBJ [3],
an algebraic specification and verification system, and (2) verifying that the
specification enjoys a desired property of surely reaching a goal state.

The rest of the paper is organized as follows. Section 2 briefly introduces OASIS
TOSCA. Section 3 describes a model of the TOSCA topology and automation.
Section 4 describes how we specify the model in CafeOBJ. Section 5 presents proof
scores that verify a liveness property of a setup operation as an example. Section 6
explains related work and future issues.

2 TOSCA: Topology and Orchestration Specification for
Cloud Application

TOSCA is a language to define a service template for a cloud application.
A service template consists of a topology template and optionally a set of plans.
A topology template defines the resource structure of a cloud application. Note
that a topology template can be parameterized to give actual environment para-
meters such as IP addresses. It is the reason why named as “template” and in
this paper we simply say a topology for the sake of brevity. A plan is an imper-
ative definition of a system operation of the cloud application, such as a setup
plan, written by a standard process modeling language, such as BPMN.
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In TOSCA, a resource is called a node that has several capabilities and require-
ments. A topology consists of a set of nodes and a set of relationships of nodes.
A capability is a function that the node provides to another node, while a require-
ment is a function that the node needs to be provided by another node. A rela-
tionship relates a requirement of a source node to a capability of a target node.
Note that nodes and relationships in a topology template can also be parame-
terized, thus the exact terms of TOSCA are node templates and relationship
templates. Figure 1 shows a typical example of topology that consists of nine
nodes and nine relationships. White circles represent capabilities and black ones
are requirements.

Fig. 1. An example of TOSCA topology

The current version of TOSCA is an XML-based language. The following is
a part of the topology template of Fig. 1.

<TopologyTemplate>
<NodeTemplate id="VMApache"name="VM for Apache"

type="VirtualMachine">
<Capabilities>

<Capability id="VMApacheOS"name="OS"
type="OperatingSystemContainerCapability"/>

</Capabilities> </NodeTemplate>
<NodeTemplate id="OSApache"name="OS for Apache"

type="OperatingSystem">
<Requirements>

<Requirement id="OSApacheContainer"name="Container"
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type="OperatingSystemContainerRequirement"/>
</Requirements>
<Capabilities>

<Capability id="OsApacheSoftware"name="Software"
type="SoftwareContainerCapability"/>

</Capabilities> </NodeTemplate>
<RelationshipTemplate id="OSApacheHostedOnVMApache"

name="hosted on"type="HostedOn">
<SourceElement ref="OSApacheContainer"/>
<TargetElement ref="VMApacheOS"/>

</RelationshipTemplate>
...
</TopologyTemplate>

Each node, relationship, capability, and requirement has a type. In this figure,
node types are Virtual Machine (VM), Operating System (OS), Middleware
(MW), and Software Component (SC) and relationship types are HostedOn,
DependsOn, and ConnectsTo. Types are main functionalities of TOSCA that
enable reusability of topology descriptions.

In a typical scenario, a type architect defines and provides several types of
those elements and an application architect uses them to define a topology of a
cloud application. The type architect also defines operations of node types, such
as creating, starting, stopping, or deleting nodes, and of relationship types, such
as attaching relationships. A system operation of a cloud application is imple-
mented as an invocation sequence of the type operations, which can be decided
in two kinds of manners. One is an imperative manner in which the applica-
tion architect uses a process modeling language to define a plan that explicitly
invokes these type operations. Another is a declarative one in which the appli-
cation architect only defines a topology and a TOSCA tool will automatically
invoke appropriate type operations based on the defined topology. Naturally, the
declarative manner is a main target of OASIS TOSCA because it promotes more
abstract and reusable descriptions of topologies.

In this paper, behavior of topologies means when and which type operations
should be invoked in automation. It is important to notice that behavior of a
topology depends on types of included nodes and relationships. We also say
behavior of a type to mean that the conditions and results of invoking its type
operations, which is defined by a type architect. Usually, different types of nodes
are provided by different vendors and so specified by different type architects.
An application architect is responsible for behavior of a topology whereas type
architects are responsible for behavior of their defined types.

Currently there are no practical implementations of the declarative manner
of TOSCA and one of the reasons is that no standard set of type operations
of nodes or relationships are defined and there is no way for type architects to
define behavior of their own types.
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3 Model of Automation of Topologies

We model a topology of a cloud application as a set of four kinds of objects
corresponding to the four main kinds of elements of a topology; nodes, relation-
ships, capabilities, and requirements. Each object has a type, an identifier, a
(local) state and may have links to other objects. There is an additional object,
a message pool, to represent messaging between resources inside of different VMs
because they cannot communicate directly. The message pool is simply a bag of
messages, which abstracts implementations of messaging.

A type of nodes defines invocation rules of its operations. Each rule spec-
ifies when an operation can be invoked and how it changes the state of the
node. A type of relationships also defines invocation rules of its operations. We
assume that a state of a relationship is a pair of the states of its capability and
requirement in this paper for the sake of simplicity. Thereby, an operation of a
relationship type changes the state of its capability or requirement. As described
in Sect. 2, type operations and their invocation rules should be defined by type
architects. When an application architect defines a topology, a set of all type
operations and a set of all invocation rules of referred node/relationship types
collectively define behavior of the topology.

Let us use a typical example where four node types and three relationship
types in Fig. 1 participate in automation of a setup operation. In this example,
we assume that behavior of four node types is the same focusing on when a node
is created and started because they are the most essential for setup operations.

On the other hand, behavior of relationship types usually varies according
to their nature; they may be in the IaaS layer or in the inside of VM layer,
“local” or “remote”, “immediate” or “await”. Three relationship types of this
example typically cover the variation. A HostedOn relationship is one between
resources in the IaaS layer. It is “immediate”, i.e. it can be established as soon as
the target node is created. Each of DependsOn and ConnectsTo relationships is
between resources inside of VMs and is “await”, i.e. it should wait for the target
node to be started. A DependsOn relationship is “local” in the same VM, while
a ConnectsTo is “remote” to a different VM and should use some messages to
notice the states of its capability to its requirement. We also assume that types
of capabilities and requirements are the same as relationships that link them in
this example for the sake of simplicity.

Behavior of these types is depicted in Fig. 2. A solid arrow represents a state
transition of each object and a dashed arrow represents an invocation of a type
operation or a message sending.

Initial States: Every node is initially in a state named as initial, every capability
of the node is closed, and every requirement is unbound.

Invocation Rule of Node Type Operations:

– create operation can be invoked if all of the HostedOn requirements of the
node become ready and changes the state from initial to created.

– start operation can be invoked if all of the requirements become ready and
changes the state from created to started.
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Fig. 2. Typical behavior of relationship types

Invocation Rule of Operations of HostedOn Relationship Type:

– capavailable operation can be invoked if the target node is already created,
i.e. created or started and changes the state of its capability from closed to
available.

– reqready operation can be invoked if its capability is available and changes
the state of the requirement from unbound to ready.

Invocation Rule of Operations DependsOn Relationship Type:

– capopen operation can be invoked if the target node is already created and
changes the state of its capability from closed to open.

– capavailable operation can be invoked if the target node is started and changes
the state of its capability from open to available.

– reqwaiting operation can be invoked if its capability is already activated, i.e.
open or available, and the source node is created. It changes the state of its
requirement from unbound to waiting.

– reqready operation can be invoked if its capability is available and changes
the state of its requirement from waiting to ready.

Invocation Rule Operations of ConnectsTo Relationship Type:

– capopen operation can be invoked if the target node is already created. It
changes the state of its capability from closed to open and also issues an open
message of the capability to the message pool.
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– capavailable operation can be invoked if the target node is started. It changes
the state of its capability from open to available and also issues an available
message of the capability to the message pool.

– reqwaiting operation can be invoked if it finds an open message of its capa-
bility and the source node is created. It changes the state of its requirement
from unbound to waiting.

– reqready operation can be invoked if it finds an available message of its capa-
bility and changes the state of its requirement from waiting to ready.

4 CafeOBJ Specification of Model

CafeOBJ [3] is a formal specification language that inherits many advanced func-
tionalities from OBJ [8] and OBJ3 [9] algebraic specification language. CafeOBJ
specifications are executable by regarding equations and transition rules in them
as left-to-right rewrite rules, and this executability can be used for interactive
theorem proving.

Let l and r be terms of the same sort including a set of variables X, and let c
be a term of sort Bool, then (∀X)(l=rifc) is called a (conditional) equation. Let
State be a sort of states, l and r be terms of sort State including a set of variables
X, and let c be a term of sort Bool, then (∀X)(l → r if c) is called a transition
rule. Let St be an sorted quotient term algebra of State by equality, and let Tr
be a set of transitions on the states where Tr ⊆ St × St. A transition sequence
is a sequence of states (S0, S1, ...) where each adjacent pair (Si, Si+1) ∈ Tr.

A model of automation of a topology is specified as a transition system in
CafeOBJ. A node is represented as a term node(type,idND,state) whose sort is
Node where idND is its identifier. Similarly, a capability as cap(type,idCP,state,

idND), a requirement as req(type,idRQ,state,idND), and a relationship as
rel(type,idRL,idCP,idRQ) where idCP, idRQ, and idRL are identifiers of the capa-
bility, requirement, and relationship, respectively. In order to specify the whole
application, let a global state S be a tuple < nodes,caps,reqs,rels,mp > whose
sort is State where nodes, caps, reqs, and rels are sets of nodes, capabilities,
requirements, and relationships respectively and mp is a message pool.

The model described in the previous section is specified by twelve transition
rules two of which are for node operations, two are for operations of HostedOn
relationship, and eight are for four operations of two relationship types. The
followings show three of them for create and start operation of nodes (R01, R02)
and reqready operation of ConnectsTo relationship (R12):

-- Create an initial node if all of its hostedOn requirements are ready.

ctrans [R01]:

< (node(TND,IDND,initial) SetND), SetCP, SetRQ, SetRL, MP >

=> < (node(TND,IDND,created) SetND), SetCP, SetRQ, SetRL, MP >

if allRQOfNDInStates(filterRQ(SetRQ,hostedOn),IDND,ready).

-- Start a created node if all of its requirements are ready.

ctrans [R02]:

< (node(TND,IDND,created) SetND), SetCP, SetRQ, SetRL, MP >
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=> < (node(TND,IDND,started) SetND), SetCP, SetRQ, SetRL, MP >

if allRQOfNDInStates(SetRQ,IDND,ready).

-- Let a waiting ConnectsTo requirement be ready

-- if there is an available message of the corresponding capability.

trans [R12]:

< SetND, SetCP,

(req(connectsTo,IDRQ,waiting,IDND) SetRQ),

(rel(connectsTo,IDRL,IDCP,IDRQ) SetRL),

(avMsg(IDCP) MP) >

=> < SetND, SetCP,

(req(connectsTo,IDRQ,ready, IDND) SetRQ),

(rel(connectsTo,IDRL,IDCP,IDRQ) SetRL), MP >.

Here, all terms staring with capital letters are pattern-matching variables. Since
a blank character represents an associative, commutative, and idempotent oper-
ator to construct sets with the identity, (ND1 ND2 ND3) represents a set of nodes
and (ND SetND) also represents a set of nodes when NDn are nodes and SetND is
a set of nodes. Predicate allRQOfNDInStates(SetRQ,IDND,ready) checks whether
every requirement in SetRQ is ready if the identifier of its node is IDND. filterRQ
(SetRQ,hostedOn) is a subset of SetRQ which elements are HostedOn require-
ments. Note that allRQOfNDInStates(SetRQ,IDND,ready) always holds when node
IDND has no requirements in SetRQ. (avMsg(IDCP) MP) means the message pool
includes at least one available message of capability IDCP. All CafeOBJ codes of
this example can be downloaded at http://goo.gl/s9fJXq.

5 Verification of Setup Operation

A typical property of an automated system setup operation, which we want
to verify, is that the operation surely brings a cloud application to the state
where all of its component nodes are started. We say “surely” to mean total
reachability, i.e. any transition sequence from any initial state always reaches
some final state. Total reachability is one of the most important properties of
practical automation of cloud applications.

The initial and final states are represented as predicates init(S) and final(S)
that can be specified by equations in CafeOBJ as follows.

eq init(< SetND,SetCP,SetRQ,SetRL,MP >)

= not (SetND = empND) and wfs(< SetND,SetCP,SetRQ,SetRL,MP >) and

(MP = empMsg) and allNDInStates(SetND,initial) and

allCPInStates(SetCP,closed) and allRQInStates(SetRQ,unbound).

eq wfs(< SetND,SetCP,SetRQ,SetRL,MP >)

= allCPHaveND(SetCP,SetND) and allRQHaveND(SetRQ,SetND) and

allRLHaveCP(SetRL,SetCP) and allRLHaveRQ(SetRL,SetRQ) and

allRQHaveRL(SetRQ,SetRL) and allRLNotInSameND(SetRL,SetCP,SetRQ).

eq final(< SetND,SetCP,SetRQ,SetRL,MP >) = allNDInStates(SetND,started).

...

eq allRLNotInSameND(empRL,SetCP,SetRQ) = true.

http://goo.gl/s9fJXq
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eq allRLNotInSameND((RL SetRL),SetCP,SetRQ)

= (node(getCapability(SetCP,RL))

= node(getRequirement(SetRQ,RL))) = false

and allRLNotInSameND(SetRL,SetCP,SetRQ).

Here, we omitted definitions of several predicates; allNDInStates(SetND, initial)

means that every node in SetND is initial, allCPHaveND(SetCP,SetND) means that
every capability in SetCP has its node in SetND, and so on. Note that predicate
wfs (well-formed state) specifies conditions that should hold in not only initial
states but also any reachable states.

When automation is modeled as a transition system, total reachability is
formalized as (init leads-to final) which means that any transition sequence
from any initial state reaches some final state no matter what possible transition
sequence is taken. Let cont be a state predicate representing whether the transi-
tion system continues to transit, inv be a conjunction of some state predicates,
and m be a natural number function of a global state. Then the following six
conditions are sufficient for proving that (init leads-to final) holds [6].

(1) (∀s ∈ St) (init(s) implies cont(s))
(2) (∀(s, s′) ∈ Tr)

((inv(s) and cont(s) and (not final(s))) implies (cont(s′) or final(s′)))
(3) (∀(s, s′) ∈ Tr)

((inv(s) and cont(s) and (not final(s))) implies (m(s) > m(s′)))
(4) (∀s ∈ St)

((inv(s) and (cont(s) or final(s))and (m(s) = 0)) implies final(s))
(5) (∀s ∈ St) (init(s) implies inv(s))
(6) (∀(s, s′) ∈ Tr) (inv(s) implies inv(s′))

When condition (5) and (6) hold, each state predicate included in inv is called
an invariant. And m is called a state measuring function.

Condition (1) means an initial state should be a continuing state, i.e. it should
start transitions. Conditions (2) means transitions continue until final(s′) holds.
Condition (3) implies that m(s) keeps to decrease properly while final(s) does
not hold, but m(s) is a natural number and should stop to decrease in finite steps,
and should get to the state s′ with ((cont(s′) or final(s′)) and (m(s′) = 0)).
Condition (4) asserts that it implies final(s′).

CafeOBJ provides a built-in search predicate (s =(*,1)=+ s′) which returns
true for state s if there exists state s′ ∈ St such that (s, s′) ∈ Tr. Since cont(s)
means that state s has at least one next state, it can be specified as follows.

eq cont(S) = (S =(*,1)=>+ S’).

As to state measuring function m(s), we should find a natural number func-
tion that properly decreases in transitions. For this purpose, we intentionally
designed the transition system where every transition rule changes local states
of at least one objects. Function m can be the weighted sum of counting local
states of three sorts of objects as follows.
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eq m(< SetND,SetCP,SetRQ,SetRL,MP >)

= (( (#NodeInStates(initial,SetND) * 2)

+ #NodeInStates(created,SetND))

+ ( (#CapabilityInStates(closed,SetCP) * 2)

+ #CapabilityInStates(open,SetCP)))

+ ( (#RequirementInStates(unbound,SetRQ) * 2)

+ #RequirementInStates(waiting,SetRQ)).

For example, when rule R01 is applied, (#NodeInStates(initial,SetND) * 2)

decreases by two while #NodeInStates(created,SetND) increases by one and thus
m(s′) = m(s) − 1 holds. When m(s) becomes 0, all nodes are not initial or
created, i.e. are started which means the state is final. Defining m(s) as above
makes conditions (3) and (4) naturally hold.

The rest of this section presents proofs for these conditions. Although it
is an interactive process, it is based on very systematic way of thinking and
achieves structural and deep understanding of models, which is required in order
to develop trusted systems.

5.1 Proof Score for Condition (1)

One of interesting features of CafeOBJ is that theorems to be proved and their
proofs are written in the same executable specification language. A proof written
in CafeOBJ is called a proof score.

The proof score for condition (1) begins with defining a theorem to be proved,
i.e. initcont(S).

eq initcont(S) = init(S) implies cont(S).

The most general case we can consider is when state S is < sND,sCP,sRQ,sRL,mp >
where sND is an arbitrary constant representing a set of nodes and similarly so sCP,
sRQ, sRL, and mp. But this case is too general for CafeOBJ to determine whether
initcont(S) does or does not hold.

Thinking through meanings of the model, we know that rule R01 is firstly
applicable to an initial state. R01 can be applied when there is at least one
initial node and all of its HostedOn requirements are ready. The proof score
is hence split into five cases; there is no node, at least one created node, one
started node, one initial node whose HostedOn requirements are ready, and
one initial node one of whose HostedOn requirements is not ready. Let tnd be
an arbitrary constant representing any type of node and let sND’ be any set of
nodes, then the proof score for the first four cases is as follows:

-- Case 1: There is no node.

eq sND = empND .

reduce initcont(< sND, sCP, sRQ, sRL, mp >).

--> to be true because init(S) does not hold.

...

-- Case 2: There is at least one created node.

eq sND = (node(tnd,idND,created) sND’).

reduce initcont(< sND, sCP, sRQ, sRL, mp >).
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--> to be true because init(S) does not hold.

...

-- Case 3: There is at least one started node.

eq sND = (node(tnd,idND,started) sND’).

reduce initcont(< sND, sCP, sRQ, sRL, mp >).

--> to be true because init(S) does not hold.

...

-- Case 4: There is at least one initial node

-- all of whose HostedOn requirements are ready.

eq allRQOfNDInStates(filterRQ(sRQ,hostedOn),idND,ready) = true.

eq sND = (node(tnd,idND,initial) sND’).

reduce initcont(< sND, sCP, sRQ, sRL, mp >).

--> to be true because cont(S) holds.

5.2 Cyclic Dependency

The fifth case requires more consideration.
When the initial node has one requirement that is not ready, there should

be another node that has the corresponding capability. According to the state
of such node, this case is split into four more cases. However, if at least one of
its requirements is not ready, the case falls into a cyclic situation and the case
splitting becomes endless.

Thinking through meanings of the model, we know that dependency of nodes
should not be cyclic. We need to specify that a global state does not include any
cyclic dependency, which is represented by state predicate noCycleInState(S)
specified as follows:

eq noCycleInState(S) = noCycle(getAllNodeInState(S),empND,S).

eq noCycle(empND,V,S) = true.

eq noCycle((ND SetND),V,S)

= (not (state(ND) = initial) or

if ND \in V then false else noCycle(DDS(ND,S),(ND V),S) fi)

and noCycle(SetND,V,S).

Here, DDS(ND,S), Directly Depending Set of node ND in global state S, is a set
of nodes whose local states are initial and on which ND is hosted. For exam-
ple, let S be an initial state of the topology of Fig. 1, then DDS(CRMApp,S) =

(ApacheWebServer) whereas DDS(VMApache,S) = empND. Predicate noCycle(SetND,

V,S) traverses all transitive closures of DDS of all nodes in SetND and checks
whether it does not reach some already visited node in V. In order to ensure that
the acyclic property holds for any reachable states, noCycleInState(S) should
be included in init(S) and also in inv(S) and condition (6) should be proved.

Theorem: For any node N in state S, if noCycleInState(S) holds and the local
state of N is initial, then there exists node N’ in S such that the local state of N’
is also initial and DDS(N’,S) is empty.

Proof: If there is no such N’ then noCycle will reach some already visited node
because it traverses finite number of nodes. �
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Let us return to the proof score of initcont(S). When there is an initial node
in state S and noCycleInState(S) holds, the theorem above allows us to assume
that DDS of the node is empty. When the node has at least one requirement that
is not ready, there is another node that has the corresponding capability and
there are three more cases as follows:

-- When there is at least one initial node whose DDS is empty,

-- and at least one of whose HostedOn requirements is not ready,

-- there should be another node that has the corresponding capability.

eq sND = (node(tnd,idND,initial) sND’).

eq sRQ = (req(hostedOn,idRQ,srq,idND) sRQ’).

eq (srq \in (unbound waiting)) = true.

eq sRL = (rel(hostedOn,idRL,idCP,idRQ) sRL’).

eq sCP = (cap(hostedOn,idCP,scp,idND1) sCP’).

-- Case 5: The corresponding node is created.

eq sND’ = (node(tnd’,idND1,created) sND’’).

reduce initcont(< sND, sCP, sRQ, sRL, mp >).

--> to be true because init(S) does not hold.

...

-- Case 6: The corresponding node is started.

eq sND’ = (node(tnd’,idND1,started) sND’’).

reduce initcont(< sND, sCP, sRQ, sRL, mp >).

--> to be true because init(S) does not hold.

...

-- Case 7: The corresponding node is initial.

eq sND’ = (node(tnd’,idND1,initial) sND’’).

reduce (DDS(node(tnd,idND,initial),< sND,sCP,sRQ,sRL,mp >) = empND).

--> to be false, which is a contradiction,

--> i.e. this is not a reachable state.

Thereby, initcont(S) holds for all cases that are collaboratively exhaustive.
Note that we do not explain several irrelevant cases such as inconsistent types,
no corresponding capability, and relationship between the same node, because
in such cases wfs(S) does not hold and thus initcont(S) holds.

5.3 Proof Score for Condition (2)

The proof score for condition (2) begins with defining a theorem to be proved,
i.e. contcont.

eq contcont(S,SS,CC)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC then

(inv(S) and cont(S) and not final(S)

implies cont(SS) or final(SS))) == true){ ... }).

This uses an idiom of a built-in search predicate, =(*,1)=>+ if suchThat.
Given a global state S, contcont(S,SS,CC) searches all possible transitions from
S while binding variable SS to each next state and checking condition (2). It
holds if and only if condition (2) holds for all such next states.
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The most general case, S = < sND,sCP,sRQ,sRL,mp >, is too general because
there is no rule to match with it. Thus the proof score should be split into twelve
cases in each of which state S is as specific as each transition rule matches with it.
This means that condition (2) (also (3) and (6)) can be proved rule by rule. For
example, in the case of rule R01, state S should be as specific as its left-hand-side,
< (node(tnd,idND,initial) sND),sCP,sRQ,sRL,mp >.

This situation is very instructive for us because we can find that the next
state includes a created node and can expect that rule R02 will be applicable.
The proof score of rule R01 is split into three cases; (1) the condition of R01 does
not hold, (2) it holds and the condition of R02 holds, and (3) it does not hold.
The proof score of the first two cases is as follows:

-- Case 1: The condition of R01 does not hold for S.

eq allRQOfNDInStates(filterRQ(sRQ,hostedOn),idND,ready) = false.

reduce contcont(< (node(tnd,idND,initial) sND),sCP,sRQ,sRL,mp >,SS,CC).

--> to be true because cont(S) does not hold.

...

-- Case 2: The condition of R01 holds for S and

-- the condition of R02 holds for SS.

eq allRQOfNDInStates(filterRQ(sRQ,hostedOn),idND,ready) = true.

eq allRQOfNDInStates(sRQ,idND,ready) = true.

reduce contcont(< (node(tnd,idND,initial) sND),sCP,sRQ,sRL,mp >,SS,CC).

--> to be true because cont(SS) holds.

The last case means that the initial node in S becomes created in SS but
at least one of its requirements is not ready (and is not HostedOn). There are
thirty-six such cases, (2 relationship types, not HostedOn) × (2 requirement
states, not ready) × (3 states of the corresponding capability) × (3 states of the
corresponding node). Half of them are not reachable states because reqwaiting
operation is never invoked when the source node is initial and thus the require-
ment should not be waiting in S. This property is required to be proved as an
invariant. In each of other sixteen cases, one of twelve transition rules can be
applicable and so cont(SS) holds. For example, if a DependsOn requirement is
unbound and the corresponding capability is open, then reqwaiting operation
can be invoked in SS because the source node becomes created.

Remaining two cases are where a DependsOn or ConnectsTo requirement is
unbound, the corresponding capability is closed, and its node is initial. Again
we use the cyclic dependency theorem to assume that there is initial node X

where DDS(X,S) is empty. Then, we repeat similar systematic case splitting as
describe above, but this time we can reject another initial node.

5.4 Proof Scores for Condition (3), (4), (5) and (6)

As mentioned above, condition (3) can also be proved rule by rule. The following
is a piece of the proof score for rule R01, in which a theorem of natural numbers
is required:
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eq mesmes(S,SS,CC)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC then

(inv(S) and cont(S) and not final(S)

implies m(S) > m(SS))) == true){ ... }).

-- A theorem of natural numbers

-- s(N) is a successor of N, i.e. s(N) = N + 1.

eq (s(N) > N) = true.

...

-- Case for R01:

reduce mesmes(< (node(tnd,idND,initial) sND),sCP,sRQ,sRL,mp >,SS,CC).

For condition (4), we need a lemma such that if the number of created or
initial nodes is zero, then all nodes are started. This lemma can be proved using
mathematical induction about a set of nodes. The following is a part of the proof
score for condition (4), where it also requires another natural number theorem.

-- Another theorem of natural numbers

eq (N1 + N2 = 0) = (N1 = 0) and (N2 = 0).

eq lemma(SetND)

= ((#NodeInStates(created,SetND) = 0) and

#NodeInStates(initial,SetND) = 0)

implies allNDInStates(SetND,started).

reduce lemma(sND) and (m(< sND,sCP,sRQ,sRL,mp >) = 0)

implies final(< sND,sCP,sRQ,sRL,mp >).

In order to prove conditions (1) and (2), we need more than ten invariants
including noCycleInState(S). Theorems to be proved are defined as follows:

eq initinv(S) = init(S) implies inv(S).

eq invinv(S,SS,CC)

= not (S =(*,1)=>+ SS if CC suchThat

not ((CC then

(inv(S) implies inv(SS))) == true){ ... }).

Similarly as described above, we can prove them using systematic case splitting
and mathematical induction.

6 Related Work and Conclusion

Related Work

OASIS TOSCA TC currently discusses the next version (v1.1) to define a stan-
dard set of nodes, relationships, and operations. It is planned to use state
machines to describe behavior of the standard operations, which is a similar
approach as ours. However, the usage is limited to clarify the descriptions of the
standard and the way for type architects to define behavior of their own types
is out of the scope of standardization. We provide the formal specification of
behavior of types and show that it can be used for verification.
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CloudFormation and OpenStack Heat can manage resources on the IaaS
layer, however, they support to manage dependencies between resources in VMs.
For example, suppose a software component(SC1) on a VM(VM1) can be acti-
vated only after waiting for activation of another component(SC2) on another
VM(VM2), CloudFormation requires a pair of special purpose resources, namely,
WaitCondition and WaitConditionHandle. VM1 should be declared to depend on
the WaitCondition resource. The corresponding WaitConditionHandle resource
provides a URL that should be passed to the script for initializing VM2. When
SC2 is successfully activated, the script sends a success signal to the URL, which
causes the WaitCondition become active and then creation of dependent VM1

starts. This style of management includes several problems. Firstly, it forces
complicated and troublesome coding of operations. Secondly, although only SC1

should wait for SC2, all other components on VM1 are also forced to wait.
This causes unnecessary slowdown of system creation. Thirdly, it tends to make
cyclic dependencies. Suppose SC2 should also wait for another component SC3

on VM1. Although the dependency among components, SC1, SC2, and SC3 is
acyclic, the dependency between VMs is cyclic. This may be solved by splitting
VM1 to two VMs, one is for SC1 and another is for SC3, but it causes increased
cost and delayed creation. Our formalization can manage any types of resources
and solve this kind of problems in a smarter way because it can manage finer
grained dependencies, which is shown as invocation rules described in Sect. 3.

Salaün, G., et al. [5,12,13] designed a system setup protocol and demon-
strated to verify a liveness property of the protocol using their model checking
method. Although their setup protocol is essentially the same as behavior of
our example topology in this paper, there are two main differences. Firstly,
their protocol is based on a specific implementation which challenges distrib-
uted management of cloud resources while current popular implementations,
e.g. CloudFormation, implement centralized management. On the other hand,
our model is rather abstract without assuming distributed or centralized imple-
mentations. Secondly, they used model checking while we use theorem proving.
They checked about 150 different models of system including from four to fifteen
components in which from 1.4 thousand to 1.4 million transitions are generated
and checked. They found a bug of their specification because checked models
fortunately included error cases. The model checking method can verify correct-
ness of checked models and so they should include all boundary cases. In our
formalization, the specification itself is verified by interactive theorem proving in
which all boundary cases are necessary in consideration in a systematic way. It
achieves structural and deep understanding that is required to develop trusted
systems.

Future Issues

TOSCA supports type inheritance of any elements such as nodes, relationships,
capabilities, and requirements. When a new type is defined and inherits a part
of behavior from some existing type, it is desired that the corresponding part of
the existing proof can be reused and only extended part of specification needs to
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be verified. While transition rules shown in this paper directly use type literals
such as hostedOn or connectsTo, it is required to introduce some mechanism to
use the rules for inherited types. The next version of TOSCA will define a set of
standard types and we will introduce some inheritance mechanism to reuse proof
scores of the standard types, which will significantly reduce efforts of proving
behavior of topologies using inherited types.

The current version of TOSCA does not manage operation failures and it
focuses on declaratively defining expected configurations of cloud applications.
In many of failure cases, it is desired to roll back to the initial states, which
does not depend on correctness of topologies but on correctness of implemen-
tation of automation tools. A possible extension of TOSCA may be to define
alternative configurations in failure cases, which we think we can easily extend
our formalization to handle.

Conclusion

TOSCA topologies and automation are modeled, formalized, and verified with
theorem proving. The specification and verification are demonstrated to prove
total reachability of a typical set of relationship types. The proved specification is
in a high abstraction level without depending on implementations of distributed
or centralized managements, however, it provides a smarter solution than that
of the most popular implementation. A related work proved similar problem
by their model checking method, in which many of finite-state systems were
checked. We use an interactive theorem proving method and verify applications
of unlimited number of states in a significantly systematic way. Several general
predicates and theorems are presented to be usable for common problems such
as Cyclic Dependency.
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Abstract. This paper focuses on the consistency analysis of specifica-
tion rules expressing relationships between input and expected output
of systems. We identified the link between Minimal Inconsistent Sets
(MISes) of rules and Minimal Unsatisfiable Subsets (MUSes) of con-
straints. For practical consistency verification of rules, we developed a
novel algorithm using SMT solvers for fast enumeration of MUSes. We
evaluated the algorithm using publicly available benchmarks. Finally,
we used the approach to verify the consistency of specifications rules
extracted from real-world case studies.

Keywords: Specification rules · Consistency verification · Minimal
Inconsistent Sets (MISes) · Minimal Unsatisfiable Subsets (MUSes) ·
SMTs

1 Introduction

In financial and public sectors, regulations and policies are often specified in
terms of rules describing relationships between input and expected output. As an
example, consider a rewarding policy for a vehicle insurance company. Beside the
normal contracts, the company offers two special rewards in the form of discounts
(in percentages) for the insurance and shopping coupons. The availability of the
rewards to customers depends on the duration (number of years) of the contracts,
their online account status (whether or not they already have an online account),
and their VIP membership status. The policies on how rewards are offered to a
customer are as follows.

(R1) If the customer has an online account then either a discount of 3 % or a
100$ coupon is offered.

(R2) If the customer is a VIP then a discount of at least 5 % and a coupon
valued between 50$ and 100$ are offered.

(R3) If the customer is not a VIP and the contract duration is less than 2 years
then either a discount of less than 5 % or a coupon valued between 30$ and
50$ is offered.

(R4) If the customer is a VIP and the duration of the contract is at least 2 years
then a discount of at least 7 % and a 50$ coupon are offered.

c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 50–66, 2015.
DOI: 10.1007/978-3-319-25423-4 4
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Each rule comprises a constraint on the input and a constraint on the out-
put, imitating logical implication. In particular, the rules are non-deterministic,
i.e., given a rule and some input, there could be more than one satisfying out-
put. This type of specification rules is particularly useful in the early system
design process, where requirements are obscure and the system details cannot
be decided. Non-determinism is essentially what makes specification rules differ-
ent from production rules used in production rules used in Business Rule Man-
agement Systems (BRMSes) [7]. Production rules are designed for execution,
and hence they are necessarily deterministic. More discussion on the similarities
and differences between specification rules and production rules can be seen in
Sect. 6.

Given a set of rules, i.e., a rule base, various properties can be statically
analysed. One of the most important properties of a rule base is consistency :
the rule base should be conflict-free, i.e., there must be some possible output
for any valid input. Otherwise, the regulations represented by the rule base are
infeasible and cannot be implemented. In the example of the vehicle insurance
company, the policy is inconsistent. More specifically, when a customer is a VIP
with a 3-year contract and an online account, there are no possible values for
the insurance discount and the shopping coupon satisfying the rewarding policy.

This paper focuses on the consistency analysis of a special type of specifica-
tion rules, namely those where the output constraints do not refer to the input
(e.g., the vehicle insurance example). This type of specification rules is suffi-
cient to stipulate many policies in financial and public sectors such as taxation
regulations or insurance policies. Consistency analysis of this type of rules is a
challenging problem. In the worst cases, there can be exponentially many set of
inconsistent rules within a rule base. Moreover, even in the case where the rule
base is consistent, one (potentially) has to consider every combination of the
rules. Our motivation is to develop some program for efficiently validating the
consistency of specification rules.

Within our knowledge, there are no existing technologies for formally verify-
ing consistency of non-deterministic specification rules. However, given the fact
that each rule is made up of an input constraint and an output constraint, the
consistency of rules is related to the satisfiability of constraints. Recent advance-
ment in the field of SMT solvers enables the possibility of checking satisfiability
for a large and complex set of constraints of different types [4]. In particular,
SMT solvers have been showed to be applicable to hardware designs, programs
verification, etc. Various SMT-based problems have been investigated. Amongst
them is “infeasibility analysis”, the study about constraint sets for which no sat-
isfying assignments exist. Given an unsatisfiable constraint set, useful informa-
tion about this set includes to identify where the “problem” occurs. There exist
efficient algorithms for extracting a Minimal Unsatisfiable (sub-)Set (MUS), i.e.,
the unsat-core, of an unsatisfiable constraint set [6,13,15]. Recently, algorithms
for finding all MUSes have been proposed [3,10,11].

In order to validate the consistency of a rule base, we enumerate all Minimal
Inconsistent Sets (MISes) of the rule base. A MIS is a set of inconsistent rules
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that is minimal, with respect to the set-inclusion ordering. Similar to the MUSes
of constraints, the MISes of rules identify where the problems occur within the
rule base. By exploring the relationship between the MISes of the rule base, the
MUSes of the output constraints, and satisfiability of individual input constraint,
we reduce the problem of enumerating the MISes to that of the MUSes of the
output constraints. We use SMT solvers as black-boxes for solving satisfiability
problems. Furthermore, our approach is constraint-agnostic, i.e., independent of
the type of the input and output constraints.

We identify the relationship between the MISes of the rules, the MUSes
of the output constraints, and the satisfiability of the input constraints. Our
contribution is a novel algorithm for fast enumeration of MUSes. We compare our
algorithm against the state-of-the-art program for MUSes enumeration from [10]
using some publicly available benchmarks. The correctness of our approach is
ensured by the formalisation of the algorithms using the Event-B modelling
method [1] and the mechanical proofs using the supporting Rodin platform [2].
A more detailed version of this paper including the Event-B formalisation can
be found elsewhere [9].

The rest of the paper is structured as follows. In Sect. 2, we present some
background information including the problem of constraints satisfiability and
rules consistency. In Sect. 3, we discuss the relationship between MISes and
MUSes, showing that the problem of finding MISes can be reduced to enumerat-
ing MUSes. In Sect. 4, we present a novel and efficient algorithm for enumerating
MUSes. In Sect. 5, we give our empirical analysis of the new algorithm and its
application in finding MISes. Finally, we draw some conclusions in Sect. 6.

2 Background

2.1 Constraints Satisfiability

In this paper, we often discuss satisfiability problems related to different generic
sets of constraints. For each set of constraints, the constraint type and variables
domain are omitted. In general, we will consider some indexed set of constraints
C = {C 1,C 2, . . . ,Cn}. Each constraint C i specifies some restrictions on the
problem’s variables. Constraint C i is satisfied by any assignment A of the vari-
ables that meets C i’s restriction. We use the notation sat(A,C ) to denote the
fact that A satisfies C , and unsat(A,C ) otherwise.

Given a set of constraints Cs ⊆ C, if there exists some assignment satisfying
every constraint in Cs then Cs is said to be satisfiable (SAT). Otherwise, Cs is
unsatisfiable (UNSAT). More formally, given a set of constraints Cs, we have

SAT(Cs) =̂ ∃A · ∀C ∈ Cs · sat(A,C ), and (1)
UNSAT(Cs) =̂ ∀A · ∃C ∈ Cs · unsat(A,C ). (2)

In this paper, we will be interested in two special types of sets of con-
straints, namely: Maximal Satisfiable (sub-)Set (MSS) and Minimal Unsatisfiable
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(sub-)Set (MUS). A set of constraints Cs is an MSS if it is a satisfiable subset
of C and cannot be expanded without compromising satisfiability, i.e.,1

MSS(Cs) =̂ SAT(Cs) ∧ (∀S ·S ⊆ C ∧ Cs ⊂ S ⇒ UNSAT(S)). (3)

Conversely, a set of constraints Cs ⊆ C is a MUS if it is an unsatisfiable
subset of C and is minimal with respect to the set-inclusion ordering, i.e.,

MUS(Cs) =̂ UNSAT(Cs) ∧ (∀S ·S ⊆ C ∧ S ⊂ Cs ⇒ SAT(S)). (4)

MUSes are valuable since they indicate the core reason for unsatisfiability of a
constraint set. In particular, as showed in Sect. 3, MUSes play an important role
in verifying rules consistency.

2.2 Rules Consistency

Consider a generic set of rules R = {R1,R2, . . . ,Rn}, where n is a positive
number. Each rule Ri consists of a constraint I i over the input variables and a
constraint O i over the output variables. The set of input and output variables
are disjoint. The types of constraints are not specified.

Definition 1 (Rule Satisfiability). A rule R = (I ,O) is satisfied by an
assignment Ax of the input variables and an assignment Ay of the output
variables —denoted as rsat((Ax ,Ay),R)— if either Ax does not satisfy I or
Ay satisfies O, i.e., rsat((Ax ,Ay),R) =̂ unsat(Ax , I ) ∨ sat(Ay ,O).

A subset of rules Rs ⊆ R is “consistent” (Consistent) if for every input assign-
ment, there exists some output assignment such that the assignments satisfy all
rules in Rs. Otherwise, it is inconsistent (Inconsistent). For convenience, when
the generic set of rules R is known, we identify its subsets by sets of indices, i.e.,
subsets of the range 1..n. The consistency definition is lifted accordingly to sets
of indices.

Definition 2 (Rule Consistency). Given a set of indices S ⊆ 1..n,

Consistent(S) =̂ ∀Ax ·∃Ay ·∀i ∈ S ·rsat((Ax ,Ay),Ri), and (5)
Inconsistent(S) =̂ ∃Ax ·∀Ay ·∃i ∈ S ·¬rsat((Ax ,Ay),Ri). (6)

From now on, we will use set of rules and set of rule indices interchangeably.
Given an inconsistent rule base R, some indicating facts about R should be

given to “explain” R’s inconsistency. We define the following notion of Minimal
Inconsistent Set (MIS) of a set of rules, the inconsistent core of R.

Definition 3 (MIS). Given a set of rules S ⊆ 1..n, S is a MIS if and only if
S is inconsistent and is minimal with respect to the set-inclusion ordering, i.e.,
MIS(S) =̂ Inconsistent(S) ∧ (∀T ·T ⊂ S ⇒ Consistent(T )).

1 S ⊂ T means that S is a proper-subset of T .
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Clearly, a rule base R without any MIS is consistent. In the case where R is
inconsistent, ideally, all MISes of R should be found. In general, the problem of
finding all MISes is intractable: the number of MISes may be exponential in the
size of the rule base. Our main objective is to quickly enumerate MISes.

Example 1. Consider the rewarding policy mentioned in Sect. 1. The input and
output constraints of the rules can be formalised as follows.

Rule Input constraint Output constraint
R1 account discount = 3 ∨ coupon = 100
R2 V IP discount ≥ 5 ∧ coupon ∈ 50 .. 100
R3 ¬V IP ∧ duration < 2 discount < 5 ∨ coupon ∈ 30 .. 50
R4 V IP ∧ duration ≥ 2 discount ≥ 7 ∧ coupon = 50

In the above example, input assignment “account, V IP, duration := F,T, 1” and
output assignment “discount, coupon := 5, 50” satisfy all rules. The set of rules
is inconsistent (as mentioned before) and has one MIS, i.e., {R1,R4}.

3 Relationship Between MISes and MUSes

In this section, we investigate the relationship between MISes and satisfiability
problems on the input and output constraints. Since the input and output vari-
ables are disjoint, satisfiability problems on input constraints and output con-
straints are independent. Given a set of rules S, the following lemmas express
some relationships between the consistency of S and the satisfiability of S’s input
and output constraints. The lemmas can be proved directly from the correspond-
ing definitions. Below, we use the notation C [S] for {C i | i ∈ S} (similarly for
I [S] and O [S]).

Lemma 1. SAT(I [S]) ∧ UNSAT(O [S]) ⇒ Inconsistent(S)

Lemma 2. SAT(O [S]) ⇒ Consistent(S)

In general, S’s consistency cannot be directly determined by the satisfia-
bility/unsatisfiability of its input and output constraints. In particular, when
UNSAT(I [S]) and UNSAT(O [S]), S’s consistency is determined by the consis-
tency of S’s proper-subsets. Consider Example 1, {R1,R2,R3} and {R1,R3,R4}
have unsatisfiable input and output constraints, but only the former one is con-
sistent. To avoid iterating the subsets of rules, we prove the following theorem.

Theorem 1 (MISes and MUSes). MIS(S) ⇔ MUS(O [S]) ∧ SAT(I [S]).

Proof (Sketch).

1. From left to right : Assume MIS(S), we have Inconsistent(S). We infer that
SAT(I [S]) since if UNSAT(I [S]), one of S’s proper-subset must be inconsis-
tent, hence S cannot be minimal. We have UNSAT(O [S]) since if SAT(O [S])
then Consistent(S) (Lemma 2). Subsequently, MUS(O [S]), since otherwise
there exists a set T ⊂ S such that UNSAT(O [T ]). From Lemma 1, we have
Inconsistent(T ), and hence S is not minimal inconsistent.
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2. From right to left : Assume MUS(O [S]) and SAT(I [S]). We deduce that
Inconsistent(S) from Lemma 1. For every T ⊂ S, we have SAT(O [T ]), hence
Consistent(T ) (Lemma 2). As a result, S is minimal inconsistent. �
Theorem 1 reduces the problem of enumerating MISes to finding the MUSes

of the output constraints, and then checking the satisfiability of the input con-
straints corresponding to each MUS found. As a result, the quicker output con-
straints’ MUSes are discovered, the faster we can enumerate MISes. In the next
section, we present a novel and efficient algorithm for enumerating MUSes.

4 An Efficient Algorithm for Enumerating MUSes

In general, enumerating MUSes is a well-known problem and potentially intractable
(since the number of MUSes may be exponential in the number of constraints). A
detailed discussion on existing approaches for enumerating MUSes can be found
in [10], including both constraint-specific and constraint-agnostic algorithms. In
this paper, we present our algorithm for fast enumeration of MUSes, inspired by
the state-of-the-art algorithm MARCO [10].

The main feature of MARCO is the use of a powerset manager maintaining a
powerset map for selecting subsets to be explored. Given, a constraint set C, the
powerset map is a set of propositions Ps over a collection of indexed variables
x i, with i ∈ 1..n where n is the number of constraints in C. There are three basic
operations for the powerset manager (Fig. 1). In getSet, the powerset manager
utilises the capability of the constraint solver to return a model for a satisfiable
set of constraints, which corresponds to an unexplored subset (a subset required
to be validated). Operations addLowerBound and addUpperBound are for pruning
the unexplored subsets. Operation addLowerBound (resp. addUpperBound) marks
all subsets (resp. supersets) of the input set S as explored (no longer need to be
validated).

Fig. 1. Operations of the powerset manager
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4.1 The MARCO algorithm

Intuitively, for each iteration, MARCO (Fig. 2) gets a new unexplored subset
S from the powerset manager. If C[S ] is satisfiable, MARCO uses a grow sub-
routine to obtain an MSS, and adds this MSS as a lower bound to restrict future
iterations. Otherwise, i.e., if C[S] is unsatisfiable, MARCO uses a shrink sub-
routine to obtain a MUS, yields this MUS, and adds the found MUS as an upper
bound. The correctness of the MARCO algorithm relies on the fact that MUS
cannot be a subset of an MSS or a (strict-)superset of another MUS. At each
iteration, the powerset manager is restricted hence the algorithm terminates.

Fig. 2. The MARCO algorithm

The sub-routines grow and shrink can be any off-the-shelf methods for find-
ing an MSS (from a satisfiable seed) and a MUS (from an unsatisfiable seed).
For example, the operation growLin in Fig. 3 gradually adds new elements to a
satisfiable subset S if this preserves satisfiability. Conversely, shrinkLin removes
elements step-by-step from an unsatisfiable subset S if it preserves unsatisfia-
bility. Both growLin and shrinkLin are not the most efficient implementation for
grow and shrink sub-routine. For instance, the shrinkBin operation in Fig. 3 and
its sub-routine reduce perform binary search and potentially return a MUS faster
than shrinkLin. A similar binary search algorithm exists for the grow routine. The
MARCO algorithm and various grow and shrink routines are not novel.

Example 2. A possible execution trace for MARCO (using growLin and shrinkBin)
applied to the output constraints of the rules R1–R4 in Example 1 is below. At
each step, we show the seed obtained from the powerset manager and its satisfi-
ability status. Depending on the satisfiability status of the seed, a growing or a
shrinking sub-routine is called to obtain an MSS or a MUS. We also report the
number of SMT calls (the number of times that the SMT solver is called to check
the problem constraints) and the number of SAT calls (querying the powerset
manager). For example, in Step 2, the powerset manager returns {R3,R4} (at
a cost of 1 SAT call) and checking satisfiability of this seed costs 1 SMT call.
Afterwards, it takes 2 SMT calls to grow the seed to obtain the MSS {R2,R3,R4}.
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Fig. 3. Various grow and shrink routines

Step Seed (Satisfiability status) MSS MUS SMTs SATs
1 get seed ∅ (SAT) 1 1

growing {R1,R2} 4
2 get seed {R3,R4} (SAT) 1 1

growing {R2,R3,R4} 2
3 get seed {R1,R3,R4} (UNSAT) 1 1

shrinking {R1,R4} 4
4 get seed {R1,R2,R3} (UNSAT) 1 1

shrinking {R1,R2,R3} 4
5 get seed {R1,R3} (SAT) 1 1

growing {R1,R3} 2
6 get seed null 1

Total 3 MSSes 2 MUSes 21 6

4.2 The MUSesHunter Algorithm

Notice that, in the MARCO algorithm, the powerset manager is only used for
retrieving unexplored subsets. In particular, during the process of growing and
shrinking seeds, many satisfiability checks are spurious: the sets are either super-
sets of some found MUS or subsets of some found MSS. Satisfiability checking
of the problem constraints (possibly involving theories) is more expensive than
querying the powerset manager (concerning only Boolean constraints). Further-
more, during the process of growing, often unsatisfiable subsets are found. By
calling shrink sub-routine on these unsatisfiable subsets, we can get MUSes faster.
The challenge is to ensure that by shrinking immediately, we obtain a new MUS.

The MUSesHunter algorithm can be seen in Fig. 4. Compared to MARCO,
the main difference is the use of the powerset manager within the growHyb
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and shrinkBinPS sub-routines. In particular, growHyb returns either a MUS or
an MSS. In the subsequent, we outline the implementation of shrinkBinPS and
growHyb. First, we extend the powerset manager with satisfiability checking.

Fig. 4. The MUSesHunter algorithm

Satisfiability checking with powerset manager. The following operation is added
to the powerset manager in order to check if a set of constraint S need to be
explored. This is done by checking the satisfiability of the set of propositions Ps
together with the constraint representing S .

isUnexplored(S ) =̂
precondition: S ⊆ 1 .. n
output: T if S is an unexplored subset

1. return SAT(Ps ∪ {(
∧

i∈S x i) ∧ (
∧

i/∈S ¬x i)});

Theorem 2 states an important property of MUSesHunter, in particular, for the
explored subsets filtered out by the powerset manager.

Theorem 2 (Explored subsets of constraints). For the MUSesHunter algo-
rithm, given a subset of constraints S , we have

¬isUnexplored(S ) ⇔
(∃L·SAT(C[L]) ∧ S ⊆ L)

∨ (∃M ·MUS(C[M ]) ∧ S ⊂ M)
∨ (∃M ·MUS(C[M ]) ∧ M ⊆ S ).

(7)

Proof (Sketch). This fact is trivial invariant of the MUSesHunter algorithm since
the set of unexplored subsets can only be pruned in the following two cases:
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1. An MSS is added as a lower bound.
2. An MUS is added as a lower bound and an upper bound.

As a result, a set S is explored if and only if either (a) S is a subset of an MSS
(some satisfying set L), or (b) S is a subset of some MUS M , or (c) S is a
superset of some MUS M . �

The following Lemmas are consequences of Theorem 2.

Lemma 3 (Satisfiability during shrink). Given sets of constraints S and T ,
if isUnexplored(S), T ⊆ S, and ¬isUnexplored(T ), then SAT(C[T ]).

Proof. From ¬isUnexplored(T ), apply Theorem 2, we have three cases as follows.

1. There exists L where SAT(C[L]) ∧ T ⊆ L, we have SAT(C[T ]) trivially by
anti-monotonicity of SAT.

2. There exists M where MUS(C[M ]) ∧ T ⊂ M , we have SAT(C[T ]) trivially
by definition of MUS (4).

3. There exists M where MUS(C[M ])∧M ⊆ T . From T ⊆ S, we obtain M ⊆ S.
Apply Theorem 2, we have ¬isUnexplored(S) which is a contradiction.

Lemma 4 (Unsatisfiability during grow). Given sets of constraints S and
T , if isUnexplored(S), S ⊆ T , and ¬isUnexplored(T ), then UNSAT(C[T ]).

The proof of Lemma 4 is similar to that of Lemma 3 and is omitted.
Lemmas 3 and 4 allow us to use the powerset manager to replace some of the

satisfiability checks during shrinking and growing sub-routines.
The shrinkBinPS sub-routine. Comparing the subsequent reducePS with the reduce
sub-routine, before checking satisfiability of C ∪ B (Line 3) and D ∪ B (Line 6),
we first check if these subsets are unexplored. Lemma 3 ensures that if they are
already explored, they are satisfiable.

shrinkBinPS(S) =̂
precondition: UNSAT(C[S ]) ∧ isUnexplored(S)
output: a MUS of Cs

1. return reducePS(S ,∅);

reducePS(A,B) =̂
precondition: UNSAT(C[A ∪ B ]) ∧ isUnexplored(A ∪ B)
output: a minimal a ⊆ A ∧ UNSAT(C[a ∪ B ])

1. C := A/2; // C is a half of A
2. if isUnexplored(C ∪ B) // If C ∪ B is unexplored,
3. if UNSAT(C[C ∪ B ]) // if C ∪ B is unsatisfiable,
4. return reducePS(C ,B); // recursively reduce C with B
5. D := A \ C ; // D is the difference between A and C
6. if isUnexplored(D ∪ B) // If D ∪ B is unexplored,
7. if UNSAT(C[D ∪ B ]) // if D ∪ B is unsatisfiable,
8. return reducePS(D ,B); // recursively reduce D with B
9. C1 ← reducePS(C ,D ∪ B); // C1 is the result of reducing C with D ∪ B

10. D1 ← reducePS(D ,C1 ∪ B); // D1 is the result of reducing D with C1 ∪ B
11. return C1 ∪ D1 ; // return the union of C1 and D1
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The growHyb sub-routine. The following growHyb returns either a new MSS or a
new MUS. It is based on the growLin routine showed earlier.

growHyb(S) =̂
precondition: SAT(C[S ]) ∧ isUnexplored(S)
return: an MSS or a MUS of C

1. foreach c /∈ S // For each c not in S ,
2. if isUnexplored(S ∪ {c}) // if S ∪ {c} is unexplored
3. if SAT(C[S ∪ {c}]) // if S ∪ {c} is satisfiable,
4. S := S ∪ {c}; // add c to S
5. else // if S ∪ {c} is unsatisfiable
6. return shrinkBinPS(S ∪ {c}); // shrink to find a MUS
7. return S ; // return S which is an MSS

Similar to the reducePS sub-routine, before checking satisfiability for S ∪ {c}
(Line 3), the growHyb sub-routine checks if it is unexplored. Lemma 4 ensures
that if S ∪ {c} is already explored, it is unsatisfiable. Moreover, the fact that
S ∪ {c} is unexplored guarantees that shrinkBinPS (Line 6) returns a new MUS.

Example 3. An example execution trace for the MUSesHunter algorithm (using
growHyb and shrinkBinPS) applying to the set of output constraints for the rules
R1–R4 in Example 1 is below.

Step Seed (Status) MSS MUS SMTs SATs
1 get seed ∅ (SAT) 1 1

growing {1, 2, 3} (UNSAT) 3 3
shrinking {1, 2, 3} 2 4

2 get seed {4} (SAT) 1 1
growing {1, 4} (UNSAT) 1 1
shrinking {1, 4} 2

3 get seed {2, 3, 4} (SAT) 1 1
growing {2, 3, 4} 1

4 get seed null 1

Total 1 MSSes 2 MUSes 9 15

4.3 Comparing MARCO and MUSesHunter

The main novelty of MUSesHunter compared to MARCO is the use of the pow-
erset manager for checking satisfiability of the problem constraints. In particu-
lar, the powerset manager allows MUSesHunter to produce MUSes even in the
case where the original seed is satisfiable, where MARCO must always produce
MSSes. For our purpose of enumerating MUSes, finding a MUS is more valuable
than MSS. When a MUS is found, MUSesHunter blocks both its super-sets as
well as subsets, where MARCO only blocks the super-sets of MUS. As a result,
MUSesHunter prunes the search space much faster than MARCO. Comparing the
traces for MARCO and MUSesHunter in Examples 2 and 3, MUSesHunter does
not need to find all MSSes before termination. In fact MSSes found by MARCO
such as {R1,R2} and {R1,R3} are spurious, i.e., they are subset of the MUS
{R1,R2,R3}, and does not require to be considered in searching for MUSes. For
MARCO, MUS can be also added as a lower bound. Focusing on enumerating
MUSes without finding all MSSes was mentioned as future work in [10].
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5 Empirical Analysis

We implement our algorithms for finding MUSes and MISes using Java. In par-
ticular, for constraint solving (i.e., for the powerset manager and for satisfiabil-
ity checks of the problem constraints), we use SMTInterpol [8]. We first com-
pare the performance of the MUSesHunter and MARCO algorithms (Sect. 5.1).
Afterwards, we evaluate the performance of developed MISes finder program
with MUSesHunter using examples extracted from real-world policies (Sect. 5.2).

5.1 MUSesHunter vs. MARCO

Both algorithms were implemented using the same underlying infrastructure,
sharing as much code as possible. For growing and shrinking, MARCO uses
growLin and shrinkBin sub-routines, whereas MUSesHunter uses growHyb and
shrinkBinPS sub-routines. Both algorithms use a powerset manager built on top
of SMTInterpol without any modification, e.g., it is not biased towards produc-
ing large unexplored sets (which will be beneficial for MARCO). The experiments
were performed on a VMWare Virtual Machine with 4× 2.7 GHz CPUs running
Linux. Each program was executed with 3 GB heap memory limit and an 1800-
second timeout. There is no timeout for individual constraints satisfiability check.
We selected 473 samples (from 4 to 881 constraints) selected from SMT-LIB for
quantifier-free linear integer arithmetic (QF LIA).2 Even though our algorithm
is constraint-agnostic, we have chosen the QF LIA fragment of the SMT-LIB
benchmarks since the input and output constraints of our rule verification case
studies are within this sub-logic. We also restrict our evaluation to the sets of
benchmarks where the SMT solver (SMTInterpol in our implementation) can
verify their satisfiability in a reasonable time. We plan to evaluate our algorithm
against other benchmarks in the future.

Overall. The summary of the results for running the two algorithms is in Table 1.
While the numbers of cases where the algorithms terminate and find all MUSes
are comparable, MUSesHunter tends to run out of memory (hitting bad seeds)
whereas MARCO tends to run out of time (making too many expensive SMT
calls) more often. However, in most cases, MUSesHunter usually finds more
MUSes than MARCO. In particular, MARCO does not find any MUSes in over
20 % of the samples (105 cases), whereas that percentage for MUSesHunter is 6 %
(21 cases). This is the direct effect of growHyb: it can produce MUSes even in
the case where the original seed is satisfiable. On average, MUSesHunter found
almost twice as many MUSes as MARCO.

Comparing the number of SMT calls for checking satisfiability of the problem
constraints and SAT calls for the powerset manager, there is a clear difference
between the two programs. MUSesHunter makes heavy use of the powerset man-
ager as a substitute for checking satisfiability of the problem constraints. Even
though MUSesHunter’s total number of satisfiability calls is twice as many as that
2 Available from http://smtlib.cs.uiowa.edu/benchmarks.shtml.

http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Table 1. Empirical analysis summary

MUSesHunter MARCO
Find all (no. of samples) 160 (34%) 139 (29%)
Timeout (no. of samples) 250 (53%) 308 (65%)

Find none 21 (8%) 104 (34%)
Find 1 )%52(67)%31(33

Find > 1 196 (78%) 128 (42%)
Out-of-memory (no. of samples) )%5(62)%31(36

Find none )%4(1)%0(0
Find 1 )%0(0)%41(9

Find > 1 )%69(52)%68(45
Total (no. of samples) 374374
Max MUSes found per sample 6468104792
Average MUSes found per sample 3350501
Total satisfiability calls 37772132749477

SATs (powerset manager) 6472339 (84%) 82628(3%)
SMTs (constraints satisfiability) 1277133 (16%) 3045145(97%)

of MARCO, solving satisfiability problems in the powerset manager (related to
Boolean constraints) are much faster than checking satisfiability of the problem
constraints, which are (in our experiments) QF LIA constraints.

Performance comparison between MUSesHunter and MARCO is as follows.

MUSesHunter better (%) MARCO better (%) Draw (%)

Both terminate 135 (97 %) 4 (3 %)
Not both terminate 254 (76 %) 52 (16 %) 28 (8 %)

Total 389 (82 %) 56 (12 %) 28 (6 %)

We separate the benchmarks into two categories according to whether or not
both algorithms terminate and find all MUSes. In the first case, an algorithm
is better if it terminates faster. In the second case, we compare the number of
MUSes that the algorithms found. Overall, MUSesHunter outperforms MARCO
by terminating faster or finding more MUSes (82 %).

Both programs terminate. The comparison between the (log-scale) speed of
MUSesHunter and MARCO in the case where they both terminate can be seen
in Fig. 5a. In most cases (97 %), MUSesHunter terminates faster than MARCO.
Figure 6 compares the percentage of MUSes found against the time, both scaled
to the range 0..1 for samples that MUSesHunter and MARCO terminate. For
MUSesHunter, it is typical that the MUSes are found early then subsequently,
only MSSes are found. For MARCO, in most cases, MUSes are found gradually.

One of the programs does not terminate. We focus on the number of MUSes
found by each algorithm. In 76 % of cases, MUSesHunter found more MUSes
than MARCO. Figure 5b shows the comparison between the numbers of MUSes
found by MUSesHunter and MARCO for individual sample.
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Fig. 5. Running time and MUSes found comparison

Fig. 6. MUSes found vs. time

5.2 MISes Finder

We evaluate the MISes finder program on the following examples. With the
exception of the first one, all of them are extracted from industrial case studies
in financial and public sectors. The statistics can be seen as follows.

Example Size Time MUSes MSSes MISes SATs SMTs

Test sample 8 195 ms 5 12 3 78 57

Vehicle insurance 4 69 ms 2 1 1 9 15

Care insurance 15 403 ms 62 0 10 106 335

Vehicle tax 108 13.4 s 2590 2 0 7223 19345

Registration 725 1800 s 436 1093 0 820455 373767

The performance of the MISes finder program largely depend on the under-
lying MUSesHunter algorithm on finding MUSes of the output constraints. The
last two examples (namely Vehicle tax and Registration) are consistent. How-
ever, MISes finder program does not terminate for the Registration example, fails
to verify the rule base. In this case, all 436 MUSes (none of them are MISes)



64 T.S. Hoang et al.

are found within 60 s. Afterwards, the program only found MSSes. Given the
size of the rule base, we do not expect the program found all MSSes within a
reasonable time. To validate this set of rules, we need to adopt some additional
techniques to reduce the complexity of the problem.

6 Conclusion

In this paper, we present our approach for validating the consistency of specifi-
cation rules describing the relationship between the system input and expected
output. Our method explores the relationship between MISes of rules and MUSes
of constraints. We developed a novel algorithm for fast enumeration of MUSes
during the validation process and evaluated it against MARCO [10], a state-of-
the-art algorithm for enumerating MUSes. Our approach is constraint-agnostic
and makes use of constraints solvers as black-boxes. Furthermore, we make use
of the well-known routines such as shrink and grow sub-routines to find MUSes
and MSSes. Any state-of-the-art implementation for these sub-routines can be
used within our algorithm. Since our algorithm relying on SMT solvers for sat-
isfiability checking, consistency verification of specifications rules will be limited
by the capability of the underlying SMT solvers.

Related work. The similarity between specification rules and production rules [7]
is in their composition: Each rule is composed of a guard (input constraints)
and an action (output constraints). The main difference between them is the
fact that specification rules can be non-deterministic while production rules are
deterministic. Furthermore, the purpose of specification rules is to stipulate the
relationships between input and output of the system, hiding the system state.
The production rules often involve systems with explicit state (the working mem-
ory). Production rules are also written with some implicit rule execution engine
in mind, e.g., firing enabled rules repeatedly. In term of validation, different prop-
erties have been considered for production rules [14]. Due to their deterministic
nature, minimal inconsistency for production rules can only be pairwise.

In a more general context, Rule-Based Systems (RBSes) have been used in
the field of Artificial Intelligence and Knowledge Engineering [12] for knowledge
representation. Typically, an RBS contains a rule set and an inference control
mechanism including some conflict resolution strategy. Each rule imitates logical
implication and is used for backward or forward reasoning. Furthermore the
conflict resolution strategies ensure that in the case where two or more rules
can be activated at a time, only one is selected according to some pre-defined
criteria. This is also the main difference between RBSes and the specification
rules under our consideration. Verification of RBSes is also extensively discussed
in [12]. A taxonomy of verifiable characteristics for RBSes is proposed concerning
various anomalies such as consistency, completeness, and (non-)redundancy. In
particular, the problem of conflicting and inconsistent rules are considered to
be special cases of nondeterminism and is deferred to the conflict resolution
mechanism. In fact, in some special representation of RBSes such as tabular
systems with no explicit negation, purely logical inconsistency never appears [12].
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In order to find all MISes of a set of rules, we need to find all MUSes of
its output constraints. Comparison in [10] suggests the CAMUS algorithm [11]
can out-perform the MARCO algorithm in finding all MUSes. The disadvantage
of CAMUS is its inability to “enumerate” the MUSes, i.e., it can take a long
time before outputting any MUS. Hence CAMUS is unsuitable for any applica-
tion where incremental responses are required. However, its ability of finding all
MUSes quickly can be useful to validate a consistent set of rules. We plan to
investigate and evaluate CAMUS further.

Future work. Other properties for specification rules include redundancy and
completeness. Similar to consistency, the problem of verifying redundancy and
completeness can also be reduced to enumerating MUSes and this is the next
logical step of our research. As mentioned before in Sect. 5.2, for the Registration
example, our MISes finder program does not terminate. The main challenge is
in the size of the example (725 rules). A possible solution for validating this
set of rule is to syntactically decompose this set of rules into smaller sets. Rule
separation will drastically reduce the complexity of the MISes finding problem,
hence could be used as a pre-processing step for the current MISes finder pro-
gram. Moreover, the specification rules can be combined to stipulate system
requirements. We are currently investigating how consistency validation can be
composed/decomposed for such specification of combined rule bases.

Currently, our implementation uses SMTInterpol [8] as the underlying solver
of the powerset manager and for checking satisfiability of the problem constraints.
While this is sufficient for our purpose, it would be of our interests to investigate
other SMT solvers in place of SMTInterpol. Another possible improvement for our
implementation is to take advantage of the incremental checking and backtracking
ability of SMT solvers (i.e., using push/pop operations).

Parallelism has been considered for extracting a MUS [5,15]. In a similar
fashion, the problem of enumerating MUSes and MISes can take advantage of
parallel and/or distributed architectures. In particular, enumeration of MUSes
can be parallelised and distributed to a cluster. The essential point to consider
is how to correctly and effectively use the powerset manager. Our formal model
suggests that having a parallel/distributed version of the program is possible.

Parallel/distributed version of the program is also a solution to another limi-
tation of the current MISes finder program. Currently, our MISes finder program
will terminate (without finding all MISes) if the underlying SMT solver cannot
solve a satisfiability problem (i.e., return unknown). This is often the case when
the solver gets a “bad seed” such that its performance is deteriorated. By trying
to solve several seeds at once, the MISes program can proceed even if some of the
seeds are bad. Moreover, if the bad seeds are not MUSes or MSSes, the program
can even terminate finding all MISes.

Often rule bases are developed step-by-step and subject to regular changes.
It is necessary for the consistency validation to be carried out in an incremental
fashion, where checks are only required to perform on the parts of the rule base
that are affected by the changes. This is important for building a practical tool
set supporting the development of specification rules.
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The correctness of our MISes finder program relies on the separation between
input and output constraints, in particular, the output constraints does not refer
to any input variable. This is sufficient to model several regulations and policies.
In the case where the output constraints refer to the input variables, our program
does not guarantee to find all MISes for a rule base. What can be inferred is
that any result of the program is an inconsistent set of rules (not necessarily
minimal). Further investigation is required to validate this general type of rules,
in particular, to consider solving constraints with quantifiers.
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Abstract. Using an adaptation of state-of-the-art algorithms for black-
box automata learning, as implemented in the LearnLib tool, we suc-
ceeded to learn a model of the Engine Status Manager (ESM), a soft-
ware component that is used in printers and copiers of Océ. The main
challenge that we encountered was that LearnLib, although effective in
constructing hypothesis models, was unable to find counterexamples for
some hypotheses. In fact, none of the existing FSM-based conformance
testing methods that we tried worked for this case study. We therefore
implemented an extension of the algorithm of Lee and Yannakakis for
computing an adaptive distinguishing sequence. Even when an adaptive
distinguishing sequence does not exist, Lee and Yannakakis’ algorithm
produces an adaptive sequence that ‘almost’ identifies states. In com-
bination with a standard algorithm for computing separating sequences
for pairs of states, we managed to verify states with on average 3 test
queries. Altogether, we needed around 60 million queries to learn a model
of the ESM with 77 inputs and 3.410 states. We also constructed a model
directly from the ESM software and established equivalence with the
learned model. To the best of our knowledge, this is the first paper in
which active automata learning has been applied to industrial control
software.

1 Introduction

Once they have high-level models of the behavior of software components, soft-
ware engineers can construct better software in less time. A key problem in prac-
tice, however, is the construction of models for existing software components, for
which no or only limited documentation is available.

The construction of models from observations of component behavior can be
performed using regular inference (aka automata learning) techniques [4,19,37].
The most efficient such techniques use the setup of active learning, illustrated
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Fig. 1. Active learning of reactive systems

in Fig. 1, in which a “learner” has the task to learn a model of a system by
actively asking questions to a “teacher”. The core of the teacher is a System
Under Test (SUT), a reactive system to which one can apply inputs and whose
outputs one may observe. The learner interacts with the SUT to infer a model by
sending inputs and observing the resulting outputs (“membership queries”). In
order to find out whether an inferred model is correct, the learner may pose an
“equivalence query”. The teacher uses a model-based testing (MBT) tool to try
and answer such queries: Given a hypothesized model, an MBT tool generates
a long test sequence using some conformance testing method. If the SUT passes
this test, then the teacher informs the learner that the model is deemed correct. If
the outputs of the SUT and the model differ, this constitutes a counterexample,
which is returned to the learner. Based on such a counterexample, the learner
may then construct an improved hypothesis. It is important to note that it may
occur that an SUT passes the test for an hypothesis, even though this hypothesis
is not valid.

Triggered by various theoretical and practical results, see e. g. [1,7,8,20,26,
28,33], there is a fast-growing interest in automata learning technology. In recent
years, automata learning has been applied successfully, e. g., to regression test-
ing of telecommunication systems [22], checking conformance of communication
protocols to a reference implementation [3], finding bugs in Windows and Linux
implementations of TCP [13], analysis of botnet command and control protocols
[9], and integration testing [17,27].

In this paper, we explore whether LearnLib [33], a state-of-the-art automata
learning tool, is able to learn a model of the Engine Status Manager (ESM), a
piece of control software that is used in many printers and copiers of Océ. Soft-
ware components like the ESM can be found in many embedded systems in one
form or another. Being able to retrieve models of such components automatically
is potentially very useful. For instance, if the software is fixed or enriched with
new functionality, one may use a learned model for regression testing. Also, if
the source code of software is hard to read and poorly documented, one may
use a model of the software for model-based testing of a new implementation, or
even for generating an implementation on a new platform automatically. Using
a model checker one may also study the interaction of the software with other
components for which models are available.
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The ESM software is actually well documented, and an extensive test suite
exists. The ESM, which has been implemented using Rational Rose Real-Time
(RRRT), is stable and has been in use for 10 years. Due to these characteristics,
the ESM is an excellent benchmark for assessing the performance of automata
learning tools in this area. The ESM has also been studied in other research
projects: Ploeger [31] modeled the ESM and other related managers and veri-
fied properties based on the official specifications of the ESM, and Graaf and
Van Deursen [16] have checked the consistency of the behavioral specifications
defined in the ESM against the RRRT definitions.

Learning a model of the ESM turned out to be more complicated than
expected. The top level UML/RRRT statechart from which the software is gen-
erated only has 16 states. However, each of these states contains nested states,
and in total there are 70 states that do not have further nested states. Moreover,
the C++ code contained in the actions of the transitions also creates some com-
plexity, and this explains why the minimal Mealy machine that models the ESM
has 3.410 states. LearnLib has been used to learn models with tens of thousands
of states [32], and therefore we expected that it would be easy to learn a model
for the ESM. However, finding counterexamples for incorrect hypotheses turned
out to be challenging due to the large number of 77 inputs. The test algorithms
implemented in LearnLib, such as random testing, the W-method [10,38] and the
Wp-method [14], failed to deliver counterexamples within an acceptable time.
Automata learning techniques have been successfully applied to case studies in
which the total number of input symbols is much larger, but in these cases it was
possible to reduce the number of inputs to a small number (<10) using abstrac-
tion techniques [2,21]. In the case of ESM, use of abstraction techniques only
allowed us to reduce the original 156 concrete actions to 77 abstract actions.

We therefore implemented and extension of the algorithm of Lee and
Yannakakis [25] for computing an adaptive distinguishing sequence. Even when
an adaptive distinguishing sequence does not exist, Lee and Yannakakis’ algo-
rithm produces an adaptive sequence that ‘almost’ identifies states. In combi-
nation with a standard algorithm for computing separating sequences for pairs
of states, we managed to verify states with on average 3 test queries and to
learn a model of the ESM with 77 inputs and 3.410 states. We also constructed
a model directly from the ESM software and established equivalence with the
learned model. To the best of our knowledge, this is the first paper in which
active automata learning has been applied to industrial control software. Pre-
liminary evidence suggests that our adaptation of Lee and Yannakakis’ algorithm
outperforms existing FSM-based conformance algorithms.

During recent years most researchers working on active automata learning
focused their efforts on efficient algorithms and tools for the construction of hy-
pothesis models. Following [7], our work shows that the context of automata
learning provides both new challenges and new opportunities for the application
of testing algorithms. All the models for the ESM case study together with the
learning/test statistics are available at http://www.mbsd.cs.ru.nl/publications/
papers/fvaan/ESM/, as a benchmark for both the automata learning and testing
communities.

http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/


70 W. Smeenk et al.

2 Engine Status Manager

The focus of this article is the Engine Status Manager (ESM), a software compo-
nent that is used to manage the status of the engine of Océ printers and copiers.
In this section, the overall structure and context of the ESM will be explained.

2.1 ESRA

The requirements and behavior of the ESM are defined in a software architecture
called Embedded Software Reference Architecture (ESRA). The components
defined in this architecture are reused in many of the products developed by Océ
and form an important part of these products. This architecture is developed
for cut-sheet printers or copiers. The term cut-sheet refers to the use of separate
sheets of paper as opposed to a continuous feed of paper.

An engine refers to the printing or scanning part of a printer or copier. Other
products can be connected to an engine that pre- or postprocess the paper, for
example a cutter, folder, stacker or stapler. Figure 2 gives an overview of the soft-
ware in a printer or copier. The controller communicates the required actions
to the engine software. This includes transport of digital images, status control,
print or scan actions and error handling. The controller is responsible for queu-
ing, processing the actions received from the network and operators and delegat-
ing the appropriate actions to the engine software. The managers communicate
with the controller using the external interface adapters. These adapters translate
the external protocols to internal protocols. The managers manage the different
functions of the engine. They are divided by the different functionalities such as
status control, print or scan actions or error handling they implement. In order to
do this a manager may communicate with other managers and functions. A func-
tion is responsible for a specific set of hardware components. It translates com-
mands from the managers to the function hardware and reports the status and
other information of the function hardware to the managers. This hardware can
for example be the printing hardware or hardware that is not part of the engine
hardware such as a stapler. Other functionalities such as logging and debugging
are orthogonal to the functions and managers.

Fig. 2. Global overview of the engine software
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Fig. 3. Overview of the managers and clients connected to the ESM

2.2 ESM and Connected Components

The ESM is responsible for the transition from one status of the printer or copier
to another. It coordinates the functions to bring them in the correct status.
Moreover, it informs all its connected clients (managers or the controller) of
status changes. Finally, it handles status transitions when an error occurs.

Figure 3 shows the different components to which the ESM is connected. The
Error Handling Manager (EHM), Action Control Manager (ACM) and other
clients request engine statuses. The ESM decides whether a request can be hon-
ored immediately, has to be postponed or ignored. If the requested action is
processed the ESM requests the functions to go to the appropriate status. The
EHM has the highest priority and its requests are processed first. The EHM can
request the engine to go into the defect status. The ACM has the next highest
priority. The ACM requests the engine to switch between running and standby
status. The other clients request transitions between the other statuses, such
as idle, sleep, standby and low power. All the other clients have the same low-
est priority. The Top Capsule instantiates the ESM and communicates with it
during the initialization of the ESM. The Information Manager provides some
parameters during the initialization.

There are more managers connected to the ESM but they are of less impor-
tance and are thus not mentioned here.

2.3 Rational Rose RealTime

The ESM has been implemented using Rational Rose RealTime (RRRT).
In this tool so-called capsules can be created. Each of these capsules defines
a hierarchical statechart diagram. Capsules can be connected with each other
using structure diagrams. Each capsule contains a number of ports that can be
connected to ports of other capsules by adding connections in the associated
structure diagram. Each of these ports specifies which protocol should be used.
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This protocol defines which messages may be sent to and from the port. Tran-
sitions in the statechart diagram of the capsule can be triggered by arriving
messages on a port of the capsule. Messages can be sent to these ports using the
action code of the transition. The transitions between the states, actions and
guards are defined in C++ code. From the state diagram, C++ source files are
generated.

The RRRT language and semantics is based on UML [30] and ROOM [34].
One important concept used in RRRT is the run-to-completion execution model
[12]. This means that when a received message is processed, the execution cannot
be interrupted by other arriving messages. These messages are placed in a queue
to be processed later.

2.4 The ESM State Diagram

Figure 4 shows the top states of the ESM statechart. The statuses that can be
requested by the clients and managers correspond to gray states. The other
states are so called transitory states. In transitory states the ESM is waiting for
the functions to report that they have moved to the corresponding status. Once
all functions have reported, the ESM moves to the corresponding status.

Fig. 4. Top states and transitions of the ESM

The idle status indicates that the engine has started up but that it is still
cold (uncontrolled temperature). The standby status indicates that the engine is
warm and ready for printing or scanning. The running status indicates that the
engine is printing or scanning. The transitions from the overarching state to the
goingToSleep and goingToDefect states indicate that it is possible to move to
the sleep or defect status from any state. In some cases it is possible to awake
from sleep status, in other cases the main power is turned off. The medium status
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is designed for diagnostics. In this status the functions can each be in a different
status. For example one function is in standby status while another function is
in idle status.

The statechart diagram in Fig. 4 may seem simple, but it hides many details.
Each of the states has up to 5 nested states. In total there are 70 states that do
not have further nested states. The C++ code contained in the actions of the
transitions is in some cases non-trivial. The possibility to transition from any
state to the sleep or defect state also complicates the learning.

3 Learning the ESM

In order to learn a model of the ESM, we connected it to LearnLib [29], a
state-of-the-art tool for learning Mealy machines developed at the University
of Dortmund. A Mealy machine is a tuple M = 〈I,O,Q, q0, δ, λ〉, where I is a
finite set of input symbols, O is a finite set of output symbols, Q is a finite set
of states, q0 ∈ Q is an initial state, δ : Q × I → Q is a transition function,
and λ : Q × I → O is an output function. The behavior of a Mealy machine is
deterministic, in the sense that the outputs are fully determined by the inputs.
Functions δ and λ are extended to accept sequences in the standard way. We say
that Mealy machines M = 〈I,O,Q, q0, δ, λ〉 and M ′ = 〈I ′, O′, Q′, q′

0, δ
′, λ′〉 are

equivalent if they generate an identical sequence of outputs for every sequence of
inputs, that is, if I = I ′ and, for all w ∈ I∗, λ(q0, w) = λ′(q′

0, w). If the behavior
of an SUT is described by a Mealy machine M then the task of LearnLib is to
learn a Mealy machine M ′ that is equivalent to M .

3.1 Experimental Set-Up

A clear interface to the ESM has been defined in RRRT. The ESM defines
ports from which it receives a predefined set of inputs and to which it can send a
predefined set of outputs. However, this interface can only be used within RRRT.
In order to communicate with the LearnLib software a TCP connection was set
up. An extra capsule was created in RRRT which connects to the ports defined
by the ESM. This capsule opened a TCP connection to LearnLib. Inputs and
outputs are translated to and from a string format and sent over the connection.
Before each membership query, the learner needs to bring the SUT back to its
initial state. This means that LearnLib needs a way to reset the SUT.

Some inputs and outputs sent to and from the ESM carry parameters. These
parameters are enumerations of statuses, or integers bounded by the number of
functions connected to the ESM. Currently LearnLib cannot handle inputs with
parameters; therefore, we introduced a separate input action for every parameter
value. Based on domain knowledge and discussions with the Océ engineers, we
could group some of these inputs together and reduce the total number of inputs.
When learning the ESM using one function, 83 concrete inputs are grouped into
four abstract inputs. When using two functions, 126 concrete inputs can be
grouped. When an abstract input needs to be sent to the ESM, one concrete
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input of the represented group is randomly selected, as in the approach of [2].
This is a valid abstraction because all the inputs in the group have exactly
the same behavior in any state of the ESM. No other abstractions were found
during the research. After the inputs are grouped a total of 77 inputs remain
when learning the ESM using 1 function, and 105 inputs remain when using 2
functions.

It was not immediately obvious how to model the ESM by a Mealy machine,
since some inputs trigger no output, whereas other inputs trigger several outputs.
In order to resolve this, we benefitted from the run-to-completion execution
model used in RRRT. Whenever an input is sent all the outputs are collected
until quiescence is detected. Next all the outputs are concatenated and are sent
to LearnLib as a single aggregated output. In model-based testing, quiescence is
usually detected by waiting for a fixed timeout period. However, this causes the
system to be mostly idle while waiting for the timeout, which is inefficient. In
order to detect quiescence faster, we exploited the run-to-completion execution
model used by RRRT: we modified the ESM to respond to a new low-priority
test input with a (single) special output. This test input is sent after each normal
input. Only after the normal input is processed and all the generated outputs
have been sent, the test input is processed and the special output is generated;
upon its reception, quiescence can be detected immediately and reliably.

3.2 Test Selection Strategies

In the ESM case study the most challenging problem was finding counterexam-
ples for the hypotheses constructed during learning.

LearnLib implements several algorithms for conformance testing, one of which
is a random walk algorithm. The random walk algorithm works by first selecting
the length of the test query according to a geometric distribution, cut off at a
fixed upper bound. Each of the input symbols in the test query is then randomly
selected from the input alphabet I from a uniform distribution. In order to find
counterexamples, a specific sequence of input symbols is needed to arrive at the
state in the SUT that differentiates it from the hypothesis. The upper bound
for the size of this search space is |I|n where |I| is the size of the input alphabet
used, and n the length of the counterexample that needs to be found. If this
sequence is long the chance of finding it is small. Because the ESM has many
different input symbols to choose from, finding the correct one is hard. When
learning the ESM with 1 function there are 77 possible input symbols. If for
example the length of the counterexample needs to be at least 6 inputs to iden-
tify a certain state, then the upper bound on the number of test queries would
be around 2 × 1011. An average test query takes around 1 ms, so it would take
about 7 years to execute these test queries.

Augmented DS-Method. In order to reduce the number of tests, Chow [10]
and Vasilevskii [38] pioneered the so called W-method. In their framework a test
query consists of a prefix p bringing the SUT to a specific state, a (random)
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middle part m and a suffix s assuring that the SUT is in the appropriate state.
This results in a test suite of the form PI≤kW , where P is a set of (shortest)
access sequences, I≤k the set of all sequences of length at most k, and W is
a characterization set. Classically, this characterization set is constructed by
taking the set of all (pairwise) separating sequences. For k = 1 this test suite
is complete in the sense that if the SUT passes all tests, then either the SUT
is equivalent to the specification or the SUT has strictly more states than the
specification. By increasing k we can check additional states.

We tried using the W-method as implemented by LearnLib to find coun-
terexamples. The generated test suite, however, was still too big in our learning
context. Fujiwara et al. [14] observed that it is possible to let the set W depend
on the state the SUT is supposed to be. This allows us to only take a subset
of W which is relevant for a specific state. This slightly reduces the test suite
without losing the power of the full test suite. This method is known as the Wp-
method. More importantly, this observation allows for generalizations where we
can carefully pick the suffixes.

In the presence of an (adaptive) distinguishing sequence one can take W
to be a single suffix, greatly reducing the test suite. Lee and Yannakakis [25]
describe an algorithm (which we will refer to as the LY algorithm) to efficiently
construct this sequence, if it exists. In our case, unfortunately, most hypotheses
did not enjoy existence of an adaptive distinguishing sequence. In these cases
the incomplete result from the LY algorithm still contained a lot of information
which we augmented by pairwise separating sequences.

As an example we show an incomplete adaptive distinguishing sequence for
one of the hypothesis in Fig. 5. When we apply the input sequence I46 I6.0 I10

Fig. 5. A small part of an incomplete distinguishing sequence as produced by the
LY algorithm. Leaves contain a set of possible initial states, inner nodes have input
sequences and edges correspond to different output symbols (of which we only drew
some), where Q stands for quiescence.
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I19 I31.0 I37.3 I9.2 and observe outputs O9 O3.3 Q . . . O28.0, we know for sure
that the SUT was in state 788. Unfortunately not all paths lead to a singleton set.
When for instance we apply the sequence I46 I6.0 I10 and observe the outputs
O9 O3.14 Q, we know for sure that the SUT was in one of the states 18, 133,
1287 or 1295. In these cases we have to perform more experiments and we resort
to pairwise separating sequences.

We note that this augmented DS-method is in the worst case not any better
than the classical Wp-method. In our case, however, it greatly reduced the test
suites.

Once we have our set of suffixes, which we call Z now, our test algorithm
works as follows. The algorithm first exhausts the set PI≤1Z. If this does not
provide a counterexample, we will randomly pick test queries from PI2I∗Z,
where the algorithm samples uniformly from P , I2 and Z (if Z contains more
that 1 sequence for the supposed state) and with a geometric distribution on I∗.

Subalphabet Selection. Using the above method the algorithm still failed
to learn the ESM. By looking at the RRRT-based model we were able to see
why the algorithm failed to learn. In the initialization phase, the controller gives
exceptional behavior when providing a certain input eight times consecutively.
Of course such a sequence is hard to find in the above testing method. With this
knowledge we could construct a single counterexample by hand by which means
the algorithm was able to learn the ESM.

In order to automate this process, we defined a subalphabet of actions that
are important during the initialization phase of the controller. This subalphabet
will be used a bit more often than the full alphabet. We do this as follows.
We start testing with the alphabet which provided a counterexample for the
previous hypothesis (for the first hypothesis we take the subalphabet). If no
counterexample can be found within a specified query bound, then we repeat
with the next alphabet. If both alphabets do not produce a counterexample
within the bound, the bound is increased by some factor and we repeat all. This
method only marginally increases the number of tests. But it did find the right
counterexample we first had to construct by hand.

3.3 Results

Using the learning set-up discussed in Sect. 3.1 and the test selection strategies
discussed in Sect. 3.2, a model of the ESM using 1 function could be learned.
After an additional eight hours of testing no counterexample was found and the
experiment was stopped. The following list gives the most important statistics
gathered during the learning:

– The learned model has 3.410 states.
– Altogether, 114 hypotheses were generated.
– The time needed for learning the final hypothesis was 8 h, 26 min, and 19 s.
– 29.933.643 membership queries were required, with on average 35,77 inputs

per query.
– 30.629.711 test queries were required, with on average 29,06 inputs per query.
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4 Verification

To verify the correctness of the model that was learned using LearnLib, we
checked its equivalence with a model that was generated directly from the code.

4.1 Approach

As mentioned already, the ESM has been implemented using Rational Rose
RealTime (RRRT). Thus a statechart representation of the ESM is available.
However, we have not been able to find a tool that translates RRRT models to
Mealy machines, allowing us to compare the RRRT-based model of the ESM
with the learned model. We considered several formalisms and tools that were
proposed in the literature to flatten statecharts to state machines. The first one
was a tool for hierarchical timed automata (HTA) [11]. However, we found it
hard to translate the output of this tool, a network of Uppaal timed automata,
to a Mealy machine that could be compared to the learned model. The second
tool that we considered has been developed by Hansen et al. [18]. This tool
misses some essential features, for example the ability to assign new values to
state variables on transitions. Finally, we considered a formalism called object-
oriented action systems (OOAS) [23], but no tools to use this could be found.

In the end we decided to implement the required model transformations our-
selves. Figure 6 displays the different formats for representing models that we
used and the transformations between those formats. We used the bisimula-
tion checker of CADP [15] to check the equivalence of labeled transition system
models in .aut format. The Mealy machine models learned by LearnLib are rep-
resented as .dot files. A small script converts these Mealy machines to labeled
transition systems in .aut format. We used the Uppaal [6] tool as an editor
for defining extended finite state machines (EFSM), represented as .xml files.
A script developed in the ITALIA project (http://www.italia.cs.ru.nl/) converts
these EFSM models to LOTOS, and then CADP takes care of the conversion
from LOTOS to the .aut format.

The Uppaal syntax is not sufficiently expressive to directly encode the RRRT
definition of the ESM, since this definition makes heavy use of UML [30] concepts

Fig. 6. Formats for representing models and transformations between formats

http://www.italia.cs.ru.nl/
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such as state hierarchy and transitions from composite states, concepts which are
not present in Uppaal. Using Uppaal would force us to duplicate many transitions
and states.

We decided to manually create an intermediate hierarchical EFSM (HEFSM)
model using the UML drawing tool PapyrusUML [24]. The HEFSM model
closely resembles the RRRT UML model, but many elements used in UML state
machines are left out because they are not needed for modeling the ESM and
complicate the transformation process.

4.2 Model Transformations

We explain the transformation from the HEFSM model to the EFSM model
using examples. The transformation is divided into five steps, which are executed
in order: (1) combine transitions without input or output signal, (2) transform
supertransitions, (3) transform internal transitions, (4) add input signals that
do not generate an output, and (5) replace invocations of the next function.

1. Empty transitions. In order to make the model more readable and to make it
easy to model if and switch statements in the C++ code the HEFSM model
allows for transitions without a signal. These transitions are called empty transi-
tions. An empty transition can still contain a guard and an assignment. However
these kinds of transitions are only allowed on states that only contain empty out-
going transitions. This was done to make the transformation easy and the model
easy to read.

In order to transform a state with empty transitions all the incoming and
outgoing transitions are collected. For each combination of incoming transition
a and outgoing transition b a new transition c is created with the source of a as
source and the target of b as target. The guard for transition c evaluates to true
if and only if the guard of a and b both evaluate to true. The assignment of c is
the concatenation of the assignment of a and b. The signal of c will be the signal
of a because b cannot have a signal. Once all the new transitions are created all
the states with empty transitions are removed together with all their incoming
and outgoing transitions.

Figure 7 shows an example model with empty transitions and its transformed
version. Each of the incoming transitions from the state B is combined with
each of the outgoing transitions. This results into two new transitions. The old
transitions and state B are removed.

2. Supertransitions. The RRRT model of the ESM contains many transitions
originating from a composite state. Informally, these supertransitions can be
taken in in each of the substates of the composite state if the guard evaluates to
true. In order to model the ESM as closely as possible, supertransitions are also
supported in the HEFSM model.

In RRRT transitions are evaluated from bottom to top. This means that first
the transitions from the leaf state are considered, then transitions from its parent
state and then from its parent’s parent state, etc. Once a transition for which
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Fig. 7. Example of empty transition trans-
formation. On the left the original version.
On the right the transformed version

Fig. 8. Example of supertransition
transformation. On the left the original
version. On the right the transformed
version

the guard evaluates to true and the correct signal has been found it is taken.
When flattening the statechart, we modified the guards of supertransitions to
ensure the correct priorities.

Figure 8 shows an example model with supertransitions and its transformed
version. The supertransition from state A can be taken at each of A’s leaf states
B and C. The transformation removes the original supertransition and creates a
new transition at states B and C using the same target state. For leaf state C
this is easy because it does not contain a transition with the input signal IP. In
state B the transition to state C would be taken if a signal IP was processed and
the state variable a equals 1. The supertransition can only be taken if the other
transition cannot be taken. This is why the negation of other the guard is added
to the new transition. If the original supertransition is an internal transition the
model needs further transformation after this transformation. This is described
in the next paragraph. If the original supertransition is not an internal transition
the new transitions will have the initial state of A as target.

3. Internal transitions. The ESM model also makes use of internal transitions
in RRRT. Using such a transition the current state does not change. If such a
transition is defined on a composite state it can be taken from all of the substates
and return to the same leaf state it originated from. If defined on a composite
state it is thus also a supertransition. This is also possible in the HEFSM model.
In order to transform an internal transition it is first seen as a supertransition
and the above transformation is applied. Then the target of the transition is
simply set to the leaf state it originates from. An example can be seen in Fig. 8.
If the supertransition from state A is also defined to be an internal transition the
transformed version on the right would need another transformation. The new
transitions that now have the target state A would be transformed to have the
same target state as their current source state.

4. Quiescent transitions. In order to reduce the number of transitions in the
HEFSM model quiescent transitions are added automatically. For every state all
the transitions for each signal are collected in a set T . A new self transition a is



80 W. Smeenk et al.

added for each signal. The guard for transition a evaluates to true if and only
if none of the guards of the transactions in T evaluates to true. This makes the
HEFSM input enabled without having to specify all the transitions.

5. The next function. In RRRT it is possible to write the guard and assignment
in C++ code. It is thus possible that the value of a variable changes while an
input signal is processed. In the HEFSM however all the assignments only take
effect after the input signal is processed. In order to simulate this behavior the
next function is used. This function takes a variable name and evaluates to the
value of this variable after the transition.

4.3 Results

Figure 9 shows a visualization of the learned model that was generated using
Gephi [5]. The large number of states (3.410) and transitions (262.570) makes it
hard to visualize this model. Nevertheless, the visualization does provide insight
in the behavior of the ESM. The three protrusions at the bottom of Fig. 9 cor-
respond to deadlocks in the model. These deadlocks are “error” states that are
present in the ESM by design. According to the Océ engineers, the sequences of
inputs that are needed to drive the ESM into these deadlock states will always
be followed by a system power reset. The protrusion at the top right of the figure
corresponds to the initialization phase of the ESM. This phase is performed only

Fig. 9. Final model of the ESM.
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once and thus only transitions from the initialization cluster to the main body
of states are present.

During the construction of the RRRT-based model, the ESM code was thor-
oughly inspected. This resulted in the discovery of missing behavior in one tran-
sition of the ESM code. An Océ software engineer confirmed that this behavior
is a (minor) bug, which will be fixed. We have verified the equivalence of the
learned model and the RRRT-based model by using CADP [15].

5 Conclusions and Future Work

Using an extension of the Lee and Yannakakis algorithm for adaptive distin-
guishing sequences [25], we succeeded to learn a Mealy machine model of a piece
of widely used industrial control software. Our extension of Lee and Yannakakis’
algorithm is rather obvious, but nevertheless it appears to be new. Preliminary
evidence suggests that it outperforms existing conformance testing algorithms.
We are currently performing experiments in which we compare the new algo-
rithm with other test algorithms on a number of realistic benchmarks.

There are several possibilities for extending the ESM case study. To begin
with, one could try to learn a model of the ESM with more than one function.
Another interesting possibility would be to learn models of the EHM, ACM
and other managers connected to the ESM. Using these models some of the
properties discussed by Ploeger [31] could be verified at a more detailed level. We
expect that the combination of LearnLib with the extended Lee and Yannakakis
algorithm can be applied to learn models of many other software components.

In the specific case study described in this article, we know that our learn-
ing algorithm has succeeded to learn the correct model, since we established
equivalence with a reference model that was constructed independently from
the RRRT model of the ESM software. In the absence of a reference model,
we can never guarantee that the actual system behavior conforms to a learned
model. In order to deal with this problem, it is important to define metrics that
quantify the difference (or distance) between a hypothesis and a correct model
of the SUT, and to develop test generation algorithms that guarantee an upper
bound on this difference. Preliminary work in this area is reported in [36].

Acknowledgments. We thank Lou Somers for suggesting the ESM case study and
for his support of our research. Fides Aarts and Harco Kuppens helped us with the use
of LearnLib and CADP, and Jan Tretmans gave useful feedback.
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Abstract. In this work we address the problem of model checking a
desired property specified in Computation Tree Logic (CTL) in the pres-
ence of partial information. The Kripke Modal Transition System (KMTS)
is used for modelling due its capacity to represent indefinitions explicitly
which enables a KMTS interpretation as a set of Kripke structures. In
this interpretation a specific model checking algorithm is required that
can return one of the three possible values: true when all Kripke models
of the set satisfy the property, false when no Kripke models of the set
satisfy the property and indefinite when some models satisfy and oth-
ers do not. To the best of our knowledge the literature lacks a KMTS
model checking algorithm that fits this interpretation and in this paper
we present an algorithm based on a game approach called a Contraction
Model Checking algorithm for this purpose.

Keywords: Kripke Modal Transition System (KMTS) · Model checking
game · Partial information

1 Introduction

In this work, we address the problem of verifying whether a model of a system in
the presence of partial information satisfies a required property. It is desirable to
express partial information explicitly, mainly in the preliminary phases of system
development, in order to better give support to the evolution of the model as
new information is acquired.

Model checking tools use algorithms that in general are defined over Kripke
structures that do not express partial information explicitly. However, 3-valued
model checking has been proposed which returns an undetermined value besides
True and False to work with modal transition systems which express indetermi-
nations explicitly. An example of such a structure is the Kripke Modal Transition
System - KMTS [8].
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The Kripke Modal Transition System structures express indetermination in
states and in transitions, which induce a set of possible Kripke models by trans-
forming indeterminations into determinations. In this work we propose a KMTS
model checking algorithm according to this interpretation. This KMTS model
checking algorithm should consider three possible results when verifying a prop-
erty: true (T ) when all Kripke models of the set satisfy the property, false (F )
when no Kripke models of the set satisfy the property and indefinite (⊥) when
some models satisfy and others do not. In [5], Grumberg proposes a 3-valued
model checking algorithm based on games to verify CTL properties over KMTS
using Kleene three-valued logic [8,10]. The algorithm uses a colouring function
over a game board for model checking. We take this algorithm as a reference
to develop the model checking algorithm presented in this paper. However, the
interpretation of a KTMS considered in [5,11] is different from ours. There a
KMTS is interpreted as an abstraction of a concrete Kripke structure and the
Kleene three valued logic is suitable for this. In interpreting a KMTS as a set of
Kripke models, however, we cannot reason with this logic because the ⊥ value
will not be compositional over conjunctions and disjunctions, i.e., if ϕ is ⊥ and
ψ is ⊥, ϕ ∧ ψ is not necessarily ⊥.

In order to achieve a model checking that fits our interpretation, we consider
the truth value of a formula in the model checking process represented as a set
of KMTSs. Over truth values (sets of KMTS models) of two formulas ϕ and ψ
we define a contraction operation that can calculate the truth value of formulas
composed of ϕ and ψ. A proper colouring function is defined over a game board
using this contraction operation.

The initial motivation of this work is to support the framework for KMTS
revision combined with a model checking game proposed in [6], where a KMTS
is interpreted as a set of Kripke models. The algorithms for revision in [6] took as
reference the Grumberg 3-valued model checking game and can only give partial
results because of the difference in semantics reported above. Our Contraction
Model Checking algorithm solves this problem enabling a KMTS complete revi-
sion. We forecast that this algorithm can also be used in other contexts and can
be adjusted to other logics unlike CTL.

With regards to the organization of this paper, in Sect. 2 we present CTL,
Kripke structures and KMTS interpreted as a set of CTL models. Section 3
presents the semantics of CTL w.r.t KMTS interpreted as a set of Kripke struc-
tures. In Sect. 4 we present KMTS set operations, including the contraction
operation. We present in Sect. 5 our Contraction Model Checking and finally in
Sect. 6 we present related works and make some final considerations.

2 Computation Tree Logic and Kripke Structures

Computation Tree Logic (CTL) [3,9] is a temporal logic that presupposes a
branched representation of the future over sequences of states of a Kripke struc-
ture which forms a computation tree. Path quantifiers can be used to make
reference to a future or all futures.
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Definition 1. A Kripke structure is a tuple K = (AP, S, S0, R, L) where AP
is a set of atomic propositions; S is a finite set of states, S0 ⊆ S is the set of
initial states, R ⊆ S × S is the transition relation over S, and L : S → 2AP is a
labelling function of truth assignment over states.1

We denote a transition (s, s′) ∈ R of a Kripke structure K by s → s′. Fur-
thermore, to inform that s → s′ belongs to the set transitions of K we write
s → s′ ∈ K.

Definition 2. Let l be a literal. A CTL formula φ in its negation normal formal
is defined as follows:

φ ::= � | F | l | (φ ∨ φ) | (φ ∧ φ) | EXφ | AXφ |
E[φUφ] | A[φUφ] | E[φRφ] | A[φRφ]

In Definition 2, A and E are path operators meaning for all paths and exists
a path, respectively. The operators X,U and R mean, respectively, next state,
until (in the sense that the left φ must hold along the path until the right
φ holds) and release (the until dual operator). Excluding the conjunction and
the disjunction, all the other operators must be bound by path operators. The
complete semantics of the CTL formulas can be found in [3,9]. As the CTL
semantics are defined over Kripke structures, we will also call these structures
CTL models.

2.1 Kripke Modal Transition System

The Kripke Modal Transistion System is capable of representing incomplete
system information explicitly. A KMTS has two kinds of transitions, must tran-
sitions and may transitions, that express transitions that must occur (certain
behaviour) and transitions that may occur (the behaviour is uncertain) in the
system. Incomplete information can be also expressed in the states of a KMTS,
because in any state of the model an atomic property can be defined or undefined
(uncertain state).

Definition 3. Let AP be a set of atomic propositions and Lit = AP ∪{¬p | p ∈
AP} the set of literal over AP . A Kripke modal transition system (KMTS) is a
tuple M = (AP, S,R+, R−, L), where S is a set of finite sates, R+ ⊆ S × S and
R− ⊆ S × S are transition relations such that R+ ⊆ R−, and L : S → 2Lit is a
label function, such that for all state s and p ∈ AP , at most one between p and
¬p occurs.

In the definition above the transitions R+ and R− correspond to the transi-
tions must and may respectively.
1 Although the CTL semantics consider Kripke structures with total relation transi-
tion, such a requirement can be released and we assume a Kripke structure with a
partial transition relation instead.
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2.2 KMTS as a Set of Kripke Structures

In [6] the authors interpret a KMTS as a set of Kripke structures. According to
this interpretation, a (si, sj) may transition can lead to two CTL models, one
with a (si, sj) transition and another without this transition, and an indefinite
literal l in a state si can lead to two CTL models: one which has l labelled in the
correspondent state si and another one with ¬l labelled in si. The authors define
a KMTS expansion in CTL models with respect to all their indetermination
leading to an exponential set with 2m Kripke structures, where m is the number
of indeterminations.

Fig. 1. Expansion K(M) of the KMTS M. The dashed arrows represent may transitions
and the solid ones represent must transitions.

Let M be a KMTS, we denote by K(M) the set of Kripke structures repre-
sented by M. Figure 1 illustrates a KMTS M and its expansion set K(M). Since
the state s1 of M is neither labelled with m nor ¬m, and the KMTS has two
may transitions (s0 → s1 and s0 → s2), M leads to eight CTL models.

Definition 4. Let M1 and M2 be two KMTSs. We say M1 is an instance of M2

denoting by M1 
 M2 iff K(M1) ⊆ K(M2).

An instance of a KMTS M represents a subset of Kripke structures from
K(M) and in order to represent this subset, an instance of M can be addressed.
To do so, we use some change operations that change a KMTS M into an instance
of it. We argue that sets of instances represented by change operations have some
desired properties which allow the definition of some set operations, defined in
Sect. 4, such as the contraction operation which are the key for the contraction
model checking.

There are 3 primitive change operations to generate KMTS instances:

P1 (s, s′): which removes the pair (s, s′) from the relation R−

P2 (s, s′): which transforms (s, s′) of R− to (s, s′) of R+

P3 (s, l): which assigns a literal l to the state s if l is undefined in L(s)
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As for example, the application of the operation P2(s0, s2) over the KMTS
M presented in Fig. 1 generates a KMTS that exactly represents the Kripke
structures k1, k2, k3 and k4 presented in the same figure. Likewise, the application
of the operations P2(s0, s2) and P3(s1,¬m) generates a KMTS that exactly
represents the Kripke structures k2 and k3.

The application of a change over a KMTS is sometimes not encouraged. For
example, we cannot apply the operations P3(s, l) and P3(s,¬l) over a KMTS
nor can we apply P1(s, s′) and P2(s, s′) because we cannot define a KMTS that
has a transition s → s′ that belongs to the set R+, but it does not belong to the
set R−. We call such operations complement operations.

Definition 5. Let p a primitive operation, the complement operation of p denoted
by ¬p is defined as follows:

(i) p = P3(s, l) iff ¬p = P3(s,¬l)
(ii) p = P1(s, s′) iff ¬p = P2(s, s′)

We say that two set of changes are not compatible if both have at least a
complement primitive operation of the another one.

Definition 6. A set X of changes is not compatible with a set Y of changes,
denoting by X �� Y , iff exists an operation p ∈ X such that ¬p ∈ Y .

3 Semantics of CTL with Respect to KMTS

In this section we consider some notations, definitions and properties used to
define the semantics of CTL for KMTS interpreted as a set of Kripke structures
which is presented at the end of this section.

Definition 7. Let M be a KMTS. The set of M states reachable from a state
s ∈ S of M is the set

−→
S (s) = {s′ ∈ S|s → s′ ∈ R−}.

Definition 8. Let M be a KMTS, s → s′ ∈ R− a may transition of it. The
subset of Kripke structures in K(M) that does not have the transition s → s′ is
the set

[
R/

]
M

(s, s′) = {k ∈ K(M) | s → s′ �∈ k}.
Definition 9. Let M be a KMTS and ϕ a CTL formula. The subset of Kripke
structures represented by M that satisfies ϕ starting at a state s ∈ S is the set[
ϕ
]s

M
= {k ∈ K(M) | k, s |= ϕ}.

Definition 10. Let M be a KMTS and ϕ a CTL formula. We define the sets
successive union (

[⋃ ]s

M
(ϕ)) and successive intersection (

[ ⋂ ]s

M
(ϕ)) as follows:

[ ⋃]s

M
(ϕ) =

⋃

s′∈−→
S (s)

([
ϕ
]s′

M
\ [

R/
]
M

(s, s′)
)
;

[⋂ ]s

M
(ϕ) =

⋂

s′∈−→
S (s)

([
ϕ
]s′

M
∪ [

R/
]
M

(s, s′)
)
.
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The set successive union captures all the Kripke structures represented by M
that satisfy ϕ starting at a state s′ reachable from a state s through the transition
s → s′, excluding those ones that do not have such a transition. On the other
hand, the set successive intersection captures all Kripke structures that satisfy ϕ
starting at every state s′ reachable from s through the transition s → s′. Indeed,
the sets successive union and successive intersection capture those models that
satisfy the CTL formulas EXϕ and AXϕ, respectively.

Proposition 1. Let M be a KMTS, s a state of it and ϕ a CTL formula. A
Kripke structure k belongs to

[ ⋃ ]s

M
(ϕ) iff k ∈ K(M) and k, s |= EXϕ.

Proof. k, s |= EXϕ iff ∃s → s′ ∈ k s.t k, s′ |= ϕ (I).

“⇒” From Definition 9, we have ∀k ∈ [
ϕ
]s

M
; k, s |= ϕ and k ∈ K(M). So,

∀k ∈ ([
ϕ
]s′

M
\ [

R/
]
M

(s, s′)
)
; k, s′ |= ϕ and s → s′ ∈ k (II). Thus, from

(II) and (I), we have ∀k ∈ ([
ϕ
]s′

M
\ [

R/
]
M

(s, s′)
)
; k, s |= EXϕ. This way,

∀k ∈ ⋃

s′∈−→
S (s)

([
ϕ
]s′

M
\[

R/
]
M

(s, s′)
)
; k, s |= EXϕ and k ∈ K(M). Therefore,

∀k ∈ [⋃ ]s

M
(ϕ); k, s |= EXϕ and k ∈ K(M).

“⇐” Let us suppose k, s |= EXϕ and k ∈ K(M). From (I), ∃s → s′ ∈ k, k, s′ |=
ϕ. Thus, k ∈ [

ϕ
]s′

M
and k �∈ [

R/
]
M

(s, s′). So, k ∈ [
ϕ
]s′

M
\ [

R/
]
M

(s, s′).

Therefore, k ∈ ⋃

s′∈−→
S (s)

[
ϕ
]s′

M
\ [

R/
]
M

(s, s′) and k ∈ [ ⋃ ]s

M
(ϕ).

Definition 11. The semantics of a CTL formula ϕ in its negation normal form
w.r.t a KMTS is presented in Table 1.

Table 1. Semantics of a CTL formula ϕ w.r.t a KMTS M .

Formula � F ⊥
‖l‖M (s) l ∈ L(s) ¬l ∈ L(s) Otherwise

‖ϕ1 ∧ ϕ2‖M (s)
[
ϕ1
]s
M

∩ [ϕ2
]s
M

= K(M)
[
ϕ1
]s
M

∩ [ϕ2
]s
M

= ∅ Otherwise

‖ϕ1 ∨ ϕ2‖M (s)
[
ϕ1
]s
M

∪ [ϕ2
]s
M

= K(M)
[
ϕ1
]s
M

∪ [ϕ2
]s
M

= ∅ Otherwise

‖EXϕ‖M (s)
[⋃ ]s

M
(ϕ) = K(M)

[⋃ ]s
M

(ϕ) = ∅ Otherwise

‖AXϕ‖M (s)
[⋂ ]s

M
(ϕ) = K(M)

[⋂ ]s
M

(ϕ) = ∅ Otherwise

‖E[ϕ1Uϕ2]‖M (s)
[
ϕ2
]s
M

∪ ([ϕ1
]s
M

∩[⋃ ]s
M

(E[ϕ1Uϕ2])
)
=

K(M)

[
ϕ2
]s
M

∪ ([ϕ1
]s
M

∩[⋃ ]s
M

(E[ϕ1Uϕ2])
)
=

∅

Otherwise

‖A[ϕ1Uϕ2]‖M (s)
[
ϕ2
]s
M

∪ ([ϕ1
]s
M

∩[⋃ ]s
M

(A[ϕ1Uϕ2])
)
=

K(M)

[
ϕ2
]s
M

∪ ([ϕ1
]s
M

∩[⋃ ]s
M

(A[ϕ1Uϕ2])
)
=

∅

Otherwise

‖E[ϕ1Rϕ2]‖M (s)
[
ϕ2
]s
M

∩ ([ϕ1
]s
M

∪[⋃ ]s
M

(E[ϕ1Uϕ2])
)
=

K(M)

[
ϕ2
]s
M

∩ ([ϕ1
]s
M

∪[⋃ ]s
M

(E[ϕ1Uϕ2])
)
=

∅

Otherwise

‖A[ϕ1Rϕ2]‖M (s)
[
ϕ2
]s
M

∩ ([ϕ1
]s
M

∪[⋃ ]s
M

(A[ϕ1Uϕ2])
)
=

K(M)

[
ϕ2
]s
M

∩ ([ϕ1
]s
M

∪[⋃ ]s
M

(A[ϕ1Uϕ2])
)
=

∅

Otherwise



90 J.S. Ribeiro and A. Andrade

Proposition 2. Let M be a KMTS and ϕ a CTL formula, then

‖ϕ‖M (s) =

⎧
⎨

⎩

� iff ∀k ∈ K(M); k, s |= ϕ = T ;
F iff ∀k ∈ K(M); k, s |= ϕ = F ;
⊥, otherwise

Proof. It follows straight from the semantics.

4 KMTS Operations

The CTL semantics over KMTS interpreted as a set of Kripke structure deals
directly with set operations. Thus, in order to decide if a set of Kripke structures
represented by a KMTS M satisfies a CTL property, we should decide if every
CTL model in K(M) satisfies such a property. However, it is not necessary
because we can deal directly with M, instead of K(M). Therefore, in this section,
we define set operations over KMTSs and we prove some properties and some
limitations as well.

We write M(X) to denote an instance generated by the application of a set
X of changes over a KMTS M .

Definition 12. Let M,M1,M2 be KMTSs, X1 and X2 two set of changes, such
that M1 
 M,M2 
 M and M1 = M(X1),M2 = M(X2). We define the opera-
tions intersection, union and difference, with respect to KMTS as:

Union: M1 � M2 = {M1,M2}

Intersection: M1 � M2 =
{ ∅, iff X1 �� X2

{M(X1 ∪ X2)}, otherwise

Difference: M1 \ M2 =

{ {M1} iff X1 �� X2⋃

pi∈(X2\X1)

{M
(
X1 ∪ {¬pi}

)} otherwise

The difference operation M1\M2 generates a set of KMTS such that the CTL
models represented by them are present in K(M1) but are not present in K(M2).
As M1 and M2 are instances of M, i.e., they can be defined from changes over
M then the models resulting from the difference can be defined from the set of
changes that generate M1 and M2, i.e., X1 and X2, respectively. As a result, if X1

and X2 are not compatible the intersection between the models is empty and the
difference is M1. If they are compatible, then the models resulting from the dif-
ference are obtained from M by the set of changes X1 (X1 generates M1 from M)
together with the complementary primitive operations in X2 which do not belong
to X1 (X1 ∪ {¬pi}) to eliminate the intersection between K(M1) and K(M2).
For example, for the KMTS M2 and M3 illustrated in Fig. 2, M2 \ M3 generates
a set containing only the top Kripke structure of the set K(M2). This model is
defined by the set of changes X ′ = {P1(s0, s2), P2(s0, s1)} ∪ {P3(s1,m)} since
M2 = M({P1(s0, s2), P2(s0, s1)}) and M3 = M({P2(s0, s1), P3(s1,¬m)}) and
P3(s1,¬m) does not belong to X1.
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The intersection operation M1�M2 generates a single set with a KMTS that
only represents the CTL models in K(M1) ∩ K(M2). The union operation is
simple and no further explanation is needed.

Fig. 2. Instances M1, M2, M3 and M4 from the KMTS M illustrated in the Fig. 1 and
the expansion sets K(M1), K(M2) and K(M3).

Sometimes the set of Kripke structures represented by two KMTS can be
represented by a single KMTS. For example, the expansion set of the KMTS
M4 in Fig. 2 is exactly the union of the expansion set of the KMTSs M1 and
M2, i.e., K(M4) = K(M1) ∪ K(M2), as a result {M1,M2} can be expressed by
a single KMTS, which is in this case M4. In this sense, we define a contraction
operation which is a specific kind of union for these cases. If two KMTSs cannot
be contracted into a single one, then the contraction operation will be equivalent
to the union operation.

Definition 13. Let M be a KMTS, M1 and M2 instances of M generated,
respectively, by the set of changes X1 and X2. The contraction operation, denoted
by M1 �+ M2, is defined as:

M1 �+ M2 =

⎧
⎪⎪⎨

⎪⎪⎩

{M(X1 ∩ X2)} iff X1 ⊆ X2 or X2 ⊆ X1 or
∃p ∈ X1 s.t ¬p ∈ X2 and
X1 \ {p} = X2 \ {¬p}

{M1, M2} otherwise

In order to contract two models into a single one, it is necessary (but not
enough) that both models have at most one complementary operation w.r.t each
other, otherwise the contraction operation results in a set containing exactly the
two input models. We explain the contraction operation through an example. Let
us suppose KMTSs M1 = M(X1) and M2 = M(X2) such that X1 ⊆ X2. Thus,
X1 ∩ X2 = X1 and K(M2) ⊆ K(M1) which implies that the contraction results
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in M1, i.e., M1 �+ M2 = M(X1 ∩X2) = M1. Consider now X1 and X2 such that
X1 has among all its operations only one operation p which is complementary
with an operation ¬p in X2 and X1 is equal to X2 unless this operation. The
operation p or ¬p can be applied over M leading to the instances M1 = M(X1)
and M2 = M(X2). So, this case reduces to the previous one, i.e., the contraction
result is M(X1 ∩ X2) since K(M(X1 ∩ X2)) = K(M1) ∪ K(M2).

In Fig. 2, the model M1 can be contracted with M2, i.e., M1 �+ M2 = M4

because X1 \ {P2(s0, s2)} = X2 \ {P1(s0, s2)} and P1(s0, s2) is complementary
with P2(s0, s2). Furthermore, the model M1 can be contracted with M4 and the
model M2 can be contracted with M4, both resulting in the model M4. However,
M3 cannot be contracted with any other model in Fig. 2.

4.1 Dealing with Sets of KMTSs

To deal with a set of CTL models, we can consider a KMTS whose expansion
represents these models. However, a single KMTS sometimes is not capable of
representing a specific set of CTL models and in order to perform such a task a
set of KMTSs can be addressed. Computationally, a set of KMTSs is far more
convenient because it is preferable to deal directly with a KMTS instead of its
expansion set. In order to achieve our contraction model checking we define in
this section a partition set and a full partition set over a set of KMTSs and we
define some operations over them.

Let M be a KMTS and Γ a set of instances of M. It is always possible to
construct a set Γp such that each element in it is an instance of M and the
intersection of any two instances of Γ is always empty.

Definition 14. Let M be a KMTS and Γ a set of instances of it. Γ is a Partition
Set (PS) of M iff every model in Γ is an instance of M and ∀M1,M2 ∈ Γ,M1 �
M2 = ∅.
Definition 15. Let Γ and Γ ′ be two set of instances of a KMTS M. Γ and Γ ′

are equivalent, denoting by Γ ≡ Γ ′, iff
⋃

Mi∈Γ

K(Mi) =
⋃

Mi∈Γ ′
K(Mi).

Definition 16. Let Γ1 and Γ2 be two sets of instances of a KMTS. We define
the difference (\\), intersection (�·) and union (�· ) operations as:

Γ1\\Γ2 =
⋃

Mi∈Γ1,
Mk∈Γ2

Mi \ Mk Γ1 �· Γ2 =
⋃

Mi∈Γ1,
Mk∈Γ2

Mi � Mk

Γ1 �· Γ2 = Γ1 ∪ PS(Γ2\\(Γ1 �· Γ2))

where PS(Γ ) is a Partition Set equivalent to a set of instances Γ .

Let K(Γ ) be the set of all Kripke structures represented by every KMTS in
Γ . The difference, intersection and union operation in Definition 16 calculates
respectively the difference, intersection and union of the set with models sets
represented by these KMTSs. In relation to the intersection operation defined
over two KMTSs sets Γ1 and Γ2 it results in a set Γ ′ such that K(Γ ′) = K(Γ1)∩
K(Γ2). The union and difference operations are interpreted similarly.
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Proposition 3. If Γ1 and Γ2 are two PS of a KMTS M, then Γ1 �· Γ2 and
Γ1 �· Γ2 is a PS.

Proof. It follows straight from the Definition 16.

Theorem 1. For any set of instances Γ of a KMTS M there is always a PS Γ ′

such that Γ ≡ Γ ′.

Proof. Let M be a KMTS, Γ a set of instances of M and M1 a M instance
in Γ . Create the set Γ1 = Γ\\ {M1}. Then, ∀Mi ∈ Γ1,Mi � M1 = ∅ by the
difference operation and Γ1 ∪ {M1} ≡ Γ . Choose an element M2 ∈ Γ1, then
the set Γ ′

1 = {M1,M2} is a PS. Create now the set Γ2 = Γ1\\ {M2}, then
∀Mi ∈ Γ2, Mi � M2 = ∅ and Mi � M1 = ∅ and Γ2 ∪ {M1,M2} ≡ Γ . Choose
an element M3 in Γ2, then {M1,M2,M3} is a PS and Γ3 ∪ {M1,M2,M3} ≡ Γ .
Following this construction we achieve at the end a PS equivalent to Γ .

If a PS of a KMTS M represents all the CTL models of K(M), then we say
such a PS is a Full Partition Set.

Definition 17. Let M be a KMTS and Γ a set of instances of it. We say Γ is
a Full Partition Set (FPS) of M iff Γ is a PS and K(M) =

⋃

Mi∈Γ

K(Mi).

Corollary 1. If Γ is a set of instances of a KMTS M and K(M) =
⋃

Mi∈Γ

K(Mi),

then there is a FPS Γ ′ such that Γ ≡ Γ ′.

Every KMTS M can be obtained from a finite number of contraction opera-
tions over a FPS of M. In order to prove it, we first define a Tree Partition Set
and show how to represent a PS over this structure.

4.2 Tree Partition Set

A Tree Partition Set (TPS) is a binary tree that represents a partition set Γ from
a KMTS M. Each node v of a TPS is labelled by a primitive change operation
LT (v) applicable over M.

Definition 18. A Tree Partition Set (TPS) of a KMTS M is a tuple TM =
(N, v0, E, LT , Lf,Rg), where N is a finite set of nodes, v0 ∈ N is the root node,
E ⊆ N × N is the set of edges, LT is a partial labelling function that maps
each node in N to a primitive operation applicable over M such that v0 is the
only node of a TPS that is not defined in LT ; and Lf , Rg are partial functions
that map a node to its left and right child respectively. Furthermore, for every
non-end node v ∈ N , there are nodes v1, v2 ∈ N such that Lf(v) = v1 and
Rg(v) = v2 iff LT (v1) = p and LT (v2) = ¬p.

Let π = v0 → v1 → · · · → vn be a path between the nodes v0 and vn in a
TPS, we denote by π \ v0 the subpath v1 → · · · → vn of π, and v ∈ π to denote
that a node v belongs to a path π. We highlight that each operation that labelled
a vertice along a path v0 to vn follows from an indetermination of the KMTS.
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Definition 19. Let M a KMTS, TM = (N, v0, E, LT , Lf,Rg) a TPS. We define
the operation Change(vn) that maps the single path π = v0 → v1 → · · · → vn

between v0 and any node vn ∈ TM to a set of changes applicable over M as:

Change(vn) =
⋃

vk∈π\v0

{LT (vk)}

A change from a node v as defined above considers all primitive changes that
occur along the single path from the root to v excluding the root node.

The Change(v) of any node in a TPS TM when applied over a KMTS M
generates an instance of it and we say a node represents an instance of M. The
set of instances represented by every end-node of a TPS is a PS.

P3(s0, s2)

v3

P1(s0, s2)

v4

P5(m, s1)

v5

P5(¬m, s1)

v6

P5(¬m, s1)

v7

P1(s0, s2)

v8

P1(s0, s1)

v1

P3(s0, s1)

v2

v0

¬m
s0

¬m

s2

s1

¬m
s0

¬m

s2

¬m

s1

¬m
s0

¬m

s2

m

s1

¬m
s0

¬m

s2

¬m

s1

M1 : M2 :

M4 :M3 :

Fig. 3. A Tree Partition Set that represents the PS {M1, M2, M3, M4}.

The Fig. 3 illustrates a PS Γ from the KMTS M presented in Fig. 1 and a
TPS TM that represents Γ . M1,M2,M3 and M4 are generated from changes of
TPS end-nodes, i.e., by the application of Change(v3), Change(v7), Change(v6)
and Change(v8) over M, respectively.

Lemma 1. Let Γ be a PS w.r.t a KMTS M represented by TPS TM and M ′

an instance of M. If Γ ∪ {M ′} results in a PS, then there is a PS Γ ′ equivalent
to it that can be also represented by a TPS.

Proof. From the contraction operation we have that for any set of change X
and primitive operation p, M(X ∪ {p} �+ M(X ∪ {¬p}) = M(X) (I). Create
a TPS T ′

M equal to TM . If M ′ is an instance of M then it is generated from
a set X ′ of changes, i.e., M ′ = M(X ′). Select in T ′

M the following subpath
π = v0 → · · · → vi in such a way Change(vi) ⊂ X ′ and vi has only one child
vi+1 such that LT (vi+1) �∈ X ′ or vi has two children where LT (Lf(vi)) �∈ X ′ and
LT (Rg(vi)) �∈ X ′.

Case 1. vi has only one child vi+1 and LT (vi+1) �∈ X ′. Then there are two
cases: ¬LT (vi+1) ∈ X ′ or ¬LT (vi+1) /∈ X ′.

(a) ¬LT (vi+1) ∈ X ′. Create a node vi+2 to be the other child of vi and add to T ′
M

the following path π1 = v0 → · · · → vi → vi+2 → · · · → v′ such that Change(v′)
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= X ′ and LT (vi+2) = ¬LT (vi+1). Thus, the resulting T ′
M represents the PS

Γ ′ = Γ ∪ {M ′}.
(b) ¬LT (vi+1) �∈ X ′. Let Xi = Change(vi), then Xi ⊂ X ′ and X ′ = Xi ∪ (X ′ \
Xi). Let M ′

1 = M(X ′ ∪ {p}) and M ′
2 = M(X ′ ∪ {¬p}), where p = LT (vi+1).

From (I) we have M ′ = M(X ′) = M(X ′ ∪ {p}) �+ M(X ′ ∪ {¬p}) which means
M ′ = M ′

1�+M ′
2. Thus, the set Γ ′ = Γ∪{M ′

1,M
′
2} and it is equivalent to Γ∪{M ′}

and by hypothesis it is a PS. So, if we represent M ′
1 and M ′

2 in T ′
M then we

achieve a representation of M ′ in T ′
M . To do so, create a node vi+2 to be the other

child of vi and add to T ′
M the path π1 = v0 → . . . vi → vi+2 → · · · → v′ such that

LT (vi+2) = ¬LT (vi+1) and Change(v′) = X ′ ∪{LT (vi+2)}. Thus T ′
M represents

M ′
2. Let X ′

1 = X ′ ∪{LT (vi+1)}, in order to represent M ′
1, we must create a path

π2 = v0 → · · · → vi → vi+1 → · · · → v′ such that Change(v′) = X ′
1. To achieve

this select in T ′
M a subpath π′

2 = v0 → · · · → vi → vi+1 → · · · → vk in such a way
Change(vk) ⊂ X ′

1 and or vk has only one child vk+1 such that LT (vk+1) �∈ X ′
1

or vk has two children where LT (Lf(vk)) �∈ X ′
1 and LT (Rg(vk)) �∈ X ′

1. This
reduces to the cases (1) and (2).

Case 2. vi has two children where LT (Lf(vi)) �∈ X ′ and LT (Rg(vi)) �∈ X ′.
Let Xi = Change(vi), then Xi ⊂ X ′ and X ′ = Xi ∪ (X ′ \ Xi). Let M ′

1 =
M(X ′∪{p}) and M ′

2 = M(X ′ ∪{¬p}), where p = LT (Lf(v1)). From (I) we have
M ′ = M(X ′) = M(X ′ ∪ {p}) �+ M(X ′ ∪ {¬p}) which means M ′ = M ′

1 �+ M ′
2.

Thus, the set Γ ′ = Γ ∪{M ′
1,M

′
2} is is equivalent to Γ ∪{M ′} and by hypothesis it

is a PS. So, we must represent in T ′
M the instances M ′

1 and M ′
2. Let X ′

1 = X ′ ∪
{LT (Lf(vi))} and X ′

2 = X ′ ∪ {LT (Rg(vi))}, in order to represent M ′
1 we must

create a path π1 = v0 → · · · → vi → Lf(vi) → · · · → vj where Change(vj) = X ′
1.

Select in T ′
M a subpath π′

1 = v0 → · · · → vi → Lf(vi) → · · · → vk in such a way
Change(vk) ⊂ X ′

1 and or vk has only one child vk+1 wherein LT (vk+1) �∈ X ′
1, or

vk has two children where LT (Lf(vk)) �∈ X ′
1 and LT (Rg(vk)) �∈ X ′

1. This reduces
to the cases (1) and (2). To represent M2 we proceed simillary as we have done
to M1. Since a path in a TPS is finite, eventually the cases 1 − (b) and 2 will
lead to the case 1 − (a) and then the TPS T ′

M represents the resulting PS Γ ′.

From Lemma 1, we prove that for every PS Γ there is always a PS Γ ′ equiv-
alent to Γ that is represented by a TPS.

Theorem 2. If Γ is a PS w.r.t a KMTS M, then there is always a PS Γ ′

equivalent to Γ which can represented by a TPS TM .

Proof. Let Γ = {M1, . . . , Mn}, each {Mi} is also a PS by definition. From
Lemma 1, there is a PS Γ2 ≡ {M1} ∪ {M2} which can be represented by a TPS.
In addition, a PS Γ3 equivalent to Γ2 ∪ {M3} can also be generated and can be
represented by a TPS as well. Sucessively, a PS Γn ≡ Γn−1 ∪ {Mn} that can be
represented by a TPS can be generated which is equivalent to {M1, . . . , Mn} = Γ .

Theorem 3. Let M be a KMTS and TM = (N, v0, E, LT , Lf,Rg) a TPS that
represents a PS Γ defined from M . If Γ is a FPS then for every non-end node
vk ∈ N and Xk = Change(vk) Mk = M(Xk) can be generated from a finite
number of contraction operations in Γ .
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Proof. The proof is by induction on the structure of TM . Let πk = v0 → · · · → vk

be a path in Tm. If M has m indefinites, then 1 ≤ k ≤ m.

Base case: let πk = v0 → · · · → vk−1 → vk be a longest path of TM . Then, vk

is an end-node. As πk is one of the longest path and Γ is a FPS, then the path
π′

k = v0 → · · · → vk−1 → v′
k belongs to TM , where LT (vk) = ¬LT (v′

k). Let p =
LT (vk), Xk−1 = Change(vk−1). Change(vk) = Xk−1 ∪ {p} and Change(v′

k) =
Xk−1 ∪ {¬p}. So we have M(Xk−1) = M(Xk−1 ∪ {p}) �+ M(Xk−1 ∪ {¬p}).
Therefore, M(Xk−1) is obtained by one contraction operation in Γ .

Induction Step: let us suppose any M(Xk) can be generated by a finite number
of contraction operations. We show that ∀k − 1, M(Xk−1) can be generated
by a finite number of contraction operations as well. The path πk−1 = v0 →
· · · → vk−1 has two children vk and v′

k where LT (vK) = ¬LT (v′
k), due to the

fact Γ is a FPS. Let p = LT (vk), Xk−1 = Change(vk−1), Xk = Change(vk)
and X ′

k = Change(v′
k). Then, Xk = Xk−1 ∪ {p} and X ′

k = Xk−1 ∪ {¬p}. So,
M(Xk−1) = M(Xk)�+M(X ′

k). By the induction hypothesis M(Xk) and M(X ′
k)

can be obtained by a finite number of contraction operations and so is M(Xk−1).

Theorem 3 implies in the Corollary 2 which guarantees that if we have a FPS
of M then it is always possible to produce M from a set of contractions opera-
tions over this FPS. The contraction model checking algorithm uses contractions
operations over partitions sets and when a full partition set is achieved it means
that all Kripke models satisfy the property been verified and consequently M
represents the truth values �. The other truth values are represented by PS
that is not a FPS and in this case if the PS is not empty then it represents the
truth values ⊥ and if is empty it represents the truth values F .

Corollary 2. Let M be a KMTS and Γ a PS of it. If Γ is a FPS then M can
be generated from a finite number of contraction operations in Γ .

Let Γ be a PS and Γ ′ a PS resulting from a finite number of contraction
operations over Γ , we say Γ ′ is a Maximal Partition Set (MPS) if there is no
more contraction applicable over Γ . Therefore, according to Corollary 2 if a PS
is in fact a FPS then its MPS is exactly the single set that contains M . We write
�+(Γ ) to denote the MPS resulting from Γ .

5 The Contraction Model Checking

Some works such as [5,11] propose model checking game approaches, which con-
sist of a game played over a board by two players: ∃ve and ∀belard. The former
tries to prove that the CTL specification holds, whereas the latter tries to refute
the specification. In order to decide the winner of the game (respectively the
model checking result), a colouring algorithm that maps each configuration of
the game board to one truth value is defined. The colour set for the initial con-
figuration of the board is the model checking result. A model checking game
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combined with the contraction operation applied in each configuration of the
game suffices to determine the model checking result to a KMTS interpreted as
a set of CTL models. We call this new approach Contraction Model Checking.

Let M be a KMTS, s0 a state of it and ϕ a CTL formula. The model checking
game for M, s0 |= ϕ is played over a board (game-graph) constructed accord-
ing to the game rules that define the possible moves each player can make in
a configuration it owns. A board is a graph of configurations constructed by
decomposing ϕ in its subformulas following the game rules presented in Fig. 4.
Every configuration of a game-graph belongs to S ×sub(ϕ), where S is the set of
M states and sub(ϕ) is the set of subformulas of ϕ. We denote a configuration
by s � ψ, where ψ is a subformula of ϕ and s is a state of M .

Fig. 4. Game rules for the Model Checking Game

Let G be the game-graph for a KMTS M and CTL formula ϕ. The contrac-
tion model checking is a colouring function χ : V → {�, F,⊥}, where V is the set
of vertices of G, that maps each configuration in G to one truth value. We can
observe that the final truth value is calculated from sets of KMTS models that
represents truth values in the model checking process. The colouring function is
defined over a maximal contraction function δ that maps each configuration of
the game-graph to a maximal PS Γ . The expansion of the KMTSs in this PS is
exactly the set of Kripke structures that satisfy the formula in the respectively
state. As the resulting PS Γ is a MPS, Γ = {M} iff M satisfies ϕ in the respec-
tively input configuration, Γ = ∅ if no CTL model in K(M) satisfies ϕ, and Γ
is a PS different from {M} and ∅ otherwise.

Definition 20. Let M be a KMTS, s and s′ states of M, ϕ a CTL formula
and G the board of the game for the model checking M, s0 |= ϕ. The maximal
contraction function δ is defined recursively as:

δ(s � l) =

⎧
⎪⎨

⎪⎩

{M} iff l ∈ L(s);
∅ iff ¬l ∈ L(s);
{M({P3(s, l)})} otherwise

δ(s � EX ϕ) = �+
( ⊔

s′∈−→
S (s)

· δ(s′ � ϕ) �· {M({P2(s, s′)})})
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δ(s � AX ϕ) = �+
( �

s′∈−→
S (s)

· δ(s′ � ϕ) �· {M({P1(s, s′)})})

δ(ϕ1 ∨ ϕ2) = �+
(
δ(s � ϕ1) �· δ(s � ϕ2)

)

δ(ϕ1 ∧ ϕ2) = �+
(
δ(s � ϕ1) �· δ(s � ϕ2)

)

The configurations that follow from the rules (5) up to (8) have only one
child configuration, thus the value of the function δ in these configurations are
equivalent to the value defined in their single child. Hence, if s � ϕ is a configu-
ration defined from one of the rules between (5) and (8) and s � ψ is the single
configuration reached from it, then δ(s � ϕ) = δ(s � ψ).

Definition 21. Let M be a KMTS, s and s′ states of M, and ϕ a CTL formula.
The contraction model checking is a colouring function χ defined as follows:

χ(s � ϕ) =

⎧
⎪⎨

⎪⎩

� iff δ(s � ϕ) = {M}
F iff δ(s � ϕ) = ∅
⊥ otherwise

6 Conclusions

In this work we developed a model checking game approach for model checking a
KMTS interpreted as a set of CTL models. The works [5,11] interpret a KMTS
as an abstraction of a concrete model to deal with the explosion state problem in
CTL and μ-calculus model checking and define a 3-valued model checking which
we take as reference for our contraction model checking. The works [1,2] also
address the abstraction problem through partial Kripke structures which has
indeterminations only in their states. The work reported in [12] considers the
abstraction approach to deal with partial system specification through partial
Kripke structures w.r.t Linear Tree Logic. In [8] the authors extend this structure
with transitions that represent possibilities defining the KMTS structures. In
[4,7] the authors consider MTS (Modal Transitions Systems) to deal with the
abstraction approach. In these works a Kleene 3-valued logic or an equivalent
interpretation is applied, while for the KMTS interpretation as a set of CTL
models it does not hold. Moreover, none of these approaches interprets a KMTS
as a set of CTL models and to the best of our knowledge no other work considers
this interpretation.

We argue that in order to verify a set of Kripke structures, model checking
a KMTS that represents this set is on average better than model checking each
CTL model at a time in the set. Since the determinations of a KMTS M are
present in all the CTL models M represents, we can determine the truth value
of some property common to all CTL models at once over M and we agree it
can lead to a polynomial algorithm on average case. However, in the worst case
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since a KMTS represents an exponential set of CTL models, model checking a
KMTS as a set of Kripke structures is NP-complete as we have already proven.
Despite this, the presentation of this proof is beyond the scope of this work.
We are investigating polynomial algorithms on average case and we intend to
conclude this investigation providing efficient algorithms for model checking a
KMTS as a set of CTL models in the future.
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Abstract. Requirements analysis for understanding the user’s require-
ments and producing a specification is an important but challenging
activity in software development. In this paper, we discuss how the
activity can be strengthened by means of pattern-based formal spec-
ification construction. We explain the concept of specification pattern
and describe how patterns are treated as knowledge stored on computer
to guide the user in carrying out the analysis of a functional require-
ment. Our approach is characterized by the fact that the user only needs
to work on natural language level while the computer will automatically
select appropriate specification patterns to provide clear instructions on
the action to be taken by the user and to eventually form a formal spec-
ification or expression as a result. We present a software tool and an
experiment to demonstrate the supportability and applicability of our
approach, respectively.

1 Introduction

Requirements analysis is an extremely important activity in software engineering,
but carrying out a quality requirements analysis in practice is usually not easy
[1,2]. Formal methods have been considered as a potential technique for require-
ments analysis through writing formal specifications [3]. A formal specification is
a precise document describing what to be done by the system, but to make it a
cost-effective technique for industry, practitioners are required to have sufficient
skills for writing formal specifications. Unfortunately, this still remains a challenge
in reality [4]. Our experience in collaborations with industry in Japan suggests
that one of the major reasons for this situation be the lack of techniques that can
effectively support the requirements analysis for accurate understanding through
writing formal specifications. Only telling the practitioners a formal notation does
not really address the problem; we must tell them how writing a formal specifica-
tion using the notation can help them understand existing requirements, identify
new but necessary requirements, and express the requirements precisely. Provid-
ing efficient support for these activities with software tools is also essential for
success.

c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 100–115, 2015.
DOI: 10.1007/978-3-319-25423-4 7
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In this paper, we make a contribution by describing a new technique for
requirements analysis through writing formal specifications based on well-defined
specification patterns. We call the technique Pattern-Based Formal Specification
for Requirements Analysis (PBFSRA). The essential idea is that necessary spec-
ification patterns are defined and stored on computer beforehand as knowledge,
where a specification pattern is an expression that tells how a certain require-
ment can be translated into a formal expression or specification. Appropriate
patterns are then selected by the computer based on the analyst’s requests for
expressing functional requirements to provide guidance to the analyst for taking
further actions in clarifying the requirements. Such interactions continue until
every part of the requirement is clarified. As a result, a formal specification or
expression of the requirement will be constructed. The very distinct character-
istic of this technique is that the analyst only needs to work on the natural
language level while the computer understands the analyst’s requests to auto-
matically select appropriate specification patterns from the knowledge base to
offer clear instructions to the analyst for further actions in analyzing the current
level requirement.

The rest of the paper is organized as follows. Section 2 describes the major
ideas of the proposed technique. Section 3 presents the definition of specification
pattern and pattern system. Section 4 discusses pattern knowledge representa-
tion. Section 5 shows an example deriving a formal expression using our app-
roach. Section 6 introduces a tool supporting the proposed technique.
Section 7 reports an experiment for evaluation of the performance of the tech-
nique. Section 8 gives a brief review of related work. Finally, in Sect. 9, we con-
clude the paper and point out future research directions.

2 Major Ideas of PBFSRA

In this section, we explain the principle of our approach, and then illustrate the
procedure of applying the principle. An assumption for our approach to work
in practice is that the analyst understands the formal notation but may not be
good at using it to write formal specifications.

2.1 Principle of PBFSRA

Let us use a simple example to explain the underlying principle of PBFSRA.
Suppose there is a user’s requirement for an Automated Teller Machine (ATM)
to describe a relation between two objects as follows:

Input password must be registered in the bank account file.
Such an informal requirement can be written as part of an operation specification
in natural language, or can merely be a perception in the client’s mind.

To clarify this requirement, the analyst will be guided by the tool we have
built (see Sect. 6) to select an appropriate specification pattern (see Sect. 3 for def-
inition). By consulting with the client, the analyst confirms that the requirement
can be represented by a relation describing that one object is part of another
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object and tells this information to computer. Since a well-defined “part whole”
pattern is suitable for analyzing such a requirement, the pattern is applied by
the computer. This will result in the request for the analyst to clarify what the
input password and bank account file mean. By answering these questions, the
analyst will have to analyze the current requirement, possibly by means of con-
sulting with the client. As a result, the analyst may understand that the input
password is a four-digit natural number and the bank account file is a collection
of customer bank accounts each of which contains a pre-registered password.
After the computer receives these pieces of information in an appropriate man-
ner, another specification pattern will be applied to help clarify the structure of
the bank account file as an unordered collection of composite objects or as an
ordered collection of composite objects. The former can be formalized into a set
of objects while the latter can be formalized into a sequence of objects. Contin-
uing this decomposition process by applying appropriate specification patterns,
the functional details of the requirement will be clarified and a formal specifi-
cation or expression will be automatically derived, see Sect. 5 for more details.
During the whole process, the analyst only needs to work on the natural language
level while the computer works on the specification pattern level to gradually
formalize the informal requirements.

2.2 Procedure of Applying PBFSRA

To realize the principle of PBFSRA above, we must deal with several technical
issues, such as the informal requirements derivation from the client, clarification
of the functional details involved in the requirement, and searching and apply-
ing appropriate specification patterns to provide guidance to the analyst and
construct the formal expression or specification. Figure 1 depicts the procedure
of carrying out requirements analysis and constructing a formal specification
using PBFSRA. Basically, the procedure is divided into two stages. The first
stage called Requirements derivation is for clarifying the informal requirements
in the analyst’s mind through gradually defining the attributes of the related
functions and data types, while the second stage called Requirements transla-
tion is responsible for automatically translating the clarified requirement into
a formal specification. Both stages are performed through interactions between
the analyst and computer where computer produces guidance and the analyst
responds with necessary inputs for the computer. The response will trigger the
computer to produce new guidance for the analyst to take next action in analysis
and formalization. Such a process repeats until a formal specification is achieved.

The foundation for the human-machine interaction process is a specification
pattern system stored on computer. The specification pattern system organizes a
set of specification patterns in a hierarchical structure (see Sect. 3.2 for details)
where each pattern carries two kinds of knowledge for formalizing one kind of
function: derivation knowledge and transformation knowledge. The former sup-
ports requirements derivation and the latter deals with requirements translation.
We adopt attribute tree and hierarchical finite state machine (HFSM) to rep-
resent the above pattern knowledge on computer. The attribute tree is used
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Fig. 1. The procedure of PBFSRA

in derivation knowledge to intuitively show the definition of the requirement
attributes that need to be clarified, which facilitates the analyst’s understanding
on the structure of the intended requirements. HFSM is used to describe other
parts of the derivation knowledge and all transformation knowledge since it is
easy to be applied by machine and maintained using existing tools. From the
next section, we will describe the details of the most important parts of the
PBFSRA technique.

3 Specification Pattern and System

Since the essential concept for the technique is specification pattern and the
specification pattern system, we introduce them first in this section and then
proceed to discuss knowledge representation and application for supporting the
two stages mentioned above in the subsequent sections.

3.1 Specification Pattern

Taking the similar idea from the design pattern [5], a specification pattern shows
how a required function can be shaped into a formal expression. Informally,
a specification pattern is composed of four elements: name, explanation, con-
stituents, and solution, and their role is explained briefly in Table 1.

Table 2 shows a simplified example of the pattern named “part whole” in
which all of the formal expressions are written in SOFL (similar to VDM-SL but
most of the operators defined in various data types, such as set, sequence, and
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Table 1. Structure of specification pattern

name Serving as an unique identity of the pattern

explanation Describing the situation where the pattern can be used

constituents Presenting constituent elements necessary for applying the pattern

solution Defining the rules for transforming requirements into formal
expressions

map types, adopt the prefix-operator syntax. For example, x subset y is written
as subset(x, y)). This pattern provides a template for defining a relation between
an object and a collection of objects, as the explanation part describes. To define
such a relation, two objects, which are element and container, are needed, as
indicated in the constituents part. The solution part tells both the general rule for
forming the relation and the specific rules for choosing the relational operator �
depending on the corresponding operands (or terms). For example, the operator
can be inset if the relation is recognized to define a membership of an element
in a set of elements, but if the single element is recognized as a subset of the
container, then the operator can be subset to define that one set is a subset of
another set.

In general, a specification pattern can be designed to facilitate the construc-
tion of the whole structure of a specification, the structure of a single operation,
data declarations (including type and variable declarations), or a formal expres-
sion, depending on how the four elements of the pattern are defined. For the
sake of space, we only concentrate on the issue of formalizing a requirement into
a formal expression in this paper. The other issues, which are much simpler than
this one, can be addressed similarly.

3.2 Specification Pattern System

In general, a large number of specification patterns need to be designed and
stored on computer in order to deal with various functional requirements analy-
sis. How to organize the patterns to facilitate search and application of appropri-
ate patterns therefore becomes an important problem to tackle. In the PBFSRA
technique, we divide patterns into distinct categories on the basis of the func-
tions they deal with and organize them in a hierarchical structure in a pattern
system. Figure 2 shows the hierarchy where rightmost items represent patterns
and others represent categories. The root “Pattern system” owns two sub-items,
which indicates that patterns are divided into two categories: one for describing
unit functions denoted by UF and the other for depicting compound functions
denoted by CF . Their sub-categories are further classified into more specific sub-
categories or patterns. Category CF includes the concrete patterns for formal-
izing compound functions that can be expressed, for example, using the binary
choice if -then-else or the multiple choice case expression. Our studies on many
specifications constructed in practice suggest that all the functions used in soft-
ware systems can be represented by properly combining the three kinds of basic
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Table 2. Example of specification pattern

name part whole

explanation Relation describing that an object is part of another object

constituents Three objects are necessary:

element: the object representing the part

container: the object representing the whole

specifier: specific area that the element stays in container

solution General rule: element � container ∗ specifier → boolean

specific rules for choosing operators � and ∗ depending on

the type of element and container and the value of specifier:

(1) (T , set of T ) → “element inset container”

(2) (T , set of composed of f1: T1, ..., fn: Tn end,

specifier = f) → “element = container.f”

(3) (set of T , set of T ) → “subset(element, container)”

(4) (T , set of T ′) → “exists[v : container] |
part whole(element, v)” where v is a variable in container

and the type of v is T ′

. . .

functions: comparison between objects, retrieval of information, and update of
existing data. For this reason, we divide category UF into three sub-categories:
Relation patterns, Retrieval patterns, and Recreation patterns.

Relation patterns can be used to formalize relations between objects, such as
greater than (>), less than (<), equality (=), and membership of an object in a
set. Retrieval patterns are designed for generating formal expressions that show
the meaning of obtaining data items from a compound data structure (e.g., a
set, sequence, or map). Recreation patterns offer solutions to formally expressing
changes on some data structures (e.g., fields of a composite object, one element
of a set or sequence). Currently, there are forty one patterns included in our
specification pattern system in which thirty-one patterns belong to category UF
and ten patterns are classified into category CF. It seems difficult to assert the
completeness of the pattern system in terms of its capability of expressing all
the possible functions in software systems at large, but all of the patterns in the
pattern system are designed to cove all of the operators defined on all of the
data types available in SOFL. Thus, as long as a function can be expressed in
SOFL, there will be sufficient patterns to be used for its formalization.

4 Representation of Pattern Knowledge

The support for PBFSRA requires specification patterns to be stored on computer
as knowledge. This raises a question on the notation to be used for knowledge
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Fig. 2. Pattern system

representation. In our technique, two notations are adopted for representing differ-
ent aspects of the knowledge. One is called attribute tree and the other is known
as Hierarchical Finite State Machine (HFSM ). The attribute tree describes the
knowledge that needs to be displayed to the analyst during the human-machine
interaction, and HFSM represents the knowledge that will be applied by computer
to provide guidance to the analyst.

4.1 Attribute Tree

As Fig. 3 shows, an attribute tree provides a visualized view to represent element
definitions for a specification pattern. The analyst can relatively easily under-
stand what needs to be provided to the computer based on the tree for analyzing
and formalizing elements of the pattern. The root node F of the tree tells that
the pattern is used to guide the clarification of the requirement on function F. Its
child nodes e1, e2, . . . denote the requirement elements for composing the pat-
tern. Each label attri reveals that the element ei is defined to represent attribute
attri of F. For each node ei, its child nodes di1,di2, . . . indicate different ways
for clarifying the corresponding element.

An example of the attribute tree for the pattern part whole mentioned pre-
viously is given in Fig. 4. The child nodes of the root node indicate that the
corresponding three elements (i.e., element, container, and specifier) need to
be clarified when applying the pattern. The child nodes of these three elements
indicate different ways for clarifying the corresponding elements. For example,
nodes d3 and d4 indicate two ways for clarifying the element container. Specif-
ically, d3 means to assign the element with a declared variable and d4 means to
assign the element with a formal expression composed of declared variables and
operators. The analyst needs to choose one of these child nodes according to the
specific requirement. Such a graphical structure facilitates the understanding of
the involved functional details to be clarified.
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Fig. 3. The structure of attribute tree

Fig. 4. The attribute tree of the pattern part whole

4.2 HFSM

Apart from the knowledge that is visible to the analyst, a large part of the
pattern knowledge is designed to be applied by computer. Once a pattern is
selected, the application of the pattern will usually take a series of steps to com-
plete. During the steps, necessary guidances need to be produced for the analyst
to take appropriate actions according to the analyst’s decision on how the cur-
rent requirement statement needs to be refined. To realize this mechanism, the
application process of patterns must be represented in the knowledge base. We
adopt an extended finite state machine called HFSM to represent such knowl-
edge, which is formally defined below. Since HFSM is a hierarchical FSM, we
first define the FSM adopted in our approach.
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Definition 1. A FSM (Finite State Machine) is a nine-tuple (Q, q0, F, V P, I,G,
ϕ, δ, λ) where Q is a non-empty finite set of states, q0 ∈ Q is the initial state,
F ⊂ Q is the set of accept states, V P is a set of variable states where each
variable state is a triple (V, V ′, θ) where V is the finite set of system variables,
V ′ is a set of values and θ : V → V ′ defines the associated value for each v ∈ V ,
I is the finite set of symbols, G is the finite set of guard conditions, ϕ : Q → V P
is the state function indicating the values of the involved variables on each state,
δ : Q × (I × P(G)) → Q is the transition function relating two states by input
and guard conditions, λ : Q×(I×P(G)) → I is the output function determining
output based on the current state and input.

In an FSM, each state in Q denotes certain stage of the production process of
the guidance for the analyst, each i ∈ I denotes a symbol for composing inputs
and outputs, and each g ∈ G denotes a constraint. There are 2 kinds of FSMs:
value FSM and process FSM. The former returns a value when terminated while
the latter emphasizes on modeling an interactive process without returning any
value. For each value FSM, state variable return is created to carry the returned
value.

Figure 5 shows an example FSM A where QA = {s1, s2, s3, s4} (ΣC denotes
that each c ∈ C is provided as one of the choices for the analyst, &c denotes the
fact that item c has been selected and req(var2) denotes the request “specify
system variable var2”). Equations attached to states reflect the state function
ϕ. When A is transferred to certain state s, system variables will be assigned
according to the equations attached to s. For example, A starts from the initial
state s1 when activated. The equations attached to s1 indicate that system
variables var1 and var2 will be initialized as v1 and v2 respectively. Note that
for each state si, if the value of certain variable v on si is the same as its value on
the previous state of si, equations for assigning v will not be attached to si for
simplicity. For example, no equation for assigning var2 is attached to the state
s2, which means that the value of var2 on s2 is the same as the value on s1. On
the acceptance state s4, “return = var1 − var2” is attached to reveal that A is
a value FSM that will return the value var1 − var2 when terminated.

Fig. 5. Example of FSM

Definition 2. HFSM (Hierarchical FSM) is a pair (F, σ) where F is a set of
FSMs and σ : Q∪I∪V → P(F ) indicates the hierarchical relations among FSMs
in F where lower-level FSMs interpret certain portion of upper-level FSMs iff
∃A0∈F · ∀F ′∈ran(σ) · A0 /∈ F ′ (A0 is the root FSM).
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There are two kinds of hierarchical relations in σ: (1) lower-level FSMs
demonstrate the inner transitions of states in upper-level FSMs and (2) upper-
level FSMs utilize values generated by the FSMs in lower levels. In the second
relation, a variable return is included in the system variables of each lower-
level FSM for carrying the value to be used by the corresponding upper-level
FSM. Figure 6 compares the two different relations through two example HFSMs
H1 and H2. In H1, FSM A1 and the only FSM A′

1 in σH1(u
′) hold the first rela-

tion where the detailed behavior of state u′ is described by FSM A′
1. The second

relation is held in H2 where σH2(λ(s, (i4, G4))) = {A3} ∧ σH2(v) = {A3, A4}.
Label i4(G4)/A3 indicates that if the corresponding transition is activated, the
value generated by FSM A3 will be displayed. We omit the illustration of HFSM
here for brievty.

Fig. 6. Example of HFSM

5 Example

We take the formalization of the informal requirement “Input password must
be registered in the bank account file” mentioned in the beginning of Sect. 2
as an example to briefly illustrate (due to limited space) how the HFSM of the
“part whole” pattern as shown in Fig. 7 and the corresponding attribute tree in
Fig. 4 help the process of formalizing the informal requirement into the following
formal expression:

exists[account : bank account file] | password = account.password
The formalization process starts from the initial state s0 and then transits

to state s1. Then, following the tool’s guide, the analyst (the user of the tool)
clarifies the element as password and the container as bank account file. Based
on the analyst’s clarification, the transition will be made from s1 to s2, and then
to s4. According to the analyst’s input, the transition moves to state s8 and
then guides the analyst to clarify the field of the composite object according
to node d6 of the attribute tree. Since node d6 indicates a subtree built by
applying the “part whole” pattern, the clarification of the subtree must be
carried out using the FSM of the “part whole pattern. Again, we start from
the initial state s0 and then transits to state s3 (rather than s2) because the
element and container are already clarified in node d6 of the attribute tree.
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After this, the transition goes on to s4 and then s5. The analyst is invited to
confirm whether the password is the same as the password field of account. If
the answer is positive, the transition will move to s6 and then to the end state s.
Since the low-level FSM is determined, we get back to state s8 of the high-level
FSM and assign the variable return with the value returned from the low-level
FSM. Finally, the transition goes to the end state s and return the string value
that is an internal format of the final formal expression. When it is presented
to the analyst in the GUI, it looks exactly the same as the formal expression
exists[account : bank account file] | password = account.password.

Fig. 7. FSM of the “part whole” pattern

6 A Prototype Tool

We have developed a prototype tool for our PBFSRA technique to demonstrate
the tool supportability of the technique. As illustrated in Fig. 8, the tool is mainly
composed of four components to provide different functions:

– Specification pattern knowledge in an XML file
– Knowledge extractor for retrieving knowledge from the XML file
– Guidance generator for transforming the retrieved knowledge into explicit

guidance to prompt the analyst’s response
– Preprocessor for collecting input from the analyst and processing it for knowl-

edge extractor

When supporting the formalization of an intended requirement, the knowl-
edge extractor retrieves appropriate knowledge from the XML file that stores
the specification pattern knowledge. The retrieved knowledge is then used by the
guidance generator to produce comprehensible guidance. Following the guid-
ance, the analyst is expected to respond to the tool. After receiving the input
response, the preprocessor analyzes and processes it within the context of the
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Fig. 8. Illustration of the supporting tool

defined types and variables. The processed input information is used by the
knowledge extractor to retrieve new knowledge from the XML file for producing
new guidance. Such interactions continue until the target formal expression is
generated. Figure 9 shows the snapshots of the tool dealing with the analysis and
formalization of the example presented in Sect. 5. The upper frame indicates the
human-machine interactions while the lower frame shows the finally produced
formal expression. The details of the entire case study and the procedure of using
the tool are described in [6].

7 Experiment

With the help of graduate students who are experienced in using SOFL, the
second author has conducted an experiment aiming to validate the capability
and usability of the prototype tool. The result of the experiment is obtained
through interviews of the subjects involved. Due to limited resources and many
uncertainties, this experiment does not serve as a rigorous assessment of our
approach but as a preliminary study. The details can be found in the second
author’s doctoral dissertation [6].

Six software systems were formally specified using the tool supported tech-
nique, which are Hotel reservation system (H), Banking system (B), E-ticket
system (E), Suica card system (S), Library information system (L), and Online
shopping system (O). Each subject was responsible for one of the six systems.
Table 3 shows the result of the experiment. It summaries the collected data for
each formal specification and its construction process. The second column indi-
cates the number of the processes included in the specification and the third
column records the number of the patterns applied for writing these processes.
The column “Simplicity” denotes the rate ((ss/s) + (sg/g))/2 where ss denotes
the number of pattern selection decisions easy to be made, s denotes the total
number of the pattern selection activities, sg denotes the number of guidances
easy to understand and g denotes the total number of the displayed guidances.
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Fig. 9. Snapshots of the supporting tool

After interviewing the subjects of the experiment, we found that the pattern
system can cover all the functions in these six systems. The provided catego-
rization of patterns facilitates pattern selection, and the distinct pattern and
category names give little chance to wrong selections. The major challenge, how-
ever, is how to determine the decomposition of the intended functions into basic
functions that are formalized by patterns. The subjects suggest the design of
more abstract patterns for domain specific systems to further facilitate pattern
selection. Designing such kinds of patterns needs technical support from domain
experts and we will extend our framework along this line based on the founda-
tion presented in this paper. We also found that most of the subjects could not
fully understand the representation of the provided guidance when formalizing
the first several functions, although this difficulty may be mitigated with more
experience gained. The last column of the table reveals the number of errors
contained in the formal specification. Most of these errors are caused by misun-
derstanding the displayed guidance when formalizing the first several functions.

8 Related Work

There exist quite a few studies on the formalization of informal requirements and
their supporting tools, such as the prototype assistant NL2ACTL for translat-
ing behavioral requirements in Natural Language to formulae of the action-based
temporal logic ACTL developed by Fantechi et al. [7] and the Natural Language
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Table 3. The result of the first experiment

Software Number of Number of Simplicity (%) Number of

system processes applied patterns errors

H 53 10 89 % 13

B 49 9 85 % 11

E 50 9 89 % 10

S 53 11 87 % 13

L 55 12 90 % 10

O 60 12 85 % 11

processing tool NLForSpec that translates software test case descriptions in
Natural Language into a formal representation in CSP [8], but there seems no
work that has directly addressed the issue of how specification patterns can be
used to formalize informal requirements to support requirements analysis and
discovery as we have done in this research. For the sake of space, we only intro-
duce the existing work that are strongly related to our study.

Stepney et al. describe a pattern language for using notation Z in computer
system engineering [9]. The patterns proposed are classified into six types, includ-
ing presentation patterns, idiom patterns, structure patters, architecture pat-
terns, domain patterns, development patterns. Each pattern provides a solution
to a type of problem. Grunske presents a specification pattern system of com-
mon probabilistic properties for probabilistic verification [10]. Majority of these
patterns cope with formal specification construction at a more abstract level
compared with ours. Ding et al. propose an approach for specification construc-
tion through property-preserving refinement patterns [11]. Konrad et al. [12]
create real-time specification patterns in terms of three commonly used real-
time temporal logics based on an analysis of timing-based requirements of several
industrial embedded system applications and offer a structured English gram-
mar to facilitate the understanding of the meaning of a specification. This work
is complementary to the notable Dwyer et al.’s patterns which are used for pre-
sentation, codification and reuse of property specification in a range of common
formalisms [13]. In [14], Dong and his colleagues design a set of composable
timed automata patterns based on hierarchical constructs in timed enriched
process algebras. The patterns facilitate the description of complex systems
using Timed Automata and can be used to transform CSP/TCOZ models to
Timed Automata to enable the reasoning of TCOZ models. To solve bottom-
level problems, these patterns are designed to deal with specific domains. There
is a specification pattern similar to ours proposed in [15]. It is also defined with
formal semantics for automatic utilization. However, their patterns are designed
only for a specific domain: formal specification of OCL constraints. They can
only be described in the context of UML and can only be used by UML experts.
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By contrast, our patterns are aimed at dealing with commonly used functions
and allow new ones to be designed to handle wider range of functions.

9 Conclusions and Future Work

We have described the PBFSRA technique to support the process of analyzing
and identifying requirements through constructing formal specifications based on
specification patterns. The technique is characterized by supporting the inter-
active requirements analysis in which the analyst only needs to work on the
natural language level while the machine automatically formalizes the require-
ments into formal specifications. The essential concepts, such as specification
patterns, specification pattern system, and pattern knowledge representation,
are presented, and the underlying principle of PBFSRA is discussed. In addi-
tion, we also describe a prototype tool to demonstrate the tool supportability of
our technique and an experiment on the usability of the tool supported approach.

Future work will focus on the extension of the specification pattern system
to support broader activities in requirements analysis and formal specification
construction. We are also interested in the evaluation of the PBFSRA approach
using lager scale experiments and the improvement of our prototype tool.
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Shanghai STCSM Project (No. 14YF1404300).

References

1. Knauss, E., Damian, D., Poo-Caamano, G., Cleland-Huang, J.: Detecting and clas-
sifying patterns of requirements clarifications. In: 20th IEEE International Confer-
ence on Requirements Engineering, pp. 251–260, September 2012

2. Kotonya, G., Sommerville, I.: Requirements Engineering - Processes and Tech-
niques. Wiley, Chichester (1998)

3. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 1–39 (2009)

4. Parnas, D.L.: Really rethinking formal methods. Computer 43(1), 28–34 (2010)
5. Shalloway, A., Trott, J.R.: Design Patterns Explained, 2nd edn. Pearson Education

Inc., Boston (2005)
6. Wang, X.: A pattern-based approach to requirements formalization and its sup-

porting tool. Ph.D. thesis, Hosei University, Tokyo, Japan, March 2014
7. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.:

Assisting requirement formalization by means of natural language translation. For-
mal Methods Syst. Des. 4(3), 243–263 (1994)

8. Leitao, D., Torres, D., Barros, F.: Motorola NLForSpec: translating natural lan-
guage descriptions into formal test case specifications. available on the Internet,
Not officially published but available on the Internet

9. Stepney, S., Polack, F.A.C., Toyn, I.: An outline pattern language for Z: five illus-
trations and two tables. In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB
2003. LNCS, vol. 2651, pp. 2–19. Springer, Heidelberg (2003)



Supporting Requirements Analysis 115

10. Grunske, L.: Specification patterns for probabilistic quality properties. In: 30th
International Conference on Software Engineering, pp. 31–40 (2008)

11. Ding, J., Mo, L., He, X.: An approach for specification construction using property-
preserving refinement patterns. In: SAC, pp. 797–803 (2008)

12. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: 27th International
Conference on Software Engineering, ICSE 2005, pp. 372–381. ACM (2005)

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Pattern in property specifications for
finite-state verification. In: 21th International Conference on Software Engineering,
pp. 411–420. ACM, New York (1999)

14. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Trans. Softw. Eng. 34(6), 844–859 (2008)

15. Ackermann, J., Turowski, K.: A library of OCL specification patterns for behavioral
specification of software components. In: Martinez, F.H., Pohl, K. (eds.) CAiSE
2006. LNCS, vol. 4001, pp. 255–269. Springer, Heidelberg (2006)



Dependency Analysis of Functional
Specifications with Algebraic Data Structures

Oana F. Andreescu1,2(B), Thomas Jensen1,2, and Stéphane Lescuyer1
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Abstract. In the context of interactive formal verification of complex
systems, much effort is spent on proving the preservation of the sys-
tems invariants. However, most operations have a localized effect on the
system, which only really impacts few invariants at the same time. Iden-
tifying those invariants that are unaffected by an operation can substan-
tially ease the proof burden for the programmer. We present a depen-
dency analysis for a strongly-typed, functional language, which computes
a conservative approximation of the input fragments on which the oper-
ations depend. It is a flow-sensitive interprocedural analysis that handles
arrays, structures and variant data types. For the latter, it simultane-
ously computes a subset of possible constructors. We have validated the
scalability of the analysis to complex transition systems by applying it
to a functional specification of the MINIX operating system.

1 Introduction

Algebraic data types (structures and variants) and associative arrays are funda-
mental building blocks when representing, grouping and handling complex data
efficiently. However, operations manipulating them are rarely concerned with
the entire compound input data structure. Most frequently, they depend only
on a limited subset of their input. A complete specification of such an operation
will not only stipulate that the output possesses a certain property but will also
include its framing requirements, i.e. the part of the input that it operates on.
Specifying and proving the preservation of logical properties for the unmodified
part is a particular manifestation of the more general frame problem [8] – a
notoriously cumbersome task in formal software verification, imposing unneces-
sary manual effort [9].

The verification of a given property can be simplified if we can determine
the input fragments on which the property depends. This is the purpose of the
dependency analysis presented in this paper. Our analysis targets a functional
language that handles immutable algebraic data types and arrays. Furthermore,
it is designed to be used on programs as well as on specifications. In contrast
to the vast majority of static analyses that are mostly used only on actual code
and in an essentially purely automatic setting, our analysis is thought of as a
companion tool to be exploited in the middle of interactive program verification.
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 116–133, 2015.
DOI: 10.1007/978-3-319-25423-4 8
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1.1 A Motivating Example

The work reported in this paper is motivated by the formal verification of oper-
ating systems. To illustrate the problem that we are addressing, consider an
abstract process manager and the data structures for its fundamental com-
ponents: process and thread, shown in Fig. 1a. A process is an executing
instance of an application that can consist of multiple threads that share the
same address space. A thread is a path of execution within a process and it
is modeled as a structure having fields such as the thread’s identifier and the
memory region for its stack. The current state of a thread is defined as a vari-
ant having three alternatives: READY, BLOCKED, RUNNING. Similarly, a process
is a structure including an identifier for the currently running thread and an
array of possibly inactive threads associated with it. Whether a thread in the
thread array is active or has terminated is indicated by a variant of type
option thread = | Some(thread th) | None.

Fig. 1. Example - data structures and functions of an abstract process manager

The signature of a Boolean function disjoint stacks, written in a mod-
eling language that we will present in Sect. 2, is shown in Fig. 1b. It verifies a
fundamental property of a valid process state, namely that the stack regions of
all active threads associated with the input pr are disjoint. Its result depends
only on the array threads of the input pr and for each active thread element
only on the field stack. All other input sub-elements are irrelevant to the result.

Another function run thread has two possible execution scenarios: true and
invalid id. It stops the currently running thread and starts the one having the
identifier given as an input. If it is valid, then a new process new pr is returned
for which current thread is set to new id. In the array threads, the state of
the thread identified by new id is set to RUNNING. The function’s precondition
stipulates that the disjoint stack property holds for the input pr and that the
input thread is READY. Proving the property’s preservation is intuitively easy once
the function’s effects and the input subset on which disjoint stack depends
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are known. Automatically proving the preservation of invariants concerning only
fields or elements that have not been altered by a transition in the system would
considerably diminish the number of proof obligations.

This is precisely the issue that we are addressing: the delimitation of the
input subset on which the output depends, given an operation with a compound
input. We define dependency as the observed part of a structured domain and
strive to obtain type-sensitive results, distinguishing between the sub-elements
of arrays and algebraic data types and capturing the dependency specific to each.
The targeted results mirror – in terms of dependency – the layered structure of
compound data types.

Generally, our dependency analysis targets complex transition systems. These
are characterized by states defined by compound data structures and transitions,
i.e. state changes, that map an input state to an output state. In particular, we
are applying it to an abstract model of an operating system, stemming from
ProvenCore [6], an ongoing project revolving around a fully secure micro-kernel.

ProvenCore, inspired by MINIX 3.1, is a general-purpose micro-kernel that
ensures isolation. Its proof is based on multiple refinements between successive
models, from the most abstract, on which the isolation property is defined and
proved, to the most concrete, i.e. the actual model used for code generation.

The global states of the abstract layers are complex structures with multiple
compound fields. Commands such as fork, exec, exit can be executed. Each of
these receives as an input the global state before executing the command and
returns the state of the system after execution. Most supported commands affect
only a handful of invariants, leading to a much more complex, but fundamentally
similar version of the situation depicted by our introductory example.

Outline. The rest of this paper is structured as follows: in Sect. 2 we underline the
specificities of our modeling language. The defined abstract domain of dependen-
cies is described in Sect. 3. It is followed in Sect. 4 by an in-depth presentation of
our analysis at an intraprocedural level and in Sect. 5 by a summary of it at an
interprocedural level. In Sect. 6 we discuss the results obtained on two abstract
layers of ProvenCore. Finally, in Sect. 7 we review related work.

2 The Modeling Language

In this section we present the unified programming and specification language
that we will be analyzing. It is an idealized version of a language developed
at Prove & Run1 and designed to facilitate proofs and to allow users to write
both the implementation and the specification of programs. It is purely func-
tional, side-effect free and strongly-typed. The basic building blocks of programs
written in our language are predicates, the equivalent of functions in common
programming languages. In addition to the common built-in primitive types tra-
ditionally available, structures and variants are also provided. The language is
designed to write code that will subsequently be proven, so it allows the definition
1 http://www.provenrun.com/.

http://www.provenrun.com/
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of various types of logical specifications, ranging from pre- and postconditions,
local assertions and loop invariants to inductive predicates.

2.1 Types and Statements

For defining the language we are working on, we let T be the universe of type
identifiers and T0 ⊂ T the set of base types identifiers. Furthermore, let F be
the set of structure field identifiers and C the set of variant constructors.

t := | τ ∈ T0 base types
| structure{f1 : t, . . . , fn : t} fi ∈ F , 1 ≤ i ≤ n structures
| variant[C1(t e1) | . . . | Cm(t em)] Ci ∈ C , 1 ≤ i ≤ m variants
| arrayt〈t〉 arrays

A structure is a data type grouping elements of different types called fields
and represents the Cartesian product of its fields’ types. A variant is the disjoint
union of different types. It represents data that may take on multiple forms,
where each form is marked with a specific tag called the constructor. Arrays
group a collection of data of the same type (given in angle brackets) into a
single entity; each element is selected by an index whose type is included (as
denoted by the superscript) in the array’s definition.

A program in our language is a collection of predicates. A predicate has input
and output parameters and a body of statements of the form shown in Table 1.

Table 1. Supported statements

statement := | p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm] (1) predicate call

| e1 = e2 (2) equality test

| o := e (3) assignment

| s := {e1, . . . , en} (4) create structure s

| {o1, . . . , on} := s (5) structure destructuring

| o := s.fi (6) access field fi

| s′ := {s with fi = ei} (7) update field fi

| s′ = 〈f1, . . . , fk〉s′′ (8) test equality on fields f1, ..., fk

| v := Cp[ep] (9) create v with constructor Cp

| switch(v) as [o1| . . . |on] (10) variant destructuring

| v ∈ {C1, . . . , Ck} (11) variant possible

| o := a[i] (12) array access at index i

| a′ := [a with i = e] (13) array update at index i

The first statement represents a generic predicate call and is described later in
Sect. 2.2. All other statements could be seen as special cases of it, representing
calls to built-in predicates. Statement (2) is a call to the “=” predicate, that
checks whether its two inputs are equal. Similarly, (3) is a call to the assignment
predicate “:=”. Both are generic and can be applied on any supported type of
the language.
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The statements (4)–(8) are structure-related. (4) creates a new structure s
with e1; . . . ; en as field values. (5) returns the values of all the fields of s in the
output parameters o1; . . . ; on. Statement (6) returns the value of the fi field.
As previously mentioned, we are focusing on a purely functional language and
consider immutable algebraic data structures and arrays. Therefore, setting the
value of a structure’s field, shown in (7), returns a new structure where all fields
have the same value as in s, except fi which is set to ei. Statement (8) verifies if
the values of the given subset of fields of two structures s′ and s′′ are equal.

Statements (9) − (11) are variant-related. (9) creates a new variant v using
the constructor Cp with ep as an argument. Statement (10) is used for matching
on the different constructors of an input variant v. Statement (11) verifies if the
input variant v was created with one of the constructors in {C1, . . . , Ck}. This
could be obtained with a variant switch, but for practical considerations it has
been provided as a built-in predicate.

The last two statements are array-related. (12) returns the value of the i-th
cell of the input array a. Similarly to (7), updating the i-th cell of an array –
shown in (13) – has a functional nature. It returns a new array where all cells
have the same value as in a, except the i-th cell which is set to e.

2.2 Exit Labels

Besides input and output parameters, the declaration of a predicate also includes
a non-empty set of exit labels. When called, a predicate exits with one of the
specified exit labels, thus summarizing and returning to its callers further infor-
mation regarding its execution.

Table 2. Statements and their exit labels

Exit labels constitute the main specificity of the language. They can denote
different exceptional execution scenarios and act as exit codes, similarly to excep-
tions and exit status return values in other programming languages. For example,
the predicate run thread(process pr, int new id) introduced in Sect. 1 has
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two exit labels: true, corresponding to a successful execution and invalid id,
indicating that the given identifier is invalid. Labels also offer a convenient way
to model a Boolean result. Frequently, a Boolean output value can be replaced by
declaring two possible exit labels: true for a successful execution of the predicate
and false for its opposite. This is illustrated by the previously defined property
disjoint stacks(process pr) (in Fig. 1b).

Exit labels play an important role with respect to control flow management.
Complex control flow is expressed and directed by catching and transforming
labels. Furthermore, they condition the existence of output parameters, as these
are associated to the exit labels of a predicate. Whenever a predicate exits with
an exit label λ, all the outputs associated to it are effectively produced, whereas
all other outputs are discarded. If no output is associated to an exit label, it
means that no output is generated when the predicate exits with this particular
label. We can now explain the generic predicate call statement (1) from Table 1:
the predicate p is called with inputs e1, . . . , en and yields one of the declared
exit labels λ1, . . . , λn, each having its own set of associated output variables ō.

As shown in Table 2, statement (10) will have an exit label corresponding
to each constructor of the given input variant. Statements (2), (8) and (11) are
bi-labeled, using true and false as logical values. Statements (12) and (13) are bi-
labeled as well. However, unlike the previously mentioned statements, they use
the label false as an “out of bounds” exception and generate an output only for
the label true.

2.3 The Control Flow Graph

In the following we will work with a control flow graph representation of the
predicates’ bodies. The nodes represent program states, and the edges are defined
by statements with a particular exit label λ.

The control flow graph Gp = (N,E) of a predicate p has a node ni ∈ N for
each program point. For each statement s at program point ni that can execute
and reach program point nj with exit label λk, an edge (ni, nj) is added to Gp

and labeled with s and λk. Gp has a single entry node nin ∈ N corresponding
to the program point associated to the first statement of p. The set of exit nodes
nout ⊂ N consists of the nodes associated to each possible exit label λk of the
predicate.

In practice, all the outgoing edges of a node ni ∈ N bear the different cases
of the same statement s found at program point ni. Thus, the edges are labeled
with the same statement s and there is an edge labeled s, λk for each possible
exit label λk of s. However, the analysis does not depend on this special case.

The subfigures in Fig. 2 show the control flow graph of the following predi-
cate: predicate thread(process p, int i) -> [true: thread ti | None | oob]

which receives a process p and an index i as inputs and returns the i-th
active thread of the input process (the process and thread types are defined
in Fig. 1a). If the i-th thread is inactive, it exits with the exit label None. In
the case of an “out of bounds” exception, the exit label oob is returned. For
better readability, Fig. 2b gives the control flow of the same predicate where we
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have labeled the nodes with statements of the predicate and the edges with their
exit labels.

Fig. 2. Example – control flow graph of predicate thread

3 Abstract Domain of Dependencies

The goal of our analysis is to detect the input subset on which the outputs of a
predicate may depend. More precisely, the analysis makes a conservative approx-
imation and must guarantee that what is marked as not needed is definitely not
needed.

The first step towards such results is the definition of an abstract domain of
dependencies D, shown below. The domain δ ∈ D is defined inductively from the
three atomic cases �, � and ⊥, mimicking the structure of the concrete types:

δ := | � | � | ⊥ atomic cases
| {f1 
→ δ1 ; . . . ; fn 
→ δn} f1 , . . . , fn fields (i)

| [C1 
→ δ1 ; . . . ;Cm 
→ δm ] C1, . . . , Cm constructors (ii)

| 〈δ〉 (iii)

| 〈δdefault � i : δexc〉 i array index (iv)

For atomic types the dependency is expressed in terms of the domain’s atomic
cases: � (least precise), denoting that everything is needed and �, denoting that
nothing is needed. The third atomic case ⊥, denoting impossible, is explained
below. The dependency of a structure (i) describes the dependency on each of its
fields. For arrays we distinguish between two cases, namely arrays with a general
dependency applying to all of the cells (iii) and arrays with a general dependency
applying to all but one exceptional cell, for which a specific dependency is known
(iv). For variants (ii), the dependency is expressed in terms of the dependencies
of its constructors, expressed in terms of their arguments’ dependencies. Thus,
a constructor having a dependency mapped to � is one for which nothing but
the tag has been read, i.e. its arguments, if any, are irrelevant for the execution.
For variants, we also include the information that certain constructors cannot
occur. The third atomic case – ⊥ – is introduced for this purpose. We perform
a “possible-constructors” analysis simultaneously, which computes for each exe-
cution scenario, the subset of possible constructors for a given value, at a given
program point. All constructors that cannot occur are marked as being ⊥. This
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Table 3. � – comparison of two domains

atomic value is the lower bound of our domain and hence, the most precise value.
The final abstract domain is a closure of all these combined recursively.

The partial order relation � ⊆ D × D used to compare dependency domains
is detailed in Table 3. The greatest element is � (Top) and ⊥ is the least
(Bot). Instances of identical structure and variant types are compared pointwise
(Str, Var). For arrays without known exceptional dependencies we compare the
default dependencies applying to all array cells (ADef). If exceptional depen-
dencies are known for the same cell, these are additionally compared (AI). For
arrays with known exceptional dependencies for different cells, we compare each
dependency on the left-hand side with each one on the right-hand side (AIJ).
The comparison of � with structures (�Str), variants (�Var) and arrays (�A,
�AI) is a pointwise comparison between � and the dependency of each sub-
element.

Table 4. Join operation
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The defined join operation ∨ : D × D → D is detailed in Table 4. It is a
commutative operation for which the undisplayed cases are defined with respect
to their symmetrical counterparts. The operation is total: joining incompatible
domains such as a structure and a variant or two structures having different field
identifiers, results in �. Join is applied pointwise on each sub-element; ⊥ is its
identity element and � is its absorbing element. Joining � and the dependency of
a structure, variant or array is applied pointwise. The value obtained by joining
δ and δ′ is an upper bound of the two:

δ � δ ∨ δ′ ∧ δ′ � δ ∨ δ′, ∀ δ, δ′ ∈ D.

It is not a least upper bound as a consequence of the non-monotonic approxima-
tions made for arrays (rule AIJ).

Besides join, a reduction operator ⊕ : D × D → D has been defined as well.
This is a recursive, commutative, pointwise operation. The need for such an
operator is a consequence of the possible-constructors analysis that we perform
simultaneously. Following the same execution path, the same constructors must
be possible. Thus, the reduction operator is used in order to combine dependen-
cies on the same execution path and consists in performing the intersection of
constructors in the case of variants and the union of dependencies for all other
types. Its identity element is � and its absorbing element is ⊥. The reduce oper-
ator between �, and the dependency of a structure, variant or array is applied
pointwise. Two instances of identical variant types are pointwise reduced.

Finally, the projections summarized in Table 5, have been defined on a depen-
dency domain δ and are used to express the data-flow equations of Sect. 4:

.f : D → D projection of a field’s dependency

@C : D → D projection of a constructor’s dependency

〈i〉 : D → D projection of a cell’s dependency

〈∗ \ i〉 : D → D projection of an array’s dependency outside cell i
〈∗〉 : D → D projection of an array’s general dependency

Table 5. Dependency projections

They are partial functions, and can only be applied on domains of the corre-
sponding kind. For instance, the field projection .f only makes sense for atomic
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domains or structured domains with a field named f , which should be the case
if the domain represents a variable of a structured type with some field f . For
any of the atomic domains δa, applying any of the defined projections yields δa.

4 Intraprocedural Analysis and Data-Flow Equations

Intraprocedural Domains. Dependency information has to be kept at each point
of the control flow graph, for each variable of the environment Γ , that maps
input, output and local variables to their types. An intraprocedural domain Δ :
V → δ is thus a mapping from variables to dependencies, and is associated
to every node of the control flow graph, representing the dependencies at the
node’s entry point. A special case is the mapping which maps all variables to ⊥,
which we call Unreachable. In particular it is associated to nodes that cannot be
reached during the analysis. Also, if any of the variables of Δ is marked as ⊥,
the entire node collapses, becoming Unreachable.

For any node of the control flow graph associated to an intraprocedural
domain Δ, Δ(x) retrieves the dependency associated to the variable x. If a
mapping for x does not currently exist, Δ(x) retrieves �. Forgetting a variable x
from a reachable intraprocedural domain, Δ \ x, removes its mapping. The ∨, �
and ⊕ operations are extended pointwise to an intraprocedural domain, for each
variable and its associated dependency domain δv. In particular, Unreachable is
the bottom of this intraprocedural lattice.

Table 6. Statements – representations and data-flow equations

Data-Flow Equations. Our dependency analysis is a backward data-flow analy-
sis. For each exit label, it traverses the control flow graph starting with its
corresponding exit node and marking all other exit points as Unreachable. The
intraprocedural domain for the currently analyzed label is initialized with its
associated output variables mapped to �. The analysis traverses the control
flow graph and gradually refines the dependencies until a fixed point is reached.
Table 6 summarizes the representation and general equation of the statements.
For each statement, the presented data-flow equation operates on the intraproce-
dural domains of the statement’s successor nodes. The intraprocedural domain
at the entry point of the node is obtained by joining the contributions of each
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outgoing edge. The contribution of an edge (ni, nj) labeled with s and λ is given
by �s�λ(Δnj

) where �s�λ(.) is the transfer function of the edge labeled s, λ.
Tables 7, 8, 9, 10 define the transfer functions for each built-in statement of

our language, whereas the general case of a predicate call and its corresponding
equation will be detailed in the following section.

Table 7 presents the transfer functions for statements which are not type-
specific. For equality tests (1) both of the inputs e1, e2 are completely read,
whether the test returns true or false. The transfer functions therefore, reduce
the domain of the corresponding successor node with a domain consisting of
e1 and e2 both mapped to �. In the case of assignment (2), the dependency of
the written output variable o is forgotten from the successor’s intraprocedural
domain, thus being mapped to � and forwarded to the input variable e.

Table 7. Generic statements – data-flow equations

The data-flow equations given in Table 8 correspond to structure-related
statements. For the Eqs. (3), (4), (5) and (6) we assume that the variable s is
of type structure{f1 : t, . . . , fn : t} for some fields fi, 1 ≤ i ≤ n. The equation
(3) refers to the creation of a structure: each input ei is read as much as the
corresponding field fi of the structure is read. The destructuring of a structure
is handled in (4): each field fi is needed as much as the corresponding variable oi

is. When accessing the i-th field of a structure s (5), only the field fi is read, and
only as much as the access’ result o itself. The equation (6) treats field updates:
the variable ei is read as much as the field fi is. The structure s is read as much
as all the fields other than fi are read in s′. Finally, the equations given in (7)

handle partial structure equality tests, and the transfer functions are the same
for the labels true or false: for both compared structures s′ and s′′, all the fields
in the given set f1, . . . , fk are completely read, and only those.

The data-flow equations given in Table 9 correspond to variant-related state-
ments. They follow the same principles as those used for structure-related state-
ments above. Note that the transfer functions for the switch (9) and possible
constructor test (10) introduce ⊥ dependencies for constructors which are known
to be impossible on the considered edge. In particular, since ⊥ is an absorb-
ing element for ⊕, these transfer functions erase, for every constructor which is
known to be locally impossible, all the dependency information possibly attached
to said constructor in the successor nodes. This is the actual raison d’être for
the reduction operator, since using ∨ to combine a successor domain and a local
contribution would lose this information.
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Table 8. Structure-related statements – data-flow equations

Table 9. Variant-related statements – data-flow equations

Finally, the equations for array-related statements are given in Table 10. We
assume for both that the context is fixed and that I is the distinguished set of
input variables for the analyzed predicate. This set is used to make sure that
exceptions in array dependencies are only registered to variables in I and not
local or output variables. The reason for such a constraint is a pragmatic one:
input variables are not assignable in our language, and therefore they always
represent the same value intraprocedurally. Otherwise, each time a variable is
written by a statement, we would need to traverse all the dependencies in the
domain to erase or reinterpret the occurrences where this variable appears as an
exception. Only recording exceptions for input variables makes this kind of costly
traversal useless, and since only exceptions about input variables make sense at
the interprocedural level (see Sect. 5), we do not lose much precision by doing
so. The transfer functions for (11) and (12) thus take care of making adequate
approximations when exceptions cannot be introduced. As for the cases when the
array access exits with the false label, note that the contribution to the array
a is 〈�〉, which is strictly less precise than �. The operation makes implicit
bounds checking and this can thus be seen as accounting for the fact that no
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cell in a has been read, but the “length” or “support” of a has been read, hence
it would not be true to claim that the result of the statement did not depend
on a at all. Similarly, a variant dependency [C1 
→ �, . . . , Cn 
→ �] mapping all
constructors to nothing has not read any value in any of the constructors, but
may still depend on the variant’s constructor itself.

Table 10. Array-related statements – data-flow equations

5 Interprocedural Dependencies

Exit labels, presented in Sect. 2.2, constitute an increased source of expressiv-
ity, as they indicate the scenario that was observed while executing a predicate.
We incorporate this expressivity in our dependency results, by computing spe-
cific dependencies for each possible execution scenario. Therefore, our analysis is
performed label by label and interprocedural dependency domains associate an
intraprocedural domain to each exit label of the analyzed predicate. The variable
key-set of each associated intraprocedural domain comprises the inputs of the
analyzed predicate. A label that cannot be returned is mapped to an Unreach-
able intraprocedural domain. This is a form of path-sensitivity [10]. However, we
favor the term label-sensitivity for this characteristic, as it seems to be a more
natural choice applied to our case and the language we are working on.

An interprocedural domain of a predicate p is thus defined as follows:

Dp : Λp → Δ, where Λp the set of output labels of predicate p

For each analyzed label of a predicate, the analysis starts by initializing the
intraprocedural domain mapped to it, with the output variables associated to
the exit label. To avoid making any false supposition, these are initially mapped
to the most general dependency, namely �. Subsequently, as described in Sect. 4,
the dependency information is gradually refined until a fixed point is reached.
The execution scenarios denoted by the exit labels of a predicate are mutually



Dependency Analysis of Functional Specifications 129

exclusive. Therefore, during the analysis of a particular exit label, all other exit
labels of the predicate are mapped to Unreachable. After reaching a fixed point,
the intraprocedural domain is filtered so that only input variables appear in
the variable set. As explained in Sect. 4, the intraprocedural domains are built
such that only input variables may appear as exception indices in dependencies
computed for arrays. This invariant is preserved throughout the analysis.

A substitution must be performed on interprocedural domains. This consists
in substituting all occurrences of formal input parameters of a predicate by the
corresponding effective input parameters. The substitution operation is denoted
by � (σ) where σ is a substitution from formal to effective parameters.

We proceed by detailing the equation corresponding to a call to a predicate:

p(e1, . . . , en)[λ1 : ō1 | . . . | λm : ōm]

having the following signature:

p(ε1, . . . , εn)[λ1 : ω̄1 | . . . | λm : ω̄m]

The general equation form applies:

Δn =
∨

n
s,λi−−→ni

�p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]�λi
(Δni

)

The transfer functions for the predicate call statement are deduced from the
predicate’s interprocedural domain in the following fashion:

�p(e1, . . . , en) [λ1 : ō1 | . . . | λm : ōm]�λi(Δ) = (Δ \ ōi)
⊕

j∈{1,...,n}
ej �→ depi

j

where depi
j = Dp(λi)(εj) � (ε̄ �→ ē)

Namely, the mappings for the outputs ō associated to a label λi are removed,
and the contribution of a call to each input ej stems from the contribution of
the interprocedural domain for label λi and formal input εj . In these, all the
formal input parameters ε̄ in array dependency domains are substituted by the
corresponding effective input parameters from ē.

Semantics. We conclude this section by briefly presenting the two possible
interpretations of the results of our analysis. Considering an intraprocedural
result Δλ

p for a predicate p and label λ, a first interpretation of our dependency
analysis is an equivalence relation on tuples of values ≈Δλ

p
which relates values

that only differ in places on which p, λ does not depend. It can be used for
applying congruence modulo reasoning to predicate calls. Namely, if we write
p(v̄) λ:w̄−−→ to denote that applying p to the values v̄ yields the exit label λ with
outputs w̄, then if p is applied in turn to two input data structures ū and v̄
that are congruent w.r.t. ≈Δλ

p
, the predicate will exercise the same execution

scenario:
ū ≈Δλ

p
v̄ =⇒ p(ū) λ:w̄−−→ =⇒ p(v̄)�

��
�

μ:z̄−−→
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Furthermore, identical outputs will be obtained:

ū ≈Δλ
p

v̄ =⇒ p(ū) λ:w̄−−→ =⇒ p(v̄) λ:z̄−−→ =⇒ w̄ = z̄

whereas this first interpretation focuses on the dependency part of the analysis,
it is also possible to focus on the possible constructors part of the analysis. This
additional interpretation is a characteristic function 1Δλ

p
on input values which

constrains the space of inputs that can make p exit with label λ. It denotes the
necessary conditions on inputs according to the observed execution scenario and
can be used as an inversion lemma when reasoning on calls to a predicate:

p(ū) λ:w̄−−→ =⇒ 1Δλ
p
(ū)

A detailed presentation of these semantics is out of the scope of this paper
but in order to give a good intuition of the adequation between the interpretation
and the lattice operations described in Sect. 3, we can give some fundamental
properties relating the domain operations and these interpretations:

v̄ ≈� w̄ ⇐⇒ v̄ = w̄ v̄ ≈∅ w̄ ∧ v̄ ≈⊥ w̄ ∀v̄, w̄ 1� = 1∅ = 	→ 1

1⊥ = 	→ 0 Δ � Δ
′

=⇒ ≈Δ ⊇ ≈Δ′ Δ � Δ
′

=⇒ 1Δ ⊆ 1Δ′

≈Δ⊕Δ′ ⊆ ≈Δ ∩ ≈′
Δ 1Δ ∧ 1

′
Δ =⇒ 1Δ⊕Δ′

The soundness of the second interpretation as well as the well-formedness of
our dependency domains have been proven in Coq2.

6 Preliminary Results and Experiments

Our analysis has currently been applied on two abstract layers of ProvenCore,
described in Sect. 1. These are the Refined Security Model (RSM), an abstract
layer situated just underneath the top-most layer of the refinement chain and the
Functional Specifications (FSP) layer, a model closely resembling the most con-
crete layer (Target of Evaluation Design – TDS) but using data structures and
algorithms that facilitate reasoning. Each layer is characterized by a global state
with numerous fields and different transitions, i.e. supported commands. Various
invariants and properties characterize their states. For example, the FSP’s state
contains 14 fields; it is characterized by approximately 50 invariants. In the TDS,
these figures are doubled. Each invariant is concerned with a different subset of
the global state’s fields. Some of the invariants concern all the processes held in
the process store. However, most transitions affect only a few of these fields. We
have applied our analysis at a medium-scale on the RSM and FSP layers. The
results for over 660 predicates having approximately 11000 lines of code have
been computed in 1.5 s.

One of the analyzed predicates from the FSP layer is:
predicate proc_mem_auth_ok(proc proc) -> [true | false] verifying a funda-
mental property that has to hold for all processes in the process store of proc. It
2 The corresponding files are provided: http://ajl2015.ddns.net/ajl2015/proveCoq.

http://ajl2015.ddns.net/ajl2015/proveCoq
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refers to the relevance of memory permissions and states that every process has
permissions covering a valid range of memory addresses inside its virtual space.
The process type is a structure with 26 fields, of which 11 are compound data
types themselves. Among these, 2 fields are arrays, 3 fields are variants and 6
others are structures with a number of fields ranging from 3 to 17 fields.

The dependency results computed by our analysis for this predicate are shown
below. The analysis detects that for each of the possible execution scenarios, the
outcome depends only on 2 out of the 26 fields, namely the stackframe and the
memory permissions. The dependency on the stackframe is confined to only one
of the 3 fields: the data and stack segment. The memory permissions are given
by a variant with 3 constructors, denoting reading and writing permissions or
the absence of any permission. Furthermore, besides pinning down the outcome’s
dependency on 2 out of the 26 fields of the process structure, the analysis also
detects that the absence of any memory permission, indicated by the constructor
NONE of the mem auth variant, is ⊥ for the false execution scenario. In other words,
unused permissions cannot threaten the property proc mem auth ok.

The relevant memory permissions property is thus only threatened by transi-
tions that add memory permissions or change a process’ virtual space layout.
Only 3 transitions out of the 25 belong to this category: exec which resets the
process’ segments, do auth read and do auth write which add permissions. In
particular, transitions deleting memory permissions do not impact the property
since the absence of permissions, as shown by the dependency of the construc-
tor NONE for the false label, is an impossible case when the property does not
hold. This is one of the practical advantages of tracking constructor possibilities
simultaneously.

Space constraints prevent us from discussing other examples here. However,
various other examples are provided on the webpage3 dedicated to our analysis.

7 Related Work

The frame problem and its manifestations in the software verification process –
detecting program properties that remain unchanged under a certain operation
– are notorious. First described in 1969 [8], the frame problem is still a target
for full automation in the software verification realm. A complete specification of
a program will necessarily include frame properties. However, though necessary,
frame properties are tedious and repetitive. Two prominent solutions to the
3 http://ajl2015.ddns.net/ajl2015/.

http://ajl2015.ddns.net/ajl2015/
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frame problem come from separation logic [4] and ownership types [1]. However,
it is argued that the problem itself should not impose such annotation-heavy
solutions. Simpler, automatic solutions for their specification and verification
would allow programmers to concentrate on the truly challenging part [9].

The dependency results computed by our analysis are similar to primitive
read and write effects used in ownership type systems [1]. Write effects in our
case are implicit and include strictly the output variables associated to an exit
label. Read effects can only refer to input variables of a predicate. Also, read
effects comprise the whole execution of a method even if they are irrelevant for
the method’s results. We however, ignore read effects on which the output does
not depend, reflecting only those which contribute to the observed result. A
technique for declaring and verifying read effects in an ownership type system is
presented in [1]. We use static analysis to automatically detect them.

Our dependencies are similar to the influence sets presented by Leino and
Müller [5]. Influence sets are represented as sets of heap locations and they are
used to specify the parts of the program state that are allowed to impact the
return values. Reasoning about heap locations is beyond the scope of our analy-
sis. We treat mappings between variables and values, analyze their evolution in a
side-effect free environment and express dependencies as input-output relations.

Static dependence or liveness analyses are typically used for code optimiza-
tion, dead code elimination [7] and compile time garbage collection, but only
seldom for program verification. One case we are aware of comes from Frama-
C [2], where it is used in a purely automatic setting and unlike our analysis it does
not handle unions and arrays. A plug-in based on the available value analysis [3]
computes lists of input and output locations for each function, distinguishing
between operational, functional and imperative inputs.

8 Conclusion

We have presented a flow-sensitive, path-sensitive, interprocedural dependency
analysis that handles arrays, structures and variants. For the latter it simulta-
neously computes a subset of possible constructors. We have defined our own
abstract dependency domain and obtain dependency information that mirrors
the layered structure of compound data types.

The main original traits of our contribution stem from its design as an analy-
sis meant to be used as a companion tool during interactive program verification,
in an unified manner on programs as well as on specifications.

An obvious first challenge is to address the issue of context-sensitivity. We
plan to introduce lazy components in our interprocedural dependency summaries
and to inject in them the current intraprocedural context on an as-needed basis.
Early experiments show much promise in terms of improved precision, with only
a marginal decrease in performance.

Our long-term goal is to combine the dependency analysis with a correlation
analysis, meant to detect relations between inputs and outputs. By uncovering
relations (preorders and equivalences) between inputs and outputs, after having
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detected that a property only depends on unmodified parts and unifying the
results, the preservation of invariants for the unmodified parts could be inferred.
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P. Bolignano, G. Dupéron, L. Hubert and B. Montagu.

References

1. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of
type and effect. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA 2002, pp.
292–310. ACM, New York, NY, USA (2002)

2. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

3. Cuoq, P., Prevosto, V., Yakobowski, B.: Frama-c value analysis manual. http://
frama-c.com/download/value-analysis-Neon-20140301.pdf

4. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

5. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer,
Heidelberg (2008)

6. Lescuyer, S.: ProvenCore: Towards a verified isolation micro-kernel (2015)
7. Liu, Y., Stoller, S.: Eliminating dead code on recursive data. Sci. Comput. Program.

47(2–3), 221–242 (2003). (special Issue on Static Analysis (SAS 1999))
8. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of

artificial intelligence. In: Machine Intelligence, pp. 463–502. Edinburgh University
Press (1969)

9. Meyer, B.: Framing the frame problem. In: Pretschner, A., Broy, M., Irlbeck, M.
(eds.) Dependable Software Systems, Proc. of August 2014 Marktoberdorf Summer
School. pp. 174–185. D: Information and Communication Security, Springer (2015)

10. Robert, V., Leroy, X.: A formally-verified alias analysis. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg (2012)

http://frama-c.com/download/value-analysis-Neon-20140301.pdf
http://frama-c.com/download/value-analysis-Neon-20140301.pdf


A SysML Formal Framework to Combine
Discrete and Continuous Simulation for Testing

Jean-Marie Gauthier(B), Fabrice Bouquet, Ahmed Hammad,
and Fabien Peureux

Institut FEMTO-ST – UMR CNRS 6174, Université Bourgogne Franche-Comté,
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Abstract. The increasing interactions between huge amount of software
and hardware subsystem (hydraulics, mechanics, electronics, etc.) lead
to a new kind of complexity that is difficult to manage during the valida-
tion of safety-critical and complex embedded systems. This paper intro-
duces a formal SysML-based framework to combine both discrete and
continuous simulation to validate physical systems at the early stage of
development. This original modelling framework takes as input a SysML
model annotated with Modelica code and OCL constraints. Such a model
provides a precise and unambiguous description of the designed system
and its environment, involving both discrete and continuous features.
This formal framework enables to automatically generate Modelica code
to perform real-time simulation. On the basis of a constraint system
derived from the discrete SysML/OCL modelling artefacts, it also makes
it possible to automatically generate black-box test cases that can be
used to validate the simulated system as well as the corresponding phys-
ical device. This framework has been validated by conclusive experiments
conducted to prototype a new energy manager system for aeronautics.

Keywords: SysML · Model-driven engineering · Real-time system ·
Discrete & continuous simulation · Modelica · Constraint solving ·
Model-based testing

1 Introduction

Due to increasing behavioural complexity and growing technology heterogene-
ity combined with still higher expectations, checking that a software embedded
system meets its specifications becomes more and more complex, expansive and
time-consuming. Moreover, in the traditional development of such systems, the
Verification and Validation (V&V) activities begin only after implementation
and integration are completed. Under these conditions, discovered problems are
particularly more difficult and more expensive to fix, what is a major concern
especially when the systems are critical, such as lots of system for aeronautical,
railway, automotive, nuclear or telecommunication domains. In these contexts,
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such systems indeed require to be as trusty as possible because the most lit-
tle failure could lead to financial as well as human losses, and even so to an
irreversible damage of the whole system including its environment.

To mitigate these issues, Model-Based Software Engineering (MBSE)
approaches have emerged for several years as a way to improve and automate
design, analysis, development, verification and validation of the software embed-
ded in high technology products. Basically, MBSE aims to achieve these software
life cycle activities using models that describe the system under development.
This kind of approach is mostly supported using (semi-)formal modelling arte-
facts, which are enough precise to achieve formal verification, but also simulation
and testing that provide early practical feedback to validate requirements [1].
Simulation code generation from formal model is increasing as it reduces the gap
between high level of abstraction modelling and rapid prototyping, as demon-
strated in [2]. Finally, using formal model also enables to apply Model-Based
Testing (MBT) approaches [3] that aim to cross-check a model against an imple-
mentation, and hence make it possible to provide early validation of functional
as well as non-functional properties, such as performance and resource use.

In addition, applying iterative and incremental approaches has also helped
the development of critical embedded systems, especially within real-time
domain. Such typical approaches are known as In-the-Loop processes, and can
be performed at different levels: Model-in-the-loop (MIL), hardware-in-the-loop
(HIL), processor-in-the-loop (PIL), and software-in-the-loop (SIL) [4]. Simula-
tion and testing are at the core of all these system design processes. For example,
within MIL process, at the early stages of the design process, the system (or
subpart of the system) and its environment are modelled and simulated using
languages such as Modelica1 or Matlab-Simulink2 to ensure that the designed
(sub)system conforms to its requirements [5]. Another level of simulation and
testing concerns the HIL process and consists to test the real hardware platform
in combination with its simulated environment (called the plant model) [6].

This paper describes an original SysML-based formal framework for simu-
lation and testing of multi-physical and critical systems, that bridges the gap
between high-level design model, starting point of MBSE approaches, and real-
time execution platform, keystone of the In-the-Loop approaches. In this way,
this framework allows system engineers to stay as close as possible of the initial
design specifications when achieving all the steps of the development life-cycle.
Moreover, it takes advantage of both approaches by ensuring a model centric
process enabling validation, simulation and testing from the earliest stage of
design. To achieve that, the architecture and the discrete behaviour of the sys-
tem are described by a Systems Modeling Language (SysML) [7] model, which
is annotated with OCL and Modelica code to specify its discrete and continuous
features. This model is used to automatically generate real-time Modelica pro-
gram for simulation, and black-box test cases for validation. The generated test
cases can be simulated using the generated Modelica program to validate the
1 https://www.modelica.org/documents/ModelicaSpec33.pdf.
2 http://www.mathworks.fr/products/matlab/.
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design model as well as the the physical system itself. Therefore, the proposed
framework can contribute both to MIL process (model against simulated envi-
ronment), and to HIL process (physical system against simulated environment).

Fig. 1. Overview of the Validation Process from SysML Models

The validation process supporting this formal framework is depicted in Fig. 1.
The process starts on the top left with the SysML model that specifies both the
system and the plant. This model is expressed using a dedicated subset of the
SysML language, which integrates as a whole SysML constructs, Modelica code
and OCL annotations. From such a model, a first transformation automati-
cally produces an executable Modelica program to perform real-time simulation.
A second transformation allows deriving a set of constraints describing the dis-
crete and abstract behaviours of the system. This set of constraints can be solved
to achieve (in a discrete manner) animation of the system as well as test case
generation by selecting a subset of trace executions. These abstract test cases
are concretized into executable test scripts that can be executed both on Mod-
elica simulation model (within MIL and HIL processes) and physical test bench
(within HIL process). During MIL testing, simulation results are manually com-
pared with the initial system requirements and may also be assessed by the
domain experts. Once the model is validated, it becomes the test oracle within
the HIL testing process: it computes the expected values of the test cases and
allows systematic comparison with the real values obtained on the physical test
bench (a synchronization step between simulation and test bench environments
is required to automate the comparison and the verdict assignment).

The paper is organized as follows. Section 2 introduces the background of
the framework to achieve modelling, animation, simulation and test generation
from SysML models, and motivates the work presented in the paper. In Sect. 3,
we detail the SysML and OCL subset supported by the framework for discrete
specifications, and we describe how it is natively combined with Modelica for
real-time simulation. Section 4 reports on the conclusive results obtained on a
real-life case-study about an helicopter Energy Manager System. Finally, after
discussing related work in Sect. 5, we conclude and outline future work in Sect. 6.
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2 Background and Motivation

This section clarifies our motivation by introducing preliminaries on the SysML
modelling language and the Modelica simulation code, and presents the standard
SysML4Modelica that specifies the way to combine them. We also describe the
test engine that enables to animate SysML models and apply MBT strategies.

2.1 SysML Modelling Language

The SysML Modelling Language [7], developed within the Object Management
Group (OMG) since 2001, enables system engineers to specify all aspects of a
complex system using graphical constructs. SysML is a UML profile that adapts
the UML semantics to the system engineering field. The semantics of UML,
through class and composite structure diagrams, has been moved to the system-
level in SysML by the definition of the Block Definition Diagram (BDD) and
Internal Block Diagram (IBD). The BDD is based on the UML class diagram. It
enables to define component using blocks and their relationships such as associ-
ations, generalizations and dependencies. These blocks are instantiated as parts
in the IBD, which is a system-level version of the UML composite structure dia-
gram. It specifies the internal organization of a block by describing its parts and
the connections between them. Usually, parts are connected through flow ports.

Using SysML allows engineers to achieve MBSE approach to specify, develop
and maintain complex systems, notably in the aerospace industry as shown in [8].
In previous work [9], we have proposed to use SysML models to apply MBT
strategies to automatically generate functional black-box test cases. To reach
this goal, subsets of SysML and OCL, called SysML4MBT and OCL4MBT, have
been defined to precisely model the expected behaviour of the System Under Test
(SUT) [10]. It contains BDD and IBD to specify the static structure of the SUT
and its environment, and state machines with OCL constraints to specify, in a
discrete way, behavioural features. Such models are complete and precise enough
to automatically derive black-box test cases using the CLPS-BZ test engine.

2.2 Model Animation and Test Generation Using CLPS-BZ

CLPS-BZ [11] is a constraint solver that augments the capabilities of (and co-
operates with) the integer finite domain solver of SICStus Prolog3 by handling
constraints over sets, relations and mappings. Initially built to animate and gen-
erate test cases from B and Z set-oriented formal specifications [12], it has been
extended to manage object-oriented specifications, such as UML/SysML models
with OCL constraints [13]. Basically, such models are translated into an internal
Prolog-readable syntax, called BZP, which provides special constructs for defin-
ing SysML diagrams and OCL expressions as constraints over sets. CLPS-BZ
makes it possible to efficiently execute on discrete domains the BZP code, both
for model animation and for test computation. Test computation consists to look
3 https://sicstus.sics.se.

https://sicstus.sics.se
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into the graph of reachable states of the system described by the constraints to
achieve classical test coverage criteria including transition-based, decision-based
and data-oriented criteria [9]. Afterwards, a set of execution traces, that define
the test cases, is computed by solving the constraints to find the sequences of
operation invocations that ensure the given criteria. To achieve that, CLPS-BZ
animates the model and computes a reachability graph, whose nodes are the
constrained states built during the animation, and whose transitions define an
operation invocation. Using constraint solving dramatically reduces the search
space during test generation, which allows the method to scale to larger systems.

The constraint system, described using the BZP format, obviously defines
a Constraint Satisfaction Problem (CSP) [14], i.e. a set of constraints, which
must be satisfied by the solution of the problem it models. Formally, a CSP
is a triplet < V,D,C > where V is a set of variables {v1, . . . , vn}, D is a set
of domains {d1, . . . , dn}, where di is the domain associated with the variable vi,
and C is a set of constraints {c1(V1), . . . , cm(Vm)}, where a constraint cj involves
a subset Vj of the variables of V . Within CLPS-BZ, which is able to manage
sets and integer finite domains, variables of V can be either an atom, or a set of
atoms (set(atom)), or a set of (nested) pairs of atom (set(pair(atom, atom))).
However, the CLPS-BZ technology is only able to handle constraints on discrete
domains and thus can execute neither animation nor test generation based on
continuous formula to efficiently address real-time systems. Therefore, CLPS-
BZ enables to derive test cases, as sequences of operation invocations, but an
other and independent model or program is necessary to execute them in the
continuous domain to gather the real and expected results. Moreover, SysML
is natively not executable: it does not include an action language, which could
allow to simulate SysML model, and even less if equations occur. To overcome
this lack, the OMG has proposed an extension to SysML to allow clarifying such
mathematical properties into SysML models using Modelica code. Hence, we
propose to use this extension to adapt and complete the existing approach to
be able to manage in a single model both high-level discrete requirements and
low-level continuous behaviours for test generation purpose.

2.3 Modelica and SysML4Modelica

Modelica is an object-oriented and equation-based language adapted to com-
plex physical systems modelling. Indeed, Modelica is built on acausal modelling
with mathematical equations and object-oriented constructs, and is designed
to support effective library development and model exchange. Since 2012, the
OMG promotes a dedicated SysML-Modelica Transformation specification4 to
integrate Modelica semantics into SysML and to provide a bi-directional trans-
formation between the both languages. The specification gives an extension to
SysML, called SysML4Modelica, which proposes matching semantics between
the SysML constructs and the Modelica code. The integration of Modelica con-
cepts into SysML is based on profiling: the SysML4Modelica constructs enable
to stereotype elements, which are parts of the BDD and the IBD of SysML.
4 http://www.omg.org/spec/SyM/.

http://www.omg.org/spec/SyM/
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Hence, to describe complex and heterogeneous systems, the SysML4Modelica
profile enables to bring together, in a single model, the non executable graphical
high-level SysML modelling and the real-time and continuous Modelica specifi-
cations. However, no theoretical framework is given to provide a practical way
to combine the architecture and discrete behaviours of SysML models with the
continuous aspects described by Modelica formula. This paper bridges this gap
by defining such a framework to bring them back together to achieve model-
based testing. It integrates constraint solving to address discrete animation and
black-box test generation, and Modelica simulation to address continuous needs.

This proposed framework aims (1) to avoid managing several models (at least
one for high-level discrete design and one for low-level continuous features) that
require to be manually synchronized, (2) to increase the automation level of the
model-based testing approach by minimizing the number of testing artefacts and
by providing a native link between abstract data (from SysML structures) and
executable structures (derived from Modelica code), and (3) to foster the use of
MBSE approach by supporting in the same modelling framework all design steps
of the real-time system life-cycle activities. The next section precisely introduces
the modelling framework we define to efficiently combine discrete and continuous
features in a single model for simulation and model-based testing purposes.

3 Combining Continuous and Discrete Modelling

Fig. 2. Overlap of the
SysML subsets

This section gives a formal description of the SysML
modelling framework unifying discrete and continuous
points of view. As depicted in Fig. 2, the resulting frame-
work is defined by the intersection of the SysML subset
for discrete modelling with the one dedicated to continu-
ous modelling. In this section, these both SysML subsets
are detailed and we show how the combination of them
defines a formal SysML modelling framework for simula-
tion and testing activities. Afterwards, the next section
will introduce a proof-of-concept integrated tool chain
implementing this theoretical framework. However, this
framework defines a generic way to combine discrete and continuous SysML
modelling, and therefore it can be used and implemented using another similar
tooled approaches.

NOTE: in the rest of the paper, to dispel any ambiguity and avoid misunder-
standing, animation is defined as a discrete evaluation of the model (variables
belong to finite domains or sets), i.e. an execution of the model based on con-
straint solving restricted to the SysML data that belong to finite domains or sets,
whereas simulation means real-time simulation of the model, i.e. an execution
of the Modelica code describing the system in a continuous-time process.
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3.1 SysML Subset for Simulation

The SysML subset for simulation purpose focuses on the following diagrams:
BDD, IBD and state machine. The structural view of the system is specified in
the BDD with blocks, which are connected each other using flow ports that
are depicted in the IBD. The behaviour of each system component may be
described using state machines. We thus define a SysML model for simulation as
a model Ms comprising two kind of blocks (blocks for component definition and
blocks that type flow ports) and enumerations. A block that types flow ports
only contains properties (no behaviour). SysML enumerations enable declaring
abstract types that can be used during a Modelica simulation.

Definition 1 (Model for simulation). Let Ms, the model for simulation, be
given by Ms =< η, ΓBs, ΓBf , ΓEnum >, where η is the name of the model, ΓBs is
the set of SysML blocks that defines components, ΓBf is the set of SysML blocks
that types flow ports and ΓEnum is the set of enumerations.

A component is defined with attributes and may be composed of other com-
ponents. Thus, it may have different typed elements (properties, parts and flow
ports). Its behaviour may be specified by a state diagram with Modelica code.

Definition 2 (Block for component definition). We define β ∈ ΓBs to be
the tuple β =< η, ΓAtt, ΓPart, ΓFP , ΓCnt, ΓCons, ΓSM >, where:

1. η is the unique name of the block,
2. ΓAtt is the set of attributes,
3. ΓPart is the set of parts,
4. ΓFP is the set of flow ports,
5. ΓCnt is the set of connectors,
6. ΓCons is the set of constraints,
7. ΓSM is the set of parallel state machines.

Each attribute, each part and each flow port shall be typed with primitive types
(real, integer and Boolean, respectively noted R, Z and B) or with user-defined
type (block for part, block for flow port and enumeration, respectively noted ΓBs,
ΓBf and ΓEnum). The set of types ΓT by ΓT = {ΓBs, ΓBf , ΓEnum,R,B,Z} are
defined as follows. Concerning attributes of ΓAtt, we have to distinguish several
cases: an attribute may be a constant, an equation’s unknown or a parameter
that defines the initial condition of the simulation. Within Modelica, an equa-
tion’s unknown, which needs to be solved by integration, can be either continuous
or discrete.

Definition 3 (Attribute). Let α ∈ ΓAtt be defined by α =< η, ω, υ, t > where:

1. η is the name of the attribute,
2. ω is variability such as ω ∈ {constant, parameter, discrete, continuous},
3. υ is the value of the attribute,
4. t is the type of the attribute (ΓEnum, R, B, or Z).

If an attribute is discrete or continuous, then it is necessarily a state variable.
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A block that types ports can only have properties, i.e., attributes that describe
what flows between ports. Then, the following is the definition of such blocks:

Definition 4 (Block for flow ports typing). We define βf ∈ ΓBf to be the
tuple: βf =< η, ΓAtt >, where η is the unique name of the block and ΓAtt is the
non-empty set of attributes.

We need also to formalize the connection between parts of a SysML model. Con-
nections are always between two flow ports, and a flow port has to be connected
at least to one other flow port. Then, we define the surjective connecting function
as follows:

Definition 5 (Connecting function). Let fc, the surjective connecting func-
tion, be defined by fc : ΓFP × ΓFP � ΓCnt.

The continuous behaviour of the system is specified by equations over contin-
uous state variables. The SysML constraints (ΓCons) are written using a subset
of the Modelica language that expresses equations. Numerical solvers (embed-
ded in all Modelica frameworks) are able to rewrite such constraints into a set
of first-order differential equations in order to compute integration over time.

Finally, state machine diagrams enable to describe the life-cycle of a com-
ponent. For instance, one may specify several component states depending on
time, state variables or user behaviours. The formal definition is given below (it
excludes join, fork and history pseudo-states that are not supported).

Definition 6 (State machine). State machine for simulation is described
with its classical definition SM =< s0,Σ, ΓE ,Ls, δ >, where:

1. s0 is the initial state,
2. Σ is a finite non-empty set of states composed of three disjoint sets: simple

states Σss, compound states Σcs and eventually final states Σfs,
3. ΓE is the set of trigger events,
4. Ls is the alphabet for specifying guard and effect of a transition,
5. δ : Σ × ΓE × Ls → Σ is the transition function.

The language Ls, used for specifying guards and effects, is a subset of the Model-
ica language. A guard is a Modelica Boolean expression and an effect is a Model-
ica statement such as assignment, if-statement, while-statement or for-statement.
Moreover, each state may have onEntry and onExit actions, which are respec-
tively executed at the entry and the exit of the state. These are defined using
Modelica statements. Concerning trigger events ΓE , we only consider call events,
i.e. representing an operation call. The called operations have to be defined in
the block that the state machine specifies. However, we do not consider the
operations of the blocks for components definition because operations are not
translated into Modelica code, only trigger events are.

The above presented subset (summarized in Table 1 in Sect. 3.3) is sufficient
to perform Modelica code generation and simulation. This subset enables to
validate a system at the earliest stage of a design process by automating the
derivation of Modelica code. To provide a modelling framework that enables to
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perform both simulation and testing from a single SysML model, discrete aspects
of the system have also to be integrated in order to use the CLPS-BZ solver for
animation and test case generation purposes.

3.2 SysML Subset for Animation and Test Generation

The SysML subset for animation (SysML4MBT with OCL4MBT [9]) enables to
formally specify the system to perform a constraint evaluation. Such a SysML
model describes the system from an abstract and discrete point of view. The
model is abstract in the way that the domain of a variable in R is discretized using
enumeration classes since CLPS-BZ only manages integers, Booleans and finite
sets. The behaviour of the model is also discrete as, during animation, we do not
know what happen between two stable states of the state machines. Of course,
simulation gives us some information about it, but during model animation, each
state transition is executed as an atomic and non-breaking computation.

Definition 7 (Model for animation). The model for animation Ma is
defined by Ma =< η, ΓBa, ΓEnum, ΓAsso >, where η is the name of the model,
ΓBa is the set of SysML blocks that defines components, ΓEnum is the set of
enumerations and ΓAsso is the set of associations between blocks.

Associations of ΓAsso are translated into relations between instances of classes.
The multiplicities of the association determine whether the relationship is a func-
tion, and if so, the type of this function (partial or total, and possibly injective,
surjective or bijective). Hence, the associations are translated into structures of
type ΓPart × ΓPart.

A block for component definition comprises attributes, parts and operations,
which are used to describe actions from the environment.

Definition 8 (Block for component definition). We define β ∈ ΓBa to be
the tuple β =< η, ΓAtt, ΓPart, ΓOp, ΓSM >, where:

1. η is the unique name of the block ,
2. ΓAtt is the set of attributes,
3. ΓPart is the set of parts,
4. ΓOp is the set of operations,
5. ΓSM is the set of parallel state machines.

Blocks define variables of the CSP and their domains are defined by the set of
instances (ΓPart) of these blocks. With CLPS-BZ, each block is associated with
information concerning its instances: the set of instances that can potentially
be created (all instances as a set(atom)), the set of currently created instances
(instances as a set(atom)), and the current instance, which is the last created
instance or treated by an operation (currentInstance as an atom). Among all the
possible instances all instances, a fictitious none instance is created. It is used in
the case to formalize the absence of current instance. Concerning enumerations,
they are translated into set(atom), where the atoms are the literals defined in
the enumeration. Thus, enumerations define domains in the CSP.
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For animation, the set of types ΓTa is defined by ΓTa = {ΓBa, ΓEnum,B,Z}.

Definition 9 (Attribute). Let α ∈ ΓAtt be defined by α =< η, ω, υ, t > where:

1. η is the name of the attribute,
2. ω ∈ {constant, variable}, and if ω = variable then ω is a state variable,
3. υ is the value of the attribute during the animation,
4. t is the type of the attribute (Z, B or ΓEnum).

Each attribute α ∈ ΓAtt, belonging to a block β, is translated into a total
function between all instances of the block β and the domain of α. Considering
for example that α is an integer, α is translated into a structure of type ΓPart×Z.

The operations have a name and optional parameters (in, out, inout, return).
For animation purpose, we only take into account in and return parameters. In
addition, operations can also have OCL4MBT precondition and postcondition.

Definition 10 (Operation). Let o ∈ ΓOp defined as o =< η, ΓPar, pre, post >
where: η is the name of the attribute, ΓPar is the set of parameters, pre is the
precondition of the operation and post is the postcondition of the operation.

State machines are used to specify discrete component behaviours and exter-
nal, physical or human, actions. For animation purpose, state machines are
defined as expressed in the definition 6. However, we define La, based on the
OCL4MBT subset, as the alphabet for specifying guard and effect of a transi-
tion.

Each state (single, composite, initial or final state) of a state machine is
translated into a specific context of the CSP. For each state, a variable status
stores the current state(s) of a block instance: it is a function associating each
instance of the block to a Boolean (the function is partial due to the presence of
the fictitious none instance in its domain). At the beginning of the animation,
each instance is in the initial state. In addition, two operations are declared to
each state to formalize the possible onEntry and onExit effects.

Each state machine is associated with the block it specifies the behaviour.
Operations of this block can be used as triggers for some transitions of the state
machine. To avoid unmanageable infinite loop during animation, three types
of transitions are allowed: external (reflexive or not) with trigger, internal with
trigger and guarded external or automatic (not reflexive). A variable opCalled ∈
ΓE , declared to store the last executed operation, enables to fire, from the current
state, transition triggered by this operation. We finally add a precondition for all
guarded and automatic transitions, expressing that no operation has been called
(opCalled = none). This ensures that the UML “run-to-completion” semantic
is satisfied. To sum up, each state gives rise to a variable status and constraints
related to the onEntry and onExit actions. Each transition is translated into
constraints in the CSP that are defined by its guard and effect. Finally, trigger
events of ΓE define a set of operation triggers set(atom) that defines the domain
of the variable opCalled.
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The above formalized subset (summarized in Table 1 in Sect. 3.3) enables
to animate a discrete and abstract SysML model by translating it into a CSP.
This CSP is defined by a Prolog-readable BZP file such that it is now possible to
specify the continuous and discrete behaviour of a complex and critical system for
simulation, animation and testing purpose. In the next subsection, we combine
these subsets to adress both continuous and discrete features.

3.3 Combined Formalism for Simulation and Animation

Table 1 summarizes the SysML subsets for simulation and animation. Each com-
bined SysML element are derived both to Modelica element and to CSP ele-
ment (variable V , domain D or constraint C). To propose a unified modelling
framework, blocks and enumerations for simulation have to be used for ani-
mation. Then, the model for validation Mv is defined as Mv = Ms ∩ Ma =
{ΓBv, ΓEnum} where ΓBv = ΓBs ∩ ΓBa. Blocks for flow port typing (ΓBf )
are not used for animation. Considering now β1 ∈ ΓBs and β2 ∈ ΓBa, then
β1 ∩ β2 =< η, ΓAtt, ΓPart, ΓSM > where each attribute of ΓAtt is defined as
proposed in definition 9. Indeed, Modelica is able to process discrete and con-
tinuous variables whereas the CLPS-BZ solver is not able to manage continuous
state variables. Concerning SysML parts, they enable to instantiate Modelica
components and to declare block instances in the constraint system.

Finally, state machines for simulation and animation are not totally com-
bined. The language for specifying guard and effect of transitions, as well as
onEntry and onExit actions of states, is indeed not fully equivalent. In one
case, the language Ls is a subset of Modelica and in the other case, the lan-
guage La is a subset of OCL. However, states, transitions and events are used for
both simulation and animation. Thus, every state machines are translated both
into Modelica code (using formula of Ls) and CSP (using OCL code of La). It
should be noted that state machines without OCL code and event trigger are
not translated into CSP because it would not impact the CSP solving and could
even give a under-constrained CSP (and make it non deterministic).

4 Implementation and Case-Study Evaluation

This section discusses the proposed modelling framework regarding an indus-
trial case-study about a large and complex Energy Manager System (EMS)
that delivers energy to a new type of helicopter. Figure 3 shows the architec-
ture of our simulation, animation, and testing environment from SysML mod-
els. This Eclipse-based tool chain, that instantiates the intended process given
in Fig. 1, strongly relies on Model-Driven Architecture (MDA) approach since
model transformation and code generation procedures enable to automatically
derive the simulation and testing artefacts from the SysML models [15]. There-
fore, the SysML model is translated into Modelica simulation code and into a
pivot meta-model, named UML4TST, and next into BZP file. Finally, Papyrus5

5 https://www.eclipse.org/papyrus/.

https://www.eclipse.org/papyrus/
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Table 1. SysML for Modelica Simulation and CSP Animation

SysML elements Modelica elements CSP <V,D,C>

Model Mv Root Modelica model CSP model

Blocks ΓBv Model ΓBv ∈ V

Blocks ΓBf Connector -

Enumerations ΓEnum Enumeration type ΓEnum ∈ D

Attributes ΓAtt Value property ΓAtt ∈ V

Constraints ΓCons Equation -

Parts ΓPart Component ΓPart ∈ D

FlowPorts ΓFP Port -

Connectors Connect equation -

Op. Precondition pre ∈ ΓOp - pre ∈ C (La)

Op. Postcondition post ∈ ΓOp - post ∈ C (La)

Op. parameters ΓParam - ΓParam ∈ D

State-Machines SM Algorithm section -

States Σ Boolean variable status variable ∈ V

State Entry Statement (Ls) Entry ∈ C (La)

State Exit Statement (Ls) Exit ∈ C (La)

Event triggers ΓE Boolean variable ΓE ∈ D

Transition δ When statement -

Transition guard Boolean expr (Ls) guard ∈ C (La)

Transition effect Statement (Ls) effect ∈ C (La)

is used to support the SysML modelling, OpenModelica6 computes the simula-
tions, and CLPS-BZ (included as a plugin in our Eclipse environment) generates
the test cases that are exported as UTP sequence diagrams in the SysML model.

This tool chain has been tested out during the prototyping phase of the EMS
system within HIL process. Hence, we distinguish the system under design (the
EMS) and its environment called the plant system (a simulation model of some
helicopter’s instruments). The objective of our experiment was to assess the suit-
ability and the reliability of the combined formalism to perform simulation and
test generation. The experiment started from requirement specifications given
in natural language. They describe the EMS and the physical limit of its com-
ponents, and the instruments of the helicopter with their energy request over
time during the activation period. We now describe the main results obtained
from this experimentation, which was divided into five stages: (1) EMS and
plant modelling (using SysML subset for simulation), (2) simulating the sys-
tem components using a scenario example, (3) adding abstraction and discrete

6 https://www.openmodelica.org.

https://www.openmodelica.org
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Fig. 3. Overall Architecture of the Simulation and Testing Tool Chain

behaviours (using SysML subset for animation), (4) animating the model and
generating test cases, and (5) executing test cases on the simulation model.

SysML Modelling for Simulation. The EMS, depicted in Fig. 4, is com-
posed of an energy source that emulates a permanent power source, an accu-
mulators battery, a battery of super-capacitors, and a bus that connects the
energy sources. Each source is described by a specific IBD, which specifies the
source and its controller for managing strategies. The helicopter energy requests
go through the flow port Icharge modelled at the top of the IBD.

Fig. 4. IBD of the Energy Manager System

The plant model comprises 14 helicopter’s instruments that all require energy
during a mission. For confidentiality reason, we cannot cite these components and
provide more details about the EMS and the plant. However, the IBD of Fig. 5
shows 4 instruments that require energy over time. Each of them is connected to
a bus that sums the energy demand. The outP lant flow port enables to connect
the plant to the Icharge flow port of the EMS. The functional and continuous
modes of the instruments are specified with state machines and equations.
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Fig. 5. IBD of the Plant Model

Overall information about the SysML model is provided in Table 2. Note that
the bold numbers are the same for the EMS and the plant. This means that the
EMS and the plant are specified in the same SysML model (Ms = 1) and that
blocks for flow port typing (ΓBf = {RealInput,RealOutput}) are used both in
the EMS and in the plant. From this SysML model, 626 lines of Modelica code
have been automatically generated for the plant, and 412 lines for the EMS.

Model Animation and Test Generation. The EMS and the plant were
translated into a CSP using the BZP format. In this model, no operation pre-
conditions and postconditions were used. The discrete behaviour of the helicopter
has been specified only using state machines with OCL4MBT and event triggers.

Fig. 6. Excerpt of Plant System State Machine

Basically, a mission of the helicopter is composed of a sequence of several
modes. Each mode is an activation of one or more instruments over time that are
done by the pilot during the flight. All the possible mode activations have been
specified with a state machine, as shown in Fig. 6. The complete state machine
contains 17 modes and 55 transitions. Among these 55 transitions, everyone
has an event trigger, 17 have OCL4MBT guard and 18 have OCL4MBT effect.
OCL4MBT enables to guide the CLPS-BZ solver during test case generation to
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Table 2. Metrics about the SysML Model

SysML elements # for the EMS # for the plant Total

Model Ms = Ma 1 1 1

Blocks ΓBs = ΓBa 19 16 35

Blocks ΓBf 2 2 2

Enumerations ΓEnum 0 1 1

Attributes ΓAtt 41 48 89

Constraints ΓCons 39 15 54

Parts ΓPart 34 15 49

FlowPorts ΓFP 66 30 96

Connectors 76 15 91

State-Machines SM 3 2 5

States Σ 10 21 31

State Entry 0 0 0

State Exit 0 1 1

Event triggers ΓE 0 15 15

Transition δ 11 47 58

Transition guard 8 16 24

Transition effect 0 47 47

produce sequences verifying the system requirements. For instance, OCL4MBT
code has been added on several transitions to satisfy the following requirement:
the mode Mode9 (not depicted in Fig. 6) may be activated twice only if the
mode Mode6 has been activated just before. In addition, each transition effect
is completed with Modelica code in order to simulate the instruments during
the continuous simulation. From this model, the CLPS-BZ solver has gener-
ated 154 test cases to cover all the transitions of the state machine. Each test
case is a sequence of 10 to 20 operation invocations. Finally, the concretization
step consisted in automatically publishing test cases as sequence diagrams, next
translated into Modelica procedures to be simulated.

Feedback and Lessons Learned. First of all, it should be noted that these
experiments have been conducted by an engineer with a huge expertise in SysML
modelling and model-based testing approach, but without any initial knowledge
about real-time simulation and EMS specifications. In this way, it might bias us
to have an objective view of the scalability of the process, but it does not affect
the suitability of the formal framework we aim to evaluate. Moreover, case-study
results have been evaluated with scientists specialized in smart energy systems,
who are therefore familiar with development and continuous simulation of such
complex systems. This enables us to get a solid feedback regarding the relevance
of the framework and the related tool-supported overall approach.
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Thanks to these experiments, we can conclude that the proposed modelling
framework, combining both discrete and continuous features of the designed
system, is relevant to achieve efficient model-based testing. On the one hand,
the selected SysML formalism is expressive and precise enough to describe the
system, generate relevant abstract test cases, and enable early simulation of the
system. On the other hand, the framework offers a concrete benefit regarding
the model writing and maintenance since the discrete and continuous features
are natively mapped and kept consistent within the SysML model, and they can
be automatically checked using test case generation and simulation.

As a consequence, the supporting implementation offers a relevant execu-
tion platform for a rapid prototyping and an early validation of the real-time
designed system. These experiments have also highlighted the high level of
automation regarding test case concretization, which is known to be tricky and
time-consuming, especially when real-time constraints occur, as observed in pre-
vious work [9] where discrete model and continuous program were distinctly and
separately managed and synchronized. This benefit stems again from the native
link between discrete model elements (basis of the test generation) and the Mod-
elica code (basis of the simulation). Regarding the process, deeper investigations
are required to provide a complete report about scalability and efficiency of the
overall approach, in particular w.r.t. industrial practices on large-scale systems.

5 Related Work

To the best of our knowledge, there is no reported approach in the literature that
supports continuous and discrete SysML modelling for simulation and testing
purposes. However, combining discrete and continuous modelling is not a recent
topic. The integration of continuous and discrete aspects for modelling and simu-
lation introduced by Zeigler et al. in [16], which defines a coupled Discrete Event
and Differential Equation Specified System formalism (DEV&DESS), is close to
our proposal. Basically, a such a coupled model is a model, which contains con-
nected components. Components are defined as atomic DEV&DESS. We first
tried to map our SysML modelling framework with this coupled DEV&DESS
formalism. But this formalism does not support both discrete and continuous
states into a coupled model, so a SysML block with parts cannot support a
state machine. Some other results have been provided recent years to achieve
similar continuous and discrete modeling for simulation. The approach in [17]
proposes to combine superdense time, modal models, generalized functions and
constructive semantics to get a rigorous approach for modelling discrete physical
phenomena that occur on cyber-physical systems. Nevertheless, this approach
does not consider test generation for model and physical system validation.

We have to point out that similar black-box testing approaches exist for real-
time systems. For instance, Iqbal et al. [18] propose a modelling methodology
based on UML and MARTE, in which the UML model is automatically trans-
lated into environment simulators implemented in Java. However, this modelling
approach does not deal with continuous aspects, and differential and algebraic
equations (DAEs) are hidden to the engineers.
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About generation of simulation code from UML and SysML models, in [19],
the authors propose to derive VHDL specifications from UML classes and state
diagrams. Vanderperren et al. [20] propose to translate SysML models into
Matlab-Simulink. Other work [21] focuses on generating SystemC from UML
models. Each of these approaches enables to simulate a system specified with
UML or SysML, but discrete and abstract aspects of such models are not con-
sidered for model-based testing. Moreover, our work is original as we propose to
combine continuous and discrete modelling in a single model.

6 Conclusion and Future Work

This paper presented a SysML framework that combines continuous features for
simulation and discrete aspects for model-based testing. We formally described
the SysML subsets for Modelica simulation and CSP solving, and the way to
combine them in a single SysML model. This combined approach aims to be
used within model-in-the-loop and hardware-in-the-loop processes. In these con-
texts, the simulation respectively plays two key roles: simulating a component
based system and providing test cases and oracles for the model and its con-
crete product. While preserving the V cycle to address complex and critical sys-
tem development, we promote a more iterative and incremental approach driven
by the early validation and verification activities. Experiments give a conclu-
sive feedback about the suitability and the reliability of this framework, and
highlighted its higher automation ability for early design validation of real-time
systems.

As future work, we plan to conduct extensive experiments and to extend
CLPS-BZ to handle continuous domain in order to investigate new test gener-
ation criteria based not only on discrete features, but also on continuous ones.
It would be possible to use the CLPQR library. This library considers real val-
ued variables and enables to perform linear equations solving. Furthermore, we
have some insights concerning the combined use of CLPS-BZ with a numerical
solver. More precisely, the use of interactive simulation, driven by a numerical
solver, would enable to explore the continuous state space between two spec-
ified discrete states. This combination requires each solver to manipulate the
same object, and requires establishing a communication protocol to propagate
deductions made by a solver in the other. Such protocol would not only raise
issues about concurrency or synchronization: it would obviously require further
investigation about more complex algorithms regarding state reachability issues,
including meta-heuristics, patterns recognition, fuzzing, etc. These issues open
new research topics combining parallel and distributed fields with formal V&V.
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Abstract. State space visualization is a popular technique for support-
ing the analysis of formal models. It often allows users to get a global
view of the system and to identify structural similarities, symmetries,
and unanticipated properties. However, state spaces typically become
very large, so human inspection of the visualization becomes difficult.
To overcome this challenge, we present an approach which can consider-
ably reduce the size of the state space by creating projection diagrams.
Moreover, we present an approach to link a projection diagram with a
domain specific visualization. The projection diagram construction can
be initiated directly from user-selected graphical elements without the
user having to write formulas or having to know the variables or internal
structure of the model. This makes the projection diagram inspection and
construction accessible to non-formal method experts. These techniques
have been implemented within the ProB toolset, and we demonstrate
their benefits and usefulness on several examples.

Keywords: Formal methods · B-Method · State space · Visualization ·
Human inspection · Domain specific visualization · Tool support

1 Introduction and Motivation

In state-based formal methods, such as the Classical-B method [2] and its suc-
cessor Event-B [1], the system behaviour is modelled by states and transitions.
A state is a particular configuration of variables, whereas transitions link two
states and represent the evolution of the system. Transitions are triggered by
the execution of an operation (or event in Event-B). Some states are marked as
initial and the set of states and transitions reachable from the initial state is the
state space of the model.

The state space can be constructed and validated automatically via model
checking [5]. In this process, the validity of temporal properties will be checked,
but the state space itself is “invisible” to the user. However, often it is impor-
tant for the developer or a domain expert to inspect the state space (or parts
of it) manually. This can be achieved interactively with animation [7] or by
visualizing the state space [23]. The latter can be especially useful to identify
structural similarities, symmetries, and unanticipated properties from the sys-
tem [23]. However, most state space visualization tools and techniques do not
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 153–169, 2015.
DOI: 10.1007/978-3-319-25423-4 10
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scale well. Indeed, the number of states and transitions typically becomes very
large, especially at more concrete refinement levels, and human inspection of
the visualization thus becomes a very difficult task. As an example, consider the
state space visualization shown in Fig. 1 (the reader is not expected to be able
to read the diagram, just to get a general impression of the problem statement).
The visualization was generated with ProB [17], a validation toolset with sup-
port for Event-B [1] and Classical-B [2], as well as other formalisms (e.g. [9,18]
and [21]). The visualization shows the full state space (145 states and 673 tran-
sitions) of the first refinement level of the landing gear system taken from [8]
modelled in Event-B. Although the visualization shown in Fig. 1 is produced at
an abstract level (the whole model covers 6 refinement steps), it is already hard
for humans grasp.

Fig. 1. Full state space visualization of the first refinement of the landing gear system

To overcome this challenge, we present an approach to considerably reduce
the complexity of a state space visualization by creating projection diagrams. The
main objective of the approach is to support human analysis of the system by
highlighting relevant aspects of the model (e.g. certain variables or a particular
behaviour), while hiding information that is not relevant from the diagram. The
approach has been implemented into the ProB toolset with support for Event-
B, Classical-B, TLA+ and Z models. However it is generic so that it can also
be integrated into another tool that is capable of producing a state space of a
formal model.

In the second part of this paper, we present an approach to link a pro-
jection diagram to a domain specific visualization developed with BMotion Stu-
dio [14]. The resulted projection diagram consists of the basic projection diagram
enhanced with graphical elements that come from the linked domain specific
visualization. An important insight is the fact that the diagram can be gener-
ated from the domain specific visualization directly without the user having to
know the variables of the model nor having to type expressions in a formal mod-
elling language. We explain the approach and provide an implementation that
comes as an extension of the ProB toolset. In order to demonstrate the app-
roach, we provide a live visualization, that can be tested online at [13]. Finally,
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we draw conclusions, discuss future improvements for the approach, and compare
our work with related work.

2 Basic Projection Diagram Algorithm

In this paper, we explain our approach based on the Event-B method [1] and the
ProB tool [17]. The starting point of our approach is to explore the state space of
a formal model. This can be achieved via model-checking [5] or interactively with
animation [7]. Note that for our approach it is not mandatory to exhaustively
explore the full state space of the formal model. The algorithm can also be
applied on partial explored state spaces and provides feedback about which states
have not yet been fully explored (see Sect. 2.1). As described in [19], the state
space can be viewed as a non-deterministic labelled transition system (LTS):

Definition 1 (LTS). An LTS is a 4-tuple (Q,Σ, q0, δ) where Q is the set of
states, Σ the alphabet for labelling the transitions, q0 the initial state and δ ⊆
Q × Σ × Q is the transition relation. By q

a−→ q′ we denote that (q, a, q′) ∈ δ.

Figure 2 shows a simple example of an LTS for an Event-B model with two
variables x and y. Each node in the graph represents a state of the model,
where each state is defined by a particular configuration of the two variables x
and y. In the following, we use the notation [v1 = r1, ..., vn = rn] to name the
configuration of a state, where v1 = r1, ..., vn = rn are the variables (vx) and
their values (rx) in the respective state. For instance, the initial state q0 (the
node with the incoming serrated arrow) has the configuration [x = 0, y = 0].

The edges in the graph represent the possible transitions of the LTS (δ). In
Event-B, a transition is the execution of an event, which is specified as a gen-
eralised substitution allowing deterministic and non-deterministic assignments
to be specified. Each transition is labelled with the corresponding event name,
where Σ = {set x, set y, reset} defines the names of the possible events. For
instance, the event set x can modify the value of the variable x from 0 to 1,
which is denoted by the transition [x = 0, y = 0] set x−→ [x = 1, y = 0] shown in
Fig. 2.

The next step in the construction of a projection diagram of an LTS consists
of defining a projection function. All states with the same value for the projec-
tion function are merged into an equivalence class. A transition leads from one
equivalence class C to another C ′ if there is a transition from one state s ∈ C
to a state s′ ∈ C ′. Formally, one can define the projection of an LTS as follows:

Definition 2 (Projection). Let L = (Q,Σ, q0, δ) be an LTS and p a projection
function with domain Q. The projection of the LTS using p, denoted by Lp, is
defined to be the LTS (Qp, Σ, p(q0), δp), with Qp = {p(s) | s ∈ Q} and δp =
{p(s) ev−→ p(s′) | s

ev−→ s′ ∈ δ)}.
Each element in Qp represents an equivalence class, where each equivalence

class merges the states of Q (the states of the original LTS) that have the same
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x=0,y=0

set_yset_x

x=1,y=0 x=0,y=1

x=1,y=1

set_y set_x

reset

Fig. 2. Simple LTS

0

set_y
set_x

1

set_y

reset

Fig. 3. Projection of the LTS onto the
variable x

value for the projection function p. To illustrate the idea of a projection, consider
Fig. 3. The diagram shows the projection of the simple LTS of Fig. 2 onto the
variable x using the projection function p([x = vx, y = vy]) = vx. Obviously,
the projection of an LTS may not be equivalent to the original LTS, as the
sequences of the events are not necessarily possible in the original LTS. However,
all sequences of the original LTS are possible in any projection of it.1 In order
to reduce clutter in the projection diagram, one can also remove self loops, i.e.,
removing the event set y. This is useful if a user wants to focus on the transitions
that can change the value of the projection function.

2.1 Categorizing Edges and Equivalence Classes

To provide a more refined visualization, we categorize the equivalence classes
and edges. We distinguish between definite and non-definite, as well as between
deterministic and non-deterministic edges. In addition, we distinguish between
two types of equivalence classes: the equivalence classes that contain only a single
state and the equivalence classes that have not yet been fully explored (e.g., if
the state space has not been explored exhaustively).

In the following subsections we explain the different types of edges and
equivalence classes and illustrate them with an example. To do this, let L =
(Q,Σ, q0, δ) be an LTS and Lp = (Qp, Σ, p(q0), δp, E) its projection. Given an
edge x

ev−→ y ∈ δp, we denote x as the source and y as the target equivalence
class. Moreover, we call an edge x

ev−→ y ∈ δp enabled for a particular state s,
with s ∈ x if ∃s′ · (s′ ∈ y ∧ s

ev−→ s′ ∈ δ).

1 i.e., the original LTS is a trace refinement of the projection LTS.
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Class1 Class2

e

e

e

definite

Fig. 4. Definite edge

Class1 Class2

e

e

e

semi-det

Fig. 5. Semi-deterministic edge

Definite Edges. An edge is definite, iff it is enabled in all states of the source
equivalence class. Thus, the set of all definite edges of Lp can be defined as
follows:

Definite = {x
ev−→ y | x

ev−→ y ∈ δp ∧ ∀s · (s ∈ x ⇒ ∃s′ · (s′ ∈ y ∧ s
ev−→ s′ ∈ δ))}.

Figure 4 illustrates the idea of a definite edge: there is a definite edge between the
equivalence classes Class1 and Class2 whenever e is enabled in all states of the
source equivalence class (Class1 ). An edge is non-definite iff it is not definite. In
order to distinguish the different edge types in the projection diagram, definite
edges are drawn as solid lines, while non-definite edges are drawn as dashed
lines.2 An example can be seen in Fig. 6 adapted from Fig. 3. The set x edge is
possible in all states with x = 0, and is the only definite edge in the diagram.
All other edges are semi-deterministic as described in the next Section.

0

set_y
set_x

1

set_y

reset

Fig. 6. Projection of the LTS from Fig. 2 onto the variable x, distinguishing definite
and semi-deterministic edges

2 In ProB the user can customize the style of the edge types.
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Semi-Deterministic and Non-Deterministic Edges. An edge e is called
semi-deterministic iff the underlying event always leads to the same target equiv-
alence class (Class2 ) from the source equivalence class (Class1 ). However, it does
not have to be enabled in all states of the source equivalence class (Class1 ). This
is illustrated in Fig. 5. All dashed edges in Fig. 6 are also semi-deterministic.

Thus, the set of all semi-deterministic edges of Lp is defined as follows:

SemiDet = {x
ev−→ y | x

ev−→ y ∈ δp ∧ ¬(∃z · (z 	= y ∧ x
ev−→ z ∈ δp))}.

Furthermore, we denote an edge as non-deterministic if it is not semi-
deterministic. Thus, the set of all non-deterministic edges of Lp is composed
of all edges (δp) expect of the semi-deterministic edges (SemiDet):

NonDet = δp \ SemiDet .

Figure 7 shows an example of a non-deterministic edge. Given the three equiv-
alence classes Class1, Class2 and Class3, the edge e is non-deterministic if e is
enabled and it leads to at least two distinct target equivalence classes (e.g. Class2
and Class3 ).

Class1 Class2

Class3

e

e

e

non-det

non-det

Fig. 7. Non-deterministic edge

Deterministic and Non-Deterministic Definite Edges. The set of all edges
of Lp that are deterministic and definite is defined as:

DetDef = SemiDet ∩ Definite.

As an example, the edge e shown in Fig. 4 is definite and deterministic. This
is because e is enabled in all states of the source equivalence class (Class1 ) and
it leads to the same target equivalence class (Class2 ).
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Moreover, edges that are non-deterministic and definite are defined as fol-
lows:

NonDetDef = NonDet ∩ Definite.

For instance, the edge shown in Fig. 7 is definite and non-deterministic as it
is enabled in all states of the source equivalence class (Class1 ) and it leads to
two distinct target equivalence classes (Class2 and Class3 ).

Non-deterministic, semi-deterministic, deterministic and definite edges are
distinguished by their colour (which can be set by the user).

Single State and Partial Equivalence Classes. An equivalence class is
single, iff one state is merged into the equivalence class. Thus, the set of all
single equivalence classes can be defined as follows:

Single = {x | x ∈ Qp ∧ card({s|s ∈ Q ∧ p(s) = x}) = 1}.

For instance, the equivalence class Class3 in Fig. 7 is single, as it contains
only one state.

Furthermore, we highlight any equivalence classes that have not yet been fully
explored, which can happen when not all states of the class have been treated
by the model checker yet. This means that additional outgoing edges and new
equivalence classes could appear after further exploration of the state space.
As in the categorization of edges, the different types of equivalence classes are
distinguished by their (user defined) colour. E.g., equivalence classes that have
not been fully explored are marked in orange. In this paper, however, we always
suppose that the full state space has been explored (and as such no orange
equivalence classes appear in the diagrams).

2.2 Application of the Projection Diagram

In this Section we present some example applications of the projection diagram
and demonstrate how we have applied it in the process of validating the Event-B
model of the ABZ landing gear case study from [8].

Note that from now on we will use projection functions of the form p(s) =
eval(E, s), where s ∈ Q, E an expression over the variables and constants of
the model, and eval is the function that evaluates the expression E in state s.
The projection function is thus defined by a “custom” expression E. With this
scheme, we can project the state space of a model on a single variable v (E = v)
but also on a set of variables v1, . . . , vk (E = (v1 �→ . . . �→ vk)). We can also
project on particular properties of a variable v, e.g., its cardinality (E = card(v))
or its range (E = ran(v)).

ABZ Landing Gear Case Study. The landing gear system3 (LGS) is com-
posed of three parts: a digital part including the control software, a pilot inter-
face, and a mechanical part which contains the doors and gears. The system is
3 The website http://stups.hhu.de/ProB/index.php5/ABZ14 contains the full specifi-

cation, the Event-B model and a live visualization of the ABZ landing gear system.

http://stups.hhu.de/ProB/index.php5/ABZ14
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in charge of controlling the retraction and extension sequence of the gears with
respect to the doors and the pilot handle. The pilot handle and gears of the
landing gear system are closely related, since the extension and retraction of the
gears can always be interrupted by a counter order of the pilot handle.

A projection on both aspects of the model (the gears and the pilot han-
dle) helped us to inspect their behaviour in the process of modelling the LGS.
As an example, consider the visualization of the projection diagram shown
in Fig. 8. The visualization was produced with ProB and demonstrates the
projection of the fourth refinement level of an earlier version of the Event-B
model of the LGS (the full state space covers 6,283 states and 31,299 transi-
tions) using the projection function p(s) = eval(E, s), with E = ran(gear) �→
handle. Note that ran(gear) is the set of states of the three gears, abstract-
ing away which particular gear is in which state. E.g., ran(gear) has the
same value {retracted, gear moving} for gear = {left �→ retracted , right �→
retracted , front �→ gear moving} and gear = {left �→ gear moving , right �→
gear moving , front �→ retracted}. Each rectangle represents an equivalence class
(all states with the same value for the expression E) and is labelled with the
associated expression value as well as with the number of states that are merged
into the equivalence class. A directed edge between two equivalence classes repre-
sents a transition which is labelled with the associated event name. The diagram
confirms that in every state the handle can be toggled (the corresponding tran-
sitions are definite) and that the only event which can modify the handle is
env toggle handle. We can also see that the gears do not jump directly from
retracted to extended or vice versa. The transitions for changing the gear state
are not definite; this is to be expected, as the doors have to put into the correct
position first. This again confirms what we intuitively know about the modelled
system.

Scheduler Example. Figure 9 illustrates how one can combine various vari-
ables into a single expression. The Figure projects the state space of the “stan-
dard” scheduler benchmark example from [15] (also used in [19]), which schedules
processes and keeps disjoint sets of waiting, ready and active processes. In the
Figure we abstract away from the process identities, by computing the cardinal-
ity of these sets. Furthermore, we add these sets together, to project on the total
number of processes (E = card(ready)+card(waiting)+card(active)). One can
clearly see that only two events change the total number of processes: new and
del . Moreover, new is always enabled when less than 3 processes exist, while del
is only possible when more than one process exists and is not always possible.
This confirms our intuition, as active processes cannot be deleted straightaway.
Figure 9 shows how one can focus on very specific aspects of a model using the
projection diagrams. We believe that one should probably generate a variety of
projection diagrams for any particular model — a different one for very specific
aspects — and that they can or should be incorporated into the documentation
accompanying the model.
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ran(gear) |-> handle

# states: 1

({gear_moving}|->down)

# states: 2624

({gear_moving}|->up)

# states: 2848

({retracted}|->down)

# states: 1576

({retracted}|->up)

# states: 1832

({extended}|->up)

# states: 4148

({extended}|->down)

# states: 4228

INITIALISATION

env_toggle_handle

env_toggle_handle

env_start_retractingenv_start_retracting

env_retract_gear

env_toggle_handle

env_retract_gear

env_toggle_handle

env_toggle_handle

env_toggle_handle

env_extend_gear env_extend_gear

env_start_extending
env_start_extending

Fig. 8. State space projection of an earlier version of the fourth refinement level on
variable handle and range of gears of the landing gear system

(card(ready) + card(waiting)) + card(active)

# states: 1

0

# states: 1

1

# states: 6

3

# states: 13

2

# states: 15

INITIALISATION

new

new

del

del

new del

Fig. 9. Projection on expression card(ready)+card(waiting)+card(active) of a process
scheduler

In the next Section we show how we can increase the value of these diagrams,
by incorporating graphical elements and making them accessible to domain
experts not versed in formal modelling.

3 Linking with Domain Specific Visualization

BMotion Studio [14] is a tool for creating domain specific visualizations of formal
models. The tool provides various graphical elements (shapes, images, buttons,...)
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that can be used to represent the different aspects of a model. As an example,
consider the model of the landing gear system from [8]. A domain specific visu-
alization of the model can show the physical environment (gears and doors) and
the architecture of the hydraulic part (valves and cylinders). Moreover, observers
are used to link the model with the visualization and allow the tool to compute
a visualization for any given state. An observer binds an expression or a variable
to a graphical element (e.g. a shape or an image) and changes its properties (e.g.
the colour or position) according to the value of the expression or variable in the
respective state.

In this Section we present an extension of the approach introduced in Sect. 2
that links a projection diagram with a domain specific visualization. The basic
idea of the approach is to create a projection on user-selected graphical elements.
To do this, we apply the following approach:

1. The user selects the graphical elements for the projection from the domain
specific visualization.

2. We determine recursively the observers of the selected graphical elements4 and
derive the expressions fi (which can be simple variables) that are required to
draw the state of the selected graphical elements.

3. We construct the projection expression E = f1 �→ ... �→ fn and compute
the projection diagram using the projection function p(s) = eval(E, s) as
described in Sect. 2.

4. For each equivalence class of the projection diagram, we compute the rep-
resentation of the selected graphical elements according to the value of the
projection function of the respective equivalence class. Note that if computed
separately, all states in this equivalence class would yield the same visualiza-
tion for the selected graphical elements.

5. We assign the adapted graphical elements to the corresponding equivalence
classes.

To illustrate the idea of the approach, consider the projection diagram in
Fig. 10. The diagram demonstrates the projection on the image element that
represents the pilot handle of the landing gear system from [8] using the pro-
jection function p(s) = eval(E, s), where E = handle is automatically derived
from the formula observer [12] shown in Fig. 11. The observer is registered on
the graphical element that matches the selector “#handle”5 (line 2). Line 3
states that the observer should observe the variable handle, i.e. the variable that
defines the state of the pilot handle of the landing gear system. In lines 4 to
7 we define the action which is applied on the image element whenever a state
change occurred. In this case, the observer sets the path (src) of the image ele-
ment (origin) to a new path that is constructed based on the value of the variable
handle in the current state (val[0])6. To compute the representation of the image
4 In BMotion Studio graphical elements are arranged hierarchically. Thus, we also

need to determine recursively the observers of the child graphical elements.
5 The prefix “#” is used for matching a graphical element by its ID.
6 The domain specific visualization provides different images to represent the states

of the handle (down and up).
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element for an equivalence class, we apply the observer using the value of the
projection function of the respective class. The adapted image element is then
assigned to the equivalence class. For instance, the diagram in Fig. 10 shows the
two possible states of the handle (up and down) and its graphical representation.

Fig. 10. Projection on handle

1 bms.observe("formula", {

2 selector: "#handle",

3 formulas: ["handle"],

4 trigger: function (origin, val) {

5 origin.attr("src",

6 "handle_" + val[0] + ".png");

7 }

8 });

Fig. 11. Formula observer for image
element that represents the handle

Although developing a domain specific visualization requires extra effort,
the benefits of linking it with a projection diagram can be considerable. For
instance, it can be used to get a common understanding about the underlying
model within a team or to discuss the model with non-formal methods experts.
As an example, consider Fig. 12 that shows the projection on the cabin of a
simple lift model taken from [13]. One can see at a glance (without knowledge
about the underlying model or the used formalism), that the cabin is able to
stop and to open the door at all three floors. The diagram also confirms that the
cabin door must always be closed (indicated by a gray fill) before the lift can
move. This is indicated by the solid edges labelled with the event close door.

Another example is shown in Fig. 13, illustrating the projection on the graph-
ical elements representing the handle and the front gear cylinder of the fifth
refinement level of the landing gear system using the derived projection function
p(s) = eval(E, s), with E = handle �→ gears(front). The visual feedback may
help the user to localize specific equivalence classes for further inspection even
if the diagram becomes slightly larger or the layout of the diagram is unflatter-
ing. For instance, one can identify at a glance the equivalence classes where the
cylinder is extended or where the handle is set to down.

The projection on graphical elements can even support the development of
a domain specific visualization. In particular, we have used it while developing
the domain specific visualization of the landing gear system, e.g. to check if a
particular graphical element represents all relevant states of the model properly
and to eliminate undesirable behaviour in the domain specific visualization. For
instance, consider the diagram shown in Fig. 10: one can see at a glance that
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Fig. 12. Projection on cabin of simple lift model

Fig. 13. Projection on handle and front gear of the landing gear system

the handle behaves as expected in the domain specific visualization (and in the
formal model). Similar (small) projection diagrams can also be created for other
graphical elements (e.g. Figs. 12 and 13).

4 Related Work

Several other approaches exist for state space visualization. In this work we are
concerned with reducing the size and complexity of states space visualizations
which have a large number of nodes and transitions. However, we are also con-
cerned with supporting the analysis of formal models by producing state space
visualizations that are even accessible for non-formal method experts. Thus, we
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compare our work with other approaches that tend to improve the visualiza-
tion of larger state spaces, as well as with other approaches that have the goal
of making formal models accessible to non-formal method experts. Because our
work has a strong focus on the B-method, we first compare our work with state
space visualization approaches with support for the B-method. Afterwards, we
compare our approach with other related work.

State Space Visualization for the B-Method. Our approach has been
implemented into the ProB toolset [17]. ProB also provides further state space
visualization features with the motivation to reduce the complexity of the pro-
duced graphs. Two of them are presented in [19]: the signature merge approach
and the DFA-abstraction algorithm. The signature merge approach is very simi-
lar to our approach: while our approach merges all states based on a projection
function, the signature merge approach merges all states with the same enabled
events to a common signature. While the approach can be tuned by deselecting
events from the signature, our approach can be tuned by adapting the projec-
tion function. For instance, our approach enables the user to focus on certain
variables (or even just properties of those) of a formal model and to see only
those events which can modify those variables. On the other hand, the basic
idea of the DFA-abstraction algorithm is to abstract the labelling of the edges,
i.e., to abstract away from event arguments and to apply the classical minimiza-
tion algorithm for Deterministic Finite Automaton (DFA). The DFA-abstraction
algorithm produces a visualization in which the transitions are equivalent to
these in the original state space. However, this produces a larger graph which
may still be difficult for humans to grasp [19].

In [11] the authors present two complementary approaches to increase the
understanding of formal models by producing behavioural views from B models,
rather than focusing on reducing the size and complexity of larger state spaces.
In particular, the under-approximation approach also uses the ProB model-
checker [17] to exhaustively explore the state space of a formal model as a first
step. While our approach groups nodes based on a projection function, the under-
approximation approach produces a graph by grouping concrete states satisfying
a same abstract state predicate.

A few other tools provide domain specific visualizations for Event-B models,
but without providing any state space visualization: [20,26] using Flash technol-
ogy and [27] using web technology.

More State Space Visualization Approaches. The work done in [24,25]
addresses the problem of visualizing large state spaces and presents a tool called
DiaGraphica with different features for the interactive visual analysis of state
spaces. The tool supports the fsm input file format7 for representing state spaces
as plain text. It would be interesting to see if the work presented in this paper
could be combined with the DiaGraphica tool, i.e. to export the state spaces
produced by ProB (the full state space and the state space produced by the

7 http://www.comp.leeds.ac.uk/scsajp/applications/data/fsm.html.

http://www.comp.leeds.ac.uk/scsajp/applications/data/fsm.html
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Table 1. Runtime of algorithm for various models and projection functions

Model States/transitions∗ Projection expression

Scheduler 36/121 card(ready)

+card(waiting)

+card(active)

0.01 s -

Landing gear

(old), 4th

Ref

6,283/31,299 ran(gear) �→ handle 0.02 s -

Landing gear,

5th Ref

25,217/149,041 ran(gears) �→ handle 0.98 s -

gears �→ handle 1.06 s -

handle 0.77 s 1.59 s

handle �→ gears(front) 0.88 s 3.20 s

Simple lift 186/838 door 0.03 s 0.70 s

floor �→ door 0.03 s 1.10 s
∗

basic projection diagram algorithm) into the fsm format and to load it with the
DiaGraphica tool.

The muCRL2 system also provides a 3-D state space visualization technique
[6,22], which tries to show a large number of nodes as opposed to our approach
of projecting the state space onto a smaller refinement of it.

5 Conclusion

In this paper we have presented an approach for state space visualization with
projection diagrams. The main objective of the approach is to considerably
reduce the size of a state space and to support human visual analysis of the
system by highlighting relevant aspects of the model. In the second part of
this paper, we have presented an extension of the approach to link a projec-
tion diagram to a domain specific visualization developed with BMotion Studio.
The approach has been implemented into the ProB toolset with support for
Event-B, Classical-B, TLA+ and Z models.

We have demonstrated the benefits and usefulness of the approach by apply-
ing it on several formal models. For this purpose, various example projection
diagrams are presented in this paper. Moreover, we created two live visualiza-
tions which can be tested online [13].

Although the produced projection diagram may not be equivalent to the
original state space (as far as the sequences of the events are concerned), the
projection may achieve a good result in reducing the size of the state space,
while still preserving beneficial information. In particular, the categorization of
the edges and equivalence classes proved to be very useful in supporting the
inspection of the diagram and to infer useful properties of the respective formal
model.

Our approach is also flexible, as the user may adjust the underlying projection
function. The possibility of defining an individual projection function enables the
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user to query the full state space and to obtain only the information in which
the user is interested in (comparable with defining queries on a database).

Moreover, we believe that inspecting multiple small projection diagrams
(with a manageable number of nodes and transitions) representing different
aspects of the model can be more helpfully than inspecting only one big state
space visualization. This was also confirmed by applying our approach on validat-
ing the landing gear model. One reason for this is that the user can concentrate
on a specific aspect of the model (e.g. on certain variables) or on checking a
particular behaviour, while hiding non-relevant information from the diagram.

We also believe that a projection diagram may help to verify properties of the
model which are hard to express as invariants. For instance, in the landing gear
model we used the diagram to verify that the extension and retraction sequence
works as desired and that the controller responds correctly to toggling the pilot
handle during both sequences.

Finally, we believe that combining the projection diagram with a domain
specific visualization affords further advantages. For example, the graphical rep-
resentation of a specific aspect or behaviour of the model can be helpful for
discussing the specification with non-formal method experts and for the fur-
ther development of the specification. A non-formal method expert can even use
this feature without any knowledge about the notation used in formal methods,
since the projection is produced based on graphical elements and the underlying
projection function is derived automatically from the attached observers.

Evaluation and Future Work. Table 1 shows some runtime statistics obtained
after applying the basic projection approach introduced in Sect. 2 (runtime BP)
and the extended projection approach described in Sect. 3 (runtime EP) on the
models presented in this paper. The statistics were obtained after the corre-
sponding state space had been fully explored with ProB. We use the projection
function p(s) = eval(E, s), where s ∈ Q and E is the projection expression
(third column of Table 1). The measured time includes the actual runtime for
both algorithms (implemented in ProB) without the time needed to exhaus-
tively explore the full state space (i.e. the model checking time) and without
the time needed for generating and layouting the actual diagram. The model
checking and layouting time is not included because it depends on the model
checker and layouting tool respectively. Moreover, the state space needs to be
explored only once in order to generate multiple projection diagrams.

In general, the runtime of the EP takes longer than the BP. This is because
the EP uses the BP to generate the actual data (see Sect. 3) and needs some addi-
tional time to generate the graphical representation of the equivalence classes.

Table 1 also confirms that the runtime of both algorithms (EP and BP)
increases with the number of nodes and transitions of the state space.

In the future, we plan to apply the algorithms on more case studies to obtain
additional statistics. Moreover, a good layout of the nodes and the edges of a
projection diagram is crucial for its readability and accessibility [10]. A next
step would be also to adapt the underlying layout algorithm of the projection
diagrams so that the nodes (the equivalence classes) are ordered based on the
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defined projection function. As an example, this was already done manually
in the diagram shown in Fig. 8. We ordered the nodes so that the left side of
the diagram contains the equivalence classes where the handle is set to down,
whereas the right side contains the equivalence classes where the handle is set
to up.

We also plan to enhance the projection diagram with interactive features. For
instance, it would be desirable to “jump” into an equivalence class and to inspect
the individual states which have been merged into it. This could be in particular
useful to take a closer look at equivalence classes that have unexpected outgoing
edges, e.g. if the user expected a definite edge, but the equivalence class has a
non-definite edge instead. One could jump into the affected class and inspect the
states in which an event is not enabled.

Finally, we plan to symbolically construct a projection diagram statically
using the built-in constraint solver of ProB [16] rather than first having to
(exhaustively) explore the full state space using the model-checking feature of
ProB. This is related to proof-based approaches such as [4] and [3].
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Abstract. We describe our experience with verifying the scheduler-
related functionality of FreeRTOS, a popular open-source embedded
real-time operating system. We propose a methodology for carrying out
refinement-based proofs of functional correctness of abstract data types
in the popular code-level verifier VCC. We then apply this methodology
to carry out a full machine-checked proof of the functional correctness of
the FreeRTOS scheduler. We describe the bugs found during this exer-
cise, the fixes made, and the effort involved.

1 Introduction

The verification of the FreeRTOS real-time kernel was proposed in 2008 as one of
the pilot projects of the Verified Software Initiative led by Hoare [19]. FreeRTOS
[14] is a priority-based real-time scheduler and is an open-source representative
of some of the commonly used kernels in the auto and aviation sectors, like the
OSEC and ARINC 653 real-time operating systems. The correctness of appli-
cations (many of them safety-critical) that run on such kernels, as well as the
analysis of such applications [25,30], crucially depend on the correctness of the
kernel and its specification model. With this motivation in mind, we took up
the goal of verifying the correctness of the scheduling-related functionality of
FreeRTOS. This paper describes the choices made, the methodology developed,
and the results achieved in this project.

The first choice to be made was about the kind of proof technique to adopt:
one based on the direct use of code-level contracts or one based on the notion of
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refinement. While recent verification efforts for functional correctness in the com-
munity [3,7,24,28] – with the prominent exception of the seL4 project [23] – have
favoured the use of code-level contracts (in the form of requires and ensures
annotations for methods in the program) over refinement-based approaches, we
felt that the latter have the potential to ease the verification effort and provide
stronger guarantees for verification.

In a refinement-based approach one views the system as an Abstract Data
Type (ADT), and begins with an abstract specification of the system’s function-
ality in a concise and mathematically precise modelling language. This specifi-
cation is then successively refined by adding implementation details to finally
obtain an implementation of the system which is guaranteed to “conform” to the
high-level specification. The exact meaning of what it means to conform to the
specification would vary according to the notion of refinement used, but it could
mean for instance that every execution of the concrete implementation can be
“matched” or “simulated” by an execution of the abstract model.

There were several reasons to favour a refinement-based approach. To begin
with, a refinement-based approach provides a standalone abstract specification
(say A) of the implementation (say C), with the guarantee that certain prop-
erties proved about a client program P that uses A as a library (which we
refer to as “P with A” and denote by “P [A]”) also carry over for P with C
(i.e. P [C]). Thus, to verify that P [C] satisfies a certain property, it may be suffi-
cient to check that P [A] satisfies the property. The latter check involves reasoning
about a simpler component (namely A) and can reduce the work of a prover by
an order of magnitude [22]. Finally, a refinement-based proof is more modular
and transparent, since it breaks down the task of reasoning about a complex
implementation into smaller tasks, each of which is more manageable for both a
human and a prover.

We chose to use a notion of refinement similar to that of VDM [8,20] and
Z [2,32], but adapted to a setting in which the client program interacts in a
“functional” manner with the ADT (see also [18]). The details of this theory are
spelt out in [11]. We propose a methodology for phrasing the refinement condi-
tions from this theory across different models ranging from abstract Z models
to concrete C implementations.

We then used this methodology to verify the FreeRTOS scheduler. We view
the scheduler-related functionality of the kernel as an ADT, specify its intended
behaviour in Z, and then verify that the implementation refines the high-level
ADT. We used four levels of models (two in Z and one in VCC [10] ghost
code, apart from the C implementation itself), and proved successive refine-
ments between them. Barring a few manual steps, all our refinement conditions
were phrased and proved in VCC, using its very useful ghost constructs.

We found a few subtle bugs which were acknowledged by the developers of
FreeRTOS [5]. These bugs were fixed with minimal changes to the source code,
and the verification of the fixed code was duly completed.

A natural question a VCC expert may ask is why we chose to build a “meta-
theory” of refinement on top of VCC, instead of using its internal style of data
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abstractions as illustrated in [9]. In the latter idiom, to prove an assertion about
a client program P with a concrete data type implementation C, one constructs a
joint data type AC which contains a ghost version of the data type called A, and
includes a coupling constraint between the states of A and C. One then proves
the assertion in P [AC]. By the restrictions imposed by VCC on ghost code, it
follows that the assertion must continue to hold on the original program P [C] as
well. While this style of verification has many of the advantages of a refinement-
based approach, it loses out in a couple of aspects. Firstly, VCC must reason
about P with the joint structure AC (instead of simply P [A] in a refinement-
based approach). While it is possible to control the portion of the joint state
exposed to the prover, this requires expert knowledge of VCC. Secondly, if we
want to prove a property of P [C], like a temporal logic specification, which is
not possible with VCC, this idiom is not of much use. On the other hand, using
a meta-theory of refinement, we could use VCC to prove that C refines A, prove
the required property about P [A] using non-VCC means, and then infer the
property for P [C].

In the next few sections we describe our refinement conditions and proposed
methodology, before going on to the details of the FreeRTOS verification.

2 ADT’s and Refinement

The notion of refinement we use in this paper is essentially that of Z [16,32]. We
briefly recall this notion before describing the variant we use.

2.1 Refinement in Z

An ADT type is a finite set of operation names N along with a set of
“global” states G. An abstract data type (ADT) of type (N,G) is a struc-
ture A = (Q, init,fin, {opn}n∈N ), where Q is the set of states of the ADT,
init ⊆ G × Q is an initialization operation, fin ⊆ Q × G is a finalization opera-
tion, and each opn ⊆ Q × Q is a realization of operation n. All operations are
allowed to be non-deterministic. A program that makes use of an ADT of type
(N,G), called an (N,G)-client program, is a sequence of operations P of the
form init; n1; · · · ; nk; fin, with each ni ∈ N . Given an ADT A of type (N,G),
the program P with A, written P [A], induces a relation from G to G in a natural
way, obtained by composing the operations of A according to the sequence given
by P . Now given two ADT’s A and C of type (N,G), we say that C refines A if,
for each (N,G)-client program P , we have P [Ċ] ⊆ P [Ȧ], where the “˙” denotes
the “totalized” version of the relation in which, essentially, elements outside the
domain of the relation are related to all possible elements in the target set. Thus,
if C refines A, then when P uses C all the behaviours it could observe – in terms
of initial global states being transformed to final global states – are also possible
behaviours of P with A.

Let A = (Q, init,fin, {opn}n∈N ) and C = (Q′, init′,fin′, {op′
n}n∈N ) be two

ADT’s of type (N,G). Then a sufficient (and also necessary [16]) condition for



Refinement-Based Verification of the FreeRTOS Scheduler in VCC 173

C to refine A, called “upwards simulation” in [16], which we denote by (RCZ),
is that there should exist an “abstraction” relation ρ ⊆ Q′ × Q, satisfying

1. For each g ∈ G, p′ ∈ init′(g), and p ∈ Q such that (p′, p) ∈ ρ: we have
p ∈ init(g).

2. For each p′ ∈ Q′ and p ∈ Q, with (p′, p) ∈ ρ: we have fin′(p′) ⊆ fin(p).
3. For each n ∈ N , p′, q′ ∈ Q′, and p ∈ Q, with p ∈ dom(opn), (p′, p) ∈ ρ, and

(p′, q′) ∈ op′
n: we have there exists q ∈ Q such that q ∈ opn(p) and (q′, q) ∈ ρ.

2.2 Our Notion of Refinement

We would like to work in a setting where a client program interacts with an
ADT in a functional manner, by periodically calling operations of the ADT,
each time supplying an argument and using the value returned by the operation
to update its local state. Thus, we no longer need a global set of states G in
an ADT type, but instead require each operation name n to have an associated
input type In and an output type On. A realization opn of operation n in an ADT
with state set Q is now a subset of (Q× In)× (Q×On). An N -client program is
a transition system in which some transitions are labelled by local actions, and
some by calls to the ADT operations, of the form (n, a, b), representing the fact
that a call of operation n with argument a returned the value b. We use a notion
of refinement based on the sequences of operation calls supported by an ADT,
which essentially says that an ADT C refines an ADT A, written C � A, if the
sequences of operation calls allowed by C are contained in those allowed by A.
Once again, if C refines A, the “behaviours” seen by a client program using C
are guaranteed to be present when using A. The reader is referred to [11] for the
details of the theory.

In the rest of this paper, we restrict our attention to deterministic ADT’s.
One reason for this is that our case study makes use of only deterministic models
and implementations. Secondly, the presentation of our methodology is simpler
with this assumption, while retaining the essence of what is needed to handle the
general case. We model the deterministic operations as functions, by introducing
a special exceptional value, denoted by e, in each output type On, and mapping
a state-input pair which was undefined by the operation, to an exceptional state
E and return value e. We formally define this below.

A (deterministic) ADT of type N is a structure of the form

A = (Q,E, init, {opn}n∈N )

where Q is the set of states of the ADT, E ∈ Q is an exceptional state, init :
Iinit → (Q × Oinit), and each opn is a realisation of the operation n given by
opn : Q×In → Q×On such that opn(E,−) = (E, e) and opn(p, a) = (q, e) =⇒
q = E. Thus if an operation returns the exceptional value the ADT moves to
the exceptional state E, and all operations must keep it in E thereafter.

Let A = (Q,E, init, {opn}n∈N ) and C = (Q′, E′, init′, {op′
n}n∈N ) be ADT’s

of type N . We say A and C satisfy condition (RC) if there exists a relation
ρ ⊆ Q′ × Q such that:
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(init) Let a ∈ Iinit and let (qa, b) and (q′
a, b

′) be the resultant states and outputs
after an init(a) and init′(a) operation in A and C respectively, with b �= e.
Then we require that b = b′ and (q′

a, qa) ∈ ρ.
(sim) For each n ∈ N , a ∈ In, b ∈ On, and p′ ∈ Q′, with (p′, p) ∈ ρ, whenever

p
(n,a,b)−−−−→ q with b �= e, then there exists q′ ∈ Q′ such that p′ (n,a,b)−−−−→ q′

with (q′, q) ∈ ρ. This is illustrated in the Fig. 1 below.

=⇒

p

p′

q
(n, a, b)

p

p′

q
(n, a, b)

q′

ρρρ

(n, a, b)

Fig. 1. Illustrating the condition (RC-sim) for refinement.

Notice that this condition is essentially a specialization of the condition (RCZ)
above for deterministic ADT’s.

Finally, we will make use of a couple of properties of this notion of refinement
from [11]. Firstly, refinement is transitive: if C � B and B � A then C � A. Sec-
ondly, refinement is substitutive: if we have a client program U that implements
an ADT, and itself uses a sub-ADT of type M , and if B and C are ADT’s of
type M such that C � B. Then U [C] refines U [B].

3 Viewing Z and C Models as ADT’s

In this section we show how to view models specified in different modelling
languages as ADT’s in our setting. We also phrase the refinement condition
(RC) in a typical tool/environment for reasoning about these different models.

Z models. A specification M in the Z modelling language [32] essentially com-
prises the following: A finite set of variables VarM, with each v ∈ VarM having
a declared type (set of values) Tv. A state is a valuation s to these variables with
s(v) ∈ Tv for each v ∈ VarM, which satisfies a constraint CM given as a first-
order logic formula with free variables in VarM. The model has a finite set OpM

of operations. Each operation n ∈ OpM has (for simplicity) a single formal input
parameter xn of type XM

n , and a single output variable yn of type Y M
n ; and a

before-after-predicate BAPM
n with free-variables in VarM ∪ {xn, yn} ∪ VarM′

,
where for a set of variables Var we use the convention that Var′ denotes the set
of variables {v′ | v ∈ Var}. The set of operations OpM includes an initialization
operation called initM, whose BAP predicate is only on the input variable and
primed variables (i.e. it only constrains the post-state). We say the Z model is
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deterministic if for each operation n ∈ OpM, state p and input value a ∈ XM
n , we

have at most one state q and output value b ∈ Y M
n satisfying BAPM

n (p, a, q, b).
A deterministic Z model like M above defines an ADT

AM = (Q′, E, init, {opn}n∈N ),

of type N , where:

– N is the ADT type OpM with In = XM
n and On = Y M

n ∪ {e},
– Q′ = Q ∪ {E} where Q is the set of states of M, and E is a new exceptional

state;
– the init operation is given by init(a) = (q, b) iff BAPM

init(a, q, b); and
– for each n ∈ N , we have opn : (Q′ × In) → (Q′ × On) given by

opn(p, a) =
{

(q, b) if ∃(q, b) : BAPM
n (p, a, q, b)

(E, e) otherwise.

Thus we view an operation as returning an exceptional value whenever it is called
outside its pre-condition (namely pren which is the set of states and input pairs
(p, a) such that there exists a state q and output b satisfying BAPM

n (p, a, q, b)).
Given two deterministic Z models M1 and M2, we say M2 refines M1 iff

the induced ADT’s AM2 and AM1 are such that AM2 refines AM1 .

C implementations. We assume that an ADT implementation in C is a program
P that comprises a set of global variables Var with each v ∈ Var having a
declared type Tv. It has a finite set of function names F , with an associated
function definition funcn for each n ∈ F , which could contain local variables.
We can view P as an ADT in a natural way, as follows. A program state of P is
a valuation for its global variables and local variables that are in scope, together
with a location representing the statement number to be executed next. We use
a special location “0” to represent the fact that an operation has completed, and
the program is not in the middle of executing an operation. We call these program
states with location “0” the complete program states of P . The states of the ADT
induced by P is now the set of complete program states of P . As expected, we
view each implementation of an operation as starting in a complete program
state, taking an argument, transforming the program state – via a number of
intermediate steps – from one complete state to another, and returning a value.
If the function does not terminate (due to a buggy loop for example), or causes
an exception (due to a null dereference for example), we view the operation as
returning the exceptional value e.

Finally, we would also like to consider C implementations that have a precon-
dition for each operation. We assume that the precondition for operation n is a
predicate pren on the complete state and input of the operation. We view such
a C program as inducing an ADT as defined above, except that for complete
states and inputs that don’t satisfy pren the ADT transitions to a “dead” local
state.

With this view of Z and C ADT models we can phrase the refinement con-
ditions (RC) as theorems in tools like Z/Eves or Rodin, or as requires and
ensures clauses in a tool like VCC (see for instance [12]).
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4 Directed Refinement Methodology

We now propose a methodology based on our theory of refinement for proving
the functional correctness of an imperative language implementation P of an
ADT-like system.

1. To begin with we view P as implementing an ADT of a certain type N .
2. Based on a high-level understanding of the code, and documentation like

user manual and comments in code, construct an ADT M1 in a high-level
specification language like Z, that captures the intended behaviour of P.

3. In general P may use several sub-ADT’s, say B1, . . . ,Bn of type M1, . . . , Mn

respectively, and can be viewed as U [B1, . . . ,Bn], where U is an (M1, . . . , Mn)-
client program, itself providing an ADT of type N . We now replace each sub-
ADT implementation Bi by a version Ai of it expressed using the high-level
constructs like maps of the ghost language available in tools like VCC. We
refer to this abstraction U [A1, . . . ,An] of the implementation as P1.

4. Refine M1 towards the implementation P1, via a sequence of successively
refined Z models, that add increasing details of the implementation. Let M2

be the resulting Z model that is sufficiently “close” to P1. The refinement
conditions for the successive Z models could be checked in Z-Eves [29] or
other tools [1,26,27], or by a suitable encoding in VCC.

5. Check that P1 refines M2. We can do this by either using a ghost version M2

if one is available, or by directly importing the before-after predicates from
M2 (see [12] for example), and then checking the resulting annotations in a
tool like VCC. At the end of this step, we would have contracts in the form
of requires and ensures annotations, for each ghost implementation Ai of
the sub-ADT’s that were used to prove that P1 refines M2.

6. Check that each sub-ADT Ai along with its associated precondition (from
the requires clause of its contract), is refined by Bi.

If these checks are successful, we can conclude using the transitivity and sub-
stitutivity property of refinement, that P = U [B1, . . . ,Bn] � U [A1, . . . ,An] =
P1 � M2 � M1.

5 About FreeRTOS

In the next few sections we describe the case-study (FreeRTOS V6.1.1) on which
we apply our verification methodology. FreeRTOS [14] is a real-time kernel meant
for use in embedded applications that run on microcontrollers with small to
mid-sized memory. It allows an application to organise itself into multiple inde-
pendent tasks (or threads) that will be executed according to a priority-based
preemptive scheduling policy. It is implemented as a set of API functions writ-
ten in about 3,000 lines of C code, that an application programmer can include
with their code and invoke as function calls. These API’s provide the program-
mer ways to create and schedule tasks, communicate between tasks (via mes-
sage queues, semaphores, etc.), and carry out time-constrained blocking of tasks.
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It has been ported to 34 architectures and receives more than 100,000 downloads
a year.

Figure 2 shows a simple application that uses FreeRTOS. The application
creates two tasks “A1” and “B2” with priorities 1 and 2 respectively (a higher
number indicates a higher priority), and starts the FreeRTOS scheduler. We use
a naming convention that indicates the task’s priority in its name. The scheduler
then runs task B2, which immediately asks to be delayed for 2 time units. B2 is
now blocked and the lower priority task A1 gets to execute. After 2 time units,
B2 is ready to execute and preempts A1. This behaviour continues forever.

int main(void) {
xTaskCreate(foo, "A1", 1,...);
xTaskCreate(bar, "B2", 2,...);
vTaskStartScheduler();

}
void foo(void* params) {

for(;;) { }
}
void bar(void* params) {

for(;;) {
vTaskDelay(2);

}
} Time (tick interrupts)

Task B2

Task A1

t1 t2 t3 t4 t5

Fig. 2. An example FreeRTOS application and its timing diagram.

void vTaskDelay(portTickType xTicksToDelay){...
if(xTicksToDelay > (portTickType) 0){

xTimeToWake = xTickCount + xTicksToDelay;
vListRemove(&(pxCurrentTCB->xGenListItem));
listSET_LIST_ITEM_VALUE(
&(pxCurrentTCB->xGenListItem),xTimeToWake);

vListInsert(pxDelayedTaskList,
&(pxCurrentTCB->xGenListItem));

...
}

}

void vListInsert(xList *pxList,
xListItem *pxNewItem) {

...
xValOfInsertion = pxNewItem->xItemValue;
for(pxIterator = &(pxList->xListEnd);

pxIterator->pxNext->xItemValue
<= xValOfInsertion;

pxIterator = pxIterator->pxNext) {
}
pxNewItem->pxNext = pxIterator->pxNext;
pxNewItem->pxNext->pxPrevious = pxNewItem;
...

}

Fig. 3. Excerpts from the vTaskDelay API and the xList operation vListInsert.

Figure 3 shows an excerpt from the code of the vTaskDelay API function.
It computes the time-to-awake, removes the current task from the ready queue,
updates its key value to the time-to-awake, and inserts it in the delayed queue.
The last 3 steps are done using calls to a list data-structure called xList which
is the core data-structure used in FreeRTOS. It is a circular doubly-linked list of
xListItem nodes each of which contains a key field called xItemValue. Based
on the invariants it satisfies an xList can be used as a priority queue, a FIFO
queue, or a generic list. It provides 13 different operations, including enqueue in
a priority queue (vListInsert), head of a FIFO/priority queue, and rotate left.
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pxNext

pxPrevious
pvContainer

xItemValue

pvOwner

uxNumberOfItems

xListEnd

3

10 15 18 Max

pxIndex

Fig. 4. An example xList representing a priority queue with values 10,15, and 18.

Figure 4 shows an instance of xList, that represents a (non-decreasing order)
priority queue with item values 10,15, and 18. The head of the queue is the node
pointed to by the pxNext field of the xListEnd node of the list header. The
second part of Fig. 3 shows part of the vListInsert operation of xList.

FreeRTOS is architected in a modular fashion. It has a portable part which
contains compiler/processor independent code, most of it in 3 C files tasks.c,
queue.c, and list.c. The port-specific part is present in a separate directory
associated with each compiler/processor pair, and is written in C and assembly.

6 Overview of FreeRTOS Verification

We view the system corresponding to a FreeRTOS application as conceptually
having two components: one is an interpreter for the application program, which
keeps track of the local states of each task, the currently running task, etc.; the
other is a component which we call the scheduler, whose job it is to maintain the
scheduling-related state of the FreeRTOS kernel (the set of tasks created and
their priorities, the contents of the ready and delayed queues, the current tick
count, etc.). The interpreter component makes calls to the operations (API’s)
provided by the scheduler (for example vTaskDelay(d)), and gets back a return
value which typically indicates the task to be run next. Thus, in the terminology
of Sect. 2 the interpreter is a scheduler-type-client program, that uses the sched-
uler component as an ADT.

While in an actual execution of an application API calls could be interleaved
in a non-atomic fashion (for example while the vTaskDelay function is running, a
tick interrupt might arrive causing the vTaskIncrementTick to execute before
the call to vTaskDelay finishes), we assume a limited form of preemption in
which interleaving happens only at API boundaries.

In this work our interest lies in this conceptual scheduler component. We
restrict ourselves to the task-related API’s in the file task.c of the FreeRTOS
code, and consider the relevant parts of this code to be the implementation P
of the scheduler component. Our aim is to specify and verify this ADT imple-
mentation using the methodology outlined in Sects. 2 and 4.
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Following the methodology, we first build a high-
level deterministic model M1 of the scheduler in the
Z specification language. This model maintains the tick
count as a number bounded by maxNumVal and has
a single delayed list. Next we observe that the sched-
uler implementation P uses a sub-ADT, namely xList,
and thus is of the form US [xList] where US is a xList-
type-client program that itself implements an ADT. We
replace the sub-ADT xList by a ghost implementation
in VCC which we call xListMap. Thus P1 is a ver-
sion of the implementation of the form US [xListMap].
Next, we bring M1 closer to P1 by adding a sepa-
rate “overflow-delayed” list to store tasks whose time-to-
awake is beyond maxNumVal. We call this model M2.
The models M2 and P1 are very similar and hence
we can import the before-after-predicates from M2 to
P1, to phrase the refinement conditions. To check these
conditions in VCC we come up with pre-conditions in
xListMap. Finally we show that xList refines xListMap with its given pre-
conditions. The components in the methodology used to verify FreeRTOS are
shown in the figure alongside.

Provided we can check the associated verification conditions (which we
address in the next section), we can conclude that P refines M1, since P =
US [xList] � US [xListMap] � M2 � M1.

7 Details of Steps in the Verification of FreeRTOS

We now describe in some detail the main steps and results of our case-study. The
artifacts of this project are available at www.csa.iisc.ernet.in/∼deepakd/FreeRTOS/.

7.1 Z Models

We begin by describing our high-level models of the scheduler in Z. To begin
with, we tried to understand the “intended” behaviour of the FreeRTOS sched-
uler. The main input for this understanding was the FreeRTOS user guide [4].
For some API’s we had to look at the code and the comments therein to infer
the meaning. We also had to re-group some of the functionality in the implemen-
tation: for instance, FreeRTOS does not have an explicit API for initialization,
but initialization is done partly in the first call to vTaskCreate (calling a private
function) and partly in vTaskStartScheduler; so we collected this functionality
into a separate initialization API function.

Next we specified this behaviour in a Z model which we call M1. To represent
the state of the scheduler we adopted the basic design of the FreeRTOS imple-
mentation, in particular we chose to represent the ready queue as a sequence of
sequences resembling the array of FIFO queues (indexed by priorities) used in

www.csa.iisc.ernet.in/~deepakd/FreeRTOS/
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FreeRTOS. Figure 5 shows the main elements of the data state of the scheduler
and invariants on the state. The variable maxPrio represents the maximum pri-
ority, and maxNumVal represents a common bound on values like tick count and
time-to-delay, as well as the maximum length of queues like the ready queues.
These variables represent corresponding configurable constants in FreeRTOS,
and are initialized in the model as shown in Fig. 5.

Scheduler
maxPrio, maxNumVal, tickCount, topReadyPriority : N
tasks : PTASK
priority : TASK N

running task , idle : TASK
ready : seq (iseqTASK )
delayed : seqTASK × N

blocked : seqTASK
. . .

idle ∈ tasks ∧ idle ∈ ran�/(ran ready)
running task ∈ tasks ∧ topReadyPriority ∈ dom ready
∀ i, j : dom delayed | (i < j ) • delayed(i).2 ≤ delayed(j ).2
∀ tcn : ran delayed | tcn.2 > tickCount
running task = head ready(topReadyPriority)
dom priority = tasks ∧ tickCount ≤ maxNumVal
∀ i, j : dom blocked | (i < j ) =⇒ priority(blocked(i)) ≥ priority(blocked(j ))
. . .

Init
maxP? : N
maxN? : N

maxN? > 0
maxN? ≥ maxP? > 0
maxPrio′ = maxP?
maxNumVal′ = maxN?
tasks′ = {idle}
running task ′ = idle
tickCount′ = 0
ready′(1) = 〈idle〉
. . .

Fig. 5. Data and invariants of the Scheduler and Init schema.

Figure 6 shows the schema for the vTaskDelay API, for the case when there
is another ready task of the top ready priority, apart from the running task.
The argument delay to the operation is required to be at most maxNumVal.
Since the value of tick count is bounded by maxNumVal the time-to-awake for
the running task will be in the range [0, 2 · maxNumV al]. The operation for
increment-tick increments the value of the tick count modulo (maxNumVal +1).
When it resets the tick count to 0, it reduces the time-to-awake values of the
delayed tasks by maxNumVal + 1.

The model M2 refines M1 by adding two details from the FreeRTOS imple-
mentation. FreeRTOS maintains a separate list called “overflow-delayed” for
tasks whose time-to-awake values are beyond maxNumVal. These tasks are stored
in this list with time-to-awake values reduced by maxNumVal + 1. This is mod-
elled in M2 by adding a corresponding list called oDelayed. Secondly, the set of
tasks blocked on an event (like message arrival in a queue) is modeled in M1 as
a list blocked in which tasks are stored in decreasing order of their priority. In
FreeRTOS however they are enqueued with a key value that is the complement
of their priority in maxPrio. This is done so that a single insert operation of
xList can be used for both the delayed and blocked lists. M2 models this by
changing the invariant on the blocked list.

We checked that M2 is a refinement of M1 using the refinement condition of
Sect. 2. The abstraction relation is as follows: the delayed list in M1 is obtained
by increasing the time-to-awake values in oDelayed by maxNumVal + 1 and
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TaskDelay
ΔScheduler
delay? : N
delayedPrefix , delayedSuffix : seqTASK × N

running! : TASK

delay > 0 ∧ delay ≤ maxNumVal ∧ running task �= idle
#delayed < maxNumVal

tail ready(topReadyPriority) �= 〈〉 ∧ delayed = delayedPrefix � delayedSuffix
∀ tcn : ran delayedPrefix | tcn.2 ≤ (tickCount + delay?)
delayedSuffix �= 〈〉 =⇒ (head delayedSuffix).2 > (tickCount + delay?)
running task ′ = head tail ready(topReadyPriority)
ready′ = ready ⊕ { ( topReadyPriority �→ tail ready(topReadyPriority) ) }
delayed′ = delayedPrefix � 〈(running task , (tickCount + delay?))〉 � delayedSuffix
. . .

Fig. 6. Operation schema for API vTaskDelay when another ready task of same priority
is available.

appending it to delayedM2 . The corresponding verification conditions for the
affected operations were checked using VCC by modelling the relevant parts of
M1 and M2 in VCC.

7.2 Verifying that P1 Refines M2

We now address the task of showing that P1 (namely the FreeRTOS scheduler C
code, with the xList library replaced by the VCC ghost library xListMap) refines
M2, the Z model of the scheduler. As mentioned in Sect. 6, we define a simple
list ADT using the ghost programming constructs of VCC, called xListMap, that
provides the same intended functionality of xList. Figure 7 shows a part of its
definition. Like xList it maintains a list of pointers to xListItem nodes, but
as a mathematical “map” from integers to xListItem pointers. The component
length records the number of items in the list. The element type keeps track of
whether the list is meant to be a FIFO or priority queue. The figure also shows
the definition of the operation vListInsert using a lambda construct provided
by VCC’s ghost language.

typedef struct xListMap { void vListInsert(xListMap *mlist, xListItem *xli)
_(ghost xListItem *list[unsigned]) _(requires \wrapped(mlist))
_(ghost unsigned length) _(requires mlist->length < maxNumVal) {
_(ghost enum xListType type) unsigned index;
_(invariant length <= maxNumVal) _(ghost mlist->list = \lambda unsigned i;
_(invariant (type==PQ)==> (\forall (i<=mlist->length)?

unsigned i,j; (j<length && i<j) ((i<index)? mlist->list[i] : ((i == index)?
==> (list[i]->xItemValue xli: mlist->list[i-1])) : (xListItem*) NULL)

<= list[j]->xItemValue))) _(ghost mlist->length++)
... ...

} xListMap; }

Fig. 7. Excerpts from xListMap and vListInsert. The ghost variable index is con-
strained to be the required position of xli.
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As described in Sect. 3, to check that P1 refines M2 we directly import
the before-after-conditions from M2 as requires and ensures conditions on
the API functions in P1. We manually simplified these conditions to remove
the existential quantifiers making use of the fact that M2 and P1 were closely
related. VCC was able to check most of the annotations in the API’s in P1, except
for the xTaskCreate API, and a couple of other API’s we mention in Sect. 7.4.
The problem with xTaskCreate was as follows. FreeRTOS follows a convention
of keeping the running task at the end of the ready queue corresponding to
its priority. However this convention leads to inconsistencies like the following.
Consider the scenario where tasks A1, B1 (both of priority 1) are ready, with A1
currently executing. By the FreeRTOS convention, the ready queue is the list
〈B1,A1〉. Now suppose A1 creates a task C1. The xTaskCreate function uses
the xList operation vListInsertEnd to add C1 to the end of the queue, to get
〈B1,A1,C1〉. Thus the running task A1 is no longer at the end of the queue. If
a couple of tick interrupts now arrive, causing A1 and then B1 to be preempted,
it will be A1 that runs again (instead of C1!).

We chose to fix this problem in the design of FreeRTOS by following the
convention of the Z models to keep the running task at the head of its ready
queue. However to do this we needed to add two new functions to the xList (and
xListMap) library: list-rotate-left and list GET FIRST ENTRY that respec-
tively rotate a FIFO queue by one position to the left, and return the node at the
head of the list. The function list-rotate-left is used in the case of preemp-
tion (time slicing within tasks of the top priority), while list GET FIRST ENTRY
is used to find the next running task.

With these changes and other fixes mentioned in Sect. 7.4 VCC verifies all
the API functions of P1. This part of the proof required considerable effort, as
shown in the table of Fig. 8. As described in Sect. 3 we also need to check that
the operations in P1 all terminate in state-input pairs that satisfy their precon-
ditions. In P1 all calls to the sub-ADT namely xListMap terminate since they are
defined declaratively. Further, the only loops present in the P1 code are in the
call to the function vTaskSwitchContext whose job is to find the new top ready
priority, and consequently the new running task. To verify termination of this
function we used a simple ranking function (the value of the topReadyPriority
variable), and proved that its value decreases in each iteration of the loop, using
VCC.

7.3 Verifying that xList Refines xListMap

We now focus on showing that xList is a refinement of xListMap. Recall that
the preconditions of the xListMap operations are derived from the contract (see
Fig. 7) used to prove the correctness of P1 in the previous section. It is sufficient
to consider a single pair of instances of xList and xListMap, and phrase the
refinement conditions (RC) on it. We first create a joint structure containing
the state components of both xList and xListMap, and their invariants. In
addition we add “gluing” invariants that represent the abstraction map between
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the two components. These invariants crucially use the type field of the xListMap
component to say how the elements in the two lists correspond. For example,
for a non-empty list of type FIFO, pxIndex points to the end of the list, and
hence the first element of the list is the one pointed to by pxIndex->pxNext. For
a priority queue however, the first item is the one after xListEnd. In addition,
a node in the i-th position of list has its pxNext field pointing to the one at
position i + 1 in list:

_(invariant ((type == FIFO) && (length > 0) && (pxIndex->pxNext != (&xListEnd)) ==>
(list[0] == pxIndex->pxNext)))

_(invariant ((type == PQ) && (length > 0)) ==> (list[0] == ((&xListEnd)->pxNext)))
_(invariant (\forall unsigned i; (i < (length-1) ==> (list[i+1] == list[i]->pxNext)))

Next, for each list operation we create a joint version of the operation, con-
taining the updates for both xListMap and xList. The precondition for this
operation is inherited from the xListMap version, and additionally requires the
joint list argument to be “wrapped” (that the invariants on the structure hold).
The ensures clause simply asks for the joint structure to be wrapped at the
end and return values to be equal. All the assertions were successfully proved by
VCC.

Z Model M1 Z Model M2 API funcs in P
Schemas LOC Schemas LOC Funcs LOC LOA

50 766 60 1239 17 361 2347

xListMap xList

Funcs LOC LOA Funcs LOC LOA (xListJoint)
15 306 1033 15 121 1450

Fig. 8. Size of artifacts in FreeRTOS verification

The table alongside sum-
marises the number of lines
of code (LOC) and annotation
effort (LOA) in our case study.
The numbers reported exclude
comments and blank lines. Of
the 2514 LOC in the portable
code of FreeRTOS, we have ver-
ified 482 LOC mainly from the
files list.c and task.c. This includes 17 core API’s from task.c (many of the
remaining 20 task API’s are to do with tracing and other non-core functionality).

7.4 Bugs Found

Apart from the previously mentioned problem with xTaskCreate, another
related problem is that if the main program creates tasks A1 followed by B1,
and then starts the scheduler, the task that runs is B1 (instead of A1). This is
due to a problem with the way the pxCurrentTCB (the running task) is updated.

A more serious bug was in the vTaskPrioritySet function which changes
the priority of a given task. When the given task is in the blocked queue (say
waiting to receive a message from a message queue), then its priority is updated
but its position in the event queue (which is a priority queue) is not adjusted.
A similar bug exists in the vTaskPriorityInherit API function which is used
to increase the priority of a task holding a mutex, when a higher priority task
wants the mutex. The idea is that the lower priority task temporarily inherits the
priority of the higher priority task that is waiting for a resource it is holding, so
that it can complete sooner and release the resource for the higher priority task.
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These functions in turn call list SET ITEM VALUE, which however does not have
the desired effect when the lower priority task is in the blocked queue. A simple
fix is to implement these API’s by first removing the concerned node from the
blocked queue, update its priority using list SET ITEM VALUE, and then insert
it back in the queue using vListInsert.

We communicated these issues to the developers of FreeRTOS who acknowl-
edged that our understanding of the intended behaviour was correct and that
the said behaviours were indeed deviations [5]. They would like to make the
proposed fixes provided they do not conflict with other design choices in FreeR-
TOS: for example a time-consuming priority-based insert operation is ok to do
in a lightweight critical section where the scheduler is suspended, but not when
interrupts are disabled. Finally, the fixes made to obtain the fully verified version
of the API’s involved only a small part of the code: 19 lines in the API code
were modified and 7 lines added to xList.

8 Related Work

We discuss some of the OS verification projects in the literature that are most
closely related to ours. In the design-for-verification projects, the most promi-
nent work is the seL4 project [23], where a formally verified microkernel was
developed. The scope of their work is larger than ours, addressing among other
things memory allocation and interrupts. They also use a refinement-based app-
roach to prove functional correctness of the C implementation with respect to
a high-level specification, in Isabelle/HOL. The translation of the C semantics
to Isabelle/HOL is validated by checking that the compiled kernel refines the
translation to Isabelle/HOL [31]. In contrast, our verification – though far more
modest in scope – is “post-facto,” and is built on an existing code verification tool
like VCC, which has a large user base and hence provides a different dimension
of confidence in the verification.

Among the works in post-facto verification, the most related is the Verisoft
XT project [7,33] at Microsoft, where the goal was proving the functional cor-
rectness of the Hyper-V hypervisor and PikeOS operating systems. While details
of the Hyper-V effort are not publicly available (see [21,24]) PikeOS [6] is an
embedded OS, similar in nature to FreeRTOS though with a few more features
like virtualization. The verification uses VCC and specifications are annotations
and correctness is in terms of conformance to ghost code. In contrast, we use a
refinement-based approach, and as a result have a standalone abstract specifica-
tion that can be used to verify clients in other environments.

In a recent and closely related piece of work, Ferreira et al. [13] prove func-
tional correctness and memory safety of some of the FreeRTOS list and task
API’s, in the HIP/SLEEK verification tool. Their specifications are pre/post
annotations on the API code. In contrast we verify all the list API’s and the
core task API’s. We use an abstract specification and correctness is in terms of
conformance to the abstract specification. As part of this conformance proof we
prove all the functional and safety properties mentioned in [13].
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Gotsman and Yang [15] propose a modular way of reasoning about preemp-
tive kernel code by separately arguing correctness of the context-switching and
the uninterrupted kernel code. We currently do not model context-switching
since this is part of the “interpreter” component that we don’t model, but this
would be a useful approach in extending this work to a concurrent setting.

In work related to phrasing refinement conditions in code-level verifiers, the
work in [17] translates refinement conditions to annotations in C code for the
purpose of proving a separation property for an embedded device. Finally, in
recent work [12] we propose an efficient 2-step approach to phrasing refinement
checks in VCC, and evaluate it against the two approaches proposed here, on a
simplified version of FreeRTOS.
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Abstract. μC/OS-III is the third generation of real-time operating sys-
tems based on multi-task scheduling for embedded systems. The multi-
task system which refers to tasks with the same priority, tasks synchro-
nization and communication, is scheduled by the operating system kernel.
It is critical to ensure the timeliness and correctness of related applica-
tions using μC/OS-III. This paper proposes a model checking approach
to verify a multi-task embedded system running under μC/OS-III. To
do so, the multi-task system and its properties are modelled in TMSVL.
A model checker built in the toolkit MSV is used to verify the schedu-
labilty of the μC/OS-III multi-task system. Experiments show that our
approach is effective and efficient in verifying embedded systems.

Keywords: Model checking · TMSVL · Multi-task systems · Schedula-
bility · μC/OS-III

1 Introduction

μC/OS-III [10] is a preemptive real-time kernel that manages unlimited number
of tasks. It is important to ensure that applications running under μC/OS-III
work correctly and timely. μC/OS-III based applications consist of a number of
tasks, which are scheduled by the operating system (OS) kernel. How to ensure
schedulability of tasks in these applications is critical.

There are two kinds of methods that are often used to determine schedu-
lability of real-time tasks. One is based on mathematical analysis [3–5,11] and
the other one is based on formal methods [2,17,18]. Effective solutions for a
class of problems can be obtained by mathematical analysis. While for flexible
realistic systems, adopting mathematical manual analysis will be quite complex
and error prone. As a complement, formal methods are used. The main work is
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to formalize the problem in some formal languages, and determine the schedu-
lability by verifying whether the model possesses the corresponding properties
by a supporting tool. The validity of the verification result relies on whether the
formalization is consistent with the original problem.

In [9], an abstract formal model to represent AUTOSAR OS programs for
determining schedulability properties is proposed where the tasks are periodical
and the deadlines and periods of tasks coincide. In [12], schedulability of preemp-
tive event-driven asynchronous real-time systems is analyzed by a conservative
approximation method on composable timed automata models. In [1], timed
automata is used to find optimal schedules for the classical job-shop problem. In
[13], the Uppaal model-checker is applied for schedulability analysis of a system
with single CPU, fixed priorities preemptive scheduler, mixture of periodic tasks
and tasks with dependencies.

Modeling, Simulation and Verification Language (MSVL) is an executable
subset of Projection Temporal Logic (PTL) [7]. TMSVL [8] is a Timed version
of MSVL, which is designed to model, simulate and verify real-time systems.
A toolkit MSV has been developed to support the above three missions. In par-
ticular, a unified model checker can be used to verify whether or not a real-time
system satisfies a specified property. An advantage of TMSVL model checking
over other model checking approaches is that the model of the system and the
property to be verified are both defined in TMSVL. Further, the verification
process can be automatically performed with MSV.

In this paper, we verify schedulability of μC/OS-III based applications. The
multi-task system consists of independent tasks, synchronous tasks, and tasks
with the same priority, which are scheduled by the OS kernel. First, we model the
OS scheduler and different kinds of tasks with TMSVL. Then the schedulability
of the systems is formalized and the schedulability of tasks is verified with MSV.

The paper is organized as follows. The next section introduces the preliminar-
ies of TMSVL. In particular, how timeout, delay, and timeout after time delay
constraints are formalized in TMSVL is introduced. Section 3 gives an overview
of μC/OS-III and Sect. 4 discusses the model checking process of a μC/OS-III
multi-task application. Finally, conclusion and future work are drawn in Sect. 5.

2 TMSVL

MSVL is a temporal logic programming language consists of conjunction,
selection, sequence, parallel, branching, loop as well as projection statements.
TMSVL is a real-time extension of MSVL where quantitative temporal con-
straints are employed to limit the time duration bounded on statements or pro-
grams. Real variables T and Ts are used to describe time and time increment,
respectively.

2.1 Statements in TMSVL

TMSVL consists of arithmetic expressions, boolean expressions, and basic state-
ments. The arithmetic expression e and boolean expression b are defined by the
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following grammar:

e ::= n | x | ©x | -©x | e0 op e1(op::= + | − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is a constant, x is a variable; ©x and -©x denote the value of x at the
next and previous state over an interval, respectively.

1. MSVL statement p
2. Time constraint statment (t1, t2)tp
3. Conjunction statement tp1 ∧ tp2
4. Selection statement tp1 ∨ tp2
5. Sequential statement tp1 ; tp2
6. Parallel statement tp ‖ tq
7. Conditional statement if b then {tp} else {tq}
8. While statement while (b) { tp }
9. Projection statement (tp1, . . . , tpm) prj (tp)

Fig. 1. Basic TMSVL statements

Elementary statements of TMSVL are defined in Fig. 1. First, MSVL state-
ments are included. Suppose t1 and t2 are arithmetic expressions and tp a
TMSVL statement, the time constraint statement (t1, t2)tp means that tp is
executed over the time duration from t1 to t2. Two possible interpretations of for-
mula (t1, t2)tp are shown in Fig. 2. The black dots are states and are represented
by s0, s1, . . . , sk, . . . , sl2 , respectively. We specify sk as the current state here,
thus s0, . . . , sk−1 are the previous states and sk+1, . . . , sl2 the future ones. sl2 is
the terminal state. An interval is a sequence of states, for example s0, s1, . . . , sl2
constitute an interval. Figure 2(a) shows the case t1 > T and Fig. 2(b) the case
t1 = T . The formula tp in (t1, t2)tp must terminate just when T = t2, otherwise
(t1, t2)tp is false. tp1 ∧ tp2 means that tp1 and tp2 are executed concurrently,
and terminate at the same time. Selection statement tp1 ∨ tp2 means tp1 or tp2
is executed. tp1; tp2 means that tp2 is executed after tp1 finishes. Parallel state-
ment tp ‖ tq means that tp and tq are executed in parallel, while they are not
required to terminate at the same time. Conditional and while constructs are
consistent with that in general programming languages such as C and Java. Pro-
jection statement (tp1, . . . , tpm) prj tp means that tp is executed in parallel with
tp1; tp2; . . . ; tpm over an interval obtained by taking the endpoints of the inter-
vals over which tp1, . . . , tpm are executed. An endpoint denotes the first or the
last state of an interval. Taken (tp1, tp2, tp3) prj tp as an example. We assume tp3
terminates before tp. The semantics of (tp1, tp2, tp3) prj tp is intuitively depicted
in Fig. 3.

2.2 Normal Form and Normal Form Graph for TMSVL

Execution of TMSVL programs depends on the transformation of TMSVL pro-
grams into normal forms. A TMSVL program p is in its normal form if p is
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(a) (b)

Fig. 2. Semantics of time constraint statement

Fig. 3. An example of projection structure

written as:

p ≡
l1∨

i=1

pei ∧ ε ∨
l2∨

j=1

pcj ∧ ©pfj

where l1, l2, i, and j ∈ N0, l1 + l2 ≥ 1, and pfj is a TMSVL program; pei and pcj
are formulas of the form: x1 = e1 ∧ . . . ∧ xm = em. ε means the termination of a
program. That is there does not exist a next state. ©pfj means that pfj will be
executed at the next state. It has been proved that any TMSVL program can
be transformed into normal form.

Given a TMSVL program p, we can construct a graph named Normal Form
Graph (NFG) [6,14,16] that explicitly illustrates the state space of the program.
An NFG is a directed graph, denoted as G =< V,A >, with a node in the
set V of nodes representing a program in TMSVL and an arc in the set A of
arcs representing a state. In fact, NFG determines the models that satisfy the
corresponding TMSVL program.

Suppose that the sets V and A are empty initially, NFG G =< V,A > of a
TMSVL program p can be constructed by determining the set of nodes V and
the set of arcs A inductively as follows:

1. V = V ∪ {p};

2. for any node q ∈ V \{ε, false}, if q ≡
l1
∨

i=1

qei ∧ ε ∨
l2
∨

j=1

qcj ∧ ©qfj , then V = V ∪
{ε, qfj} and A = A ∪ {(q, qei, ε), (q, qcj , qfj)} for each i and j with 1 ≤ i ≤ l1 and
1 ≤ j ≤ l2.

An element in the set of arcs A is a triple. For instance, (q, qei, ε) denotes a
directed arc from nodes q to ε with the arc labeled with qei.

2.3 Timeout in TMSVL

It is necessary to confine the time for waiting for a particular condition to become
true such that the waiting is terminated when the time expires. Timeout on
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waiting is a practical method usually adopted in real-time systems and protocols.
A maximum waiting time is given in advance, so the waiting process stops finally
in one of the following cases: (1) the events waited occur; (2) the event does not
occur but the waiting time expires. The two cases are formalized separatively
in time delay and timeout constraints first. Then the constraint named timeout
after time delay which combines time delay and timeout constraints is introduced
to express the scenario of timeout on waiting or on other process.

Time delay constraint {d1, dm}p (d1 and dm are non-negative reals and
d1 ≤ dm) represents that the statement p starts at the current time and ter-
minates after at least d1 time units and at most dm time units. d1 and dm
provides the upper and lower limits of the time that is taken for p to execute.
The statement p is the TMSVL formalism of the waiting process or other real-
time process. The constraint for time delay is expressed as follows:

{d1, dm}p
def= (T, T + d1)p ∨ . . . ∨ (T, T + di)p ∨ . . . ∨ (T, T + dm)p

where di = di−1 + Ts and 1 < i ≤ m. It is a disjunction of time constraint
statements starting at T and ending at any time within T + d1 and T + dm.

Timeout constraint (t1@tm)p means that p starting at T = t1 terminates
when T = tm naturally or forcibly. If p is not finished when T = tm, it is termi-
nated forcibly. Otherwise, p finishes just when T = t1 naturally. Its definition is
given as follows:

(t1@tm)p def= (t1, tm) p1c ∧ (t2, tm)p2c ∧ . . . ∧ (tm, tm)(pme ∨ pmc )

where t1, . . . , tm are the time values of m consecutive states respectively. pic
represents a state formula obtained by the state reduction on p when T = ti
(1 ≤ i ≤ m). pme represents a terminal state formula indicating that p finishes
naturally when T = tm.

Combining the two constraints above, we derive the timeout after time delay
constraint, denoted as {d1@dm}p. The definition is given as follows:

{d1@dm}p def
= (T, T + d1)p ∨ . . . ∨ (T, T + di)p ∨ . . . ∨ (T, T + dm−1)p ∨ (T@T + dm)p

where di = di−1 +Ts and 1 < i ≤ m. In the timeout after time delay constraint,
when the time delay reaches the upper bound dm but p still does not finish, p
will be terminated forcibly.

3 µC/OS-III Overview

μC/OS-III is different from μC/OS-II mainly in two aspects: (1) task manage-
ment; (2) OS kernel service.



192 J. Cui et al.

3.1 Task Management

μC/OS-III supports multitasking and allows the applications to have any number
of tasks. The maximum number of tasks available only limited by and depends
on the configurations of hardware systems. Tasks of embedded systems typically
take the form of an infinite loop.

In order to implement a specific functionality, tasks are usually not com-
pletely independent in realistic applications. They need to synchronize and com-
municate. μC/OS-III uses semaphores, task semaphores, event flags, messages
and message queues to synchronize and communicate between tasks. Compared
with μCOS-II, task semaphore is a newly introduced synchronous mechanism.
It can be directly signaled by a task to another one without creation.

3.2 OS Kernel Services

The kernel is an important part of OS and its primary duty is tasks scheduling.
μC/OS-III kernel is preemptive and it uses priority-based scheduling. Tasks pri-
ority is specified by users when tasks are created. Different μC/OS-III tasks may
have the same priority. For this reason, round robin scheduling [15] is adopted
in the kernel scheduler. Each task is assigned a duration of time (namely time
quantum) to perform. The task is blocked when the time quantum runs out and
the following task which is ready gets the turn to execute. A task finishes or
being blocked before the quantum running out also yields the processor to other
ready tasks. A list is needed for recording the ready tasks and arranges them in
order of the earliest ready time. When a task runs out of quantum, it is moved
to the end of the list. μC/OS-III scheduler differs from that of μC/OS-II for
it utilizes round robin to priority-based scheduling to deal with tasks with the
same priority. Task scheduling is triggered in the following situations: (1) a task
is added or deleted, or the priority of a task is changed; (2) a task delays itself,
or the delay ends; (3) the event a task requests becomes available.

4 Modeling and Verification of a µC/OS-III Multi-task
Application

In this section, an abstract μC/OS-III multi-task application is given. In order
to verify schedulability, the μC/OS-III kernel is formalized. Then, the TMSVL
formalism of different kinds of tasks including dependent (periodic and non-
periodic) tasks and tasks with synchronizations is given. Meanwhile, the property
to be verified is expressed in TMSVL. Finally, The toolkit MSV is used to verify
the schedulability of the tasks in the application.

4.1 A Multi-task Application

The application consists of five user tasks: task0, task1, task2, task3, and task4

with the priorities being 5,6,7,7,8. Larger number represents lower priority.
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Thus, task0 has the highest priority, followed by task1, then task2 and task3

which have the same priority, and finally task4. The five tasks are responsible
for different functionalities. The relationship of tasks is given in Fig. 4. task0

and task2 are synchronized through task semaphore se0. task0 sends out se0 to
activate task2. If task2 cannot receive se0, it waits infinitely. Similarly, task1 and
task3 are synchronized through se1. But task3 waits no more than to time units
for se1. task4 is an independent task.

Fig. 4. The relationship between task0 and task2, task1 and task3

In Fig. 5, task0 executes Computation1 first. Then it releases the semaphore
se0 after Computation0. Finally, task0 delays for t0 time units. The structure of
task1 is the same as task0. task2 and task3 share the same priority. They also
have similar structures, so we just give the pseudo-code of task2. It requests
se0 first. pend(se0, to) means that the waiting time for se0 is at most to time
unites, specially, to < 0 means there is no time limit on waiting se0. The first
argument se0 is an integer variable representing the semaphore being requested
and the second argument is the time limit for waiting for the signal. For task2,
since to < 0, it executes Computation2 only after receiving the signal se0. When
the execution of Computation2 is finished, it goes on the requesting for se0 for
the next execution. task4 performs computation and delays for t4 time units
when the computation finishes.

task0() task2() task4()

1. { while(1) 1. { while(1) 1. { while(1)

2. { Computation0; 2. { pend(se0, to); 2. { Computation4;

3. post(se0); 3. Computation2; 3. delay(t4);

4. delay(t0); 4. } 4. }
5. } 5. } 5. }
6. }

Fig. 5. Tasks pseudo-code

4.2 TMSVL Model of OS Kernel

The OS kernel model consists of the variables which represent the OS objects
(e.g. the ready tasks, the highest priority ready task) and the TMSVL model of
the OS scheduler.
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Kernel Variables. We use an array rd to represent whether each task in it
is ready. The index of rd is the task number and smaller index corresponds to
higher priority. For index i, if task i is ready, rd[i] = 1; otherwise, rd[i] = 0.
rd is initialized to zero. The variable runTaskID stores the task number of the
currently running task. The float variable Quan stores the time quantum for
scheduling the same priority tasks in round-robin manner.

A List variable l is used to store the ready tasks for each priority when round
robin scheduling is enabled. The definition of List is as follows:

struct{ int taskID; List *nextEL; } List l;

The first member in List stores the identifier of a task, and the second member
is a List pointer pointing to the next List element. When a task is ready, it is
added to the end of l.

Kernel Services. In the TMSVL model of the kernel service, we use Q and
M Robin to represent the OS scheduler and the round robin scheduling modules.
Q is given in Fig. 6 and it finds the ready task with the highest priority by
conjunctions of the if statements and stores the task’s number in runTaskID.
The number of if statements is the number of priorities used by tasks. For a
priority which corresponds to more than one task, an if statement is enough
and round robin scheduling M Robin is invoked in that case. In Fig. 6, task2

and task3 have the same priority.
M Robin is given in Fig. 7. We use several functions to express the oper-

ation on the List l. In Line 1, size(l) returns the number of elements in l.

Q
def
=
1. while(true)
2. { if(rd[0]=1) then{runTaskID=0}
3. and
4. if(rd[0]=0 and rd[1]=1)
5. then{runTaskID=1}
6. and
7. if(rd[0]=0 and rd[1]=0 and (rd[2]=1 or rd[3]=1))
8. then{M Robin }
9. and
10. if( rd[0]=0 and rd[1]=0 and rd[2]=0 and rd[3]=0 and rd[4]=1)
11. then{runTaskID=4 }
12. and
13. ...
14. if( rd[0]=0 and rd[1]=0 and ...)
15. then{runTaskID=IDEL }
16. and skip
17. }

Fig. 6. TMSVL model of the scheduler
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M Robin
def
=
1. if(size(l)>0)
2. then{ runTaskID=head(l) and
3. if( ac[head(l)]+Ts<C[head(l)] and (ac[head(l)]+Ts)%Quan!=0 )
4. then{runTaskID:=head(l)} }
5. and
6. if(ac[head(l)]+Ts=C[head(l)])
7. then{next popHead(l) and
8. if(size(l)>1) then{runTaskID:=head(l)} }
9. and
10. if(ac[head(l])]+Ts<C[head(l)] and (ac[head(l)]+Ts)%Quan=0)
11. then{ next MoveHead2Tail(l) and
12. runTaskID:=head(l) }
13. }

Fig. 7. TMSVL model of the round robin scheduling

If size(l)> 0, l is not empty, the statements in Lines 2–13 are executed. The
head of l is running first (Line 2). The function head() is used to obtain the
taskID of the first element in l. It takes only one List type argument and
returns an integer representing the first element’s taskID of the List l. Lines
3–4 show the case where neither does the first element of l run out of the quan-
tum nor does it finish at the next state and the head element goes on running
at the next state. Lines 6–8 show the second case where the task corresponding
to head(l) finishes. In this case, the task is removed from l. Here we use the
function popHead(l) to represent this operation. Next, we need to test whether
l is empty after popHead(l) and if l is not empty, the task corresponding to
the head of l gets the processor by setting runTaskID to the value of head(l)
at the next state. Lines 10–12 show the case where the task is not finished but
runs out of the time quantum at the next state. In this case, the task is moved
from the head to the tail of l and the task corresponding to the new head gets
the chance to run at the next state. The function MoveHeadToTail() moves the
head of l to the tail and makes the head of l change (Line 10).

4.3 TMSVL Model of a Multi-task System

The multi-task system consists of five parallel tasks. Let M taski represent the
user taski (i=0,1,2,3,4). We denote the model of the multi-task system as M.
Thus M ≡ ||4i=0M taski.

We use float array elements C[i], ac[i] and acD[i] to represent the required
computation time, the accumulated running time and the accumulated delay
time of taski in the current period, respectively. Boolean array elements wait[i]
and ex[i] are used to indicate whether taski is at the waiting and the executing
state, respectively.

Figure 8 shows the TMSVL model of task0, task1 and task4. A new com-
putation circle starts in Line 2. Then the task waits its turn to run (Line 3).
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M taski
def
= //i=0,1,4
1. while(true)
2. { ac[i]=0 and
3. await(runTaskID=i);
4. while(ac[i]<C[i])
5. { if(runTaskID=i)
6. then{ac[i]:=ac[i]+Ts and ex[i]=1 and wait[i]=0 and
7. if(ac[i]+Ts=C[i] and i! = 4) then{sei:=sei+1} }
8. else {ex[i]=0 and skip} };
9. (T,T+dly[i])keep( next acD[i]=acD[i]+Ts and
10. rd[i]=0 and ex[i]=0 and wait[i]=1);
11. acD[i]=0 and rd[i]=1 and empty
12. }

Fig. 8. TMSVL model of tasks 0, 1, 4

M taski
def
= //i=2,3
1. while(true)
2. { if(sei−2 ≤ 0)
3. then{rd[i]=0 and ex[i]=0 and wait[i]=1 and
4. {0@to}await(sei−2 > 0);
5. rd[i]=1 and wait[i]=0 and empty };
6. ac[i]=0 and
7. await(runTaskID=i);
8. while(ac[i]<C[i])
9. { if(runTaskID=i)
10. then{ac[i]:=ac[i]+Ts and ex[i]=1 and wait[i]=0 and
11. if(ac[i]+Ts=C[i] and sei−2 > 0)
12. then{sei−2:=sei−2-1 and
13. if(sei−2 − 1 > 0)
14. then {rd[i]:=1 } } }
15. else {ex[i]=0 and skip} }
16. }

Fig. 9. TMSVL model of tasks signaled by other tasks

Lines 4–8 shows the task starts running in a new circle, during this period, it
can be preempted by tasks with higher priorities. Lines 5–7 corresponds to the
case where the task is running and Line 8 stands for the situation where the
task is preempted. task0 and task1 signal to other tasks and delay themselves
upon finishing the computations. task4 just delays after finishing its computa-
tion. In Line 7, sei is increased by 1 at the next state when taski finishes at the
next state, the value of i is 0 or 1. When taski finishes a computation, namely,
ac[i]=C[i], it delays for dly[i] time units. This is represented by the time
constraint statement in Lines 9–10. During this period, rd[i] is 0. When the
delay ends, taski becomes ready by setting rd[i] to 1.
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The models for task2 and task3 are given in Fig. 9. Before a new computation
starts, first, the task needs to test whether the requested task semaphore has
been sent out (Line 2). sei−2 ≤ 0 (i=2,3) means that the task semaphore has not
been sent out and the task has to wait and be at the waiting state (Lines 3–4).
{0@to}await(sei−2 > 0) means the waiting on sei−2 > 0 is no more than to
time units. When the semaphore is received or not received in to time units, the
task stops waiting and turns to the ready state by setting rd[i] to 1 and wait[i]
to 0 (Line 5). Then the task waits its turn to run (Line 6–7). Lines 8–15 shows
the task starts running in a new circle, during this period, it can be preempted
by tasks with higher priorities. Lines 10–14 corresponds to the case where the
task is running and Line 15 stands for the situation where the task is preempted.
When ac[i] = C[i], namely, taski finishes the computation of the current period,
sei−2 is decreased. When the computation of the current circle completes, the
program goes to Line 2 to repeat the process above.

4.4 Verification of Schedulability

In the previous section, we model the OS scheduler and different kinds of μC/OS-
III tasks (independent tasks, synchronous tasks) with TMSVL. Based on the
TMSVL model, the property to be verified is formalized.

Schedulability is an important property for real-time multi-task systems. It
means that all the tasks scheduled can finish within the given deadline. In other
words, each task can finish in a given time duration from the moment it is ready.
Schedulability of N tasks is expressed in TMSVL denoted as PSch below.

PSch
def= ∧N

i=0(rd[i] = 1 ∧ ac[i] = 0 → ({Ts,D[i]}true; ac[i] = C[i]))+

Here, D[i] is the deadline for taski. C[i] and ac[i] are the computation time and
accumulated running time which are given in the previous section. In PSch, ‘+’
is derived from the sequential operator ‘ ; ’. Suppose p is a TMSVL statement,
p+ means that the number of p in p; p; . . . ; p can be any positive integer.

With the TMSVL model of a μC/OS-III multi-task application and the prop-
erty described in TMSVL. Whether the property is valid on the application can
be automatically checked by the toolkit MSV. In this section, we verify schedu-
lability for the multi-task application given in the previous subsection.

The deadlines for the 5 tasks are stored in the array D where D[5] ={0.03,
0.04, 0.13, 0.23, 0.25}. The computation time for each task is stored in the array
C where C[5] ={0.03, 0.04, 0.06, 0.09, 0.12}. The delay time of the five tasks
are stored in the array dly where dly[5] = {0.3, 0.2, 0, 0, 0.3}. The waiting time
to on request for se1 is set to 0.03. we assume the tasks are started at the same
time T = 0.

The verification result for the application is shown in Fig. 10. There are 770
nodes and 770 arcs on the counterexample. Each node represents a program
while each arc represents a state which shows the executing of the application
at different time. The root node is a double circle, it represents the TMSVL
model of the application. Other node represents the future part produced by
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Fig. 10. Verification result

executing the program that the precursor node represents, and the current part
is represented by an arc. For example, arc 0 and node 1 are the executing results
of node 0. The arcs are state formulas while the nodes are TMSVL programs
which are required to be further executed.

In Fig. 10, we can see that arc 0 represents the state that T = 0, task0, task1

and task4 are ready since the first, second and fifth elements in rd is 1, and task0

starts executing since runTaskID = 0. After 0.03 s, task0 finishes and activates
task2, that is, task2 is ready at T = 0.03 for the first time. When T = 0.17, task2

finishes, for the accumulated time ac[2] is equal to C[2]. We can see that task2

finishes after 0.14 s from the time it is activated which is greater than the give
deadline. So the schedulability for task2 is violated which leads to the violation
of PSch.

Fig. 11. Verification result

The property PSch is too strict for it requires all the tasks should finish in
the given deadlines. We can relax the schedulability requirements by ignoring the
deadline for task2 and task3. Thus the property can be represented as follows:

PSch0,1,4
def= ∧i=0,1,4(rd[i] = 1 ∧ ac[i] = 0 → ({Ts,D[i]}true; ac[i] = C[i]))+

PSch0,1,4 just requires that task0, task1 and task4 always finish in the given
deadline. The verification result is shown in Fig. 11, there is no counterexample,
so we can conclude that task0, task1 and task4 are always finished in their dead-
line. When the schedulability of a set of tasks is violated, we need to determine
which tasks violated the property. In this case, verifying schedulability of a single
task at one time instead of the whole is efficient.
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5 Conclusion

We present a unified model checking approach to verify schedulability of multi-
task application running under μC/OS-III. The OS scheduler which combines
priority based scheduling and round-robin scheduling is modeled in TMSVL.
Tasks synchronization with timeout and delay mechanism are also formalized in
TMSVL. With the toolkit MSV, a multi-task system running under μC/OS-III
is formalized and verified. The mechanism that time intervals are adjustable for
modeling improves the efficiency of verification. In the near future, we will put
TMSVL into practise and verify more realistic industrial applications.
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Abstract. Predictability is considered as a crucial system property that
determines with certainty the future occurrence of a fault based on a
sequence of observations on system model. There are very few works
done on the predictability problem for discrete event systems, which is
however extremely important for developing critical complex systems.
In this paper, we propose a formal sufficient and necessary condition
for this property before presenting a new algorithm based on it, which
is extendible from a centralized framework to a distributed one. Both
are formally presented, as well as experimental results that show the
efficiency of our approach.

1 Introduction

Fault diagnosis is a crucial and challenging task in the automatic control of com-
plex systems [1,4,5,8,9,14,15,19], whose very possibility depends on a system
property called diagnosability. The diagnosability problem has received consid-
erable attention in the literature. Diagnosability describes the system ability to
determine whether a fault has effectively occurred based on the observations.
In a given system, the existence of two infinite behaviors, with the same obser-
vations but exactly one containing the considered fault, violates diagnosability.
The existing works search for such ambiguous behaviors both in centralized
[3,7,12,16,17] and distributed [13,18,20] ways. The most classical method is to
construct a structure called twin plant that captures all pairs of observationally
equivalent behaviors to directly check the existence of such ambiguous pairs.
However, sometimes it is very expensive to recover the system after fault, which
motivates the work on predictability problem, i.e., the system ability to predict
with certainty future faults when this system is still in a normal state.

Predictability is an important system property that determines at design
stage whether the considered fault can be correctly predicted before its occur-
rence based on available observations. If a fault is predicted, the system operator
can be warned and may decide to halt the system or otherwise take preventive
measures. However, up to now, very few works have been done on this subject
for discrete event systems (DESs). The authors of [6] proposed a deterministic
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 201–216, 2015.
DOI: 10.1007/978-3-319-25423-4 13
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diagnoser approach with exponential complexity as well as a polynomial method
that checks predictability directly on a twin plant. Both of them were established
in a centralized way and are difficult to be extended for distributed systems due
to combinatorial explosion. The first distributed method handling this problem
was proposed in [21], which however has the same search space as the centralized
one in the worst case.

In this paper, we propose a new efficient algorithm of predictability for DESs.
First, we propose and then prove a sufficient and necessary condition for pre-
dictability, i.e., characterizing pairs of behaviors violating predictability as two
trajectories, exactly one containing the fault, with the same observations before
the fault and the normal one being infinite. Totally different from the polynomial
method proposed in [6] that reused twin plant, we construct another structure
that captures all pairs of trajectories with the same observations only before
the fault while preserving the normal trajectories, where the existence of vio-
lating pairs can be directly checked. More importantly, we show how to extend
this method in a distributed framework with smaller state space even in the
worst case. Our distributed algorithm is different from that proposed for check-
ing diagnosability described in [13]. For diagnosability, it suffices to synchronize
local twin plants based on communication events in a unique way since the same
observations are imposed both before and after the fault. While for predictabil-
ity, we have to check the same observations only before the fault as well as the
infinity of the corresponding normal trajectory, both in an incremental way.

The organization of the rest of the paper is as follows. The next section recalls
the definitions and gives a sufficient and necessary condition for predictability.
Section 3 proposes a new predictability algorithm before extending it to a dis-
tributed framework in Sect. 4. Section 5 gives some experimental results. Then
we conclude in Sect. 7 after a discussion in Sect. 6.

2 Preliminaries

In this section, we show how to model a DES, recall the definition of its pre-
dictability, and propose a sufficient and necessary condition with a formal proof.

2.1 Models of DESs

We model a DES as a Finite State Machine (FSM), denoted by G = (Q,Σ, δ, q0),
where Q is the finite set of states, Σ is the finite set of events, δ ⊆ Q × Σ × Q
is the set of transitions (the same notation will be kept for its natural extension
to words of Σ∗), and q0 is the initial state. The set of events Σ is divided into
three disjoint parts: Σ = Σo �Σu �Σf , where Σo is the set of observable events,
Σu the set of unobservable normal events and Σf the set of unobservable fault
events.

Example 1. The left part of Fig. 1 shows an example of a system model G, where
Σo = {O1, O2, O3}, Σu = {U1, C1, C2}, and Σf = {F}.
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Fig. 1. A system example (left) and its diagnoser (right).

Given a system model G, its prefix-closed language L(G), which describes
both normal and faulty behaviors of the system, is the set of words produced by
G, L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}. In the following, we call a word from
L(G) a trajectory in the system G and a sequence q0σ0q1σ1... a path in G, where
σ0σ1... is a trajectory in G and we have ∀i, (qi, σi, qi+1) ∈ δ. Given s ∈ L(G), we
denote its set of strict prefixes as s, i.e., s /∈ s, and the post-language of L(G) after
s by L(G)/s, formally defined as: L(G)/s = {t ∈ Σ∗|s.t ∈ L(G)}. The projection
of the trajectory s to observable events of G (resp. Gi in distributed system) is
denoted by P (s) (resp. Pi(s)). Traditionally, we assume that the system language
is always live (any trajectory has a continuation, i.e. is a strict prefix of another
trajectory) without unobservable cycle. Precisely, we have at least one transition
from any state and every cycle in the system contains at least one observable
event. This makes it feasible to check the infiniteness of a trajectory. Given two
FSMs G1 and G2, their synchronization with respect to the set of synchronized
events Σs ⊆ Σ1∩Σ2

1 consists in synchronizing only the events in Σs, denoted by
G1 ‖Σs

G2. All events not in Σs can occur independently whenever possible. It
is easy to generalize the synchronization for a set of FSMs using its associativity
properties [2]. We will need also some infinite objects. So, we denote by Σω the
set of infinite words on Σ and by Σ∞ = Σ∗ ∪ Σω the set of words on Σ, finite
or infinite. We define in an obvious way Lω(G) and L∞(G) and thus infinite
trajectories and infinite paths.

2.2 Predictability of DESs

Predictability is considered as a crucial property of a DES in the sense that a pre-
dictable fault can possibly be avoided. Similar to diagnosability, the predictabil-
ity algorithm that we will propose has exponential complexity with the number
of fault types. For the sake of reducing complexity and simplicity, only one fault
type at a time is considered but multiple occurrences of faults are allowed, and
the other types of faults are processed as unobservable normal events. However,
this framework can be extended in a straightforward way such that a number
of different faults can be considered simultaneously. Now we rephrase the pre-
dictability definition [6], where a trajectory ending with a first occurrence of the

1 To avoid heavy notations, we will use sometimes Σs � Σ1 ∩Σ2. Synchronization set
has then to be understood as Σs ∩ Σ1 ∩ Σ2.
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fault F (enough to cover the case with several occurrences of F ) is denoted by
sF and the set of natural numbers by N.

Definition 1 (Predictability). A fault F is predictable in a DES G, iff

∃k ∈ N,∀sF ∈ L(G),∃η ∈ sF ,∀p ∈ L(G),∀p′ ∈ L(G)/p,

[(P (p) = P (η)) ∧ (F /∈ p) ∧ (|p′| ≥ k) ⇒ (F ∈ p′)].

A fault F is predictable iff for any trajectory sF ending with a first occurrence
of F , there exists at least one strict prefix of sF , denoted by η (thus η does not
contain F ) such that for each normal trajectory p with the same observations as
η, all the long enough (depending only on F ) continuations of p should contain
F . Only in this way, F can be certainly predicted before its occurrence.

2.3 Sufficient and Necessary Condition

Suppose now that we have two trajectories in a given system such that exactly
one, denoted by sF , ends with the fault F , the other without F has at least
one prefix with the same observations as the maximum strict prefix of sF and is
infinite. With such two trajectories, whatever we observe before the occurrence
of F , we cannot tell whether F will occur or not since both are possible while
only one will contain F in the future. Now we formally define such a pair of
trajectories.

Definition 2 (Pre-Violating Pair (PVP)). Given a system G and a fault F to
be predicted, a pair of trajectories sF , p.p′ ∈ L∞(G) is called a Pre-Violating Pair
(PVP) with respect to F if the three conditions are satisfied: (1) P (sF ) = P (p);
(2) F /∈ p.p′; (3) p′ is infinite.

Here is the sufficient and necessary condition of predictability.

Theorem 1. A fault F is predictable in a system G iff there is no PVP in G
with respect to F .

Proof. ⇒ Suppose that we have a PVP in G, i.e., sF and p.p′ as in Definition 2.
Hence, we have P (sF ) = P (p), i.e., the maximum normal prefix of sF has the
same observations as p since F is not observable. It follows that ∀η ∈ sF , ∃η′ ∈
p ∪{p} such that P (η) = P (η′). Furthermore, η′ has at least one normal infinite
continuation since F /∈ p.p′ and p′ is infinite. This violates Definition 1, i.e., F is
not predictable.
⇐ Now suppose that F is not predictable. It follows that Definition 1 is violated,
which can be expressed by the following: ∀k ∈ N, ∃sF ∈ L(G), ∀η ∈ sF , ∃p ∈
L(G), F /∈ p, P (p) = P (η), ∃p′ ∈ L(G)/p, |p′| ≥ k, F /∈ p′. Let η as the maximum
normal prefix of sF . The above formula implies (by taking k greater than |Q|)
that there must exist a normal infinite trajectory p.p′, i.e., F /∈ p.p′, such that
P (p) = P (η). This means P (p) = P (sF ) since η is the maximum normal prefix
of sF . Hence, p.p′ and sF constitute exactly a PVP. �
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3 Centralized Framework

Since the predictability verification of a given fault F is to check the existence of
PVP, from Definition 2, we take three steps: (1) obtain the set of maximum strict
prefixes for all sF , and actually we can restrict to those sF which are minimal for
the order induced by the prefix relation (with F excluded), which is enough from
Theorem 1 as a PVP for w.w′.F is a PVP for w.F; (2) obtain the set of infinite
normal trajectories; (3) compare the above two sets in terms of observations to
check the existence of PVP. We will construct one FSM for each step. Before
this, given a system model, we first construct its non-deterministic diagnoser
to explicitly show fault information, which is different from the deterministic
diagnoser proposed in [17].

Definition 3 (Diagnoser). Given a system G, its diagnoser with respect to a
considered fault F is a nondeterministic FSM D = (QD, ΣD, δD, q0D), where (1)
QD ⊆ Q×{N,F} is the set of states; (2) ΣD = Σo is the set of events; (3) δD ⊆
QD ×ΣD ×QD is the set of transitions; (4) q0D = (q0, N) is the initial state. The
transitions of δD are those ((q, �), e, (q′, �′)), with (q, �) reachable from the initial
state q0D, such that there is a transition path p = (q u1−→ q1...

um−−→ qm
e−→ q′) in

G, with uk /∈ Σo,∀k ∈ {1, ...,m}, e ∈ Σo and �′ = F , if � = F ∨F ∈ {u1, ..., uk},
and otherwise, �′ = N .

The diagnoser preserves all observable information. Then we append the fault
label F to those states, up to which the fault has already occurred, and normal
label N to those without the fault occurrence. The right part of Fig. 1 depicts
the diagnoser of the system in Example 1, where gray nodes represent the states
where F has effectively occurred. Based on such a diagnoser, we then construct
two different FSMs to capture the set of maximum normal prefixes of all minimal
faulty trajectories and the set of normal ones, respectively.

Definition 4 (Fault-Prefix Diagnoser). Given a diagnoser D, the fault-prefix
diagnoser DFP is constructed as follows:

– Keep only the minimal paths containing the fault label;
– ∀((q, l), e, (q′, l′)) ∈ δD, l = N, l′ = F , it is transformed into ((q, l), Σo, (q, l)) ∈

δD, i.e., (q, l) goes back to itself with any observable event. Such a state (q, l)
is called an absorbing state in the following.

Recall that predictability analysis consists in first checking whether the max-
imum normal prefix of a faulty trajectory has the same observations with a
normal one, and then examining whether the normal one is infinite, which is
represented by a cycle in a FSM. This is why in a fault-prefix diagnoser, we keep
the exact observable events before the fault and then add to an absorbing state
a self-cycle with all observable events. The idea is to make it able to synchronize
with a normal trajectory to check whether the latter has a cycle in the future.

Definition 5 (Normal Diagnoser). Given a diagnoser D, the normal diagnoser
DN is obtained by retaining only normal states with their associated transitions.
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To check the existence of PVP, we synchronize the fault-prefix diagnoser and
the normal diagnoser based on the set of observable events. This synchronization
is actually the intersection of the maximum normal prefixes of minimal faulty
trajectories and the normal trajectories in terms of observations.

Definition 6 (Pre-Verifier). Given a system, its pre-verifier PV is constructed
by synchronizing its fault-prefix diagnoser DFP and its normal diagnoser DN

based on observable events, i.e., PV = DFP ‖Σo
DN .

A state of a pre-verifier sv is composed of a state of the fault-prefix diagnoser
and a state of the normal diagnoser, denoted by sv = (qf , qn). All states in DFP ,
DN and thus PV having by construction a normal label N , it will be skipped
in the following. If qf is an absorbing state, then sv is also called an absorbing
state. In a pre-verifier, a path containing a cycle made up of absorbing states is
called a violating path. Note that pre-verifier proposed here greatly reduces the
state space compared to twin plant used both in [6,13]. The latter is constructed
directly by synchronizing the whole diagnoser defined in Definition 3 with itself.
Clearly, both fault-prefix diagnoser DFP and normal one DN are smaller than
the diagnoser D. Thus, the pre-verifier DFP ‖Σo

DN is much smaller than
D ‖Σo

D, even in the worst case.

Lemma 1. A path in PV is a violating one iff it corresponds to a PVP with
minimal sF in the corresponding system.

Proof. ⇒ Let ρ a violating path in PV . Thus ρ = sv
0σ0 . . . sv

i σi . . .
sv

j σj . . . sv
kσk . . . where 0 ≤ i ≤ j, j < k, sv

j = sv
k and ∀l < i sv

l is not an absorbing
state, ∀l ≥ i sv

l is an absorbing state. By construction of DFP , σ0 . . . σi−1 comes
from minimal sF where P (sF ) = σ0 . . . σi−1. By construction of DN , σ0 . . . σk

comes from p.p′ ∈ Lω(G) where P (p) = σ0 . . . σi−1, F /∈ p.p′ and p′ is infinite
(with P (p′) = σi . . . (σj . . . σk−1)ω). Thus sF , p.p′ is a PVP in G.
⇐ Let sF , p.p′ a PVP in G with sF minimal. sF gives birth in DFP to
qf
0σ0 . . . σi−1q

f
i , 0 ≤ i, where qf

i is an absorbing state. p.p′ gives birth in
DN to qn

0 σ0 . . . σi−1q
n
i . . . qn

k σk . . . where i < k and ∃j, j < k, qn
j = qn

k . Then
ρ = (qf

0 , qn
0 )σ0 . . . σi−1(q

f
i , qn

i ) . . . (qf
i , qn

k )σk . . . is a violating path in PV. �

Figure 2 shows the two diagnosers and a part of PV for G in Example 1. In
PV, a state is composed of a fault-prefix diagnoser state (top) and a normal
diagnoser state (bottom). The absorbing states in the fault-prefix diagnoser (X2
and X8) and in PV (all states whose top part is X2 or X8) are bold circles.
A violating path in PV, i.e., with an absorbing state cycle, corresponds to a
PVP. For example, the path whose trajectory is O2.O2.O2ω is a violating path.
Its corresponding trajectories in G are C1.O2.F and C2.O2.U1.O2ω, which are
exactly a PVP with sF = C1.O2.F , p = C2.O2 and p′ = U1.O2ω. So F is not
predictable in G.

The following theorem is from Theorem 1 and Lemma 1.

Theorem 2. A fault F is predictable in a system G iff there is no violating path
in the corresponding PV.
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Fig. 2. Fault-prefix diagnoser (left), normal diagnoser (middle) and part of PV (right)
of G in Example 1.

4 Distributed Framework

In the previous section, we have presented a centralized approach of predictabil-
ity analysis. However, it is not realistic to construct a global model for a com-
plex system due to combinatorial explosion. In this section, we will show how to
extend our centralized method to a distributed framework.

4.1 Distributed Model

We consider a distributed DES G composed of a set of components G1, ..., Gn

that communicate with each other by communication events. Similar to the
system model in the centralized approach, each component is modeled by a
FSM, denoted by Gi = (Qi, Σi, δi, q

0
i ). Differently, the set of events Σi is divided

into four disjoint parts instead of three: Σi = Σio
� Σiu

� Σif
� Σic

, where
Σic

is the set of unobservable correct communication events. For any pair of
distinct local components Gi and Gj , we have Σio

∩ Σjo
= ∅, Σiu

∩ Σju
= ∅,

and Σif
∩ Σjf

= ∅. In other words, the only shared events between different
components are communication ones. Thus, given a considered fault F , it can
only occur in one component, denoted by GF (called the faulty component, the
others being the normal ones). Similarly, we assume that the language for each
component is always live without unobservable cycle.

Example 2. A distributed system G′ is composed of two components G1 and
G2, where the system in Example 1 is now considered as G1 with the difference
Σ1u

= {U1} and Σ1c
= {C1, C2}, and G2 is shown in the left part of Fig. 3 with

Σ2o
= {O4, O5, O6} and Σ2c

= {C1, C2}.

Given a distributed DES, to apply the centralized predictability algorithm,
we have first to synchronize all components based on communication events to
obtain the global model. The global pre-verifier is calculated by synchronizing
the fault-prefix diagnoser with the normal diagnoser, both built from the global
model, based on observable events before the fault. The PVP is then checked
directly on this global pre-verifier. To save search space but with the same result,
the idea of our distributed algorithm is to first construct local structures (e.g.,
local pre-verifier) by synchronization on local observable events before the fault
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Fig. 3. Component G2 (left) and the diagnoser of G1 (right) for the system G′ in
Example 2.

to search for local version of PVP. The correspondence between this local version
and global PVP is then checked by the synchronization based on communication
events, which is done partially and incrementally. We will provide a formal proof
for the equivalence between centralized and distributed approach.

4.2 Local Analysis

In a distributed DES, since the fault to be predicted can only occur in GF ,
we should obtain the original local predictability information from GF before
determining the global decision. For this, we first define the local version of
PVP, the projection of s on the local observations in GF denoted by PF (s).
Different from PVP, local PVP does not require an infinite trajectory, which
will be checked from global point of view.

Definition 7 (Local PVP). In the component GF , a pair of local trajectories
sF , p.p′ ∈ L∞(GF ) is called a local PVP if F /∈ p.p′ and PF (sF ) = PF (p).

Lemma 2. Given a distributed DES G, the projection of a PVP on GF is a
local PVP. But conversely, it is not true that all local PVPs can be extended into
(global) PVPs.

Proof. ⇒ Suppose that two global trajectories, denoted by sF and p.p′ are a
PVP. We show that the projections of sF and p.p′ on GF , denoted by PF (sF )
and PF (p.p′), are a local PVP. Since F can only occur in GF , We must have
PF (sF ) = s′F , i.e., the projection of sF on GF should also be a local trajectory
ending with F . From F /∈ p.p′, we have F /∈ PF (p.p′). Furthermore, Σio

∩ Σjo
=

∅ for i �= j implies that P (sF ) = P (p) ⇒ PF (PF (sF )) = PF (PF (p)). From
Definition 7, PF (sF ) and PF (p.p′) constitute a local PVP.
� Now consider the two local trajectories p1 = C1.O2.F and p2 = C2.O2.U1
in G1 that constitute a local PVP and show that they are not extendible into
a PVP. The reason is that when synchronizing G1 and G2, for p2, O5 occurs
necessarily before O2 to synchronize on C2 while, for p1, we have O2 without O5
before F . Thus, O5 distinguishes the normal trajectory from its corresponding
faulty one before F . Hence, p1 and p2 cannot be extended into a global PVP. �

From Lemma 2, we know that a local PVP may or may not correspond to a
PVP. To verify predictability, it is necessary to check whether a local PVP can
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be effectively extended into a global PVP. To obtain the set of local PVPs, we
construct the local diagnoser exactly as in Definition 3 except that here the set of
events retained are not only observable events but also communication events,
the latter used to check the extendibility of a local PVP into a PVP in the
following step. The right part of Fig. 3 shows the diagnoser of G1 in Example 2.
Then the local fault-prefix diagnoser DFPF

and local normal diagnoser DNF

are constructed in the same way as Definition 4 and Definition 5 with the only
difference that their construction is based on the local diagnoser. To obtain
the local pre-verifier for GF , denoted by PVF , we distinguish the unobservable
communication events in DFPF

, prefixed by F , and those in DNF
, prefixed by

N , such that PVF is built by synchronizing DFPF
and DNF

based on the set of
observable events. From now on, we call a path of a local PV containing at least
one absorbing state a local violating path. The left part of Fig. 4 depicts a part
of the local PV for G1, where absorbing states are represented by bold circles.
All paths of length at least 3 shown here are local violating paths.

Fig. 4. Part of local PV of G1 (left) and part of normal verifier of G2 (right) for the
system G′ in Example 2.

The proof of Lemma 3 is similar to that of Lemma 1.

Lemma 3. A path in PVF is a local violating one iff it corresponds to a local
PVP with minimal sF in GF .

4.3 Global Checking

Since a local violating path corresponds to a local PVP, the predictability check-
ing for a distributed system is to check whether a local violating path in PVF

corresponds to a PVP.

Definition 8 (Global Extendibility of Local Violating Paths). Given a system G,
let p1 and p2 be the corresponding local trajectories in GF for a local violating
path ρ in the PVF . ρ is globally extendible if the following two conditions are
satisfied: (1) ∃p′

1, p
′
2 ∈ L∞(G), such that PF (p′

1) = p1 and PF (p′
2) = p2; (2) p′

1

and p′
2 constitute a PVP.
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Now the following theorem can be proved from Theorem1, Lemmas 2, 3 and
Definition 8.

Theorem 3. A fault F is predictable in a system G iff there is no local violating
path in PVF that is globally extendible.

Checking the extendibility of a local violating path means to check firstly whether
the observations in other components can distinguish the corresponding two
trajectories before fault occurrence and secondly whether the normal trajectory
can be extended into an infinite one. For this, given a normal component, we
construct the following structure.

Definition 9 (Normal Verifier). Given a normal component Gi, its normal ver-
ifier NVi is constructed as follows:

1. Construct a coarser model G′
i based on Gi by keeping only the set of commu-

nication and observable events;
2. Construct two instances G′F

i and G′N
i of G′

i by prefixing the communication
events by F and N , respectively, and then synchronize them based on the
observable events: NVi = G′F

i ‖Σio
G′N

i ;
3. Retrieve the lost parts of G′N

i in NVi that are blocked by different observable
events during step 3, called Normal Unique parts, shortly NU parts. i.e., add
to NVi all transitions (qf , qn

0 ) e1−→ (qf , qn
1 ) . . .

ek−→ (qf , qn
k ) such that: ∀j, 1 ≤

j ≤ k, qn
j−1

ej−→ qn
j is a transition in G′N

i , e1 ∈ Σio
, ∃ qf o−→ q′f transition in

G′F
i with o ∈ Σio

and ∀ qf o−→ q′f transition in G′F
i with o ∈ Σio

, e1 �= o.

A normal verifier has two characteristics: (1) obtain all pairs of observationally
equivalent trajectories (non NU parts); (2) recover all parts of trajectories in
G′N

i that are blocked by different observable events (NU parts). The first one is
to check the same observations before the fault while the second is to examine
whether the normal trajectory is infinite. The right part of Fig. 4 shows a part
of the normal verifier for G2, where the transitions with double arrows are the
NU parts.

Given the local pre-verifier PVF and a normal verifier NVi, to check the
extendibility of local violating paths in the subsystem composed of GF and Gi,
we take two steps: (1) synchronizing PVF and the non NU parts of NVi based
on communication events (with the same prefix F or N) until arriving in an
absorbing state; (2) from an absorbing state, synchronizing based on communi-
cation events only with the prefix N . Intuitively, the first step checks whether
the corresponding two trajectories in this subsystem have the same observations
before the fault. In NVi, only the non NU parts have the same observations for
both trajectories. Hence, before achieving absorbing states, only the non NU
parts should synchronize with PVF to guarantee the same observations before
the fault. The second step extends only the normal trajectory to check its infinity
since synchronized events now become the common communication events with
the prefix N. If we synchronize PVF with all NVi with the two steps without
any reduction, then what we get is isomorphic (same set of paths from origin,
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and thus same language) to the global pre-verifier obtained by the centralized
approach.

Theorem 4. Given a distributed system G = (G1, ..., Gn), the final synchro-
nized product of PVF with NVi for all normal components is isomorphic to the
global pre-verifier.

Proof. (sketch) Base Case: We first show this equivalence for n=2, i.e., two
components with GF = G1. Given G = (G1, G2), the global pre-verifier is
obtained by PV c

2 = [G1 ‖Σc
G2]FP+PF ‖Σo

[G1 ‖Σc
G2]N+PN , where FP + PF

(resp. N + PN ) means constructing fault-prefix diagnoser (resp. normal diag-
noser) and adding prefix of F (resp. N) for communication events. This can
be transformed into PV c

2 = [DF
1F P

‖ΣF :c G′F
2 ]� ‖Σo

[DN
1N

‖ΣN:c G′N
2 ], where

� represents absorbing state calculation. With our distributed algorithm, the
final FSM obtained is PV d

2 = [DF
1F P

‖Σ1o
DN

1N
] ‖ΣF :c�,N:c [G′F

2 ‖Σ2o
G′N

2 ]��,
where ΣF :c�,N :c signifies the synchronized events are F communications events
before absorbing states and all N communication events (in particular those in
NU parts after absorbing states) and �� means the recuperation of NU parts,
i.e., 3rd step in Definition 9. From [DF

1F P
‖ΣF :c G′F

2 ]�, in PV c
2 , we only keep F

communication events before absorbing states while retaining the rest of normal
trajectory. This is transformed in PV d

2 through the set of synchronized events
ΣF :c�,N :c with �� operation. Hence, we have PV c

2 � PV d
2 .

Inductive Case: Suppose PV c
m � PV d

m, we now show PV c
m+1 � PV d

m+1. From
above, we have the following demonstration, where the synchronized events are
omitted that are similar to the base case: PV c

m+1 = [DF
1F P

‖ ... ‖ G′F
m+1]

� ‖
[DN

1N
‖ ... ‖ G′N

m+1] = [[DF
1F P

‖ ... ‖ G′F
m ]� ‖ G′F

m+1]
� ‖ [[DN

1N
‖ ... ‖ G′N

m ] ‖
G′N

m+1] � PV c
m ‖ [G′F

m+1 ‖ G′N
m+1]

�� � PV d
m ‖ [G′F

m+1 ‖ G′N
m+1]

�� = PV d
m+1. �

We have proved the equivalence between the centralized result and the dis-
tributed one. However, to save search space, in distributed framework, we can
partially and incrementally synchronize all local violating paths in PVF with
NVi for connected components and we have the following theorem.

Theorem 5. Given a system G, let Θ be the set of connected components con-
taining GF . After incrementally checking the extendibility of local violating paths
in PVF with NVi of all normal components in Θ, a local violating path is globally
extendible iff there exists a path p in the final FSM satisfying one of the following
conditions: (1) p has an absorbing state cycle; (2) p has an absorbing state and
Θ �= G.

The global checking of predictability is much more complex than that of
diagnosability [13]. For the latter, it is enough to construct local twin plants for
all components before synchronizing them in a unique way since the violating
pair has the same observations in the whole way. While for the former, as shown
in this paper, we have to construct different structures for normal and faulty
components with different ways of synchronization before and after fault.

Consider the part of PVF and of NV2 shown in Fig. 4. The local vio-
lating paths whose trajectories are t1 = F :C1.N :C2.O2.O2.O2∗ (resp. t2 =
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F :C1.N :C2.O2.N :C1.O3∗) are not globally extendible because N :C2 is blocked
during extendibility checking with NV2. The reason is explained in the proof
of Lemma 2: observations before F are not the same after synchronization. For
the local violating path whose trajectory is t3 = N :C2.O1.O3.N :C1.O3∗, after
checking t3 with NV2, the normal trajectory is blocked by N :C1 after arriv-
ing in absorbing states. This means that the trajectories of the correspond-
ing pair have the same observations before F but the normal one cannot be
infinite. Thus, t3 is not globally extendible. Consider finally the trajectory
t4 = N :C2.O1.O3.O2.O2∗. Its extendibility checking with NV2 achieves absorb-
ing states and makes the normal trajectory infinite with a cycle, i.e., an absorbing
state cycle. Precisely, O5.C2.O1.O3.U1.O2ω is an infinite normal trajectory in
G′ of Example 2, which has the same observable prefix O5.O1.O3 with the faulty
trajectory O5.O1.O3.F . It follows that t4 is globally extendible, i.e., F is not
predictable in G′.

4.4 Algorithm

Now we formally describe our distributed predictability algorithm based on The-
orem 5, which is shown by Algorithm 1. Given the input (line 1) as the set of
component models and the fault F in GF , which is used as initialization of the
current subsystem GS (line 2), we first construct PVF (see Sect. 4.2 for more
details) and reduce it to only retain local violating paths, i.e., with at least one
absorbing state (lines 3–4). If the reduced PVF is not empty and there exists at
least one connected component to GS , i.e., with at least one common communi-
cation event (line 5), meaning that the retained PVF should be further checked
in an extended subsystem, then we repeatedly perform the following steps: (1)
Select one component Gi not in GS but connected to it before constructing
its normal verifier NVi as described in Definition 9 (lines 6–7); (2) Check the
extendibility of PVF with NVi as described in the previous section (line 8);
(3) Reduce the newly obtained PVF to keep only paths containing at least one
absorbing state before updating the subsystem GS by adding Gi (lines 9–10). In
the final resulting FSM, if there exists at least one globally extendible violating
path (line 11), F is not predictable and PVF is provided (line 12). Otherwise, F
is predictable and predictable information is returned (lines 13–14).

5 Experimental Results

We have proved the correctness of our algorithms from theoretical point of view.
To show their efficiency from practical point of view, we have implemented and
compared our centralized algorithm with twin plant method in [6] as well as
our distributed one with that described in [21] (for this comparison we also
implemented algorithms described in [6,21] as codes were not available from the
authors). All our experimental results are obtained by running our java program
on a Mac OS laptop running on a 1.7 GHz Intel Core i7 processor with 8 Go
1600 MHz DDR3 of memory.



A Predictability Algorithm for Distributed Discrete Event Systems 213

Algorithm 1. Predictability Algorithm for Distributed DES
1: INPUT: component models G1, ..., Gn in G; F in GF

2: Initializations: GS ← GF (current subsystem)
3: PVF ← ConstructPVF (GF )
4: PVF ← Reduce(PVF )
5: while PVF �= ∅ and ConnectComp(GS , G) �= ∅ do
6: Gi ← Select(ConnectComp(GS , G))
7: NVi ← ConstructNVi(Gi)
8: PVF ← CheckExtendibility(PVF , NVi)
9: PVF ← Reduce(PVF )

10: GS ← ADD(GS , Gi)
11: if ∃ρ(ρ ∈ PVF ∧ GlobExtV iolating(ρ)) then
12: return PVF

13: else
14: return ”the fault is predictable in G”

Table 1. Experimental comparison results for centralized and distributed algorithms

Centralized Distributed
S/T (TP)
vs. S/T(PV)

T (ms)
T(LPV)
[21] vs. O

T(NV)
[21] vs. O

T(FP)
[21] vs. O

T(ms)

Ex G 36/62 vs. 16/21 26 vs. 21 —
G1[6] 9/10 vs. 4/3 16 vs. 9 —
G2[6] 10/12 vs. 3/4 17 vs. 10 —

Ex1 [21] 23/27 vs. 7/7 15 vs. 12 —
h-c c1 300/566 vs. 21/16 51 vs. 23 —

Ex G′ — 69 vs. 21 43 vs. 25 86 vs. 28 186 vs. 43
Ex2 [21] — 68 vs. 21 29 vs. 16 106 vs. 33 81 vs. 33
h-c d1 — 51 vs. 22 204 vs. 20 836 vs. 51 8s vs. 30
h-c d2 — 226 vs. 16 204 vs. 20 536 vs. 15 6mn vs. 33
h-c d3 — 116 vs. 21 254 vs. 24 1344 vs. 42 1mn vs. 36

Table 1 shows part of our experimental results, where final verdict results,
i.e., whether the system is predictable or not, of all examples are omitted, which
are exactly the same for all algorithms. For centralized comparison, we give the
number of states/transitions of twin plant (S/T(TP)) for algorithm in [6] and
that of our pre-verifier (S/T(PV)), for the examples G in this paper, G1, G2

in [6], Ex1 in [21] and one hand-craft (h-c c1) example. And for distributed
comparison, we have the number of transitions in local pre-verifier(T(LPV)),
normal verifier (T(NV)) as well as in the final synchronized product (T(FP)),
both for algorithm proposed in [21] and our distributed one (O). The examples
that we chose to show here include G′ in this paper and the distributed one Ex2
in [21] with some h-c examples to show the scalability. For the sake of simplicity,
we use the name of structures defined in this paper to compare the different local
structures with the same goal in both algorithms to show the state space that can
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be saved by our algorithm. To compare running time for all these algorithms, we
use millisecond (ms) as time unit by default and s for second and mn for minute.

Our experimental results show that our algorithms can save at least 50 %
space for most of our examples. Note that in this figure, we only give the results
for systems with two components due to space limit. Actually our experimental
results with more components show that more components we have, more space
can be saved by our algorithm. Another important observation is that the state
space saved by our algorithm also depends on two other factors. One is the
percentage of observable events, less this percentage is, more space is saved. For
example, h-c c1 has the same structure in terms of observable events as Ex G
in this paper but with more unobservable events. We can save state space much
more for h-c c1 compared to Ex G. Another one is the position of the fault,
earlier the fault occurs, more space is saved. For example, in h-c d1, the fault
occurs almost at the latest step while in h-c d2, the fault occurs at the very
beginning. The faulty components have the same structure. The results show
that our algorithm can save more space in the case of early occurrence of the
fault, which is reasonable considering that we introduce absorbing states to not
only guarantee the same observations before the fault but also avoid keeping
all the events after the fault. The time saved is even more dramatical in the
extreme case h-c d2 in terms of the fault position, 6 min vs. 33 ms. Note that the
state space saved for big examples (e.g., hand-craft ones) is more clear than for
smaller ones (e.g., ones found in the literature).

6 Discussion

In [6], the authors analyzed predictability directly on a global twin plant. They
captured the ambiguous behaviors violating predictability in different paths of
the twin plant, which is not suitable for a distributed framework. While we pro-
pose a different structure where a PVP violating predictability is caught by only
one path, which facilitates the distributed extension by enabling the extensibility
checking of local violating paths. To verify diagnosability in a distributed way, it
is sufficient to construct a local twin plant for each component and then synchro-
nize them to make sure that the two corresponding trajectories of each path in
the final product have the same global occurrence of the observations; this is the
distributed algorithm proposed in [13]. While to verify predictability, we have
to construct a structure where each path captures a pair of trajectories with
the same observations only before the fault but where the normal trajectory
cannot be blocked after the fault, which is quite different from diagnosability
and much more difficult, especially in the distributed case. Another close work
is the distributed algorithm in [21], where the condition violating predictability
is not formally proved. Moreover, the authors chose to exploit all states after
the fault, which is not necessary since predictability concerns the same obser-
vations only before the fault. It follows that, in the worst case, the state space
could be the same as the centralized approach. While we construct two different
diagnosers with absorbing states, which greatly reduce the search space even in
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the worst case but always with the correct result. As in the previous approaches
proposed in the above papers, our predictability checking is also polynomial in
the number of system states. But it can practically be much more applicable for
large complex systems considering the reduced space. This is confirmed by our
experimental results shown in the previous section.

7 Conclusion

In this paper, we propose a new approach for predictability analysis both in a
centralized and a distributed framework. First, we formally characterize pairs of
trajectories violating predictability. Then, we show how to check the existence
of such pairs in a centralized way before adapting it for a distributed frame-
work. Finally, we provide some experimental results to support the efficiency of
our algorithms. One perspective of this work is to adapt our approach to deal
with fault patterns [11], which is more general in the diagnosis domain. In the
literature, only a centralized framework is proposed in [10], which is not extend-
able to a distributed one since predictability violation is also checked directly on
twin plant. Another one is to extend our approach to distributed systems with
asynchronous communication events, which is not yet handled in the literature.
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11. Jéron, T., Marchand, H., Pinchinat, S., Cordier, M.O.: Supervision patterns in
discrete event systems diagnosis. In: Proceedings of the 8th International Workshop
on Discrete Event Systems, pp. 262–268 (2006)

12. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial time algorithm for
testing diagnosability of discrete event systems. Trans. Autom. Control 46(8),
1318–1321 (2001)
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Abstract. The ABS modelling language targets concurrent and dis-
tributed object-oriented systems. The language has been designed to
enable scalable formal verification of detailed executable models. This
paper provides evidence for that claim: it gives formal specifications of
safety properties in terms of histories of observable communication for
ABS models as well as formal proofs of those properties. We illustrate
our approach with a case study of a Network-on-Chip packet switching
platform. We provide an executable formal model in ABS of a generic
m × n mesh chip with an unbounded number of packets and verify sev-
eral crucial properties. Our concern is formal verification of unbounded
concurrent systems. In this paper we show how scalable verification can
be achieved by compositional and local reasoning about history-based
specifications of observable behavior.

1 Introduction

In this paper we address the formal verification of unbounded concurrent sys-
tems and show how scalable verification of functional behavior can be achieved
by means of compositional and local reasoning about history-based specifica-
tions of observable behavior. To focus on high-level design, we consider models
of the targeted systems. These models should be sufficiently abstract to facili-
tate reasoning, yet sufficiently concrete to faithfully reflect the data and control
flow of the targeted system. ABS is a formal, executable modeling language
for concurrent and distributed systems [26], specifically targeting this level of
abstraction: (i) it combines functional, imperative, and object-oriented program-
ming styles, allowing intuitive, modular, high-level modeling of concepts, domain
and data; (ii) ABS models are fully executable and model system behavior
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precisely [3]; (iii) ABS can model synchronous as well as asynchronous commu-
nication; (iv) ABS has been developed to provide the foundations for scalable
formal verification: there is a program logic as well as a compositional proof
system [17] that makes possible to prove global system properties by reasoning
about object-local invariants; (v) ABS comes with an IDE and a range of analy-
sis as well as productivity tools [41], specifically, there is a formal verification
tool called KeY-ABS [18].

For scalable verification, we focus on behavioral properties specified in terms
of communication histories. Communication histories have been used to give fully
abstract semantics to concurrent object-oriented systems (e.g., [25]), describ-
ing observable behavior while abstracting from implementation detail. A fully
abstract semantics captures the minimal information needed to characterize
equivalence in all program contexts [32]. Hence, communication histories are
the natural choice of specification formalism for compositional verification. We
specify monitor-like invariants relating local states to local observable behavior,
and compose specifications purely in terms of communication histories.

We provide empirical evidence of our scalability claim by way of a case
study on a Network-on-Chip (NoC) [30] packet switching platform called ASPIN
(Asynchronous Scalable Packet Switching Integrated Network) [37]. Our goal
is to prove the correctness of an ABS model of an ASPIN NoC of arbitrary,
unbounded size with respect to safety properties expressed in terms of commu-
nication histories. Concretely, we prove that “no packets are lost” and that “a
packet is never sent in a circle”. The main contributions of this paper are (i) a
formal model of a generic m × n mesh ASPIN chip in ABS with unbounded
number of packets, as well as a packet routing algorithm; (ii) the formal specifi-
cation using communication histories of safety properties which together ensure
that no packets are lost; and (iii) compositional and highly automated formal
proofs, done with KeY-ABS, that the ABS model of ASPIN fulfills these safety
properties.1

ABS was developed with the explicit aim to enable scalable verification of
detailed, precisely modeled, executable, concurrent systems. Our paper shows
that this claim is justified. Our work is the first compositional verification (in the
sense made precise in Sect. 6) of a generic NoC model unbounded in the number
of nodes and packets. It has been achieved with manageable effort and thus
shows that our approach based on deductive verification is a viable alternative
for the verification of concurrent systems.

Paper overview: Sect. 2 briefly introduces the modeling language ABS and
Sect. 3 details formal specification based on communication histories, Sect. 4 pro-
vides background on deductive verification with expressive program logics, and
Sect. 5 presents the ASPIN NoC case study. Section 6 explains how we achieved
the formal specification and verification of the case study and gives details about
the exact properties proved as well as the necessary effort. Section 7 sketches some
directions for future work, Sect. 8 discusses related work and Sect. 9 concludes.

1 The complete model with all formal specifications and proofs is available at https://
www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/noc.
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2 The ABS Modeling Language

ABS [26] is a behavioral specification language for developing abstract executable
models of concurrent, distributed, and object-oriented systems. ABS offers a
clean integration of concurrency and object orientation based on concurrent
object groups (COGs). ABS permits synchronous as well as asynchronous com-
munication [27], akin to Actors [1] and Erlang processes [7]. ABS offers a range
of complementary modeling alternatives in a concurrent and object-oriented
framework that integrates algebraic datatypes and functional and imperative
programming styles with a Java-like syntax and a formal semantics [26]. Com-
pared to object-oriented programming languages, ABS abstracts from low-level
implementation choices such as imperative data structures. Compared to design-
oriented languages like UML diagrams, it models data-sensitive control flow and
it is executable. We now briefly introduce the functional and imperative layers
of ABS.

The functional layer of ABS is used to model computations on the internal
data of concurrent objects. It allows modelers to abstract from implementation
details of imperative data structures at an early stage in the software design
and thus allows data manipulation without committing to a particular low-level
implementation choice. This layer combines a simple language for parametric
algebraic data types (ADTs) and a pure first-order functional language which
includes expressions such as variables, values, constructors, functions, and case
expressions. ABS has a library with four predefined basic types (Bool, Int, String
and Unit), and parametric datatypes (e.g., lists, sets, and maps). The predefined
datatypes come with arithmetic and comparison operators, and the parametric
datatypes have built-in standard functions. The type Unit is used as a return
type for methods without explicit return value. All other types and functions
are user-defined.

The imperative layer of ABS addresses concurrency, communication, and
synchronization in the system design, and defines interfaces, classes, and meth-
ods in an object-oriented style. In ABS, each concurrent object group (COG)
has its own thread of execution where one process is active and the others are
suspended on a process queue. Classes can be active in the sense that their run
method, if defined, automatically triggers a process upon creation. Statements
are standard for sequential composition s1; s2, and for skip, if, while, and return
constructs. In addition, ABS includes statements await and suspend for the
explicit suspension of active processes, so scheduling in ABS is cooperative. The
statement suspend unconditionally suspends the execution of the active process
and moves this process to the queue. The statement await g conditionally sus-
pends execution: the guard g controls thread release and consists of Boolean
conditions and return tests (explained in the next paragraph). Just like expres-
sions, the evaluation of guards is side-effect free. However, if g evaluates to false,
the process is suspended and the execution thread becomes idle. When the exe-
cution thread is idle, an enabled task may be selected from the process queue by
means of a default scheduling policy. The language also includes COG creation
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new C(e), method calls o!m(e), and future dereferencing fr.get (here e denotes
a lists of expressions).

Communication and synchronization are decoupled in ABS. Communica-
tion is based on asynchronous method calls, denoted by assignments of the
form fr=o!m(e) to future variables fr. Here, o is an object expression, m a
method name, and e are expressions providing actual parameter values for the
method invocation. (Local calls are written this!m(e).) A future denotes a “mail-
box” where the return value to the method call can be retrieved. After calling
fr=o!m(e), the variable fr refers to the corresponding future and the caller may
proceed without blocking. Two operations on future variables control synchro-
nization in ABS [13]. First, the guard await fr? suspends the active process unless
a return to the call associated with fr has arrived, allowing other processes in
the COG to execute. Second, the return value is retrieved by the expression
fr.get, which blocks all execution in the COG until the return value is available.
For example, the statement sequence fr=o!m(e);x=fr.get contains no suspen-
sion statement and, therefore, encodes commonly used blocking calls, abbrevi-
ated x=o.m(e) (often referred to as synchronous calls). Futures are first-class
citizens of ABS and can be passed around as method parameters. If the return
value of a call is of no interest, the call may occur directly as a statement o!m(e)
with no associated future variable. This corresponds to asynchronous message
passing. The details of the sequential execution of several threads inside a COG
are not used in the verification techniques showcased in this paper and therefore
we focus on single-object COGs (i.e., concurrent objects) in the sequel.

3 Observable Behavior

A distributed system can be specified by the externally observable behavior of
its constituents. The behavior of each component is reflected in the possible
communication histories over observable events [22]. Theoretically this is justi-
fied, because communication histories can be used for fully abstract semantics of
object-oriented languages [25]. Here, we strive for compositional communication
histories of asynchronously communicating systems. Therefore, it is appropriate
to record separate events for object creation, method invocation, reaction upon
a method call, resolving a future, and for fetching the value of a future. Each of
these events is witnessed by merely one object, namely the generating object.

Figure 1 illustrates the relation among the observable events associated with
an asynchronous method call. Assume that an object o calls a method m on
an object o′ with parameter values e, and assume that u denotes the identity
of the associated future. An invocation message is sent from o to o′ when the
method is invoked. This is reflected by the invocation event invEv(o, o′, u,m, e),
generated by o. An invocation reaction event invREv(o, o′, u,m, e) is generated
by o′ once m starts to execute. When m has terminated, object o′ generates the
future event futEv(o′, u,m, e), reflecting that u receives the return value e. The
fetching event fetREv(o, u, e) is generated by o once the value of the resolved
future is accessed. References u to futures bind all four event types together
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and allow to filter out those events from an event history that relate to the
same method invocation. Since future identities may be passed to other objects
o′′, these objects may also fetch the future value; this is reflected by the event
fetREv(o′′, u, e), generated by o′′ in Fig. 1. Based on these events, we formalize
the notion of a communication history.

o o′

invEv(o, o′, u,m, e)

invREv(o, o′, u,m,e)

futEv(o′, u,m, e)

fetREv(o, u, e)

o′′

fetREv(o′′, u, e)

Fig. 1. Communication events and when they occur in the history

Definition 1 (Communication History). The communication history H of
a system of objects O is a sequence of events, as defined above, such that each
event in H is generated by an object in O.

For a history H, we let H/o abbreviate the projection of H to the events
generated by o. Since each event is generated by a single object, it follows that
the projections of a history to two different objects are disjoint.

Definition 2 (Local History). For a (global) history H and an object o, the
projection H/o is the local history of o.

For a method call with future u, the possible ordering of the associated events
is described by the regular expression

invEv(o, o′, u,m, e) · invREv(o, o′, u,m, e) · futEv(o′, u,m, e)[·fetREv( , u, e)]∗

for some fixed o, o′, m, e, e, and where “·” denotes concatenation of events, “ ”
denotes arbitrary values. Thus, the return value from a method call may be read
several times (or not at all), each time with the same value, namely the value
given in the preceding future event.
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A communication history H is wellformed if the order of communication
events follows the pattern defined above, the identities of generated futures are
fresh, and the communicating objects are non-null.

Lemma 1. The global history H of a system modeled with ABS and derived
from its operational semantics, is wellformed.

The formal definition of wellformedness and a proof of Lemma1 are given in
[16].

Invariants. Safety properties [4] take the form of history invariants, which are
predicates over all finite sequences in the (prefix-closed) set of possible histories.

The class invariant serves as a contract for a class in ABS: Class invariants
express a relation between the internal state of class instances and their observ-
able communication. Class invariants are specified by a predicate over the class
attributes and the local history. A class invariant must hold after the initializa-
tion of an object, it must be maintained by all methods, and it must hold at all
processor release points (i.e., await, suspend) [15].

A global history invariant can be obtained from the class invariants associated
with all objects in the system, adding wellformedness of the global history. This
is made more precise in Sect. 6.2.

4 Deductive Verification

KeY-ABS [18] is a deductive verification system for constructing formal proofs
about ABS programs, based on the KeY theorem prover [8]. A formal proof is
a sequence of reasoning steps to show the truth of a formula (a theorem). The
formal proof must lead without gaps from axioms to the theorem by applying
proof rules.

The program logic of KeY-ABS is first-order dynamic logic for ABS (ABSDL)
[17,18]. For a sequence of executable ABS statements S and ABSDL formulae
P and Q, the formula P → [S]Q expresses: If the execution of S starts in a
state where the assertion P holds and the program terminates normally, then
the assertion Q holds in the final state. Thus, given an ABS method m with body
mb and a class invariant I , the ABSDL formula I → [mb]I expresses that the
method m preserves the class invariant. KeY-ABS uses a Gentzen-style sequent
calculus to prove ABSDL formulae. In sequent notation P → [S]Q is written

Γ, P � [S]Q,Δ

where Γ and Δ stand for (possibly empty) sets of side formulae. A sequent
calculus as realized in ABSDL essentially constitutes a symbolic interpreter for
ABS. For example, the assignment rule for local program variables is

Γ � {v := e}[rest]φ,Δ

Γ � [v = e; rest]φ,Δ
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where v is a local program variable and e is a pure (side effect-free) expression.
This rule rewrites the formula by moving the assignment from the program into
a so-called update [8], as {v := e} shown above, which captures state changes.
The symbolic execution continues with the remaining program rest. Updates
can be viewed as explicit substitutions that accumulate in front of the modality
during symbolic program execution. Updates can only be applied to formulae or
terms. Once the program to be verified has been completely executed and the
modality is empty, the accumulated updates are applied to the formula after the
modality, resulting in a pure first-order formula. Below we show a more complex
proof rule, which captures asynchronous method invocation:

asyncCall

Γ � (o � .= null ∧ wf(h)),Δ
Γ � (futureIsFresh(u, h) →

{fr := u || h := h · invEv(this, o, u,m, e)}[rest]φ),Δ
Γ � [fr = o!m(e); rest]φ,Δ

The rule has two premisses and splits the proof in two cases. The first premiss (on
top) ensures that the callee is non-null and the current history h is wellformed.
The second case introduces a constant u which represents the future generated
for the result of this method invocation. The left side of the implication ensures
that u is fresh in h and the right side updates the history by appending the
invocation event generated by this call. We refer to [17] for the other ABSDL
rules as well as soundness and completeness proofs of the ABSDL calculus.

type Pos = Pair<Int, Int>; // (x,y) coordinates
type Packet = Pair<Int, Pos>; // (id, destination)
type Buffer = Int;
data Direction = N | W | S | E | NONE;

// north, west, south, east, the direction for not moving
data Port = P(Bool inState , Bool outState, Router rId, Buffer buff);

// (input port state, output port state, neighbor router id, buffer size)
type Ports = Map<Direction, Port>;

Fig. 2. ADTs for the ASPIN model in ABS

5 The Network-on-Chip Case Study

Network-on-Chip (NoC) [30] is a packet switching platform for single chip sys-
tems which scales well to an arbitrary number of resources (e.g., CPU, memory).
The NoC architecture is an m × n mesh of switches and resources which are
placed on the slots formed by the switches. The NoC architecture is essentially
the on-chip communication infrastructure.

Asynchronous Scalable Packet Switching Integrated Network (ASPIN) [37] is
an example of a NoC with routers and processors. ASPIN has physically distrib-
uted routers in each core. Each router is connected to four neighboring routers
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interface Router{
Unit setPorts(Router e, Router w, Router n, Router s);
Unit getPk(Packet pk, Direction srcPort);}

class RouterImp(Pos address, Int buffSize) implements Router {
Ports ports = EmptyMap;
Set<Packet> receivedPks = EmptySet; // received packages

Unit setPorts(Router e, Router w, Router n, Router s){
ports = map[Pair(N, P(True, True, n, 0)), Pair(S, P(True, True, s, 0)),

Pair(E, P(True, True, e, 0)), Pair(W, P(True, True, w, 0))];}
Unit getPk(Packet pk, Direction srcPort){
if (addressPk(pk) != address) {
await buff(lookup(ports,srcPort)) < buffSize;
ports = put(ports,srcPort,increaseBuff(lookup(ports,srcPort)));
this!redirectPk(pk,srcPort);}

else { // record that packet was successfully received
receivedPks = insertElement(receivedPks, pk); } }

Unit redirectPk(Packet pk, Direction srcPort){
Direction direc = xFirstRouting(addressPk(pk), address);
await (inState(lookup(ports,srcPort)) == True)

&& (outState(lookup(ports,direc)) == True);
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), False));
ports = put(ports, direc, outSet(lookup(ports, direc), False));
Router r = rId(lookup(ports, direc));
Fut<Unit> f = r!getPk(pk, opposite(direc)); await f?;
ports = put(ports, srcPort, decreaseBuff(lookup(ports, srcPort)));
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), True));
ports = put(ports, direc, outSet(lookup(ports, direc), True)); } }

Fig. 3. A model of an ASPIN router using ABS

and each core is locally connected to one router. ASPIN routers are split into
five separate modules (north, south, east, west, and local) with ports that have
input and output channels and buffers. ASPIN uses input buffering for storage:
each input channel has an independent FIFO buffer. Packets arriving from dif-
ferent neighboring routers (and from the local core) are stored in the respective
FIFO buffer. Communication between routers uses a four-phase handshake pro-
tocol with request and acknowledgment messages between neighboring routers
to transfer a packet. In ASPIN, the distributed X-first algorithm routes packets
from input channels to output channels: packets first move along the X (hori-
zontal) axis of the grid, and afterwards along the Y (vertical) axis to reach their
destination. We model the functionality and routing algorithm of ASPIN in ABS
starting from a model by Sharifi et al. [35,36], written in Rebeca [38]. In Sect. 6
we will formally verify our model using ABSDL.

We model each router as a concurrent object that communicates with other
routers through asynchronous method calls. The algebraic data types used in our
model are given in Fig. 2. We abstract from the local communication to cores, so
each router has four ports and each port has an input and output channel, the
identifier rId of the neighbor router, and a buffer. Packets are modeled as pairs
that contain the packet identifier and the final destination coordinate.
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def Direction xFirstRouting(Pos destination, Pos current) =
case x(current) < x(destination) {

True => E;
False => case x(current) > x(destination) {

True => W;
False => case y(current) < y(destination) {

True => S;
False => case y(current) > y(destination) {

True => N;
False => NONE; }; }; }; };

Fig. 4. X-first routing algorithm in ABS

The ABS model of a router is shown in Fig. 3. Method setPorts initializes the
ports in a router and connects it to the neighbor routers. Packets are transferred
using a protocol expressed by two methods redirectPk and getPk. The internal
method redirectPk is called by the router to redirect a packet to a neighbor router.
The X-first routing algorithm in Fig. 4 selects the port direc (and consequently
the neighbor router). The parameter srcPort determines the local input buffer in
which the packet is temporarily stored. As part of the communication protocol,
the input channel of srcPort and the output channel of direc are blocked until the
neighbor router confirms receipt of the packet, using f = r!getPk(...); await f?
statements to simulate request and acknowledgment messages (here r is the Id
of the neighbor router). The method getPk checks if the final destination of the
packet is the current router, if so, it stores the packet, otherwise it temporarily
stores the packet in the srcPort buffer and redirects it. The model uses standard
library functions for maps and sets (e.g., put and lookup) and observers as well
as other functions over the ADTs (e.g., addressPk, inState, decreaseBuff).

6 Formal Specification and Verification of the Case Study

We now formalize and verify safety properties for the ABS NoC model in ABSDL
using the KeY-ABS verification tool. The application is based on the theory
presented in Sects. 3 and 4, ensuring the correctness of the results. Our approach
uses local reasoning about RouterImp objects and establishes a system invariant
over the global history from invariants over the local histories of each object.

6.1 Local Reasoning

Observe that the four-event semantics for asynchronous communication outlined
in Sect. 3 keeps the local histories of different objects disjoint. This makes it pos-
sible to reason locally about each object in terms of the local histories. Lemmas 2
and 3 present the history-based class invariants for RouterImp. We then discuss
the proof obligations verified by KeY-ABS that stem from reasoning about our
model in terms of these class invariants. Figure 5 illustrates the explanations.
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this next

this!redirectPk(pk,s)

next!getPk(pk,d)

await f? == True

invEv(this,this,u1,redirectPk,(pk,s))
invREv(this,this,u1,redirectPk,(pk,s))

invEv(this,next,u2,getPk,(pk,d)) invREv(this,next,u2,getPk,(pk,d))

futEv(next,u2,getPk, )

futEv(this,u1,redirectPk, )

Fig. 5. Communication history between a router and its neighboring router next, to
which the package is sent

Lemma 2. Every time a router R terminates an execution of the getPk method,
R must either have sent an internal invocation to redirect the packet or have
stored the packet in its receivedPks set.

We formalize this lemma as an ABSDL formula (slightly beautified):

∀i1, u . 0 ≤ i1 < len(h) ∧ futEv(this, u, getPk, ) = at(h, i1)
⇒

∃i2, pk . 0 ≤ i2 < i1 ∧ invREv( , this, u, getPk, (pk, )) = at(h, i2) ∧
((dest(pk) �= address(this) ⇒

∃i3 . i2 < i3 < i1 ∧ invEv(this, this, , redirectPk, (pk, )) = at(h, i3)) ∨
(dest(pk) = address(this) ⇒ pk ∈ receivedPks))

Here, “ ” denotes a value without interest. The function len(s) returns the length
of sequence s, at(s, i) the element located at index i of sequence s, dest(pk) the
destination address of packet pk, and address(r) the address of router r.

This formula expresses that for every future event ev1 of getPk with future
identifier u in history h (capturing a termination of getPk), there is a corre-
sponding invocation reaction event ev2 that contains the sent packet pk. This is
achieved by pattern matching with u in the preceding history. If this router is the
destination of pk, then pk must be in its receivedPks set, otherwise an invocation
event of redirectPk containing pk must occur in the history between ev1 and ev2.
This invariant captures the properties of the state and is prefix-closed.2

2 In the heap model of KeY-ABS, a heap value can potentially be modified when a
process is released. Therefore, to prove the above property we need a slightly stronger
invariant expressing that the address of a router in the heap is rigid (cannot be
modified by any other process). Due to a current technical limitation of the tool,
we proved the invariant for a slightly simplified model where the router address is
a parameter of getPk. This modification does not affect the overall behavior of the
model and will be lifted in future work.
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Lemma 3. Every time a router R terminates an execution of the redirectPk
method, the input and output channels used to redirect the fetched packet are
released, and the packet has been redirected to a neighbor router through an invo-
cation of the getPk method.

Again, we formalize this lemma as an ABSDL formula:

∀u . futEv(this, u, redirectPk, ) = at(h, len(h) − 1)
⇒
∃i1, i2, pk, srcP, dirP . 0 < i1 < i2 < len(h) − 1 ∧

(invREv(this, this, u, redirectPk, (pk, srcP)) = at(h, i1) ∧
invEv(this, , , getPk, (pk, opposite(dirP))) = at(h, i2)) ∧

(inState(lookup(ports, srcP)) ∧ outState(lookup(ports, dirP)))

This formula expresses that whenever the last event in the history h is a future
event of redirectPk method (capturing termination of redirectPk), there are cor-
responding invocation reaction and invocation events which we find by pattern
matching with the same future and packet in the previous history. The source
port srcP and the direction port dirP used in the latest execution of redirectPk
can be found in these two events. The input channel of srcP and the output
channel of dirP must be released in the current state. This invariant captures
the properties of the current state and is prefix-closed.

All three methods of RouterImp satisfy both invariants. The statistics for
verifying the lemmas by KeY-ABS is given below (in terms of the proof size):

setPorts getPk redirectPk

nodes branches nodes branches nodes branches

Lemma 2 1638 12 11540 108 27077 200

Lemma 3 214 1 1845 11 4634 34

KeY-ABS provides heuristics and proof strategies that automate large parts of
the proof construction. The remaining user input typically consists of universal
and existential quantifier instantiations.

6.2 System Specification

A system property of an ABS program can be formulated as a global history
invariant, which holds for all finite sequences in the prefix-closed set of possible
global histories. The global history of an ABS program consists of the local
histories of each object in the system, and is wellformed according to Lemma 1.
We now want to derive a global system specification from the history-based class
invariants of the system’s objects.

The basis for local reasoning in the proof system for ABS is that class invari-
ants must be satisfied at process release points and after method termination
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(see Sect. 3), but class invariants need not be prefix-closed. Consequently, a local
history invariant is in general weaker than the class invariant. For compositional
reasoning, we may therefore need to weaken the class invariants in order to trans-
form class invariants into prefix-closed history invariants. The system invariant
can then be obtained directly from the history invariants of the composed objects
since the local histories are disjoint. The proof rule for compositional reasoning
about ABS programs is given and proved sound in [17], by which we obtain a
system invariant below for the NoC model.

Let Ithis(h) denote the conjunction of the class invariants IgetPk(this, h) and
IredirectPk(this, h), defined in Lemmas 2 and 3, where h is the local history of
this object. The class invariants are already prefix-closed and need not be weak-
ened. Define a system invariant I(H) as the conjunction of the instantiated class
invariants of all RouterImp objects r in the system:

I(H) � wf(H) ∧
∧

(r:RouterImp)∈newob(H)

Ir(H/r)

Here, H denotes the global history of the system and Ir(H/r) denotes the his-
tory invariant of r applied to the local history H/r of a router r as obtained
by projection from H (Definition 2). The function newob(H) returns the set of
RouterImp objects generated within the system execution, as captured by H.
History wellformedness, denoted wf(H), ensures a proper ordering of the events
that belong to the same method invocation. Each wellformed interleaving of the
local histories represents a possible global history. As a consequence, we obtain:

Theorem 1. Every time a router R terminates an execution of the redirectPk
method, the pair of input and output channels used to redirect the fetched packet
are released, and a neighbor router of R must either have sent an internal invo-
cation to redirect the packet further or have stored the packet in its receivedPks
set. Hence, the network does not drop any packets.

More Properties. Besides Theorem 1 we proved in a similar fashion that a packet
always moves towards its destination. This follows from two lemmas that hold
locally and are proven with KeY-ABS: (i) whenever a router redirects a packet
then it moves one step closer to its destination, and (ii) when a packet arrives at
its destination then its distance to it becomes zero. The proof of (i) for redirectPk
has 5178 nodes and 80 branches, the one of (ii) for getPk has 13401 nodes and
110 branches. As corollary we obtain that a packet is never sent in a circle.

Effort. The modeling of the NoC case study in ABS took ca. two person weeks.
Formal specification and verification was mainly done by the first author of
this paper who at the time was not experienced with the verification tool KeY-
ABS. The effort for formal specification was ca. two person weeks and for formal
verification of Lemmas 2, 3 ca. one person month, but this included training to
use the tool effectively. Subsequent specification and verification of the property
that a packet always moves towards its destination merely took one working day.
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7 Future Work

Deadlock Analysis. In addition to history-based invariants, it is conceivable to
prove other properties, such as deadlock-freedom. Deadlocks may occur in a sys-
tem, for example, when a shared buffer between processes is full and one process
can decrease the buffer size only if the other process increases the buffer size. This
situation is prevented in the ABS model by disallowing self-calls before decreas-
ing the size of the buffer (the method invocation of getPk within redirectPk
in our model is an external call). It is possible to argue informally that our
ABS model of NoC is indeed deadlock-free, but a formal proof with KeY-ABS is
future work. The main obstacle is that deadlocks are a global property and one
would need to find a way to encode sufficient conditions for deadlock-freedom
into the local histories. There are deadlock analyzers for ABS [20], but these,
like other approaches to deadlock analysis of concurrent systems, work only for
a fixed number of objects.

Extensions of the Model. The ASPIN chip model presented in this paper can be
extended with time (e.g., delays and deadline annotations) and scheduling (e.g.,
FIFO, EDF, user-defined, etc.) using Real-Time ABS [9]. A timed model would
allow to run simulations and obtain results about the performance of the model.
Adding scheduling to the model would make it possible to reason about the
ordering of sent packets (using FIFO scheduling) or to express priority of packets.
It is also possible to change the routing algorithm (Fig. 4) without the need to
alter the RouterImp class (Fig. 3). Then one may compare the performance of
different routing algorithms by means of simulations.

8 Related Work

Early work on verifying concurrent systems was non-compositional: interference
freedom tests were used for shared variable concurrency [34] and cooperation
tests for synchronous message passing [6]. Compositional approaches were intro-
duced for shared variables in the form of rely-guarantee [28] and for synchro-
nous message passing in the form of assumption-commitment [33]. Extending
these principles for compositional verification, object invariants can be used to
achieve modularity (e.g., [24]). Communication histories first appeared in the
object-oriented setting [12] and then for CSP [22]. Soundararajan developed an
axiomatic proof system for CSP using histories and projections [39], and Zwiers
developed the first sound and complete proof system using histories [43]. Rea-
soning about asynchronous method calls and cooperative scheduling using his-
tories was first done for Creol [19] and later adapted to Dynamic Logic [2]. Din
introduced a proof system based on four communication events, significantly
simplifying the proof rules [15] and extended the approach to futures [16,17].
This four-event proof system is the basis for KeY-ABS [18].

The pure history-based proof system of ABS requires strong hiding of local
state: the state of other objects can only be accessed through method calls, so
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shared state is internal and controlled by cooperative scheduling. Consequently,
specifications can be purely local. More expressive specifications require signifi-
cantly more complex proof systems; e.g., modifies-clauses in Boogie [24] or frac-
tional permissions [21] in Chalice [31]. To specify fully abstract interface behavior
these systems need to simulate histories in an ad hoc manner (e.g., [24, Fig. 1]).
A combination of permission-based separation logic [5] and histories has recently
been proposed for modular reasoning about multithread concurrency [42].

Formal analysis of NoC systems is usually done in specialized formalisms.
Notably, xMAS is a language with a small set of primitives for specifying abstract
microarchitectural models of communication fabrics [14]. It supports, for exam-
ple, deadlock detection [40], model checking in Verilog by inferring inductive
invariants for xMAS models [11], and compositional model-checking of bounded
latency properties [23]. Among the approaches based on general specification
formalisms, ACL2 has been used for non-compositional analysis of, e.g., mes-
sage loss and deadlock-free routing (e.g., [10]). Event-B has been used to model
and gradually refine 3D NoC systems in [29], and invariants for the models are
verified using the Rodin tool. Similar to our work their modeling approach does
not assume a specific number of routers. In contrast to our work their approach
is based on a global specification of behavior which includes the assumption that
a message can only be transferred a finite number of times before it reaches its
destination (technically, their switch event is “anticipated”).

Sharifi et al. [35,36] used the actor-based language Rebeca to study deadlock-
freedom and successful package sending for the ASPIN chip and the X-first
routing algorithm by means of non-compositional model-checking techniques.
They work with configurations of fixed size, which triggered our interest in the
verification of ASPIN models in a compositional and scalable manner. Compared
to the Rebeca model, the ASPIN model in ABS is decoupled from the routing
algorithm and uses object-oriented modeling concepts and high-level concurrency
control, which makes it more compact and easier to comprehend. In contrast to
most previous work, our approach works for an unbounded number of objects
and it is valid for generic NoC models for any m × n mesh in the ASPIN chip
as well as any number of sent packets.

9 Conclusion

We presented an approach to scalable verification of unbounded concurrent and
distributed systems which allows global safety properties to be established using
local verification rules and symbolic execution. The approach is realized in the
proof system KeY-ABS, developed for the ABS modeling language. We demon-
strated the viability of our verification approach by proving the correctness of
safety properties for an ABS model of an ASPIN NoC of arbitrary, unbounded
size. This is possible in our proof system, because each class invariant is indepen-
dent of its class instances and properties are specified in terms of local commu-
nication histories. The paper develops a formal model of the case study, explains
how local specifications are formalized using communication histories, and uses
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KeY-ABS to obtain formal proofs of global properties such as “no packets are
lost” and “a packet is never sent in a circle”. This is, to the best of our knowl-
edge, the first time that scalable, history-based reasoning techniques have been
applied to NoC systems. Our work also shows that a general purpose modeling
language and verification framework for concurrent and distributed systems is
adequate for NoC systems. After an initial modeling and training effort, system
properties can be specified and verified within hours or few days.

Acknowledgements. The authors gratefully acknowledge valuable discussions with
Richard Bubel.
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communication fabrics to enable verification. IEEE Des. Test Comput. 29(3), 80–
88 (2012)

15. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Logic Algebraic Program.
81(3), 227–256 (2012)



232 C.C. Din et al.

16. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Logical Algebraic Methods Program. 83(5–
6), 360–383 (2014)

17. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)
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Abstract. Automated production systems are usually driven by Pro-
grammable Logic Controllers (PLCs). These systems are long-living – yet
have to adapt to changing requirements over time. This paper presents a
novel method for regression verification of PLC code, which allows one to
prove that a new revision of the plant’s software does not break existing
intended behavior.

Our main contribution is the design, implementation, and evaluation
of a regression verification method for PLC code. We also clarify and
define the notion of program equivalence for reactive PLC code. Core
elements of our method are a translation of PLC code into the SMV
input language for model checkers, the adaptation of the coupling invari-
ants concept to reactive systems, and the implementation of a toolchain
using a model checker supporting invariant generation.

We have successfully evaluated our approach using the Pick-and-Place
Unit benchmark case study.

Keywords: Regression verification · Symbolic model checking ·
Automated production systems · Programmable logic controllers (PLC)

1 Introduction

Motivation and Topic. Automated production systems [34], such as industrial
plants and assembly lines, are usually driven by Programmable Logic Controllers
(PLCs). These computing devices are specially tailored to controlling automated
production systems in safety-critical realtime environments. A malfunction may
cause severe damage to the system itself or to the payload, or even harm persons
within the reach of the system.

The topic of this paper is how to formally verify correctness of the software
part of such systems, i.e., the PLC. To be precise, we focus on regression ver-
ification of PLC code – as opposed to proving that the PLC code satisfies a
functional specification or to proving that the whole production system works
correctly. That is, we verify that a version of PLC code after an evolution step
shows the same reactive input/output behavior as the old one – allowing only
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desired deviations that are formally specified. The aim of regression verifica-
tion is to formally prove that existing (good) behavior is retained during system
evolution. The old version serves as specification for the new one.

Our Approach and Contribution. This work contributes to the field of formal
PLC verification by defining a notion of reactive conditional and reactive rela-
tional equivalence together with a proof methodology, also in the presence of
environment models. Our main contribution is the design, implementation, and
evaluation of a regression verification method for PLC code.

A core element of our verification method is a translation of PLC code into
the SMV input language for model checkers. Using this translation on both the
old and the new software revision, we can construct a formula expressing that
intended behavior is retained. We target PLC code written in the two languages
Structured Text (ST) and Sequential Function Chart (SFC), which are part of
IEC 61131, the industry standard for PLC software [19]; an adaptation to other
languages is easily possible.

A further core element is the use of a model checker supporting invariant
generation. It is an important insight that this allows the automatic generation
of coupling invariants, which are a useful tool for efficient regression verification.
Accordingly, we have adapted the concept of coupling invariants to the world of
reactive systems. And we have implemented our approach in a toolchain using
the model checker nuXmv [9]. It supports techniques for predicate abstraction
and invariant generation by interpolant inspection [7,24].

As full equivalence of PLC code revisions is not the goal in many cases, we
have defined and implemented extensions where the behavior of the new code
revision may deviate under certain specified conditions and in specified ways.

We have successfully evaluated our approach using the Pick-and-Place Unit,
a benchmark case study for the evolution of automated production systems with
several evolution scenarios [35]. We were able to demonstrate our method’s feasi-
bility for practical evolution scenarios and its ability to uncover regression bugs.

PLCs execute their software in cycles with fixed cycle time. Consequently,
PLC code can only cause timing problems if its execution time exceeds the cycle
time. Otherwise, the code’s exact execution time is irrelevant. Thus, we assume
that the cycle time constraint is ensured by other techniques, and we do not
consider exact execution time in our method.

Advantages of Regression Verification for PLC Code. The main advantage of
regression verification is that no functional or behavioral specification is needed
(besides the old code version). In addition, regression verification is particularly
well suited for the application area of software in automated production systems
for the following reasons.

Automated production systems are designed for long deployment phases,
often spanning several decades. But the requirements on production systems
change over time. New types of products are to be manufactured. Systems are
upgraded to increase throughput or to keep up with technological development.
Moreover, flaws in the controlling software or the hardware design may have to be
fixed. Production systems therefore frequently evolve during their lifetime. Thus,
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methods and means to safely update their hardware and software – including
their PLCs – are of great importance. One has to ensure that a revision does
not break existing intended behavior.

As opposed to (regression) testing, regression verification provides an equiv-
alence proof for all possible inputs and not just for individual test cases. Also,
while regression testing of PLC software requires either a hardware testbed or
an executable hardware model, this is not needed for regression verification. It
suffices to provide a formal description of how the hardware has changed during
the evolution step (if the hardware has changed at all).

PLC systems can grow rather large, making a (non-regression) correctness
verification challenging for fully automatic verification and bisimulation checkers.
However, typical changes made during an evolution step are small in comparison
to overall system size, so that regression verification is a much easier task.

Structure of this Paper. In Sect. 2, we present a small scenario from our case
study as an introductory example. Then, in Sect. 3, we define the formal frame-
work and introduce notions of equivalence between versions of PLC code. In
Sect. 4, we discuss the use of environment models to avoid false alarms. The core
part of our method, i.e., the translation itself and the toolchain are described in
Sect. 5. In Sect. 6, we present the extensive case study that we used to evaluate
our approach. We discuss related work in Sect. 7 and draw conclusions in Sect. 8.
Some of the ideas presented in the following are adaptations of our regression
verification method for imperative programs [11] to the – rather different – world
of reactive automated production systems.

2 Introductory Example

As an introductory example, we present a considerably simplified version of a
scenario from the case study described in Sect. 6 (see also Fig. 4). A stationary
crane moves workpieces from a starting point (A) to one of two target points (B)
and (C). In the original version, the plant treats all workpieces in the same way
and transports them from the magazine (A) to the conveyor (B).

A new revision of the PLC software is introduced to differentiate the con-
troller’s behavior according to the type of workpiece. All metallic workpieces are
now first delivered to the stamp (C) where they are treated (signal stamped) and
are only afterwards delivered to (B). All non-metallic workpieces still go directly
to (B). An additional inductive sensor (signal M ) is installed at (A) to detect
whether a workpiece is metallic or not.

Figure 1 shows sequential function charts (SFCs) for the two versions of the
PLC program. The boxes (called steps) contain actions (blocks of code) and the
transitions between steps are annotated with guards. In each execution cycle,
one step is active and is executed. If at the end of the cycle one of the guards
at an outgoing transition is satisfied, the corresponding successor step is made
the active step. Otherwise the current step remains active and is repeated in the
next cycle. In the example, the actions assign values to output (Turn, Lift) and
internal variables (metallic, stamped). The guard conditions are Boolean input
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Turn := left

Pickup

Lift := TRUE
Turn := stop
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Turn := right
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Turn := stop
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Finish

Lift := FALSE
Turn := stop

� Pickup

A

¬metallic metallic
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� ToMagazine

stamped
TRUE

(a) (b)

Fig. 1. Sequential Function Charts for the example. (a) Original SFC, (b) SFC after
revision.

variables corresponding to sensor input (A,B,C represent input from sensors for
crane position) and Boolean internal variables (metallic). In the original SFC,
the steps correspond to the actions of moving the crane to the magazine, picking
up the workpiece, moving the crane to the conveyor, and putting down the
workpiece. In the revised SFC, there is a case distinction on metallic, and two
new steps have been added to move metallic pieces to the stamp and dropping
them there. After the workpiece has been stamped, the internal variable metallic
is set to FALSE and then the step Pickup becomes active, i.e., from there on
the SFC continues in the same way as if a non-metallic workpiece has just been
picked up at (A).

Note that this is a simple example. In general, actions and guards can be
considerably more complex and contain conditional statements and loops.

In case there are metallic workpieces, the behavior of the PLC is obviously
different. But in case that only non-metallic workpieces are ever detected by
sensor (M), the new software version should do the same as the old version. So
this is a scenario for using regression verification to prove conditional equivalence
for the unchanged case.

3 Formalizing Equivalence of PLC Programs

We define a formal framework for the behavior of reactive PLC software together
with adequate notions of equivalence between them.

There are various possibilities for defining system boundaries when model-
ing an automated production system. One can model the whole system or only
individual components. Even when focusing on the PLC, one could still include
models of peripheral hardware components like connecting data buses. However,
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our method concentrates on the software that runs on the controller and dis-
regards all effects outside the software for now. Section 4 discusses measures to
take the environment into consideration.

PLCs are reactive systems with a cyclic data processing behavior, repeating
the same control procedure indefinitely. A PLC cycle typically consists of the
following steps: (1) read input values, (2) execute task(s), (3) write output values,
(4) wait. As reactive systems, PLCs require a notion of equivalence that involves
traces, which means that if the old and the new revision are presented with the
same sequence of input sensor readings, they must produce the same sequence
of actuator output stimuli.

We call the piece of code that is executed cyclically on the controller a PLC
program. A PLC program P consists of the instructions Π to be executed and
a set of declarations Δ of input, output and state variables. In the introductory
example in Sect. 2, the declarations of the program contain the Boolean input
(sensor) variables A,B,C and M ; Lift and Turn are output (actuator) variables
(the declarations are not shown in Fig. 1).

The internal state of a PLC program consists of an assignment of values
to its state variables (in the example, the Boolean variable metallic). There is
always an implicit state variable active step storing which of the steps in the
SFC program is active. The declarations Δ induce an input value space I, an
output value space O, and state space S, each as the Cartesian product of
the value ranges of the corresponding program variables. In the example, I is
bool × bool × bool × bool. We assume the initial values of state variables to be
determined by their declarations (using default values in case no initial value is
given), i.e., the initial state s0 ∈ S is fixed by Δ.

Definition 1 (Semantics of PLC programs). The semantics ρ(P ) of a PLC
program P is a state transition function ρ(P ) : S × I → S × O.

The semantics ρ(P ) depends on the instructions in Π. These may read from the
state and the input variables (in S and I) and write to the state variables and
to the output variables (in S and O).

To be able to consider the effects of a PLC program over time, the above
definition needs to be extended to sequences of inputs and outputs. We denote
infinite sequences of elements in I (ω-words) with ī ∈ Iω; their components are
accessed using subscript indices, i.e., ī = 〈i1, i2, . . .〉. The PLC program as a
stateful system needs an initial state s0 from which it is launched. As mentioned
above, s0 is determined by the variable declarations Δ.

Definition 2 (Trace Semantics of PLC Programs). The behavior b(P ) of
a PLC program P with initial state s0 ∈ S is the function b(P ) : Iω → Oω

defined by b(P )(〈i1, i2, . . .〉) = 〈o1, o2, . . .〉 where (sn, on) = ρ(P )
(
(sn−1, in)

)
for

all n ∈ N≥1.

This definition says that starting from the initial state s0, the PLC program is
executed repeatedly, applying in each cycle ρ(P ) to its current state sn−1 and
the input tuple in ∈ I to produce the output tuple on ∈ O and the new state sn.
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Trace semantics use the internal state in the definition, but when taking an
outside look at the semantics, it defines input/output behavior and does not
make statements about the internal state space. This is relevant for our initial
definition of equivalence where programs are required to produce identical traces.

Definition 3 (Trace Equivalent PLC Programs). Two PLC programs P,Q
whose declarations ΔP ,ΔQ contain the same input/output variables are called
perfectly equivalent if they produce the same output sequence when presented
with the same input sequence, i.e., b(P )(̄i) = b(Q)(̄i) for all ī ∈ Iω.

They are called conditionally equivalent modulo the condition ϕ : Iω → bool
if they produce the same result for all input sequences that satisfy condition ϕ,
i.e., if ϕ(̄i) then b(P )(̄i) = b(Q)(̄i) for all ī ∈ Iω.

It is intuitively evident that replacing a PLC with a new revision whose pro-
gram is trace equivalent to the original program does not change the observable
behavior of the plant, provided everything else remains unchanged and timing
effects are left aside.

Conditional equivalence relaxes the strict notion of perfect equivalence by
requiring the same output sequence only if a condition ϕ holds. Intuitively this
means that replacing a PLC with a new revision whose program is conditionally
equivalent to the original program modulo ϕ does not change the plant’s behavior
at least for those traces where all sensor signal readings satisfy ϕ.

The example given in Sect. 2 is an example of conditional equivalence: The
modified controller software (Fig. 1) is conditionally equivalent to the original
version if every encountered workpiece is non-metallic. This condition can be
expressed in Linear Temporal Logic (LTL [26]) as )̄ = G¬M
recalling that M is the signal from the inductive metal detection sensor.

Perfect and conditional equivalence use equality to compare input and output
traces. There are many cases, however, where full equality is not required or not
appropriate. Equality of outputs may not be required for outputs relating to
non-critical components of the system. And equality may not be the appropriate
relation if the sensors and/or actuators of the plant have been modified, and thus
the input/output spaces of the program revisions are different. It is therefore
necessary to generalize the equivalence notion. To this end, we introduce binary
relations ∼in and ∼out.

Definition 4 (Relational Equivalence of Controllers). Two PLC pro-
grams P,Q with declarations ΔP resp. ΔQ are called relationally equivalent
modulo relations ∼in⊆ Iω

P × Iω
Q and ∼out: Oω

P × Oω
Q if they produce related out-

put sequences when presented with related input sequences, i.e.,

if ī ∼in ī′ then b(P )(̄i) ∼out b(Q)(̄i′) for all ī ∈ Iω
P , ī′ ∈ Iω

Q.

Note that conditional equivalence can be expressed as relational equivalence (if
IP = IQ and OP = OQ) by choosing (̄i = ī′) ∧ ϕ(̄i) for the input relation ∼in

and ō = ō′ for the output relation ∼out.
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Fig. 2. Finite automaton modeling crane position sensor readings.

If a revision adds or removes existing variables from the declarations, the
canonical relations to be considered are the conjoined equalities between all sig-
nals shared by both revisions (i.e., the variables in ΔP ∩ ΔQ). This is called
projected equivalence. The introductory example in Sect. 2 is a projected equiv-
alence if the metallic detector is assumed absent in the first version and only
introduced in the second. Another example of relational equivalence is shown in
the case study in Sect. 6.

4 Environment Models to Increase Precision

False alarms can occur if the two revisions of a PLC program behave differently
on input sequences that cannot actually occur in the application. For example,
the crane from Sect. 2 can never be in more than one of the positions A, B, C
at the same time. Assuming correctly working sensors, not more than one of the
Boolean input variables A,B,C can be true at the same time. Thus, it would be
irrelevant if the two program revisions were to react differently in case A and B
were signaled simultaneously but would still be equivalent for all realistic inputs.
It is therefore sensible to add such knowledge on the possible sensor inputs as
assumptions to the process and perform a conditional regression verification. In
the example, it is possible to encode the assumption in form of the LTL condition
G(¬(A ∧ B) ∧ ¬(B ∧ C) ∧ ¬(A ∧ C)).

But in more involved cases, it is difficult or error-prone to express properties
of the physical system correctly in form of temporal logic conditions on the
PLC inputs. Then it is more intuitive to use a model of the environment taking
the output of PLC program as input. This restricts the search space, increases
precision of regression verification and avoids false alarms. Figure 2 depicts a
model of the crane restricting the input space for the variables corresponding to
the crane’s position and direction. Besides the three states for positions A, B, C
in which the corresponding variable is true, there are three intermediate states
between the positions where none of variables is true. The crane behavior model
shows that when the crane turns to the right from position A to position B,
first variable A is true, then no variable is true, and then B is true. By making
environment models non-deterministic (like in the example), one can abstract
from details like concrete numbers of waiting cycles.
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Fig. 3. Overview over the regression verification method.

One evolution scenario of the case study in Sect. 6 describes a case where
the PLC program revisions are only equivalent if an environment model is used.

5 Regression Verification Method and Toolchain

This section reports on how we achieve regression verification for PLC software
by construction of a verification condition from two PLC program revisions, the
equivalence relations ∼in,∼out, the condition ϕ, and environment models.

The workflow of our method – shown in Fig. 3 – covers several transformation
steps. The resulting verification condition consisting of a transition system and a
property is presented to a model checker that can come back with three possible
results: First, it may report that the verification property holds for the transition
system in which case the two PLC programs are trace equivalent (modulo the
condition, relations, and environment models). Second, it may report a coun-
terexample with a concrete (finite) input trace that leads to the equivalence
violation. There are no “false positives”: Every reported violation uncovers a
case of unequal behavior. However, it may be that the environment is not mod-
eled precisely enough, and that the failure is a false alarm in the sense that it
cannot occur in practice with the real hardware. The variables range over finite
datatypes and the model checking problem is, in theory, decidable. Depending
on the size and complexity of the verification condition, it is still possible that
the model checker runs out of resources (time or memory) and does not come
back with an answer, which is the third possible result.
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5.1 From PLC Code to Model Checker Input

The IEC 61131-3 standard [19] defines two textual and three graphical PLC
programming languages. According to the ARC industry advisory group [1], the
use of PLC systems compliant with IEC 61131-3 currently is and will remain
the state of industrial practice for the next five to ten years. We consider input
PLC programs written in the textual language Structured Text (ST) or in the
graphical language Sequential Function Chart (SFC).

For a uniform treatment of programs regardless of the particular language,
we define an intermediate language ST0 into which all incoming programs are
translated. ST0 is a sublanguage of ST, and despite their notational differences,
programs in all 61131-3 programming languages can be represented in it (pro-
vided they do not have unbounded loops). PLC programs are time-critical and
are required to finish within their cycle time. It is hence reasonable to assume
programs do not contain loops with an unbounded number of iterations.

The language ST0 is essentially the loop- and call-free fragment of ST reduced
to fewer, more basic datatypes. The only types of statements in ST0 are assign-
ments and if-then-else conditionals. During normalization to ST0, loops are fully
unwound and function block invocation are inlined. To make loop unwinding pos-
sible, a bound for the number of iterations must be statically computable for all
loops in the code. Inlining is also feasible since recursion is not featured in the
IEC 61131-3 framework.

To demonstrate our method, we implemented such translations to ST0 for
ST and SFC. The translation from SFC to ST0 is problematic since the standard
leaves many semantical issues unanswered. We resolved this issue by following
the formal semantics for SFCs given in [4] when translating SFC to ST0.

The normalized code in ST0 is symbolically executed to derive a state tran-
sition system as model checker input. Näıve implementations of symbolic exe-
cution (or weakest precondition calculi) may produce program representations
whose size is exponential in that of the original program. This is due to an
explicit enumeration of all possible paths through the program. Since ST0 pro-
grams resulting from translating SFC code involve many consecutive and nested
if-statements to encode the original state machine, the number of paths through
the program is huge and explicitly enumerating them is infeasible. For example,
the last scenario (Ev14) of our case study (Sect. 6) yields some 13 billion paths,
such that the resulting proof obligation would not fit into the available memory.

Instead we produce a smaller program representation by not explicitly enu-
merating all paths but following the concept of Φ-nodes (known from static single
assignment [10]) to merge the effects of the branches of an if-statement. This app-
roach is also similar to the optimized weakest-precondition-calculus from [12].

During symbolic execution, a symbolic variable map V : VarsΔ → TermsΔ

is updated, which assigns to all declared variables their current symbolic value
(a term). StmtΔ denotes the set of all ST0-statements, and tV is the symbolic
evaluation of an expression t in the symbolic variable assignment V.
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Definition 5 (Symbolic Execution). Symbolic execution of ST0 code is the
operator se : (VarsΔ → TermsΔ) × StmtΔ → (VarsΔ → TermsΔ) with

se(V, v := t) := V[v := tV ] se(V, S;T ) := se(se(V, S), T )

se(V, if c then S else T ) := Φ(cV , se(V, S), se(V, T ))

where the map Φ(c,V1,V2) : VarsΔ → TermsΔ is, for all v ∈ VarsΔ, defined by:

Φ(c,V1,V2)(v) :=

{
V1(v) if V1(v) = V2(v)
if c then V1(v) else V2(v) otherwise

Essentially, this transformation moves the conditions of if-then-else statements
into the variable assignment in form of if-then-else expressions. While this proce-
dure cannot guarantee that the result is not exponentially larger than the input,
our experiences show that the results are acceptable in practice.

The state transition system for a program P is computed as follows: The
operator se is applied to the instructions Π of P with the identity mapping idΔ

as the starting point, resulting in the symbolic variable map se(Π, idΔ). The
symbolic assignments in this map provide the state transition definitions for the
state variables and the output terms for the output variables.

5.2 Encoding Regression Verification

The proof obligation handed to the symbolic model checker consists of a state
transition system and a property that is to be proved as an invariant for it.
The state transition system is a composition of the two systems that result from
translating the two PLC program revisions P and Q and the models for the
environment as introduced in Sect. 4.

All variables of the input spaces IP and IQ make up the input variables of
the combined model. If ΔP and ΔQ share common input variables, these can
also be shared in the combined model, thus reducing the input state space size.

If the sensor readings are constrained by an environment model, the input
signals of that model are input signals of the entire state transition system while
input signals of the PLC programs corresponding to sensor readings are taken
from the outputs of the environment model. In the example environment model
for the crane positions (Fig. 2), the PLC program takes the three inputs A,B,C
from position sensors, while the composed verification model merely takes as
input the indeterministic choice whether to remain in the current model state
or whether to move on a step. This has two effects: (1) The input space size is
reduced and (2) the modeling is more precise.

The condition ϕ from Definition 3 and the input and output relations
∼in,∼out from Definition 4 make up the invariant that is part of the model
checking proof obligation. In the current version of our toolchain, we require
that the condition ϕ can be expressed in LTL by a formula of the form Gψ,
where ψ is a propositional formula over the input variables in IP without modal
operators. That is, it must be possible to express the desired condition on the
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input sequence as a property of individual inputs. Correspondingly, we require
that the relations ∼in,∼out can be expressed by LTL formulas ∼in = G τin resp.
∼out = G τout, where τin and τout are propositional formulas over the variables
in IP ∪IQ resp. OP ∪OQ. We then employ a fresh internal state variable pre : bool
to model the temporal condition within the invariant as follows:

init(pre) := true (1) next(pre) := pre∧ψ∧τin (2) invariant pre → τout (3)

The variable pre is initialized to true (1) and is invalidated (2) as soon as input
values violate either the condition (ψ) or the input relation (τin). If the guarded
invariant (3) holds for the transition system, then the equivalence of the two
programs is guaranteed. What in fact is proved using the auxiliary variable pre
is the LTL property (¬ψ∨¬τin) R τout stating that the output relation τout must
hold at least as long as neither the condition ψ nor the relation τin have been
violated (R is the “release” operator of LTL). This entails relational equivalence
between P and Q. All relations and conditions occurring in our case study fall
into the restricted category of specifications described above. Although this is
not implemented at the moment, other classes of LTL constraints can be used
in our method by encoding them as invariants along the lines of [27].

5.3 Coupling Invariants

Modern model checkers allow the application of state abstraction methods (like
IC3) to find proofs for safety properties more efficiently. Regression verification
using symbolic model checkers with such abstractions is particularly promising
since the two software revisions are closely related if the newer one results from
the adaptation of the older one to a new application scenario. In such cases, it
is likely that the old and the new version of the program have a similar – yet
not necessary equal – encoding of their state spaces.

The upcoming abstraction theorem allows us to reason about safety proper-
ties of two PLC programs P and Q using an invariant Inv : SP ×SQ → bool over
their state spaces SP and SQ. Such a predicate, building a bridge between the
state spaces, is called a coupling predicate.

Theorem 1 (Coupling Invariant Abstraction). We consider two PLC pro-
grams P and Q with common input space I, common output space O, and state
spaces SP and SQ. Let s0 ∈ SP and s′

0 ∈ SQ be the initial states.
Then, P and Q are (perfectly) trace equivalent if and only if there exists a

coupling predicate Inv : SP × SQ → bool such that, for all states s ∈ SP , s′ ∈ SQ

and inputs i ∈ I,

Inv(s0, s′
0) holds, Inv(s, s′) implies Inv(t, t′), and Inv(s, s′) implies o = o′,

where (t, o) = ρ(P )(s, i) and (t′, o′) = ρ(Q)(s′, i).

Similar theorems can be formulated for relationally equivalent PLC pro-
grams.
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Fig. 4. Schematic of the hardware setup of the PPU case study [35].

The more similar the state space encodings of the old and the new program
version are, the closer the coupling predicate is to equality on the state spaces.
This becomes evident when a PLC program P is verified against itself. In this
case, the equality relation itself can be used as coupling predicate and satisfies
the conditions in Theorem 1 regardless of what P computes.

Development of PLC programs is often an incremental process, i.e., the new
revision results from a modification of the code in the old version. Often, parts
of the state are not affected by the changes (and behave like in the old revision)
whereas other parts are affected. An inductive invariant implying equivalence
then comprises equality between the unmodified state variables, and a more
general coupling invariant must be generated only for the affected variables.

The regression verification method using invariants is complete, but the user
of the verification tool would have to find and formalize all coupling invariants
which can be large and unintuitive. Instead, we rely upon the capabilities of state-
of-the-art symbolic model checkers to automatically infer inductive invariants.
In our case, the required system invariant (3) (which usually is not inductive
itself) is used as a starting point for an interpolant-based search for a stronger
inductive invariant that implies the one given in the problem specification.

We show in our case study that even with large state spaces, this state
abstraction mechanism allows us to prove equivalence of non-trivial programs.
The model checker nuXmv is capable of coming up with the required coupling
predicates using Incremental Construction of Inductive Clauses for Indubitable
Correctness (IC3) [7,24]. If this invariant generation mechanism is switched off,
the tool relies on more traditional symbolic model checking techniques. Then,
even the smaller ones of the problems in the case study could not be solved.

In cases where the search for an inductive invariant takes too long, parts of
the coupling invariant can be specified manually (within (3)) – the workload for
the invariant generation can thus be shared between user and model checker.
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6 Case Study

We have evaluated our approach by applying it to the benchmark evolution
scenarios of the Pick-and-Place Unit (PPU), which is illustrated in Fig. 4. The
PPU is an open case study for the machine manufacturing domain [35]. Despite
being a bench-scale, academic demonstration case, the PPU is complex enough
to demonstrate selected challenges that arise during engineering of automated
production systems. To explore evolution in this context, sixteen scenarios (i.e.,
variants of the PPU) covering different aspects of evolution have been defined
[22,36]. There are both pure software changes as well as changes that incorporate
adaptations to the mechanics and automation hardware of the PPU.

For all of the scenarios developed for the PPU, both the structure and the
behavior of the PPU are documented using the Systems Modeling Language
(SysML) [35]. Also, IEC 61131-3 automation software code for the PLC is avail-
able for each evolution scenario – implemented in CODESYS2, an industrial
development tool for automation software executable on PLCs. The PPU has
22 digital input, 13 digital output, and 3 analogue output signals and defines a
number of simple discrete event automation tasks [33].

In the following, we discuss three evolution scenarios from the PPU and show
how they can be subject to regression verification. More details can be found
in [38]; see Table 1 for the time required for verification.

Conditional Equivalence. The evolution scenario Ev3 in [35] has been used as the
introductory example in Sect. 2 in a much simplified version. In the full scenario,
the new stamping hardware for metallic products brings with it a new emergency
stop button E2 (triggering the same emergency logic as the existing button E1)
and a new start switch S3 (complementing S1 and S2 already present). Only
after all start switches have been pressed, the plant starts processing workpieces.
Trace equivalence between the two revisions of this evolution step can only be
shown for traces where these new components do not influence the flow of signals
already present in the old software. This is the case if (1) no metallic workpiece
is ever detected at M . (2) button E2 is only pressed if simultaneously E1 is also
pressed, and (3) S3 is not activated after the other switches S1 and S2 have been
pressed. The LTL formula over the corresponding input variables for conditional
equivalence of the PLC programs is G(¬M ∧ (E2 → E1) ∧ (S1 ∧ S2 → S3)).
Using this condition, equivalence can indeed be proved by our toolchain.

Relational Equivalence. In evolution step Ev14, the three position sensors at A,
B and C are replaced by a single angle transmitter that continuously reports
the angular position of the crane (in degrees). The input spaces for the PLC
programs differ such that relational equivalence is to be shown here.

In correspondence with the hardware setup (see Fig. 4) and the requirements
of the production system, we model the relation that binds the old Boolean
position inputs A,B,C to the new angular input α as

G((A ↔ 0 ≤ α ≤ 5) ∧ (B ↔ 90 ≤ α ≤ 95) ∧ (C ↔ 180 ≤ α ≤ 185)).
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In the thus defined input relation ∼in each position switch corresponds to a
5◦ interval in the angular input space. This also shows that relations in our
approach can be more complex than just a biunique mapping between values.

Using an Environment Model. In evolution scenario Ev6, the hardware remains
unmodified, but the software is changed to optimize the handling of non-metallic
workpieces (see [35] for details). The PLC programs before and after the opti-
mization should be equivalent for traces where only metallic or only non-metallic
workpieces are detected, but the programs are not equivalent. An inspection of
the code reveals that a condition within an SFC has been reformulated. As a
first guess one could assume that the two conditions are equivalent and use this
as condition for the conditional equivalence proof. Indeed, the equivalence proof
succeeds using that assumption (Ev6+A for both cases, Ev6+A for metallic
and Ev6+A for non-metallic pieces only). However, using an ad-hoc assump-
tion about the input state is not satisfactory even if it could be justified by a
manual inspection. Instead, a more intuitive and convincing item, an environ-
ment model of the crane (essentially the one shown in Fig. 2) can be added,
using which the PLC programs are proven equivalent with (Ev6+AEM) and
even without the assumption (Ev6+EM).

Results. Using our method and toolchain, automatic regression verification was
successful for all scenarios from the PPU case study. Table 1 shows statistics for
our experiments. The evolution scenarios were verified using nuXmv version 1.0.1
on an Intel Dual-Core with 2.7 GHz and 4 GB RAM running OpenSUSE 12.2.

Not all evolution scenarios include a modification of the software. The sce-
narios for which the equivalence verification is trivial have been omitted from
the table. The verification times for the same problem on the same machine may
vary considerably in multiple runs due to random choices in the symbolic model
checker which have a great impact on the verification time.

The regression verification method can not only be used for verifying equiva-
lence of PLC programs up to intended differences, but unintentional differences
between programs can also be found using our approach. The evaluation of our
approach revealed a few unintentional regressions in the PPU. In four cases, new
intermediate code blocks are added into SFCs that cause a regression by delay-
ing the system answer one cycle for each workpiece. Since the cycle time is very
short in the PPU (4 ms), the discrepancy between the programs was not found
by testing. Moreover, regression verification discovered that a fix for a safety
violation was not applied to an earlier version in the PPU evolution sequence.
It is possible that the crane tries to grab a workpiece while it is still in motion
which might under very unfortunate circumstances cause damages.

7 Related Work

The verification of PLC programs w.r.t. temporal logic specifications (for safety,
liveness, and time properties) has been subject of a number of publications
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Table 1. Results of the experiments. scenario is the name of the evolution scenario in
[35], in is the size of the sensor input space in bits, state the size of the state space in
bits, min/max show the minimum and maximum time needed for verification using
nuXmvin seconds (s), minutes (m) or hours (h). +EM indicates that an environment
model has been used.

scenario in state min max scenario in state min max

Ev1 10 140 4 s 8 s Ev6+EM 11 299 2 m 21 m
Ev1+EM 12 146 7 s 12 s Ev8 20 289 13.7 m 20.9 m
Ev2 11 141 4 s 8 s Ev9 20 305 50.5 m 1.3 h
Ev3 19 246 9 s 17 s Ev10 23 365 13 s 24 s
Ev6+A 19 284 15.1 m 155.4 h Ev11 28 576 3.5 h 6.3 h
Ev6+A 19 284 8.9 m 9.1 h Ev12 34 860 22.2 h 56.4 h
Ev6+A 19 284 18.1 m 13 h Ev13 34 1225 21.9 h 21.9 h
Ev6+AEM 11 299 25.7 m 104.1 h Ev14 47 1663 22.1 h 22.1 h

already. The paper [40] gives an overview of the field, and the survey [21] dis-
cusses transformation processes for program languages to verifiable models. Var-
ious translations from IEC 6113-3 languages into the input languages of model
checkers have been presented: Brinksma et al. [8] present a translation of SFCs
into Promela input for the SPIN model checker [17]; De Smet et al. [28] translate
all languages within IEC 61131-3 into input for the symbolic model checker Ca-
dence-SMV [25]; and Bauer et al. [3] translate SFCs into timed automata to be
used with UPPAAL [5]. This model checker is also used to verify properties of
continuous function charts (CFC) in [37]. In [4,6] a unifying semantics for SFC
is given where the ambiguities of the standard are addressed in a formal fashion.

Süflow and Drechsler [30] present a framework to verify that the same pro-
gram behaves equivalently on different PLC platforms; a scenario closely related
to ours. The authors employ a SAT solver to verify the arising proof conditions.

Strichman and Godlin [13–15,29] coined the term regression verification and
presented a verification methodology based on replacing function calls by unin-
terpreted function symbols within a bounded software model checking framework
for C programs. In [13] they define “reactive equivalence,” which is closely related
to our notion of perfect trace equivalence. In earlier work [11], we presented
an automated approach to regression verification based on invariant generation
using Horn clauses. Many other approaches [2,16,31,32,39] exist on regression
verification for imperative programming languages.

Equivalence checking is an established issue for the verification of hardware
circuits. In sequential equivalence checking the perfect trace equivalence between
clocked circuits is analysed; see [18] or [20] for an overview. Lu and Cheng [23]
present an approach based on inferred invariants, conditional or relational equiv-
alence are not considered.

8 Conclusion and Future Work

We have presented a method and toolchain for the automatic regression verifica-
tion of PLC software by means of a symbolic model checker. In this process, the



Regression Verification for PLC Software 249

old software revision serves as specification for the new one. Conditions can be
specified under which systems must behave equivalently, relations can be speci-
fied how the equivalence is to be understood, and models of environment can be
added to make the process more precise.

Evaluation proved our method to be applicable to non-trivial PPC software.
Automatic regression verification was successful for all scenarios from the PPU
case study. The evaluation also showed that the use of Φ-nodes in the translation
from PPU code to model checking input as well as the automatic generation of
coupling invariants is indispensable for non-trivial programs.

Currently, our toolchain supports notions that compare PLC behavior cycle
by cycle. Future work will allow for conditions and relations to relate variables of
different cycles. Another interesting path of investigation is the use of abstrac-
tions to factor out parts of PLCs that have not been touched by evolution and
need not be proved equivalent.
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this paper.
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Abstract. As modern systems become more complex, design appro-
aches model different aspects of the system separately. When considering
(intra and inter) system interactions, it is usual to model individual sce-
narios using UML’s sequence diagrams. Given a set of scenarios we then
need to check whether these are consistent and can be combined for a
better understanding of the overall behaviour. This paper addresses this
by presenting a novel formal technique for composing behavioural mod-
els at the metamodel level through exact metamodel restriction (EMR).
In our approach a sequence diagram can be completely described by
a set of logical constraints at the metamodel level. When composing
sequence diagrams we take the union of the sets of logical constraints for
each diagram and additional behavioural constraints that describe the
matching composition glue. A formal semantics for composition in accor-
dance with the glue guides our model transformation to Alloy. Alloy’s
fully automated constraint solver gives us the solution. Our technique
has been implemented as an Eclipse plugin SD2Alloy.

Keywords: Sequence diagrams · Behavioural composition · Event
structures · Alloy

1 Introduction

As modern systems become more complex, design approaches model different
aspects of the system separately. When considering (intra and inter) system
interactions, it is usual to model individual scenarios using UML’s sequence
diagrams. Given a set of scenarios we then need to check whether these are con-
sistent and can be combined for a better understanding of the overall behaviour.
The overall behaviour of the system can be obtained step by step by composing
individual scenario-based models.

Composing systems manually can only be done for small systems. As a
result, in recent years, various methods for automated model composition have
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 252–269, 2015.
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been introduced [4,6,13,15,18–21,23]. Most of these methods involve introduc-
ing algorithms to produce a composite model from smaller models originating
from partial specifications [13]. By contrast, in this paper we focus on the compo-
sition of models via constraint solvers. This corresponds to producing a number
of constraints capturing models and using an automated solver to find a solution
that produces the composed model. In this paper, we use Alloy [12] for finding
the solution. Using Alloy for model composition is an active area of research
[19,23]. Whilst most existing research focuses on static models, the focus of this
paper is on dynamic models. The proposed method in this paper consists of
two steps. First, create the logical constraints that uniquely characterise each
model by restricting the metamodels. Second, produce behavioural constraints
for combining the models. These consist of constraints indicating how elements
from both models may be matched and additional constraints such as orderings
that may have to be preserved. The augmented model for the composition (if
existing) needs to satisfy the conjunction of all these constraints. The composed
model is semantically equivalent to one obtained by an enriched form of par-
allel composition with synchronisation and additional constraints on permitted
combined behaviour. The automatic generation of such a solution is the main
novelty and contribution of this paper.

In general, metamodels represent the model elements and their relationships.
Logical statements written in the context of metamodels play a key role in
expressing the well-definedness of model elements, defining model equality, and
so on. We extend the use of logical constraints and for a given model we produce
further constraints to uniquely determine the model. We refer to the process of
identifying such logical constraints as Exact Metamodel Restriction (EMR). As
we show in this paper, EMR can be used in the automated instantiation of mod-
els via constraint solvers. For example, in [2] starting from any UML sequence
diagram, using the Alloy model finder for the sequence diagram metamodel and
correct set of constraints, Alloy can be used to automatically recreate the original
sequence diagram. Given any two models M1 and M2 representing two partial
specifications (e.g., two sequence diagrams), through EMR we produce two sets
of constrains L1 and L2 on their metamodels that uniquely identify them. To
compose the two models we may require all constraints in the two sets to be
true. This would be a very restrictive form of composition. Instead we give the
designer a novel way to influence the obtained composition by specifying behav-
iour that should never occur or sequences of events that must occur in a given
order. In other words, it allows the designer to prioritise on specified behaviour.
We refer to these additional constraints as behavioural composition glue and
present a formal semantics for it.

The notion of glue is not new and is also used within software architecture
to describe and formalise component connectors [1,8]. Our interpretation of glue
here is nonetheless more generic and not only a syntactic matching between
component elements. Our behavioural glue gives us a new set of constraints Lg

which specifies how the models should be glued together to produce the intended
composition. Given the sets of constraints L1, L2 and Lg, and provided there
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are no conflicts between them, the models can be composed automatically using
Alloy. If there are conflicts between the constraints, Alloy will point out the
conflicting statements so that we can redesign the models or the constraints used
for the composition. Although the focus of work is on sequence diagrams, the
suggested method can be applied to all models with a trace-based semantics. We
have applied the method to sequence diagrams and produced an Eclipse plugin
which was described in [2]. This work considerably extends the work in [2] by
going beyond composition based on syntactic matching of model elements and
focusing on the formalisation of behavioural glue for composition.

The paper is organised as follows. Section 2 describes interactions in UML
and introduces an example which is used throughout the paper to illustrate our
approach. Section 3 introduces labelled event structures (LES), our semantic
interpretation of interactions and a guide to the correct composition solution.
Section 4 shows the transformation into Alloy. Composition is treated with LES
in Sect. 5 and with Alloy in Sect. 6. Related work is described in Sect. 7. Section 8
concludes the paper.

2 Interactions in UML

Sequence diagrams are described in UML’s superstructure specification [17] both
through a concrete and an abstract syntax. The concrete syntax consists of the
graphical notation for a sequence diagram, whereas the abstract syntax is given
by a metamodel which defines all the elements of a sequence diagram model
and their possible relationships. An instance of the metamodel corresponds to a
concrete sequence diagram.

Concrete Syntax: An interaction captured by a sequence diagram involves
a group of objects which exchange messages between each other to achieve a
particular goal. Each object has a vertical dashed line called lifeline showing the
existence of the object at a particular time. Points along the lifeline are called
locations (a terminology borrowed from LSCs [11]) and denote the occurrence
of events. The order of locations along a lifeline is significant denoting, in gen-
eral, the order in which the corresponding events occur. An interaction between
several objects consists of one or more messages, but may be given further struc-
ture through so-called interaction fragments. There are several kinds of interac-
tion fragments including seq (sequential behaviour), alt (alternative behaviour),
par (parallel behaviour), neg (forbidden behaviour), assert (mandatory behav-
iour), loop (iterative behaviour), and so on [17].

Consider the following sequence diagrams which show a slightly adapted
example from [10]. Figure 1 (left) shows an interaction with two consecutive
interaction fragments (a parallel followed by an alternative fragment), and Fig. 1
(right) shows a different interaction involving the same instances and a few
additional messages.

In both diagrams, all messages are sent asynchronously between objects a
and b (only message new is sent by b to a). The locations along the lifeline of
object a are shown explicitly in both diagrams. The importance of locations is
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Fig. 1. Two sequence diagrams with fragments involving the same object instances.

described later in the paper. In particular, the distinction between the syntactic
notion of a location on a sequence diagram from its semantic counterpart of an
event will be clarified. In Fig. 1 messages i and m1 are sent/received in parallel
followed by message j or message m2 (alternative), and further followed by
message m3 (irrespective of the previous alternative choosen). In Fig. 1, three
messages are sent/received before reaching an alternative fragment and choosing
between messages m4 or m5. These diagrams will be used to show how we can
compose diagrams under certain constraints.

Abstract Syntax: A metamodel can be understood as a model of a collec-
tion of models. A metamodel is usually a structural model given as a UML class
diagram often with additional constraints given in UML’s constraint language
OCL. Metamodels can be built for both static and dynamic models but focus
only on the structural aspects of the model. In this paper we look at sequence
diagrams. The metamodel of a sequence diagram, also known as an interaction,
shows the structure of such a diagram in terms of the model elements present and
their relationships. The dynamic interpretation is not given in the metamodel,
and must be defined separately. See ours in Sect. 3.

The UML superstructure specification [17] defines the interaction’s meta-
model in a package showing different elements and their relationships separately
in different diagrams. To make the presentation simpler, we use a subset of the
metamodel for interactions and show it as one class diagram in Fig. 2. We capture
the main notions that we need for the present paper.

An Interaction contains zero or more instances of Lifeline, Message and
InteractionFragment. A Message usually has a sendEvent MessageEnd and a
receiveEvent MessageEnd associated to it. In the present paper, we assume
that MessageEnd (an abstract class) is always a special kind of Occurrence

Specification called MessageOccurrenceSpecification (not shown). It is pos-
sible for a Message to have been found, or similarly lost, in which case it does not
have a sendEvent or a receiveEvent. A Message cannot be simultaneously found
and lost. A Message has attributes messageKind and messageSort (not shown
in the diagram). These attributes have a type with the same name which are
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InteractionConstraint

InteractionOperand
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Fig. 2. The interactions metamodel.

enumeration types used to indicate whether a message is lost, found, complete
or unknown (MessageKind), or a synchronous/asynchronous call, create Message

and so on (MessageSort). A Lifeline has attributes for the name and class

associated to the object that is denoted by the lifeline (not shown in the dia-
gram). An InteractionFragment is an abstract class which is further specialised
into an OccurrenceSpecification, an Interaction, a CombinedFragment or an
InteractionOperand. The locations mentioned in Sect. 2 correspond to instances
of OccurrenceSpecification. These are the ordered events that cover a Lifeline.
A GeneralOrdering represents a binary relation between two Occurrence

Specifications. The metamodel contains relations before and after, but we
restrict ourselves to a relation next which is all we require for our purposes.
A CombinedFragment has an attribute interactionOperator of enumeration type
InteractionOperatorKind (par, alt, seq, loop, assert, and so on), and contains
one or more operands which are InteractionOperands. An InteractionOperand

may have a guard which is an InteractionConstraint. An InteractionOperand

encloses either several OccurrenceSpecifications, an Interaction or another
CombinedFragment indicating nesting of fragments.

An instance of the metamodel represents a concrete interaction or sequence
diagram. The interaction from Fig. 1 can be captured using the abstract syntax
as an instance of the metamodel (not shown here).

We have developed a tool SD2Alloy that takes a sequence diagram described
by its abstract syntax and transforms it into an Alloy model. Alloy [12] is a
declarative textual modeling language based on first-order relational logic. Alloy
is supported by a fully automated constraint solver Alloy Analyzer which enables
the analysis of system properties by searching for instances of the model. It is
possible to check whether certain properties of the system are present. This is
achieved via an automated translation of the model into a Boolean expression,
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which is then analysed by SAT solvers such as SAT4J [5] embedded within the
Alloy Analyzer.

3 Semantics of Interactions

The dynamic interpretation of interactions is done in this paper using labelled
event structures [22]. Several possible semantics for sequence diagrams have been
defined (see [16] for an overview). Labelled event structures (LESs) are very
suitable to describe the traces of execution in sequence diagrams being able to
capture directly the notions available such as sequential, parallel and iterative
behaviour (or the unfoldings thereof) as well as nondeterminism. For each of the
notions we use one of the relations available over events: causality, nondetermin-
istic choice and true concurrency. LESs are the only true-concurrent semantics
for sequence diagrams available and first defined in [14]. We recall the main
notions used for modelling sequence diagrams with LES. We later extend our
semantics to model composition of diagrams with glue constraints.

Prime event structures [22], or event structures for short, describe distributed
computations as event occurrences together with binary relations for expressing
causal dependency (called causality) and nondeterminism (called conflict). The
causality relation implies a (partial) order among event occurrences, while the
conflict relation expresses how the occurrence of certain events excludes the
occurrence of others. From the two relations defined on the set of events, a
further relation is derived, namely the concurrency relation co. Two events are
concurrent if and only if they are completely unrelated, i.e., neither related by
causality nor by conflict. The formal definition as defined for instance in [22] is
as follows.

Definition 1. An event structure is a triple E = (Ev,→∗,#) where Ev is a
set of events and →∗,# ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ →∗ e
′′ ⇒ e#e

′′
for all

e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗ e

′ ∨e
′ →∗

e ∨ e#e
′
).

We omit further technical details on the model, but note that for the appli-
cation of event structures as a semantic model for sequence diagrams we use
discrete event structures. Discreteness imposes a finiteness constraint on the
model, i.e., there are always only a finite number of causally related predeces-
sors to an event, known as the local configuration of the event (written ↓ e). A
further motivation for this constraint is given by the fact that every execution
has a starting point or configuration.

Event structures are enriched with a labelling function μ : Ev → L that maps
each event onto an element of the set L. This labelling function is necessary to
establish a connection between the semantic model (event structure) and the
syntactic model (here a sequence diagram). The labelling function used here
is a partial function. Intuitively, each location marked along a lifeline of an
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object in a sequence diagram corresponds to one (possibly more) event(s) in
the labelled event structure. The set of labels used could be the set of locations
in a sequence diagram but is usually more concrete information on what the
location represents: the initialisation of an object, sending/receiving a message,
beginning/ending an interaction fragment, etc.

(j,s) #

g0

g1

g2 g3

g4

g5

g6 g7

g81 g82

g91 g92

(m1,r)(i,r)

(m2,r)

(m3,r)(m3,r)

(j,r)

e0

e1

e2 e3

e4

e5

e6 e7

e81 e82

e91 e92

(m1,s)(i,s)

(m2,s)

(m3,s)(m3,s)

#

Fig. 3. Model for sequence diagram sd1.

Let I denote the set of objects involved in the interaction described by
sequence diagram SD, and Mes the set of asynchronous messages exchanged.
Let the set of labels L be given by L = {(m, s), (m, r) | m ∈ Mes}. An event
with label (m, s) corresponds to the sending of message m whereas an event with
label (m, r) indicates the receipt of message m.

Definition 2. A model MSD = (E,μ) for a sequence diagram SD is obtained
by composition of the models Ma = (Ea, μa) of each object instance a ∈ I. In
MSD, the set of events is given by Ev =

⋃
a∈I Eva, and event labels are as before,

that is, μ(e) = μa(e) for e ∈ Eva. Let m be a message sent between object a and
object b, and let E1 ⊆ Eva with μa(e1) = (m, s) for all e1 ∈ E1, and E2 ⊆ Evb

with μb(e2) = (m, r) for all e2 ∈ E2. Then necessarily |E1| = |E2| and for each
e1 ∈ E1 there is a unique e2 ∈ E2 for each e1 such that e1 → e2 and local conflict
#a propagates over → to obtain conflict # in M .

More details on the semantics of sequence diagrams using LES can be found in [14].
The overall event structure model for the diagram from Fig. 1 is given in

Fig. 3. Conflict propagation is not shown explicitly but is as expected and prop-
agates over the new causality relations gained from communication. For example,
e6#ae7 and consequently e6#e7. In addition, since e7 → g7 by conflict propaga-
tion we also have e6#g7.
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Definition 3. Let MSD = (E,μ) be a model for sequence diagram SD where
E = (Ev,→∗,#) is an event structure. A subset of events C ⊆ Ev is a con-
figuration in E iff it is both (1) conflict free: for all e, e′ ∈ C,¬(e#e′) and (2)
downwards closed: for any e ∈ C and e′ ∈ Ev, if e′ →∗ e then e′ ∈ C. A maximal
configuration denotes a trace.

For example, the following is a trace for Fig. 3: C = {e0, e1, e2, e3, e4, e5, e7, e82,
e92, g0, g1, g2, g3, g4, g5, g7, g82, g92} which denotes the occurrence of m2 and
not j.

4 Exact Metamodel Restriction

We propose a method that considers both the structure and dynamic interpre-
tation of a sequence diagram when producing an Alloy model. The model is
obtained by exact metamodel restriction, that is, by considering the abstract
syntax of a diagram and constraints obtained from the dynamic (LES based)
interpretation we generate the exact solution in Alloy that corresponds to the
intended sequence diagram. This approach is also used to obtain a composed
model for two (or more) sequence diagrams later on.

Alloy’s syntax and semantics will be apparent in the following rules and code
snippets, but we recall some main notions beforehand. Data domains are defined
using signatures (keyword sig) and represented as sets. Just as in object-oriented
languages, a signature may extend another signature, in which case the domain
defined by the first is a subset of the domain of the extended signature. A signa-
ture that is declared independently of any other is called a top-level signature.
Extensions of a signature are mutually disjoint, as are top-level signatures. A
signature can also be abstract in which case its domain only contains elements
that belong to its extending signatures. In addition, signatures may contain fields
which are captured by relations. Axioms in Alloy are called facts which can be
given a name. These must hold at any time. Alloy formulae often use the atomic
predicate in (inclusion), standard connectives from first-order logic, and quanti-
fiers all (universal) and some (existential). In general, expressions in Alloy are
built using set theoretical relational operators and constants.

All interaction metamodel elements of Fig. 2 are transformed into top-level
signatures in Alloy, and separate transformation rules treat each one. We
omit the basic rules for Lifeline, Message and Event (denoting Occurrence
Specification). It suffices to say that the lifeline transformation rule cre-
ates a domain called Lifeline as an abstract signature. Furthermore, each
lifeline object has fields name and class. For each concrete instance declared
in a sequence diagram we obtain declarations. The Event signature has a field
cover which corresponds to a relationship with a lifeline it belongs to, and a
field next which corresponds to a relationship with a set of events. This rela-
tionship corresponds to the immediate causality relation from our labelled event
structures. The Message signature has two fields send and receive both cor-
responding to one event. We have additional facts to indicate the order of the
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events associated to a message. Messages also have a name which are introduced
when creating a concrete message as shown below.

1 one sig sd1_i extends Message {name:one i}
2 one sig sd1_m1 extends Message {name:one m1}
3 lone sig sd1_m2 extends Message {name:one m2}
4 lone sig sd1_j extends Message {name:one j}
5 one sig sd1_m3 extends Message {name:one m3}

The lines above show the declaration of the messages from sd1 (see Fig. 1
on the left). In Alloy, we cannot have two signatures with the same name. Since
messages may be repeated accross different sequence diagrams we avoid this
problem by adding the information from which diagram it belongs to, in this
case sd1. Similarly for sd2.

one sig sd2_m1 extends Message {name:one m1}
one sig sd2_m2 extends Message {name:one m2}

Some of the messages (lines 3–4 above) are declared as lone (a multiplicity
keyword in Alloy meaning 0 or 1), while others are one (exactly one). This has to
do with the fact that messages within an alternative fragment are not guaranteed
to occur. We will explain this in more detail later on.

6 lone sig e2 extends Event{}
7 lone sig e3 extends Event{}
8 lone sig e6 extends Event{}
9 lone sig e7 extends Event{}

10 lone sig e9 extends Event{}
11 lone sig g2 extends Event{}
12 lone sig g3 extends Event{}
13 lone sig g6 extends Event{}
14 lone sig g7 extends Event{}
15 lone sig g9 extends Event{}
16

17

18 // assigning events to messages
19 fact {sd1_i.send=e2 and sd1_i.receive=g2 and
20 sd1_m1.send=e3 and sd1_m1.receive=g3 and
21 sd1_j.send=e6 and sd1_j.receive=g6 and
22 sd1_m2.send=e7 and sd1_m2.receive=g7 and
23 sd1_m3.send=e9 and sd1_m3.receive=g9}

Lines 6–15 above declare the sd1 events corresponding to sending/receiving
a message. All events are declared as lone as their occurrence is dependent on
whether the associated message is sent/received. For consistency, we use the
same event names as used in our semantic model for the same diagram (see
Fig. 3). Incidentally, we do not need to duplicate events e9 and g9 since Alloy
will produce two solutions to represent the two possible alternative executions.
In order to associate messages and events, we add a fact in line 19 to specify
this. The following fact EventToLifeline connects the model events to the
lifelines.

25 fact EventToLifeline{
26 e2.cover=L1 and g2.cover=L2 and e3.cover=L1
27 ...
28 e9.cover =L1 and g9.cover =L2 }
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Rule 1 - Combined Fragment: A combined fragments has an interaction
operator (given by type) and one or more interaction operands. An interaction
operand covers a set of Events, CombinedFragments, or both.

29 abstract sig CombinedFragment{
30 operand:set InteractionOperand ,type:one CF_TYPE}
31

32 abstract sig InteractionOperand
33 {cover:set Event + CombinedFragment }
34

35 fact{all e:Event| lone op: InteractionOperand |
36 e in op.cover }
37

38 fact{all cf:CombinedFragment |
39 lone op:InteractionOperand | cf in op.cover }
40

41 fact{all op:InteractionOperand |
42 one cf:CombinedFragment | op in cf.operand }

Lines 29–33 define the abstract signatures for combined fragments and inter-
action operators with the fields mentioned. Fragment nesting is given by the fact
that an InteractionOperator may cover a CombinedFragment. In addition,
three facts impose further constraints on the elements of these domains. Fact on
line 35 states that every event e belongs to at most one InteractionOperand,
and fact on line 38 states that every combined fragment cf belongs to at most
one interaction operand (indicating fragment nesting). Finally, fact in line 41
states that all interaction operands are operands of a combined fragment.

Rule 2 - Alternative Fragment:

43 // alt: exactly one operand will be executed
44 fact Alt -Execution {all cf: CombinedFragment |
45 (cf.TYPE = cf_TYPE_ALT) => # cf.operand = 1}

In order to preserve the semantics of alternative combined fragments, the
fact above states that exactly one operand is executed. Note the # in line 44
corresponds to Alloy’s cardinality operator. A consequence of this fact is that
every time we run the code a different set of events (associated with a particular
operand) may be executed, but every time we only execute one operand of an
alternative fragment.

The Alloy code lines below describe an alternative fragment with two
operands and no guards, as is the case of the second combined fragment from
sd1 of Fig. 1.

46 one sig sd1_CF2 extends CombinedFragment {}
47 lone sig sd1_CF2_Op1 extends InteractionOperand {}
48 lone sig sd1_CF2_Op2 extends InteractionOperand {}
49 fact{all cf: sd1_CF2 | cf.TYPE = CF_TYPE_ALT }

At the model elements level, the first step is to define the combined fragment
and its operands (lines 46–49). Notice the lone keyword at the beginning of the
operand signatures. This is necessary as only one operand will be able to execute
in accordance with the fact Alt-Execution (line 44). Line 48 specifies the type
of sd1 CF2 (the second combined fragment of sd1) as an alternative fragment.
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50 fact OperandToCF{
51 sd1_CF2_Op1 in sd1_CF2.operand
52 sd1_CF2_Op2 in sd1_CF2.operand }
53

54 fact EventToCF{
55 e6 in sd1_CF2_Op1.cover and g6 in sd1_CF2_Op1.cover
56 and e7 in sd1_CF2_Op2.cover and
57 g7 in sd1_CF2_Op2.cover}

The fact OperandToCF connects each operand of the second combined frag-
ment of sd1 to its combined fragment, while the fact EventToCF connects the
events declared earlier belonging to this combined fragment to the corresponding
operands.

Rule 3 - Parallel Fragment: The representation of a parallel combined
fragment is similar to that of an alternative combined fragment, but without
the fact Alt-Execution. The Alloy model for sd1, which contains a parallel
combined fragment, must show a parallel execution of its operands. In other
words, the events covered by different operands can occur in an arbitrary order
in accordance with our LES interpretation.

To capture the notion of GeneralOrdering from the metamodel where it
captures a binary relationship between two instances of OcurrenceSpecification,
here events, is as follows.

Rule 4 - GeneralOrder: A GeneralOrdering represents a binary relation-
ship between two events. This is specified in Alloy by a fact specifying the order
in which all messages and their underlying events occur along the lifelines of the
corresponding object instances. The transitive closure of the general ordering is
irreflexive.

58 fact GeneralOrder {
59

60 all l: L1 + L2, ev1:sd1_cf1.operand.cover ,
61 ev2:sd1_cf2.operand.cover | ev1.cover = l
62 and ev2.cover = l => ev2 in ev1.^next
63 and
64 all l: L1, ev1:sd1_cf2.operand.cover ,
65 ev2:e9 | ev1.cover = l => ev2 in ev1.^next
66 and
67 all l: L2, ev1:sd1_cf2.operand.cover ,
68 ev2:g9 | ev1.cover = l => ev2 in ev1.^next
69 }

In the above fact we make use of the unary operator ∧c to denote the tran-
sitive closure of c. The fact GeneralOrder depicts the order of the element
in the sd1 Fig. 1. Lines 60–62 state that all events ev1 and ev2 such that ev1
belongs to the first combined fragment and ev2 belongs to the second combined
fragment, if they cover the same lifeline then ev2 belongs to the transitive closure
of ev1.next, that is, it necessarily occurs after ev1. Note that ev1 �= ev2 since
they are elements from different extensions of CombinedFragment and necessar-
ily disjoint in Alloy. Lines 64–68 show that the occurrence of an event e9 or g9
must be preceded by the occurrence of events covered by the second combined
fragment. In other words, sending/receiving message m3 can only occur if the
combined fragments have executed beforehand.
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5 Semantics of Composition

We define the semantics of composition for sequence diagrams in the context
of labelled event structures. We restrict ourselves to the composition of two
diagrams. The case for the composition of a finite number of diagrams can be
generalised from here. In the sequel, let SD1 and SD2 be two sequence diagrams,
with sets of instances and messages given by I1, I2, Mes1 and Mes2 respectively.

When composing diagrams SD1 and SD2 we consider interleaving and
shared behaviour. In the case of interleaving, the diagrams evolve completely
autonomously of one another. That is, the interleaving of diagrams SD1 and
SD2 is written SD1 ‖ SD2 and equivalent to par(SD1, SD2). In other words,
the composition is behaviourally equivalent to a diagram with a par fragment
and two operands where each operand contains the behaviour described in SD1

and SD2 respectively.
The model for SD1 ‖ SD2, MSD1‖SD2 = (E,μ), is an event structure where

Ev = Ev1 ∪Ev2, all relations are preserved, and μ(e) is defined for all e iff μi(e)
is defined for some i ∈ {1, 2} in which case μ(e) = μi(e). For shared instances
o ∈ I1 ∩ I2 we further match the initial events for o in Ev1 and Ev2. Recall that
an initial event for an object is an event for which ↓ e = {e} which means that
the local configuration only contains itself (cf. Sect. 3). We use ↓ Evo to indicate
the singleton containing the initial event of instance o.

The composition of diagrams with shared behaviour is written SD1 ‖G SD2

where G indicates the composition glue. In this paper we go beyond a syntactic
matching of objects and/or messages from the different diagrams. We assume
that the composition glue can in addition impose restrictions on the occurrences
of messages, their ordering, and so on. The case of basic syntactic matching was
treated informally in [2] and we cover behavioural composition glue here which
subsumes syntactic matching.

We define the composition of two models formally in two stages. First we
define the model obtained by syntactic matching of objects and messages of
both models. We then take the glue constraints and apply a restriction on the
matched composed model that satisfies the glue constraints.

Let Δ ⊆ L1×L2 ∪ I1×I2 be a binary relation over labels or instances satisfying
if (l, l′) ∈ Δ and (l, l′′) ∈ Δ then l′ = l′′; and if (l′, l) ∈ Δ and (l′′, l) ∈ Δ then
l′ = l′′. We call Δ a matching over labels and instances. Let Ev1 (and similarly
Ev2) correspond to the set of events in Ev1 with a label not matched in Δ.

Definition 4. Let M1 = (E1, μ1) and M2 = (E2, μ2) be models for sequence dia-
grams SD1 and SD2, and Δ be a matching over labels and instances. SD1 ‖Δ SD2

is a matched composition model for Δ given by MΔ = (E,μ) such that events in
MΔ are given by

Ev = Ev1 ∪ Ev2 ∪
{(e1, e2)|(L(e1), L(e2)) ∈ Δ}∪

{(e1, e2)|(e1 ∈↓ Evi1 , e2 ∈↓ Evi2 and (i1, i2) ∈ Δ)}
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The labels are unchanged, that is, μ(e) = μi(e) for e ∈ Evi with i ∈ {1, 2} and
μ(e1, e2) = μ1(e1) = μ2(e2). Event relations in MΔ are derived from the relations
in M1 and M2 as follows (e1, e2) →∗ e iff (e1 →∗

1 e or e2 →∗
2 e); ei → e′

i iff
ei →∗

i e′
i; and (e1, e2) →∗ (e′

1, e
′
2) iff (e1 →∗

1 e′
1 and e2 →∗

2 e′
2). Similarly for the

conflict relation with additional conflict derived from propagation over causality.

According to the above definition, the event pairs (e1, e2) in Ev correspond
to events matched by Δ or denoting initial events for shared objects. Relations
and labels are preserved in the composition as expected.

If the model obtained above is a valid labelled event structure then a com-
position for SD1 and SD2 according to Δ exists. Otherwise the models are not
composable.

Proposition 1. Let M1 = (E1, μ1) and M2 = (E2, μ2) be models for sequence
diagrams SD1 and SD2, and Δ be a matching over instances and labels. The
diagrams are composable according to Δ iff the matched composition model
MΔ = (E,μ) is a well defined labelled event structure.

A case that illustrates a non composable model is one where the same two
messages (say m1 and m2) are sent in the reverse order in two diagrams. The
model obtained by matching the respective send/receive events in both diagrams
would lead to an invalid labelled event structure as the model would contain a
cycle which is not allowed. We illustrate the idea of shared behaviour further with
the example from Sect. 2 to obtain the composition of sd1 of Fig. 1. We consider
the matching of messages and lifelines with the same name, i.e., messages m1
and m2, and lifelines for object a and object b. There is a matched composition
model MΔ for sd1 and sd2 as shown in Fig. 4. It shows the matched initial events
(e.g., (e0, f0)) and events matched by Δ (e.g., (e3, f1) for label (m1, s)). Event
relations are derived from the original relations and any conflict that arises from
propagation over the extended causality relation. In this case, e6#(e7, f3) since
e6#e7 and consequently also e6#f4, and so on.

We want to allow a designer to add further constraints on the expected com-
position by for example specifying behaviour that should never occur (forbidden
events) or sequences of events that must occur in a given order, and so on.
This can be seen as a way to give priority to certain specified interactions, and
eliminates some of the possible traces in the composed model.

In the following, let M1 = (E1, μ1) and M2 = (E2, μ2) be composable models
over Δ for sequence diagrams SD1 and SD2 with Δ a matching over labels and
instances. Let MΔ = (E,μ) be the matched composed model obtained, and Γ
be the set of maximal configurations (traces) in MΔ.

Definition 5. A behavioural glue for MΔ = (E,μ) is given by G = (Evg,→∗
g,

#g, Fvg) where Evg, Fvg ⊆ Ev are subsets of events that occur in E, and →∗
g,

#g ⊆ Evg × Evg are binary relations (causality and conflict) defined over the
events in Evg. Events in Fv are forbidden events.

A behavioural glue G as defined above may contain relations over events
which disagree with the relations in MΔ. However, we can always obtain an
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Fig. 4. Matched composition model.

equivalent glue G′ that preserves the relations in MΔ = (E,μ) by considering
all the events that violate the original relations as forbidden events. We omit a
formal proof here, but illustrate the idea with an example.

Definition 6. A composed model SD1 ‖G SD2 for relation preserving glue G is
given by MG = (EG, μG) such that it corresponds to MΔ by removing all traces
t ∈ Γ such that Fv ∩ t �= ∅.

neg

a:A b:B
sd G1

j

G2 a:A b:B

m3

m2

sd

Fig. 5. Examples of behavioural glue.

Consider the two cases of
behavioural glue as shown in
Fig. 5. The behavioural glue G1
imposes that the occurrence of
message j is forbidden in the com-
posed model. Glue G2 imposes
that for m3 to occur, m2 must have
happened before.

For G1 we have G1 = (∅, ∅, ∅, {e6, g6}) where the events associated to message
j are forbidden. This means that the composed model for sd1 and sd2 wrt G1
removes all traces which contain events e6 and g6 from the matched composition
model shown in Fig. 4. Since the events in ↓ e5 (and similarly ↓ g5) belong to
another valid trace they are not removed. We obtain a composed model which is
identical to the matched composition model but where the highlighted relations
and events have been removed (i.e., events e6, e81, e91, g6, g81, g91 and relations).

For G2 we consider an equivalent glue which preserves the relations,
namely G2 = (Evg2,→∗

g2, ∅, Fvg2) where Evg2 = {(e7, f3), (g7, h3), e92, g92},
Fvg2 = {e91, g91} and the causality relation is such that →∗

g2=
{((e7, f3), e92), ((g7, h3), g92)}. In this case we need to remove all traces which
contain e91 and g91 from the matched composition model shown in Fig. 4. The
composed model for sd1 and sd2 wrt G2 coincides with the composed model wrt
G1 described earlier. This follows because the traces affected by the forbidden
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events are the same. We show how the model is generated automatically with
Alloy in the next section.

6 Composition with Alloy

We describe how the formal composition semantics from the previous section
is integrated in our SD2Alloy approach. We capture the syntactic matching of
labels and instances (given by Δ in Sect. 5) by additional axioms (facts). The
following describes the syntactic matching of labels and instances (lifelines) for
our example.
fact LifelineMatching{
// matching lifelines from sd1 and sd2
all l1:sd1_L1 , l2:sd2_L2 |
(l1.name=l2.name && l1.class=l2.class) => #l2=0
}
fact MessageMatching{
// matching message sd1_m1 and sd2_m1
all m:sd1_m1 , n: sd2_m1 |
(m.name=n.name) => #n=0 and #sd2_e3=0 and #sd2_g3=0

// matching message sd1_m2 and sd2_m2
all m:sd1_m2 , n:sd2_m2 |
(m.name =n.name) => #n= 0 and #sd2_e7=0 and #sd2_g7=0
}

The fact LifelineMatching matches the shared lifelines in both diagrams,
and the fact MessageMatching matches the messages with the same name. The
idea in Alloy is that the messages and events from one of the models are kept
(here sd1) and the others are hidden by limiting its occurrence to zero (i.e., its
cardinality is zero).

The examples of behavioural glue introduced in Fig. 5 can be captured as
facts in Alloy. G1 and G2 are given in the following facts.

fact Glue1{#sd1_j=0
all sd1_j_send:sd1_e6 , sd1_j_receive:sd1_g6 |
#sd1_j_send =0 and #sd1_j_receive =0}

fact Glue2{
#sd1_m3=# sd1_m2
all sd1_m2_send:sd1_e7 , sd1_m3_send:sd1_e9 |
sd1_m3_send in sd1_m2_send .^ next

all sd1_m2_receive:sd1_g7 , sd1_m3_receive:sd1_g9 |
sd1_m3_receive in sd1_m2_receive .^ next
}

Glue1 states that j does not occur and in addition the associated events also
do not occur. Glue2 states that every time m3 occurs it must occur with m2. In
other words, m2 must have happened before. Again, we control occurrence with
the cardinality operator #. In addition, the behavioural glue for G2 also defines
the order between m3 and m2 and underlying send and receive events.

As we have seen in the previous section, the effect of each behavioural glue in
the composed model is identical. This has been checked with Alloy, and message
j does not occur in any solution obtained. Traces obtained with our tool have a
direct correspondence with the traces of our semantic model.
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7 Related Work

Zhang et al. [23] and Rubin et al. [19] use Alloy for the composition of class
diagrams. They transform UML class diagrams into Alloy and compose them
automatically. They focus on composing static models and the composition code
is produced manually. Widl et al. [21] deal with composing concurrently evolved
sequence diagrams in accordance to the overall behaviour given in state machine
models. They make direct use of SAT-solvers for the composition. Liang et al. [15]
present a method of integrating sequence diagrams based on the formalisation
of sequence diagrams as typed graphs. Both these papers focus on less complex
structures. For example, they do not deal with combined fragments which can
potentially cause substantial complexity.

Composition is also important in other domains such as aspect-oriented mod-
elling. Whittle and Jayaraman [3] introduce a tool called MATA for weaving
based on sequence diagrams. They put less emphasis on the semantics of the
composition. Grønmo et al. [10] propose a semantics-based technique for weav-
ing behavioural aspects into sequence diagrams. The example we use in this
paper is an adaptation of the example introduced there. However, we have a
true-concurrent semantics and consider and treat parallelism in interactions. In
subsequent work, Grønmo et al. [9] propose the conformance issue for aspects
in ensuring that the woven always leads to the same result regardless of the
order in which aspects are applied. When looking at the integration of several
model views or diagrams, Bowles and Bordbar [6] present a method of mapping
a design consisting of class diagrams, OCL constraints and sequence diagrams
into a mathematical model for detecting and analysing inconsistencies.

Checkik et al. [7] identify model integration operators, such as merge, weave,
and composition, and describe each operator along with its applicability. In
addition, they provide a set of desirable criteria (completeness, non-redundancy,
minimality, totality, soundness) to evaluate the merge operator. This is a direc-
tion orthogonal to our research and remains an area for future investigation.

8 Conclusion

This paper presents an automated method for sequence diagram composition.
The outline of the method involves the creation of logical constraints that
uniquely identify each component sequence diagram as an instance of the meta-
model. To combine the models, logical constraints that synchronise the two mod-
els are produced. Some of these logical constraints declare matching elements and
some are to enforce behaviour involved in the composition, such as specifying
behaviour that should never occur or sequences of events that must occur in a
given order. This makes it possible for a designer to give priority to certain spec-
ified interactions, which is considered in the solution by eliminating unwanted
traces from an initial matched model obtained.

To ensure correctness of the composition process, we have formalised the
semantics of the composition with the help of labelled event structures. The
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result obtained automatically with Alloy preserves our formal interpretation
of parallel composition with synchronisation glue. Our Alloy-based automated
method of composition has been implemented as an Eclipse plugin for the com-
position of sequence diagrams. Throughout the paper a small example of com-
posing sequence diagrams inspired by an example from [10] related to weaving
aspects is used.
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Abstract. Power electronics is an active area of research which has
widespread applications in safety and cost critical domains such as power
grids, biomedical devices and avionics systems. The complexity of power
electronic systems is rapidly reaching a point where it will become diffi-
cult to verify the correctness and robustness of underlying designs. In this
paper, we propose to use a recent formalization of signal-flow-graphs in
higher-order-logic for the formal analysis of power electronic converters,
which are the foremost components of modern power electronic systems.
In particular, we demonstrate the necessary steps to formally reason
about the critical properties (e.g., efficiency, stability and resonance)
of power electronic converters by using their corresponding signal-flow-
graph based high-level models. In order to demonstrate the utilization
of the proposed infrastructure, we present the formal analysis of a cou-
ple of widely used power converters, namely a pulse width modulation
push-pull DC-DC converter and a 1-boost cell DC-DC converter.

1 Introduction

Power electronic circuits are networks composed of electronic components and
semiconductor devices which are connected together to form a functioning
machine or an operational procedure. Nowadays, power electronics is a rapidly
expanding field in electrical engineering, where power electronic devices are inte-
gral part of our everyday tasks at home, at work and in industrial settings [17].
For example, power electronic converters have found widespread applications
in petrochemical [18], water-power stations [17], transportation [3], renewable-
energy sources [4] and reactive-power compensators [17]. In the last few decades,
high-power devices have been one of the most active areas in research and devel-
opment of power electronics. Several industrial processes have increased their
power needs which are mainly driven by the economy of scale (i.e., production
levels and efficiency). In order to cope with future challenges, new paradigms
have been developed such as power semiconductors, converter topologies and
control methods. As a result, the verification and validation of such systems
have become challenging due to the increased design complexities and shorter
time-to-market.

One of the core steps in power electronic systems design process is the phys-
ical modeling of the circuit components. A significant portion of time is spent
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finding bugs through the validation of such models in order to minimize the
failure risks and monetary loss. In particular, this step is more important in
the applications, where failures directly lead to monetary loss and safety issues.
For example, power electronic convertors are used for pipeline pumps in the
petrochemical industry [18] and in grid integration of renewable-energy sources
[4]. Generally, there are several kinds of power electronic systems which need to
be analyzed; however, the focus of this paper is DC-DC power converts which
form the core of power electronic systems. The first step to analyze the behav-
ior of power electronic systems is to obtain the transfer function which relates
the input and output signals (voltage or current). Consequently, the test for the
stability (which ensures that the system output is always finite) and resonance
(which ensures the oscillation of input alternating current at certain frequencies)
conditions of the circuit are the foremost design criterion.

Once the stability and resonance of a circuit have been determined, the final
step is to obtain the circuit efficiency which is a ratio of output and input pow-
ers. One primary analytical approach is to compute the transfer function by
explicitly writing node and loop equations which can further be utilized to ana-
lyze some physical aspects of power electronic systems. Signal-flow graph (SFG)
theory (originally proposed by Mason [13]) has also been used to compute the
transfer function of power electronic systems. The main motivation of this choice
is inspired by its successful applications to model control systems with minimum
mathematical manipulations. Indeed, the problem of finding the transfer func-
tion reduces to the identification of forward paths and loops which further can
be plugged into the Mason’s gain formula (MSG) [14] (which provides an easy
way to find the transfer function). Traditionally, the analysis of complex power
electronic systems is performed using numerical simulation [24]. To measure the
effect of different initial conditions or parametric variation over the circuit oper-
ation, it is necessary to perform exhaustive simulations and tests. However, even
by doing this, there is no guarantee about the correctness of results, because
it is impossible to simulate the system for an infinite number of operating con-
ditions. Another issue of such analysis methods is the approximations in terms
of numerical accuracy and types (e.g., real or complex) of variables used to
encode the algorithms. For example, a MATLAB program [7] for computing
transfer functions treats system parameters as a string of characters; which is
indeed a complex-valued function. Considering the above mentioned verification
and analysis constraints, we believe that there is a dire need to build a frame-
work which can assist in designing accurate and high assurance power electronic
systems.

In recent years, formal methods based techniques (in particular model check-
ing and theorem proving) have been proven to be an effective approach to analyze
physical, hybrid and digital engineering systems (e.g., [12]). Despite the fact that
formal methods based techniques have the potential to analyze various aspects
of physical systems, it is rare to find the usage of formal methods to analyze
power electronic systems. The most relevant work for analyzing and modelling
power electronic systems using model checking is reported in [15]. However,
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the authors do not study the stability and resonance which are critical require-
ments in designing power electronic systems. Therefore, the main motivation of
our work is to fill this gap by proposing a generic framework to analyze power
converters. In particular, we review the main functions of our higher-order logic
formalization of signal-flow-graph theory along and the Mason’s gain formula [2].
We also formalize the notion of stability and resonance along with the formal
verification of some important properties such as the finiteness and the cardinal-
ity of the set of poles (complex-valued parameters at which the system becomes
unstable) and zeros (parameters which determine the resonance condition in
the system). In order to demonstrate the practical utilization of our work, we
formally verify the transfer functions of 1-boost cell DC-DC converter [24] and
push-pull pulse-width-modulation (PWM) DC-DC converter [9]. Consequently,
we derive the general stability and resonance conditions, which greatly simplifies
the verification for any given circuit configuration. Next, we verify the efficiency
of 1-boost cell DC-DC converter circuit. In our work, we use the HOL Light
theorem prover [8] due to its rich multivariate analysis libraries and interesting
related formalizations about Laplace transform [21] and Z-transform [20]. The
source code of our formalization is available for download [1] and can be utilized
by other researchers and engineers for further developments and the analysis of
various types of power engineering systems.

The rest of the paper is organized as follows: some fundamentals of signal-
flow-graph theory and the Mason’s gain formula are described in Sect. 2. In
Sect. 3, we highlight some definitions of our formalization of signal-flow-graph
theory and Mason’s gain formula along with the system properties. We present
the analysis of the 1-boost cell DC-DC and push-pull PWM DC-DC converters
in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Signal-Flow-Graph Theory and Mason’s Gain Formula

A signal-flow-graph (SFG) [13] is a special kind of directed graph which is widely
used to model engineering systems. Mathematically, it represents a set of linear
algebraic equations of the corresponding system. An SFG is a network in which
nodes are connected by directed branches. Every node in the network represents
a system variable and each branch represents the signal transmission from one
node to the other under the assumption that signals flow only in one direction.
An example of an SFG is shown in Fig. 2 consisting of five nodes. An input or
source node and an output or sink node are the ones which only have outgoing
branches and incoming branches, respectively (e.g., nodes 1 and 5 in Fig. 2). A
branch is a directed line from node i to j and the gain of each branch is called
the transmittance. A path is a traversal of connected branches from one node
to the other and if no node is crossed more than once and connects the input
to the output, then the path is called forward path, otherwise if it leads back
to itself without crossing any node more than once, it is considered as a closed
path or a loop. A loop containing only one node is called self loop and any two
loops in the SFG are said to be touching loops if they have any common node.
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Fig. 1. RC circuit

Fig. 2. Signal-flow-graph of RC circuit

The total gain of forward path and a loop can be computed by multiplying the
transmittances of each traversed branch.

The procedure for transforming power electronic circuits into a signal-flow-
graph is straightforward. We start by representing each variable of the circuit as
a node in the graph. Next, these nodes are interconnected depending upon their
physical behavior in a specific system configuration. The technique of driving-
point impedance (DPI) [19] is used to derive the transmittance of the graph
branches (capacitor or resistor). Indeed, the DPI analysis is based on the trans-
formation of circuit nodes to their Norton’s or Thevenin’s equivalent represen-
tation along with the application of the principal of superposition [6]. Moreover,
Kirchhoff’s voltage and current laws are used to derive the relations between
voltage and current. Kirchhoff’s current law or principle of conservation of elec-
tric charge states that at any node (junction) in an electrical circuit, the sum of
the currents flowing into that node is equal to the sum of currents flowing out
of that node. Kirchhoff’s voltage law or the principle of conservation of energy
implies that the directed sum of the potential differences around any closed
network is zero. For example, consider a simple RC circuit as shown in Fig. 1,
where vg is the input voltage, vc is the voltage across the capacitor, ic is the
capacitor current, iR is the resistor current, and vR is the output voltage. We
can transform this circuit into its equivalent signal-flow-graph by finding the set
of equations from the physical network of the circuit by first using: Kirchhoff’s
voltage and current laws for Eqs. 1 and 3, then the branch equations for the
capacitor and resistor for Eqs. 2 and 4. The next step consists in assigning to
each equation a signal (voltage or current) that will be represented as a node
representing each variable of the circuit as a node in the graph. Next, these
nodes are interconnected depending upon their physical behavior in a specific
system configuration. Note that for each signal-flow-graph a set of independent
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equations must be chosen, an equation must only be used once, and the variables
of interest must be represented.

vc = vg − vR (1)
ic = Csvc (2)

iR = ic (3)
vR = RiR (4)

where C is the capacitance, R is the resistance, and s is the Laplace Transform
variable (i.e., s = σ + jw). Finally, above mentioned results are used to connect
the nodes in Fig. 1, to produce the final SFG (Fig. 2). Note that the path from
node vg to node vR is a forward path whereas the path originating from node
vc, traversing ic, iR, vR and terminating at node vc forms a loop.

In the analysis of practical engineering systems, the main task is to character-
ize the relation among system input and output which is called transfer function.
The total transmittance or gain between two given nodes (usually input and out-
put) describes the transfer function of the corresponding system. In 1953, Mason
[13] proposed a computational procedure (also called Mason’s gain formula) to
obtain the total gain of any arbitrary signal-flow-graph. The formula is described
as follows [14]:

G =
∑

k

GkΔk

Δ
(5)

Δ = 1 −
∑

m

Pm1 +
∑

m

Pm2 −
∑

m

Pm3 + . . . + (−1)n
∑

. . . (6)

where Δ represents the determinant of the graph, Δk represents the value of
Δ for the part of the graph that is not touching the kth forward path and
it is called the cofactor of forward path k, Pmr is the gain product of mth

possible combination of r non-touching loops. The gain of each forward path is
represented by Gk.

For example, we can find the input to output transfer function for the SFG
of Fig. 2 using the MGF as follows:

vR

vg
=

RCs

1 + RCs
(7)

3 Formalization of Signal-Flow-Graph and Mason’s Gain

We model a single branch as a triplet (a, tab, b), where a, tab and b represent
the start node, the transmittance and the end node, respectively. Consequently,
a path can be modeled as a list of branches and furthermore an SFG can be
defined as a composition of a path along with the information about the total
number of nodes in the circuit and the source and the sink nodes at which we
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want to compute the transfer function. As mentioned before, nodes and trans-
mittance represent the system variables and gain, respectively. These parameters
are indeed complex valued, i.e., a, tab, c ∈ C in the context of power electronic
systems. However, the information about the nodes is just used to find properties
of signals (current) transmission and they do not appear in the gain and trans-
fer function computation using Mason’s gain formula. So, we adapted the same
approach as proposed by Mason [13], where nodes of an SFG are represented
by natural numbers (N). In order to simplify the reasoning process, we encode
the above information by defining three type abbreviations in HOL Light1,
i.e., branch, path and signal-flow-graph as follows:

Definition 1 (Branch, Path and SFG).

new type abbrev ("branch", ‘:N × C × N‘)
new type abbrev ("path", ‘:(branch)list‘)
new type abbrev ("sfg", ‘:path × N × N × N‘)

where the second, third, and the fourth elements of sfg represent the size, the
output node and the input node of a signal-flow-graph, respectively.

Our next main task is to find all the forward paths and loops from the source
node to the sink node given by the user. We implemented a search algorithm
proposed in [23] which considers each path only once during the search.

In our formalization, we add a skipping function which helps to ignore the
nodes which do not have any incoming branches. Indeed, we cannot find a loop
which contains a node that does not have incoming branches from the definition
of a feedback loop. Hence, the skipping function greatly improves the perfor-
mance of the search algorithm. Briefly, in our formalization, we take an SFG
and generate a matrix in which nodes are arranged in the first column and each
row represents the branches of the node under consideration. For feedback loops
extraction, we start the process by the first node of the SFG and we go through
all possible paths which start from the node under consideration and test for
each path whether it is a loop or not. In the next iteration, we go to the next
node of the graph and repeat the same process. For forward paths extraction,
we repeat a similar process, but we only consider the paths starting from the
source node rather than exploring all the nodes.

For the sake of conciseness, we present a list of some of the main functions of
our formalization of signal-flow-graph theory with a brief description in Table 1,
while more details can be found in [2].

Finally, we utilize the definitions described in Table 1 to formalize the Mason’s
gain formula given in Eq. 5, as follows:

Definition 2 (Mason’s gain formula).
� ∀(system : sfg). Mason Gain system =

PRODUCT FORWARD DELTA (EC system) (FC system)
DETERMINANT (EC system)

1 In this paper, we use minimal HOL Light syntax in the presentation of definitions
and theorems to improve the readability.
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Table 1. Some important functions of SFG formalization

where the function Mason Gain accepts an SFG (i.e., system, which is a model
of the given system in our case) and computes the Mason’s gain as given in
Eq. 5. Note that the function PRODUCT FORWARD DELTA accepts the list of loops
(computed by EC) and forward paths (computed by FC) in the system and com-
putes

∑

k∈system

GkΔk, where Gk and Δk represent, respectively, the product of

all forward path gains and the determinant of the kth forward path considering
the elimination of all loops touching the kth forward path as described in Sect. 2.
The function DETERMINANT takes the list of loops and gives the determinant of
the system as described in Eq. (6).

In practice, the physical behavior of any power electronic system is described
by the transmittance of each path (or a single branch) involved in the signal-
flow-graph. We can consider each path as a system component which processes
the input current signal to achieve the desired functionality. Indeed, the SFG of
the given power electronic system is expressed as a function of the parameter “s”
and we need to consider this physical aspect in the formalization of the transfer
function which describe the overall behavior of the system. It is mentioned in
Sect. 2 that the Mason’s gain formula describes the total gain between the input
and the output of the system and hence it can be used to describe the transfer
function of the power electronic system provided the given signal-flow-graph can
be described as a function of a complex parameter “s”. We use the Mason’s gain
formalization and the above description to formalize the transfer function of a
given power electronic system as follows:
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Definition 3 (System Transfer Function).
� ∀ system. transfer function system = Mason Gain (λs. system s)

where the function transfer function accepts a system which has type
C → sfg and returns a complex (C) number which represents the transfer func-
tion of the power electronic system (i.e., system).

We have automatized the different steps for finding the transfer function of
any arbitrary signal-flow-graph by developing some new simplification tactics
using derived rules and tactics of HOL Light. In terms of automation, these
tactics can be divided into three varieties: the first proves the extracted list of
feedbacks, the second proves the extracted list of forward paths, and the third
proves Mason’s gain formula. In Table 2, we provide some of these tactics with
corresponding descriptions. Using these tactics we prove all transfer functions
given in [1]. The availability of these tactics provides the effective automation to
the user, so that an application to a particular system does not involve the painful
manual proofs often required with interactive theorem proving. Developing such
tactics represents a first step towards building an automated tool to carry the
verification of transfer functions of power electronic circuits on the basis of their
signal-flow-graphs representations.

Table 2. HOL automation tactics

3.1 Formalization of System Properties

In order to verify that the given model meets its specification, we need to build
the foundations based on which we can formally describe the main system prop-
erties (i.e., stability, resonance) in HOL. Physically, the stability and resonance
are concerned with the identification of all the values of s for which the system
transfer function becomes infinite and zero, respectively. In the control theory
literature, these values are called system poles and system zeros which can be
computed by the denominator and numerator of the transfer function, respec-
tively. Furthermore, all poles and zeros need to be inside the unit circle which
means that their magnitude should be less or equal to 1. We formalize the above
mentioned informal description of the system properties in HOL as follows:
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Definition 4 (System Poles).
� ∀ system. poles system = {s | denominator (system s) = 0}
� ∀ system. zeros system = {s | numerator (system s) = 0}

where the functions poles and zeros take the system as a parameter and return
the set of poles and zeros, respectively. Next, we formalize the notion of stability
and resonance as follows:

Definition 5 (System Stability and Resonance).

� ∀ system. is stable system [p0, ..., pn] ⇔
∀pi. pi ∈ (poles system) ∧ ‖ pi ‖≤ 1

� ∀ system. is resonant system [z0, ..., zn] ⇔
∀zi. zi ∈ (zeros system) ∧ ‖ zi ‖≤ 1

where the predicate is stable accepts the power electronic system signal-flow-
graph model (i.e., system) and a list of poles [p0, ..., pn] and verifies that each
element pi is indeed a pole of the system and its corresponding magnitude
(i.e., norm of a complex number, ‖ pi ‖) is smaller or equal to 1. The predi-
cate is resonant is defined in a similar way by considering the list of zeros
instead of the list of poles of the system.

Next, we verify an important theorem which describes that if the denominator
or the numerator of the transfer function is a polynomial of order n, it will always
have a finite number of poles or zeros and the cardinality of the set of poles and
zeros can only be equal or less than n.

Theorem 1 (Finiteness and Cardinality of poles and zeros).

� ∀n c system. ¬(∀ i. i ∈ {0, 1, ..., n} ⇒ c i = 0)∧
(∀ z. denominator (system z) =

∑
i∈{0,1,...,n}(λi. c i ∗ zi)) =⇒

FINITE (poles (system z)) ∧ CARD (poles (system z)) ≤ n

where n represents the order of the complex polynomial function c. The functions
FINITE and CARD, represent the finiteness and cardinality of a set, respectively.
We also prove the same theorem for the set of zeros of a system, where more
details can be found at [1].

This concludes the signal-flow-graph formalization and system properties. In
the next section, we will show how to apply our formalization in practice by
presenting the formal analysis of two important topologies of power converters
using the previously presented theorems and definitions.
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4 Application: Power Electronics Systems

Power electronics has found an important place in modern technology being a
core of power and energy control. Generally, the interaction between the utility
and the load depends on the topology of the power system. Most of electronic
supplies are switching semiconductor converters thanks to theirs efficiency. Power
electronic converters are constructed by electronic devices, driving, protection
and control circuits. In particular, DC-DC converters change the DC voltage and
current levels using the switching mode of semiconductor devices. As a rule, they
provide means for changing and stabilizing the output DC voltage. A DC-DC
converter consists of the switching circuitry and the filter section, and power
converters with feedback are known as regulators. Power electronics converters
must be suitably controlled to supply the voltages, currents, or frequency ranges
needed for the load and to guarantee the requested power quality. In the following
subsections, we present the formal analyses of two topologies of power electronic
circuits in higher-order-logic using the previous formalization.

4.1 1-Boost Cell Interleaved DC-DC Converter

Interleaved DC-DC converters are composed of N-boost cells connected in paral-
lel which operate in an interleaved fashion. The elementary cell can be a two-level
or multi-level DC-DC converter. The elementary DC-DC cells are driven with
pulse width modulation in which pulses are shifted by 2π

N radians. Some of the
advantages of interleaved parallel converters are the ripple cancellation both in
the input and output waveforms and lower value of ripple amplitude. Interleaved
DC-DC converter are widely used in various critical power conversion applica-
tions, such as voltage regulation modules [10], and automotive applications. Thus
they have been used in aircrafts, to increase flight performance (e.g., thrust and
maneuverability) and enhance onboard mission capability (e.g., sensors, weapons
and communication) [11].

In [24], the authors proposed to use SFG to model N-boost cells interleaved
DC-DC converters and they illustrate the analysis for the case of 1-boost cell,
2-boost cells and 3-boost cells interleaved parallel converters. We use our pro-
posed framework to formally analyze 1-boost cell, 2-boost cells, and 3-boost cells
interleaved parallel converters. For the sake of conciseness, we present the analy-
sis of a 1-boost cell interleaved parallel converter only and more details about
the 2-boost and 3-boost cells interleaved converters can be found in [1].

The circuit representation of 1-boost cell interleaved parallel DC-DC con-
verter system is shown in Fig. 3. The circuit parameters L1, D1, and r1 represent
the inductance of individual boost cell, the duty ratios of the 1st state, and the
inductor series resistance, respectively. The parameters R and C are the load
resistance and the circuit capacitor, respectively. The parameters Vg, Ig and
V1 are the supply voltage, the source current and the voltage across inductor,
respectively. Similarly, V0 and I0 are the output voltage and the output cur-
rent, respectively. The SFG model of 1-boost cell interleaved parallel DC-DC
converter is shown in Fig. 4.
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Fig. 3. 1-Boost Cell DC-DC Converter Fig. 4. SFG of 1-Boost Cell DC-DC
Converter

Our main interest is to evaluate the circuit behavior at the output node which
is represented by node 6©2, when the signal is applied at the input, i.e., node 1©.
We keep all above mentioned parameters in the general form which further can
be used to model different 1-boost cell DC-DC converter circuit configurations.
We formally define 1-boost cell DC-DC converter in HOL as follows:

Definition 6 (1-Boost Cell DC DC Converter Model).

� ∀ C R D1 r1 L1 s ∈ C.
DC model R C D1 r1 L1 s =

([(1, 1, 2); (2, 1
s∗L1+r1

, 3); (3, 1, 4); (3, D1, 5); (5, R
1+s∗R∗C , 6); (6,−D1, 2)], 6, 6, 1)

where DC model accepts complex-valued circuit parameters, and returns the
signal-flow-graph which has 6 nodes, where the output node is 6© and the input
node is 1© as shown in Fig. 4. Next, we verify the transfer function of the 1-boost
cell DC-DC converter circuit as follows:

Theorem 2 (Transfer Function of 1-Boost Cell DC DC Converter).

� ∀ C R D1 r1 L1 s ∈ C.
(1 + s ∗ R ∗ C = 0) ∧ (s ∗ L1 + r1 = 0) =⇒
transfer function (DC model R C D1 r1 L1 s) =

D1 ∗ R

R ∗ C ∗ L1 ∗ s2 + (R ∗ C ∗ r1 + L1) ∗ s + r1 + D21 ∗ R

The proof of this theorem is mainly based on the extraction of forward paths and
feedback loops in the circuit and then using the Mason’s gain formula. We have
2 Here the output node has an outgoing branch that does not follow the conventional

designation of output (e.g., no outgoing branches). However, the transfer function is
the same as the one obtained by adding a new output node and connecting it to the
node 6© with transmittance equal to 1. Therefore, for the sake of simplicity, we did
not add a new node that does not have physical meaning in the circuit.
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made efforts to provide the effective automation using derived rules and tactics,
so that the application to a particular system does not involve the painful manual
proofs often required with interactive (higher-order logic) theorem proving. For
example, the formal proof of Theorem2 requires only three lines of HOL light
code. A brief summary of developed tactics can be found in [2] (Appendix I).

The efficiency of any system is the useful power output divided by the total
electrical power consumed. As the power in electronic circuit is the product of
the voltage (V ) and current (I), we can define the 1-boost cell DC-DC converter
efficiency as follows:

Definition 7 (1-Boost Cell DC DC Converter Efficiency).

� ∀ R C D1 r1 L1 s ∈ C.

Efficiency (DC model R C D1 r1 L1 s) =
I0 ∗ V0
Ig ∗ Vg

=
V0
Vg

∗ Vg
Ig

∗ I0
Vg

Repeating the same process for calculating the transfer function in Theorem2
we can compute the transfer functions of Ig

Vg
and I0

Vg
by replacing the output

node 5© by 4© and 6©, respectively.
Based on the three transfer functions and the Definition 7 of the efficiency,

we can prove the expression of the efficiency of 1-boost cell converter as follows:

Theorem 3 (1-Boost Cell DC DC Converter Efficiency).

� ∀ C R D1 r1 L1 s ∈ C.
(1 + s ∗ R ∗ C = 0) ∧ (s ∗ L1 + r1 = 0) ∧
(R ∗ C ∗ L1 ∗ s2 + (R ∗ C ∗ r1 + L1) ∗ s + r1 + D21 ∗ R = 0) =⇒
Efficiency (DC model R C D1 r1 L1 s) =

D21 ∗ R

R ∗ C ∗ L1 ∗ s2 + (R ∗ C ∗ r1 + L1) ∗ s + r1 + D21 ∗ R

The denominator of the transfer function of 1-boost cell DC-DC converter can
be represented as a second order polynomial which leads to the useful information
that the 1-boost cell DC-DC circuit can only have 2 poles at maximum according
to Theorem 1. Next, we present the verification of the stability conditions of the
1-boost cell DC-DC convertor circuit as follows:

Theorem 4 (Stability Conditions for 1-Boost Cell DC DC Converter).

� ∀G1 G2 G3 k1 k2 ∈ C.

‖ −(R∗C∗r1+L1)±
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 ‖≤ 1 ∧

(R∗C∗r1−L1)±
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 = 0 ∧

(L1−R∗C∗r1)±
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 = 0 ∧

=⇒ is stable (λs. (DC model R C D1 r1 L1 s)
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[−(R∗C∗r1+L1)−
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 ;

−(R∗C∗r1+L1)+
√

(R∗C∗r1+L1)2−4∗R∗C∗L1∗(r1+D21∗R)
2∗R∗C∗L1 ]

where ‖ . ‖ and √
. represent the complex norm and complex square root, respec-

tively. The first assumption is required to prove that both poles are inside the
unit circle, and the following two assumptions ensure that poles are not equal
to − r1

L1
, − 1

R∗C , respectively.
This concludes our HOL formal analysis of the 1-boost cell DC-DC converter

circuit. The source code of the circuit formalization and the analysis of the 2-
boost and 3-boost cells DC-DC converters circuits can be found in [1].

4.2 Pulse Width Modulation Push-Pull DC-DC Converter

Pulse width modulated (PWM) push-pull DC-DC converters are very popular in
modern power electronic supplies. They have many applications in some sensitive
and critical areas such as aerospace, transportation, and renewable energy [4].
Hence, a robust and secure stability analysis of this type of converter is extremely
important. A PWM constant-frequency control technique is considered as one
of the most widely used component in switched-mode DC-DC power supplies.
Voltage-mode and current-mode controllers allow for achieving a satisfactory
dynamic performance of DC-DC converters is considered as a DC-DC converter
operating under switched-load conditions.

The circuit of linearized model of the power stage with a variable load current
of PWM push-pull converter is shown in Fig. 5. In the circuit, vc is the voltage
across the capacitor C, vT is the averaged control voltage (input voltage), io
is the converter output current, vo is the converter output voltage, L is the
indicator, r is the equivalent averaged resistance in series with the inductor, and
rc is the equivalent series resistance of the capacitor.

Fig. 5. Linearized model of PWM
Push Pull DC-DC Converter

Fig. 6. SFG of PWM Push Pull DC-
DC Converter
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In [9], the authors proposed a block diagram of closed-loop of the circuit
(circuit with the gains of compensation and feedback loop from the output to
the input). The block diagram equivalent signal-flow-graph of PWM push-pull
converter without the control part is shown in Fig. 6. The SFG is composed of
7 nodes the input node is 1 (VT in [9]) and the output node is 4 (Vo in [9]).

Definition 8 (PWM Push Pull DC-DC Converter Model).
� ∀ C L r ky rc ki kv s ∈ C.

PWM model C L r ky rc ki kv s =
([(1, 1

L
, 2); (2, 1

s
, 3); (3, −(r+rc)

L
, 2); (3,−rc, 4); (3, 1

C
, 6); (5, rc, 4);

(5,− 1
C
, 6); (5, rc

L
, 2); (6, 1

s
, 7); (7,− 1

L
, 2); (7, 1, 4)], 7, 4, 1)

where PWM model accepts complex-valued circuit parameters, and returns the
signal-flow-graph which has a total number of 7 nodes where the output node is
4© and the input node is 1© as shown in Fig. 6.

Next, we verify the transfer function of the PWM push-pull DC-DC converter
circuit as follows:

Theorem 5 (Transfer Function of PWM).
� ∀ C L r rc s ∈ C.

(L ∗ C = 0) =⇒
transfer function PWM model C L r rc s =

1 − s ∗ C ∗ rc
C ∗ L ∗ s2 + (rc + r) ∗ C ∗ +1

Next, we present the verification of the stability conditions of the PWM push-
pull DC-DC converter circuit under the circuit global parameters as follows:

Theorem 6 (Stability Conditions for PWM).
� ∀ C L r rc ∈ C.

‖ −(r+rc)∗C∓
√

((r+rc)∗C)2−4∗C∗L
2∗C∗L ‖≤ 1 ∧

−(r+rc)∗C±
√

((r+rc)∗C)2−4∗C∗L
2∗C∗L = 0 ∧ L ∗ C = 0 =⇒

is stable (λs. PWM model C L r rc s ) s

[−(r+rc)∗C+
√

((r+rc)∗C)2−4∗C∗L
2∗C∗L ; −(r+rc)∗C−

√
((r+rc)∗C)2−4∗C∗L
2∗C∗L ]

The first assumption ensures that both poles are inside the unit circle, whereas
the second assumption is required to prove that the poles are not equal to zero.
Similarly, we verify the resonance condition for the PWM push-pull DC-DC
converter circuit as follows:

Theorem 7 (Resonant Conditions for PWM).
� ∀ C L r rc ∈ C.
‖ 1

C∗rc ‖≤ 1 ∧ rc = 0 ∧ L ∗ C = 0 =⇒
is resonant (λs. PWM model C L r rc s ) s [

1

C ∗ rc
]
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The assumptions in theorem ensure that the systems zero is inside the unit circle
and it is not equal to zero.

Note that the stability and resonance conditions are verified under the gen-
eral parameters of the PWM circuit (e.g., r, rc, L,...) and 1-boost cell circuit
(e.g., L1, D1, r1,...) which is not possible in the case of simulation. One of
the main strengths of the theorem proving based approach is to unveil all the
assumptions under which a theorem can be verified. For example, most of the
assumptions in Theorems 4, 6, and 7 are not mentioned in the paper-and-pencil
analyses reported in [9,24]. However, without these assumptions these theorems
cannot be verified. Moreover, our results are verified under universal quanti-
fiers and the problem of finding the stability and resonance conditions reduces
to just ensuring that the values of the system parameters satisfy the assump-
tions. Remark that the signal-flow-graph models of the two applications involve,
respectively, 6 and 8 nodes SFGs, however, our formalization is general and can
be applied for an arbitrary number of nodes. For example, in [5] we have formally
verified the transfer function of an application which consists of 20 nodes and
14 complex-valued parameters.

We believe that the formal analysis of above mentioned two real-world power
electronic systems provides two main indications: theorem proving systems have
reached to the maturity, where complex physical models can be expressed with
less efforts than ever before; and formal methods can assist in the verification
of power electronic systems which are rapidly reaching a point where it will
be impossible to verify correctness of the design and its robustness. In reality,
verification tools must be largely automatic to be effectively adopted which limits
the usage of interactive theorem prover in industry. On the other hand, computer
algebra systems (CASs), e.g., Mathematica, are more popular than theorem
provers. The most important reason is that CAS tools are easier to use, and
are also increasingly applied in education, which is not the case for theorem
provers. Another important factor is the rapidity of CAS tools compared to
theorem provers. However, higher-order-logic theorem proving systems are more
precise and reliable. Our reported work can be considered as a one step towards
an ultimate goal of building automatic tools which make use of HOL theorem
provers as a certification tool in the design and analysis cycles of safety-critical
real-world systems from different engineering and physical science disciplines
(e.g., signal processing, control systems, power electronics, biology, optical and
mechanical engineering).

5 Conclusion

In this paper, we reported a new application of formal methods in the domain of
power electronics. We presented a formal analysis framework based on higher-
order logic which provides the required expressiveness and soundness to formally
model and verify physical aspects of power electronic systems. In particular, we
presented an overview of our formalization of the signal-flow-graph theory along
with the Mason’s gain formula and transfer functions. Similarly, we presented the
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formalization of the properties of the power electronic systems. Consequently,
we derive the transfer function of two real-world power electronic applications
which are 1-boost cell DC-DC converter and PWM push pull DC-DC converter.
Finally, we described the formal analysis of the stability and resonance conditions
of these two applications.

Our immediate future work is to formally verify a couple of key properties
about the forward and feedback paths extraction: (1) each path is extracted
only once; (2) the transfer function of transposed SFG [16] is the same as the
original one. This requires the formalization of undirected signal-flow-graph [22].
We also plan to verify more complex power electronic engineering systems along
with the formal relation among the signal-flow-graph representation and the
Z-transform [20] and the Laplace Transform [21]. A potential utilization of our
formalization and developed automation tactics is to build a framework to certify
the results produced by informal tools such as MATLAB based SFG analysis
program (available at [7]).
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Abstract. Dynamic reconfigurations that modify the architecture of
component-based systems without incurring any system downtime need
to preserve the architectural consistency. In this context, we propose a
reconfiguration model based on Hoare logic using sequences and (unlike
most of the related work on reconfigurations) the alternative and the
repetitive constructs.Using primitive reconfiguration operations as build-
ing blocks, this model takes advantage of the predicate-based seman-
tics of programming language constructs and weakest preconditions to
treat dynamic reconfigurations in a manner that preserves configura-
tion consistency. Then, after enriching the model with interpreted con-
figurations and reconfigurations in a consistency compatible manner, a
conformance relation is exploited to validate component systems’ imple-
mentations within the environment supporting the Fractal and FraSCAti
frameworks. A practical contribution consists of promising experimental
results obtained thanks to our implementations, notably on a cloud-based
multi-tier hosting environment model managed as a component system.

1 Introduction

Dynamic reconfigurations that modify the architecture of self-adaptive [1]
component-based systems without incurring any system downtime must happen
not only in suitable circumstances, but also need to preserve the architectural
consistency. Whereas the former can be ensured by adaptation policies [1,2], the
latter is directly related to the definition of reconfigurations and to the reconfig-
uration ordering/protocol [3,4].

In [3], it is assumed that the reconfigurations always make the component
assembly evolve from one consistent architecture to another consistent architec-
ture, only through a path of architecturally consistent architectures. However,
primitive reconfigurations like unbind, stop, etc. may disrupt such a path. With
relation to consistency constraints defined in [5] over component-based archi-
tectures, their preservation of the system under scrutiny was uneasy to prove,
mostly because of the lack of precise semantics for primitive reconfiguration oper-
ations. Therefore, when considering more complicated reconfigurations composed
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of sequences, repetitions, or choices over primitive reconfiguration operations, to
address the above-mentioned issue, we propose to express reconfigurations’ pre-
conditions and postconditions using the concept of weakest precondition [6]. This
precise and concise formalism allows us to express primitive and non primitive
guarded reconfigurations; this is the first contribution simplifying both reconfig-
uration protocols and adaptation policies.

Then, after enriching the model with interpreted configurations and reconfig-
urations in a consistency-compatible way, a conformance relation is exploited to
validate implementations of a component architectural model developed within
our architecture manager supporting the Fractal [7] and FraSCAti [8] frameworks.

This second practical contribution allows us, not only, to simulate a desired
run of a system being reconfigured, but, also, to generate all (or a subset of the)
possible reconfiguration combinations useful, for example, for a (bounded) reach-
ability analysis. The paper reports on promising experimental results obtained
thanks to our implementations, notably on a cloud-based multi-tier application
hosting environment model managed as a component software architecture.

The paper is organised as follows: Sect. 2 presents, as a case study, a cloud-
based multi-tier application hosting environment managed as a component-based
system. Background information on our component-based reconfiguration model,
as well as elements of operational semantics are given in Sect. 3. In Sect. 4 a
richer interpreted reconfiguration model is shown to be weakly simulated by
the more abstract model; nevertheless, this simulation respects non-divergency.
Using several case studies, Sect. 5 describes conformant implementations of the
interpreted model within different environments. Section 6 presents related work
and our conclusion.

2 Case Study

Internet service providers and telecommunications operators tend more and more
to define themselves as cloud providers. In this context, automation of software
and (virtual) hardware installation and configuration is paramount. It is not
enough for an application to be cloud-ready; it has to be scalable and scalability
mechanisms need to be integrated in the core of the cloud management system.

virtualMachine

httpServer appServer dataServer

osObs

httpObs
appObs

dataObs

Fig. 1. Managed Virtual Machine with
Three-tier Application Components

We consider a typical three-tier
web application using a front-end
web server, a middle-ware application
server, and a back-end data providing
service such as a database or a data
store. Figure 1 shows a single virtual
machine (or VM ) hosting together the
three services of such an application.
The VM is represented as a composite
component virtualMachine containing sub-components representing each ser-
vice (httpServer, appServer, and dataServer) of the application. Each of the
service sub-component has two provided interfaces: one to provide its service
and another one used to monitor the service.
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Furthermore, the VM of Fig. 1 also contains four observers, that are sub-
components used to monitor services. The sub-component osObs is used to mon-
itor the Operating System of the VM. It is also bound to the sub-components
httpObs, appObs, and dataObs used respectively to monitor the services of the
httpServer, appServer, and dataServer sub-components. Finally, the VM com-
posite component itself has two provided interfaces: one used to provide services
and a second one used for monitoring.

Of course, a VM does not have to be monitored, nor have to host the three
types of services. Figure 2 illustrates a cloud environment, clouEnv, containing
a VM used for development purpose (vmDev) that contains the three tiers of
the application without being monitored; such a VM is called unmanaged. The
three other VM are all monitored, i.e., managed, and each contains a tier of the
application. The reader can note that each of the managed VM contains only
the observers responsible for monitoring the operating system and the type of
service provided. The cloud environment has three provided interfaces: two to
provide its service, whether it is or not in a development version, and another
one, used for monitoring, connected to a sub-component monitorObs bound to
all the monitoring interfaces of the managed VM.

cloudEnv

vmHttp

httpServer

osObs httpObs

vmApp

appServer

osObs appObs

vmData

dataServer

osObs dataObs
vmDev

httpServer appServer dataServer

monitorObs

Fig. 2. Cloud Environment Example

A cloud provider
must be able to pro-
vide on-demand (sets
of) VMs configured
with the right service
components and the
appropriate monitor-
ing. In this context,
we study the provi-
sioning of a single
VM as illustrated in
Fig. 1. Depending on
the services to pro-

vide and the monitoring state (managed vs unmanaged) the necessary com-
ponents should be added. During the life cycle of the VM some configuration
changes can happen; we consider them as reconfigurations of a component-based
system. In this context, the challenge consists in performing adequate dynamic
reconfigurations with minimum communication overhead, while avoiding recon-
figurations that would lead to unwanted behaviours.

3 Component-Based Architecture

3.1 Configurations and Reconfigurations

Component models can be very heterogeneous. Most of them consider software
components that can be seen as black boxes (or grey boxes if some of their inner
features are visible) having fully-described interfaces. Behaviours and interac-
tions are specified using components’ definitions and their interfaces. In this
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section, we revisit the architectural reconfiguration model introduced in [5,9]. In
general, the system configuration is the specific definition of the elements that
define or prescribe what a system is composed of, while a reconfiguration can be
seen as a transition from a configuration to another.

Following [9], a configuration is defined to be a set of architectural elements
(components, required or provided interfaces, and parameters) together with
relations to structure and to link them.

Definition 1 (Configuration). A configuration c is a tuple 〈Elem,Rel〉 where

– Elem = Components � Interfaces � Parameters � Types is a set of
architectural elements, such that

• Components is a non-empty set of the core entities, i.e. components;
• Interfaces = RequiredInts � ProvidedInts is a finite set of the

(required and provided) interfaces;
• Parameters is a finite set of component parameters;
• Types = ITypes � PTypes is a finite set of the interface types and the

parameter data types;

– Rel =
{

Container � ContainerType � Contingency
� Parent � Binding � Delegate � State � V alue

is a set of architectural relations which link architectural elements, such that
• Container : Interfaces � Parameters → Components is a total func-

tion giving the component which supplies the considered interface or the
component of a considered parameter;

• ContainerType : Interfaces � Parameters → Types is a total func-
tion that associates a type to each (required or provided) interface and
to each parameter;

• Contingency : RequiredInts → {mandatory, optional} is a total func-
tion indicating whether each required interface is mandatory or optional;

• Parent ⊆ Components × Components is a relation linking a sub-
component to the corresponding composite component1;

• Binding : ProvidedInts → RequiredInts is a partial function which
binds together a provided interface and a required one;

• Delegate : Interfaces → Interfaces is a partial function to express
delegation links;

• State : Components → {started, stopped} is a total function giving the
status of instantiated components;

• V alue : Parameters → {t|t ∈ PType} is a total function which gives
the current value (of type t ∈ PType) of each parameter.

We also introduce a set CP of configuration propositions which are con-
straints on the architectural elements and the relations between them. These
1 For any (p, q) ∈ Parent, we say that q has a sub-component p, i.e. p is a child of q.

Shared components (sub-components of multiple enclosing composite components)
can have more than one parent.
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propositions are specified using first-order logic formulae [10]. The interpreta-
tion of functions, relations, and predicates over Elem is done according to basic
definitions in [10] and Definition. 1. The interested reader is referred to [5].

Let C = {c, c1, c2, . . .} be a set of configurations. An interpretation function
l : C → CP gives the largest conjunction of cp ∈ CP evaluated to true on c ∈ C.
We say that a configuration c = 〈Elem,Rel〉 satisfies cp ∈ CP , when l(c) ⇒ cp;
in this case, cp is valid on c, otherwise, c does not satisfy cp.

Among the configuration propositions, the architectural consistency cons-
traints CC in Table 1 express requirements on component assembly common to
all the component architectures [5]. Intuitively,

– a component supplies, at least, one provided interface (CC.1);
– the composite components have no parameter (CC.2);
– a sub-component must not include its own parent component (CC.3);
– two bound interfaces must have the same interface type (CC.4) and their

containers are sub-components of the same composite (CC.5);
– when binding two interfaces, there is a need to ensure that they have not been

involved in a delegation yet (CC.6); similarly, when establishing a delegation
link between two interfaces, the specifier must ensure that they have not yet
been involved in a binding (CC.7);

– a provided (resp. required) interface of a sub-component is delegated to at
most one provided (resp. required) interface of its parent component (CC.8),
(CC.9) and (CC.11); the interfaces involved in the delegation must have the
same interface type (CC.10); and

– a component is started only if its mandatory required interfaces are bound or
delegated (CC.12).

Definition 2 (Consistent configuration). Let c = 〈Elem,Rel〉 be a config-
uration and CC the consistency constraints. The configuration c is consistent,
written consistent(c), if l(c) ⇒ CC. We write consistent(C) when ∀c ∈ C.
consistent(c).

Table 1. Consistency Constraints
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3.2 Reconfiguration Model and Consistency Propagation

Reconfigurations make the component-based architecture evolve dynamically.
They are composed of primitive operations such as instantiation/destruction
(new/destroy) of components; addition/removal (add/remove) of components;
binding/unbinding (bind/unbind) of component interfaces; starting/stopping
(start/stop) components; setting components’ parameters values (update). These
primitive operations obey pre/post predicates. For example, before adding a
sub-component comp1 to a composite comp2, one must verify, as in Table 2, that
(a) comp1 and comp2 exist (2) and are different (3), (b) comp2 is not a descendant
of comp1 (4), and (c) comp2 has no parameter (5). When these preconditions are
met, the postcondition consists in adding (comp1, comp2) to the Parent relation,
as expressed by Radd = Parent ∪ {(comp1, comp2)} (1).

Table 2. Preconditions of the add primitive reconfiguration operation

Inspired by the predicate-based semantics of programming language con-
structs [11], we consider a reconfiguration operation ope, and two configurations
c and c′ such that the transition between c and c′ is performed using ope (denoted
by c

ope→ c′). Then, given R, some conditions on the configuration of the system
under scrutiny, the notation wp(ope,R) denotes, as in [6], the weakest precondi-
tion for the configuration c such that activation of ope can occur and, if so, is
guaranteed to lead to c′ satisfying the postcondition R. More formally, in our
case, if l(c) ⇒ wp(ope,R) and c

ope→ c′ then l(c′) ⇒ R. Therefore, considering
the add primitive reconfiguration operation whose preconditions are displayed
in Table 2, the weakest precondition wp(add,Radd) is the conjunction of precon-
ditions (2) to (5).

Inspired by [6] and using the same notations, we propose in Table 3 the
grammar of axiom <guarded reconfiguration> for guarded reconfigurations. Let
<ope> represent a primitive reconfiguration operation, also called primitive
statement. We extend the set of primitive reconfiguration operations with the
skip operation, which does not induce any change on a given configuration.
Hence, for any postcondition R, we have wp(skip,R) = R. Afterwards, like in [6],
the semantics of the “;” operator is given by wp(S1;S2, R) = wp(S1, wp(S2, R))
where S1 and S2 are statements.

Guarded reconfiguration sets are used to define the alternative and the repet-
itive constructs; these sets are not statements. In a nutshell, the alternative con-
struct selects for execution only guarded lists with a true guard, whereas, the
repetitive construct selects for execution guarded lists with a true guard and is
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Table 3. Guarded reconfigurations grammar

<guarded reconfiguration> ::= <guard> → <guarded list>

<guard> ::= <boolean expression>

<guarded list> ::=

<guarded reconfiguration set> ::= <guarded reconfiguration> {[] <guarded reconfiguration>}
<alternative construct> ::= if <guarded reconfiguration set> fi

<repetitive construct> ::= do <guarded reconfiguration set> od

::= <alternative construct> | <repetitive construct> | <ope>

repeated until none of the guards is true. If a guarded reconfiguration set is made
of more than one guarded reconfiguration, they are separated by the [] operator2

To present the semantics of the alternative construct, let IF denote if B1 →
S1[] . . . []Bn → Sn fi and BB denote (∃i : 1 ≤ i ≤ n : Bi), then wp(IF,R) =
BB ∧ (∀i : 1 ≤ i ≤ n : Bi ⇒ wp(Si, R)). For the repetitive construct, let DO
denote do B1 → S1[] . . . []Bn → Sn do. Let H0(R) = R ∧ ¬BB and for k > 0,
Hk(R) = wp(IF,Hk−1(R)) ∨ H0(R), then wp(DO,R) = ∃k : k ≥ 0 : Hk(R).
Intuitively, Hk(R) is the weakest precondition guaranteeing termination after at
most k selections of a guarded list, leaving the system in a configuration such
that R holds. Let Rrun = R ∪ {run} be a set of operations, where R is a finite
set of guarded reconfigurations instantiated wrt. the system under consideration,
and run is the name of a generic action representing all the running operations3

of the component-based system.

Definition 3 (Reconfiguration model). The operational semantics of a
component-based system is defined by the labelled transition system
S = 〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of configurations, C0 ⊆ C
is a set of initial configurations, → ⊆ C×Rrun ×C is the reconfiguration relation
obeying wp() predicates, and l : C → CP is a total interpretation function.

Let us note c
ope→ c′ for (c, ope, c′) ∈→. Given the model S = 〈C, C0,Rrun ,→, l〉,

a path σ of S is a sequence of configurations c0, c1, c2, . . . such that ∀i ≥ 0. ∃ opei ∈
Rrun.(ci

opei→ ci+1). An execution is a path σ in Σ s.t. σ(0) ∈ C0. We write σ(i) to
denote the i-th configurationofσ.Thenotationσi denotes the suffixpathσ(i), σ(i+
1), . . ., and σj

i denotes the segment path σ(i), σ(i + 1), . . . , σ(j − 1), σ(j). Let Σ
denote the set of paths, and Σf (⊆ Σ) the set of finite paths. A configuration c′

is reachable from c when there is a path σ = c0, c1, . . . , cn in Σf s.t. c = c0 and
c′ = cn with n ≥ 0. Let c be a configuration, the set of all configurations reachable
from c is denoted reach(c). This notion can be lifted from configurations to sets of
configurations by reach(C) = {reach(c) | c ∈ C}.

Proposition 1 (Consistency propagation). Given C0 ⊆ C, consistent(C0)
implies consistent(reach(C0)).
2 As in [6], the order in which guarded reconfigurations appear is semantically irrelevant.
3 The normal running of different components also changes the architecture, e.g., by

modifying parameter values or stopping components.
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Proof (sketch). We start the proof (see [12] for a more complete proof) by show-
ing that each primitive operation ope preserves configuration consistency. We
use this result to establish (by induction) that a guarded reconfiguration having
a sequence of primitive statements in its guarded list also preserves consistency.

This allows us to show that guarded reconfigurations having a statement based
on a guarded reconfiguration set made only of primitive statements (G → fi grs fi
or G → do grs od, where grs denotes B0 → ope0[]B1 → ope1[] . . . []Bn → open)
also preserve consistency using only hypothesis on the statements’ preconditions
and postconditions.

Therefore, with the same reasoning, considering general (i.e., primitive or non
primitive) statements instead of only primitive ones and using only hypothesis
on statements’ preconditions and postconditions, we can prove that consistency
is preserved a) for guarded reconfigurations having a guarded list composed
of a sequence of (non primitive) statements (G → S0;S1; . . . ;Sn) and b) for
guarded reconfigurations having as guarded list a statement (G → fi grs fi or
G → do grs od, where grs denotes B0 → S0[]B1 → S1[] . . . []Bn → Sn). ��

4 Interpreted Architecture Model

In the specification model, primitive operations and guarded reconfigurations
were left abstract enough and run was uninterpreted. A formal semantics for
the component-based system with interpreted operations can be obtained by
enriching the configurations with more precise memory states and the effect of
these actions upon memory.

4.1 Interpreted Configurations and Reconfigurations

Let us consider a set (infinite, in general) GM = {u, ...} of shared global memory
states, and a set (infinite, in general) LM = {v, ...} of memory states local to a
given component. These memory states are read and modified by the primitive
and non-primitive reconfigurations, and also by actions implementing run.

Interpreted configurations. In addition to already interpreted parameters and
interfaces (cf. [5] for more detail), the state of components can be described more
precisely by using local memory states. The set of the interpreted states of compo-
nents is the least set StateI s.t. if s1, . . . , sn are elements in StateI4, v1, . . . , vn ∈
LM are local memory states, then ((s1, v1), . . . , (sn, vn)) is in StateI . Then, the
set of the interpreted configurations CI is defined by GM × StateI .

Interpreted transitions. Our basic assumption is that all primitive actions
have a deterministic effect upon the local and global memory, always terminate
(either normally or exceptionally), and are effective. For each primitive recon-
figuration operation ope, the corresponding interpreted reconfiguration, denoted
by ope, has equivalent or stronger preconditions, such that all constructs behave
deterministically. A non-deterministic global behaviour is produced by the arbi-
trary interleaving of components.
4 Viewed as a relation.
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Formally, all the actions ope ∈ Rrun are interpreted as mappings ope
from GM × LM into itself. Additionally, there are some actions specific to the
interpretation, Rint, for example for testing guards. We say that I = (GM,LM,
(ope)ope∈Rrun∪Rint

) is an interpretation of the underlying Rrun. Let IRrun

denote the class of all interpretations. This construction leads to

Definition 4 (Interpreted reconfiguration model). The interpreted oper-
ational semantics of component-based system is defined by the labelled transi-
tion system SI = 〈CI , C0

I ,RrunI ,→I , lI〉 where CI is a set of configurations
together with their memory states, C0

I is a set of initial configurations, RrunI =
{ope | ope ∈ Rrun ∪ Rint}, →I ⊆ CI × RrunI × CI is the interpreted reconfigu-
ration relation, and lI : CI → CP is a total interpretation function.

It is easy to see that, by construction, consistent(C0
I). Moreover,

if consistent(c) and c
ope→I c′ then consistent(c′).

4.2 Compatible Interpretation

To establish links between the reconfiguration model and the corresponding
interpreted model, we propose to use a version of the classical τ -simulation quasi-
ordering [13], while relabeling the operations in Rint by τ . For all ope ∈ R∪{ε},
where ε denotes the empty word, we write c

ope⇒ c′ when there are n,m ≥ 0 such

that c
τnope τm

−→ c′.

Definition 5 (d-simulation). Let S1 = 〈C1, C0
1 , . . .〉 and S2 = 〈C2, C0

2 , . . .〉 be
two models over R. A binary relation �d⊆ C1 × C2 is a d-simulation iff, for all
ope in R ∪ {ε}, (c1, c2) ∈ �τ implies (1) whenever c1

ope⇒1 c′
1, then there exists

c′
2 ∈ C2 such that c2

ope⇒2 c′
2 and (c′

1, c
′
2) ∈ �d, and (2) c1 �ope⇒ implies c2 �ope→ .

We write S1 �d S2 when ∀c01 ∈ C0
1∃c02 ∈ C0

2 .(c01, c
0
2) ∈ �d.

Let us consider interpreted reconfiguration operations in RrunI and the corre-
sponding non-interpreted counterpart in Rrun. When relabelling the operations
in Rint by τ , we can state–modulo the overline notation–that the more abstract
model τ -simulates the interpreted model (because of the non-determinism when
testing guards in the non-interpreted model); nevertheless, this simulation
respects non-divergency.

Theorem 1 (Compatibility). SI �d S.

Proof (sketch). There are two cases for ope ∈ Rrun ∪Rint. As τ ’s covering oper-
ations in Rint are introduced to evaluate guards of sequences of guarded recon-
figurations, they do not form infinite cycles of τ -transitions. So, there always
must be a way out of these cycles, if any, by a transition of label ope.

By construction any primitive reconfiguration operation of the interpreted
model has preconditions equivalent to or stronger than its counterpart in the
non-interpreted model. This way, by using hypothesis on weakest preconditions
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in [6], we can prove that guarded reconfigurations composed of primitive state-
ments, G → s, with s ∈ RrunI\Rint have preconditions equivalent to or stronger
than the corresponding statement s ∈ Rrun. Consequently, starting from ini-
tial configurations, for any c1 ∈ CI , if consistent(c1) there is c2 ∈ C s.t.
consistent(c2), and if a guarded reconfiguration G → s is applied to c1 there
exists a guard G′, s.t. G ⇒ G′ and G′ → s applies to c2. Moreover, the consistent
target configurations are in �d too because of their guards.

If no ope can be performed in c1 ∈ CI after having tested some guards covered
by τ , c1 is not consistent, and consequently neither is c2 ∈ C. At this step,
only several primitive reconfigurations can be applied, as their preconditions are
equivalent, no ope can be performed in c2 either. ��

4.3 Property Preservation

Theorem 1 can be exploited for property preservation. For example, as the reach-
ability properties are compatible with �d, this leads us, consequently, to:
Proposition 2. If configuration c is not reachable in S, it is not reachable in
any SI . Conversely, if configuration c is reachable in S, there exists an inter-
pretation I such that c is reachable in SI .

In addition, safety properties expressed via non-reachability properties can
be ensured. Moreover, as a consequence of Theorem 1 and Propositions 1 and 2,
we can state:
Proposition 3. Let SI = 〈CI , C0

I ,RrunI ,→I , lI〉 be the interpreted model and
S = 〈C, C0,Rrun ,→, l〉 the specification model. Given C0

I ⊆ CI , if SI �d S then
consistent(C0

I) implies consistent(reach(C0
I)).

It must be noticed that differently from [3], we do not assume that the recon-
figurations always make evolve the component assembly from one consistent
architecture to another consistent architecture, only through a path of consis-
tent configurations. Indeed, this assumption seems to be too strong notably wrt.
primitive reconfigurations.

5 Implementation and Architecture Conformance

5.1 Implementation Protocol

We developed a prototype tool, contained in a java package named cbsdr5, sup-
porting the interpreted reconfiguration model to design and simulate component-
based systems with dynamic reconfigurations. Using generic java classes, we can
use our implementation to perform reconfigurations on applications deployed
using Fractal [7] or FraSCAti [8]. The Fractal framework is based on a hierar-
chical and reflective component model. Its goal is to reduce the development,
deployment, and maintenance costs of software systems in general6. FraSCAti is
an open-source implementation of the Service Component Architecture7 (SCA).
5 cbsdr stands for Component-Based System Dynamic Reconfiguration.
6 http://fractal.ow2.org/tutorial/index.html.
7 http://www.oasis-opencsa.org/sca.

http://fractal.ow2.org/tutorial/index.html
http://www.oasis-opencsa.org/sca
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It can be seen as a framework having a Fractal base with an extra layer imple-
menting SCA specifications. In [8], a smart home scenario illustrates the capa-
bilities and the various reconfigurations of the FraSCAti platform.

Figure 3 shows the cbsdr interface displaying a given state of the VM from
our running example developed using Fractal (top frame). The left frame shows
the various states of the run under scrutiny, whereas the bottom frame can be
used to display various information such as the evolution of parameters of the
model, console output, or the outcome of reconfigurations performed.

Fig. 3. Model of the VM component-based system displayed in our interface

Reconfiguration
Definitions

Component-Based 
System

Event 
Controller

Adaptation Policy 
Controller

Reflection 
Controller

Event 
Handler

Reflection
Policies

Enforcement
Policies

Adaptation
Policies

Generic Component-Based 
System Management

Event retrieval
Event notification
Configuration retrieval
Synchronization
Reconfiguration
File loading

Fig. 4. cbsdrImplementation Architecture

This interface allows the mon-
itoring of a component-based
system and the generation of
(external) events during a run
of cbsdr, but can also be used
to analyse the logs of a run
already performed. It is inter-
esting to note that primitive, as
well as, non primitive reconfig-
uration operations can be per-
formed and analysed.

Thanks to this applica-
tion, in addition to the above-
mentioned functionalities, we
are able to perform adaptations
using dynamic reconfigurations
triggered by temporal proper-

ties at runtime, as described in [2]. In this case, the implementation (see Fig. 4)
works as follows: (a) adaptation polices are loaded and applied using a control
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loop, (b) FTPL8 expressions are evaluated and (if any) candidate reconfigura-
tions are ordered by priority using fuzzy logic values embedded in adaptation
policies, (c) candidate reconfigurations are applied to the component-based sys-
tem model using our reconfiguration semantics in order to verify that the corre-
sponding target configuration does not violate any of the properties to enforce,
and (d) the target configuration obtained using the reconfiguration with highest
priority that does not violate any of the properties to enforce is applied to the
component based system using a protocol similar to the one described in [3].
The fact that we are using temporal properties based on architectural relations
as well as internal and external events allows us to significantly reduce commu-
nication overhead (a) by, as in [14], using decentralised evaluation of temporal
properties or (b) by allowing the user to submit simultaneous (external) events
to the system, as explained below.

5.2 Architecture Conformance

The reconfiguration model is a correct approximation of the more realistic inter-
preted implementation model. This fact can be expressed by using the notion of
conformance of the component architecture model. Basically, following the most
commonly used ioco relation in [15], an implementation SI is conformant to its
specification S if, after a trace of S, one should foresee the output of SI in S,
and the implementation is authorised to reach a state where it cannot produce
any output only if this is the case in the specification too.

Using various simulation relations permits expressing trace-inclusion-based
conformance and stronger conformance relations at the level of transition sys-
tems. Thus, thanks to the proof arguments of Theorem 1, and the subsequent
trace inclusion modulo τ , we have the following conformance result, with SIcbsdr

being the cbsdr implementation.

Proposition 4. SIcbsdr
is conformant to S.

5.3 Running Example

We consider a VM represented, as in Fig. 1, as a composite component
virtualMachine that may contain sub-components representing services
httpServer, appServer, or dataServer of an application. This VM may also
contain observers that are sub-components used to monitor services. The sub-
component osObs is used to monitor the Operating System of the VM and can
be bound to the sub-components httpObs, appObs, or dataObs used respec-
tively to monitor the services of the httpServer, appServer, and dataServer
sub-components.

The Fractal and FraSCAti versions of the VM example can be controlled
by our implementation using external events as init, manage, setdata, etc., to
8 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its

relation to Fractal-like components and to first-order integrity constraints over them.
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(respectively) initialise the VM, monitor the VM, or set the data server of the
VM up. If the VM is monitored, it is described as managed, otherwise it is said
to be unmanaged. Depending of the service to provide and the state of the VM
(managed vs. unmanaged), only the necessary component should be added.

For example, let us consider a managed VM providing only the HTTP service:
it contains the httpServer component and, since it is managed, it also contains
the osObs and the httpObs components. Therefore, the generation of the setdata
external event triggers (via adaptation policies) the addition of the dataServer
and dataObs components. Of course, if the initial VM was unmanaged, the
generation of the setdata external event would only result in the addition of
the dataServer component. Nevertheless, in this case (unmanaged HTTP VM),
the generation of the setdata and manage external events would result in a
VM containing all the components pertaining to a managed VM providing the
HTTP and the DATA services (i.e., httpServer, dataServer, osObs, httpObs,
and dataObs).

This is due to the fact that we use FTPL temporal logic expressions as
“after unsetdata ((always �) until setdata)” to guarantee that, in case of
opposite events like setdata and unsetdata, the corresponding expression is poten-
tially true until the occurrence of the opposite events. This way, the ordered
sequence of events init, manage, sethttp, setapp, and setdata is equivalent to
a single communication containing all these events at once; this significantly
reduces communication overhead.

5.4 Other Examples

To illustrate how the cbsdr tool works, we present below two examples: a small
http server, and a model of the location component of the cycab, an autonomous
vehicle. This latter example confirms that not only pertinent reconfigurations
can be triggered, but also reconfigurations leading to unwanted behaviours are
avoided. Finally, we conclude this section by presenting some results about the
CPU consumption of the cbsdr tool used with both Fractal and FraSCAti frame-
works.

Http Server. Figure 5 shows an experimentation with the http server composite
component during which, as in [16], http requests were simulated. Depending on
the load and request deviation to measure whether or not requests are similar, it
may make sense to add a cache (the need can be low, medium, or high determining
the size of the cache) or an additional file server.

Interestingly, response times measured when our http server is controlled
and adapted by the cbsdr application match almost exactly the times measured
(under similar load and request deviation patterns) for a http server having a
cache (of size high) and two file servers. No memory nor disk overhead were
noted.

Cycab. Figure 6 uses the model of the location system of an autonomous car.
Thanks to adaptation using temporal properties at runtime, we can remove
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Load Request Deviation Cache Cache Size File Server 2

Fig. 5. Experiment with the http server composite component

entry exit Power Level without Adaptation Power Level with Adaptation gps wifi

Fig. 6. Experiment with the cycab location composite component

the gps or wifi location components to save energy when needed (e.g., the gps
component does not work in tunnels — between entry and exit).

The run represented in Fig. 6 shows a consumption of energy around 32 %
lower using adaptation (empty dashed red graph) compared to a run not using
it (full dashed blue graph). It is important to notice that when the vehicle is
in a tunnel, the cbsdr tool prevents the occurrence of the reconfiguration that
would normally add the gps component when the power level is high. The reader
interested in a more detailed description is referred to [2].

Table 4. Measured increase of CPU usage
expressed in percent (μ̄ ± σ)

Framework Fractal FraSCAti

CPU User time 17 ± 3 11 ± 2
CPU System time 2 ± 2 14 ± 2
Percent of CPU 17 ± 2 15 ± 7

CPU Overhead. We tested our imple-
mentation on the above-mentioned
examples using both Fractal and
FraSCAti framework. More than 300
tests were performed to assess the
resources overhead caused by our
implementation. Table 4 summarises
the increase of CPU usage when
adaptation is used compared to similar runs not using any adaptation mech-
anism. CPU overhead is expressed in Table 4 in the format μ̄ ± σ with μ̄ being
the average and σ the standard deviation.
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6 Related Work and Conclusion

6.1 Related Work

Self-adaptation is an important and active research field with applications in var-
ious domains [1]. This roadmap emphasises an important challenge consisting in
bridging the gap between the design and the implementation of self-adaptive sys-
tems. In [2] component-based systems reconfiguration was performed at runtime
using adaptation policies triggered by temporal patterns. The reconfigurations
considered, however, were merely sequences of primitive reconfiguration opera-
tions. In the present paper, since we use the alternative and the repetitive con-
structs to compose reconfigurations, a given reconfiguration can have different
outcomes, depending on the context, or due to non-deterministic mechanisms. It
is not only a static sequence of reconfiguration instructions (as it is the case in
[2,7,8,17]), but a truly dynamic reconfiguration. Differently from [3], we do not
assume that the reconfigurations always lead the component assembly to evolve
from one consistent architecture to another consistent architecture.

Version consistency was introduced in [17] to minimise the interruption of
service (disruption) and the delay with which component-based (distributed)
systems are updated (timeliness) by means of reconfigurations. It qualifies a
state where transactions within the system are such that a given reconfiguration
may not disrupt the system and occur in bounded time; version consistency was
inspired by quiescence [18] and tranquility [19] with the intent to gather the
best of both notions. Unlike [17–19], we only consider architectural constraints
as preconditions to apply guarded reconfigurations; this way, by considering
components as black boxes, the separation of concerns principle is respected. The
applicative consistency (related to transactions within the system or external
events) can be maintained at runtime using adaptation policies mechanisms as
in [2] for centralised system and in [14] for decentralised or distributed systems.

Following [20], our notion of consistency can be viewed as a specific archi-
tecture style. Nevertheless, when using graph grammars, we represent interfaces
types of the component-based systems by specific graph nodes, this way, like
in [21], we can monitor (temporal) properties at the interface level.

Let us remark that the present work is motivated by other frameworks that
support the development of components. For example, experimenting with our
VM example within the GROOVE environment [22] leads us to the presentation
of paths with transitions labelled by the primitive reconfiguration operations
being performed. Consequently, consistency and conformity issues are pertinent
to GROOVE too.

6.2 Conclusion

Inspired by [6], we proposed a grammar for guarded reconfigurations. This
allowed us to build reconfigurations based on primitive reconfiguration oper-
ations using sequences of reconfigurations as well as the alternative and the
repetitive constructs. The ability to determine weakest preconditions for the
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application of reconfigurations enabled us to prove that these guarded reconfig-
urations preserve configuration consistency.

This way, a conformance relation can be established to validate implemen-
tations of component-based systems architectural models using either our java-
based cbsdr application or the GROOVE graph transformation tool. This makes
these tools applicable to build some parts of state space of reachable graphs, i.e.,
configurations, and thereby derive information about the system. Furthermore,
one of the key advantages of this work is that it is readily applicable to practical
reconfiguration operations.

As a future work, we intend to exploit the results of the present paper to
extend adaptation policies defined in [2] with guarded reconfigurations. Then,
we could aim to perform sound and complete compositions of such adaptation
policies. This would permit us to move further toward our overall goal, which is
the adaptation of component-based system at runtime using adaptation policies
based on temporal logic properties.
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Abstract. Reliability, availability, maintenance and safety (RAMS)
analysis is essential in the evaluation of safety critical systems like nuclear
power plants and the railway infrastructure. A widely used methodology
within RAMS analysis are fault trees, representing failure propagations
throughout a system. We present DFTCalc, a tool-set to conduct quan-
titative analysis on dynamic fault trees including the effect of a mainte-
nance strategy on the system dependability.

Keywords: Dynamic fault trees · Maintenance · Reliability · Context-
dependent reduction

1 Introduction

Maintenance is a crucial aspect in reliability engineering: good maintenance, con-
sisting of timely inspections, spare management, renewals and repairs, reduces
the number of failures and extends the system life time. The trend in main-
tenance is reliability-centered. To achieve higher reliability and reduce costs,
it is commonly agreed that essential components should be maintained more
intensively than less crucial ones, rather than the usual practice of subjecting
all components the same maintenance regime. Challenge here is to identify the
crucial components and determine the optimal maintenance strategy. The tool
DFTCalc provides important support here: given an advanced maintenance
strategy and a system model given as a fault tree, DFTCalc computes stan-
dard reliability measures like the system reliability, availability, and mean time
to failures.

Technically, DFTCalc is realized via stochastic model checking of inter-
active Markov chains, yielding a flexible and efficient framework by exploiting
state space generation via bisimulation minimisation. A first version of DFT-
Calc was reported in [1] concerning fault tree analysis only. This paper reports
the extensions of DFTCalc with preventive and corrective maintenance models
and their analysis. To handle the additional complexity, we have implemented
context-dependent model-generation, which significantly reduces the state space.
We show the application of DFTCalc on standard case studies from the liter-
ature, as well as industrial cases from railway engineering.
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 304–311, 2015.
DOI: 10.1007/978-3-319-25423-4 19
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Fig. 1. Example FT of relay cabinet failures.

Paper organization. Section 2 introduces fault trees and maintenance, Sect. 3
their analysis in DFTCalc, Sect. 4 the case studies, and Sect. 5 concludes the
paper.

2 Fault Trees and Maintenance

Fault trees. Fault trees are a popular graphical method for RAMS (reliabil-
ity, availability, maintenance, and security) analysis [14]. A fault tree (FT) is a
tree (or rather a directed acyclic graph, since sub-trees can be shared) describing
how component failures propagate through a system and may lead to system fail-
ures. The FT leaves represent component failures, called basic events (BEs), and
are equipped with probability distributions modelling the component’s failure
behaviour over time. Failure times are often modelled as exponential probabil-
ity distributions; that is, the probability that the component fails within time
t is given by P[X < t] = 1 − e−λt. Here, the parameter λ ∈ R

+ is known as
the component’s failure rate. Additionally, leaves are given a dormancy factor
α ∈ [0, 1] that reduces the failure rate of a component when dormant, i.e. not in
use. Thus, the probability for dormant component to fail within time t is given
by P[X < t] = 1 − e−αλt. Apart from exponential distributions, DFTCalc
supports phase-types, i.e., probability distributions given by absorption times in
Markov chains, which can be used to approximate any probability distributions
with arbitrary precision.

The FT gates model failure propagation. The static gates OR, AND, VOT(k)
model respectively that a gate fails if one, all, or k of their inputs fail. The
dynamic gates PAND, SPARE, FDEP provide support for common reliability
patterns like sequencing, spare management and functional dependencies, and
are known as dynamic fault trees (DFTs). Their behaviour is as follows: A
PAND-gate fails if the inputs fail from left to right, otherwise no failure occurs.
A SPARE-gate contains a primary input, and one or more spare inputs. If the
primary input fails, then a spare gets activated and takes over its functionality. If
all spares have failed as well, then the SPARE-gate fails. An FDEP-gate contains
a trigger input, which triggers the failure of all its dependent events.
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A wide variety of qualitative and quantitative DFT analysis techniques are
available, see [12] for an overview. Qualitative techniques include cut sets and
cut sequences; quantitative techniques compute important system measures like
the system reliability (What is the probability that the system fails during its
mission time T?); the availability (What is the percentage of time that the system
is up in the long run?), and mean time to first failure (What is the expected time
until the first failure occurs?).

Example 1. The fault tree in Fig. 1 describes an instance of the failure behaviour
of a redundant relay cabinet system, used on an operated railway track [7]. It
has been provided by the RAMS consultant Movares. The top level OR-gate
describes the disruption of several relays on an operated track. The system fails,
if there are at least 2 relay or high voltage cabinet failures, as modelled by the
VOT(2)-gates. Besides, the system can also fail if a combination of one relay and
high voltage cabinet failure occurs, as modelled by the AND-gate.

Maintenance. Maintenance comprises a combination of inspections, repairs,
renewals and spare management. Two types are distinguished: preventive main-
tenance refers to actions that prevent failures. Components are inspected, and
based on their condition, (partial) renewals or repairs are performed, putting
the component in a better condition. Preventive maintenance can be further
divided into condition-based (e.g., the replacement of car tires when their profile
is too low) and usage-based maintenance (e.g. inspection every 10.000 car miles).
Corrective maintenance is carried out after a failure has occurred, replacing or
repairing the broken component. Corrective maintenance may trigger preven-
tive maintenance. For example, when a broken train is in the garage, additional
inspections commonly take place. Regular fault trees, whether static or dynamic,
do not incorporate such maintenance strategies: the component failure rates
assume a certain maintenance regime and once a BE fails, it remains failed.

3 DFTCalc

DFTCalc provides efficient tool support for quantitative analysis of dynamic
fault trees and is available at http://fmt.ewi.utwente.nl/puptol/dftcalc via a web
interface, depicted in Fig. 2. The tool takes as inputs a DFT in Galileo format [13]
and a maintenance model. It computes the most common dependability metrics,
being the system reliability over a time interval [T1, T2], the system availability,
and the mean time to first failure, which are outputted textually as well as
graphically. Technically, DFTCalc is realized via stochastic model checking, via
a compositional translation of each DFT element to an input/output interactive
Markov chain where the dependability metrics are internally expressed as CSL
formulas.

Maintenance in DFTCalc. We include maintenance in the FT framework by
redefining the BEs behaviour. We handle condition-based maintenance, inspec-
tions, repairs, and spare management.

http://fmt.ewi.utwente.nl/puptol/dftcalc
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(a) DFT input interface. (b) Dependability measures interface.

Fig. 2. DFTCalc web interface.

The condition of a component is modelled by different degeneration phases,
similar to extended fault trees [5]. In Fig. 3(a), the first phase s1 represents the
component in perfect condition; subsequent phases represent degraded condi-
tions, until the component is broken in sn. A threshold is given after which an
inspection will trigger a maintenance procedure. Inspections are modelled by an
inspection module (IM), which handles several BEs, see Fig. 3(b). Thus, if the IM
inspects a BE and applies a maintenance procedure, then the BE is set back to a
less degraded mode — in Fig. 3(a) to its initial condition. We handle repairs via
repair units (RUs) as presented in [7]. A RU caters for several BEs, and deter-
mines in which order the BEs are getting repaired. Further, the BE gets a repair
time assigned which is described by an exponential distributed delay.

Analysis. As formal semantics of DFTs, and thus the basis for the quantitative
analysis, input/output interactive Markov chains (I/O-IMCs) are used. I/O-
IMCs are an extension of interactive Markov chains (IMCs) [9] by adding input
and output signals to the action set. An I/O-IMC consists of a number of states
which are connected via two types of transitions, interactive and Markovian.
The interactive transitions are labelled with signals, which are used to commu-
nicate between components. The Markovian transitions are labelled with rates
λ representing an exponential distributed delay.
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Degenerated

s4

Failed

s5

Down

λ threshold! λ fail!

preventive

mainenance?

preventive

mainenance?
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(a) Basic component with inspection threshold.
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s3 s4 s5 s6

threshold? threshold? threshold?
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λ λ preventive

maintenance!

new inspection cycle!

new inspection cycle!

(b) Inspection module.

Fig. 3. Inspection modules as I/O-IMCs.
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Fig. 4. The DFTCalc tool-chain.

State space generation. DFTCalc implements the compositional aggrega-
tion approach presented in [2]. Compositional aggregation provides a method to
translate a DFT into an I/O-IMC while keeping the state space small. First, each
element of the DFT is translated into an I/O-IMC. Then the obtained I/O-IMCs
are iteratively composed and minimised until a single I/O-IMC remains.

This approach enables us to define I/O-IMCs for corrective and preventive
maintenance. The repairable BEs as well as the RU are equivalent to the models
presented in [7]. The IM as well as the new BEs for preventive maintenance are
depicted in Fig. 3.

Context-dependent state space generation. The state space generation by
compositional aggregation provides already a scalability of several orders of mag-
nitude [2]. However, for large industrial case studies there is a demand for even
more reduction. Therefore, we investigate context-dependencies in the compo-
nent translation from DFT modules to I/O-IMCs. Instead of translating a DFT
element directly into an I/O-IMC based on the semantics from [2], we differ-
entiate between active and inactive elements and eliminate superfluous signals
beforehand. Consider an AND-gate with two inputs. In the standard seman-
tics, the full behaviour will be described, including the inactive behaviour of the
components. However, if the component is active from the start, all the inactive
behaviour can be discarded, which reduces the state space of the component.

Implementation. DFTCalc combines several state-of-the-art model checkers
to provide a DFT analysis tool, see Fig. 4. The generation of the DFT, includ-
ing the compositional aggregation, is done using the CADP tool set [6]. The
generated I/O-IMC can be translated to the Markov Reward Model Checker
(MRMC) [10], or to the Interactive Markov Chain Analyzer (IMCA) [8]. Finally,
the requested dependability metrics, which are (a) the reliability for one or more
mission times T , or (b) the probability on a system failure during an interval
[T1, T2], or (c) the mean time to failure, can be computed. A complete description
of DFTCalc can be found in [1].

We exploit the modular framework of DFTCalc and provide new templates
for the IM, RU, and BEs with phases, inspection signals, repair functionality and
context-dependencies. Further, we adapted the generation of those FTs in the
dft2lntc tool. The inspection and repair functionality is implemented for sta-
tic FTs, with AND- OR- and VOT(k)-gates. The context-dependent behaviour
detection based on the active and inactive modes works for DFTs without main-
tenance. The RU is defined by the new keyword ru, and the corresponding repair
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time of a BE is specified with repair=μ, where μ is the repair rate. The IM has
the keyword KinspN where K is defined as the number of inspection phases and
N the rate of each phase. The threshold in the BE is specified with interval=n,
where n is the threshold. Further, each BE has a keyword phases=k, where k
represents the number of degeneration phases.

4 Experiments

We have conducted several case studies to demonstrate the applicability of DFT-
Calc; all were run on a single core of a 2 GHz Intel Xeon with 22GB RAM
running on Linux.

Modelling of maintenance strategies. Figure 5 shows the effect of different
maintenance strategies on a set of FTs constructed by the RAMS consultancy
firm Movares, concerning a part of a major railway corridor in the Nether-
lands [7]. We consider two systems, the relay cabinet whose abstract version
is given in Fig. 1, and a railway switch. To investigate the effect of corrective
and preventive maintenance, each group of cabinets is assigned to either a RU
or a IM, following the following strategies: (a) without maintenance; (b) correc-
tive maintenance with repair times of one, two and seven days; (c) preventive
maintenance with inspection frequencies of once, twice, and four times a year.
We calculated the system reliability for a mission time of 10 years. The results
depicted in Fig. 5 show that increasing the inspection frequency significantly
improves the reliability. Lowering the repair times helps as well, but with less
effect.

Analysis efficiency. Table 1 shows the impact of context-dependent state-space
generation. Here, we use standard DFTs from literature: the multiprocessor com-
puting system (MCS) [11], the cardiac assist system (CAS) [3], the fault-tolerant
parallel processor (FTPP) [2], cascaded PAND system (CPS) [2] and an instance
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Table 1. Context-dependent state space reductions.

Model Gates BEs Smart detection States Transitions Max States Max transitions

CAS 10 10 without 16 36 84 304

with 14 34 49 133

MCS 10 11 without 18 37 6438 32202

with 12 31 220 803

FTPP-4 21 20 without 72 312 45823 230596

with 66 306 7020 32200

CPS 5 12 without 39 71 918 3140

with 38 70 134 291

SF 6 7 without 15 36 383 1500

with 14 35 64 138

of a Sensorfilter (SF) [4] case study. The results are shown in Table 1. While the
final state spaces are small, it is the size of the largest intermediate models that
matter, since these determine the amount of memory required. We observe that
the maximal state space reduction for the intermediate state space during gener-
ation lies between 72% and 96%, and the state space reduction for the final state
space lies between 3% and 33%. This points the significance of distinguishing
the active and inactive DFT part beforehand.

5 Conclusions and Future Work

This paper presented an extension of DFTCalc with preventive and corrective
maintenance as well as a way to reduce the state space w.r.t. context-dependent
reductions. We believe that the context-dependent generation will also have a
high impact on the state space of DFTs with maintenance. Further, future work
is needed to apply maintenance modules to the dynamic gates as well as to
incorporate costs into the framework, to optimise maintenance strategies w.r.t.
reliability as well as costs.

Acknowledgement. This work has been supported by the STW-ProRail partner-
ship program ExploRail under the project ArRangeer (12238). We acknowledge our
cooperation with Movares in the ArRangeer project.
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Abstract. Several approaches dedicated to model access control policies
(e.g. MDA-Security, SecureUML, UMLSec, etc.) have used the Model
Driven Engineering paradigm in order to ensure a clear separation of
business rules and constraints specific to a target technology. Their sup-
porting techniques mainly focus on modeling and verification of security
rules without taking into account the functional model of the application
and its interaction with the security model. In order to take into account
both models, we developed the B4MSecure platform. It is a Model Driven
Engineering platform that allows to graphically model and formally rea-
son on both functional and security models. It translates a UML class
diagram associated to a SecureUML model into formal B specifications.
The resulting B specifications follow the separation of concerns principles
in order to be able to validate both models separately and then validate
their interactions. This paper gives an overview of our platform.

Keywords: Formal methods · Security · RBAC · SecureUML

1 Introduction

In software engineering, method integration has been a challenge since several
years. The objective is to link formal and graphical paradigms in order to guar-
antee the quality of specifications. Indeed, on the one hand, graphical languages
(such as UML) have been widely used for specifying, visualizing, understand-
ing and documenting software systems, but they suffer from the lack of precise
semantical basis. On the other hand, formal methods (such as B [1]) are specifi-
cally used for safety critical systems in order to rigorously check their correctness
but they lead to complex models which may be difficult to read and understand.
These complementarities between formal and graphical languages motivate a lot
of research teams to develop tools which combine both languages.

As far as secure information systems are concerned, existing research works
in this context mainly focus, on the one hand, on modeling and verification of
functional models without taking into account useful non-functional rules like
access control policies. On the other hand, works dedicated to model access con-
trol policies (e.g. MDA-Security, SecureUML, UMLSec, etc.) do not address the
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 312–318, 2015.
DOI: 10.1007/978-3-319-25423-4 20
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fact that the security model also refers to information of the functional model.
Hence, evolutions of the functional state may influence the security behaviour
and then open security flaws. Some well known insider attacks which were pos-
sible due to evolutions of the functional state can be cited:

– The account manager who creates a spurious account and adds himself to the
system as a normal customer in order to transfer money into (or from) this
spurious account. The access control policy should then forbid the account
manager to evolve the functional entities Customer and Account whereby this
malicious scenario could not take place.

– The attack of “Société Générale” in which the insider, through authorized
actions, was able to conceal operations he has made on the market by intro-
ducing into the functional system fictive offsetting inverse operations.

2 B4MSecure Overview

The B4MSecure tool is intended to model the information system as a whole
by covering its functional description, and its security policy. The supporting
models are based on UML for the functional description and SecureUML for
the access control rules. A formal B specification is generated automatically
from these models (Fig. 1). The resulting formal B specification allows then to
formally reason on the whole system: functional and security models can be first
validated separately, and then integrated in order to verify their interactions.

B4MSecure applies the model driven engineering (MDE) approach [11] in
order to ensure a clear separation of business rules and their corresponding mod-
els. Semantics of the various models are defined on basis of UML, SecureUML
and B methods meta-models and the various transformation rules are encoded by
a set of mappings between these meta-models. The tool has several advantages:

(i) it clarifies and delineates a subset of source model structures for which the
transformations are applicable;

(ii) it has a catalog of transformation rules expressed in a single transformation
language; and

(iii) it provides a structured framework, based on meta-models, which clearly
describes the semantics of the various models.

Fig. 1. Formal V&V activities of functional and security models
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The tool is open source and available at http://b4msecure.forge.imag.fr.
A video demo is also provided.

3 Translation of Functional Models

The translation of a UML diagram into a B specification is intended to take
advantage of the B method tools in order to validate, by proofs and animations,
the initial UML diagram. Several teams worked on this research problem and
defined different kinds of mappings from UML into B: UML2B [3], UML2SQL
[4], U2B [13] and ArgoUML+B [9]. Analysis of these various approaches show
that each kind of UML-to-B mapping has its own objectives and characteristics:

– UML2SQL [4,5]: B specifications are obtained by translating a set of UML
diagrams which describe a database application.

– U2B [13,14]: this work was intended to produce a B specification (so-called
“natural”) exempt from constructions related to the translation mechanism
and which can complicate formal proofs.

– ArgoUML+B [6,9]: this work tried to take into account complex UML fea-
tures. It proposed, on the one hand, solutions for the translation of the UML
inheritance mechanism, and on the other hand, a new formalization of state/
transition diagrams.

Most of these tools except U2B are not publicly available despite the interest
of their contributions. The B4MSecure tool encodes these mappings and then
allows to reuse and combine rules issued from different UML-to-B approaches. In
order to fit this need we have reimplemented existing translations using the java
language. The advantage of our MDE architecture compared with existing UML-
to-B tools (U2B, ArgoUML + B, UML2SQL) is its extensibility. In fact, in order
to cover the transformation of UML constructs that have not been considered
by the existing approaches, the rule-writer simply encodes in Java new rules
and adds them to the catalog of transformations that we have implemented.
Transformation from UML class diagrams into B is guided by their respective
meta-models. The various java rules provided in the platform get UML concepts
issued from the UML meta-model and produce instances of concepts issued from
the B meta-model.

The tool produces one B model, from the functional UML class diagram,
gathering its structural properties and all basic operations (constructors, destruc-
tors, getters and setters). By construction, the B proof obligations are true
on the generated model. The resulting functional B machine covers a wide
range of UML constructs: inheritance, mandatory and optional attributes, initial
attribute value, navigation, read-only associations, unique values, etc. The ana-
lyst can then introduce, manually, additional invariants and user-defined oper-
ations and take benefit of a proof tool like AtelierB in order to validate the
consistency of the functional specification. The platform provides an annotation
mechanism allowing to integrate B invariants and specification of operations in
the graphical model. This functionality is useful to avoid inconsistent evolutions
of the graphical and formal methods.

http://b4msecure.forge.imag.fr
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4 Extraction of An RBAC Filter from the Security Model

4.1 A Brief Overview

In order to express a security policy, the Role-Based Access Control (RBAC)
model provides a powerful mechanism for reducing the complexity, cost, and
potential for error of assigning and managing users and permissions. It is sup-
ported by several software products like popular commercial database manage-
ment systems (e.g. Oracle, Sybase, . . .) or webservers (e.g. JBoss). The available
implementations of this model act like a filter which intercepts a user request to
a resource in order to permit or deny the access to associated functional actions
(e.g. transactions on databases, file operations, . . .). Our tool is based on the
same principle at a modeling level. Each functional operation is encapsulated in
a secure operation which checks that the current user is authorized to call it.

The tool is based on the eclipse Topcased environment. Graphical model-
ing of a RBAC policy in B4MSecure is done using a UML profile inspired by
SecureUML [2]. Figure 2 gives a screenshot of the graphical modeler applying
this security profile.

Fig. 2. B4MSecure screenshot
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The tool produces a B specification gathering a set of secured operations
which filter the access to the functional model. Proof-based validation of this
specification should automatically succeed provided the SecureUML model
is conformant to structural invariants: no cycles in role-hierarchy, no static sepa-
ration of duties violation, etc. We note that the tool does not produce administra-
tive operations allowing to modify dynamically the policy and hence validation
of this model is only based on well-formedness properties.

Animation of secured operations gives access only to the authorized func-
tional operations for the user who is trying to execute them. This approach
allows to validate the functional model as well as the security policy. In fact,
animation of an authorized operation changes the state of the functional model
and hence allows the analyst to validate both models.

4.2 Case Studies

In [10] we discussed the benefits of the resulting B specifications and how the
expected validation activities can be done. These validation activities include
classical proof obligations, but also the animation and test of functional and
security models, using ProB [8]. Formally taking into account links between
both functional and security models allows to address challenging vulnerabili-
ties [7]. Actually our security model, based on SecureUML, allows to associate
authorisation constraints to the permissions. Authorisation constraints express
conditions on the functional state in order to grant permission. This enables
insiders attacks where the attacker modifies the functional state in order to get
illegal permissions. In [12] we showed how the B specifications produced by our
platform can be useful in order to exhibit malicious scenarios leading to insiders
attacks.

The platform was experimented on several examples of various sizes and was
applied on a real case study1 proposed by the French Institute of Mountain Medi-
cine Research (Ifremmont2). It is a pre-hospital information system managing
medical patient data. The associated conceptual model is composed of fifteen
functional classes and several control rules. The resulting B specification counts
1730 lines for the functional model, 2652 lines for the access control filter and
allowed several validation activities:

– acceptance validation guided by use-cases: each functional use case identi-
fied during requirements analysis was animated on the secured specification,
showing that the security filter does not prevent the normal use of the system.

– systematic testing of access control rules: each access control rule was tested
to show that it was able to both grant and deny permission to access the
associated resource. This animation aims at detecting errors in the expression
of these access control rules.

1 http://telemedecine.ifremmont.com/ifrelab/index.php?Wwwresamuorg.
2 http://www.ifremmont.com.

http://telemedecine.ifremmont.com/ifrelab/index.php?Wwwresamuorg
http://www.ifremmont.com
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– search for malicious insider scenarios: several attack scenarios were designed
manually and animated on the formal model, showing its robustness against
these attacks. Current work in our team tries to automatically synthesize such
attacks by exploration of the specification.

This case study showed the usefulness of the tool while designing a security
policy. It supports this design at a level which abstracts away implementation
details such as authentification mechanisms and cryptography, and concentrates
on the consistency of the set of access control rules.

5 Conclusion

In most existing Information Systems, functional and security requirements are
mixed in the application code. It is, therefore, difficult to understand these sys-
tems and modify them in order to maintain, evolve and correct the security
policy. In order to master complexity of systems, the MDE paradigm advocates
for a separation of concerns and the use of models throughout the development
process. Therefore, Information Systems security is a domain where the potential
of the MDE approach is highly useful. Indeed, modeling separately functional
and security models allows to better understand, validate and maintain these
models.

Although it is useful to analyse and validate both models in isolation, which is
addressed by several works, interactions between these models must also be taken
into account. Such interactions result from the fact that constraints expressed
in the security model also refer to information of the functional model. Hence,
evolutions of the functional state have an impact on the security behaviour.

Conversely, security constraints often depend on the functional behaviour.
The B4MSecure platform allows, on the one hand, this separation of concerns,
and on the other hand, the investigation of links between both functional and
security models. The platform allows: a graphical modeling of a functional UML
class diagram, a graphical modeling of an access control policy using a UML pro-
file for RBAC (Role Based Access Control) and which is inspired by SecureUML,
and the translation of both models into B specifications in order to formally rea-
son about them.

The various B specifications extracted from functional and security models
allow several kinds of validation. This paper addressed mainly the principles of
the tool and discussed some validation activities that we have done on several
case studies. Other kinds of validation can be addressed such as the use of a
constraint solver, or symbolic animation, etc.

In the future, we plan to take into account translation of other UML dia-
grams like state/transition and activity diagrams. Currently, the platform only
deals with structural aspects of an Information System. We also plan to cover
translation of other security models. Our interest is directed to attribute-based
access control models.
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9. Meyer, E.: Développements formels par objets: utilisation conjointe de B et d’UML.
Ph.D. thesis, Université de Nancy 2, Mars 2001
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Abstract. Parametric timed automata (PTA) allow the specification
and verification of timed systems incompletely specified, or subject to
future changes. The behavioral cartography splits the parameter space
of PTA in tiles in which the discrete behavior is uniform. Applications
include the optimization of timing constants, and the measure of the sys-
tem robustness w.r.t. the untimed language. Here, we present enhanced
distributed algorithms to compute the cartography efficiently. Experi-
mental results show that our new algorithms significantly outperform
previous distribution techniques.

1 Introduction

Systems combining concurrent aspects with real-time constraints are notoriously
difficult to exhaustively test, and their failure due to unsuspected bugs may lead
to dramatic consequences. Model checking concurrent real-time systems aims at
formally verifying the correctness of the system model w.r.t. a property.

The notion of timed automata (TA) is a well-known formalism for specify-
ing and verifying concurrent real-time systems. TA extend finite-state automata
with a set of clocks (real-time variables growing linearly) that can be compared
with integer constants. TA are used in several powerful tools such as Uppaal [16]
or PAT [18]. However, the binary answer (“yes” or “no”) output by model check-
ing is not always satisfactory: indeed, it does not allow to change or optimize
some values of the system constants, nor (in general) to evaluate the system
robustness, i.e. the infinitesimal variation of timing constants while preserving
the reachability or language. Parametric timed automata (PTA) [1] extend TA
with rational-valued parameters allowed in place of constants.

In [3], the behavioral cartography (BC) of PTA was proposed: given a
bounded parameter domain D, BC partitions D in tiles, i.e. in parameter sub-
spaces where the discrete (untimed) behavior is uniform. That is, the set of
satisfied linear time properties is the same for any rational-valued parameter val-
uation (“point”) in a tile. This helps to identify robust subspaces, in which the
timing constants can vary with no harm w.r.t. the system correctness expressed

This work was partially supported by the ANR national research program “PACS”
(ANR-2014), and the INS2I PEPS JCJC 2015 “PSyCoS” project.
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in terms of the untimed language. In [2], we sketched two master-worker point
distribution algorithms to compute BC in a distributed fashion.

Contribution. The goal of this paper is to propose efficient distributed algo-
rithms to compute BC efficiently using parallel, distributed computing resources.
We formalize the existing point-by-point distribution algorithms (Seq and
Random), that were only informally sketched in [2].1 Then, our main contribu-
tion is to propose three new distributed algorithms to speed up the cartography:
the first one (Static) is a static domain decomposition scheme, where each node
works independently on its own parameter subdomain; the second one (Shuffle)
addresses the drawbacks of Seq and Random; finally, the third one (Subdomain)
is a new master-worker, dynamic, distributed domain decomposition process. We
then evaluate our algorithms on real-time case studies. In all cases, our new algo-
rithms Shuffle and (a variant of) Subdomain outperform the algorithms of [2]. We
also discuss how to choose the appropriate algorithm depending on the case study.

Related works. The design of efficient parameter synthesis techniques has been
tackled in various works, e.g. using SMT-based model checking techniques [9],
or using symbolic techniques for integer synthesis [13]. BC helps to quantify the
system robustness; this has also been tackled using the “ASAP” semantics [10]
(see, e.g. [17] for a survey), but usually in only one dimension (a single variation δ
of the timing delays is considered, whereas BC allows as many dimensions as
parameters). To the best of our knowledge, with the exception of [2], distributed
computing techniques were not applied yet to parameter synthesis for PTA.

Formal verification can be made in parallel in two ways: modeling languages
can be designed to be easy to use in a distributed fashion, or the verification
algorithms themselves can be parallelized. Our approach fits in the second cate-
gory. In recent years, some model checkers were extended to parallel computing,
i.e. running on multicore computers. This is the case of PKind [14], APMC
(a probabilistic model checker) [12], and FDR3 (for CSP refinement checking).
More recently, two algorithms were proposed to address multi-core LTL verifica-
tion [11] and emptiness checking of timed Büchi automata [15]. However, with
the exception of FDR3 (that can run either on multicore or on clusters), these
works run verification on multicore computers (with a shared memory) whereas
our primary goal is to run verification on a cluster (where each node has its own
memory). Furthermore, none of these works considered parameter synthesis.

Outline. We introduce the necessary notations in Sect. 2. We briefly define in
Sect. 3 the static domain decomposition algorithm (Static). Then, we formalize in
Sect. 4 the master-worker scheme and the two point distribution algorithms of [2];
we also introduce a third point distribution algorithm (Shuffle). We introduce
in Sect. 5 our new dynamic domain decomposition algorithm (Subdomain). We
conduct experiments in Sect. 6 and conclude in Sect. 7.
1 [2] was published in a distributed computing community and focused on the paral-

lelization technique used for this particular application, and the paper did not go into
formal details. This is not an actual contribution of the current paper, but makes it
standalone.
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2 Preliminaries

Parameter Constraints. We assume here a set X = {x1, . . . , xH} of clocks,
i.e. real-valued variables that evolve at the same rate. A clock valuation w is a
function w : X → R+. We denote by X = 0 the conjunction of equalities that
assigns 0 to all clocks in X.

We assume a set P = {p1, . . . , pM} of parameters, i.e. unknown constants.
A parameter valuation v is a function v : P → Q+. We will often identify a
valuation v with the point (v(p1), . . . , v(pM )). An integer point is a valuation
v : P → N. We denote by 0 the valuation assigning 0 to all parameters.

An inequality over X and P is e ≺ 0, where ≺∈ {<,≤,≥, >}, and e is a
linear term

∑
1≤i≤N αizi + d for some N ∈ N, where zi ∈ X ∪ P , αi ∈ Q, for

1 ≤ i ≤ N , and d ∈ Q. A (linear) constraint over X and P is a set of inequalities
over X and P . We define in a similar manner inequalities and constraints over P .
A guard is a set of inequalities each of them referring to at most one clock.

Given a parameter valuation v, C[v] denotes the constraint over X obtained
by replacing each parameter p in C with v(p). We say that v satisfies C, denoted
by v |= C, if the set of clock valuations satisfying C[v] is nonempty.

We denote by C↓P the projection of C onto P , i.e. obtained by eliminating
the clock variables (using existential quantification). We define the time elapsing
of C, denoted by C↗, as the constraint over X and P obtained from C by
delaying an arbitrary amount of time. Given R ⊆ X, we define the reset of C,
denoted by [C]R, as the constraint obtained from C by resetting the clocks in R,
and keeping the other clocks unchanged.

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P, I, E), where: (1) Σ is
a finite set of actions, (2) L is a finite set of locations, (3) l0 ∈ L is the initial
location, (4) X is a set of clocks, (5) P is a set of parameters, (6) I is the
invariant, assigning to every l ∈ L a guard I(l), and (7) E is a set of edges
(l, g, a,R, l′) where l, l′ ∈ L are the source and destination locations, g is the
transition guard, a ∈ Σ, and R ⊆ X is a set of clocks to be reset.

Given a PTA A = (Σ,L, l0,X, P, I, E), and a parameter valuation v, A[v]
denotes the TA obtained from A by substituting every occurrence of a parameter
pi by the constant v(pi) in the guards and invariants.

Symbolic Semantics. A symbolic state is a pair (l, C) with l a location, and
C a constraint over X ∪ P . The initial state of A is s0 = (l0, (X = 0)↗ ∧ I(l0)),
i.e. clocks are initially set to 0, and can evolve as long as I(l0) is satisfied. The
computation of the state space is as follows: Given a symbolic state s = (l, C),
Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =

(
[(C ∧ g)]R

)↗ ∩ I(l′)}.
A symbolic run of a PTA is an alternating sequence of symbolic states and

actions of the form s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . , m − 1,
ai ∈ Σ, and si

ai⇒ si+1 is such that si+1 belongs to Succ(si) and is obtained via
action ai. In the following, we simply refer to the symbolic states belonging to
a run of A starting from s0 as states of A. Given a run (l0, C0)

a0⇒ (l1, C1)
a1⇒
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Fig. 1. Graphical representations and challenges

· · · am−1⇒ (lm, Cm), its corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of
all traces of a TA is called its trace set.

The Inverse Method. The inverse method (IM) [7] generalizes the behavior
of A[v] in the form of a tile, i.e. a parameter constraint K where the discrete
behavior is uniform (see Fig. 1a, where K = IM(A, v)). That is, for any point v′

satisfying K, the trace sets of A[v′] and A[v] are equal. Hence any linear-time
property (expressed in, e.g. LTL) valid in A[v] is also valid in A[v′]. Note that,
in general, tiles have no predefined “shape”: they are general polyhedra in |P |
dimensions that can have arbitrary size, number of vertices, and edge slope. The
computation time of IM also greatly varies, from milliseconds to several hours,
depending on the complexity of the model, and the size of the trace set.

The Behavioral Cartography. Given a PTA A and a bounded parameter
domain D (usually a hyperrectangle in |P | dimensions), the behavioral cartogra-
phy (BC) [3] repeatedly calls IM on (some of the) integer points of D (of which
there is a finite number), so as to cover D with tiles. The result gives a tiling
of D such that the discrete behavior (trace set) is uniform in each tile.

In Fig. 1a, BC first considers point v, and computes K = IM(A, v). Then, BC
iterates on the subsequent points, all already covered by K, until it meets v′′,
that is not yet covered. Hence, BC will then compute IM(A, v′′), and so on, until
all integer points in D are covered.

BC can be used for several applications: first, it identifies the system robust-
ness in the sense that, in each tile, parameters can vary as long as they remain
in the tile, without impacting the system’s discrete behavior. Second, BC can
be used to perform parameter optimization; the weakest conditions of the input
signal of an industrial asynchronous memory circuit (SPSMALL) were derived
using BC [7]. Third, given a set of linear time properties (i.e. that can be verified
on the trace set), it suffices to compute only once BC, and then to check each
property on the trace set generated for each tile in order to know a complete (or
nearly complete) set of parameter valuations satisfying each property.

Remark 1. BC does not guarantee the full, dense coverage of D for two reasons.
(1) IM may not terminate, as the corresponding problem is undecidable [6]. In
our implementation of BC, this is addressed using a timeout: if IM(A, v) does not
terminate within some time bound, BC switches to the next integer point, and v
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(a) SPSMALL (b) Flip-flop circuit (c) Schedulability (d) RCP

Fig. 2. Examples of graphical behavioral cartographies in 2 dimensions

will (most probably) never be covered. However, although it was shown possible
in theory, this never happened in any of our experiments. (2) IM generalizes
integer points in the form of dense, rational-valued constraints, but it could
happen in rare cases that some tiles do not contain any integer points. This
sometimes happened in our experiments (e.g. in Fig. 2a around x = 100 and
y = 55); usually, calling BC on multiples of 1

3 instead of integers was empirically
shown to be sufficient in most cases (although in theory there might be an infinite
number of tiles in a bounded domain). Conversely, note that BC frequently covers
(parts of) the parametric space beyond D; this is the case in Figs. 2b to d (in
Fig. 2b, the entire parametric space is even covered).

Also note that the motivation for considering integer points is that, in most
cases, considering integers is sufficient to cover entirely (or almost entirely) the
domain D. However, as said above, our implementation allows any “step” instead
of integers (e.g. multiples of 1

3 ).

3 Static Domain Decomposition

In order to tackle larger case studies, our objective is to take advantage of the
iterative nature of the cartography (in contrast to most, if not all, other known
parameter synthesis algorithms), and to distribute it on N processes. There is
no theoretical obstacle in doing so, since all calls to IM are independent from
each other. The challenge is rather to select efficiently the points on which IM is
called, so that as few redundant constraints as possible are computed.

In this section, we briefly describe a static domain decomposition (“Static”).
That is, the rectangle D is split into N subdomains, and then each process is
responsible for handling its own subdomain in an independent manner (with no
communication). This domain decomposition method is often used for regular
data distributions, where all subdomains require the same processing time, and
preferably on domain shapes such as rectangles or hypercubes, that can easily
be mapped on a grid of processes.
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Each node i performs the following procedure:

1. split D into N subdomains;2

2. execute BC on the ith subdomain, i.e. iteratively select integer points and
call IM until all integer points in the ith subdomain are covered by tiles.

For example, in Fig. 1b, the domain D (the external dashed rectangle) is split
into four equal subdomains (the four internal dashed rectangles); vi, 1 ≤ i ≤ 4
represents a possible first point on which to call IM in each subdomain. (K2 in
Fig. 1b will be used later on.)

This static decomposition is straightforward but is not satisfactory for BC
for three main reasons.

First, the general “shape” of the cartography is entirely arbitrary and
unknown beforehand, since tiles can themselves have any shape. Figure 2 gives
examples of cartographies in 2 parameter dimensions: although the geometri-
cal distribution of the tiles of Fig. 2a within D is rather homogeneous, this is
not true at all for the others. For example, splitting the domain of Fig. 2b (resp.
Fig. 2d) into four equal parts would be very unfair for the node responsible of the
lower-left (resp. upper-right) subdomain, since most tiles are concentrated there;
this would also be inefficient, since the other nodes will rapidly become idle.

Second, the geometrical distribution of the tiles says nothing on the time nec-
essary to compute each tile. Recall that the computation of IM can be very long
(up to several hours). Even when the tiles are homogeneously located within D,
some tiles may require much more time than others. For example, in Fig. 2a
(where the geometrical distribution of the tiles is rather homogeneous), it could
happen that the bottom-left tiles require much more time than others, resulting
in this node to work much longer, while the other nodes would rapidly finish
their duty. Again, this would result in a loss of efficiency due to load unbalance
since not all of the nodes are working actively.

Third, the absence of communication between nodes may result in redundant
computations. Let us go back to the example of cartography in Fig. 1b. Assume
that node 2 finished first to compute a tile, say K2. This tile not only covers
the entire subdomain of node 2, leading to the termination of process 2, but it
also covers node 4’s subdomain entirely and a large part of node 2’s subdomain.
Without communication, these nodes will keep working without knowing that
their subdomain has already been covered. In contrast, a smarter distribution
scheme should be such that, in this situation, nodes 2, 3 and 4 would go to
help node 1 finish its (not much covered yet) subdomain. We will address this
efficiency issue in the remainder of this paper.

4 Master-Worker Point Distribution Algorithms

We first recall our master-worker scheme (Sect. 4.1); then, we formalize the
abstract algorithm for the master (Sect. 4.2), the Seq (Sect. 4.3) and the Random

2 Alternatively, a single node could perform the split and then send to each other node
its own subdomain (at the cost of additional communications).
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Table 1. Tags for master-worker communications

point distribution (Sect. 4.4) – only informally described in [2]. Additionally, we
introduce a new point distribution Shuffle (Sect. 4.5).

4.1 Principle: Master-Worker

Workers ask the master for a point v, then execute IM(A, v), and finally send the
corresponding result K to the master. The master does not call IM itself, but
instead distributes points to the workers. Whereas this may be a loss of efficiency
for few processes, this shall be compensated for a large number of processes.
Moreover, this parallel computation scheme balances the load between workers
automatically.

The master and workers communicate with each other by sending messages
that are labeled using tags, using two asynchronous functions send(n,msg) and
receive(). Function send(n,msg) sends a tagged message msg to node n. Function
receive() is a blocking function that waits until a message is received, and returns
a pair (n,msg), where msg is the tagged message that has been received from
node n. Based on the tag of the message, receiving processes can decide what
to do with the message itself. Note that workers never communicate with each
other. We assume that messages are made of a tag and zero or one argument: for
example, POINT(v) sends a POINT tag together with the parameter valuation v.
We give the list of tags used throughout this paper in Table 1.

4.2 An Abstract Algorithm for the Master

We first formalize in Algorithm 1 the “abstract” master algorithm sketched in [2];
this algorithm contains variation points that can be instantiated to give birth to
concrete master algorithms. In this section, we only use the worker tag RESULT
and the master tags POINT and STOP. The workers only call the inverse method
on the point they receive from the master, and send the result back, until a STOP
tag is received.

Algorithm 1 takes as input a PTA A and a parameter domain D; it is also
parameterized by a point distribution mode M. Each mode is responsible for
instantiating the variation points to give birth to a concrete algorithm. The
master starts by creating an empty set of tiles and then calls the mode initial-
ization function M.initialize(), that initializes the various variables needed by
the concrete algorithms (line 1). Then, the master sends a point to each node n;
the way these points are chosen among D (M.choosePoint()) is decided by the
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Algorithm 1. Abstract algorithm for the master
input : PTA A, domain D, number of processes N , mode M
output : Set of tiles T
// Initialization phase

1 T ← ∅; M.initialize()
2 foreach process n ∈ {1, . . . , N} do send(n,POINT(M.choosePoint())) ;

// Main phase

3 while there are uncovered integer points in D do
4 n,RESULT(K) ← receive(); T ← T ∪ {K}
5 send(n,POINT(M.choosePoint()))

// Finalization phase

6 foreach process n ∈ {1, . . . , N} do
7 n,RESULT(K) ← receive(); T ← T ∪ {K}; send(n, STOP)

8 return T

mode (line 2). Then the master enters the main loop (line 3 to line 4): while
there are uncovered points, every time a node n sends a constraint K and asks
for work, the master stores the result in its list of tiles; then, it selects a point
according to M and sends it to n. Finally, once all integer points are covered,
the master receives results from the remaining nodes and sends STOP tags (line
6–line 7).

The way points are picked by the master to be distributed to the workers
is a highly critical question. Choosing points in a wrong manner can lead to
a dramatic loss of efficiency. For example, choosing points very close to each
other would most probably lead to the (redundant) computation of the same
tile. This situation is depicted graphically in Fig. 1c, where points v1, v2, v3 may
yield the same tile K. In the next three subsections, we formalize three master
modes; these modes will define additional global variables and must instantiate
initialize() and choosePoint().

4.3 Sequential Point Distribution

The first point distribution algorithm (Seq) is a direct extension of the monolithic
(i.e., non-distributed) algorithm: as in the non-distributed BC, it enumerates all
the points of D in a sequential manner starting from 0. Seq assumes a func-
tion nextPoint that, given a parameter valuation v and a parameter domain D,
returns the next point in D for some lexicographic order on the points of D.
Seq maintains a single global variable vprev , storing the latest point sent to a
worker. The initialization function Seq.initialize() sets vprev to a special value
⊥ such that nextPoint(⊥) returns the smallest point in D (e.g. 0 if 0 ∈ D).
Seq.choosePoint() (given in Algorithm2) returns the next point of D not cov-
ered yet by any tile.

The main advantage of Seq is that it is inexpensive on the master’s side. Its
main drawback is the risk of redundant computations by the workers, due to the
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Algorithm 2. Seq.choosePoint()
variables : Point vprev
output : Point v

1 v ← vprev
2 repeat v ← nextPoint(v,D) until v is not covered by any tile in T ;
3 vprev ← v; return v

situation depicted graphically in Fig. 1c: for instance, at the beginning, the N
processes will ask for work, and the master will give them the first sequential N
points, all very close to each other, with a high risk of redundant computation.

4.4 Random + Sequential Point Distribution

The second point distribution algorithm (Random) selects points randomly, and
then in a second phase performs a sequential enumeration to check the full
coverage of integers in D. This second phase is necessary to guarantee that all the
integer points have been covered. The second phase starts after a given number
MAX of consecutive failed attempts to find an uncovered point randomly. Indeed,
simply stopping BC after MAX tries could give a probabilistic coverage (e.g.
99 %) of integer points, but cannot guarantee the full coverage. Since finding
the points not covered by a list of tiles has no efficient practical solution, this
sequential check is the only concrete option we have.

Random maintains two global variables. First, seqPhase acts as a flag to
remember whether the algorithm is in the first or second phase. Second, vprev
stores the latest point sent to a worker (just as in Seq). Random.initialize()
initially sets seqPhase to false and vprev to ⊥.

We give Random.choosePoint() in Algorithm 3. In the first phase (line 1 to line
7), Random.choosePoint() randomly computes a point, and then checks whether
it is covered by any tile; if not, it is returned. Otherwise, a second try is made,
and so on, until the maximum number MAX of attempts is reached. In that
latter case, it switches to the second phase (line 8 to line 11), consisting in a
sequential enumeration of all the points just as in Seq.choosePoint().

4.5 Shuffle Point Distribution

The main problem of Random is the fact that the second phase, necessary to
check the full coverage of integers, may be costly and even useless if almost all
the points have already been covered. To alleviate this problem, we propose a
new algorithm Shuffle that first computes statically a list of all integer points
in D, then shuffles this list, and then selects the points of the shuffled list in a
sequential manner. The sequential phase of Random is then dropped, at the cost
of being able to compute, store statically and shuffle a large quantity of points.

Shuffle maintains a single global variable, i.e. the list allPoints of all
the points in D that has been shuffled. The Shuffle.initialize() function
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Algorithm 3. Random.choosePoint()
variables : Point vprev , flag seqPhase
output : Point v
// First phase

1 if ¬seqPhase then
2 nbTries ← 0
3 while nbTries < MAX do
4 v ← randomPoint(D)
5 if v is not covered by any tile in T then return v;
6 nbTries ← nbTries + 1

7 seqPhase ← true

// Second phase

8 if seqPhase then
9 v ← vprev

10 repeat v ← nextPoint(v) until v is not covered by any tile in T ;
11 vprev ← v; return v

assigns shuffle(allIntegers(D)) to allPoints. (We assume here that func-
tion allIntegers(D) returns the list of all the integer points of D, and function
shuffle(L) shuffles the elements of a list L).

Then, the Shuffle.choosePoint() function simply consists in selecting the next
uncovered point in allPoints. That is, it performs pop(allPoints), until the point
output is not covered by any tile, in which case it returns it (we assume here
that function pop(L) pops the first element of the list L and returns it).

5 Dynamic Domain Decomposition

The most intuitive solution for distributing BC is the Static distribution scheme
of Sect. 3, i.e. to split D into N subdomains, and then ask each process to handle
its own subdomain in an independent manner. As said in Sect. 3, this may lead to
inefficient computations (which will be confirmed by our experiments in Sect. 6).
Still, we use this idea to set up a dynamic domain decomposition algorithm.
This algorithm is different from the previous ones, in the sense that it does not
fit in the abstract master algorithm formalized in Sect. 4.2.

Initially, the master splits in D into N subdomains, and distributes the sub-
domains to the workers. In contrast to the algorithms of Sect. 4, the workers
are now responsible for checking whether all the points in their subdomain have
been covered yet or not. This mechanism reduces the load on the master without
leading to redundant point coverage checks. Then, when a worker has covered
all the integer points in its subdomain (because the points are covered by tiles
computed either by this worker, or by other workers), it informs the master;
the master dynamically splits a subdomain (typically, one that has only been
covered a little) and sends it back to the idle worker.
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Algorithm 4. Subdomain: Master
input : PTA A, domain D, number of processes N
output : Set of tiles T
// Initialization phase

1 T ← ∅; SD , currentPoints ← initialSplit(D,N)
2 foreach process n ∈ {1, . . . , N} do send(n, SUBDOMAIN(SD [n])) ;

// Main phase

3 while a subdomain in SD can be split do
4 switch receive() do
5 case n,NOTIFYPOINT(v): currentPoints[n] ← v ;
6 case n,RESULT(K): T ← T ∪ {K} ;
7 case n,REQTILES: send(n,TILES(T )) ;
8 case n,COMPLETED:
9 n′, sd1, sd2 ← split(SD , currentPoints, n)

10 send(n, SUBDOMAIN(sd1)); send(n′, SUBDOMAIN(sd2))

// Finalization phase

11 switch receive() do
12 case n,RESULT(K): T ← T ∪ {K} ;
13 case n,COMPLETED: send(n, STOP) ;

14 return T

The main idea is that the master is responsible for handling the dynamic
distribution of the subdomains (including detecting the slowest workers to split
their subdomain), whereas the workers are responsible for covering all the points
in their subdomain in a sequential manner. There is no need for more complex
algorithms, since each worker is working on its own in its own subdomain.

5.1 Master Algorithm

In the following, we assume several functions. We believe that understanding the
role of these functions is straightforward; in practice, they lead to very tricky
implementation issues (especially for the split function with arbitrary numbers
of processes and parameter dimensions).

We give the master algorithm in Algorithm4. Besides the list of tiles T ,
the master maintains two arrays of size N : the array SD associating with each
node its current subdomain, and the array currentPoints associating with each
node its latest known point (used to understand how advanced a worker is in its
subdomain). These two arrays are initialized using the function initialSplit that
splits D into N subdomains (line 1). Then the master sends its subdomain (line
2) to each node.

The algorithm then enters its main phase (line 3 to line 10). The master waits
for incoming messages received via the asynchronous, blocking function receive().
If a new point is received (line 5), the master updates the currentPoints array
(this is needed to perform splits using the most up-to-date data). If a result
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is received (line 6), the master stores it. If a request for tiles is received (line
7), the master sends all the tiles back so that n can update its local list.3,4 If
the master is notified that a worker n has completed its subdomain, i.e. all of
its points have been covered (line 8), the master finds out which subdomain is
the least covered, i.e. which workers are the most in need for assistance; this is
performed by split(SD , currentPoints, n), that returns the node n′ needing help,
and two new subdomains sd1 and sd2 split from n′’s former subdomain, while
updating SD (line 9). The master then informs both nodes of the split (line 10).

Finally, when no subdomain can be split (i.e. all non-completed subdomains
contain only one point), the master stores the last tiles it receives (line 12) and
sends a STOP signal to the workers (line 13).

5.2 Worker Algorithm

We give the Subdomain worker algorithm in Algorithm5. Each worker waits for
messages from the master: whenever a STOP signal is received from m (m stands
for the master node id), the worker terminates (line 3). Otherwise, a subdomain
sd is received (line 5):the worker then covers sd with tiles (line 5 to line 11) by
calling IM sequentially on consecutive integers as in the Seq (master) algorithm.
The worker selects a point, sends it to the master for update purpose, calls IM
on that point, sends the result to the master, asks for an update of the list of
tiles, and so on. When sd is covered, the worker notifies the master (line 12),
and then waits again for a new message from the master until termination.5

5.3 An Additional Heuristic

It may happen that, while a node is calling IM on a point v, another node has
covered v with its own tile. For example, in Fig. 1b, node 2 calls IM on point v2,
while node 4 calls IM on point v4. Assume calling IM on point v2 yields K2, that
incidentally covers v4. It is more efficient to stop the computation of IM on v4, so
that node 4 moves to another point instead of computing a redundant tile. We
hence improve Subdomain by adding a heuristic that prevents this situation as
follows: the master keeps track of all the points currently processed by each node;
whenever a constraint computed by a node i covers the current node processed
by another node j, the master informs immediately node j, and this node stops
its computation to move to the next point. We refer to Subdomain augmented
with this heuristics as Subdomain + H. This heuristic might be expensive, both
3 For efficiency purpose, in our implementation, the master only sends the new tiles

since n’s latest request (which is ensured using additional queue data structures).
4 The local list is necessary to detect whether a point in the worker’s subdomain is

covered by a tile computed by another worker.
5 Additionally, the worker checks whether the master has split its subdomain, because

some other worker completed its own subdomain. In our implementation, this
requires on the worker’s side frequent (but inexpensive) checks whether the mas-
ter has split the worker’s current subdomain and, if so, a simple update of the
subdomain.
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Algorithm 5. Subdomain: Worker n

input : PTA A
variables : Set of tiles T , point vprev

1 while true do
2 switch receive() do
3 case m, STOP: return ;
4 case m, SUBDOMAIN(sd):
5 while there are uncovered points in sd do
6 v ← Seq.choosePoint()
7 send(m,NOTIFYPOINT(v))
8 K ← IM(A, v)
9 send(m,RESULT(K))

10 m,TILES(receivedTiles) ← receive()
11 T ← T ∪ receivedTiles

12 send(m,COMPLETED)

on the master side and on the worker side (frequent checks to perform, and more
communication), hence we will study both Subdomain and Subdomain + H.

6 Experiments

We implemented our algorithms in the working version (2.7) of Imitator [4].6

We are presenting here results using seven case studies: Flip-flop4 is a 4-
parameter dimension asynchronous flip-flop circuit. RCP is a parametric model
of the root contention protocol (inspired by the TReX [8] model). Sched3-2,
Sched3B-2, Sched3B-3 and Sched5 are parametric schedulability problems, where
the goal is to find tiles where the system is robustly schedulable. SiMoP is a
parametric networked automation system [7]. We give in the “model” part of
Table 2 the number of clocks, of parameters, and of integer points in D for each
case study. In the “cartography” part, we give the number of tiles and the time
(in seconds) to compute the non-distributed cartography (“monolithic”). Note
that the number of tiles gives an upper bound on the number of nodes above
which a perfect distribution algorithm cannot become more efficient: if each node
computes a different tile, then using more than n nodes cannot be faster than
n nodes. Hence, we bound the analysis to the smallest power of 2 greater or
equal to # Tiles (“Nmax”).

Methodology. We compute BC for each algorithm, for a number of nodes from
4 to 128 . For sake of brevity, we study here the performances at n = Nmax .
The execution time (in seconds) is given in the third part (“Execution time”) of
Table 2. (The algorithm Hybrid will be explained later on.)

6 Source models and results are available at www.imitator.fr/static/ICFEM15/.

www.imitator.fr/static/ICFEM15/
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We use two metrics to evaluate our algorithms. The first metric is the fol-
lowing ratio, that compares algorithms with each other, independently of their
absolute performances: for each algorithm and each case study, we compute the
time for this case study and this algorithm for Nmax nodes divided by the max-
imum over all algorithms for this case study for Nmax nodes, and multiplied
by 100. A ratio equal to 100 means that this algorithm is the slowest for this
case study, and a small ratio indicates a more efficient algorithm.

The second metrics is the speedup, that evaluates the scalability of each
algorithm: for each algorithm and each case study, we compute the time for this
case study and this algorithm for Nmax nodes divided by the time needed for
a perfect algorithm (i.e. the monolithic time divided by Nmax ), and multiplied
by 100. Here, a number close to 100 means a very scalable algorithm, whereas a
number close to 0 indicates an algorithm that does not scale well.

In the following, we describe the performance of each algorithm according to
Table 2, before concluding which is the most efficient strategy.

Static. This static domain decomposition algorithm is clearly not efficient, which
shows that BC cannot be efficiently distributed using classical techniques for reg-
ular data distribution. Static is the worst algorithm twice (for RCP and Sched3B-
2), and never the most efficient; a surprise is the very good performance for Flip-
flop4, which probably comes from the fact that the tiles are very homogeneous
geometrically for this case study, making a static distribution efficient.

Seq. Although it is easy to implement, this algorithm is terribly inefficient: with
3 case studies for which it is the worst algorithm, it is also the worst in average.
This comes from the fact that Seq is very likely to distribute to different nodes
points that are close to each other, leading to redundant computations.

Random. This algorithm behaves well for case studies with relatively few points
in D, but it is always behind Shuffle in that case. It does not perform as well on
case studies with large D, most likely because of the sequential enumeration of
all points in the second phase of Random.

Shuffle. With four case studies for which it is the best one, Shuffle is very efficient
when D does not contain too many points; shuffling the points guarantees a good
random repartition of the points, without entailing complex operations at the
master side... at the cost of being able to shuffle a large quantities of points.
This latter aspect certainly explains the low performances for Flip-flop4 and
Sched3B-3.

Subdomain. This algorithm is always outperformed by its variant Subdomain + H;
it seems that the cost of checking which node is computing which point and the
additional necessary communications are largely compensated by the benefit of
preventing redundant computations brought by stopping ongoing executions.

Subdomain + H. This algorithm has the best average speedup (17 %). Although it
clearly outperforms Shuffle for only two experiments (Flip-flop4 and Sched3B-3),
Subdomain + H is for no case study very far from the best algorithm. This could
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Table 2. Summary of experiments

make a good candidate for the best distribution algorithm – but we advocate in
the following for a better proposition.

Conclusion: Hybrid. From the experiments, we notice that Subdomain + H is
always among the most efficient, but is outperformed by Shuffle for case studies
with relatively few points in D. Hence, we propose the following “algorithm”: if D
contains relatively few points (say, less than 100,000), use Shuffle, otherwise use
Subdomain + H. Note that the condition (number of points in D) only depends
on the input of the analysis, and can be checked very easily. This new algorithm
“Hybrid” is always the best one – except for RCP, for which it is very slightly
slower than Subdomain + H despite a small number of points (3,050). In addition,
Hybrid gets the smallest average ratio (31 %) and the highest speedup (20 %).

Discussion. An average speedup of 20 % at Nmax for Hybrid can seem relatively
low; this means that a perfect distribution algorithm (that would always divide
the monolithic computation time by N) would be 5 times faster. Still, we find
it promising. First, all distributed algorithms suffer from the time spent in com-
munication, which always lowers the speedup. Second, this confirms that distrib-
uting BC is far from trivial, due to the unknown shape of the cartography, the
unknown computation time for each tile, and the risk for redundant computations.
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Third, and most importantly, a speedup of 20 % means that, when using 128
nodes, the computation time is still divided by more than 25 – which leads to an
impressive decrease of the verification time.

7 Final Remarks

We proposed here distribution algorithms to compute the cartography relying
on the inverse method. In fact, one can use other algorithms than IM to obtain
different “cartographies”; this is the case of [5] where we use a reachability
preservation algorithm (“PRP”) instead of IM so as to obtain, not a behavioral
cartography, but a simple “good/bad” partition with respect to a reachability
property. Distributing PRP using Subdomain often outperforms the monolithic
bad-state reachability synthesis (e.g. [1,13]). Hence, we believe that our point
distribution algorithms can be reused for different purposes than just BC.

In addition to using distributed computing resources, our aim is to design
multicore algorithms for parameter synthesis, in the line of [11,15] – and then
combine both approaches.

Finally, we would like to formally verify the master-worker communication
scheme of Sects. 4 and 5, so as to avoid potential deadlocks caused by a node
waiting for a message that cannot arrive at that point.
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Abstract. In this paper we introduce recursive probabilistic computa-
tion-tree logic as a restriction of μpctl. We introduce the logic in detail
and show its usefulness for verifying systems. We illustrate this by means
of some examples. Roughly speaking, we include recursive operators
within pctl, which enable one to identify repeating patterns of prob-
ability. This new feature seems in particular useful for expressing prop-
erties regarding stability of system executions; such properties are usual,
for instance, in those scenarios where one is interested to verify whether
the system under verification stays in, or revisits, a subset of safe states.
Also, the logic makes it possible to reason about set of executions with
zero measure; something no possible in related logics.

1 Introduction

The increasing role of computing systems in critical activities has led to the use
of mathematical formalisms for producing error-free software as well as reducing
the occurrence of faults during the execution of systems. In the case of verifica-
tion of complex and large systems, automated techniques based on mathematical
formalisms have been proved to be essential. One of these techniques that has
received an increasing amount of attention in the last decades is model checking.
Model checking establishes whether a system satisfies a certain property in an
automated way. For that, a representation of a system M called model is con-
structed and contrasted with a property ϕ in temporal logic. Temporal logic can
be used to express properties about concurrent and reactive systems [1].

Tools that implement model checking algorithms for various temporal logics
have been applied to verify hardware components, software programs, and net-
work protocols among others. Many examples of applications are reported in the
literature, and we refer to [1,2] for in depth introduction to model checking.
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In the last years, several types of temporal logics incorporating probabili-
ties into the picture have been proposed. These formalisms provide the basis to
perform model checking in scenarios where probabilities are needed. This is the
case, for instance, of randomized algorithms and distributed protocols. Such log-
ics include, for example, pctl, the probabilistic counterpart of ctl, and pctl∗,
the probabilistic counterpart of ctl∗, to name a few. Tools such as PRISM [3]
and LiQuor [4] support probabilistic model checking. In particular, they allow to
check the validity of pctl and pctl∗ formulas over Markov chain models.

A few years ago, there was a major effort that led to standardization of tem-
poral hardware specification languages (cf. [5,6]). This effort was preceded by
much research about the constructs that should (and should not) be included in
such languages (e.g., [7,8]). Much care has been given to find the right balance
between ease of specification, expressive power, and complexity of model check-
ing. In this paper we would like to start a similar process for temporal logics
intended for reasoning about probabilistic systems. The standard language for
reasoning about such systems is pctl, whose expressive power is very limited.
Much effort has been recently dedicated to considering probabilistic μ-calculi
[9,10] and automata [11]. These are very expressive, however, neglect the issues
of usability and tractability.

We present a logic called rpctl, which, as mentioned, extends pctl with
recursive calls. This logic is a fragment of μpctl presented in [10]. The recursive
operator is, in fact, a greatest fixpoint. However, introducing it through recursion
takes advantage of the familiarity of the recursion concept to computer scien-
tists. By not allowing nesting of different recursion schemes (least and greatest
fixpoints) we bound the complexity of the logic. At the same time, our logic
extends pctl in expressive power and allows it to characterize repetition in the
probabilistic system.1

We cast expressiveness results from [10] in the context of rpctl and show
that rpctl is more expressive than pctl. We show that the complexity of model
checking matches that of pctl and is polynomial in the underlying Markov chain.
In fact, the algorithm repeatedly calls pctl model checking.

We believe that a main application of rpctl is the verification of proper-
ties related to fault-tolerance. A system is said fault-tolerant when it is able to
continue working in an acceptable way even under the occurrence of faults. The
grade of tolerance exhibited by a given system can be characterized by using col-
lections of safe states. For instance, a system is said fail-safe if it stays in a set of
safe states under the occurrence of faults [12], and it is classified as non-masking
tolerant when it revisits infinitely often a set of safe or desirable states [12].
In the case of probabilistic systems (and probabilistic temporal logics), the char-
acterization of such properties cannot be achieved in a direct way. This is mainly
because the probability of a system to stay in a set of safe states is 0 when the
occurrence of faults has a positive probability (i.e., the system will eventually
escape from this set of “good” states with probability 1). We illustrate this

1 We note that this extension is orthogonal to the power added by pctl∗, or other
mechanisms for describing regular path properties.
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point with some examples in Sect. 4. Instead of using the standard quantifier for
greatest fixed point we use a syntactic sugar pointing out its recursive character,
we believe this improves its usability when specifying and verifying systems, we
illustrate this with two examples.

The paper is structured as follows. In Sect. 2 we introduce the basic concepts
needed to tackle the ideas described in this paper. In Sect. 3 we describe the logic
in detail and show how it compares to ctl and pctl. We include two examples
and show the motivation for using this logic in Sect. 4. Then, we describe the
model checking algorithm in Sect. 5. Finally, we discuss some conclusions and
future work.

2 Preliminaries

In this section we briefly introduce some basic concepts. A Kripke structure over
a set AP of atomic propositions is a tuple 〈S,→, L, s0〉, where S is a (finite) set
of locations, →⊆ S × S is a relation, L : S → 2AP is a labeling function and
s0 ∈ S is an initial location. A Markov chain over a set AP of atomic letters is
a tuple 〈S, P, L, s0〉, where S is a (finite) set of locations, P : S × S → [0, 1] is
a stochastic matrix, L : S → 2AP is a labeling function and s0 ∈ S is an initial
location. For a location s ∈ S we denote by Ms the Markov chain obtained from
M by setting s to the initial location.

pctl formulas over a set AP are defined as follows:

J :: = {>,≥} × [0, 1]
Φ :: = � | ⊥ | pi | ¬pi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ)
Ψ :: = XΦ | Φ U Φ | Φ W Φ

As usual we introduce the abbreviations F and G. The semantics and intuitions
of pctl formulas are as usual, see [2].

The logic μpctl extends pctl with the inclusion of fixpoint variables and
least and greatest fixpoint operators [10]. We now describe the syntax and
semantics of μpctl. Let AP be a set {p0, p1, . . . } of atomic propositions and
let V = {V0, V1, V2, . . . } be an enumerable set of variables; the sets Φ and Ψ
of location and path formulas, respectively, are mutually recursively defined as
follows:

J :: = {>,≥} × [0, 1]
Φ :: = � | ⊥ | pi | ¬pi | Vi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ) | νVi.Φ | μVi.Φ (1)
Ψ :: = XΦ | Φ U Φ | Φ W Φ

We assume that in every formula there is no repetition of bound variables; it is
straightforward to see that every formula can be rewritten to satisfy this require-
ment. In general, we are interested in formulas in which all variables are bound.

A μpctl formula characterizes the set of states of a Markov chain in which
it holds. Consider a Markov chain M = 〈S, P, L, s0〉. The semantics of subfor-
mulas may depend on a valuation associating a set of states with every variable
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appearing in it. Formally, a valuation is a function τ : V → 2S . We denote
by τ [S′/V ] the valuation such that τ(V ) = S′ and for every V ′ �= V we have
τ [S′/V ](V ′) = τ(V ).

The semantics of a formula ϕ, denoted [ϕ]Mτ is defined as follows:

[pi]Mτ = L(pi)
[¬pi]Mτ = S \ L(pi)
[Vi]Mτ = τ(Vi)

[ϕ1 ∧ ϕ2]Mτ = [ϕ1]Mτ ∩ [ϕ2]Mτ
[ϕ1 ∨ ϕ2]Mτ = [ϕ1]Mτ ∪ [ϕ2]Mτ
[PJ(Ψ)]Mτ = {s ∈ S | measureM (s, Ψ)J}
[νVi.Φ]Mτ = gfp{S′ ⊆ S | S′ = [Φ]Mτ [S′/Vi]

}
[μVi.Φ]Mτ = lfp{S′ ⊆ S | S′ = [Φ]Mτ [S′/Vi]

}

We notice that 2S is a lattice and that all operators are monotonic. It follows
from the Knaster-Tarski Theorem that the greatest and least fixpoint indeed
exist.

3 RPCTL

In this section we present an extension of probabilistic computation tree logic
with recursive statements. We provide the fixed point operators that allow writ-
ing recursive formulas. We allow a formula to contain a recursive call by using
two novel operators rec and call which are syntactic sugar for the greatest fixed
point. Technically speaking, this introduces greatest fixed points in the logic,
effectively making it a subset of μpctl.

Let us start presenting the syntax of rpctl. Let AP be a set {p0, p1, . . . } of
atomic propositions; the sets Φ and Ψ of location and path formulas, respectively,
are mutually recursively defined as follows:

J :: = {>,≥} × [0, 1]
Φ :: = � | ⊥ | pi | ¬pi | calli | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ (Ψ) | reci.Φ

Ψ :: = XΦ | Φ U Φ | Φ W Φ

In general, we are interested in formulas in which all variables are bound. Note
the indexes appearing in rec and call statements, they serve mainly two pur-
poses; firstly, they provide an enumerable collection of variables for recursion
(call0, call1, call2, . . . ); and secondly, they indicate which quantifiers bind which
variables, that is, calli is bound by reci, for every i.

We now describe the semantics of rpctl. An rpctl formula characterizes
the set of states of a Markov chain in which it holds. Consider a Markov chain
M = 〈S, P, L, s0〉. The semantics of subformulas may depend on a valuation
associating a set of states with every call statement appearing in it. Formally,
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a valuation is τ : {call0, call1, . . . } → 2S . We denote by τ [S′/calli] the valuation
such that τ(calli) = S′ and for every i �= j we have τ [S′/calli](callj) = τ(callj).
The semantics of a formula ϕ, denoted [ϕ]Mτ is defined as follows:

[pi]Mτ = L(pi)
[¬pi]Mτ = S \ L(pi)
[calli]Mτ = τ(calli)

[ϕ1 ∧ ϕ2]Mτ = [ϕ1]Mτ ∩ [ϕ2]Mτ
[ϕ1 ∨ ϕ2]Mτ = [ϕ1]Mτ ∪ [ϕ2]Mτ
[PJ(Ψ)]Mτ = {s ∈ S | measureM (s, Ψ)J}
[reci.Φ]Mτ = gfp{S′ ⊆ S | S′ = [Φ]Mτ [S′/calli]}

Let us illustrate the intuition behind the operators call and rec with some
examples, consider the following formula:

rec.p ∧ P>0(Xcall), (2)

where, for the sake of simplicity, we avoid the indexes in rec and call. This formula
holds in a location s if p holds in s, and the probability that formula 2 holds in
next locations is greater than 0. That is, p holds in s and s has a successor
satisfying p, which has a successor satisfying p, and so on. This property is in
fact equivalent to the ctl property EGp. The formula:

rec.P>0.5(call U p), (3)

holds in a location s if recursively, there is a probability of more than half to
continue to locations that satisfy the same property until p becomes true. That
is, every location encountered on the way to the satisfaction of p has more than
half of its successors satisfying the same property. As we show below this property
is not expressible in either ctl or pctl.

Intuitively, we have to treat each bound variable calli as a new proposition.
Each location labeled by one of the new propositions needs to satisfy the pctl
formula obtained from the appropriate recursive call, where calls are replaced by
the corresponding formula. We provide further intuitions with some examples
below.

3.1 Expressive Power

We show that rpctl is more expressive than pctl and incomparable with ctl.

Theorem 1. rpctl is more expressive than pctl. There are properties
expressed by rpctl that are not expressible in ctl.

Proof. We first note that pctl is syntactically included in rpctl. The property
rec.p ∧ P>0.5(X ∧ call) is not expressible in either pctl or ctl [10].
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We note that including existential and universal path quantification in rpctl
would not increase the complexity of model checking algorithms. This would
allow us to include ctl in rpctl, should we wish to do so.

In Sect. 4 we use properties similar to the property in the proof of Theorem1.
That is, these properties enforce a repetition of a certain pattern of probability
even if that pattern occurs in a set whose measure is zero. It would be possible
to show that these properties are not expressible neither in ctl nor in pctl. It
is worth noting that this “repetition” feature of rpctl that reasons about sets
of paths of measure zero is the main novelty that is afforded by rpctl.

4 Motivating Examples

In this section we describe two examples with the aim of illustrating the use of
rpctl in practice.

4.1 A Token Ring Network

Our first example consists of a simple system composed of three connected nodes,
whose activities are regulated via a token ring protocol. The three nodes are
connected to each other via a network with a ring topology; in this setting, a
token is passed through by the nodes in such a way of guaranteeing the access
to a particular resource to the actual owner of the node, e.g., permission to send
information across the network.

Let us state a few properties which might be thought of as requirements for
this system. One of these properties is: there is always exactly one node that has
the token, and whenever a node hold onto a token, it eventually passes it to the
next node in the ring. A simple fault that can be conceived in this context is one
in which, due to the unreliability of the medium, the token is lost while it is being
sent from one node to another one, we assign some probability to the occurrence
of this event. A probabilistic abstraction of this situation, including the fault
detection, is depicted in Fig. 1. In this model, the proposition ni becomes true
when the token is passed to node i. While n ′

i represents the situation in which
the token stays in node i, before passing to the next one. It is simple to see that
the probability that a token reaches node 1 when it is sent by node 0 is 1

2 . Note
that for the other cases similar probabilities are obtained. Simple calculations
show the following: P(n1 . . . n2) = P(n2 . . . n0) = 1

2 .
It is interesting to investigate the properties that hold in the non-faulty part

of the system, an example is the following one.

Example Property 1. When no faults are observed, the token could stay in a
given state or move to the next one, the probability of doing this is at least one
half, and this pattern can be repeated an unbounded number of times.

Note that in this property we have an implicit notion of stability, which in
some sense characterizes the normative (or expected) behavior of the system. A
natural candidate to express this property is the following formula:
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Fig. 1. A model of a token ring of nodes, where tokens can be lost.

rec.

⎡

⎣
(n0 → P≥ 1

2
(F(n1 ∧ call))) ∧

(n1 → P≥ 1
2
(F(n2 ∧ call))) ∧

(n2 → P≥ 1
2
(F(n0 ∧ call)))

⎤

⎦ (4)

Roughly speaking, this formula expresses that, if the token is held by node i,
then the probability that the token reaches node i + 1, and that this pattern is
repeated, is one half.

If we consider the set of states that satisfy the first occurrence of call to be
the state labeled by n1, the set of states that satisfy the second appearance of
call to be the state labeled by n2, and the set of states that satisfy the last
occurrence to be the state labeled by n0, then, the pctl property obtained by
replacing bound variables by propositions denoting these sets of states, holds for
states n0, n1, and n2.

Let us introduce a variant of the scenario presented above. Now, when the
token is held by node 2, it could stay in that state or move to node 1 or node 0,
that is, now we have the possibility of returning the token to the previous node
or passing it to the next one; this may be the case, for instance, in a scenario
where the channel connecting node 2 with node 1 is corrupt, and the token has to
be returned to the original sender. This new situation is depicted in Fig. 2. The
probability of the token going from node 2 to node 0 is: P(n2 . . . n0) = 0.3636.

The formula does not hold for this last model, note that state n2 in the model
does not satisfy the subformula (n2 → P≥ 1

2
(F(n0 ∧call)). That is, rpctl makes

possible to distinguishing different patterns of repetition.
One may try to capture this property using the following pctl formula:

ϕ =

⎡

⎣
(n0 → P≥ 1

2
(F(n1))) ∧

(n1 → P≥ 1
2
(F(n2))) ∧

(n2 → P≥ 1
2
(F(n0)))

⎤

⎦ (5)



A Recursive Probabilistic Temporal Logic 343

n1n ′
0 n ′

1

n0start n2

E n ′
2

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

Fig. 2. Another model of a token ring of nodes, where tokens can be lost.
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Fig. 3. Another model that satisfy ϕ.

In fact ϕ distinguishes the two models analyzed above, note that it is true in
the model of Fig. 1, and false in the model presented in Fig. 2. However, notice
that this pctl formula does not capture the notion of repetition. Formula 5 is
true in structures where the pattern of repetition is not available; an example is
shown in Fig. 3, where we have n0 � ϕ.

Another possible way of capturing recursive properties like this one using
pctl is by using a globally operator of the kind: P>0(Gϕ) (where ϕ is the prop-
erty presented above). But the set of paths that satisfy these kinds of properties
has measure 0; so in this model it is equivalent to P=0(Gϕ), which prevents us
from analyzing these traces.

4.2 A Mutual Exclusion Problem

Let us now consider a standard example in concurrency and fault-tolerance: the
mutual exclusion problem for two processes (namely P1 and P2). We introduce
faults in this model by allowing processes to go into an error state, in this
particular case they may be down for an undetermined amount of time. The
basis of this example is introduced in [13], here we add probabilities to be able
to perform a quantitative analysis of this system.

In every state the probabilities of moving to its successors are distributed in
a uniform way. The model that captures this scenario is shown in Fig. 4. The
region M1 (enclosed by a dashed line) contains those states that can be reached
either, during the normal behavior of the system, or when P1 is down but with
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a positive probability of recovering. In order to simplify the analysis, we only
consider failures in process P1, once P1 fails, P2 may fail too. The transitions
corresponding to the failure of P2 followed by the failure of P1 are similar to
the ones shown in that figure. In this model, the proposition Ni becomes true
when process Pi is in the non-critical region, propositions Ti and Ci represent
the situation in which the process Pi moves into its trying section, or critical
region, respectively. Finally, the proposition Di indicates that the process Pi is
down, denoting the occurrence of a fault. Note that, for the sake of clarity, we
have gathered the states into regions, and transitions were added from these sets
of states to failure regions. Let us state some properties of this model.

N1 N2

start

T1 N2 N1 T2

C1 N2 T1 T2 N1 C2

C1 T2 T1 C2

D1 N2 D1 T2 D1 C2
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ε

1

M1 M2

Fig. 4. Two-process mutual exclusion (Color figure online).

Example Property 2. When there are no faults, the process P1 stays in its
safe region (N1, T1 or C1) with probability greater than or equal to one half.

This property can be expressed in RPCTL using the following formula:

rec.
[
¬D1 ∧ P≥ 1

2
(X call)

]

Observe that this formula characterizes the idea of staying in a safe set of states,
we can think of this collection of states as representing the normal behavior of
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the system (i.e., the green states in Fig. 4), the recursive part of the formula
expresses that those states will be revisited with certain probability.

As we explain in Example 1, these kinds of properties cannot be captured
in pctl. One could mix ctl and pctl operators to express properties of traces
with measure 0. Consider for instance:

P≥ 1
2
[(N1 ∨ T1 ∨ C1) U D1] ∧ EG(N1 ∨ T1 ∨ C1) (6)

This formula says that the probability of keeping the system in the safe zone
until the process is down is at least to 1

2 , while the ctl subformula says that
there exists an execution where the process is always up. However, note that the
probability of repeating that pattern is not reflected in this formula.

Furthermore, we spice up this model with the possibility that process P1 stays
down forever, this new scenario is also depicted in Fig. 4, the region labeled M2

represents a collection of states where process P1 cannot recover from failures.
Note that, in this modified model, we have a probability 0 < ε ≤ 0.05 represent-
ing the chance that Pi stays down forever. Another desirable property of this
model is the following one.

Example Property 3. The probability that the process P1 is down with the
possibility of getting up at some point is greater than or equal to one fifth.

This property can be characterized with the following RPCTL formula:

rec.
[
D1 ∧ P≥(1−ε)(F¬D1) ∧ P≥ 1

5
(X call)

]
(7)

Intuitively, this formula characterizes the region of the system where the
process P1 fails, but there is a positive probability of returning to the safe zone.
Graphically, it represents the notion of staying and revisiting infinitely often the
set of red states in the M1 part of the model, shown in Fig. 4.

Finally, a key feature of this model is the possibility of moving between
normal regions (when no faults are present) and the idea that this behavior can
be repeated an unbounded number of times with a probability greater than or
equal to 1

3 .

Example Property 4. When there are no faults, the probability that the
process P2 moves to the next region is greater or equal to one third.

This property is expressed by the following RPCTL formula

rec.

⎡

⎣
(N2 → [P≥ 1

3
(XT2) ∧ P≥ 1

3
(X call)]) ∧

(T2 → [P≥ 1
3
(XC2) ∧ P≥ 1

3
(X call)]) ∧

(C2 → [P≥ 1
3
(XN2) ∧ P≥ 1

3
(X call)])

⎤

⎦ (8)
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Algorithm 1. Algorithm for rpctl Model Checking.
let ∀ i . Wi = ∅;
let ∀ i . Si = S;
do {

let ∀ i . Wi = Si;

let ∀ i . Si =
{ s | M(S1, . . . , Sn), s |= reci . ϕi( callj ← cj | j ∈ [1..n]) };

}
} while (∃ i . Si �= Wi);

if (M(S1 , . . . , Sn), s |= ϕ((recj . ϕj) ← cj |j ∈ [1..n])) print ‘‘Yes!’’;

else print ‘‘No!’’;

5 Model Checking

In this section we consider model checking of rpctl. We give an algorithm for
model checking rpctl on finite-state Markov chains that is polynomial in the
Markov chain and the size of the formula. The algorithm is the restriction of the
algorithm in [10] to the usage of just greatest fixpoints. We include it here for
the sake of completeness.

Consider a Markov chain M = 〈S, P, L, s0〉 and an rpctl formula ϕ. Suppose
that the set of calls appearing in ϕ is {call1, . . . , calln}, and let {S1, . . . Sn} be
sets of states of M . That is, for every 1 ≤ i ≤ n we have Si ⊆ S. We denote
by M(S1, . . . , Sn) the structure over AP ∪ {c1, . . . , cn} obtained from M by
setting L(ci) = Si. For the formula reci.ϕi, let reci.ϕi(callj ← cj |j ∈ [1..n])
be the formula obtained from ϕi, where every reference to callj is replaced by
cj . Finally, let ϕ(recj .ϕj ← cj |j ∈ [1..n]) denote the formula obtained from
ϕ by replacing every occurrence of recj .ϕj by cj . Then, Algorithm 1 computes
whether a state s of M satisfies ϕ. The algorithm calls pctl model checking as
a subroutine.

Theorem 2. For a rpctl formula φ, Algorithm1 answers “yes” iff s ∈ [φ]Mτ ,
where τ is an arbitrary valuation.

Proof. The proof follows from the approximation of greatest fixpoints. The algo-
rithm computes the greatest fixpoints by initializing their approximation by the
set of all states and removing all states that cannot satisfy the obligation. When
the fixpoint terminates the sets are the actual fixpoints.

Theorem 3. Algorithm1 can be computed in time polynomial in the size of M
and ϕ.

Proof. We rely on the fact that pctl model checking is polynomial both in
the size of the formula and in the size of the model. We note that the propo-
sitions cj appear positively in ϕ(recj .ϕj ← cj) and in reci.ϕi(call ← cj) Let
ψ be one of these formulas. From monotonicity it follows that if Si ⊆ S′

i then
{s | M(S1, . . . , Si, . . . , Sn), s |= ψ} ⊆ {s | M(S1, . . . , S

′
i, . . . , Sn), s |= ψ}. Hence,
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the sets Si are monotonically decreasing. If follows that after at most n · |S|
iterations through the loop the loop exits.

We conclude that the algorithm calls a polynomial number of times the model
checking procedure for pctl and is polynomial.

6 Related Work

Over the years there have been several suggestions of probabilistic μ-calculi.
Notably, the work of Huth and Kwiatkowska [14] and McIver and Morgan [15]
both suggest quantitative μ-calculi that replace the Boolean interpretation of the
classical μ-calculus with a quantitative interpretation. That is, the semantics of a
formula instead of being a set of locations is a function associating a value with
each location. These logics, however, fail to capture pctl and do not have a
means to get formulas back to the Boolean domain. Mio [9] extends these logics
with different interpretations of quantitative conjunction. In order to reason
about different types of conjunction he introduces parity games with independent
products and tree games. Mio’s quantitative μ-calculus does capture pctl and
has a fragment for which certain subformulas live in the Boolean domain and
others in the quantitative domain [16]. Unfortunately, the complexity of model
checking for Mio’s logic is very high.

In our work [10] we introduced a well behaved subset of Mio’s probabilistic
μ-calculus, called μp-calculus. Its advantage is that its model checking procedure
is in NP just like the μ-calculus. We then further suggested μpctl, that incor-
porates fixpoint operators in pctl. The disadvantage, as we have learned from
the μ-calculus, is that fixpoint alternation are very hard for users to understand.
A fragment of μpctl is considered also in [17].

7 Final Remarks

In this paper we have introduced rpctl, an extension of pctl with recursive
statements. It allows to specify properties describing possible “repetitions” in the
Markov chain and the probability of events occurring within these repetitions.
The extra expressive power comes at a very low price as model checking for this
logic is by repeated calls to a pctl model checker.

One of the main benefits of rpctl is that it allows one to capture properties
of internal regions of models. This is useful for instance in the case of systems
where it is needed to reason about the repetition of a certain pattern with a
given probability. This is the case, for example, of fault-tolerant systems where
one needs to reason about the pattern of faults and the probability of avoiding
them or recovering from them. We have presented some examples that show the
application of this logic in practice. We leave as further work the implementation
of a model checker for this logic, and the investigation of more complex case
studies. We also intend to consider extensions to the types of regular properties
that can be included within probability quantification.
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Abstract. Automated verification of programs that utilize data struc-
tures with intrinsic sharing is a challenging problem. We develop an
extension to separation logic that can reason about aliasing in heaps
using a notion of compatible sharing. Compatible sharing can model a
variety of fine grained sharing and aliasing scenarios with concise spec-
ifications. Given these specifications, our entailment procedure enables
fully automated verification of a number of challenging programs manip-
ulating data structures with non-trivial sharing. We benchmarked our
prototype with examples derived from practical algorithms found in sys-
tems code, such as those using threaded trees and overlaid data struc-
tures.

1 Introduction

Systems software often uses overlaid data structures to utilize memory more
efficiently and boost performance. Consider maintaining the set of processes in
an operating system; some are running while others are sleeping. Sometimes we
wish to access every process, whereas other times we only wish to access e.g.
the running processes. To track this set efficiently we can use a “threaded list”
whose nodes are defined as follows:

data node { int pid; node anext; node rnext; node snext }
Each node has four fields. The first two are straightforward: a process id field
pid and a pointer to the next process (which may be running or sleeping) anext.
The latter two are a bit trickier. When a process is running, rnext points to the
next running process in the list, skipping over any sleeping processes in between.
When a process is sleeping, snext points to the next sleeping process in the list.
We maintain three external pointers into the structure: one for the head of the
entire list a, the second for the head of the running sublist r, and the third for
the head of the sleeping sublist s. Consider this picture:

c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 349–365, 2015.
DOI: 10.1007/978-3-319-25423-4 23
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The efficiency benefits of overlaid structures can be significant: e.g., we avoid
representing nodes on multiple spatially-disjoint lists and can visit each running
process without needing to step through the sleeping processes. The real draw-
back, from our perspective, is that programs utilizing overlaid structures are
difficult to verify formally!

Separation logic [18] enables compositional reasoning of heap-manipulating
programs and has been widely applied to automated verification [2,5,11]. Sep-
aration logic uses the separating conjunction ∗ to connect assertions valid on
disjoint portions of the heap, enabling natural representations for many data
structures such as lists and trees because their constituent subparts are spatially
disjoint. Overlaid data structures cannot be specified so naturally because the
underlying structures share nodes in memory.

We extend the notion of separation to enable local reasoning for overlaid
data structures by introducing a notion of compatibility. Two predicates are
compatible when updates to one will not affect the other despite spatial overlap.
In our threaded list example above, we can imagine splitting the structure into
three pseudo-disjoint/compatible lists formed by the anext, rnext, and snext
pointer chains. A function that modifies some chains but not others can then
“frame away” the part of the structure it does not use. This can happen in
several steps: consider switching a process from sleeping to running. First we
frame away the anext chain. Then we frame away the rnext chain, leaving only
a straightforward snext linked list, on which we do a standard list remove. We
then frame rnext back in and snext away, followed by a standard list add.
Finally, we frame snext and anext back in, restoring the entire structure.

All of the above means we need field-level separation, which we get by adding
annotations to fields: when a field is absent (or inaccessible) we mark it with @A;
when it is present/mutable we mark it with @M. Here is how this looks for our
threaded list:

al〈root, S〉 ≡ (root = null ∧ S = {})
∨∃ p, a, Sa · (root 	→node〈p@I, a@M,@A,@A〉 ∗ al〈a, Sa〉 ∧ S = Sa ∪ {root})

rl〈root, S〉 ≡ (root = null ∧ S = {})
∨∃ p, r, Sr · (root 	→node〈p@I,@A, r@M,@A〉 ∗ rl〈r, Sr〉 ∧ S = Sr ∪ {root})

sl〈root, S〉 ≡ (root = null ∧ S = {})
∨∃ p, s, Ss · (root 	→node〈p@I,@A,@A, s@M〉 ∗ sl〈s, Ss〉 ∧ S = Ss ∪ {root})

These predicates specify the “all list”, “running list”, and “sleeping list”, respec-
tively. Each list predicate is parameterized by a set of addresses S of nodes on
that list. Each points-to predicate (node〈·〉) annotates the ownership of its fields:
e.g., the points-to in al has full ownership @M of the first (anext) pointer field.
This claim is compatible with the rl and sl predicates since both of them are
absent in that field. An interesting case is the process id field pid. All three of
the predicates wish to share access to this field; we still consider them to be com-
patible as long as the field is marked immutable @I. Our annotations are thus a
kind of “poor man’s fractional permissions [3]”, in which @A is analogous to the
empty permission, @M is analogous to the full permission, and @I is analogous to
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an existentialized permission. Although less precise than fractional permissions,
these annotations are sufficient for some interesting examples and we avoid some
of the hassles of integrating fractional permissions into a verification tool [16].

Since we have two compatible predicates we want to use ∗ to combine them:

al〈root, Sr ∪ Sl〉 ∗ (rl〈root, Sr〉 ∗ sl〈root, Ss〉)

Actually this is not quite right. Although adding field-level separation is not
new [8], the standard way to do so introduces a subtle ambiguity. The issue is
that the amount of sharing of the objects is not fully specified: in fact the two ∗
are being used quite differently. The first ∗, separating al〈·〉 from the other two,
is actually more like a standard classical separation logic conjunction ∧. That is,
every node on the left hand side is also on the right hand side, and vice versa:
the fields separate, but the nodes precisely overlay one another. In contrast, the
second ∗, separating rl〈·〉 from sl〈·〉, is much more like the standard classical
field-less separating conjunction ∗. That is, the set of nodes are strictly disjoint
(no running process is sleeping, and vice versa), so even if rl〈·〉 and sl〈·〉 had
incompatible fields, they would still be separate in memory.

This ambiguity means that the traditional field-level ∗ is a bit too easy to
introduce, and unnecessarily painful to eliminate. We resolve it by using two
distinct operators: ∧∗ , when we mean that nodes are identical and fields must
be compatible; and ∗, which for us means that the nodes themselves are disjoint.
Thus, we specify our threaded list as:

al〈x, Sy∪Sz〉 ∧∗ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)

We know that this predicate uses only compatible sharing because all of the
fields on the lhs and rhs of the ∧∗ are disjoint and the ∗ guarantees compatibility
on the inner subformula. It may seem that ∧∗ is very specific to this example,
but that is wrong: in Sect. 6 we mention how we use it to reason about other
overlaid data structures.

Contributions. We develop a specification mechanism to capture overlaid shar-
ing, an entailment procedure to reason about such sharing, and integrate our
ideas into an existing automated verification system. Our prototype, together
with a web-based GUI for easy experimentation and machine checked proofs in
Coq, is available at: http://loris-7.ddns.comp.nus.edu.sg/∼project/HIPComp/.

2 Motivating Examples

In this section, we illustrate the difference between the various conjunction oper-
ators (∗, ∧ and ∧∗ ) and give the intuition behind compatible sharing. We also
show how to automatically check for compatible sharing in data structures using
a notion of memory specifications.

http://loris-7.ddns.comp.nus.edu.sg/~project/HIPComp/
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2.1 From Separation to Sharing

As discussed earlier, separation logic provides a natural way to represent disjoint
heaps using the separating conjunction ∗. However, if two assertions both require
some shared portion of memory, then ∗ cannot easily combine them. Consider
the following simple example:

data pair { int fst; int snd }
Here pair is a data structure consisting of two fields, fst and snd. The following
assertion1 indicates that x points to such a structure with field values f and s:

x	→pair〈f, s〉
We denote two disjoint pairs x and y with the separating conjunction ∗, which
ensures that x and y cannot be aliased:

x	→pair〈f1, s1〉 ∗ y	→pair〈f2, s2〉
In contrast, to capture aliased pairs we use classical conjunction ∧ as follows:

x	→pair〈f1, s1〉 ∧ y	→pair〈f2, s2〉
The ∧ operator specifies “must aliasing”, that is, ∧ ensures that the pointers x
and y are the equal and that the object field values are identical (i.e., f1 = f2
and s1 = s2).

To support field-level framing we use the field annotations introduced in
Sect. 1, to mark fields that are mutable (@M), immutable (@I) and absent (@A).
Consider the following:

x	→pair〈f1@M, s1@A〉 ∗ y	→pair〈f2@A, s2@M〉
This formula asserts that the heap can be split into two disjoint parts, the first of
which contains a first-half-pair pointed to by x, and the second of which contains
a second-half-pair pointed to by y. Since by default fields are mutable @M, and
when a field is absent @A we need not bind a variable to its value, the formula
can also be written as:

x	→pair〈f1,@A〉 ∗ y	→pair〈@A, s2〉
All this seems simple enough, but there is a subtle wrinkle: notice that x and y
may be aliased (if the combined heap contains a single pair that has been split
1 Our separation logic is both “Java-like” and “C-like”. Our logic is “Java-like” in the
sense that heap locations (pointers) contain (point to) indivisible objects rather than
individual memory cells, avoiding the possibility of pointers pointing into the middle
of a structure (i.e., skewing). On the other hand, our logic is “C-like” because our
formulae are given a classical rather than intuitionistic semantics, i.e., x�→pair〈f, s〉
means that the heap contains exactly a single pair object at the location pointed
to by x rather than at least a single pair object at x.
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in half fieldwise), but need not be (if the combined heap contains two distinct
half pairs). This ambiguity is inconvenient. We introduce a new operator, the
overlaid conjunction ∧∗ to indicate that the locations are the same although the
fields are disjoint. Thus, when we write

x	→pair〈f1,@A〉 ∧∗ y	→pair〈@A, s2〉
we unambiguously mean that x and y are aliased and have been split fieldwise.
On the other hand, hereafter when we use ∗, then x and y are not aliased, just as
was the case before we added fieldwise separation. We do not use the ambiguous
version of ∗.

We are now ready to give an intuition for our notion of compatible sharing:
essentially, a conjunction (∧, ∧∗ , and ∗) expresses compatible sharing when one
side can be safely framed away. Or, in other words it is possible to reason over
only one side of conjunction and ignore the other since they can be combined
together later without conflicts. As the simplest example, the following pairs
are compatible because the separating conjunction guarantees that they exist
on disjoint heaps:

x	→pair〈f1, s1〉 ∗ y	→pair〈f2, s2〉
Consider next the following two uses of classical conjunction ∧:

x	→pair〈f1,@A〉 ∧ x	→pair〈f2,@A〉
x	→pair〈f1@I,@A〉 ∧ x	→pair〈f2@I,@A〉

The difference between the two formulae is that in the second example we have
marked the field fst as immutable @I. Because fst is mutable @M in the first
example, we are not able to frame away half of the conjunction, since we need
to maintain the fact that f1 = f2. On the other hand, in the second example,
since fst is immutable on both sides of the conjunction, we are able to frame
away either side. Therefore, we deem the first example incompatible while we
consider the second compatible.

Checking for compatibility is useful not only for the ∧ operator but also for
∧∗ operator in the presence of aliasing as shown in the following examples:

x	→pair〈f1,@A〉 ∧∗ y	→pair〈f2, s2〉 (Incompatible)
x	→pair〈f1,@A〉 ∧∗ y	→pair〈@A, s2〉 (Compatible)

2.2 Shared Process Scheduler

Recall that from Sect. 1, the formula that we used to specify the threaded lists
was as follows:

al〈x, Sy∪Sz〉 ∧∗ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)
Even though this formula uses compatible sharing of heaps, it is non-trivial

to prove that automatically. Since the field annotations are hidden inside the
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predicate definition they cannot be exposed without doing an unfolding of the
predicate. In order to expose the information about the fields inside the predicate
we introduce the notion of memory specifications. We allow the user to specify the
memory footprint of the predicate using the mem construct which is associated
with the predicate definition. The enhanced predicate definitions for the process
scheduler are shown below.

al〈root, S〉≡(root=null∧S={})
∨ ∃ d, q, Sq · (root 	→node〈d@I, q,@A,@A〉∗al〈q, Sq〉

∧S=Sq∪{root})
mem S↪→(node〈@I,@M,@A,@A〉)

rl〈root, S〉≡(root=null∧S={})
∨ ∃ d, q, Sq · (root 	→node〈d@I,@A, q,@A〉∗rl〈q, Sq〉

∧S=Sq∪{root})
mem S↪→(node〈@I,@A,@M,@A〉)

sl〈root, S〉≡(root=null∧S={})
∨ ∃ d, q, Sq · (root 	→node〈d@I,@A,@A, q〉∗sl〈q, Sq〉

∧S=Sq∪{root})
mem S↪→(node〈@I,@A,@A,@M〉)

The mem construct consists of a memory region along with a list of possible
field annotations that the predicate unfolding would generate. It allows us to
syntactically check if two predicates that share memory region have compatible
field annotations. Looking at the memory specification of al and rl it is easy to
see that al does not affect (or is compatible with) rl. The id field is immutable
in rl and the only field which is mutable in al is absent in rl. Thus any updates
made to the nodes in memory region S using predicate al will not have any effect
when accessing the same memory region using predicate rl.

To avoid writing such verbose predicates with set of addresses and to make
the specifications more concise we use the overlaid conjunction operator (∧∗ ).
Formulas using the ∧∗ operator are translated automatically to those that use
the ∗ operator with memory specifications. For the shared process scheduler the
memory region shared by the lists al is same as the one shared by rl and sl.
The ∧∗ operator provides the hint to the system to force the memory on both
sides to be the same. Hence the key invariant of the data structure is captured
more concisely as:

al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)

This formula is automatically translated by first enhancing the predicate def-
initions with memory specifications by using the XMem function from Fig. 2.
(Predicate definitions also can be enchanced with other pure properties following
translation technique described in Sect. 7 of [19]). And then forcing the memory
region on both sides of ∧∗ to be same. As the final translated formula is exactly
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the same as given before, the use of ∧∗ provides a specification mechanism to
precisely describe the user intention.

//Provided by User
al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)
//Predicate extension with mem
al〈x, Sx〉 ∧∗ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)
//Translated form
al〈x, Sx〉 ∧ (rl〈y, Sy〉 ∗ sl〈z, Sz〉)∧Sx=Sy∪Sz

Using the ∧∗ operator makes the specification of methods utilizing overlaid struc-
tures less verbose. Consider the following insert method which is called while
scheduling a new process in the system. The new process has to be inserted
into al, and depending on the status flag, also in rl or sl. The precondition of
the method uses the ∧∗ operator to specify the key safety property. The use of
overlaid sharing operator allows the user to express the precondition in a concise
form. Compatible sharing is used to verify this method as the inserts made to
different lists can be shown to not interfere with each other.

void insert(int id, int status, node x, node y, node z)
requires al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)∧ status=1
ensures al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)
requires al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)∧ status=0
ensures al〈x〉 ∧∗ (rl〈y〉 ∗ sl〈z〉)
{
node tmp = new node(id, null, null, null);
tmp.next = x;
x = tmp;
if(status == 1)

y = rlinsert(y, tmp);
else z = slinsert(z, tmp);

}

2.3 Comparison with Fractional Permissions

In this section, we show the difficulties that arise when using separation logic with
fractional permissions (SLfp) to represent overlaid data structures. We avoid
these issues by using field annotations and overlaid conjunction operator while
specifying compatible sharing in data structures.

Applying fractional permissions (as in SLfp) to fields inside inductive predi-
cates can unintentionally change the meaning of the predicate. E.g consider the
following predicate definition of an immutable binary tree in SLfp:

tree〈root〉≡root=null
∨∃ d, l, r · (root 	→node〈d@1/2, l@1/2, r@1/2〉∗tree〈l〉∗tree〈r〉)

We restrict the use of fields in the predicate using the fraction 1/2 to give a
read-only permission. However, this predicate does not enforce a tree and is in



356 A. Sharma et al.

fact a DAG. In standard SLfp the ∗ operator does not enforce strict separation,
thus the left and right children can point to the same node and combine using
the 1/2 permissions given to each node. A more sophisticated permission system
like tree-shares [16] can avoid this problem, but it is not known how to extend
a tree-shares like model to fields.

We avoid this problem by using a definition of the ∗ operator that enforces
strict object level separation. Also, we use field annotations that provide a sim-
pler way to specify mutable, immutable and absent fields. If we use ∗ for object
level separation and ∧ for object level sharing then it is natural to introduce
another operator ∧∗ for object level sharing and field level separation. The over-
laid conjunction (∧∗ ) is also practically useful to represent several data structures
as shown in Sect. 6.

3 Specification with Compatible Sharing

We extend the specification language of separation logic with memory enhanced
predicate definitions. The specification language is as described in Fig. 1 (we use
the superscript ∗ to denote a list of elements). Φpr ∗→ Φpo captures a precondition
Φpr and a postcondition Φpo of a method or a loop. They are abbreviated from
the standard representation requires Φpr and ensures Φpo, and formalized by
separation logic formula Φ. In turn, the separation logic formula is a disjunction
of a heap formula and a pure formula (κ∧π). We use the set constraints for
representing memory regions as shown in Fig. 1. The predicate definition allows
optional mem construct to be specified. mem is useful in cases like the overlaid
data structures where it is important to be able to specify that the memory
regions of both overlaying structures are exactly the same.

In order to check compatible sharing between two predicates we take help
of the XMem(κ) function. The XMem(κ) function, whose definition is given in

Fig. 1. Specification language
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Fig. 2. XMem: translating to memory form

Fig. 2, returns a sound approximation of the memory footprint of heap κ as
a tuple of the form (S, [c(@u∗)]∗), which corresponds to the set of addresses
and the list of field annotations used in memory specifications. The function
isData(c) returns true if c is a data node, while isPred(c) returns true if c is
a heap predicate. We use lists L1 and L2 to represent the field annotations.
The function union(L1, L2) returns the union of lists L1 and L2. We do not
need to consider the pure formula π in XMem as it doesn’t correspond to any
heap. In general, Φ can be disjunctive, so we can have a number of possible
approximations of memory for a predicate, each corresponding to a particular
disjunct. Since memory specifications are essential to check compatibility in data
structures, we have machine checked the soundness proof of the XMem function
in Coq. We illustrate how the approximation function works on a linked list.

data node { int val; node next }
ll〈root, S〉≡(root=null∧S={})

∨∃ d, q, Sq · (root 	→node〈d, q〉∗ll〈q, Sq〉∧S=Sq∪{root})
mem S↪→(node〈@M,@M〉)

As an example consider the memory approximation of the following predicate.

XMem(x	→node〈d, p〉 ∗ ll〈y, Sy〉)
We proceed by using the rules from Fig. 2 for the data node x and predicate ll.

XMem(x	→node〈d, p〉) = ({x}, [node〈@M,@M〉])
XMem(ll〈y, Sy〉) = (Sy, [node〈@M,@M〉])
XMem(x	→node〈d, p〉 ∗ ll〈y, Sy〉) = ({x}∪Sy, [node〈@M,@M〉])

As a consistency check on the memory specification we use the predicate
definition to validate the user supplied memory specification. In case the user
doesn’t provide a memory specification (e.g. when using the ∧∗ operator) we
automatically extend the predicate definition with set of addresses returned by
the XMem function. We use an existing underlying [6] entailment procedure
(denoted by �) to discharge the entailment during validation of memory speci-
fications. The rules for checking the memory specification are given in Fig. 3. In
the following discussion for brevity we represent a list of field annotations used
in memory specification (c(@u∗)∗) with L. We define a subtype(L1, L2) function
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Fig. 3. Validating the memory specification

on lists of field annotations. The function returns true if all the field annotations
of data nodes in L1 have a corresponding node in L2 and their field annotations
are in the subtyping relation (as defined in Fig. 1).

subtype(L1, L2) =df ∀ c(@u∗
1) in L1,∃ c(@u∗

2) in L2 s.t. u1 <: u2

The subtype function is used to check the validity of the memory specifi-
cation by ensuring that the field annotations defined inside the predicate are
really subtype of those given by the memory specification. For a predicate
p(v∗) ≡ Φ h S↪→L, the judgment Φ �mem S↪→L in Fig. 3 checks the validity
of the memory specification.

Rule [CHECK−MEM] is used when the Φ formula does not contain a dis-
junction, while [CHECK−OR−MEM] is used when it does. The main difference in
the disjunctive case is how we handle of list of field annotations. For the set of
addresses (S) we approximate the heap in each disjunctive formula. However, the
field annotations have to be computed for the entire predicate as the annotations
may differ in different disjuncts.

4 Verification with Compatible Sharing

To verify programs with compatible sharing we make use of an existing entail-
ment procedure for separation logic (denoted by � [5]). The only additional
operator we have is the overlaid conjunction. We first describe the automatic
translation used to eliminate ∧∗ operator. For overlaid conjunction operator (∧∗ ),
we must first identify the pairs of field annotations that are compatible. The fol-
lowing table can be used to look up compatible field annotations. The ∧∗ operator
is similar to ∧, except that the shared heaps must be compatible, which can be
checked using the Compatible function.

u1 u2 CompatibleFA
@M @M false

@M @I false

@M @A true

@I @I true

@I @A true

@A @A true

Compatible(κ1∧∗ κ2) =df

(S1, L1)=XMem(κ1) (S2, L2)=XMem(κ2)
∀ c(@u∗

1) in L1, ∃ c(@u∗
2) in L2 s.t. CompatibleFA(u1, u2)

∀ c(@u∗
2) in L2, ∃ c(@u∗

1) in L1 s.t. CompatibleFA(u2, u1)
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Fig. 4. Rules with field annotations

As shown in Fig. 4, the [ELIM−OVER−CONJ] rule first checks for compatible
sharing of heaps and then uses the XMem function to get the set of addresses
S1 and S2 which are added to the formula when ∧∗ operator is replaced with ∧.
Thus for the process scheduler example from Sect. 2 we get the following.

al〈x, Sx〉 ∧∗ (rl〈y, Sy〉 ∗ sl〈z, Sz〉) �
al〈x, Sx〉 ∧ (rl〈y, Sy〉 ∗ sl〈z, Sz〉) ∧ Sx = Sy ∪ Sz

Figure 4 also lists the rules required during entailment with field annotations.
These rules are based on the definition of field annotations and the semantic model
of the specification formula (details are in Appendix 5.2). Rule [DOWNCAST−FA]

says that we can always downcast a field annotation. This means that a write
(@M) annotation can be downcast to read (@I) and a read annotation to absent
(@A). The following examples use the [DOWNCAST−FA] rule to check validity of
entailments with field annotations.

x	→node(v@M, p@I) � x	→node(v@I, p@A) (Valid)
x	→node(v@I, p@I) � x	→node(v@I, p@A) (Valid)
x	→node(v@I, p@I) � x	→node(v@M, p@A) (Invalid)

The absent annotation can always be split off (or combined with) any other
annotation as shown in rule [SPLIT−COMBINE−FA]. Finally, as given in rule
[SPLIT−READ−FA] the read annotation can be split into two read annotations.
Together, these three set of rules allow exclusive write access and shared read
access to fields. Entailments showing the use of [SPLIT−COMBINE−FA] rule are
given below.

x	→node(v@M, p@I)�x	→node(v@I, p@I)∧x	→node(v@I, p@A)
x	→node(v@M, p@M)�x	→node(v@M, p@A)∧x	→node(v@A, p@M)
x	→node(v@I, p@I)�x	→node(v@I, p@I)∧x	→node(v@I, p@A)

5 Semantics and Soundness

5.1 Storage Model

The storage model is similar to classical separation logic [18], with the difference
that we support field annotations, memory specifications and sharing operators.
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Accordingly, we define our storage model by making use of a domain of heaps,
which is equipped with a partial operator for gluing together disjoint heaps.
h0 · h1 takes the union of partial functions when h0 and h1 have disjoint domains
of definition, and is undefined when h0(l) and h1(l) are both defined for at least
one location l ∈ Loc.

To define the model we assume sets Loc of locations (positive integer values),
Val of primitive values, with 0 ∈ Val denoting null, Var of variables (program
and logical variables), and ObjVal of object values stored in the heap, with
c[f1 �→ν1, .., fn �→νn] denoting an object value of data type c where ν1, .., νn are
current values of the corresponding fields f1, .., fn. Each field has an attached
annotation from {M, I,A}. I means that the corresponding field value cannot
be modified, while M allows its mutation, and A denotes no access.

h ∈ Heaps =df Loc ⇀fin ObjV al × {M, I,A}
s ∈ Stacks =df Var → Val ∪Loc

Note that each heap h is a finite partial mapping while each stack s is a total
mapping, as in the classical separation logic [13,18].

5.2 Semantic Model of the Specification Formula

The semantics of our separation heap formula is similar to the model given for
separation logic [18], except that we have extensions to handle our user-defined
heap predicates together with the field annotations and new sharing operators.
Let s, h |= Φ denote the model relation, i.e. the stack s and heap h satisfy the
constraint Φ. Function dom(f) returns the domain of function f . Now we use 	→
to denote mappings, not the points-to assertion in separation logic. The model
relation for separation heap formulae is given in Definition 1. The model relation
for pure formula s |= π denotes that the formula π evaluates to true in s.

Definition 1 (Model for Specification Formula)

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff ∃ν1..n·s[v1 �→ν1, .., vn �→νn], h |= κ and
s[v1 �→ν1, .., vn �→νn] |=π

s, h |=κ1∗κ2 iff ∃h1, h2 · h1⊥h2 and h = h1·h2 and
s, h1 |= κ1 and s, h2 |= κ2

s, h |=κ1∧κ2 iff s, h |= κ1 and s, h |= κ2

s, h |=κ1∧∗ κ2 iff s, h |= κ1 and s, h |= κ2 and Compatible(κ1∧∗ κ2)
s, h |=emp iff dom(h) = ∅
s, h |=c(x, v1..n@u1..n) iff data c {t1 f1, .., tn fn}∈P, h=[s(x)�→r], dom(h) = {x}

and r=c[f1 �→w1s(v1), .., fn �→wns(vn)] and ui<:wi

or (c〈x, v1..n〉≡Φ inv π)∈P and s, h |= [x/root]Φ
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The last case in Definition 1 is split into two cases: (1) c is a data node defined
in the program P; (2) c is a heap predicate defined in the program P. In the first
case, h has to be a singleton heap. In the second case, the heap predicate c may
be inductively defined. Note that the semantics for an inductively defined heap
predicate denotes the least fixpoint, i.e., for the set of states (s,h) satisfying the
predicate. The monotonic nature of our heap predicate definition guarantees the
existence of the descending chain of unfoldings, thus the existence of the least
solution.

5.3 Soundness

The soundness of rules given in Fig. 4 can be established using the semantic
model and the definition of field annotations. We now present the proof of sound-
ness of these rules, we start first with the rules for field annotations.

Rule [DOWNCAST−FA]:

s, h |= x	→c(v[@u]∗)
⇐⇒ h=[s(x)	→r]∧r=c[f 	→ws(v)]∗∧u<:w (Definition 1)
=⇒ h′=[s(x)	→r]∧r=c[f 	→ws(v)]∗∧h′⊂h (weakening)
⇐⇒ s, h′ |= x	→c(v[@w]∗)∧h′⊂h (Definition 1)
⇐⇒ s, h |= x	→c(v[@w]∗)

Thus, x	→c(v[@u]∗) =⇒u<:w x	→c(v[@w]∗) �
Rule [SPLIT−COMBINE−FA]:

s, h |= x	→c(v[@u]∗)
⇐⇒ h=[s(x)	→r]∧r=c[f 	→ws(v)]∗∧u<:w (Definition 1)
⇐⇒ h′=[s(x)	→r]∧r=c[f 	→@As(v)]∗∧h′⊂h (∀u · u<:@A)
⇐⇒ s, h′ |= x	→c(v[@A]∗)∧h′⊂h (Definition 1)
⇐⇒ s, h′ |= x	→c(v[@A]∗)∧h′⊂h

∧s, h |= x	→c(v[@u]∗)
⇐⇒ s, h |= x	→c(v[@A]∗)∧x	→c(v[@u]∗) (Definition 1)

Thus, x	→c(v[@u]∗) ⇐⇒
x	→c(v[@u]∗) ∧ x	→c(v[@A]∗) �

Rule [SPLIT−READ−FA]:

s, h |= x	→c(v[@I]∗)
⇐⇒ h=[s(x)	→r]∧r=c[f 	→ws(v)]∗∧I<:w (Definition 1)
⇐⇒ h′=[s(x)	→r]∧r=c[f 	→@Is(v)]∗∧h′⊂h (@I<:@I)
⇐⇒ s, h′ |= x	→c(v[@I]∗)∧h′⊂h (Definition 1)
⇐⇒ s, h′ |= x	→c(v[@I]∗)∧h′⊂h

∧s, h |= x	→c(v[@I]∗)
⇐⇒ s, h |= x	→c(v[@I]∗)∧x	→c(v[@I]∗) (Definition 1)

Thus, x	→c(v[@I]∗) ⇐⇒
x	→c(v[@I]∗) ∧ x	→c(v[@I]∗) �
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Using the rules for field annotations we prove the soundness of the elimination
rule as follows.

Rule [ELIM−OVER−CONJ]:

s, h |= κ1∧∗ κ2∧(S1, L1)=XMem(κ1 )
∧(S2, L2)=XMem(κ2 )

⇐⇒ s, h |= κ1∧s, h |= κ2∧
Compatible(κ1∧∗ κ2)∧s |= S1=S2(=h) (Definition 1)

case [SPLIT−COMBINE−FA]:

⇐⇒ h=[s( )	→r]∧r=c[f 	→us( )]∗∧
h′=[s( )	→r]∧r=c[f 	→@As( )]∗∧h′⊂h∧
Compatible(κ1∧∗ κ2)∧s |= S1=S2

⇐⇒ s, h |= κ1∧s, h′ |= κ2∧h′⊂h
∧s |= S1=S2 (CompatibleFA)

=⇒ s, h |= κ1∧κ2∧S1=S2 (Definition 1)

case [SPLIT−READ−FA]:

⇐⇒ h=[s( )	→r]∧r=c[f 	→@Is( )]∗∧
h′=[s( )	→r]∧r=c[f 	→@Is( )]∗∧h′⊂h∧
Compatible(κ1∧∗ κ2)∧s |= S1=S2

⇐⇒ s, h |= κ1∧s, h′ |= κ2∧h′⊂h
∧s |= S1=S2 (CompatibleFA)

=⇒ s, h |= κ1∧κ2∧S1=S2 (Definition 1)

Thus, κ1∧∗ κ2 � κ1∧κ2 ∧ S1=S2 �

There are two ways of splitting the overlaid heaps - in the first case we use
the [SPLIT−COMBINE−FA] to combine them back as the fact that they are in
compatible sharing means that the field annotations can only be from the pairs
given in table for CompatibleFA in Sect. 5.2 and we prove the second case simi-
larly using the [SPLIT−READ−FA] rule. Soundness of the underlying entailment
procedure (as shown in [5]) and the soundness of the rules given in Fig. 4 together
establish the soundness of verification with compatible sharing.

6 Experiments

We have built a prototype system using Objective Caml called HIPComp.2 The
web interface of HIPComp allows testing the examples without downloading or
installing the system. The proof obligations generated by HIPComp are discharged
using off-the-shelf constraint solvers (Omega Calculator [14] and Mona [15]). In
addition to the examples presented in this paper we can do automated verifi-
cation of a number of challenging data structures with complex sharing. The
2 .

http://loris-7.ddns.comp.nus.edu.sg/~project/HIPComp/
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examples are hard to reason with separation logic due to inherent sharing and
aliasing in heap. For each of these examples, we verify methods that insert, find
and remove nodes from the overlaid data structure.

Program Invariant LOC Time [secs] Sharing Comp

Parameterized List al〈x〉 ∧∗ (rl〈y〉∗sl〈z〉) 30 0.28 100 40

Compatible Pairs x �→pair〈f1,@A〉 ∧∗ y �→pair〈@A, s2〉 12 0.09 100 25

LL and SortedLL ll〈x〉 ∧∗ sll〈y〉 175 0.61 22 22

LL and Tree ll〈x〉 ∧∗ tree〈t〉 70 0.24 16 7

Doubly Circular List llnext〈x〉 ∧∗ lldown〈y〉 50 0.41 50 32

Process Scheduler al〈x〉 ∧∗ (rl〈y〉∗sl〈z〉) 70 0.47 33 23

Disk IO Scheduler (ll〈x〉 ∧∗ tree〈t〉)∗ll〈y〉 88 1.3 16 27

The above table summarises a suite of small examples verified by HIPComp.
All experiments were done on a 3.20 GHz Intel Core i7-960 processor with 16 GB
memory running Ubuntu Linux 10.04. The first column gives the name of the
program. The second column shows how we use the overlaid conjunction ∧∗ to
concisely specify the overlaid data structures in our experiments. As shown in the
table, for the last two programs, the key invariant of the overlaid data structure
can also be a composite structure which intermixes ∗ and ∧∗ operators. It is
essential to reason about compatible sharing when specifying and verifying such
programs. The third column lists the lines of code (including specifications) in
the program. The annotation burden due to specifications is about 30 % of the
total number of lines of code. In the fifth column, we show the sharing degree, it
is defined as the percentage of specifications that use compatible sharing using
field annotations. The sharing degree varies across examples depending on the
percentage of methods that use overlaid conjunction in their specifications.

As is clear from our benchmark programs, the ability to specify sharing
is important to verify these data structures. The last column (Comp) is the
percentage of total entailments generated that make use of compatible sharing.
The compatibility percentage depends on the number of entailments that make
use of the [ELIM−OVER−CONJ] rule to eliminate the overlaid conjunction. The
compatibility check is essential to verify sharing in these programs.

7 Related Work and Conclusions

Our sharing and aliasing logic is most closely related to Hobor and Villard [12];
our work verifies only a subset of what they can do but we do so mechani-
cally/automatically. The problem of sharing has also been explored in the context
of concurrent data structures [7,20]. Our work is influenced by them but for a
sequential setting, indeed the notion of self-stable concurrent abstract predicates
is analogous to our condition for compatibility. However since we are focused on
sequential programs, we avoid the use of environment actions and instead focus
on checking compatibility between shared predicates. Regional logic [1] also uses
set of addresses as footprint of formulas. These regions are used with dynamic
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frames to enable local reasoning of programs. Memory layouts [10] were used by
Gast, as a way to formally specify the structure of individual memory blocks.
A grammar of memory layouts enable distinguishing between variable, array,
or other data structures. This shows that when dealing with shared regions of
memory knowing the layout of memory can be quite helpful for reasoning. We
use field annotations to specify access to memory in shared and overlaid data
structures.

In the area of program analysis [4,8] the work most closely related to ours
is by Lee et al. [17] on overlaid data structures. They show how to use two
complementary static analysis over different shapes and combine them to rea-
son about overlaid structures. Their shape analysis uses the ∧ operator in the
abstract state to capture the sharing of heaps in overlaid structures, but they
do not provide a general way to reason with shared heaps. In contrast, we verify
that the shared heaps used by the predicates are compatible with each other.
Thus, we present an automated framework which can be used to reason about
compatible sharing in data structures. An initial set of experiments with small
but challenging programs confirms the usefulness of our method. Similarly, the
recent work of Dragoi et al. [8] considers only the shape analysis of overlaid lists.
In addition, Enea et al. [9] consider the compositional invariant checking of over-
laid and nested lists. We extend these separation logic based techniques by going
beyond shape properties and handling arbitrary data structures. Our proposal is
built on top of user defined predicates with shape, size and bag properties that
can express functional properties (order, sorting, height balance etc.) of overlaid
data structures. A separation logic based program analysis has been used to
handle non-linear data structures like trees and graphs [4]. In order to handle
cycles they keep track of the nodes which are already visited using multi-sets.

We have proposed a specification mechanism to express different kinds of
sharing and aliasing in data structures. The specifications can capture cor-
rectness properties of various kinds of programs using compatible sharing. We
present an automated framework which can be used to reason about sharing in
data structures. We have implemented a prototype based on our approach. An
initial set of experiments with small but challenging programs have confirmed
the usefulness of our method. For future work, we want to explore the use of
memory regions and field annotations to enable automated verification of other
intrinsic shared data structures that do not satisfy compatible sharing (like dags
and graphs).

Acknowlegement. This work is supported by MoE 2013-T2-2-146 and Yale-NUS
College R-607-265-045-121.
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Abstract. We use the concept of delta-oriented programming to orga-
nize FSM-based test models in an incremental structure. We then exploit
incremental FSM-based testing to make efficient use of this high-level
structure in generating test cases. We show how our approach can lead
to more efficient test-case generation, both by analyzing the complexity
of the test-case generation algorithm and by applying the technique to
a case study.

Keywords: Model-based testing · FSM-based testing · HSI method ·
Software product lines · Delta-oriented programming · DeltaJava

1 Introduction

Software product lines (SPLs) have become common practice thanks to their
potential for mass production and customization of software. Testing software
product lines, and in particular, their model-based testing are topics of increasing
relevance in the research literature and also industrial practice [4,10,17]. In
this paper, we propose the formal foundations of a delta-oriented framework
for model-based testing. Delta-oriented programming (DOP) and in particular,
DeltaJava [14], is a framework for SPLs, in which a product line is specified in
terms of applications of a number of deltas (changes: additions, removals and
modifications of member objects, methods, and classes) from a core product.
The overall goal of the research commenced by this paper is to allow for efficient
test-case generation and test-case execution for delta-oriented models and their
corresponding programs. In this paper, we focus on test-case generation and
show whether and how test-case generation for delta-oriented models can be
made more efficient by benefiting from their incremental structure.

To this end, we use finite state machines (FSMs) as test models whose struc-
ture is based on DeltaJava: there is a test-model for the core product, which
includes abstraction of state valuations as its states and the method calls, their
return values and their effect on the abstract state as its transitions. Then,
test models for different products are obtained by incrementally modifying the
details of the core model (e.g., adding models for classes, member objects and
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methods). In this paper, we focus on the incremental subset of DeltaJava, in
which the core represents a minimal set of features and the deltas incrementally
add to the core or the composition of core with other deltas (but do not remove
anything from them). We also adopt the well-known Harmonized State Identifi-
cation (HSI) method [13] and adapt it to the delta-oriented structure of our test
models.

The remainder of this paper is organized as follows. In Sect. 2, we review
several pieces of related work and identify their similarities and differences with
the present paper. In Sect. 3, we recall some preliminary notions regarding FSM-
based testing and the syntax of delta-oriented models. We specify the syntactic
structure of our running example in Sect. 4, which we use throughout the rest
of the paper to illustrate various formal definitions. Subsequently, we define the
semantic domain of our test models in Sect. 5 and show how the test models
of various products can be obtained from the semantics of the core model by
applying a delta composition operator. In Sect. 6, we show how test cases can be
generated from the test models of various products and analyze the complexity
of test-case generation. In Sect. 7, we provide some empirical results obtained
from comparing the effectiveness of the application of the delta-oriented test-
ing method with the HSI-method for a case study. We conclude the paper and
present the directions of our ongoing research in Sect. 8.

2 Related Work

Incremental FSM-Based Testing. The closest line of research to that of the
present paper is incremental FSM-based testing, which is extensively researched
in the past few years [3,6,9,11,15]. This line of research aims at modularizing the
test-case generation and/or test-case execution process with respect to changes
such as adding, removing, or modifying transitions or states in test models. Such
a modularization should eventually lead to saving time and effort in re-generating
or re-executing tests by focusing on those parts that are influenced by the change.
The approaches of [3,6] differ from our approach in that they assume that the
behavior of the core implementation is unchanged after each and every delta
and focus on the effect of changes on the extended part of the implementation;
we have no assumption about the behavior of the implementation due to the
application of a delta. Our focus in this paper is on test-model semantics and
test-case generation rather than test-case selection and execution. The approach
of [15] is different from ours in that it aims at completing a given set of test cases,
but does not per se address the changes in the test model. Our approach is mostly
based on [9,11] and applies it at a higher level of abstraction to delta-oriented
models inspired by the DeltaJava framework of [14].

Model-Based Testing of SPLs. In a recent survey, Oster et al. [10] observe that
there is a considerable gap regarding testing in the current software engineering
approaches to SPLs. Despite this gap, there is already some body of research on
the theory and application of model-based testing for SPLs (see, e.g., [4,10,17]
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for recent surveys). Among these approaches, the closest to our approach are
those developed by Malte Lochau, Ina Schaefer, et al. [8]. They propose a delta-
oriented and state-machine-based testing methodology for SPLs and instantiate
this methodology in a case study using IBM Rational Rhapsody and Automated
Test-case Generator (ATG). Our approach follows the same structure and for-
malizes the part that has been implemented in IBM Rhapsody, by means of
ideas from incremental FSM-based testing. This paves the way for further for-
mal analyses of the technique proposed in [8], as well as further improvements
by considering more relaxed fault models.

Object-Oriented Model-Based Testing. There is a large body of literature regard-
ing model-based testing of object-oriented programs by using sequence- or state-
diagrams as test models (see, e.g., [1,12,18]). We follow object-oriented principles
such as encapsulation and data-hiding in our modeling framework and organize
our test models based on specification of class instantiations and dependencies.
In this sense, our work builds upon earlier work in this direction such as [5,18];
in particular, our test models are reminiscent of class state machines (CSMs)
introduced in [5]. Our work differs from this line of work in two ways: firstly,
our focus is on incremental changes in test models and not so much on testing
object oriented programs. Secondly, in our approach the system under test need
not be implemented as an object-oriented program; the abstract test-cases from
our test-models can be used to test different types of implementation. This is
achieved by means of adapters that turn the abstract test-cases into concrete
test-cases for different programming languages and implementation platforms.

3 Preliminaries

3.1 FSM-Based Testing

In this section, we explain the basic concepts of FSM-based testing and delta-
oriented modeling techniques used throughout the rest of the paper. We use
the Harmonized State Identification (HSI) method [13] as the basis of our
model-based testing technique. In the HSI method, test models are Finite State
Machines (FSMs), specifying the desired behavior of systems. The formal defin-
ition of an FSM, borrowed from [2], is as follows.

Definition 1 (Finite State Machine). A Finite State Machine (FSM) M is a
6-tuple (S, s0, I, O, μ, λ), where S is a finite set of states, s0 ∈ S is the initial
state, I and O are, respectively, finite nonempty sets of input and output symbols,
μ : S×I → S is the transition function and λ : S×I → O is the output function.

Intuitively, whenever a machine receives input a at state s, it deterministically
traverses to state μ(s, a) and generates output λ(s, a). A transition from state
s to state s′ with input i and generated output o is represented by quadruple

(s, i, o, s′), or alternatively by s
i/o−−→ s′. For a sequence x ∈ I∗, we define μ(s, x)

and λ(s, x) in the standard manner to denote, respectively, the final state that
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the machine ends in and the sequence of generated outputs, after receiving the
input symbols in x one by one. Furthermore, we also informally recall that two
states are X-equivalent (X ⊆ I∗) if and only if the two states produce the same
output for every input sequence σ ∈ X (see [2] for a formal definition). Lastly,
two machines M,M ′ are X-equivalent, denoted by M ≡X M ′, if and only if for
every state of M there is an X-equivalent state of M ′ and vice versa. Machine
M is said to conform to machine M ′ if and only if they are I∗-equivalent.

The main idea of the HSI method is to establish conformance between an
FSM test model M and an unknown machine M ′, modeling the implementation,
by generating a finite test case from M and applying it to M ′. There are a set
of assumptions that should hold for these machines, which are specified next.

Definition 2 (HSI method assumptions). The HSI method can be applied on
machines M and M ′, which satisfy the following assumptions:

1. Both M and M ′ are deterministic, i.e., for each state and each input i, there
is at most one outgoing transition labeled with i.

2. Both M and M ′ are minimal, i.e., there are no distinct I∗-equivalent states in
either of them. Note that if M is not minimal, an equivalent minimal machine
can be generated using a minimization algorithm such as [7].

3. All states in M are reachable from its initial state s0.
4. Both machines M and M ′ have reliable reset sequences, which take the respec-

tive machine from the current state to the initial state.
5. M ′ has at most as many states as M .

The HSI method consists of two phases. The first phase comprises checking
the existence of states in the implementation that are I∗-equivalent to the ones in
the test model. In the second phase, the output and the target of the transitions
for the corresponding states are tested for conformance. In order to reach all the
states in the machine, the HSI method uses a set of input sequences, state cover
set, denoted by Q, which is defined below.

Definition 3 (State Cover Set). Consider an FSM M = (S, s0, I, O, μ, λ); a
state cover set of M , denoted by Q, is a set of sequences such that:

∀s∈S · ∃x∈Q · μ(s0, x) = s

A state cover set of an FSM can be obtained by building a spanning tree
such that, the nodes are states of the FSM and the edges are chosen from the
set of transitions in the FSM. The set of sequences obtained as the state cover
set are then the paths from the initial state to the nodes in the spanning tree.

As another ingredient of the first phase, i.e., checking the existence of test-
model states in the implementation, the HSI method uses a separating family
of sequences, which is denoted by Z and comprises sets of separating sequences
for all states. A set of separating sequences identifies and tests the target states
after running each element of the state cover set. The separating set for a state
is defined as follows.
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Definition 4 (Separating Sequences). Consider an FSM M = (S, s0, I, O, μ, λ);
the set of separating sequences for a state s ∈ S, is denoted by zs and includes
sequences that can distinguish s from all other states in S, that is:

∀s,s′∈S · s �= s′ ⇒ ∃x∈Pref (zs)∩Pref (zs′ ) · λ(s, x) �= λ(s′, x),

where Pref (.) denotes the set of prefixes of a set of sequences.

A separating family of sequences for an FSM, is a set comprising the separating
sequences of all states, that is Z =

⋃
s∈S{zs}.

Hence, the set of test cases executed in the first phase are generated as follows.
For each state s ∈ S, let qs and zs denote, respectively, the sequence in the state
cover set which leads to s and the set of separating sequences generated for s.
Then, the test cases generated in the first phase is given by

⋃
s∈S r.qs.zs, where

r is the reset sequence of the FSM and for two sets A and B of sequences, A.B
denotes the concatenation of two sets and is defined as {αβ|α ∈ A∧β ∈ B}. This
way, in addition to checking the existence of the states, the output and target
state of the transitions which are included in the spanning tree are checked for
conformance to the specification.

In the second phase of the HSI method, the output and the target state of
the remaining transitions, not visited while traversing the state cover set, are
checked using the following set of test cases. For each of the remaining transitions

such as s
i/o−−→ s′, the set of all r.qs.i.zs′ sequences is added to the set of test cases.

3.2 Delta-Oriented Syntactic Structure

Inspired by DeltaJava [14], our test-models for an SPL are structured into a core
model and a set of delta models. The core model describes the correct behavior
of a valid configuration in the SPL. The implementation of other products is
obtained by applying delta models to the core model. The structure of our models
is defined by the syntax of DeltaJava, which is described below.

A core model comprises a set of Java classes and a set of interfaces, that is:

core 〈Feature names〉{〈Java classes and interfaces〉},

where feature names specify the set of features which are included in the config-
uration corresponding to the core model.

Delta models describe sets of changes to the core model. The structure of a
delta in the DeltaJava language is given in Fig. 1. In this syntax, a delta model
may add/remove fields, methods, or interfaces from classes in the core model.
Also, it can modify the existing ones. A class can also be added or removed from
a core model by applying a delta model. The keyword after can be used in order
to specify the order of the application of a set of delta model to the core model.
The when keyword is used to specify that this delta can be applied when a set of
features are being included in the configuration. In the remainder of this paper,
we only consider incremental delta-oriented models, i.e., those models that only
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delta 〈 name 〉 [after 〈 delta names 〉]
when 〈application condition〉 {

removes 〈class or interface name〉
adds class 〈 name 〉 〈 standard Java class〉
adds interface 〈 name〉 〈standard Java interface〉
modifies interface 〈 name 〉

{ 〈 (remove | add| rename) method header clauses〉 }
modifies class 〈name〉

{ 〈 (remove | add | rename) field clauses〉 |
〈 (remove | add | rename) method clauses }〉 }

Fig. 1. DeltaJava syntax (Color figure online).

add model classes, methods or fields. In this paper, we focus on an incremental
subset of the syntax, designated in blue, which assumes a minimal core and
incremental additions by various deltas. Particularly, in Sect. 5, we provide a
semantic domain in terms of FSMs for a subset of these syntactic structures,
which covers adding classes, methods and fields to a core FSM model.

4 Running Example

In this section, we present the syntax of a DeltaJava example, which is used
throughout the rest of this paper. The core model of this example consists of
one class, named Bridge. This class has a field that represents the availability of
the bridge and also a set of functions, which manipulate and report the value of
this field. The syntax of the core model is given in Fig. 2.

Core Bridge{
Class Bridge{
private boolean Avl;
public Bridge() {Avl=true;}
public void SetAvl(){Avl=true;}
public void ResetAvl(){Avl=false;}
public boolean CheckAvl(){return(Avl);}

}
}
delta DPedLight when pedestrian Light {

modifies Class Bridge{
adds boolean Psig
adds boolean CheckPsig(){return(Psig);}
adds void SetPsig(){Psig=true;}
adds void ResetPsig(){Psig=false;}

}
}

delta DController when controller {
adds Class Controller{
private boolean Lsig,Rsig;
public bridge b;
public controller(){
Lsig=false; Rsig=false;}
public int CheckLsig(){return(Lsig);}
public int CheckRsig(){return(Rsig);}
public void GetReq(int id){
if(b.CheckAvl()==true){
if(id==0){
Lsig=true;Rsig=false;}

else{
Rsig=true;Lsig=false;

}
b. ResetAvl();}

}
public void SetPassed(){
Lsig=false;Rsig=false;
b.SetAvl();}

}
}

Fig. 2. Core- and delta models of the running example.
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We consider two different delta models to be added to the core model given
in Fig. 2. The first delta model consists of the addition of a class. The class
controller controls the status of the lights in both side of the bridge in order to
guarantee a mutually exclusive access to the bridge. This delta is added when
the feature controller is included in a product. The second delta model is added
to the core model when the pedestrian light feature is included in the product.
This delta model consists of adding a field to the bridge class, which represents
the status of the pedestrian light, as well as two methods, which can set and
reset the value of the pedestrian light.

5 Delta-Oriented FSM Modeling

In this section, we define a semantic domain based on FSMs for the syntactic
structure of DeltaJava models. We assume that the transitions in our test models
concern the call / return behavior of a set of modules. The states in a test
model concern a symbolic aggregation of concrete states, where each concrete
state corresponds to a valuation of variables. The granularity of this abstraction
is modeler’s choice, as long as it respects the HSI assumptions. Moreover, it is
assumed that the set of fields used and manipulated by a method call, its possible
return values and its effect on the value of these fields are known.

To start with, we define the following basic concepts for our semantic domain.

Definition 5 (Abstract Valuations). Assume a set V of variables and a set D
of their possible values; for simplicity, we have left out typing information here
and throughout the paper. Then ValV ⊆ 2V →D, is an abstract valuation (i.e., a
set of valuations) of V . The set of all such abstract valuations of V is denoted by
VALV . We remove the superscript of an abstract valuation, if the set of variables
is clear. For an abstract valuation ValV ⊆ 2V →D and for V ′ ⊆ V , we write
Val ↓ V ′ to denote element-wise domain restriction of Val to V ′, that is leaving
out the valuation of those variables not mentioned in V ′.

Definition 6 (Object Structure). We formalize the structure of an object obj of
class c, as a 3-tuple (Id ,Flds,Mtds), where Id is the object’s unique identifier
and Flds and Mtds, respectively, denote the set of fields and methods in the
class c. (To avoid name clashes, we assume that all members of Flds and Mtds
are prefixed with Id.) A method is represented by a 5-tuple (Id , Inprms,Outprm,
Clds,UsedVars), where Id, Inprms and Outprm, respectively, denote the name
of the method and the list of the input parameters and the output returned by the
method; Clds denotes the set of methods that are called in the body of this method
and UsedVars is the set of variables read from or written to in the method.
Note that UsedVars may comprise both members of Flds and model variables.
The latter are variables that the test modeler has added to the model to capture
unspecified details, e.g., associations and dependencies, without cluttering the
model.

In the rest of the paper, we recognize the components of the above-given
tuples, by indexing the name of the intended component with the name of the
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object or the method. For example, Inprmsm denotes the input parameters of
the method m. Next, we define the concept of post-condition for methods.

Definition 7 (Effect and Return Value Functions). The effect of calling a
method m is defined by a function Effectm : VALInprmsm∪UsedVarsm →
VALUsedVarsm . Similarly, its set of admitted return values is defined by:
RetValm : VALInprmsm∪UsedVarsm → 2D.

5.1 Core Model Semantics

In this section, we define the semantic domain for core models. The behavior
of a core model results from execution of the methods called in the objects
instantiated from the core model classes (A conscious choice is to be made by
the modeler as to which methods from which abstract states are included in
the model.). Hence, the finite state machine describing the behavior of a set of
objects is defined as follows.

Definition 8 (Object FSM). An FSM M(O) = (S, s0, I, O, μ, λ) is a semantic
model for a set O of objects from the set C of classes, if it satisfies the following
conditions:

– S ⊆ VALV where V ⊆ ⋃
o∈O,m∈Mtdso

UsedVarsm is a subset of model variables
and fields in O; this means that each state in S is an abstract valuation of a
subset of model variables and fields.

– I ⊆ ⋃
o∈O,m∈Mtdso

{Idm} × VALInprmsm ; this means that each input in the
input symbols set comprises a method name and a set of passed arguments.

– O ⊆ D is the set of possible return values of the method calls in I.
– μ : S × I → S, is a transition function satisfying the following conditions:

(1) ∀o∈O, m∈Mtdso , val∈VALInprmsm , i∈I, s,s′∈S · μ(s, i) = s′ ∧ i = (Idm, val)
⇒ Effectm(s ↓ UsedVarsm × val) ⊆ s′ ↓ UsedVarsm,

(2) ∀s∈S · ∃x∈I∗ · (s0, x) = s
(3) ∃r∈I∗ · ∀s∈S · μ(s, r) = s0

– λ : S × I → O is an output function satisfying the following condition:

∀o∈O, m∈Mtdso val∈VALInprmsm , i∈I, o∈O, s∈S · λ(s, i) = o∧
i = (Idm, val) ⇒ RetValm(s ↓ UsedVarsm × val) = o.

Our notion of abstract states are reminiscent of similar notions (based on
the category-partition method) in the literature [19]. Regarding the transition
function, condition (1) specifies that there can be a transition from one state to
another, labeled with a method call as input, only if this method call maps one of
the concrete evaluations of the used variables in the source to another concrete
valuation in the target state. Condition (2) requires that all states included in
the set of states are reachable from the initial state. Condition (3) postulates
that the given FSM has a reset sequence r. Regarding the output function, the
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Fig. 3. (a) FSM modeling the bridge class, (b) FSM modeling the controller class

condition specifies that the output of the FSM for each given input is exactly
the set of admitted outputs for the corresponding method.

A test model for core, defined below, is then an object FSM comprising a set
of objects from the core model classes.

Definition 9 (Test Model for Core). A test model for core is a minimal object
FSM M(O) such that each object in O is instantiated from a class in the core
model.

For example the FSM corresponding to the core model in the running exam-
ple is demonstrated in Fig. 3(a). This FSM is minimal and it satisfies the reach-
ability condition. The reset sequence of this FSM is SetAvl().

5.2 Delta Application

In this section, we define the semantic domain for delta models and the appli-
cation of a delta to a core model. As mentioned in Sect. 3.2, a delta comprises a
set of operations applying changes to the core model. In order to give a practical
definition to a delta model and the type of changes that it can make to the core
model, we focus on adding a class, on one hand and adding a set of fields and
methods, on the other hand. The reason we combine adding fields and methods in
one step is that often adding new methods requires some additional fields. More-
over, in several cases the new abstract valuations (additional state-partitions)
due to the additional fields can only preserve minimality, if new methods are also
added to tell them apart. We leave the deltas concerning removals and modi-
fications of methods and removal of fields for future work. Hence, for now we
are assuming that the core model comprises the least mandatory set of features
and the model regarding each product is generated incrementally from the core
model.

We proceed by defining the effect of applying a delta containing each of the
above-mentioned changes on the core model’s FSM.
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Adding a Class. The test model for the added class has the structure and
abides by the constraints of object FSMs given in Definition 8. Hence, we assume
that the test model for the added class c is given as a minimal object FSM
Md(Od) where Od only contains objects of class c with a fresh identifier (not
mentioned among the identifier of core objects and other deltas).

For example, the FSM describing the behavior of an object of the controller
class is depicted in Fig. 3(b). In this figure, xCheckAvl is an extra model variable
included in the state, representing the returned value of CheckAvl() and cutting
the dependency with the core model. The result of adding a class to the core
model is defined as follows.

Assume that the test models for the core and the delta models are object
FSMs M(O) = (S, s0, I, O, μ, λ) and Md(Od) = (Sd, s

d
0, Id, Od, μd, λd), respec-

tively. In order to define the composition of the core and the delta, we first
specify the possible connections between the model variables of delta and core.
Assuming that V and Vd, respectively, denote the variables in the domain of the
states in S and Sd, then, the (partial) composition function γ : Vd → V specifies
which (model) variables in Vd should match which variables in V . Moreover, the
methods of the delta class can initiate method calls to instances of the core class
included in the delta class (if any). Here, for the sake of simplicity, we consider
that each delta method can contain at most one method call to the core, but the
generalization to a sequence of core method calls is straightforward. We assume
that the set of methods in the core model and the set of methods in the delta
model are denoted, respectively, by MTD and Mtds.

Definition 10. The result of composing the above-given models M and Md with
regards to γ is an FSM M ′(O′) = (S′, s′

0, I
′, O′, μ′, λ′), where:

– S′ = {val ∈ VALV ∪Vd | val ↓ V ∈ S ∧ val ↓ Vd ∈ S′ ∧ ∀vd∈Vd, v∈V · γ(vd) =
v ⇒ val ↓ {vd} = val ↓ {v}}; for the composition to be well-defined, we
assume V and Vd to be disjoint,

– s′
0 is the initial state such that s′

0 ↓ V = s0 and s′
0 ↓ Vd = sd0,

– I ′ = I ∪ Id
– O′ = O ∪ Od

– μ′ : S′ × I ′ → S′, is the transition function. For each i ∈ I ′, we distinguish
the following three cases:

• i ∈ I concerns a method call from the core; then, the following condition
should be satisfied

∀m∈MTD, s′
1,s

′
2∈S′ · i = (Idm, val) ⇒ (

μ′(s′
1, i) = s′

2 ⇔
∃s1,s2∈S · s1 ↓ UsedVarsm = s′

1 ↓ UsedVarsm∧
s2 ↓ UsedVarsm = s′

2 ↓ UsedVarsm ∧ μ(s1, i) = s2
)

• i ∈ Id concerns a method call from delta that does not have any nested
call to the core; then, the following condition should be satisfied

∀m∈Mtds, s′
1,s

′
2∈S′ · i = (Idm, val) ⇒ (

μ′(s′
1, i) = s′

2 ⇔
∃sd1 ,s

d
2∈Sd

· sd1 ↓ UsedVarsm = s′
1 ↓ UsedVarsm∧

sd2 ↓ UsedVarsm = s′
2 ↓ UsedVarsm ∧ μd(sd1, i) = sd2

)
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• i ∈ Id concerns a method call from delta that has a nested method call ni

to the core; then the following condition should hold:

∀m∈Mtds,n∈MTD,s′
1,s

′
2∈S′ · i = (Idm, val) ∧ ni = (Idn, valn) ⇒

μ′(s′
1, i) = s′

2 ⇔ ∃sd1 ,s
d
2∈Sd · sd1 ↓ UsedVarsm = s′

1 ↓ UsedVarsm∧
sd2 ↓ UsedVarsm = s′

2 ↓ UsedVarsm ∧ μd(sd1, i) = s2d∧
∃s1,s2∈S · s1 ↓ UsedVarsn = s′

1 ↓ UsedVarsn∧
s2 ↓ UsedVarsn = s′

2 ↓ UsedVarsn ∧ μ(s1, ni) = s′
2

– λ′ : S′ × I ′ → O′ is the output function; for each i ∈ I ′, we distinguish the
following two cases:

• either i ∈ I, then the following condition should hold:

∀m∈MTD, o∈O′,s′∈S′ · i = (Idm, val) ⇒ λ′(s′, i) = o ⇔
∃s∈S · s ↓ UsedVarsm = s′ ↓ UsedVarsm ∧ λ(s, i) = o

• or i ∈ Id, then the following condition should hold:

∀m∈Mtds, o∈O′,s′∈S′ · i = (Idm, val) ⇒ λ′(s′, i) = o ⇔
∃sd∈Sd

· sd ↓ UsedVarsm = s′ ↓ UsedVarsm ∧ λd(sd, i) = o

In the definition of transition function, a case distinction is made based on
whether the method calls (in the delta model) have a nested method call or
not. In the former case the valuations of the variables belonging to both core
and delta models can change in the target state while in the latter case only
the valuation of the variables belonging to the delta model can change. In the
definition of output function these two cases are defined as one since the effect
of the output of the inner method calls, if any, of a method call in the delta
model is captured by the corresponding model variables which are included in
the states of the delta model.

Figure 4(a) demonstrates the FSM resulting from the addition of the con-
troller class to the bridge class. Note that the γ function is defined to match the
valuation of the model variable xCheckAvl in the delta with the variable Avl in
the core.

Theorem 1. Based on the assumptions made about the core model and the delta
model, the resulting FSM of Definition 10 satisfies the assumptions (1)–(4) of
Definition 2.

Note that the last constraint of Definition 10 is implementation-dependent and
hence, it can only proven without sufficient assumptions on the implementation.
This is out of the scope of the present paper.

Adding Fields and Methods. In this section, we discuss the effect of adding
a set of fields and methods to the core module.

Let X and E, respectively, denote the set of fields and methods added by a
delta. Also, assume that V denotes the variables in the domain of the states in
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Fig. 4. (a) FSM resulted from adding the delta model DController , to the core model,
(b) FSM resulting from adding delta DPedLight to the core model

the core model, and that a method can comprise method calls. The addition of
X and E to the core FSM results in another FSM in which the abstract states
and transitions accommodate X and E. The formal definition of the application
function has a similar structure to the case of adding a class.

Theorem 2. Assumptions (1)–(4) of Definition 2 are preserved under the addi-
tion a set of fields and methods to a core FSM model.

As an example, Fig. 4(b) demonstrates the FSM resulting from the addition
of the delta DPedLight, to the core model. This delta adds a new field, namely,
Psig , and two methods, namely, SetPsig and ResetPsig , to the class Bridge.

6 Delta-Oriented Testing

In this section, we explain the incremental test-case generation method. In the
remainder of this section, we assume that the core model is an object FSM such
as M(O) = (S, s0, I, O, μ, λ) and the set of all methods of the classes in this core
model are denoted by MTD . The state cover set and the separating family of
sequences computed for M are, respectively, denoted by Q and Z. We assume
that qs ∈ Q denotes a sequence in the state cover set that ends in state s and
zs denotes the set of sequences which separate s from other states. For example,
the state cover set and the separating family of sequences for the core model
represented in Fig. 3 are, respectively, Q = {ε, ResetAvl()} and Z = {zs0 , zs1}
= {{CheckAvl()}, {CheckAvl()}}.
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6.1 Test-Case Generation for Class Addition

Let Md(Od) = (Sd, s
d
0, Id, Od, μd, λd), be the FSM that is composed with core

model, with regards to the composition function γ, as a result of adding the new
class to the core module. We assume that the state cover set and the family of
separating sequences for this FSM are, respectively, denoted by Qd and Zd. The
resulting object FSM is M ′(O′) = (S′, s′

0, I
′, O′, μ′, λ′), as defined in Sect. 5.2,

and the set of test cases for this FSM are computed as follows.
In order to compute the new state cover set, denoted by Q′, we need to build

the spanning tree of M ′. Assuming that Pd(Sd, Ed) is the spanning tree built
for Md, where Sd denotes the set of vertices and Ed ⊆ Sd × Id × Sd, denotes the
set of edges in this tree, and P (S,E) is the spanning tree built for M , where S
and E ⊆ S × I × S, are, respectively, the set of vertices and edges in this tree.
Moreover, we assume that V and Vd, respectively, denote the set of variables
included in S and Sd. The spanning tree for M ′, denoted by P ′(S′, E′), where
E′ ⊆ S′ ×I ′ ×S′, is built using P and Pd as follows. Note that each state s′ ∈ S′

can be represented by (s, sd), where s ∈ S and sd ∈ Sd, that is s′ ↓ V = s ↓ V
and s′ ↓ Vd = sd ↓ Vd.

Starting from the root of the tree, that is (s0, sd0), for each state such as
(s, sd), we add the following child nodes:

1. (s′, sd), where for some i ∈ I, we have (s, i, s′) ∈ E
2. (s, s′

d), where for some i ∈ I ′ which is corresponding to a method call that
does not contain any nested method calls, we have (sd, i, s′

d) ∈ Ed

3. (s′, s′
d), where for some i ∈ I ′ that contains a method call denoted by j ∈ I,

we have (sd, i, s′
d) ∈ E and μ(s, j) = s′.

Assuming that |S| = n, |Sd| = m and |S′| = n′, then the worst-case com-
plexity of computing the spanning tree is O(n ′(m + n)). The state cover set is
computed by traversing the resulting spanning tree.

The family of separating sequences Z ′ is defined as
⋃

s′∈S{z′
s′}, where for

each state s′ = (s, sd) ∈ S′, we have that z′
s′ = zs ∪ zsd .

For example, the state cover set and the family of separating sequences for
the FSM corresponding to the controller class in Fig. 4(b) are as follows: Qd =
{ε,GetReq(0 ),GetReq(1 )}, Zd =

⋃2
i=0

(
zsi = {CheckLsig(),CheckRsig()}).

Hence, the state cover set and the family of separating sequences for the
FSM resulted adding the class are: Q′ = Q = {ε,ResetAvl()}, Z ′ =

⋃2
i=0

(
zsi =

{CheckAvl(),CheckLsig(),CheckRsig()}), respectively.
A special case of adding a class is when there are no nested method calls. In

such a case the state cover set is equal to the state cover set of the core model
that is Q = Q′. The computation of separating sequences remains intact with
respect to the general case.

Complexity Analysis. The difference of complexity of the delta-oriented test-
ing approach compared to the HSI method, in this case, is in the computation
of the family of separating sequences. As explained above, in this case the delta-
oriented approach obtains the family of the separating sequences for the new



Delta-Oriented FSM-Based Testing 379

FSM, just using Zd and Z. Hence, defining m = |Sd|, and q = |Id|, the complex-
ity of computing Z ′, using the delta-oriented approach, is O(qm2) + fu, where
fu is the complexity of computing the union of two sets. Assuming that the
delta has n′ states where n′ ≤ m · n, and p = |I ′|, the complexity of comput-
ing the family of separating sequences, using the HSI method, for this FSM is
O(pn′2). It should be noticed that this computation is done for each product in
a product line separately, where the number of the products can increase expo-
nentially in terms of the features. Practically, in a product line we have m � n,
hence O(qm2) + fu � O(pn′2). In other word, there can be a substantial gain
in calculating the separating sequences using the delta-oriented approach.

7 Empirical Results

In order to check the efficiency of the proposed algorithm, we applied our method
to a software system from the health-care domain. In order not to reveal the
structure of the commercial system, we dispense with the details that are not
necessary for understanding the experimental results. The core logic of this sys-
tem includes six classes and its main functionality is to detect devices in the
surroundings and control users’ access to them. Each user can create and com-
plete a set of tasks after accessing a device. We considered the proportion of
time required to generate test cases for 4 different models in two cases: using
the delta-oriented approach, and using the plain monolithic HSI method (In this
work, we only consider the reduction in the test-case-generation time; we leave
the study of the test-case-execution time as future work).

In order to compute the test-case generation time, we performed the algo-
rithms in both methods in a step-by-step manner and manually, while counting
the basic computation steps in these algorithms. Because these basic steps are
common to both methods and consume a constant amount of time, we could
hence come up with a precise comparison of the time required for test-case gen-
eration.

First, we considered a core FSM with 11 abstract states and 74 transitions.
This core model included a set of objects, which model a group of users, devices
and tasks created by users. Then, we applied a delta which comprised the addi-
tion of a method to a class in order to enable modification of a field in the core
model. The result of applying this delta is another FSM with the same number
of states and 85 transitions. Using the delta-oriented approach for generating
test cases resulted in a 50 % reduction in test-case generation time. This differ-
ence is due to that the spanning tree and the family of separating sequences are
computed anew in the HSI method, while the delta oriented approach reuses the
sequences computed for the core model.

We also applied a delta concerning the addition of an object of a task to the
core model which resulted in another FSM with 16 states and 89 transitions. In
this case, applying the delta-oriented approach resulted in a 40 % reduction in
test-case generation time (For more detailed data, we refer to Fig. 5.).

Subsequently, we considered another core model including 21 abstract states
and 167 transitions. We applied a delta comprising the addition of the same
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Fig. 5. Results obtained from test-case generation for the case study

method as above to the core model, which resulted in the same number of
states and 188 transitions. Applying the delta-oriented approach results in a
50 % reduction in the test-case generation time.

The last delta in this software product line comprised the addition of an
object of a device to the last core model, with 37 states and 215 transitions. The
reduction in the test-case generation time in this latter case is 30 %.

The results show that in cases that we can reuse the separating sequences and
the state cover set of the core model, such as the addition of a set of methods
that do not change the number of states, the delta-oriented approach can be
very efficient. The above-mentioned results are summarized in Fig. 5.

8 Conclusions and Future Work

In this paper, we introduced test models and test-case generation methods for
delta-oriented FSM-based testing, based on the DeltaJava syntax. Our test-case
generation method is a lifting of the incremental test-case generation for the
HSI method, using a higher level of abstraction suitable for our DeltaJava-based
models. We showed, both using complexity analysis and by application to a case
study, that the delta-oriented approach can increase the efficiency of test-case
generation.

We are studying realistic, yet more relaxed fault models (than those underly-
ing the HSI method). Such a fault model can capture the possible mutual effects
of different behavior in deltas and core. Then, we will identify parts of test cases
that need not be re-executed and also independent pieces of behavior that can be
reduced, e.g., using partial-order reduction [16]. Moreover, we intend to extend
our approach to the full syntax of DeltaJava and in particular, consider modify-
ing and removing methods, building upon the results of [9,11]. Finally, we plan
to implement our approach in a programming environment and organize more
extensive experiments with our industrial partner.
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Abstract. Hybrid systems are integrations of discrete computation and
continuous physical evolution. To guarantee the correctness of hybrid sys-
tems, formal techniques on modelling and verification of hybrid systems
have been proposed. Hybrid CSP (HCSP) is an extension of CSP with dif-
ferential equations and some forms of interruptions for modelling hybrid
systems, and Hybrid Hoare logic (HHL) is an extension of Hoare logic for
specifying and verifying hybrid systems that are modelled using HCSP.
In this paper, we report an improved HHL prover, which is an interactive
theorem prover based on Isabelle/HOL for verifying HCSP models. Com-
pared with the prototypical release in [22], the new HHL prover realises
the proof system of HHL as a shallow embedding in Isabelle/HOL, rather
than deep embedding in [22]. In order to contrast the new HHL prover in
shallow embedding and the old one in deep embedding, we demonstrate
the use of both variants on the safety verification of a lunar lander case
study.

1 Introduction

Hybrid systems are fusions of discrete dynamic systems and continuous dynamic
systems, many of which are safety-critical, e.g., transportation, healthcare, space-
crafts, etc. In order to ensure the correct functioning of hybrid systems, formal
techniques on modelling and verification have been proposed. Among them, the
most popular model is hybrid automata [2,10], with the subsequent temporal
logic based specification languages and model checkers [1,8,13]. However, due to
the undecidable reachability problem of hybrid systems, various abstractions or
(numeric) approximations for hybrid automata are required [3,4]. This leads to
incomplete coverage of the system dynamics or loss of precision of proof results.

Alternatively, the deductive approach has been proposed, which verifies sys-
tems by proofs rather than state space exploration in model checking. This
approach asks for a formal modelling language with (de-)compositionality and
meanwhile a specification logic for verifying the corresponding models. Following
this research line, we extended Hoare Logic to hybrid systems and established
Hybrid Hoare Logic (HHL) [11]. In HHL, a hybrid system is modeled by Hybrid
CSP (HCSP) process. HCSP is a formal modeling language for hybrid systems,
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due to He, Zhou et al. [9,21], which is an extension of CSP by introducing dif-
ferential equations for representing continuous evolution. HCSP inherits from
CSP the compositional process algebra constructs including communication-
based synchronization and concurrency, thus it is expressive enough for describ-
ing distributed components and the interactions between them. Moreover, it
extends CSP with several forms of interrupts to continuous evolution for realiz-
ing communication-based discrete control. To capture both discrete and contin-
uous behavior of HCSP, the assertion languages of HHL include two parts: one
is first-order logic (FOL), used for specifying properties of discrete processes,
and the other is a subset of Duration Calculus (DC) [19,20], called history for-
mulas, for specifying the execution history for continuous processes. A proof
system for HHL was provided in [11]. In particular, the notion of differential
invariant [12,14] is used to characterize the behavior of differential equations.

In [22], a prototypical implementation for HHL verification framework in
proof assistant Isabelle/HOL, called HHL prover, was reported. In the HHL
prover of [22], HHL was realised in a deep embedding style, i.e., the asser-
tion languages of HHL including FOL and DC are defined as new datatypes
of Isabelle/HOL. Since then, the HHL prover has been successfully applied to
the verification of some real-world hybrid systems, e.g., Chinese train control
systems [23,24] and the GNC control program of a lunar lander [18].

The disadvantage of the prototypical HHL prover is very obvious: due to the
deep embedding of the HHL assertions, the proof of FOL and DC formulas needs
to be conducted by the user completely, to apply the deductive rules for FOL
and DC manually, thus the proof effort is very high. The main contribution of
this paper is to implement the proof system for HHL in shadow embedding 1. In
addition, to demonstrate the efficiency of the improved HHL prover, we apply
the prover in both embeddings to the safety verification of the slow descent
guidance control program of a lunar lander, which is a closed-loop dynamic
system composed of a physical plant and an embedded control program. We
make a comparison between the proof results obtained from both embeddings,
which indicates that the shallow embedding has better performance than the
deep embedding.

Related Work. There are some tools on formal modelling and verification of
hybrid systems. The tool d/dt [5] provides reachability analysis and safety verifi-
cation of hybrid systems with linear continuous dynamics and uncertain bounded
input. iSAT-ODE [7] is a numerical SMT solver based on interval arithmetic that
can conduct bounded model checking for hybrid systems. Flow* [6] computes
over-approximations of the reachable sets of continuous dynamical and hybrid
systems in a bounded time. However, due to the undecidable reachability prob-
lem of hybrid systems, the above tools based on model checking are incomplete.
Based on the alternative deductive approach, the theorem prover KeYmaera [15]
is proposed to verify hybrid systems specified using differential dynamic logic.
1 The HHL prover in both embeddings, plus the corresponding models and proofs

related to the case study, can be found at https://github.com/wangslyl/hhlprover.

https://github.com/wangslyl/hhlprover


384 S. Wang et al.

Compared to our work, it supports a simple set of hybrid constructs that do not
cover communications and parallel composition.

Organization. The rest of the paper is organized as follows: Sects. 2 and 3 intro-
duce briefly the proof assistant Isabelle/HOL, and the modelling language HCSP
and its specification logic HHL, respectively; Sects. 4 and 5 present the HHL
prover in shallow and deep embeddings respectively; Sect. 6 presents the lunar
lander case study; and Sect. 7 concludes the paper.

2 Isabelle/HOL

In this section, we give a brief introduction of Isabelle/HOL, based on which
the modelling and verification framework of hybrid systems is mechanized.
Isabelle/HOL is a proof assistant for Higher-Order Logic (HOL). It supports
functional modeling of systems by providing datatypes, functions, terms and for-
mulas; and meanwhile, it enables proof of properties by construction by providing
a set of built-in inference rules and proof tactics. Except for basic types such as
bool , nat, etc., Isabelle/HOL provides the way to define a recursive datatype, for
instance, a list of elements of type ’a can be defined by ’a list:

datatype ’a list = Nil | Cons ’a ’a list

where Nil, referring to the empty list, and Cons, adding an element to the front of
a list, are the two constructors respectively. A type can also be constructed from
existing ones by using types, e.g. types nlist = nat list. With the existence
of types, functions are used to describe the relations between values of different
types. A recursive function can be defined with respect to the constructors for
the involved datatypes, e.g., the function len returns the length of a list:

primrec len :: ’a list ⇒ nat where
len Nil = 0 |
len Cons x xs = 1 + len xs

Non-recursive functions can be defined with the definition command, and more
general cases for both recursive and non-recursive functions can be defined by
means of fun. By applying functions to arguments, terms are formed, and in
particular, a special class of terms with type bool are formulas. The compound
formulas can be formed by applying logical connectives, such as ∧, ¬, ∀, etc.

Isabelle can prove facts directly based on induction and simplications.
Besides, it supports more complicated verification by applying HOL inference
rules for classical reasoning, e.g. the introduction or elimination rules for con-
junction ∧ or disjunction ∨, etc. It provides a set of methods to automate clas-
sical reasoning, such as blast, auto, arith and so on. Isabelle also includes some
high-level proof tactics. In particular, the tool sledgehammer is a certified inte-
gration of third-party automated theorem provers and SMT solvers including
Alt-Ergo, Z3, CVC3, and so on, and nitpick is a counterexample generator. For
HHL prover in shallow embedding, all the proof obligations are reduced to HOL
formulas at the end, for which sledgehammer can be used to search the proofs
automatically.
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3 Hybrid CSP

This section will give a brief introduction of Hybrid CSP (HCSP) and the spec-
ification logic Hybrid Hoare Logic for reasoning about HCSP processes. They
constitute the theoretical basis on the modelling language and the safety logic
of HHL prover.

3.1 Syntax

Hybrid CSP [9,21] is an extension of CSP by introducing differential equations
for representing continuous evolution and several forms of interruptions to con-
tinuous evolution. The syntax of a subset of HCSP is given as follows:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| 〈ṡ = e&B〉 | 〈ṡ = e&B〉 � �i∈I(ioi → Qi)
S ::= P | S‖S

where P,Q,Qi, S are HCSP processes, x and s stand for process variables, ch for
channel name, ioi for a communication event (either input ch?x or output ch!e),
B and e for Boolean and arithmetic expressions, and I for a non-empty set of
indices of communications, respectively. A whole HCSP model S is defined as
a sequential process or a parallel composition of several sequential processes at
the top level.

The intuitive meaning of the individual constructs is explained as follows:

– skip, x := e are defined as usual.
– The input ch?x receives a value along channel ch and assigns it to x, and

output ch!e sends the value of e along ch. A communication takes place as
soon as both the sending party (i.e. ch!) and the receiving party (i.e. ch?) are
ready, and may cause one side to wait.

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The conditional B → P behaves as P if B is true, otherwise it terminates
immediately.

– The internal choice P �Q behaves as either P or Q, and the non-deterministic
choice is made by the system itself.

– The repetition P ∗ executes P for some finite number of times.
– 〈ṡ = e&B〉 is the continuous evolution statement, where s represents a vector

of real variables and ṡ the first-order derivative of s. It forces s to evolve
continuously according to the differential equation ṡ = e as long as B, which
defines the domain of s, holds, and terminates when B turns false. 〈ṡ = e&B〉
is a boundary interruption.

– The communication interruption 〈ṡ = e&B〉 � �i∈I(ioi → Qi) behaves like the
continuous 〈ṡ = e&B〉, except that it is preempted as soon as one of the
communications ioi takes place, and then is followed by the respective Qi.

– S1‖S2 behaves as if S1 and S2 run independently except that all communica-
tions along the common channels connecting S1 and S2 are to be synchronized.
S1 and S2 in parallel can neither share variables, nor input or output channels.



386 S. Wang et al.

Some commonly used constructs of HCSP in [9,21] are derivable from the
above syntax, e.g.,

wait d =̂ t := 0; 〈ṫ = 1&t < d〉
〈ṡ = e&B〉 �d Q =̂ t := 0; 〈ṡ = e ∧ ṫ = 1&t < d ∧ B〉; t ≥ d → Q

Especially the timeout 〈ṡ = e&B〉 �d Q executes according to the continuous
evolution 〈ṡ = e&B〉 for the first d time units, and Q afterwards.

Example 1. The following presents a simple HCSP description of a continuously
evolving plant with discrete control:

〈ẋ = f(x, u)〉 � sensor!x → actuator?u)∗‖(wait d; sensor?s; actuator!Comp(s))∗

The plant evolves according to the dynamics ẋ = f(x, u) that depends on a
control parameter u. Every d time units, the controller samples the state of the
plant x via channel sensor , and computes the new control parameter by Comp,
and sends it back to the plant for the next cycle via channel actuator .

3.2 Operational Semantics

Let Real be the set of reals. A state, ranging over σ, σ′, is a function that assigns
a value to each variable. For simplicity, given a state σ and an expression e, we
also use σ(e) to return the value of e under σ. A flow, ranging over h, h′, is
a function that assigns a state to each real time point in Real. Each transition
relation has the form (P, now, h) a−→ (P ′, now′, h′), where P, P ′ are processes, a is
an event, now, now′ are real time, and h, h′ are flows, respectively. It represents
that, starting from the initial time now with the initial flow h (notice that the
initial state is exactly h(now)), P performs event a and evolves to P ′ at time
now′ with the flow h′. The events a here can be a discrete internal event, like
skip, assignment, evaluation of Boolean conditions, etc., or a communication
event, or a time delay. For the sake of embedding in HHL prover, we define the
flows h, h′ to be total on the whole real domain. For the above transition, by
confining flow h′ on the interval [now, now′], we can obtain the execution history
from P to P ′.

For page limit, we only present the semantics of continuous evolution here.2

Given an initial flow h and initial time now, assume S(t) is a solution of ṡ = e
defined over [0, d] for some duration d > 0, satisfying that S(0) = h(now)(s).
We define flow h〈now, d, S〉 same to h except that for all t ∈ (now, now + d],
h〈now, d, S〉(t) = h(t)[s → S(t − now)], i.e., the value of s is overriden by
the solution S(t) over the execution interval (now, now + d]. The semantics of
continuous evolution is then defined by the following rules:
2 The full version of both the operational semantics of HCSP and the specification

logic HHL to be introduced next can be found at [17].
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∀t ∈ [0, d).h〈now, d, S〉(now + t)(B) = true

(〈ṡ = e&B〉, now, h) d−→ (〈ṡ = e&B〉, now + d, h〈now, d, S〉)
h(now)(B) = false or

(h(now)(B) = true ∧ ∀t ∈ (0, d).h〈now, d, S〉(now + t)(B) = false)
(〈ṡ = e&B〉, now, h) τ−→ (skip, now, h)

The first rule indicates that, it evolves for d time units according to ṡ = e
if B evaluates to true within period [now, now + d) (the right end exclusive).
Otherwise, indicated by the second rule, the continuous evolution terminates at
now if B evaluates to false at now, or if B evaluates to false at a positive open
interval right to now (depending on whether B is open or close).

The transition closure (P0, now0, h0)
a1···ak−−−−→ (Pk, nowk, hk) for some k > 0

is defined, iff there exists a sequence of transitions

(P0, now0, h0)
a1−→ (P1, now1, h1), · · · , (Pk−1, nowk−1, hk−1)

ak−→ (Pk, nowk, hk)

When Pk = skip, we call the sequence of the transitions a complete execution
of P0, and for simplicity write it as (P0, now0, h0) � (nowk, hk) by omitting the
labels and the terminating process skip.

3.3 Hybrid Hoare Logic

In order to verify HCSP, Hybrid Hoare Logic (HHL) [11] is defined. As an exten-
sion of Hoare logic to hybrid systems, it considers both discrete and continuous
properties, that correspond to an isolated time point and a time interval resp.

History Formulas. In order to describe the interval-related properties, we
introduce history formulas, that are defined by duration calculus (DC) [19,20].
DC is a first-order interval-based real-time logic with one binary modality known
as chop �, but is extended with a special structure of temporal variable, i.e. state
durations. We define history formulas HF by the following subset of DC:

HF ::= � ◦ T | S� | HF1
�HF2 | ¬HF | HF1 ∨ HF2

where � is a temporal variable denoting the length of the considered interval,
◦ ∈ {<,=} is a relation, T a non-negative real, and S a first-order state formula
over process variables. HF can be interpreted over flows and intervals. Let the
judgement h, [a, b] |= HF represent that HF holds under h and [a, b], then we
have

h, [a, b] |= � ◦ T iff (b − a) ◦ T h, [a, b] |= S� iff b > a ∧ ∫ b

a
h(t)(S) = b − a

h, [a, b] |= HF1
�HF2 iff ∃c.a ≤ c ≤ b ∧ h, [a, c] |= HF1 ∧ h, [c, b] |= HF2

As defined above, � indicates the length of the considered interval. S� asserts
that the duration of state S on interval [a, b] is b − a, i.e. S holds almost every-
where in the considered non-point interval. Thus, based on S�, an invariant
property related to an interval can be specified. Later, we will write S�< as an
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abbreviation for S� ∨ � = 0 to include the point case. Lastly, HF�
1 HF2 asserts

that the interval can be divided into two sub-intervals such that HF1 holds for
the first and HF2 for the second. The first-order connectives ¬ and ∨ can be
explained as usual.

Specification and Inference Rules. The specification for a sequential HCSP
process P takes the form {Pre}P{Post; HF}, where the pre-/post-condition Pre
and Post, defined by first-order logic (FOL), specify properties of variables that
hold at the beginning and termination of the execution of P respectively, and
the history formula HF , specifies properties of variables that hold throughout
the execution interval of P . The effect of discrete processes will be specified by
the pre-/post-conditions, but not recorded in the history. The specification for a
parallel process P1‖P2 is then defined by assigning to each sequential component
of it the respective pre-/post-conditions and the history formula, shown as below:

{Pre1, P re2}P1‖P2{Post1, Post2;HF1,HF2}

In HHL, HCSP constructs are axiomatized by a set of axioms and inference rules,
which constitutes a basis for implementing the verification condition generator
for verifying HCSP specifications in HHL prover. We will give a more detailed
explanation of HHL in next section.

4 HHL Prover: Shallow Embedding

HHL prover aims to verify whether a HCSP process conforms to a HHL specifi-
cation in a machine-checkable way. The implementation of HHL prover requires
to embed the whole HHL verification framework in Isabelle/HOL. There are
two different ways for the embedding: shallow or deep. The shallow embedding
defines the assertions of HHL (i.e. FOL and DC formulas) by HOL predicates on
process states or flows, while in deep embedding, it defines the assertions as new
datatypes. In this section, we will present HHL prover in shallow embedding in
detail, and in next section the prover in deep embedding.

4.1 HCSP

In both embeddings, we start from encoding the bottom construct, i.e. expres-
sions, that are represented as a datatype exp3:

datatype exp = Con Val | RVar string | SVar string | BVar string
| exp [+] exp | exp [−] exp | exp [∗] exp | exp [/] exp

An expression can be a constant Con v, where v is of type Val for representing
constants, e.g. Con Real n; a variable, that can be RVar x, SVar x and BVar x

3 To distinguish from HOL, we wrap the arithmetic operators and FOL connectives
with [], and DC connectives with [[]] outside. For example, ∧, [∧], [[∧]] are HOL,
FOL and DC conjunctions respectively.
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for real, string, and boolean variables, respectively; an arithmetic expression
constructed from arithmetic operators.

Based on exp, we represent HCSP processes by a datatype proc. Each con-
struct of HCSP defined in Sect. 3 is encoded as a corresponding constructor in
datatype proc. For examples, B → P is encoded as IF B P; the continuous evolu-
tion 〈ṡ = e&B〉 is encoded as <s:e&&Inv&b>, with the addition of the differential
invariant Inv of the differential equation ṡ = e for the purpose of verification;
for the same reason, the repetition P ∗ is encoded as P∗&&Inv, where the loop
invariant Inv is annotated. The invariants are unknown beforehand and will be
solved in the proof process by calling an external invariant generator from HHL
prover.

To encode the semantics of HCSP, we first define two types, state and flow,
to model states and flows respectively. Then, given a process P of type proc,
time now, now’ of type real , and h, h’ of typeflow, the inductive function
semB P now h now’ h’ returns true iff (P, now, h) � (now′, h′) is a complete
execution of P .

4.2 Assertion Languages

Two types of assertion logics are used in defining the specifications of HHL: FOL
and DC. The FOL formulas are defined as predicates on states,

type synonym fform = state ⇒bool

We can then write arbitrary Isabelle functions from state to bool to describe
states. Especially, the FOL constructs can be derived as syntax flavours, like,

definition [True] :: fform where
[True] ≡ λ s. True

definition fImp :: fform ⇒fform ⇒ fform ( infixl ‘‘[ →]’’ 65) where
p [→] q ≡λ s. p s → q s

The DC formulas are represented as predicates on flows and intervals,

type synonym dform = flow ⇒real ⇒real ⇒bool

The history formulas presented in Sect. 3 can be defined correspondingly,

definition elE :: real ⇒ dform where
elE T ≡ λ h n m. (m−n) = T
definition almost :: fform ⇒ dform where
almost p ≡ λ h n m. (m>n) ∧ (∀a≥n. ∀ b≤m. a < b → (∃t. t>a ∧ t<b ∧ p(h(t))))
definition chop :: dform ⇒dform ⇒dform (‘‘ [ˆ] ’’ 80) where
H [ˆ] M ≡ λ h n m. (∃ nm. (nm ≥ n ∧ nm ≤ m ∧ H h n nm ∧ M h nm m))
definition dAnd :: dform ⇒dform ⇒dform (‘‘[[& ]]’’ 79) where
P [[&]] Q ≡ λ h n m. P h n m ∧ Q h n m

elE T implements � = T ; almost p implements p�, i.e. the duration of p is
m − n under flow h and interval [n,m] satisfying m > n, iff for any positive
open interval inside [n,m], there always exists a point in it such that P is held;
H [^] M implements H�M .
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As a consequence, the formulas can be interpreted directly,
(s |= p) ≡ p s, and (h, [n, m] |= H) ≡ H h n m. Moreover, the proof of FOL and
DC formulas is reduced to the proof of HOL formulas, which is supported by the
built-in proof tactics of Isabelle/HOL. We have proved some of the lemmas for DC
stated in [19] in Isabelle/HOL, e.g.,

True ⇔ � ≥ 0 S��S� ⇔ S� HF�� = 0 ⇔ HF
S1� ⇒ S2� if S1 ⇒ S2 is valid in FOL

4.3 Specification and Inference Rules

With the definitions of HCSP and the assertion languages, we implement a
function ValidS to represent a valid specification,

definition ValidS :: fform ⇒ proc ⇒ fform ⇒ dform ⇒ bool (‘‘{ } { ; }’’)
where ValidS p c q H ≡ ∀ now h now’ h’ .semB c now h now’ h’→ h(now) |= p

→ (h’(now’) |= q ∧ h’, [now, now’] |= H)

stating that, {p} c {q;H} is valid, iff starting from flow h and time now, if c
terminates with flow h’ and time now’, then the precondition p holds under h

and now implies the postcondition q and the history formula H hold under h’ and
now’. Below we list some of the lemmas that correspond to the valid inference
rules of HHL.

Assignment. Lemma AssignRRule presents the rule for assignment to a real vari-
able, which indicates that {p} (RVar x := f) {q; H} holds, if p implies the weak-
est precondition substF ([(RVar x, f)], q) and H is implied by the strongest
history formula elE 0.

lemma AssignRRule: (∀ s. (p [→]substF ([(RVar x, f)], q)) s) ∧
(∀ h now now’. (elE 0 [[→]] H) h now now’)

⇒ {p} RVar x := f {q; H}
Here substF ([(RVar x, f)], q) is defined in the semantic level, i.e. after sub-
stituting f for RVar x, q holds,

substF ([(RVar x, f )] , q) ≡ λ s. q (λv. if v=(x, R) then evalE f s else s v))

in which evalE f s returns the value of f under state s.

Continuous Evolution. Lemma ContinuousRule states the rule for continuous
evolutio. Function cl(·) extends the domain defined by the corresponding formula
to include the boundary, e.g. cl (x > 2) = x ≥ 2.

lemma ContinuousRule :∀ s.((p [→] Inv) [∧]
(exeFlow <v:E&&Inv&b> Inv [→] Inv) [∧] (Inv [∧] cl([¬]b) [→] q)) s

⇒ ∀ h now now’. ((elE 0[[∨]] almost (Inv [&] b)) [[→]] H) h now now’
⇒ {p} <v:E&&Inv&b> {q; H}



An Improved HHL Prover: An Interactive Theorem Prover 391

Consider the hypothesis, the FOL formula in the first two lines indicates that
Inv is indeed a sufficiently strong invariant, i.e. it is satisfied by the initial state,
preserved by the execution of the continuous evolution, and strong enough to
guarantee the postcondition; the DC formula in the third line indicates that
the evolution terminates immediately (specified by elE 0), or otherwise, if the
evolution takes more than zero time, then the invariant Inv and the domain b

hold almost everywhere throughout the whole execution. The lemma is proved
valid, as a consequence, the proof of the specification for the continuous evolution
is reduced to an equivalent differential invariant generation problem: if the Inv

exists such that it satisfies the conditions in the hypothesis, then the original
specification is proved. HHL prover will call an external invariant generator to
solve the invariant generation problem.

Sequential Composition. As shown by Lemma SequentialRule, the postcondition
of P; Q (i.e. q) is equivalent to the one of Q, and the history formula (i.e. M) is
implied by the concatenation of the ones of P and Q. By recursively applying
the inference rules of HHL, the two sub-specifications corresponding to P and Q

can be transformed eventually to logical formulas. Notice that the intermediate
formulas consisting of the postcondition of P (i.e. w), the history formula of P (i.e.
H), and the hisotry formula of Q (i.e. G), are not contained in the final specification
for P; Q. As a result, we need to instantiate these formulas when applying this
rule in the proof process.

lemma SequentialRule : {p} P {w; H} ⇒{w} Q {q; G} ⇒
∀ h m n. (H [ˆ] G [[→]] M) h m n ⇒{p} P; Q {q; M}

Communication and Parallel Composition. HHL [11] is not compositional with
respect to parallel composition, due to the communications between processes
and the complex interactions between discrete computation and continuous evo-
lution. The HHL classifies parallel composition into three cases, which are spec-
ified by the following three rules respectively.

lemma Parallel1Rule : chanset P = {} ∧ chanset Q = {} ⇒{pp} P {qp; Hp}
⇒ {pq} Q {qq; Hq} ⇒{pp, pq} P||Q {qp, qq; Hp, Hq}

Lemma Parallel1Rule says that, when there is no communication event in both
P and Q, the specification of P‖Q can be copied from the ones of P and Q accord-
ingly.

lemma CommunicationRule : {px, py} (P || Q) {qx, qy; Hx, Hy}
⇒ ∀ s. ((qx [→] substF ([(RVar x, e)], rx)) [∧] (qy [→] ry)) s
⇒ ∀ h n m. ((Hx[ˆ](elE 0 [[|]] almost qx) [[→]] Gx)
[[∧]] (Hy[ˆ](elE 0 [[|]]almost qy) [[→]] Gy)) h n m

⇒{px, py} P;Cm (ch??RVar x)||Q; Cm (ch!!e) {rx, ry; Gx, Gy}
where Cm ch??RVar x and Cm ch!!e implement ch?x and ch!e in HCSP respec-
tively. Lemma CommunicationRule defines the case when a communication follows,
no matter whether P or Q contains communication events or not. For such case,
we need to synchronize the execution time till the occurrence of ch??RVar x and
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ch!!e. For example, indicated by line 3, if P terminates before Q, then the input
event needs to wait till Q terminates, and during the waiting time, the postcon-
dition of P, i.e. qx, always holds. Notice that elE 0 is included for the case when
P and Q terminate simultaneously. As soon as both parties of the communication
are ready, the communication completes like an assignment assigning e to real
variable RVar x (indicated by line 2).

lemma Parallel2Rule : {pp, pq} P||Q {qp, qq; Hp, Hq} ⇒
chanset P = {} ∧ chanset Q = {} ∧ chanset U = {} ∧ chanset V = {}

⇒ {qp} U {qu; Hu} ⇒{qq} V {qv; Hv}
⇒ {pp, pq} P; U||Q; V {qu, qv; Hp [ˆ] Hu, Hq [ˆ] Hv}

Lemma Parallel2Rule defines the remaining case when processes containing no
communication event follow, provided that P and Q contain communications (the
contrary case when P and Q do not contain communications can be reduced to the
first rule). Indicated by this rule, the parallel composition is equal to executing
U and V immediately from the terminating states of P and Q respectively.

Repetition. As shown by Lemma RepetitionRule, Inv is a loop invariant for P∗:
the precondition p implies Inv, Inv gurantees the postcondition q, and Inv is
preserved by one round execution of P (line 1); and H is idempotent with respect
to chop (line 2). The final specification for P∗ is reduced to an invariant generation
problem, similar to continuous evolution.

lemma RepetitionRule: ∀ s. ((p [→] Inv) [∧] (Inv [→] q)) s ⇒{Inv} P {Inv; H}
⇒ ∀h n m. (H[ˆ]H [[→]] H) h n m ⇒{p} P∗&&Inv {q; H}

The general rules that are applicable for all HCSP constructs, like the con-
sequene rule, the case analysis rule, and so on, can be defined as in traditional
Hoare Logic. Here we will not list them all.

At the end, all the lemmas corresponding to the inference rules of HHL
together constitute a verification condition generator of HHL prover for proving
HCSP specifications. The proof is performed according to the following process:
first, by applying the lemmas of HHL, a HCSP specification is transformed step
by step to a set of HOL formulas, i.e. verification conditions; and then, by
applying proof tactics and rules of HOL, the validity of verification conditions,
that is equivalent to the correctness of the original HCSP specification, is proved.

However, when the specification to be proved contains unknown differen-
tial invariants or loop invariants, some verification conditions related to the
invariants cannot be proved using HOL rules. In order to solve invariant-related
constraints, we have implemented an invariant generator based on the tech-
niques proposed in [12]. By defining an oracle inv_oracle in Isabelle/HOL to
call the external invariant generator, HHL prover is able to prove the remaining
invariant-related verification conditions. By now, the modelling and verification
in HHL prover is completed.
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5 HHL Prover: Deep Embedding

Different from the shallow embedding, the deep embedding defines the DC and
FOL formulas by new datatypes and the meanings of them by the corresponding
deductive rules. We present HHL prover in the deep embedding next.

5.1 Assertion Languages

FOL. The deep embedding of FOL includes the definitions of the syntax and
the deductive system. FOL formulas are constructed from expressions by using
relational operators for atomic cases, and inductively from sub-formulas by using
logical connectives for the compound cases. In syntax, the formulas can be rep-
resented by the following datatype fform:

datatype fform = [False] | exp [=] exp | exp [<] exp
| [¬] fform | fform [∨] fform | [∀] string fform

The other logical connectives including [∧], [→], and [∃] can be derived as tra-
ditional. As seen from type exp, a string may correspond to three different vari-
ables, depending on the actual type construct (that can be RVar, SVar, or BVar).
For quantified formula [∀]string fform, we assume by default that the name rep-
resented by a string s corresponds to the real variable occurring in fform, i.e.
RVar s. Thus, we only consider the quantification over real variables here, but
this restriction can be loosen by considering quantified variables of the other two
types (i.e. string and bool) without any essential difficulty.

The semantics of FOL formulas is defined by induction on the constructs.
Given a state s and a formula p of type fform, function evalF(s, p) is defined to
return the truth value of p under state s. We then have s |= p iff evalF (s, p).

We define the deductive system for fform in sequent calculus style. The
Isabelle library includes the pre-defined theory LK0 for a sequent calculus system
of classical FOL with equation. For instances, the following two axioms define
the introduction/elimination rules for conjunction in sequent calculus style:

conjR: [| $H� $E, P, $F; $H� $E, Q, $ |] ⇒$H� $E, P [&] Q, $F
conjL: $H, P, Q, $G �$E ⇒$H, P [&] Q, $G �$E

where we represent a sequence of FOL formulas by putting a $ symbol before a
capital letter, e.g. $H. We define the sequent calculus for fform (denoted by DLK0)
based on LK0 directly, but LK0 is not complete because it does not include the rules
for the arithmetic formulas for reals in fform, e.g. the arithmetic laws. In order
to solve this problem, we combine deep embedding of defining explicit formulas
in syntax and shallow embedding of applying the arithmetic proof tactics of
Isabelle. The main step is to define an equivalent conversion between the validity
of formulas of fform and HOL formulas, formT (f :,: fform)⇔�f, where the
recursive function formT transforms a formula of type fform to a corresponding
HOL formula. For instance, to prove the commutative law of [*], we first apply
formT to the corresponding formula,
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formT (RVar x [∗] Rvar y [=] RVar y [∗] Rvar x)
= (rvar (x) ∗ rvar (y) = rvar (y) ∗ rvar (x))

where rvar is a constant function that maps a real variable expression to a real
value. The HOL formula obtained after the conversion can be proved automati-
cally by applying auto directly.

As shown above, when we prove a fform formula involving arithmetic, we
will convert it equivalently to a HOL formula and then prove the HOL formula
instead. However, to prove a fform formula without arithmetic occurring in it,
two options are provided to users: applying FOL rules defined in DLK0, or con-
verting the formula to HOL and applying HOL rules.

DC. To embed DC in deep style, we first define a datatype dexp to represent
temporal expressions:

datatype dexp = � | DR real | dexp [[+]] dexp | dexp [[−]] dexp | dexp [[∗]] dexp

dexp defines expressions that are interval-dependent, including the only temporal
variable � for representing the length of the considered interval, real constants,
and arithmetic expressions. Then the datatype dform encodes the history formu-
las HF:

datatype dform = [[True]] | dexp[[=]]dexp | dexp[[<]]dexp
| almost fform | dform[ˆ]dform [[¬]]dform | dform[[∨]]dform

The semantics of the history formulas is defined by induction on the con-
structs. Given a flow f, a timed interval [c, d], and a temporal expression
te, function ievalE(f, te, c, d) is defined to evaluate te under flow f and
interval [c, d]; and based on this function, given a history formula H, function
ievalF(f, H, c, d) is defined to return the truth value of H under flow f and
interval [c, d]. Below show some examples:

ievalE( f, �, c, d) = d−c
ievalF ( f, almost S, c, d) = (c<d ∧ ∀ i, j. c≤ i < j ≤ d →

∃t. i < t < j → evalF (f(t), S))
ievalF ( f, H1[ˆ]H2, c, d) = ∃ k.c<=k ∧ k<=d ∧ ievalF (f, H1, c, k)

∧ ievalF (f, H2, k, d)

We then have h, [n, m] |= H iff ievalF (h, H, n, m).
To establish the sequent calculus style deductive system for dform, we first

define the deductive system for the first-order connectives of dform, that is similar
to the one built for fform above; then for �, [^] and almost, we transform the
deductive system of DC from [19] to sequent calculus style. For instance, the
axiom S��S� ↔ S� is encoded by the following rules:

AlR : $H � (almost S[ˆ]almost S), $E ⇒ $H � almost S, $E
AlL : $H, (almost S[ˆ]almost S) � $E ⇒ $H, almost S � $E

where $H, $E represent arbitrary sequences of logical formulas of type dform.
Other rules can be encoded similarly.
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Inference Rules. We list the rule for assignment as an illustration. Because of
the deep embedding of the assertions, the effect of assignment is expressed at
the level of fform formulas by variable substitution. This is one main difference
of using deep embedding from shallow embedding. For defining variable substi-
tution, we implement a map as a list of pairs (exp * exp) list, and define two
recursive functions: given a map r and an expression e, function substE(r, e)

substitutes expressions occurring in e according to the map r; based on the
definition of substE, given a formula p of type fform, function substF(r, p) sub-
stitutes expressions occurring in p according to the map r. Below we have the
lemma for assignment e:=f:
lemma AssignRRule:
� p [→]substF ([(RVar x, f)], q); �elE 0 [[→]] H ⇒{p} RVar x :=f {q; H}
Other rules can be defined similarly. As we can see in deep embedding, the HHL
specification is transformed into a set of explicit FOL and DC formulas, which
can be proved by applying the corresponding deductive systems we have built.

Discussion. The general strengths and weakness of both embeddings can be
found at [16], and here we will not list them again. We will make more specific
comparison between the two embeddings in the case study section.

In both embeddings, the proof in HHL prover cannot be automated due to the
following reasons: first, the intermediate assertions occurring in SequentialRule,
CommunicationRule, etc, need to be instantiated in the proof process by the
user manually; second, the constraints related to unknown differential invariants
and loop invariants need to be gathered manually so that they are solved by the
external invariant generator as a whole; finally, in shallow embedding, because
of the limitation of SMT solvers, the HOL verification conditions containing
quantifiers usually cannot be proved automatically; while in deep embedding,
the FOL and DC verification conditions are proved by applying their deductive
rules manually.

But on the contrary, compared to other automated provers, HHL prover is
capable of modelling and verifying more complex hybrid systems, because of the
expressiveness of both HCSP and HHL.

6 A Case Study

We demonstrate the use of HHL prover on proving the safety of the slow descent
guidance control program of a lunar lander, which provides a specific sampled-
data control system composed of the physical plant and the control program.

6.1 Description of the Control Program

The lunar lander’s dynamics is mathematically represented by
⎧
⎨

⎩

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp1

, where (1)
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– r, v and m denote the altitude relative to lunar surface, vertical velocity, and
mass of the lunar lander, respectively;

– Fc is the thrust imposed on the lander, which is a constant in each sampling
period of length 0.128 s;

– gM = 1.622 m/s2 is the magnitude of the gravitational acceleration on the
moon;

– Isp is the specific impulse of the lander’s thrust engine. When Fc lies in
[1500, 3000], Isp = 2548N·s/kg, and when Fc lies in (3000, 5000], Isp =
2842N·s/kg. Thus the lander’s dynamics comprises two different forms depend-
ing on the values of Isp.

The sample time of the guidance control program is fixed as 0.128s. In every
period, the guidance program gets the values of the altitude r and the velocity
v via the sensor, and then updates mass m, calculates acceleration aIC, and
calculates thrust Fc in sequence. Especially, Fc is calculated according to

Fc := −0.01 · (Fc − m · gM ) − 0.6 · (v − vslw) · m + m · gM (2)

where Fc on the right is the thrust of last period, and m is the updated mass in
this period. The new thrust Fc will then be used for the next sampling cycle.

The safety property we want to prove for the guidance program is

(SP) |v − vslw | ≤ ε, where ε = 0.05 m/s is the tolerance of fluctuation of v
around the target vslw = −2 m/s.

6.2 Verification in HHL Prover

First, we construct the HCSP model for the control program manually, denoted
by LL, which is

definition P :: proc where
LL ≡ PC Init; PD Init; t:=(Con Real 0);(PC Difff; t:=(Con Real 0); PD Rep)∗

where PC_Init and PD_Init are initialization procedures for the continuous
dynamics and the guidance program respectively; PC_Diff models the contin-
uous dynamics given by (1) within a period of 0.128s; PD_Rep calculates thrust
Fc according to (2) for the next sampling cycle; variable t denotes the elapsed
time in each sampling cycle. Hence, process LL is initialized at the beginning
by PC_Init and PD_Init, and behaves as a repetition of dynamics PC_Diff and
computation PD_Rep afterwards.

Proof Result. By applying HHL prover (either in shallow or deep embedding),
we have proved the following specification for process LL:

lemma goal: {fTrue} LL {safeProp; (elE 0 [[|]] almost safeProp)}
where safeProp of type fform encodes the safety property (SP). Lemma goal

indicates that, starting from any state, the control program satisfies the safety
property almost everywhere during the whole execution.
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Comparison in Different Approaches. In both embeddings, the proof for lemma
goal is composed of a sequence of rule applications of Isabelle/HOL. But the
length of the proof in shallow embedding is about one half of the one in deep
embedding. In detail,

– For shallow embedding, the rules applied mainly comprise of two kinds: the
inference rules of HHL and the rules for unfolding the HOL predicates of
FOL and DC formulas. Fortunately, many of the rules applied are found by
the built-in tool sledgehammer of Isabelle/HOL automatically. This alleviates
users’ proof burden to a big extent.

– For deep embedding, the rules applied also comprise of two kinds: the deduc-
tive rules of FOL and DC. The verification conditions generated (in the form
of FOL and DC) have a much smaller size than the ones (in the form of HOL)
in shallow embedding, because they are not unfolded. But meanwhile, they
need to be conducted by the user completely, to apply the deductive rules of
both logic manually.

7 Conclusion

HHL prover can be used for verifying hybrid systems, that combine discrete
computation, continuous dynamics, communications, and parallel composition,
etc. As an interactive theorem prover, it formalizes HCSP for modelling hybrid
systems and realises the Hybrid Hoare Logic (HHL) for verifying safety of HCSP
models in Isabelle/HOL. The old HHL prover implemented HHL in deep embed-
ding, but with great proof burden. This paper presents an improved HHL prover
that implements HHL in shallow embedding. In addition, to compare the two
different embedding styles, we demonstrated the use of both variants on a real-
life example, i.e. the slow descent control program of a lunar lander. It can be
seen from the proof results that the shallow embedding has better performance
in the proof size and automation than deep embedding.
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Abstract. In this paper we investigate the formal design of concurrent
languages based on the concept of continuation. We present a denota-
tional approach of concurrent programs by using continuations for con-
currency. We illustrate the approach by designing a continuation seman-
tics for a language with nondeterministic choice, sequential and parallel
composition, and a mechanism of communication and synchronization
on multiple channels. For our language, we also present an operational
semantics, and establish the formal relation between the denotational
and operational semantics. We accomplish the semantic investigation in
the mathematical framework of complete metric spaces.

1 Introduction

The paper deals with semantic aspects of concurrent systems, namely systems
consisting of several computing processes interacting each other. By “process”
we understand the behaviour of a software system, the execution of a program.
Since the concurrent systems are usually complex, it is useful to have the possi-
bility of describing, analyzing and reasoning about the concurrent systems in a
precise way. Generally, the interactions among processes cannot be predicted as
the concurrent computation involves nondeterminism. The traditional view of a
(sequential) computation as a function from input to output cannot deal properly
with nondeterminism. For concurrent systems, formal models are provided by
process calculi like CCS [11] and CSP [9]. These process calculi work with terms,
and use an operational semantics to describe the computational dynamics. They
are also called process algebras because they use algebraic operators and equa-
tions among terms to describe the system behaviour. In general, starting out
from a given set of atomic or elementary actions, the basic operators are used to
compose the actions into more complicated processes. The basic operators are
+ (denoting nondeterministic choice), ; (denoting sequential composition) and
‖ (denoting parallel composition). These operators satisfy certain concurrency
laws describing the actions execution explicitly.

The denotational semantics of concurrent systems use the observations of
a process (e.g., traces, failures), and the meaning of a process is given by a
c© Springer International Publishing Switzerland 2015
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collection of possible observations. These denotations are compositional, and can
also provide an operational intuition. However the denotational semantics are
more abstract than the operational semantics, and are not close to any specific
implementation for a concurrent system or language. In this paper we present a
continuation semantics for concurrency (shortly CSC) which satisfies the main
static laws of concurrent systems. Direct denotational semantics cannot easily
explain constructs that interrupt the flow of control; such constructs can be
expressed denotationally using continuations. A continuation represents in fact
the remaining part of a certain computation. Traditional continuations [14] can
be used to model a variety of advanced control concepts, including non-local
exits, coroutines and even multitasking. However, the traditional continuations
do not work well enough in the presence of concurrency.

The CSC technique is a general tool for representing control in concurrent
systems [6,15]. It can be used to design denotational and operational semantics
of concurrent systems. As a tool for denotational design, the distinctive char-
acteristic of the CSC technique is the modelling of continuations as structures
of computations (denotations of program statements) rather than the functions
to some answer type that are used in the classic technique of continuations
[14]. The computations contained in a continuation can be evaluated either in
some particular order or in parallel. In practice, it is possible to establish a
relation between the structure of continuations and the control concepts of the
language under study. Communication and synchronization information can also
be encoded in continuations. Unlike other branching-time or linear-time mod-
els of concurrency [2], in the CSC approach the final yield of the denotational
mapping is a simple collection of observations, and all control and synchroniza-
tion information is encoded in continuations. Following [2], in this paper we use
the term resumption as an operational counterpart of the term continuation.
In an operational semantics designed with CSC a resumption is a structure of
program statements (syntactic constructs). The structure of continuations (and
resumptions) is specific of the concurrent language under investigation.

We consider a simple imperative concurrent language that we name MCC,
an abbreviation for Multiple Channels Communication. The communication on
multiple channels is inspired by the join calculus [8]. MCC provides operators
for nondeterministic choice, sequential and parallel composition. It also provides
two primitives for concurrent interaction on multiple channels, namely a (send-
ing) statement c!e together with a communication pattern c1?v1& · · · &cn?vn.
Synchronized execution of n + 1 actions c1!e1, . . . , cn!en and c1?v1& · · · &cn?vn

occurring in parallel processes results in the transmission of the value of each
expression ei along the channel ci from the process executing the ci!ei state-
ment to the process executing the c1?v1& · · · &cn?vn statement. The value of
each expression ei is transmitted along the channel ci and assigned to the cor-
responding variable vi. The whole interaction behaves like a distributed multi-
assignment performed upon a synchronous rendezvous between n + 1 parallel
components. All the n + 1 parallel components must be ready to interact for
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a communication between them to occur. When n = 1, the interaction is a
point-to-point synchronous communication like in CSP [9].

In Sect. 3 we present a denotational model designed with CSC for MCC. The
denotational model is built within the mathematical framework of 1-bounded
complete metric spaces [2]. We use the general theory developed in [1], and
the domain of denotations is defined as a solution of an equation in which the
domain variable occurs in the left-hand side of a function space construction.
The semantic operators designed with CSC obey the concurrency laws such as
the associativity and the commutativity of parallel composition. The seman-
tics of nondeterministic choice is defined based on the standard union operator,
which is associative, commutative and idempotent. Other properties, e.g. the
associativity of sequential and parallel execution, require more complex proofs
based on the identification of behavioural invariants. In our denotational model
the semantic operators obey the law for the left distributivity of nondetermin-
istic choice over sequential composition, which is characteristic of models based
on trace semantics. The basic idea of each of these proofs is to show that the
property under consideration is preserved by the computation steps. In metric
semantics it is usual to attach a 1

2 contracting factor to each computation step.
In each case we obtain a relation of the kind ε ≤ 1

2 · ε where ε is the distance
between two behaviourally equivalent continuations. It results that ε = 0, and
the desired property follows. In Sect. 4 we present an operational semantics also
designed with CSC for MCC. We establish the mathematical relation between
the denotational semantics and the operational semantics of MCC. In designing
and relating the denotational and the operational semantics of MCC we follow
the mathematical methodology of metric semantics [2].

In Sect. 4 we prove that the denotational semantics designed with CSC for
MCC is correct with respect to the operational semantics. However, we do not
know whether the domain of CSC is also complete, and so fully abstract [10].
This remains an open problem. We are not aware of any full abstractness result
for a concurrent language designed with continuations, although various papers
employ continuations in the denotational description of concurrent languages.

Contribution: We present the denotational semantics of a concurrent language
MCC in a complete metric space obtained by solving a specific CSC domain
equation. Following [6], we prove that the continuation semantics satisfies some
basic laws of concurrency; these results are obtained for all the continuations con-
taining denotations of the programs. This represents an invariant of the denota-
tional semantics, and ensures its consistency just because the initial continuation
is empty and the denotational semantics adds to the continuation only denota-
tions of the language constructs. We also present an operational semantics for
MCC, and relate formally the denotational and operational semantics follow-
ing the mathematical methodology of metric semantics [2]. Certain proofs are
included in the paper; others are available online in a technical report [4]. The
proof technique is based on the identification of behavioural invariants given by
the specific structure of continuations. This technique could be applied to every
language designed by using CSC.
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2 MCC Syntax and Continuation Structure

The notation (x ∈)X introduces the set X with typical element x ranging over X.
Let f ∈ X →Y be a function; the function [ f | x �→ y ] : X →Y is defined
(for x, x′∈X, y∈Y ) by: [ f | x �→ y ](x′) = if x′=x then y else f(x′). Instead of
[ [ f | x1 �→ y1 ] · · · | xn �→ yn ] we write [ f | x1 �→ y1 | · · · | xn �→ yn ]. If
f : X →X and f(x) = x we call x a fixed point of f . When this fixed point is
unique, we write x = fix(f). We recall that if (X, dX) and (Y, dY ) are metric
spaces, a function f :X →Y is a contraction if ∃c ∈ R, 0 ≤ c < 1, ∀x1, x2 ∈ X :
dY (f(x1), f(x2))≤c · dX(x1, x2). In metric semantics, it is customary to attach a
contracting factor c = 1

2 to each computation step. When c = 1 the function f
is called non-expansive. In what follows, we denote the set of all non-expansive

functions from X to Y by X
1→Y . The well-known theorem of Banach is essential

in metric semantics; this result claims that each contraction f : X →X has a
unique fixed point in a complete metric space.

We use the abbreviation Pnco(X) to denote the powerset of non-empty and
compact subsets of X, and Pfin(X) to denote the powerset of finite subsets of X.
We only use the powerset of finite subsets to create structures that we endow
with the discrete metric (which are trivially complete ultrametric spaces). We
often suppress the metric part in domain definitions and write, e.g., 1

2 · X instead
of (X, d 1

2 · X), where, if (X, d) is a (complete) metric space, the metric d 1
2 · X is

defined by d 1
2 · X(x1, x2) = 1

2 · d(x1, x2). Other preliminaries are presented in [6].
We assume a given set (v ∈)V ar of variables, a set (e ∈)Exp of numeric

expressions (without side effects), a set (c ∈)Ch of communication channels and
a set (x ∈)Pvar of procedure variables. We assume that the evaluation of an
expression always terminates and yields an integer value z ∈ Z. The syntax of
MCC is provided by the following components:

(a) (Communication patterns) j(∈ J) ::= c?v | j & j
To be valid, the channels c1,. . ., cn and the variables v1, . . . , vn of a commu-
nication pattern j = (c1?v1 & · · · & cn?vn) must be pairwise distinct.

(b) (Statements) Let a ::= skip | v := e | c!e | j
s(∈Stat) ::= a | x | s + s | s; s | s‖s

(c) (Guarded statements)
g(∈GStat) ::= a | g + g | g; s | g‖g

(d) (Declarations) (D ∈)Decl = PV ar →GStat
(e) (Programs) (ρ ∈)MCC = Decl × Stat

In MCC we have assignment (v := e), recursion, sequential composition (s; s),
nondeterministic choice (s + s), parallel composition (s‖s) and a communica-
tion mechanism given by statements c!e together with a communication pattern
c1?v1& · · · &cn?vn. Synchronized execution of n + 1 actions c1!e1, . . . , cn!en and
c1?v1& · · · &cn?vn occurring in parallel results in the transmission of the value
of each expression ei along the channel ci from the process executing the ci!ei

statement to the process executing the c1?v1& · · · &cn?vn statement. The latter
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assigns the received n values to the variables v1, . . . , vn; the value of each expres-
sion ei is transmitted along the channel ci and assigned to the corresponding
variable vi. The whole interaction behaves like a distributed multi-assignment.

Following a standard approach, the meaning of expressions is given by a
valuation E [[·]] : Exp→ Σ →Z, where (σ ∈)Σ = V ar →Z is a set of states.
We employ recursion based on declarations and guarded statements [2]. In a
guarded statement, each recursive call is preceded by at least one elementary
action, and this guarantees that the semantic operators are contracting functions
in the present metric setting. Without loss of generality, in what follows we
assume a fixed declaration D ∈ Decl, and in any situation we refer to this
fixed D. For inductive proofs we introduce a complexity measure cs : Stat →N

that decreases upon recursive calls: cs(a) = 1; cs(s1; s2) = 1 + cs(s1); cs(x) =
1 + cs(D(x)); cs(s1 op s2) = 1+max{cs(s1), cs(s2)}, op ∈ {+, ‖}. The function
cs is well-defined due to our restriction to guarded recursion [2].

2.1 Continuation Structure for MCC

In the CSC approach, a continuation is an application-specific structure of com-
putations. Continuation structures can be designed by using two abstract con-
cepts: the stack to model sequential composition and the multiset to model par-
allel composition [5]. The language MCC provides a general combination of
parallel and sequential composition. In order to model properly this combina-
tion of concepts, a CSC continuation must be a tree of computations with active
computations at the leaves. This behaviour is inspired by the structure of a cac-
tus stack, namely a stack with multiple tops that can be active concurrently [3].
The major issue that gives rise to a tree-like structure is the presence of state-
ments such as (s1 ‖ s2); s3. In such a statement, s3 can only execute after the
concurrent execution of both s1 and s2 has terminated. In order to define such
domains of trees of computations we employ a set of identifiers (α ∈)Id. Id is
the set of all finite, possibly empty, sequences over {1, 2}. We write α≤α′ when
α is a prefix of α′ (≤ is a partial ordering relation defined on Id).

In this paper we use the symbol ’·’ as a concatenation operator over sequences,
hence we can represent any nonempty identifier α ∈ Id by a finite sequence
α = i1 · . . . · in, where i1, . . . , in ∈ {1, 2}. We use the symbol λ to represent the
empty sequence over {1, 2} (i.e., λ ∈ Id).

(a) Let (α ∈)Id = {1, 2}∗ be a set of identifiers, equipped with the following
partial ordering: α ≤ α′ iff α′ = α · i1 · . . . · in for i1, . . . , in ∈ {1, 2}, n ≥ 0.
We define α < α′ iff α ≤ α′ and α 
= α′. If A ∈ P(Id), we denote by ≤A the
restriction of ≤ to A.

(b) We define a function max : P(Id)→P(Id) by

max(A) = {α | α is a maximal element of (A,≤A)}.

Let A ∈ P(Id). An element α ∈ A is a maximal element of (A,≤A) if ¬(α < α′),
for any α′ ∈ A. An element α ∈ A is the least element of (A,≤A) if α ≤ α′, for
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any α′ ∈ A. (Id,≤) is a partially ordered set (≤ is a binary relation over Id which
is reflexive, transitive and antisymmetric). λ is the least element of (Id,≤). The
concept of a tree that we use in this paper is taken from set theory, where a
tree is a partially ordered set in which the predecessors of each element are well-
ordered. A set is well-ordered if it is linearly ordered and every nonempty subset
has a least element. A set is linearly ordered if any two elements are comparable.
There are several books on set theory that provide formal definitions of these
concepts. Here we explain the concept of a tree by means of an example.

We only work with finite trees. Let A ⊆ Id be a finite subset of Id. (A,≤A)
is a finite tree. Let α ∈ Id, and A = {α, α ·1, α ·2, α ·1 ·1, α ·1 ·2, α ·2 ·1, α ·2 ·2}.
The maximal elements of (A,≤A) are exactly the leaves of the tree: max(A) =
{α · 1 · 1, α · 1 · 2, α · 2 · 1, α · 2 · 2}. The predecessors of each element in A are
well-ordered. For example, α · 1 · 1 > α · 1 and α · 1 > α. The set of predecessors
of α · 1 · 1 is {α · 1, α}, which is linearly ordered, because any two elements in
{α · 1, α} are comparable. In general, α′ and α′′ are comparable iff α′ ≤ α′′ or
α′′ ≤ α′. Obviously, every nonempty subset of {α · 1, α} has a least element. In
fact, every finite linearly ordered set is well-ordered.

Let (x ∈)X be a complete metric space. Let (π ∈)Π = Pfin(Id). We use
the notation {|X|} not.= Π × (Id→X). Let α ∈ Id. Let (π, φ) ∈ {|X|}, where φ
ranges over Id→X. We define id : {|X|}→ Π, id(π, φ) = π, and use the fol-
lowing abbreviations: (π, φ)(α) not.= φ(α), (π, φ) \ π′ not.= (π \ π′, φ), [ (π, φ) | α �→
x ] not.= (π ∪ {α}, [φ | α �→ x ]). We treat (π, φ) as a ’function’ with finite graph
{(α, φ(α)) | α ∈ π}, thus ignoring the behaviour of φ for any α /∈ π (π is the
’domain’ of the ’function’). With this mathematical structure we represent finite
partially ordered bags (or multisets)1 of computations. The set Id is used to dis-
tinguish between multiple occurrences of a computation in such a bag. We endow
the sets Id and Π with discrete metrics, and so they are complete ultrametric
spaces. The composed metric spaces are built up as explained in [2]. If X is a
(complete) ultrametric space then {|X|} is also a (complete) ultrametric space.
The operators behave as follows: id(π, φ) returns the collection of identifiers for
the valid computations contained in the bag, (π, φ)(α) returns the computation
with identifier α, (π, φ) \π′ removes the computations with identifiers in π′, and
[ (π, φ) | α �→ x ] replaces or adds a computation with identifier α.

By a slight abuse, we use the same notations when X is an ordinary set:
{|X|} = Π × (Id→X), using the operator id and the abbreviations (·)(α), (·)\π,
and [ · | α �→ x ]; in this case we do not endow {|X|} with a metric.

3 Denotational Semantics

A central idea in metric semantics is that the distance between two computations
is 2−n, whenever the first difference between their behaviours appears after n

1 We avoid to use the notion of a partially ordered multiset which is a more refined
structure (see Chapt. 16 of [2]).
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computation steps. Each computation step produces an observation. The behav-
iour of concurrent processes can be described in a compositional manner. The
approach is well-established in the context of CSP [2,13]. In the continuation-
based approach that we present in this paper each computation step is fol-
lowed by a scheduling step, which can either perform a synchronization or it
can activate (in a non-deterministic manner) a computation contained in the
continuation. In this way, execution traces of concurrent processes are gener-
ated incrementally, and control and synchronization information is encoded in
continuations.

We present a continuation-based denotational semantics for MCC. The final
yield of our denotational semantics is an element of a standard linear-time
domain (p ∈)P = Pnco(Σ∗ ∪ Σ∗ · {δ} ∪ Σω). An element of Σ∗ ∪ Σ∗ · {δ} ∪ Σω

is either a finite sequence over Σ, possibly terminated with the symbol δ, or an
infinite sequence over Σ. The symbol δ models deadlock. We also use the symbol
λ to represent the empty sequence over Σ. This is a slight abuse since we also
use the symbol λ to represent the empty sequence over {1, 2}; however, it is
always clear from the context which is the type of λ (either λ ∈ Id = {1, 2}∗, or
λ ∈ Σ∗). We endow Σ∗ ∪ Σ∗ · {δ} ∪ Σω with the Baire metric, and so obtain a
complete ultrametric space [2].

The space of the denotational semantics D for MCC is Stat →D, where

D ∼= Cont
1→Σ →P,

(γ ∈)Cont = Id × Kont,
(κ ∈)Kont = {|Comp|},

Comp = J♦ + Snd + 1
2 · D.

Here J♦ = {♦}×J and Snd = Ch× (Σ →Z). We use the notation 〈j〉 = (♦, j).
Also, for readability, we denote typical elements (c, ξ) of Snd by c ! ξ.

In the domain equations given above the sets Id (and Π), Σ, J♦ and Snd
are endowed with the discrete (ultra)metric, according to the standard construc-
tions for the composed metric spaces. Notice that the recursive occurrence of the
domain variable D is preceded by the 1

2 factor and it is placed in the left-hand
side of a (non-expansive) function space construction. The above domain equa-
tion can be solved by using the general method presented in [1]. The solution,
which is unique up to isometry, is obtained as a complete ultrametric space.

Comp is the domain of computations. A computation is either a (partially
evaluated) denotation or a component that participates in a synchronization
between multiple processes. The construction {|Comp|} = Π × (Id → Comp)
was already presented. In the sequel ϕ ranges over Id → Comp.

We call a closed continuation an element of Kont, and an open continuation
an element of Cont. A closed continuation κ ∈ Kont is a configuration of com-
putations. An open continuation (α, κ) ∈ Cont is a semantic context for the
evaluation of the denotational mapping [7]. In an expression D(s)(α, κ), D(s) is
the active computation which is evaluated in the context given by the continua-
tion (α, κ). In this representation α is the identifier of the active computation.
The denotational semantics preserves this invariant property: α /∈ id(κ) and
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α ∈ max({α} ∪ id(κ)). In this way the active computation is always a maximal
element (i.e. a leaf) in the tree of computations representing the continuation.

The denotational function D given in Definition 1 is defined with the aid of a
mapping kc, which is called a scheduler. The scheduler function manipulates the
computations contained in a closed continuation. Computations of the type 1

2 · D
can be activated for evaluation. Computations of the type J♦ and Snd can
participate in multichannel synchronizations. If the continuation is empty the
scheduler terminates the computation. If the continuation is not empty and
it contains no computations that can be activated and no synchronization is
possible then the scheduler detects a deadlock. Otherwise the scheduler can
either activate a computation or it can perform a step of synchronization between
multiple processes. In order to activate a computation the scheduler decomposes
a closed continuation into a computation and a corresponding open continuation
and then it executes the former with the latter as a continuation. The activation
of a computation can follow after a finite number of synchronization steps.

We use three auxiliary mappings that yield finite sets of schedules. A sched-
ule is a finite and non-empty set of identifiers. A schedule with only 1 element
is an activation schedule; it contains exactly one identifier α, and the computa-
tion with identifier α is activated by the scheduler function kc. A schedule that
contains more than 1 element is a synchronization schedule; it is used to define
a pattern matching synchronization on multiple channels. Activation schedules
are computed by the mapping ΩA; synchronization schedules are computed by
the mapping ΩS . For all κ ∈ Kont we have ΩA(κ) ∩ ΩS(κ) = ∅.

Let (ς ∈)Sched = Pnfin(Id) be the set of schedules. We use different symbols
to represent the elements of the sets (ς ∈)Sched and (π ∈)Π, so it is always
clear when a (non-empty and) finite set of identifiers is treated as a schedule2.
Let ·̂ : Sched → Π, ς̂ = ς. With the aid of an auxiliary predicate Sync :
(Sched×Kont) → Bool we define Ω,ΩA, ΩS : Kont → Pfin(Sched) as follows:

Sync({α}, κ) = false
Sync({α, α1, . . . , αn}, κ) = (κ(α) = 〈c1?v1 & · · · & cn?vn〉 ∈ J♦)∧

(κ(α1) = c1!ξ1 ∈ Snd) ∧ · · · ∧ (κ(αn) = cn!ξn ∈ Snd)
Ω(κ) = ΩA(κ) ∪ ΩS(κ)
ΩA(κ) = {{α} | α ∈ max(id(κ)), κ(α) ∈ 1

2 · D}
ΩS(κ) = {ς | ς ⊆ max(id(κ)), Sync(ς, κ)}

We use the mapping ( · | · ⇒ · ) : (Σ × Π × Kont) → Σ to model the state
update effect of a multichannel synchronous communication:

(σ | ς ⇒ κ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[σ | v1 �→ ξ1(σ) | · · · | vn �→ ξn(σ) ]
if ς ⊆ max(id(κ)), Sync(ς, κ),

ς = {α, α1, . . . , αn},
κ(α) = 〈c1?v1 & · · · & cn?vn〉,
κ(α1) = c1!ξ1, . . . , κ(αn) = cn!ξn

σ otherwise

2 Π = Sched ∪ {∅}; the set Π = Pfin(Id) was introduced previously.
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We also define the predicates Terminates,Blocks : Kont→ Bool by

Terminates(κ) = (id(κ) = ∅)
Blocks(κ) = (id(κ) 
= ∅) ∧ (Ω(κ) = ∅)

Definition 1. (Denotational Semantics D)

(a) Let kc : Kont→Σ →P be given by
kc(κ)(σ) = if Terminates(κ) then {λ}

else if Blocks(κ) then {δ}
else

⋃
{α} ∈ ΩA(κ) κ(α)(α, κ \ {α})(σ) ∪⋃
ς ∈ ΩS(κ) (σ | ς ⇒ κ ) · kc(κ \ ς̂ )(σ | ς ⇒ κ )

(b) Let (S ∈)SemD = Stat → D. We define Φ : SemD → SemD by:

Φ(S)( skip )(α, κ)(σ) = σ · kc(κ)(σ)
Φ(S)(v := e)(α, κ)(σ) = σ′ · kc(κ)(σ′) where σ′ = [σ | v �→ E [[e]](σ) ]

Φ(S)(c!e)(α, κ)(σ) = σ · kc[κ | α �→ c!E [[e]] ](σ)
Φ(S)(j)(α, κ)(σ) = σ · kc[κ | α �→ 〈j〉 ](σ)
Φ(S)(x)(α, κ)(σ) = Φ(S)(D(x))(α, κ)(σ)

Φ(S)(s1 + s2)(α, κ)(σ) = Φ(S)(s1)(α, κ)(σ) ∪ Φ(S)(s2)(α, κ)(σ)
Φ(S)(s1; s2)(α, κ)(σ) = Φ(S)(s1)(α · 1, [κ | α �→ S(s2) ])(σ)

Φ(S)(s1 ‖ s2)(α, κ)(σ) = Φ(S)(s1)(α · 1, [κ | α · 2 �→ S(s2) ])(σ) ∪
Φ(S)(s2)(α · 2, [κ | α · 1 �→ S(s1) ])(σ)

(c) We put D = fix(Φ). Also, let α0 = λ and κ0 = (∅, ϕ0), where ϕ0(α) =
D( skip ), ∀α ∈ Id. We define D[[·]] : Stat →Σ →P by D[[s]] = D(s)(α0, κ0),
where (α0, κ0) is the empty (open) continuation.

In each of the first four equations given in Definition 1(b) an elementary step is
produced and next the control is transmitted to the scheduler. The first equa-
tion defines the semantics of the inoperative statement skip . The second equation
defines the semantics of the assignment statement v := e, which updates the cur-
rent state. The next two equations define the semantics of the send statement c!e
and the communication pattern j, respectively; in both cases a synchronization
attempt is added to the continuation. Our denotational model makes a silent
step (sometimes called a hiaton; see, e.g., Chapt. 9 of [2]), i.e. an elementary step
that does not modify the state of the system upon the creation of each synchro-
nization attempt. The elementary steps that precede the call to the scheduler
function kc ensure the contractiveness of the higher-order mapping Φ.

In the case of our language MCC, a continuation is a tree of computa-
tions with active elements at the leaves (i.e., maximal elements with respect to
order ‘≤’). In the case of a sequential composition (s1; s2), the computations
D(s1) and D(s2) are using the identifiers α · 1 and α, respectively (α · 1 > α).
The scheduler function kc gives priority to the computations at the leaves of the
tree that represents the continuation; therefore D(s2) will be evaluated only after
the completion of the evaluation of D(s1). In the case of a parallel composition
(s1 ‖ s2), the computations D(s1) and D(s2) are using the identifiers α · 1 and
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α · 2, respectively; α · 1 and α · 2 are incomparable with respect to ≤, and so the
computations D(s1) and D(s2) are evaluated in an independent manner.

It may not be obvious that the scheduler function kc is well-defined, since it
occurs in the right-hand side of its definition. The recursive occurrence of kc is
preceded by the (contracting) synchronization step “(σ | ς ⇒ κ ) · . . .”. We could
define kc as fixed-point of an appropriate higher-order contraction. However, it
is easier to define kc by induction on the number of communication patterns
(of the type J♦) that are contained in the continuation κ. A continuation is a
finite structure of Comp computations (Comp = J♦ + Snd + 1

2 · D). After
each synchronization step the number of J♦ communication patterns that are
contained in a continuation decreases by 1. When the continuation contains no
communication pattern then ΩS(κ) = ∅. If ΩS(κ) = ∅ then the evaluation either
terminates, or blocks, or ΩA(κ) 
= ∅. If ΩA(κ) 
= ∅ then a computation (of the
type 1

2 · D) contained in κ is activated for evaluation.
The denotational semantics D is defined as the (unique) fixed point of the

higher-order mapping Φ. The definition of Φ(S)(s) is organized by induction on
complexity measure cs(s). In the CSC approach a computation is an element of
the type D. A computation takes as parameter a continuation. A continuation
is a dynamic store of computations. Computations are stored in continuations
as elements of the type 1

2 · D (the distance between computations halves while
they are stored into the continuation). Intuitively, when a computation contained
in a continuation is activated for evaluation it moves from the space 1

2 · D to
the space D. This phenomenon explains the occurrence of the multiplication
factor 2 (rather than 1

2 ) in Lemma 1(b). Also, a computation is a function that
is (only) non-expansive (rather than contractive) in the continuation, as stated
by Lemma 2(b). Still, the higher-order mapping Φ is 1

2 contractive.

Lemma 1. (a) The mapping kc (of Definition 1) is well-defined.
(b) ∀κ1, κ2 ∈ Kont : d(kc(κ1), kc(κ2)) ≤ 2 · d(κ1, κ2).

Lemma 2. For all S ∈ (Stat →D), s ∈ Stat, α ∈ Id, κ ∈ Kont, σ ∈ Σ, we have

(a) Φ(S)(s)(α, κ)(σ) ∈ P (it is well-defined),
(b) Φ(S)(s) is non-expansive (in (α, κ)), and
(c) Φ is 1

2 - contractive (in S).

Example 1. Let j ∈ J, s1, s2 ∈ Stat, j = c1?v1&c2?v2, s1 = c1!1 ‖ c2!2 and
s2 = j; (v := v1 + v2 ‖ v := 10). Let also σ1 = [σ | v1 �→ 1 | v2 �→ 2 ], σ2 = [σ1 |
v �→ 3 ], σ3=[σ1 | v �→ 10 ] (σ, σ1, σ2, σ3∈Σ). One can check that:

D[[s1 ‖ s2]](σ) = {σσσσ1σ2σ3, σσσσ1σ3σ2}

The execution begins with three silent steps “σσσ” corresponding to three syn-
chronization attempts, followed by a multichannel communication which modifies
the state from σ to σ1. Next, the statements v := v1+v2 and v := 10 are executed
in an interleaved manner, which gives rise to nondeterminism.
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3.1 Concurrency Laws

The semantic operators designed with continuation semantics for concurrency
(CSC) to express the behaviour of MCC programs satisfy the basic concurrency
laws. Some properties, such as the commutativity, associativity and idempo-
tency of nondeterministic choice can be proved for all continuations by simple
manipulations of the semantic equations. The right distributivity of the non-
deterministic choice over sequential composition is also easy to establish.

In order to prove other semantic properties one can employ the technique
introduced in [6], which relies on the identification of computation invariants
(expressed as relations between continuation structures) and the use of contrac-
tion ε ≤ 1

2 · ε ⇒ ε = 0. Arguments of the kind ε ≤ 1
2 · ε ⇒ ε = 0 are standard

in metric semantics [2]. The identification of computing invariants as relations
between continuation structures is specific of the CSC technique.

Theorem 2 states the main properties of the semantic operators designed
with CSC for MCC. The complete proof of Theorem 2 is given in the attached
technical report [4]. The semantic properties stated by Theorem 2 are preserved
in any MCC syntactic context. The notion of a syntactic context for MCC is
introduced in Definition 2. In Definitions 3(a) and 4 we also introduce the notion
of a resumption as a structure of MCC statements, and a notion of isomorphism
over resumptions, respectively. Function K introduced in Definition 3(b) maps
a resumption to a corresponding continuation that contains only denotations of
program statements. Following [2], the notion of a resumption is also used in
Sect. 4 as an operational counterpart of the term continuation.

A continuation can contain arbitrary values of the type D. The properties
presented in Theorem 2 hold for all the isomorphic continuations containing only
computations denotable by program statements. This represents an invariant of
the denotational semantics and ensures its consistency just because the initial
continuation is empty, and the denotational semantics adds to the continuation
only denotations of the language constructs. Some properties, namely Theo-
rem 2(a)–(d), hold for all continuations.

Definition 2. (Contexts for MCC)

C ::= (·) | a | x | C;C | C + C | C‖C

We denote by C(s) the result of substituting s for (·) in C. Formally, this
substitution can be defined inductively: (·)(s) = s, a(s) = a, x(s) = x, and
(C1 op C2)(s) = C1(s) op C2(s) where op ∈ {; ,+, ‖}.
Definition 3. (a) Let (θ ∈)Comp = J♦ ∪ Snd ∪ Stat (notice that J ⊆ Stat,

but J♦ ∩ Stat = ∅). We define (k ∈)KRes = {|Comp|} representing the set
of closed resumptions.3 The set CRes of open resumptions is defined by

CRes = {(α, k) | α ∈ Id, k ∈ KRes, ν(α, id(k))}
where ν : Id × Π → Bool, ν(α, π) = (α /∈ π) ∧ (α ∈ max({α} ∪ π)).

3 In this case the construct {| · |} is used to define an ordinary set.
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(b) Let Θ : Comp → Comp, Θ(〈j〉) = 〈j〉, Θ(c!ξ) = c!ξ and Θ(s) = D(s). We
define K : KRes →Kont by K(k) = (id(k), ϕ), where ϕ(α) = Θ(k(α))),
∀α ∈ Id.

Definition 4. We say that two open resumptions (α1, k1), (α2, k2) ∈ CRes are
isomorphic and we write (α1, k1) ∼= (α2, k2) iff there exists a bijection
μ : ({α1} ∪ id(k1)) → ({α2} ∪ id(k2)) such that

(i) μ(α1) = α2

(ii) μ(α′) ≤ μ(α′′) ⇔ α′ ≤ α′′, ∀α′, α′′ ∈ {α1} ∪ id(k1)
(iii) k2(μ(α)) = k1(α), ∀α ∈ id(k1)

We write s � s (s, s ∈ Stat) to express that D(C(s))(α,K(k)) =
D(C(s))(α,K(k)) for all MCC syntactic contexts C and all isomorphic resump-
tions (α, k) ∼= (α, k).

Theorem 2. For all s, s1, s2, s3 ∈ Stat, we have

(a) s1 + s2 � s2 + s1 (commutativityof +)
(b) (s1 + s2) + s3 � s1 + (s2 + s3) (associativityof +)
(c) s + s � s (idempotencyof +)
(d) (s1 + s2); s3 � s1; s3 + s2; s3 (rightdistributivityof ; over +)
(e) s1; (s2 + s3) � s1; s2 + s1; s3 (leftdistributivityof ; over +)
(f) s1; (s2; s3) � (s1; s2); s3 (associativityof ; )
(g) s1 ‖ s2 � s2 ‖ s1 (commutativityof ‖)
(h) s1‖(s2 ‖ s3) � (s1‖s2) ‖ s3 (associativityof ‖)

Let s, s ∈ MCC. It is easy to show that s � s implies D[[C(s)]] = D[[C(s)]], for
any MCC syntactic context C. We obtain the following Corollary which can
be used to describe compositionally the behaviour of D[[s]] which evaluates an
MCC program s with respect to the empty continuation (α0, κ0).

Corollary 1. For all s, s1, s2, s3 ∈ Stat, and for all contexts C, we have

(a) D[[C(s1 + s2)]] = D[[C(s2 + s1)]];
(b) D[[C((s1 + s2) + s3)]] = D[[C(s1 + (s2 + s3))]];
(c) D[[C(s + s)]] = D[[C(s)]];
(d) D[[C((s1 + s2); s3)]] = D[[C((s1; s3) + (s2; s3))]];
(e) D[[C(s1; (s2 + s3))]] = D[[C((s1; s2) + (s1; s3))]];
(f) D[[C(s1; (s2; s3))]] = D[[C((s1; s2); s3)]];
(g) D[[C(s1 ‖ s2)]] = D[[C(s2 ‖ s1)]];
(h) D[[C(s1 ‖ (s2 ‖ s3))]] = D[[C((s1 ‖ s2) ‖ s3)]].

4 Operational Semantics (O): Relating D and O
We define an operational semantics O for MCC by means of a transition relation
embedded in a deductive system in the style of Plotkin’s structured operational
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semantics [12]. The operational semantics O is also designed by using the con-
tinuation semantics for concurrency (CSC) technique. Following [2], we use the
term resumption as an operational counterpart of the term continuation. Then
we establish the formal relationship between the operational semantics given in
this section and the denotational semantics D given in Sect. 3.

A configuration of the operational semantics is either a triple (s, (α, k), σ)
consisting of a statement, an open resumption and a state, or a pair (k, σ)
consisting of a closed resumption and a state.

Definition 5. We define the set (t ∈)Conf of configurations for the operational
semantics of MCC by Conf = (Stat × CRes × Σ) ∪ (KRes × Σ).

We use some auxiliary mappings ω, ωA, ωS : KRes → Pfin(Sched),4 which we
define with the aid of the predicate sync : (Sched × KRes) → Bool:

sync({α}, k) = false
sync({α, α1, . . . , αn}, k) = (k(α) = 〈c1?v1 & · · · & cn?vn〉 ∈ J♦)∧

(k(α1) = c1!ξ1 ∈ Snd) ∧ · · · ∧ (k(αn) = cn!ξn ∈ Snd)
ω(k) = ωA(k) ∪ ωS(k)
ωA(k) = {{α} | α ∈ max(id(k)), k(α) ∈ Stat}
ωS(k) = {ς | ς ⊆ max(id(k)), sync(ς, k)}

We also define ( · | · → · ) : (Σ × Sched × KRes) → Σ as follows:

(σ | ς → k ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[σ | v1 �→ ξ1(σ) | · · · | vn �→ ξn(σ) ]
if ς ⊆ max(id(k)), sync(ς, k),

ς = {α, α1, . . . , αn},
k(α) = 〈c1?v1 & · · · & cn?vn〉,
k(α1) = c1!ξ1, . . . , k(αn) = cn!ξn

σ otherwise

ω, ωA, ωS and ( · | · → · ) are the operational counterparts of the mappings
Ω,ΩA, ΩS and ( · | · ⇒ · ), respectively, defined in Sect. 3.

The definition of the operational semantics of MCC is based on a transition
relation →⊆ Conf × (KRes × Σ). We write t → t′ to express that (t, t′) ∈ →.
The restriction to KRes × Σ (in the right-hand side of a transition) is justified
in Lemma 3. In Definition 6 we use the following convention:

t1 ↗ t2 is an abbreviation for
t2 → t′

t1 → t′

Definition 6. The transition relation for MCC is the smallest subset of Conf×
(KRes × Σ) satisfying the axioms and rules given below.

(A1) ( skip , (α, k), σ) → (k, σ)
(A2) (v := e, (α, k), σ) → (k, [σ | v �→ E [[e]](σ) ])
(A3) (c!e, (α, k), σ) → ([ k | α �→ c!E [[e]] ], σ)

4 (ς ∈)Sched = Pnfin(Id); see Sect. 3.
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(A4) (j, (α, k), σ) → ([ k | α �→ 〈j〉 ], σ)
(R5) (x, (α, k), σ) ↗ (D(x), (α, k), σ)
(R6) (s1; s2, (α, k), σ) ↗ (s1, (α · 1, [ k | α �→ s2 ]), σ)
(R7) (s1 + s2, (α, k), σ) ↗ (s1, (α, k), σ)
(R8) (s1 + s2, (α, k), σ) ↗ (s2, (α, k), σ)
(R9) (s1 ‖ s2, (α, k), σ) ↗ (s1, (α · 1, [ k | α · 2 �→ s2 ]), σ)

(R10) (s1 ‖ s2, (α, k), σ) ↗ (s2, (α · 2, [ k | α · 1 �→ s1 ]), σ)
(R11) (k, σ) ↗ (k(α), (α, k \ {α}), σ) if {α} ∈ ωA(k)
(A12) (k, σ) → (k \ ς̂ , (σ | ς → k )) if ς ∈ ωS(k)

Some explanations are necessary.

• A configuration (s, (α, k), σ) contains an active statement s with identifier α;
the rest of the program is encapsulated in the resumption k. According to
rules (A1), (A2), (A3) and (A4), if s is an elementary statement, the pro-
gram performs a transition step. A synchronization attempt is added to the
resumption if s is a communication pattern j or a send statement c!e.

• The sequential execution of s1 and s2 is enforced in rule (R6) by the fact that
the α < α · 1. According to rules (R9), (R10) the statements s1 and s2 in a
construct s1 ‖ s2 are executed in an interleaved manner because the identifiers
α · 1 and α · 2 are incomparable (neither α · 1 ≤ α · 2 nor α · 2 ≤ α · 1).

• Rules (R6), (R9) and (R10) should be read in conjunction with (R11) and
(A12). The left hand side in each of the rules (R11) and (A12) is a configura-
tion of the form (k, σ); k is a resumption, i.e., a tree-like structure with active
components at the leaves.

• Rule (R11) models the activation of an MCC statement. Rule (A12) cap-
tures the semantics a synchronization between a communication pattern
〈c1?v1 & · · · & cn?vn〉 and n corresponding send attempts c1!ξ1, . . . , cn!ξn. In
general, the state σ is modified upon synchronization.

Definition 7. (Normal termination and deadlock)

(a) We define the predicates terminates, blocks : KRes → Bool as follows:

terminates(k) = (id(k) = ∅)
blocks(k) = (id(k) 
= ∅) ∧ (ω(k) = ∅)

(b) Let t ∈ Conf . We say that t terminates if t = (k, σ) ∈ KRes × Σ and
terminates(k). We say that t blocks if t = (k, σ) ∈ KRes×Σ and blocks(k).

A configuration of the form (k, σ)(∈ KRes × Σ) terminates if the resumption k
is empty (i.e., id(k) = ∅). Also, (k, σ) blocks if id(k) 
= ∅ and rules (R11) and
(A12) are not applicable. It is not difficult to prove the following Lemma.

Lemma 3. Let t ∈ Conf . We write t −→/ to express that t has no transitions,
i.e., ¬(∃t′ ∈ Conf : t → t′).

(a) t −→/ ⇔ t terminates or t blocks.
(b) If t → t′ then t′ ∈ KRes×Σ (i.e., t′ = (k, σ), for some k ∈ KRes, σ ∈ Σ).
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Lemma 3(b) can be proved in two steps. First for all configurations of the form
(s, (α, k), σ) by induction on cs(s). Next, for all configurations of the form
(k, σ) as follows. If (k, σ) terminates or blocks then, according to Lemma 3(a)
(k, σ)−→/ . Otherwise, ω(k) 
= ∅ and either ωS(k) 
= ∅ in which case the result
is immediate according to rule (A12), or ωA(k) 
= ∅ in which case the desired
result follows according to rule (R11) by using the first step of the proof.

Definition 8. (Operational semantics O)

(a) Let (S ∈)SemO = Conf → P (the domain P was introduced at the beginning
of Sect. 3) and let Ψ : SemO → SemO be given by:

Ψ(S)(t) =

⎧
⎨

⎩

{λ} if t terminates
{δ} if t blocks⋃{σ · S(k, σ) | t → (k, σ)} otherwise

(b) Let α0 = λ. Let k0 ∈ KRes, k0 = (∅, f0), with f0 ∈ (Id → Comp), f0(α) =
skip ,∀α ∈ Id. We put O = fix(Ψ) and define O[[·]] : Stat → Σ → P by

O[[s]](σ) = O(s, (α0, k0), σ)

One can check that the set {(k, σ) | t → (k, σ)} is finite, for any configuration
t ∈ Conf . This fact can be proved in two steps. First, for all configurations
(s, (α, k), σ) by induction on cs(s), and next, for all configurations (k, σ), by
using the fact that id(k) is a finite set, for any k ∈ KRes. The implication is
that the transition system for MCC is finitely branching, and thus it induces a
compact operational semantics [2]. The higher-order mapping Ψ is contracting
(and thus it has a unique fixed point) due to the “σ · . . .”-step in its definition.

Now we show that D[[s]] = O[[s]],∀s ∈ Stat. We introduce an auxiliary map-
ping R : Conf → P (which is defined based on the denotational mapping D)
and we show that R = O. The desired result is presented in Theorem 3.

Definition 9. Considering the mapping K : KRes → Kont, we define R :
Conf → P by:

R(k, σ) = kc(K(k))(σ)
R(s, (α, k), σ) = D(s)(α,K(k))(σ).

Lemma 4. R = fix(Ψ).

By combining Definition 8, Lemma 4 and Banach’s fixed point theorem, we
obtain the main result of this section.

Theorem 3. D[[s]] = O[[s]] for all s ∈ Stat.

The denotational model D(·) (∈ Stat → D) of MCC given in Definition 1
is correct with respect to the operational model O[[·]] : Stat → Σ → P given in
Definition 8. Indeed, assume that D(s1) = D(s2). By the compositionality of the
denotational semantics function D(·) we obtain D(C(s1)) = D(C(s2)), for any
MCC context C(·), and thus D[[C(s1)]] = D[[C(s2)]]. By using Theorem 3, we
obtain O[[C(s1)]] = O[[C(s2)]] for any MCC syntactic context C(·), which means
that D(·) is correct with respect to O[[·]].
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5 Conclusion

In this paper we present a formal design of concurrent languages based on the
concept of continuation. We define a denotational semantics designed with con-
tinuations for a CSP-like language extended with a mechanism for synchroniza-
tion on multiple channels, and prove that the semantic operators designed with
continuations satisfy the basic laws of concurrency. We established the semantic
properties for all continuations that contain only denotations of program state-
ments. We conclude that continuations are semantic evaluation contexts that
preserve concurrency laws. The proof technique presented in this paper is based
on the behavioural invariants given by the specific structure of continuations. We
think this techniques could be generally applied to all the language designed by
using CSC. For a given language, the invariant properties should be expressed in
terms of the particular structure of CSC continuations that are used in the design
of the language; this approach allows to interpret nontrivial constructs. For the
language under investigation, we also developed an operational semantics, and
we related formally the denotational and operational semantics.
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{hamida.bouaziz,schouali,ahammad,hmountas}@femto-st.fr

Abstract. Regarding the increasing complexity of today’s systems, sys-
tem engineering domain knows a constant evolution in term of processes
and paradigms (Object Oriented, Component Oriented). SysML con-
stitutes a new trends of system engineering which allows to model the
system as a set of blocks. In this paper, we propose a bottom-up app-
roach to build a system, based on its partial specifications. Our goal
consists on proposing a methodology which allows to a system architect,
in order to build a reliable system, to start from an abstract specifica-
tion of a system, that we model as a SysML composite block, and then
select a set of suitable blocks to meet this specification. The approach is
based on reusing and adapting formally SysML blocks using a converter-
complement block, which plays the role of a mediator between the reused
blocks and the rest part of the system.

Keywords: SysML · Block · Converter-complement

1 Introduction

How to assemble components designed in isolation? That is the major question
on which components based software engineering domain (CBSE ) tries to give
more precise and adequate answers. CBSE is considered as a natural consequence
to the object oriented paradigm and the emergence of platforms of components
(i.e. CORBA, CCM). Its major goal is to build a market of software components
(the so called COTS: Commercial-Off-The-Shelf), in which the developer finds
the adequate components to integrate to its application.

System engineering also adopts the principle of using the component as the
development unit. This appears clearly through SysML [1], a language that is
used to design systems that include software and hardware. The System Mod-
elling Language (SysML), through its diagrams, fosters the view point that takes
the system as a set of components. In SysML, we call them blocks. The Block
Definition Diagram (BDD) of SysML can be seen as a tree of blocks, where the
leaf nodes are the concrete blocks and the rest nodes until the root are abstract
blocks. The abstract ones are called composite blocks, they are composed by
assembling a set of blocks located in a less level of hierarchy.

In this paper, we propose a bottom-up approach to build the system by
adapting SysML blocks. Starting from a specification of a system part, which
we consider as a SysML composite block ‘B’ to build, the architect select some
c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 417–433, 2015.
DOI: 10.1007/978-3-319-25423-4 27
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SysML blocks, and adapt them using our method to meet the specification of
B. In the next step of the development, the composite block B and another set
of blocks will be used to achieve the specification of their parent. So, in our
approach, we build an adapter per a composite block, the sub-blocks use this
adapter to interact with the rest of the system.

The adaptation concerns the interaction protocols of the blocks. In this paper,
we use the interface automata [2] as formalism to formally specify the interaction
protocol of the reused blocks (sub-blocks), the adapter block and the specification
of the part to build (the parent block). Our notion of the adapter differs from the
notion used in the existing works [3–7], which define the adaptor as a protocol
converter. In fact, in our approach the adapter has two roles. It plays its role as
a converter between the reused blocks on the one hand, and between the reused
blocks and their future parent block on the other hand. It plays the second role
as a complement by performing to the reused blocks what they require and it’s
not planned to be required by their parent, and to offer what the parent must
provide and it’s not provided by any part of it.

The remainder of this paper is organized as follows: In Sect. 2, we discuss
related work. Sect. 3 presents the preliminaries about the SysML BDD, SysML
IBD, the interface automata and the adaptation contract. Sect. 4, introduces our
approach of adapting SysML blocks. In Sect. 5, we illustrate our approach by a
case study. Finally, in Sect. 6, we conclude and we present perspectives of our work.

2 Related Work

In literature, many approaches [8–10] have been proposed to adapt components
designed separately. These approaches differ, for example, in the formalism used
to represent the interfaces of the components and to model their interaction
protocols. In addition, the approaches which intend to assemble the components
differs in the direction of the design: upstream vs downstream. We find in [11],
Carrillo et al. adopt a top down approach, where they verify if a specification of
a SysML composite block can be divided on a set of sub-blocks specifications,
the authors didn’t refer to the adaptation issue. In [3,4], authors construct the
wanted system by assembling existing components. They start from existing
components which represent the leaves of the system. They take components
designed separately, so to allow the correct interaction between them, they syn-
thesize a third entity called adapter.

Our approach, which we present in this paper, concerns SysML blocks, it is a
bottom up approach like in [3,4]. In our process, we don’t give only the mapping
rules between actions like in [5,12], and we don’t give the specification of the
adapter as in the works already done in [6,7]. But, we give the interaction proto-
col of the composite block which will include the reused blocks. The specification
of the composite block is built by the architect according to the interaction pro-
tocol of the system’s part has already been designed, and in function of what
the current composite block must perform to the system’s part still to develop.

In our approach, we don’t use the conditions of consistency used by Carrillo
et al. in [11] concerning the inclusion relation between the set of services offered
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and required by the composite block vs the set of services provided and required
by its sub-blocks, because in the present work we take into consideration the
possibility of making an adapter as a complement to achieve the specification of
the parent block.

Our notion of adapter differs from the notion used in the existing works. In
the works have already done, the adapter is like a protocol converter. However,
in our approach the adapter has two roles. It plays the first role as a converter
between sub-blocks on the one hand, and between the rest of the system and
the reused sub-blocks of the composite block on the other hand. The second role
is to perform to the sub-blocks what they require and it is not planned to be
required by their parent, and to provide what the parent must provide to the
rest of system and it is not offered by the selected sub-blocks.

We can consider that our approach introduces a new branch to the taxon-
omy of component adaptation. In [7], the adapter is defined binary, and in [3]
is defined system-wide. However, in our approach, the adapter is defined as a
composite-block-wide adapter.

3 Background

3.1 Block Definition Diagram

The Block Definition Diagram (BDD) in SysML defines features of blocks and
relationships between them such as associations, generalizations, and dependen-
cies. It captures the definition of blocks in terms of properties and operations [1].

Formally, we define a block definition diagram by the tuple:

BDD = <B, R>

where: B is the blocks set that compose the system. R is the set of relations
between blocks.

The blocks are modular units of the system description. A block may include
both structural and behavioural features, such as properties and operations. To
communicate with its environment, a block has a list of ports. Formally, we
define a block as:

Block = < name, Values, Operations, Constraints, Parts, References, Ports >

Where: Values is the attributes set of the block. Operations describe the behaviour

of the block. Constraints give some conditions about the values. Parts include the list

of the blocks connected with the current block through a composition relation. Refer-

ence include a list of the blocks connected with the current block through a navigable

association. Ports is the list of the ports positioned on the block.

In SysML 1.2, we distinguish flow ports and standard ports. The flow spec-
ification is deprecated in SysML 1.3. However, the standard ports still existed.
Formally, we define a standard port by its name, its type and its direction. The
type of the port is represented by a block containing a list of operations, we
call it “interface Block”. The direction specifies if the port is a required or a
provided port.
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We formalize a standard port as:

port = 〈 name, type, Direction 〉
A block which types a port contains a set of operations, we call it

Interface Block, it specifies one of the interfaces associated to the block. We
define it as follows:

Interface Block = 〈name, Op〉
where: name is the name of the interface block. Op is the set of provided opera-
tions by the block which has the provided port whose type is this interface block.
It can also be the set of required operations by the block which has the required
port whose type is this interface block.

3.2 Internal Block Diagram

The Internal Block Diagram (IBD) in SysML captures the internal structure of
a composite block [1]. It allows to represent the relations between the required
and the provided ports of blocks instances. These relations are represented using
the connectors. Formally, we define an IBD as:

IBD = 〈Parts, Ports, Connectors〉
where: Parts is a set of blocks instances. Ports is a set of ports. Each port
is assigned to a part. Connectors is a set of connectors linking provided ports
with required ports of blocks instances.

3.3 Interface Automata

Interface automata [2] were introduced by Alfaro and Henzinger to specify com-
ponent interfaces and also to verify component assembly based on their actions.
The set of actions is decomposed into three groups: input actions ‘?’, output
actions ‘!’ and internal actions ‘,’.

Definition 1 (Interface Automaton): An interface automaton A is represented
by the tuple: 〈SA, IA, ΣI

A, ΣO
A , ΣH

A , δA〉
Where: SA is a finite set of states. IA ⊆ SA is a set of initial states. ΣI

A, ΣO
A ,

and ΣH
A , respectively denote the sets of input, output, and internal actions. The

set of actions of A is denoted by ΣA. The set δA ⊆ SA × ΣA × SA is the set of
transitions between states.

Definition 2 (Synchronous product): The synchronous product is used to cap-
ture the parallel execution of two components represented by their interface
automata. Before computing the global behaviour of the two components, it is
mandatory to verify if they can be assembled by testing their composability.
Two interface automata A1 and A2 are composable if:
ΣI

A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣA1 ∩ ΣH

A2
= ∅.

The synchronous product between two composable interface automata A1 and
A2 is defined as: A1 ⊗ A2 = 〈 SA1⊗A2 , IA1⊗A2 , ΣI

A1⊗A2 , ΣO
A1⊗A2 , ΣH

A1⊗A2 , δA1⊗A2 〉
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– SA1⊗A2 = SA1 × SA2 and IA1⊗A2 = IA1 × IA2 .
– ΣI

A1⊗A2
= (ΣI

A1
∪ ΣI

A2
) \ Shared(A1, A2).

– ΣO
A1⊗A2

= (ΣO
A1

∪ ΣO
A2

) \ Shared(A1, A2).
– ΣH

A1⊗A2
= ΣH

A1
∪ ΣH

A2
∪ Shared(A1, A2).

– ((s1, s2), a, (s′
1, s

′
2)) ∈ δA1⊗A2 if

• a 	∈ Shared(A1, A2) ∧ (s1, a, s′
1) ∈ δA1 ∧ s2 = s′

2
• a 	∈ Shared(A1, A2) ∧ (s2, a, s′

2) ∈ δA2 ∧ s1 = s′
1

• a ∈ Shared(A1, A2) ∧ (s1, a, s′
1) ∈ δA1 ∧ (s2, a, s′

2) ∈ δA2 .

We define by Shared(A1, A2) = (ΣI
A1

∩ ΣO
A2

)∪ (ΣO
A1

∩ ΣI
A2

) the set of shared
actions between A1 and A2.

Definition 3 (Parallel composition): The composition of two interface automata
A1 and A2 is denoted by A1‖A2, it is computed by eliminating from the product
A1 ⊗ A2 the illegal states and all states reached from these illegal states by
enabling output and internal actions. A1 and A2 are compatible iff A1‖A2 	= ∅
The set of illegal states of two interface automata A1, A2 is defined as:

Illegal(A1, A2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(s1, s2) ∈ SA1 × SA2 | ∃a ∈ Shared(A1, A2).
⎛

⎝

a ∈ ΣO
A1(s1) ∧ a �∈ ΣI

A2(s2)
∨

a ∈ ΣO
A2(s2) ∧ a �∈ ΣI

A1(s1)

⎞

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

We define by ΣI
A(s1), ΣO

A (s1), respectively the set of input and output actions
enabled at the state s1.

Definition 4 (Refinement): The refinement relation can be defined as alternat-
ing simulation [2]. An interface automaton P refines an interface automaton Q,
if all input steps of Q can be simulated by P and all the output steps of P can
be simulated by Q. We need some preliminary notions:

Given an interface automaton P and a state v ∈ SP , the set ε-closureP (v) is
the smallest set U ∈ SP such that (1) v ∈ U and (2) if u ∈ U and (u, a,u′) ∈ δP
and a ∈ ΣH

P then u′ ∈ U. The ε-closure of a state v consists of the set of states
that can be reached from v by taking only internal steps.

Consider an interface automaton P, and a state v ∈ SP . We let ExtEnO
P (v) =

{a | ∃u ∈ ε − closureP (v).a ∈ ΣO
P (u)}, and ExtEnI

P (v) = {a | ∃u ∈ ε −
closureP (v).a ∈ ΣI

P (u)} be the sets of externally enabled output and input
actions, respectively, at v.

Consider an interface automaton P and a state v ∈ SP . For all exter-
nally enabled input and output actions a ∈ ExtEnO

P (v) ∪ ExtEnO
P (v), we let

ExtDestP (v, a) = {(u, a,u′) ∈ δP . u ∈ ε − closureP (v)}. Using this notation,
we define the alternating simulation on interface automata:

Definition 5 (Alternating simulation): Consider two interface automata P and
Q. A binary relation �⊆ SP × SQ is an alternating simulation from Q to P if
for all states v ∈ SP and u ∈ SQ such that v � u, the following conditions hold:
(1) ExtEnI

P (v) ⊆ ExtEnI
Q(u) and ExtEnO

P (u) ⊆ ExtEnO
P (v). (2) For all actions

a ∈ ExtEnI
P (v) ∪ ExtEnO

Q(u) and all states u′ ∈ ExtDestQ(u, a), there is a
state v′ ∈ ExtDestP (v, a) such that v′ � u′.

So, there is a refinement relation between two interface automata P and Q,
if there is an alternating simulation between their initial states.
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3.4 Adaptation contract

When assembling two components developed separately, there is a high prob-
ability to confront the problem of mismatches between them. Essentially, the
adaptation contract in CBSE is used to solve this problem of mismatch between
components [13]. An adaptation contract is specified by a set of rules. A rule
takes the form of a synchronous vector vi [14] (see Fig. 4). The number of ele-
ments of each vector is the number of components. A synchronous vector vi for
a set of components ({Ci}i∈{1..n}), is a tuple 〈e1, . . . , en〉 with ei can belong to
the actions set of the component Ci, or it can be equal to ε. ε means that the
component Ci doesn’t participate in this synchronization.

4 Proposed Approach

Our approach aims to provide a bottom up method to construct systems by
assembling and adapting blocks designed in isolation. We show a general view of
our approach in Fig. 1. We start from a specification of a system part. This part
is considered as a SysML block (B) that we want to construct and to integrate to
the system. However, the specification represents the interaction protocol of this
part (the block B). To meet this specification, the designer selects some blocks
and adapts them using our method. In the next step of the system development,
the composite block B will be used to meet the specification of its parent block.
So, the unit used to construct the system is the composite block, and we build
an adapter per a composite block (Fig. 2).

Fig. 1. The proposed approach Fig. 2. Iterative process
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Fig. 3. Adaptation process
Fig. 4. Adaptation contract

We divide the adaptation process of a blocks set to meet the specification of
their parent into three phases (see Fig. 3):

– Compute the interaction protocol of the adapter basing on the specification
of the parent block and the interaction protocol of the reused blocks.

– Construct the SysML adapter block.
– Integrate the adapter block with the selected blocks to build the BDD and

the IBD of the parent block.

4.1 The First Phase: Compute the Adapter Interaction Protocol

In this phase, we verify the possibility of constructing an adapter to make the
set of the selected blocks able to refine the specification of the composite block
B. If the case, then we compute the protocol of the adapter block.

4.1.1 The Selection of the Reused Blocks {Bi}
In this phase, the architect must select the blocks {Bi} which will be used to
meet the specification (Aspec) of the composite block B. The result of this phase
is a set of blocks {Bi} with their interface automata and an adaptation contract
C. We need to define the sets of PSB , RSB and IOpB , respectively, the set of the
provided services, the set of required services and the set of internal operations
of the block B.
PSB = {ps | ∃p ∈ Ports(B), ps ∈ p.type.Op ∧ p.Direction = provided}
RSB = {rs | ∃p ∈ Ports(B), rs ∈ p.type.Op ∧ p.Direction = required}
IOpB = {o | o ∈ operations(B)}

The adaptation contract C is constructed incrementally. By adding a new
block Bi, the architect must specify the correspondences between the services
of Bi and the services of the specification on the one hand, and between the
services of Bi and the services of the set of blocks already chosen ({Bj}j<i) on
the other hand. These correspondences represent the contract C = {vi}i=1..m.
Each element vi of the adaptation contract C takes the format of a synchronous
vector:
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<a1, a2, . . . , an, s>, where: s ∈ PSspec ∪ RSspec ∪ {ε} ∧ ai ∈ PSBi
∪ RSBi

∪ {ε}.
Each vector contains two elements ai and aj which are different from epsilon, it
means that the service ai of the block Bi corresponds to the service aj of the
block Bj . We can see that the adaptation contract C is the union of elements of
two sub-contracts: C = CsubBlocks ∪ Cspec, where:
CsubBlocks: specifies the correspondences between the reused sub-blocks {Bi},
CsubBlocks = {<a1, a2, . . . , an, s>} where s = ε ∧ ai ∈ PSBi

∪ RSBi
∪ {ε}

Cspec: specifies the correspondences between the reused sub-blocks {Bi} and the
specification of the parent block,
Cspec = {<a1, a2, . . . , an, s>} where s 	= ε ∧ ai ∈ PSBi

∪ RSBi
∪ {ε}

The sub-contract CsubBlocks must verify the Condition 1:

Condition 1 (CsubBlocks validity): We must verify that there is no conflict in
the adaptation sub-contract CsubBlocks which is specified by the architect.

Condition 1.1: A required service of a block corresponds at most to one pro-
vided service of another block. This means that each required service of a block
appears only once in CsubBlocks.
∀vi = <ei1, . . . , ein, ε> ∈ CsubBlocks, IF eik = a, a ∈ RSBk

⇒ ∀vj �=i = <ej1, . . . , ejn, ε> ∈ CsubBlocks, ejk 	= a

Condition 1.2: A provided service of a block corresponds at most to one
required service of another block. This means that each provided service appears
only in one vector of CsubBlocks.
∀vi = <ei1, . . . , ein, ε> ∈ CsubBlocks, IF eik = a, a ∈ PSBk

⇒ ∀vj �=i = <ej1, . . . , ejn, ε> ∈ CsubBlocks, ejk 	= a

The sub-contract Cspec must verify Condition 2:

Condition 2 (Cspec validity): We must verify that there is no conflict in the
adaptation sub-contract Cspec, which is made by the architect to specify the
correspondences between the reused blocks and the specification of the parent
block.

Condition 2.1: A provided service a of the specification can correspond at
most to one provided service b of the sub-blocks. The services a and b don’t
correspond to any other services.
∀vi = <ei1, . . . , ein, a> ∈ Cspec, a ∈ PSspec ∧ eik = b
⇒ b ∈ PSBk

∧ ∀vj �=i = <ej1, . . . , ejn, c> ∈ C, c 	= a ∧ ejk 	= b

Condition 2.2: A required service a of the specification can correspond at most
to one required service b of the sub-blocks. The services a and b don’t correspond
to any other services.
∀vi = <ei1, . . . , ein, a> ∈ Cspec, a ∈ RSspec ∧ eik = b
⇒ b ∈ RSBk

∧ ∀vj �=i = <ej1, . . . , ejn, c> ∈ C, c 	= a ∧ ejk 	= b

4.1.2 Consistency Verification
Condition 3 (Blocks interfaces Consistency):
Condition 3.1 (Consistency verification of the selected sub-blocks): We must
verify that the blocks {Bi} are composable:
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– No shared provided services between the sub-blocks: ∀a ∈ PSBi
, a /∈⋃

j �=i PSBj
.

– No shared required services between the sub-blocks: ∀a ∈ RSBi
, a /∈⋃

j �=i RSBj
.

– The set of internal operations of each block is independent from the services
and the internal operations of the other blocks {Bj}j �=i:
∀a ∈ IOpBi

, a /∈ (
⋃

j �=i PSBj
) ∪ (

⋃
j �=i RSBj

) ∪ (
⋃

j �=i IOpBj
)

Condition 3.2 (Consistency verification of the selected sub-blocks and the
parent block): The Condition 3.2 must be verified by the interface of the parent
block (B) and the interfaces of the sub-blocks ({Bi}).

– A provided service of a sub-block can not be a required service of the parent
block: ∀a ∈ PSBi

, a /∈ RSAspec

– A required service of a sub-block can not be a provided service of the parent
block: ∀a ∈ RSBi

, a /∈ PSAspec

4.1.3 Computing the Interaction Protocol of the Sub-blocks {Bi}
At this stage, we use only the contract CsubBlocks to compute the global interac-
tion protocol. For that, we need to compute the parallel composition of sub-
blocks interface automata. The parallel composition is based on the shared
actions between interface automata. But in our case, interface automata have
corresponding actions in place of shared actions. Thus, we have adjusted the
synchronous product and the parallel composition as follows:

Definition 1 (Contract based synchronous product): The contract based syn-
chronous product is possible between two interface automata Ai and Aj , if they
are composable (ΣI

Ai
∩ ΣI

Aj
= ΣO

Ai
∩ ΣO

Aj
= ΣH

Ai
∩ ΣAj

= ΣAi
∩ ΣH

Aj
= ∅), and

the adaptation contract is valid (it verifies the Condition 1).
Before defining the contract based synchronous product between two inter-

face automata Ai and Aj , we need to define Corresponding(Ai, Aj), the set
of corresponding actions between the interface automata Ai and Aj , and the
function corresp(a) that returns the action that corresponds to the action a by
referring to the adaptation contract:

Corresponding(Ai ,Aj ) =
{a ∈ ΣI

Ai
∪ ΣO

Ai
∪ ΣI

Aj
∪ ΣO

Aj
| ∃v = <e1, . . . , en, ε> ∈ CsubBlocks, ek = a}

corresp(a)= {a′ | ∃v ∈ C,∃i, j ∈ N, v = <a1, . . . , an> ∧ ai = a ∧ aj = a′}
We define the contract based synchronous product of Ai and Aj as:

Ai ⊗c Aj = 〈SAi⊗cAj
, IAi⊗cAj

, ΣI
Ai⊗cAj

, ΣO
Ai⊗cAj

, ΣH
Ai⊗cAj

, δAi⊗cAj
〉

– SAi⊗Aj
= SAi

× SAj
and IAi⊗cAj

= IAi
× IAj

;
– ΣI

Ai⊗cAj
= (ΣI

Ai
∪ ΣI

Aj
) \ Corresponding(Ai, Aj);

– ΣO
Ai⊗cAj

= (ΣO
Ai

∪ ΣO
Aj

) \ Corresponding(Ai, Aj);
– ΣH

Ai⊗cAj
= ΣH

Ai
∪ ΣH

Aj
∪ Corresponding(Ai, Aj);

– ((si, sj), a, (s′
i, s

′
j)) ∈ δAi⊗cAj

if:
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• a �∈ Corresponding(Ai, Aj) ∧ (si, a, s′
i) ∈ δAi ∧ sj = s′

j

• a �∈ Corresponding(Ai, Aj) ∧ (sj , a, s′
j) ∈ δAj ∧ si = s′

i

• a ∈ Corresponding(Ai, Aj) ∧ a ∈ ΣO
Ai

∧ (si, a, s′
i) ∈ δAi ∧ (sj , corresp(a), s′

j) ∈
δAj .

• a ∈ Corresponding(Ai, Aj) ∧ a ∈ ΣO
Aj

∧ (sj , a, s′
j) ∈ δAj ∧ (si, corresp(a), s′

i) ∈
δAi .

This product absorbs the transitions (si, sj)
a!−→ (s′

i, sj)
corresp(a)−→ (s′

i, s
′
j)

and the transitions (si, sj)
a!−→ (si, s′

j)
corresp(a)−→ (s′

i, s
′
j) by replacing them by a

single transition (si, sj)
a;−→ (s′

i, s
′
j). This absorption is helpful when we need to

compute the synchronous product between multiple IAs having corresponding
actions. It allows the atomic execution of the emission of an action and the
reception of its corresponding action.

Definition 2 (Contract based parallel composition): The contract based parallel
composition between two interface automata Ai and Aj is defined as: Ai‖cAj=
Ai ⊗c Aj after removing illegal states and all states reached from these ille-
gal states by enabling output and internal actions. The set of illegal states is
defined as:

Illegal(Ai, Aj) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(si, sj) ∈ SAi × SAj | ∃a ∈ Corresponding(Ai, Aj).
⎛

⎝

a ∈ ΣO
Ai

(si) ∧ corresp(a) �∈ ΣI
Aj

(sj)

∨
a ∈ ΣO

Aj
(sj) ∧ corresp(a) �∈ ΣI

Ai
(si)

⎞

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

So, the global interaction protocol AG of the sub-blocks {Bi}i=1..n is obtained
by composing their interface automata {Ai}i=1..n using the contract based par-
allel composition:

AG = A1‖cA2‖c . . . ‖cAn

At each given stage i of computing the composition, we must compute the
composition between the interface automaton Ac (where Ac = A1‖c . . . ‖cAi−1)
and the interface automaton Ai of the block Bi. At each stage i, we must verify
the Condition 4.

Condition 4: (The blocks must be compatible) Ac must be not empty.

4.1.4 Computing the Interaction Protocol of the Adapter

The adapter block Bad having the interface automaton Aad must verify this rela-
tion: Aspec � AG‖cAad. It means that the automaton resulting from composing
interface automata of the blocks {Bi} with the adapter automaton, must refine
the interface automaton of B specification. Thus, to deduce Aad, we refer to
the formula proposed in [15]. To compute the most general solution R where
Q � P‖R, the authors in [15] prove that R = mirror(P‖mirror(Q)), where P,
R and Q are interface automata, and mirror(Q) is the interface automaton Q
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with inputs and outputs interchanged. We define formally the notion of mirror
as follows:

mirror(Q) = {Q′ | ∀(s, a!, s′) ∈ δQ, ∃(s, a?, s′) ∈ δQ′∧
∀(s, a?, s′) ∈ δQ, ∃(s, a!, s′) ∈ δQ′∧
∀(s, a; , s′) ∈ δQ, ∃(s, a; , s′) ∈ δQ′}

So, in our case, because we have corresponding actions between automata in
place of shared actions, the Aad must be computed as follows:

Aad = mirror(AG‖cmirror(Aspec)) = mirror(A1‖c . . . ‖cAn‖cmirror(Aspec))

Condition 5: (AG and mirror(Aspec) must be compatible) Aad is not empty
If the Condition 5 is verified, we can deduce the real interaction protocol

of the adapter by applying the Algorithm 1, which allows to return transitions
absorbed in the contract based synchronous product.

Algorithm 1. Deduce the interaction protocol of the adapter
INPUT: Aad =〈 Sad, Iad, ΣI

ad, ΣO
ad, ΣH

ad, δad 〉, C
OUTPUT: Aadapter =〈Sadapter, Iadapter, ΣI

adapter, ΣO
adapter, ΣH

adapter, δadapter〉
- Create a copy Aadapter of Aad.

- Construct the set T of all transitions ( s
a;−→ s′ ∈ δadapter), where a appears in the

contract C.

- Replace all s
a;−→ s′ ∈ δadapter where s

a;−→ s′ ∈ T , by s
a?−→ s′′ corresp(a)!−→ s′.

According to the contract based synchronous product, the transitions labelled
with internal actions a; in Aad, which appear in the contract, represent the
transitions where the adapter plays the role of a converter: so each transition of
this set must be replaced by two transitions. The first is labelled with the input
action a? and the second by the corresponding action corresp(a)!. This means
that the adapter receives the action a? from a block, after that, it converts it
to the suitable input of another block and it conveys it using an output action
corresp(a)!. The transitions which aren’t selected by the Algorithm 1 are those
where the adapter plays the role of a complement and not a converter.

4.2 The Second Phase: Construct the SysML Adapter Block

In this phase, we construct the SysML adapter block. We use the Algorithm 2
to deduce the set of ports of the SysML adapter block Badapter.

4.3 The Third Phase: Build the BDD and the IBD of the Block B

Using the Algorithm 3, we construct the BDD of the parent block B. The role of
this algorithm is to establish the composition relations between the parent block
B and its sub-blocks {Bi}, and a composition relation between the parent block
B and the adapter block Bad. We use the Algorithm 4 to generate the IBD of
the block B. It bases on relying the adapter block ports with the ports of the
sub-blocks {Bi} and the parent block B.
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Algorithm 2. Construct the SysML adapter block
INPUT: Aadapter=〈Sadapter,Iadapter,Σ

I
adapter,Σ

O
adapter,Σ

H
adapter,δadapter〉

OUTPUT: Badapter =〈 ′Adapter′, V , O, C, P , Ports 〉
-Create the adapter block Badapter=〈 ′Adapter′, ∅, ∅, ∅, ∅, ∅ 〉

if ΣI
adapter ∩ ΣI

spec �= ∅ then
create a new provided port p which offers the services ΣI

adapter ∩ ΣI
spec

add p to the ports list of Badapter

if ΣO
adapter ∩ ΣO

spec �= ∅ then

add p to the ports list of Badapter

Bi Bi

if ΣI
adapter ∩ ΣO

Bi
�= ∅ then

create a new provided port p which offers the services ΣI
adapter ∩ ΣO

Bi

add p to the ports list of Badapter

if ΣO
adapter ∩ ΣI

Bi
�= ∅ then

create a new required port p which requires the services ΣO
adapter ∩ ΣI

Bi

add p to the ports list of Badapter

Algorithm 3. Construct the BDD of the parent block B
INPUT: B, {Bi}, Badapter

OUTPUT: BDDB =〈 B, R 〉
- Set the value of the blocks set of the BDDB to: B= {Bi}i=1..n ∪ {B, Badapter}
- Create a composition relation ri between the parent block B and each block Bi

where: SourceOf(ri) = B, TargetOf(ri) = Bi

- Create a composition relation rad between the parent block B and the adapter
block Badapter where: SourceOf(rad) = B, TargetOf(rad) = Badapter

- Set the value of the relations set of BDDB to: R= {ri}i=1..n ∪ {rad}

5 Case Study

We give an example of a simple cleaning robot which moves according to a
specific path, and at each given unit of time, it gives informations about its
state. We consider that the robot that we want to construct and to integrate
to our system (see Fig. 5), will have the interaction protocol given in Fig. 6. So,
the interface automaton in Fig. 6 gives the specification of the composite block
‘Robot’ that we want to build.

5.1 The First Phase: Compute the IA adapter

To build the robot, we have reused two blocks ‘Controller’ and ‘Motor’ (see
Fig. 7), their interaction protocols are given in Figs. 8 and 9. To simplify we
consider that the corresponding actions have the same name and we differenti-
ate between them by adding the first letter of the block’s name to each action.
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Algorithm 4. Construct the IBD of the parent block B
INPUT: B, {Bi}, Badapter

OUTPUT: IBDB =〈 Parts, Ports, Connectors 〉
- Create instances {parti}i=1..n of the blocks Set {Bi}i=1..n.
- Create an instance ’ad’ of the adapter block Badapter.
- Set the set Parts of IBDB to: {parti}i=1..n ∪ {ad}
- Set the set Ports of IBDB to: {Ports(parti)}i=1..n ∪ Ports(ad)
//create connectors between the adapter and {parti}i=1..n .
for all parti ∈ {parti}i=1..n do

for all port p ∈ Ports(ad) do
if ∃p′ ∈ Ports(parti) ∧ (p.type.Op ∩ p′.type.Op �= ∅) then

create a connector between p and p′

//create delegation connectors between the adapter and the parent block B.
for all port p ∈ Ports(ad) do

if ∃p′ ∈ Ports(B) ∧ (p.type.Op ∩ p′.type.Op �= ∅) then
create a connector between p and p′

We see that the Condition 3 of consistency is verified by the interface automata
of the robot, the receiver and the motor.

The contract that we use to specify the correspondences is:
CsubBlocks = {<C.on,M.on, ε>,<C.off,M.off, ε>}
Cspec = {<C.move, ε,R.move>,<C.stop, ε,R.stop>}

We see that all the conditions (Conditions 1 and 2) that the contract must
respect are verified by this contract.

The global interaction protocol of the controller and the motor is given in
Fig. 10, it takes the form of an interface automaton. AG = IAcontroler‖cIAmotor.
The Condition 4 is verified because AG is not empty. The adapter is com-
puted using the formula: Aad = mirror(AG‖cmirror(IARobot)). The mirror of
AG‖cmirror(IARobot) is presented in Fig. 11. So, the Condition 5 is verified
because Aad is not empty.

properties

values

references

parts

operations

constraints

Robot

<< block >>

prov pr : RServ

<< interfaceBlock >>

RServ

R.move

R.stop

R.showData

Fig. 5. The robot SysML block

0

1

R.stop?
R.move?

R.showData?

R.move

R.stop

R.showData

Fig. 6. The IA of the robot
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properties
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references

parts

operations

constraints

Motor

<< block >>

prov pm : MServ

properties
values

references

parts

operations

constraints

Controller

<< block >>

prov pc1 : CServ

req pc2 : CReq

<< interfaceBlock >>

MServ

M.on

M.off

<< interfaceBlock >>

CReq

C.on

C.off

C.feuOn

C.feuOff

<< interfaceBlock >>

CServ

C.move

C.stop

Fig. 7. SysML controller and motor blocks

Fig. 8. IAController

Fig. 9. IAMotor
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345

C.move? C.on;

C.feuOn!

C.stop?C.off ;

C.feuOff !

C.move

C.stop

C.feuOn

C.feuOff

Fig. 10. AG = IAcontroler ‖cIAmotor
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1 − 30 − 40 − 5

R.move; C.on;

C.feuOn?

R.stop;C.off ;

C.feuOff?

R.showData?

R.showData?

R.showData?

C.feuOn

C.feuOff

R.showData

Fig. 11. mirror(AG ‖c mirror(IArobot))
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R.move? C.move! C.on? M.on!

C.feuOn?

R.stop?C.stop!C.off?M.off !

C.feuOff?

R.showData? R.showData?

R.showData?

R.move

R.stop

R.showData

C.on

C.off

C.feuOn

C.feuOff

C.move

C.stop

M.on

M.off

Fig. 12. The interface automaton of the adapter (Color figure online)

After applying the Algorithm 1, to recuperate transitions absorbed by the
contract based synchronous product, we obtain the interface automaton of the
adapter (Fig. 12). Dotted transitions with red colour represent where the adapter
plays the role of a complement. However, transitions with black colour represent
where the adapter behaves as a converter.
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Adapter

<< block >>

prov p1 :RServ req p2 :MServ

prov p3 :CReq req p4 :CServ

properties
values

references
parts

operations

constraints

Motor

<< block >>

prov pm : MServ

properties
values

references
parts

operations

constraints

Controller

<< block >>

prov pc1 : CServ

req pc2 : CReq

properties
values

references
parts

operations

constraints

Robot

<< block >>

prov pr : RServ

bdd Robot

Fig. 13. BDD of the robot

5.2 The Second Phase: Construct the SysML Adapter Block

By applying the Algorithm 2, we obtain (see the adapter block in Fig. 13):

– ΣI
ad ∩ ΣI

Robot = {R.move, R.stop, R.showData} ⇒ add a provided port p1 to the

adapter
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Robot

prov pr

prov pm

m : Motor

prov pc1

req pc2

c : Controller

req pc4

prov p3

req p2prov p1

ad : Adapter

ibd Robot

Fig. 14. IBD of the robot

– ΣO
ad ∩ ΣO

Robot = ∅, ΣI
ad ∩ ΣO

Motor = ∅
– ΣO

ad ∩ ΣI
Motor = {M.on, M.off} ⇒ add a required port p2 to the adapter block

– ΣI
ad ∩ ΣO

Controller = {C.on, C.off, C.feuOn, C.feuOff} ⇒ add a provided port p3

to the adapter block

– ΣO
ad ∩ ΣI

Controller = {C.move, C.stop} ⇒ add a required port p4 to the adapter

block

5.3 The Third Phase: Construct the BDD and the IBD

By applying the Algorithm 3, we obtain the BDD in the Fig. 13. The IBD of the
Robot, given in Fig. 14, is obtained by applying the Algorithm 4.

6 Conclusion

We have presented in this paper, a bottom-up approach to build a system, based
on its partial specifications. The approach is based on reusing and adapting
SysML blocks using a converter-complement block. Starting from a specification
of a system part that we consider as a SysML composite block, the architect tries
to meet this specification by reusing existing blocks. In our present work, we have
given a set of conditions that this blocks set must verify, and also, We have given
some constraints to be respected by the contract specified by the architect. We
have used the interface automata as formalism to represent the blocks interaction
protocols. By defining the new notion of contract based synchronous product and
basing on the relation of refinement between interface automata, we deduce the
interaction protocol of the converter-complement block, when the reused blocks
respect the adaptation conditions. In our approach the adapter has two roles.
It plays its role as a converter between the reused blocks on the one hand, and
between the reused blocks and their future parent block on the other hand. It
plays the second role as a complement by performing to the reused blocks what
they require and it’s not planed to be required by their parent, and to offer what
the parent must provide and it’s not provided by any part of it.
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In a future work, we plan to develop a tool that support the contract-based
synchronous product between interface automata, and the automatic generation
of the converter-complement interaction protocol. The tool will implement all
the algorithms presented in this paper.
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