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Preface

Formal concept analysis (FCA) is a mathematical field rooted in lattice and order
theory, which, although being of such a theoretical nature, has proved to be of interest
to various applied fields such as knowledge discovery and data mining, database
theory, data visualization, and many others.

The goal of the International Conference on Formal Concept Analysis (ICFCA) is to
offer researchers from different backgrounds the possibility to present and discuss their
research related to FCA. Since the first ICFCA conference in 2003 in Darmstadt,
Germany, it has been held annually in different countries in Europe, Africa, America,
and Australia.

The 13th ICFCA took place during June 23–26, 2015 in Nerja (Málaga), Spain,
organized by members of the Universidad de Málaga. There were 38 submissions by
authors from 16 different countries. Each paper was reviewed by three members of the
Program Committee (sometimes four). Sixteen significant papers were chosen for
publication in this volume, amounting to an acceptance rate of 42%. Seven other works
in progress were considered for presentation during the conference and included in a
supplementary volume.

This volume presents a set of articles that cover a wide range of fields about or
related to FCA. The papers included in this volume are divided into different sections:
Theory, with papers that discuss various theoretical aspects on FCA, Methods and
Applications, with papers that show the application of FCA to different fields, and
Enhanced FCA, with papers that present new trends in FCA, for instance, pattern
structures of fuzzy FCA.

As an addition to previous conferences, the new section Graphs and FCA includes
a selection of papers that relate graph theory or graph applications to FCA, from
various points of view. These papers were presented in the special session Practical
Graph Applications in FCA.

Apart from the regular sections, the conference included a presentation, for the first
time, of a survey paper on FCA (Formal Concept Analysis and Information Retrieval:
A Survey), which shows the maturity of this discipline.

We were also delighted that four prestigious researchers accepted the invitation to
give a talk, and we also included their corresponding papers:

– Measuring the Implications of the D-basis in Analysis of Data in Biomedical
Studies by Prof. Dr. Kira Adaricheva, Nazarbayev University (Kazakhstan);

– Quantitative Redundancy in Partial Implications by Prof. Dr. José Luís Balcázar,
Universitat Politècnica de Catalunya (Spain);

– Close encounters with transitivity in various relational frameworks by Prof.
Dr. Bernard De Baets, Ghent University (Belgium);

– Formal Concept Analysis from the Standpoint of Possibility Theory by Prof.
Dr. Henri Prade, IRIT (France).



Our deepest gratitude goes to all the authors of submitted papers. Choosing ICFCA
2015 as a forum to publish their research was key to the success of the conference.
Besides the submitted papers, the high quality of this published volume would not have
been possible without the strong commitment of the authors, the Program Committee
and editorial board members, and the external reviewers. Working with the efficient
and capable team of local organizers was a constant pleasure. We are deeply indebted
to all of them for making this conference a successful forum on FCA.

Last, but not least, we are most grateful to Springer for showing, for the 13th

consecutive year, their trust in the International Conference on Formal Concept
Analysis, as well as to the organizations that sponsored this event: the Universidad de
Málaga, Andalucía Tech (International Campus of Excellence), the Patronato de
Turismo de la Costa del Sol and the Área de Turismo del Ayuntamiento de Nerja, all in
Spain. Finally, we would like to emphasize the great help of EasyChair in making the
technical duties easier.

June 2015 Jaume Baixeries
Christian Sacarea

Manuel Ojeda-Aciego
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Quantitative Redundancy in Partial
Implications

José L. Balcázar(B)

LARCA Research Group, Department of Computer Science,
Universitat Politècnica de Catalunya, Barcelona, Spain

jose.luis.balcazar@upc.edu

Abstract. We survey the different properties of an intuitive notion of
redundancy, as a function of the precise semantics given to the notion of
partial implication.

1 Introduction

The discovery of regularities in large scale data is a multifaceted current
challenge. Each syntactic mechanism proposed to represent such regularities
opens the door to wide research questions. We focus on a specific sort of regular-
ities sometimes found in transactional data, that is, data where each observation
is a set of items, and defined in terms of pairs of sets of items.

Syntactically, the fact that this sort of regularity holds for a given pair (X,Y )
of sets of items is often denoted as an implication: X → Y . However, whereas
in Logic an implication like this is true if and only if Y holds whenever X
does, in our context, namely, partial implications and association rules, it is
enough if Y holds “most of the times” X does. Thus, in association mining, the
aim is to find out which expressions of that sort are valid for a given transactional
dataset: for what X and what Y , the transactions that contain X “tend to
contain” Y as well.

In many current works, that syntax is defined as if its meaning was sufficiently
clear. Then, any of a number of “measures of interestingness” is chosen to apply
to them, in order to select some to be output by a data analysis process on a
particular dataset. Actually, the mere notation X → Y is utterly insufficient: any
useful perspective requires to endow these expressions with a definite semantics
that makes precise how that näıve intuition of “most of the times” is formalized;
only then can we study and clarify the algorithmic properties of these syntactical
expressions. Thus, we are not really to “choose a measure of interestingness” but
plainly to define what X → Y means, and there are many acceptable ways of
doing this.

J.L. Balcázar—Partially supported by project BASMATI (TIN2011-27479-C04-04)
of Programa Nacional de Investigación (Ministerio de Ciencia e Innovación, Spain)
and grant 2014SGR 890 (MACDA) from AGAUR, Generalitat de Catalunya.

c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-19545-2 1



4 J.L. Balcázar

This idea of a relaxed implication connective is a relatively natural concept,
and versions sensibly defined by resorting to conditional probability have been
proposed in different research communities: a common semantics of X → Y
is through a lower bound on its “confidence”, the conditional probability of Y
given X. This meaning appears already in the “partial implications” of [27] (actu-
ally, “implications partielles”, with confidence christened there “prècision”).
Some contributions based on Mathematical Logic develop notions related to
these partial implications defined in terms of conditional probability: see [18].
However, it must be acknowledged that the contribution that turned on the
spotlights on partial implications was [3] and the improved algorithm in [4]: the
proposal of exploring large datasets in search for association rules of high support
and confidence has led to huge amounts of research since. Association rules are
partial implications that impose the additional condition that the consequent is
a single item.

Three of the major foci of research in association rules and partial impli-
cations are as follows. First, the quantity of candidate itemsets for both the
antecedent X and, sometimes, the consequent Y grows exponentially with the
number of items. Hence, the space to explore is potentially enormous: on real
world data, very soon we run already into billions of candidate antecedents. Most
existing solutions are based on the acceptance that, as not all of them can be
considered within reasonable running times, we make do with those that obey
the support constraint (“frequent itemsets”). The support constraint combines
well with confidence in order to avoid reporting mere statistical artifacts [28] but
its major role is to reduce the search space. A wide repertory of algorithms for
frequent sets and association rule mining exists by now [1].

Second, many variations have been explored: for instance, cases of more
complicated structures in the data and, also, combinations with other machine-
learning models or tasks like in [20,41].

This paper surveys part of a research line that belongs to a third focus: in a
vast majority of practical applications, if any partial implication is found at all,
it often happens that the search returns hundreds of thousands of them. It is far
from trivial to design an associator able to choose well, among them, a handful
to show to an impatient user. This is tantamount to modifying the semantics of
the partial implication connective, by adding or changing the conditions under
which one such expression is deemed valid and is to be reported. Most often,
but not always (as we report in Sects. 3 and 4) this approach takes the form
of “quality evaluations” performed to select which partial implications are to
be highlighted for the user. We do not consider this problem solved yet, but
deep progresses have been achieved so far; we survey a humble handful of those,
where the present author was actively involved. For a wider perspective of all
these three aspects of association rule mining, see Part II of [43].

The main link along this paper can be described informally as follows: human
intuition, maybe on the basis of our experience with full, standard implications,
tends to expect that smaller antecedents are better than larger ones, and larger
consequents are better than smaller ones. We call this statement here the central
intuition of this paper; many references express, in various variants, this intuition
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(e.g. [12,22,26,30,33,36] just to name a few). This intuition is only partially true
in implications, where the GD basis gets to be minimal through the use of subtly
enlarged antecedents [17]. This survey paper discusses, essentially, the particular
fact that, on partial implications, this intuition is both true and false. . . as
a function, of course, of the actual semantics given to the partial implication
connective.

2 Notation and Preliminary Definitions

Our datasets are transactional. This means that they are composed of transac-
tions, each of which consists of an itemset with a unique transaction identifier.
Itemsets are simply subsets of some fixed set U of items. We will denote item-
sets by capital letters from the end of the alphabet, and use juxtaposition to
denote union, as in XY . The inclusion sign as in X ⊂ Y denotes proper subset,
whereas improper inclusion is denoted X ⊆ Y . The cardinality of a set X (either
an itemset or a set of transactions) is denoted |X|.

2.1 Partial Implications

As indicated in the Introduction, the most common semantics of partial impli-
cation is its confidence: the conditional empirical probability of the consequent
given the antecedent, that is, the ratio between the number of transactions in
which X and Y are seen together and the number of transactions that con-
tain X. We will see below that this semantics may be somewhat misleading. In
most application cases, the search space is additionally restricted by a minimal
support criterion, thus avoiding itemsets that appear very seldom in the dataset.

More precisely, for a given dataset D, consisting of n transactions, the sup-
porting set DX ⊆ D of an itemset X is the subset of transactions that include
X. (For the reader familiar with the FP-growth frequent set miner [19], these
are the same as their “projected databases”, except for the minor detail that,
here, we do not remove X from the transactions.)

The support sD(X) = |DX |/n ∈ [0, 1] of an itemset X is the cardinality of
the set of transactions that contain X divided by n; it corresponds to the relative
frequency or empirical probability of X. An alternative rendering of support is
its unnormalized version, but some of the notions that will play a major role
later on are simpler to handle with normalized supports. Now, the confidence
of a partial implication X → Y is cD(X → Y ) = sD(XY )/sD(X): that is,
the empirical approximation to the corresponding conditional probability. The
support of a partial implication X → Y is sD(X → Y ) = sD(XY ). In both
expressions, we will omit the subscript D whenever the dataset is clear from the
context. Clearly, sDZ

(X) = |DXZ |
|DZ | = c(Z → X).

Often, we will assume that X ∩ Y = ∅ in partial implications X → Y . Some
works impose this condition globally; we will mention it explicitly whenever it
is relevant, but, generally speaking, we allow X and Y to intersect or, even,
to fulfill X ⊆ Y . Note that, if only support and confidence are at play, then
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cD(X → XY ) = cD(X → Y ) and sD(X → XY ) = sD(X → Y ). Of course, in
practical terms, after a partial implication mining process, only the part of Y
that does not appear in X would be shown to the user.

We do allow X = ∅ as antecedent of a partial implication: then, its confi-
dence coincides with the support, cD(∅ → Y ) = sD(Y ), since sD(∅) = 1. Allow-
ing Y = ∅ as consequent as well is possible but turns out not to be very useful;
therefore, empty-consequent partial implications are always omitted from con-
sideration. All along the paper, there are occassional glitches where the empty
set needs to require separate consideration. Being interested in the general pic-
ture, here we will mostly ignore these issues, but the reader can check that these
cases are given careful treatment in the original references provided for each part
of our discussion.

By X ⇒ Y we denote full, standard logical implication; this expression will
be called the full counterpart of the partial implication X → Y .

2.2 Partial Implications Versus Association Rules

Association rules were defined originally as partial implications X → Y with
singleton consequents: |Y | = 1; we abbreviate X → {A} as X → A. This deci-
sion allows one to reduce association mining to a simple postprocessing after
finding frequent sets. Due to the illusion of augmentation, many users are satis-
fied with this syntax, but, however, more items in the consequent provide more
information.

Indeed, in full implications, the expression (A ⇒ B)∧(A ⇒ C) is fully equiv-
alent to A ⇒ BC, and we lose little by enforcing singleton consequents (equiv-
alently, definite Horn clauses); an exception is the discussion of minimal bases,
where nonsingleton consequents allow for canonical bases that are unreachable
in the Horn clause syntax [17]. But, in partial implications, A → BC says more
than the conjunction of A → B and A → C, namely, B and C abound jointly
in DA. Whenever possible, A → BC is better, being both more economical and
more informative. This can be ilustrated by the following example from [8], to
which we will return later on.

Example 1. Consider a dataset on U = {A,B,C,D,E} consisting of 12 trans-
actions: 6 of them include all of U , 2 consist of ABC, 2 more are AB, and then
one each of CDE and BC. It can be seen that the confidence of both B → A
and B → C is 9/11, whereas the confidence of B → AC is 8/11.

Actually, even restricted to association rules, the output of confidence-based
associators is often still too large: the rest of this paper discusses how to reduce
the output with no loss of information, first, and, then, as the outcome is often
still too large in practice, we will need to allow for a carefully tuned loss of
information.

3 Redundancy in Confidence-Based Partial Implications

We start our discussion by “proving correct” our central intuition, that is, provid-
ing a natural semantics under which that intuition is correct. For this section, we
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work under confidence and support thresholds, and it turns out to be convenient
to explicitly assume that the left-hand side of each partial implication is included
in the right-hand side. We force that inclusion using notations in the style of
X → XY .

Several references ([2] for one) have considered the following argument:
assume that we could know beforehand that, in all datasets, the confidence and
support of X0 → X0Y0 are always larger than or equal to those of X1 → X1Y1.
Then, whenever we are mining some dataset under confidence and support
thresholds, assume that we find X1 → X1Y1: we should not bother to report
as well X0 → X0Y0, since it must be there anyhow, and its presence in the
output is uninformative. In a very strong sense, X0 → X0Y0 is redundant with
respect to X1 → X1Y1. Irredundant partial implications according to this cri-
terion are called “essential rules” in [2] and representative rules in [21]; we will
follow this last term.

Lemma 1. Consider two partial implications, X0 → X0Y0 and X1 → X1Y1.
The following are equivalent:

1. The confidence and support of X0 → X0Y0 are larger than or equal to those of
X1 → X1Y1, in all datasets: for every D, cD(X0 → X0Y0) ≥ cD(X1 → X1Y1)
and sD(X0 → X0Y0) ≥ sD(X1 → X1Y1).

2. The confidence of X0 → X0Y0 is larger than or equal to that of X1 → X1Y1,
in all datasets: for every D, cD(X0 → X0Y0) ≥ cD(X1 → X1Y1).

3. X1 ⊆ X0 ⊆ X0Y0 ⊆ X1Y1.

When these cases hold, we say that X1 → X1Y1 makes X0 → X0Y0 redundant.
The fact that the inequality on support follows from the inequality on confidence
is particularly striking. This lemma can be interpreted as proving correct the
central intuition that smaller antecedents and larger consequents are better,
by indentifying a semantics of the partial implication connective that makes
this true and by pointing out that it is not just the consequent that is to be
maximized, but the union of antecedent and consequent. If only consequents are
maximized separately, and are kept disjoint from the antecedents, then one gets
to a quite more complicated situation discussed below.

Definition 1. Fix a dataset and confidence and support thresholds. The repre-
sentative rule basis for that dataset at these support and confidence thresholds
consists of those partial implications that pass both thresholds in the dataset, and
are not made redundant, in the sense of the previous paragraph, by other partial
implications also above the thresholds.

Hence, a redundant partial implication is so because we can know beforehand,
from the information in the basis, that its confidence is above the threshold.
We have:

Proposition 1. (Essentially, from [21].) For a fixed dataset D and a fixed con-
fidence threshold γ:
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1. Every partial implication of confidence at least γ is made redundant by some
representative rule.

2. Partial implication X → Y with X ⊆ Y is a representative rule if and only
if cD(X → Y ) ≥ γ but there is no X ′ and Y ′ with X ′ ⊆ X and XY ⊆ X ′Y ′

such that cD(X ′ → Y ′) ≥ γ, except X = X ′ and Y = Y ′.

According to statement (3) in Lemma 1, that last point means that a represen-
tative rule is not redundant with respect to any partial implication (different
from itself) that has confidence at least γ in the dataset. It is interesting to
note that one does not need to mention support in this last proposition, the
reason being, of course, statement (2) in Lemma 1. The fact that statement
(3) implies statement (1) was already pointed out in [2,21,31] (in somewhat dif-
ferent terms). The remaining implications are from [7]; see this reference as well
for proofs of additional properties, including the fact the representative basis has
the minimum possible size among all bases for this notion of redundancy, and
for discussions of other related redundancy notions. In particular, several other
natural proposals are shown there to be equivalent to this redundancy. Also [8]
provides further properties of the representative rules. These references discuss
as well the connection with a similar notion in [42].

In Example 1, at confidence threshold 0.8, the representative rule basis con-
sists of seven partial implications: ∅ → C, B → C, ∅ → AB, C → AB, A → BC,
D → ABCE, and E → ABCD.

3.1 Quantitative Evaluation of Non-redundancy: Confidence Width

Redundancy is a qualitative property; still, it allows for a quantitative discussion.
Consider a representative rule X → XY : at confidence c(X → XY ), no partial
implication makes it redundant. But we could consider now to what extent we
need to reduce the confidence threshold in order to find a partial implication
that would make this one redundant. If a partial implication of almost the same
confidence can be found to make X → XY redundant, then our partial impli-
cation is not so interesting. According to this idea, one can define a parameter,
the confidence width [6], that, in a sense, evaluates how different is our partial
implication from other similar ones. We do not discuss this parameter further,
but a related quantity is treated below in Sect. 6.2.

3.2 Closure-Aware Redundancy Notions

Redundancy of one partial implication with respect to another can be redefined
as well in a similar but slightly more sophisticate form by taking into account the
closure operator obtained from the data (see [15]). Often, this variant yields a
more economical basis because the full implications are described by their often
very short Guigues-Duquenne basis [17]; see again [7] for the details.
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4 Redundancy with Multiple Premises

The previous section indicates precisely when “one partial implication follows
logically from another”. It is natural to ask whether a stronger, more useful
notion to reduce the size of a set of partial implications could be based on
partial implications following logically from several others together, beyond the
single-premise case.

Simply considering standard examples with full implications like Augmenta-
tion (from X ⇒ Y and X ′ ⇒ Y ′ it follows XX ′ ⇒ Y Y ′) or Transitivity (from
X ⇒ Y and Y ⇒ Z it follows X ⇒ Z), it is easy to see that these cases fail
badly for partial implications. Indeed, one might suspect, as this author did for
quite some time, that one partial implication would not follow logically from
several premises unless it follows from one of them.

Generally speaking, however, this suspicion is wrong. It is indeed true for
confidence thresholds γ ∈ (0, 0.5), but these are not very useful in practice, as
an association rule X → A of confidence less than 0.5 means that, in DX , the
absence of A is more frequent than its presence.

And, for γ ∈ [0.5, 1), it turns out that, for instance, from A → BC and
A → BD it follows ACD → B, in the sense that if both premises have con-
fidence at least γ in any dataset, then the conclusion also does. The general
case for two premises was fully characterized in [7], but the case of arbitrary
premise sets has remained elusive for some years. Eventually, a very recent result
from [5] proved that redundancy with respect to a set of premises that are par-
tial implications hinges on a complicated combinatorial property of the premises
themselves. We give that property a short (if admittedly uninformative) name
here:

Definition 2. Let X1 → Y1, . . . , Xk → Yk be a set of partial implications.
We say that it is nice if X1 ⇒ Y1, . . . , Xk ⇒ Yk |= Xi ⇒ U , for all i ∈ 1 . . . k,
where U = X1Y1 · · · XkYk.

Here we use the standard symbol |= for logical entailment; that is, whenever the
implications at the left-hand side are true, the one at the right-hand side must
be as well.

Note that the definition of nicety of a set of partial implications states a
property, not of the partial implications themselves, but of their full counterparts.
Then, we can characterize entailment among partial implications for high enough
thresholds of confidence, as follows:

Theorem 1 [5]. Let X1 → Y1, . . . , Xk → Yk be a set of partial implications
with k ≥ 1, candidates to premises, and a candidate conclusion X0 → Y0. If
γ ≥ (k − 1)/k, then the following are equivalent:

1. in any dataset where the confidence of the premises X1 → Y1, . . . , Xk → Yk

is at least γ, c(X0 → Y0) ≥ γ as well;
2. either Y0 ⊆ X0, or there is a non-empty L ⊆ {1 . . . k} such that the following

conditions hold:
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(a) {Xi → Yi : i ∈ L} is nice,
(b)

⋃
i∈L Xi ⊆ X0 ⊆ ⋃

i∈L XiYi,
(c) Y0 ⊆ X0 ∪ ⋂

i∈L Yi.

Interestingly, the last couple of conditions are reasonably correlated, for the
case of several premises, with the central intuition that smaller antecedents are
better than larger ones, and larger consequents are better than smaller ones.
The premises actually necessary must all include the consequent of the conclu-
sion, and their antecedents are to be included in the antecedent of the conclu-
sion. Even the additional fact that the antecedent of the conclusion does not
have “extra items” not present in the premises also makes sense.

However, there is the additional condition that only nice sets of partial impli-
cations may have a nontrivial logical consequence, and all this just for high
enough confidence thresholds. The proof is complex and we refrain from dis-
cussing it here; see [5], where, additionally, the case of γ < 1/k is also character-
ized and the pretty complicated picture for intermediate values of γ is discussed.

We do indicate, though, that the notion of “nicety”, in practice, turns out to
be so restrictive that we have not found any case of nontrivial entailment from
more than one premise in a number of tests with stardard benchmark datasets.
Therefore, this approach is not particularly useful in practice to reduce the size
of the outcome of an associator.

4.1 Ongoing Developments

As for representative rules (Subsect. 3.2), there exists a natural variant of the
question of redundancy, whereby full implications are handled separately; essen-
tially, the redundancy notion becomes “closure-based”. This extension was fully
characterized as well for the case of two premises in [7], but it is current work in
progress how to extend the scheme to the case of arbitrary quantities of premises.

5 Alternative Evaluation Measures

We move on to discuss how to reinterpret the central intuition as we change
the semantics of the partial implication connective. Confidence is widely used
as a definition of partial implication but, in practice, presents two drawbacks.
First, it does not detect negative correlations; and, second, as already indicated,
often lets pass far too many rules and, moreover, fiddling with the confidence
threshold turns out to be a mediocre or just useless solution. Examples of both
disadvantages are both easy to construct and easy to find on popular benchmark
datasets. Both objections can be addressed by changing the semantics of the
expression X → Y , by either replacing the confidence measure or by strength-
ening it with extra conditions. The literature on this topic is huge and cannot
be reviewed here: see [16,25,35] and their references for information about the
relevant developments published along these issues. We focus here on just a tiny
subset of all these studies.
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The first objection alluded to in the previous paragraph can be naturally
solved via an extra normalization (more precisely, dividing the confidence by
the support of the consequent). The outcome is lift, a well-known expression in
basic probability; a closely related parameter is leverage:

Definition 3. Assume X ∩ Y = ∅. The lift of partial implication X → Y is
�D(X → Y ) = cD(X→Y )

sD(Y ) = sD(XY )
sD(X)×sD(Y ) . The leverage of partial implication

X → Y is λD(X → Y ) = sD(XY ) − sD(X) × sD(Y ).

If supports are unnormalized, extra factors n are necessary. In case of inde-
pendence of both sides of a partial implication X → Y , we would have
s(XY ) = s(X)s(Y ); therefore, both lift and leverage are measuring deviation
from independence: lift is the multiplicative deviation, whereas leverage mea-
sures it rather as an additive distance instead. Leverage was introduced in [32]
and, under the name “Novelty”, in [24], and received much attention via the
Magnum Opus associator [38]. We find lift in the references going by several
different names: it has been called interest [34] or, in a slightly different but fully
equivalent form, strength [33]; lift seems to be catching up as a short name, possi-
bly aided by the fact that the Intelligent Miner system from IBM employed that
name. These notions allow us to exemplify that we are modifying the semantics
of our expressions: if we define the meaning of X → Y through confidence, then
partial implications of the form X → Y and X → XY are always equivalent,
whereas, if we use lift, then they may not be. Note that, in case X = ∅, the lift
trivializes to 1. Also, if we are to use lift, then we must be careful to keep the
right-hand side Y disjoint from the left-hand side: X ∩ Y = ∅.

A related notion is:

Definition 4 [24]. The relative confidence of partial implication X → Y , also
called centered confidence or relative accuracy, is rD(X → Y ) = cD(X → Y ) −
cD(∅ → Y ).

Therefore, the relative confidence is measuring additively the effect, on the
support of the consequent Y , of “adding the condition” or antecedent X.
Since cD(∅ → Y ) = sD(Y ), lift can be seen as comparing cD(X → Y ) with
cD(∅ → Y ), that is, effecting the same comparison but multiplicatively this
time: �(X → Y ) = s(XY )

s(X)×s(Y ) = c(X→Y )
s(Y ) = c(X→Y )

c(∅→Y ) . Also, it is easy to check that
leverage can be rewritten as λD(X → Y ) = sD(X)×rD(X → Y ) and is therefore
called also weighted relative accuracy [24]. Relative confidence has the potential
to solve the “negative correlation” objection to confidence, and all subsequent
measures to be described here inherit this property as well.

An objection of a different sort is that lift and leverage are symmetric. As
the implicational syntax is asymmetric, they do not fit very well the directional
intuition of an expression like X → Y ; that is one of the reasons behind the explo-
ration of many other options. However, to date, none of the more sophisticate
attempts seems to have gained a really noticeable “market share”. Most com-
mon implementations either offer a long list of options of measures for the user
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to choose from (like [13] for one), or employ the simpler notions of confidence,
support, lift, or leverage (for instance, Magnum Opus [38]). We believe that
one must keep close to confidence and to deviation from independence. Confi-
dence is the most natural option for many educated domain experts not spe-
cialized in data mining, and it provides actually a directionality to our partial
implications.

The vast majority of these alternatives attempt at defining the quality of
partial implication X → Y relying only on the supports of X, Y , XY , or their
complements. One major exception is improvement [12], which is the added
confidence obtained by using the given antecedent as opposed to any properly
smaller one. We discuss it and two other related quantities next. They are moti-
vated again by our central intuition: if the confidence of a partial implication
with a smaller antecedent and the same consequent is sufficiently high, the larger
partial implication should not be provided in the output. They have in common
that their computation requires exploration of a larger space, however; we return
to this point in the next section.

5.1 Improvement: Additive and Multiplicative

The key observation for this section is that X → Y and Z → Y , for Z ⊂ X,
provide different, independent information. From the perspective of confidence,
either may have it arbitrarily higher than the other. For inequality in one direc-
tion, suppose that almost all transactions with X have Y , but they are just a
small fraction of those supporting Z, which mostly lack Y ; conversely, Y might
hold for most transactions having Z, but the only transactions having all of X
can be those without Y . In Example 1, one can see that c(∅ → BC) < c(A →
BC) whereas c(∅ → C) > c(B → C).

This fact underlies the difficulty in choosing a proper confidence bound.
Assume that there exists a mild correlation giving, say, c(Z → A) = 2/3. If
the threshold is set higher, of course this rule is not found; but an undesirable
side effect may appear: there may be many ways of choosing subsets of the sup-
port of Z, by enlarging it a bit, where Y is frequent enough to pass the threshold.
Thus, often, in practice, the algorithms enlarge Z into various supersets Xi so
that all the confidences c(Xi → A) do pass, and then Z → A is not seen, but gen-
erates dozens of very similar “noisy” rules, to be manually explored and filtered.
Finding the appropriate threshold becomes difficult, also because, for different
partial implications, this sort of phenomenon may appear at several threshold
values simultaneously.

Relative confidence tests confidence by a comparison to what happens if the
antecedent is replaced by one of its subsets in particular, namely ∅. Improvement
generalizes it by considering not only the alternative partial implication ∅ → Y
but all proper subsets of the antecedent, as alternative antecedents, and in the
same additive form:

Definition 5. The improvement X → Y , where X �= ∅, is i(X → Y ) =
min{c(X → Y ) − c(Z → Y )

∣
∣ Z ⊂ X}.
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The definition is due to [12], where only association rules are considered, that
is, cases where |Y | = 1. The work on productive rules [39] is related: these
coincide with the rules of positive improvement. In [26], improvement is combined
with further pruning on the basis of the χ2 value. We literally quote from [12]:
“A rule with negative improvement is typically undesirable because the rule can
be simplified to yield a proper sub-rule that is more predictive, and applies to
an equal or larger population due to the antecedent containment relationship.
An improvement greater than 0 is thus a desirable constraint in almost any
application of association rule mining. A larger minimum on improvement is
also often justified because most rules in dense data-sets are not useful due to
conditions or combinations of conditions that add only a marginal increase in
confidence.”

The same process, and with the same intuitive justification, can be applied
to lift, which is, actually, a multiplicative, instead of additive, version of relative
confidence as indicated above: �(X → Y ) = c(X → Y )/c(∅ → Y ). Taking
inspiration in this correspondence, we studied in [9] a multiplicative variant
of improvement that generalizes lift, exactly in the same way as improvement
generalizes relative confidence:

Definition 6. The multiplicative improvement of X → Y , where X �= ∅, is
m(X → Y ) = min{c(X → Y )/c(Z → Y )|Z ⊂ X}.
In Example 1, the facts that c(A → BC) = 4/5 and c(∅ → BC) = 3/4 lead
to i(A → BC) = 4/5 − 3/4 = 0.05 and m(A → BC) = (4/5)/(3/4) ≈ 1.066.
Here, as the size of the antecedent is 1, there is one single candidate Z = ∅
to proper subset of the antecedent and, therefore, improvement coincides with
relative confidence, and multiplicative improvement coincides with lift. For larger
left-hand sides, the values will be different in general.

5.2 Rule Blocking

Attempting at formalizing the same part of the central intuition, we proposed in
[6] a notion of “rule blocking”, where a smaller antecedent Z ⊂ X would “block”
(that is, suggest to omit) a given partial implication X → Y . We will compare
the number of tuples having XY (that is, having Y within the supporting set
of X) with the quantity that would be predicted from the confidence of the
partial implication Z → Y , that applies to a larger supporting set: we are going
to bound the relative error incurred if the support s(X) and the confidence of
Z → Y are employed to approximate the confidence of X → Y .

More precisely, let c(Z → ZY ) = c. If Y is distributed along the support of
X at the same ratio as along the larger support of Z, we would expect s(XY ) ≈
c × s(X): we consider the relative error committed by c × s(X) used as an
approximation to s(XY ) and, if the error is low, we consider that Z → Y is
sufficient information about X → Y and dispose of this last one.
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Definition 7 [6]. Z ⊂ X blocks X → Y at blocking threshold ε when

s(XY ) − c(Z → Y )s(X)
c(Z → Y )s(X)

≤ ε.

In case the difference in the numerator is negative, it would mean that s(XY )
is even lower than what Z → Y would suggest. If it is positive but the quotient
is low, c(Z → Y ) × s(X) still suggests a good approximation to c(X → Y ), and
the larger partial implication X → Y does not bring high enough confidence
to be considered besides Z → Y , a simpler one: it remains blocked. But, if the
quotient is larger, and this happens for all Z, then X → Y becomes interesting
since its confidence is higher enough than suggested by other partial implications
of the form Z → Y for smaller antecedents Z. Of course, the higher the block
threshold, the more demanding the constraint is. Note that, in the presence of
a support threshold τ , s(ZY ) ≥ s(XY ) > τ or a similar inequality would be
additionally required. The value ε is intended to take positive but small values,
say around 0.2 or lower. In Example 1, ∅ blocks A → BC at blocking threshold
1/15 ≈ 0.066.

Rule blocking relates to multiplicative improvement as follows:

Proposition 2. The smallest blocking threshold at which X → Y is blocked is
m(X → Y ) − 1.

Proof. As everything around is finite, this is equivalent to proving that Z ⊂ X

blocks X → Y at block threshold ε if and only if c(X→Y )
c(Z→Y ) − 1 ≤ ε, for all

such Z. Starting from the definition of blocking, multiplying both sides of the
inequality by c(Z → Y ), separating the two terms of the left-hand side, replacing
s(XY )/s(X) by its meaning, c(X → Y ), and then solving first for c(Z → Y )
and finally for ε, we find the stated equivalence. All the algebraic manipulations
are reversible.

5.3 Ongoing: Conditional Weighted Versions of Lift and Leverage

We propose here one additional step to enhance the flexibility of both lift and
leverage by considering their action, on the same partial implication, but with
respect to many different subsets of the dataset, and under a weighting scheme
that leads to different existing measures according to the weights chosen.

For a given partial implication X → Y , we consider many limited views of the
dataset, namely, all its projections into subsets of the antecedent. We propose
to measure a weighted variant of the lift and/or the leverage of the same partial
implication in all these projections, and evaluate as the quality of the partial
implication the minimum value thus obtained. That is, we want our high-quality
partial implications not only to have high lift or leverage, but also to maintain
it when we consider projections of the dataset on the subsets of the antecedent.
We call the measures obtained conditional weighted lift and leverage.
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Definition 8. Assume X ∩ Y = ∅. Let w be a weighting function associating
a weight (either a positive real number or ∞) to each proper subset of X. The
conditional weighted lift of partial implication X → Y is �′

D,w(X → Y ) =
min{w(Z)�DZ

(X → Y )
∣
∣ Z ⊆ X}. The conditional weighted leverage of partial

implication X → Y is λ′
D,w(X → Y ) = min{w(Z)gDZ

(X → Y )
∣
∣ Z ⊆ X}.

These notions can be connected to other existing notions with unificatory effects.
We only state here one such connection. Further development will be provided
in a future paper in preparation.

Proposition 3. For inverse confidence weights, conditional weighted leverage is
improvement: for all X → Y , λ′

D,w(X → Y ) = i(X → Y ) holds for the weighting
function wr(Z) = cD(Z → X)−1.

6 Support Ratio and Confidence Boost

From the perspective of our central intuition, the previous section has devel-
oped, essentially issues related to smallish antecedents. This is fully appropriate
for the discussion of association rules, which were defined originally as partial
implications with singleton consequents. We now briefly concentrate on largish
consequents, and then join both perspectives.

6.1 Support Ratio

The support ratio was employed first, to our knowledge, in [23], where no par-
ticular name was assigned to it. Together with other similar quotients, it was
introduced in order to help obtaining faster algorithmics.

Definition 9. In the presence of a support threshold τ , the support ratio of a
partial implication X → Y is

σ(X → Y ) =
s(XY )

max{s(Z)|XY ⊂ Z, s(Z) > τ} .

We see that this quantity depends on XY but not on the antecedent X itself.
In Example 1, we find that σ(A → BC) = 4/3.

6.2 Confidence Boost

Definition 10. The confidence boost of a partial implication X → Y (always
with X ∩ Y = ∅) is β(X → Y ) =

c(X → XY )
max{c(X ′ → X ′Y ′)

∣
∣ (X → XY ) �≡ (X ′ → X ′Y ′), X ′ ⊆ X, Y ⊆ Y ′} .

where the partial implications in the denominator are implicitly required to clear
the support threshold, in case one is enforced: s(X ′ → X ′Y ′) > τ .
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Let us explain the interpretation of this parameter. Suppose that β(X → Y )
is low, say β(X → Y ) ≤ b, where b is just slightly larger than 1. Then,
according to the definition, there must exist some different partial implica-
tion X ′ → X ′Y ′, with X ′ ⊆ X and Y ⊆ X ′Y ′, such that c(X→Y )

c(X′→Y ′) ≤ b, or
c(X ′ → Y ′) ≥ c(X → Y )/b. This inequality says that the partial implication
X ′ → Y ′, stating that transactions with X ′ tend to have X ′Y ′, has a confidence
relatively high, not much lower than that of X → Y ; equivalently, the confidence
of X → Y is not much higher (it could be lower) than that of X ′ → Y ′. But all
transactions having X do have X ′, and all transactions having Y ′ have Y , so
that the confidence found for X → Y is not really that novel, given that it does
not give so much additional confidence over a partial implication that states such
a similarly confident, and intuitively stronger, fact, namely X ′ → Y ′.

This author has developed a quite successful open-source partial implication
miner based on confidence boost (yacaree.sf.net); all readers are welcome to
experiment with it and provide feedback. We note also that the confidence width
alluded to in Sect. 3.1, while having different theoretical and practical properties,
is surprisingly close in definition to confidence boost. See [8] for further discussion
of all these issues. Confidence boost fits the general picture as follows:

Proposition 4. β(X → Y ) = min{σ(X → Y ),m(X → Y )}.
The inequalities β(X → Y ) ≤ σ(X → Y ) (due to [11]) and β(X → Y ) ≤ m(X →
Y ) are simple to argue: the consequent leading to the support ratio, or the
antecedent leading to the multiplicative improvement, take a role in the denomi-
nator of confidence boost. Conversely, taking the maximizing partial implication
in the denominator, if it has the same antecedent X then one obtains a bound
on the support ratio whereas, if the antecedent is properly smaller, a bound on
the multiplicative improvement follows.

In Example 1, since σ(A → BC) = 4/3 and m(A → BC) = (4/5)/(3/4),
which is smaller, we obtain β(A → BC) = (4/5)/(3/4) ≈ 1.066.

A related proposal in [22] suggests to minimize directly the antecedents and
maximizing the consequents, within the confidence bound, and in a context
where antecedents and consequents are kept disjoint. This is similar to state-
ment (3) in Lemma 1, except that, there, one maximizes jointly consequent and
antecedent. If consequents are maximized separately, then the central intuition
fails, but there is an interesting connection with confidence boost; see [8].

The measures in this family of improvement, including conditional weighted
variants and also confidence boost, tend to require exploration of larger spaces of
antecedents compared to simpler rule quality measures. This objection turns out
not to be too relevant because human-readable partial implications have often
just a few items in the antecedent. Nontrivial algorithmic proposals for handling
this issue appear as well in [8].

6.3 Ongoing Developments

We briefly mention here the following observations. First, like in Sect. 3.2, a
variant of confidence boost appropriate for closure-based analysis exists [8].
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Second, both variants trivialize if they are applied directly, in their literal terms,
to full implications. However, the intuitions leading to confidence boost can be
applied as well to full implications. In future work, currently in preparation, we
will discuss proposals for formalizing the same intuition in the context of full
implications.

7 Evaluation of Evaluation Measures

We have covered just a small fraction of the evaluation measures proposed to
endow with useful semantics the partial implication connective. All of those
attempt, actually, at capturing a potential (but maybe nonexisting) “näıve con-
cept” of interesting partial implication from the perspective of an end user.
Eventually, we would like to find one such semantics that fits as best as possible
that hypothetical näıve concept.

We can see no choice but to embark, at some point, in the creation of resources
where, for specific datasets, the interest of particular implications is recorded as
per the assessment of individual humans. Some approximations to this plan are
Sect. 5.2 of [8], where the author, as a scientific expert, subjectively evaluates par-
tial implications obtained from abstracts or scientific papers; a similar approach
in [14] using PKDD abstracts; and the work in [10,44] where partial implications
found on educational datasets from university course logs are evaluated by the
teachers of the corresponding courses. These preliminary experiments are pos-
itive and we hope that a more ambitious attempt could be made in the future
along these lines.

The idea of evaluating associators through the predictive capabilities of the
rules found has been put forward in several sources, e.g. [29]. The usage of
association rules for direct prediction (where the “class” attribute is forced to
occur in the consequent) has been widely studied (e.g. [41]). In [29], two different
associators are employed to find rules with the “class” as consequent, and they
are compared in terms of predictive accuracy. This scheme is inappropriate to
evaluate our proposals for the semantics of partial implications, because, first, we
must focus on single pairs of attribute and value as right-hand side, thus making
it useless to consider larger right-hand sides; and, also, the classification will only
be sensible to minimal left-hand sides independently of their confidences.

In [9], we have deployed an alternative framework that allows us to eval-
uate the diverse options of semantics for association rules, in terms of their
usefulnes for subsequent predictive tasks. By means of a mechanism akin to the
AUC measure for predictor evaluation, we have focused on potential accuracy
improvements of predictors on given, public, standard benchmark datasets, if
one more Boolean column is added, namely, one that is true exactly for those
observations that are exceptions to one association rule: the antecedent holds
but the consequent does not. In a sense, we use the association rule as a “hint
of outliers”, but, instead of removing them, we simply offer direct access to this
label to the predictor, through the extra column. Of course, in general this may
lead astray the predictor instead of helping it. Our experiments suggest that
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leverage, support, and multiplicative improvement tend to be better than the
other measures with respect to this evaluation score.

7.1 Ongoing Developments

We are currently developing yet new frameworks that, hopefully, might be helpful
in assessing the relative merits of the different candidates for semantics of partial
implications, put forward often as rule quality measures. One of them resorts to
an empirical application of approximations to the MDL principle along the lines
of Krimp [37]. A second idea is to make explicit the dependence on alternative
partial implications, in the sense that X → Y would mean, intuitively, that Y
appears often on the support of X and that, barring the presence of some other
partial implication to the contrary, it is approximately uniformly distributed
there. These avenues will be hopefully explored along the coming months or
years. A common thread is that additional statistical knowledge, along the lines
of the self-sufficient itemsets of Webb [40], for instance, is expected to be at
play in the future developments of the issue of endowing the partial implication
connective with the right intuitive semantics.
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bará, D., Kamath, C. (eds.) Proceedings of the Third SIAM International Confer-
ence on Data Mining, San Francisco, CA, USA, 1–3 May 2003, pp. 331–335. SIAM
(2003)

42. Zaki, M.J.: Mining non-redundant association rules. Data Min. Knowl. Discov.
9(3), 223–248 (2004)

43. Zaki, M.J., Wagner Meira, J.: Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press, New York (2014)
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Abstract. Formal concept analysis (FCA) and possibility theory
(PoTh) have been developed independently. They address different con-
cerns in information processing: while FCA exploits relations linking
objects and properties, and has applications in data mining and clus-
tering, PoTh deals with the modeling of (graded) epistemic uncertainty.
However, making a formal parallel between FCA and PoTh is fruitful.
The four set-functions at work in PoTh have meaningful counterparts in
FCA; this leads to consider operators neglected in FCA, and thus new
fixed point equations. One of these pairs of equations, paralleling the
one defining formal concepts in FCA, defines independent sub-contexts
of objects and properties that have nothing in common. The similar-
ity of the structures underlying FCA and PoTh is still more striking,
using a cube of opposition (a device extending the traditional square of
opposition in logic). Beyond the parallel between FCA and PoTh, this
invited contribution, which largely relies on several past publications by
the authors, also addresses issues pertaining to the possible meanings,
degree of satisfaction vs. degree of certainty, of graded object-property
links, which calls for distinct manners of handling the degrees. Other
lines of interest for further research are briefly mentioned.

1 Introduction

Formal concept analysis (FCA) and possibility theory (PoTh) are two theoretical
frameworks that are addressing different concerns in the processing of informa-
tion. Namely FCA builds concepts from a relation linking objects to the prop-
erties they satisfy, which has applications in data mining, clustering and related
fields, while PoTh deals with the modeling of (graded) epistemic uncertainty.
This difference of focus explains why the two settings have been developed com-
pletely independently for a very long time. However, it is possible to build a
formal analogy between FCA and PoTh. Both theories heavily rely on the com-
parison of sets, in terms of containment or overlap. The four set-functions at work
in PoTh actually determine all possible relative positions of two sets. Then the
FCA operator defining the set of objects sharing a set of properties, which is at
the basis of the definition of formal concepts, appears to be the counterpart of
the set function expressing strong (or guaranteed) possibility in PoTh. Then, it
c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 21–38, 2015.
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suggests that the three other set functions existing in PoTh should also make
sense in FCA, which leads to consider their FCA counterparts and new fixed
point equations in terms of the new operators. One of these pairs of equations,
paralleling the one defining formal concepts, define independent sub-contexts of
objects and properties that have nothing in common.

The parallel of FCA with PoTh can still be made more striking using a cube
of opposition (a device extending the traditional square of opposition existing in
logic, and exhibiting a structure at work in many theories aiming at representing
some aspects of the handling of information).

In this survey we shall indicate various issues pertaining to FCA that could
be worth studying in the future. For instance, the object-property links in for-
mal contexts of FCA may be a matter of degree. These degrees may refer to
very different notions, such as the degree of satisfaction of a gradual property,
the degree of certainty that an object has, or not, a property, or still the typi-
cality of an object with respect to a set of properties. These different intended
semantics call for distinct manners of handling the degrees, as advocated in the
presentation.

Lastly, other examples of lines of interest for further research, such as the
extension of the parallel of FCA with PoTh to conceptual pattern structures, or
the applications to the fusion of conflicting pieces of information, to the clustering
of sets of objects on the basis of approximate concepts, or to the building of
conceptual analogical proportions, are briefly mentioned.

2 Possibility Theory and Formal Concept Analysis -
A Parallel

Formal concept analysis [5,30,43] associates objects with the set of their prop-
erties, through a formal context which is a binary relation R on the Cartesian
product of the set of objects O and the set of properties P. Thus, knowing only
that an object x has some property y, the set Rt(y) = {x ∈ O|(x, y) ∈ R} is the
set of the possible objects corresponding to the elementary piece of knowledge
“the object has property y”(in the context R). This suggests a possibilistic read-
ing of formal concept analysis and leads to considering the formal counterpart
to possibility theory set-functions in this framework. After introducing some
notations, we first provide a short refresher on possibility theory [18,21,47].

2.1 Describing Objects

An object, or item, is denoted by x, or xi in case we consider several ones at
the same time. A subset of objects is denoted by a capital letter X, and we
write X = {x1, . . . , xi, . . . , xm}. A set of objects associated with their respective
sets of properties defines a formal context R ⊆ O × P [30]. An object x is
associated with its description, denoted ∂(x). In the following, we only consider
simple descriptions, expressible in terms of a subset Y of properties yj , namely,
Y = {y1, . . . , yj , . . . , yn}. In such a case, we write ∂(x) = Y .
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Besides, a useful kind of structured description is in terms of attributes.
Let a, and A = {a1, . . . , ak, . . . , ar}, respectively denote an attribute, and a
set of attributes. The value of attribute a for x is denoted a(x) = u, where
u belongs to the attribute domain Ua. In this case, we shall write ∂(x) =
(a1(x), . . . , ak(x), . . . , ar(x)) = (u1, . . . , uk, . . . , ur). This corresponds to a com-
pletely informed situation where all the considered attribute values are known
for x. When it is not the case, the precise value ak(x) will be replaced by the pos-
sibility distribution πak(x). Such a possibility distribution [47] is a mapping from
Uak

to [0, 1], or more generally any linearly ordered scale. Then πak(x)(u) ∈ [0, 1]
estimates to what extent it is possible that the value of ak for x is u. 0 means
impossibility; several distinct values may be fully possible (i.e. at degree 1). The
characteristic function of an ordinary subset is a particular case of a possibil-
ity distribution. Precise information corresponds to the characteristic function
of singletons. An elementary property y can be viewed as a subset of a single
attribute domain, i.e. y ⊆ U . Note that while a set of properties Y is conjunc-
tive (in the sense that an object possesses all properties in Y ), each property y
corresponds to a subset of some attribute domain U that is disjunctive [23]: it is
a set of mutually exclusive values, since object x having property y possesses a
single attribute value a(x) = u in U .

Taking inspiration from the existence of four set functions in possibility the-
ory [20], new operators have been suggested in the setting of formal concept
analysis [16]. These set functions are now recalled, emphasizing the symmetrical
roles played by the object x and the attribute value u, a point of view unusual in
possibility theory, but echoing the symmetrical role played by objects and prop-
erties in formal concept analysis. See [20,21] for more complete introductions
and surveys on possibility theory.

2.2 Possibility Theory

Let πa(x)(u) denote the possibility that object x has value u ∈ U (for attribute a).
For simplicity, we only consider the single-attribute case here. We assume that
πa is bi-normalized: ∀x ∃u πa(x)(u) = 1 and ∀u ∃x πa(x)(u) = 1. This means that
for any object x, there is some fully possible value for attribute a, and that for
any value u there is an object x that takes this value. Let X be a set of objects,
and y ⊆ U be a property. Then, one can define

(i) the possibility measures [47], denoted by Π:

Π(X) = max
x∈X

πa(x)(u) and Π(y) = max
u∈y

πa(x)(u).

Π(X) estimates to what extent it is possible that there is an object in X
having value u, while Π(y) is the possibility that object x has property
y. Π is an indicator of non-empty intersection of the fuzzy set induced
by the possibility distribution with an ordinary subset. They are measures
of “weak, or potential possibility”. Clearly, Π is max-decomposable with
respect to set union.
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(ii) the dual measures of necessity N (or “strong or actual necessity”) [17]:

N(X) = min
x�∈X

1 − πa(x)(u) and N(y) = min
u�∈y

1 − πa(x)(u)

N(X) estimates to what extent it is certain (necessarily true) that an object
has value u is in X, while N(y) is the certainty that object x has property y.
Note that N(y) = 1 − Π(y) where y = U \ y. N may be viewed as a degree
of inclusion of the fuzzy set induced by the possibility distribution into an
ordinary subset. N is min-decomposable with respect to set intersection.

(iii) the measures of “strong (or actual, or guaranteed) possibility” [19]

Δ(X) = min
x∈X

πa(x)(u) and Δ(y) = min
u∈y

πa(x)(u)

Δ(X) estimates to what extent it is possible that all objects in X have
value u, while Δ(y) estimates the possibility that object x takes any value
in y. Δ may be viewed as a degree of inclusion of an ordinary subset into
the fuzzy set induced by the possibility distribution. Δ is min-decomposable
with respect to set union.

(iv) the dual measures of “weak (or potential) necessity or certainty” [19]

∇(X) = 1 − min
x�∈X

πa(x)(u) and ∇(y) = 1 − min
u�∈y

πa(x)(u)

∇(X) estimates to what extent there exists at least one object outside X
that has a low degree of possibility of having value u, while ∇(y) measures
to what extent x has a low possibility value outside y. Note that ∇(y) =
1 − Δ(y). ∇ is an indicator of non-full coverage of the considered universe
by the fuzzy set induced by the possibility distribution together with an
ordinary subset. ∇ is max-decomposable with respect to set intersection.

2.3 Formal Context Setting

The classical setting of formal concept analysis defined from a formal context
relies on a single operator that associates a subset of objects with the set of
properties shared by them (and the dual operator). In [16], this framework has
been enlarged with the introduction of three other operators. We now recall the
four operators which are counterparts to the possibility theory set functions in
the setting of a formal context.

Namely, let R be the formal context. Then R(x) = {y ∈ P|(x, y) ∈ R} is
the set of properties of object x, and Rt(y) = {x ∈ O|(x, y) ∈ R} is the set of
objects having properties y. Then, four remarkable sets can be associated with a
subset X of objects (the notations have been chosen here in order to emphasize
the parallel with possibility theory):

– the set RΠ(X) of properties that are possessed by at least one object in X:

RΠ(X) = {y ∈ P|Rt(y) ∩ X �= ∅} =
⋃

x∈X

R(x).

Clearly, we have RΠ(X1 ∪ X2) = RΠ(X1) ∪ RΠ(X2).
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– the set RN (X) of properties s. t. any object that satisfies one of them is
necessarily in X:

RN (X) = {y ∈ P|Rt(y) ⊆ X} =
⋂

x�∈X

R(x).

In other words, having any property in RN (X) is a sufficient condition for
belonging to X. Moreover, we have RN (X) = RΠ(X) = P \ RΠ(X), and
RN (X1 ∩ X2) = RN (X1) ∩ RN (X2).

– the set R�(X) of properties shared by all objects in X:

R�(X) = {y ∈ P|Rt(y) ⊇ X} =
⋂

x∈X

R(x).

In other words, satisfying all properties in R�(X) is a necessary condition for
an object for belonging to X. R�(X) is a partial conceptual characterization
of objects in X: objects in X have all the properties of R�(X) and may have
some others (that are not shared by all objects in X). It is worth noticing
that RΠ(X) provides a negative conceptual characterization of objects in X
since it gathers all the properties that are never satisfied by any object in X.
Moreover, we have R�(X1 ∪ X2) = R�(X1) ∩ R�(X2). Besides, as can be
seen, RN (X) ∩ R�(X) is the set of properties possessed by all objects in X
and only by them.

– the set R∇(X) of properties that are not satisfied by at least one object in X.

R�(X) = {y ∈ P|Rt(y) ∪ X �= O} =
⋃

x�∈X

R(x).

Note that R�(X) = R�(X) = P \ R�(X). In other words, in context R, for
any property in R�(X), there exists at least one object outside X that misses
it. Moreover, we have R�(X1 ∩ X2) = R�(X1) ∪ R�(X2).

Note that RΠ(X) and RN (X) become larger when X increases, while R�(X)
and R�(X) get smaller. The four subsets RΠ(X), RN (X), R�(X), and R�(X)
have been considered by different authors (with different notations) without
any reference to possibility theory. Düntsch et al. [26,27] calls R� a sufficiency
operator, and its representation capabilities are studied in the theory of Boolean
algebras. Taking inspiration as the previous authors from rough sets [40], Yao
[45,46] also considers these four subsets. In both cases, the four operators were
introduced. See also [33,41].

2.4 The Cube of Opposition in FCA

Before being able to present the structures of opposition relating the four oper-
ators introduced in the previous section, we need to start with a refresher on
the Aristotelian square of opposition [39]. The traditional square involves four
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logically related statements exhibiting universal or existential quantifications: it
has been noticed that a statement A of the form “every x is p”is negated by the
statement O “some x is not p”, while a statement like E “no x is p”is clearly
in even stronger opposition to the first statement A. These three statements,
together with the negation of the last one, namely I “some x is p”, give birth
to the Aristotelian square of opposition in terms of quantifiers A: ∀x p(x), E:
∀x ¬p(x), I: ∃x p(x), O: ∃x ¬p(x), pictured in Fig. 1. Such a square is usually
denoted by the letters A, I (affirmative half) and E, O (negative half). The
names of the vertices come from a traditional Latin reading: AffIrmo, nEgO).

Contraries
A: ∀x p(x) E: ∀x ¬p(x)

S ub -alte rns

Sub-contraries
I: ∃x p(x) O: ∃x ¬p(x)

Su
b-
al
te
rn
s ContradictoriesCon

tra
dic

tori
es

Fig. 1. Square of opposition

As can be seen, different relations hold between the vertices. Namely,

(a) A and O are the negation of each other, as well as E and I;
(b) A entails I, and E entails O (we assume that there are some x for avoiding

existential import problems);
(c) A and E cannot be true together, but may be false together;
(d) I and O cannot be false together, but may be true together.

Recently, it has been noticed that such a square can be generated by a binary
relation and a subset that can be composed together [12]. Indeed, let R be
a binary relation on a Cartesian product X × Y (nothing forbids Y = X in
the construction we are going to describe). We assume R �= ∅. Let Rt denote
the transposed relation ((y, x) ∈ Rt iff (x, y) ∈ R). Moreover, we assume that
∀x, R(x) �= ∅, which means that the relation R is serial, namely ∀x,∃y such
that (x, y) ∈ R; this is also referred to in the following as the X -normalization
condition. In the same way Rt is also supposed to be serial, i.e., ∀y, Rt(y) �= ∅ (Y-
normalization). We further assume that the complementary relation R ((x, y) ∈
R iff (x, y) �∈ R), and its transpose are also serial, i.e. ∀x, R(x) �= Y and
∀y, Rt(y) �= X . These conditions enforce a non trivial relation between X and
Y. In the following, set complementations will be denoted by means of overbars.

Let S be a subset of Y. We assume S �= ∅ and S �= Y. The relation R and
the subset S give birth to the following subset of X, namely the (left) image of
S by R
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R(S) = {x ∈ X | ∃s ∈ S, (x, s) ∈ R} = {x ∈ X | S ∩ R(x) �= ∅}.

Similarly, we consider R(S), R(S), and R(S) = {x ∈ X | ∀s ∈ S, (x, s) �∈ R} =
{x ∈ X | R(x) ⊆ S}. The four subsets thus defined can be nicely organized into
a square of opposition. See Fig. 2. Indeed, it can be checked that the set counter-
parts of the relations existing between the logical statements of the traditional
square of oppositions still hold here. Namely, R(S) and R(S) are complements of
each other, as R(S) and R(S); we have R(S) ⊆ R(S) and R(S) ⊆ R(S), thanks
to X -normalization condition; R(S) ∩ R(S) = ∅ ; R(S) ∪ R(S) = X .

Empty intersection
A: R(S) E: R(S)

In clu sion

Full union
I: R(S) O: R(S)

In
c l
us
io
n ComplementsCom

p
lem

ent
s

Fig. 2. Square of oppositions induced by a relation R and a subset S

Let us now consider the complementary relation R. We further assume that
R �= ∅ (i.e., R �= X ×Y). Moreover we have also assumed the X -normalization of
R, i.e. ∀x,∃y (x, y) �∈ R. In the same way as previously, we get four other subsets
of X from R. Namely, R(S) = {x ∈ X | ∃s ∈ S, (x, s) �∈ R} = {x ∈ X | S∪R(x) �=
X}; R(S); R(S); R(S) = {x ∈ X | ∀s ∈ S, (x, s) ∈ R} = {x ∈ X | S ⊆ R(x)}.
This generates a second square of opposition denoted by aeoi.

As can be seen, when R is a formal context (i.e., X = O, Y = P), we
have RΠ(S) = R(S), RN(S) = R(S), RΔ(S) = R(S), R∇(S) = R(S). The
eight subsets involving R and its complement can be organized into a cube of
opposition as in Fig. 3. The four formal concept analysis operators correspond
to the left side facet of the cube of oppositions. The full cube is then obtained
by introducing their complements, giving birth to the right side facet. Since
RΠ(S) = RN(S), and RΔ(S) = R∇(S), the classical square of oppositions AEOI
is given by the four corners RN(S), RN(S), RΠ(S), and RΠ(S), and the second
square aeoi on the back of the cube is given by RΔ(S), RΔ(S), R∇(S), and
R∇(S).

Moreover, in the side facets, all edges are uni-directed, including the diagonal
ones, and express inclusions. Indeed, as already established in [16], under the X -
and Y–normalization hypotheses, the following inclusion relation holds:

RN(S) ∪ RΔ(S) ⊆ RΠ(S) ∩ R∇(S).
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RN(S), RΔ(S), RΠ(S), and R∇(S) constitute, four distinct pieces of information
[16], which are only (weakly) related by the above relation.

Lastly, it can be checked that we also have RΔ(S) ∩ RN(S) = ∅ and RΔ(S) ∩
RN(S) = ∅ on the one hand, and R∇(S) ∪ RΠ(S) = X and R∇(S) ∪ RΠ(S) = X
on the other hand. These are the relations that holds on the top and on the
bottom facets of the cube respectively.

i: R∇(S)

I: RΠ(S) O: RΠ(S)

o: R∇(S)

a: RΔ(S)

A: RN(S) E: RN(S)

e: RΔ(S)

Fig. 3. Cube of opposition in formal concept analysis

The cube of oppositions not only underlie FCA (and PoTh) [25], but also is
a setting of interest for building bridges with rough set theory [40] (see [12]), or
even formal argumentation [1]!

3 Formal Context Decomposition

In FCA, a formal concept [30] is defined as a pair (X,Y ) ∈ O × P such that

R�(X) = Y and Rt�(Y ) = X,

where Rt�(Y ) = {x ∈ O|R(x) ⊇ Y } =
⋂

y∈Y Rt(y) is the set X of objects having
all properties in Y , and in this case Y is also the maximal set of properties shared
by all objects in X. A formal concept (X,Y ) is a maximal sub-rectangle in the
formal context, i.e. is such that X × Y ⊆ R. It can be checked that R� gives
back the same Galois connection as the one defined from R�, while RN (or RΠ)
induces another connection, which is now described.

Consider the connection defined from RN in a similar formal way as when
defining formal concepts. It was proposed by Popescu [41] and studied in a
general setting of residuated algebras, but not in the usual Boolean setting.
Namely, let us consider pairs (X,Y ) s.t. RN (X) = Y and RtN (Y ) = X. As
suggested in [22], the pairs (X,Y ) s.t. RN (X) = Y and RtN (Y ) = X allow us to
characterize independent sub-contexts (i.e. that have no common objects and no
common properties). They are thus of interest for the decomposition of a formal
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context into smaller independent ones. This is expressed through the following
property, proved in [13,24]:1

Proposition 1. The following properties of pairs (X,Y ) are equivalent

1. RN (X) = Y and RtN (Y ) = X
2. RN (X) = Y and RtN (Y ) = X
3. RΠ(X) = Y and RtΠ(Y ) = X
4. R ⊆ (X × Y ) ∪ (X × Y )

Proof. Let us first show that Property 1 implies Property 4. First it is clear that:
RN (X) = Y ⇔ ⋂

x∈X R(x) = Y ⇔ ⋃
x∈X R(x) = Y .

Denoting X + Y = X × Y , it implies R ⊆ X + Y .
Likewise due to RtN (Y ) = X, Rt ⊆ Y + X holds.

Finally: R ⊆ (X+Y )∩(Y +X), which equivalently writes: R ⊆ (X×Y )∪(X×Y ).
Conversely assume Property 4. Then it is clear that RN (X) ⊆ Y and

RtN (Y ) ⊆ X hold since there is no property possessed by any object in X
outside Y , and no object outside X that possesses a property outside Y . Sup-
pose RN (X) ⊂ Y , i.e. ∃y∗ ∈ Y such that property y∗ is possessed by objects
outside X. But then R(x, y∗) = 1 for some x ∈ X, y ∈ Y . So Property 4 does
not hold. Contradiction.

The invariance of Property 4 with respect to complementation proves that
the choice of (X,Y ) versus (X, Y ) in Property 1 is immaterial. Hence the equiv-
alence with Property 2. For Property 3, note that RN (X) = Y is equivalent to
RΠ(X) = Y . ��
Thus, (X,Y ) and (X, Y ) are two independent sub-contexts in R, in the sense
that there is no object / property pair (x, y) of the context R either in X × Y
or in X × Y . The above proposition does not involve any minimality in the
inclusion Property 4 of the above proposition. In particular, the pair (O,P)
trivially satisfies it. However, this result leads to a decomposition of R into a
disjoint union of minimal independent sub-contexts. Indeed, suppose two pairs
(X1, Y1), (X2, Y2) satisfy Proposition 1. It implies that for instance, the pair
(X1 ∩ X2, Y1 ∩ Y2) satisfies it (it can be checked that RN (X1 ∩ X2) = Y1 ∩ Y2),
and likewise with any element of the partition refining both partitions (X1,X1)
and (X2,X2). Due to point 4 of Proposition 1, it yields

R ⊆ ((X1 × Y1) ∪ (X1 × Y1)) ∩ ((X2 × Y2) ∪ (X2 × Y2)),

where the intersection on the right-hand side comes down to the union of sub-
contexts (X1 ∩ X2) × (Y1 ∩ Y2), (X1 ∩ X2) × (Y1 ∩ Y2), (X1 ∩ X2) × (Y1 ∩ Y2),
(X1 ∩ X2) × (Y1 ∩ Y2). The decomposition of R into minimal subcontexts is
achieved by taking the following intersection

⋂

(X,Y ):RN (X)=Y,RtN (Y )=X

(X × Y ) ∪ (X × Y ).

1 We again provide the proof for the sake of self-containedness.
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Example 1. The table below presents a formal context. Pairs ({6, 7, 8}, {c, d, e}),
or ({5, 6, 7, 8}, {d, e}), or ({2, 3, 4}, {g, h}) are examples of formal concepts, while
({5, 6, 7, 8}, {a, b, c, d, e}), ({2, 3, 4}, ({f, g, h}), ({1}, {i}) are minimal subcon-
texts.

Thus, through the notions of formal sub-contexts and of formal concepts, one
sees two key aspects of granulation at work. Namely, on the one hand indepen-
dent sub-contexts are separated, while inside each sub-context, formal concepts
(X,Y ) are identified where each object in X is associated with each property in
Y . However, objects in the extension of a formal concept may not be fully similar
since they may also possess properties outside the intension of the concept. They
are only similar with respect to the properties associated to the formal concept.

Thus, the classical Galois connection founding formal concept analysis (asso-
ciated with the actual possibility operator), and the other connection induced
by the actual necessity operator, respectively embed two basic ideas associated
with the idea of a cluster (see, e.g., [35]), namely

1. any pair of elements in a cluster should be closely related in some sense, and
2. any element of a cluster should be sufficiently separated from any element

outside it.

Moreover, formal concept analysis is also useful for conceptual clustering, where
clusters should be associated with labels, obtained in this case as a conjunction
of the properties shared by the objects in the cluster [11].

Such an idea can be also stated in terms of graph clustering, taking advantage
of an exact parallel between formal concept analysis and bipartite graph analysis
[31], as viewing an (ideal) cluster as a group of vertices

1. either with no missing link inside the group,
2. or with no link with vertices outside the group.

These two complementary views are also clearly at the basis of cluster analysis
for unipartite graphs [42].

In practice, it is important to introduce some tolerance in the evaluation
of the similarity between the members of a cluster and in the separatedness of
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the clusters, leading to a more permissive and approximate view of granules or
clusters; see, e.g., [32].

The other (mixed) connections RΘ(S) = T and RtΛ(T ) = S where Θ,Λ ∈
{Π,N, Δ, ∇} with Θ �= Λ are also worth studying. They have still to be better
understood and to be investigated systematically. See [15] for a preliminary
discussion, and [7,9] for results in the graded case.

4 Graded Links Between a Property and an Object

Fuzzy extensions of FCA where R is a fuzzy relation in LO×P with L often taken
as the unit interval have been proposed early [6,10]. However, the development of
a fuzzy formal concept analysis theory requires an appropriate algebra of fuzzy
sets [6,8]. While many theoretical studies have been developed, the different
gradual interpretations of a fuzzy formal context have not been much discussed.
Following [14], this section highlights some basic issues regarding the fact that
a “fuzzy” or graded extension of binary formal contexts may convey different
semantics: graded satisfaction of properties vs. uncertainty.

4.1 Gradual Properties: Unipolar Vs. Bipolar Scale Interpretation

In this first interpretation, the values in the table (which are scalars in L) may
be understood as providing a refinement of the cross marks. Namely, they rep-
resent to what extent an object has a property, while in the classical model,
this relationship was not a matter of degree. It is important to remark that in
this view, we do not refine the absence of a property for an object (the blank mark
is always replaced by the bottom element 0 of L). This view will be referred to
as the positive unipolar interpretation. In this interpretation, Rt(y) (resp. R(x))
is considered as the support of the fuzzy set of objects (resp. properties) satis-
fying the property y (resp. the object x). One could also consider the opposite
convention namely the negative unipolar interpretation where degrees would rep-
resent to which extent an object does not have a property and equivalently
provide a refinement of the blank marks.

The most commonly used interpretations, through existing FCA proposals,
are implicitly based on the positive unipolar interpretation that allows to map a
formal context with quantitative attributes into a fuzzy formal context. In this
spirit, conceptual scale theory [44] may be used to achieve a suitable (Boolean)
representation by successive subsumptions.

Example 2. For instance, the formal context illustrated in Table 2 is obtained
from Table 1 by a conceptual scaling of both many-valued attributes “Age”and
“Salary”. As can be seen, we have two sets of properties with obvious sub-
sumption relations between them. Pairs ({Peter, Sophie,Mike, Joe}, {age ≥
20, salary ≥ 1000}), ({Sophie,Mike}, {age ≥ 20, age ≥ 25, salary ≥
1000, salary ≥ 1200}), or ({Mike}, {age ≥ 20, age ≥ 25, age ≥ 30, salary ≥
1000, salary ≥ 1200, salary ≥ 1400}) are formal concepts.
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Table 1. Many-valued relation

R1 Pierre Sophie Mike Nahla

Age 22 28 30 22

Salary 1100 1300 1500 1500

Table 2. Context subsumption

R2 Pierre Sophie Mike Nahla

age ≥ 20 × × × ×
age ≥ 25 × ×
age ≥ 30 ×
salaire ≥ 1000 × × × ×
salaire ≥ 1200 × × ×
salaire ≥ 1400 × ×

Table 3. Context summarization

R3 Pierre Sophie Mike Nahla

age ‘young’ 1 0.7 0.6 1

salary ‘low’ 1 0.8 0.6 0.6

Knowing the ages and the salaries, the formal context R2 can be re-encoded
in a more compact way, using two fuzzy sets ‘young’ and ‘small’ with decreasing
membership functions, as illustrated in Table 3.

Observe also that R3 offers a more precise representation of initial data than
Table 2. The context in Table 3, event though more compact than Table 2 high-
lights the fact that Mike, and to a lesser extent Sophie are not very young and
have a salary that is not really low. It constitutes in some sense the negative of
the picture shown on Table 1. Note that the type of representation on Table 3
can be obtained even without providing interpretable fuzzy sets and thus, by
normalizing in L the domain of attribute values. This approach is used in [36].

Another interpretation of the degrees, maybe more in the standard spirit of
fuzzy logic would be to replace both the cross marks and the blank marks by
values in the scale L (L = [0, 1]). Then L possesses a mid-point acting as a
pivoting value between the situations where the object possesses the property
to some extent and the converse situation where the object possesses the oppo-
site property to some extent. Under this view, a fuzzy formal concept should
be learnt together with its negation. This view corresponds to a bipolar scale
interpretation.

4.2 Uncertainty

Neither the standard FCA approach nor its fuzzy extension are equipped for
representing situations of partial or complete ignorance. To this end, in the
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Boolean case, we need to introduce a proper representation of partial uncer-
tainty including ignorance in the relational table of the formal context. One may
think of introducing gradations of uncertainty by changing crosses and blanks
in the table into probability degrees, or by possibility or necessity degrees. In
the probabilistic case, one number shall assess the probability that a considered
property holds for a given object (its complement to 1 corresponding to the
probability it does not hold). However, this is assuming precise knowledge on
the probability values, which is not really appropriate if we have to model the
state of complete ignorance. It is why we investigate the use of the possibilistic
setting in the following.

In the possibilistic setting, crosses may be replaced by positive degrees of
necessity for expressing some certainty that an object satisfies a property. The
blanks could be refined by possibility degrees less than 1, expressing that it
is little possible that an object satisfies a property. However, this convention
using a single number in the unit interval for each entry in the context may be
misleading as when the number replaces a blank or a cross, the meaning of the
number is not the same.

In the possibilistic setting, possibility and necessity functions are related by
the duality relation N(A) = 1 − Π(A), that holds for any event A, where A
denotes the opposite event [18]. Then, for entries (x, y) in the table, we use a
representation as a pair of necessity degrees (α, 1 − β) where α = N((x, y) ∈ R)
(resp. 1−β = N((x, y) �∈ R)) corresponds to the necessity (certainty) that object
x has (resp. does not have) property y. Moreover, we should respect the property
min(α, 1 − β) = 0, since min(N(A), N(A)) = 0 in agreement with complete
ignorance, in which case nothing (i.e., neither A nor A) is even somewhat certain.
Pairs (1,0) and (0,1) correspond to completely informed situations where it is
known that object x has, respectively does not have, property y. The pair (0,0)
reflects total ignorance, whereas pairs (α, 1 − β) s.t. 1 > max(α, 1 − β) > 0
correspond to partial ignorance.

An uncertain formal context is thus represented by

RU = {(α(x, y), 1 − β(x, y)) | x ∈ O, y ∈ P}

where α(x, y) ∈ [0, 1] , β(x, y) ∈ [0, 1]. A relational database with fuzzily-known
attribute values is theoretically equivalent to the fuzzy set of all ordinary data-
bases corresponding to the different possible ways of completing the informa-
tion consistently with the fuzzy restrictions on the attribute values. So, an
uncertain formal context may be viewed as a weighted family of all standard
formal contexts obtained by changing uncertain entries into sure ones. More
precisely, one may consider all the completions of an uncertain formal con-
text. This is done by substituting entries (x, y) that are uncertain, i.e., such
that 1 > max(α(x, y), 1 − β(x, y)) by a pair (1,0), or a pair (0,1). Replacing
(α(x, y), 1 − β(x, y)) by (1, 0) is possible at degree β(x, y), the possibility that x
has property y. Similarly, replacing (α(x, y), 1 − β(x, y)) by (0, 1) is possible at
degree 1 − α(x, y), the possibility that x does not have the property y. In this
way, one may determine to what extent a particular completion (a context C) is
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possible, by aggregating the possibility degrees associated with each completed
entry (using min operator). Formally, one can write

π(C) = min(min(x,y):(x,y)∈Cβ(x, y),min(x,y):(x,y) �∈C1 − α(x, y)).

Likewise the degree of possibility that (X,Y ) is a formal concept of RU is

π(X,Y ) = sup{π(C) : C such that (X,Y ) is a formal concept of C}.

Useful completions are those where partial certainty becomes full certainty.
Indeed, given an uncertain formal context and a threshold pair (u, v), let us
replace all entries of the form (α, 0) such that α � u with (1, 0) and entries of
the form (0, 1 − β) such that 1 − β � v with (0, 1). All such replacements have
possibility 1 according to the above formula. Remaining entries, which are more
uncertain, can be systematically substituted either by (1,0), or by (0,1). Consid-
ering, the two extreme cases where all such entries are changed into (1,0) and
the case when where all such entries are changed into (0,1) gives birth to upper
and lower completions, respectively. In this way, two classical (Boolean) formal
contexts, denoted R∗

(u,v) and R∗(u,v) are obtained as respective results of the
two completions. They allow to determine, for a given threshold (u, v), maximal
extensions (resp. minimal intensions) and minimal extensions (resp. maximal
intensions) of uncertain formal concepts. It is clear that R∗(u,v) ⊆ R∗

(u,v). Let us
illustrate the idea with an example.

Example 3. Table 4 exhibits a formal context where some entries are pervaded
with uncertainty. Let us examine the situation regarding formal concepts. Take
u = 0.7, v = 0.5 for instance. In context R∗(0.7,0.5), examples of formal concepts
are pairs ({6, 7, 8}, {c, d, e}), or ({5, 6, 7, 8}, {d, e}), or ({2, 3, 4}, {g, h}), although
with u = 0.9, the last formal concept would reduce to ({2, 3}, {g, h}), i.e., the
extent of the concept is smaller.

Now consider R∗
(0.7,0.5), where the entries with low certainty levels (either in

favor or against the existence of the link between x and y) are turned into

Table 4. Uncertain formal concepts

1 2 3 4 5 6 7 8

a ×
b × ×
c (0.5,0) × × ×
d × × × ×
e × × × ×
f (0, 0.8) × (0, 0.3)

g × × (0.8, 0)

h × × (0.8, 0)

i ×
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positive links. Then, ({2, 3, 4}, {g, h}) remains unchanged as a formal concept,
while a larger concept now emerges, namely ({5, 6, 7, 8}, {c, d, e}). However,
one may prefer to consider the results obtained from R∗(0.7,0.5), where only
the almost certain information is changed into positive links. In the example,
if we move down u to 0.5, and use R∗(0.5,0.5) we still validate the larger former
concept ({5, 6, 7, 8}, {c, d, e}). This illustrates the fact that becoming less and less
demanding on the level of certainty, may enable the fusion of close concepts (here
({6, 7, 8}, {c, d, e}), and ({5, 6, 7, 8}, {d, e}), providing a more synthetic view of
the formal context.

This small example is intended to illustrate several points. First of all, it
should be clear that being uncertain about the existence of a link between an
object and a property is not the same as being certain about a gradual link.
Second, under uncertainty, there are formal concepts whose boundaries are not
affected by uncertainty, while others are. Lastly, regarding certain enough pieces
of information as fully certain may help simplifying the analysis of the formal
context. Besides, the proposed setting may also handle inconsistent information
by relaxing the constraint min(α, 1 − β) = 0. This would amount to introducing
paraconsistent links between objects and properties.

5 More Lines for Further Research

Let us briefly conclude this survey of works in FCA inspired by PoTh by men-
tioning other examples of lines of interest for further research:

– The parallel of FCA with PoTh leading to the introduction of new operators
extends to conceptual pattern structures [28,29], where the description ∂(x)
of an object x, may, e.g., be a possibilistic knowledge base [2];

– Applications of FCA to the fusion of conflicting pieces of information issued
from multiple sources using pattern structures for labeling sets of possible
values in terms of sources supporting them [3];

– The clustering of sets of objects on the basis of approximate concepts [24,32],
with labeling of the clusters [38];

– The building of conceptual analogical proportions [37] on the basis of the formal
definition of analogical proportions in non-distributive lattices [34], conceptu-
alization and analogical reasoning being two basic cognitive activities [4].
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6. Bělohlávek, R.: Fuzzy Galois connections. Math. Logic Q. 45, 497–504 (1999)
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Abstract. We introduce the parameter of relevance of an attribute of
a binary table to another attribute of the same table, computed with
respect to an implicational basis of a closure system associated with the
table. This enables a ranking of all attributes, by relevance parameter to
the same fixed attribute, and, as a consequence, reveals the implications
of the basis most relevant to this attribute. As an application of this
new metric, we test the algorithm for D-basis extraction presented in
Adaricheva and Nation [1] on biomedical data related to the survival
groups of patients with particular types of cancer. Each test case requires
a specialized approach in converting the real-valued data into binary
data and careful analysis of the transformed data in a multi-disciplinary
environment of cross-field collaboration.
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Knowledge retrieval from large data sets is an essential problem in economy,
biology and medical sciences. The data is often recorded in tables with rows
consisting of the objects and columns of the attributes. The dependencies exist-
ing between subsets of the attributes in the form of association rules can uncover
the laws, causalities and trends hidden in the data.

In data mining, the retrieval and sorting of association rules is a research
problem of considerable interest. The benchmark algorithms, such as Apriori in
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Agrawal et al. [5], have the complexity that is exponential in the size of a table.
Moreover, the number of association rules is staggering, and thus it requires
further tools for filtering to obtain a short subset of rules that are significant.
There are no strong mathematical results confirming a particular choice of such
short subsets, and numerous approaches to the filtering process are described
in various publications devoted to the topic. See, for example, Kryszkiewicz [14]
and Balcázar [7].

One particular subset of association rules, the implications, or rules of full
confidence, merit particular attention in data mining, as well as being the center
of on-going theoretical study, supported by a number of strong mathematical
statements. This could be explained by the fact that implications constitute one
of the facets of closure systems. In particular, they closely relate to the structure
of finite lattices.

Representation of a binary table and its concept (Galois) lattice via sets of
implications continues to be a primary research goal of concept analysis (FCA).
The target for many years was the retrieval of the canonical basis, or Guigues-
Duquenne basis, of implications for closure systems defined by a Galois connection
on the binary table. Nevertheless, recent results confirm that algorithmic solutions
to such a task have complexity that is at least exponential in the size of the table;
see, for example, Distel and Sertkaya [10] and Babin and Kuznetsov [6].

In Adaricheva and Nation [1], the authors suggest using a new type of basis,
called the D-basis, which was introduced in Adaricheva, Nation, and Rand [2].
This basis has a lattice-theoretical flavor, for its generating notion is that of a
minimal cover of a join irreducible element in a finite lattice. The D-basis is
usually a proper subset of the canonical direct unit basis (this latter is different
from the Guigues-Duquenne basis, see Bertet and Monjardet [8]), while it enjoys
the property of being ordered direct.

The advantage of this basis in relation to the canonical basis, for the repre-
sentation of a binary table, is in the possibility of reducing the task to dualization
of an associated hypergraph. It is known that the hypergraph dualization prob-
lem has a sub-exponential algorithmic solution, see Fredman and Khachiyan [11].
The algorithm in [1] avoids generating the Galois lattice from the table, and only
uses the arrow relations, which can be computed in polynomial time, to produce
a hypergraph for each requested attribute. In that way, the existing code for
hypergraph dualization, such as in Murakami and Uno [15], can be borrowed for
execution.

In the current paper, we employ the code implementation of this algorithm
as a working approach for data analysis in biomedical studies.

Since 2013 we have been working with two data sources, both connected with
cancer research. One of them is the data sets provided by the bio-informatics
group at the University of Hawaii Cancer Center, which relate the gene expres-
sion of patients with various types of cancer with their survival parameters.
Another source is provided by medical research group at Medical Holding in
Astana, Kazakhstan. The data relates the immune, viral and blood parameters
of patients with brain tumors with their response to a new regimen of treatment.
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While both data sets are essentially different sorts of real-valued medical
data, we developed customized approaches to convert them into binary tables.
In the case of the Astana research group, we dealt with temporal data, which
included several measurements of parameters during the time of treatment of
patients. The target of our tests was to reveal possible connections between
the dynamics of sets of several parameters with the response to treatment.
In analyzing the data from Honolulu, we worked in close collaboration with
the Hawaii bio-informatics group, applying the implicational algorithms after
the genetic data had been reduced to manageable size by other methods.

As in data mining, the main obstacle to analysis of binary tables via their
representation by implications is the impressive number of implications in the
basis. The algorithm in [1] allows us to retrieve only those implications X → b
in the D-basis that have a fixed attribute b as a conclusion. In our case, b would
represent a particular indicator, for example that a patient belongs to the group
of long-survivors, say those who lived for longer than 1300 days beyond the day
of diagnosis. Such subsets of the basis may contain close to 1500 implications
when the table has just twenty attributes (columns). This number can easily
increase to 1,000,000 when the number of columns is in the range of 250.

Our goal was to identify small groups of parameters whose appearance in
the requested sector of the basis indicated the influence of such groups to the
target parameter b. In order to rank the implications from the subset of the
basis having b as a conclusion, we introduced new metric for the attributes of
the table. We call the new metric the relevance of attribute a with respect to
b, and it is computed based on frequency of a appearing in the antecedents of
implications related to b in two bases: one for original table, and the other for the
table, where attribute b is replaced with its complement ¬b. The computation of
this parameter also takes into account the support of each individual implication
in the basis where a appears.

After computing the relevance parameter for all attributes of the table, one
can rank the implications X → b by taking the average of relevance parame-
ters for all x ∈ X. For each individual data set, it is up to a specialist in the
data to establish the lower threshold for the relevance parameter of implica-
tions, to separate the small portion of them which might have impact for further
study.

We believe that our testing provides some first insights into the possibilities
for using implication bases in biomedical studies that involve relatively large
data sets.

One of the main achievements of our tests was to demonstrate that the
algorithm can handle tables with the number of columns/attributes exceeding
those reported in the literature, with respect to canonical or canonical direct unit
bases; see for example Ryssel, Distel and Borchmann [16]. We had successful runs
of the algorithm on a table with 287 columns, for medical data with relatively
high density (proportion of ones in the table), while for less dense data sets, such
as transaction tables, there were successful runs for tables with more than 500
attributes.
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The paper is organized as follows. We provide the background information on
closure operators and associated implicational bases, as well as their connection
to binary tables, in the first section. Discussion of the D-basis and related infor-
mation on other bases used in applications is given in Sect. 2. In the third section
we introduce the definition of the parameter of the relevance of an attribute with
respect to the fixed target attribute of the binary table. The computation of this
parameter is illustrated in Sect. 4, which uses as input the gene expression data
related to ovarian cancer provided by the University of Hawaii Cancer Center.
A larger data set of the same type is discussed in the next section, where we also
discuss some variations in computation of relevance metric. In Sect. 6 we discuss
the test results on the temporal medical data provided by Medical Holding in
Astana, related to a group of patients with brain tumors. The final section gives
an overview of future testing and collaboration.

1 Short Introduction to Implications

A closure operator φ on a set A is an increasing, monotone and idempotent
function φ : 2A → 2A. It is well known that any closure operator φ defined
on finite set A can be fully represented by a set of implications X → y with
X ⊆ A, y ∈ A. Any individual implication X → y can be considered as partial
information about φ, saying that the φ-closure of X, i.e., the set φ(X) ⊆ A,
contains y. Implications X → y are also called unit implications, indicating that
a single element y is on the right side of the arrow symbol. The unit implications
can be aggregated : if there are several unit implications with the same left side
X, then one can take the union of the right sides into a subset Y and represent
these unit implications via X → Y . However, for the algorithms used in this
paper, it is better not to aggregate the unit implications.

The standard approach for the study and storage of the data related to a
closure operator is to record an essential subset of the set of all implications of
φ, called a basis, from which all valid implications (and thus the closure operator
itself) can be recovered. There are many types of bases which have been targets
for theoretical research, such as the canonical basis of Guigues-Duquenne [12] or
the canonical direct unit basis; see the survey article [8].

Another type of basis, called the D-basis, was introduced in [2]. This basis is
a subset of the canonical direct unit basis, and tends to be noticeably shorter.
In our tests, the size of the D-basis (the number of implications) was on the
average about 30 % shorter than the size of the canonical direct unit basis. On
the other hand, the canonical direct unit basis is direct, meaning that closures of
sets can be computed in one pass. The D-basis retains this property in a slightly
modified form, called ordered directness.

One special case of the closure operator exists in any data presented by a
binary table. By a binary table we understand a triple (U,A,R), where R ⊆ U×A
is a relation between sets U and A, where U is the set of objects (corresponding
to rows of the table) and A is the set of attributes (corresponding to columns).
If r = (u, a) ∈ R, then the position in row u and column a is marked by 1.
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This can be interpreted as object u possesses attribute a. Otherwise, the position
is marked with a 0.

In order to recover the closure operator on the set of attributes, defined by
a given binary table, we introduce two functions between subsets of attributes
and objects.

The support function SA : 2A → 2U is defined, for every X ⊆ A, by SA(X) =
{u ∈ U : (u, x) ∈ R for all x ∈ X}. Thus, row u is in the support of set of
columns X, if all intersections with columns from X, along this row, are marked
by 1, or equivalently, if the object u possesses all the attributes from X.

Similarly, the support function SU : 2U → 2A is defined for all Y ⊆ U as
SU (Y ) = {a ∈ A : (y, a) ∈ R for all y ∈ Y }.

It is straightforward to show that the operator φA : 2A → 2A defined as
φA(X) = SU (SA(X)) for X ∈ 2A is, in fact, a closure operator on A. Any
implication X → y which holds φA can be directly interpreted from the table
as follows: for each row of the matrix, whenever all intersections of this row
with columns from set X are all marked by 1, the position at column y is also
marked by 1. Note that the actual number of rows where intersections with X
are marked by 1 is usually just a portion of total number of rows, and the set
of such rows will be denoted sup(X), instead of SA(X), to match the notation
used in data mining literature.

Let us illustrate these concepts in the following example. Consider the table
with a set U of 6 objects and a set A of 7 attributes (Table 1).

Table 1.

b a1 a2 c1 c2 y z

1 0 1 0 1 0 0 0

2 1 0 0 0 0 1 0

3 0 0 1 0 1 0 0

4 0 0 0 1 1 0 0

5 0 0 0 1 1 0 0

6 1 1 0 0 1 1 0

Consider X = {a1, c2} ⊆ A. Then SA(X) = sup(X) = {6} and φA(X) =
SU (SA(X)) = {a1, c2, b, y}. Hence, we will have implications X → b and X → y
in the set of all implications describing the operator φA. The logical statement
“if X then y” holds in all rows of the matrix, while assumption X holds only in
row 6.

From the point of view of data mining, the implication X → y is an asso-
ciation rule between columns of the given matrix with the support parameter
sup(X∪y)

|U | = 0.17, which is just a normalized version of the support, showing the
relative frequency of the rows where all attributes from X are marked.
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The second essential parameter used for measuring the association rules is
the confidence:

c(X → y) =
sup(X ∪ y)

sup(X)
.

If X → y is an implication, then the confidence is always 1, i.e., the highest
among all possible values of this parameter. In general, an association rule may
have confidence strictly lower than 1, and a lower bound threshold is used to
filter the association rules of importance. For example, we may consider the asso-
ciation rule c1 → c2, for which the normalized support is 1

3 , and the confidence
is 2

3 = 0.66. This association rule might be discarded from consideration, assum-
ing that the lower bound threshold is established, say, at c = 0.75. Among all
association rules which can be considered for the attributes of the tabled data,
the implications can be characterized as those with the confidence of 1.

Having established the connection with the field of data mining, we will deal
in the sequel only with the implications describing the closure operator φA on
the set of attributes of a binary table.

2 Comparison of the D-Basis with Other Bases
for the Purposes of Table Description

The algorithm in [1] enables us to obtain the D-basis for the set of implications
defining the operator φA on the set of attributes of a binary table. A critical
difference with the other existing algorithms is that, instead of creating an inter-
mediate algebraic structure known as a concept (Galois) lattice, or equivalently,
finding all φA-closed sets, this algorithm retrieves only partial information about
the structure in the form of up-arrows, down-arrows and up-down-arrows, which
replace some of the 0-entries of the table. This additional information is enough
to form an instance of the well-known hypergraph dualization problem, for which
algorithmic solutions already exist and are realized in fast-executed computer
programs; see, for example, Boros et al. [9] and Murakami and Uno [15].

Another essential difference between the structure of the D-basis and, say,
canonical basis of Guigues-Duquenne, is that the D-basis is oriented toward
finding, for any fixed b ∈ B, all subsets X ⊆ A such that X → b is an implication
for the operator φA, and X satisfies some irreducibility property with respect to
b. In contrast, finding the canonical basis requires finding all pseudo-closed sets
of operator φA, which will serve as antecedents of implications X → y, and this
search is irrelevant of what we want to find as the right side of the implications.

One consequence of the irreducibility property for X → y in the D-basis is
that X ′ → b is not longer an implication for φA, for any proper subset X ′ ⊂
X. The latter property also holds for implications included into the canonical
direct unit basis mentioned earlier. At the same time, the irreducibility property
required for implications of the D-basis is stronger, which explains why the D-
basis is normally a proper subset of the canonical direct unit basis.
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Recently, U. Russel et al. [16] proposed a method of retrieval of the canonical
direct unit basis that would employ the hypergraph dualization algorithm. It does
not employ the D-relation, which we use for the purposes of obtaining the D-
basis. The D-relation is a binary relation that can be computed in polyno-
mial time in the size of the table, using the information about the up- and
down-arrows mentioned above. This allows us to reduce the size of the hyper-
graphs for which the dualization should be computed, compared to the algorithm
in [16].

3 Measurement of Relevance of Implications
with Respect to a Fixed Attribute

In this section we describe our new approach to the measurement of the implica-
tions in a particular implicational basis, with the goal of distinguishing a small
subset of implications relevant to a sector of the basis targeting a particular fixed
parameter b in the set of attributes.

Given any closure system (A,φ) on the set A, and any unit implicational basis
β defining this closure system, we can define a subset β(b) ⊆ β with respect to
any element b ∈ A as follows:

β(b) = {(X → y) ∈ β : φ(y) = φ(b)}.

For example, when β is the D-basis of the operator φA for the table given in
Sect. 1, we have β(b) = {b → y, y → b} ∪ {{a1, c2} → t, {a2, c1} → t : t = b, y}.
Formally, column y can be stripped from the table, since it is identical to column
b, which implies φA(y) = φA(b). One can find the D-basis on the table without
y, then extend the information we know for column b to its twin column y.

The algorithm presented in [1] is based on the retrieval of β(b), for each
b ∈ A, where the closure system is defined on the set of attributes A of a given
binary table, and where β is a D-basis of this closure system. It is critical that
the retrieval of the basis is done separately for each attribute b ∈ A, so that
parallel processing could be done to optimize the required time to obtain the
whole basis.

More often, though, the whole basis is not what is needed in a particular
study, and the implications of the form X → b, for some particular fixed b ∈ A,
are of higher importance than others. Then the choice of the basis will be based
on the possibility to compute β(b) much faster than the whole β.

When β(b) is available, the main task is to rank the implications thus obtained
with respect to relevance of antecedent X to attribute b.

From the extensive list of parameters known for the filtering the association
rules in data mining, the only parameter that can be applied for ranking of
implications is the parameter of support. Indeed, while many parameters in data
mining make extensive use of the parameter of confidence, that does not apply
in the case of implications, as observed in Sect. 1.
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We believe that, for each attribute a ∈ A \ b, the important parameter of
relevance of this attribute to b ∈ A is a parameter of total support, computed
with respect to basis β:

tsupb(a) = Σ{ |sup(X)|
|X| : a ∈ X, (X → b) ∈ β}.

Thus tsupb(a) shows the frequency of parameter a appearing together with some
other attributes in implications X → b of the basis β. The contribution of each
implication X → b, where a ∈ X, into the computation of total support of a is
higher when the support of X is higher, i.e., column a is marked by 1 in more
rows of the table, together with other attributes from X, but also when X has
fewer other attributes besides a.

While the frequent appearance of a particular attribute a in implications
X → b might indicate the relevance of a to b, the same attribute may appear in
implications X → ¬b. The attribute ¬b may not be present in the table and can
be obtained by converting the column of attribute b into its complement.

Let β(¬b) be the basis of closure system obtained after replacing the original
column of attribute b by its complement column ¬b. Then the total support of ¬b
can be computed, for each a ∈ A \ b, as before:

tsup¬b(a) = Σ{ |sup(X)|
|X| : a ∈ X, (X → ¬b) ∈ β(¬b)}.

Define now the parameter of relevance of parameter a ∈ A \ b to parameter b,
with respect to basis β:

relb(a) =
tsupb(a)

tsup¬b(a) + 1
.

The highest relevance of a is achieved by a combination of high total support of
a in implications X → b and low total support in implications X → ¬b. This
parameter provides the ranking of all parameters a ∈ A \ b, but also allows us
to rank implications X → b in the basis, by computing the average of relb(x) for
x ∈ X:

relb(X → b) =
Σ{relb(x) : x ∈ X}

|X| .

We emphasize that while the measurement of relevance of an attribute a with
respect to b can be done for any basis, there should be some assumption about
irreducibility of the antecedents in implications. Indeed, for each implication
X → b one may add to the basis another implication X ∪ {s} → b, for some
fixed attribute s. In this new basis, the attribute s may obtain an unnecessarily
high measurement. As we pointed earlier in Sect. 2, both the D-basis and the
canonical direct unit basis have the property of irreducibility for antecedents in
their implications.

It would be interesting to compare the measurement of relevance parameters
for individual attributes with respect to various bases and check whether the
group of attributes with the high ranking will be independent of the choice of
the basis.
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4 Illustrating Example from Test Data on Ovarian
Cancer

We will be illustrating our approach on a relatively small data set composed
of genes found to be highly correlated with microRNA and DNA methylation
in a common set of 291 serous ovarian tumor samples. Global gene expression,
microRNA and DNA methylation data for each tumor sample were downloaded
from The Cancer Genome Atlas (TCGA) along with meta-data that included
censored time-to-death from all causes (survival) [18].

The resulting data matrices for each data type were jointly analyzed using
matrix factorizations of rank-1 to identify a low-dimensional signature composed
of genes, microRNA and DNA methylation loci that best represented the domi-
nant source of variation in the data as a sparse linear model.

Hierarchical clustering and pathway analysis methods were then employed to
identify an even smaller set of genes that continued to model the dominant signal
as a sparse linear combination. We hypothesized that gene signatures obtained
in this way would help to unravel the complex, inter-connected biology that
drives the clinical trajectory of ovarian cancer. In particular, we focused on a
gene expression signature composed of 21 genes (out of 16,000 interrogated) that
were all direct down-stream targets of the OSM gene as determined by pathway
analysis methods.

The gene expression profiles of the 21 genes were arranged in a binary table
with 190 rows and 46 columns. The rows represent the ovarian cancer patients
who participated in the study which observed their survival time for 2500 days
after treatment with standard chemotherapy with cisplatin and paclitaxel.

The first 42 columns represent the indicator functions for the expression levels
of the 21 genes (after quantile normalization). If patient y has relatively high
expression of gene x, it will be marked by indicator 1 in column x, and when this
patient shows relatively low levels of expression of gene x, the indicator value
of 1 is put in column 21 + x. Those patients whose gene expression is within
some threshold around the average expression value in the group will have an
indicator value of 0 in both columns x and 21 + x.

The last four columns represent the survival groups within those 190 patients.
Indicator is 1 in column 43 if a patient lived longer than 2000 days, and it is 1
in column 44 if she lived longer than 1300. Thus, the implication 43 → 44 holds
in the binary table. The indicator is 1 in the 45th column if a patient lived less
than 1300 days, and it is 1 in column 46 if she lived less than 850 days. Hence
another implication 46 → 45 is also a part of the basis.

The cut-off thresholds for survival of 2000, 1300 and 850 days roughly cor-
respond to quartiles for the entire group of 291 patients based on Kaplan-Meier
analysis. Recall that the whole observation group was comprised of 291 patients,
of which only 153 stayed in the study for the total period of 2500 days, while the
remaining patients were observed for shorter periods. Nevertheless, 38 of them
were observed long enough to include them into two upper quartiles, with some
partial loss of information for those between 1300 and 2000 days of observation.
A total of 101 patients were excluded from the testing related to survival for
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this test of D-basis extraction. These were patients who either left the study
before 2000 days, or else had survived but for fewer than 2000 days at the end of
the study, and hence could not be assigned to a survival cohort. Other ways of
dealing with censoring that would include all the samples are discussed in the
next section.

Let us illustrate the measurement of the implications in the D-basis of this
matrix, when the target attribute b is 44, i.e., the indicator of longer surviving
patients (at least 1300 days). In this particular study this is the group of 87 patients,
which includes a subgroup of 31 patients who survived longer than 2000 days.
Application of the algorithm from [1] with the request of β(44) produces 1819
implications of the form X → 44, including the expected implication 43 → 44.

It is possible to rank the implications in the retrieved basis by support. For
example, among 1819 implications obtained, there is a single one with the highest
cardinality of the support= 9: {16, 28} → 44. (Here 16 represents high expression
of the gene GBP2, while 28 is low expression of IL7.) There is also one with the
support of 8: {14, 1, 3, 11} → 44 where 14 = HLA-B, 1 = VDR, 3 = TRIM22,
11 = IL15. There are also 9 implications of support 7, and 17 implications of
support 6. The great majority of implications have a support of 1 or 2, and it
is hard to decide whether any implications from this large group could be of
particular value.

With the new approach we were able to compute the relevance parameter
for all the columns and choose the columns of the highest relevance. In our
case, these were column 29 with relevance parameter 2.7894, column 9 with
relevance value of 2.5137, and columns 1 and 4 with the relevance figures. 1.8702
and 1.8425, respectively. (Column 29 is low expression of IL4R, while 9 is high
expression of IL1B, 1 = VDR, 4 = SELE.)

The value 2.7894 for column 29 can be interpreted as following: attribute
29 appeared in implications with the conclusion b = 44, i.e., indicator that the
patient was in the longer surviving group (patients with the survival period
longer than 1300 days), approximately 2.7 times more often than for the com-
plement of this group (patients surviving less than 1300 days). According to the
definition of tsup44 parameter, the contribution of each individual implication
would be adjusted by the weight sup(X)

|X| . In the β(44) section of the D-basis the
size of antecedent varied between 2 and 7, with most of implications having 3 or
4 attributes in their antecedent.

In any outcome of the testing, the follow-up validation of the discovery
assumes the check on an additional data set of 99 ovarian cancer patients. The
identified groups of parameters highly relevant for survival are validated, when
they successfully separate the survival curves for both training and test data,
based on Kaplan-Meier and Cox regression analysis.

The six genes (from this set of 21 targets of OSM) with the highest relevance
to long survival (over 1300 days) turned out to be IL4R, IL1B, VDR, SELE,
HLA-B, GBP2 and IL15RA. We did a Kaplan-Meier analysis of the signature
on the 291 patient sample, and then tested it on the independent sample of 99
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other ovarian cancer patients. The difference between the KM plots for the top
and bottom quartiles of the 291 training samples ordered by the 6-gene D-basis
signature are statistically significant in both the KM analysis (p = 0.00217) and
Cox regression analysis (p = 0.0000269). The same analysis on the 99 validation
samples gave p = 0.0176 for the KM analysis and p = 0.0419 for the Cox regres-
sion analysis. Thus the six-gene signature derived from the relevance parameter
is associated with survival at a significant level.

5 The Larger Test Case of Ovarian Cancer

More comprehensive testing was done on a set of 40 genes that are downstream
targets of IL4, identified by the combination of methods described in Sect. 4.
This time all 291 patients were included into the testing, thus the size of the
matrix was 291 × 84, where the first 80 columns represented the indicators for
the high and low levels of expression for 40 genes, and the 4 columns represented
4 groups of patients based on the observed time to death due to all causes.

The 191 patients described in Sect. 4 had indicators placing them into longest,
long, short and shortest surviving groups. The remaining 101 patients were coded
by all zeros in 4 surviving groups columns. These patients were observed in
the study for less than 1300 days, while their status after the last observation
remained unknown: this is a group of so-called censored patients. Potentially,
given longer term of observation, each patient from the censored group could
appear in any of the surviving groups.

From the point of extraction of implications, inclusion of censored patients
without marking them into survival groups results in the loss of a subset of
implications that may belong to the D-basis. For example, if implication X → b
holds in all the rows of 191 patients, with b = 81, which is a column of the longest
surviving patients, and one of the patients from the group of 101, which was
marked by all zeros, has all the parameters from X present, then the implication
X → b fails in the row of matrix representing this patient, so that this implication
is excluded from the output. Thus, the experiment on 291 × 84 matrix produces
a subset of the basis for 190 × 84.

Another way to include the data of all 291 patients into the analysis is to
assign 101 censored patients into 4 groups, based on the Kaplan-Meier analysis
of 291 samples; see [13]. Potentially, marking censored patients into survival
groups based on risk analysis may result in both excluding and adding some
implications to the D-basis. This method will be used in some of our future
tests.

We are planning to report on the full extent of this testing in a forthcoming
publication. For the purposes of the current report, we outline the outcomes of
the testing done on 291× 84 matrix, when censored patients were marked by all
zeros in the columns 81–84, representing the survival groups.

The D-basis was extracted with 4 requests, for b = 81, 82, 83 and 84. We
used a feature of the algorithmic design, which may request only a portion of
the basis, selecting the implication with minimum support parameter “minsup.”
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Fig. 1. Kaplan-Meier (KM) analysis of training and independent test data
stratified by a 6-gene D-base expression signature (DBSig6). Panel A. KM
plots of top and bottom quartiles of 291 ovarian tumors ordered by the 6-gene DBSig6
expression signature. The KM plot marked by squares models the survival of the low-
est quartile of patients ordered by DBSig6 expression and KM plot of up-triangles
models patients in highest quartile. The difference in KM plots is statistically signifi-
cant (logrankP= 0.0143) and DBSig6 expression is still associated with survival after
adjustment for age and stage (CoxP= 0.0011). The intersection of the vertical dashed
line with each KM curve gives the 5-year survival rate for each group of patients on the
vertical axis. Panel B. KM plots on independent test data set composed of 99 ovarian
tumors. The interpretation of the KM plots marked by squares and up-triangles and
the vertical dashed line are the same as in Panel A. The difference in KM plots is
statistically significant (logrankP= 0.0137) and DBSig6 remains predictive of survival
even after adjustment for age and stage (CoxP= 0.0086). Panels A and B demonstrate
that the DBSig6 expression signature is able to robustly identify “good” and “bad”
reponders to standard chemotherapy for ovarian cancer.

When minsup = k, the program outputs only implications with the minimum
support at least k. This considerably shortens the running time and the list of
implications. For example, with b = 83 the algorithm produced 4325 implications
of minimum support 3, in 91.94 s.

The six genes (from this set of 40 targets of IL4) with the highest relevance to
long survival (over 1300 days) turned out to be FCGR2A, CD86, IFI30, CCL5,
SELPLG and ICOS, all of which are associated with immune response and can-
cer. The results of the Kaplan-Meier and Cox regression analysis of this six-gene
signature associated with IL4, on both the 291 patient training set and 99 sample
validation data, are shown in Fig. 1. The difference between the KM plots for the
top and bottom quartiles on the training data ordered by the 6-gene D-basis sig-
nature are statistically significant in both the KM analysis (p = 0.0143) and Cox
regression analysis (p = 0.00112). The same analysis on the 99 validation sam-
ples gave p = 0.0137 for the KM analysis and p = 0.00858 for the Cox regression
analysis. Again, this six-gene signature derived from the relevance parameter is
associated with survival at a significant level.

On the other hand, the genes relevant to short survival did not separate
the curves significantly, nor did the combined sets of genes for long and short
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survival. This may be an artifact of how we dealt with censoring. Other tests
indicate that the 40-gene set associated with IL4 is much richer than the 21-
gene set derived from OSM, and we anticipate that this will show up in further
relevance experiments.

6 Analysis of Temporal Data for the Patients
with Brain Tumor

The original set of data for 61 patients with brain tumors (astrocytomas, glioblas-
tomas, and meningiomas) under new regimen of treatment was collected over the
two years of observation in the hospital of Medical Holding in Astana, between
2012–2013. Patients were accepted into the experimental group after all options
of standard chemotherapy were exhausted.

Three groups of parameters were regularly measured in patients. The first
group was set of flow cytometry markers to identify major immune cell popula-
tions in peripheral blood: T helper cells, cytotoxic T cells, natural killers, B cells,
and antigen-presenting cells. The second group was blood analysis for creatinine,
bilirubin, calcium, protein, amylase, transferrin, C-reactive protein, immunoglob-
ulins, lipase and iron. Finally, the third group of parameters was infectious
markers including indicators for hepatitis A and C, cytomegalovirus, chlamy-
dia, herpes simplex, Epstein-Barr virus, mycoplasma, ureaplasma, echinococcus,
Helicobacter pylori, toxoplasma, and rubella.

The main read-out measurement of patient response to the new treatment
was clinical assessment accompanied by the immune parameters, blood biochem-
istry parameters and the dynamic of infections.

All patients were divided into four groups depending on a clinical assessment.
The first group included patients who did not survive cancer. The second group
included patients succumbing to the illness. The third group included patients
with stable health/tumor status. Finally, the fourth group incorporated patients
with improving clinical assessments accompanied by reducing volume of tumor.

The goal of the study was to identify the elements of the treatment and mea-
sured parameters, which are associated to the positive response to the treatment.

The challenge of this data set was in the fact that each parameter was mea-
sured multiple times during the course of the treatment, while treatment and
patient survival were of different time spans, resulting in significant variation
in number of measurements. In order to take into consideration the dynamics
of multiple parameters, and be able to analyze kinetics of very different length
in similar consistent way, we transformed raw data into a set of increments, or
differentials.

If the initial value of a parameter is V1, the value at the middle of the
observation period is V2, and the final value during observation is V3, then the
increment δ31 is defined as (V3-V1)/V1; increment δ21 is (V2-V1)/V1; increment
δ32 is (V3-V2)/V2; Avg (average) is calculated average value for the parameter
during the entire observation period. The analysis is performed in terms of (V1,
Avg, δ21, δ32, δ31).
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For conversion of real-valued data into binary form, the initial values V1
were taken into consideration only for part of the parameters. The full range of
V1 parameter values was divided into quartiles and were coded into 4 columns
representing the quartiles. The dynamic parameters were converted into two
columns each, where the mark 1 in one of columns was an indicator of increasing
of this parameter more than 10 % from average variation within the group, over
the indicated period of treatment, while 1 in the other column was the indicator
of decreasing by more than 10 %. Both columns would be marked by 0 when the
parameter stayed within 10 % of average variation.

The 4 clinical assessment groups were combined into two: C1 group comprised
the two groups of declining patients, and C2 group the stabilizing or improving
patients.

The resulting binary table included 287 columns for 61 patients. An addi-
tional table was created for a subgroup of 33 patients with identical diagnosis of
specific brain cancer, while the whole group incorporated patients with different
sub-types of brain tumors.

The request for computation of the basis for a column that combined stabi-
lizing and improved patients (C2) resulted in 1,138,518 implications computed
in 39639 s, or just over 11 h. For the column indicating the group of declining
patients (C1) the number of implications was 2,073,282, and it was computed in
170458 s, or 47.34 h.

The computation of the relevance parameter for all attributes, with respect
to columns C1 and C2, provided the ranking of attributes in each case. For the
computation of the most relevant implications, it was considered reasonable to
make another run of the program to filter the implications first with respect to
the minimum support parameter. It was established at the level minsup = 5,
so that only those implications were produced whose antecedent held for at
least 5 patients. The test for C1 now took only 1400 s and produced only 9,794
implications. The test for C2 took 345 s and produced 19,112 implications.

Similar tests were reproduced for the sub-group of 33 patients with the spe-
cific diagnosis of brain cancer. We observed much higher variation of the rel-
evance parameter in the case of 61 patients. For example, several attributes
showed relevance in the range of 1,000–10,000, mostly in the cases when tsup¬b(a)
for the attribute a had 0 value. Most of them got the relevance below 1 in the
test of the sub-group of 33.

At the same time, most of the highly relevant attributes in the test on the
subgroup of 33 patients showed their significance in the test for 61 as well.

On the set of 33 patients, the ranking of attributes by the relevance to column
C1 revealed the attributes in ranking positions 1, 2 and 7, which correspond to
dynamics of the same immune parameter: CD3+CD8+ cytotoxic T cells in the
first, second halves of the treatment, and during the whole period, respectively.
The dynamics was decreasing at the start, increasing in the second half, but
still decreasing overall. In the C2 group, highly relevant were attributes in rank-
ing positions 7 and 9 were decreasing dynamics of the presence of two specific
viruses.
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Table 2. Parameters associated with patients’ clinical assessment.

Statistical analysis of the immune, biochemical and infection parameters:
initial values, averages and increments (V1, Avg, δ21, δ32, δ31) was also performed
using non-parametric Spearman’s correlation analysis [17] to find ties between
parameters, see analogous use of increments in Adarichev et al. [3,4]. Global
cross-correlation of all real-valued increments was performed for the data on 61
patients. Using analysis of correlation, the biases between only two parameters
at a time could be studied, which is a major nuisance over the implication
approach. For analysis of the parameters’ difference between groups of patients,
we used the non-parametric Kruskal-Wallis test in the R language for statistical
computing [19]. This test is an equivalent of the one-way analysis of variance
(ANOVA), but does not require assumption of the normal distribution of data.

Initial parameters (V1) most significantly associated with clinical assess-
ment were HBsAg surface antigen of the hepatitis B virus (p < 0.015), amount
of CD3+CD8+ cytotoxic T cells in peripheral blood (p < 0.025), total IgG
immunoglobulins (p < 0.007), and higher concentration of blood iron (p < 0.03),
see Table 2.

Change of blood parameters over the entire period of observation (δ31) pro-
duced the longest list of significant associations: lipoproteins (triglycerides, HDL,
LDL), creatinine, total protein, albumin, C-reactive protein, immunoglobulin
IgA, lipase, and blood iron, refer to Table 2.

Importance of the total IgG immunoglobulins and specifically IgA isotype was
in line with levels of B cells in peripheral blood (Table 3, p < 0.02), cells that
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produce immunoglobulins. Increase of T helper cells levels significantly correlated
with good prognosis for survival (p < 0.01), see Table 2.

There were 151 attributes with the relevance above 1.5 associated with
attribute C1, and 25 attributes associated with C2 with the same relevance
threshold. Parallel analysis of same dataset using Kruskal-Wallis statistical test
discovered 27 parameters at p < 0.05 significance level, they are presented in
Table 3.

Table 3. Parameters discovered with both implications and statistical approaches.

Overlapping of these two analyses was compared using a Venn diagram.
Twelve parameters were found both by implication and statistical approaches
in C1, and five parameters were discovered in C2. Details of parameters are
presented in Fig. 2.

The results presented in Tables 2 and 3 could be further corroborated by
biological functionality of the discovered parameters. Parameter IMM δ32 CD3-
CD19+ reflects number of CD3-CD19+ B cells that produce antibodies. Corre-
spondingly, blood parameter BLD δ31 IgA is also in the list in the C2 group.
Armed T cells, which are represented with IMM δ32 CD3+CD4+ parameter
could actually stimulate B cells to produce antibodies. Another group of para-
meters is related to blood lipoproteins of high and low density (HDL and LDL,
respectively) and triglycerids. These parameters are known to be biased in the
norm and pathology. Brain tumorigenesis and pharmaceutical intervention to
fight cancer both lead to inflammatory reactions. Correspondingly, we found
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Fig. 2. Venn diagram for overlapping results of implication and statistical approaches.
Circle C1 - group of declining patients with total of 139 + 12 = 151 implications. Cir-
cle C2 - group of improving patients with total of 20 + 5 = 25 implications. Thresh-
old for relevance is set at 1.5. Circle S - results of statistical analysis with total of
12+ 10 + 5 = 27 significant biases at p< 0.05 threshold. See Tables 2 and 3 for details.

inflammatory marker C-reactive protein in patients blood using both methods
(parameter BLD δ31 CRP). In brief, this set of parameter is functionally valid
for the pathology under investigation. In the test on the binary conversion of this
data, all blood parameters from the table showed high relevance of increasing
trend for group C1, and four of them high relevance of decreasing trend in group
C2, which confirms statistical observation.

7 Concluding Remarks and Future Research

This paper comes on the heels of a series of discoveries about computational
complexity of extraction of the canonical basis of Guigues-Duquenne; see [6,10].
With the D-basis and algorithm for extracting implications derived in [1], the
problem of handling relatively large data sets, which may include hundreds of
attributes and objects, can be considered tamed. This brings researchers to a new
challenge, already battled in data mining: the output of algorithms producing
staggering amounts of association rules, for which further methods of analysis
and filtering are needed.

Association rules were brought to consideration in analysis of transaction
data. While the choice of purchases follow particular patterns, these are rather
“soft” rules which do not need to hold even in a majority of all transactions.
Whenever we come to analysis of biological data, the dependencies between
attributes may reveal the laws of nature which are yet to be discovered. Thus,
one may hope to find higher confidence levels of association rules discovered in
this type of data.

The association rules of highest confidence (=1) are implications, and extrac-
tion of this special subset of association rules allows different approaches based
on underlying structure of closure operators. On the other hand, the main met-
ric for association rules, the confidence, is no longer a player for selection of
important implications. This requires the development of new measurements for
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implications that would allow us to restrict our attention to those that may
discover the hidden laws.

The main achievement of the current paper is the introduction of a new
measurement for implications, which we call the relevance. It enables us to rank
the attributes with respect to some fixed attribute b, in some given basis of
implications, then apply individual relevance values to compute the relevance of
implications. In particular, we can use this to measure the relevance of genetic
or medical data to clinical outcomes.

The new approach was tested on two sources of medical data related to clin-
ical assessment or survival of cancer patients. Our initial testing has already
shown that the relevance parameter can be used to find genetic signatures asso-
ciated with longer survival of ovarian cancer patients. The full analysis of these
data sources will continue and we plan tuning the computation of relevance
metric after validation of results of testing on additional data sets.
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Abstract. One of the first models to be proposed as a document index
for retrieval purposes was a lattice structure, decades before the intro-
duction of Formal Concept Analysis. Nevertheless, the main notions that
we consider so familiar within the community (“extension”, “intension”,
“closure operators”, “order”) were already an important part of it. In the
’90s, as FCA was starting to settle as an epistemic community, lattice-
based Information Retrieval (IR) systems smoothly transitioned towards
FCA-based IR systems. Currently, FCA theory supports dozens of dif-
ferent retrieval applications, ranging from traditional document indices
to file systems, recommendation, multi-media and more recently, seman-
tic linked data. In this paper we present a comprehensive study on how
FCA has been used to support IR systems. We try to be as exhaustive
as possible by reviewing the last 25 years of research as chronicles of
the domain, yet we are also concise in relating works by its theoretical
foundations. We think that this survey can help future endeavours of
establishing FCA as a valuable alternative for modern IR systems.

1 Introduction

Surveying the intersection of Formal Concept Analysis (FCA) [33] and Informa-
tion Retrieval [3] is not an easy task. The main complexity is that both domains
have a an application range so wide that just getting a relevant set of articles to
report about is a knowledge discovery process in itself. This is clearly exemplified
by the survey presented by Poelmans et al. in 2012 [60] where FCA is used to
report on 103 articles related to topics of FCA and IR in a period of only six
years (2003–2009) crawled from the Web. In this paper we intend to approach
the surveying in a more general and integral manner. We try to answer a very
simple question. How have FCA and concept lattices been used in the context of
IR applications? We answer this in a chronological narration, trying to cover the
last 25 years of research since the first inception of the use of lattice structures
to model the space of possible queries (or prescriptions, as they were called) to
the last approaches, supporting file systems and semantic technologies.

As we can observe, most of the approaches presented here rest over a limited
pool of ideas and techniques associated with FCA/IR but applied to a myriad
of domains and applications. These ideas are:
c© Springer International Publishing Switzerland 2015
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1. Using a concept lattice as a model of the description and document spaces
2. Enriching the description space through external knowledge sources
3. Enabling Relevance Feedback

– Mixing querying and browsing
– Query-by-navigation
– Query-by-example

4. Using a concept lattice as a support for automatic retrieval

Our goal in this survey is to catalogue these ideas so future endeavours may
have an easier way reaching further domains while developing new different and
more interesting techniques. The remainder of this article is as follows: Sect. 2
introduces some context w.r.t. the use of lattice-based structures in the field of
information retrieval. It also introduces the underlying model that generalizes
the use of FCA for retrieval purposes. Section 3 describes the first approaches of
FCA in the IR domain. Section 4 reviews works using background information
to improve retrieval results. Section 5 reviews works based on the paradigm of
relevance feedback and automatic document ranking. Section 6 lists the main
applications and systems encompassing the ideas and notions described in the
previous sections. Finally, Sect. 7 concludes the paper by introducing some con-
cepts left out of the scope of this paper.

1.1 Related Work

Along with the work of Poelmans [60], there have been other important reviews of
the literature regarding FCA and IR [13,64,68]. In 2005, Carpineto and Romano
[13] described the main possible tasks that FCA could perform regarding querying
and indexing by summarizing some of their work in the field. In 2007, Uta Priss
[64] dedicated a full chapter to describe the state-of-the-art up to 2004 on FCA-
based IR in her paper on FCA and Information Sciences. The last of these reviews
was presented by Valverde and Peláez-Moreno in 2013 in the first (and sadly, the
last) workshop on Formal Concept Analysis meets Information Retrieval in the
context of the European Conference on Information Retrieval (ECIR 2013)1. This
work differentiates between what is FCA in IR and what is FCA for IR, the latter
of which refers to the possibility of “augmenting IR with the methods and ideas
of FCA”. The authors describe these ideas in seven “affordances” of FCA for IR,
classifying with them the body-of-work of FCA-based IR approaches.

1.2 Notation and Definitions

Formal Concept Analysis. For the sake of brevity, in this paper we assume a
certain degree of familiarity with FCA. In what follows, we use the notation of
[33]. A formal context is defined as K = (G,M, I) where G is a set of documents,
M is a set of attributes or descriptors and I an incidence relation set indicating
by gIm that document g ∈ G has descriptor m ∈ M . Descriptors denote any

1 http://fcair.hse.ru.

http://fcair.hse.ru
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kind of metadata associated with documents, being terms, phrases, symbols,
authors, image features, etc. For the sake of generality in this paper we will refer
to M as the set of descriptors, unless indicated otherwise.

Boolean IR Model. The Boolean IR model is considered as the first and one
of the simplest techniques to index and retrieve documents [3,47]. Given a col-
lection of documents G, we can consider each document g as represented by a
conjunction of Boolean descriptors g′ ⊆ M , where M is the set of all descrip-
tors (sometimes called “repertory” or “dictionary”). A query (or “request”, or
“prescription”) is defined as a set of descriptors connected by a logical operator
AND,OR,NOT . The simplest query is given by a set of descriptors connected
by AND and is called a “conjunctive query”. Given a conjunctive query Qand,
the set of relevant documents to be retrieved (Q′

and) are those that contain at
least all the descriptors in the query. A disjunctive query (using OR) can always
be split into its conjunctive parts and the set of relevant documents can be
computed by the union of each separate set of relevant documents. A similar
approach can be applied for NOT . In this work we will consider every query Q
as being conjunctive, unless indicated otherwise.

A query Q ⊆ M is a subset of descriptors usually provided by a given user.
In this review we respect the original denominations given by different works to
queries (requests, prescriptions, questions, etc.), however we indicate in paren-
thesis what denominations refer to. Finally, the “space of documents” is denoted
as (℘(G),⊆) while “the space of descriptors” or “the query space” is indistinctly
denoted as (℘(M),⊆).

2 Pre-FCA History - A Lattice to Model the Description
and Document Spaces

Lattice structures were early adopted by information scientists as a model of
document indexing [29,54]. As early as 1956, Robert A. Fairthorne [29] dis-
cussed how to model a library classification system by producing all possible
requests (queries) as combinations of categories (descriptors) and logical con-
nectors (AND,OR,NOT ) and how this model could be compared to a “free
distributive lattice”. Some years later, Calvin Mooers [54] would consider two
spaces for this model, namely the space of prescriptions P (descriptors) and the
space of all possible documents subsets as L = ℘(G).

He realised that L with the set inclusion operator ⊆ was naturally a partially-
ordered set (or poset) and that, under certain circumstances (actually when
P = ℘(M)), P could also be modelled as such. With this, a retrieval system
consists in a transformation T : P → L that is able to take a prescription
(query) into the largest subset of documents that satisfies it (see Fig. 1).

It is important to note that Mooers did not describe an actual IR system, but
a “model” for retrieval systems that would enable the comparison of different
approaches. We can observe that FCA is an instance of this model, where the
transformation T is naturally represented by a Galois connection defined between
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Table 1. A document-term formal context.

P: L: 
T

0 0 

1 1 

Fig. 1. Mooers’ model: “The space
P of all possible retrieval prescriptions
(queries), the space L of all possible doc-
ument subsets, and the retrieval transfor-
mation T associating points of P with
points of L.”

℘(G) and ℘(M) and where the concept lattice is an elegant solution for the
spaces P and L as it represents them in an integrated manner. Particularly,
when this Galois connection is defined in terms of the derivation operator ((·)′),
FCA becomes an implementation of the Boolean IR model.

2.1 The Underlying Model of FCA-IR

Let us introduce a general model of Boolean retrieval using the FCA framework
with an example. In the following sections, we will re-use this model to explain
how the tasks of browsing and querying can be performed using a concept lattice.
Consider a formal context of documents and descriptors as the one shown in
Table 1. Documents for a query Q ⊆ M are retrieved through the derivation
Q′ ⊆ G which works as the “transformation” T shown in Fig. 1. For example,
the query Q = {arthroscopy, complication} has as an answer documents in
Q′ = {d2, d7, d8}.

Key Aspects: The query Q can be naturally extended to Q′′, which of course,
contains the same set of answers Q′. In the example, the query Q = {MRI}
extends to Q′′ = {MRI,medicine} and they both have the same answer Q′ =
{d3, d4}. This fact was already discussed by Mooers [54] and has been exhaus-
tively exploited by FCA-IR approaches to provide context to user queries, in this
case showing the user that his answer for MRI is within a medical context instead
of several other possible interpretations2. The formal concept formed by (Q′, Q′′)
has been called virtual node, virtual concept or query concept, and represents
both, the extended query (intent), and the set of retrieved documents (extent).
Notice that the latter can be an empty set if there are no documents satisfying the
query (hence the name virtual). Finally, in this article we will make the distinc-
tion between “query extension” and “query expansion”. The first of which refers
to the closure of the query w.r.t. (·)′. The second refers to an actual modification
of the query by taking a set Q1 where Q′′

1 �= Q′′ and in general Q1 ∩ Q �= ∅ (i.e.
finding a query Q1 related to Q which yields different results).
2 http://en.wikipedia.org/wiki/MRI (disambiguation).

http://en.wikipedia.org/wiki/MRI_(disambiguation)
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Throughout all the approaches discussed in this survey, the underlying model
described above has not varied much (notice that the book of Barbut and Mon-
jardet which included what will be FCA later was published in 1970! [4,69]).
This fact is in no way a negative point for FCA-based IR approaches, but actu-
ally a statement about the adequacy of the model to fit in different tasks and
domains. On the other hand, this advantage of FCA is also one of its main
drawbacks when dealing with modern IR systems.

The Boolean IR model was quickly regarded as too limited for the complex
tasks involved in the retrieval of documents considering the size of modern doc-
ument collections or the nature of their descriptions (e.g. numeric instead of
Boolean). The IR community would shift to more complex models such as the
vector space model (for ranking documents by “relevance” w.r.t. a query) or the
probabilistic model (for predicting which are those more “relevant” for a user).
Current introductory books on IR [3,47] do not mention lattice structures (not
to say concept lattices) as valid IR models3. In [47], the chapter on the Boolean
IR model finishes with the following quote attributed to Calvin Mooers in a
book of Fairthorne (1961):

“It is a common fallacy (...) that the algebra of George Boole (1847) is the appro-
priate formalism for retrieval system design. This view is widely and uncritically
accepted as it is wrong.”

3 FCA Meets IR

The bad scenario for the Boolean retrieval model and its drawbacks did not
stop many researchers from developing several different applications using this
paradigm. In the ’90s, the first FCA-based IR systems were developed, while
several other systems based on the use of lattice structures became popular.

3.1 Non-FCA Lattice-Based IR Systems

Pedersen in [58] introduced BRAQUE (BRowse And QUery Environment) as
a system that allowed the navigation of a document collection modelled as a
relationship lattice [59], strongly resembling the features of a concept lattice.
At the AT&T Bell labs, Ginsberg [34] introduced WorldViews, consisting “of a
system for automatic document indexing, an information retrieval system and a
user interface” using a taxonomy modelled as a lattice structure. In the work of
Bosman et al. [5], a similar approach to Ginsberg’s WorldLattice was presented
for creating a “Hyperindex” of a faceted hierarchical thesaurus using a lattice
structure. The lattice supported a “query-by-navigation” approach where the
user could “refine” or “enlarge” a query. In the domain of software engineer-
ing, Mili et al. [53] proposed a lattice-based index of software descriptions for

3 Actually, in [3] there is an entry of two paragraphs - in a 500 pages book - about
lattices in Chap. 10 about user interfaces and visualization, referencing [9,58] as
systems for query reformulation (expansion).
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retrieval purposes based on software reuse needs. The authors describe two types
of retrieval namely, “exact” which resembles the Boolean retrieval model and
“approximate” measuring “proximity” w.r.t a given query.

3.2 FCA-Based IR Systems

The proposition of Godin et al. [36] revealed the capabilities of concept lattices for
indexing and retrieval as an alternative to Boolean querying and hierarchical clas-
sifications. This work was built over the initial user interaction design proposed by
the same authors years before [35,37]. A major highlight in this work is the efficient
browsing capabilities generated from a document collection by the construction
of a concept lattice which actually represents a query space. In this manner, the
user can pose different queries without explicitly indicating a set of terms to be
sought within documents. An important advantage of this model is that users do
not have to be completely familiarised with the lexicon used for indexing.

In the same year, Carpineto and Romano presented their system GALOIS
[7] for conceptual clustering4 which would be later implemented for information
retrieval purposes through a query browsing interface called ULYSSES [9,14].
ULYSSES develops further in the model for the unification of querying and
browsing plus a third procedure called “bounding”. The latter allows the user
to restrict the search space within the concept lattice (deriving a sub-lattice) by
including into the query sentences such as “all documents indexed by a given
term m” (i.e. contained in formal concepts (A,B)s.t.(A,B) ≤ (m′,m′′)) and “all
documents not indexed by a given term m” (i.e. contained in formal concepts
(A,B) such that B∩m′′ = ∅). Experimentation showed similar results to a plain
Boolean retrieval system.

As Fairthorne proposed [29], in an ideal world we could take the descriptions
of all the documents in a library and create a map of all the possible requests
that could be made (this map would be the P space in Fig. 1). However, this is a
rather an unlikely scenario as the size of such map grows “faster than exponen-
tially” w.r.t. the number of categories [63]. Instead we would prefer to generate a
smaller P space that represents the “most meaningful” queries5. For this reason,
two main strategies were embraced. Firstly, the use of an authoritative source
such as the thesaurus-based WordLattice in [34] which would model in a more
concise manner the space P . Secondly, the elicitation of this space from docu-
ment features (lexical properties [5], metadata [58] or terms [14,36]).

An Anecdote. Mooers described the size of the search space of a document
collection (L in Fig. 1) of one million documents as the number of subsets we can
construct from it, being the staggering figure of 10310,000 [54]. This remembered
one of the authors the description of a googol (10100), a number proposed in
1938 by mathematician Edward Kasner to exemplify the difference between “an
4 Actually, GALOIS is an incremental algorithm for building a concept lattice.
5 It is worth mentioning that the “meaningfulness” of a request is a matter of perspec-

tive. What is meaningful in a domain may not be in another. Meaning also changes
with time.
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unimaginably large number and infinity”6. While a googol is much larger than
the number of particles in the observable universe7, we can see that the L space
is much larger than a googol. Apparently, we were not the first ones to step
on this interesting fact. In 1997, a couple of entrepreneurs looking for a name
for their search engine, in an attempt to represent the “indexing of an immense
amount of data”8, registered the misspelled version “Google”.

4 Enriching the Description Space Through External
Knowledge Sources

In the FCA-IR model explained in Sect. 2.1, attributes are descriptors obtained
from the set of documents. As previously explained, this space (P ) can be very
large but other than that it can suffer from other problems. For example, it can
be non-representative of the document set by different reasons (poor document
description, poor vocabulary, incompleteness, etc.). Regarding these issues, it may
be useful to use an external knowledge source to complement document descrip-
tions. For example, if we are interested in considering synonymia for indexing (e.g.
relating documents referring to “concept lattices” and “Galois lattices”) we may
use a thesaurus. If we are interested in considering hierarchical relations (e.g. relat-
ing documents referring to “monkeys” with those referring to “primates”) we may
use a taxonomy. If we are interested in considering logical implications (e.g. relat-
ing documents written by a French author to those written by a German author
using the label “European literature”) we may use an ontology.

With these concerns, in 1996 Carpineto and Romano proposed a modified
version of the GALOIS system to include “background information” in the form
of a thesaurus for document indexing using FCA [8]. The modification was made
in the order relation between formal concepts (≤K) using the order between
document descriptors (≤T ) induced by a thesaurus as follows:

(A1, B1) ≤K (A2, B2) ⇐⇒ ∀m2 ∈ B2,∃m1 ∈ B1 s.t. m1 ≤T m2

Furthermore, they redefined the intersection between two descriptor sets as:

B1 ∩∗ B2 = {mi | mi ≥T m1,m2,m1 ∈ B1,m2 ∈ B2,mi ∈ T ,

�mj ∈ T , s.t. mi ≥T mj ≥T m1,m2}

From the example in Table 1, consider a thesaurus T with the relations
arthroscopy, laparoscopy ≤T endoscopy9. Then, {laparoscopy} ∩∗ {arthroscopy} =

{endoscopy} and we can build the formal concept ({d1, d2, d3, d6, d7, d8, d9},{endoscopy}).

6 Wikipedia article - http://en.wikipedia.org/wiki/Googol.
7 Video about googol from the University of Nottingham - https://www.youtube.com/

watch?v=8GEebx72-qs.
8 David Koller on the origin of the name “Google” http://graphics.stanford.edu/∼dk/

google name origin.html.
9 Wikipedia categories http://en.wikipedia.org/wiki/Category:Endoscopy.

http://en.wikipedia.org/wiki/Googol
https://www.youtube.com/watch?v=8GEebx72-qs
https://www.youtube.com/watch?v=8GEebx72-qs
http://graphics.stanford.edu/~dk/google_name_origin.html
http://graphics.stanford.edu/~dk/google_name_origin.html
http://en.wikipedia.org/wiki/Category:Endoscopy
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Consider this analogous to including in the formal context the attribute
endoscopy and the relation where each document related either to laparoscopy
or arthroscopy is also related to endoscopy.

The authors argue that this approach would lower the complexity associ-
ated to computing the concept lattice compared to the more simple approach
of adding the thesaurus terms to the initial formal context. In 1997, Uta Priss
presented several propositions for a FCA-based IR system in which three main
components were discussed [62]. Firstly, a combined formal context comprising
document descriptors and other metadata components (e.g. publisher, author,
etc.). These kind of fields were coded by many-valued formal contexts which were
later scaled (see attribute scaling in [33]). The second component described the
inclusion of a thesaurus within the formal context by two approaches, namely by
mapping document-descriptor pairs to thesaurus elements, and by constructing
a combined formal context considering documents, descriptors and thesaurus
elements in a relational concept analysis (RCA) manner (this RCA proposition
is formally different from the one presented by Huchard et al. [40]). The third
component referred to the use of “nested line diagrams” to represent in a bet-
ter manner the combination of different concept lattices in an integrated view
offering different description levels within a document collection.

Some of these ideas were later revisited by Cole and Eklund in 1999 [21] where
the authors proposed an interactive e-mail retrieval system based on FCA. The
formal context was built using “classifier outputs” as attributes which the user
was asked to order in a hierarchy (G is a set of emails). Conceptual scaling was
applied to many-valued attributes deriving views (sub-lattices) that were more
manageable for the user to browse than the concept lattice of the entire email col-
lection. In 2003, the authors (plus Gerd Stumme) would propose an extension of
their work into a fully integrated system called “HIERMAIL” [22] in which nested-
line-diagrams were used to represent conceptual scales (instead of sub-lattices) for
knowledge discovery over an e-mail collection. Incidentally, Cole and Eklund had
proposed a “folding” and “unfolding” mechanism (using the same notion of con-
ceptual scales) for the concept lattice in a previous work oriented to model a doc-
ument retrieval system in which documents were indexed by a medical thesaurus
called SNOMED [20], although these procedures were not clearly defined.

A similar approach for domain-specific interactive FCA-based IR systems
was presented by Mihye and Compton in 2001 [43] and later extended in [44].
An interesting point of this work is that it addresses the fact that taxonomies
used to index documents are not static and should evolve through time. For this
reason, the concept lattice is used not only to retrieve documents but also to aid
users in the annotation of documents and in the evolution of the taxonomy.

5 Relevance Feedback and Automatic Retrieval

5.1 Relevance Feedback

Other than choosing and modelling the kind of data to be used as attributes in
a formal context, an important factor in the efficiency of a retrieval system is to
help the user closing what is usually called the knowledge or “the cognitive gap”
[42]. The cognitive gap describes the distance between the space occupied by the
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d1 

d2 

d3 
d4 

Q 

(a) Vector-space model example. Documents
(d1, d2, d3, d4) and the query Q are represented
as points. Axis are arbitrary description spaces.
Dashed lines represent the distance between the
query and documents d2 and d4. The latter is
closer to the query than the former meaning that
it is more “relevant” for retrieval purposes.

1

{Harry Potter}
×

{book,movie,wizard,
school,kids}

2

{Wizard of Oz}
×

{book,movie,wizard,
girl,lion,tinman,scarecrow}

0

{Harry Potter,
Wizard of Oz }

×
{book,movie,wizard}

(b) Example of relevance feedback.

Fig. 2. Retrieval paradigm examples.

actual information needs of a user and the space occupied by its ability to describe
its information needs. For example, consider a user searching for “the book which
they made a film about and a wizard appears on it”. Somebody could answer “Is it
about a girl, a lion, a tin man and a scarecrow?” to which the user may answer “No,
there are some kids in a school”. Then, the answer could be narrowed down to the
7 books of the “Harry Potter” saga. Here we can see that the cognitive gap can be
represented as the distance between the initial query, possibly with the keywords
‘‘book film wizard’’, which the user is able to provide, and the query that he
actually needs to provide which is ‘‘Harry Potter book’’.

In 1971, Rocchio proposed his famous relevance feedback model to overcome
this issue [65]. In a nutshell, we can see relevance feedback as a “query calibra-
tion” system using extra user inputs. In the previous example, the initial user
query was very abstract. Somebody (possibly the librarian), with knowledge
about fantasy books asked the user a question based on the assumption that the
answer may be “The wizard of Oz”. The negative answer provides a feedback of
relevance (i.e. “The wizard of oz” is not relevant) which is used to generate the
query: book film wizard school -‘‘the wizard of oz’’10.

In FCA terms, we can represent this scenario as the join of two object con-
cepts as depicted in Fig. 2(b). The initial query yields concept 0 for which the
system may propose concept 1 or concept 2.

This approach was proposed by Carpineto and Romano in 1998 through
their system REFINER [10]. The user pose a query to which the system gener-
ates a “virtual concept in the lattice”. By the use of the upper and the lower
cover of the virtual concept, REFINER is able to propose minimal query refine-
ments/enlargements (resp.) to the user. Experimental results showed significant

10 In Google query syntax, ‘-’ is used for excluding terms - http://goo.gl/7RZrQl.

http://goo.gl/7RZrQl
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better results in the search time employed by a user w.r.t. the Boolean IR model.
In 2002, Grootjen et al. [38] proposed a similar rougher approach called “con-
ceptual relevance feedback” further developed as a query expansion method [39]
in the lines of pseudo-relevance feedback [47].

In 2007, Nauer and Toussaint [55] presented a model for “explicit relevance
feedback”11 over a standard Web search engine (such as Google) supported over
a concept lattice. This model consisted of a constant iteration of the formal con-
text by “extension” and “reduction” procedures. Extensions were made when-
ever the user submitted a new query or gave a positive assessment. Reductions
were performed whenever the user gave a negative assessment. Explicit relevance
feedback was also supported in a previous work by Martines and Loisant [49]
for concept lattice-based image retrieval in a similar manner. Users were asked
to evaluate images as “good” or “bad”. An example of “implicit relevance feed-
back” can be found in the work of Ducrou et al. [26], supported by a procedure
called “query-by-example”. Instead of asking the user to give explicit relevance
assessments, the query is modified by a sample set manually created by the user.

5.2 Ranking Documents

So far we have reviewed approaches that assist the user in navigating the query
space and deciding what is or is not relevant. This is usually achieved by provid-
ing an interface that helps them retrieve parts of the concept lattice by the use
of “query-by-navigation”, “query-by-browsing”, “relevance feedback” or “query-
by-example”. This however is not what we are used to when dealing with search
engines. The “file search program” of any operating system, or the mechanics of
traditional Web search engines follows a very simple scenario. The user inputs a
query and the system outputs a list of documents already ordered by the “rele-
vance” w.r.t. that query. Thus, the system is provided with the notion of what
is relevant and what is not. For instance, in the vector-space model, documents
and queries are represented by points in an arbitrary Euclidean-space. “Rele-
vance” in this case may be represented by the distance between a query and a
document (the closer the document, the more relevant it is w.r.t. the query) as
shown in the example of Fig. 2(a) (explaining the meaning of the axis or why
the documents and the query are located in the space as they are is out of the
scope of this paper. For more information see [47]).

A similar notion was adopted by Carpineto and Romano in 2000 in what they
called concept lattice-based ranking (CLR) [11] for a fully automated retrieval
system. Using the REFINER model, the virtual concept representing the query
is placed in the concept lattice and a series of “concentric rings” around the
virtual concept yields a distance that allows to rank documents (e.g. in Fig. 2(b),
documents in concepts 1 and 2 - and not in concept 0 - are at distance 1, while
documents in their super-concepts would be at distance 2). Different measures
are also introduced in the work of Ducrou et al. [26] where instead of using

11 i.e. the user is explicitly asked to make relevance assessments in the system. Opposed
to “implicit relevance feedback”, where relevance assessments are “inferred” by the
interaction of the user with the system.
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the concept lattice structure, differences in extent and intent sets are taken
into account. In 2014, Codocedo et al. [18] presented a system for lattice-based
ranking using notions of case-based reasoning. This approach inspired in CLR
uses the concept lattice to find suitable “query modifications” through pivotal
elements called “cousin concepts”. Query modifications are evaluated w.r.t. a
semantic distance to the original query yielding automatic document ranking.
Experimental evidence suggests that such an approach leads to better precision
w.r.t. the Boolean querying model and CLR.

6 Applications and Systems

6.1 Applications

Semantic Retrieval. How to mix semantic technologies (what is known as
semantic web) with IR techniques is still an open question. It is fair to say
that modern IR systems are more focused on how to retrieve documents from
very large collections than to provide reasoning or inferring capabilities to their
engines. Nevertheless, this has not hindered the adoption of some of the semantic
web notions such as the knowledge graph in the Google Web engine12. Regard-
ing FCA-based IR approaches we can highlight the work of Messai et al. [50]
presented in 2005 adapting the ideas of query refinement to support the use of
ontologies for generalization purposes. In 2011, Codocedo et al. [17] presented
an application of FCA to index songs using semantic similarity among keywords
in a concept lattice. In 2012, Ferré et al. [30] introduced LISQL, a query lan-
guage for logical information systems supporting complex relational properties
among objects. These ideas were materialised in a geographical information sys-
tem. Finally, in 2014 the work of Alam et al. [2] presents the concept lattice as a
classification of SPARQL answers to provide views on linked open data retrieval
system.

Recommender Systems (RSs). RSs have become increasingly popular at
the point that currently, it is an independent research community. Nevertheless,
RSs have their roots in IR sharing many notions such as indexing, retrieval and
ranking. To phrase it in the terms of [68], an important affordance of FCA for
RSs is the characterization it can provide to recommendations, i.e. it can explain
why a certain item is being recommended, so the user can have a better expe-
rience with the system. This fact was addressed by [41] in 2008 which proposed
a system for “well-interpretable recommendations based on FCA” for advertise-
ment keywords using association rules. Previously, in 2006 [23] FCA was used
as a method to pre-calculate groups of users that agree in certain groups of
items. The notion of query concept is in here replaced by the “entry-level con-
cept” of a user or an item. Experimental results suggest that FCA alleviates
the otherwise hard task of finding the neighbourhood of a given item or user in

12 http://www.google.com/insidesearch/features/search/knowledge.html.

http://www.google.com/insidesearch/features/search/knowledge.html
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the dataset. In 2013, Senatore et al. [66] proposed a recommender system based
on an extension of FCA (namely, “Fuzzy FCA” or more precisely, FCA with
fuzzy attributes) allowing to include degrees of similarity between users (i.e. not
just Boolean relations for rating the same item) providing ranked recommended
items. Finally, in 2014 Castellanos et al. [15] presented an approach based on [23]
to extract preferences from a user activity log and derive semantically-enhanced
item recommendations from them.

Others: For the sake of brevity, in here we give a summarised overview of
some other applications of FCA-based IR systems. File Systems (FS) are
an interesting application in low-level information retrieval (operating system
level). FCA provides a more dynamic interaction with the file system structure
where the FS can be represented as a lattice instead of a tree [31,48,67] Source
code location is an important task in software engineering as it enables code
refactoring, among other applications [1,53,61]. Other interesting applications
are mathematical expression search [57] and multimedia indexing [26,49].

6.2 FCA-Based IR Systems

FaIR (2000) by Uta Priss [63]: A faceted IR system in which formal concepts
of documents and descriptors are mapped to thesauri entries. It features a query
language built on top of the set of formal concepts with the logical operators
AND, OR, NOT .

CREDO (2004) by Carpineto and Romano [12]: CREDO works as the front-
end of a Web search engine (such as Google or Yahoo). It implements some of
their ideas in query expansion presented in REFINER providing context to an
otherwise plain-list of ranked documents. Extensions of CREDO included its
port to mobile devices (CREDINO and SmartCREDO [6]).

JBrainDead (2004) by Cigarrán et al. [16]: A FCA-based system that com-
bines standard IR techniques such as term weighting and ranking for automated
attribute selection. We highlight in this work the novel evaluation metrics con-
sidering the effort needed to find documents within a concept lattice derived
from the number of concepts to visit and the percentage of those that represent
relevant results.

Mail-Sleuth and the Sleuth Family (2004–2009), Ducrou, Eklund et al.:
Building on previous work, the authors present a commercial tool called Mail-
Sleuth [28], a system for searching and browsing personal email collections under
the assumption that novice users are able to manage a line diagram of a lattice
structure. The authors extended these ideas to different application domains:
ImageSleuth [26] for image browsing and retrieval (discussed in the previous
sections), DVDSleuth [24] for browsing Web catalogues, SearchSleuth [25] for
browsing results from a standard Web search engine and AnnotationSleuth [27]
a system designed for browsing a virtual-museum collection. In 2014, Wray and
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Eklund presented the application “A place for art” [70] which followed in the
steps of AnnotationSleuth with a much more elaborated user interface.

FooCA (2005) by Koester [45]: In the steps of CREDO, it also relied in the
assumption that users can manage line diagrams of concept lattices, as well as
interacting directly with the formal context.

BR-Explorer (2006) by Messai et al. [51]: An algorithm for document retrieval
the notions of “query concept”, “pivoting” and “ranking” for bioinformatic
datasets.

Camelis (2007) by Sebastian Ferré: Based on “a generalization of FCA”,
named Logical Concept Analysis (LCA), where attributes are replaced by logi-
cal formulas. Designed to cover four main aspects: mixing query and navigation,
expressive query language, genericity in data types, and efficiency for large collec-
tions. Camelis integrates several taxonomies different in nature, e.g. geographical
(Paris � France), numeric (1999 ≤ 2000) and conceptual (ICFCA � Conference),
allowing complex querying and other tasks previously discussed, such as “query-
by-navigation” and “query by example”. An extension of Camelis called Sewelis
(or Camelis 2) was introduced in [30] for “Query-based Faceted Search” on linked
data, introducing an expressive query language called LISQL (Logical Informa-
tion System Query Language).

CreChainDo (2007) by Nauer and Toussaint [56]: A FCA-based IR system
supporting explicit relevance feedback (details in Sect. 5).

7 Conclusions

Two related topics have been left out of the scope of this review while they
remain of extreme importance for FCA-based IR approaches. Firstly, the use of
complex data for document indexing. Several approaches have proposed more
sophisticated models than the standard Boolean retrieval model defined at the
beginning of this article. Mainly, they rely in three FCA extensions for dealing
with complex data, Logical Concept Analysis such as in [32], Fuzzy FCA such as
the case of [66] and Pattern Structures, such as the case of [19] or [52] (the latter
does not explicitly apply pattern structures, but the notions are very similar).
Secondly, the application of FCA to large collections of documents or big data
(an interesting discussion is provided in [46]). Both of these matters deserve a
more extensive treatment than the one we could give them here.

Finally, this paper has presented an exhaustive review of FCA-based IR
approaches focusing in the shared ideas and notions they share. We have shown
how these ideas can be applied in a variety of domains and applications ranging
from standard Boolean retrieval to semantic retrieval or file systems.
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Abstract. We consider the problem of bonds between L-fuzzy contexts
over different complete residuated lattices. For this purpose we define
(l, k)-connection and dual (l, k)-connection – pairs of mappings between
the residuated lattices based on Krupka’s results on factorizations of
complete residuated lattices. We show that the bonds defined using the
dual (l, k)-connection have very natural properties.
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1 Introduction

We study the problem of bonding formal fuzzy contexts over different structures
of truth-degrees. This problem was addressed in [12]1 where the authors used
residuation-preserving isotone Galois connections between complete residuated
lattices to define bonds. We find the definition of residuation-preserving isotone
Galois connection unnecessarily strict for its purpose and we take a new look
at it.

Similarly as in [12] we look for an isotone Galois connection between two com-
plete residuated lattices. We apply Krupka’s results on factorization of residuated
lattices [13] to find looser and more flexible requirements for the correspondence.
As a result we obtain two interrelated correspondences between complete resid-
uated concept lattices — (l, k)-connection and dual (l, k)-connection. Both of
them can be considered to be a variant of the residuation-preserving isotone
Galois connection from [12]. Using the dual (l, k)-connection we define bonds
between formal fuzzy contexts over different complete residuated lattices.

The paper is organized as follows. In Sect. 2, we recall fundamental notions
used in the paper. Sections 3 and 4 introduce the (l, k)-connection and dual the
(l, k)-connection, respectively, and describe their properties. In Sect. 5 we utilize
the new connections in formal concept analysis to define bonds between formal
fuzzy contexts over different residuated lattices. Finally, Sect. 6 summarizes our
conclusions and ideas for future research in this area.
1 See [12] for motivations of the present research.
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2 Preliminaries

2.1 Residuated Lattices, Fuzzy Sets, and Fuzzy Relations

We use complete residuated lattices as basic structures of truth-degrees. A com-
plete residuated lattice is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

(i) 〈L,∧,∨, 0, 1〉 is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is
commutative, associative, and a ⊗ 1 = a for each a ∈ L;

(iii) ⊗ and → satisfy adjointness, i.e. a ⊗ b � c iff a � b → c.

0 and 1 denote the least and greatest elements. The partial order of L is
denoted by �. Throughout this work, L denotes an arbitrary complete residuated
lattice.

Elements a of L are called truth degrees. Operations ⊗ (multiplication) and
→ (residuum) play the role of (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a ∈ L as

¬a = a → 0, (1)

and binary operation of biresiduum ↔ as

a ↔ b = (a → b) ∧ (b → a) for each a, b ∈ L (2)

An L-set (or L-fuzzy set) A in a universe set X is a mapping assigning to each
x ∈ X some truth degree A(x) ∈ L. The set of all L-sets in a universe X is
denoted LX .

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A,B ∈ LX is an L-set A ∩ B in X such that (A ∩ B)(x) =
A(x) ∧ B(x) for each x ∈ X, etc. An L-set A ∈ LX is also denoted {A(x)/x | x ∈
X}. If for all y ∈ X distinct from x1, x2, . . . , xn we have A(y) = 0, we also write

{A(x1)/x1,
A(x2)/x2, . . . ,

A(xn)/xn}.

An L-set A ∈ LX is called crisp if A(x) ∈ {0, 1} for each x ∈ X. Crisp L-sets can
be identified with ordinary sets. For a crisp A, we also write x ∈ A for A(x) = 1
and x �∈ A for A(x) = 0. An L-set A ∈ LX is called empty (denoted by ∅) if
A(x) = 0 for each x ∈ X.

Binary L-relations (binary L-fuzzy relations) between X and Y can be
thought of as L-sets in the universe X×Y . That is, a binary L-relation I ∈ LX×Y

between a set X and a set Y is a mapping assigning to each x ∈ X and each
y ∈ Y a truth degree I(x, y) ∈ L (a degree to which x and y are related by I).

Various composition operators for binary L-relations were extensively studied
by [7]; we will use the following three composition operators, defined for relations
A ∈ LX×F and B ∈ LF×Y :
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(A ◦ B)(x, y) =
∨

f∈F

A(x, f) ⊗ B(f, y), (3)

(A � B)(x, y) =
∧

f∈F

A(x, f) → B(f, y), (4)

(A � B)(x, y) =
∧

f∈F

B(f, y) → A(x, f). (5)

All of them have natural verbal descriptions. For instance, (A ◦ B)(x, y) is the
truth degree of the proposition “there is a factor f such that f applies to object x
and attribute y is a manifestation of f”; (A�B)(x, y) is the truth degree of “for
every factor f , if f applies to object x then attribute y is a manifestation of f”.
Note also that for L = {0, 1}, A ◦ B coincides with the well-known composition
of binary relations.

2.2 Formal Fuzzy Concept Analysis

An L-context is a triplet 〈X,Y, I〉 where X and Y are (ordinary nonempty) sets
and I ∈ LX×Y is an L-relation between X and Y . Elements of X are called
objects, elements of Y are called attributes, I is called an incidence relation.
I(x, y) = a is read: “The object x has the attribute y to degree a.”

Consider the following pair 〈↑, ↓〉 of operators ↑ : LX → LY and ↓ : LY → LX

induced by an L-context 〈X,Y, I〉 as

A↑(y) =
∧

x∈X

A(x) → I(x, y) and B↓(x) =
∧

y∈Y

B(y) → I(x, y) (6)

for all A ∈ LX and B ∈ LY .
Furthermore, denote the set of fixed points of 〈↑, ↓〉 by B↑↓(X,Y, I), i.e.

B↑↓(X,Y, I) = {〈A,B〉 ∈ LX × LY | A↑ = B, B↓ = A}. (7)

The set of fixed points endowed with �, defined by

〈A1, B1〉 � 〈A2, B2〉 if A1 ⊆ A2 (equivalently B2 ⊆ B1)

is a complete lattice [2,15], called a standard L-concept lattice associated with
I, and its elements are called formal concepts. In a formal concept 〈A,B〉, the A
is called an extent, and B is called an intent. The set of all extents and the set
of all intents are denoted by Ext↑↓ and Int↑↓, respectively. That is,

Ext↑↓(X,Y, I) = {A ∈ LX | 〈A,B〉 ∈ B↑↓(X,Y, I) for some B},

Int↑↓(X,Y, I) = {B ∈ LY | 〈A,B〉 ∈ B↑↓(X,Y, I) for some A}.
(8)

An L-relation β ∈ LX1×Y2 is called an L-bond2 from L-context 〈X1, Y1, I1〉 to
L-context 〈X2, Y2, I2〉 if

Ext↑↓(X1, Y2, β) ⊆ Ext↑↓(X1, Y1, I1),

Int↑↓(X1, Y2, β) ⊆ Int↑↓(X2, Y2, I2).
(9)

2 The notion of L-bond was introduced in [11]; however we adapt its definition the
same way as in [8,9].
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3 (l, k)-Connections Between Complete Residuated
Lattices

Similarly as in [12] we look for a pair of mappings λ : L1 → L2 and κ : L2 → L1

which form an isotone Galois connection. Set of its fixpoints with order defined as

〈a1, a2〉 � 〈b1, b2〉 iff a1 � b1 (or equivalently a2 � b2) (10)

is a complete lattice. We denote it as L〈λ,κ〉. We need to assure that an adjoint
pair exists in L〈λ,κ〉 and this pair is related to adjoint pairs of both, L1 and L2.
To this purpose we apply Krupka’s results on factorization of residuated lattices
[13]. In fact, the problem can be reformulated as finding an isomorphism between
some factorizations of L1 and L2 as depicted in Fig. 1.

Let us recollect Krupka’s approach to factorization of complete residuated
lattices. Krupka defines the factorization by cuts of biresiduum as follows. Con-
sider a complete residuated lattice L, a truth degree e ∈ L, and mappings

ae =
∨

{b ∈ L | a ↔ b � e} = e → a, (11)

ae =
∧

{b ∈ L | a ↔ b � e} = e ⊗ a. (12)

For each a ∈ L define intervals

[a]e = [ae, (ae)e] = [e ⊗ a, e → (e ⊗ a)],
[a]e = [(ae)e, a

e] = [e ⊗ (e → a), e → a].

Denote L/e = {[a]e | a ∈ L}(= {[a]e | a ∈ L}). Then we have the following
result.

Theorem 1 ([13]). L/e = 〈L/e,∧,∨,⊗,→, 0, 1〉, where ∧ and ∨ are given by
the order

B1 � B2 iff
∨

B1 �
∨

B2

and

B1 ⊗ B2 = [
∨

B1 ⊗
∨

B2]e,

B1 → B2 = [
∨

B1 →
∨

B2]e,

0 = [0, e → 0],
1 = [e, 1]

for each B1, B2 ∈ L/e, is a complete residuated lattice.

Following lemma shows alternative ways to define ⊗ and → in L/e
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Fig. 1. Six-element residuated lattice, with ⊗ and → as showed in the bottom part
(011010:00A0B0BCAB in [6]), factorized by c-cuts of biresiduum (left), five-element
�Lukasiewicz chain (111:000AB in [6]) factorized by 0.5-cuts of biresiduum (right), and
their common lattice of factors (middle).

Lemma 1 ([13]). For any B1, B2 ∈ L/e we have
∨

B1 ⊗
∧

B2 =
∧

B1 ⊗ B2,
∨

B1 →
∨

B2 =
∨

(B1 → B2),
∧

B1 →
∧

B2 =
∨

(B1 → B2).

Note that the operators (11) and (12) form an isotone Galois connection on the
complete residuated lattice L. We extend this approach to have an isotone Galois
connection between two (different) complete residuated lattices.

Definition 1. Let L1=〈L1,∧1,∨1,⊗1,→1, 01, 11〉,L2=〈L2,∧2,∨2,⊗2,→2, 02, 12〉
be complete residuated lattices, let l ∈ L1, k ∈ L2 and let λ : L1 → L2, κ : L2 →
L1 be mappings, such that

1. 〈λ, κ〉 is an isotone Galois connection between L1 and L2,
2. κλ(a1) = l →1 (l ⊗1 a1) for each a1 ∈ L1,
3. λκ(a2) = k ⊗2 (k →2 a2) for each a2 ∈ L2.
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Fig. 2. (c, 0.5)-connection between the residuated lattices from Fig. 1.

We call 〈λ, κ〉 an (l, k)-connection from L1 to L2.

Figure 2 shows an example of (l, k)-connection corresponding to the factor-
izations in Fig. 1.

Remark 1.

(a) A pair of identities 〈id, id〉 on a complete residuated lattice L is (1, 1)-
connection from L to L.

(b) It is worth noting that an (l, k)-connection from L1 to L2 is not uniquely
given by the pair of truth degrees l ∈ L1, k ∈ L2 as more than one isomor-
phism between L1/l and L2/k can exist. For example, consider four-element
complete residuated lattice L in Fig. 3 (left) with ⊗ = ∧ and → as in Fig. 3
(right) and mapping f : L → L given by f(0) = 0, f(a) = b, f(b) = a, and
f(1) = 1. Then 〈idL, idL〉 and 〈f, f〉 are both (1, 1)-connections from L to L.

Utilizing Theorem 1 we can find particular adjoint pairs in the lattice of fixed
points of 〈λ, κ〉.
Theorem 2. Denote by L〈λ,κ〉 the set of all fixed points of (l, k)-connection
〈λ, κ〉 between L1 and L2.

1. The algebra 〈L〈λ,κ〉,∧,∨,⊗,→, 0, 1〉 where ∧, ∨, 0, and 1 are given by the
order (10) and

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →1 b1, λ(a1 →1 b1)〉,
〈a1, a2〉 ⊗ 〈b1, b2〉 = 〈l → (l ⊗1 a1 ⊗1 b1), λ(a1 ⊗1 b1)〉

is a complete residuated lattice.
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Fig. 3. Complete residuated lattice from Remark 1(b); (0:a0b in [6])

2. The algebra 〈L〈λ,κ〉,∧,∨,�,↘, 0, 1〉 where ∧, ∨, 0, and 1 are given by the
order (10) and

〈a1, a2〉 ↘ 〈b1, b2〉 = 〈κ(k ⊗2 (a2 →2 b2)), k ⊗2 (a2 →2 b2)〉
= 〈κ((k →2 b2) →2 (k →2 b2)), (k →2 a2) →2 (k →2 b2)〉,

〈a1, a2〉 � 〈b1, b2〉 = 〈κ(a2 ⊗2 (k →2 b2)), a2 ⊗2 (k →2 b2)〉
= 〈κ((k →2 a2) ⊗2 b2), (k →2 a2) ⊗2 b2〉

is a complete residuated lattice.

Proof. Directly from Definition 1, Theorem 1 and Lemma 1. ��
Remark 2. For sake of completeness, we show how the meet, join, 0, and 1 given
by the order (10) are defined in L〈λ,κ〉:

〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧1 b1, k ⊗2 ((k →2 a2) ∧2 (k →2 b2))〉, (13)
〈a1, a2〉 ∨ 〈b1, b2〉 = 〈l →1 ((l ⊗1 a1) ∨1 (l ⊗1 b1)), a2 ∨2 b2〉, (14)

0 = 〈l → 01, 02〉, (15)
1 = 〈11, k〉. (16)

It is easy to see, that the two ajdoint pairs, 〈⊗,→〉 and 〈�,↘〉, from Theorem 2
can be different. As an example consider L1 being three-element �Lukasiewicz
chain, L2 being three-element Gödel chain and λ and κ being identities on L1 =
L2. The related factorizations, L1/1 and L2/1 are the three-element �Lukasiewicz
chain and the three-element Gödel chain, respectively, again. Clearly, their
adjoint pairs are different.

We call the (l, k)-connections whose factorizations produce the same adjoint
pair residuation-preserving. The following corollary shows that for residuation-
preserving (l, k)-connection 〈λ, κ〉 we can specify the adjoint pair on the lattice
of its fixed points without the mappings 〈λ, κ〉.
Corollary 1. Let 〈λ, κ〉 be a residuation-preserving (l, k)-connection from L1

to L2. The algebra L〈λ,κ〉 = 〈L〈λ,κ〉,∧,∨,⊗,→, 0, 1〉 where ∧,∨, 0, 1 are given by
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the order (10) and

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →1 b1, k ⊗2 (a2 →2 b2)〉 (17)
= 〈a1 →1 b1, k ⊗2 ((k →2 a2) →2 (k →2 b2))〉, (18)

〈a1, a2〉 ⊗ 〈b1, b2〉 = 〈l →1 (l ⊗1 a1 ⊗1 b1)a2 ⊗2 (k →2 b2)〉 (19)
= 〈l →1 (l ⊗1 a1 ⊗1 b1), (k →2 a2) ⊗2 b2〉 (20)

is a complete residuated lattice.

Proof. Directly from Theorem 2 and the property of residuation-preservation,
that is ⊗ = � and →=↘. ��
The following theorem provides more practical characterization of residuation-
preserving (l, k)-connections.

Theorem 3. Let 〈λ, κ〉 be an (l, k)-connection from L1 to L2. The following
statements are equivalent

(a) 〈λ, κ〉 is residuation-preserving.
(b) κ(k ⊗2 (λ(a) →2 λ(b))) = κλ(a) →1 κλ(b) holds true for any a, b ∈ L1.
(c) k ⊗2 (λκ(a) →2 λκ(b)) = λ(κ(a) →1 κ(b)) holds true for any a, b ∈ L2.

Proof. (sketch) Follows from the fact, that pairs in L〈λ,κ〉 are exactly pairs
〈κλ(a1), λ(a1)〉 for a1 ∈ L1 and exactly pairs 〈κ(a2), λκ(a2)〉 for a2 ∈ L2. ��
Note that left-hand sides of the equations in (b) and (c) of Theorem 3 contain an
inconvenient multiplication by k. This leads to a quite cumbersome definition
when we try to use them to define bonds between formal fuzzy context over
different residuated lattices. In the next section we provide an alternative to
(l, k)-connection which avoids this inconvenience.

4 Dual (l, k)-Connections Between Complete Residuated
Lattices

We defined (l, k)-connections as an isotone Galois connection to assure that the
set of its fixed points is a complete lattice and that it preserves order of both
L1 and L2. But another property of isotone Galois connection, namely its non-
duality, is undesired for our purpose, that is bonding fuzzy contexts over different
residuated lattices. To fix this, we make a small trick with the (l, k)-connections.
Instead of connecting upper bounds of intervals from L1/l with lower bounds of
intervals in L2/k, we simply connect upper bounds with upper bounds. To do
that we need to drop the requirement of being an isotone Galois connection.

Definition 2. Let L1 = 〈L1,∧1,∨1,⊗1,→1, 01,11〉, L2 = 〈L2,∧2,∨2,⊗2,→2,02,12〉
be complete residuated lattices, let l ∈ L1, k ∈ L2 and let λ′ : L1 → L2, κ

′ : L2 →
L1 be mappings, such that
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Fig. 4. Dual (c, 0.5)-connection between the residuated lattices from Fig. 1

– λ′ and κ′ are order-preserving,
– λ′κ′λ′(a1) = λ′(a1) and κ′λ′κ′(a2) = κ′(a2) for each a1 ∈ L1 and a2 ∈ L2,
– κ′λ′(a1) = l →1 (l ⊗1 a1) for each a1 ∈ L1,
– λ′κ′(a2) = k →2 (k ⊗2 a2) for each a2 ∈ L2.

We call the pair 〈λ′, κ′〉3 a dual (l, k)-connection from L1 to L2.

The notion of dual and non-dual (l, k)-connections are related in following
way.

Theorem 4.

(a) For each (l, k)-connection 〈λ, κ〉 from L1 to L2 there is a dual (l, k)-
connection 〈λ′, κ′〉 from L1 to L2, such that for each a1 ∈ L1, a2 ∈ L2,

〈a1, a2〉 ∈ L〈λ,κ〉 implies 〈a1, k →2 a2〉 ∈ L〈λ′,κ′〉,
〈a1, a2〉 ∈ L〈λ′,κ′〉 implies 〈a1, k ⊗2 a2〉 ∈ L〈λ,κ〉.

(21)

(b) For each dual (l, k)-connection 〈λ′, κ′〉 from L1 and L2 there is an (l, k)-
connection 〈λ, κ〉 from L1 to L2 such that (21) is satisfied.

Proof.

(a) Let 〈λ, κ〉 be an (l, k)-connection from L1 to L2. We show that 〈λ′, κ′〉 defined
as

λ′ = k →2 λ(a1) and κ′ = κ(k ⊗2 a2) (22)

for each a1 ∈ L1, a2 ∈ L2 is a dual (l, k)-connection from L1 to L2

which satisfies (21). Since λ and κ are order-preserving and → and ⊗ are
3 In this section, we consistently denote dual (l, k)-connections by prime, as 〈λ′, κ′〉,

to distinguish them from the non-dual (l, k)-connections introduced in the previous
section.
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both monotone in the second argument, the mapping λ′ and κ′ are order-
preserving as well. We have for each a1 ∈ L1, a2 ∈ L2

κ′λ′(a1) = κ(k ⊗2 (k →2 (λ(a1)))) = κλκλ(a1) = κλ(a1) = l →1 (l ⊗1 a1)

and

λ′κ′(a2)=k →2 λκ(k⊗2a2) = k →2 (k⊗2(k →2 (k⊗2a2))) = k →2 (k⊗2a2).

Finally, we have for each a1 ∈ L1, a2 ∈ L2

λ′κ′λ′(a1) = k →2 (k ⊗2 (k →2 λ(a1))) = k →2 λ(a1) = λ′(a1)

and

κ′λ′κ′(a2) = κ′λ′(κ(k ⊗2 a2) = κλκ(k ⊗2 a2) = κ(k ⊗2 a2) = κ′(a2).

Thus, 〈λ′, κ′〉 is a dual (l, k)-connection from L1 to L2. Now we show that
〈λ′, κ′〉 satisfies (21). Let 〈a1, a2〉 ∈ L〈λ,κ〉; from that we have

〈a1, k → a2〉 = 〈κ(a2), k →2 λ(a1)〉
= 〈κλ(a1), k →2 λ(a1)〉
= 〈κ′λ′(a1), λ′(a1)〉

showing 〈a1, k →2 a2〉 ∈ L〈λ′,κ′〉. The other part can be showed similarly.
(b) Similarly as in (a) we can show that 〈λ, κ〉 defined as

λ = k ⊗2 λ′(a1) and κ = κ′(k →2 a2) (23)

for each a1 ∈ L1, a2 ∈ L2 is a (l, k)-connection from L1 to L2 which satisfies
(21).

��
What we get from this trick are more convenient operations ∧ and → in the
complete residuated lattice L〈λ,κ〉 of fixed points of 〈λ, κ〉. That is important for
definition of bonds because concept-forming operators 〈↑, ↓〉 are defined using
the operations ∧ and →.

Theorem 5. The (l, k)-connections from L1 to L2 are in one-to-one correspon-
dence with dual (l, k)-connections from L1 to L2.

Proof. From proof of Theorem4 we have (22) and (23) providing ways to get a
dual (l, k)-connection from an (l, k)-connection and vice versa. We only need to
show, that they are mutually inverse. Let 〈λ, κ〉 be an (l, k)-connection from L1

and L2 and let 〈λ′, κ′〉 be a dual (l, k)-connection from L1 to L2 defined by (22).
Applying (23) we get

λ′′(a1) = k ⊗2 λ′(a1) = k ⊗2 (k →2 λ(a1)) = λκλ(a1) = λ(a1)
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for each a1 ∈ L1 and

κ′′(a2) = κ′(k →2 a2) = κ(k ⊗2 (k →2 a2)) = κλκ(a2) = κ(a2)

for each a2 ∈ L2. Similarly, the other composition can be showed to be an
identity. ��

From the above one-to-one correspondence we obtain the following theorem.

Theorem 6. Let be 〈λ′, κ′〉 dual (l, k)-connection from L1 to L2.

1. The algebra 〈L〈λ′,κ′〉,∧,∨,⊗1,→1, 0, 1〉 where ∧ and ∨ are given by the order
(10) and

〈a1, a2〉 → 〈b1, b2〉 = 〈a1 →1 b1, λ
′(a1 →1 b1)〉

〈a1, a2〉 ⊗ 〈b1, b2〉 = 〈l →1 (l ⊗1 a1 ⊗1 b1), λ′(a1 ⊗1 b1)))〉

is a complete residuated lattice.
2. The algebra 〈L〈λ′,κ′〉,∧,∨,�,↘, 0, 1〉 where ∧ and ∨ are given by the order

(10) and

〈a1, a2〉 ↘ 〈b1, b2〉 = 〈κ′(a2 →2 b2), a2 →2 b2〉
〈a1, a2〉 � 〈b1, b2〉 = 〈κ′(a2 ⊗2 b2), k →2 (k ⊗2 a2 ⊗2 b2)〉

is a complete residuated lattice.

Proof. Directly from Theorems 2 and 4 and its proof, and Theorem5. ��
For sake of completeness, we also show how ∧,∨, 0 and 1 are defined in the
complete residuated lattice from the previous theorem:

〈a1, a2〉 ∧ 〈b1, b2〉 = 〈a1 ∧1 b1, a2 ∧2 b2〉, (24)
〈a1, a2〉 ∨ 〈b1, b2〉 = 〈l →1 (l ⊗1 (a1 ∨1 b1)), k →2 (k ⊗2 (a2 ∨2 b2))〉, (25)

and 0 = 〈l → 01, k → 02〉, 1 = 〈11, 12〉.
Again, we want the two adjoint pairs from Theorem 6 to be equal. We define

the notion of residuation-preserving dual (l, k)-connection analogously, as in the
non-dual case.

Theorem 7. Let 〈λ′, κ′〉 be a dual (l, k)-connection from L1 to L2. The following
statements are equivalent

(a) 〈λ′, κ′〉 is residuation-preserving.
(b) κ′(λ′(a1) →2 λ′(b1)) = κ′λ′(a1) →1 κ′λ′(b1) holds true for any a1, b1 ∈ L1.
(c) λ′(κ′(a2) →1 κ′(b2)) = λ′κ′(a2) →2 λ′κ′(b2) holds true for any for any

a2, b2 ∈ L2.

Proof. Similar as proof of Theorem 3. ��
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Theorem 8. A dual (l, k)-connection 〈λ′, κ′〉 from L1 to L2 is residuation-
preserving if and only if its associated (l, k)-connection is residuation-preserving.

Proof. We have

κ′(λ′(a1) →2 λ′(b1)) = κ(k ⊗2 ((k →2 λ(a1)) →2 (k →2 λ(b1))))
= κ(k ⊗2 ((k ⊗2 (k →2 λ(a1))) →2 λ(b1)))
= κ(k ⊗2 ((λκλ(a1)) →2 λ(b1)))
= κ(k ⊗2 (λ(a1) →2 λ(b1)))

and
κ′λ′(a1) →2 κ′λ′(b1) = κλ(a1) →2 κλ(b1)

showing that the condition Theorem 7(b) is equivalent to Theorem 3(b). The
statement of Theorem 8 then follows from Theorems 3 and 7. ��
Remark 3. In the previous approach [12], the residuation-preserving Galois con-
nections are defined as isotone Galois connections, as in the case of (l, k)-connect-
ions. In the same time, they have to satisfy conditions similar to Theorem 7(b)
and (c), as in the case of dual (l, k)-connections. This is where we see the unnec-
essary strictness of the previous approach. Loosely speaking, the residuation-
preserving isotone Galois connections were wanted to be both, (l, k)-connections
and dual (l, k)-connections.

5 〈λ, κ〉-Bonds

In this section, we define bond between formal fuzzy contexts over different com-
plete residuated lattices L1 and L2 and describe their properties. More specif-
ically, we propose new bonds, called 〈λ, κ〉-bonds, which are based directly on
dual (l, k)-connections4 from L1 to L2. In this section we omit proofs due to
page limit.

Below, we define the 〈λ, κ〉-bonds as a special L〈λ,κ〉-relation β between X1

and Y2 and we define concept-forming operators � : LX1
1 → LY2

2 and � : LY1
2 →

LX2
2 induced by 〈λ, κ〉-bond by5

A�(y2) =
∧

2
x1∈X1

λ(A(x1)) →2 proj2(β(x1, y2)),

B�(x1) =
∧

1
y2∈Y2

κ(B(y2)) →1 proj1(β(x1, y2)).
(26)

Thus we can express the concept-forming operators 〈�,�〉 using the classic ones,
i.e. 〈↑, ↓〉, as

A� = (λ(A))↑proj2(β) and B� = (κ(B))↓proj1(β)

for each A ∈ LX1
1 and B ∈ LY2

2 .
4 In this section 〈λ, κ〉 always denotes a dual (l, k)-connection.
5 By proj1 and proj2 we denote projection of first and second entry of a pair, respec-

tively; i.e. proj1(〈a1, a2〉) �→ a1, proj2(〈a1, a2〉) �→ a2.
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Remark 4. The definition of concept-forming operators (26) actually follows as
a corollary of particular setting in the framework of supremum-preserving aggre-
gation structures. The framework was introduced in [3] and studied further in
[4] (see also [1,5,10,14] for related works). We will bring detailed explanation in
the full version of this paper.

Definition 3. Let L1,L2 be complete residuated lattices, 〈λ, κ〉 be dual (l, k)-
connection from L1 to L2, and let 〈X1, Y1, I1〉 and 〈X2, Y2, I2〉 be L1-context and
L2-context, respectively. We call β ∈ LX1×Y2

〈λ,κ〉 a 〈λ, κ〉-bond from 〈X1, Y1, I1〉 to
〈X2, Y2, I2〉 if the following inclusions hold:

Ext��(X1, Y2, β) ⊆ Ext↑↓(X1, Y1, κλ(I1)), (27)

Int��(X1, Y2, β) ⊆ Int↑↓(X2, Y2, λκ(I2)). (28)

Obviously, when L1 = L2 = L the pair of identities 〈id, id〉 on L is a (1, 1)-
connection between them and the 〈id, id〉-bonds correspond with L-bonds. The
following theorem explains the relationship of 〈λ, κ〉-bonds with the L-bonds
more generally.

Theorem 9. Let β ∈ LX1×Y2
〈λ,κ〉 . The following statements are equivalent.

(a) β is a 〈λ, κ〉-bond from 〈X1, Y1, I1〉 to 〈X2, Y2, I2〉;
(b) proj1(β) is a L1-bond from 〈X1, Y1, κλ(I1)〉 to 〈X2, Y2, κ(I2)〉;
(c) proj2(β) is a L2-bond from 〈X1, Y1, λ(I1)〉 to 〈X2, Y2, λκ(I2)〉;
(d) proj1(β) = λκ(I1) �1 Si and proj2(β) = Se �2 λκ(I2) for some Se ∈ LX1×X2

1

and Si ∈ LY1×X2
2 .

From Theorem 9(a)⇔(d) we have the following corollary.

Corollary 2. Set of all 〈λ, κ〉-bonds is an L〈λ,κ〉-closure system.

〈λ, κ〉-direct products and regular 〈λ, κ〉-bonds
In this part, we assume that L〈λ,κ〉 satisfies the double negation law, that is

(a → 0) → 0 = a for each a ∈ L〈λ,κ〉.

Note that it means

〈a1, a2〉 = (〈a1, a2〉 → 〈l →1 01, k →2 02〉) → 〈l →1 01, k →2 02〉
= 〈(a1 →1 (l →1 0)) →1 (l →1 0), (a2 →2 (k →2 02)) →2 (k →2 02)〉

for each 〈a1, a2〉 ∈ L〈λ,κ〉.

Definition 4. Let K1 = 〈X1, Y1, I1〉 be an L1-context, K2 = 〈X2, Y2, I2〉 be
an L2-context, and 〈λ, κ〉 be a dual (l, k)-connection from L1 to L2. We define
〈λ, κ〉-direct product K1 �〈λ,κ〉 K2 as L〈λ,κ〉-context 〈X2 × Y1,X1 × Y2,Δ〉 with

Δ(〈x2, y1〉, 〈x1, y2〉) = ¬〈κλI1(x1, y1), λI1(x1, y1)〉 → 〈κI2(x2, y2), λκI2(x2, y2)〉
for each x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2.



94 J. Konecny

Fig. 5. A L1-context K1 and L2-context K2 (top left and top right) with L1,L2 as
in Fig. 1; K1 �〈λ,κ〉 K2 (middle) with 〈λ, κ〉 as in Fig. 4.; Lattice of all 〈λ, κ〉-bonds
(bottom); the solid lined bonds are regular and the dotted lined bonds are irregular.
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Extents of the 〈λ, κ〉-direct product are 〈λ, κ〉-bonds:

Theorem 10. Let K1�〈λ,κ〉K2 = 〈X1 × Y2,X2 × Y1,Δ〉 be a 〈λ, κ〉-direct prod-
uct. Extents in Ext↑↓(X1 × Y2,X2 × Y1,Δ) are 〈λ, κ〉-bonds from K1 to K2.

Analogously, with the L-bonds there exist 〈λ, κ〉-bonds which are not extents of
the direct product K1 �〈λ,κ〉 K2 (see Fig. 5). A 〈λ, κ〉-bond is called regular if it
is extent of the direct product, otherwise it is called irregular.

6 Conclusions and Further Research

We revisited results on bonding formal fuzzy contexts in [12] and identified
the main flaw: the residuation-preserving isotone Galois connections between
complete residuated concept lattices had to fulfill two conflicting sets of require-
ments. In the present paper we studied two variants of residuation-preserving
isotone Galois connections emerging by altering one of the two conflicting sets
of requirements. One of the variants, namely dual (l, k)-connections, brought
very convenient definition of bonds between formal fuzzy contexts with different
structures of truth-degrees.

Our future research in this area includes:

– Extension of the present results to homogeneous bonds wrt. isotone concept-
forming operators and heterogeneous bonds studied in [8,9]. We are going
to generalize our previous results on bonds. Our preliminary observations
show that (l, k)-connections will be useful for homogeneous bonds wrt. iso-
tone concept-forming operators and for heterogeneous bonds.

– Connections between complete residuated lattices based on antitone Galois con-
nections.
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Abstract. We report on progress in characterizing K-valued FCA in
algebraic terms, where K is an idempotent semifield. In this data mining-
inspired approach, incidences are matrices and sets of objects and
attributes are vectors. The algebraization allows us to write matrix-
calculus formulae describing the polars and the fixpoint equations for
extents and intents. Adopting also the point of view of the theory of
linear operators between vector spaces we explore the similarities and
differences of the idempotent semimodules of extents and intents with
the subspaces related to a linear operator in standard algebra. This allows
us to shed some new light into Formal Concept Analysis from the point
of view of the theory of linear operators over idempotent semimodules.

1 Introduction

In [1] a generalization of Formal Concept Analysis was presented where
incidences have values in a complete idempotent semifield K . This is a com-
plete idempotent semiring with a multiplicative semiring structure where the
unit is distinct from top of the semiring, unlike in e.g. inclines. Logarithmic
costs and amplifications are concrete instances of idempotent semifields, apart
from their well attested use in morphological processing [2] and Markov chain
decoding [3]. This setting was later generalized to the other four types of Galois
connections or adjunctions arising from a single K-valued incidence [4,5].

In [6] it was proven that, at least on a particular kind of dioids, the idempo-
tent semifields, formal concepts are related to the eigenvectors of the unit in the
semiring for certain matrices derived from the incidence, the projector matrices.
The authors later went on to develop the spectral theory but never reviewed
their original findings in two aspects as claimed in some of this work:

a. What is the actual relation between eigenvectors of the spectral projectors
and extents or intents?
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b. What are the advantages of working in complete idempotent semifields?

In this paper we answer both of these questions, to wit:

a. the eigenvectors of the projectors generate the concepts by closure of their
(extended) joins, and

b. all procedures related to FCA take the form of matrix-vector equations includ-
ing, the polars, the closure operators and the generation.

This is possible due to the idempotent algebra analogues of vector spaces, the
complete idempotent semimodules. Indeed, with the same tools we are able to
extend the set of ϕ-formal concepts arising from a K-valued formal context with a
semimodule structure, including the multiplication of concepts by constants and
an addition operation that takes into consideration the closure of the extents and
intents obtained. We foresee that these will be useful tools for the development
of data mining procedures.

2 Idempotent Semifields and Semimodules

A semiring is an algebra S = 〈S,⊕,⊗, ε, e〉 whose additive structure, 〈S, ⊕, ε〉,
is a commutative monoid and whose multiplicative structure, 〈S\{ε},⊗, e〉, is a
monoid with multiplication distributing over addition from right and left and
with additive neutral element absorbing for ⊗, i.e. ∀a ∈ S, ε ⊗ a = ε.

Specifically, every commutative semiring accepts a canonical preorder, a ≤ b
if and only if there exists c ∈ D with a ⊕ c = b. A dioid is a semiring D
where this relation is actually an order. Dioids are zerosumfree and entire, that
is they have no non-null additive or multiplicative factors of zero. Commutative
complete dioids are already complete residuated lattices.

An idempotent semiring is a dioid whose addition is idempotent, and a selec-
tive semiring one where the arguments attaining the value of the additive oper-
ation can be identified.

Example 1. Examples of idempotent dioids are

1. The Boolean lattice B = 〈 {0, 1},∨,∧, 0, 1 〉
2. All fuzzy semirings, e.g. 〈 [0, 1],max,min, 0, 1 〉
3. The min-plus algebra Rmin,+ = 〈 R ∪ {∞},min, +,∞, 0 〉
4. The max-plus algebra Rmax,+ = 〈 R ∪ {−∞},max, +,−∞, 0 〉 �
Of the semirings above, only the boolean lattice and the fuzzy semirings are
complete dioids, since the rest lack the top element � as an adequate inverse for
the bottom in the order.

2.1 Idempotent Semifields

A semiring is a semifield if there exists a multiplicative inverse for every element
a ∈ S, except the null, notated as a−1, and radicable if the equation ab = c can
be solved for a. As exemplified above, idempotent semifields are incomplete in
their natural order, but there are procedures for completing such structures [5]
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and we will not differentiate between complete or completed structures. Note,
first, that in complete semifields e �� � which distinguishes them from inclines,
and also that the inverse for the null is prescribed as ⊥−1 = � .

Example 2. The max-plus Rmax,+ and min-plus Rmin,+ semifields can be com-
pleted as:

1. The complete min-plus semifield Rmin,+ = 〈R ∪ {−∞, ∞},min,
�
+,−·, ∞, 0〉.

2. The complete max-plus semifield Rmax,+ = 〈R ∪ {−∞, ∞},max, +
�
, −·, −

∞, 0〉.

In this notation we have ∀c,−∞+
�
c = −∞ and ∞ �

+ c = ∞, which solves several

issues in dealing with the separately completed dioids. These two completions
are inverses Rmin,+ = R

−1

max,+, hence order-dual lattices. �

In fact, idempotent semifields K = 〈K,⊕
�
,

�⊕,⊗
�
,

�⊗, ·−1, ⊥, e,�〉, appear as

enriched structures, the advantage of working with them being that meets can

be expressed by means of joins and inversion as a
�⊕ b = (a−1 ⊕

�
b−1)−1. On a

practical note, residuation in complete commutative idempotent semifields can
be expressed in terms of inverses, and this extends to eigenspaces.

2.2 Idempotent Semimodules

Let D = 〈D,+,×, εD, eD〉 be a commutative semiring. A D-semimodule X =
〈X, ⊕,�, εX〉 is a commutative monoid 〈X,⊕, εX〉 endowed with a scalar action
(λ, x) �→ λ � x satisfying the following conditions for all λ, μ ∈ D, x, x′ ∈ X:

(λ × μ) � x = λ � (μ � x) λ � (x ⊕ x′) = λ � x ⊕ λ � x′

(λ + μ) � x = λ � x ⊕ μ � x λ � εX = εX = εD ⊗ x

eD � x = x (1)

Matrices form a D-semimodule Dg×m for given g, m . In this paper, we only use
finite-dimensional semimodules where we can identify semimodules with column
vectors, e.g. X ≡ Dg . If D is commutative, idempotent or complete, then X is
also commutative, idempotent or complete. If K is a semifield, we may also define
an inverse for the semimodule by the coordinate-wise inversion, (x−1)i = (xi)

−1.
For complete idempotent semifields, the following matrix algebra equations

are proven in [7, Ch.8]:

Proposition 1. Let K be an idempotent semifield, and A ∈ Km×n. Then:

1. A ⊗
�

(A∗ �⊗ A) = A
�⊗ (A∗ ⊗

�
A) = (A

�⊗ A∗) ⊗
�

A = (A ⊗
�

A∗)
�⊗ A = A and

A∗ ⊗
�

(A
�⊗ A∗) = A∗ �⊗ (A ⊗

�
A∗) = (A∗ �⊗ A) ⊗

�
A∗ = (A∗ ⊗

�
A)

�⊗ A∗ = A∗.
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2. Alternating A − A∗ products of 4 matrices can be shortened as in:

A∗ �⊗ (A ⊗
�

(A∗ �⊗ A)) = A∗ �⊗ A = (A∗ �⊗ A) ⊗
�

(A∗ �⊗ A)

3. Alternating A − A∗ products of 3 matrices and another terminal, arbitrary
matrix can be shortened as in:

A∗ �⊗ (A ⊗
�

(A∗ �⊗ M)) = A∗ �⊗ M = (A∗ �⊗ A) ⊗
�

(A∗ �⊗ M)

4. The following inequalities apply:

A∗ �⊗ (A ⊗
�

M) ≥ M A∗ ⊗
�

(A
�⊗ M) ≤ M

2.3 Complete Congruences of Subsemimodules

The following approach is borrowed and adapted from [8]: Given a right K-
semimodule X a subset W ⊂ X 2 is called a pre-congruence (of semimodules),
if it is a subsemimodule 〈W, ⊕,�〉 such that (x, x) ∈ W, ∀x ∈ X, and if
(x1, x2) ∈ W (x2, x3) ∈ W , then (x1, x3) ∈ W . Furthermore, it is a congru-
ence (of semimodules) whenever (x1, x2) ∈ W implies (x2, x1) ∈ W . So, these
congruences are equivalences with a semimodule structure when thought of as a
semimodule of X 2 .

On a complete (as a semimodule) pre-congruence W ⊂ X 2 for x ∈ X set
x̂ = ∨{x′ ∈ X | (x′, x) ∈ W}.

Lemma 1. If W is a complete pre-congruence on X , then (x, x̂) ∈ W and
x ≤ x̂ . Furthermore, if W is a complete congruence then: x̂ is just the supremum
in the equivalence class of x ∈ X and it is a closure operator: x ≤ x̂ = ˆ̂x whence
x1 ≤ x2 implies x̂1 ≤ x̂2, and in particular x̂1 = x̂2 if (x1, x2) ∈ W .

Given a pre-dual pair X , Y and a dot product 〈X | Y 〉, we define the following
correspondences between semimodules of X 2 and Y:

W ⊂ X 2 �→ W� = {y ∈ Y | 〈x1 | y〉 = 〈x2 | y〉, ∀(x1, x2) ∈ W}
V ⊂ Y �→ V⊥ = {(x1, x2) ∈ X2 | 〈x1 | y〉 = 〈x2 | y〉, ∀y ∈ V } (2)

Note that V is a complete subsemimodule of W and V =
(V⊥)� [8], and

Proposition 2. Let (X ,Y) be a pre-dual pair satisfying the property that if
W ∈ X 2 is a complete congruence and (s, t) �∈ W , then there exists a y ∈ Y
such that if (x1, x2) ∈ W then 〈x1 | y〉 = 〈x2 | y〉 and 〈s | y〉 �= 〈t | y〉. Then a
subsemimodule W ⊂ X 2 is a complete congruence if and only if W =

(W�)⊥.
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2.4 Basic Spectral Theory Over Dioids

Let Mn(S) be the semiring of square matrices over a semiring S with the usual
operations. Given A ∈ Mn(S) the right (left) eigenproblem is the task of finding
the right eigenvectors v ∈ Sn×1 and right eigenvalues ρ ∈ S (respectively left
eigenvectors u ∈ S1×n and left eigenvalues λ ∈ S) satisfying:

u ⊗ A = λ ⊗ u A ⊗ v = v ⊗ ρ (3)

The left and right eigenspaces and spectra are the sets of these solutions:

Λ(A) = {λ ∈ S | Uλ(A) �= {εn}} P(A) = {ρ ∈ S | Vρ(A) �= {εn}}
Uλ(A) = {u ∈ S1×n | u ⊗ A = λ ⊗ u} Vρ(A) = {v ∈ Sn×1 | A ⊗ v = v ⊗ ρ}
U(A) =

⋃

λ∈Λ(A)

Uλ(A) V(A) =
⋃

ρ∈P(A)

Vρ(A) (4)

With so little structure it might seem hard to solve (3), but a very generic
solution based in the concept of transitive closure of a matrix A+ =

∑∞
i=1 Ai

and transitive-reflexive closure A∗ =
∑∞

i=0 Ai is given by the following theorem:

Theorem 1. [9, Theorem 1] Let A ∈ Sn×n. If A∗ exists, the following two
conditions are equivalent:

1. A+
.i ⊗ μ = A∗

.i ⊗ μ for some i ∈ {1 . . . n}, and μ ∈ S.
2. A+

.i ⊗ μ (and A∗
.i ⊗ μ) is an eigenvector of A for e, A+

.i ⊗ μ ∈ Ve(A).

3 The Algebra in K-Formal Concept Analysis

When K is a completed idempotent semifield and X ≡ Kg
and Y ≡ Km

are
idempotent vectors spaces or semimodules, the definition of the Galois connec-
tion involves the use of a scalar product 〈· | R | ·〉 : X × Y → K and a scalar
ϕ ∈ K [5]:

x↑
R,ϕ = ∨{y ∈ Y | 〈x | R | y〉 ≤ ϕ} y↓

R,ϕ = ∨{x ∈ X | 〈x | R | y〉 ≤ ϕ}

This definition is quite general and might even be valid for any dioid, but we
now want to develop its affordances when the semiring has the richer algebraic
structure of a complete idempotent semifield with its duality.

3.1 The Initial Scaling

In this case, we can reduce the studying of the connection with a generic ϕ to a
much simpler setting: consider the dot product 〈x | R | y〉 = xt ⊗

�
R ⊗

�
y, where

R ∈ Kg×m
. Inspired by [10], we decompose in ϕ = γ

�⊗ μ where {γ, μ} ⊆ K .
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When ϕ ∈ (⊥,�) so that {γ, μ} ⊆ (⊥,�) then the normalizations X
�

/ γ = X̃γ

and Y
�

/ μ = Ỹ μ have the interpretation of (finite) scalings in the original spaces1:

xt ⊗
�

R ⊗
�

y ≤ γ
�⊗ μ ⇔ γ

�
\(xt ⊗

�
R ⊗

�
y)

�
/ μ ≤ e

⇔ (γ−1 ⊗
�

xt) ⊗
�

R ⊗
�

(y ⊗
�

μ−1) ≤ e ⇔ (x̃γ)t ⊗
�

R ⊗
�

ỹμ ≤ e,

whence we need only consider the case where ϕ = e. The following development
presupposes this setting and we treat x ∈ X̃γ and y ∈ Ỹ μ simply as placeholders.

3.2 The Polars and the Galois Connection

Since xt ⊗
�

R ⊗
�

y ≤ e ⇔ yt ⊗
�

Rt ⊗
�

x ≤ e, by using residuation we may write:

x↑
R = (xt ⊗

�
R) \

�
e = R∗ �⊗ x−1 y↓

R = (yt ⊗
�

Rt) \
�
e = R−1

�⊗ y−1 (5)

involving only transposition, inversion and operation in the dual semifield.
We recall the following proposition:

Proposition 3. (·↑R, ·↓R) : X̃ γ ⇀↼ Ỹμ is a Galois connection between the semi-

modules X̃ γ ∼= (̃Kg)
γ

and Ỹμ ∼= (̃Km)
μ
: for x ∈ X, y ∈ Y , we have

y ≤ x↑
R ⇔ x ≤ y↓

R .

Proof. We need only prove in one sense, since the other is similar. If y ≤ x↑
R =

R∗ �⊗x−1, then by inversion, Rt⊗
�
x ≤ y−1 whence, by residuation x ≤ Rt \

�
y−1 =

R−1
�⊗ y−1 = y↓

R . �

The diagram in Fig. 1 summarizes this Galois connection [5,11]. This immedi-
ately puts at our disposal a number of results which we collect in the following
proposition:

Proposition 4. Consider the Galois connection (·↑R, ·↓R) : X ⇀↼ Y . Then:

1. The polars are antitone, join-inverting functions:

(x1 ⊕
�

x2)
↑
R

= x1
↑
R

�⊕ x2
↑
R (y1 ⊕

�
y2)

↓
R

= y1
↓
R

�⊕ y2
↓
R . (6)

2. The compositions of the polars: πRt : X → X,πR : Y → Y

πRt(x) = (x↑
R)

↓
R = R−1

�⊗ (Rt ⊗
�

x) πR(y) = (y↓
R)

↑
R = R∗ �⊗ (R ⊗

�
y)

are closures, that is, extensive and idempotent operators.

πRt(x) ≥ x πR(y) ≥ y

πRt(πRt(x)) = πRt(x) πR(πR(y)) = πR(y)

1 We leave the corner cases when ϕ ∈ {⊥, �} for later work.
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Fig. 1. (·↑R, ·↓R) : ˜X γ ⇀↼ ˜Yμ , the Galois connection between scaled spaces. Refer to the
text for the notation.

3. The polars are mutual pseudo-inverses:

(·)↑
R ◦ (·)↓

R ◦ (·)↑
R = (·)↑

R (·)↓
R ◦ (·)↑

R ◦ (·)↓
R = (·)↓

R

Proof. We prove for extents, since the proofs for intents are similar. Note that
the techniques in this proof will be used many times subsequently. First:

(x1 ⊕
�

x2)
↑
R

= R∗ �⊗ (x1 ⊕
�

x2)
−1 = R∗ �⊗ x1

−1
�⊕ R∗ �⊗ x2

−1 = x1
↑
R

�⊕ x2
↑
R

From Proposition 1.4 we find that πR(y) = R∗ �⊗ (R ⊗
�

y) ≥ y, that is, πR is

extensive. From Proposition 1.3 we know that R∗ �⊗ (R ⊗
�

(R∗ �⊗ M)) = R∗ �⊗ M ,

whence

πR(πR(y)) = R∗ �⊗ (R ⊗
�

(R∗ �⊗ (R ⊗
�

y))) = R∗ �⊗ (R ⊗
�

y) = πR(y).

Finally,

((x↑
R)

↓
R)

↑
R

= R∗ �⊗(R−1
�⊗(R∗ �⊗x−1)−1)−1 = R∗ �⊗(R⊗

�
[R∗ �⊗x−1]) = R∗ �⊗x−1 = x↑

R

where the reduction step also comes from Proposition 1.3. �
One of the advantages of working in idempotent semimodules is that we can
strengthen statement 1 in Proposition 4 to reveal that the polars are idempotent
semimodule morphisms:

Proposition 5. The polar of intents of the Galois connection transforms a K-
semimodule of extents into a Kd

-semimodule of intents, and dually for the polar
of the extents.
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Proof. For linearity, consider x1
↑
R = R∗ �⊗ x−1

1 and x2
↑
R = R∗ �⊗ x−1

2 .

(λ1 ⊗
�

x1 ⊕
�

λ1 ⊗
�

x2)
↑
R

= R∗ �⊗ (λ1 ⊗
�

x1 ⊕
�

λ1 ⊗
�

x2)
−1 =

= R∗ �⊗ (λ−1
1

�⊗ x−1
1

�⊕ λ−1
1

�⊗ x−1
2 ) =

= (λ−1
1

�⊗ R∗ �⊗ x−1
1 )

�⊕ (λ−1
1

�⊗ R∗ �⊗ x−1
1 ) =

= (λ−1
1

�⊗ x1
↑
R)

�⊕ (λ−1
2

�⊗ x2
↑
R) .

For the polar of extents the proof is similar. �
Note that this is the K-FCA analogue of the fact that the polars are join-
inverting. But the novelty is that the scalings for one semimodule and the other
are inverted. This theme will recur in our results: how to enrich the Galois con-
nection in the setting of idempotent semimodules.

3.3 The Concept Equation and the Semimodules of Closures

Our next aim is to flesh out the dual isomorphism between the closed elements
of the connection. Since we know that the Galois connection is concept-inducing,

we consider (γ, μ)-formal concepts (a, b) ∈ Bγ
�⊗μ(G,M,R) such that

a↑
R = R∗ �⊗ a−1 = b b↓

R = R−1
�⊗ b−1 = a (7)

From these we can decouple extent and intent equations as in:

b−1 = Rt ⊗
�

a a−1 = R ⊗
�

b

whence

πRt(a) = R−1
�⊗ (Rt ⊗

�
a) = a πR(b) = R∗ �⊗ (R ⊗

�
b) = b

These two, formally identical equations involve the closure operators making it
explicit that the fixpoints are also closed elements, extents and intents, so call:

fix(πRt) = {a ∈ X̃γ | πRt(a) = a} fix(πR) = {b ∈ Ỹ μ | πR(b) = b},

the sets of fixpoints of each of these operators. Then:

Corollary 1. The sets of fixpoints are the lattices of extents and intents:

fix(πRt) = Bγ
G(G,M,R) fix(πR) = Bμ

M (G,M,R).

Proof. The only thing left to prove is that the fixpoints are extents. Let πRt(a) =
a . Then:

b = a↑
R = R∗ �⊗ [R−1

�⊗ (Rt ⊗
�

a)]
−1

= R∗ �⊗ (R ⊗
�

[R∗ �⊗ a]) = R∗ �⊗ a−1
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where the last step follows from the matrix equalities. So

b↓
R = R−1

�⊗ (R∗ �⊗ a−1)
−1

= R−1
�⊗ (Rt ⊗

�
a) = a.

The proof for intents is dual. �
Note that the Galois Connection theorem implies that the sets of extents and
intents are dually isomorphic lattices through the polars. How is this expressed
in our framework? Again, the advantages of working in complete idempotent
semimodules make themselves evident in the following proposition:

Proposition 6. fix(πRt) and fix(πR) are Kd
-subsemimodules of X̃γ and Ỹ μ

respectively.

Proof. Consider a generic vector z ∈ X̃γ , then by Lemma 1.2 we have

πR(R∗ �⊗ z) = R∗ �⊗ (R ⊗
�

(R∗ �⊗ z)) = R∗ �⊗ z.

This means that any Kd
-combination of columns of R∗ is a fixpoint of πR, that

is 〈R∗〉Kd ⊆ fix(πR). Now, consider b ∈ fix(πR). Then R∗ �⊗ (R ⊗
�

b) = b whence

R∗ �⊗ z = b, so fix(πR) ⊆ 〈R∗〉Kd . Similarly fix(πRt) = 〈R−1〉Kd . �
This and the previous consideration yield the following Corollary:

Corollary 2. The system of extents and intents of the Galois connection are
Kd

-subsemimodules of X̃γ and Ỹ μ, generated by the columns of R−1 and R∗,
respectively.

Bγ
G(G,M,R) = 〈R−1〉Kd Bμ

M (G,M,R) = 〈R∗〉Kd

Recall that Kd-semimodules are meet-semilattices for the order of K, but also
that they are complete with a top element, hence they are already complete
lattices.

Although complete lattices, Bγ
G(G,M,R) and Bμ

M (G,M,R) are only meet-
subsemilattices of their ambient spaces X̃ γ and Ỹμ but not their join-subsemi-
lattices. Luckily, the following Proposition allows us to characterize the lattices
of extents and intents as K-semimodules, that is, as complete join-semilattices,
too. First consider the following structures on the set of extents and intents:

BG = 〈Bγ
G(G,M,R), ⊕̃

�
, �̃

�
, εG〉 BM = 〈Bμ

M (G,M,R), ⊕̃
�
, �̃

�
, εM 〉 (8)

with the two additions:

a1⊕̃� a2 = πRt(a1 ⊕
�

a2) b1⊕̃� b2 = πR(b1 ⊕
�

b2) (9)
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two right traslations:

(a, λ) �→ λ⊗̃
�
a = πRt(λ ⊗

�
a) (b, μ) �→ μ⊗̃

�
b = πR(μ ⊗

�
b) (10)

and neutral elements:

εG = R−1
�⊗ ⊥M εM = R∗ �⊗ ⊥G (11)

We next prove that:

Proposition 7. Let λ, μ ∈ K , a1 and a2 be extents of Bγ
G(G,M,R) and b1 and

b2 be intents of Bμ
M (G,M,R). Then

λ⊗̃
�
a1⊕̃� μ⊗̃

�
a2 = πR(λ ⊗

�
a1 ⊕

�
μ ⊗

�
a2) λ⊗̃

�
b1⊕̃� μ⊗̃

�
b2 = πR(λ ⊗

�
b1 ⊕

�
μ ⊗

�
b2) (12)

Proof. Call a = λ⊗̃
�
a1⊕̃� μ⊗̃

�
a2, then:

a =
(

R−1
�⊗ (Rt ⊗

�
(λ ⊗

�
a1))

)

⊕̃
�

(

R−1
�⊗ (Rt ⊗

�
(μ ⊗

�
a2))

)

= R−1
�⊗ (Rt ⊗

�
[(R−1

�⊗ (Rt ⊗
�

(λ ⊗
�

a1))) ⊕
�

(R−1
�⊗ (Rt ⊗

�
(μ ⊗

�
a2)))])

Distributing Rt over ⊕
�

and applying the matrix equalities:

= R−1
�⊗ [Rt ⊗

�
(R−1

�⊗ [Rt ⊗
�

(λ ⊗
�

a1)]) ⊕
�

Rt ⊗
�

(R−1
�⊗ [Rt ⊗

�
(μ ⊗

�
a2)])]

= R−1
�⊗ [(Rt ⊗

�
(λ ⊗

�
a1)) ⊕

�
(Rt ⊗

�
(μ ⊗

�
a2))]

Redistributing and applying the definition of the closure we get:

= R−1
�⊗ (Rt ⊗

�
(λ ⊗

�
a1 ⊕

�
μ ⊗

�
a2)) = πR(λ ⊗

�
a1 ⊕

�
μ ⊗

�
a2)

The proof for intents is similar. �
We are now ready to prove the following proposition:

Proposition 8. BG and BM are right complete idempotent K-semimodules.

Proof. Consider first extents, and the neutral element as defined. Addition is
clearly commutative and idempotent from the definition a⊕̃

�
a = πR(a ⊕

�
a) =

πR(a) = a . Associativity follows a pattern exploited in the rest of the proofs:

a1⊕̃
�
(a2⊕̃

�
a3) = R−1 �⊗ (Rt ⊗

�
[a1 ⊕

�
(R−1 �⊗ [Rt ⊗

�
(a2 ⊕

�
a3)])])

= R−1 �⊗ (Rt ⊗
�

a1 ⊕
�

Rt ⊗
�

[R−1 �⊗ (Rt ⊗
�

[a2 ⊕
�

a3])])

= R−1 �⊗ (Rt ⊗
�

a1 ⊕
�

Rt ⊗
�

[a2 ⊕
�

a3]) = R−1 �⊗ (Rt ⊗
�

[a1 ⊕
�

a2 ⊕
�

a3])

= πRt(a1 ⊕
�

a2 ⊕
�

a3)
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and the result follows by the associativity of ⊕
�
, and the commutativity of ⊕̃

�
and

⊕
�

. The additive identity is correctly-defined:

εG⊕̃
�
a = R−1

�⊗ (Rt ⊗
�

[εG ⊕
�

a]) = R−1
�⊗ (Rt ⊗

�
[R−1

�⊗ ⊥M ⊕
�

a])

= R−1
�⊗ ([Rt ⊗

�
(R−1

�⊗ ⊥M )] ⊕
�

[Rt ⊗
�

a]) = R−1
�⊗ (⊥M ⊕

�
[Rt ⊗

�
a])

= R−1
�⊗ (Rt ⊗

�
a) = a

where we have used that κRt(x) = Rt ⊗
�
(R−1

�⊗x) ≤ x is a kernel operator, that

is a contractive, idempotent function, whence Rt ⊗
�

(R−1
�⊗ ⊥M ) = ⊥M .

Only the external laws are left to be proven: first ⊥K�̃
�
a = πRt(⊥K ⊗

�
a) =

πRt(⊥G) = R−1
�⊗ (Rt ⊗

�
⊥G) = R−1

�⊗ ⊥M = εG—indeed this might be taken

for its definition. Next:

λ�̃
�
εG = R−1

�⊗ (Rt ⊗
�

(λ ⊗
�

R−1
�⊗ ⊥M )) = R−1

�⊗ (λ ⊗
�

(Rt ⊗
�

(R−1
�⊗ ⊥M ))).

whence λ�̃
�
εG = R−1

�⊗ (λ ⊗
�

⊥M ) = R−1
�⊗ ⊥M = εG. From the definition of the

scalar action eK�̃
�
a = πRt(eK�

�
a) = πRt(a) = a.

From (12) the rest of the laws follow by simple instantiation. The proof is
identical for intents, mutatis mutandis. �
We know consider the congruence on on X induced by the closure of extents
and, dually, that of intents:

Bγ
G(G,M,R)⊥ = {(x1, x2) ∈ X2 | πRt(x1) = πRt(x2) = a ,∀a ∈ Bγ

G(G,M,R)}
Bγ

G(G,M,R)⊥ = {(y1, y2) ∈ Y 2 | πR(y1) = πR(y2) = b ,∀b ∈ Bμ
M (G,M,R)}

Clearly (Bγ
G(G,M,R)⊥)� = Bγ

G(G,M,R) and dually for intents.
When the connection between X and Y is an adjunction, Cuninghame-Green

has proven that the Chebychev distance between x and its closure πRt(x) is
minimal among all closures2 [7]. For these reasons, Gaubert et al. have decided
to call this the orthogonal projection with respect to the closure systems, and so
the analogy goes on to define the kernel of πRt

or πR as:

Ker(πRt) = Bγ
G(G,M,R)⊥

Ker(πR) = Bμ
M (G,M,R)⊥

Ker(πRt)� = Bγ
G(G,M,R) Ker(πR)� = Bμ

M (G,M,R)

2 And this is also the case for the kernel operator in the adjunction.
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3.4 The Semimodule of Formal Concepts

Thus each Bγ
G(G,M,R) and Bμ

M (G,M,R) has a double semimodule structure:

1. A Kd-subsemimodule of their ambient spaces, as in Corollary 2.
2. A K-semimodule as in Proposition 8. The semimodule structure is idiosyn-

cratic in that it is defined with the help of the closure operators of each
particular formal context.

Although the polars are bijective in the sets of extents and intents we do not
have yet a full characterization in terms of semimodules. But:

Proposition 9. The polars are isomorphisms from the K- to Kd-semimodules.

(BG)↑
R = Bμ

M (G,M,R) = BM (BM )↓
R = Bγ

G(G,M,R) = BG

Proof. Let λ, μ ∈ K, a1 and a2 be extents with b1 and b2 their intents. Then:

(λ⊗̃
�
a1⊕̃� μ⊗̃

�
a2)

↑
R

= (λ⊗
�
a1⊕� μ⊗

�
a2)

↑
R

↓

R

↑

R

= (λ⊗
�
a1⊕� μ⊗

�
a2)

↑
R

= λ−1
�⊗b1

�⊕μ−1
�⊗b2

Since ·−1 is a dual (auto)isomorphism of K,

(λ
�⊗b1

�⊕μ
�⊗b2)

↓
R = R−1

�⊗ (λ−1⊗
�
b−1
1 ⊕

�
μ−1⊗

�
b−1
2 )

= R−1
�⊗ (λ−1⊗

�
Rt ⊗

�
a1⊕� μ−1⊗

�
Rt ⊗

�
a2)

= R−1
�⊗ (Rt ⊗

�
[λ−1⊗

�
a1⊕� μ−1 ⊗

�
a2]) = λ−1⊗̃

�
a1⊕̃� μ−1⊗̃

�
a2

On the other hand (BG)↑
R

↓
R = [Bμ

M (G,M,R)]↓R = BG. For the join semimodule
of intents the proof is similar. �
And it is not difficult to see how this translates into arbitrary joins in complete

idempotent semifields—where instead of ⊕̃
�

we write
∑̃

•— to provide the basis

for the following, restricted theorem of K-FCA :

Theorem 2. The (γ, μ)-concept lattice Bγ
�⊗μ(G,M,R) is a dually isomorphic

pair of complete lattices in which infima and suprema are given by:

∑

•
i∈I

(ai, bi) = (
∑̃

•i∈I
ai,

∑•

i∈I

bi) =

⎡

⎣

(
∑•

i∈I

bi

)↓

R

,
∑•

i∈I

bi

⎤

⎦

∑•

i∈I

(ai, bi) = (
∑•

i∈I

ai,
∑̃

•i∈I
bi) =

⎡

⎣
∑•

i∈I

ai,

(
∑•

i∈I

ai

)↑

R

⎤

⎦

Proof. A corollary of the Galois connection and the previous definitions. �
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Note that we do not use special notation for the meets and joins of concepts, as
we did for the component lattices, and that the closure operations are hidden in
the definitions of the new joins.

In fact, Proposition 6 says that the sets of extents and intents are idempo-
tent semimodules, that is the idempotent analog of a vector space. Could we
endow the set of concepts with a similar structure? Does this have practical
consequences?

First, we next consider endowing the set of concepts with right upper and
lower scalar actions:

λ �
�

(a, b) = (λ�̃
�
a, λ−1

�� b) λ
�� (a, b) = (λ

��a, λ−1�̃
�
b) (13)

When λ > e we call these operations (concept) abstraction and when λ < e
(concept) concretion.

The previous material leads to the following extended theorem of K-FCA :

Theorem 3. The (γ, μ)-concept double semimodule Bγ
�⊗μ(G,M,R) is a dually

isomorphic pair of complete idempotent semimodules in which infimum and
supremum combinations are given by:

∑

•
i∈I

λi ⊗
�

(ai, bi) = (
˜∑

•i∈I
λi⊗̃

�
ai,
∑•

i∈I

λi

�⊗ bi) =

⎡

⎣

(

∑•

i∈I

λi

�⊗ bi

)↓

R

,
∑•

i∈I

λi

�⊗ bi

⎤

⎦

∑•

i∈I

λi

�⊗ (ai, bi) = (
∑•

i∈I

λi

�⊗ ai,
˜∑

•i∈I
λi⊗̃

�
bi) =

⎡

⎣

∑•

i∈I

λi

�⊗ ai,

(

∑•

i∈I

λi

�⊗ ai

)↑

R

⎤

⎦

Proof. This is a corollary of Proposition 9 and Theorem 2. �

3.5 Join-Dense and Meet-Dense Vectors

Standard concept lattices have “natural” building algorithms in terms of the
object-intents and attribute-extents. We have just seen that K-concept lattices
are generated in terms of the dual semifield very straightforwardly, and in terms
of the original semifield in a more convoluted way. Can we reconcile these two
views? Certainly. First, we define concept-building operators from sets of objects
and attributes respectively:

γ : X̃γ → Bϕ(G,M,R) μ : Ỹ μ → Bϕ(G,M,R)

x �→ γ(x) = (πRt(x), x↑
R) y �→ μ(y) = (y↓

R, πR(y))

Next, let IG and IM be the identity matrices of dimension g × g and m × m in
K, whose columns are naturally conceived as the unitary vectors of objects and
attributes, respectively.

Lemma 2. Let IG and IM be the identity matrices of dimension g×g and m×m
in K. Then the object- and attribute-concepts of the Galois connection are:

γR(IG) = (R−1
�⊗ Rt, R∗) μR(IM ) = (R−1, R∗ �⊗ R)

taken as pairs of co-indexed vectors.
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Proof. Simple application of the polars to the identities. �
Note how the matrix notation allows us to carry out multiple computations at
the same time. We may now conclude the following:

Corollary 3. Consider the Galois connection (·↑R, ·↓R) : X̃ γ ⇀↼ Ỹμ . Then, its
system of extents is Kd

-generated by the attribute-extents. Dually, its system of
intents is Kd

-generated by the object-intents.

Proof. From Corollary 2 and Lemma 2. �
This is a result that has a nice analogue with standard FCA where these sets
are meet-dense, respectively. Furthermore, since these semimodules are complete

and finitely-generated we can always find a subset of these
�⊕-dense sets. The

schematic diagram of Fig. 2 makes these mechanisms evident.

Fig. 2. Extended schematics of the Galois connection between ˜Xγ and ˜Y μ (outer
clouds). Extents (left inner cloud) and intents (right inner cloud) are dually isomorphic
Kd-semimodules generated by R−1 and R∗ respectively. Similarly, they are dually iso-

morphic K-semimodules generated by R−1
�⊗ Rt and R∗ �⊗ R and the closure operators

(see text).

Can we expect to find a similar mechanism for ⊕
�
-dense sets, that is object-

extents and attribute intents? The answer suggestively blends the spectral theory
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of matrices and K-FCA. First, consider a property of the object-extents PG =

R−1
�⊗ Rt and attribute intents PM = R∗ �⊗ R .

Proposition 10. The object extents (respectively, attribute extents) are funda-
mental eigenvectors of PG (respectively, PM ) for the eigenvalue e.

Proof. Consider the power (R∗ �⊗ R) ⊗
�

(R∗ �⊗ R) = R∗ �⊗ R, where the equality

comes from the matrix product laws. It is easy to see by induction that (R∗ �⊗
R)n = R∗ �⊗R . Furthermore, its diagonal only has the elements {e,�} wherefore:

PM
∗� =

∞∑

•
n=0

Pn
M = IM ⊕

�

∞∑

•
n=1

Pn
M = PM

+
�

hence by Theorem 1 we know that the columns of PM are all eigenvectors of PM

for e. �
From this we obtain that:

Proposition 11. The eigenspace of PM (resp. PG) generates the set of extents
(resp. intents.)

Bγ
G(G,M,R) = (Ve(R∗ �⊗ R))

↓
R Bμ

M (G,M,R) = (Ve(R−1
�⊗ Rt))

↑
R

Proof. We prove it for intents: recall that the eigenspace of e generated by the

columns of R∗ �⊗ R , Ve(R∗ �⊗ R) = 〈R∗ �⊗ R〉K . Furthermore, we know that the
eigenspaces are K-semimodules, that the polars transform K-semimodules into

Kd-semimodules, and (R∗ �⊗ R)
↓
R = R−1, hence

(Ve(R∗ �⊗ R))
↓
R = (〈R∗ �⊗ R〉K)

↓
R = 〈(R∗ �⊗ R)

↓
R〉Kd = 〈R−1〉Kd = Bγ

G(G,M,R).

For extents the procedure is similar. �
Corollary 4. Both the set of extents and intents are generated from the object
extents, and dually from the attribute intents.

Bγ
G(G,M,R) = 〈R−1〉Kd = πRt(〈R−1

�⊗ Rt〉K)

Bμ
M (G,M,R) = 〈R∗〉Kd = πR(〈R∗ �⊗ R〉K)

Proof. We directly use the intent polar (and dually for extents):

Bμ
M (G,M,R) = (Bγ

G(G,M,R))↑
R = ((Ve(R∗ �⊗ R))

↓
R)

↑

R
= πR(〈R∗ �⊗ R〉K) .

�
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4 Discussion

Our main result is that K-concept lattices are both Kd-subsemimodules and
K-semimodules, as well as lattice-ordered, and that the polars are also dual
isomorphisms of semimodules, on top of dual lattice isomorphisms.

Cuninghame-Green [7, Ch. 22] already developed a construction similar to
that of Sect. 3 but describing an adjunction (a neighbourhood lattice) hence
his failure to give primary status to the pairs of closed elements that constitute
concepts: this is the merit of FCA. On the other hand, our scaling is reminiscent
of that of his (although inspired by [10]), apart from the technicalities, although
the interpretation as abstraction and concretion only can be contextualized in
terms of similar concepts of FCA, like the joins representing a generalization,
and the meet a specialization. Of course, the data analysis in the presence of
infinite elements is all new.

Since K is an idempotent semifield where an inversion is available, as it is
in the ambient spaces, we might wonder whether the semimodules of extents
and intents had a similar inversion available. In general this is not the case,

since a−1 = (a∗)t we have for a ∈ Bγ
G(G,M,R) that a−1 = R ⊗

�
(R∗ �⊗ a−1).

That is, the inverses of extents are actually fixpoints of a kernel operator, and
likewise for intents. Dually, if the inverse a−1 were an extent, then a would also
have to be a fixpoint of that kernel. This would only happen on very particular
extents.
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Abstract. The aim of this work is providing a characterization in terms
of closure systems, for the construction, given a mapping f : A → B from
a fuzzy preordered set A into an unstructured set B, of a suitable fuzzy
preordering on B for which there exists a mapping g : B → A such that
the pair (f, g) constitutes an adjunction (isotone Galois connection). This
contribution continues our research line on the construction of adjunc-
tions in which the theory of fuzzy closure systems is used in order to
provide a more meaningful framework for the extension to the fuzzy case
of previous results.

Keywords: Galois connection · Adjunction · Preorder · Fuzzy sets

1 Introduction

Adjunctions (also called isotone Galois connection) between two mathematical
structures provide a means of linking both theories allowing for mutual cooper-
ative advantages.

A number of results can be found in the literature concerning sufficient or
necessary conditions for adjunctions between ordered structures to exist. Like-
wise, this paper is related to the existence and construction of the right adjoint
to a given mapping f , but in a more general framework. Our abstract setting is
to consider a mapping f : A → B from an “ordered” set A into an unstructured
set B, and then characterize those situations in which B can be “adequately
ordered” and a mapping g : B → A can be built so that the pair (f, g) is an
adjunction [12].

Our specific framework focuses on a fuzzy setting, so both the ordering and
the notion of adjunction need to be adequately generalized. Concerning the
ordering, the natural choice is that of fuzzy ordering leading to the so-called
fuzzy posets; however, taking into account several approaches which suggest to
consider even more general structures (some authors [8] suggest dropping reflex-
ivity, whereas others argue that reflexivity and antisymmetry are conflicting
properties [4]), our choice in this case has been to ignore antisymmetry and,
therefore, consider fuzzy preorders.
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Several papers on fuzzy Galois connections or fuzzy adjunctions have
been written since its introduction by Bělohlávek in [1]; consider for instance
[2,9,15,17] for some recent extensions. Some authors have introduced alterna-
tive approaches guided by the intended applications: for instance, Shi et al. [16]
introduced a definition of fuzzy adjunction for its use in fuzzy mathematical mor-
phology. Our approach in this paper is more in consonance with Bělohlávek’s
logic approach, but in terms of the generalization provided by Yao and Li [17]
within the framework of fuzzy posets and fuzzy closure operators.

In order to study the existence of adjoint, we will rely on the well-known
relationship between closure operators (and closure systems) and antitone Galois
connections; this relationship can be defined in categorical terms [7], but is much
better known in the framework of domain theory and denotational semantics
[13]. Essentially, the link can be stated as follows: if (f, g) is an antitone Galois
connection, then the compositions fg and gf satisfy the conditions of a closure
operator. In the case of an adjunction between two posets, just the mapping gf
is a closure operator whereas fg is a kernel operator.

Specifically, in this paper we characterize the situations in which given a
mapping f : A → B from a fuzzy preordered set A into an unstructured set B,
there exists a fuzzy preorder on B and a mapping g : B → A such that (f, g) is
an adjunction in terms of the existence of a closure system in A with suitable
properties.

The structure of this work is the following: in the next section, we intro-
duce the preliminary definitions and results, essentially notions related to fuzzy
preorderings and to Galois connections, and some results which will be later
needed. Section 4 introduces the notion of closure system and closure operator
which better serves our purpose, together with several lemmas which allow to
simplify the presentation of the proof of the main result in Sect. 4, where the
actual construction of the right adjoint is given under adequate conditions. The
final section includes some final comments and prospects for future work.

2 Preliminaries

Although the present work is developed in a fuzzy setting, the basic definitions
of Galois connections and adjunctions on the crisp case as well as the different
characterizations and equivalencies from them will be recalled for the paper to
be more self-contained. For this we formulate the results in the general setting
of preordered sets that are sets endowed with a reflexive and transitive binary
relation. For any preordered set A = (A,≤), we consider its dual preordered set
Aop = (A,≥). Also we call, a↓ = {x ∈ A : x ≤ a} and a↑ = {x ∈ A : x ≥ a}. Let
f : (A,≤) → (B,≤) be a Galois connection.

– f is isotone if, for all a, b ∈ A, a ≤ b implies f(a) ≤ f(b).
– f is antitone if, for all a, b ∈ A, a ≤ b implies f(b) ≤ f(a).

In the particular case in which A = B,

– f is inflationary (also called extensive) if a ≤ f(a) for all a ∈ A.
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– f is deflationary if f(a) ≤ a for all a ∈ A.
– f is idempotent if f ◦ f = f .
– f a closure operator if it is inflationary, isotone and idempotent.
– f a kernel operator if it is deflationary, isotone and idempotent.

For a more detailed study of closure and kernel operators we refer to [6].

Definition 1 (Galois Connections/Adjunctions). Let A = (A,≤) and B =
(B,≤) be preordered sets, and f : A → B and g : B → A be two mappings. The
pair (f,g) is called a

– Right Galois Connection between A and B, denoted by (f, g) : A ⇀↼ B, if

for all a ∈ A and b ∈ B, a ≤ g(b) if only if b ≤ f(a).

– Left Galois Connection between A and B, we write (f, g) : A ⇁↽ B, if

for all a ∈ A and b ∈ B, g(b) ≤ a if only if f(a) ≤ b.

– Adjunction between A and B, denoted by (f, g) : A � B, if

for all a ∈ A and b ∈ B, a ≤ g(b) if only if f(a) ≤ b.

– Co-Adjunction between A and B, denoted by (f, g) : A � B, if

for all a ∈ A and b ∈ B, g(b) ≤ a if only if b ≤ f(a).

Observe that the difference among the four definitions above is not significant
because one can change from one version to another by swapping between A and
Aop and/or B and Bop.

Theorem 1. Let A = (A,≤) and B = (B,≤) be preordered sets, and f : A → B
and g : B → A be two mappings. Then, the following conditions are equivalent

1. (f, g) : A ⇀↼ B.
2. (f, g) : Aop ⇁↽ Bop.
3. (f, g) : A � Bop.
4. (f, g) : Aop � B.

Hereafter, we will work with adjunctions, but as a direct consequence of the
previous theorem, any property about adjunctions can be extended by duality
to the other kind of connections or to co-adjunctions.

Proposition 1. Given two preordered sets A = (A,≤A) and B = (B,≤B), and
two mappings f : A → B and g : B → A. The following conditions are equivalent:

1. (f, g) : A � B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.
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As a consequence, given (f, g) : A � B, then the mapping gf is a closure operator
and fg is a kernel operator.

In order to introduce fuzziness in this setting, the most usual underlying
structure for considering fuzzy extensions of Galois connections/adjunctions is
that of residuated lattice, L = (L,∨,∧,	,⊥,⊗,→). An L-fuzzy set is a mapping
from the universe set to the membership values structure X : U → L where X(u)
means the degree in which u belongs to X. Given X and Y two L-fuzzy sets, X
is said to be included in Y , denoted as X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation on U is an L-fuzzy subset of U × U , that is
ρU : U × U → L, and it is said to be:

– Reflexive if ρU (a, a) = 	 for all a ∈ U .
– Transitive if ρU (a, b) ⊗ ρU (b, c) ≤ ρU (a, c) for all a, b, c ∈ U .
– Symmetric if ρU (a, b) = ρU (b, a) for all a, b ∈ U .

Definition 2 (Fuzzy Preordered Set). An L-fuzzy preordered set is a pair
U = (U, ρU ) in which ρU is a reflexive and transitive L-fuzzy relation on U .

From now on, when no confusion arises, we will omit the prefix “L-”.
The extensions to the fuzzy setting of the notions of upset and downset of

an element a ∈ A are defined by a↑, a↓ : A → L where a↓(x) = ρA(x, a) and
a↑(x) = ρA(a, x) for all x ∈ A.

Definition 3. Let A = (A, ρA) be a fuzzy preordered set.
An element m ∈ A is a p-minimum for a fuzzy set X if

1. X(m) = 	, and
2. X ⊆ m↑, i.e., X(x) ≤ ρA(m,x), for all x ∈ A.

An element M ∈ A is a p-maximum for a fuzzy set X if

1. X(M) = 	, and
2. X ⊆ M↓, i.e., X(x) ≤ ρA(x,M), for all x ∈ A.

Notice that, due to the absence of any kind of antisymmetry, there exists a crisp
set of p-minima (resp. maxima) for X, which is not necessarily a singleton, which
we will denote p-min(X) (resp., p-max(X)).

3 Closure Systems and Closure Operators

The notion of closure system on a fuzzy preordered set that we will use is a
natural extension of the classical closure system on a crisp partial ordered set.
In fact, the definition is formulated in the same terms, though we will use an
alternative characterization that is easier to handle with.

Definition 4. Let A = (A, ρA) be a fuzzy preordered set and let S ⊆ A be a
crisp subset of A. Then S is said to be a closure system if the set p-min(a↑ ∩ S)
is non-empty, for all a ∈ A.
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Other definitions of closure system in a fuzzy setting can be found in the liter-
ature. It is remarkable the one given by Bělohlávek in [3], where the notions of
LK-closure operator and LK-closure system on L-ordered sets were introduced,
where K means a filter of the residuated lattice L. In Bělohlávek’s definition,
fuzzy closure systems are fuzzy sets, whereas in our definition above, fuzzy clo-
sure systems are crisp subsets.

There exists another definition similar in spirit to the one we propose, which
was introduced in the framework of the so-called L-ordered sets. In the following
result we state an alternative characterization of the notion of closure system
based on ideas from [14].

Proposition 2. Let A = (A, ρA) be a fuzzy preordered set. A non-empty subset
S ⊆ A is a closure system on A if and only if for any a ∈ A, there exists ma ∈ S
such that

1. ρA(a,ma) = 	 and
2. ρA(s1,ma) ⊗ ρA(a, s2) ≤ ρA(s1, s2) for any s1, s2 ∈ S.

Proof. Let S be a subset of A and suppose that for an element a ∈ A, the set
p-min(a↑ ∩ S) is non-empty. Let us see that any element ma ∈ p-min(a↑ ∩ S)
satisfies Conditions 1 and 2 above. By definition of the set p-min(a↑ ∩ S), since

(a↑ ∩ S)(x) = (a↑)(x) ∧ S(x) =

{
⊥ if x /∈ S

(a↑)(x) = ρA(a, x) if x ∈ S

it is clear that ma ∈ S, ρA(a,ma) = 	 and, furthermore, ρA(a, s) ≤ ρA(ma, s)
for all s ∈ S. Then, for all s1, s2 ∈ S,

ρA(s1,ma) ⊗ ρA(a, s2) ≤ ρA(s1,ma) ⊗ ρA(ma, s2) ≤ ρA(s1, s2)

Conversely, given a ∈ A, let ma ∈ S be an element satisfying Conditions 1 and 2
and let us prove that ma ∈ p-min(a↑ ∩S). Condition 1 is common to the notion
of p-minimum, on the other hand, by reflexivity and Condition 2, for all s ∈ S
we have that ρA(a, s) = ρA(ma,ma) ⊗ ρA(a, s) ≤ ρA(ma, s). ��
The previous result can be further improved by providing a new characterization
which involves just one condition.

Theorem 2. Let A = (A, ρA) be a fuzzy preordered set. S ⊆ A is a closure
system if and only if for all a ∈ A there exists ma ∈ S satisfying ρA(a, u) =
ρA(ma, u) for all u ∈ S.

Proof. Assume that S is a closure system, by Proposition 2, for all a ∈ A there
exists ma ∈ S such that

1. ρA(a,ma) = 	 and
2. ρA(s1,ma) ⊗ ρA(a, s2) ≤ ρA(s1, s2) for any s1, s2 ∈ S.
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Using Condition 1, we can write ρA(ma, u) = ρA(a,ma)⊗ ρA(ma, u) ≤ ρA(a, u).
Using Condition 2 above, using ma for s1 and u for s2, by reflexivity and tran-
sitivity we obtain ρA(a, u) ≤ ρA(ma, u). Hence, we have ρA(a, u) = ρA(ma, u).

Conversely, it is enough to prove that ma ∈ p-min(a↑ ∩ S). As ρA(a, u) =
ρA(ma, u) for all u ∈ S, in particular ρA(a,ma) = ρA(ma,ma) = 	. For x /∈ S,
we have (a↑ ∩ S)(x) =⊥≤ ma

↑(x); for x ∈ S, we have (a↑ ∩ S)(x) = ρA(a, x) =
ρA(ma, x) = ma

↑(x). ��
As an easy consequence of this theorem we obtain a constructive version of the
sets p-min(a↑ ∩ S) when S is a closure system.

Corollary 1. Let A = (A, ρA) be a fuzzy preordered set. If S ⊆ A is a closure
system then p-min(a↑ ∩ S) = {s ∈ S | ρA(a, u) = ρA(s, u) for all u ∈ S},
for a ∈ A.

It is well-known that closure systems and closure operators in the classical setting
are different approaches to the same phenomenon. We will focus now on the
development of the link between these two notions on fuzzy preordered sets. We
first recall some basic definitions.

Definition 5. Let A = (A, ρA) and B = (B, ρB) be fuzzy preordered sets.
A mapping f : A → B is said to be isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2))
for each a1, a2 ∈ A.

A mapping f : A → A is said to be

– inflationary if ρA(a, f(a)) = 	 for all a ∈ A.
– deflationary if ρA(f(a), a) = 	 for all a ∈ A.

Definition 6. Let A = (A, ρA) be a fuzzy preordered set. A mapping c : A →
A is said to be a closure operator if it is isotone, inflationary and satisfies
ρA(c(c(a)), c(a)) = 	 for all a ∈ A.

The following lemma states that the notions of closure system and closure oper-
ator keep being interdefinible in the framework of fuzzy preordered sets.

Lemma 1. Let A = (A, ρA) be a fuzzy preordered set.

(i) If S ⊆ A is a closure system, then any mapping c : A → A such that c(a) ∈
p-min(a↑ ∩ S) is a closure operator.

(ii) If c : A → A is a closure operator, then S = {a ∈ A : ρA(c(a), a) = 	} is a
closure system.

Proof. (i) Assume that S ⊆ A is a closure system and let c : A → A be a
map such that c(a) ∈ p-min(a↑ ∩ S) for all a ∈ A. In particular, c(a) ∈ S,
thus, by Corollary 1, we have that ρA(a, c(a)) = ρA(c(a), c(a)) = 	, which
implies that c is inflationary. Similarly, ρA(c(a), c(a)) = ρA(c(c(a)), c(a)) =
	. Finally, c is isotone as

ρA(a1, a2) = ρA(a1, a2) ⊗ ρA(a2, c(a2)) ≤ ρA(a1, c(a2)) = ρA(c(a1), c(a2))
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(ii) The subset S = {a ∈ A : ρA(c(a), a) = 	} is a closure system because c(a) ∈
p-min(a↑ ∩ S), for all a ∈ A. Firstly notice that, as ρA(c(c(a)), c(a)) = 	,
then c(a) ∈ S. Let us show that ρA(a, u) = ρA(c(a), u) for all u ∈ S. Since c
is isotone and u ∈ S, we deduce that

ρA(a, u) ≤ ρA(c(a), c(u)) = ρA(c(a), c(u)) ⊗ ρA(c(u), u) ≤ ρA(c(a), u)

Now, as c is inflationary, ρA(c(a), u) = ρA(a, c(a)) ⊗ ρA(c(a), u) ≤
ρA(a, u). ��

In the following, the constructions given in the different items of the previ-
ous lemma will be called, respectively, the closure operator associated to S
(denoted cS) and a closure system associated to c (denoted Sc).

It is well-known that, in (crisp) posets, there exists a one-to-one correspon-
dence between closure operator and closure systems (for every closure operator
c = cSc

and for any closure system S = ScS ). The relationship between both
notions is weaker when the underlying structure is a fuzzy preordered set.

Proposition 3. Let A = (A, ρA) be a fuzzy preordered set.

1. If c : A → A is a closure operator, then ρA(c(a), cSc
(a)) = ρA(cSc

(a), c(a)) =
	 for all a ∈ A.

2. If S is a closure system then S ⊆ ScS and for all s1 ∈ ScS there exists s2 ∈ S
such that ρA(s1, s2) = ρA(s2, s1) = 	.

Proof. Firstly, for any closure operator c : A → A, the closure system Sc is defined
as {a ∈ A : ρA(c(a), a) = 	}. Consider a closure operator cSc

: A → A such that
cSc

(a) ∈ p-min(a↑ ∩Sc). By the definition of closure operator, ρA(c(c(a)), c(a)) =
	 and therefore c(a) ∈ Sc. Moreover, since ρA(a, c(a)) = 	, we also have
c(a) ∈ p-min(a↑ ∩ Sc). Finally, by definition of p-minimum, ρA(c(a), cSc

(a)) =
ρA(cSc

(a), c(a)) = 	.
To prove the second item, consider a closure system S, a closure operator

cS : A → A associated to S (i.e., satisfying cS(a) ∈ p-min(a↑ ∩ S) for all a ∈ A)
and the closure system ScS = {a ∈ A : ρA(cS(a), a) = 	}. For any a ∈ S,
it is straightforward that a ∈ p-min(a↑ ∩ S) and since cS(a) ∈ p-min(a↑ ∩ S)
as well, then ρA(cS(a), a) = 	. Therefore, a ∈ ScS . Thus, S ⊆ ScS is proved.
Furthermore, if s1 ∈ ScS then ρA(cS(s1), s1) = 	. On the other hand, since
cS(s1) ∈ p-min(s↑

1 ∩ S), then cS(s1) ∈ S and ρA(s1, cS(s1)) = 	. ��
The rest of the section is devoted to define the notion of a closure system com-
patible with an arbitrary fuzzy equivalence relation (a reflexive, symmetric and
transitive fuzzy relation) and the particular case of the so-called kernel relation.

Definition 7. Let A = (A, ρA) be a fuzzy preordered set and let ∼ be a fuzzy
equivalence relation on A.

(i) A closure operator c : A → A is said to be compatible with the relation ∼ if
(a1 ∼ a2) ≤ ρA(c(a1), c(a2)), for all a1, a2 ∈ A.
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(ii) A closure system S ⊆ A is said to be compatible with ∼ if any closure
operator associated to S is compatible with ∼.

Lemma 2. Let A = (A, ρA) be a fuzzy preordered set and a fuzzy equivalence
relation ∼ on A. Then, a closure system S is compatible with ∼ if and only if

ρA(a, s) ≤
∧

u∈A

((a ∼ u) → ρA(u, s)) (1)

for all s ∈ S and a ∈ A.

Proof. Firstly, note that ρA(a, s) ≤ ∧
u∈A ((a ∼ u) → ρA(u, s)) for all s ∈ S and

a ∈ A is equivalent to ρA(a, s) ⊗ (a ∼ u) ≤ ρA(u, s) for all s ∈ S and a, u ∈ A,
according to adjointness property of residuated lattices.

Assume that S is a closure system compatible with ∼ and consider c : A → A
a closure operator associated to S, that is, c(a) ∈ p-min(a↑ ∩S) for all a ∈ A and
(a1 ∼ a2) ≤ ρA(c(a1), c(a2)), for all a1, a2 ∈ A. Let s ∈ S and a, u ∈ A, then, by
Corollary 1, we have ρA(a, s)⊗ (a ∼ u) = ρA(c(a), s)⊗ (a ∼ u). By compatibility
and symmetry, (a ∼ u) = (u ∼ a) ≤ ρA(c(u), c(a)) and by monotonicity of ⊗,
we obtain ρA(c(a), s) ⊗ (a ∼ u) ≤ ρA(c(a), s) ⊗ ρA(c(u), c(a)) ≤ ρA(c(u), s).
Applying that c is inflationary, ρA(c(u), s) = ρA(u, c(u))⊗ρA(c(u), s) ≤ ρA(u, s).
Therefore, we obtain ρA(a, s) ⊗ (a ∼ u) ≤ ρA(u, s) for all s ∈ S and a, u ∈ A.

Conversely, let S be a closure system such that ρA(a, s) ⊗ (a ∼ u) ≤ ρA(u, s)
for all s ∈ S and a, u ∈ A. Let us prove that any closure operator associated
to S is compatible with ∼, that is, for c : A → A such that c(a) ∈ p-min(a↑ ∩
S) for all a ∈ A, one can obtain that (a1 ∼ a2) ≤ ρA(c(a1), c(a2)), for all
a1, a2 ∈ A. In effect, (a1 ∼ a2) = (a2 ∼ a1) = ρA(a2, c(a2)) ⊗ (a2 ∼ a1). By
the hypothesis, and Corollary 1 (since c(a1) ∈ p-min(a↑

1 ∩ S) and c(a2) ∈ S) one
obtains, ρA(a2, c(a2)) ⊗ (a2 ∼ a1) ≤ ρA(a1, c(a2)) = ρA(c(a1), c(a2)). ��
Later, we will use the previous lemma on the particular case of the fuzzy equiv-
alence relation ∼ being the kernel relation ≡f associated to a crisp mapping f
defined for a1, a2 ∈ A as follows:

(a1 ≡f a2) =

{
⊥ if f(a1) �= f(a2)
	 if f(a1) = f(a2)

Corollary 2. Let A = (A, ρA) be a fuzzy preordered set, consider a crisp map-
ping f : A → B, and let ≡f be the kernel relation associated to f . A closure sys-
tem S ⊆ A is compatible with the kernel relation if and only if ρA(a, s) = ρA(u, s)
for all s ∈ S and a, u ∈ A such that f(a) = f(u).

Proof. It is straightforward, due to the fact that if f(a) = f(u) then 	 →
ρA(u, s) = ρA(u, s) and if f(a) �= f(u) then ⊥→ ρA(u, s) = 	 for all u ∈ A. ��

Adjunctions Between Fuzzy Preordered Sets: Previous Results. It is
well-known that there exists a close relationship between closure operators and
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adjunctions. In this section, we focus on this relation in the more general setting
of fuzzy preordered sets.

To begin with, the definition of adjunction that we will use in this context is
the natural generalization of the classical one.

Definition 8 (Fuzzy Adjunction Between A and B.). Consider two fuzzy
preordered sets A = (A, ρA) and B = (B, ρB) and two mappings f : A → B
and g : B → A. The pair (f, g) forms an adjunction between A and B, denoted
(f, g) : A � B if ρA(a, g(b)) = ρB(f(a), b) for all a ∈ A and b ∈ B.

As in the crisp case, it is possible to characterize a fuzzy adjunction in many
different ways. Below we recall just one alternative option which will be used in
the next section.

Theorem 3 [10]. Consider fuzzy preordered sets A = (A, ρA) and B = (B, ρB),
and two mappings f : A → B and g : B → A. The following conditions are
equivalent:

1. (f, g) : A � B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.

Given a mapping f from a fuzzy preordered set (A, ρA) to any set B, we aim
to introduce conditions which allow for defining a fuzzy preordering on B and a
mapping from B to A such that the pair (f, g) constitutes a fuzzy adjunction. In
a previous work, [11], we solved this problem in the case of (A, ρA) also satisfies
a certain kind of antisymmetry, that is ρA(a1, a2) = ρA(a2, a1) = 	 implies
a1 = a2, for all a1, a2 ∈ A. The obtained characterization for the case of fuzzy
posets is the following:

Theorem 4 [11]. Given a fuzzy poset (A, ρA) and a mapping f : A −→ B, let
[a]f be the equivalence class of an element a ∈ A with respect to the kernel
relation a ≡f b ⇐⇒ f(a) = f(b). Then, there exists a fuzzy order ρB in B and
a map g : B −→ A such that A � B if and only if the following conditions hold:

1. There exists max[a]f for all a ∈ A.
2. ρA(a1, a2) ≤ ρA(max[a1]f ,max[a2]f ), for all a1, a2 ∈ A.

Next section provides a characterization of the existence of (fuzzy ordered struc-
ture in B and) adjunction associated to a mapping f : (A, ρA) → B which, as we
will see, considerably differs from that obtained in the framework of fuzzy posets.

4 The Characterization Result

In order to address this problem, we will proceed by proving a number of pre-
liminary results which will pave the way for the characterization.

As one would expect, the mere existence of the adjunction induces a closure
system in A which, moreover, is compatible with the kernel relation associated
to the mapping ≡f . Therefore, the existence of such a closure systems turns out
to be a necessary condition for the problem under study.
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Proposition 4. Consider two fuzzy preordered sets A = (A, ρA) and B =
(B, ρB), and two mappings f : A → B and g : B → A such that (f, g) : A � B
forms a fuzzy adjunction. Then the set g(f(A)) is a closure system in A which
is compatible with the kernel relation ≡f .

Proof. Firstly, let us prove that S = g(f(A)) is a closure system, that is g(f(a)) ∈
p-min(a↑ ∩ S) for all a ∈ A.

By Theorem 2, it suffices to prove that ρA(a, u) = ρA(g(f(a)), u) for all u ∈ S.
On the one hand, since g ◦ f is inflationary, we have that ρA(a, g(f(a)) = 	,
therefore

ρA(g(f(a)), u) = ρA(a, g(f(a))) ⊗ ρA(g(f(a)), u) ≤ ρA(a, u)

for all u ∈ A. On the other hand, for u = g(f(x)) ∈ S, we have also

ρA(a, u) = ρA(a, g(f(x))) = ρB(f(a), f(x))
≤ ρA(g(f(a)), g(f(x))) = ρA(g(f(a)), u).

Now, notice that for x, a, u ∈ A such that f(a) = f(u) and s = g(f(x)) ∈ S, we
have the following chain of equalities

ρA(a, s) = ρA(a, g(f(x)) = ρB(f(a), f(x))
= ρB(f(u), f(x)) = ρA(u, g(f(x))) = ρA(u, s)

According to Corollary 2, the closure system S is compatible with the kernel
relation. ��
In order to actually build the fuzzy preorder on the codomain B, we will make
use of a suitable preorder between subsets. The idea is to consider the Hoare
preorder, which was introduced in the study of the semantics of non-determinism
and its definition is the following:

Given two subsets X,Y of a crisp poset (A,≤), the subset X is said to be
Hoare-smaller than Y , denoted X �H Y , if for every x ∈ X there exists y ∈ Y
such that x ≤ y.

If we consider a fuzzy preorder ρA instead of the crisp ordering ≤, it is
possible to extend the notion of Hoare ordering to a fuzzy preorder between
crisp subsets. Formally, the extension is given below:

Definition 9. Let (A, ρA) be a fuzzy preordered set, and consider C,D crisp
subsets of A, the fuzzy relation �H is defined as

(C �H D) =
∧

c∈C

∨

d∈D

ρA(c, d)

Proposition 5. The relation �H is a fuzzy preorder in the powerset of A.

Proof. Reflexivity is obvious.
For transitivity, given C,D,E ⊆ A, we have to prove that

(C �H D) ⊗ (D �H E) ≤ (C �H E)
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We will use the distributive properties of t-norms with respect to suprema and
infima, together with the transitivity of ρA, in the following form

∨

d∈D

(ρA(c, d) ⊗ ρA(d, e)) ≤ ρA(c, e)

for all c ∈ C, d ∈ D, e ∈ E:

(C �H D) ⊗ (D �H E) =
∧

c∈C

∨

d∈D

ρA(c, d) ⊗
∧

d∈D

∨

e∈E

ρA(d, e)

≤
∧

c∈C

(
∨

d∈D

ρA(c, d) ⊗
∧

d∈D

∨

e∈E

ρA(d, e)

)

=
∧

c∈C

∨

d∈D

(

ρA(c, d) ⊗
∧

d∈D

∨

e∈E

ρA(d, e)

)

≤
∧

c∈C

∨

d∈D

(

ρA(c, d) ⊗
∨

e∈E

ρA(d, e)

)

=
∧

c∈C

∨

d∈D

∨

e∈E

(ρA(c, d) ⊗ ρA(d, e))

=
∧

c∈C

∨

e∈E

∨

d∈D

(ρA(c, d) ⊗ ρA(d, e))

≤
∧

c∈C

∨

e∈E

ρA(c, e) = (C �H E)

��
The fuzzy preorder defined above will be used in the construction of the fuzzy
preorder on B needed in order to define the right adjoint g. It is remarkable
that �H will be used just on (crisp) subsets X ⊆ A with a particular property;
namely, for all x1, x2 ∈ X we have ρA(x1, x2) = 	. We will say a subset to be
cyclic if it satisfies the previous property.

The following lemma states that, for the specific case of this kind of sets, the
fuzzy relation �H can be very easily computed.

Lemma 3. Consider a fuzzy preordered set (A, ρA), and X,Y two crisp cyclic
subsets of A, then X �H Y = ρA(x, y) for any x ∈ X and y ∈ Y.

Proof. It is enough to show that ρA(x1, y1) = ρA(x2, y2) for all x1, x2 ∈ X,
y1, y2 ∈ Y . Indeed,

ρA(x1, y1) ≥ ρA(x1, x2) ⊗ ρA(x2, y1)

= 	 ⊗ ρA(x2, y1) ≥ ρA(x2, y2) ⊗ ρA(y2, y1) = ρA(x2, y2)

Analogously, ρA(x2, y2) ≥ ρA(x1, y1). ��
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The result below actually builds a fuzzy preorder relation on B; in the defini-
tion the previous lemma is used for the particular case of the sets of p-minima
of a fuzzy subset, which turn out to be cyclic (this is just a straightforward
consequence of the definition).

Lemma 4. Let A = (A, ρA) be a fuzzy preordered set together with a mapping
f : A → B and S ⊆ A a closure system compatible with the kernel relation ≡f .
For every a0 ∈ A, the fuzzy relation ρa0

B : B × B → L defined as

ρa0
B (b1, b2) =

(
(p-min(a↑

1 ∩ S)) �H (p-min(a↑
2 ∩ S))

)

where ai ∈ f−1(bi) if f−1(bi) �= ∅ and ai = a0 otherwise, for each i ∈ {1, 2}, is
a fuzzy preordering on B.

Proof. The definition does not depend on the choice of preimages, because given
x, y ∈ f−1(b) we have p-min(x↑ ∩ S) = p-min(y↑ ∩ S). In effect, consider s ∈
p-min(x↑ ∩ S) then ρA(x, u) = ρA(s, u), for all u ∈ S. Furthermore, as f(x) =
f(y) and S is compatible with the kernel relation then, by Corollary 2, ρA(x, u) =
ρA(y, u) for all u ∈ S. As a consequence, we have that ρA(y, u) = ρA(s, u) and,
hence, s ∈ p-min(y↑ ∩ S). As the roles of x and y in the previous argument are
interchangeable this proves the equality of both sets.

By Lemma 3, we have that

ρa0
B (b1, b2) = ρA(x, y)

for any x ∈ p-min(a↑
1 ∩ S) and y ∈ p-min(a↑

2 ∩ S) and it has been proved that
the value is independent from the choice of x and y.

From the reflexivity of ρA, it is straightforward that ρa0
B is reflexive as

ρa0
B (b, b) = ρA(x, x) = 	 for x ∈ p-min(a↑ ∩ S)) where a ∈ f−1(b) if f−1(b) �= ∅

and a = a0 otherwise.
Similarly, notice that

ρa0
B (b1, b2) ⊗ ρa0

B (b2, b3) = ρA(x, y) ⊗ ρA(y, z) ≤ ρA(x, z) = ρa0
B (b1, b3)

for x ∈ p-min(a↑
1 ∩ S)), y ∈ p-min(a↑

2 ∩ S)) and z ∈ p-min(a↑
3 ∩ S)) where

ai ∈ f−1(bi) if f−1(bi) �= ∅ and ai = a0 otherwise, for each i ∈ {1, 2, 3}. This
implies that ρa0

B is transitive. ��
We can now focus on the definition of suitable mappings g : B → A such that
(f, g) forms an adjoint pair.

Proposition 6. Let A = (A, ρA) be a fuzzy preordered set, f : A → B be a
mapping and S ⊆ A be a closure system compatible with the kernel relation ≡f .
Then, there exists a fuzzy preordering ρB on B and a mapping g : B → A such
that (f, g) constitutes a fuzzy adjunction.
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Proof. Firstly, the existence of a fuzzy preordering on B is given by Lemma 4
and observe that this fuzzy relation is not unique, as it depends on an element
a0 ∈ A. Assume that the element a0 ∈ A has been fixed and consider the
fuzzy preordering ρa0

B defined on B. There is a number of suitable definitions of
g : B → A, and all of them can be specified as follows:

(C1) If b ∈ f(A), then g(b) ∈ p-min(x↑
b ∩ S) for some xb ∈ f−1(b).

(C2) If b /∈ f(A), then g(b) ∈ p-min(a↑
0 ∩ S).

The existence of g is clear by the axiom of choice, since for all b ∈ f(A), the
sets f−1(b) are nonempty (so xb can be chosen for all b ∈ f(A)) and, moreover,
p-min(x↑

b ∩ S) and p-min(a↑
0 ∩ S) are nonempty as well because S is a closure

system.
Now, consider any g satisfying the conditions (C1) and (C2) above. Let us

prove that g is a right adjoint to f , that is, ρa0
B

(
f(a), b

)
= ρA

(
a, g(b)

)
for all

a ∈ A and b ∈ B.
By definition of ρa0

B (see Lemma 4), we have that

ρa0
B (f(a), b) =

(
(p-min(a↑ ∩ S)) �H (p-min(w↑ ∩ S))

)

where w satisfies either w ∈ f−1(b) if b ∈ f(A) (therefore, we can choose w to
be xb, see (C1) above) or, otherwise, w = a0. According to Lemma 3 and the
definition of g, we have

ρa0
B (f(a), b) = ρA(x, g(b)) for any x ∈ p-min(a↑ ∩ S)

The proof will be finished if we show that ρA(x, g(b)) = ρA(a, g(b)) for any x ∈
p-min(a↑ ∩S). By Corollary 1 for x ∈ p-min(a↑ ∩S) we have ρA(a, u) = ρA(x, u)
for all u ∈ S. Both, in case (C1) and in case (C2), we have g(b) ∈ S hence,
ρA(x, g(b)) = ρA(a, g(b)). ��
The previous results can be now summarized in the theorem below:

Theorem 5. Consider a fuzzy p reordered set A = (A, ρA) and a map f : A →
B. There exists a fuzzy preordering ρB on B and a map g : B → A such that
(f, g) constitutes a fuzzy adjunction if and only if there exists S ⊆ A a closure
system compatible with the kernel relation ≡f.

5 Conclusions and Future Work

We have characterized the situations for the existence of right adjunction for a
mapping f : (A, ρA) → B where (A, ρA) is a preordered set and B is an unstruc-
tured codomain, in terms of closure systems.

When focusing on fuzzy extensions of order relations one can find some
interesting developments on the study of both fuzzy partial orders and fuzzy
preorders, see [4,5] for instance. In these works, it is noticed that the versions
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of antisymmetry and reflexivity commonly used are too strong and, as a con-
sequence, the resulting fuzzy partial orders are very close to the classical case.
Accordingly, one interesting line of future work will be the adaptation of the
current results to these alternative weaker definitions.

Another source of future work could be the definition of alternative interpre-
tations of the notion of adjunction between multivalued functions (i.e., relations)
both in crisp and fuzzy frameworks, with the aim of building a right adjoint for
a given multivalued function.
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Abstract. This work is motivated by knowledge discovery in attributed
graphs. Our approach consists in extending the methodology of frequent
closed pattern mining, as developed in Formal Concept Analysis (FCA),
to the case where the objects in which attribute patterns may occur are
the vertices of a graph, typically representing a social network. For that
purpose we extend the framework of abstract concept lattices, in which
the extensional space is a pointed join-subsemilattice of the powerset X
of the object set, by considering as the extensional space a weaker struc-
ture called a confluence of X. Confluences were recently investigated as
intensional spaces in FCA. In this article we show that when the inten-
sional space is a lattice L and the extensional space is a confluence F of
X, that leads to a set of closure operators, called local closure operators,
whose union form the set of intensions of F . We investigate the structure
of the set of (extension,intension) pairs, i.e. the set of local concepts built
on (L,F ) and related local implications. As an example, we consider the
detection of all frequent k-communities in an attributed network.

1 Introduction

A way recently proposed to search for frequent closed patterns in attributed
graphs is to define a restricted extensional space, i.e. a lattice obtained by apply-
ing a graph abstraction operator to vertex subsets. The idea of such an operator
is to minimally reduce a vertex subset until the reduced vertex subset satisfies
some connectivity property within the corresponding induced subgraph [1]. This
approach, based on a previous work on abstraction in Formal Concept Analy-
sis [2] extracts attribute patterns whose support vertex sets induce subgraphs
made of dense parts1. However there are also recent works in data mining that
are interested in local patterns made of a constraint on a subset of attributes
together with a density constraint on a vertex subset, and this using various
notions of maximality [3,4]. We are interested here in defining local closed pat-
terns corresponding to maximal attribute patterns each associated to one dense

1 In data mining the support set of a pattern is the extension of this pattern in a set
of objects

c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 128–144, 2015.
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subgraph, allowing to extract knowledge, and implication rules, particular to
specific dense groups of objects. For that purpose we propose to extend Formal
Concept Analysis (FCA) to take into account this notion of locality.

In the framework we propose, several closure operators may be applied to the
same pattern: a closed pattern will then be local as the closure will depend on
which region of the extensional space is concerned. The simplest example is an
extension made of various connected components, each leading to a local closed
pattern.

Formally, the dense vertex subsets we consider form a partial order, included
in the powerset of the vertex set. Such a partial order, called a confluence in a
recent investigation in Formal Concept Analysis [5]2 is close to the notion of a
confluent familiy recently investigated in [6] and that have been shown, with
a mild restriction, as the structure of a family of itemsets in which a closure
operator can be defined with respect to any object set. The structure of the
set of closed patterns, when the language is a confluence, has been shown in [5]
to be a more general structure called a pre-confluence, thus leading to define
intensional Galois pre-confluences.

We show here that whenever we consider the symmetric case where the exten-
sional space, i.e. the set of dense vertex subsets allowed, is a confluence of the
powerset of the object set O, and the pattern language a lattice L, there exists
a set of local closure operators, one for each minimal element of F such that the
set of intensions int[F ] is the union of the corresponding closed patterns. We also
show that there is a unique closure operator h on the extensional confluence. As
a whole, we obtain a set of pairs (e, l) where e is a closed element of the exten-
sional space F and l is closed with respect to a local closure operator. This set
of local concepts, ordered following the partial order on F , is a pre-confluence,
which is called an extensional Galois pre-confluence.

This leads to define also a set of local implications, written �ec → �el or
equivalently �mc → �ml where m is any minimal element of F such that m ≤ e.
Such a local implication means that the local extension e of the closed pattern
c is the same as the local extension of l, the corresponding local closed pattern.

As a direct application of these results we can compute extensional Galois
pre-confluences where F is the set of vertex subsets inducing connected sub-
graphs of an attributed graph G = (O,E). However we can enlarge our pur-
pose as follows: we can use this methodology by considering a derived graph
GT = (T,ET ) where T is a family of subsets of the object set O and where
each new vertex t ∈ T is labelled by the most specific pattern common to the
vertices of t in 2O. When considering T as the set of k-cliques of an attributed
graph G = (O,E), this allows to enumerate the k-communities [7], of size at
least s, in all subgraphs induced by extensions of patterns in G = (O,E), as we
will see in Sect. 4. We then also obtain local implications, each indexed by some
k-clique, such as �t1a1 → �t1a3a7 stating that the members of any k-clique
belonging, in the extension of attribute a1, to the same k-community as t1, also

2 In that article, these structures were called confluence’s. We use here a more standard
terminology.
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share attributes a3 and a7. This way, we gather some knowledge which is local
as it is only valid in a vicinity of particular vertices. In such a local rule, the
left part is a closed pattern c whose extension, in the k-clique graph, is split
into several connected components, each corresponding to a k-community in the
original graph, and the right part is the local closed pattern representing the
most specific pattern shared by all the members of this k-community.

In Sect. 2 we recall the basic definition and properties related to closure
operators and confluences. In Sect. 3 we define and investigate the set of closure
operators {fm} relating a pattern lattice to a confluence F ⊆ 2O, where m
belongs to the set min[F ] of minimal elements of F . In Sect. 4 we recall that
given a graph GT = (T,ET ), the family of vertex subsets inducing connected
subgraphs of GT is a confluence of 2T and consider the case in which T is a
set of subsets of the vertices of some attributed graph and investigate the k-
communities of subgraphs induced by extensions of patterns. Section 5 briefly
suggests an efficient algorithm to compute frequent local closed patterns and
related local implication rules.

2 Closure Operators in Pre-confluences and Confluences

We first recall standard definitions and results from FCA about closure oper-
ators in lattice, using the formulation of the T.S. Blyth’s book [8] and then
definitions and results concerning a structure weaker than a lattice and called
a pre-confluence, from a recent work in Formal Concept Analysis [5]. Our pur-
pose is here to extend the standard result about the range of closure operators
in lattices to pre-confluences, in order to further present, in Sect. 3, the main
contribution of this article, i.e. the definition and investigation of local concepts
pre-confluences as a generalization of extensional abstract concept lattices [2].

All ordered sets considered here are finite. All lattices we consider are then
bounded lattices, the top element � is the meet of the empty subset and the
join of the element set, while the bottom element ⊥ is the meet of the ele-
ment set and the join of the empty subset. We will also further need topped
∧-subsemilattices of a lattice X, i.e. bounded lattices with same meet and same
greatest element as X. Dually, we consider pointed ∨-subsemilattices of a lat-
tice X, i.e. bounded lattices with same join and same bottom element as X.
A pointed ∨-subsemilattices is also further called, following [2], an abstraction.
All along the article the set of upper bounds of some element x in an ordered set
E is denoted by the up set Ex = {y | y ≥ x}. In the same way, the set of lower
bounds of x is denoted by the down set Ex = {y | y ≤ x}. Closure operators and
dual closure operators are defined as follows:

Definition 1. Let E be an ordered set and f : E → E a self map such that for
any x, y ∈ E, f is monotone, i.e. x ≤ y =⇒ f(x) ≤ f(y) and idempotent, i.e.
f(f(x) = f(x), then:

– if f is extensive, i.e. f(x) ≥ x, f is called a closure operator
– if f is intensive, i.e. f(x) ≤ x, f is called a dual closure or an interior

operator, or also a projection.
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In the first case, an element such that x = f(x) is called a closed element.

A closure subset of an ordered set E is defined as the range f [E] of a closure operator
on E while a dual closure subset is the range p[E] of an interior operator. We then
obtain the following well known result when the ordered set is a lattice [8]:

Proposition 1. Let X be a lattice. A subset C of X is a closure subset if and
only if C is closed under meet. The closure f : X → X is then unique and
defined as f(x) = ∧{c∈C∩Xx}c.

By “C is closed under meet” we intend here that the meet of any subset c,
including the empty subset ∅, belongs to C. Therefore � =

∧
∅c belongs to

C, and C is a topped ∧-subsemilattice of X. We will also further need the
dual proposition which states that a subset A of X is a dual closure subset
whenever A is closed under joins i.e. A is a pointed ∨-subsemilattices of X, i.e. an
abstraction of X. The associated interior operator p : X → X is then defined as
p(x) = ∨{a∈A∩Xx}a. In particular when X is a powerset 2K , p(x) = ∪{a∈A|a⊆x}a.

We are interested now in pre-confluences which are structures weaker than
lattices introduced in [5], and recall a theorem extending Proposition 1.

Definition 2. Let F be a finite ordered set such that for any t ∈ F , F t is a
lattice. F is called a pre-confluence, x ∧t y is a local infimum or local meet, and
�t a local top.

The two following Lemmas allows a better understanding of what is a pre-
confluence, emphasizing, first, that there exists a partial join operator x ∨F y
on F , and then, that we only need minimal elements of F to characterize a
pre-confluence.

Lemma 1. Let F be a pre-confluence, then for any t in F and x, y ∈ F t

1. F t has as join, denoted by x ∨F y, the least element of F x ∩ F y

2. Let t′ ≥ t then F t′
is a sublattice of F t.

Lemma 2. F is a pre-confluence if and only for any m ∈ min(F ), Fm is a
lattice.

Clearly, according to the latter Lemma, a pre-confluence F with a minimum
element ⊥ is a lattice as F⊥ = F . We define hereunder what means for a
subset of a pre-confluence to be “closed under local meet”, and the resulting
fundamental theorem:

Definition 3. A subset C of a pre-confluence F is said closed under local meet
whenever for any element t and any C ′ ⊆ C ∩ F t we have

∧

t {c∈C′}
c belongs to C.
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Theorem 1. Let F be a pre-confluence. A subset C of F is a closure subset if
and only if C is closed under local meet. The closure f : F → F is then defined
as f(x) = ∧t{c∈C∩Fx}c and C = f [F ] is a pre-confluence.

Whenever F is a lattice, “closed under local meet”, as defined in Definition 3,
simply means “closed under meet” and Theorem 1 comes down to Proposition 1.

It was previously shown that when restricting the standard extensional space
2O, where O is the set of objects, to a subset which is an abstraction, we general-
ize concept lattices and obtain abstract concept lattices [2]. In order to generalize
abstractions of a lattice, and later on generalize concept lattices and abstract
concept lattices to local concept pre-confluences, we need to consider particu-
lar pre-confluences F , part of some host lattice X and sharing the same join
operator.

Definition 4. Let X be a lattice and F ⊆ X a pre-confluence with as join
∨F = ∨, F is called a confluence of X.

Again it should be clear that confluences of a lattice X generalize abstractions of
X: an abstraction of X is a confluence of X containing the minimum of X. We
have the following characterization of confluences which is close to, but differs
from, the definition of a confluent family given by M. Boley and co-authors [6]:

Proposition 2. Let X be a lattice and F ⊆ X, F is a confluence of X if and
only if for any x, y, t in F with x ≥ t and y ≥ t, we have that x∨y belongs to F .

The following Lemmas show that a confluence is associated to a set of inte-
rior operators on its host lattice and that we only need the interior operators
associated to the minimal elements of F to represent all interior operators.

Lemma 3. Let F be a confluence of X, the mapping pt : Xt → Xt defined by
pt(x) = ∨q∈F t∩Xx

q is an interior operator on Xt and pt[Xt] = F t.

Lemma 4. Let F is a confluence of X, then if q ≤ t, and x ∈ Xt, then pt(x) =
pq(x).

Again, by considering abstractions of X as confluences containing the minimum
of X, we find a previous result, here the dual of Proposition 1 that characterizes
abstractions as ranges of dual closure operators on lattices: whenever the conflu-
ence F is an abstraction, there is only one interior operator to consider, namely
p⊥ which is such that p⊥[X] = F .

In what follows, we consider confluences of some powerset of objects 2O,
so generalizing extensional abstractions into extensional confluences. More pre-
cisely, we are interested in reducing the extension ext(t) of some pattern t in
such a way that the reduced extension belong to a confluence F . In the example
that follows, and that will be the core of Sect. 4, we will define a confluence by
considering a non-directed graph G = (O,E).
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Example 1. Let O = {1, 2, 3, 4}, G = (O,E) be a graph whose vertex set is
O and edge set is E. Let F ⊆ 2O be the set of vertex subsets inducing con-
nected subgraphs of G. F is a confluence whose set of minimal elements is
M = {{1}, {2}, {3}, {4}}, i.e. the set of singletons of 2O. The union of two
vertex subsets each inducing a connected subgraph of G that contains a given
vertex s is a vertex subset obviously inducing a connected subgraph of G: s con-
nects the two subgraphs, and therefore F is a confluence of 2O. The projection
p{s} projects then any vertex subset S containing s on the connected component
of GS containing s. The up set F {s} is then the set of vertex subsets inducing
connected subgraphs containing s and the union of all these F {s} represents the
whole set of connected subgraphs of G. For sake of simplicity we will further
write singletons {s} as s and subsets as words, as for instance 123. The sub-
set F 1+3 = F 1 ∪ F 3 representing vertex subsets inducing connected subgraphs
containing vertices 1 or 3 is also a confluence. Figure 1 displays the diagram
of F 1+3. �

3

1

2 3

4

1 4

3 2 33

4

1

3

41 4 2 31

1

2

1 4

2

2

Fig. 1. The Hass diagram of a family F of connected subgraphs each generated by a
vertex subset of the original graph whose vertex subset is {1, 2, 3, 4} and whose edges
form the square {12, 23, 34, 14}. We only display here the part F 1+3 = F 1 ∪ F 3 of F ,
which also has the confluence structure. Note that the pair (123, 143) has two lower
bounds, one in F 1 (namely 1) and the other in F 3 (namely 3). F 1 and F 3 both are
lattices but F 1+3 is a confluence.

3 Local Closures

In this section we will extend the concept lattice to the notion of local concept
pre-confluence by restricting the extensional space 2O to a pre-confluence of 2O.
First we recall a general result from [2,9] that states that applying an interior
operator to a lattice involved in a Galois connection preserves the connection:

Proposition 3. Let X and L be two lattices, (int, ext) be a Galois connection
on (X,L) and p be an interior operator on X, and A = p[X], we have that
(int, p ◦ ext) is a Galois connection on (A,L).
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Corollary 1. 1. f = int ◦ p ◦ ext is a closure operator on L and the set of
closed elements f [L] = int[A] is a topped ∧-subsemilattice of L.

2. h = p ◦ ext ◦ int is a closure operator on A and the set of closed elements and
h[A] = p ◦ ext[L] is a topped ∧-subsemilattice of A.

3. h[A] and f [L] are two anti-isomorphic lattices and the lattice of the (e, c) pairs
where c = int(e) and e = p ◦ ext(c) form a Galois lattice, ordered following
A, isomorphic to h[A].

Note that the roles of X and L can be exchanged and, as a consequence, we
can as well rephrase Proposition 3 and Corollary 1 using an interior operator on
L. Regarding extensional abstractions, the extensional lattice X, on which the
interior operator is applied, is a powerset 2O of objects, the intensional map int
is an intersection operator on the pattern language L, and the extensional map
ext returns the whole set of objects whose description in L is greater than or
equal to its argument:

Proposition 4. LetX = 2O be a powerset of objects,L be a lattice and (int, ext) be
the Galois connection on (X,L) associated to the description function d : O → L:

int(e) =
∧

o∈e

d(o)

ext(q) = {o ∈ O | q ⊆ d(o)}
then, let p be an interior operator on X, we have that (int, p ◦ ext) is a Galois
connection on (p[X], L) and int ◦ p ◦ ext is a closure operator on L.

This proposition allows to define abstract concept lattices, where the interior
operator applies to the extensional space [2,9]. By rather applying the interior
operator to the pattern lattice, we obtain projected pattern structures as pro-
posed in [10].

3.1 Local Concept Pre-confluence

As we are interested in extensional confluences, we need to consider up sets of
the confluence, which are lattices, and restrict our interest to the relevant parts
of the pattern language. We first note hereunder that Proposition 4 holds when
replacing X = 2O by any of its up set Xe as far as we consider only elements t of
L such that e ⊆ ext(t). In what follows we still note int and ext their restrictions
to part of their domain.

Proposition 5. Let e be an element of X, Lint(e) be the down set of L whose
maximum is int(e) and Xe be the upset of X whose minimum is e, then the
restrictions of int and ext to respectively Xe and Lint(e) are such that

(int, ext) define a Galois connection on (Xe, Lint(e))

Proof. As int and ext define a Galois connection on X,L we know that they
are anti monotonic and therefore:
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– For any y ∈ Xe, int(y) ≤ int(e) and as a consequence int(y) ∈ Lint(e), i.e.
int[Xe] ⊆ Lint(e)

– For any t ∈ Lint(e), ext(t) ⊇ ext(int(e)) ⊇ e (as ext ◦ int is a closure operator)
and as a consequence ext(t) ∈ Xe, i.e. ext[Lint(e)] ⊆ Xe.

This means that the restrictions of these functions have domains and co-domains
as follows: int : Xe → Lint(e) and ext : Lint(e) → Xe, and as they inherit from
the properties of (int, ext) on (X,L), they also define a Galois connection on
(Xe, Lint(e)). ��
Now, recall that in a confluence F of a lattice X, to each element e in F is
associated an interior operator pe on Xe such that pe[Xe] = F e (see Lemma 3
and Proposition 2). This leads to the following corollary of Proposition 5:

Corollary 2. Let X = 2O be a powerset of objects, F be a confluence on X, e
an element of F and pe the corresponding interior operator on Xe, then

1. (int, pe ◦ ext) define a Galois connection on (F e, Lint(e)).
2. fe = int ◦ pe ◦ ext is a closure operator on Lint(e) and fe[Lint(e)] = int[F e]

is a topped ∧-subsemilattice of Lint(e).
3. he = pe ◦ ext ◦ int is a closure operator on F e and he[F e] = pe ◦ ext[Lint(e)]

is a topped ∧-subsemilattice of F e.

Proof. From Proposition 5 we know that the restrictions of int and ext define
a Galois connection on (Xe, Lint(e)). From Lemma 3 and Proposition 2 we know
that for any element x of Xe and element e of F , the map pe defined as pe(x) =
∨q∈F e∩Xx

q is an interior operator on Xe. To conclude we just need the general
result presented in Proposition 3. ��
fe is a called a local closure operator with respect to e.

Example 2. We consider here the confluence F 1+3 described in Example 1 and
whose diagram is displayed Fig. 1. The pattern language will be L = 2{a,b,c,d,e}

that we will simply write L = 2abcde again representing subsets as words. The
corresponding context is described Table 1.

Consider the local closure operator f1 = int◦p1 ◦ext associated to the vertex
subset {1} simply noted 1. We have X = O1234 and X1 is {1}×2234. F 1 = p1[X1]

Table 1. The context representing the descriptions in 2abcde of the objects in confluence
F 1+3 described Example 1.

O/K a b c d e

1 1 1 1 1 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 0 1 0 1
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is then the abstraction {1, 12, 14, 123, 124, 134, 1234}. We have int(1) = abcd and
therefore the pattern language is restricted to 2abcd, ensuring that p1 : X1 → X1

will be applied to some ext(q) where q is less than or equal to abcd and therefore
such that ext(q) ⊇ {1}, i.e. does belong to X1. Let us then consider the pattern
abc, we have ext(abc) = 13 and p1(13) = 1, i.e. the greatest element of F 1

included in 13. As a consequence f1(abc) = int(1) = abcd. �

In the following result we show that the set int[F ] of intensions of an extensional
confluence F is obtained by joining the ranges of these local closure operators:

Theorem 2. Let F be a confluence of X = 2O, L be a lattice and (int, ext) be
the Galois connection on (X,L), then we have that:

int[F ] =
⋃

e∈F

fe[Lint(e)] =
⋃

m∈min(F )

fm[Lint(m)]

Proof. Regarding the first equality, from Proposition 3 and considering p as
the identity function, we deduce that the right part of the equality rewrites
as

⋃
e∈F int[F e]. Furthermore, as F may be rewritten as the union of its up

sets, we have that F =
⋃

e∈F F e. By applying the intensional function to both
sides we obtain int[F ] = int[

⋃
e∈F F e]. As int[F ] is the image of F by int, it is

straightforward that the image of the union of subsets is the union of the image
of these subsets, and therefore that int[F ] =

⋃
e∈F int[F e].

The second equality states that we only need the closure operators associ-
ated to the minimal elements of F . From Theorem 2 we have int[F ] = C =⋃

e∈F ) fe[Lint(e)]. Let C ′ =
⋃

m∈min(F ) fm[Lint(m)], as min[F ] ⊆ F we clearly
have C ′ ⊆ C. We have then to show that any element in C may be rewritten as
an element of C ′. Let then c be an element of C, this means that there exists
e ∈ F and l ∈ Lint(e) such that c = fe(l). First we note that there necessarily
exists m ∈ min[F ] such that e ≥ m and also that because int is anti monotonic
we have int(m) ≥ int(e) and therefore, whenever l belongs to Lint(e) it also
belongs to Lint(m). Now, let z = ext(l), recall that z ∈ Xe, since we have to
apply pe to z to build fe(l)) and we have seen that e ≥ m. From Lemma 4, we
can then deduce that pe(ext(l)) = pm(ext(l)) and therefore c = int ◦ pm ◦ ext(l)
with l ∈ Lint(m). This means that c belongs to C ′. Overall we have shown that
C ′ = C = int[F ] ��
This generalizes Proposition 3: we now have that the union of local closed ele-
ments of L with respect to a confluence F of X is the range of F under the
intensional operator int. Again we only need the set of minimal elements min(F ).
Moreover, we have a stronger structure on the extensional space on which we
may define a unique closure operator:

Theorem 3. Let F be a confluence on X = 2O, L be a lattice and (int, ext) be
the Galois connection on (X,L), and h : F → F defined as

∀x ∈ F, h(x) = hx(x)

is a closure operator on F and E = h[F ] is a pre-confluence.
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Proof. We first show that h is a closure operator, i.e. is extensive, monotone
and idempotent. Let x, y be elements of F .

– h(x) ≥ x ?

h(x) = hx(x) and as hx is a closure operator we have that h(x) = hx(x) ≥ x.
– x ≥ y ⇒ h(x) ≥ h(y)?

Let z = ext ◦ int(x), then z belongs to the upset Xx and as x ≥ y this means
following Lemma 4 that px(z) = py(z) and therefore h(x) = py(ext ◦ int(x)).
Now as ext◦int is a closure operator it is monotone and therefore ext◦int(x) ≥
ext ◦ int(y), and as py is an interior operator it is also monotone and we have
that py ◦ ext ◦ int(x) ≥ py ◦ ext ◦ int(y). To summarize, we have shown that
h(x) = py(ext ◦ int(x)) ≥ py(ext ◦ int(y)) = h(y).

– h(y) = h ◦ h(y)?

Let x = hy(y), we have x ≥ y and following the definition of h that h ◦
h(y) = hx ◦ hy(y) = h(x). Again, let z = ext ◦ int(x), then z belongs to the
upset Xx and as x ≥ y this means following Lemma 4 that px(z) = py(z)
and therefore h ◦ h(y) = h(x) = py(ext ◦ int(x)) = hy(hy(y)). Furthermore,
as hy is a closure operator, we have that hy(hy(y)) = hy(y) and therefore,
h ◦ h(y) = hy(y) = h(y).

Now, as h is a closure operator on the confluence F which is also a pre-confluence,
this means following Theorem 1 that h[F ] is closed under local meet and therefore
also is a pre-confluence. ��
The closure subset h[F ] is isomorphic with the set of pairs P = {(e, l)|e ∈ F, e =
h(e), l = int(e)} = {(e, l)|e ∈ F, e = pe ◦ ext(l), l = int(e)}, and as a consequence
P , ordered following F , also is a pre-confluence. This leads to generalize Galois
or Concept lattices and define (extensional) Galois pre-confluences we also call
local concept pre-confluences. Each pair (e, l) is called a local concept, e is the
local extension (or local extent) and l is the local intension (or local intent).

Definition 5. The set P = {(e, l)|e ∈ F, l ∈ L, e = pe ◦ ext(l), l = int(e)}
is a pre-confluence isomorphic with h[F ] and is called the extensional Galois
pre-confluence defined on the confluence F of X and the lattice L by the maps
int : X → L, and ext : L → X

Example 3. We consider here the confluence F 1+3 and the pattern language and
context described Example 2.

We report hereunder the local concepts (e, l) of the associated Galois pre-
confluence. The corresponding local extents are obtained using the range closure
operator h[F 1+3] as stated in Theorem 3. We have e = hx(x) = pi ◦ ext ◦ int(x)
where i = 1 (resp. i = 3) whenever {1} ⊆ x (resp. {3} ⊆ x), and the correspond-
ing local intents are obtained as int(e).

– h(1) = p1 ◦ ext ◦ int(1) = p1 ◦ ext(abcd) = 1 and l = int(1) = abcd
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– h(3) = p3 ◦ ext ◦ int(3) = p3 ◦ ext(abc) = 3 and l = int(3) = abc
– h(12) = p1 ◦ ext ◦ int(12) = p1 ◦ ext(ab) = 123 and l = int(123) = ab
– h(14) = p1 ◦ ext ◦ int(14) = p3 ◦ ext(ac) = 134 and l = int(134) = ac
– h(23) = p3 ◦ ext ◦ int(23) = p1 ◦ ext(ab) = 123 and l = ab
– h(43) = p3 ◦ ext ◦ int(43) = p3 ◦ ext(ac) = 134 and l = ac
– h(124) = p1 ◦ ext ◦ int(124) = p1 ◦ ext(a) = 1234 and l = int(1234) = a
– h(234) = p3 ◦ ext ◦ int(234) = p3 ◦ ext(a) = 1234 and l = a
– h(123) = p1 ◦ ext ◦ int(123) = p1 ◦ ext(ab) = 123 and l = ab
– h(134) = p1 ◦ ext ◦ int(134) = p1 ◦ ext(ac) = 134 and l = ac
– h(1234) = p1 ◦ ext ◦ int(1234) = p1 ◦ ext(a) = 1234 and l = a

Overall we have only five local concepts, namely (1234, a),(123, ab), (134, ac),
(1, abcd), (3, abc). Ordered following the order on F , they form a Galois pre-
confluence.

The same local concepts may be obtained starting from the pattern language
using Theorem 2 by applying the local closure operators f1 = int ◦ p1 ◦ ext
and f3 = int ◦ p3 ◦ ext to their respective sublanguages Lint(1) = 2abcd and
Lint(3) = 2abc. We obtain then int[F ] as f1[2abcd] ∪ f3[2abc] and therefore the set
of local concepts as the union of the set of pairs (p1 ◦ ext(q), q) where q = f1(q)
and of the set of pairs (p3 ◦ ext(q), q) where q = f3(q). Note that whenever we
are interested by frequent local concepts, for which the local extent has to be
larger than some threshold, then the latter way has to be preferred. �

3.2 Local Implications

As we have seen, let q be a pattern and m ∈ F be such that m ⊆ ext(q),
pm ◦ ext(q) is defined and represent the local support of q in F which is greater
than m. Whenever we have pm ◦ext(q) ⊆ pm ◦ext(w) we rewrite this as the local
implication �mq → �mw stating that if q has a local support set containing m,
then w has a larger or equal local extension.

When considering a given closed pattern c with respect to 2O, whose local
extension e contains m, and whose corresponding local closed pattern in F is l,
we have then that the implication rule �mc → �ml holds.

The set of such �mc → �ml local implications, with c �= l, represents (a
basis for) the local knowledge deriving from the reduction of the extensional
space from 2O to the confluence F .

3.3 Some Bounds on the Size of an Extensional
Galois Pre-confluence

When considering the number of local closed patterns as defined above when
considering a confluence of X = 2O as the extensional space, i.e. the size of
int([F ], we may bound it by the number of closed patterns when considering
X = 2O as the extensional space. However, if we are interested in the total
number of pairs (e, l) such that e = pm ◦ ext(l) and l = int(e), we have a larger
bound, because a given local closed pattern may have as many local extensions
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as minimal elements in F . We have then to consider the set of closed elements
h[F ] each element e of which is the local extension of exactly one (e, l) pair:
whenever e is given, l is defined as int[e].

Proposition 6. Let f [L] = int[X] be the set of closed patterns on L with respect
to the lattice X = 2O, int[F ] be the set of local closed patterns with respect to the
confluence F , and PF = {(e, l)|e = h(e), l = int(e)}, be the set of local concepts,
we have that:

1. int[F ] ⊆ int[X]
2. |PF | ≤ |min(F )| ∗ |int[F ]|.
Proof. First, as X ⊆ F it is straightforward that int[F ] ⊆ int[X]. Then,
each pair (e, l) belongs to at least one Galois lattice of a Galois connection
on (Fm, Lint(m)), as there are min[F ] such Galois connections and as the size
|int[Fm]| of each corresponding Galois lattice is smaller than int[F ], the total
number of (e, l) pairs is smaller than or equal to |min[F ]| ∗ |int[F ]|. ��
As we will see in the simple example that follows, the bound is tight.

Example 4. Let O = {1, 2} and the elements of O be described as d(1) =
int({1}) = ab, and d(2) = int({2}) = ab, with L = 2{a,b}. There is then only one
concept ({1, 2}, ab) and |int[2O]| = 1.

When considering the confluence F = {{1}, {2}}, we have as the set of local
closed patterns int[{{1}, {2}}] = {ab} and we have as expected that the number
(1) of local closed patterns with respect to F is smaller than or equal to the
number (1) of closed patterns with respect to 2O.

Now, when considering the number of local closed patterns we have now

– Lint({1}) = Lab = 2{a,b} = L and therefore, f{1}[L] = int[F {1}] = {int({1})} =
{ab} and p{1} ◦ ext(ab) = {1}, which gives as (local extension, local closed
pattern) pairs the unique pair ({1}, ab)

– Lint({2}) = Lab = 2{a,b} = L and therefore, f{2}[L] = int[F {2}] = {int({2})} =
{ab} and p{2} ◦ ext(ab) = {2}, which gives as (local extension, local closed
pattern) pairs the unique pair ({2}, ab).

As a result we have 2 (e, l) pairs, |min[F ]| = 2, |int[2O]| = 1, int[F ] = int[X] =
{ab}, and |PF | = |min[F ]| ∗ |int[X]|. �

4 Graph Confluence

Whenever the objects are the vertices of some undirected graph, graph abstrac-
tions, as defined in [1], lead to abstract closed patterns. Here we discuss the
graph confluence F , representing vertex subsets inducing connected subgraphs
of a graph, which has been presented in Example 1. However, a large family of
confluences may be obtained starting from some graph (G = O,E), by simply
deriving from G a new graph GT = (T,ET ) whose vertices are subsets of O, and
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whose edges ET are deduced from G. Our motivating example considers T as the
set of k-cliques of G and states that there is an edge in GT between two k-cliques
whenever they share k − 1 vertices. In the field of social network analysis, the
vertex subset in G corresponding to a connected component of GT is known as
a k-community [7]. A local concept pre-confluence in this particular case will be
made of local concepts each associated to a k-community. Each k-community
corresponds, in GT , to a connected component of the subgraph of GT induced
by the extension of some pattern.

Consider a graph G = (ET , T ) whose vertices are subsets of some object set
O, i.e. T ⊆ 2O and let FT be the confluence of subsets of 2T inducing connected
subgraphs of GT . We also consider a pattern lattice L and two maps ext : L → 2O

and int : 2O → L such that (int, ext) defines a Galois connection on (L, 2O).
Let u : 2T → 2O be such that u(eT ) = ∪t∈eT t. u(eT ) is called the flattening

of eT . We then consider the two maps extT and intT defined as follows:

– extT : L → 2T with extT (p) = {t|t ⊆ ext(p)}
– intT : 2T → L with intT (eT ) = int ◦ u(eT ).

It is straightforward that (intT , extT ) defines a Galois connection on (2T , L).
Therefore, given a graph confluence F of 2T , we obtain a local concept pre-
confluence defined on (F,L). We then have the following result when flattening
the (local ) extensions so found in F :

Proposition 7. Let F be a confluence of 2T and U = u[F ], where u is the
flattening operator on O, then

– intT [F ] = int[U ]
– Let (eT , l) be a local concept in the Galois pre-confluence defined on (F,L)

and eT ≥ m ∈ min[F ], then u(eT ) is the greatest element of u[Fm] among
elements e such that int(e) = l.

Proof

– The first item is straightforward as for any element x of F , we have intT (x) =
int ◦ u(x).

– Let e be an element of u[Fm], and int(e) = l. This means that there exists
e′
T ∈ u[Fm] such that e = u(e′

T ) and as a consequence we have int ◦ u(e′
T ) =

intT (e′
T ) = l. But as eT is the greatest element along the elements x of

Fm such that intT (x) = l then necessarily e′
T ⊆ eT and as u is monotonic,

e = u(e′
T ) ⊆ u(eT ). ��

This means that the local closed patterns with respect to the confluence F are
the same as the patterns support closed with respect to the extensional space
U = u[F ], that we call the flattening of F 3. This means that we may associate
to each pair (eT , l) of the Galois pre-confluence defined on F , the pair (u(eT ), l)

3 A pattern is said support-closed whenever specializing the pattern decreases its
extension [6].
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with the same intension l = intT (eT ) = int ◦ u(eT ) and such that u(eT ) is the
greatest element in u[Fm] ⊆ 2O, whose intension is l. However, in general U is
not a confluence of 2O because there may be two elements eT and e′

T with the
same image u(eT ) = u(e′

T ) in 2O. In the following example we also discuss the
corresponding local implications:

Example 5. Let G = (O,E) be the graph displayed on the left part of Fig. 2.
Each vertex has an itemset included in {a, b, c} as a label. The set of tri-
angles is T = {t0, t1, t2, t3, t4, t5, t6, t7} and form a triangle graph GT dis-
played on the right part of Fig. 2. An edge relates any pair of triangles
sharing two vertices in G, as for instance (t0, t1). Each triangle in GT has
as its itemset the intersection of the itemsets of its three vertices in G.
For instance, the description of t1 in GT is ab = abc ∩ ab ∩ ab. The ver-
tex subsets inducing connected subgraphs of GT form the confluence FT =
{{t0}, {t1}, {t0, t1}, {t2}, {t3}, {t2, t3}, {t4}, {t5}, {t4, t5}, {t6}, {t7}, {t6, t7}}. We
do not consider in this example the empty pattern.

The support set of the pattern a is extT (a) = {t0, t1, t2, t3, t6, t7}. The local
support with respect to t0 is pt0({t0, t1, t2, t3, t6, t7}) = {t0, t1}, i.e. the con-
nected component containing the vertex t0 of the subgraph induced by extT (a).
Hereunder, we note fi the local closure operator f{ti}. The corresponding local
closed patterns are as follows:

– f0(a) = f1(a) = ac, f2(a) = f3(a) = ab, f6(a) = f7(a) = ab.

In the same way, the pattern b whose support set is ext(b) = {t2, t3, t4, t5, t6, t7}
leads to the following local closed patterns:

– f2(b) = f3(b) = ab, f4(b) = f5(b) = bc, f6(b) = f7(b) = ab.

Note that ab appears both as a local closed pattern resulting from a with respect
to f0, f1 and to f6, f7 and as a local closed pattern resulting from b with respect
to f2, f3 and again to f6, f7. Now, as both a and b are closed patterns with
respect to 2T , we obtain various triples in the form (a, eT , l) and (b, eT , l) and
corresponding local implications in the form �eT a → �eT l and �eT a → �eT l.
The former, for instance, also rewrites as �{ti}a → �{ti}l where ti is any element
of eT . This leads to the following sets of local implications:

– �{t2}a → �{t2}ab, �{t3}a → �{t3}ab, equivalent to �{t2,t3}a → �{t2,t3}ab
– �{t6}a → �{t6}ab, �{t7}a → �{t7}ab,
– �{t2}b → �{t2}ab, �{t3}b → �{t3}ab.

The 4 local concepts found in GT are ({t0, t1}, ac), ({t2, t3}, ab), ({t4, t5}, bc),
({t6, t7}, ab), and correspond in the original graph to 4 3-communities of
size 4. �

In such a framework, a local closed pattern l is stated as frequent whenever its
local extension in O, u ◦ ext(l), exceeds some threshold s. We consider then the
following mining problem (Problem I):
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Fig. 2. On the left we have a graph of objects each described as an itemset included
in {a, b, c}. This graph represents the triangle abstraction of some input graph. On
the right, the graph GT whose vertices are the triangles of G. The itemset describ-
ing a vertex in GT is the intersection of the itemsets describing the elements of the
corresponding triangle in G.

– Given an attributed graph GT = (T,ET ) where vertices are subsets of some
object set O, and whose labels belong to an attribute lattice 2K , find all the
triples (c, e, l) where c is a closed pattern w.r.t. 2T , l is a frequent local closed
pattern w.r.t the connected subgraphs induced by 2T , and e the associated
local extension.

It should be clear that any algorithm solving Problem I allows to enumerate the
frequent local implication rules �ec → �el associated to an attributed graph
GT derived from some object set O. Such an algorithm is briefly suggested in
the next section.

5 Algorithmics

An algorithmic way to solve Problem I is a top-down search in the pattern space
and consists in adapting a separate and conquer algorithm enumerating frequent
closed itemsets as PARAMINER [11]. Enumerating local closed patterns, in
addition to each closed pattern c, means that when c is computed, the connected
components of the subgraph of GT induced by the extension of c are computed
and the closure operator associated to each connected component is applied
to c. All this results in an algorithm that outputs with no repetition triples
(c, e, l) corresponding to local implication rules �ec → �el where c is a closed
pattern, e a local extension and l the local closed pattern associated to e. Such
an algorithm searches patterns in a general to specify way and therefore allows
to prune the search to only consider frequent local closed patterns and, therefore,
solves Problem I. Note that in this approach we output several times each (e, l)
local concept, because several closed patterns c may lead to triples with the same
(e, l) part, but as each closed pattern c is output once, each (c, e, l) triple is also
output once.

6 Conclusion

The present work follows various investigations in Formal Concept Analysis
whose purpose is to extend the original FCA methodology, as presented in [12],



Extensional Confluences and Local Closure Operators 143

in order to address various knowledge discovery problems. Most of these inves-
tigations concern how to extend FCA in order to address problems in which the
pattern language is more sophisticated than the standard powerset of binary
attributes. In particular pattern structures [10] have been recently introduced to
represent complex data, associating such a pattern structure to each object and
using interior operators on the pattern language in order to reduce the result-
ing concept lattice [13]. In the present article we are interested in addressing
problems in which the extensional space is constrained, as it is the case when
considering connected subgraphs.

We have addressed the question of the structure of the set of intensions int[F ]
when F is a confluence of 2O, i.e. a family of subsets of O with various minimal
elements and such that for any pair of elements both greater than or equal to
a same minimal element in F , their union belongs to F . We have shown that
int[F ] is obtained as the set of closed elements from a family {fm|m ∈ min[F ]}
of closure operators and that the extensions in F of these elements are obtained
as the range h[F ] of a closure operator h on F . Overall we obtain a set of local
concepts (e, l) where e is a closed element with respect to h and l is a closed
element with respect to fm with m ≤ e. When ordered following h[F ], the set of
local concepts is a pre-confluence, called an extensional Galois pre-confluence.
These results also answer, when inverting the extensional and extensional spaces
and corresponding maps ext and int, to the question of the structure of ext[F ] in
the original presentation of intensional Galois pre-confluences in [5]. The practi-
cal motivation of this work was knowledge discovery in attributed graphs. From
this point of view, the set of vertex subsets inducing connected subgraphs of
an attributed graph is an extensional confluence, and this leads to, first, define
local concepts (e, l) where e is a connected component of the subgraph induced
by the support set of some pattern in the vertex set of an attributed graph, and
l is the corresponding local closed pattern, and, second, to define local impli-
cations which are valid in the neighborhood of some vertex. Interestingly, this
may be applied to graphs GT = (T,ET ) where T is a family of subsets of an
original object set O. A direct application is the investigation of k-communities
in attributed graphs.

Further work should consider both the extensional and extensional spaces
as confluences, and develop definitions and interpretation of local implication
bases.

Acknowledgments. Many thanks to Sylvie Borne for her help in drawing the figures.
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Abstract. Literature on pattern structures suggests that projections
lead again to pattern structures. To clarify the situation, we provide
a counterexample. However, we also show that residual projections on
pattern structures do indeed induce again pattern structures.

1 Introduction

Pattern structures within the framework of formal concept analysis have been
introduced in [1]. Since then they have turned out to be a useful tool for analysing
various real-world applications (cf. [1–5]). In our note we want to point out that
the theoretical foundations of pattern structures encourage still some fruitful
discussions. In particular, the role projections play within pattern structures for
information reduction still needs some further investigation.

The goal of our paper is to look under which circumstances pattern structures
can or cannot be replaced by simpler (meaningful) ones. Here it turns out that
projections not always give rise to new pattern structures, however, residual
projections do.

2 Preliminaries

For the counterexample we are going to construct, we need the following prepa-
rations:

(1) If P1 = (P1, R1) and P2 = (P2, R2) are posets (partially ordered sets) with
P1 ∩ P2 = ∅ then the vertical sum of P1 with P2 is defined as P := (P,R)
with P := P1 ∪ P2 and

R := R1 ∪ R2 ∪ (P1 × P2);

we set P1 +vert P2 := P.
(2) For a poset P := (P,R) and a subset T of P , the restriction of P onto T is

given by
P | T := (T,R ∩ (T × T )).

c© Springer International Publishing Switzerland 2015
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(3) For a poset P := (P,R) let Pd := (P,Rd) with

Rd := {(y, x) | (x, y) ∈ R}

denote the dual of P.
(4) A pattern structure is defined as a triple (G,D, δ) where G is a set of socalled

objects, D := (D,�) forms a meet-semilattice of socalled patterns, and δ :
G −→ D is a map such that every subset X of δG := {δg | g ∈ G} has
an infimum (greatest lower bound) in D, denoted by �X. The set Dδ of all
infima of subsets of δG forms a complete subsemilattice of D.

(5) A kernel operator on a poset P := (P,≤) is a map ψ : P −→ P such that
t ≤ x is equivalent to t ≤ ψx, for all x ∈ P and t ∈ ψP . A subset K of P
is called a kernel system in P if for every x ∈ P the restriction of P onto
{t ∈ K | t ≤ x} has a greatest element.
If KOP denotes the set of all kernel operators on P and KSP denotes the
set of all kernel systems in P, then the map

KOP −→ KSP, ψ 
→ ψP

is a bijection.
Dually, a closure operator on P is defined as a kernel operator on P

d, and a
closure system in P is defined as a kernel system in P

d. Also, COP denotes
the set of all closure operators on P and CSP denotes the set of all closure
systems in P. Then

COP −→ CSP, ψ 
→ ψP

is a bijection.
(6) If (G,D, δ) is a pattern structure, then a kernel operator ψ on D will also be

called a projection. Literature, compare for example [1,2], suggests that any
such projection ψ on a pattern structure (G,D, δ) induces via (G,D, ψ ◦ δ)
a pattern structure. However, the following example shows that this is not
always the case.

3 Construction of the Counterexample

Now we are prepared to construct a pattern structure on a lattice such that
there exists a projection which does not induce a pattern structure.

Consider the chain P0 := (N,≤) and the complete chain P := (N̄,≤) where
N̄ := N ∪ {∞} and x ≤ ∞ for all x ∈ N̄; then

D := P0 +vert (Pd × P
d
0)

is a lattice, and for G := N, the map δ : G −→ D,n 
→ (n, 0) gives rise to a
pattern structure (G,D, δ), where Dδ = N̄ × {0}. For ΔN := {(n, n)|n ∈ N} the
set K := ΔN ∪ {0} forms a kernel system, the associated kernel operator ψ of
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which has the property that (G,D, ψ ◦ δ) is not a pattern structure, because ΔN

has no infimum in D (See also Fig. 1).
This may be even more surprising since ψ preserves finite meets in D and

K forms a sublattice of D.

δG

Fig. 1. Counterexample

4 Bipolar Systems

On a positive note, we are going to show that every residual projection on a
pattern structure induces a pattern structure. For this we need some preparation:

For a poset P = (P,≤), a pair (f, g) is an adjunction on P if fx ≤ y is
equivalent to x ≤ gy for all x, y ∈ P . Here, f and g mutually determine each
other; f is called residuated and g is called residual on P. It easily follows that
f and g are isotone maps on P.
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In the following theorem we will clarify the connection between residual
kernel operators and socalled bipolar systems in posets. Here, a bipolar system
in a poset P is defined as a kernel system in P which also is a closure system in
P. The set of all bipolar systems in P will be denoted by BSP.

For a poset P, let KOr
P denote the set of all residual kernel operators on

P, and dually, let COrP denote the set of all residuated closure operators on P.

Lemma 1. For a poset P = (P,≤), a map ψ : P −→ P is a kernel operator on
P if and only if the following holds for all x, y ∈ P :

x ≤ ψy ⇔ ∃t ∈ ψP (x ≤ t ≤ y) (∗)
Dually, a map ϕ : P −→ P is a closure operator on P if and only if the following
holds for all x, y ∈ P :

ϕx ≤ y ⇔ ∃t ∈ ϕP (x ≤ t ≤ y) (∗∗)
Proof. First, assume that ψ is a kernel operator on P. Then x ≤ ψy implies
x ≤ t ≤ y for t := ψy (since ψ is contractive, that is, t ≤ y). On the other hand,
if x ≤ t ≤ y holds for t ∈ ψP then t ≤ ψy (since ψ is a kernel operator), which
immediately implies x ≤ ψy.

Second, assume that (∗) holds. Then ψy ≤ ψy implies ψy ≤ t ≤ y for some
t ∈ ψP ; therefore, ψy ≤ y holds. That is, ψ is contractive. Also, for t ∈ ψP with
t ≤ y we get t ≤ t ≤ y, which by (∗) implies t ≤ ψy. It follows that ψ is a kernel
operator on P.

Theorem 1. If P is a poset, then the map

KOr
P −→ BSP, ψ 
→ ψP

is a bijection, and dually, the map

COrP −→ BSP, ψ 
→ ψP

is a bijection too.

Proof. Since KOP −→ KSP, ψ 
→ ψP is a bijection, we have to show that
ψ ∈ KOr

P always implies that ψP is a bipolar system in P. On the other hand,
we have to verify that the kernel operator associated with a bipolar system in P

is always residual.
First, let ψ ∈ KOr

P. Then ψP is a kernel system in P. Since ψ is residual on
P, there exists ϕ such that (ϕ,ψ) is an adjunction on P. For x ∈ P , the element
u := ψ(ϕx) ∈ ψP satisfies x ≤ u (since ϕx ≤ ϕx and the pair (ϕ,ψ) is an
adjunction). Also, for y ∈ P , the element w := ψy ∈ ψP with x ≤ w satisfies
ϕx ≤ y. Thus u ≤ w (since ψ is isotone on P), which yields that u is the least
element in ψP with x ≤ u. It follows that ψP is also a closure system and
therefore a bipolar system in P.
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Second, let B ∈ BSP. The associated kernel operator of B in P will be
denoted by ψ and the associated closure operator of B in P will be denoted
by ϕ. Since ϕP = B = ψP , the conditions (∗∗) and (∗) of Lemma 1 yield the
following for all x, y ∈ P :

ϕx ≤ y ⇔ ∃t ∈ B (x ≤ t ≤ y) ⇔ x ≤ ψy

Therefore, (ϕ,ψ) is an adjunction on P, from which we derive that ϕ is a resid-
uated closure operator and ψ is a residual kernel operator with ϕP = B = ψP .

5 Residual Projections

Our final result will state that residual projections on pattern structures induce
again pattern structures.

Theorem 2. Let S := (G,D, δ)be a pattern structure with D := (D,�), and let
ψ be a residual projection on S, that is, ψ be a residual kernel operator on D.
Then Sψ := (G,D, ψ ◦ δ) is a pattern structure, which satisfies Dψ◦δ = ψ(Dδ).
Furthermore, ψD is a bipolar system in D satisfying that (G,D |ψD,ψ ◦ δ) is a
pattern structure.

Remark 1. It is easy to observe that (G,D |ψD,ψ ◦ δ) forms a pattern structure
for any projection ψ on S.

Proof. Let Y be a subset of ψ(δG). Then there exists a subset X of δG with
Y = ψX. Since S is a pattern structure, �X exists in D.

Claim. The infimum of Y in D is given by ψ(�X), thus ψ(�X) = �Y.
Since �X is a lower bound of X in D, the element ψ(�X) is a lower bound of
Y = ψX in D (because ψ is isotone). Let now t′ be a lower bound of Y in D.
By our assumption on ψ there exists ϕ such that (ϕ,ψ) is an adjunction on P.
Thus for every x ∈ X, we have t′ ≤ ψx and therefore ϕt′ ≤ x, which means that
ϕt′ is a lower bound of X. This implies ϕt′ ≤ �X, and this yields t′ ≤ ψ(�X).
We conclude that Sψ is a pattern structure; together with theorem 1 this com-
pletes the proof.
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Abstract. In this paper we explore the possibility of defining an origi-
nal pattern structure for managing syntactic trees. More precisely, we are
interested in the extraction of relations such as drug-drug interactions
(DDIs) in medical texts where sentences are represented as syntactic
trees. In this specific pattern structure, called STPS, the similarity oper-
ator is based on rooted tree intersection. Moreover, we introduce “Lazy
Pattern Structure Classification” (LPSC), which is a symbolic method
able to extract and classify DDI sentences w.r.t. STPS. To decrease com-
putation time, a projection and a set of tree-simplification operations are
proposed. We evaluated the method by means of a 10-fold cross valida-
tion on the corpus of the DDI extraction challenge 2011, and we obtained
very encouraging results that are reported at the end of the paper.

Keywords: Pattern structures · Relation extraction · Formal concept
analysis · DDI extraction

1 Introduction

When a doctor wants to prescribe a drug to a patient, he/she would like to know
when this drug interacts with other drugs that the patient may already take.
A lot of research has been done on each drug, resulting in a lot of articles (often
more than 1000 articles per drug). It would not be feasible for a human agent
to read all these articles. For this reason it could be interesting to automatically
find which drugs are interacting in these articles. Accordingly, in the extraction
of drug-drug interactions –DDIs in the following– the task is to find pairs of
drugs that are described as interacting in a sentence or a text.

In 2011, for the first time, a challenge on this task was initiated [12]. Several
methods were proposed to perform this task [2–4,7,11,14]. The best performing
system, i.e. the system with the highest F1-measure on the given test set, com-
bined several different subsystems in which information from different feature
spaces was exploited [14]. Their highest F1 on the test set was 65.7, and their F1

for a document-wise 10-fold cross validation on the training data was 60.6. Lin-
guistics features were used, such as part-of-speech, together with different tree
c© Springer International Publishing Switzerland 2015
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kernels of the dependency parses, i.e. trees describing the grammatical depen-
dencies between words, of the sentences. Another system that was successful in
the challenge was based on a union of two different machine learning techniques
[3]. The first machine learning technique is a feature-based SVM using differ-
ent words, morphosyntactic features (internal structural features of words, like
number and case) and contextual features (words in between the two consid-
ered drugs). The second machine learning technique is a kernel-based method
combining three different kernels, namely “shallow linguistic information” (like
part-of-speech and word-inflection information), “mildly extended dependency
trees” and “phrase structure”.

It appears that the most successful systems combine both deep linguistic
information, such as dependency trees or phrase structures, and shallow linguistic
features, such as word features and morphological information. Thus, we propose
to apply a symbolic method, based on pattern structures [6] and Formal Concept
Analysis (FCA), to deal with the phrase structure, i.e. the syntactic level, in a
different way. A pattern structure can manage a complex data type, such as
a tree, and allows one to build a hierarchy of elements of this data type, in
the present case a hierarchy of trees. Such a pattern structure comes with a
classification technique, called “Lazy Pattern Structure Classification” (LPSC)
[9], which classifies the syntactic trees containing drug-drug interactions. This is
one original application of pattern structures to syntactic trees and to the task
of text-mining (here the mining of DDIs). The method is novel and deserves
more research work but we already obtained substantial results showing that
the current approach is suitable and valuable.

The rest of the paper is organized as follows. Firstly we explain the pipeline
on which relies the proposed system. Then we define the pattern structure for
syntactic trees, namely STPS, and as well Lazy Pattern Structure Classification
(LPSC). After that, we introduce a projection related to STPS and a set of
tree-simplification operations to reduce computational time. Finally we evaluate
the method on the corpus of the DDI challenge 2011 [12].

2 The Data and the Pipeline

Our data consists of medical texts containing potential drug-drug interactions,
i.e. the training corpus of the DDI extraction challenge 2011 [12]. This corpus
consists of around 4200 sentences containing around 23000 potential interactions
of which a small portion (∼10 %) is annotated as positive and the rest as negative.
In these data drugs in the sentences are already tagged (see Example 1).

If we take a sentence from the data containing n drugs, there are
(
n
2

)
pairs

of drugs in the sentence that can potentially interact. Each such pair is repre-
sented by a separate sentence, where the two potentially interacting drugs in the
sentence are replaced with a drug tag r tag, and all other drugs by a drug tag
tag (see Examples 2 and 3 where the corresponding tags are following the name
of the tagged drug).
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Example 1. Antihistamines (drug) may enhance the effects of tricyclic antide-
pressants (drug), barbiturates (drug), alcohol (drug), and other CNS depres-
sants (drug).

Example 2. drug tag r may enhance the effects of drug tag, drug tag, drug
tag, and other drug tag r.

Example 3. drug tag may enhance the effects of drug tag, drug tag r, drug
tag, and other drug tag r.

Each such tagged sentence, representing a possible drug-drug interaction, is
parsed by the Stanford constituency parser v3.4 [8,13]. The resulting trees are
simplified by means of operations that preserve the parts of the tree describ-
ing the potential interaction as much as possible. Trees, representing drug-drug
pairs, can be considered as positive or negative. Trees are “positive” when an
interaction is described between the two drugs replaced by the drug tag r tag
(Example 2). Trees are “negative” when no such interaction is present (Exam-
ple 3). The positive simplified tree of Example 2 is shown in Fig. 1.

Fig. 1. The simplified syntax tree from Example 2.

A pattern structure is defined on such syntactic trees, whose similarity oper-
ator is based on unordered rooted tree intersection. The trees are interpreted
as unordered w.r.t the constituent order in the sentence in order to be able to
generalize over some grammatical structures (eg. conjunctions or enumerations)
without losing important grammatical relations (eg. verb argument relations,
prepositions) as they are also encoded in the hierarchy of the tree. To improve
the computational time of similarity, a projection is introduced, which can be
considered as a simplification of the similarity operator. Pattern structures, sim-
ilarity and projections are introduced and discussed here after.
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Fig. 2. A schematic view of the pipeline.

The set of trees, obtained from parsing the tagged sentences, is split into
a “training set” and a “testing set” and LPSC is used to classify the trees. In
the experiments, different settings based on tree simplifications are evaluated.
Finally, a schematic view of the pipeline, starting from DDIs and going to LPSC
classification, is shown in Fig. 2.

3 A Pattern Structure for Syntactic Trees

Pattern Structures were introduced in [6] and are a generalization of Formal
Concept Analysis (FCA) [15]. From the pattern structure perspective, data can
be thought of as a set of objects (G) with corresponding records. Each record is an
object description, also called a pattern, in contrast to a set of binary attributes,
as in standard FCA. On the set of potential descriptions (D) a similarity operator
should be defined, which should be idempotent, associative and commutative.
In this way, the partial ordering on object descriptions is a semilattice and can
be used in a similar way as in Formal Concept Analysis to extract (meaningful)
concepts from an unstructured data set, in an unsupervised way. More precisely,
we have the following definitions.

Definition 1. Let G be a set of objects, let (D,�) be a meet-semilattice of poten-
tial object descriptions, and let δ : G → D be a mapping. Then (G, (D,�), δ) is
called a pattern structure, provided that the set

δ(G) := {δ(g)|g ∈ G}
generates a complete sub-semilattice (Dδ,�) of (D,�), i.e. every subset X of
δ(G) has an infimum �X in (D,�) and Dδ is the set of these infima [6].

On a pattern structure (G, (D,�), δ) a Galois connection can be defined,
linking sets of objects with set of descriptions.

A♦ :=
�

g∈A

δ(g) for A ⊆ G
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d♦ := {g ∈ G|d � δ(g)} for d ∈ D

A concept (A, d) in (G, (D,�), δ) verifies A♦ = d and d♦ = A where A is the
extent and d the intent of the concept. The subsumption order (�) between
descriptions c and d is defined as follows:

c � d ⇔ c � d = c

Concepts are maximal closed sets of objects and their corresponding descriptions.
Formal concepts form a concept lattice where the ordering between concepts is
given as usual by inclusion of concept extents. The meaning of such a lattice
depends on the similarity operator. The same data can be associated with dif-
ferent pattern structures. We look further into defining our pattern structure on
trees, in particular syntax trees based on natural language sentences.

3.1 Objects and Object Descriptions

In the current case, the set of objects G in the considered pattern structure
(G, (D,�), δ) consists of drug-drug pairs, i.e. DDIs, extracted from the collection
of sentences. Then the set of object descriptions D is composed of “unordered
labeled trees”. The resulting pattern structure will be called “Syntactic Tree
Pattern Structure” or STPS for short.

Definition 2. An unordered labeled rooted tree t is a simple connected graph
t = 〈N,E〉, where N is a set of nodes, and E a set of ordered pairs from N ×N ,
called edges. It should satisfy two conditions:

– t does not contain any cycle (it is a tree)
– t has one distinguished node r ∈ N , called the root node, that is an ancestor

of every node n ∈ N .

In unordered labeled rooted trees, nodes carry a label while there exists no
order between the children of each node. This means that the trees in Fig. 3 are
considered to be equivalent.

The mapping δ gives for each potential drug-drug pair the corresponding
unordered syntactic tree of the sentence in which it occurs, where the drugs are
replaced by the tags. Intuitively, one could think of δ as the function that parses
the sentence and simplifies the resulting tree.

Fig. 3. Two equivalent unordered labeled rooted trees.
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3.2 Similarity Operators

A similarity operator �t is defined on the set of object descriptions D. This
operator is based on rooted tree intersection. In [1], rooted tree intersection is
defined for unordered unlabeled trees and a corresponding algorithm is given.
Our definition and implementation follow those in [1], except that we consider
trees with labeled nodes.

To define our rooted tree intersection for unordered labeled trees we need to
define the notion of rooted subtree first.

Definition 3. Rooted tree t1 = 〈N1, E1〉 is a rooted subtree of rooted tree t2 =
〈N2, E2〉 (from now written as t1 ⊆t t2) iff the following conditions hold:

– N1 ⊆ N2

– E1 ⊆ E2

– t1 and t2 have the same root.

Using this notion of subtree, we can define a rooted intersection operator on
trees.

Definition 4. The rooted tree intersection between tree t1 and t2, from now
written as t1 ∩t t2, is the set containing all maximal trees1 from

{t | t ⊆t t1} ∩ {t | t ⊆t t2}
i.e. the intersection between all subtrees of t1 and all subtrees of t2.

An example of such intersection is shown in Fig. 4.

Fig. 4. An example of rooted unordered tree intersection (∩t) of two syntactic tree
fragments. The tree on the right side is the maximal rooted subtree of both trees on
the left side.

1 The maximal trees from a set X are all trees of X that are not a rooted subtree of
another tree in X.
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With the notion of rooted tree intersection we can define the similarity oper-
ator of our pattern structure.

Definition 5. The similarity between a set of trees A and a set of trees B,
written as A �t B, is the subset of maximal trees from

⋃

(a,b)∈A×B

a ∩t b

The corresponding subsumption operator is defined as mentioned previously.

A �t B ⇔ A �t B = A

3.3 The Projections for the Syntactic Tree Pattern Structure

Projections for pattern structures were introduced in [6]. A projection is used
for weakening the object descriptions and for allowing better performances in
computation. Moreover, “good” projections always try to minimize the loss of
information.

Definition 6. A projection of a pattern structure (G, (D,�), δ) is a mapping
ψ : D → D that replaces every object description d ∈ D by ψ(d), such that the
original pattern structure is replaced by (G, (D,�), ψ ◦ δ). It is required that ψ is
a kernel operation, i.e. ψ is

monotone: if x � y, then ψ(x) � ψ(y),
contractive: ψ(x) � x, and
idempotent: ψ(ψ(x)) = ψ(x).

Projections can be used efficiently to reduce computation time of the similarity
operator. For pattern structures of graphs several projections were already pro-
posed and applied in the chemical domain [10]. Here we propose a projection
that maps each tree description onto the set of its maximal branches.

Definition 7. Rooted tree t1 = 〈N1, E1〉 is a branch of rooted tree t2 = 〈N2, E2〉
iff the following conditions hold:

– t1 ⊆t t2
– Each node n1 ∈ N1 has at most one outgoing edge.

Definition 8. The branch projection of a set of rooted trees T , from now written
as ψb(T), is the set of maximal trees from

⋃

t∈T

{b — b is a branch of t}

Thus, a tree t defined by a root with n leaves will be projected to a set of size
n, containing its branches (see Fig. 5).
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Fig. 5. A tree and its maximal branches.

4 Classification Based on Lazy Hypothesis Evaluation

Actually, the concept lattice resulting from the pattern structure which is defined
above has not to be built. Instead, we follow a (kind of) supervised classifica-
tion method for determining objects whose description includes a syntactic tree
effectively representing a DDI, i.e. the drugs lying in the syntactic tree and
marked with drug tag r tags are interacting. We follow a “Lazy Pattern Struc-
ture Classification” (LPSC) introduced in [9]. LPSC can classify objects from
a given pattern structure in polynomial time w.r.t the cardinality of the set of
objects G considered as training data. It is based on a set of positive examples
G+ and a set of negative examples G−. In the current experiment, positive exam-
ples are sentences including interacting drug-drug pairs while negative examples
are sentences which do not include interacting drug-drug pairs.

In [9], the classification of a new object on is performed w.r.t. two questions:

(1.) Is there a “positive hypothesis” for on?
(2.) Is there a “negative hypothesis” for on?

A positive hypothesis is defined as a pattern intent in the pattern structure
(G+, (D,�), δ) that does not subsume any pattern from δ(G−), i.e. does not
subsume any negative example. A positive hypothesis for on is found iff:

∃g+ ∈ G+ ∀g− ∈ G− : (on � g�
+) �� g�

−

In other words, a positive hypothesis for on is found if and only if on is similar
to a positive example g+, i.e. the potential positive hypothesis, and on does not
share this similarity with any negative example g−. A negative hypothesis for on

is defined symmetrically, by switching the negative and positive examples. How
an object is classified depends on the answers for the questions (1.) and (2.),
as shown in Table 1.

Our classification criteria differ from that in [9] as we are only looking for
positive hypotheses and not for negative hypotheses. The underlying idea is that
we assume that typical syntactic trees containing a DDI have some characteristic
structures, while trees that do not contain any DDI do not have such character-
istic structures. Thus, we discriminate positive and negative hypotheses w.r.t.



Exploring Pattern Structures of Syntactic Trees for Relation Extraction 161

Table 1. Criteria in Lazy Pattern Structure Classification according to [9] are displayed
on the left, and criteria in LPSC restricted to only positive hypotheses evaluation –used
in our experiments– are displayed on the right.

the classification criteria, contrasting with [9] where there are also unclassified
objects. In our experiment, an object is classified as positive when the first ques-
tion is answered with “yes”, and by complementarity, an object is classified as
negative when this first question is answered with “no”. This kind of classifi-
cation was exclusively used in our experiments and is termed as “Lazy Positive
Hypothesis Classification” (LPHC) (see Table 1).

An example of a positive hypothesis that was found in the experiments with
LPHC is shown in Fig. 6. This positive hypothesis was created when classifying
the tree corresponding to the potential DDI described in Example 4. Moreover,
the positive example from the training set is the tree corresponding to Example 5.

Example 4. Antihistamines (drug tag r) may partially counteract the antico-
agulation effects of heparin (drug tag r) or warfarin (drug tag).

Fig. 6. A positive pattern found in the experiments, created from the two sentences in
Example 4 and Example 5. It should be noticed that, for the sake of clarity, this pattern
is represented as a tree respecting the word ordering, but actually it is an unordered
set of branches.
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Example 5. Tricyclic antidepressants (drug tag r) may block the antihyper-
tensive (drug tag) action of guanethidine (drug tag r) and similarly acting
compounds.

The tree in Fig. 6 materializes the similarity between Example 4 and Example 5,
and is not subsumed by any negative example in the training data. For this
reason it is classified as a positive hypothesis for Example 4.

5 The Simplification of Syntactic Trees

When we looked manually at the sentences in the dataset, we remarked that
not all parts of some sentences seem to contain useful information about the
described DDIs. When a syntactic tree is large, it often takes more time to
compute similarity with other trees. Therefore, it is interesting to remove parts
of the sentence that are not required to find a DDI. Accordingly, we introduce
“tree simplification operations” which are described below.

Constituent Simplification. By means of manually checking the trees, we
noticed that some of the constituents are not very informative for describing a
DDI in a sentence. In Example 6, it can be seen that an interaction is described
between two drug tag r tags.

Example 6. In diabetic patients, the metabolic effects of drug tag r may
decrease blood glucose and therefore drug tag r requirements.

However, it can be seen in Example 7 that some parts of the sentence can be
removed without altering the description of the interaction.

Example 7. The effects of drug tag r may decrease blood glucose and drug
tag r requirements.

Usually, we can remove the constituents when the tree corresponding to the
constituent does not contain any of the possibly interacting drugs, i.e.. any of
the two drug tag r nodes.

The candidate constituent to be removed that we considered are: (i) adjec-
tives (JJ), (ii) prepositional phrases (PP), (iii) declarative clauses and clauses
introduced by a subordinate conjunction such as relative clauses (S, SBAR),
(v) adverbal phrases (ADVP) and (vi) parenthetical expressions (PRN). Sub-
trees of all these six categories that do not contain any of the drug tag r nodes
are removed from the initial tree. The simplification of the tree corresponding
to Example 6 is given in Fig. 7.

NEGVP Renaming. To deal on a simple level with negation, each VP-node,
i.e. representing a verb phrase, that directly contains a negating expression
(not/no) is renamed as a NEGVP node. In this way a normal VP will not
be matched with, or considered similar to, a negated VP.
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Fig. 7. The original syntactic tree associated with the sentence “In diabetic patients,
the metabolic effects of drug tag r may decrease blood glucose and therefore
drug tag r requirements.” The subtrees that will fall off after simplification are indi-
cated with dashed lines.

Lowest-S Simplification. Because relations can sometimes be described very
deep in a subordinate clause, only the deepest S-node (i.e. declarative clause)
containing both drug tag r tags is considered, as shown in Fig. 8. This makes
sure that deeply nested interaction descriptions can be compared in an eas-
ier way to surface interaction descriptions. This way the lowest-S constituent
in Example 8 (i.e. in the inner brackets) can be compared to the sentence in
Example 9.

Example 8. [S drug tag: Clinical studies, as well as post marketing observations,
have shown that [S drug tag r can reduce the drug tag effect of drug tag r
and drug tag in some patients].]

Example 9. [S drug tag r agents reduce the renal clearance of drug tag r and
add a high risk of drug tag toxicity.]

However, this rule does not always preserve all crucial information about the
potential DDI. In some cases important information can be described at a meta
level.

Example 10. [S It is not known if [S drug tag r differ in their effectiveness when
used with drug tag r].]

Fig. 8. Schematic view of lowest-S simplification.
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In Example 10, both drug tag r tags occur in the S-constituent indicated by the
inner brackets. Thus, when using lowest-S simplification, only the expression in
the inner brackets is considered. However, the expression outside of the brack-
ets, i.e. “It is not known if. . . ” contains important information about the DDI
description inside. It weakens or even nullifies the interaction that is described
inside. For now, we do not have any clear solution to deal with such cases and
we ignored them.

Link Contraction. After applying the constituent simplification operation, a
resulting tree might contain branches that link nodes holding the same label
with only one child. Such cases can be considered as redundant and can be
simplified by removing the redundant non-branching duplicate nodes and linking
the contracted new node with its single child node. An example is given in Fig. 9.

Fig. 9. A tree and its contracted version.

If we apply all these tree simplifications on the trees obtained after parsing
the experiment dataset, the average number of nodes in each tree drops from
130 to 41 and the maximum number of nodes from 311 to 138. This shows that
the application of these simplification operations have a substantial impact on
the set of resulting syntactic trees.

6 Experiments and Discussion

6.1 The Experiment

In this experiment, different settings were evaluated. Each system classifies the
potential DDIs by means of lazy pattern structure classification (actually posi-
tive hypothesis classification or LPHC). The underlying pattern structure is the
one which is described in Sect. 3, using the branch projection. The settings are
differing only in the tree simplifications that were applied.

For each setting, a 10-fold cross validation was performed on the data set.
The corpus that is used is the training corpus of the DDI extraction challenge
2011 [12]. In this corpus, the drugs are annotated and the interactions are build
using the DrugBank, and then manually checked by a domain specialist.

We ran the experiments on a laptop with an i7 Intel processor (using 4 of its
8 virtual cores). The algorithm was implemented in Python. On average, each
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Table 2. Results from 10-fold cross validation on the DDI 2011 data set. performance is
measured in precision (P), recall (R) and F1-measure (F1). In all conditions constituent
simplification is applied.

Simplifications P R F1

1. negvp, lowest-S, contraction 0.29786 0.48900 0.37022

2. negvp, contraction 0.32261 0.39044 0.35330

3. lowest-S, contraction 0.27073 0.49450 0.34990

4. negvp, lowest-S 0.33598 0.44712 0.38367

5. negvp, lowest-S, vp-map 0.35216 0.44585 0.39350

6. negvp, lowest-S, vp-map, prep-map 0.38556 0.41328 0.39894

object classification took around 2 seconds. This long duration is primarily due to
the search for positive hypotheses for each classification. It could be also possible
to extract these positive hypotheses on a training set offline. Then they could
be used as features in a different classification paradigm, maybe more optimized
for a particular task. Here we did not do this as we were mostly interested in
increasing the quality of the patterns.

The results from six settings we tested in the experiment are shown in Table 2.
When we look at condition 1 and 2 in Table 2, we can see that applying lowest-S
simplification strongly increases the recall, by 9.9 %, but also reduces precision by
2.5 %. Overall, F1 increased by 1.69 %. The reduction in precision, is probably
due to some cases where the interaction is not fully described in the lowest
declarative clause (lowest S-node). The increase in recall is probably due to the
fact that surface clauses can now be compared better to deeper ones.

Applying the link contraction seems to have a weaker but similar effect. How-
ever, it decreases the F1-measure. This can be noticed if we compare setting 1
and 4. After applying link contraction, the precision reduces with 3.8 %, while the
recall increases with 4,2 % and the F1-measure decreases with 1.4 %. It appears
that even if trees are non-branching, the hierarchy and its depth are important.
Furthermore, if we compare setting 1 and 3, we can see that the NEGVP renam-
ing has a positive effect on precision and only a minor negative effect on recall.
It increases the F1-measure with 2 %.

Settings 5 and 6 are discussed below, in the error analysis.

6.2 Error Analysis

We manually looked both at false positives (i.e. negative trees classified as posi-
tive) and false negatives (i.e. positive trees classified as negative). False positives
can be analyzed very precisely, because for each positively classified tree, the pos-
itive hypothesis from the positive training examples can be examined as well.
A few non-mutually exclusive error categories that we found are the following.

1. Insufficient similarity: Sometimes, the similarity between the to be classified
drug-drug pair and the positive hypothesis is too small to make a proper
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classification. This can be due to data sparseness or lack of information in
the trees. Often in these cases the similarity between the to be classified tree
and its corresponding positive hypothesis does not even contain a verb phrase
node. Another frequent case is that the prepositions in the to be classified tree
and its positive hypothesis do not match. An example of such poor similarity
is given in Fig. 10.

2. Non-sentences: Some mistakes seem to occur in phrases that are not full
sentences or that are not parsed as such. Often the parser considers these
phrases as noun phrases or as “fragments” (i.e. the root node is NP or FRAG).
A reason for errors to occur in this category can be that there is not enough
training data for these cases, or the parser made a mistake. Again the pattern
in Fig. 10 is an example of a non-sentence (an NP).

3. Mistakes in annotation: In some cases, a misclassification is due to errors
in the drug annotations or in the interaction annotations. Examples of such
cases can be found in [14].

Fig. 10. An example for error category 1 and 2. This pattern is clearly not sufficient
for classification. This is due to the lack of a negative example in the training data
that subsumes this pattern.

It can be noticed that some patterns may cause false positives, but can at
the same time be responsible for a lot of true positives. In our experiments, we
did not do any filtering directly based on performance. When the interest is in
pure performance, it could be interesting to filter patterns that do not cause any
true positives or those that cause more false positives then true positives.

6.3 Similarity Mappings

In error category 1, the similarity between the to be classified tree and its positive
hypothesis was too small to make a proper classification. To prevent insufficient
similarity, one could manually introduce some linguistically based constraints on
the hypotheses and exclude hypotheses that do not satisfy them. We do this by
mapping outputs of the similarity operator that do not fulfill the constraints to
the empty set, and therefore have no potential for being a hypotheses. Based on
the found errors, we introduce two types of similarity mappings: (i) VP-mapping,
which maps outputs of the similarity operator that do not contain either a VP-
node or a NEGVP-node to the empty set, (ii) Prep-mapping, which maps outputs
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of the similarity operator that do contain a prepositional phrase (PP-node) but
not the exact preposition to the empty set.

Their result on performances can be found in Table 2. When we compare
settings 4 and 5, the “vp-mapping” seems to have a small positive effect on
precision (+ 1.6 %), and hardly any effect on recall. When we compare settings
5 and 6, the “prep-mapping” also seems to have a positive effect on precision
(+ 3.34 %). However, the recall seems to decrease as well (- 3.3 %). A reason for
this could be that a side effect of the “prep-mapping” is that if two trees share
a PP-node, but do not share the same preposition, this is considered the same
as no PP-node match at all.

7 Conclusions and Future Work

In this paper we presented a new way of analyzing drug-drug interactions in
sentences based on FCA. We defined a pattern structure and introduced a pro-
jection for syntactic trees. Lazy pattern structure classification was also used
to discover informative syntactic patterns, i.e. including DDIs. Furthermore we
introduced a set of tree-simplification operations to reduce the size of the syn-
tactic trees. The whole method was evaluated on the training corpus of the DDI
extraction challenge 2011.

At present, it can be concluded that in terms of performance the system in
its current state does not achieve very high performance. This is probably due to
the rigid way the system deals with the found patterns. Furthermore, it should
be noticed that this is a single system, using only phrase structure information.

However, from a qualitative point of view, many extracted syntactic pat-
terns seem quite promising. For example, it would be interesting to use these
extracted patterns as features in other classification paradigms and this could
be included in future research. Another important direction could be to apply
parse thickets [5] for the task of DDI detection. A parse thicket is a graph built
from the set of syntactic trees of a paragraph. This graph is enriched with the
semantic links such as pronoun redirections. The work in [5] is based on pattern
structures and, hence, can be adapted to our framework. Finally, other possible
future research work could include the search for negative hypotheses, and to
enrich the syntactic trees with semantic or morphological features.

References
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École Centrale Marseille – LIF, CNRS UMR 7279, Marseille, France
{francois.brucker,pascal.prea}@centrale-marseille.fr

Abstract. We show in this paper that doubly lexical orders of totally
balanced formal context matrices yield a unique graphical representa-
tion binding formal contexts, associated concepts and underlying lattice
directed cover graphs. Moreover this representation can be done linearly
in the size of the formal context matrix.
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1 Introduction

We will focus in this paper on a special case of formal contexts, those associ-
ated with dismantlable lattices. These formal contexts can be helpful in prac-
tice because they only have a polynomial number of concepts that are easily
computable and, as we shall show in this paper, admit a convenient graphical
representation.

Indeed, given a formal context matrix M whose associated concept lattice is
dismantlable, we present a procedure which associates each formal concept to an
element of the formal context matrix. This allows to superpose the associated
directed cover graph onto the data (Fig. 2). Moreover, since the procedure is
linear in the size of the matrix and the graphical representation involves non-
overlapping ordered 2-dimensional boxes (see Figs. 5 and 6), it can be used to
locally see the interactions between concepts or to explore areas of interest in
very large data-sets (through approximation of the original data, which can also
be done linearly in the size of the context matrix).

Finally, because dismantlable lattices generalize several models used in clus-
tering (hierarchical clustering and seriation clustering for instance) this proce-
dure can be used in many fields of applications. For instance they are well suited
for phylogenetic problems because co-atomic dismantlable lattices are in bijec-
tion with strongly chordal graphs (which are a sub-class of chordal graphs —
graphs whose every cycle (x1, x2, . . . , xn, x1) with n ≥ 3 contains an edge xixj

with i < j + 1 — used in perfect phylogeny) and the clusters generated by
phylogenetic trees (X-trees) form a dismantlable lattice (see [6] or [5]).

In a theoretical point of view, dismantlable lattices are the “trees” for lattices
and there is an ongoing work to see if one can decompose a given lattice into a
sum of dismantlable lattices.
c© Springer International Publishing Switzerland 2015
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Formally speaking, a formal context [7] K = (G,M, I) is a triple where G is
a set of objects, M a set of attributes and I ⊆ G × M a binary relation. For
subsets A ⊆ G and B ⊆ M two operators (so called derivation operators) are
defined: A↑ = {y | xIy,∀x ∈ A} and B↓ = {x | xIy,∀y ∈ B}. A formal concept
associated with K is a pair (A,B) where:

– A ⊆ G and B ⊆ M ,
– A = B↓,
– B = A↑.

We shall assume that all sets in this paper are finite. Thus if we label the objets
and the attributes of a formal context K = (G,M, I) such that G = {l1, . . . , ln}
and M = {c1, . . . , cm}, K is equivalent to a n × m binary matrix M (called
formal context matrix) such that Mi,j = 1 if liIcj and 0 otherwise. Formal
contexts or its associated formal context matrix can be represented by a cross
table (see Table 1).

Table 1. Example of cross table (left) and its associated formal context matrix (right).

c1 c2 c3 c4 c5 c6 c7 c8
l1 × × ×
l2 × × ×
l3 × × × × ×
l4 × ×
l5 × × ×

c1 c2 c3 c4 c5 c6 c7 c8
l1 0 0 1 1 1 0 0 0
l2 0 0 0 0 0 1 1 1
l3 0 1 1 1 0 1 0 1
l4 0 0 0 0 0 0 1 1
l5 1 1 1 0 0 0 0 0

The formal concepts associated with K = (G,M, I) are exactly the pairs
(A,A↑) where A↑↓ = A (equivalently the pairs (B↓, B) where B↓↑ = B). It
is well known that the set B(G,M, I) of formal concepts associated with the
order ≤ defined as (A1, B1) ≤ (A2, B2) whenever A1 ⊆ A2 (equivalently B2 ⊆
B1) forms a formal lattice that one can represent by its order diagram (see
Fig. 1). The order diagram is a graphical representation of the directed cover
graph associated with the formal lattice (B(G,M, I),≤) which is the directed
graph G = (B(G,M, I), E) where uv ∈ E whenever u ≺ v.

Finally, for any n × m binary matrix M, one can define the formal context
KM = ({1, . . . , n}, {1 . . . ,m}, IM) such that iIMj whenever Mi,j = 1. The
column j of M is equal to Cj = {i | Mi,j = 1} and the line i of M is equal to
Li = {j | Mi,j = 1}. According to these definitions, it is known [4] that:

– the closure under intersection of {C1, . . . , Cm}∪{{1, . . . , n}}, noted C, is equal
to the set {A | A↑↓ = A},

– the closure under intersection of {L1, . . . , Ln}, noted L, is equal to the set
{B | B↓↑ = B}.

The above equivalence gives a way to link known hypergraph classes to known
lattice models (an hypergraph is a pair H = (X,H) where H ⊆ 2X). Indeed it is
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number formal concept

0 (∅, {c1, c2, c3, c4, c5, c6, c7, c8})
1 ({l2}, {c6, c7, c8})
2 ({l1}, {c3, c4, c5})
3 ({l3}, {c2, c3, c4, c6, c8})
4 ({l5}, {c1, c2, c3})
5 ({l2, l4}, {c7, c8})
6 ({l2, l3}, {c6, c8})
7 ({l1, l3}, {c3, c4})
8 ({l3, l5}, {c2, c3})
9 ({l2, l3, l4}, {c8})
10 ({l1, l3, l5}, {c3})
11 ({l1, l2, l3, l4, l5}, ∅)

Fig. 1. Order diagram (left) and formal concepts (right) associated with the formal
context matrix of Table 1 (numbered from bottom to top and left to right).

clear that by labeling X as {x1, . . . , xn} and H as {h1, . . . , hm}, each hypergraph
H is equivalent to a n × m binary matrix M(H) where M(H)i,j = 1 whenever
xi ∈ hj . Conversely, a n × m binary matrix M is equivalent to a hypergraph
H(M) = ({1, . . . , n}, {C1, . . . , Cm}).

We will in this paper focus on totally balanced hypergraphs. A hypergraph
H = (X,H) is totally balanced [2] if there is no cycle (v1, e1, . . . , vk, ek) with
k ≥ 3 such that:

– vi ∈ ei ∩ ei−1 (for i > 1) and v1 ∈ ek,
– vi /∈ ej for j /∈ {i, i − 1} and (i, j) 
= (1, k).

This class has very nice combinatorial properties (several NP-hard problems
become polynomial when focusing on this class) and a clear cluster interpretation
when dealing with real data (clusters are connected parts of some tree and
restrictions of a totally balanced hypergraph remains totally balanced [8]).

This class is in correspondence with dismantlable lattices [6]. Dismantlable
lattices where defined recursively by Rival [9] as lattices L for which there is
a doubly irreducible element x in L (a doubly irreducible element is such that
there is at most one element x− such that x− ≺ x and at most one element
x+ such that x ≺ x+) such that L\{x} is also dismantlable. For instance, the
order diagram of Fig. 1 represents a dismantlable lattice (elements 2, 4 and 5 are
doubly irreducible).

Considering a formal context K = (G,M, I), a formal concept (A,B)
is doubly irreducible for the associated lattice (B(G,M, I),≤) if there exists
(g,m) ∈ (A,B) such that for any formal concept (U, V ) ∈ B(G,M, I), if g ∈ U ,
then A ⊆ U and if m ∈ V then B ⊆ V . Thus, a formal context is totally balanced
(i.e. its associated lattice is dismantlable) if and only if there is a decomposition
order such that [7]:
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– K0 = B(G,M, I),
– there is (Ai, Bi) ∈ Ki such that ∃(g,m) ∈ (Ai, Bi) for which ∀(U, V ) ∈ Ki,

g ∈ U ⇒ Ai ⊆ U , and m ∈ V ⇒ Bi ⊆ V ,
– Ki+1 = Ki\{(Ai, Bi)}
– K|H| = ∅.

Looking at Fig. 1, the formal context admits 2, 7, 4, 8, 10, 5, 1, 9, 6, 3, 0, 11 as a
decomposition order (among many other).

The paper is organized as follows. We will first (Sect. 2) recall some properties
of totally balanced matrices and use them in Sects. 3 and 4 to show that there is
a one-to-one correspondence between proper formal concepts and some elements
of the associated formal concept matrix.

2 Doubly Lexical Ordering of Totally Balanced Matrices

We recall here some properties of totally balanced hypergraphs and show the
implication to totally balanced formal concepts.

2.1 Formal Concepts of Totally Balanced Formal Context Matrices

A n×m binary matrix M is said to be totally balanced if its associated hyper-
graph H(M) is totally balanced. The result from which all the results of this
paper will follow is given by Theorem 1 and is linked with gamma-free matrices.

A n×m binary matrix M is said to be gamma-free whenever for any 1 ≤ i <
i′ ≤ n and any 1 ≤ j < j′ ≤ m: Mi,j = Mi,j′ = Mi′,j = 1 implies Mi′,j′ = 1.

For instance, the formal context matrix from Table 1 is not gamma-free
because M1,3 = M1,5 = M3,3 = 1 and M3,5 = 0.

Theorem 1 ([1]). Let M be a n × m binary matrix. M is totally balanced if
and only if there is a gamma-free ordering of its line and columns.

Even though the formal context matrix from Table 1 is not gamma-free, it admits
a gamma-free reordering. See for instance Table 2 which is gamma-free.

Table 2. Cross table associated with a gamma-free ordering of the formal context
matrix from Table 1.

c1 c2 c3 c4 c5 c6 c7 c8
l5 × × ×
l4 × ×
l3 × × × × ×
l2 × × ×
l1 × × ×
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We will use a special gamma-free ordering in Sect. 2.2 which also characterizes
totally balanced matrices, but before that, we just state another main property
of totally balanced hypergraphs and precise it for totally balanced matrices.

Hypergraphs for which the intersection of three clusters is the intersection of
two of them are called weak hierarchies [3] and are a very popular model in clas-
sification theory because they generalize the well known hierarchical model (the
intersection of two clusters is either empty or is one of them). Moreover Propo-
sition 1 shows that the closure under intersection which is usually an expensive
operation can be done easily for weak hierarchies.

Proposition 1 ([6]). Let H = (X,H) be a totally balanced hypergraph and
A,B,C ∈ H. We have: A ∩ B ∩ C ∈ {A ∩ B,A ∩ C,B ∩ C}.
Indeed, for a weak hierarchical hypergraph H = (X,H) its closure is simply equal
to the clusters {A ∩ B | A,B ∈ H}, which can be done in O(|X|3) operations.
Moreover, |H| is bound by |X|2 (it derives directly from the closure property),
thus:

– the number of formal concepts associated with a totally balanced formal con-
text K = (G,M, I) is bound by min(|G|, |M |)2,

– the formal concepts associated with a totally balanced formal context n × m
matrix M are (Ci ∩ Cj , (Ci ∩ Cj)↑) with 1 ≤ i, j ≤ m.

The fact that the intersections of two columns are sufficient to compute all the
formal concepts, combined with the doubly lexical ordering of Sect. 2.2 will be
the key of all the demonstrations given in Sect. 3.

2.2 Doubly Lexical Ordering of Totally Balanced Matrices

A doubly lexical ordering of an n × m binary matrix is an ordering such that
if the rows and columns are viewed as n or m digit numbers read from right to
left for lines and from bottom to top for columns, both rows and columns occur
in increasing order. Clearly:

Proposition 2. A n by m binary matrix M is doubly lexically ordered if the
two following assertions are satisfied:

– for any 1 ≤ j ≤ m if there exist 1 ≤ i < i′ ≤ n such that Mi,j = 1 and
Mi′,j = 0 then there exists j′ > j with Mi,j′ = 0 and Mi′,j′ = 1,

– for any 1 ≤ i ≤ n if there exist 1 ≤ j < j′ ≤ m such that Mi,j = 1 and
Mi,j′ = 0 then there exists i′ > i with Mi′,j = 0 and Mi′,j′ = 1.

Any n × m binary matrix can be doubly lexically ordered. Several polynomial
algorithms to perform such an ordering exist, see for instance Spinrad [10] for a
O(nm) algorithm (linear in the size of M). Table 3 is a doubly lexical ordering
of Table 1.

This ordering allows another characterization of totally balanced matrices:
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Table 3. Cross table associated with a doubly lexical ordering of the formal context
matrix from Table 1.

c5 c1 c4 c2 c3 c6 c7 c8
l1 × × ×
l5 × × ×
l3 × × × × ×
l4 × ×
l2 × × ×

Theorem 2 ([1]). The three following assertions are equivalent:

1. M is a totally balanced binary matrix,
2. there is a doubly lexical ordering of M which is gamma-free,
3. every doubly lexical ordering of M is gamma-free.

Since the formal context from Table 1 is totally balanced, its ordering given in
Table 3 is gamma-free. Note that a gamma-free ordering is not necessarily doubly
lexically ordered. For instance Table 2 is gamma-free but not doubly lexically
ordered. In fact the doubly lexical order “packs” the formal concepts together
as we shall show it hereafter.

3 Formal Concepts of Totally Balanced Formal
Context Matrices

We shall prove here that, given a totally balanced formal context K = (G,M, I),
one can associate to each formal concept (A,B) an element (i, j) of its doubly
lexically ordered formal context matrix M.

We will assume without any loss of generality that the formal context K is
such that:

– G = {1, . . . , n},
– M = {1, . . . ,m},
– its associated formal context matrix M such that Mi,j = 1 whenever iIj is

doubly lexically ordered.

If B(G,M, I) is the set of all the formal concepts, we denote by B̊(G,M, I) the
set of all the proper formal concepts: B̊(G,M, I) = B(G,M, I)\{(∅, G), (M, ∅)}.
We define f : B̊(G,M, I) → G × M and g : G × M → 2G × 2M by:

f((A,B)) = (min(A),min(B))
g((i, j)) = ({i′ | Mi′,j = 1, i′ ≥ i}, {j′ | Mi,j′ = 1, j′ ≥ j})

Consider for instance the doubly lexically ordered formal context of Table 3.
In order to fit the above definitions, we have to write its associated formal con-
cepts (see Fig. 1) according to the lines and the columns indices, thus the formal
concept ({l2, l3}, {c6, c8}) (number 6 in Fig. 1) is here equal to ((3, 5), (6, 8)). We
have then:
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– f(((3, 5), (6, 8))) = (3, 6),
– g((3, 6)) = ((3, 5), (6, 8))

Let M be an n × m doubly lexically ordered totally balanced formal context
matrix. We denote by B(M) the set of all formal representative of M. A pair
(i, j) of G × M is a formal representative if:

– Mi,j = 1,
– either i = 1 or there exists j′ ≥ j such that Mi,j′ = 1 and Mi−1,j′ = 0,
– either j = 1 or there exists i′ ≥ i such that Mi′,j = 1 Mi′,j−1 = 0.

The goal of this section is to establish links between formal representatives and
formal concepts. We first need some Lemmas. Note that Lemmas 1 and 2 only
suppose that the formal context matrix is gamma-free, only Lemma 3 requires
that M sould be doubly lexically ordered.

Lemma 1. Let M be a n×m gamma-free ordered formal context matrix associ-
ated with a formal context F = (G,M, I) and B̊(G,M, I) the set of its associated
proper formal concepts. For all (A,B) ∈ B̊(G,M, I), g(f((A,B))) = (A,B).

Proof. We will first prove that there exist jA and iB such that A = {i | Mi,jA =
1, i ≥ min(A)} and B = {j | MiBj = 1, j ≥ min(B)}.

According to Proposition 1, A is either a column Cj = {Mi,j = 1 | i ≥ 1}
or an intersection of two columns Cj ∩ Cj′ and one can assume that j < j′.
If A = Cj then A = {i′ | Mi′,j = 1i′ ≥ 1} = {i′ | Mi′,j = 1, i′ ≥ min(A)}.
If A = Cj ∩ Cj′ then min(A) is the smallest line number i for which Mi,j =
Mi,j′ = 1 and since M is gamma-free, Mi′,j = 1 implies Mi′,j′ = 1 for all
i′ ≥ i: A = Cj ∩ Cj′ = {i′ | Mi′,j = 1, i′ ≥ min(A)}.

Since tM is also gamma-free, the same proof leads to the fact that there
exists i such that B = {j′ | Mi,j′ = 1, j′ ≥ min(B)}.

Now, since Mi,jA = 1 for any i ∈ A we have that jA ∈ B (because A↑ = B)
thus min(B) ≤ jA. Moreover, Mi,min(B) = 1 for all i ∈ A (because B↓ = A)
thus {i | Mi,min(B) = 1, i ≥ min(A)} = {i | Mi,jA = 1, i ≥ min(A)} (because
M is gamma-free). This proves that A = {i | Mi,min(B) = 1, i ≥ min(A)}.

The same kind of proof can be done to prove that B = {j | Mmin(A),j =
1, j ≥ min(B)} which concludes the proof. ��
Lemma 1 shows that f is an injection and that g = f−1 for its image. The
following two Lemmas will characterize the image of f .

Lemma 2. Let M be a n×m gamma-free ordered formal context matrix associ-
ated with a formal context F = (G,M, I) and B̊(G,M, I) the set of its associated
proper formal concepts. For any (A,B) ∈ B̊(G,M, I):

– either min(B) = 1 or there exists j ≥ min(B) such that Mmin(A),j−1 = 0,
– either min(A) = 1 or there exists i ≥ min(A) such that Mi−1,min(B) = 0.
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Proof. We will only prove the first assertion, the second one follows by using
tM instead of M.

Lemma 1 shows that A = {i | Mi,min(B) = 1, i ≥ min(A)} and according to
Proposition 1, A is either a column Cj = {Mi,j = 1 | i ≥ 1} or an intersection
of two columns Cj ∩ Cj′ and one can assume that j < j′.

Columns Cj are equal to {i | Mi,j = 1, i ≥ i(Cj)} with i(Cj) = min{i |
Mi,j = 1}. Thus either i(Cj) = 1 or Mi(Cj)−1,j = 0.

Intersection Cj ∩ Cj′ with 1 ≤ j < j′ ≤ m. Let i(Cj ∩ Cj′) = min{i |
Mi,j = Mi,j′ = 1}. Since M is gamma-free Mi′,j = 1 implies Mi′,j′ = 1 for all
i′ ≥ i(Cj ∩ Cj′), thus Cj ∩ Cj′ = {i | Mi,j = 1, i ≥ i(Cj ∩ Cj′)}. Note that if
i(Cj∩Cj′) > 1 then either Mi(Cj∩Cj′ )−1,j = 0 or Mi(Cj∩Cj′ )−1,j′ = 0. The above
two cases show that if min(B) > 1 and Mmin(A),j−1 = 1 for all j ≥ min(B) then
A = {i | Mi,min(B) = 1, i ≥ min(A)} cannot be an intersection of columns thus
(A,A↑) is not a formal concept, which is impossible. ��
Lemma 3. Let M be an n × m doubly lexically ordered totally balanced formal
context matrix associated with a formal context F = (G,M, I). Let (i, j) a pair
such that:

– Mi,j = 1,
– either i = 1 or there exists j′ ≥ j such that Mi,j′ = 1 and Mi−1,j′ = 0,
– either j = 1 or there exists i′ ≥ i such that Mi′,j = 1 Mi′,j−1 = 0.

We have g((i, j)) ∈ B̊(G,M, I).

Proof. Let C be the closure under intersection of the matrix columns Cj = {i |
Mi,j = 1}. We will prove by induction on the column number that if Mi,j = 1
and Mi−1,j = 0 then {i′ | Mi′,j = 1, i′ ≥ i} ∈ C. First consider the last column.
Since M is doubly lexically ordered one cannot have Mi,m = 1 and Mi′,m = 0
with 1 ≤ i < i′ ≤ n. The last column is then either empty or there exists im for
which Mi,m = 1 if and only if i ≥ im thus the only possible pair (i,m) for which
Mi,m = 1 and Mi−1,m = 0 is (im,m) and {i′ | Mi′,m = 1, i′ ≥ im} = Cm ∈ C.
Suppose the property true for any j′ > j0 and let j be the largest column smaller
or equal to j0 such that there exists i for which Mi,j = 1 and Mi−1,j = 0. two
cases may occur:

– Mi′,j = 0 for all i′ < i. In this case {i′ | Mi′,j = 1, i′ ≥ i} = Cj ∈ C,
– otherwise let i2 < i be the largest index such that Mi2,j = 1. Since M

is doubly lexically ordered, there exists j2 > j such that Mi2,j2 = 0 and
Mi−1,j2 = 1. Two sub-cases are possible:

• Mi,j2 = 0. Since M is doubly lexically ordered there exists j3 > j2 such
that Mi−1,j3 = 0 and Mi,j3 = 1. The induction hypothesis holds, so
{i′ | Mi′,j3 = 1, i′ ≥ i} ∈ C. Because M is gamma-free, {i′ | Mi′,j =
1, i′ ≥ i} = Cj ∩ {i′ | Mi′,j3 = 1, i′ ≥ i} ∈ C.

• Mi,j2 = 1. There exists i3 < i for which Mi′,j2 = 1 for any i3 ≤ i′ ≤ i
and Mi3−1,j2 = 0. The induction hypothesis holds, so {i′ | Mi′,j2 =
1, i′ ≥ i3} ∈ C. As M is gamma-free, {i′ | Mi′,j = 1, i′ ≥ i} = Cj ∩ {i′ |
Mi′,j2 = 1, i′ ≥ i3} ∈ C.
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In all cases {i′ | Mi′,j = 1, i′ ≥ i} ∈ C. This concludes the proof by induction.
Let now (i, j) be a pair as stated in the Lemma. If i = 1 then A = {i′ |

Mi′,j = 1, i′ ≥ i} ∈ C and if i > 1 there exists j′ ≥ j such that Mi,j′ = 1
and Mi−1,j′ = 0. The above induction demonstration states that {i′ | Mi′,j′ =
1, i′ ≥ i} ∈ C thus A = {i′ | Mi′,j = 1, i′ ≥ i} = Cj ∩{i′ | Mi′,j′ = 1, i′ ≥ i} ∈ C.

Since M is gamma-free, Mi,j′ = 1 with j′ ≥ j implies that Mi′,j′ = 1 for all
i′ ∈ A thus B = {j′ | Mi,j′ = 1, j′ ≥ j} ⊆ A↑. If j = 1 we clearly have equality.
If j > 1 let i′ be the largest line larger than i for which Mi′,j = 1 Mi′,j−1 = 0.
If there exists j′ < j such that j′ ∈ A↑, then Mi′,j′ = 1. Since M is doubly
lexically ordered and Mi′,j′ = 1 and Mi′,j−1 = 0 there exists i′′ > i′ for which
Mi′′,j′ = 0 and Mi′′,j−1 = 1 which implies Mi′′,j = 0 because j′ ∈ A↑. The
doubly lexical ordering of M then states that there exists i′′′ > i′′ for which
Mi′′′,j−1 = 0 and Mi′′′,j = 1 which is impossible by maximality of i′ so such a
j′ does not exist.

We finally have that A = {i′ | Mi′,j = 1, i′ ≥ i} ∈ C and A↑ = {j′ | Mi,j′ =
1, j′ ≥ j} which concludes the proof. ��
The hereunder Proposition 3 directly follows from Lemmas 1, 2 and 3.

Proposition 3. The sets B̊(G,M, I) and B(M) are in one-to-one correspon-
dence:

– for all (A,B) ∈ B̊(G,M, I): f((A,B)) = (min(A),min(B)) ∈ B(M),
– for all (i, j) ∈ B(M): g((i, j)) = ({i′ | Mi′,j = 1, i′ ≥ i}, {j′ | Mi,j′ = 1, j′ ≥

j}) ∈ B̊(G,M, I),
– g ◦ f((A,B)) = (A,B),
– f ◦ g((i, j)) = (i, j).

Table 4. Formal concepts of Fig. 1 represented by their associated pair of the doubly
lexical ordering of the formal context from Table 3.

c5 c1 c4 c2 c3 c6 c7 c8
l1 (2) (7) (10)
l5 (4) (8) ×
l3 (3) × × (6) (9)
l4 (5) ×
l2 (1) × ×

0 (∅, {c1, c2, c3, c4, c5, c6, c7, c8})
1 ({l2}, {c6, c7, c8})
2 ({l1}, {c3, c4, c5})
3 ({l3}, {c2, c3, c4, c6, c8})
4 ({l5}, {c1, c2, c3})
5 ({l2, l4}, {c7, c8})
6 ({l2, l3}, {c6, c8})
7 ({l1, l3}, {c3, c4})
8 ({l3, l5}, {c2, c3})
9 ({l2, l3, l4}, {c8})
10 ({l1, l3, l5}, {c3})
11 ({l1, l2, l3, l4, l5}, ∅)

Table 4 shows the proper formal concepts of the formal context of Table 1 with
the reordering of Table 3. Note that it is easy to find all the pairs of B(M) in
O(nm) (the size of the formal context matrix) operations.
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Proposition 3 and the fact that the formal context matrix is gamma-free
allow us to state Proposition 4.

Proposition 4.

– (A,B) ≤ (A′, B′) implies that min(A) ≤ min(A′) and min(B) ≤ min(B′): the
formal concepts larger that a given (A,B) are associated with a pair in the
top-right corner of f((A,B)),

– let (i, j), (i′, j′) ∈ B(M). g((i, j)) ≤ g((i′, j′)) is equivalent to Mi,j′ = 1,
– let (i, j), (i′, j′) ∈ B(M). g((i, j)) ≥ g((i′, j′)) is equivalent to Mi′,j = 1,

Proposition 4 gives a way to show all the formal concepts of a given totally
balanced formal context and their order relationship on a special ordering of
its associated formal context matrix. We shall extend this property in the next
section by showing that the whole formal concept lattice can be embedded into
the matrix.

4 Cover Graphs and Graphical Representation

In this section, we show that the formal representatives can be associated to
non-overlapping boxes of the formal context matrix. This also represents the
directed cover graph.

Let M be a n × m doubly lexically ordered totally balanced formal context
matrix associated with a formal context F = (G,M, I), B̊(G,M, I) the set of all
its proper formal concepts and B(M) the set of formal representatives.

We associate the pair (n + 1, 1) to the formal concept (∅, {1, . . . ,m}) and
the pair (1,m + 1) to the formal concept ({1, . . . , n}, ∅). So we extend maps f
and g to all the formal concepts B(G,M, I). Thus we can draw the directed
cover graph directly on M as shown in Fig. 2. For the rest of this section, we
shall then consider that g((n + 1, 1)) = (∅, {1, . . . ,m}) and that g((1,m + 1)) =
({1, . . . , n}, ∅).

By Proposition 3, for such a figure, the edges ((ui, uj), (vi, vj)) of the directed
cover graph are such that ui ≥ vi and uj ≤ vj and at least one of these inequal-
ities is strict.

We shall precise this drawing by using all the 1 s of the matrix. Let (i, j) ∈
B(M), we define:

– n(i, j): the smallest column such that n(i, j) > j and for which there exists
i′ ≥ j with Mi′,n(i,j) = 1 and Mi′,n(i,j)−1 = 0. If i′ does not exist, n(i, j) =
m + 1.

– w(i, j): the largest column such that j ≤ w(i, j) < n(i, j) and Mi,j′′ = 1 for
all j ≤ j′′ ≤ w(i, j). Note that w(i, j) always exists (it can be equal to j).

It is clear that, given two formal representatives (i, j) and (i′, j′), the intersection
of the two intervals [j, w(i, j)] and [j′, w(i′, j′)] is either empty or one of them.
The set of all the intervals is a hierarchy. Moreover, if [j, w(i, j)] 
⊂ [j′, w(i′, j′)]
then i < i′.
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Fig. 2. Directed cover graph of the totally balanced formal context of Table 3. The
unmarked 1 of the matrix are in dark grey (Color figure online).

Figure 3 shows the hierarchy formed by the formal concepts of the totally
balanced formal context of Table 3. Note that this hierarchy can be directly
drawn on the doubly lexically ordered context matrix and that it is a part of the
associated directed cover graph.

Since tM is also doubly lexically ordered and gamma-free, if we note tw(i, j)
the element of M associated with w(j, i) in tM, there is a also a hierarchy
formed by the intervals [i,t w(i, j)]. Figure 4 shows this hierarchy for the formal
concepts of the totally balanced formal context of Table 3.

Note that the union of the two hierarchies forms the directed cover graph.
Some of the 1 s of the matrix tM are not “used”. The hereunder procedure
combines the two drawings into a unique one. Given a formal representative
(i, j), the box formed by the two intervals [i,t w(i, j)] × [j, w(i, j)] is full of 1 s in
M and all the 1 s of M are at least in one box. If we do not want to allow boxes
overlapping we have to favor one dimension upon the other. In the hereunder
construction we favor [j, w(i, j)] upon [i,t w(i, j)].

We associate to each 1 ≤ i ≤ n, 1 ≤ j ≤ m such that Mi,j = 1 a formal
concept g((i′, j′)):

– where i′ = i and j′ is such that there exists (i, j′) ∈ B(M) for which j ≤ j′ <
w(i, j′),

– or where i < i′ and i′ the largest element such that there exists (i′, j′) ∈ B(M)
for which j ≤ j′ < j + w(i′, j′).
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Fig. 3. Interval hierarchy of the columns of the formal concepts of the formal context
of Table 3.
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Fig. 4. Interval hierarchy of the lines of the formal concepts of the formal context of
Table 3.
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Fig. 5. Directed cover graph embedded into the formal context matrix of Table 4.

Fig. 6. Approximation of a 50 × 170 Matrix.

The above construction ensures that each formal concept is represented by
two intervals forming a “box full of 1s” in M and that all these boxes never over-
lap. Note that the above association is unique and that each formal representative
is self-associated. This association can be easily done in O(nm) operations.

In addition, one can prove that: g((i, j)) ≺ g((i′, j′)) if their associated boxes
in M are neighbors. One can then draw the associated directed cover graph of
the formal context on the matrix as shown in Fig. 5.
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5 Conclusion

This paper gives a way of representing, for a given totally balanced formal con-
text, the context matrix, the directed cover graph and its concepts into a unique
representation. This can be performed linearly in the size of the matrix allowing
to address big data sets.

Spinrad [11] gives a O(nm) approximation scheme to transform a non-
gamma-free n × m binary matrix into a gamma-free one. Since a gamma-free
matrix admits a gamma-free doubly lexical order, one can linearly approximate
a formal context matrix into a totally balanced one. This can be done for large
datasets as a first step of a Data Analysis process. It allows to find potential areas
of interest before searching for all the formal concepts of the original context in
this area.

Figure 6 shows a way of presenting such data by coloring the different con-
cepts. One can clearly see the concepts and their relationships despite the size
of the matrix. All the algorithms have been implemented and there is a ongoing
study to apply the on big datasets.
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Abstract. We define the randomized fuzzy formal context using the
random variables with a normal distribution and explore the one-sided
formal concept stability. Since the modified Rice-Siff algorithm aims at
reducing the concept lattice and represents a crisp index in selecting
the relevant clusters from the set of all one-sided formal concepts, we
describe the probabilistic method and algorithm how to rank these clus-
ters. Therefore, the proposed Gaussian probabilistic index in combina-
tion with the modified Rice-Siff algorithm gives the answer how to select
top-k relevant one-sided formal concepts.

Keywords: One-sided formal concept · Randomized context · Gauss
normal distribution · Stability

1 Introduction

The efficient selection of relevant formal concepts is an interesting and impor-
tant issue for investigation and several studies have focused on this scalability
question in formal concept analysis [21]. In this direction, the stability index
of Kuznetsov [32] represents the proportion of subsets of attributes of a given
concept whose closure is equal to the extent of this concept (in an extensional
formulation). A high stability index signalizes that extent does not disappear
if the extent of some of its attributes is modified. It helps to isolate concepts
that appear because of noisy objects in [25] and the completely restoring of the
original concept lattice is possible with combination of two other indices.

The phenomenon of the basic level of concepts is advocated to select impor-
tant formal concepts in Bělohlávek et al. [7]. Five quantitative approaches on
the basic level of concepts and their metrics are comparatively analyzed in [8].
The approaches on selecting of the formal concepts and simplifying the concept
lattices are examined by [5,13,16,26,31,33], as well. The notes on the scalability
and the applications of concept stability in the various fields from social networks
to linguistics can reader find in thorough overview [37].
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Regarding one-sided concept lattices [6,9,27], the antecedent method [40] of
searching for significant concepts takes into account the idea of α-cuts from fuzzy
logic. A modified Rice-Siff algorithm represents the crisp version of a method
for selecting the significant concepts [28] on the set of one-sided fuzzy formal
concepts, the application of this algorithm in the field of social network were
presented by [27,29]. The generalized one-sided concept lattices [10,24] and the
reduction of concepts from the set of generalized one-sided fuzzy concepts based
on subset quality measure [11] were recently introduced in this area. Besides
one-sided concept lattices and the selection of relevant concepts, the properties
of other generalizations in formal concept analysis [1,2,10,34–36,38], intercon-
textual relationships [30], construction of adjoints in the unstructured codomain
or the residuated operations on the multilattices [12,22] are intensively stud-
ied. In [41], Valverde-Albacete et al. explore the entropy conformation process
with respect to the behaviour of incidences in L-valued contexts for a complete
idempotent semifield L which generates different kinds of Galois connections.
Possibility theory [17], as an alternative to probability theory, leads to partition
a formal context into disjoint subsets of objects having distinct properties. Bartl
[3] describes the simple probabilistic algorithm for finding all minimal solutions
for generalized fuzzy relational equation. A formula for the mean of the size
of the random Galois lattice and convergence of random empirical intents are
established by Emillion and Lévy in [18,19].

In this paper, we propose a probabilistic approach to the one-sided formal
concepts stability. We define the randomized formal contexts which are derived
from the original fuzzy formal context by fluctuation of values using the random
variables with a normal distribution. The proposed Gaussian probabilistic index
represents the probability of some subset being the extent of the particular ran-
domized formal context. We describe the algorithm and study the properties of
the Gaussian probabilistic index with respect to the multivariate normal distri-
bution, the variances of normal distributions and the boundary constraints of
the incidence relation in the randomized formal contexts.

We remind that the idea of joining the probability and the stability of crisp
formal concepts can be already found in [25], but the notion of concept probabil-
ity reflects here the need to normalize the stability index in a crisp setting and
the binomial distribution is sufficient. Our approach concerns with the probabil-
ity of the extent stability focusing on the idea of random fluctuation of values
in a fuzzy formal context and the Gaussian normal distribution is applied.

2 Preliminaries

The fuzzy formal context and the modified Rice-Siff algorithm are now recalled.

Definition 1. Consider two nonempty sets A a B and a fuzzy relation R such
that R : A×B → [0, 1]. Then the triple 〈A,B,R〉 is called a fuzzy formal context,
the elements of the sets A and B are called attributes and objects, respectively.
The relation R is called an incidence fuzzy relation.
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We define the function which assigns the degree of each attribute for every crisp
subset of objects X, whereby each object from X satisfies this degree.

Definition 2. Let X ⊆ B and ↑: P(B) → [0, 1]A. Then ↑ is a mapping that
assigns to every crisp set X of objects a fuzzy set X↑ of attributes, such that a
value in a point a ∈ A is:

X↑(a) = inf{R(a, b) : b ∈ X}. (1)

Conversely, we define the function which for fuzzy set of attributes assigns the
set of objects, such that every object has all attributes at least in a value given
by this fuzzy set.

Definition 3. Let f : A → [0, 1] and ↓: [0, 1]A → P(B). Then ↓ is a mapping
that assigns to every fuzzy set f of attributes a crisp set ↓ (f) of objects, such
that:

f↓ = {b ∈ B : (∀a ∈ A)R(a, b) ≥ f(a)}. (2)

The notion of one-sided fuzzy concept involves the formulas (1) and (2).

Definition 4. The pair 〈X, f〉 is called a one-sided fuzzy concept, if X↑ = f
and f↓ = X. The set of objects X is called the extent and the fuzzy set X↑ is
called the intent of this concept.

The set of all one-sided fuzzy concepts ordered by inclusion is a complete lattice,
called one-sided fuzzy concept lattice, as introduced in [27].

To reduce the number of one-sided formal concepts, the modified Rice-Siff
algorithm was proposed in [27]. The method focuses on the distance function
and its metric properties. The distance function ρ : P(B)×P(B) → R is defined
for X1,X2 ⊆ B by:

ρ(X1,X2) = 1 −
∑

a∈A min{↑ (X1)(a), ↑ (X2)(a)}
∑

a∈A max{↑ (X1)(a), ↑ (X2)(a)} . (3)

The formula (3) represents a metric on the set of all extents and comprises the
cornerstone of a following clustering algorithm:

input: 〈B,A,R〉
C ← D ← {{b}↑↓ : b ∈ B};
while (|D > 1|) do

m ← min{ρ(X1,X2) : X1,X2 ∈ D,X1 �= X2}
Ψ ← {〈X1,X2〉 ∈ D × D : ρ(X1,X2) = m}
V ← {X ∈ D : (∃Y ∈ D)〈X,Y 〉 ∈ Ψ}
N ← {(X1 ∪ X2)↑↓ : 〈X1,X2〉 ∈ Ψ}
D ← (D \ V) ∪ N
C ← C ∪ N

output: C
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Two clusters with minimal distance are joined in each step of algorithm and the
closure of their union is returned as the output. Such closures are gathered in a
tree-based structure on the subset hierarchy with the cluster of all objects in the
root. The zero iterations gather the closures of singletons, therefore the value of
minimal distance function is not computed in the zero step. The more detailed
properties of this clustering method with the special defined metric are described
in [27,28]. The important results on the relationships between the values in L-
fuzzy contexts due to replacing of the table entries are processed by Bělohlávek
in [4].

3 Continuous Random Variables

The sample space Ω is a set of all possible finite or infinite outcomes of a random
study. An event T is an arbitrary subset of Ω. The probability function p on a
finite ({ω1, . . . , ωn}) or infinite (e.g. interval of real numbers) sample space Ω
assigns to each event T ⊆ Ω a number p(T ) ∈ [0, 1] such that p(Ω) = 1 and
p(T1 ∪ T2 ∪ . . .) = p(T1) + p(T2) + . . . for T1, T2, . . . which are disjoint. From
T ∪ T c = Ω, we deduce that p(T c) = 1 − p(T ). Events T1, T2, . . . Tm are called
independent if p(T1 ∩ T2 ∩ . . . ∩ Tm) =

∏m
i=1 p(Ti).

The real-valued function E : Ω → R1, i. e. E(ω) = ε ∈ R1 for all ω ∈ Ω,
defined on the sample space is called random variable. A random variable E is
called continuous if exists function fE : R1 → R integrable on R1 and satisfying
fE(ε) ≥ 0 for all ε ∈ R1 such that

∫ ∞

−∞
fE(ε)dε = 1 and p

({ω ∈ Ω : E(ω) ≤ c}) =
∫ c

−∞
fE(ε)dε. (4)

The function fE is called probability density function of E . The value p
({ω ∈

Ω : E(ω) ≤ c}) is written shortly by p
(E ≤ c

)
and it holds p

(E ≤ c
)

= p
(E < c

)
.

A continuous random variable E has a normal distribution with parameters
μ (the mean) and σ2 > 0 (the variance) if its probability density function1

fE(ε) =
1

σ
√

2π
· exp

(

−1
2

(ε − μ

σ

)2
)

(5)

for −∞ < ε < ∞. The parameter σ is called standard deviation. We denote the
random variable having a normal distribution with parameters μ and σ2 by E ∼
N(μ, σ2) and it is said to be normally distributed. Probability of E ∼ N(μ, σ2)
being in the range 〈−∞, c) for all c ∈ R1 is given by:

p
(E < c

)
=

1
σ
√

2π
·
∫ c

−∞
exp

(

−1
2

(ε − μ

σ

)2
)

dε. (6)

1 To avoid the impractical superscript of the exponential function, the form exp(x) is
written. We recall that the stability index is denoted by symbol σ in [25].
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There is not an explicit solution for this integral, since the probability density
function has no antiderivative. However, an arbitrary E ∼ N(μ, σ2) can be turned
into E∗ ∼ N(0, 1) by a substitution

E∗ =
E − μ

σ
(7)

and random variable E∗ is said to be standardizing normally distributed. In this
manner, we have for all c ∈ R1

p
(E < c

)
= p

(
E∗ <

c − μ

σ

)
= Φ

(c − μ

σ

)
, (8)

whereby the values of the function Φ(v) for all v ∈ R1 are available for the
computations in the form of table. For a multivariate normal distribution of
k-dimensional random vector, we denote p

(E1 < c1, E2 < c2, . . . , Ek < ck
)

=
Φ

(
c1, c2, . . . , ck, corr(E1, E2, . . . , Ek)

)
, where corr(E1, E2, . . . , Ek) is a correlation

matrix of random vector (E1, E2, . . . , Ek). Algorithms for the numerical compu-
tations of bivariate (k = 2) and trivariate (k = 3) normal probabilities are
reviewed in [23].

The distributions of many natural phenomena are at least approximately
normally distributed. One of the first applications of the normal distribution
was devoted to the analysis of errors of measurement made in astronomical
observations. Galileo noted the symmetricity of these errors and that small errors
occured more frequently than large errors. The more detailed results can be found
in [14,15].

4 Gaussian Probabilistic Index in Framework
of One-Sided Approach

4.1 Motivation and Definition

The motivation of our approach comes from the assumptions that students do not
obtain the equal results in the exams performed continuously during the school
year. The excellent student will obtain roughly 90% in the most of exams, but
once a time it can happened that he/she will pass 70% for different reasons,
otherwise will reach 98%, pleasantly surprising.

R a1 a2 a3

b1 1 0.9 0.8

b2 0.8 0.7 0.7

b3 0.3 0.3 0.3

b4 0.8 0.6 0.9

In other way, consider four students {b1, b2, b3, b4} and their results in the
tests from three different subjects {a1, a2, a3}. Take for example student b2 and
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find the students with better results as b2 in all subjects. From Sect. 2 we have
that {b2}↑↓ = {b1, b2}. Will it be valid after the repeated exams? We suppose
that student b3 will not be better than b1 or b2, but what about the student b4?
What is the probability of that some other student will join the group {b1, b2}
in other testing?

The notions of fuzzy formal contexts and the random variables provide a way
to simulate the previous situation as follows.

Definition 5. Let 〈B,A,R〉 be a fuzzy formal context and for i ∈ {1, . . . , n}
consider the formal context 〈B,A,Ri〉 such that

Ri(b, a) = min
{

1,max
{
0, R(b, a) + εb,a,i

}}
, (9)

whereby εb,a,i is a normally distributed value of random variable Eb,a with the
mean 0 and variance σ2, i. e. Eb,a ∼ N(0, σ2), for all b ∈ B, a ∈ A.

Let X ⊆ B. The Gaussian probability index gpi : P(B) × R
+ → [0, 1] is the

function given by

gpi(X,σ) = p(X is an extent of 〈B,A,Ri〉) (10)

for an arbitrary subset of objects X, an arbitrary standard deviation σ and mean
0. The fuzzy formal context 〈B,A,Ri〉 will be called the randomized (fuzzy) for-
mal context for each i ∈ {1, . . . , n}.
The values given by formula (10) express the probability of X being the extent
of the arbitrary randomized formal context. We suppose the standard devia-
tion σ to construct the incidence relation Ri from the original incidence relation
R. Alternatively, the values of the Gaussian probability index one can com-
pute by the following construction. Consider the randomized formal contexts
〈B,A,R1〉, 〈B,A,R2〉 . . . , 〈B,A,Rn〉 for a large positive integer n. Then by the
classical definition of probabilistic function p one can write

gpi(X,σ) =
|i, i ∈ {1, 2, . . . , n} : X is an extent of 〈B,A,Ri〉|

n
. (11)

The algorithm for computing the formula (11) can be described as follows:

input: 〈B,A,R〉, X, σ, n (a large number)
k ← 0;
for i := 1 to n do

{
for all b ∈ B do

for all a ∈ A do
{
εb,a,i ← Random.nextGaussian() ∗ σ;
Ri(b, a) ← min{1,max{0, R(b, a) + εb,a,i}};
}

if (X is an extent of 〈B,A,Ri〉) then
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k ← k + 1;
}

gpi(X,σ) ← k

n
;

output: gpi(X,σ)

The set of pairs {〈X, gpi(X,σ)〉 : X ⊆ B} for some σ can be ordered by the
second coordinate. The first remarks including the comparison between the
Gaussian probabilistic index and the modified Rice-Siff algorithm is now briefly
outlined.

Remark 1. Note that:

– every cluster N obtained by modified Rice-Siff is the extent of one-sided formal
concept (because N = {(X1 ∪ X2)↑↓ : 〈X1,X2〉 ∈ Ψ}),

– modified Rice-Siff algorithm represents the crisp method for selection of the
one-sided concepts, the Gaussian probabilistic index is a fuzzy index,

– we can suppose that the clusters obtained by modified Rice-Siff have the
higher gpi(X,σ) as the other extents of one-sided formal concepts,

– the Gaussian probabilistic index gpi works with the relations of randomized
formal contexts which can be investigated in connection with the ordinally
equivalent relations defined in [4] with respect to Gödel logic connectives.

4.2 Observations on Gaussian Probabilistic Index

In effort to compute the Gaussian probabilistic index by formula (10), con-
sider the special formal context 〈{b1, b2, b3}, {a}, R〉 and Eb,a ∼ N(0, σ2) for
all b ∈ {b1, b2, b3}. For σ = 0.1, the sequence of randomized formal contexts
〈{b1, b2, b3}, {a}, R1〉, . . ., 〈{b1, b2, b3}, {a}, Rn〉 for i ∈ {1, . . . , n} is illustrated in
Table 1.

Table 1. The randomized formal contexts of 〈{b1, b2, b3}, {a}, R〉

First note, that in a special case, if 0 < Ri(b, a) < 1 for all a ∈ A, b ∈ B, i ∈
{1, . . . , n}, then the expression Ri(b, a) = min{1,max{0, R(b, a)+εb,a,i}} can be
reduced to Ri(b, a) = R(b, a)+εb,a,i. Later, we will solve the cases which require
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the boundaries, as well. Now, for X = {b1, b2}, we have that X = X↑↓ in
〈B, {a}, R〉, hence {b1, b2} is an extent of 〈B, {a}, R〉. To preserve this extent in
〈B, {a}, Ri〉 for some i ∈ {1, . . . , n}, it has to hold

Ri(b3, a) < Ri(b1, a) ∧ Ri(b3, a) < Ri(b2, a),

which is in the special case of 0 < Ri(b, a) < 1 equivalent to

εb3,a,i − εb1,a,i < R(b1, a) − R(b3, a) ∧ εb3,a,i − εb2,a,i < R(b2, a) − R(b3, a).

In general, to find the probability p(Eb3,a − Ebj ,a < R(bj , a) − R(b3, a)) for j ∈
{1, 2}, we need to explore the linear combination of two independent random
variables.

Lemma 1. Let E1 and E2 be two mutually independent normal random variables
with mean μ and variance σ2 and let k1, k2 ∈ R. Then the linear combination
k1E1 + k2E2 follows the normal distribution with the mean k1μ + k2μ and the
variance k2

1σ
2 + k2

2σ
2, i.e. (k1E1 + k2E2) ∼ N(k1μ + k2μ, k2

1σ
2 + k2

2σ
2).

Proof. For two random variables E1 and E1, in general, the expectation E(k1E1+
k2E2) = k1E(E1) + k2E(E2). The variance Var(E1) of a random variable E1 is
the number Var(E1) = E((E1 − E(E1))2). Using the expectation, we have that
Var(k1E1 + k2E2) = k2

1Var(E1) + k2
2Var(E2) + 2k1k2E[(E1 − E(E1))(E2 − E(E2))].

The number E[(E1 −E(E1))(E2 −E(E2))] is called the covariance cov(E1, E2) and
if E1 and E2 are independent, it holds that cov(E1, E2) = 0.

Let E1 ∼ N(μ, σ2) and E2 ∼ N(μ, σ2), i. e. the expectation E(E1) = E(E2) = μ
and the variance Var(E1) = Var(E2) = σ2. Therefore, we have that

E(k1E1 + k2E2) = k1E(E1) + k2E(E2) = k1μ + k2μ

and since E1 and E2 are independent

Var(k1E1 + k2E2) = k2
1Var(E1) + k2

2Var(E2) = k2
1σ

2 + k2
2σ

2. ��
Lemma 2. Let E1 and E2 be two mutually independent normal random variables
with mean μ = 0 and variance σ2 and let c ∈ R. Then

p
(E1 − E2 < c

)
= Φ

(
c√
2σ

)

.

Proof. From Lemma 1 and for k1 = 1, k2 = −1, we have that E1−E2 ∼ N(0, 2σ2).
By transformation to a standard normal distribution one can obtain that

E1 − E2√
2σ2

∼ N(0, 1).

Now, we specify the probability of E1 − E2 being smaller than c ∈ R by
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p
(E1 − E2 < c

)
=

p

(
E1 − E2√

2σ2
<

c√
2σ2

)

= Φ

(
c√
2σ2

)

= Φ

(
c√
2σ

)

. ��

Example 1. Consider randomized formal contexts for 〈{b1, b2, b3}, {a}, R〉 from
Table 1 and for σ = 0.1.

For X = {b1, b2}, from Lemma 2 we have that c1 = R(b1, a) − R(b3, a) = 0.3
and c2 = R(b2, a) − R(b3, a) = 0.1 and it holds

p
(Eb3,a − Eb1,a < c1 ∧ Eb3,a − Eb2,a < c2

)

= p
(Eb3,a − Eb1,a < 0.3 ∧ Eb3,a − Eb2,a < 0.1

)

= Φ
(
2.12, 0.71, corr(Eb3,a − Eb1,a, Eb3,a − Eb2,a)

)
.

We can either compute Φ mathematically (see Sect. 3) or we can run a large
positive number n of iterations in our algorithm (see Subsect. 4.1). By an algo-
rithm, the subset X does not correspond to the extent in 25.2% of cases. There-
fore, the Gaussian probabilistic index of the subset {b1, b2} is 74.8%.

Example 2. Consider the formal context 〈{b1, b2, b3}, {a}, R〉, whereby R(b1, a)
= 0.9, R(b2, a) = 0.5, R(b3, a) = 0.1 and its randomized formal contexts based
on Eb1,a, Eb2,a, Eb3,a ∼ N(0, σ2) with σ = 0.1.

For X = {b1, b2}, from Lemma 2 we have that c1 = R(b1, a) − R(b3, a) = 0.8
and c2 = R(b2, a) − R(b3, a) = 0.4 and it holds

p
(Eb3,a − Eb1,a < c1 ∧ Eb3,a − Eb2,a < c2

)

= p
(Eb3,a − Eb1,a < 0.8 ∧ Eb3,a − Eb2,a < 0.4

)

= Φ(5.66, 2.83, corr(Eb3,a − Eb1,a, Eb3,a − Eb2,a)).

Instead of computing Φ, after a large positive number n of iterations of our
algorithm, the subset X does not correspond to the extent in 0.2% of cases.
Therefore, the Gaussian probabilistic index of the subset {b1, b2} is 99.8%. In
conclusion, we can see that the subset {b1, b2} is more stable here in comparison
with the input formal context from Example 1.

4.3 Formalization and Boundary Conditions

We can extend our examples for more attributes and for boundary cases by
considering the set of events. Therefore, we formulate the condition for testing
whether the particular object from B\X is included in the extent X↑↓ of random-
ized formal context 〈B,A,Ri〉 for some particular X ⊆ B and i ∈ {1, 2, . . . , n}.
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Lemma 3. Let 〈B,A,Ri〉 be a randomized formal context for i ∈ {1, 2, . . . , n}.
Consider X ⊆ B and some particular o ∈ B \ X. Then

o ∈ X↑↓ iff Ri(o, a) ≥
∧

x∈X

(Ri(x, a)) for all a ∈ A.

Proof. From Definitions 2 and 3 we have that

X↑↓ = {b ∈ B : (∀a ∈ A)Ri(b, a) ≥ X↑(a)}
= {b ∈ B : (∀a ∈ A)Ri(b, a) ≥ inf{Ri(x, a) : x ∈ X}}
= {b ∈ (X ∪ (B \ X)) : (∀a ∈ A)Ri(b, a) ≥ inf{Ri(x, a) : x ∈ X}}
= X ∪ {o ∈ B \ X : (∀a ∈ A)Ri(o, a) ≥ inf{Ri(x, a) : x ∈ X}},

since the inequality Ri(b, a) ≥ inf{Ri(x, a) : x ∈ X} is satisfied for all b ∈ X
and a ∈ A. Due to finiteness of X, the infimum equals the minimum. ��
The presence of the attribute with the following condition is sufficient to deter-
mine that some o from B \ X is not included in the extent X↑↓ of 〈B,A,Ri〉.
Corollary 1. Let 〈B,A,Ri〉 be a randomized formal context for i ∈ {1, 2, . . . , n}.
Consider X ⊆ B and some particular a ∈ A, o ∈ B \ X. If

Ri(o, a) < Ri(x, a) for all x ∈ X,

then o /∈ X↑↓, i. e. o is not included in the extent of 〈B,A,Ri〉.
Proof. From assumption we have that exists a ∈ A and o ∈ B \ X such that
Ri(o, a) < Ri(x, a) for all x ∈ X, hence from Lemma 3 we have o /∈ X↑↓. ��
Moreover, we can extend the results for the set of all objects from B \ X, to
prove the following assertion.

Lemma 4. Let 〈B,A,Ri〉 be a randomized formal context for i ∈ {1, 2, . . . , n}.
Consider X ⊆ B. Then

X = X↑↓ iff (∀o ∈ B \ X)(∃a ∈ A)Ri(o, a) <
∧

x∈X

(Ri(x, a)).

Proof. Let X = X↑↓. From the proof of Lemma 3 we have that X↑↓ = X ∪ {o ∈
B \ X : (∀a ∈ A)Ri(o, a) ≥ inf{Ri(x, a) : x ∈ X}}, therefore {o ∈ B \ X : (∀a ∈
A)Ri(o, a) ≥ inf{Ri(x, a) : x ∈ X}} = ∅. But it means that (∀o ∈ B \ X)(∃a ∈
A)Ri(o, a) < inf{Ri(x, a) : x ∈ X}.

Conversely, from our assumption we have by Corollary 1 that o /∈ X↑↓ for all
o ∈ B \ X. Hence X = X↑↓. ��
The previous results help us to express the Gaussian probability index of the
arbitrary subset of objects by using the values of incidence relation from the
input fuzzy formal context.
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Theorem 1. Let X ⊆ B and let 〈B,A,Ri〉 be a randomized formal context for
some i ∈ {1, . . . , n}, i. e.

Ri(b, a) = min
{

1,max
{
0, R(b, a) + εb,a,i

}}

for the fuzzy formal context 〈B,A,R〉 and normally distributed value εb,a,i of
random variable Eb,a ∼ N(0, σ2) for all b ∈ B, a ∈ A. Then the value of Gaussian
probabilistic index for the subset X ⊆ B and standard deviation σ is given by

gpi(X,σ) = p
( ⋂

o∈B\X

( ⋂

a∈A

(( ⋂

x∈X

Tx

)c)c))
,

where Tx represents the event

Eo,a − Ex,a < R(x, a) − R(o, a) ∧
Eo,a < 1 − R(o, a) ∧

Ex,a > −R(o, a)

and p(Tx) equals

Φ

(
R(x, a) − R(o, a)√

2σ
,
1 − R(o, a)

σ
,
R(x, a)

σ
, corr(Eo,a − Ex,a, Eo,a, Ex,a)

)

.

Proof. The subset X ⊆ B is an extent of 〈B,A,Ri〉 iff X = X↑↓. For an
arbitrary a ∈ A and o ∈ B \ X, we have from Corollary 1 that if Ri(o, a) <
Ri(x, a) for all x ∈ X, then o /∈ X↑↓. We need to determine the probability
that for all o ∈ B \ X exists a ∈ A with this property which is equivalent (by
Lemma 4) to probability that X = X↑↓.

Take o ∈ B \ X and a ∈ A. Then let Tx be the event that Ri(o, a) < Ri(x, a)
for an arbitrary x ∈ X. Furthermore, for o ∈ B \ X and a ∈ A, the event⋂

x∈X Tx represents that Ri(o, a) < Ri(x, a) for all x ∈ X. Denote the event
(
⋂

x∈X Tx)c for an arbitrary a ∈ A by Sa and the event (
⋂

a∈A Sa)c for an
arbitrary o ∈ B \X by Vo. Then the event V =

⋂
o∈B\X Vo represents that (∀o ∈

B \ X)(∃a ∈ A)(∃x ∈ X)Ri(o, a) < Ri(x, a) which is by Lemma 4 equivalent to
X = X↑↓. In summary, it holds that

p(V ) = gpi(X,σ) = p
( ⋂

o∈B\X

( ⋂

a∈A

(( ⋂

x∈X

Tx

)c)c))
.

Regarding the assumption Ri(b, a) = min{1,max{0, R(b, a)+εb,a,i}} which holds
for all b ∈ B, a ∈ A and some i ∈ {1, 2, . . . , n}, we have that Ri(o, a) < Ri(x, a)
is equivalent to 0 ≤ min{1, R(o, a)+εo,a,i} < max{0, R(x, a)+εx,a,i} ≤ 1, which
is equivalent to R(o, a)+εo,a,i < R(x, a)+εx,a,i ∧ 0 < R(x, a)+εx,a,i ∧ R(o, a)+
εo,a,i < 1.

It remains to prove the probability of the event Tx. First denote by T 1
x the event

Eo,a −Ex,a < R(x, a)−R(o, a), the event T 2
x is given by Eo,a < 1−R(o, a) and the
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event T 3
x is represented by Ex,a > −R(x, a). Then by Lemma 2 and using the Φ for

the multivariate normal distribution of 3-dimensional random vector we have

p(Tx) = p
(
Ri(o, a) < Ri(x, a)

)
= p(T 1

x , T 2
x , T 3

x )

= Φ

(
R(x, a) − R(o, a)√

2σ
,
1 − R(o, a)

σ
,
R(x, a)

σ
, corr(Eo,a − Ex,a, Eo,a, Ex,a)

)

,

which completes the proof. (Note that 1 − Φ(−c) = Φ(c) for all c ∈ R, which we
applied to derive the third coordinate of Φ.) ��
Note that with the growing σ, the probability of the boundary test events Eo,a <
1 − R(o, a) or Ex,a > −R(x, a) naturally decrease, since the probability of being
Ri(o, a) = 1 or Ri(x, a) = 0 is increasing with higher σ.

Finally, Lemmas 5 and 6 give the answer about the condition in which is
practically impossible to change the ordering of two object-attribute values in a
formal context modified by a random variables with a normal distribution.

Lemma 5. Let 〈B,A,Ri〉 be a randomized formal context of 〈B,A,R〉 for some
i ∈ {1, 2, . . . , n}. Consider X ⊆ B. If R(x, a)−R(o, a) ≥ 3

√
2σ for some x ∈ X,

o ∈ B \ X, a ∈ A and 0 < σ ≤
√
2
6 , then it holds p(Eo,a − Ex,a < R(x, a) −

R(o, a)) .= p(Ω) = 1.

Proof. First note that since 0 ≤ R(b, a) ≤ 1 for all b ∈ B and a ∈ A and σ > 0,
it holds that 0 ≤ 3

√
2σ ≤ 1 iff 0 < σ ≤

√
2
6 .

From Lemma 2 and monotonicity of Φ,

p(Eo,a − Ex,a < R(x, a) − R(o, a)) =

Φ

(
R(x, a) − R(o, a)√

2σ

)

≥ Φ(3) = 0.99865 .= p(Ω). ��
Lemma 6. Let 〈B,A,Ri〉 be a randomized formal context of 〈B,A,R〉 for some
i ∈ {1, 2, . . . , n}. Consider X ⊆ B. If R(o, a) ≤ 1 − 4σ and simultaneously
R(x, a) ≥ 4σ for some x ∈ X, o ∈ B \ X, a ∈ A and 0 < σ ≤ 1

4 , then
p(Ri(o, a) = 1 ∨ Ri(x, a) = 0) .= p(∅).

Proof. From the assumptions, the monotonicity of Φ and since the boundary
conditions Ri(o, a) < 1 and Ri(x, a) > 0 are independent events, we obtain that

p
(
Ri(o, a) = 1 ∨ Ri(x, a) = 0

)

= 1 − p(Ri(o, a) < 1 ∧ Ri(x, a) > 0)

= 1 − p
(
Eo,a < 1 − R(o, a)

)
· p

(
Ex,a > −R(x, a)

)

= 1 − Φ

(
1 − R(o, a)

σ

)

· Φ

(
R(x, a)

σ

)

≤ 1 − Φ(4) · Φ(4) = 1 − (0.99997)2 ≤ 0.0001 .= p(∅). ��
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It can be seen from Lemmas 5 and 6 that if R(x, a) − R(o, a) ≥ 3
√

2σ and the
probability of being Ri(o, a) = 1 or Ri(x, a) = 0 is too small, the inequality
Ri(o, a) ≥ Ri(x, a) is practically an impossible event.

Moreover, Lemma 6 is the reason why we need not to test the boundaries in
Examples 1 and 2 from Subsect. 4.2, since it holds that Rb1 ≥ 4σ, Rb2 ≥ 4σ and
Rb3 ≤ 1 − 4σ and therefore p(Tbj ) = p(Eb3,a − Ebj ,a < R(bj , a) − R(b3, a)) for
j = {1, 2}.

5 Illustrative Example

The Java method σ ∗ Random.nextGaussian() + μ returns the random value of
Gaussian normal distribution with the parameters μ and σ2 and provides the
way how to obtain the experimental results. In this section, the values of the
Gaussian probabilistic index gpi are computed by the introduced algorithm for
σ = 0.1, σ = 0.2, n = 1000000 and for the extents X of the particular fuzzy
formal context from Table 2 with 5 objects and 5 attributes.

Table 2. The fuzzy formal context

R a1 a2 a3 a4 a5

b1 1.0 0.8 0.2 0.3 0.5

b2 0.8 1.0 0.2 0.6 0.9

b3 0.2 0.3 0.2 0.3 0.4

b4 0.4 0.7 0.1 0.2 0.3

b5 1.0 0.9 0.3 0.2 0.4

Table 3 offers the clusters of objects which are computed by the classical one-
sided concept lattice construction (first column), by the modified Rice-Siff algo-
rithm (second column) and by the Gaussian probabilistic index. In parentheses
of second column, we highlight the particular iteration of the modified Rice-Siff
algorithm in which the cluster was selected. The values of gpi are ordered from
the highest to the smallest for σ = 0.2. We omit empty and full set of objects in
our computations.

The least stable extent of 〈B,A,R〉 is {b1, b2, b3}. Really, if we take the object
b5, it is a big probability of joining b5 with the group {b1, b2, b3} in a randomized
formal context 〈B,A,Ri〉. Otherwise, the extent {b2} is the most stable because
of its large value of attribute a5 in comparison with other objects. The cluster
{b1, b2} was not selected by the modified Rice-Siff algorithm, since the objects
b1 and b5 were joined in the first iteration. Therefore, the objects b1 and b2 are
joined in the second iteration including the object b5, as well. The same reasoning
is able in the case of the clusters {b2, b5} and {b1, b2, b3, b5} from Table 3.

For a large number of objects, the Gaussian probabilistic index can be applied
in combination with the modified Rice-Siff method, which returns about 2|B|
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Table 3. The relevant clusters of objects

Extent The modified Rice-Siff Gaussian probabilistic index

σ = 0.1 σ = 0.2

{b2} 1 (0. it.) 0,999 0,998

{b1, b2, b5} 1 (2. it.) 0,999 0,990

{b1, b2, b4, b5} 1 (3. it.) 0,999 0,983

{b1, b2} 0 0,959 0,927

{b5} 1 (0. it.) 0,959 0,898

{b2, b5} 0 0,912 0,894

{b1} 1 (0. it.) 0,934 0,873

{b1, b5} 1 (1. it.) 0,920 0,798

{b1, b2, b3, b5} 0 0,897 0,797

{b1, b2, b3} 1 (0. it.) 0,771 0,650

Table 4. Simple comparison of approaches on concept stability

Name of the approach
on concept stability

Type of
relation in a
formal context

Type of extent Type of index
on concept
stability

Kuznetsov stability index [32] Crisp Crisp Fuzzy

Probability and separation [25] Crisp Crisp Fuzzy

Basic level of concepts [7] Crisp Crisp Fuzzy

Modified Rice-Siff alg. [27] Fuzzy Crisp Crisp

Gaussian probabilistic index Fuzzy Crisp Fuzzy

clusters for the most real data. Then, the values of Gaussian probabilistic index
are computed only for subsets which are given as clusters in the modified Rice-
Siff algorithm in effort to provide their ordering.

6 Conclusion and Future Work

We provide the theoretical and experimental results on the issue of the fuzzy
formal concepts relevance and stability. The properties of the randomized formal
contexts and the boundary test conditions were analyzed. Simple comparison of
approaches on concept stability is shown in Table 4.

The random Galois lattices [18,19] and the randomized formal contexts of a
discrete random variable or in a generalized probability framework [20,39] will
be the point of interest in our future work. Our aim is to verify this method in
the applications from the educational area or in the area of social networks.
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11. Butka, P., Pócs, J., Pócsová, J.: Reduction of Concepts from Generalized One-sided
Concept Lattice Based on Subsets Quality Measure. In: Zgrzywa, A., Choroś, K.,
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20. Frič, R., Papčo, M.: A categorical approach to probability theory. Stud. Logica
94(2), 215–230 (2010)

21. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation.
Springer, Heidelberg (1999)
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Abstract. Formal concept analysis (FCA) is a well-founded method for
data analysis and has many applications in data mining. Pattern struc-
tures is an extension of FCA for dealing with complex data such as
sequences or graphs. However the computational complexity of comput-
ing with pattern structures is high and projections of pattern structures
were introduced for simplifying computation. In this paper we introduce
o-projections of pattern structures, a generalization of projections which
defines a wider class of projections preserving the properties of the orig-
inal approach. Moreover, we show that o-projections form a semilattice
and we discuss the correspondence between o-projections and the repre-
sentation contexts of o-projected pattern structures.

Keywords: Formal concept analysis · Pattern structures · Representa-
tion contexts · Projections

1 Introduction

A significant part of recorded data represents phenomena in a structured way,
e.g., a molecule is better represented as a labeled graph than as a set of attributes.
Pattern structures are an extension of FCA for dealing with such kind of
data [1–3]. Such a pattern structure is defined by a set of objects, a set of
descriptions associated with the set of objects, and a similarity operation on
descriptions, matching a pair of descriptions to their common part. For instance,
the set of objects can contain molecule names, the set of descriptions contains
fragments of molecules, and the similarity operation taking two sets of graphs to
a set of maximal common subgraphs. The similarity operation is a semilattice
operation on the set of descriptions. It allows one to deal with data (objects and
their descriptions) in a similar way as one deals with objects and their intents in
standard FCA. Such kind of formalization allows one to describe many types of
data, however processing can be computationally very demanding. For example,
pattern structures on sets of graphs [2–4] is based on the operation of finding
maximal common subgraphs for a set of graphs, which is #P-hard.

To deal with this complexity and to have a possibility to process most of the
data, projections of pattern structures were introduced [2]. Projections are spe-
cial mathematical functions on the set of descriptions that simplify the descrip-
tions of objects. This approach reduces the number of concepts in the pattern
c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 200–215, 2015.
DOI: 10.1007/978-3-319-19545-2 13
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lattice corresponding to a pattern structure. However, it does not impact the
computational worst-case complexity of the similarity operation. Moreover, it
cannot remove concepts of special kinds from the “middle” of the semilattice
which can be important in some practical cases, e.g., concepts containing too
small graphs can be considered useless but they cannot be removed with projec-
tions. For example, in [5] concepts having intents that include short sequences
of patient hospitalisations have little sense. Hence, short sequences could be
“removed” from the intent, but the descriptions of objects, i.e., patients, usually
include only one long sequence and should not be changed.

In this paper we introduce o-projections of pattern structures, a generaliza-
tion of projections of pattern structures, that allow one to reduce the computa-
tional complexity of similarity operations. They also allow one to remove certain
kinds of descriptions in the “middle” of the semilattice while the descriptions of
the objects can be preserved. By introducing o-projections of pattern structures,
we correct also some formal problems of projections of pattern structures, which
will be discussed later.

The main difference between o-projections and projections is that in o-
projected pattern structures we modify the semilattice of descriptions, while
in the case of projected pattern structures we can modify only the descriptions
of single objects. It should be noticed that most of the properties of projec-
tions are valid for o-projections. However, the relation between representation
contexts, a reduction from pattern structures to FCA, and projections is quite
different from the relation between representation contexts and o-projections.
The introduction and study of this difference is one of the main contributions of
this work. In addition we have discovered the fact that the set of o-projections of
a pattern structure forms a semilattice. From a practical point of view it allows
one to apply a set of independent o-projections, e.g., o-projections obtained from
several experts, to a pattern structure.

This work further develops the methodology introduced in [5], where it was
applied for the analysis of sequential pattern structures by introducing projec-
tions that remove irrelevant concepts.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
definitions of a pattern structure, representation context of a pattern structure,
and discuss how one can compute with pattern structures along the lines of FCA.
Section 3 introduces projections and o-projections of a pattern structure, defines
the partial order on o-projections and shows that this order is a semilattice.
At the end of this section the relation between o-projections and representation
contexts of o-projected pattern structure is discussed. Finally, we conclude the
paper and discuss furture work.

2 Pattern Structures

In FCA a formal context (G,M, I), where G is a set of objects, M is a set of
attributes, and I ⊆ G × M is a binary relation between G and M , is taken to a
concept lattice L(G,M, I) [1]. For non-binary data, such as sequences or graphs,
lattices can be constructed in the same way using pattern structures [2].
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Definition 1. A pattern structure P is a triple (G, (D,�), δ), where G,D are
sets, called the set of objects and the set of descriptions, and δ : G → D maps an
object to a description. Respectively, (D,�) is a meet-semilattice on D w.r.t. �,
called similarity operation such that δ(G) := {δ(g) | g ∈ G} generates a complete
subsemilattice (Dδ,�) of (D,�).

For illustration, let us represent standard FCA in terms of pattern structures.
The set of objects G is preserved, the semilattice of descriptions is (℘(M),∩),
where ℘(M) denotes the powerset of the set of attributes M , a description is
a subset of attributes and ∩ is the set-theoretic intersection. If x = {a, b, c}
and y = {a, c, d} then x � y = x ∩ y = {a, c}, and δ : G → ℘(M) is given by
δ(g) = {m ∈ M | (g,m) ∈ I}.

Note that Definition 1 has an important partial case where (D,�) is a com-
plete meet-semilattice. In this case the semilattice (Dδ,�) is necessarily com-
plete. First, in practical applications one often needs finite lattices, which are
always complete. Second, in many practical cases one can easily extend an incom-
plete semilattice to a complete one by introducing some extra elements. For
example, given an incomplete semilattice w.r.t containment order on the inter-
val (a, b), one can add a and b to obtain the interval [a, b], which is a complete
semilattice. In this paper some of the statements hold only for the partial case
of (D,�) being a complete meet-semilattice.

The Galois connection for a pattern structure (G, (D,�), δ), relating sets of
objects and descriptions, is defined as follows:

A� :=
�

g∈A

δ(g), for A ⊆ G

d� := {g ∈ G | d � δ(g)}, for d ∈ D

Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose
description subsumes d. The natural partial order (or subsumption order between
descriptions) � on D is defined w.r.t. the similarity operation �: c � d ⇔ c�d = c
(in this case we say that c is subsumed by d). In the case of standard FCA the
natural partial order corresponds to the set-theoretical inclusion order, i.e., for
two sets of attributes x and y x � y ⇔ x ⊆ y.

Definition 2. A pattern concept of a pattern structure (G, (D,�), δ) is a pair
(A, d), where A ⊆ G and d ∈ D such that A� = d and d� = A; A is called the
pattern extent and d is called the pattern intent.

As in standard FCA, a pattern concept corresponds to the maximal set of objects
A whose description subsumes the description d, where d is the maximal common
description of objects in A. The set of all pattern concepts is partially ordered
w.r.t. inclusion of extents or, dually, w.r.t. subsumption of pattern intents within
a concept lattice, these two antiisomorphic orders making a lattice, called pattern
lattice.
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2.1 Running Example

The authors of [6] have used interval pattern structures for gene expression
analysis. Let us consider an example of such pattern structures. In Fig. 1a an
interval context is shown. It has three objects and two attributes. Every attribute
shows the interval of values the attribute can have. If we have two objects, then
a numerical attribute can have all values from the interval of this attribute
in the first object and from the interval of this attribute of the second object.
Consequently, the similarity between two intervals can be defined as a convex hull
of the intervals, i.e. [a, b]�[c, d] = [min(a, c),max(b, d)]. Then, given two tuples of
intervals, the similarity between these tuples is computed as a component-wise
similarity between intervals.

m1 m2

g1 [1, 1] [1, 1]
g2 [2, 2] [2, 2]
g3 [3, 3] [2, 2]

(a) An interval context.

(∅; �)

({g2}; 〈[2, 2]; [2, 2]〉)({g1}; 〈[1, 1]; [1, 1]〉) ({g3}; 〈[3, 3]; [2, 2]〉)

({g1, g2}; 〈[1, 2]; [1, 2]〉) ({g2, g3}; 〈[2, 3]; [2, 2]〉)

({g1, g2, g3}; 〈[1, 3]; [1, 2]〉)

(b) An interval pattern lattice.

Fig. 1. An interval pattern structure and the corresponding lattice.

In this example, we have the pattern structure (G, (D,�), δ), where G =
{g1, g2, g3}, the set D is the set of all possible interval pairs with the similarity
operation described above, and δ is given by the context in Fig. 1a, i.e., δ(g1) =
〈[1, 1]; [1, 1]〉 and δ(g1) � δ(g2) = 〈[1, 2]; [1, 2]〉.

Figure 1b shows the pattern lattice of the interval context in Fig. 1a. One can
check that the extents and the intents in this lattice are connected by means
of the Galois connection given above. The partial order in the semilattice of
intervals is given by “the smaller the interval, the larger the description with
this interval”, i.e., the former description gives more certainty about the values
than the latter.

2.2 Representation Context of a Pattern Structure

Note that any pattern structure can be represented by a formal context with
the concept lattice isomorphic to the lattice of the pattern structure. Below we
introduce a representation context of a pattern structure and its properties in
the line of [2].

Given a pattern structure (G, (D,�), δ), we denote by Dδ ⊆ D the set of all
intents of the concept lattice, i.e., Dδ = {d ∈ D | (∃X ⊆ G)

�
g∈X

δ(x) = d}. Since
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(Dδ,�) is a complete subsemilattice of (D,�), for X ⊆ D a join operation � can
be defined as follows:

⊔
X =

�
{d ∈ Dδ | (∀x ∈ X)x � d}.

Given this join operation, (Dδ,�,�) is a complete lattice. We say that a set
M ⊆ D is �-dense for (Dδ,�) if every element in Dδ is of the form �X for some
X ⊆ M . For example, M = Dδ is always �-dense for Dδ.

Definition 3. Given a pattern structure P = (G, (D,�), δ) and a set M ⊆ D
�-dense in Dδ, a formal context (G,M, I) is called the representation context of
P, if I is given by I = {(g,m) ∈ G × M | m � δ(g)}. The representation context
of P is denoted by R(P).

Thenext theoremestablishes abijectionbetween thepattern concepts in the lattice
of pattern structure P and the concepts in the lattice of the representation context
R(P). Here, the ideal of element d ∈ D is denoted by ↓ d = {e ∈ D | e � d}.

Theorem 1 (Theorem 1 from [2]). Let P = (G, (D,�), δ) be a pattern struc-
ture and let R(P) = (G,M, I) be a representation context of P. Then for any
A ⊆ G, B ⊆ M , and d ∈ D the following conditions are equivalent:

1. (A, d) is a pattern concept of P and B =↓ d ∩ M .
2. (A,B) is a formal concept of R(P) and d =

⊔
B.

Example 1. A representation context for the pattern structure given in Fig. 1
can be given by the set M where every element m ∈ M is of the form
〈[−∞, a]; [−∞,+∞]〉 or 〈[−∞,+∞]; [b,+∞]〉, and a, b ∈ {1, 2, 3}.

In fact, the element 〈[−∞,+∞]; [a,+∞]〉 corresponds to the attribute ‘m2 ≥
a’ in the case of the interordinal scaling [1] of numerical data. Another represen-
tation context can be constructed from the intents of join-irreducible concepts of
the lattice in Fig. 1b. These two representation contexts of the pattern structure
related to Fig. 1 are shown in Figs. 2a and b. It can be seen that the resulting
lattices, e.g., the lattice in Fig. 2c, are isomorphic to the lattice in Fig. 1b.

It should be noticed that in some cases the representation context is hard to
compute. For example, in case of numerical data with the set of all values W , to
construct representation context, one needs to create 2|W |+1 binary attributes,
which can be much more than the number of original real-valued attributes.
The authors of [6] have shown that pattern structures provide more efficient
computations than the equivalent approach based on FCA and scaling, which
can be considered as a way to build representation context of interval pattern
structures, e.g., see Fig. 2a.

In case of graph data the set of attributes of the representation context
consists of all subgraphs of the original graph descriptions, which is hard to
compute [4].
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];
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,
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]〉
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];
[−
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〈[−
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,
1
];
[−
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,
+
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]〉
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];
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,
+
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]〉
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,
∞

]〉
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+

∞
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[−

∞
,
1
] 〉
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,
3
];
[1
,
2
]〉

m1 ≥ 3 m1 ≥ 2 m1 ≤ 1 m1 ≤ 2 m2 ≥ 2 m2 ≤ 1

g1 x x x x
g2 x x x x
g3 x x x x

(a) Representation context corresponding to interor-
dinal scaling.

〈[1
,
1
];
[1
,
1
]〉

〈[3
,
3
];
[2
,
2
]〉

〈 [1
,
2
];
[1
,
2
]〉

〈 [2
,
3
];
[2
,
2
]〉

〈[1
,
3
];
[1
,
2
]〉

a1 a2 a3 a4 a5

g1 x x x
g2 x x x
g3 x x x

(b) Another possible represen-
tation context.

(∅; {a1, a2, a3, a4, a5})

({g2}; {a3, a4, a5})({g1}; {a1, a3, a5}) ({g3}; {a2, a4, a5})

({g1, g2}; {a3, a5}) ({g2, g3}; {a4, a5})

({g1, g2, g3}; {a5})

(c) A concept lattice for the context if Figure 2b.

Fig. 2. Possible representation contexts for the pattern structure in Fig. 1 and the
concept lattice for the context in Fig. 2b.

2.3 Computation of Pattern Lattices

Nearly any algorithm for computing concept lattices from contexts can be
adapted to compute pattern lattices from pattern structures. To adapt an algo-
rithm, every set intersection operation on attributes is replaced by the semilattice
operation � on corresponding patterns, and every subset checking is replaced by
the semilattice order � checking, in particular, all (·)′ operations are replaced
by (·)�. For example, let us consider a modified version of Close-by-One (CbO)
algorithm [7].

Algorithm 1 shows the listing of the modified part of CbO. Here the canonical
extension IsCanonicExtension and canonical order � are defined on the set of
objects and hence are the same as in [7]. We can see that only lines 3 and 4 are
modified. In these lines the set intersection operation and the subset relation
checking are replaced by the corresponding operators of a pattern structure.

3 Revised Projections of Pattern Structures

Pattern structures are hard to process due to the large number of pattern con-
cepts in the pattern lattice and the algorithmic complexity of the similarity
operation �. Projections of pattern structures “simplify” to some degree the
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1 Function CloseByOne(Ext, Int)
Data: P = (G, (D, �), δ), the extent Ext and the intent Int of a concept.
Result: All canonical ancestors of (Ext, Int) in the concept lattice.

2 foreach S ⊆ G, S � Ext do
3 NewInt ←− ���

g∈S

δ(g) ; /* � - the similarity */

4 NewExt ←− {g ∈ G | NewInt ��� δ(g)} ; /* � - the subsumption */

5 if IsCanonicExtension(Ext, NewExt) then
6 SaveConcept((NewExt, NewInt));
7 CloseByOne(NewExt,NewInt);

8 /* Looking for all concepts of the concept lattice */

9 CloseByOne(∅, 	);

Algorithm 1. The version of the Close-by-One algorithm computing the
pattern lattice of a pattern structure P.

computation and allow one to work with “simpler” descriptions. In fact, a pro-
jection can be considered as a mapping for pruning descriptions with certain
mathematical properties. These properties ensure that a projection of a semilat-
tice is a semilattice and that the concepts of a projected1 pattern structure are
related to the concepts of the original pattern structure [2].

In this section we introduce o-projected pattern structures (“o” coming from
“order”), i.e. a revision of projected pattern structures in accordance with [5].
We discuss the properties of o-projected pattern structures and relate them to
the projected pattern structures from [2]. The notion of (o-)projected pattern
structure is based on a kernel operator (a projection).

Definition 4 ([2]). A projection ψ : D → D is a kernel (interior) operator
on the partial order (D,�), i.e. it is (1) monotone (x � y ⇒ ψ(x) � ψ(y)),
(2) contractive (ψ(x) � x) and (3) idempotent (ψ(ψ(x)) = ψ(x)).

Given a projection ψ we say that the fixed point of ψ is the set of all elements
from D such that they are mapped to themselves by ψ. The fixed point of ψ is
denoted by ψ(D) = {d ∈ D | ψ(d) = d}. Note that, if ψ(d) �= d, then there is no
other d̃ such that ψ(d̃) = d because of idempotency. Hence, any element outside
the fixed point of the projection ψ is pruned.

3.1 Definition of Projected Pattern Structures

Let us first consider the projected pattern structure w.r.t. a projection ψ accord-
ing to [2]. Given a pattern structure P = (G, (D,�), δ) and a projection ψ on D,
the projected pattern structure is defined as (G, (D,�), ψ ◦ δ). As we can see, a
projection only changes the descriptions of the objects but not the underlying
1 We use the expression “a projected pattern structure” instead of “a projection of

a pattern structure” to distinguish between projection as an operator ψ and as the
result of applying the operator to a pattern structure.
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semilattice (D,�). There are two problems with this definition of the projected
pattern structures. First, it is necessary to restrict the class of projections given
by Definition 4 in order to ensure the property ψ(x � y) = ψ(x) � ψ(y). Second,
the complexity of computing � can be very high, but with this kind of pro-
jected patten structures we cannot decrease the algorithmic complexity. Below
we discuss these two points.

In [2] (Proposition 1) the following property of the projection operator is
discussed: given a semilattice (D,�) and a projection ψ on D, for any two ele-
ments x and y from D one has ψ(x � y) = ψ(x) � ψ(y). Let us consider the
example in Fig. 3 with the meet-semilattice D = {x, y, z,⊥} given by its dia-
gram and the projection ψ given by the dotted lines. It is easy to see that
ψ(x � y) = ⊥ �= z = ψ(x) � ψ(y). One way of solving this problem is to give
additional conditions on projection ψ that would imply the required property.
An important example is the following condition: for all x, y ∈ D if x < y and
ψ(y) = y, then ψ(x) = x. This kind of solution respects the intuition behind
the definition of the projected pattern structure in [2], according to which the
initial descriptions of objects are changed, but the similarity operation � is not
changed.

⊥

Z

X Y D = {x, y, z, ⊥}

ψ :x �→ x, y �→ y,

z ⊥→� , ⊥→�⊥

ψ(x � y) = ψ(z) = ⊥ =
= z = ψ(x) � ψ(y)

Fig. 3. Contrexample to Proposition 1 from [2].

Another way of solving the problem above is to generalize the definition of
the projected pattern structure, and we proceed in this way in the next section,
by allowing to modify the similarity operation on descriptions.

3.2 Definition of O-Projected Pattern Structures

Below we propose a definition of o-projected pattern structures by means of a ker-
nel operator ψ. The definition takes into account the problems discussed above.
In the o-projected pattern structure we substitute the semilattice of descriptions
by its suborder (the letter “o” comes from “order”) with another similarity oper-
ation, which can be different from the initial one.

Let us first note that, given a meet-semilattice D and a kernel operator ψ,
the fixed point ψ(D) is a semilattice w.r.t. to the natural order on D.
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Theorem 2. Given a semilattice (D,�) and a kernel operator ψ, the fixed point
(ψ(D),�ψ) is a semilattice w.r.t. the natural order on (D,�), i.e., d1 � d2 ⇔
d1 � d2 = d1. If

�
X exists for a set X ⊆ D, then

�
ψ

x∈X

ψ(x) exists and is

given by �
ψ

x∈X

ψ(x) = ψ(
�

x∈X

x) (1)

Proof. Let us denote d =
�

x∈X

x. Since (∀x ∈ X)d � x, one has (∀x ∈ X)ψ(d) �
ψ(x). Let us show that for any p ∈ ψ(D), i.e. ψ(p) = p such that (∀x ∈ X)p �
ψ(x), we have p � ψ(d), i.e., that ψ(d) =

�
ψ

x∈X

ψ(x).

Since (∀x ∈ X)p � ψ(x) then (∀x ∈ X)p � x. Since d =
�

x∈X

x, one has

p � d. Thus, p = ψ(p) � ψ(d) and ψ(d) is the minimum of the set ψ(X), i.e.
ψ(D) is a semilattice and the Eq. (1) holds.

Corollary 1. Given a complete subsemilattice D̃ of (D,�) and a kernel operator
ψ on D, the image of D̃ is a complete subsemilattice ψ(D̃) of the fixed point
(ψ(D),�ψ).

Since according to Theorem 2 ψ(D) is a semilattice and according to Corollary 1
ψ(Dδ) is a complete semilattice, we can define an o-projected pattern structure
as a pattern structure with ψ(D) as a semilattice.

Definition 5. Given a pattern structure P = (G, (D,�), δ) and a kernel oper-
ator ψ on D, the o-projected pattern structure ψ(P) is a pattern structure
(G, (ψ(D),�ψ), ψ◦δ), where ψ(D) = {d ∈ D | ψ(d) = d} and ∀x, y ∈ D,x�ψy :=
ψ(x � y).

In the o-projected pattern structure the kernel operator ψ modifies not only the
descriptions of the objects, but also the semilattice operation, i.e., the semilattice
(ψ(D),�ψ) is not necessarily a subsemilattice of (D,�) and so it is not always
true that x � y = x �ψ y in D.

Example 2. Let us define an o-projection for the interval pattern structure from
Subsect. 2.1. Let us suppose that the aggregated size of a pattern, i.e., the sum
of the lengths of the intervals in the pattern, should be less than 2. First, we
should define the corresponding kernel operator ψ : D → D. Thus, if an aggre-
gated length of a pattern p is less than 2, then ψ(p) := p, otherwise ψ(p) :=
⊥ = 〈[−∞,+∞]; [−∞,+∞]〉. For instance, ψ(〈[1, 1]; [1, 1]〉) = 〈[1, 1]; [1, 1]〉, while
ψ(〈[1, 2]; [1, 2]〉) = 〈[−∞,+∞]; [−∞,+∞]〉, because it has two intervals of length
1, i.e., the aggregated size is equal to 2.

Let us consider the o-projected interval pattern structure (G, (ψ(D),�ψ), ψ ◦
δ). It is clear that ψ ◦ δ = δ, thus this o-projected interval pattern structure
cannot be expressed as a projected pattern structure.
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The concepts of a pattern structure and a projected pattern structure are
connected through Proposition 1. This proposition can be found in [2], but thanks
to Theorem 2, it is also valid in our case.

Proposition 1. Given a pattern structure P = (G, (D,�), δ) and a kernel oper-
ator ψ on D:

1. if A is an extent in ψ(P), then A is also an extent in P.
2. if d is an intent in P, then ψ(d) is also an intent in ψ(P).

It is easy to see that the other propositions from [2] concerning projected pat-
tern structures hold for the o-projected pattern structures as well. Below we cite
Proposition 3 from [2] that relates implications in a pattern structure and those
in an o-projected pattern structure. We skip the propositions related to super-
vised classification with projected pattern structures by means of hypotheses,
because it is out of the scope of this paper. However, they are valid in the case
of o-projected pattern structures and can be proven with the help of Theorem2.

Proposition 2 (Proposition 3 from [2]). Let a, b ∈ D. If ψ(a) → ψ(b) and
ψ(b) = b then a → b, where x → y ⇔ for all g ∈ G (x � δ(g) implies y � δ(g))

3.3 Order of Projections

In this subsection we limit ourselves to the practically important case when
a set of descriptions is a complete semilattice. We can consider projections as
a means of description pruning in (D,�). Indeed, given a semilattice (D,�)
and a projection ψ on this semilattice, the set D can be divided into two sets
D = {d ∈ D | ψ(d) = d} ∪ {d ∈ D | ψ(d) �= d}, i.e., the fixed point of ψ
and the rest. It can be seen that the intents of the o-projected pattern structure
ψ((G, (D,�), δ)) are in the fixed point of ψ, i.e., all elements of the form ψ(d) �= d
are discarded. We recall that by ψ(D) = {d ∈ D | ψ(d) = d)} we denote the
fixed point of ψ. But under which condition do we have that for any D1 ⊂ D2

there is a projection ψ of D2 such that ψ(D2) = D1? The following theorem gives
necessary and sufficient conditions for such a property.

Theorem 3. Given a complete semilattice (D,∧), with the natural order ≤, and
Ds ⊆ D, there is a projection ψ : D → D such that ψ(D) = Ds, if and only if
⊥ ∈ Ds and for any X ⊆ Ds ⊆ D, one has

∨
X ∈ Ds, where ⊥ :=

∧
D and∨

X =
∧{d ∈ D | (∀x ∈ X)d ≥ x}.

Proof

1. Given a projection ψ such that ψ(D) = Ds, ⊥ ∈ Ds because of contrac-
tivity of ψ, i.e., ψ(⊥) = ⊥. Let us suppose that there is a set X ⊆ Ds,
i.e., (∀x ∈ X)ψ(x) = x such that ψ(

∨
X) �= ∨

X. Then, (∀x ∈ X)(x <∨
X ⇒

monotonicity
x ≤ ψ(

∨
X) <

contractivity

∨
X). It is a contradiction, since

∨
X is the supremum of X. Hence for any X ⊆ Ds we have ψ(

∨
X) =

∨
X.



210 A. Buzmakov et al.

2. Given Ds ⊆ D such that ⊥ ∈ Ds and for any X ⊆ Ds, one has
∨

X ∈ Ds,
let us construct the corresponding projection ψ. First, ψ(d ∈ Ds) := d and
for all d ∈ D \ Ds we should have ψ(d) �= d. For an element d ∈ D \ Ds, let
us consider the set Sd = {x ∈ Ds | x < d}, which is not an empty set since
⊥ ∈ Ds. We know that

∨
Sd ∈ Ds and by definition of

∨
we have

∨
Sd < d.

Then we set ψ(d) :=
∨

Sd.
Let us show that the function ψ is a projection of D. Idempotency and con-
tractivity are satisfied by the construction of ψ. Let us check monotonic-
ity. Let us take any a, b ∈ D such that a > b. Then, if ψ(a) = a, then
ψ(a) = a > b ≥ ψ(b), i.e., the monotonicity holds. If ψ(a) �= a, then
ψ(a) =

∨
Sa by construction. Hence, if ψ(b) = b, then b ∈ Sa, i.e.,

ψ(a) ≥ ψ(b). Finally, if ψ(b) �= b, then Sb ⊆ Sa, because if d ∈ Sb, i.e.,
d < b, then d < b < a, i.e. d ∈ Sa. In this case, ψ(a) =

∨
Sa ≥ ∨

Sb = ψ(b).

Corollary 2. Given a complete semilattice (D,∧), with the natural order ≤, and
a subset Ds ⊆ D such that ⊥ ∈ Ds and for any X ⊆ Ds, one has

∨
X ∈ Ds,

the poset (Ds,≤) is a complete semilattice.

Proof. According to Theorem 3 there is a projection ψ : D → D such that
ψ(D) = Ds. Then, according to Theorem 2 Ds is a semilattice.

Since a projection of D can be considered as a mapping with the fixed point
ψ(D), we can introduce an order w.r.t. this fixed point.

Definition 6. Given a complete semilattice (D,�) and two projections ψ1 and
ψ2 in D, we say that ψ1 ≤ ψ2 if ψ1(D) ⊆ ψ2(D).

However in some cases, it is more convenient to order projections w.r.t. a super-
position of projections or their “generality”.

Definition 7. Given a complete semilattice (D,�) and two projections ψ1 and
ψ2 in D, we say that ψ1 ≤ ψ2 if there is a projection ψ : ψ2(D) → ψ2(D) such
that ψ1 = ψ ◦ ψ2.

It can be seen that these two definitions yield the same ordering.

Proposition 3. Definitions 6 and 7 are equivalent.

Proof

1. Let ψ1 = ψ ◦ψ2. Since ψ is a projection in ψ2(D), then ψ1(D) = ψ(ψ2(D)) ⊆
ψ2(D).

2. Let ψ1(D) ⊆ ψ2(D). Let us denote by (·)1 and (·)2 the operations in
(ψ1(D),�ψ1) and (ψ2(D),�ψ2), respectively, and let us denote Di = ψi(D)
the fixed points of ψi, where i ∈ {1, 2}.
Let us build ψ : D2 → D1 equal to ψ1 in D2, i.e., for all d ∈ D2 we set
ψ(d) := ψ1(d). Since ψ1 is a projection in D, ψ is a projection in D2 (the
natural order is the same). Since D1 is the fixed point of ψ1 then ψ1(D2) ⊆ D1.
However, since D1 ⊆ D2 and ψ1(D1) = D1 then ψ1(D2) = D1, i.e., there is a
projection ψ such that ψ1 = ψ ◦ ψ2.
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Example 3. Let us return to Example 2. We change the threshold for the aggre-
gated size. In Example 2 it was set to 2 (ψal=2), but we can change it to 5 (ψal=5)
or 10 (ψal=10). The higher the threshold, the more possible descriptions are pro-
jected to themselves, i.e., belong to the fixed point of the projection. Thus, we
have ψal=2 ≤ ψal=5 ≤ ψal=10.

Thanks to Proposition 1 it can be seen that, given a pattern structure P, if
we have two projections ψ1 ≤ ψ2, then the set of pattern extents of ψ1(P) is a
subset of the set of pattern extents of ψ2(P), i.e., the smaller the projection, the
smaller the number of concepts in the corresponding projected pattern structure.

Now it can be seen that projections actually form a semilattice with respect
to the previously defined order.

Proposition 4. Projections of a complete semilattice (D,�) ordered by Defin-
ition 6 or 7 form a semilattice (F,∧), where the semilattice operation between
ψ1, ψ2 ∈ F is given by ψ1 ∧ ψ2 = ψ3 iff ψ3(D) = ψ1(D) ∩ ψ2(D).

Proof. It follows from the definitions that if for any ψ1 and ψ2 the projection ψ3

exists, then projections of D form a semilattice. Let us describe the correspond-
ing ψ3.

Let us denote D1 = ψ1(D) and D2 = ψ2(D) and D3 = D1 ∩ D2. Let us
suppose that there exist x, y ∈ D3 such that x � y /∈ D3. But as D3 ⊆ D1

and D3 ⊆ D2, then, since ψ1 is a projection of D and ψ2 is a projection of
D, we have x � y ∈ D1 and x � y ∈ D2, i.e., x � y ∈ D1 ∩ D2 = D3. Thus,
(∀x, y ∈ D3)x � y ∈ D3. Then, according to Theorem3 there is a projection ψ3

such that ψ3(D) = D3.

3.4 Analogue of Theorem II for Revised Projections

An important question is how a projection changes the representation context of
a pattern structure? We limit the discussion of this question for the case when
a set of description D is a complete semilattice. In [2] the authors describe this
change by means of Theorem 2. The formulation of this theorem was corrected
in [8]. Below we give the corrected version of the theorem.

Theorem 4 (Theorem 2 from [2]). For two pattern structures (G, (D,�), δ1)
and (G, (D,�), δ2) the following statements are equivalent:

1. δ2 = ψ ◦ δ1 for some ψ on (D,�).
2. (∀g ∈ G)(δ2(g) � δ1(g)) and there is a representation context (G,M, I) of

(G, (D,�), δ1) and some N ⊆ M such that (G,N, I ∩ (G × N)) is a represen-
tation context of (G, (D,�), δ2).

In Theorem 4 one compares two pattern structures that differ in mapping func-
tions. However, in the o-projected pattern structures we can modify the lattice
structure itself. How can we adjust the formulation of Theorem 4 in such a way
that it can be applied to revised projections? First, we should notice that in a
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pattern structure and in an o-projected pattern structure the set of objects is
preserved. Second, the minimal representation context of a pattern structure can
have less attributes than the minimal representation context of an o-projected
pattern structure, as shown in Example 4.

Example 4. Let M = {a, b, c} and the description semilattice be D = (2M ,∩).
Let ψ : 2M → 2M be the following mapping: ψ({a}) = ∅ and for any A �= {a} we
put ψ(A) = A. This projection is visualised in Fig. 4a by dashed arrows. Let us
consider the following pattern structure ({g1, g2, g3}, (2M ,∩), {g1 �→ {a, b}, g2 �→
{a, c}, g3 �→ {b, c}}.

The minimal representation context of this pattern structure contains 3
attributes M = {a, b, c}, while the minimal representation context of the o-
projected pattern structure contains 4 attributes Mψ = {b, c, ab, ac}. The corre-
sponding contexts are shown in Figs. 4b and c.

⊥

{b}{a} {c}

{a, b} {a, c} {b, c}

g1 g2 g3

(a) A semilattice D and its projection ψ.

a b c
g1 x x
g2 x x
g3 x x

(b) Representation context of the
pattern structure

ab ac b c
g1 x x
g2 x x
g3 x x

(c) Representation context of the
projected pattern structure

Fig. 4. An example of a projection that can increase the number of attributes in the
minimal representation context.

We can see that to introduce the “revised Theorem 2” from [2] we have to
define a special relation between contexts.

Definition 8. Given two contexts K1 = (G,M1, I1) and K2 = (G,M2, I2), K1

is said to be simpler than K2, denoted by K1 ≤S K2, if for any m1,i ∈ M1 there
is a set B2 ⊆ M2 such that ({m1,i})1 = (B2)2. Here by (·)1 and (·)2 we denote
the derivation operators in the contexts K1 and K2, respectively.
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Example 5. The context in Fig. 4c is smaller w.r.t. Definition 8 than the context
in Fig. 4b because every column of the context in Fig. 4c is the intersection of a
subset of columns of the context in Fig. 4b.

This relation between contexts is a preorder. Indeed, it is reflexive, transitive,
but not necessarily antisymmetric: given two contexts K1 and K2, if K1 and
K2 have the same closure system of attributes, i.e., the same set of intents in
the concept lattice, then according to the definition K1 ≤S K2 and K1 ≥S K2.
However, we can consider only the context with the minimal number of attributes
in the class of equivalence, i.e., the attribute-reduced context. For simplicity in
the rest of the paper we consider only attribute-reduced contexts.

This definition of the simplicity order on contexts can be related to context
bonds [1] in the following way. Three formal contexts Ki = (Gi,Mi, Ii) form a
bond if K1 ≤S K2 and K

T
2 ≤S K

T
3 , where K

T = (M,G, IT ). Simplicity order
can also be considered as a generalization of “closed-relation-of” order between
contexts:

Definition 9 (Definition 50 from [1]). A binary relation J ⊆ I is called a
closed relation of the context (G,M, I) if every concept of the context (G,M, J)
is also a concept of (G,M, I).

From Definitions 8 and 9 it can be seen that if J is a closed relation of (G,M, I),
then (G,M, J) ≤S (G,M, I), but not always in the other direction. The following
theorem gives a relation between kernel operators of D and the change in the
representation context of o-projected pattern structures.

Theorem 5. Given a pattern structure P = (G, (D,�), δ) such that (D,�) is a
complete semilattice the following holds:

1. for any projection ψ of D we have R(ψ(P)) ≤S R(P).
2. for any context K = (G,M, I) such that K ≤S R(P), there is a projection ψ

of D such that K is a representation context of ψ(P).

Proof

1. The first statement follows from the fact that any extent of ψ(P) is an extent
of P (Proposition 1).

2. Given a pattern structure P and a context K such that K ≤S R(P), let us
define the set DM = {d ∈ D | (∃m ∈ M)(m′)� = d} (notice that for K and P

there is the same set G, thus, given A ⊆ G, both A′ and A� are defined in K

and P correspondingly). Since K ≤S R(P), m′ is an extent of P. Thus, we can
see that there is a bijection between DM and M given by m′ = d�. We denote
this bijection by f(m) = d, i.e. f(m) = d ⇔ m′ = d�. Correspondingly, given
a subset N ⊆ M , we denote by f(N) = {d ∈ DM | f−1(d) ∈ N}, i.e.,
f(M) = DM .

Let us define Dψ = {d ∈ D | (∃X ⊆ DM )
⊔

X = d}. According to
Theorem 3 there is a projection ψ such that Dψ = ψ(D).
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Let us consider the o-projected pattern structure ψ(P). The set DM

is �-dense for ψ(D), i.e., the context (G,DM , IDM
), where (g, d) ∈ IDM

⇔
ψ◦δ(g) � d, is a representation context of ψ(P). There is the bijection between
DM and M . Let us show that the relation I is similar to the relation IM , i.e.,
(g,m) ∈ I ⇔ (g, f(m)) ∈ IDM

.
It can be seen that for all g ∈ G and all d ∈ f(g′), we get ψ ◦ δ(g) � d,

because for any d ∈ f(g′) we have g ∈ d�. Moreover, for any d̃ ∈ D \ f(g′)
we have d �� ψ ◦ δ(g). Thus, the context K and the context (G,DM , IDM

) are
similar, and hence for any context K ≤S R(P) there is a projection such that
K is a representation context of ψ(P).

4 Conclusion

In this paper we have introduced o-projections of pattern structures that are
based on kernel operators ψ : D → D. O-projections are a generalization of
projections of pattern structures and allow one to change the semilattice of
descriptions in o-projected pattern structures. Thus, the complexity of similarity
(semilattice) operation can be reduced. Moreover, O-projections also correct a
formal problem of projections.

We have shown that o-projections form a semilattice. This can be important
when several independent o-projections are applied to a pattern structure. For
example, if projections are discussed with several experts it may happen that
several types of projections should be combined. In the case of several inde-
pendent projections we know that there is the only one o-projection w.r.t. the
semilattice of o-projections that is a combination of these projections.

Finally, we have shown that the representation context of an o-projected
pattern structure can have more attributes than the representation context of
the pattern structure itself. To describe this change in the representation context
after o-projection we have introduced a new order on contexts, with the use of
which we have described the way the representation context can change.

An important direction of the future work is to formalize transformations
of pattern structures, i.e., special homomorphisms between the semilattice of
descriptions D and a different semilattice D1. In particular, it allows one to
formalize the mappings of the form ψ : D → R, an instance of which are kernel
functions used in Support Vector Machines (SVM).
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Abstract. Within formal concept analysis, attribute exploration is a
powerful tool to semi-automatically check data for completeness with
respect to a given domain. However, the classical formulation of attribute
exploration does not take into account possible errors which are present
in the initial data. To remedy this, we present in this work a generaliza-
tion of attribute exploration based on the notion of confidence, that will
allow for the exploration of implications which are not necessarily valid
in the initial data, but instead enjoy a minimal confidence therein.

1 Introduction

Attribute exploration is one of the most important algorithms in the area of for-
mal concept analysis [9], a branch of mathematical order theory with applications
in artificial intelligence, machine learning and data mining. The main purpose of
this algorithm is to check a given set of initial data for completeness, in the sense
that this algorithm assists a domain expert in checking whether this initial data
completely represents the particular domain the expert is interested in. In doing
so, the algorithm presents implications to the expert, who has to either validate
them or has to provide a counterexample from the domain of discourse. When
the algorithm has finished, the initial data has been extended to a complete set
of examples whose valid implications are exactly all implications valid in the
domain.

However, this approach requires the initial data to be free of errors in the
sense that all the data really stems from the domain. In practical applications,
this may not be reasonable to assume, as it may likewise not be reasonable to
check the data for correctness. However, the data itself may still be of “high qual-
ity”and could thus still be useful, yet only directly applying attribute exploration
is not possible anymore.

One way to consider a data set to be of “high quality” is to say that errors
occur only “rarely.” To handle a scenario like this, an approach is proposed
that is based on the notion of confidence from data mining [1]. The idea of this
approach is not only to explore the implications which are valid in the initial
data set, but also to explore those that satisfy a certain lower bound on their
confidence. Of course, this will only provide us with a heuristic algorithm, but
in a setting like this, where errors can occur randomly, this is the best we can
expect to get. Moreover, an exploration by confidence has to be thought of as
c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 219–235, 2015.
DOI: 10.1007/978-3-319-19545-2 14
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a first step in a completion process, where the resulting set of implications and
set of data should be used further on. As an example, the implications obtained
from the exploration by confidence could be used as a background knowledge for
a classical attribute exploration which starts out with an empty data set.

Of course, this work is not the first to consider implications together with
their confidence. The most notable previous work here is from Luxenburger [10],
who considered implications together with their confidence and support in formal
contexts. However, while he also considered bases of implications with confidence
and support, he did not consider an attribute exploration of them.

On the other hand, there has also been previous research on making
attribute exploration more suitable for practical applications. Notable works
here are exploration with incomplete knowledge by Burmeister and Holzer [5],
and attribute exploration with background implications and exceptions by
Stumme [11]. The former extends attribute exploration to the setting of incom-
plete data, i.e., where the data-set in question may have unspecified entries.
However, those entries specified must still be correct. The latter work allows
exceptions in the exploration, by simply removing unwanted corner cases from
the domain of discourse. But again, the data that is used for exploration must
be free of errors. In this sense, the problem we want to consider in this paper,
an exploration of data that may contain errors, is fundamentally different from
previously considered extensions of attribute exploration.

The main contribution of this work is an algorithm for exploration by confi-
dence, which shall be discussed in Sect. 5. This algorithm arises as an instance
of a generalized formulation of attribute exploration, which shall be introduced
in Sect. 4. A naive and direct application of this generalized algorithm will yield
a first version of exploration by confidence, which however is only “approxima-
tive,” in a sense that will be discussed in Sect. 5.1. A slight modification of this
approximative version presented in Sect. 5.2 will then yield the desired algorithm
for exploration by confidence.

The results of this work are taken from [4], which not only contains the proofs
of the claims in this paper (which we omit due to space restrictions), but also an
adaptation of exploration by confidence which also works with general concept
inclusions, logical objects akin to implications used in the field of description
logics. We shall give a very brief outlook about this adaptation results in Sect. 6.

2 Implications and Confidence

We assume the reader has some familiarity with the basic notions of formal
concept analysis, as we will not repeat them here. However, we shall repeat
some notions and fix some notations about implications that are crucial for the
understanding of this paper.

Denote with Imp(M) the set of all implications on a set M . Recall that an
implication (A → B)∈ Imp(M) is valid in a formal context K = (G,M, I) if and
only if

A′⊆B′.
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We shall denote with Th(K) the set of all valid implications on M that are valid
in K.

Let L⊆ Imp(M) be a set of implications, and let (A → B)∈ Imp(M). Recall
that the set L entails (A → B) if and only if in all formal contexts L with
attribute set M , it is true that if all implications from L are valid in L, then
(A → B) is valid in L as well. In other words,

L �L =⇒ L �(A → B),

where we write L �L to mean that all implications in L are valid in L. If L
entails (A → B) we shall also write L�(A → B). The subset of Imp(M) of all
implications on M which is entailed by L is denoted by CnM (L). We shall drop
the subscript if the set M is clear from the context.

Entailment between implications can be characterized in a different man-
ner. For this we introduce the notion of closure operators induced by sets of
implications. More precisely, we define for A⊆M the operators

L1(A) := A∪
⋃

{Y |(X → Y )∈L,X⊆A },
Li+1(A) := L1(Li(A)) (i∈N>0),

L(A) :=
⋃

i∈N>0

Li(A).

We shall call the mapping A�→L(A) the closure operator induced by L, and we
shall call the set A to be closed under L if and only if A = L(A). The closure
operator induced by L can now be used to characterize entailment of implications
as follows:

L�(A → B) ⇐⇒ B⊆L(A).

Let K⊆ Imp(M) be another set of implications. We shall call L a base of K
if and only if Cn(L) = Cn(K). In other words, all implications in K are entailed
by L and vice versa. If K = Th(K), then we shall call L a base of K. Note that
a base of K is always a base of Cn(K), and vice versa.

Bases allow us to represent sets K of implications in different ways, without
changing their behavior with respect to entailment. This fact is mostly exploited
by searching for bases of K which are of considerably smaller size than K itself.
Those bases are preferably non-redundant or even minimal. More precisely, if L
is a base of K, then L is called non-redundant if no proper subset of L is a base
of K as well. Furthermore, L is called minimal if and only if there does not exist
another base L′ of K satisfying |L′| < |L|.

If we search for bases of K, it might be the case that we do not want to include
a certain set Lback of implications which we already “know.” We can think of
these implications as given a-priori, or as background knowledge. If we are given
such background knowledge, to find a base of K it only remains to find a base of
all those implications in K\Cn(Lback). We thus shall call a set L⊆ Imp(M) a base
of K relative to Lback (or a base of K with background knowledge Lback) if and
only if L∪Lback is a base of K. The notions of non-redundancy and minimality
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for relative bases are the same as in the case of bases. Note that if the background
knowledge is empty, then relative bases are just bases.

A particular relative base that is known to have minimal cardinality is the
canonical base Can(K,Lback). To define this base, we need to introduce the
notion of Lback-pseudo-closed sets of K [11]. Let P⊆M . Then P is called an
Lback-pseudo-closed set of K if and only if the following conditions hold.

i. P = Lback(P );
ii. P 	= K(P );
iii. for all Q � P which are Lback-pseudo-closed sets of K it is true that K(Q)⊆P .

Then

Can(K,Lback) := {P → K(P )|P⊆M an Lback-pseudo-closed set of K }.
It is well-known that Can(K,Lback) is a base of K with background-knowledge
Lback of minimal cardinality; see [6,9] for a proof on this.1

Let K = (G,M, I) be a formal context, and let (A → B)∈ Imp(M). A coun-
terexample (negative example) for (A → B) in K is an object g∈A′ \ B′. It is
obvious that A → B is valid in K if and only if K does not contain counterex-
ample for A → B. Conversely, we call g a model (positive example) of A → B if
and only if g /∈ A′ or g∈B′.

Related to the notion of counterexamples we define the confidence of A → B
in K as

confK(A → B) :=

{
1 if A′ = ∅,
|(A∪B)′|

|A′| otherwise .

In other words, confK(A → B) is the conditional probability that a randomly
chosen object g∈G (in a uniform way), that has all the attributes from A also
has all the attributes from B. It is clear that A → B holds in K if and only if
its confidence in K is 1.

Let c∈[0, 1]. We shall denote with Thc(K) the set of all implications in
Imp(M) whose confidence is at least c. If c is chosen properly, we may think
of Thc(K) as the set of implications which are “almost valid” in K; finding a
base L for this set might therefore be desirable. However, the set Thc(K) is not
closed under entailment, and thus L⊆ Thc(K) may not necessarily be true. How-
ever, a base of Thc(K) might be of more use if the element of the base are also
“almost valid,” i.e., have a confidence in K which is at least c. We shall therefore
call L a confident base of Thc(K) (or just K, if c is clear from the context) if and
only if L is a base of Thc(K) and L⊆ Thc(K).

3 Classical Attribute Exploration

It is the purpose of this section to introduce attribute exploration as it is needed
in the exposition of this paper. This includes a description of the classical
1 This proof is only for the special case K = Th(K), which however is easily generalized
to our general case.
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attribute exploration algorithm, which we shall give now. Thereafter, we shall
discuss a generalized form of attribute exploration in Sect. 4, which uses similar
ideas as but is different from the one given in [3].

We have already mentioned that attribute exploration is an algorithm which
assists experts in completing implicational knowledge about a certain domain
of interest. More specifically, let us suppose that we have fixed a finite set M
of attributes which are relevant for our considerations. We then can understand
the domain of interest as a collection D of objects where each object possesses
some attributes from M . In other words, a domain D on a set M can be viewed
as a formal context. Let us furthermore suppose that we are given a set K of
implications from which we definitively know that they are valid in our domain D.
Finally, we assume that we have an initial collection of some examples from our
domain, given again as a formal context.

We are now interested in finding all implications that hold in our domain D,
i.e., to find all implications which are not invalidated by objects from the domain
D. The difficulty of this problems stems from the fact that enumerating all these
objects may be algorithmically infeasible. What we can assume, however, is that
we are given an expert which is able to provide us with the information whether
there exists, for a given implication (A → B)∈ Imp(M), an object in our domain
D which is a counterexample for (i.e., not a model of) A → B, and in that case,
also provides such a counterexample.

Abstractly, attribute exploration now proceeds as follows. From all implica-
tions in Cn(K) we already known that they are valid in our domain D. Further-
more, for all implications which are invalidated by objects from K, we known
that they are not valid in D. For all other implications we do not know whether
they hold in D or not, i.e., all implications in

U(K,K) := Th(K) \ Cn(K)

are undecided in the sense that they could be valid in D or not. Then, for the
implications in U(K,K) we have to consult the expert. Attribute exploration
now does this in a systematic and somehow efficient way, provided that M is
finite.

To make this more precise, we shall proceed by describing attribute explo-
ration in a formal way. This description shall be much more formal than usual, to
provide the necessary notions we need for our generalized attribute exploration.
To this end, we shall first provide some necessary definitions. After that, we give
a formal description of the algorithm. Finally, we shall note some well-known
properties of attribute exploration.

We shall start by formalizing our initial, subjective notion of a domain expert.
Intuitively, a domain expert for a domain D is just a “function” p that, given an
implication A → B, returns “true” if A → B is not invalidated in D, or returns
an object from D which is a counterexample for A → B. We shall take this
understanding as the motivation for the following definition. See also [3].

Definition 1. Let M be a set. A domain expert on M is a function

p : Imp(M) → {�}∪P(M),
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where � 	∈P(M), such that the following conditions hold:

i. If (X → Y )∈ Imp(M) such that p(X → Y ) = C 	=�, then C � (X → Y ),
i.e., X⊆C, Y |⊆C. (p gives counterexamples for false implications)

ii. If (A → B), (X → Y )∈ Imp(M) such that p(A → B) = �, p(X → Y ) =
C 	=�, then C�(A → B). (counterexamples do not invalidate correct impli-
cations)

We say that p confirms an implication A → B if and only if p(A → B) = �.
Otherwise, we say that p rejects A → B with counterexample p(A → B). The
theory Th(p) of p is the set of all implications on M confirmed by p.

It is easy to see that every domain gives rise to a domain expert.

Lemma 1. Let D be a domain (formal context) on a set M . For each
(A → B)∈ Imp(M) for which there exists a counterexample in D, let CA→B

such a counterexample. Then the mapping

pD(X → Y ) :=

{
CX→Y if CX→Y exists
� otherwise

is a domain expert on M .

Note that the definition of pD depends on the particular choice of the counterex-
amples, therefore D may give rise to more than one domain expert.

Let p be a domain expert on a set M , and define

Dp := ({ p(A → B)|(A → B)∈ Imp(M) } \ {�},M,�).

Then clearly Dp is a domain, and it is easy to see that each domain expert p
on M can be obtained as a domain expert of the form pDp

, and that for each
domain D on M it is true that D = DpD .

The crucial observation is now that domain experts can answer the question
of validity in the domains they represent.

Lemma 2. Let M be a set and let p be a domain expert on M . Then for each
(A → B)∈ Imp(M) it is true that

(A → B) is valid in Dp ⇐⇒ p(A → B) = �.

We have now formally captured the notion of an expert, and we are ready to
describe the algorithm of attribute exploration in a formal way, as presented
in Algorithm 1. In this exposition, we assume that the set M is equipped with
a strict linear order, which then gives rise to a lectic order as it is needed for
applying the Next-Closure Algorithm [8]. Furthermore, for better readability, we
denote a formal context that arises from another formal context K by adding a
new object with attributes from C by K + C.

Note that the computation of the set Pi+1 from Pi, Ki and Ki and Li can be
done using the Next-Closure algorithm. As the details are not relevant for our
further discussion, we refer the interested reader to the literature [4].

The following results are well known properties of Algorithm 1, and corre-
sponding proofs can be found in [6,7,9,11].
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Theorem 1. Let p, K and K be valid input for Algorithm1. Then Algorithm1
terminates with input p, K and K. If K′ and K′ are the corresponding values
returned by the algorithm, then the following statements are true:

i. K⊆K′⊆Th(K′)⊆ Th(K).
ii. Th(p) = Th(K′) = Cn(K′).
iii. The cardinality of K′ \ K is the smallest possible with respect to Th(p) =

Cn(K′). More specifically, K′ \ K = Can(K′,K).

Algorithm 1

Input: A domain expert p on a finite set M , a set K⊆ Imp(M) and a formal
context K with attribute set M such that K⊆ Th(p)⊆ Th(K).

Procedure
i. Initialize i := 0, Pi := K(∅),Ki := K,Ki := K.
ii. Let Pi+1 be the smallest Ki-closed set lectically larger or equal to Pi,

which is not an intent of Ki. If no such set exists, terminate.
iii. If p confirms P → P ′′, then

– Ki+1 := Ki∪{P → P ′′ },
– Ki+1 := Ki.

iv. If p provides a counterexample C for P → P ′′, then
– Ki+1 := Ki,
– Ki+1 := Ki + C.

v. Set i := i + 1 and go to ii.
Output: Return Ki and Ki.

4 Exploring Sets of Implications

We are given a precise formulation of attribute exploration in the previous
section. However, this formulation is not applicable to our setting of explor-
ing implications with a certain minimal confidence. To address this issue, we
shall develop in this section a more general formulation of attribute exploration
which goes beyond the classical one.

In the classical case, we are given a formal context K and a set of implications
K⊆ Th(K), as well as a domain expert p, who confirms all implications in K and
where all implications confirmed by p are contained in Th(K). The task attribute
exploration then solves is to provide a method to guide the expert p through all
implications in Th(K) \ Cn(K) for deciding whether these implications are valid
in the domain or not. At the end, attribute exploration both provides a a relative
base of all valid implications of the domain p represents, and a set of objects from
the domain such that an implication is valid in the domain if and only if all these
objects are models of this implication. This set of objects forms itself a domain,
and it can be thought of as a sufficient excerpt of the domain represented by p.

We want to try to lift this description of attribute exploration to the case of
exploration by confidence. There, our setting is a bit more involved. As in the
case of classical attribute exploration, we are given a domain expert p, a formal
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context K and a set of implications K. Additionally, we are given a c∈[0, 1], the
confidence threshold for our exploration. Then, in contrast to the classical setting,
exploration by confidence considers not only the implications Th(K) \ Cn(K),
but also those in Thc(K)\Cn(K). We assume that K is a set of implications with
confidence at least c and that all implications in K are confirmed by p; in other
words, K⊆ Th(p) and K⊆ Thc(K). While the first condition is rather clear, the
second is not strictly necessary, but adopted for simplicity.

An attribute exploration algorithm which then works in this setting should
guide the expert through the implications in Thc(K)\Cn(K), asking whether some
implications are correct or not. The counterexamples provided by the expert are
then used to falsify certain implications in Thc(K). They are not used, however,
for computing the confidence; this is solely done in the initial context K, because
we want to find a base of Thc(K). At the end, the attribute exploration algorithm
should both compute a set L of implications and a formal context L such that each
implication in Thc(K) is either not valid in L or follows from L∪K.

What we now want to describe is a more general formulation of attribute
exploration that is applicable to our setting of exploration by confidence. For
this, we shall develop in the remainder of this section a general formulation of
attribute exploration that works with a set of certain implications and a set
of interesting implications and provides a method to guide an expert through
the set of undecided implications, until no more are left. The properties this
algorithm should have should be the same as in the classical case, as far as
this is possible. Then later on, we shall apply this algorithm to our setting of
exploration of confidence.

To this end, let us recapitulate our setting for the exploration algorithm, this
time a bit more general: we are given a finite set M , a domain expert p on M ,
and two sets K,L of implications. In our classical case, L = Th(K) for some
formal context K; in our setting of exploration by confidence, we would have
L = Thc(K), again for some formal context K and some c∈[0, 1]. We assume
that K⊆ Th(p) and K⊆L. We then consider the set K as the (initial) set of
certain implications. During our exploration we only consider implications in L,
wherefore we shall call this set the set of interesting implications. Finally, for
each implication in L \ Cn(K) it is not clear yet whether p confirms it or not.
Therefore, we call this set the (current) set of undecided implications.

An exploration for this abstract setting now should compute a relative base
of L ∩ Th(p) with background knowledge K by interacting with the expert p. At
best, this interaction is kept at a minimum (i.e., the number of times the expert is
invoked is as small as possible), as expert interaction is assumed to be expensive.

Considering the classical attribute exploration algorithm, it is not very dif-
ficult to come up with a reformulation which is reasonably applicable to this
general setting. To this end, let us fix a finite set M and a lectic order � on
P(M). Then such a reformulation is given in Algorithm2.

The problem this algorithm has is that it does not ensure that the implica-
tions asked to the expert are elements of Li, the current set of all interesting
implications. Because of this, we cannot expect this algorithm to actually com-
pute a relative base of L ∩ Th(p). However, what this algorithm achieves is to
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compute an “approximation” of a relative base of L ∩ Th(p) in the sense that if
n is the index of the last iteration of the algorithm, then Kn is such that

Th(p) ∩ Cn(L) ⊇ Cn(Kn) ⊇ Cn(Th(p) ∩ L).

So what this algorithm does is not computing a relative base Kn of Cn(Th(p)∩L),
but a complete superset of it. However, this set Kn is not too far away from being
sound for Cn(Th(p) ∩ L), as Cn(Kn)⊆ Th(p) ∩ Cn(L). On the other hand, the
set Kn is as small as possible for being sound and complete for itself.

We shall not prove the following result due to space restrictions, but instead
refer the interested reader to [4].

Algorithm 2 (General Attribute Exploration)

Input: A domain expert p on a finite set M and sets K,L⊆ Imp(M) such that
K⊆Th(p) and K⊆L.

Procedure
i. Initialize i := 0, Pi := K(∅),Ki := K,Li := L,Li := (∅,M, ∅).
ii. Let Pi+1 be the smallest Ki-closed set lectically larger or equal to Pi,

which is not Li-closed. If no such set exists, terminate.
iii. If p confirms Pi+1 → Li(Pi+1), then

– Ki+1 := Ki∪{Pi+1 → Li(Pi+1) },
– Li+1 := Li,
– Li+1 := Li.

iv. If p provides a counterexample C for Pi+1 → Li(Pi+1), then
– Ki+1 := Ki,
– Li+1 := { (A → B)∈Li|C �(A → B) },
– Li+1 := Li + C.

v. Set i := i + 1 and go to ii.
Output: Return Ki and Li.

Theorem 2. Let p,K,L be valid input for Algorithm2. Then the algorithm with
this input terminates after finitely many steps. Let n be the last iteration of the
algorithm. Then

1. Th(p) ∩ L ⊇ Cn(Kn) ⊇ Cn(Th(p) ∩ L),
2. for each (A → B)∈L, either (A → B)∈Cn(Kn) or (A → B) /∈ Th(Ln),
3. Kn \ K = Can(Kn,K).

Since we do not have any control about whether the implications asked by
Algorithm 2 are in the set L of interesting implications, we cannot expect that
instantiating this algorithm with L = Thc(K) will indeed yield an algorithm for
exploration by confidence. We shall therefore discuss another, even further gener-
alized version of attribute exploration, which will allow for more freedom in which
implications are asked to the expert. This generalization arises from Algorithm 2
by observing that instead of asking implications of the form Pi+1 → Li(Pi+1),
it would be sufficient for the correctness of the algorithm to just ask implica-
tions of the form Pi+1 → Qi+1, where Qi+1 is such that Pi+1 � Qi+1⊆Li(Pi+1),
Qi+1 |⊆Ki(Pi+1).
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Applying this idea to Algorithm2 yields Algorithm 3. The latter algorithm
retains all properties of the former, except for the fact that it does not necessarily
compute a minimal base anymore.

Theorem 3. Let p,K,L be valid input for Algorithm3. Then the algorithm
applied to this input terminates after finitely many steps. Let n be the last iter-
ation of the algorithm. Then
1. Th(p) ∩ L ⊇ Cn(Kn) ⊇ Cn(Th(p) ∩ L),
2. for each (A → B)∈L, either (A → B)∈Cn(Kn) or (A → B) /∈ Th(Ln).

However, as we shall see in Sect. 5.2, we can use Algorithm 3 to devise an algo-
rithm for exploration by confidence, by choosing the sets Qi+1 appropriately.

Algorithm 3 (General Attribute Exploration, Weaker Version)

Input: A domain expert p on a finite set M and sets K,L⊆ Imp(M) such that
K⊆ Th(p) and K⊆L.

Procedure
i. Initialize i := 0, Pi := K(∅),Ki := K,Li := L,Li := (∅,M, ∅).
ii. Let Pi+1 be the smallest Ki-closed set lectically larger or equal to Pi,

which is not Li-closed. If no such set exists, terminate.
iii. Choose Qi+1⊆M such that Pi+1 � Qi+1⊆L(Pi+1), Qi+1 |⊆ Ki(Pi+1).
iv. If p confirms Pi+1 → Qi+1, then

– Ki+1 := Ki∪{Pi+1 → Qi+1 },
– Li+1 := Li,
– Li+1 := Li.

v. If p provides a counterexample C for Pi+1 → Qi+1, then
– Ki+1 := Ki,
– Li+1 := { (A → B)∈Li|C�(A → B) },
– Li+1 := Li + C.

vi. Set i := i + 1 and go to ii.
Output: Return Ki and Li.

5 Exploration by Confidence

Based on the generalizations we have discussed in the previous section, we shall
now turn our attention to our original question, namely to devise an algorithm
for exploration by confidence. Recall that for this we are given a finite set M ,
a formal context K with attribute set M , an expert p on M , some background
knowledge K⊆ Th(p), and some number c∈[0, 1]. What an algorithm for explo-
ration by confidence now should achieve is to compute a base of Th(p)∩Thc(K)
with background knowledge K. Ideally, for this it should invoke the expert p as
few times as possible.

We shall start this section by presenting a first algorithm that is not precisely
an algorithm for exploration by confidence, but instead is an approximative algo-
rithm in the sense as discussed in the previous section. This first algorithm will be
obtained by instantiating the generalized attribute exploration algorithm from
Sect. 4. We shall do this in Sect. 5.1. A proper algorithm for exploration by con-
fidence will then be discussed in Sect. 5.2, where we shall instantiate the weaker
generalization of attribute exploration from Sect. 4.
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5.1 An Approximative Exploration by Confidence

Our first idea is as simple as straightforward: we use Algorithm2 and instantiate
it with our setting of exploration by confidence, i.e., we set L = Thc(K). The
resulting algorithm is shown as Algorithm4. The properties of Algorithm2, as
given in Theorem 2, immediately yield the following result.

Algorithm 4 (Approximative Exploration by Confidence)

Input A domain expert p on a finite set M , a formal context K, c∈[0, 1] and a
set K⊆ Thc(K) such that K⊆ Th(p).

Procedure
i. Initialize i := 0, Pi := K(∅),Ki := K,Li := Thc(K),Li := (∅,M, ∅).
ii. Let Pi+1 be the smallest Ki-closed set lectically larger or equal to Pi,

which is not Li-closed. If no such set exists, terminate.
iii. If p confirms Pi+1 → Li(Pi+1), then

– Ki+1 := Ki∪{Pi+1 → Li(Pi+1) },
– Li+1 := Li,
– Li+1 := Li.

iv. If p provides a counterexample C for Pi+1 → Li(Pi+1), then
– Ki+1 := Ki,
– Li+1 := { (A → B)∈Li|C�(A → B) },
– Li+1 := Li + C.

v. Set i := i + 1 and go to ii.
Output Return Ki and Li.

Corollary 1. Let K = (G,M, I) be a finite and non-empty formal context,
c∈[0, 1], p be a domain expert on M and K⊆ Thc(K) ∩ Th(p). Then Algorithm4
terminates with input p, c and K. Let n be the last iteration of this run of the
algorithm. Then

i. Th(p) ∩ Cn(Thc(K)) ⊇ Cn(Kn) ⊇ Cn(Th(p) ∩ Thc(K)),
ii. Can(Kn,K) = Kn \ K.

Evidently, Algorithm4 does not guarantee that the implications asked are actu-
ally elements of L = Thc(K), i.e., those implications do not need to have a
confidence of at least c in K. This may or may not be an issue, depending on
the application one is currently dealing with.

What is also important for Algorithm 4 to be practical is to be able to com-
pute closures under Li = Thc(K) ∩ Th(Li). However, it is by far obvious how to
compute closures under these sets of implications. Of course, one does not want
to compute these sets explicitly, and indeed it is true that

Li(A) = A′′
Li

∩ Thc(K)(A),

for each A⊆M , where A′′
Li

denotes double derivation in Li. Thus, to make
Algorithm 4 practicably applicable, one only needs a way to compute closures of
sets A under Thc(K).
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While it is possible to compute these closures effectively without computing
the set Thc(K) explicitly [4], the computational overhead might be unwelcomed.
One may be tempted to think that we can eliminate the problem of comput-
ing closures under Thc(K) by using the following approach: instead of asking
implications of the form

Pi+1 → Li(Pi+1), (1)

where Li(Pi+1) = Thc(K)(Pi+1) ∩ (Pi+1)′′
Li

, in Algorithm 4 we could just as well
ask implications of the form

Pi+1 → {m∈M | confK(Pi+1 → {m }) � c }. (2)

This would have the evident advantage that the right-hand side of the impli-
cation is easy to compute. However, it turns out that with this modification
the algorithm is not correct anymore, in the sense that the set of implications
accepted by the expert is not complete for Thc(K).

Fig. 1. Context which shows that a simple approach to exploration by confidence does
not work

Example 1 (Example 6.2.2 from [4]).
Consider the formal context K as given in Fig. 1, let K = { { a } → { b } }, and

choose c = 1
2 . Suppose that we apply exploration by confidence in the simplified

version as described before, i.e., we ask implications of the form of Eq. (2) instead
of those in Eq. (1). Then since all sets Pi are closed under K, the implication
{ a } → { c } is never asked to the expert, because { a } is not closed under K.
On the other hand,

confK({ a } → { c }) =
4
7
>

1
2
,

i.e.({ a } → { c })∈ Thc(K), and is thus an interesting implication. Furthermore,
the implication { a } → { c } also does not follow from other implications asked
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to the expert, as the implications { b } → { c }, { a, b } → { c }, and ∅ → { c } will
also not be asked to the expert, because

confK({ b } → { c }) =
2
5
<

1
2

confK({ a, b } → { c }) =
2
5
<

1
2

confK(∅ → { c }) =
4
10

<
1
2

Thus, if we assume that the expert p confirms all proposed implications, and if
we denote the set of confirmed implications by Kn, then

Kn({ a }) = { a, b }.
But Thc(K) ∩ Th(p) = Thc(K), and

Thc(K)({ a }) = { a, b, c }.
Thus, the set Kn is not complete for Thc(K) ∩ Th(p).

5.2 An Exact Exploration by Confidence

The previous example shows that our simple idea of avoiding the computational
overhead of computing closures under Thc(K) did not work. In this section
we shall show how we can make this idea work nonetheless, by further suit-
ably modifying the algorithm. For this we shall use the weaker generalization of
Algorithm 3. As a pleasant side-effect, by this we will obtain a proper algorithm
for exploration by confidence, i.e., the new algorithm will indeed compute a base
of Th(p)∩Thc(K). On the downside, since this algorithm is based on the weaker
generalization of attribute exploration, we cannot expect it to compute a base
of minimal cardinality.

The main idea for this adaption is as follows: the weaker generalization of
Algorithm 3 instantiated for our setting of exploration by confidence does not
require us to compute closures under Thc(K). Instead, all we need to check is
whether a given set of attributes is closed under Thc(K). The main problem
with the latter is that in general we need to consider all subsets of B⊆A and all
elements m∈M \ A checking whether they satisfy

confK(B → {m }) � c.

This is because

A = Thc(K)(A) ⇐⇒ (∀B⊆A∀m∈M : confK(B → {m }) � c =⇒ m∈A).

On the other hand, if A would have the property that for each m∈M and every
B � A with confK(B → {m }) � c it is true that m∈A, then checking whether
A is closed under Thc(K) would be easy, as in this case

A = Thc(K)(A) ⇐⇒ (∀m∈M : confK(A → {m }) � c =⇒ m∈A).
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Let’s make this more precise. In what follows, we shall write the context subpo-
sition of two contexts K1 = (G1,M, I1),K2 = (G2,M, I2) as K1 ÷ K2, i.e.,

K1 ÷ K2 := (G1∪G2,M, I1∪I2).

Here we assume that G1 and G2 are disjoint. In the following proposition, we have
K1 = K and K2 = Li, and we can think of the former as the initial formal context
of our exploration process, while the latter contains all counterexamples collected
up to iteration i. Then K ÷ Li is the currently known context of iteration i.

Proposition 1 (Proposition 6.2.5 from [4]). Let K = (G,M, I) be a finite
formal context, and let c∈[0, 1]. Let Li = (Gi,M, I) be another finite formal
context such that Gi and G are disjoint, and define Li = Thc(K) ∩ Th(Li). Let
A⊆M be such that for every intent X � A of K ÷ Li it is true that

∀m∈X ′′
Li

: confK(X → {m }) � c =⇒ m∈Ki(X). (3)

In addition, let A be Ki-closed. Then it is true that A is Li-closed if and only if

A = A′′
K÷Li

and ∀m∈A′′
Li

\ A : confK(A → {m }) < c. (4)

Algorithm 5 (Exploration by Confidence)

Input: A domain expert p on a finite set M , a formal context K, c∈[0, 1] and a
set K⊆ Thc(K) such that K⊆ Th(p).

Procedure
i. Initialize i := 0, Pi := K(∅),Ki := K,Li := Thc(K),Li := (∅,M, ∅).
ii. Let Pi+1 := min�(P 1

i+1, P
2
i+1), where

– P 1
i+1 is the lectically smallest intent P of K ÷ Li such that Pi � P ,

and there exists some m∈P ′′
Li

\ Ki(P ) with confK(P → {m }) � c.
– P 2

i+1 is the lectically smallest set P such that Pi � P , that is closed
under Ki, but is not an intent of K ÷ Li.

iii. If Pi+1 = P 1
i+1, then set Qi+1 := Pi+1∪{m }, otherwise set Qi+1 :=

(Pi+1)′′
K÷Li

.
iv. If p confirms Pi+1 → Qi+1, then

– Ki+1 := Ki∪{Pi+1 → Qi+1 },
– Li+1 := Li,
– Li+1 := Li.

v. If p provides a counterexample C for Pi+1 → Qi+1, then
– Ki+1 := Ki,
– Li+1 := { (A → B)∈Li|C�(A → B) },
– Li+1 := Li + C.

vi. Set i := i + 1 and go to ii.
Output: Return Ki and Li.

Based on this result, we shall now adapt our exploration algorithm to ensure
that all sets of which we need to check closedness under Thc(K) satisfy Eq. (3).
We can do this as follows: as usual, we consider subsets X of M in lectic order,
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and for each such set X that is closed under the set Ki of currently known
implications but is not an intent of K ÷ Li, we ask the expert the implication

X → X ′′
K÷Li

.

Additionally, in accordance with Proposition 1, for each X that is an intent of
K ÷ Li we ask the implication

X → {m∈M | confK(X → {m }) � c }.
The resulting algorithm is shown in Algorithm5. It is not hard to see that

this algorithm is indeed an instance of Algorithm3. Therefore, from the general
results of Theorem 3 about Algorithm 3, we immediately obtain the following
result. Moreover, the algorithm only asks implications with confidence at least
c, wherefore Algorithm 5 is a proper algorithm for exploration by confidence.

Corollary 2. Let K = (G,M, I) be a finite formal context, p a domain expert
on M , c∈[0, 1], and K⊆ Th(p) ∩ Thc(K). Then Algorithm5 applied to this input
terminates after finitely many steps. Let n be the last iteration of the algorithm.
Then Kn is a confident base of Th(p) ∩ Thc(K), i.e., Kn⊆Thc(K) and

Cn(Kn) = Cn(Th(p) ∩ Thc(K)).

Moreover, for each (A → B)∈L, either (A → B)∈Cn(Kn) or (A → B) /∈ Th(Ln).

6 Outlook and Further Results

In this paper we have addressed the issue of applying attribute exploration
to faulty data. We did this by extending the classical attribute exploration
algorithm to not only ask implications that are valid in the data, but to ask also
those implications that enjoy a high confidence therein. The motivation behind
this approach was to assume that data which is only slightly faulty will inval-
idate important implications only with few counterexamples, compared to the
number of examples where this implication does apply. Of course, this approach
is purely heuristic, and should be treated as such.

In our discussion about how to design an exploration algorithm that takes
the confidence of implications into account, we first formalized the notion of an
expert. After that, we discussed how classical attribute exploration can be seen
as an exploration of sets of interesting implications. For this more abstract view,
we discussed a straight-forward generalization of the classical algorithm, as well
as a weaker generalization which allowed for more freedom in the choice of the
implications asked to the experts. Based on these generalization, we developed
an approximative as well as an exact algorithm for exploration by confidence.

This paper deliberately avoids giving proofs for the statements it presents.
Those proofs can be found in [4]. There we also discuss a generalization of the
present results to general concept inclusions (GCIs). GCIs are logical formu-
las which provide a generalization of implications to the realm of description
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logics [2]. It is not hard to generalize the notion of confidence to GCIs, and one
can then build upon the results presented in this paper and devise an algorithm
for exploring general concept inclusions with high confidence. The immediate
advantage of this would be the increase in expressivity provided by the use of
description logics.

To generalize exploration by confidence to general concept inclusions, one has
to extend the algorithm to also be able to work with growing sets of attributes.
More precisely, during the exploration, the attribute set M , which is supposed to
be fixed in this paper, may grow in a consistent way. Exploration by confidence
can be adapted to this setting as well, much like [6] adapts classical attribute
exploration to this setting.

A main motivation for considering the case of faulty data is that in real
applications data is never free of errors. With respect to this, one could argue
that the results of this paper contribute to making attribute exploration more
usable in practice. However, this argumentation would be much more convincing
if we could provide real-world use cases of exploration by confidence. Finding
and evaluating such use cases is a main task for future research.

Another interesting application not discussed so far is the following. As soon
as the expert accepts an implication with confidence not equal to 1, all counterex-
amples of this implication are false. Our algorithm could be adapted to propose
these faulty objects to the expert for correction, thereby increasing the quality
of the data-set during the course of the exploration. This form of error correction
could be more efficient than walking through the whole data-set and correcting
all errors. This is because an error-correcting exploration by confidence would
only propose errors for correction that are relevant for the exploration process.
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Abstract. Term extraction tools extract candidate terms and anno-
tate their occurrences in the texts. However, not all these occurrences
are terminological and, at present, this is still a very challenging issue
to distinguish when a candidate term is really used with a termino-
logical meaning. The validation of term annotations is presented as a
bi-classification model that classifies each term occurrence as a termi-
nological or non-terminological occurrence. A context-based hypothesis
approach is applied to a training corpus: we assume that the words in
the sentence which contains the studied occurrence can be used to build
positive and negative hypotheses that are further used to classify unde-
termined examples. The method is applied and evaluated on a french
corpus in the linguistic domain and we also mention some improvements
suggested by a quantitative and qualitative evaluation.

1 Introduction

Terms in texts are important entities for any kind of document analysis:
information retrieval, knowledge extraction or ontology building, etc. They are
usually considered as linguistics entities that could be associated with meanings
or concepts, their mirror at the ontological level [4]. However, there is no formal
definition of what a term is, nor is there any reliable syntactic description that
could help term identification. Most of terms are noun phrases composed by
a word or several words. Moreover, terms depend on the domain of speciality,
and within a domain, terms are context-sensitive: a given string (a word or a
set of words) may be a term in a given context with some meaning, a term in
another context but with another meaning, or it could also be a non-term in a
third context. Term extraction tools [17,18] extract candidate terms, i.e. groups
of words that could be considered as terms. A candidate term fulfils linguistic
(mainly syntactic schema) and/or statistic (based on occurrences) criteria. Once
a candidate term is extracted by the tool, all its occurrences are annotated in
the corpus. However, some of its occurrences correspond to a terminological use
and some other correspond to a non-terminological use, i.e. these occurrences
should be considered as words from general language. Thus, candidate terms and
each of their occurrences should be manually validated by experts which makes
it difficult for large-scale applications.

c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 236–251, 2015.
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The paper presents how hypotheses built with formal concept analysis help to
validate or invalidate candidate terms in texts of a specific domain. Some training
data sets have been built on purpose but, as validation is time consuming, corpus
are rather small and domain dependent. Thus, such a symbolic approach, based
on itemset mining and classification, suits well the problem. In the longer term,
linguists expect from this approach a better understanding of what term triggers
are and how to find them.

The following examples with the candidate term subject remind us how
ambiguous human language is: the same string may refer to different concepts.
This is why term validation is so important for document indexing, automatic
summarization, construction of ontologies and even for facilitating multilingual
communication. The only help for meaning disambiguation is the context of the
occurrences, i.e. the words that occurs with the term in the same sentence.

– (S1) I subject him to a terrifying ordeal. < V erb, non − term, general
language >.

– (S2) This type of wound is highly subject to infection. < Adjective, non −
term, generallanguage >.

– (S3) What is the subject in a sentence? < Noun, term, linguistics >.
– (S4) Maths is not my best subject. < Noun, term, pedagogy >.
– (S5) A moving picture of a train is more dramatic than a still picture of the

same subject.< Noun, non − term, generallanguage >.
– (S6) The relation between the subject and predicate is identified by the use

of: All, No, Some, . . .< Noun, term, logic >.
– (S7) The subject of law is a person (physical or juridical) who in law has the

capacity to realize rights and juridical duties. < Noun, complex term, law >.

In the above examples, S1, S2, S5 are contexts where the candidate subject is
not a term, while S3, S4, S6, S7 are contexts where the candidate subject is a
term in linguistics, in pedagogy, in logic or in law domains, respectively.

For each term candidate in a given domain, the goal is to validate or invali-
date each of its occurrences. Each candidate term is studied separately and we
propose a supervised learning method trained on a manually annotated corpus.
For the learning phase, each occurrence of the candidate term is described by
its textual context, i.e. the bag of the words of the sentence, and the occurrence
is also tagged as “positive example” (belonging to the “T+ class”) if it is a ter-
minological occurrence or as “negative example” (“T− class”) if it is not. Thus,
from textual context our method extracts hypotheses, a notion that is formally
introduced in the next section. Hypotheses are itemsets of words corresponding
to the positive occurrences of a candidate term and, similarly, itemsets corre-
sponding to negative occurrences of a candidate term. Then, during the test
phase, a new occurrence of this candidate term in a new sentence is classified
either as terminological occurrence or non-terminological occurrence according
to the hypotheses that match the sentence.

The learning problem can be formulated in the paradigm of Formal Concept
Analysis (FCA) [8], a formal method where ordered sets are classified in a lattice.
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FCA builds a bi-classification model from positive and negative examples. In the
binary matrix associated to each candidate term, the objects are occurrences of
the candidate term. Attributes are words coming from the different contexts and
a positive/negative flag is introduced in accordance with to the manual anno-
tation. Hypotheses [12,13] are generalised descriptions of positive or negative
examples. These itemsets are non-redundant descriptions of either the positive
class or the negative class. There is a high demand from linguists for such human-
readable sets that could be considered as triggers and distinguish terminological
occurrences from non-terminological ones. Moreover, hypotheses are applied to
new (unannotated) occurrences of a candidate term to discover its terminological
or non-terminological nature in new texts.

The paper is organized as follows. Section 2 provides a brief overview of the
problem of validating term occurrences. Section 3 introduces Formal Concept
Analysis and its application to learning problems. Then, Sect. 4 describes how
positive and negative hypotheses can be applied to textual contexts of term
occurrences in order to validate or invalidate them as a terms. In Sect. 5, we
describe the dataset i.e. the corpus, the experiments and their results. Then,
Sect. 6 concludes the paper.

2 Terminology Extraction

Eugen Wüster [19] emphasized on the role of terms, their link with concepts,
and the importance of normalization of terms to avoid ambiguity, to ease index-
ing, thesaurus building or translation. He was the author who defined the gen-
eral theory of terminology and worked within a standardization perspective.
At that time, terminology was initially a prerogative of translators, with a rather
normative approach.

However, in the 90’s, the renewal of corpus linguistics with some new robust
tools such as part of speech taggers or syntactic parsers showed that terms
are not restricted to set phrases in a previously defined list but they are full
linguistic entities whose form may vary in the texts (plural forms, modifiers, etc.).
New software applications in information retrieval, summarizing, or ontology
construction stimulate this new conception of terminology. Thus, there has been
several initiatives for developing term extractors. Among them some are term
locators: they locate in texts terms belonging to a controlled vocabulary [1,9].
Some others are working ab-nihilo, looking for candidate terms [2,7,17,18].

Thereby, term extraction consists in a set of computational techniques that
allow to identify the linguistic realizations of domain-specific concepts known
as terms. Frequently it is seen as an intermediate phase of Natural Language
Processing, that bridges the gap with the knowledge level and enables different
kind of reasoning. Few term extractors use only statistics on word occurrences
and co-occurrences to propose term candidates. Most of them are now combining
linguistic rules and statistical filters [17]. However, despite this configuration,
there is still a lot of noise both in candidate term identification and in the
distinction between their terminological and non-terminological occurrences.
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Fig. 1. Chunks of texts where candidate terms (simple and multi-words) are located
with TTC Term Suite and represented by square brackets [ ]. The green dots indicate
validated candidates (terms), whereas the red stars define candidate terms refused by
the experts (Color figure online).

For instance, in Fig. 1, extracted candidate terms are represented between
square brackets. Some candidate terms include some others (nested brackets).
Thus, structure syntaxique (syntactic structure) is proposed as a candidate
term while structure définie (defined structure) is not. It should be noted
that both elements have the same grammatical structure and in both sentences
structure is also proposed as a candidate term. Occurrences which are marked
by a green dot have been manually validated as terminological occurrences while
non-terminological occurrences are marked by red stars.

In the next section, we introduce Formal Concept Analysis and its use for
bi-classification of term candidate occurrences.

3 Formal Concept Analysis (FCA)-Based Method

The main notions of Formal Concept Analysis (FCA) theory are introduced in
this section. Afterwards, concept-based hypotheses (called also JSM-hypotheses
from the John Stuart Mill method) are presented as a method for building a
bi-classification model from positive and negative examples. Similarly, Jumping
Emerging Patterns (JEPs) is an alternative formalism to identify the set of
discriminating attributes which only occur in one class and are absent in the
other.

3.1 Bases on FCA

FCA is a data analysis theory which builds conceptual structures defined by
means of the attributes shared by objects. Formally, this theory is based on the
triple K = (G,M, I) called formal context, where G is a set of objects, M is a
set of attributes and I is the binary relation I ⊆ G × M between objects and
attributes. Therefore, (g, m) ∈ I means that g has the attribute m. For instance,
some occurrences of the introductory examples with the candidate term subject
are encoded in the formal context given by Table 1.

Two derivation operators are then defined:

A′ := {m ∈ M | ∀g ∈ A : gIm}for A ⊆ G,

B′ := {g ∈ G | ∀m ∈ B : gIm}for B ⊆ M.
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Table 1. An example of a formal context where each row represents an occurrence of
the candidate term subject with the words appearing in its textual context.

A formal concept is a pair (A, B), satisfying A ⊆ G, B ⊆ M , A′ = B and
B′ = A. A is called the extent and B the intent of the (formal) concept.′′ is
a closure operator which means that for any X,Y, X ′′′′ = X ′′ (idempotent),
X ′′ ⊆ X (extensive), and X ⊆ Y −→ X ′′ ⊆ Y ′′ (monotone). Thus, the intent
of a concept is the maximum set of attributes shared by all the objects of its
extent. Moreover, an itemset X ⊆ M is a generator of a formal concept (A, B),
if X ⊆ B and X’ = A. Likewise, a minimal generator for a concept is defined
as a minimal subset of its intent which can similarly characterize the concept in
question.

Formal concepts are organized into a complete concept lattice denoted by
L following a partial ordering, called subsumption, (�), defined as follows:
(A1, B1) � (A2, B2) ⇔ A1 ⊆ A2 (or B2 ⊆ B1).

3.2 Classification by FCA

A learning model from a concept lattice has been extensively studied through
the notion of concept-based hypothesis [12,13]. This model is based on positive
and negative examples of a target attribute. The idea laying beyond this model
is to discover the attribute combinations which are shared by positive examples,
but not by negative examples.

Let us consider the target attribute w /∈ M , which may have one of the three
values: positive, negative and undetermined. Thereby, the input data for learning
is composed by sets of positive and negative examples. Positive examples are
objects that are known to have the target attribute and negative examples are
objects that are known not to have this attribute. The learning results are rules
supposed to classify a third set of objects called the undetermined examples.

With regard to FCA theory, this classification method can be described by
three sub-contexts: a positive context K+ = (G+,M, I+), a negative context
K− = (G−,M, I−) and an undetermined context Kτ = (Gτ ,M, Iτ ). M is a set
of attributes, w is the target attribute and w /∈ M , G+ is the set of positive
examples whereas G− is the set of negative examples. Alternatively, Gτ denotes
the set of new examples to be classified. The learning context is denoted by
K± = (G+ ∪ G−,M ∪ w, I+ ∪ I− ∪ G+ × {w}). In addition, Kc = (G+ ∪ G− ∪
Gτ ,M ∪ w, I+ ∪ I− ∪ Iτ ∪ G+ × {w}) is called the classification context.

For generalizing the G+ subset and defining the cause of target attribute, we
are interested in finding the sets of attributes that are shared by only positive



Automatic Validation of Terminology by Means of Formal Concept Analysis 241

examples. In the best case, the membership to G+ supposes a particular attribute
combination. However, in most cases it is necessary to find several attribute com-
binations called positive hypotheses to characterize only G+ examples. Ideally,
we would like to find enough positive hypotheses to cover all G+ examples.

A positive hypothesis H+ for w is defined as a non empty intent of K+ which
is not contained in the intent g’ of any negative example g ∈ G−. A negative
hypothesis H−, is defined accordingly.

Thereby, hypotheses can be used to classify an undetermined example x ∈
Gr. If the intent of x contains at least one positive hypothesis and no negative
hypothesis, then, x is classified as a positive example. If the intent of x contains
at least one negative hypothesis and no positive hypothesis, then it is a negative
example. Otherwise, x remains unclassified.

In addition, we can restrict the number of useful hypotheses with regard to
subsumption in the lattice. Formally, a positive hypothesis H+ is a minimal pos-
itive hypothesis if there is no positive hypothesis H such that H ⊂ H+. Minimal
negative hypothesis is defined similarly. Hypotheses which are not minimal should
not be considered for classification because they do not improve discrimination
between positive and negative examples.

In a not-so-far context of itemset mining, the notion of Jumping Emergent
Pattern (JEP) is very similar to concept-based hypothesis [5]. A JEP is an item-
set that occurs only in objects of one class and not in objects of the other class.
Clearly, a hypothesis is a JEP. On the other hand, a JEP is a generator of some
hypotheses for this class. We can also define a minimal JEP as an itemset that
does not contain any other JEP. Consequently, searching the minimal JEPs is
equivalent to finding the minimal generators of the concept-based hypotheses for
a class. Other important class of patterns that represent a contrast between the
classes are exposed in [16]. For instance, an emerging pattern(EP) is an itemset
whose frequency changes significantly from one data set (G+ for example) to
another (G− respectively). Similarly, the constrained emerging patterns (CEPs)
are defined as the minimal set of items which occur at most α times in one data
set and at least β in the other. Unlike concept-based hypotheses or JEPs, EPs
and CEPs are potentially more resistant to noise because they are less restrictive
patterns [16].

3.3 Relevant Hypotheses

A concept-based hypothesis generalizes a class of positive or a class of negative
examples. Each hypothesis is a closed itemset, ı.e. the intent of a concept. Nev-
ertheless, because of the noise in the data, these hypotheses are not all relevant.
Stability [14] is a measure that qualifies the tendency of a concept (and its intent)
to persist when some objects are randomly removed from its extent. Thereby,
stability measures how much a concept depends on each particular object of its
extent. As a consequence, a stable concept will be independent of data noise.

Thus, it may happen that some minimal hypotheses have a low stability
value. In that case, the intent of subsumed concepts H1, ...,Hn ⊃ H, which are
hypotheses but non-minimal, may have a higher stability value. These hypotheses
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are more restrictive when applied to undetermined object classification and the
precision of the overall system could be improved. However, such a strategy
may reduce the coverage of the positive (resp. negative) examples by the set of
hypotheses, with a possible deterioration of the system recall.

Other measures have been proposed in [11] to recognise relevant concepts
in noisy data. Among these measures are the support, concept probability or
separation index which can be useful in different kinds of contexts. However this
comparison concludes that stability is the most effective and the less independent
of the type of the context. Stability is the only measure we kept to evaluate
hypotheses relevance in our study.

Accordingly, we adopted a FCA classification model to identify the patterns
that represent the largest shared textual contexts from the occurrences of a term
on a specific domain. In the following section, we present practical aspects and
some other considerations for our method.

4 Term Validation as a Bi-classification Problem

In order to minimize the human intervention and to improve the terminology
validation scalability, Formal Concept Analysis (FCA) can be used for learning
the hypotheses from positive and negative examples. As shown in [15], the textual
context is the key for validating terminological occurrences. So, we assume that
the textual context around each candidate occurrence gives us relevant informa-
tion on its class. For a given domain and a given candidate term, we thus focus
on the differentiation between a terminological use (T+) and a non-terminological
use (T−). If the candidate term is multi-words, words are joined together. To build
the context of a candidate term occurrence, its (textual) context, i.e. the sentence,
is represented as a set of words Si = {W1,W2,W3, ...Wn}. Table 2 illustrates how
occurrences of the candidate term subject in the linguistic domain is encoded as
a formal context.

Table 2. Part of the subject formal context where each occurrence is defined by its
textual context. The target attributes T+ and T− show the terminological nature of
the occurrence in the linguistic domain.

The lattice is built according to the formal context and then, positive and neg-
ative hypotheses are extracted. The preliminary results show that noise in data
significantly reduces the quality of the results and increases drastically the size of
the lattice. The next section is dedicated to noise reduction in the original data.
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4.1 Reducing Noise in the Learning Process

In order to reduce the noise in data, we assume that some words in the tex-
tual context are more relevant than others. Such words should show an intrinsic
semantic. Likewise, function words which semantics depends on the words they
govern and the words they are governed by loose their semantics when placed
within an unordered bag of words. Therefore, these function words are removed.
Similarly, as we have a rather small number of examples for each term candidate,
words are lemmatized to tackle the different forms of a word and reduce disper-
sion. A lemma is the canonical form shared by a set of words expressing the
same meaning. For example, walk is the lemma of walking, walks and walked.

After several experimentations, the most relevant configuration to reduce the
formal context for a candidate term is the following:

– The set of objects G : Each occurrence of the studied candidate;
– The set of attributes M : Lemmas of content words(nouns, verbs, adjectives

and adverbs) for each textual context (i.e. the sentence) where the candidate
term occurs;

– The binary relation I : It sets which lemma co-occurs with which candidate
term occurrence.

– The target attributes (T+ and T−): Corresponding to the manual annotation
in the corpus.

An example of such formal context is shown in the Table 3.

Table 3. An excerpt of the formal context with lemmas of content words for the
candidate term subject and its class (T+ or T−).

5 Experiments

The experiments and evaluations of our method aim at demonstrating the qual-
ity and interest of extracted hypotheses as well as helping linguists in defining
new features, i.e. new annotations, to improve term validation. In any corpus,
there exist candidate terms whose occurrences are almost always terminological,
some other candidate terms whose occurrences are mostly non-terminological
and some other with a rather balanced distribution between the two classes as
shown by the column category of Table 4. To ease reading, tables presented in
this section are translated from French.
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Table 4. Selected candidates for evaluation and values observed in the whole corpus.

Candidate Frequency Positive Terminological Category

examples degree

Adjective 216 207 95.83% Highly terminological

Lexical relation 55 52 94.54% Highly terminological

Collocation 109 90 82.56% Highly terminological

Sentence 311 238 76.52% Enough terminological

Speaker 233 178 76.39% Enough terminological

Corpus 688 510 74.12% Enough terminological

Language 926 549 59.28% Ambiguous

Statement 289 164 56.74% Ambiguous

Context 302 147 48.67% Ambiguous

Text 568 266 46.83% Ambiguous

Speech 534 248 46.44% Ambiguous

Form 462 122 26.40% Slightly terminological

Relation 676 171 25.29% Slightly terminological

Expression 197 48 24.36% Slightly terminological

Semantic 413 80 19.37% Very slightly terminological

Lexical 477 84 17.61% Very slightly terminological

Model 250 13 5.20% Very slightly terminological

5.1 Dataset

The training corpus is composed of 60 free ScienceText documents in french
from the linguistics domain. This corpus has been automatically enriched with
different annotations: tokenization, sentence splitting and part-of-speech tag-
ging (PoS) performed by the TreeTagger. For normalization issues, an XML-
based format has been defined and applied to the documents. Subsequently, TTC
Term Suite (Terminology Extraction, Translation Tools and Comparable Cor-
pora project) extracted 5,038 different candidate terms and 69,007 occurrences
of them. Finally, each occurrence of candidate terms was manually validated
thanks to a dedicated annotation interface1.

Two annotators evaluated each occurrence of a candidate term consider-
ing different linguistics aspects: syntagmatics considerations, membership to a
scientific lexicon, membership to a linguistic lexicon and terminological nature.
For each of these aspects, experts assign a class (positive or negative) to each
occurrence as shown in [10]. To perform cross-validation, this corpus has been
split into several parts for training and then, for classification of undetermined
examples (testing).

1 Smarties: The annotation interface by stickers (https://apps.atilf.fr/smarties/last
visit 01.04.15).

https://apps.atilf.fr/smarties/
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In order to achieve a reliable evaluation of experiments, we selected a list
of candidate terms which occur frequently and that belong to different cate-
gories as show in Table 4: adjectif (adjective), relation lexical (lexical rela-
tion), collocation, phrase (sentence), locuteur (speaker), corpus, langue
(language), énnoncé (statement), contexte (context), texte (text), discours
(speech), forme (form), relation, expression, sémantique (semantic), lexi-
cal, modèle (model). We also introduce a measure of the terminological degree
of each candidate term (named ambiguity rate in [3]). This measure gives the
ratio between the number of positive examples (terminological occurrences) of
the candidate term with regards to all of its occurrences.

5.2 Implementation

For each experiment, a formal context is generated candidate per candidate.
Attributes are the lemmas of content words (verbs, adverbs, nouns and adjec-
tives) that co-occur with the candidate term in the same sentence.

Afterwards, concept-based hypotheses are extracted by means of Formal Con-
cept Analysis to build a set of positive hypotheses (for terminological occur-
rences) and a set of negative hypotheses (for non-terminological occurrences).

To extract hypotheses, we developed a pipeline within the GATE Natural
Language Engineering platform GATE [6]. This pipeline uses several plugins
that deal with the specific XML-based format to represent a formal context and
extract hypotheses. During the evaluation phase, these hypotheses are matched
with sentences in the testing dataset in order to classify undetermined examples.

Table 5. Classification summary of candidate occurrences.

Table 5 presents a summary of the results obtained on the whole corpus for
some candidate terms selected among the different categories. We observed that
certain words are shared by textual contexts of both positive and negative classes
(Shared Words). The more ambiguous or frequent the candidate is, the bigger
is the shared set. We also remark that the proportion of positive hypotheses
with regards to the global number of hypotheses (positive and negative) is quite
similar to the ratio of positive examples with regards to the whole set of examples
(i.e. the Terminological Degree).
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5.3 Results

This section presents our experimental results. Evaluation aims at measuring
how good are hypotheses for classification of undetermined examples. We used a
k-fold cross-validation over our annotated ScienceText corpus (partitioned in 8
folds with a length per fold of 7 texts). Thus, for each experiment, annotations
of candidate terms in 7 texts were removed and texts were used for testing; the
rest was used for training.

Table 6. Average of kept hypotheses and unnamed examples in k-fold cross-validation
(k = 8).

Table 6 shows average values over the different runs. The Ex2Cla value is the
number of undetermined examples to classify. Generated hypotheses is the num-
ber of hypotheses extracted from a training set. Accordingly, projected hypothe-
ses is the number of hypotheses that matched undetermined examples. Positive
(resp. neg.) unclassified examples are undetermined examples (know as being
positive (resp. neg.) in the corpus) that do not contain any positive or negative
hypothesis and thus, they have not been classified.
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As could be expected, the amount of positive hypotheses is greater than
the negative hypotheses if the candidate tends to have a terminological nature.
Conversely, the number of negative hypotheses is greater than the positive
hypotheses if the candidate tends to be not terminological. However, the ambigu-
ous candidates contain a similar amount of positives and negatives hypotheses.
The cause of this behaviour is related to the number of positive and negative
occurrences (frequency) of each candidate by category.

The number of hypotheses (projected) used to classify examples is greater
than the number of undetermined examples but the proportion between these
two values varies a lot. Candidates at the top or at the bottom of the table
have good results with a low number of unclassified examples. However, cor-
pus, which is frequent, enough terminological, and with a very high number of
positive hypotheses has a high number of unclassified positive examples. Thus,
a high number of training examples does not always seem to garantee a better
result. Candidate terms which are ambiguous are, of course, the most difficult
to classify. Here again, one candidate term, language, seems apart: it is very
frequent, generated lot of (+/-) hypotheses, but the number of unclassified exam-
ples (positive or negative) is high.

Table 7 gives the average of some performance measures (precision, recall and
F-measure) over the 8 runs. In general, if a class (positive or negative) has a high
number of training occurences, then this class gets a better precision and recall.
On the opposite, the coverage of the training examples by hypotheses does not
seem to impact precision and recal.

5.4 Qualitative Analysis

The second goal of this study is to help linguists to better understand what
are the mechanisms that take part to the decision on the terminological status
of an occurrence. The ideal process would be when validating occurrences of
candidate terms is independent of the term candidate or, even better, when it
is independent of the domain. To reach such a goal, we should identify new
features that should be added to the initial annotation set. We still are far from
reaching the goal but the qualitative analysis already helps us in interacting with
linguists.

We carried out a qualitative analysis of patterns. We give here the way
patterns are analysed looking abitrarily at positive and negative patterns for
the candidate term argument. argument has 92 occurrences in the corpus and
66.30 % of them are positives (classify between the “enough terminological” and
the “ambiguous” category), our method generates 48 positives and 40 negatives
hypotheses. Tables 8 and 9 show positive hypotheses (resp. negative) ranked fol-
lowing support and stability.

The most stable positive hypotheses include, in addition to the candidate
term itself, a “high” terminological term in linguistics sdrt (which stands
for Segmented Discourse Representation Theory) and the meaningless verb
be. There is no doubt that sdrt, a linguistic theory which study relation
between arguments in a discourse, is a very good trigger for positive occurences.
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Table 7. K-fold cross-validation over the collected ScienceText corpus (k = 8).

Table 8. Set of the most representative positive hypotheses for the argument candidate
term.

Support Stability Hypotheses in T+ Hypotheses in T+ -english-

7 0.7968 [sdrt, être, argument] [sdrt, be, argument]

9 0.7792 [argument, plus] [argument, more]

6 0.73437 [être, argument, aussi] [be, argument, also]

6 0.7187 [argument, verbal] [argument, verbal]

. . . . . . . . . . . .

5 0.6562 [être, argument, indique] [be, argument, denote]

4 0.5 [argument, syntaxique] [argument, syntactic]

. . . . . . . . . . . .

6 0.3281 [être, argument, rst] [be, argument, rst]

8 0.25 [argument, nucleus] [argument, nucleus]
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Table 9. Set of the most representative negative hypotheses for the argument candidate
term.

Support Stability Hypotheses in T− Hypotheses in T− -english-

3 0.5 [argument, prendre] [argument, assume]

1 0.5 [trancher, pas, ne, argument,
permettre, décisif, position,
avoir]

[settle, not, argument, allow,
decisive, position, have]

. . . . . . . . . . . .

4 0.375 [argument, hypothèse] [argument, hypothesis]

4 0.3125 [dire, argument] [say, argument]

. . . . . . . . . . . .

2 0.25 [trouver, même, argument] [find, same, argument]

Afterwards, some other high terminological terms syntactic or verbal also
contribute to a positive validation. Others hypotheses with a lower support, but
not less important, are related to Rhetorical Structure Theory (rst) representing
the distinction between nucleus and satellite arguments.

However, we should notice that it is quite easy to find counter-examples. Con-
sidering the hypothesis [sdrt, be, argument] and the sentence “An argument
in favor of SDRT is also that . . . ” (which is not in the initial corpus), the argu-
ment candidate term will be wrongly classified as positive. Similarly, the third
positive hypothesis in the table, [be, argument, also], could fit the negative
example “An argument in favor of SDRT is also that . . .” and, of course, it could
also fit the positive example like “This relationship, which raises issues concern-
ing the linear order of its arguments is studied in (Redeker and Egg, 2006) and
also in (Hunter et al., 2006). . . .”. The two last examples show that some addi-
tional information could probably produce better hypotheses: preserving order
in the sentence (working with sequences instead of bag of words), using syntactic
role (subject, object . . .), syntactic dependencies between the studied occurrence
and some other words, or keeping information about the type of determiner it
is linked with, like definite (ex: the) or indefinite (a). . .

By contrast, the sets of negative hypotheses showed in Table 9 showed another
usage of the argument candidate. Mainly, argument refers to authors trying to
convince the reader about an idea, an hypothesis or a theory by using an evi-
dence. Consequently, the large diversity of situations leads to hypotheses which
include meaningless words like dire (to say), prendre (to assume), trouver (to
find).

6 Conclusion and Perspectives

In this paper, we describe a method for validating occurrences of candidate
terms using Context-based Hypotheses. It starts with a corpus on a specific
domain, where each occurrence of candidate terms has been manually annotated
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as terminological or non-terminological occurrence. We built a formal context
for hypotheses extraction. Each positive hypothesis represents a textual context
where the candidate is used as a term. Similarly, a negative hypothesis describes
the textual context where the candidate is used as a non-terminological entity.

Some plugins have been developed to run under the GATE the open source
solution for text processing. In that way, some higher-level linguistic annotations
could be used to improve the process. Among them we could mention syntactic
trees, dependencies or the use of linguistic resources such as a trans-disciplinary
lexicon. As mentioned in Sect. 5.4, we have several options to improve annota-
tions and better discriminate positive and negative occurrences defining hypothe-
ses which are not only based on words (lexical level) but also on more elaborated
linguistic features.

We would like to thank the ANR Agency for supporting this work which
is part of the Termith project (ANR-12-CORD-0029-05) and we would like to
thank all the linguists involved in the project for the work they did on the corpus.
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8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st
edn. Springer, Secaucus (1997)

9. Jacquemin, C.: Fastr: a unification-based front-end to automatic indexing. In:
Funck-Brentano, J.L., Seitz, F. (eds.) RIAO, pp. 34–48. CID (1994)

10. Kister, L., Jacquey, E.: Relations syntaxiques entre lexiques terminologique et
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Abstract. The simple formalization and the intuitive graphical repre-
sentation are main reasons for the growing popularity of Formal Concept
Analysis (FCA). FCA gives the user the possibility to explore the struc-
ture of data and understand correlations and implications in the data
set. Recently, triadic FCA (3FCA) has become increasingly popular, but
exploring triadic conceptual landscapes is not easy, especially because of
the less immediate structure of the space of triadic concepts. Even more,
available graphical representations of trilattices are barely intelligible
and hard to obtain even for small data sets. Driven by practical require-
ments, we propose a new navigation paradigm for triadic conceptual
landscapes based on a neighborhood notion arising from appropriately
defined dyadic concept lattices. Understanding the corresponding reach-
ability relation gives also new theoretical insights about the behavior of
triadic concepts and the corresponding triadic data sets.

1 Introduction

With the advent of the information society and the rise of data science, under-
standing big collections of information and knowledge and representing them
in intuitive ways is more important than ever. Formal concept analysis is well-
known for its capabilities addressing knowledge processing and knowledge rep-
resentation as well as offering reasoning support for understanding the structure
of large collections of data.

For dyadic FCA – the original version of FCA based on a binary incidence
relation – this has proven to be the case through the graphical representation
of the concept lattice that offers a intuitive visualization and hence understand-
ing of the data. From this graphical representation, one can read any relation
between objects and attributes, but also implications holding in the data. For
cases where the concept lattice gets too big to be represented in a readable way,
“local” navigational paradigms have been proposed, where only one concept and
its direct neighbor concepts are visualized and the user can explore the concept
lattice by successively moving to neighboring concepts [2,7].
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DOI: 10.1007/978-3-319-19545-2 16



Towards a Navigation Paradigm for Triadic Concepts 253

Dyadic FCA was extended in [11] by Rudolf Wille and Fritz Lehmann to the
triadic case, featuring a ternary instead of a binary incidence relation. The use
of FCA increased over the last years, still there was little focus on applications of
triadic FCA (3FCA), mainly because of its higher complexity and unavailability
of a graphical representation for trilattices which quickly become impossible
to draw even for small data sets. Although there are a lot of data collections
that map perfectly to a triadic representation, for instance collaborative tagging
scenarios or folksonomies [10], there is no good support for helping humans
understand the structure of the triconcepts in a tricontext. Despite the fact
that 3FCA is just an extension of FCA, the graphical representation for the
dyadic case does not have an intuitive extension to the triadic case [1,6,8].
Wille and Lehmann proposed a way to graphically represent a triadic context
by using a triadic diagram in [11], inspired by the concept lattice from the dyadic
case. However, the geometric representation obtained does not give much insight
into the structure of the tricontext and cannot be easily read and understood.
Furthermore, even a small set of triadic data can generate a large amount of
triconcepts.

For the reasons mentioned above, we intend to present in this article a method
to locally display a smaller part of the space of triconcepts, instead of displaying
all of them at once. Our goal is to find an intuitive navigation strategy that allows
for moving from one such local view to other, adjacent ones. Furthermore, we
will formally analyze the properties of this strategy and ultimately suggest algo-
rithms for producing the structures necessary for browsing the space of tricon-
cepts using developed and theoretically well-understood methods.

Exploiting the fact that triconcepts are built three-dimensional, the naviga-
tion strategy we propose makes use of the elegance and the expressive power of
dyadic concept lattices. Navigation starts local, with a triconcept. Herefrom, we
fix what we call a perspective, i.e., one of the three dimensions (extent, intent or
modus) and then collect all so-called directly reachable triconcepts. For each per-
spective, the triconcepts directly reachable via this perspective can be arranged
in a dyadic concept lattice, hence navigating among them benefits from all advan-
tages concept lattices are offering. After selecting a directly reachable triconcept,
one may change the perspective and move towards another set of reachable tri-
concepts, exploring again another concept lattice. Despite of its apparent growth
of computational complexity, this approach allows to cope with large sets of tri-
concepts. Moreover, the local navigation strategy discussed in this paper gives
rise to a list of theoretical questions: reachability of all triconcepts, the existence
and the number of reachability clusters, their structure and a method to navigate
from one to another. Understanding these clusters proves to be not trivial and
gives interesting insights about the inherent conceptual structure of triadic data.

2 Preliminaries

This section introduces the basic notions of triadic formal concept analysis. For
further information about the dyadic case or more specific results about 3FCA
we refer the interested reader to the standard literature [3,4,11,12].
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Definition 1. A triadic context (also: tricontext) is a quadruple (K1,K2,
K3, Y ), where K1,K2 and K3 are sets and Y ⊆ K1 × K2 × K3 is a ternary
relation between them. The elements of K1,K2,K3 are called (formal) objects,
attributes and conditions, respectively. An element (g,m, b) ∈ Y is read object
g has attribute m under condition b.

The following definition shows how dyadic contexts can be obtained from a
triadic one in a natural way.

Definition 2 (Derived Contexts). Every triadic context (K1,K2,K3, Y )
gives rise to the following dyadic contexts:

K(1) := (K1,K2 × K3, Y
(1)) with gY (1)(m, b) :⇔ (g,m, b) ∈ Y ,

K(2) := (K2,K1 × K3, Y
(2)) with mY (2)(g, b) :⇔ (g,m, b) ∈ Y , and

K(3) := (K3,K1 × K2, Y
(3)) with bY (3)(g,m) :⇔ (g,m, b) ∈ Y .

For {i, j, k} = {1, 2, 3} and Ak ⊆ Kk, we define K
(ij)
Ak

:= (Ki,Kj , Y
(ij)
Ak

), where

(ai, aj) ∈ Y
(ij)
Ak

if and only if (ai, aj , ak) ∈ Y for all ak ∈ Ak.

Intuitively, the contexts K(i) represent “flattened” versions of the triadic context,
obtained by putting the “slices” of (K1,K2,K3, Y ) side by side. Moreover, K

(ij)
Ak

corresponds to the intersection of all those slices that correspond to elements of Ak.
In triadic FCA, there are two extensions for the dyadic derivation operators.

Definition 3 ((i)-Derivation Operators). For {i, j, k} = {1, 2, 3} with j < k
and for X ⊆ Ki and Z ⊆ Kj × Kk the (i)-derivation operators are defined by:

X �→ X(i) := {(aj , ak) ∈ Kj × Kk | (ai, aj , ak) ∈ Y for all ai ∈ X}.
Z �→ Z(i) := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Z}.

Obviously, these derivation operators correspond to the derivation operators of
the dyadic contexts K(i), i ∈ {1, 2, 3}.

Definition 4 ((i, j,Xk)-Derivation Operators). For {i, j, k} = {1, 2, 3} and
Xi ⊆ Ki,Xj ⊆ Kj ,Xk ⊆ Kk, the (i, j,Xk)-derivation operators are defined by

Xi �→ X
(i,j,Xk)
i := {aj ∈ Kj | (ai, aj , ak) ∈ Y for all (ai, ak) ∈ Xi × Xk}

Xj �→ X
(i,j,Xk)
j := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Xj × Xk}.

The (i, j,Xk)-derivation operators correspond to those of the dyadic contexts
(Ki,Kj , Y

(ij)
Xk

).
Similar to the notion of formal concepts in dyadic FCA, triadic concepts can

be defined [11]. A triadic concept is a maximal box of incidences (Proposition 1)
and can be generated using derivation operators (Proposition 2).

Definition 5. A triadic concept (short: triconcept) of K := (K1,K2,K3, Y ) is
a triple (A1, A2, A3) with Ai ⊆ Ki for i ∈ {1, 2, 3} and Ai = (Aj × Ak)(i) for
every {i, j, k} = {1, 2, 3} with j < k. The sets A1, A2, and A3 are called extent,
intent, and modus of the triadic concept, respectively. We let T(K) denote the
set of all triadic concepts of K.
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Proposition 1. The triconcepts of a triadic context (K1,K2,K3, Y ) are exactly
the maximal triples (A1, A2, A3) ∈ P(K1)×P(K2)×P(K3) with A1×A2×A3 ⊆
Y , with respect to the component-wise set inclusion.

Proposition 2. For Xi ⊆ Ki and Xk ⊆ Kk with {i, j, k} = {1, 2, 3}, let Aj :=
X

(i,j,Xk)
i , Ai := A

(i,j,Xk)
j and Ak := (Ai ×Aj)(k) (if i < j) or Ak := (Aj ×Ai)(k)

(if j < i). Then (A1, A2, A3) is the triadic concept bik(Xi,Xk) with the property
that it has the smallest k-th component among all triadic concepts (B1, B2, B3)
with the largest j-th component satisfying Xi ⊆ Bi and Xk ⊆ Bk. In particular,
bik(Ai, Ak) = (A1, A2, A3) for each triadic concept (A1, A2, A3) of K.

3 Motivating Example

In this section we present a small example, aiming to explain how the local
navigation paradigm works in a set of triconcepts. The related theoretical aspects
will be introduced in the following sections. For this, we consider the hostel
tricontext from [5], whose trilattice is represented in Fig. 1. The objects of the
triadic data set are hostels, the attributes services provided by the hostels, while
the conditions are web portals where the hostels can be rated. The graphical
representation as a 3-net displays all triconcepts and the equivalence classes
to which they belong in a triadic diagram. The extent, intent and modus of a
triconcept can be read by using the order diagrams displayed on the side of the

K3

c1: hostelsc0: hostelworld

c2: hostelbookers

g2

g1

g5

g0

g3, g4

g5

g1

K1

m2

m3

m3,m5

m1

m0

m4

K2

Fig. 1. Trilattice of the tricontext “Hostels”.
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trilattice. Global navigation in a 3-net becomes difficult for a (slightly) larger set
of triconcepts and this is the case in many 3FCA applications. What graphical
representation should be employed in the cases where a representation as a 3-net
is not possible [12]? The complexity of the trillatice structure and that of the
order diagrams of the extents, intents and modi set makes a global navigation
approach quite difficult.

To cope with the complexity of larger data sets, we propose a local navigation
paradigm which starts from a triconcept (A1, A2, A3) and the selection of one
of its components (extent, intent or modus), which we then call perspective.
We build the projected context K

(ij)
Ak

along perspective k and compute its concept
lattice. It can be proved that every dyadic concept of this projected context
corresponds to exactly one triconcept in the original trilattice. These triconcepts
are called directly reachable and navigation among them is performed in the
underlying dyadic concept lattice.

To start local navigation, choose T := ({g3, g4, g5}, {m0,m1,m2,m3,m5},
{c1, c2}) and consider perspective 3 (i.e., modus). By projecting along {c1, c2},
we obtain the concept lattice displayed in Fig. 2. Triconcept T corresponds to the
leftmost dyadic concept in Fig. 2. Moreover, all dyadic concepts correspond to
some triconcepts, having either the same modus or a larger one. The navigation
can be continued herefrom by choosing one of the directly reachable triconcepts
from T and a perspective, i.e., one of the concepts of K

(12)
{c1,c2} and then navigating

Fig. 2. Directly reachable triconcepts
from T using perspective 3. The extent
and intent of the triconcepts can be
read from the concept lattice, while the
modus is computed using the corre-
sponding derivation operator (·)3 in the
tricontext.

Fig. 3. Reachable triconcepts from
T using perspective 3 and then 1.
Only intent and modus are displayed in
the concept lattice, the extent is com-
puted using the corresponding deriva-
tion operator (·)1 in the tricontext.
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within the new concept lattice. For example, the rightmost concept of this lattice
corresponds to the triconcept ({g2, g3, g4}, {m2,m3,m4}, {c1, c2}). By choosing
perspective 1 (i.e., extent), the triconcepts reachable herefrom are represented
in Fig. 3.

This example shows how triconcepts can be clustered according to their
reachability and how we can navigate from one triconcept to another. We might
ask whether all concepts might be reachable by this approach or not, what are
the maximal strongly connected components of the reachability relation, i.e., the
reachability clusters, what are the properties of the set of reachability clusters
and how can we set up a local navigation paradigm herefrom. By changing per-
spectives, all concepts in this example prove to be reachable (though not directly
reachable). We will prove later on that this will not always be the case.

Motivated by this short example, we introduce in the following sections the
theoretical aspects and considerations of the proposed navigation paradigm.

4 Reachable Triconcepts

This section aims to define the exploration paradigm exemplified in Sect. 3 and
to discuss some theoretical issues. The following propositions are direct conse-
quences of Proposition 2. For every triconcept, by projecting along one of the
dimensions, we obtain a formal dyadic context, where the projection of the tri-
concept is a dyadic concept of the corresponding concept lattice (Proposition 3).
Moreover, every dyadic concept herefrom generates a triconcept (Proposition 4).

Proposition 3. Let (A,B,C) ∈ T(K) be a triadic concept. Then (A,B) ∈
B(K(12)

C ).

Proposition 4. Let (A,B,C) ∈ T(K) be a triadic concept. Let (A1, A2) ∈
B(K(12)

C ). Then (A1, A2, (A1 × A2)(3)) ∈ T(K).

By the above propositions, we conclude that given a triconcept (A,B,C), fixing
either its extent, or its intent or modus, gives rise to a (dyadic) concept lat-
tice, every concept of which can be deterministically turned into a triconcept by
computing the missing component using an appropriate triadic derivation oper-
ator (for instance (·)(3)). Based on this, we are now able to define a reachability
relation between triconcepts.

Definition 6. For (A1, A2, A3) and (B1, B2, B3) triadic concepts, we say that
(B1, B2, B3) is directly reachable from (A1, A2, A3) using perspective (1) and
we write (A1, A2, A3) ≺1 (B1, B2, B3) if and only if (B2, B3) ∈ B(K(23)

A1
). Anal-

ogously, we can define direct reachability using perspectives (2) and (3).
We say that (B1, B2, B3) is directly reachable from (A1, A2, A3) if it is

directly reachable using at least one of the three perspectives, that is, formally
(A1, A2, A3) ≺ (B1, B2, B3) :⇔ [(A1, A2, A3) ≺1 (B1, B2, B3)] ∨ [(A1, A2, A3) ≺2

(B1, B2, B3)] ∨ [(A1, A2, A3) ≺3 (B1, B2, B3)].
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By Proposition 3, two triconcepts having the same extent, or the same intent,
or modus are always mutually directly reachable. Hence, in a trilattice diagram,
all triconcepts aligned on the same line (i.e., being equivalent with respect to
one of the three preorders) are mutually directly reachable:

Proposition 5. Let (A1, A2, A3), (B1, B2, B3) be two triconcepts. If Ai = Bi

for an i ∈ {1, 2, 3} then (A1, A2, A3) ≺i (B1, B2, B3) and (B1, B2, B3) ≺i

(A1, A2, A3).

Definition 7. We define the reachability relation between two triconcepts as
being the transitive closure of the direct reachability relation ≺. We denote this
relation by �.

Definition 8. The equivalence class of a triconcept (A1, A2, A3) with respect
to the preorder � on T(K) will be called a reachability cluster and denoted by
[(A1, A2, A3)].

Intuitively, the reachability cluster of (A1, A2, A3) contains all triconcepts which
are mutually reachable from (A1, A2, A3) When considering ≺ as directed edge
relation of a graph, reachability clusters correspond to the strongly connected
components of that graph.

The following results are providing a better understanding of the reachability
clusters and their structure. We prove that there exist triconcepts which are
always reachable (Proposition 6). Moreover, the induced order on the set of
reachability clusters always has a greatest element.

Proposition 6. The trivial triconcepts θ1 := (K1,K2, (K1 × K2)(3)), θ2 :=
(K1,K3, (K1 × K3)(2)) and θ3 := (K2,K3, (K2 × K3)(1)) are always reachable.
Moreover, they are always directly reachable.

Proof. Let us assume, without restricting generality that (K1×K2)(3) = (K1×
K3)(2) = (K2 × K3)(1) = ∅. Let (A,B,C) ∈ T(K). Using perspective (3), we
have that (A,B) ∈ B(K(12)

C ). The greatest and the lowest elements of K
(12)
C are

(K1, ∅) and (∅,K2), respectively. Hence (A,B,C) � θ2 and (A,B,C) � θ3. By
choosing another perspective, θ1 is directly reached from (A,B,C).

In particular, if (A,B,C) = θ1, then the trivial triconcepts θ2 and θ3 are
reachable by perspective (1). 
�
Corollary 1. The ordered set (T(K)/ ∼,≤) has always a greatest element, the
reachability cluster of the trivial concepts. We denote this cluster by ∇.

Proposition 7. If (A,B,C) is a triconcept with either A = K1, or B = K2, or
C = K3, then (A,B,C) ∈ ∇.

Proof. Every trivial concept is reachable from (A,B,C). Let us assume that
A = K1. Take now θ1 := (K1,K2, ∅) and choose perspective (1). We obtain the
context K

(23)
K1

:= (K2,K3, Y
(23)
K1

). We want to prove that (B,C) ∈ B(K(23)
K1

).
We know that B = (K1 × C)(2) = {m ∈ K2 | ∀g ∈ K1, ∀b ∈ C. (g,m, b) ∈

Y }. Also, by definition, C(2,3,K1) = {m ∈ K2 | ∀g ∈ K1, ∀b ∈ C. (g,m, b) ∈ Y },
hence B = C(2,3,K1). Analogously, C = B(2,3,K1). 
�
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Remark 1

(1) If (A1, B1, C1) and (A2, B2, C2) are triconcepts with A1 = K1 or B1 = K2

or C1 = K3 and (A1, B1, C1) � (A2, B2, C2), then (A2, B2, C2) ∈ ∇.
(2) If (A1, B1, C1) ∈ ∇ and (A1, B1, C1) � (A2, B2, C2) then (A2, B2, C2) ∈ ∇.

The converse does not hold true, i.e., more than one reachability clus-
ter is possible. Take for example K1 := {g1, g2},K2 := {m1,m2}, and
K3 := {b1, b2} with Y := {(g1,m1, b1)}. In this context there are exactly
two reachability clusters, ∇ = {θ1, θ2, θ3} and {(g1,m1, b1)}.

Example 1. In general, triconcepts might be structured in more than one cluster,
as the following examples show. A more profound discussion about the depth
and width of the ordered set of reachability clusters will be given in Sect. 5.

(1) A tricontext with more than two clusters:

b1 m1 m2 m3
g1 ×
g2
g3

b2 m1 m2 m3
g1 ×
g2 ×
g3

b3 m1 m2 m3
g1 ×
g2 ×
g3 ×

The triconcepts are partitioned in clusters the following way:
C1 = {({g3}, {m3}, {b3})}, C2 = {({g2}, {m2}, {b2, b3})}, C3 =
{({g1}, {m1}, {b1, b2, b3}), ({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1,
b2, b3}), (∅, {m1,m2,m3}, {b1, b2, b3})}, and C1 ≤ C2 ≤ C3. Thereby, the tri-
concepts ({g3}, {m3}, {b3}) and ({g2}, {m2}, {b2, b3}) have disjoint extents
and intents, but ({g3}, {m3}, {b3}) ≺3 ({g2}, {m2}, {b2, b3}).

(2) A tricontext with exactly two clusters

b1 m1 m2
g1 ×
g2 ×

b2 m1 m2
g1
g2 ×

b3 m1 m2
g1
g2 ×

The triconcepts are partitioned in clusters the following way:
C1 = {({g1}, {m1}, {b1}), ({g2}, {m2}, {b1, b2}), ({g2}, {m1}, {b3})}, C2 =
{({g1, g2}, {m1,m2}, ∅), ({g1, g2}, ∅, {b1, b2, b3}), (∅, {m1,m2}, {b1, b2, b3})},
and C1 ≤ C2.

(3) A tricontext with a single cluster

b1 m1 m2 m3
g1 ×
g2
g3

b2 m1 m2 m3
g1 ×
g2
g3 ×

b3 m1 m2 m3
g1 × ×
g2
g3

The triconcepts are the following:
C = {({g1}, {m1}, {b1, b3}), ({g1}, {m2}, {b2, b3}), ({g1}, {m1,m2}, {b3}),
({g1, g3}, {m2}, {b2}), ({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅,
{b1, b2, b3}), (∅, {m1,m2,m3}, {b1, b2, b3})}.
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5 Reachability in Composed Tricontexts

There is a way of composing several tricontexts such that the reachability clusters
of the composed tricontext coincide with the union of the reachability clusters
of the constituents, except for the greatest cluster. We will exploit this corre-
spondency later.

Definition 9. Given tricontexts K1 := (K1
1 ,K1

2 ,K1
3 , Y 1), . . . , Kn := (Kn

1 ,Kn
2 ,

Kn
3 , Y n), with Ki

j and Ki
k being disjoint for all j �= k and all i ∈ {1, 2, 3},

their composition K1 � . . . � Kn is the tricontext K := (K1,K2,K3, Y ) with
Ki :=

⋃n
k=1 Kk

i and Y :=
⋃n

k=1 Y k.

Proposition 8. Let (K1,K2,K3, Y ) = K1 � . . . � Kn with n ≥ 2 and all Ki
j

being non-empty. Then (A1, A2, A3) is a triconcept of (K1,K2,K3, Y ) iff

– A1, A2, A3 are all non-empty and (A1, A2, A3) is a triconcept of some Kj or
– (A1, A2, A3) is one of (∅,K2,K3) or (K1, ∅,K3) or (K1,K2, ∅).

Proof. “If”: First, consider a triconcept (A1, A2, A3) of some Kj with A1, A2,
and A3 nonempty. Now suppose (A1, A2, A3) were not a triconcept of K, i.e.,
at least one of A1, A2, A3 can be enlarged. W.l.o.g., assume some a ∈ K1 \ A1

with (A1 ∪ {a}) × A2 × A3 ⊆ Y . Now, for a2 ∈ A2 and a3 ∈ A3, we have
(a, a2, a3) ∈ Y , implying a ∈ Kj and thus (A1∪{a})×A2×A3 ∈ Yj , contradicting
that (A1, A2, A3) is a triconcept of Kj .

Second, (A1, A2, A3) = (∅,K2,K3) is maximal unless for some a holds {a} ×
K2×K3 ⊆ Y . Yet this contradicts the construction of Y . The cases of (K1, ∅,K3)
and (K1,K2, ∅) follow by symmetry.

“Only if”: for any triconcept (A1, A2, A3) of (K1,K2,K3, Y ) with nonempty
A1, A2, A3, we find an (a1, a2, a3) ∈ A1 × A2 × A3. By construction, for every
such (a1, a2, a3) must exist some j with a1 ∈ Kj

1 and a2 ∈ Kj
2 and a3 ∈ Kj

3 .
Consequently, A1 ⊆ Kj

1 and A2 ⊆ Kj
2 and A3 ⊆ Kj

3 . Moreover, maximality of
(A1, A2, A3) in (K1,K2,K3, Y ) implies maximality in Kj .

Finally if one of the components of (A1, A2, A3) is empty, the other two must
be maximal by definition. 
�
Proposition 9. Let K = (K1,K2,K3, Y ) = K1 � . . . � Kn with n ≥ 2 and all
Ki

j being non-empty. Then (B1, B2, B3) is directly reachable from (A1, A2, A3)
in K iff

– they are triconcepts of the same Kj and (B1, B2, B3) is directly reachable from
(A1, A2, A3) in Kj or

– one of B1, B2, B3 is empty.

Proof. “If”: First assume (A1, A2, A3) is directly reachable from (B1, B2, B3)
and both are are triconcepts of the same Kj . W.l.o.g. let (1) be the corresponding
perspective. Then A1 ⊆ B1. Moreover, none of A1, A2, A3 is empty (otherwise
(A1, A2, A3) cannot be a triconcept of Kj due to Proposition 8). We find that
(B2, B3) ∈ B(Kj

(23)
A1

). This implies (B2, B3) ∈ B(K(23)
A1

), thus (B1, B2, B3) is
directly reachable from (A1, A2, A3) in K.
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Next, assume that one of B1, B2, B3 is empty. W.l.o.g. assume B1 = ∅. By
Proposition 8, this entails B2 = K2 and B3 = K3. Then (∅,K3) ∈ B(K(13)

A2
)

whenever A2 �= ∅ and (∅,K2) ∈ B(K(12)
A3

) whenever A3 �= ∅ (it is not possible
that A2 = ∅ = A3), therefore (A1, A2, A3) ≺ (B1, B2, B3) holds in K.

“Only if”: Assume (A1, A2, A3) ≺i (B1, B2, B3) in K and all of B1, B2, B3

are nonempty. W.l.o.g. assume i = 1, i.e., (B2, B3) ∈ B(K(23)
A1

). Proposition 8
implies that (B1, B2, B3) must be a triconcept of some Kj . Then, due to ∅ �=
A1 ⊆ B1 ⊆ Kj

1 we find that (A1, A2, A3) cannot be a trivial triconcept, thus it
is a triconcept of Kj . Then (B2, B3) ∈ B(K(23)

A1
) implies (B2, B3) ∈ B(Kj

(23)
A1

)
thus (A1, A2, A3) ≺1 (B1, B2, B3) holds in Kj . 
�
Corollary 2. Let K = (K1,K2,K3, Y ) = K1 � . . . � Kn with n ≥ 2 and all Ki

j

being non-empty. Then (B1, B2, B3) is reachable from (A1, A2, A3) in K iff

– they are triconcepts of the same Kj and (B1, B2, B3) is reachable from
(A1, A2, A3) in Kj or

– one of B1, B2, B3 is empty.

Proof. This is a straightforward consequence of the previous proposition and
the fact that all trivial triconcepts (those having one empty component) are
together in the maximal cluster. 
�

Using the above results, we ask if there is any correlation between the car-
dinality of the three sets of a tricontext and the number of the reachability
clusters we obtain. The first observation was that we can find qubic tricontexts
(i.e., |K1| = |K2| = |K3| = n), where the number of clusters equals n + 1.

Proposition 10. Let K = (K1,K2,K3, Y ) be a tricontext of size n×n×n with
K1 = {k1

i | 1 ≤ i ≤ n}, K2 = {k2
i | 1 ≤ i ≤ n}, K3 = {k3

i | 1 ≤ i ≤ n}. Let the
relation Y be the spatial main diagonal of the tricontext, meaning that a triple
(k1

i , k2
j , k3

l ) ∈ Y iff i = j = k. Then there are n+1 clusters, n minimal clusters
and the maximal cluster.

Proof. Considering Proposition 9, the conclusion is immediate, since K =
({k1

1}, {k2
1}, {k3

1}, {(k1
1 , k

2
1, k

3
1)}) � . . . � ({k1

n}, {k2
n}, {k3

n}, {(k1
n, k2

n, k3
n)}) 
�

Based on this example, we assumed that the number of clusters is bounded by
the minimal dimension of the tricontext plus one. This assumption proved to be
false due to the following example.

Example 2. Consider the following 4 × 6 × 6 tricontext K466.

α 1 2 3 4 5 6
a ×
b ×
c ×
d
e
f

β 1 2 3 4 5 6
a ×
b
c
d ×
e ×
f

γ 1 2 3 4 5 6
a
b ×
c
d ×
e
f ×

δ 1 2 3 4 5 6
a
b
c ×
d
e ×
f ×
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Besides the maximal cluster, we have six minimal ones which are all singletons
consisting of the following triconcepts, respectively:
C1 := ({a1},{b1},{c1, c2}), C2 := ({a2},{b2},{c1, c3}), C3 :=
({a3},{b3},{c1, c4}), C4 := ({a4},{b4},{c2, c3}), C5 := ({a5},{b5},{c2, c4}),
C6 := ({a6},{b6},{c3, c4}).

Another assumption, about the number of cluster assumed to be the maximal
dimension of the tricontext plus one, could be disproven.

Example 3. Given the tricontext K466 = (G,M,B, Y ) from Example 2, we
define K646 := (B,G,M, {(b, g,m)|(g,m, b) ∈ Y }) as well as K664 := (M,B,G,
{(m, b, g)|(g,m, b) ∈ Y }), in words, we obtain K646 and K664 by rotating K466

twice. We now let K163 := K466 � K646 � K664 be the 16 × 16 × 16 context built
by composing the three. Combining Example 2 with Corollary 2, we obtain that
K163 has 19 clusters, viz. the maximal one and 6 + 6 + 6 = 18 minimal ones.

Remark 2. The issue of whether the number of clusters or minimal clusters is
bounded and what could be an estimation of that bound remains an open ques-
tion.

6 Properties of Reachability Clusters

This section is devoted to the study of several properties of reachability clusters.
We prove that reachability clusters can be found among some concepts of the
context of reachable triconcepts, more exactly as object concepts.

Proposition 11. Let (A1, B1, C1), (A2, B2, C2) ∈ T(K) with (A1, B1, C1) ≺3

(A2, B2, C2). Then Y 12
C2

⊆ Y 12
C1

.

Proof. Let (g,m) ∈ Y 12
C2

. Then, for every b ∈ C2, we have (g,m, b) ∈ Y . Since
C1 ⊆ C2, we have that for every b ∈ C1, (g,m, b) ∈ Y , hence (g,m) ∈ Y 12

C1
. 
�

Let K := (K1,K2,K3, Y ) be a triadic context. Let K� := (T(K),T(K), �) be the
formal context of reachable triconcepts. The concepts of K� are exactly the pairs
(A,B) having the property that every triconcept from B is reachable from any
of A and (A,B) is maximal with this property. If we take a look at the concepts
of the symmetric kernel of �, i.e., �∩�−1, we get exactly the reachability clusters
of triconcepts without the ordering between them.

Proposition 12. Let (A,B) ∈ K� be a concept and denote by C := A ∩ B. If
C �= ∅, then C is a set of mutually reachable concepts, i.e., C × C is a rectangle
of crosses in K�.

Proof. From the definition, we have that ∀T1, T2 ∈ C, T1 � T2 and T2 � T1. It
follows that all the triconcepts from C are part of the same cluster. 
�
Remark 3. If we denote with C the set of clusters of triconcepts from K and with
I := {A ∩ B | (A,B) ∈ B(K�), A ∩ B �= ∅}, i.e., the set of all concepts having
non disjoint extent and intent, then the previous proposition states that I ⊂ C.
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Example 4. One might expect that there exist a one-to-one correspondence
between concepts in the context of reachable triconcepts and reachability clus-
ters. This would mean that the structure of reachability clusters is a concept
lattice. The following example shows that there exist concepts in K�, having
disjoint extent and intent.

α 1 2 3 4
a ×
b
c ×
d ×

β 1 2 3 4
a
b
c ×
d ×

γ 1 2 3 4
a ×
b ×
c
d

δ 1 2 3 4
a ×
b ×
c
d ×

We have ({a}, {1}, {α}) � ({a, b}, {3}, {γ, δ}), ({a}, {1}, {α}) � ({c, d}, {2},
{α, β}), ({d}, {4}, {δ})� ({a, b}, {3}, {γ, δ}), ({d}, {4}, {δ})� ({c, d}, {2}, {α, β}),
and the context T is given by:

T1 T2 T3 T4 T5 T6 T7

T1 = ({a}, {1}, {α}) × × × × × ×
T2 = ({d}, {4}, {δ}) × × × × × ×
T3 = ({a, b}, {3}, {γ, δ}) × × × ×
T4 = ({c, d}, {2}, {α, β}) × × × ×
T5 = ({a, b, c, d}, {1, 2, 3, 4}, ∅) × × ×
T6 = ({a, b, c, d}, ∅, {α, β, γ, γ}) × × ×
T7 = (∅, {1, 2, 3, 4}, {α, β, γ, γ}) × × ×

The concept ({T1, T2}, {T3, T4, T5, T6, T7}) has disjoint extent and intent.
In the following, we are going to characterize the reachability clusters as object
concepts in the context of reachable triconcepts.

Proposition 13. Let C be a reachability cluster of triconcepts. Then there exists
a concept in (A,B) ∈ K� with C = A ∩ B.

Proof. Consider (C��, C�). 
�
Proposition 14. If (A,B), (C,D) ∈ B(K�) are two different concepts of the
context K� of reachable triconcepts with A∩B �= ∅ and C ∩D �= ∅, then A∩B �=
C ∩ D.

Proof. Let (A,B), (C,D) ∈ B(K�) be two different concepts. We assume A ∩
B = C ∩ D = M �= ∅. Since they are different concepts, we can conclude that
they have different extents and intents, so A �= C and B �= D. It follows that at
least one of the extents and one of the intents is bigger than M .

If A �= M , B �= M , C = M and D = M (or the other way around) it
contradicts the fact that (C,D) ∈ B(K�) because it is not maximal. We can
conclude that at least the extent of one concept and the intent of the other
concept are bigger than M. Hence, we can assume A �= M and D �= M . Let T1 ∈
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A \M,T2 ∈ M,T3 ∈ D \M . Since T2 ∈ M ⊆ B it follows (T1, T2) ∈ I ⇒ T1 � T2.
Since T2 ∈ M ⊆ C it follows (T2, T3) ∈ I ⇒ T2 � T3. From the transitivity of
the relation � we have T1 � T3. Herefrom we conclude that for every T ∈ A \ M ,
we have (T, T3) ∈ I, but since M ⊆ C and T3 ∈ D, we also have that for every
T ∈ M , we have (T, T3) ∈ I. It follows that T3 should be in the intent of the
concept (A,B), so T3 ∈ B ⇒ T3 ∈ B∩D = M and we reach a contradiction since
we chose T3 ∈ D \ M . Therefore, the two different concepts in B(K�) cannot
have the same intersection of the extent and intent. 
�
Remark 4. The previous proposition proves that, by intersecting the extent and
intent of the concepts in the context K� we cannot obtain the same cluster twice.

Proposition 15. Let (A,B), (C,D) ∈ B(K�). Let M := A ∩ B �= ∅ and N :=
C ∩ D �= ∅. Then M ∩ N = ∅.
Proof. By the previous proposition, we know that M �= N . Assume M ∩N �= ∅.
Let a ∈ A \ M , b ∈ B \ M , x ∈ M \ (M ∩ N), y ∈ M ∩ N , and z ∈ N \ (M ∩ N)
be arbitrary elements. Then we have a�y and y � z wherefrom follows that a� z.
Similarly, we have that from x�y and y � z follows x� z. We also have that y � z,
hence for all g ∈ A, g � z, i.e., z ∈ A� = B.

On the other hand, z � y � x � b, hence z � b for all b ∈ B, i.e., z ∈ B� = A.
We have that z ∈ A ∩ B = M and z ∈ N , thus z ∈ M ∩ N . Contradiction! 
�
Proposition 16. The sets defined in Remark 3, C and I, are equal: C = I.

Proof. The first part of the equivalence was proved in Proposition 12 which
showed that I ⊆ C. For the converse inclusion, let (A,B) ∈ B(K�) be a concept
and M := A ∩ B. Assume M is not maximal and build M ′ := M�� ∩ M�. Then
M ⊆ M ′ which is a contradiction. 
�
Proposition 17. Let (A,B) ∈ B(K�) with A∩B = ∅. Then (A,B) is a concept
of the contraordinal scale (T(K),T(K), �).

Proof. Since � is a preorder, it makes sense to speak about the contraordinal
scale induced by �. The concepts of the contraordinal scale are exactly the pairs
(A,B) with A oder ideal, B order filter, A ∩ B = ∅, and A ∪ B = T(K). Let
(A,B) ∈ B(K�) with A∩B = ∅. Then for every a ∈ A and every b ∈ B, we have
x � y and y � x, i.e., x � y.

Let now x ∈ A and z � x. By transitivity, we get that for every b ∈ B, z � b
and z ∈ A. Hence A is an order ideal. Dually, B is an order filter. We only have
to prove that B = �A. Let y ∈ �A. Then for every a ∈ A, y � a, which is
equivalent to a � y, i.e., y ∈ B. 
�
Concluding all the results obtained above, the following holds true:

Proposition 18. Let T ∈ T(K) be a triconcept. Then the cluster [T ] of T is
generated by the object concept γ(T ) by T �� ∩ T � = [T ]. Herefrom follows that
the reachability clusters are generated by the object concepts of (T(K),T(K), �).
If (A,B) is a proper concept which is not an object concept, then A ∩ B = ∅.
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Remark 5. The above proposition states that reachability clusters are exactly
the object concepts of the reachability context. This result gives a possibility to
display all reachability clusters, along with a navigation support in a concept
lattice, by highlighting the object concepts and deleting all the others, except
the greatest concept.

7 Exploration Strategy and Algorithmics

Considering the theoretical aspects introduced in the previous paragraphs, we
use reachability clusters to propose a strategy for navigating inside and between
them. The purpose of this approach is to obtain a tool that can be used for
navigation and visualization of a triadic context. Basically, starting from a tri-
concept, one can browse through all the others from the reachability cluster of
that triconcept, navigate to another triconcept (not necessarily in the same clus-
ter), moving back and forth among these triconcepts in order to explore as much
as possible the triadic conceptual knowledge landscape.

In order to be able to navigate through the data with the proposed paradigm
the following steps are necessary:

(1) compute the triconcepts,
(2) compute the reachability relation between the triconcepts,
(3) compute the clusters of the tricontext,
(4) compute the partial order relation between the clusters.

The first step can be implemented by using Trias [9]. For the second step, we
use the following procedure.

Listing 1.1. Procedure directlyReachable(T1, T2)

I f T1 . extent ⊆ T2 . extent then
Be = extentPro j ec t ionContext (T1 . extent )
I f (T2 . intent)′

Be
=T2 .modus and

(T2 .modus)′
Be

=T2 . intent then
Return true

I f T1 . intent ⊆ T2 . intent then
Bi = intentPro j e c t i onContext (T1 . intent )
I f (T2 . extent)′

Bi
=T2 .modus and

(T2 .modus)′
Bi

=T2 . extent then
Return true

I f T1 .modus ⊆ T2 .modus then
Bm = modusProjectionContext (T1 .modus)
I f (T2 . extent)′

Bm
=T2 . intent and

(T2 . intent)′
Bm

=T2 . extent then
Return true

Return fa l se
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The procedure checks whether the triconcept T2 is directly reachable from
the triconcept T1. Thereby, extentProjectionContext(T1.extent) represents the
dyadic context obtained by projecting the triadic context on the extent dimen-
sion. This means that all the tricontexts selected have the extent equal or greater
than T1.extent. The derivation (T2.intent)′

Be
is considered to be a dyadic deriva-

tion in the obtained projection context Be.
In order to obtain the reachability clusters, the most efficient method is to

obtain the graph of the triconcepts with the direct reachability relation and
compute the strongly connected components. This can be done by using exist-
ing algorithms for computing strongly connected components in directed graphs
which have linear complexity. So for step 3, we consider the directed graph (since
the direct reachability is not a symmetric relation) having the triconcept set as
nodes and the edges given by the direct reachability relation. Then we obtain
the clusters by computing all strongly connected components of the graph.

As proven earlier in the theoretical aspects of the navigation paradigm, the
clusters correspond to nodes in a lattice, but not all the nodes in the lattice
correspond to a cluster. Therefrom, the set of clusters is a partially ordered.
The fact that they are object concepts in a particular concept lattice helps us
navigate form one cluster to another. Also, this assures that we can reach any
triconcept from the tricontext.

8 Conclusions and Further Work

We have proposed an approach to navigating in the space of triconcepts of a
tricontext. To this end we defined three relatedness notions on the triconcepts
based on extent, intent or modus. For each of these three perspectives, the tri-
concepts related to a given tricontext correspond to the concepts of a dyadic
formal context, whence we can leverage the successful visualization approach of
dyadic FCA by displaying, given a triconcept, all similar triconcepts in a lattice
diagram. From such a diagram, a triconcept can be picked by a user, which will
then be the starting point for the next visualization and navigation step.

We have investigated the reachability relation stemming from this naviga-
tion paradigm. As it turned out, for some tricontexts, not every triconcept can
be reached from every other triconcept, although this seems to be the case in
most practical scenarios. This gave rise to the notion of reachability clusters
obtained as maximal sets of mutually reachable triconcepts. These clusters are
in turn ordered by unidirectional reachability and form a partial order which
always has a greatest element. Navigation can start either in one of the mini-
mal clusters or the user can define its own constraints about included/excluded
objects, attributes and/or conditions. By computing all triconcepts satisfying a
given set of constraints, the user can choose them as navigation starting points.
Not much more is known about the order of reachability clusters, some initial
conjectures about upper bounds on their size or existence of suprema had to
be refuted by counterexamples, which nevertheless provided some interesting
structural insights and may pave the way to further investigations. As of yet,



Towards a Navigation Paradigm for Triadic Concepts 267

the only (and trivial) upper bound for the number of reachability clusters is the
number of triconcepts, which may be exponential in the size of the tricontext.
We, however, still conjecture that there is a polynomial bound.

Besides these open theoretical questions, future work on the topic has to
include an implementation of the described navigation paradigm and user studies
in order to confirm our hypothesis that this way of displaying and browsing the
space of triconcepts is indeed accessible and intuitive for human users.
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Abstract. Knowledge graphs offer a versatile knowledge representation,
and have been studied under different forms, such as conceptual graphs
or Datalog databases. With the rise of the Semantic Web, more and
more data are available as knowledge graphs. FCA has been success-
ful for analyzing, mining, learning, and exploring tabular data, and our
aim is to help transpose those results to graph-based data. Previous
FCA approaches have already addressed relational data, hence graphs,
but with various limits. We propose G-FCA as an extension of FCA
where the formal context is a knowledge graph based on n-ary relation-
ships. The main contributions is the introduction of “n-ary concepts”,
i.e. concepts whose extents are n-ary relations of objects. Their intents,
“projected graph patterns”, mix relationships of different arities, objects,
and variables. In this paper, we lay first theoretical results, in particular
the existence of a concept lattice for each concept arity, and the role of
relational projections to connect those different lattices.

Keywords: Formal concept analysis · Knowledge graph · Semantic
web · Graph pattern · Relation · Projection

1 Introduction

Since the dawn of artificial intelligence, graphs have been used to represent
knowledge as a set of interlinked entities. Notable formalisms are semantic net-
works, conceptual graphs [5], description logics [2], and more recently the Seman-
tic Web [11]. In the last ten years, the number and size of knowledge graphs has
exploded with the development of the Semantic Web, and its W3C standards
(e.g., RDF, SPARQL). Its open side, called Linked Open Data (LOD), is now
made of more than 1000 datasets [17], which contain about 70 billions seman-
tic links (called triples). This effort has been joined by Web giants such as the
Google Knowledge Graph or Facebook Graph Search.

Formal Concept Analysis (FCA) [10] is concerned with the definition of con-
cepts from factual data, and their organization into a generalization ordering, the
concept lattice. It serves many purposes such as knowledge discovery, machine
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learning, information retrieval, or software refactoring. It seems therefore impor-
tant to investigate the application of FCA to knowledge graphs. Only a few
works consider its direct application to graphs. A power context family [18]
is a form of knowledge graph, but there is a distinct concept lattice for each
relation arity. Relational Concept Analysis (RCA) [16] defines concepts that
mix unary and binary relationships, but only in tree-shaped patterns. Graphs
have also been used as object descriptions (e.g., for molecules) as an application
of pattern structures [9,13], but we do not consider those as knowledge graphs
because graph nodes (e.g., individual atoms) are not formal objects. In all thoses
approaches, only unary concepts are defined, i.e., extents are sets of objects, not
relations. Concept lattices of relational structures [12] is an approach based on
category theory that shares with us the use of n-ary relations, and relations as
extents. However, the representation of an extent is not self-contained because it
shares variables with the intent. Similarly, in RCA, an intent contains relational
attributes that refer to other concepts, and so on, possibly in a circular way.

In this paper, we propose an extension of FCA, called Graph-FCA (G-FCA
for short), that is directly applicable to knowledge graphs. Graph entities play
the role of FCA objects, and graph relationships play the role of FCA attributes.
The consequence is that the incidence relation relates tuples of objects (with var-
ious arities) to attributes, rather than single objects to attributes. A key novelty
of our proposal is that an extensional representation is not a set of objects, but
a set of tuples of objects, i.e. a n-ary relation. The particular case of unary rela-
tions corresponds to sets of objects. An intensional representation is defined as
a projected graph pattern (PGP), i.e. as a graph pattern plus a projection tuple.
The projection tuple can have any arity, and the graph pattern can mix rela-
tions with various arities. Both extensional and intensional representation are
self-contained. A G-FCA concept is a pair (extent, intent) where the extent is
an object relation, and the intent is a PGP. This significantly extends previous
FCA approaches because power context families do not mix arities in concept
definitions, and RCA only defines unary concepts based on unary and binary
relations. In fact, PGPs are analogous to Datalog (non-recursive) predicate def-
initions [4], and to SPARQL queries. It suggests that G-FCA could be the basis
for discovering or learning n-ary predicate definitions, and for querying knowl-
edge graphs. The former is akin to Inductive Logic Programming (ILP) [15],
and for the latter, we have already worked out a solution [6]. This paper aims
at providing a formal basis and starting point for those applications.

After some technical preliminaries (Sect. 2), we formalize knowledge graphs
as graph contexts (Sect. 3). We then introduce projected graph patterns (PGP)
and object relations, and define mappings from one to the other based on PGP
inclusion and PGP intersection (Sect. 4). From those definitions, we organize
PGPs into a bounded lattice, and object relations into a complete lattice, from
which we prove the existence of a concept lattice for each concept arity (Sect. 5).
We relate the different concept lattices through projections (Sect. 6). Finally,
we conclude and discuss future work on G-FCA (Sect. 7).
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2 Tuples, Substitutions, and Projections

A tuple is noted x = (x1, . . . , xk), where |x| = k is its arity. To avoid confusion
with other kinds of indices, x[i] can be used as an alternate notation for xi. The
set of all k-tuples over a domain E is noted Ek. The set of all tuples is defined
by E∗ =

⋃
k≥0 Ek. There is only one 0-tuple, denoted by (). We use 1..k to

denote the set of integers from 1 to k.
We assume an infinite set of variables V, and we use letters to denote them

(e.g., x, y). A substitution σ ∈ ΣE is a mapping from variables to elements of E.
A substitution σ can be applied as a function to any structure, and returns that
same structure with any variable x in it replaced by σ(x). For example, given
the substitution σ = {x �→ 1, y �→ z}, we have σ((x, y, z)) = (1, z, z). The empty
substitution is denoted by id , and the composition of two substitutions is denoted
by σ2 ◦σ1, where (σ2 ◦σ1)(x) = σ2(σ1(x)). Given two k-tuples x, y, the notation
σy

x denotes the substitution that maps xi to yi, for every i ∈ 1..k, and any other
variable not in x to itself. It is only well-defined when y is compatible with x,
i.e. for all i �= j ∈ 1..k, xi = xj ⇒ yi = yj , and for all i ∈ 1..k, xi /∈ V ⇒ yi = xi.

A projection π ∈ Πl
k is a function from target indices 1..l to source indices 1..k.

The projection π1 = {1 �→ 3, 2 �→ 1} can be more concisely represented by the
tuple (3, 1). Projections are used to map a tuple to another tuple according to
the following formula: π(x)[i] = x[π(i)], i.e. the i-th element of a projected tuple
is the element at index π(i). The identity projection is denoted by idk ∈ Πk

k, and
the composition of two projections is denoted by π2 ◦ π1, where (π2 ◦ π1)(x) =
π2(π1(x)) (i.e., (π2◦π1)(i) = π1(π2(i))). A permutation is a bijective projection π,
and has an inverse projection π−1 that is the inverse permutation. Note that
the combined applications of a substitution σ and a projection π commute, i.e.
π(σ(x)) = σ(π(x)) for every substitution σ, projection π ∈ Πl

k, and tuple x ∈ Ek.

3 Knowledge Graphs as G-FCA Contexts

The first step is to formalize a knowledge graph as a formal context, which we
call a graph context. The only difference with the classical FCA definition lies in
the use of object tuples (O∗) instead of objects (O) in the incidence relation.

Definition 1 (Graph Context). A graph context is a triple K = (O,A, I),
where O is a set of objects, A is a set of attributes, and I ⊆ O∗ × A is an
incidence relation between object tuples and attributes. The maximum cardinality
of incidences is denoted by |K|.
Figure 1 shows the graphical representation of a small graph context about USA
presidents. It uses a notation similar to conceptual graphs, using rectangles
for entities, and ellipses for relations [5]. A graph context is a directed multi-
hypergraph, where each node is labelled by an object o ∈ O (e.g., “Obama”,
“Hawaii”, “2009”), and where each directed hyperedge is an incidence (o, a) ∈ I.
A hyperedge connects a number of objects o in a fixed order, and is labelled
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by an attribute a ∈ A (e.g., “has president”, “is a country”). If |o| = 2, it is
equivalent to a classical edge linking two nodes: e.g., ((USA,Obama), president).
If |o| = 1, it is equivalent to a classical node labelling: e.g., ((USA), country).
The advantage of this definition is therefore to treat uniformly classical node
labels and edge labels, and to support hyperedges, i.e. n-ary relationships: e.g.,
((Obama,PeaceNobelPrize, 2009 ), awardInYear). Hyperedges are directed such
that each position in the tuple of objects o corresponds to a particular role in
the relationship: e.g., ((USA,Hawaii), state) holds while ((Hawaii ,USA), state)
does not. Nothing forbids to use the same attribute with different arities, but
this amounts to have different relationships with the same name1.

USA country

president

Obama

PeaceNobelPrize

awardInYear

2009

Honolulu

state

Hawaii

birthPlace

capitalcity

state

Arkansas

city

Hope

birthPlace

Clinton

president

marriedTo

firstLady

Michelle1

1

11

111

1

1
11

2

2

2

2 22
2

2 2 2

3

1

1

2
2

Fig. 1. Graphical representation of a graph context about USA presidents.

Graph contexts can easily be translated to/from other well-known relation-
based representations. For example, a graph context is equivalent to the union
of all elements of a power context family. The main limit when translating to
other representations is for n-ary relationships with n ≥ 2. That limit can be
addressed by reifying hyperedges as nodes. In the Semantic Web, objects are
RDF nodes (URIs, literals, and blank nodes), attributes are class and prop-
erty URIs, and incidences are triples. In relational databases, objects are keys
and values, attributes are table names, and incidences are table rows. In Induc-
tive Logic Programming and Datalog, objects are Prolog atoms, attributes are
predicates, and incidences are background knowledge facts. In RCA, objects are
objects, attributes are either context attributes or relation names, and incidences
are either ((o), a) when o has attribute a in some context, or ((o1, o2), r) when
(o1, o2) are in relation r.

1 Similarly to Prolog where predicates are identified by their name and arity.
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4 Projected Graph Patterns and Object Relations

In this section, we introduce the intensional and extensional representations
of G-FCA, as an extension of the sets of attributes and sets of objects of
FCA. Section 4.1 defines projected graph patterns as an extension of the sets
of attributes of FCA. Section 4.2 defines object relations as an extension of the
sets of objects of FCA. Section 4.3 then defines a mapping from projected graph
patterns to object relations, and Sect. 4.4 defines an inverse mapping from object
relations to projected graph patterns. The two mappings are shown to form a
Galois connection in Sect. 5.3, and are the basis of G-FCA concept lattices.

4.1 Projected Graph Patterns as Intensional Representations

A concept intent is an intensional representation that describes everything that a
set of objects have in common. As a particular case, the intent of a single object
is the description of that object. Depending on the FCA variant, an intensional
representation can be a set of attributes, a logical formula [7], or a structure [9].
So, in order to identify G-FCA intensional representations, we may start by
asking what is an adequate object description in G-FCA. An object (e.g., USA)
should at least be described by its adjacent hyperedges (e.g., having a president)
and adjacent objects (e.g., Obama). Then, if adjacent objects are interlinked
(e.g., USA’s president and USA’s first lady are married), this should also appear
in the description. Similarly, the descriptions of adjacent objects (e.g., Obama
being born in Honolulu) should be included as they indirectly impact what the
object is (e.g., USA having a president born in Hawaii).

All in all, this implies that the description of an object is the entire knowledge
graph, or at least the connected component it belongs to if the knowledge graph
is disconnected. Given that knowledge graphs, like the Web, are generally not
disconnected, this seems to imply that all objects have the same description! In
fact, it is like if all objects were represented by the same knowledge graph, the
same world, but each from a different point of view. The different points of view
can be interpreted as different phrasings of the same information: e.g., “Obama
is the president of USA, and was born in Honolulu”, and “Honolulu is the birth
place of the president of USA, Obama”. Therefore, the description of an object o
in a graph context K = (O,A, I) can be defined as the couple (o, I).

It is possible to generalize descriptions from objects to tuples of objects.
For example, the description of the 2-tuple (Honolulu, USA) should contain the
properties of each object, and the relationships (direct and indirect) that link
them (e.g., Honolulu “is the capital of a state of” USA, Honolulu “is the birth
place of a president of” USA). Similarly to single objects, the description of a
tuple of objects o can be defined as (o, I).

Object descriptions need to be generalized to form concept intents shared by
several objects, or several tuples of objects. For instance, we want to describe
what Obama and Clinton have in common, or what (Honolulu, Hawaii) and
(Houston, Texas) have in common. Like in ILP, generalization is obtained in two
ways: (1) replacing objects by variables, and (2) removing hyperedges. This leads
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us to the following definitions of a graph pattern as a generalized incidence
relation, and of a projected graph pattern (PGP) as a generalized description.
In the following definitions, we use X = O ∪ V to denote the domain of nodes
in graph patterns, which can be objects or variables. We assume a graph con-
text K = (O,A, I) that defines objects and attributes.

Definition 2 (Graph Pattern). A graph pattern P ⊆ X ∗ × A is a set of
directed hyperedges with variables and/or objects as nodes, and attributes as
labels. Substitutions are extended to patterns: σ(P ) = {(σ(v), a) | (v, a) ∈ P}.
Graph patterns have the same type as incidence relations, only allowing
variables in addition to objects as nodes. For instance, the pattern Pex =
{((x, y), president), ((y,Honolulu), birthPlace)} describes any situation where
“some entity x has as a president another entity y, which has birth place Hon-
olulu”. Every graph pattern can be seen as a small graph context, abstracted over
some objects by variables. We are primarily interested in connected patterns, but
disconnected patterns are not excluded.

Definition 3 (Projected Graph Pattern). A projected graph pattern
(PGP) is a couple Q = (x, P ) where P is a graph pattern, and x ∈ X ∗, called
projection tuple, is a tuple of variables and possibly objects. |Q| = |x| denotes
the arity of the PGP. We note Q the set of PGPs, and Qk the subset of PGPs
having arity k. Projections are extended to PGPs: π(Q) = (π(x), P ).

A projection tuple can be seen as a tuple of objects abstracted with variables.
For instance, the PGP Qex = ((x), Pex ) using the above pattern describes “any
entity x having a president born in Honolulu”. Pattern hyperedges can be seen
as constraints on variables. A variable that occurs in the projection tuple but not
in the pattern is unconstrained, and can take any object as value. A variable that
occurs in the pattern but not in the projection tuple is existentially quantified
with respect to projected variables. In Qex , there must exist an entity y that the
president of x and is born in Honolulu, but which one and how many does not
matter.

Objects and duplicates in the projection tuple x define equality constraints
between the indices of x.

Definition 4 (Equality Constraints). Let x be a projection tuple of arity k.
Its set of equality constraints is defined by

Eq(x) = {(i, j) | i < j ∈ 1..k, xi = xj} ∪ {(i, o) | i ∈ 1..k, o ∈ O, xi = o}.

A set of equality constraints generates an equivalence relation between projection
tuple indices and objects, and is confused with it in the following.

For example, the set of equality constraints of the projection tuple (x, o, x, y) is
{(1, 3), (2, o)}, and generates three equivalence classes: {1, 3}, {2, o}, and {4}.
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Equality constraints come in addition to hyperedge constraints from the graph
pattern P . By allowing objects in projection tuples, we allow object descrip-
tions in the form (o, I) to act as fully instantiated PGPs. By allowing dupli-
cates, we allow a single entity to play different roles, like when searching a
common PGP between the pairs (Canberra,Sydney) and (Paris,Paris): e.g.
((x, y), {((z),Country), ((z, x), capital), ((z, y), biggestCity)}).

As said above, PGPs are an extension of the sets of attributes of
FCA. For instance, the set of attributes {a, c, d} corresponds to the PGP
((x), {((x), a), ((x), c), ((x), d)}), where x is a variable. Indeed, in FCA, {a, c, d}
covers all objects that have at least attributes a, c, d. In G-FCA, this can be
expressed as a node labelled by a, c, d, hence the introduction of the variable x.
In general, a set of attributes Y corresponds to the PGP ((x), {((x), a) | a ∈ Y }).

PGPs are comparable to non-recursive predicate definitions, and to SPARQL
ASK/SELECT conjunctive queries. For example, the definition of the ‘uncle’
predicate

uncle(x, y) :⇔ ∃z.parent(x, z) ∧ brother(z, y)

is equivalent to the PGP ((x, y), {((x, z), parent), ((z, y), brother)}). Similarly,
the SPARQL SELECT query

SELECT ?x ?y WHERE
{ ?x a :Film . ?x :genre :ScienceFiction . ?x :director ?y }

is equivalent to the PGP ((x, y), {((x),Film), ((x,ScienceFiction), genre),
((x, y), director)}). The SPARQL ASK queries (yes/no questions) correspond
to PGPs whose arity is zero (x = ()).

4.2 Object Relations as Extensional Representations

In our introduction of PGPs as intensional representations, we made a shift from
single objects to tuples of objects. That implies that extensional representations
are sets of tuples of objects. With the constraint that all member tuples have
the same arity, we obtain that extensional representations are object relations.

Definition 5 (Object Relation). An object relation is a set R ⊆ Ok, for
some arity |R| = k, of object tuples. We note R the set of object relations, and
Rk the subset of relations having arity k. Projections are extended to relations:
π(R) = {π(o) | o ∈ R}.
R0 has only two relations: {()} and {}. It can be seen as the Boolean type, with
the two relations meaning “true” and “false” respectively. R1 has one relation
for each set of objects X ⊆ O. It therefore corresponds to FCA extensional
representations. For instance, the set of objects {o1, o3, o4} corresponds to the
object relation {(o1), (o3), (o4)}, simply embedding each object into a 1-tuple.
In general, a set of objects X corresponds to the object relation {(o) | o ∈ X}.
Object relations are comparable to the interpretations of a predicate in classical
logic, and to SPARQL query results.
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4.3 From Patterns to Relations

We here define a mapping from PGPs to object relations, i.e. from intensional
representations to extensional representations. It defines for each PGP its exten-
sion, i.e. its set of instances in a given graph context. An instance is a tuple of
objects whose description (o, I) “contains” the PGP modulo a substitution.

Definition 6 (PGP Inclusion). Let Q1 = (x1, P1), Q2 = (x2, P2) be two
PGPs with same arity: |Q1| = |Q2|. Q1 is included in Q2, or equivalently Q2

contains Q1, which is denoted by Q1 ⊆q Q2 iff there exists an substitution σ s.t.
σ(x1) = x2 and σ(P1) ⊆ P2.

Q1 ⊆q Q2 :⇔ ∃σ ∈ ΣX : σ(x1) = x2 ∧ σ(P1) ⊆ P2

That definition is careful to account for variable renamings by introducing a sub-
stitution from Q1-variables to Q2-nodes. Indeed, like in logical formulas, variable
names are irrelevant to the meaning of PGPs.

Definition 7 (Extension). Let K = (O,A, I) be a graph context. The exten-
sion of a k-PGP Q = (x, P ), denoted by ext(Q), is defined by

ext(Q) := {o ∈ Ok | Q ⊆q (o, I)}

The above definitions say that for every occurence of the pattern P in the graph
context (σ(P ) ⊆ I), there is an instance of Q (σ(x)). Conversely, if o is an
instance of Q, then Q = (x, P ) must be a generalization of its description (o, I),
i.e. replacing some objects by variables and relaxing some constraints.

For example, in the graph context of Fig. 1, the PGP ((x, y), {((USA, x),
president), ((x, z), birthPlace), ((USA, y), state), ((y, z), city)}) has the following
extension: {(Obama,Hawaii), (Clinton,Arkansas)}. That PGP retrieves the list
of USA presidents along with the state of their birth place.

The above definition is compatible with the interpretation of a predicate
definition in classical logic: our incidence relation I corresponds to a model, and
our substitution σ corresponds to a variable assignment. It is also compatible
with SPARQL query results: our incidence relation I corresponds to a RDF
graph, and our substitution corresponds to a solution mapping. Finally, it is
consistent with classical FCA in the case where only 1-tuples are used, i.e.,
when Q = ((x), {((x), a) | a ∈ Y }) for some set of attributes Y ⊆ A. Indeed,
by casting 1-tuples to their element, and picking σ = {x �→ o}, we obtain the
classical FCA definition: ext(Y ) = {o ∈ O | ∀a ∈ Y : (o, a) ∈ I}.

Note that substitutions used in PGP inclusion are homomorphisms, and not
isomorphisms, because two different variables can be substituted by a single
node. This departs from previous work in graph mining and FCA [13,19] which
are based on isomorphisms, but this follows classical logic and SPARQL querying
as explained above.
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4.4 From Relations to Patterns

We here define a mapping from object relations to PGPs, i.e. from extensional
representations to intensional representations. It defines for each object relation
its intension as the “PGP intersection” of the description of all tuples o ∈ R.

Definition 8 (PGP Intersection). Let {Qi = (xi, Pi)}i∈1..n be a finite and
non-empty collection of n PGPs of same arity k. Let ν be a fixed bijection from
X n to X s.t. ν(x, . . . , x) = x for all x ∈ X . The PGP intersection ∩q{Qi}i∈1..n

is the PGP Q = (x, P ) of arity k, where:

– x = (x1, . . . , xk), where for all j ∈ 1..k, xj = ν(x1[j], . . . , xn[j]),
– P = {((ν(v1), . . . , ν(vk)), a) | k ∈ 1..|K|,∀j ∈ 1..k : vj ∈ X n, a ∈ A,

∀i ∈ 1..n : ((v1[i], . . . , vk[i]), a) ∈ Pi}.
Definition 9 (Intension). Let K = (O,A, I) be a graph context. The intension
of a non-empty object relation R ∈ Rk, denoted by int(R), is defined by

int(R) = ∩q{(o, I)}o∈R

The idea of PGP intersection is to define a node ν(vj) for every possible align-
ment of n-nodes {vj [i]}i∈1..n, one from each PGP Qi of the collection. Then, if an
hyperedge holds at every position i ∈ 1..n of k alignment nodes (v1, . . . , vk), then
it is a shared structure and it belongs to the pattern of the PGP intersection.
The projection tuple is then derived from the alignment of the projection tuples
of the collection. In practice, the connected components of the graph pattern P
that do not contain any element of the projection tuple can be omitted (reduced
intension) because they do not affect the extension of the PGP intersection. For
the same reason, hyperedges that are in the incidence relation I can be omitted.

For example, in the graph context of Fig. 1, the object relation R =
{(USA,Hope), (USA,Honolulu)} has the following reduced intension: ((USA, x),
{((USA, y), state), ((y, x), city), ((USA, z), president), ((z, x), birthPlace)}). The
obtained variables are derived from the following alignments: x = ν(Hope,
Honolulu), y = ν(Arkansas,Hawaii), z = ν(Clinton,Obama). Through
alignments, PGP intersection does not only provide a common PGP, but
also an explanation of how each instance relates to the others. PGP
intersection also applies to PGPs with variables. For example, the intersection
of Q1 = ((x1), {((x1, y1), a), ((x1, z1), c), ((y1, z1), b)}) and Q2 = ((x2),
{((x2, y2), a), ((x2, y2), c), ((y2, y2), b)} is Q = ((x), {((x, y), a), ((x, z), c), ((y, z),
b)}),which is isomorphic to Q1. Here, both y1, z1 are aligned with y2, hence
generating two variables y = ν(y1, y2) and z = ν(z1, y2). Note that Q is not sub-
graph isomorphic to Q2. Indeed, under isomorphism, PGP intersection would
be the problem of Maximum Common Subgraphs (MCS). A drawback of MCS
is that there is generally not a unique solution, so that sets of graph patterns
have to be used for intensional representations [13]. Moreover, the MCSs can be
less specific. For example, the MCSs of Q1 and Q2 patterns are {((x, y), a)} and
{((x, z), c)}.
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The above definitions of PGP intersection and intension are consistent with
classical FCA, where only unary relations (sets) are used. In this case, every PGP
needs only one variable. Therefore, given a set of objects X = {oi}i∈1..n ⊆ O,
the intension of X has one projected variable x = ν(o1, . . . , on), and a graph
pattern like P = {((x), a) | a ∈ A,∀i ∈ 1..n : ((oi), a) ∈ I}. By casting 1-tuples
to their element, we obtain the classical FCA definition: int(X) = {a ∈ A | ∀o ∈
X : (o, a) ∈ I}.

5 A Family of Graph Concept Lattices

In order to prove that (ext , int) forms a Galois connection, and hence the exis-
tence of a graph concept lattice for each concept arity, we first define partial
orderings for each arity, over both PGPs and object relations. We also show
that PGPs form a bounded lattice, and object relations a complete lattice.

5.1 Lattices of k-PGPs

The partial ordering over PGPs should correspond to a generalization order-
ing over them. Intuitively, a PGP Q1 is more general than a PGP Q2 if
Q1 is included in Q2: Q1 ⊆q Q2 (see Definition 6). Indeed, assume Q2 =
((x, y), {((x), country), ((x, y), president)}) representing the relationship between
countries and their president. Then, Q1 = ((x, y), {((x, y), president)}) repre-
senting the relationship between different kinds of organizations and their pres-
ident is more general than Q2 because it relaxes the constraint saying that the
organization should be a country. Generalization by constraint relaxation is also
found in ILP to define subsumption between learning hypotheses.

Recall that PGP inclusion is defined modulo a substitution, and that a sub-
stitution can map two different nodes in Q1 to a single node in Q2. The lat-
ter corresponds to adding an equality constraint between two entities, which is
indeed a specialization. It enables to have

((x, y), {((x, y), president), ((x′, y), president)}) ⊆q ((x, y), {((x, y), president)}),

by mapping both x, x′ to x. Note that the first PGP does not state that y is the
president of two organizations, but rather states twice that y is a president, which
is equivalent to the second PGP. As the reverse inclusion trivially holds, the two
PGPs are equivalent representations of the same thing. We note Q1 ≡q Q2 when
Q1 ⊆q Q2 and Q2 ⊆q Q1. PGP inclusion is compatible with inclusion between
sets of attributes in FCA. Indeed, as a single variable is involved in FCA,the
substitution must be the identity function, and the definition of Q1 ⊆q Q2 boils
down to P1 ⊆ P2.

We prove that ⊆q is a preorder, and hence that a partially ordered set is
obtained for patterns by considering equivalence classes of PGPs modulo ≡q.

Lemma 1. PGP inclusion ⊆q is a preorder over PGPs.
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Proof. Reflexivity. Given a PGP Q, it suffices to take σ = id to verify σ(P ) ⊆ P
and σ(x) = x, and hence Q ⊆q Q.

Transitivity. Assume PGPs Q1, Q2, Q3 s.t. Q1 ⊆q Q2 and Q2 ⊆q Q3. Hence,
there exists two substitutions σ1, σ2 s.t. σ1(P1) ⊆ P2, σ2(P2) ⊆ P3, σ1(x1) =
x2, and σ2(x2) = x3. Then, it suffices to take σ = σ2 ◦ σ1 to verify σ(P1) =
σ2(σ1(P1)) ⊆ σ2(P2) ⊆ P3, and also σ(x1) = σ2(σ1(x1)) = σ2(x2) = x3. Hence
Q1 ⊆q Q3. �

Before showing that the pre-ordering over k-PGPs forms a bounded lattice mod-
ulo ≡q, for every arity k, we first need to define PGP union to act as a supremum.
To this purpose, we need to introduce an additional maximal PGP, denoted
by Ωq, that is defined as containing all PGPs (∀Q : Q ⊆q Ωq), and only included
in itself (∀Q : Ωq ⊆q Q ⇒ Q = Ωq). It can therefore be used to extend the
definition of PGP intersection to empty collections: ∩q∅ := Ωq.

Definition 10 (PGP Union). Let {Qi = (xi, Pi)}i∈1..n be a finite collection
of n PGPs of same arity k, using disjoint sets of variables. The PGP union
∪q{Qi}i∈1..n is either the PGP (x, P ) of arity k verifying

– Eq(x) =
⋃

i∈1..n Eq(xi)
– P =

⋃
i∈1..n{σx

xi
(Pi)}

when Eq(x) has no two different objects in a same equivalence class; or else Ωq.

The assumption that PGPs do not share any variable is there to avoid vari-
able capture. It entails no loss of generality because variable can be renamed
freely. PGP union corresponds to add both equality and edge constraints of all
PGPs Qi, and is logically equivalent to a conjunction. When a projection tuple
that satisfies all equality constraints can be formed, it is used as a projection
tuple of the PGP union, and also to merge variables (σx

xi
) from the different pro-

jection tuples xi in the collection of PGPs. Given a set of equality constraints,
e.g. {(1, 3), (2, o)}, a projection tuple is formed by using a single node for all
indices of an equivalence class (e.g., 1 and 3), and by choosing as a node the
object in the equivalence class if there is one (e.g., o for 2), or a fresh variable
otherwise (e.g., x for 1 and 3). The case where several objects belong to a same
equivalence class corresponds to a contradiction between the differents PGPs,
and the maximal PGP Ωq is used to denote such a contradiction. The extension
of Ωq is always the empty relation because it is only included in itself, and not
in any object tuple description. The PGP union of an empty collection corre-
sponds to an empty set of constraints, and defines the minimal PGP ∅q = (x, ∅),
where x is a tuple of k distinct variables. Finally, PGP union is compatible with
the union of sets of attributes in FCA.

We first prove two lemmas stating that ∪q and ∩q are respectively the supre-
mum and infimum of k-PGPs, before stating the main theorem about bounded
lattices of k-PGPs.

Lemma 2. Let Q1, Q2 be two PGPs. Their PGP union Q1 ∪q Q2 is their supre-
mum relative to query inclusion ⊆q.
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Proof. Let Q = Q1 ∪q Q2. To prove that Q is an upper bound, it suffices to
prove that it contains both Q1 and Q2. If Q = Ωq, then it contains both Q1

and Q2 by definition. Otherwise Q = (x, P ). To prove Q1 ⊆q Q, it suffices to
choose σ1 = σx

x1
, which is well-defined because Eq(x1) ⊆ Eq(x), and to prove

σ1(x1) = x and σ1(P1) ⊆ P . This is easily obtained from the definition of Q.
The proof of Q2 ⊆q Q is identical with σ2 = σx

x2
.

To prove that Q is the least upper bound (the supremum), we have to prove
that every PGP Q′ that contains both Q1 (via σ1) and Q2 (via σ2) also con-
tains Q. If Q′ = Ωq, then Q ⊆q Q′ by definition of Ωq. Otherwise, Q′ = (x′, P ′).
From hypotheses σ1(x1) = x′ and σ2(x2) = x′, we obtain that Eq(x1) ⊆ Eq(x′)
and Eq(x2) ⊆ Eq(x′). Then, we have Eq(x) = Eq(x1) ∪ Eq(x2) ⊆ Eq(x′), and
hence that σ = σx′

x is well-defined. We can then easily prove that σ(x) = x′ and
σ(P ) ⊆ P ′, and hence that Q ⊆q Q′. �

Lemma 3. Let Q1, Q2 be two PGPs. Their PGP intersection Q1 ∩q Q2 is their
infimum relative to query inclusion ⊆q.

Proof. To prove that Q1 ∩q Q2 is a lower bound, it suffices to prove that Q
is included in both Q1 and Q2. To prove Q ⊆q Q1, it suffices to choose the
substitution σ1(x) = (ν−1(x))[1], and to prove that σ1(x) = x1 and σ1(P ) ⊆ P1.
This is easily obtained from the definition of Q. The proof of Q ⊆q Q2 is identical
with σ2(x) = (ν−1(x))[2].

To prove that Q1 ∩q Q2 is the greatest lower bound (the infimum), we
have to prove that every PGP Q′ that is included in both Q1 (via σ1)
and Q2 (via σ2) is also included in Q. To that purpose, it suffices to choose
σ(x′) = ν(σ1(x′), σ2(x′)), and to prove that σ(x′) = x and σ(P ′) ⊆ P . This
can be obtained from the definition of Q, and from the hypotheses σ1(x′) = x1,
σ1(P ′) ⊆ P1, σ2(x′) = x2, and σ2(P ′) ⊆ P2. �

Theorem 1. For every arity k, the algebraic structure (Qk,⊆q,∩q,∪q,Ωq, ∅q)
forms a bounded lattice, module ≡q.

Proof. The proof follows immediately from above lemmas and definitions. �

5.2 Complete Lattices of Object k-Relations

The partial ordering over object relations should be consistent with the partial
ordering on PGPs if we are to obtain concept lattices. Therefore, it should cor-
respond to a form of generalization at the extensional level. A PGP can be made
more general by relaxing constraints, which entails a larger extension. As object
relations are sets of object tuples, we simply use set inclusion to partially order
them. Given that Rk is the powerset of Ok, the poset (Rk,⊆,∩,∪, Ok, ∅) is a
complete lattice, with set intersection ∩ as infimum, set union ∪ as supremum,
full relation Ok as top, and empty relation ∅ as bottom.



A Proposal for Extending Formal Concept Analysis to Knowledge Graphs 283

5.3 Lattices of Graph k-Concepts

In order to prove the existence of a concept lattice for each arity, it suffices to
prove that the two mappings between extensional and intensional representations
form a Galois connection.

Theorem 2 (Galois Connection). Let K = (O,A, I) be a graph context. For
every arity k, the pair of mappings (ext , int) forms a Galois connection between
(Rk,⊆) and (Qk,⊆q), i.e. for every object relation R ∈ Rk and PGP Q ∈ Qk,

R ⊆ ext(Q) ⇐⇒ Q ⊆q int(R)

Proof. R ⊆ ext(Q) ⇐⇒ ∀o ∈ R : o ∈ ext(Q)
⇐⇒ ∀o ∈ R : Q ⊆q (o, I) (Definition 7)
⇐⇒ Q ⊆q ∩q{(o, I)}o∈R (Lemma 3)
⇐⇒ Q ⊆q int(R) (Definition 9) �
Corollary 1. From (ext , int) being a Galois connection and from (Rk,⊆,
∩,∪, Ok, ∅) and (Qk,⊆q,∩q,∪q,Ωq, ∅q) being lattices, we have the following
propositions for every relations R,R1, R2 ∈ Rk, and every PGP Q,Q1, Q2 ∈ Qk,
for any arity k:

(1a) Q1 ⊆q Q2 ⇒ ext(Q1) ⊇ ext(Q2) (1b) R1 ⊆ R2 ⇒ int(R1) ⊇q int(R2)
(2a) Q ⊆q int(ext(Q)) (2b) R ⊆ ext(int(R))
(3a) int(R) ≡q int(ext(int(R))) (3b) ext(Q) = ext(int(ext(Q)
(4a) int(R1 ∪ R2) ≡q int(R1) ∩q int(R2) (4b) ext(Q1 ∪q Q2) = ext(Q1) ∩ ext(Q2)

(5a) int(∅) ≡q Ωq (5b) ext(∅q) = Ok

From the Galois connection, graph concepts can be defined and organized into
concept lattices, like in classical FCA, with one concept lattice for each arity k.

Definition 11 (Graph Concept). Let K = (O,A, I) be a graph context.
A graph concept of K is a pair (R,Q), made of an object relation (the extent)
and a PGP (the intent), such that R = ext(Q) and Q ≡q int(R). The arity of a
graph concept is the arity of its extent and intent, which have to be equal.

Theorem 3 (Graph Concept Lattices). The set of graph k-concepts Ck, par-
tially ordered by ≤, which is defined by (R1, Q1) ≤ (R2, Q2) : ⇐⇒ R1 ⊆ R2 ⇐⇒
Q2 ⊆q Q1, forms a bounded lattice (Ck,≤,∧,∨,�,⊥) where:

1. (R1, Q1) ∧ (R2, Q2) = (R1 ∩ R2, int(ext(Q1 ∪q Q2)),
2. (R1, Q1) ∨ (R2, Q2) = (ext(int(R1 ∪ R2)), Q1 ∩q Q2),
3. � = (Ok, int(ext(∅q))),
4. ⊥ = (∅,Ωq).

In the example context of Fig. 1, the most interesting graph concept has as
an extent the set of triples (president, city, state): {(Obama, Honolulu, Hawaii),
(Clinton, Hope, Arkansas)}. Its intent is the PGP ((p,c,s), {((USA,p),president),
((p,c), birthPlace), ((USA,s),state), ((s,c),city)}). Other graph concepts are
either projections of it (see Sect. 6), concepts with singleton extents (having one
tuple), the top concepts (having all tuples), and the bottom concepts (having
no tuple).
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6 Projections Between Concept Lattices

In the previous section, we have shown the existence of a family of graph concept
lattices, one for each arity k ≥ 0. This is analogous to previous work with power
context families [18], with the important difference that each k-concept has as
an intent a PGP that may combine relationships of different arities. As FCA
lattices are generally used as search spaces for knowledge discovery, it is useful
to relate concepts from different lattices, i.e. having different arities. To that
purpose, we use projections, a fundamental operation in relational algebra (see
Sect. 2 for definitions and notations). A projection enables to permute, duplicate,
and remove columns in relations and PGPs. Our projections differ from those of
pattern structures, which are used to simplify graph patterns [9].

We first demonstrate that the set of all concept extents is closed by projec-
tion because the projection of the extension of a PGP is the extension of the
projection of the PGP.

Lemma 4. For all Q ∈ Qk, and π ∈ Πl
k, we have: π(ext(Q)) = ext(π(Q)).

Proof. π(ext(Q)) = π({o | ∃σ : σ(x) = o ∧ σ(P ) ⊆ I})
= {π(o) | ∃σ : σ(x) = o ∧ σ(P ) ⊆ I} = {o′ | ∃σ : π(σ(x)) = o′ ∧ σ(P ) ⊆ I}
= {o′ | ∃σ : σ(π(x)) = o′ ∧ σ(P ) ⊆ I} = ext((π(x), P )) = ext(π(Q)) �

Theorem 4. Let π ∈ Πl
k be a projection. For every k-concept (R,Q),

(π(R), int(ext(π(Q)))) is a l-concept. The latter is called the π-projection of
concept (R,Q), denoted by π(R,Q).

Proof. From Lemma 4, we have π(R) = π(ext(Q)) = ext(π(Q)), so that
π(R) is a l-concept extent. The corresponding l-concept intent is int(π(R)) =
int(π(ext(Q))) = int(ext(π(Q))). �

For example, let P = {((x), country), ((x, y), president)} be a graph pattern
relating a country to its president. The PGP Q = ((x, y), P ) returning pairs
(country,president) can be projected to the PGP ((y), P ) returning all presidents
of a country, or to the PGP ((x), P ) returning all countries having a president.
In the particular case where k = l, the two concepts belong to the same lattice.
For example, the PGP ((y, x), P ) is a permutation of Q. Therefore, there may be
up to k! permutations of a single k-concept in the same concept lattice. As those
permutations are equivalent from the point of view of knowledge discovery, a
concept lattice could in principle be made smaller by retaining only one of the
permutations. Note that a concept can sometimes be equal to some of its permu-
tations. For example, The query ((x, y), {((x, z), parent), ((y, z), parent)}), which
defines the sibling relationship, has the same extension as its permutation (y, x).
This equality comes from a symmetry in the PGP.

The existence of a projection between two concepts defines a pre-ordering ≤π

on the set of all concepts C =
⋃

k≥0 Ck. Indeed, it satisfies transitivity (by
composing projections), reflexivity (by using the identity projection), but not
antisymmetry (consider a permutation and its inverse). Two concepts are then
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equivalent (=π) if they are a permutation one of the other. The example con-
cept from Sect. 5.3, which contains triples (president, city, state), has 6 distinct
permutations, and 2 × 3 projections of arity 2, and 3 projections of arity 1. The
fact that all those projections have the same number of instances as the exam-
ple concept reveals functional dependencies from any column to the others. For
instance, the president determines the city and state. The functional dependency
from state to president would be violated if two presidents in the concept extent
were associated to the same state. This example suggests that the partial order-
ing ≤π can support the discovery of functional dependencies, and may generalize
previous work on multi-valued contexts [1].

7 Conclusion and Future Work

We have proposed an extension of FCA, G-FCA, where objects are replaced by
tuples of objects. In G-FCA, the context is a knowledge graph, concept intents are
projected graph patterns (PGP), and concept extents are object relations. A set-
like algebra of PGPs is defined with inclusion, intersection, and union. PGP
inclusion is related to graph matching, and hence to query answering. PGP inter-
section is related to finding common subgraphs under homomorphism, and hence
to data mining and machine learning. The constructive definitions of PGP opera-
tions already allow for a direct implementation, but more efficient algorithm have
to be devised for practical use. Another objective is to clarify the relationship
between G-FCA and previous FCA works, notably power content families and
concept graphs [18], Relational Concept Analysis [16], EL-implication bases [3],
and concept lattices of relational structures [12].

The results presented in this paper have yet a limited utility, and it remains
to show how FCA applications can be transposed to G-FCA. The most common
application is to compute and visualize concept lattices. The main difficulty is the
huge number of graph patterns, even closed ones [19]. Restrictions can be applied
to PGPs (e.g., fully connected patterns, bounded arity, graph isomorphism), but
those will probably not be enough in practice due to the combinatorial explosion
of graph patterns. Another common application is the discovery of implication
rules. In G-FCA, this would correspond to unsupervised ILP, but limited to exact
rules. Given how costly ILP is in the supervised setting, the computation of all
implication rules could be a challenge. Alternately, those implications could be
computed on the need, specifically for each (tuple of) object(s) to be classified
[8,14]. Yet another application is to use the concept lattice as a search space for
information retrieval. In fact, we have already formalized and implemented such
an application [6], and it was the inspiration for the current work.

References
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Abstract. The adjacency matrix of a graph is interpreted as a formal
context. Then, the counterpart of Formal Concept Analysis (FCA) tools
are introduced in graph theory. Moreover, a formal context is seen as
a Boolean information table, the structure at the basis of Rough Set
Theory (RST). Hence, we also apply RST tools to graphs. The peculiarity
of the graph case, put in evidence and studied in the paper, is that both
FCA and RST are based on a (different) binary relation between objects.

1 Introduction

The aim of this work is to define a framework that enables us to apply Formal
Concept Analysis (FCA) tools, and to some extent also Rough Set Theory (RST)
tools, to graphs. In order to do so, we will view the adjacency matrix of a
graph as a formal context (Boolean Information Table in case of RST). It is well
known that RST and FCA are similar but complementary disciplines that can
be integrated in several ways. A key difference between the two theories is the
binary relation on which they are based, in the RST case it is a relation between
objects and in the FCA case between objects and properties. However, in this
particular framework the two theories are even closer, since objects coincide with
attributes. The two relations remain different but they can be interpreted in the
same setting, understanding their complementarity. We will consider not only the
standard operators: formal concepts in FCA and lower/upper approximations in
RST but a more general framework arising from the theory of oppositions [2].

The relationship between graphs and FCA is not new, however it has not
yet been clearly outlined and developed. The paper [7] defines a bipartite graph
from a formal context and proves that (X,Y ) is a concept iff X ∪ Y is a maxi-
mal bi-clique of the corresponding graph. The same result is mentioned briefly
in [3]. Here, we work in the other direction: starting from a general graph, we
use the adjacency matrix to define a formal context. Then, we show that con-
cepts coincide with bipartitions of the maximal bi-cliques (see Theorem3.1). This
result is also mentioned in [9], but with no formalization nor proof. We focus
then on complete and complete bipartite graphs studying their concept lattice.
In Sect. 3.3 some considerations on other Galois connections than the standard
c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 287–302, 2015.
DOI: 10.1007/978-3-319-19545-2 18
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one are given. Section 4 is devoted to rough sets: we study the partition and the
approximations that can be introduced on a given graph.

2 Preliminary Notions

The basic notions of Graph Theory, Formal Concept Analysis and Rough Set
Theory are recalled.

2.1 Graphs

We denote by G = (V (G), E(G)) a finite simple (i.e. no loops and no multiple
edges are allowed) undirected graph, with vertex set V (G) = {v1, . . . , vn} and
edge set E(G). If v, v′ ∈ V (G), we will write v ∼ v′ if {v, v′} ∈ E(G) and
v � v′ otherwise. We denote by Adj(G) the adjacency matrix of G. We recall
that Adj(G) is a n × n matrix (aij) such that aij := 1 if vi ∼ vj and aij := 0
otherwise. If v ∈ V (G), we set

NG(v) := {w ∈ V (G) : {v, w} ∈ E(G)}.

NG(v) is usually called neighborhood of v in G. Graphs of particular interest for
our discussion will be complete and bipartite ones.

Definition 2.1. The complete graph on n vertices, denoted by Kn, is the graph
with vertex set {v1, . . . , vn} and such that {vi, vj} is an edge, for each pair of
indexes i �= j.

Definition 2.2. A graph B = (V (B), E(B)) is said bipartite if there exist two
non-empty subsets B1 and B2 of V (B) such that B1 ∩ B2 = ∅, B1 ∪ B2 = V (B)
and E(B) ⊆ {{x, y} : x ∈ B1, y ∈ B2}. In this case the pair (B1, B2) is called
a bipartition of B and we write B = (B1|B2). It is said that B = (B1|B2) is a
complete bipartite graph if E(B) = {{x, y} : x ∈ B1, y ∈ B2}. If p and q are
two positive integers and B1 = {x1, . . . , xp}, B2 = {y1, . . . , yq}, we denote by
Kp,q the complete bipartite graph having bipartition (B1, B2).

Definition 2.3. A biclique B of G is a complete bipartite subgraph of G. We
say that a biclique B = (B1|B2) of G is maximal if for any biclique B′ = (B′

1|B′
2)

of G such that B1 ⊆ B′
1 and B2 ⊆ B′

2 it results that B1 = B′
1 and B2 = B′

2.

2.2 Formal Concept Analysis

We start by recalling the general definition of formal contexts and their basic
properties (see [6]).

Definition 2.4. A Formal Context is a triple K = (Z,M,R), where Z and M
are sets and R ⊆ Z × M is the binary relation involving them. The elements of
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Z and M are called objects and attributes (or properties) respectively. We write
gRm instead of (g,m) ∈ R. If O ⊆ Z and Q ⊆ M , we set

O↑ := {m ∈ M : (∀g ∈ O) gRm} ⊆ M

and
Q↓ := {g ∈ Z : (∀m ∈ Q) gRm} ⊆ Z.

In this way the following two mappings are defined: ↑ : P(Z) → P(M), O �→ O↑

and ↓ : P(M) → P(Z), Q �→ Q↓. By suitable compositions of these two mappings
we are able to construct the two new mappings ∗ : P(Z) → P(Z), O �→ O↑↓

and � : P(M) → P(M), Q �→ Q↓↑, which are closure operators on, respectively,
P(Z) and P(M) [6].

Definition 2.5. A concept of the Formal Context K = (Z,M,R) is a pair
(O,Q), where O ⊆ Z, Q ⊆ M , O↑ = Q and Q↓ = O. If (O,Q) is a concept, O
is called extent of (O,Q) and Q is called intent of (O,Q). We denote by B(K)
the set of all the concepts of the Formal Context K.

If (O1, Q1) and (O2, Q2) are two concepts in B(K), it is usual to consider
the relation (O1, Q1) � (O2, Q2) if and only if O1 ⊆ O2 (that is equivalent to
Q1 ⊇ Q2). Then � is a partial order on B(K) and (B(K),�) is a complete lattice,
called concept lattice (or also Galois lattice) of the Formal Context K, whose meet
and join operations on an arbitrary family of formal concepts {(Oα, Qα) : α ∈ A}
are the following:

∧

α∈A

(Oα, Qα) =
( ⋂

α∈A

Oα, (
⋃

α∈A

Qα)�
)

∨

α∈A

(Oα, Qα) =
(
(
⋃

α∈A

Oα)∗,
⋂

α∈A

Qα

)

2.3 Rough Set Theory

In the context of RST a table representing a formal context is named Boolean
information table (or Boolean information system) [10]. More formally, a Boolean
information table is a structure I = 〈U,Att, V al, F 〉, where U (called universe
set) is a non empty set of objects, Att (called attribute set) is a non empty set
of attributes, V al = {0, 1} is called the value set (in the general case it is not
assumed to be Boolean) and F : U × Att → V al (called information map) is an
application from the direct product U × Att into the value set V al.

If A ⊆ Att, it is usual to consider the binary relation IA on the universe set
U defined as follows: if u, u′ ∈ U then

uIAu′ ⇐⇒ F (a, u) = F (a, u′),∀a ∈ A. (1)

The binary relation IA is an equivalence relation on U and it is called A-
indiscernibility relation. If u ∈ U , we denote by [u]A the equivalence class of
u with respect to IA. We also set πA(I) := {[u]A : u ∈ U} and we call πA(I) the
A-indiscernibility partition of the information system I.
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Definition 2.6. Let I = 〈U,Att, V al, F 〉 be an information table, A ⊆ Att and
Y ⊆ U . The A-lower approximation of Y is the following subset of U :

lA(Y ) := {x ∈ U : [x]A ⊆ Y } =
⋃

{C ∈ πA(I) : C ⊆ Y }.

The A-upper approximation of Y is defined as:

uA(Y ) := {x ∈ U : [x]A ∩ Y �= ∅} =
⋃

{C ∈ πA(I) : C ∩ Y �= ∅}.

The subset Y is called A-exact if and only if lA(Y ) = uA(Y ) and A-rough
otherwise.

The lower approximation represents the elements that certainly, with respect
to our knowledge expressed by A, belongs to Y . On the other hand, the upper
approximation is the set of objects possibly belonging to A.

We will denote by COA(I) the set of all the A-exact subsets. The following
result is well known (where ŝ = {1, 2, . . . s}).

Proposition 2.1. (i) If πA(I) contains exactly s elements (i.e. equivalence
classes), then COA(I) is a Boolean algebra isomorphic to 〈P(ŝ),⊆,∩,∪,c , ∅, ŝ〉.
(ii) More specifically, a non-empty subset Y of the universe U is A-exact if and
only if Y is a set theoretical union of blocks of the set-partition πA(I).

2.4 The Cube of Oppositions

Starting from a binary relation R ⊆ X × Y and generalizing the Aristotelian
square of oppositions, it is possible to define a cube of oppositions [5]. Given
a subset S ⊆ Y , the eight vertices of the cube are defined by R(S) = {x ∈ X|∃s ∈
S, xRs} and all the interaction of three kinds of negation: the complement on
X, on Y and the negation of the relation R. More in detail, let us assume that R
and its negation R (xRy if and only if ¬(xRy)) are both not empty and serial,
and define xR = {y ∈ Y |xRy}. Then, we can obtain from R four vertices, that
form a classical square of oppositions (in what follows S := Y \ S):

(I) R(S) = {x ∈ X|∃s ∈ S, xRs} = {x ∈ X|S ∩ xR �= ∅}
(O) R(S) = {x ∈ X|∃s ∈ S, xRs}
(E) R(S) = {x ∈ X|∀s ∈ S,¬(xRs)}
(A) R(S) = {x ∈ X|∀s ∈ S,¬(xRs)} = {x ∈ X|xR ⊆ S}
We remark that E and A are the complement of I and O, respectively, and that
A is a subset of I and E a subset of O. The other four corners are obtained using
the complementary relation R:

(o) R(S) = {x ∈ X|∃s ∈ S,¬(xRs)}
(i) R(S) = {x ∈ X|∃s ∈ S,¬(xRs)} = {x ∈ X|S ∪ xR �= Y }
(a) R(S) = {x ∈ X|∀s ∈ S, xRs} = {x ∈ X|S ⊆ xR}
(e) R(S) = {x ∈ X|∀s ∈ S, xRs}
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All these sets can have a nice interpretation both in FCA and RST [2]. In the
case of FCA, R is the standard relation R defining a formal context, and in
the case of RST, R is the indiscernibility relation IA, hence it is defined on the
same domain X ×X. As we will discuss, in our particular case, also for FCA we
have X = Y , so both relations are defined on X × X even if they are not the
same relation.

3 Simple Undirected Graphs Viewed as Formal Contexts

We begin now the study of the finite simple undirected graphs as particular
types of formal contexts.

Definition 3.1. Let G = (V (G), E(G)) be a finite simple undirected graph, with
vertex set V (G) = {v1, . . . , vn} and edge set E(G). We call Formal Context of
the graph G the Formal Context K[G] := (V (G), V (G),RG), where vRGv′ if
and only if {v, v′} ∈ E(G) for all v, v′ ∈ V (G).

Hence the object subset and the attribute subset of the Formal Context K[G]
are both equal to the vertex set V (G), whereas the binary relation which defines
this formal context is exactly the incidence relation between vertices of the graph
G. Let us also note that, since the graph G is undirected, the relation RG is
symmetric.

3.1 Concepts of a Graph

Given the above considerations, in the Formal Context K[G] induced by a simple
undirected graph G, the maps ↑ : P(V (G)) → P(V (G)) and ↓ : P(V (G)) →
P(V (G)) are coincident. Therefore in the sequel we denote with the same symbol
′ the map ′ : P(V (G)) → P(V (G)) such that O �→ O′ := O↑ = O↓, when O
is any vertex subset of G. This implies obviously that also the two operators
∗ : P(V (G)) → P(V (G)) and � : P(V (G)) → P(V (G)) coincide. Therefore in
the sequel we set O �→ O′′ := O∗ = O�, for all O ⊆ V (G).

Let us now see how O′ and O′′ are defined in terms of neighborhood of
vertices.

Proposition 3.1. If O ⊆ V (G) then

O′ =
⋂

v∈O

NG(v) = {w ∈ V (G) : O ⊆ NG(w)} (2)

Proof. We have that

O′ := {w ∈ V (G) : (∀v ∈ O)vRGw} = {w ∈ V (G) : (∀v ∈ O)w ∈ NG(v)},

that is O′ =
⋂

v∈O NG(v). For the other set equality, if w ∈ V (G) is such that
O ⊆ NG(w) and v ∈ O, then w ∈ NG(w), therefore w ∈ ⋂

v∈O NG(v). On
the other hand, if w ∈ ⋂

v∈O NG(v) and v0 is an arbitrary vertex in O then
w ∈ NG(v0). Hence v0 ∈ NG(w), and this shows that O ⊆ NG(w). ��
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Remark 3.1. The identity in (2) is valid also when the subset O = ∅. In fact, in
this case, we always have ∅↑ = M and ∅↓ = Z, that is O′ = O↑ = O↓ = V (G)
in the formal context K[G]. On the other hand, it is usual (in elementary set
theory) to interpret the intersection

⋂
v∈O NG(v) as coincident with the whole

set V (G) when O is the empty set.

Corollary 3.1. If O ⊆ V (G) then

O′ ⊆ V (G) \ O (3)

Proof. If w ∈ O′ and w ∈ O, by (2) it follows that w ∈ NG(w), i.e. {w,w} ∈ E(G),
but this contradicts the hypothesis that G is a simple graph. This proves (3). ��
Remark 3.2. If G is a finite simple undirected graph, a vertex subset O ⊆ V (G)
is the extent [intent] of some concept of the Formal Context K[G] if and only
if O′′ = O. In this case, both the pairs (O,O′) and (O′, O) are concepts of
K[G]. Moreover, since G has no loops, the cross table of the Formal Context
K[G] (that is, the adjacency matrix of G) has zeroes in all its diagonal places,
and this obviously implies that V (G)′ = ∅. Hence both the pairs (∅, V (G)) and
(V (G), ∅) are always concepts of the Formal Context K[G].

We re-interpret now the notion of concept in the case of the formal context K[G].
Recalling the definition of biclique of a graph (see Definition 2.3), we have then
the following characterization.

Theorem 3.1. Let O and Q be two subsets of V (G). Then, the pair (O,Q) is a
concept in K[G] if and only if (O,Q) is a bipartition of some maximal biclique of
G. On the other hand, if B = (B1|B2) is a maximal biclique of G, then the
pair (B1, B2) is a concept in K[G]. Hence the concepts in K[G] are exactly the
bipartitions of the maximal bicliques of G.

Proof. Let (O,Q) be a concept in K[G]. By definition of concept we have in this
case that:

O′ := {v ∈ V (G) : (∀u ∈ O)u ∼ v} = Q

and
Q′ := {u ∈ V (G) : (∀v ∈ Q)u ∼ v} = O.

Since G has no loops, the subsets O and Q are disjoint. Moreover, if u ∈ O and
v ∈ Q, then u ∼ v. Thus (O|Q) is a biclique of G.

Let B = (B1|B2) be a biclique of G such that O ⊆ B1 and Q ⊆ B2. By
definition of bipartite graph, if u ∈ O ⊆ B1 and v ∈ B2, u ∼ v, then B2 ⊆ O′ = Q
and thus B2 = Q. Similarly if v ∈ Q ⊆ B2 and u ∈ B1, u ∼ v, then B1 ⊆ Q′ = O
and thus B1 = O. It follows that (O|Q) is a maximal biclique of G.

Let now (O|Q) be a maximal biclique of G. Then, by definition of biclique,
Q ⊆ O′ and O′ ⊆ Q. Moreover we have:

O′′ := {u ∈ V (G) : (∀v ∈ O′)u ∼ v}.
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It follows that O ⊆ O′′ and that (O′′|O′) is a biclique of G. Then, by maximality
of (O|Q), we obtain that Q = O′ and O = O′′ = Q′, so (O,Q) is a concept in
K[G]. ��
One of the consequences of this result is the possibility to apply algorithms devel-
oped for formal concept generation [8] to improve results to compute maximal
bicliques on graphs [1]. We leave this comparison to a future study.

When G = Kn is a complete graph, the context coincide with the contra-
nominal scale (V (G), V (G), �=) [6], hence we obtain that the map ′ behaves as
the set complement.

Proposition 3.2. If G = Kn and O ⊆ V (G) we have that O′ = V (G) \ O and
O′′ = O.

In the case of a complete bipartite graph G = Kp,q we obtain:

Proposition 3.3. If G = Kp,q = (B1|B2) and O is a non-empty subset of V (G)
then

O′ =

⎧
⎨

⎩

B1 if O ⊆ B2

B2 if O ⊆ B1

∅ otherwise
(4)

and

O′′ =

⎧
⎨

⎩

B1 if O ⊆ B1

B2 if O ⊆ B2

V (G) otherwise
(5)

Proof. Let B1 = {x1, . . . , xp} and B2 = {y1, . . . , yq}. By definition of Kp,q we
have that NG(xi) = B2 for i = 1, . . . , p and NG(yj) = B1 for j = 1, . . . , q.
Therefore, if O ⊆ B2, then

⋂
v∈O NG(v) = B1, hence O′ = B1 by (2). Anal-

ogously if O ⊆ B1. Finally, we assume that xi ∈ O, for some i = 1, . . . , p,
and also yj ∈ O, for some j = 1, . . . , q. Then, by (2) it follows that O′ ⊆
NG(xi) ∩ NG(yj) = B2 ∩ B1 = ∅ since B1|B2 is a set-partition of the vertex set
of G. This proves (4). On the other hand, if O ⊆ B1, by (4) we deduce that
O′ = B2, therefore O′′ = (O′)′ = B′

2 = B1 again by (4). Analogously, we obtain
O′′ = B2 if O ⊆ B2. Finally, if O ∩ B1 �= ∅ and O ∩ B2 �= ∅, by (4) we have that
O′ = ∅, hence O′′ = (∅)′ = V (G). This proves (5). ��

3.2 The Concept Lattice of a Graph

We explicitly introduce now the notion of concept lattice for a finite simple
undirected graph.

Definition 3.2. We call concept lattice (or also Galois lattice) of the graph
G the concept lattice of the Formal Context K[G] and we denote it simply by
(B(G),�) instead of (B(K[G]),�).
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At first let us recall some basic notions about posets. If P = (X,≤) is a partially
ordered set (briefly poset), we can consider the usual dual poset of P , that is
the poset P ∗ = (X,≤∗), where ≤∗ is the partial order on X defined by x ≤∗

y : ⇐⇒ y ≤ x, for all x, y ∈ X. A poset P = (X1,≤1) is said isomorphic to
another poset P2 = (X2,≤2) if there exists a bijective map φ : X1 → X2 such
that x ≤1 y ⇐⇒ φ(x) ≤2 φ(y), for all x, y ∈ X1. A poset P is called self-dual
if P is isomorphic to its dual poset P ∗.

Then, the following basic result about concept lattices of a graph holds.

Proposition 3.4. Let G be a finite simple undirected graph. Then the concept
lattice (B(G),�) is self-dual.

Proof. By Remark 3.2 we know that a pair (O,Q) ∈ P(V (G)) × P(V (G)) is a
concept if and only if also (Q,O) is a concept, that is, (O,Q) ∈ B(G) if and
only if (Q,O) ∈ B(G). We define then the map φ : B(G) → B(G) such that
φ((O,Q)) := (Q,O). Obviously the map φ is surjective, therefore, since the set
B(G) is finite, it is also bijective. Finally, if (O1, Q1) and (O2, Q2) are any two
concepts in B(G), by definition of the partial order � and definition of dual
order �∗ we have that

(O1, Q1) � (O2, Q2) ⇐⇒ (Q2, O2) � (Q1, O1) ⇐⇒ φ((O1, Q1)) �∗ φ((O2, Q2))

Hence the map φ is an order-isomorphism between the concept lattice (B(G),�)
and its dual lattice (B(G),�∗). ��
In the next result we determine the concept lattice when G is the complete
graph Kn.

Proposition 3.5. If n ≥ 1 then B(Kn) = {(O,Oc) : O ⊆ V (Kn)} and (B(Kn),
�) ∼= (P(V (Kn)),⊆).

Proof. It is a consequence of the equivalence of K(Kn) with the contranominal
scale [6]. ��
For the complete bipartite graph we have the following result.

Proposition 3.6. Let Kp,q = (B1|B2) and V = V (Kp,q). Then

B(Kp,q) = {(∅, V ), (B1, B2), (B2, B1), (V, ∅)} (6)

and the Hasse diagram of the concept lattice (B(Kp,q),�) is the following:
(V, ∅)

(B1, B2) (B2, B1)

(∅, V )

Hence (B(Kn),�) ∼= (P(2̂),⊆).
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Proof. By Remark 3.2, a concept of B(Kp,q) is a pair (O,O′), where O′′ = O.
Therefore, by (5) we deduce that the unique concepts of B(Kp,q) are (∅, V ),
(B1, B2), (B2, B1), (V, ∅). This proves (6). Finally, by definition of the partial
order � we immediately deduce that the Hasse diagram of (B(Kp,q),�) is that
given above. ��

3.3 Other Operations in FCA

The operation ′ is one of the four operations that can be introduced in FCA
in analogy with possibility theory [4]. These four operations generate the sets
A,I,a,i defined in Sect. 2.4 (the other four are just their complement). In the
particular case of formal contexts induced by graphs, they read as:

– RΔ(O) := R(O) = O′;
– R∇(O) := R(O) = {v ∈ V |NG(v)∪O �= V } the set of vertices that are missing

at least a link outside O;
– RΠ(O) := R(O) = {v ∈ V |NG(v) ∩ O �= ∅} the set of vertices connected with

at least one vertex in O;
– RN (O) := R(O) = {v ∈ V |NG(v) ⊆ O} the set of vertices connected with no

vertex outside O.

As discussed above, the Galois connection induced by RΔ is of particular interest
in the case of graphs. The interpretation of the Galois connections induced by the
other operations in terms of graphs is not so easy. In [7], the Galois connection
induced by RΠ is nicely interpreted in terms of maximal connected components.
However, this result can be hardly translated to our framework (let us remark
that the graph in [7] is obtained from a given formal context, we operate in
the other direction). The problem lies in the fact that X and Y = RΠ(X) are
generally not disjoint hence they do not form a bipartition of X∪Y as it happens
in [7]. More constraints needs to be considered on the starting graph in order to
have some geometrical interpretation of this kind of operator. We deserve this
issue to a further investigation.

Finally, let us notice that as an easy consequence of the definitions of RΠ

and NG(v), RΠ can be expressed in terms of neighborhoods as

O′ ⊆ RΠ(O) =
⋃

v∈O

NG(v) (7)

4 Simple Graphs as Boolean Information Tables

Analogously to the formal context case, the adjacency matrix of a graph G can
be interpreted as a Boolean information table I[G], where the universe set and
the attribute set are both V and the information map is defined as F (vi, vj) := 1
if vi ∼ vj and F (vi, vj) := 0 otherwise.

The equivalence relation IA (where A is a set of verteces) is in relation with
the notion of neighborhood as can be seen in the following theorem.
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Theorem 4.1. Let A ⊆ V (G) and v, v′ ∈ V (G). The following conditions are
equivalent:

(i) vIAv′.
(ii) For all z ∈ A it results that v ∼ z if and only if v′ ∼ z.
(iii) NG(v) ∩ A = NG(v′) ∩ A.

Proof. (i) =⇒ (ii): Let z ∈ A and v ∼ v′, we show that v′ ∼ z. By (i) we
have that F (v, a) = F (v′, a) for all a ∈ A, therefore F (v, z) = F (v′, z). Since
v ∼ z it follows that F (v, z) = 1, and hence also F (v′, z) = 1, that is v′ ∼ z. By
symmetry of the relation IA, if we assume that v′ ∼ z, we obtain v ∼ z. This
proves (ii)
(ii) =⇒ (iii): By symmetry of the condition (ii), it is sufficient to prove that
NG(v) ∩ A ⊆ NG(v′) ∩ A. Let therefore z ∈ NG(v) ∩ A, then v ∼ z and z ∈ A.
By (ii) we have then that v′ ∼ z, that is z ∈ NG(v′). Hence z ∈ NG(v′) ∩ A.
(iii) =⇒ (i): Let a ∈ A. We show that F (v, a) = F (v′, a). Let us note that

F (v, a) = F (v′, a) ⇐⇒ (v ∼ a ⇐⇒ v′ ∼ a). (8)

Then, if v ∼ a, we have that a ∈ NG(v) ∩ A =(by (iii))= NG(v′) ∩ A, hence
a ∈ NG(v′), that is v′ ∼ a. Analogously, by symmetry of (iii), if v′ ∼ a then
v ∼ a. By (8) we deduce therefore that F (v, a) = F (v′, a). Since a ∈ A is
arbitrary, this proves (i). ��
Corollary 4.1. If v ∈ V (G) and A ⊆ V (G), then [v]A = {v′ : NG(v) ∩ A =
NG(v′) ∩ A}.
That is two vertices are equivalent if they have the same neighborhood (relatively
to A). The Theorem 4.1 also provides a sufficient condition for two vertices of
the graph to have no common edges.

Corollary 4.2. If vIAv′ and {v, v′} ∩ A �= ∅, then v � v′.

Proof. It follows directly by Theorem 4.1 because there are no loops into G. ��

4.1 The Partitions of a Graph

Now, we turn our attention to the partition generated by the relation IA on
complete and bipartite graphs. Let us start with an example.

Example 4.1. Let us consider now the complete graph K4 and the corresponding
information table in Fig. 1.

In this case we can easily compute all the set partitions πA(K4), where A ⊆
{1, 2, 3, 4}. Once denoted a partition πA = X1| · · · |Xn with Xi the equivalence
classes induced by IA, we have :

π∅ = 1234, π{1} = 1|234, π{2} = 2|134, π{3} = 3|124, π{4} = 4|123, π{1,2} =
1|2|34, π{1,3} = 1|3|24, π{1,4} = 1|4|23, π{2,3} = 14|2|3, π{2,4} = 13|2|4, π{3,4} =
12|3|4, π{1,2,3} = π{1,2,4} = π{1,3,4} = π{2,3,4} = π{1,2,3,4} = 1|2|3|4.
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1

2 3

4
1 2 3 4

1 0 1 1 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

Fig. 1. The complete graph K4.

As the previous example suggests, we can determine the general form of any
partition πA(Kn), for all n ≥ 1 and all A ⊆ V (Kn).

Proposition 4.1. Let n ≥ 1 and let A = {w1, . . . , wk} be a subset of V (Kn) =
{v1, . . . , vn}. Then

πA(Kn) = w1|w2| . . . |wk|Ac, (9)

where Ac is the complementary subset of A in V (Kn).

Proof. Let v, v′ ∈ V (Kn), with v �= v′. By Corollary 4.2, since v ∼ v′, it holds
that if vIAv′, then v, v′ ∈ Ac. On the other hand, if v, v′ ∈ Ac, then ∀z ∈ A,
F (z, v) = F (z, v′) = 1, namely vIAv′. The proposition is proved. ��
Example 4.2. Let us consider now the complete graph K3,4 in Fig. 2.

x1

x2

x3

y1

y2

y3

y4

x1 x2 x3 y1 y2 y3 y4
x1 0 0 0 1 1 1 1

x2 0 0 0 1 1 1 1

x3 0 0 0 1 1 1 1

y1 1 1 1 0 0 0 0

y2 1 1 1 0 0 0 0

y3 1 1 1 0 0 0 0

y4 1 1 1 0 0 0 0

Fig. 2. The graph K3,4 and the corresponding information table.

It is easy to verify then that in this case we have only two possibilities: π∅ =
x1x2x3y1y2y3y4 and πA = x1x2x3|y1y2y3y4 if A �= ∅.

Also in this case we can generalize the previous example to any complete bipartite
graph.

Proposition 4.2. Let p and q be two positive integers. Let Kp,q = (B1|B2),
where B1 = {x1, . . . , xp} and B2 = {y1, . . . , yq}. Then πA(Kp,q) =
x1 . . . xp|y1 . . . yq for each subset A ⊆ V (Kp,q) such that A �= ∅.
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Proof. Let A ⊆ V (G) be a non-empty subset of V (G) and let v, v′ ∈ V (G). If
v, v′ ∈ B1 or v, v′ ∈ B2, then for each z ∈ A we have F (z, v) = F (z, v′), so
vIAv′. If v ∈ B1 and v′ ∈ B2, then for each z ∈ A we have F (z, v) �= F (z, v′), so
¬(vIAv′). Thus πA(G) = B1|B2. ��

4.2 Upper and Lower Approximations

In this section we provide some results and discussion on rough set approxima-
tions, at first in the general graph case and, then, in the case of complete and
bipartite graphs.

Proposition 4.3. Let G = (V (G), E(G)) be a simple undirected graph and let
I[G] be the Boolean information system associated to G. Let A and Y be two
subsets of V (G). Then:

(i) lA(Y ) = {v ∈ V (G) : (u ∈ V (G) ∧ NG(u) ∩ A = NG(v) ∩ A) =⇒ u ∈ Y }.
(ii) uA(Y ) = {v ∈ V (G) : ∃u ∈ Y : NG(u) ∩ A = NG(v) ∩ A}.
Proof. It follows directly by (iii) of Theorem4.1 and the definitions of the approx-
imations. ��
The lower approximation of a set of vertices Y represents a subset of Y such
that there are no elements outside Y with the same connections of any vertex
in lA(Y ) (relatively to A). The upper approximation of Y is the set of vertices
with the same connections (w.r.t. A) of at least one element in Y .

We study now the cases of complete G = Kn and bipartite G = Kp,q graphs.

Proposition 4.4. Let G = Kn be the complete graph on n vertices and let A
and Y be two subsets of V (G) = {v1, . . . , vn}. Then:

(i) the A-lower approximation of Y is

lA(Y ) =
{

Y ∪ Ac if Ac ⊆ Y
A ∩ Y otherwise .

(ii) The A-upper approximation of Y is

uA(Y ) =
{

Y if Y ⊆ A
Y ∪ Ac otherwise

(iii) Y is A-exact if and only if Y ⊆ A or Ac ⊆ Y .

Proof. In this proof we denote V (G) simply by V . If v ∈ V , by definition of Kn

we have NG(v) = V \ {v}, therefore NG(v) ∩ A = A \ {v}. By Corollary 4.1 we
obtain then [v]A = {v′ ∈ V : A \ {v} = A \ {v′}}, hence

[v]A =
{{v} if v ∈ A

Ac otherwise .
(10)
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By definition of A-lower approximation of Y and by (10) we have then

lA(Y ) = {v ∈ V : (v ∈ A =⇒ v ∈ Y ) ∨ (v ∈ Ac =⇒ Ac ⊆ Y )}. (11)

It is immediate to note then that (11) is equivalent to (i). This proves (i). By def-
inition of A-upper approximation of Y and by (10) we have then

uA(Y ) = {v ∈ V : (v ∈ A =⇒ v ∈ Y ) ∨ (v ∈ Ac =⇒ Ac ∩ Y �= ∅)}. (12)

It is immediate to note then that (12) is equivalent to (ii). This proves (ii). In
order to prove (iii), if Y ⊆ A then Ac � Y , therefore uA(Y ) = Y by (ii) and
lA(Y ) = A ∩ Y = Y by (i), hence Y is A-exact. If Ac ⊆ Y and Ac �= ∅ then
Y � A therefore lA(Y ) = (A ∩ Y ) ∪ Ac by (i) and uA(Y ) = (A ∩ Y ) ∪ Ac by
(ii), hence Y is A-exact. If Ac = ∅ then A = V (G), therefore lA(Y ) = Y by (i)
and uA(Y ) = Y by (ii), hence Y is A-exact. On the other hand, if Y � A and
Ac � Y , then Ac �= ∅ and uA(Y ) = (A ∩ Y ) ∪ Ac by (ii), lA(Y ) = A ∩ Y by
(ii). Since Ac �= ∅, we obtain then lA(Y ) �= uA(Y ), hence Y is not A-exact. This
proves (iii). ��
We now examine for Kp,q the results similar to those described previously
for Kn.

Proposition 4.5. Let Kp,q = (B1|B2), where B1 = {x1, . . . , xp} and B2 =
{y1, . . . , yq}. Let A and Y be two non-empty subsets of V = V (Kp,q) such that
Y �= V . Then:

(i) the A-lower approximation of Y is

lA(Y ) =

⎧
⎨

⎩

B1 if B1 ⊆ Y
B2 if B2 ⊆ Y
∅ otherwise .

(ii) The A-upper approximation of Y is

uA(Y ) =

⎧
⎨

⎩

B1 if Y ⊆ B1

B2 if Y ⊆ B2

V otherwise .

(iii) Y is A-exact if and only if Y = B1 or Y = B2.

Proof

(i) Let B1 ⊆ Y . If x ∈ B1, by Proposition 4.2 follows that [x]A = B1 ⊆ Y ,
therefore, by definition of lA(Y ), we obtain B1 ⊆ lA(Y ). On the other hand,
if it were x ∈ B2 ∩ lA(Y ), for some vertex x ∈ V , then, again by Proposition
4.2 and by definition of lA(Y ), we would have that B2 = [x]A ⊆ Y . Since
B1|B2 is a set-partition of V , the last inclusion implies that Y = V , which
is contrary to our hypothesis. Hence B1 ⊆ lA(Y ) and B2 ∩ lA(Y ) = ∅, and
since B1|B2 is a set-partition of V we deduce that lA(Y ) = B1 if B1 ⊆ Y .
A similar reasoning also shows that if B2 ⊆ Y then lA(Y ) = B2. Finally,
let B1 � Y and B2 � Y . Since each vertex x ∈ V is such that x ∈ B1

or x ∈ B2, by Proposition 4.2 we have respectively [x]A = B1 � Y and
[x]A = B2 � Y , that is x /∈ lA(Y ) for each vertex x ∈ V , hence lA(Y ) = ∅.
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(ii) Let Y ⊆ B1. If x ∈ B1, by Proposition 4.2 follows that [x]A = B1 ∩ Y �= ∅
because Y is non-empty subset of B1. Hence x ∈ uA(Y ). On the other hand,
if x ∈ uA(Y ) by definition of uA(Y ) we have [x]a ∩Y �= ∅. Let y ∈ [x]A ∩Y .
Since y ∈ Y ⊆ B1, by Proposition 4.2 we obtain B1 = [y]A = [x]A, therefore,
again by Proposition 4.2 we deduce that x ∈ B1. Hence uA(Y ) = B1. The
case Y ⊆ B2 is exactly similar. Finally, let Y � B1 and Y � B2. Since
B1|B2 is a set-partition of V , we deduce that B1 ∩ Y �= ∅ and B2 ∩ Y �= ∅.
Now, if we take an arbitrary vertex x ∈ V , then x ∈ B1 or x ∈ B2. If
x ∈ B1, then, by Proposition 4.2 it follows that [x]A ∩ Y = B1 ∩ Y �= ∅,
therefore x ∈ uA(Y ). Analogously if x ∈ B2. This shows that V ⊆ uA(Y ),
that is V = uA(Y ).

(iii) It follows at once by Proposition 2.1 (ii) and by Proposition 4.2. ��

4.3 Other Operations in RST

Let us consider the sets introduced in Subsect. 2.4. The vertex (A) corresponds
to the lower approximation and the corner (I) to the upper one [2]. Then, (E)
is the negation of the upper approximation, called the exterior region e and it
represents the objects (vertices in our case) surely not belonging to the set under
approximation. In the graph case, a vertex x belongs to e(O) if there is no vertex
in O sharing all the connections with x. As a simple corollary of the results on
the upper approximation we get the following.

Corollary 4.3. Let G = (V (G), E(G)) be a simple undirected graph and let
I[G] be the Boolean information system associated to G. Let A and Y be two
subsets of V (G). Then:

(i) eA(Y ) = {v ∈ V (G) : �u ∈ V (G) : NG(u) ∩ A = NG(v) ∩ A)}.
(ii) If G is complete, then

eA(Y ) =
{

Y c if Y ⊆ A
A ∩ Y c otherwise

(iii) If the graph is bipartite, i.e., G = Kp,q = (B1|B2), then

eA(Y ) =

⎧
⎨

⎩

B2 if Y ⊆ B1

B1 if Y ⊆ B2

∅ otherwise .

The corner (a) is named in RST a sufficiency operator and (i) is the dual suf-
ficiency. In case of R being an equivalence relation, the sufficiency operator is
trivial since it gives either the emptyset or the set O under approximation.
Similarly, the dual sufficiency either results in the complement of O or in the
universe. Both the operators become more interesting in a generalized setting,
for instance when R is a similarity instead of an equivalence relation. However,
this generalized situation is out scope of the present work.

Let us stress once more that, in the particular case of formal context induced
by graphs, objects coincide with attributes and the relation R is defined on the
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same set, as in case of rough-set indiscernibility relation. Hence, FCA tools can be
compared and/or combined with RST ones. For instance, from the fact that both
′′ and u are closure operators on objects, we have that O ⊆ O′′ and O ⊆ u(O). So,
we can wonder which is the relationship among the two mappings O′′ and u(O). In
case of complete bipartite graphs we have that O′′ = u(O) (and also O′ = e(O)),
as can be seen by Propositions 3.3 and 4.5. Also in case of complete graphs and
A = V (G) we have O′′ = u(O) = O (by Propositions 3.2 and 4.4). However, in
the general case, nothing can be said as it is shown by the following example.

Example 4.3. Let us consider the following (bipartite and not complete) graph:

v1 v2 v3

v4

v5

If we set O = {v1, v3}, then we get O′′ = {v1, v3, v4} and u(O) = O. So,
u(O) ⊂ O′′. On the other hand, considering the complete graph of Fig. 1 with
O = {2, 3} and A = {1, 2}, we have u(O) = {2, 3, 4} and O′′ = O leading to
O′′ ⊂ u(O).

5 Conclusion

We laid bare the possibility to investigate graphs using techniques from Formal
Concept Analysis and Rough Set Theory. Several results exploring the corre-
sponding on graphs of operators in the two theories have been given. The pic-
ture, however, is far from being complete. Indeed, a complete description of the
structure of oppositions arising from FCA and RST in the case of graphs, as
well as the interaction between FCA and RST operators is still missing. More-
over, as far as RST is concerned, we only explored the approximations defined
by the standard indiscernibility relation. A natural extension would be to con-
sider more general rough set models and to explore other concepts such as rough
membership, attribute dependencies and reducts.
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Abstract. Everyone who works in the legal field is faced with the com-
plexity of documentary sources of law, that are highly interrelated and
interdependent of each others. It is essential for legal practitioners to rely
on systems that retrieve all the sources related to the legal cases they are
working on and not only the most relevant ones. The challenge for legal
IR is to achieve exhaustivity and handle this complexity by retrieving
documents on the basis of the semantic content and the intertextual rela-
tionships. This work proposes an IR approach for legal sources that goes
beyond existing systems. It is based on Formal and Relational Concept
Analysis to structure, query and browse collections of legal documents.

Keywords: Legal information retrieval · Intertextuality · Relational
queries · Exploration · Formal concept analysis · Relational concept
analysis

1 Introduction

This paper presents an application of Formal and Relational Concept Analysis
(FCA/RCA) to relational Information Retrieval (IR) in order for IR systems to
take in account, not only the semantic content of documents, but also their inter-
textual links. Actually, documents often need to be enhanced with contextual
information and IR systems must return to users not only lists of documents but
lists of graphs of interlinked documents.

This need is especially challenging in the legal domain where law sources
refer to each other by various types of relations (e.g. amendment, transposition,
jurisprudence), thus forming a large network of highly interlinked documents.
At any time, legal experts and citizens consult and query the legal collections.
A legal case cannot be analyzed without taking into account all the relevant
legal sources and their interrelationships. This appears in legal experts’ queries
and the way they explore the collections of legal sources navigating through the
links of retrieved documents. They call for IR systems able to answer “relational
queries”, such as “Which legislative texts cite the article 4 of the Labour Code?”,
“Which are consolidated versions of the data protection act?”, “what are data
protection act amendements?” or “Is there any local decree developing the law
about tax exemption for low energy consumption housings?”.
c© Springer International Publishing Switzerland 2015
J. Baixeries et al. (Eds.): ICFCA 2015, LNAI 9113, pp. 303–318, 2015.
DOI: 10.1007/978-3-319-19545-2 19
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These needs are not met by existing legal IR systems such as Legifrance1 or
UKLegislation2. Those systems traditionally rely on a logical approach rather
than on a vectorial one because exhaustivity matters more than result ranking.
However, they do not allow for querying on intertextual criteria. Besides, the
hypertext navigation facilities show their limits on large collections, as users
easily get lost.

This paper tackles the problem of semantic search in a collection of linked
documents. The goal is to handle a new category of queries (hereafter “rela-
tional queries”) to retrieve documents using both content and cross-references
as search criteria. We propose an approach based on Formal and Relational Con-
cept Analysis (FCA [8] and RCA [10]) to model a collection of documents and
answer various types of relational queries.

The overview of the proposed search approach is presented first (Sect. 2).
Section 3 shows how the collections are modeled while Sects. 4 and 5 present our
querying and exploration methods. This approach is compared to related works
in Sect. 6 and the conclusion is given in Sect. 7.

2 Overview of the Relational IR Approach

The proposed approach is composed of four main steps (see Fig. 1):

– The document collection is first structured into formal concept lattices based
on the semantic descriptors associated with the documents (Semantic content
modeling).

– Those lattices are then enriched with intertextuality, i.e. relational informa-
tion, which produces a relational lattice family (Intertextuality modeling).

– Users’ queries, possibly combining semantic descriptors and cross-references
constraints, are matched against the relational lattice family, which gives
graphs of documents as answers (Direct querying).

– The lattice structure can be further exploited to retrieve approximate results
as an alternative or in addition to direct ones (Browsing).

3 Modeling Semantic and Intertextual Features

3.1 Legal Collection as an Attributed Graph

This work is part of the Légilocal project, a French project aiming at offering easy
access to local legal data for citizens and legal experts. The Légilocal collection
is composed of various types of documents (legislative texts, administrative acts
and editorial documents) linked to each other by various types of links.

We assume here that any document i has a unique type j, that the docu-
ments are semantically annotated (they are associated with semantic descriptors)

1 www.legifrance.gouv.fr/.
2 www.legislation.gov.uk/.

www.legifrance.gouv.fr/
www.legislation.gov.uk/
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Fig. 1. Overview of the relational IR approach

and the citations have been typed and formalized as labelled and oriented links
between documents. In the following, Type(di, tj), Att(di, sj) and Rel(di, rl, di′)
respectively indicate that the document di is of type tj , is associated with the
descriptor sj and is the source of a rl link, which target is di′ .

A document collection C is modeled as an oriented, labeled and attributed
graph C = G(D,R,A) where (i) the nodes are documents of D, (ii) the doc-
uments are associated with attributes, types of T and semantic descriptors of
S (A = T∪S) and (iii) the edges are binary oriented and labeled links, which
types belong to R. There is no constraint on the number of nodes, attributes and
links in that graph nor on the combination of attributes and links for a given
document unit.

Such a collection graph is described by a formula of the following language
(see Fig. 2 for an example):

graphcoll → predc [ ‘∧ ’ predc ]*

predc → ‘Type’ ‘(’iddoc ‘,’ idtype‘)’ | ‘Att’ ‘(’iddoc‘,’ idsem‘)’ | ‘Rel’ ‘(’iddoc‘,’ idrel‘,’

iddoc‘)’

iddoc → ‘d1’ | ‘d2’ | . . . idtype → ‘t1’ | ‘t2’ | . . .
idsem → ‘s1’ | ‘s2’ | . . . idrel → ‘r1’ | ‘r2’ | . . .
where (∀ i, j, k, l) (di ∈ D, sj ∈ S, tk ∈ T and rl ∈ R).

A subset (CollL) of the Légilocal collection is used for illustration in the fol-
lowing. For sake of readability, it is kept to a minimum. It is composed of two
types of documents (municipal orders and legislation) and a single link type (visa
legislation). See Table 1 for a detailed description.
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Fig. 2. Example of graph modeling a collection composed of 4 documents.

Table 1. Vocabulary used to describe the Légilocal example collection

3.2 Structuring the Collection

FCA [8] and RCA [16] enable to structure the document collection into a family
of interrelated concept lattices. Structuring such a collection as a lattice accounts
to pre-computing the answers to all the satisfiable elementary queries. The rela-
tional lattice family structure extends this approach to relational queries.

Modeling Semantic Content. The semantic content of a collection is modeled
as a formal context, i.e. as a binary relation (object× attributes) between a set
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of objects (the documents) and a set of attributes (the semantic descriptors
associated to the documents). A formal concept lattice is then built from the
formal context.

For legal collections, we build independent formal contexts and lattices for
each type of documents, because the document typology plays an important role
in legal drafting and reasoning and because it is easier to handle several small
lattices than a single large one corresponding to a large document collection.
This means that the document types (t1 and t2 on Fig. 2) are not encoded as
document attributes as opposed to semantic descriptors (s1, s2, . . . ).

The formalization of the content of the first document type of CollL is given
by the formal context Kord = (A,S, I), where A is the set of orders (e.g. AC, A07),
S is a set of semantic descriptors of the domain (e.g. VTM, Mtr) as described in
Table 1 and I is a binary relation between A and S. For a document a ∈ A and
a semantic descriptor s ∈ S, (a, s) ∈ I holds if the document a is semantically
annotated by the semantic descriptor s. Table 2 presents the formal contexts,
Kord and Kleg, modeling the semantic content of CollL (resp. for municipal
orders and legislation).

Table 2. The formal contexts of orders (Kord) and legislation (Kleg)

Two concept lattices (L(C) for orders and L(C′) for legislation) are derived
from Kord and Kleg respectively (Figs. 3 and 4)3, thus structuring the collec-
tion in the form of concept hierarchies. The formal concepts represent classes of
documents (extents) characterized or described by sets of descriptors (intents).
For example, the concept 2 in L(C) represents the set of documents which share
the descriptors CheR and RegC, i.e. documents AC, A11 and A94. The rela-
tion between the concepts 6 and 2 is interpreted as a relation of generaliza-
tion/specialization between the classes represented by those concepts.
3 Lattices are build using Galicia platform [17].
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In an information retrieval perspective [4], the lattice built by FCA gathers
all possible combinations of document attributes represented by the intents of
concepts, each of which corresponding to a specific elementary query. We propose
to extend that approach to relational queries using RCA.

Fig. 3. The concept lattice L(C)

Modeling Intertextual Relationships. RCA is a relational extension of
FCA, that allows for extracting formal concepts from sets of data described
by intrinsic and relational attributes. The data set is modeled as a relational
context family (RCF). Formally, a RCF, R, is a pair (K,R), where K is a set
of contexts Ki = (Oi, Ai, Ii), R is a set of relations rk ⊆ Oi × Oj where Oi and
Oj are the object sets of the formal contexts Ki and Kj .

The Légilocal RCF contains the binary contexts of Table 2 and an additional
relational context representing the vl relation. Since that relation has the set
of municipal orders and the set of legislative texts as domain and range, it is
represented as a municipal orders × legislative texts relation (Table 3).

The instances of a relation are called links. The links are “scaled” in order to be
included as binary attributes in the formal context of the domain of the relation.
This mechanism is called relational scaling4. It builds a relational lattice family
(RLF) from the RCF. Formally, given a relation r ⊆ Oi × Oj and a lattice Lj on
Kj = ran(r), the existential scaling operator sc(r,Lj)

× : K → K is defined as:

sc
(r,Lj)
× (Ki) = (O(r,Lj)

i , A
(r,Lj)
i , I

(r,Lj)
i )

where O
(r,Lj)
i = Oi, A

(r,Lj)
i = Ai ∪ {r : c | c ∈ Lj}, and

I
(r,Lj)
i = Ii ∪ {(o, r : c) | o ∈ Oi, c ∈ Lj , r(o) ∩ extent(c) �= ∅}.

The lattice of municipal orders enriched by scaling on the vl relation, Lvl(C), is
given by Fig. 5. The whole collection of documents is now represented as a RLF

4 Various types of scaling can be defined but we rely only on the existential one here.
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Fig. 4. The concept lattice L(C′)

Table 3. Formal relational context of the VisasL relation

L362 L21 L1 L2 L4 L12-1 L91 D92 C05 C1

AC × × × ×
A07 × × × × ×
A17 × ×
A48 × ×
A11 ×
AA ×
A94 ×

composed of the lattices Lvl(C) and L(C′) related by the vl relation. One can
observe that the intents of Lvl(C) have been enriched with relational attributes.
For instance, the intent of the concept 14 in Lvl(C) combines two seman-
tic descriptors {CheR,RegC} with two relational attributes {vl : c0, vl : c2}.
The presence of the attribute vl : c2 means that each document in the extent
{A11, A94} has at least one vl relation with a document belonging to the extent
of the concept 2 in L(C′).

4 Querying the Conceptual Relational Structures

4.1 Querying as Graph Matching

Modeling document collections as graphs leads to consider information retrieval
as graph querying where queries are themselves formalized as graphs.
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Fig. 5. Lattice Lvl(C) given by the scaling of L(C) on the vl relation.

A query graph is similar to that of a collection but it possibly contains
(i) variables in place of document identifiers, (ii) inequality constraints on these
variables, (iii) a focus for restricting the answer to a subset of the query vari-
ables. A query graph is a formula of the form [focus:] graphq [with constraint].
Elementary queries are described without any relational predicate as opposed to
relational ones (Fig. 6).

Fig. 6. Examples of query graphs: qa represents an elementary query and qb a relational
query, which is represented with a focus (x, y) in the formula.

Matching queries and documents amounts to instantiate the query graph onto
the graph of the collection. An answer is (i) a set containing all the subgraphs of
the collection graph that instantiate the query graph if it has no explicit focus,
(ii) a set containing all the tuples of identifiers instantiating the query focus if
there is one, (iii) an empty set if the query graph cannot be instantiated.
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4.2 Answering Elementary Queries

An elementary query is represented as a query concept Qs which extent is a
virtual query object, Qvo, that represents the target document of the query, and
which intent QI is the set of query attributes ai. Answering that query from
the lattice L based on K = (O,A, Inc) amounts to insert the concept Qs in the
lattice using an incremental algorithm [9] and to locate in L the lowest concept
with Qvo in its extent (by design, its intent includes QI). The query is satisfiable
if that concept contains documents besides Qvo, those documents being answers
to the initial query.

4.3 Answering Relational Queries

For relational queries, the matching process is more complex. It is divided into
four steps. The graph query is first decomposed into an ordered list of elementary
queries that are answered in turn until the last query node is matched against
the relational lattice, which gives the set of documents satisfying that node if
there is any. If the expected answer is a set of graphs of documents, the answer
graphs are then reconstructed using the family of relational contexts. Finally,
the graph constraints are applied, which filters out the list of answer graphs.

Query Decomposition. A query graph is first transformed as a query tree,
QT =< R,QT1, QT2, ..., QTn >, where R is the root node and the QTi are the
subtrees rooted in the nodes that are domain or range of a relation having R
respectively as range or domain5. If there is a cycle in the query graph, it is
broken: two distinct child nodes are created and an equality constraint between
them is added to the query. Any graph can be represented as a tree associated to
few equality constraints, since any oriented link can be substituted by its inverse
relation.

The query tree is then transformed into a list of elementary queries corre-
sponding to the various tree nodes, which are listed in reverse breadth-first order,
e.g. with the root node at the back (Fig. 7).

Root Concept Localisation. Once a query graph is transformed into a
sequence of elementary queries, those elementary queries are matched in turn
against the relational lattice family (see Fig. 8). The node type of each query
determines the document lattice on which it must be matched. At the end of this
evaluation process, the query corresponding to the root node is matched against
the collection lattice family (Step 4 on Fig. 8). If that root query is satisfiable
then the initial relational query is also satisfiable. The documents answering the
root query are returned as a set of elementary answers to the initial query.

5 If the query graph has a focus, the node corresponding to the first focus variable is
chosen as root. Otherwise the root node is chosen arbitrarly.
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Fig. 7. Example of a graph query transformed as a sequence of elementary queries

Fig. 8. Iterative query matching process

Answer Completion. Inserting the sequence of elementary queries in the lat-
tice family prouves that the initial graph query is satisfiable and enables to locate
a list of formal concepts that play a role in the identification of the elementary
answers (set of documents) but it doesn’t give the actual graphs of documents
that answer the relational query.

Actually, with the existential scaling, a relational attribute rx:Cy in a con-
cept C intent indicates that any document belonging to the extent of C is
related to at least one document of Cy by the relation rx. However, identifying
which documents in Cy are actually related to which documents in C requires
to go back to the formal and relational contexts underlying the relational lattice
family.

The exploration of the formal and relational context family is done in reverse
order of localisation. The completion process starts with the documents of the
root node (elementary answers). Each of these answers is completed by iden-
tifying in the corresponding relational context to which documents the root
document is actually related. Step by step, the elementary answers, which are
documents, are extended to graphs.
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Constraint Checking. The final step simply consists in erasing from the list
of answers the documents, graphs of documents or tuples of documents, that
violate any query constraint, be it a constraint of the initial query or a constraint
generated by the graph to tree transformation.

4.4 Example

Let’s consider an elementary query related to the Légilocal sub-collection:
“Which are legislative texts (Legislation) concerning traffic regulation (RegC) of
land motor vehicles (VTM) on rural roads (CheR)?”. To answer that query, a
virtual object Qleg described by the attributes RegC, VTM, CheR is created. It is
inserted in L(C′) (Fig. 9). The most specific concept containing Qleg in its extent
is the concept 12. The answer is given by the documents associated with Qleg in
the extent of the concept 12. There is a single answer: the document L91.

Fig. 9. Simple query on Legislation lattice (Color figure online)

A second example is given by the relational query :“Which municipal orders
(OrderMun) concerning rural roads (CheR) make a visa (vl) to legislative texts
(Legislation) about traffic regulation (RegC) of land motor vehicles (VTM)?”.
The query must be matched against the relational lattice family composed
of the lattices of municipal orders and legislation, enriched with the vl relation,
i.e. the interrelated lattices Lvl(C) and L(C′) (Fig. 10).

To answer the query, a virtual object Qleg representing the query object of
a first elementary query is created with the intent {RegC, VTM}. Its document
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Fig. 10. Relational lattice family composed of the enriched lattice of orders (Lvl(C))
and the lattice of legislative texts (L(C′)) (Color figure online)

type being a legislative text, Qleg is inserted in the lattice L(C′), which gives
the concept 6 as answer. In a second step, Qord is created with the semantic
attribute CheR and the relational attribute vl:c6. It is inserted in the lattice of
municipal orders enriched with the relation vl: the localized concept is c14.

Since the query has no focus, the answer must be completed into a list of
graphs, composed of documents belonging to the extents of c14 and c6 and
related by vl. The concept c14 contains in its extent the object Qord and the
document AA which share the semantic descriptor CheR and the relation vl
to the concept c6 of the other lattice (L(C′)). c6 contains in its extent Qleg

and the documents {C05, D92, L362, L91} which share the semantic descriptors
{RegC, VTM}. According to the relational context, two exact answers are given:
G1 = AA →vl D92 and G2 = AA →vl L91. If the query had a single variable
focus, on the order lattice for example, the answer would simply be the set of
documents contained in the extent of the concept c14, i.e. the document AA.

5 Browsing the Conceptual Relational Structures

As explained above, structuring the collection has an advantage: it accounts to
pre-computing the answers to all the satisfiable queries, either elementary or
relational ones. It can also be exploited to find approximate answers to users’
queries, relying on the strategy of [12,19].

5.1 Exploring Facilities

If the user gets too few answers to a query, he/she can broaden his/her search,
explore the lattice family and get approximate answers, i.e. sets of (graphs of)
documents with almost all but not all the searched properties. Reversely, in
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case of numerous exact answers, the user can introduce additional constraints
to narrow the search. In most cases, this query generalization and specialization
process does not require any additional computation, as the relevant information
is already structured in the relational lattice family.

Exploring variations around an elementary query consists in navigating in the
target lattice around the formal concept associated to the initial query. Going
upward (resp. downward) allows for broadening (resp. restricting) the initial
query, and thus for returning more (resp. less) numerous answers. The lattice
structure shows which relaxed or restricted queries are satisfiable and how many
documents could be returned in each case. On the 1st diagram of Fig. 11, the
query node can be relaxed in its two parent nodes. Reversely, the child nodes
correspond to query graph restrictions and subclasses of results.

Exploring a relational lattice family around a relational query is more com-
plex. Some variants can be answered without additional computation:

– If the variant simply consists in suppressing or adding a semantic descriptor
to the intent of the root node, it goes back to the previous elementary case
(2nd diagram on Fig. 11).

– Suppressing a relational attribute of the root node is also a form of query
generalization. This cuts one of the graph branches. The 3rd diagram of Fig. 11
shows in grey the erased part of the graph.

– A complex query can also be restricted by adding a new relation which has a
node of the answer graph as domain or co-domain (4th diagram of Fig. 11).

The other cases require additional computation for locating a new query root
concept in the relational lattice family.

Fig. 11. Query broadening and restricting

5.2 Example

Let’s consider the example of Sect. 4.4: Which are legislative texts (Legislation)
concerning traffic regulation (RegC) of land motor vehicles (VTM) on rural roads
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(CheR)?”. The answer of the elementary query described by the attributes RegC,
VTM, CheR is given by the concept 6 on the lattice of Legislative texts (Fig. 9)
but it is possible to relax a semantic constraint. Removing the semantic attribute
CheR gives a more general answer containing three documents: {L362, D92, C05}
(blue highlighted elements).

The relational lattice family can similarly be explored (Fig. 10). Starting
with the relational query “Which municipal orders (OrderMun) concerning rural
roads (CheR) make a visa (vl) to legislative texts (Legislation) about traffic reg-
ulation (RegC) of land motor vehicles (VTM)?”, one can relax a semantic or a
relational constraint on the lattice of orders. For instance, removing the descrip-
tor CheR gives a new order (A07) that shares relational attributes with AC
(blue highlighted elements). A relaxed answer-graph Gr is given by the docu-
ment A07 linked to documents {C05, D92, L362, L91}: Gr1 = A07 →vl C05,
Gr2 = A07 →vl D92, Gr3 = A07 →vl L362 and Gr4 = A07 →vl L91.

6 Related Work

The diversity and multiplicity of links between legal documents is considered as
the major factor of complexity in this domain [2]. Many works have studied this
complexity by analyzing the topology of citation networks of legal collections
[7,15,18]. The detailed analysis of the semantics of intertextual links and their
use for search purposes has deserved less attention.

General IR approaches focus on the semantic content of documents and
return a list of independent documents without considering their context. Graph-
based document analysis is used to improve the ranking of retrieved documents
(e.g. PageRank [3]) but not for retrieving documents.

Lattice theory and particularly FCA has been used as a base for IR mod-
els [14]. It has been applied to documentary search [4,5] where objects and
attributes of the formal contexts correspond to documents and their keywords.
Several studies have investigated the contribution of FCA for retrieval by naviga-
tion and browsing data collections and proved its usefulness [6,11,19]. Based on
a logical model, it is well suited for search in the legal domain. Relational search
based on RCA was firstly introduced in [1] where authors work on the problem of
selecting suitable webservices for instantiating an abstract calculation workflow.
The use of RCA to handle the multi-relational structure of a given collection of
documents was introduced in [13].

7 Conclusion

We have presented a conceptual IR approach able to handle simple and rela-
tional queries, which is critical for legal practitioners. It is based on formal and
relational concept analysis and it structures a collection of documents into a
hierarchy of document classes. Each class is characterized by content descrip-
tors and relations to other classes. The conceptual relational structure allows to
represent in a unified way the intrinsic and relational properties of documents.
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An advantage of the resulting hierarchical structure is the possibility to
explore the collection without extra calculations. It allows for approximate
answers if too or few documents are returned and it indicates the number of
documents that can be returned by each relaxed or generalized query. This
process of query reformulation is essential for logical IR systems that do not
return ordered lists of results.

One limitation of the proposed approach is the computational cost for large
datasets. However, in real applications, it has been estimated that the maximal
complexity is never reached and many solutions have been proposed for complex-
ity reduction such as iceberg lattices which reduce the lattices size by limiting
the exploration depth of the concept set. The legal domain characteristic which
induces cutting up the set of documents into small collections should help to
cope with the complexity issue. We are also considering building the lattice on
a subset or results returned by a traditional query.
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