
Christiano Braga
Peter Csaba Ölveczky (Eds.)

 123

LN
CS

 9
53

9

12th International Conference, FACS 2015
Niterói, Brazil, October 14–16, 2015
Revised Selected Papers

Formal Aspects
of Component Software

Lecture Notes in Computer Science 9539

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Christiano Braga • Peter Csaba Ölveczky (Eds.)

Formal Aspects
of Component Software
12th International Conference, FACS 2015
Niterói, Brazil, October 14–16, 2015
Revised Selected Papers

123

Editors
Christiano Braga
Universidade Federal Fluminense
Niterói
Brazil

Peter Csaba Ölveczky
University of Oslo
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-28933-5 ISBN 978-3-319-28934-2 (eBook)
DOI 10.1007/978-3-319-28934-2

Library of Congress Control Number: 2015960400

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the 12th International Conference on Formal
Aspects of Component Software (FACS 2015), held at the Universidade Federal
Fluminense, Niterói, Brazil, during October 14–16, 2015.

Component-based software development proposes sound engineering principles and
techniques to cope with the complexity of software systems. However, many chal-
lenging conceptual and technological issues remain. The advent of service-oriented and
cloud computing has also brought to the fore new dimensions, such as quality of
service and robustness to withstand faults. As software applications themselves become
components of wider socio-technical systems, further challenges arise from the need to
create and manage interactions.

The FACS series of events addresses the application of formal methods in all aspects
of software components and services. Formal methods have provided foundations for
component-based software development through research on mathematical models for
components, composition and adaptation, and rigorous approaches to verification,
deployment, testing, and certification.

FACS 2015 received 33 regular paper submissions, each of which was reviewed by
at least three reviewers. Based on the reviews and extensive discussions, the program
committee decided to accept 15 regular papers. This volume contains the revised
versions of the 15 regular papers, as well as invited papers by Martin Wirsing and
David Déharbe.

Many colleagues and friends contributed to FACS 2015. We thank Martin Wirsing,
David Déharbe, and Renato Cerqueira for accepting our invitations to give invited
talks, and the authors who submitted their work to FACS 2015. We are grateful to the
members of the program committee for providing timely and insightful reviews as well
as for their involvement in the post-reviewing discussions. Finally, we thank Bruno
Lopes for his assistance in organizing FACS 2015, and acknowledge partial financial
support from CAPES and CNPq.

November 2015 Christiano Braga
Peter Csaba Ölveczky

Organization

Program Chairs

Christiano Braga Universidade Federal Fluminense, Brazil
Peter Csaba Ölveczky University of Oslo, Norway

Steering Committee

Farhad Arbab (chair) CWI and Leiden University, The Netherlands
Luís Barbosa University of Minho, Portugal
Christiano Braga Universidade Federal Fluminense, Brazil
Carlos Canal University of Málaga, Spain
Ivan Lanese University of Bologna, Italy, and Inria, France
Zhiming Liu Birmingham City University, UK
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine Inria, France
Peter Csaba Ölveczky University of Oslo, Norway
Corina Pasareanu CMU/NASA Ames Research Center, USA
Bernhard Schätz fortiss GmbH, Germany

Program Committee

Dalal Alrajeh Imperial College London, UK
Farhad Arbab CWI and Leiden University, The Netherlands
Cyrille Artho AIST, Japan
Kyungmin Bae SRI International, USA
Luís Barbosa University of Minho, Portugal
Christiano Braga Universidade Federal Fluminense, Brazil
Roberto Bruni University of Pisa, Italy
Carlos Canal University of Málaga, Spain
Ana Cavalcanti University of York, UK
José Fiadeiro Royal Holloway, University of London, UK
Bernd Fischer Stellenbosch University, South Africa
Marcelo Frias Buenos Aires Institute of Technology, Argentina
Rolf Hennicker Ludwig-Maximilians-Universität München, Germany
Ramtin Khosravi University of Tehran, Iran
Ivan Lanese University of Bologna, Italy, and Inria, France
Axel Legay IRISA/Inria, Rennes, France
Zhiming Liu Birmingham City University, UK
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Markus Lumpe Swinburne University of Technology, Australia

Eric Madelaine Inria, France
Robi Malik University of Waikato, New Zealand
Hernán Melgratti University of Buenos Aires, Argentina
Alvaro Moreira Federal Univeristy of Rio Grande do Sul, Brazil
Arnaldo Moura IC/UNICAMP, Brazil
Thomas Noll RWTH Aachen University, Germany
Peter Csaba Ölveczky University of Oslo, Norway
Corina Pasareanu CMU/NASA Ames Research Center, USA
František Plášil Charles University, Czech Republic
Camilo Rocha Escuela Colombiana de Ingeniería, Colombia
Gwen Salaün Grenoble INP - Inria - LIG, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Ralf Sasse ETH Zürich, Switzerland
Bernhard Schätz fortiss GmbH, Germany

Additional Reviewers

Aravantinos, Vincent
Biondi, Fabrizio
Bonifácio, Adilson
Castor, Fernando
Ciolek, Daniel
Dan, Li
Daniel, Jakub
Dimovski, Aleksandar S.
Francalanza, Adrian
Igna, Georgeta
Inoue, Jun
Iyoda, Juliano
Jancik, Pavel
Lima, Lucas
Ma, Lei

Majster-Cederbaum, Mila
Marti-Oliet, Narciso
Moggi, Eugenio
Quilbeuf, Jean
Rosa, Nelson
Ruz, Cristian
Sanchez, Alejandro
Soldani, Jacopo
Stolz, Volker
Tcheukam Siwe, Alain
Traonouez, Louis-Marie
Verdejo, Alberto
Vinarek, Jiri
Ye, Lina
Zalinescu, Eugen

VIII Organization

Contents

OnPlan: A Framework for Simulation-Based Online Planning. 1
Lenz Belzner, Rolf Hennicker, and Martin Wirsing

Software Component Design with the B Method — A Formalization
in Isabelle/HOL . 31

David Déharbe and Stephan Merz

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud . . . 48
Rim Abid, Gwen Salaün, Noel De Palma, and Soguy Mak-Kare Gueye

A Cost/Reward Method for Optimal Infinite Scheduling in Mobile Cloud
Computing . 66

Luca Aceto, Kim G. Larsen, Andrea Morichetta, and Francesco Tiezzi

A Contract-Oriented Middleware. 86
Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia,
Alessandro Sebastian Podda, and Livio Pompianu

A Robust Framework for Securing Composed Web Services 105
Najah Ben Said, Takoua Abdellatif, Saddek Bensalem,
and Marius Bozga

Combinatory Synthesis of Classes Using Feature Grammars 123
Jan Bessai, Boris Düdder, George T. Heineman, and Jakob Rehof

Towards Modular Verification of Threaded Concurrent Executable Code
Generated from DSL Models . 141

Dragan Bošnački, Mark van den Brand, Joost Gabriels, Bart Jacobs,
Ruurd Kuiper, Sybren Roede, Anton Wijs, and Dan Zhang

An Operational Semantics of BPMN Collaboration 161
Flavio Corradini, Andrea Polini, Barbara Re, and Francesco Tiezzi

k-Bisimulation: A Bisimulation for Measuring the Dissimilarity Between
Processes . 181

Giuseppe De Ruvo, Giuseppe Lettieri, Domenico Martino,
Antonella Santone, and Gigliola Vaglini

Time Complexity of Concurrent Programs – A Technique Based on
Behavioural Types – . 199

Elena Giachino, Einar Broch Johnsen, Cosimo Laneve, and Ka I. Pun

http://dx.doi.org/10.1007/978-3-319-28934-2_1
http://dx.doi.org/10.1007/978-3-319-28934-2_2
http://dx.doi.org/10.1007/978-3-319-28934-2_2
http://dx.doi.org/10.1007/978-3-319-28934-2_3
http://dx.doi.org/10.1007/978-3-319-28934-2_4
http://dx.doi.org/10.1007/978-3-319-28934-2_4
http://dx.doi.org/10.1007/978-3-319-28934-2_5
http://dx.doi.org/10.1007/978-3-319-28934-2_6
http://dx.doi.org/10.1007/978-3-319-28934-2_7
http://dx.doi.org/10.1007/978-3-319-28934-2_8
http://dx.doi.org/10.1007/978-3-319-28934-2_8
http://dx.doi.org/10.1007/978-3-319-28934-2_9
http://dx.doi.org/10.1007/978-3-319-28934-2_10
http://dx.doi.org/10.1007/978-3-319-28934-2_10
http://dx.doi.org/10.1007/978-3-319-28934-2_11
http://dx.doi.org/10.1007/978-3-319-28934-2_11

Composing Constraint Automata, State-by-State . 217
Sung-Shik T.Q. Jongmans, Tobias Kappé, and Farhad Arbab

Floating Time Transition System: More Efficient Analysis of Timed Actors . . . 237
Ehsan Khamespanah, Marjan Sirjani, Mahesh Viswanathan,
and Ramtin Khosravi

Configuration Logics: Modelling Architecture Styles 256
Anastasia Mavridou, Eduard Baranov, Simon Bliudze,
and Joseph Sifakis

Learning-Based Compositional Model Checking of Behavioral UML
Systems . 275

Yael Meller, Orna Grumberg, and Karen Yorav

Typed Connector Families . 294
José Proença and Dave Clarke

Formal Architecture Modeling of Sequential C-Programs 312
Jonas Westman and Mattias Nyberg

Author Index . 331

X Contents

http://dx.doi.org/10.1007/978-3-319-28934-2_12
http://dx.doi.org/10.1007/978-3-319-28934-2_13
http://dx.doi.org/10.1007/978-3-319-28934-2_14
http://dx.doi.org/10.1007/978-3-319-28934-2_15
http://dx.doi.org/10.1007/978-3-319-28934-2_15
http://dx.doi.org/10.1007/978-3-319-28934-2_16
http://dx.doi.org/10.1007/978-3-319-28934-2_17

OnPlan: A Framework for Simulation-Based
Online Planning

Lenz Belzner(B), Rolf Hennicker, and Martin Wirsing

Institut für Informatik, Ludwig-Maximilians-Universität München,
Munich, Germany

belzner@ifi.lmu.de

Abstract. This paper proposes the OnPlan framework for modeling
autonomous systems operating in domains with large probabilistic state
spaces and high branching factors. The framework defines components
for acting and deliberation, and specifies their interactions. It comprises a
mathematical specification of requirements for autonomous systems. We
discuss the role of such a specification in the context of simulation-based
online planning. We also consider two instantiations of the framework:
Monte Carlo Tree Search for discrete domains, and Cross Entropy Open
Loop Planning for continuous state and action spaces. The framework’s
ability to provide system autonomy is illustrated empirically on a robotic
rescue example.

1 Introduction

Modern application domains such as machine-aided robotic rescue operations
require software systems to cope with uncertainty and rapid and continuous
change at runtime. The complexity of application domains renders it impos-
sible to deterministically and completely specify the knowledge about domain
dynamics at design time. Instead, high-level descriptions such as probabilistic
predictive models are provided to the system that give an approximate defini-
tion of chances and risks inherent to the domain that are relevant for the task
at hand.

Also, in contrast to classical systems, in many cases there are numerous dif-
ferent ways for a system to achieve its task. Additionally, the environment may
rapidly change at runtime, so that completely deterministic behavioral specifi-
cations are likely to fail. Thus, providing a system with the ability to compile a
sensible course of actions at runtime from a high-level description of its interac-
tion capabilities is a necessary requirement to cope with uncertainty and change.

One approach to deal with this kind of uncertain and changing environments
is online planning. It enables system autonomy in large (or even infinite) state
spaces with high branching factors by interleaving planning and system action
execution (see e.g. [1–3]). In many domains, action and reaction are required very
often, if not permanently. Resources such as planning time and computational
power are often limited. In such domains, online planning replaces the require-
ment of absolute optimality of actions with the idea that in many situations it
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 1–30, 2016.
DOI: 10.1007/978-3-319-28934-2 1

2 L. Belzner et al.

is sufficient and more sensible to conclude as much as possible from currently
available information within the given restricted resources. One particular way
to perform this form of rapid deliberation is based on simulation: The system is
provided with a generative model of its environment. This enables it to evaluate
potential consequences of its actions by generating execution traces from the
generative model. The key idea to scale this approach is to use information from
past simulations to guide the future ones to directions of the search space that
seem both likely to happen and valuable to reach.

In this paper we propose the OnPlan framework for modeling autonomous
systems operating in domains with large or infinite probabilistic state spaces
and high branching factors. The remainder of the paper is outlined as follows. In
Sect. 2 we introduce the OnPlan framework for online planning, define compo-
nents for acting and deliberation, and specify their interactions. We then extend
this framework to simulation-based online planning. In Sects. 3 and 4 we dis-
cuss two instantiations of the framework: Monte Carlo Tree Search for discrete
domains (Sect. 3), and Cross Entropy Open Loop Planning for continuous state
and action spaces (Sect. 4). We illustrate each with empirical evaluations on a
robotic rescue example. Section 5 concludes the paper and outlines potential lines
of further research in the field.

2 A Framework for Simulation-Based Online Planning

In this Section we propose the OnPlan framework for modeling autonomous
systems based on online planning. We introduce the basic concept in Sect. 2.1. In
Sect. 2.2, we will refine the basic framework to systems that achieve autonomy
performing rapidly repeated simulations to decide on their course of action.

2.1 Online Planning

Planning is typically formulated as a search task, where search is performed
on sequences of actions. The continuously growing scale of application domains
both in terms of state and action spaces requires techniques that are able to (a)
reduce the search space effectively and (b) compile as much useful information
as possible from the search given constrained resources. Classical techniques for
planning have been exhaustively searching the search space. In modern applica-
tion scenarios, the number of possible execution traces is too large (potentially
even infinite) to get exhaustively searched within a reasonable amount of time
or computational resources.

The key idea of online planning is to perform planning and execution of
an action iteratively at runtime. This effectively reduces the search space: A
transition that has been executed in reality does not have to be searched or
evaluated by the planner any more. Online planning aims at effectively gathering
information about the next action that the system should execute, exploiting the
available resources such as deliberation time and capabilities as much as possible.
Algorithm 1 captures this idea informally. In the following, we will introduce the
OnPlan framework that formalizes the idea of online planning.

OnPlan: A Framework for Simulation-Based Online Planning 3

Algorithm 1. Online Planning (Informally)
1: while true do
2: observe state
3: plan action
4: execute action
5: end while

Framework Specification. The OnPlan framework is based on the following
requirements specification.

1. A set Sreal which represents states of real environments. While this is a part
of the mathematical formulation of the problem domain, it is not represented
by a software artifact in the framework.

2. A set Agent that represents deliberating and acting entities.
3. Representations of the agent’s observable state space S and the agent’s action

space A. The observable state space S represents information about the envi-
ronment Sreal that is relevant for an agent and its planning process. It is in
fact an abstraction of the environment.

4. A function observe : Agent × Sreal → S that specifies how an agent perceives
the current state of its environment. This function defines the abstraction and
aggregation of information available to an agent in its real environment to an
abstract representation of currently relevant information. In some sense, the
function observe comprises the monitor and analyze phases of the MAPE-K
framework for autonomous computing [4].

5. A function actionRequired : Agent×S → Bool that is used to define triggering
of action execution by an agent. A typical example is to require execution of
an action after a certain amount of time has passed since the last executed
action.

6. For each action in A, we require a specification of how to execute it in the
real domain. To this end, the framework specification comprises a function
execute : A × Sreal → Sreal. This function defines the real (e.g. physical)
execution of an agent’s action.

7. We define a set RewardFunction of reward functions of the form R : S → R.
A reward function is an encoding of the system goals. States that are valuable
should be mapped to high values by this function. States that should be
avoided or even are hazardous should provide low values.

8. We define a set Strategy of strategies. Each strategy is a probability distribu-
tion Pact(A|S) of actions over states. In the following, we will often omit the
signature and simply write Pact for Pact(A|S). It defines the probability that
an agent executes a particular action in a given state. If an agent a ∈ Agent
in state scurrent ∈ S is required to act (i.e. when actionRequired(a, scurrent)
returns true), then the action that is executed is sampled from the dis-
tribution: a ∼ Pact(·|scurrent), where Pact(·|scurrent) denotes the probability
distribution of actions in state scurrent and ∼ denotes sampling from this dis-
tribution. Sampling can be seen as non-deterministic choice proportional to
a distribution.

4 L. Belzner et al.

9. A set Planner of planning entities. Planning is defined by a function plan :
Planner×S×RewardFunction×Strategy → Strategy. A planning entity refines
its strategy Pact w.r.t. its currently observed abstract state and a reward
function to maximize the expected cumulative future reward. It is usually
defined as the sum of rewards gathered when following a strategy.

Framework Model. Figure 1 shows a class diagram for the OnPlan frame-
work derived from the mathematical specification. It comprises classes for the
main components Agent and Planner. States and actions are also represented by
a class each: states s ∈ S are represented by objects of class State, actions a ∈ A
by objects of class Action. Probability distributions of actions over states (defin-
ing potential agent strategies) are modeled by the class Strategy. Reward func-
tions are represented by object of class RewardFunction. All classes are abstract
and must be implemented in a concrete online planning system.

Note that OnPlan supports multiple instances of agents to operate in the
same domain. While inter-agent communication is not explicitly expressed in the
framework, coordination of agents can be realized by emergent system behavior:
As agents interact with the environment, the corresponding changes will be
observed by other agents and incorporated into their planning processes due to
the online planning approach.

Component Behavior. Given the specification and the component model, we
are able to define two main behavioral algorithms for Agent and Planner that
are executed in parallel: Agent ‖ Planner. I.e., this design decouples informa-
tion aggregation and execution (performed by the agent) from the deliberation
process (performed by the planner).

Algorithms 2 and 3 show the behavior of the respective components. We
assume that all references shown in the class diagram have been initialized.
Both behaviors are infinitely looping. An agent observes the (real) environment,
encodes the observation to its (abstract) state and passes the state to its corre-
sponding planning component, as long as no action is required (Algorithm 2, lines
2–5). When an action is required – e.g. due to passing of a certain time frame
or occurrence of a particular situation/event – the agent queries the planner’s
current strategy for an action to execute (line 6). Finally, the action proposed
by the strategy is executed (line 7) and the loop repeats.

The behavior of the planning component (Algorithm 3) repeatedly calls a
particular planning algorithm that refines the strategy w.r.t. current state and
specified reward function. We will define a particular class of planning algorithms
in more detail in Sect. 2.2.

Framework Plug Points. The OnPlan framework provides the following
plug points derived from the mathematical specification. They are represented
by abstract operations such that domain specific details have to be implemented
by any instantiation.

OnPlan: A Framework for Simulation-Based Online Planning 5

RewardFunction

getReward(State) : Real

Strategy

sampleAction(State) : Action

Planner

plan() : Strategy

Agent

observe() : State
actionRequired() : Bool

Action

duration : Real

execute()

State

« use »

state
1

rewardFct
1

state
1

« use »

strategy
1

planner
1..*

Fig. 1. Basic components of OnPlan

Algorithm 2. Agent Component Behavior
Require: Local variable action : Action
1: while true do
2: while !actionRequired() do
3: state ← observe() � observe environment
4: planner.state ← state � inform planner
5: end while
6: action ← planner.strategy.sampleAction(state) � sample from strategy
7: action.execute() � execute sampled action
8: end while

Algorithm 3. Planner Component Behavior
1: while true do
2: strategy ← plan()
3: end while

1. The operation Agent::observe() : State. This operation is highly dependent on
the sensory information available and is therefore implemented in a framework
instantiation.

2. The operation Agent::actionRequired() : Bool. The events and conditions that
require an agent to act are highly depending on the application domain. The
timing of action execution may even be an optimization problem for itself.
The state parameter of the mathematical definition is implicitly given by the
reference of an agent to its state.

3. The operation Action::execute(). Action execution is also highly dependent
on technical infrastructure and physical capabilities of an agent.

4. The operation RewardFunction::getReward(State) : Real. Any concrete imple-
mentation of this operation models a particular reward function.

6 L. Belzner et al.

5. The operation Strategy::sampleAction(State) : Action should realize sampling
of actions from the strategy w.r.t. to a given state. It depends on the used kind
of strategy, which may be discrete or continuous, unconditional or conditional,
and may even be a complex combination of many independent distributions.

6. Any implementation of the operation Planner::plan() should realize a con-
crete algorithm used for planning. Note that the arguments of the function
plan from the mathematical specification are modeled as references from the
Planner class to the classes State, RewardFunction and Strategy. We will dis-
cuss a particular class of simulation-based online planners in the following
Sect. 2.2.

2.2 Simulation-Based Online Planning

We now turn our focus on a specific way to perform online planning: simulation
based online planning, which makes use of a simulation of the domain. It is used
by the planner to gather information about potential system episodes (i.e. exe-
cution traces). Simulation provides information about probability and value of
the different state space regions, thus guiding system behavior execution. After
simulating its possible choices and behavioral alternatives, the agent executes
an action (in reality) that performed well in simulation. The process of plan-
ning using information from the simulation and action execution is iteratively
repeated at runtime, thus realizing online planning.

A simple simulation based online planner would generate a number of ran-
domly chosen episodes and average the information about the obtained reward.
However, as it is valuable to generate as much information as possible with given
resources, it is a good idea to guide the simulation process to high value regions
of the search space. Using variance reduction techniques such as importance sam-
pling, this guidance can be realized using information from previously generated
episodes [5–7].

Framework Specification. In addition to the specification from Sect. 2.1, we
extend the OnPlan framework requirements to support simulation-based online
planning.

1. For simulation based planning, actions a ∈ A require a duration parameter. If
no such parameter is specified explicitly, the framework assumes a duration of
one for the action. We define a function d : A → R that returns the duration
of an action.

2. OnPlan requires a set Simulation of simulations of the environment. Each
simulation is a probability distribution of the form Psim(S|S×A). It takes the
current state and the action to be executed as input, and returns a potential
successor state according to the transition probability. Simulating the execu-
tion of an action a ∈ A in a state s ∈ S yields a successor state s′ ∈ S. Simula-
tion is performed by sampling from the distribution Psim: s′ ∼ Psim(·|(s, a)),
where Psim(·|(s, a)) denotes the probability distribution of successor states

OnPlan: A Framework for Simulation-Based Online Planning 7

when executing action a in state s and ∼ denotes sampling from this distri-
bution. Note that the instantiations of the framework we discuss in Sects. 3
and 4 work with a fixed simulation of the environment. It does not change in
the course of system execution, in contrast to the strategy.

3. We require a set SimPlanner ⊆ Planner of simulation based planners.
4. Any simulation based planner defines a number emax ∈ N

+ of episodes gen-
erated for each refinement step of its strategy.

5. Any simulation based planner defines a maximum planning horizon hmax ∈
N

+ that provides an upper bound to its simulation depth. A low planning
horizon results in fast but shallow planning – long term effects of actions are
not taken into account when making a decision. The planning horizon lends
itself to be dynamically adapted, providing flexibility by allowing to choose
between fast and shallow or more time consuming, but deep planning taking
into account long term consequences of actions.

6. Any simulation based planner defines a discount factor γ ∈ [0; 1]. This factor
defines how much a planner prefers immediate rewards over long term ones
when refining a strategy. The lower the discount factor, the more likely the
planner will built a strategy that obtains reward as fast as possible, even if
this means an overall degradation of payoff in the long run. See Algorithm 5
for details on discounting.

7. We define a set E ⊆ (S × A)∗ of episodes to capture simulated system exe-
cution traces. We also define a set Ew ⊆ E × R of episodes weighted by the
discounted sum of rewards gathered in an execution trace. The weight of an
episode is defined as its cumulative discounted reward, which is given by the
recursive function RE : E → R as shown in Eq. 1. Let s ∈ S, a ∈ A, e, e′ ∈ E
where e = (s, a) :: e′, and let R : S → R be a reward function.

RE(nil) = 0

RE(e) = R(s) + γd(a)RE(e′) (1)

An element of Ew is then uniquely defined by (e,RE(e)).
8. In the OnPlan framework, the simulation-based planner uses the simulation

Psim to generate a number of episodes. The resulting episodes are weighted
according to rewards gathered in each episode, w.r.t. the given reward func-
tion of the planner. Simulation is driven by the current strategy Pact. This
process is reflected by following function.

generateEpisode :
SimPlanner × Simulation × Strategy × RewardFunction → Ew

9. Importance sampling in high value regions of the search space is realized
by using the resulting weighted episodes to refine the strategy such that its
expected return (see Sect. 2.1) is maximized. The goal is to incrementally
increase the expected reward when acting according to the strategy by gath-
ering information from simulation episodes in an efficient way. This updating
of the strategy is modeled by the following function.

updateStrategy : SimPlanner × 2Ew × Strategy → Strategy

8 L. Belzner et al.

Simulation

sampleSuccessor(State, Action) : State

SimPlanner

eMax : Integer
hMax : Integer
gamma : Real

plan() : Strategy
generateEpisode() : WEpisode
updateStrategy(Set(WEpisode)) : Strategy

RewardFunction

getReward(State) : Real

Strategy

sampleAction(State) : Action

Planner

plan() : Strategy

Agent

observe() : State
actionRequired() : Bool

Action

duration : Real

execute()

State

« use »

« use »

« use »

 simulation
1

state
1

rewardFct
1

state
1

« use »

strategy
1

planner
1..*

Fig. 2. Components of the OnPlan framework

Algorithm 4. Simulation-based planning
Require: Local variable Ew : Set(WEpisode)
1: procedure plan
2: Ew ← ∅
3: for 0 ... eMax do
4: Ew ← Ew ∪ generateEpisode()
5: end for
6: return updateStrategy(Ew)
7: end procedure

Framework Model. Using mathematically justified approaches for strategy
refinement provides a solution to the notorious exploration-exploitation tradeoff
(see e.g. [8]): While learning (or planning), an agent has to decide whether it
should exploit knowledge about high-value regions of the state space, or whether
it should use its resources to explore previously unknown regions to potentially
discover even better options. We will discuss two instances of OnPlan that pro-
vide principled and mathematically founded methods that deal with the question
where to put simulation effort in Sects. 3 and 4.

Figure 2 shows the components of the OnPlan framework for simulation-
based online planning. It comprises the components of the basic OnPlan frame-
work (Sect. 2.1), and additionally defines a specialization SimPlanner of the Plan-
ner class, and a class Simulation that models simulations of the form Psim. The
parameters emax, hmax and γ are modeled as attributes of the SimPlanner class.

OnPlan: A Framework for Simulation-Based Online Planning 9

Algorithm 5. Generating weighted episodes
Require: Local variables s : State, r, t : Real, e : Episode, a : Action
1: procedure generateEpisode
2: s ← state
3: r ← rewardFct.getReward(s)
4: t ← 0
5: e ← nil
6: for 0 ... hMax do
7: a ← strategy.sampleAction(s)
8: e ← e::(s, a)
9: s ← simulation.sampleSuccessor(s, a)

10: t ← t + a.duration
11: r ← r + gammat · rewardFct.getReward(s)
12: end for
13: return (e, r)
14: end procedure

We further assume a classWEpisode that models weighted episodes. As it is a pure
data container, it is omitted in the class diagram shown in Fig. 2.

The SimPlanner class also provides two concrete operations. The operation
SimPlanner::plan() : Strategy realizes the corresponding abstract operation of
the Planner class and is a template method for simulation based planning (see
Algorithm 4). Episodes are modeled by a type Episode, weighted episodes by
a type WEpisode respectively. The function generateEpisode is realized by the
concrete operation generateEpisode() : WEpisode of the SimPlanner class and
used by the plan operation. The function updateStrategy from the mathematical
specification is realized as abstract operation updateStrategy(Set(WEpisode)) in
the class SimPlanner.

Simulation-Based Planning. SimPlanner realizes the plan operation by
using a simulation to refine its associated strategy. We formalize the algorithm
of the plan operation in the following. Algorithm 4 shows the simulation-based
planning procedure. The algorithm generates a set of episodes weighted by
rewards (lines 2–5). This set is the used to refine the strategy (line 6). The
concrete method to update the strategy remains unspecified by OnPlan.

Algorithm 5 shows the generation of a weighted episode. After initialization
(lines 2–5), an episode is built by repeating the following steps for hmax times.

1. Sample an action a ∈ A from the current strategy w.r.t. the current simulation
state s ∈ S, i.e. a ∼ Pact(s) (line 7).

2. Store the current simulation state and selected action in the episode (line 8).
3. Simulate the execution of a. That is, use the action a sampled from the

strategy in the previous step to progress the current simulation state s, i.e.
s ∼ Psim(s, a) (line 9).

4. Add the duration of a to the current episode time t ∈ R. This is used for
time-based discounting of rewards gathered in an episode (line 10).

10 L. Belzner et al.

5. Compute the reward of the resulting successor state discounted w.r.t. current
episode time t and the specified discount factor γ, and add it to the reward
aggregation (line 11).

After simulation of hmax steps, the episode is returned weighted by the aggre-
gated reward (line 13).

Framework Plug Points. In addition to the plug points given by the basic
framework (see Sect. 2.1), the framework extension for simulation-based online
planning provides the following plug points.

1. The operation sampleSuccessor(State, Action): State of class Simulation. This
operation is the interface for any implementation of a simulation Psim. The
concrete design of this implementation is left to the designer of an instance
of the framework. Both simulations for discrete and continuous state and
action spaces can instantiate OnPlan. Note that, as Psim may be learned
from runtime observations of domain dynamics, this operation may be inten-
tionally underspecified even by an instantiated system. Also note that the
implementation of this operation does not necessarily have to implement the
real domain dynamics. As simulation based planning typically relies on statis-
tical estimation, any delta of simulation and reality just decreases estimation
quality. While this also usually decreases planning effectiveness, it does not
necessarily break planning completely. Thus, our framework provides a robust
mechanism to deal with potentially imprecise or even erroneous specifications
of Psim.

2. The operation updateStrategy(Set(WEpisode)): Strategy of class SimPlanner.
In principle, any kind of stochastic optimization technique can be used here.
Examples include Monte Carlo estimation (see e.g. [6]) or genetic algorithms.
We will discuss two effective instances of this operation in the following: Monte
Carlo Tree Search for discrete domains in Sect. 3, and Cross Entropy Open
Loop Planning for domains with continuous state-action spaces in Sect. 4.

Figure 3 shows an informal, high-level summary of OnPlan concepts and
their mutual influence. Observations result in the starting state of the simulations.

Fig. 3. Mutual influence of OnPlan concepts

OnPlan: A Framework for Simulation-Based Online Planning 11

Simulations are driven by the current strategy and yield episodes. The (weighted)
episodes are used to update the strategy. The strategy yields actions to be exe-
cuted. Executed actions influence observations made by an agent.

In the following Sections, we will discuss two state-of-the-art instances of the
OnPlan framework for simulation-based online planning introduced in Sect. 2.
In Sect. 3, we will illustrate Monte Carlo Tree Search (mcts) [9] and its variant
uct [10] as an instantiation of OnPlan in discrete domains. in Sect. 4, we
will discuss Cross Entropy Open Loop Planning (ceolp) [3,11] as an instance
of OnPlan for simulation based online planning in continuous domains with
infinite state-actions spaces and branching factors.

3 Framework Instantiation in Discrete Domains

In this Section we discuss Monte Carlo Tree Search (mcts) as an instantiation
of the OnPlan framework in discrete domains.

3.1 Monte Carlo Tree Search

Monte Carlo Tree Search (mcts) provided a framework for the first discrete
planning approaches to achieve human master-level performance in playing the
game Go autonomously [12]. mcts algorithms are applied to a vast field of appli-
cation domains, including state-of-the-art reinforcement learning and planning
approaches in discrete domains [2,9,13].

mcts builds a search tree incrementally. Nodes in the tree represent states
and action choices, and in each node information about the number of episodes
an its expected payoff is stored. mcts iteratively chooses a path from the root to
leaf according to these statistics. When reaching a leaf, it simulates a potential
episode until search depth is reached. A new node is added to the tree as a child
of the leaf, and the statistics of all nodes that were traversed in this episode are
updated according to the simulation result.

Figure 4 illustrates an iteration of mcts. Each iteration consists of the fol-
lowing steps.

1. Nodes are selected w.r.t. node statistics until a leaf is reached (Fig. 4a).
2. When a leaf is reached, simulation is performed and the aggregated reward

is observed (Fig. 4b).
3. A new node is added per simulation, and node statistics of the path selected

in step (a) are updated according to simulation result (Fig. 4c).

Steps (1) to (3) are repeated iteratively, yielding a tree that is skewed towards
high value regions of the state space. This guides simulation effort towards cur-
rently promising search areas.

3.2 UCT

uct (upper confidence bounds applied to trees) is an instantiation of mcts
that uses a particular mechanism for action selection in tree nodes based on

12 L. Belzner et al.

x̄0, n0

x̄1, n1

x̄3, n3 x̄4, n4

x̄2, n2

(a) Selection

x̄0, n0

x̄1, n1

x̄3, n3 x̄4, n4

(e, r) ∈ Ew

Pact(A|S)

x̄2, n2

(b) Simulation

x̄′
0, n0 + 1

x̄′
1, n1 + 1

x̄3, n3 x̄′
4, n4 + 1

r, 1

(e, r) ∈ Ew

x̄2, n2

(c) Update

Fig. 4. Illustration of Monte Carlo Tree Search. (e, r) ∈ Ew is a weighted episode as
generated by Algorithm 5. Nodes’ mean values can be updated incrementally (see e.g.
[14]): x̄′

i = x̄i + r−x̄i
ni+1

.

regret minimization [10]. uct treats action choices in states as multi-armed
bandit problems. Simulation effort is distributed according to the principle of
optimism in the face of uncertainty [15]: Areas of the search space that have
shown promising value in past iterations are more likely to be explored in future

OnPlan: A Framework for Simulation-Based Online Planning 13

ones. uct uses the mathematically motivated upper confidence bound for regret
minimization ucb1 [16] to formalize this intuition. The algorithm stores the
following statistics in each node.

1. x̄a is the average accumulated reward in past episodes that contained the
tuple (s, a), where s is the state represented by the current node.

2. ns is the number of episodes that passed the current state s ∈ S.
3. na is the corresponding statistic for each action a that can be executed in s.

Equation 2 shows the selection rule for actions in uct based on node statis-
tics. Here, c ∈ R is a constant argument that defines the weight of exploration
(second term) against exploitation (first term). The equation provides a for-
malization of the exploration-exploitation tradeoff – the higher the previously
observed reward of a child node, the higher the corresponding uct score. How-
ever, the more often a particular child node is chosen by the search algorithm, the
smaller the second term becomes. At the same time, the second term increases
for all other child nodes. Thus, child nodes that have not been visited for some
time become more and more likely to be included into future search episodes.

UCT(s, a) = x̄a + 2c

√
2 ln ns

na
(2)

3.3 Framework Instantiation

Monte Carlo Tree Search instantiates the OnPlan framework for simulation-
based online planning based on the following considerations.

1. Strategy::sampleAction(State): Action is instantiated by the action selection
mechanism used in mcts. As mcts is a framework itself, the particular choice
is left underspecified. Examples of action selection mechanisms include uni-
form selection (all actions are chosen equally often), ε-greedy selection (the
action with best average payoff is selected, with an ε probability to chose a
random action) or selection according to uct (see Eq. 2). Note that also prob-
abilistic action selection strategies can be used, providing support for mixed
strategies in a game-theoretic sense. Simulation outside the tree is performed
according to an initial strategy. Typically, this is a uniformly random action
selection. However, given expert knowledge can also be integrated here to
yield potentially more valuable episodes with a higher probability.

2. SimPlanner::updateStrategy(Set(WEpisode)): Strategy adds the new node to
the tree and updates all node statistics w.r.t. the simulated episode weighted
by accumulated reward. Note that a single episode suffices to perform an
update. Different mechanisms for updating can be used. One example is aver-
aging rewards as described above. Another option is to set nodes’ values to
the maximum values of their child nodes, yielding a Monte Carlo Bellman
update of the partial state value function induced by the search tree [2].

14 L. Belzner et al.

VictimRobot

capacity : Integer

Position

fire : Boolean
safe : Boolean

[*] connections

[*] victims

[0..1] position

[*] victims

[1] position

[*] robots

Fig. 5. Class diagram of the example domain.

3. While multiple simulations may be performed from a node when leaving
the tree, typically the update (adding a node and updating all traversed
nodes’ statistics) is performed after each iteration. Thus, when using mcts
for simulation-based planning, the number of episodes per strategy update
emax is usually set to 1.

4. The remaining plug-points – execute of class Action, getReward of class
RewardFunction and sampleSuccessor of class Simulation – have to be instan-
tiated individually for each domain and/or system use case.

3.4 Empirical Results

We implemented an instantiation of OnPlan with uct in an example search-
and-rescue scenario to show its ability to generate autonomous goal-driven
behavior and its robustness w.r.t. unexpected events and changes of system
goals at runtime.

Example Domain. Figure 5 shows a class diagram of the scenario. A number of
arbitrarily connected positions defines the domains topology. At some positions
there is an ambulance (pos.safe = true). Positions may be on fire, except those
that host an ambulance, i.e. class Position has the following invariant: pos.safe
implies not(pos.fire) for all pos ∈ Position. Fires ignite or cease probabilistically
depending on the number of fires at connected neighbor positions. A position
may host any number of robots and victims. A robot can carry a number of
victims that is bounded by its capacity. A carried victim does not have a position.
A robot has five types of actions available.

1. Do nothing.
2. Move to a neighbor position that is not on fire.

OnPlan: A Framework for Simulation-Based Online Planning 15

3. Extinguish a fire at a neighbor position.
4. Pick up a victim at the robot’s position if capacity is left.
5. Drop a carried victim at the robot’s position.

All actions have unit duration. Each action may fail with a certain probabil-
ity, resulting in no effect. Note that the number of actions available to a robot in
a particular situation may vary due to various possible instantiations of action
parameters (such as the particular victim that is picked up or the concrete target
position of movement).

Experimental Setup. In all experiments, we generated randomly connected
topologies with 20 positions and a connectivity of 30 %, resulting in 6 to 7 con-
nections per position on average. We randomly chose 3 safe positions, and 10
that were initially on fire. 10 victims were randomly distributed on the non-safe
positions. We placed a single robot agent at a random starting position. All posi-
tions were reachable from the start. Robot capacity was set to 2. The robot’s
actions could fail with a probability of up to 5 %, chosen uniformly distributed
for each run. One run consisted of 80 actions executed by the agent. Results for
all experiments have been measured with the statistical model checker Multi-
VeStA [17]. In all experiments, we set the maximum planning depth hmax = 20.
The discount factor was set to γ = 0.9. As mcts was used for planning, we set
emax = 1: The tree representing Pact(A|S) is updated after every episode. uct’s
exploratory constant was set to c = 20 in all experiments.

In the following experiments, we let the agent deliberate for 0.2 s. That is,
actionRequired() returned true once every 0.2 s; i.e. each action was planned for
0.2 s, incorporating information from past planning steps.

As long as not stated otherwise, we provided a reward of 100 to the planning
agent for each victim that was located at a safe position. Let I : Bool → {0, 1}
be an indicator function that yields 1 if the argument is defined and true and 0,
otherwise. Let victims : S → 2Victim be the set of all victims present in a given
state. Then, for any state s ∈ S the reward function was defined as follows.

R(s) = 100 ·
∑

v∈victims(s)

I(v.position.safe) (3)

The reward function instantiates the getReward operation of class Reward-
Function in the OnPlan framework. Action implementations instantiate the
execute operations of the corresponding subclasses of the Action class (e.g. move,
pick up victim, etc.). A simulation about domain dynamics is provided to the
simulation-based planner. It instantiates the sampleSuccessor operation of the
Simulation class.

Estimation of Expected Future Reward. In a preliminary experiment, we
observed the estimation of mean expected future reward. The mcts planner
increases the expected future reward up to step 60. Onwards from step 60 it
decreases as the agent was informed about the end of the experiment after 80 steps.

16 L. Belzner et al.

Fig. 6. Expected accumulated future reward at each step by the mcts planner.

The planning depth hmax = 20 thus detects the end of an experiment at step 60.
The mean expected reward for executed actions is shown in Fig. 6.

We also measured the increase in accuracy of the estimation of expected
reward by mcts. We measured the normalized coefficient of variation (CV) to
investigate estimation accuracy, as the mean of expected future reward is highly
fluctuating in the course of planning. The CV is a standardized measure of
dispersion of data from a given distribution and independent from the scale of
the mean, in contrast to standard deviation. Normalization of the CV renders
the measurement robust to the number of samples. The normalized CV of a
sample set is defined as quotient of the samples’ standard deviation s and their
mean x̄, divided by the square root of available samples n. Note that the CV
decreases as n increases, reflecting the increased accuracy of estimation as more
samples become available.

s/x̄√
n

(4)

We recorded mean r̄ and standard deviation sa of the expected reward gath-
ered from simulation episodes for each potential action a, along with the number
of episodes where a was executed at the particular step na. The normalized CV
of an action then computes as follows.

sa/r̄√
na

(5)

Figure 7 shows the normalized CV w.r.t. expected reward of the actions exe-
cuted by the agent at a given step in the experiment. We observed that mcts

OnPlan: A Framework for Simulation-Based Online Planning 17

Fig. 7. Normalized coefficient of variation of expected reward estimation for actions
executed by the mcts planner. Note the logarithmic scale on the y-axis. After about
20 steps, estimation noise resembles the noise level inherent to the domain (up to 5 %
action failures and average spread of fires).

steadily improves its estimation accuracy of expected reward. After about 20
steps, estimation noise resembles the noise level inherent to the domain (up to
5 % action failures and average spread of fires).

Autonomous System Behavior. In a baseline experiment, we evaluated
OnPlan’s ability to synthesize autonomous behavior according to the given
reward function. Figure 8 shows the average ratio of victims that was at a safe
position w.r.t. to the number of actions performed by the agent, within a 95 %
confidence interval. Also, the ratio of victims that are located at a burning posi-
tion is displayed. No behavioral specification besides the instantiation of our
planning framework has been provided to the agent. It can be seen that the
planning component is able to generate a strategy that yields sensitive behavior:
The robot transports victims to safe positions autonomously.

Robustness to Unexpected Events. In a second experiment we exposed
the planning agent to unexpected events. This experiment is designed to illus-
trate robustness of the OnPlan framework to events that are not reflected by
the simulation Psim provided to the planning component. In this experiment,
all victims currently carried by the robot fall to the robot’s current position
every 20 steps. Also, a number of fires ignite such that the total number of fires
accumulates to 10. Note that these events are not simulated by the agent while

18 L. Belzner et al.

0 20 40 60 80
0

0.2

0.4

0.6

Step

R
a
ti

o
o
f
v
ic

ti
m

s

Safe

Burning

Fig. 8. Autonomous agent performance based on an instantiation of the OnPlan
framework with a mcts planner. Reward is given for victims at safe positions. Dotted
lines indicate 0.95 confidence intervals.

planning. Figure 9 shows the agent’s performance in the presence of unexpected
events with their 95 % confidence intervals. It can be seen that transportation of
victims to safety is only marginally impaired by the sudden unexpected changes
of the situation. As mcts is used in an online manner that is based on replan-
ning at each step, the planning framework is able to recover from the unexpected
events efficiently.

System Goal Respecification. A third experiment highlights the framework’s
ability to adapt behavior synthesis to a system goal that changes at runtime.
Before step 40, the agent was given a reward for keeping the number of fires low,
resulting in a reduction of the number of burning victims. Onwards from step 40,
reward was instead provided for victims that have been transported to safety.
Besides respecification of the reward function to reflect the change of system
goal no additional changes have been made to the running system. I.e., only
the rewardFct reference of the planner was changed. This change impacts the
weighting of episodes (see Algorithm 5, lines 3 and 11). The different weighting
in turn impacts the updating of the planner’s current strategy.

Figure 10 shows system performance in this experiment, together with 95 %
confidence intervals. The results indicate that the framework indeed is able to
react adequately to the respecification of system goals. As system capabilities
and domain dynamics remain the same throughout the experimental runtime, all
high-level specifications such as action capabilities (i.e. the action space A) and
knowledge about domain dynamics (i.e. the generative model Psim) are sensibly
employed to derive valuable courses of actions, regardless of the current system
goal. OnPlan thus provides a robust system adaptation mechanism for runtime
goal respecifications.

OnPlan: A Framework for Simulation-Based Online Planning 19

0 20 40 60 80
0

0.2

0.4

0.6

Step

R
a
ti

o
o
f
v
ic

ti
m

s

Safe

Burning

Fig. 9. Autonomous agent performance despite unexpected events at runtime. Every
20th step, all victims carried by the agent fall to the ground, and the number of fires
raises to 10. Dotted lines indicate 0.95 confidence intervals.

4 Framework Instantiation in Continuous Domains

We now focus on an instantiation of the OnPlan framework that works in
continuous space and action domains. I.e. states and actions are represented as
vectors of real numbers R

n, for some n ∈ N. This means that state and action
spaces are of infinite size. In this section we show how Cross Entropy Open Loop
Planning (ceolp) [3,11] instantiates our planning framework, and illustrate how
information obtained from simulations in the planning process can be used to
identify promising ares of the search space in continuous domains. ceolp works
by optimizing action parameters w.r.t. expected payoff by application of the
cross entropy method.

4.1 Cross Entropy Optimization

The cross entropy method for optimization [7,18] allows to efficiently estimate
extrema of an unknown function f : X → Y via importance sampling. To do so,
an initial probability distribution (that we call sampling distribution) Psample(X)
is defined in a way that covers a large region of the function’s domain. For esti-
mating extrema of f , a set of samples x ∈ X is generated w.r.t. the sampling
distribution (i.e. x ∼ Psample(X)). The size of the sample set is a parameter of
the cross entropy method. For all x in the set, the corresponding y = f(x) ∈ Y
is computed. Then samples are weighted w.r.t. their relevance for finding the
function extrema. For example, when trying to find maxima of f, samples x are
weighted according to y = f(x). Typically this involves normalization to keep
sample weights in the [0; 1] interval. We denote the weight of a sample xi by wi.

20 L. Belzner et al.

0 20 40 60 80
0

0.2

0.4

0.6

Step

R
a
ti

o
o
f
v
ic

ti
m

s

Safe

Burning

Fig. 10. Autonomous agent performance with a respecification of system goal at run-
time. Before step 40, the agent is given a reward for keeping the number of fires low,
resulting in a reduction of the number of burning victims. Onwards from step 40, reward
is provided for victims that have been transported to safety. Dotted lines indicate 0.95
confidence intervals.

The weighted sample set is used to update the sampling distribution Psample(X)
by minimizing the distributions’ cross entropy. Minimizing cross entropy yields
a distribution that is more likely to generate samples in X that are located
close to the maxima of f . Minimizing of cross entropy has been shown to be
equivalent to maximizing the likelihood of the samples x weighted by f(x) [18].
Sampling, weighting and building new sampling distributions by maximum like-
lihood estimation are repeated iteratively. This yields an iterative refinement of
the sampling distribution which increases the probability to sample in the region
of the maxima of f , thus providing a potentially better estimate thereof. While
convergence of the CE method has been proven for certain conditions, it is not
easy to establish these conditions in the most practically relevant settings [19].
However, empirical results indicate that the CE method provides a robust opti-
mization algorithm which has been applied successfully in a variety of domains
(see e.g. [18,20,21])

Figure 11 illustrates the idea of iterative refinement of the sampling distribu-
tion to increase the probability to generate samples in the region of the maxima
of the unknown function f . In this example, a Gaußian sampling distribution
was chosen. The sampling distribution is shown as solid line, while the unknown
target function is shown as dashed line. While in this Figure the target function
has a Gaußian form as well, this is not required for the cross entropy method to
work. Initially, the sampling distribution has a large variance, providing a well
spread set of samples in the initial generation. Then the samples are weighted
w.r.t. their value f(x) and a maximum likelihood estimate is built from the

OnPlan: A Framework for Simulation-Based Online Planning 21

weighted samples. This yields a Gaußian sampling distribution that exposes less
variance than the initial one. Repeating this process finally yields a distribution
that is very likely to produce samples that are close to the maximum of the
unknown target function.

Sampling from a Gaußian distribution can for example be done via the Box-
Muller method [22]. Equation 6 shows a maximum likelihood estimator for a
Gaußian distribution (μ, σ2), given a set I of n samples a i ∈ A, i ∈ {0, ..., n},
each weighted by wi ∈ R. This yields a new Gaußian distribution that concen-
trates its probability mass in the region of samples with high weights. Samples
with low weights are less influential on the probability mass of the new distrib-
ution.

μ =

∑
(ai,wi)∈I wia i∑
(aj ,wj)∈I wj

σ2 =

∑
(ai,wi)∈I wi(a i − μ)T (a i − μ)∑

(aj ,wj)∈I wj
(6)

Summarizing, the requirements for the cross entropy method are as follows.

1. A way to weight the samples, i.e. a way to compute f(x) for any given x ∈ X.
2. An update mechanism for the distribution based on the weighted samples

has to be provided. Typically, this is a maximum likelihood estimator for the
sampling distribution.

Note that the cross entropy method is not restricted to a particular form of
probability distribution. Also discrete distributions or other continuous ones than
a Gaußian can be used to model the sampling distribution [18].

4.2 Online Planning with Cross Entropy Optimization

The key idea of ceolp is to use cross entropy optimization on a sequence of
actions. The agent’s strategy Pact(A|S) is thus represented by a vector of multi-
variate Gaußian distributions over the parameter space of the actions A ⊆ R

N.
In the context of our framework for simulation-based planning, we want

to find the maxima of a function that maps sequences of actions to expected
rewards, that is f : A∗ → R. The simulation Psim(S|S × A) and the reward
function R : S → R allow us to estimate f(a) for any given a ∈ A∗: We can
generate a sequence of states s ∈ S∗ by sampling from the simulation and build
an episode e ∈ E from a and s. We can then evaluate the accumulated reward
of this episode by computing the discounted sum of gathered rewards RE(e) (see
Eq. 1).

In OnPlan, we generate emax episodes and weight them by accumulated
reward as shown in Algorithm 5. The sampling of actions from the strat-
egy (Algorithm 5, line 9) is done by generating a sample from the Gaußian
distribution over action parameters at the position of the strategy vector
that matches the current planning depth (i.e. the number of iteration of

22 L. Belzner et al.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

Action

P
(o

p
ti

m
a
l)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

Action

P
(o

p
ti

m
a
l)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

Action

P
(o

p
ti

m
a
l)

Fig. 11. Illustration of the cross entropy method with a Gaußian sampling distribution.
The dashed line represents the unknown target function. The solid line represents
the Gaußian sampling distribution that is iteratively refined by maximum likelihood
estimation based on samples from the previous iteration, weighted by their target
function values.

the for-loop in Algorithm 5, line 6). The Gaußians that form the strategy
Pact(A|S) are updated after generating and weighting emax episodes, as stated in
Algorithm 4. The update is performed via maximum likelihood estimation for
each Gaußian in the strategy vector as defined in Eq. 6.

OnPlan: A Framework for Simulation-Based Online Planning 23

4.3 Framework Instantiation

Cross Entropy Open Loop Planning instantiates the OnPlan framework based
on the following considerations.

1. Strategy::sampleAction(State): Action generates samples from the current
vector of Gaußians that represents Pact. As ceolp is state agnostic and only
accumulates action parameters w.r.t. planning depth, this depth is the only
information that is used for conditioning the distribution: I.e. when sampling
at depth d, the d-th component of the plan distribution is used to generate a
value for the action.

2. SimPlanner::updateStrategy(Set(WEpisode)): Strategy refines the Gaußians
in the strategy by maximum likelihood estimation w.r.t. the samples from
the previous generation, weighted by the accumulated reward (see Eq. 6).
This yields a strategy that is likely to produce high-reward episodes.

3. The remaining plug-points – execute of class Action, getReward of class
RewardFunction and sampleSuccessor of class Simulation – have to be instan-
tiated individually for each domain and/or system use case.

4.4 Empirical Results

We compared an instantiation of our framework with ceolp with a vanilla Monte
Carlo planner that does not perform iterative update of its strategy. The latter
proposes actions from a strategy distribution that is the best average w.r.t.
weighted simulation episodes. However, in contrast to the ceolp planner, it
does not refine the strategy iteratively while simulating to concentrate its effort
on promising parts of the search space.

Experimental Setup. We provided the same number of simulations per action
to each planner. The one that instantiates OnPlan updates the strategy dis-
tribution every 30 simulations (i.e. emax = 30) and does this 10 times before
executing an action. Planning depth was set to hmax = 50. The vanilla Monte
Carlo planner uses the aggregated result of 300 episodes generated w.r.t. the
initial strategy to decide on an action, without updating the strategy within the
planning process. It only builds a distribution once after all samples have been
generated and evaluated to decide on an action. Action duration was fixed at
one second. The discount factor was set to γ = 0.95 in all experiments.

Example Domain. Figure 12 depicts our evaluation scenario. The circle bot-
tom left represents our agent. Dark rectangular areas are static obstacles, and
small boxes are victims to be collected by the planning agent. The agent is
provided with unit reward on collecting a victim. Victims move with Gaußian
random motion (i.e. their velocity and rotation are randomly changed based on
a normal distribution). Note that this yields a highly fluctuating value function
of the state space – a plan that was good a second ago could be a bad idea to

24 L. Belzner et al.

Fig. 12. The continuous sample domain.

realize a second later. This means that information aggregation from simulations
should be as efficient as possible to be able to react to these changes in real time.

An agent can perform an action by first rotating for a second and then
moving forward for the same amount of time. Rotation rate and movement
speed are action parameters to be optimized by the planner in order to collect
the victims as fast as possible. The agent is provided with a simulation of the
environment as described above. Note that this simulation is an abstraction of
the real environment. This means that reality and simulation may differ in their
dynamics, even if performing the exactly same set of actions. Also, the simulation
is not informed about the movement model of the victims.

The reward function providing unit reward to a planner on collecting a
victim instantiates the getReward operation of class RewardFunction in the
OnPlan framework. Action implementations instantiate the execute operations
of the corresponding subclasses of class Action. The simulation provided to the
simulation-based planner instantiates the sampleSuccessor operation of the Sim-
ulation class.

Iterative Parameter Variance Reduction. Figure 13 shows an exemplary
set of actions sampled from Pact for the first action to be executed. Here, the
effect of updating the sampling strategy can be seen for the two-dimensional
Gaußian distribution over the action parameters speed (x axis) and rotation
rate (y axis). While the distribution is spread widely in the initial set of sam-
ples, updating the strategies according to the samples’ weights yields distribu-
tions that increasingly concentrate around regions of the sample space that yield
higher expected reward. The figures also show Spearman’s rank correlation coef-
ficient of the sampled action parameters to measure the dependency between the
two action variables (speed and rotation rate). It can be seen that the degree
of correlation increases with iterations. Also, the probability that there is no
statistically significant correlation of the parameters decreases: From 0.94 in the
initial set of samples to 0.089 in the tenth set.

Estimation of Expected Reward. Figures 14 and 15 show the effect of iter-
atively updating the strategy on simulation episode quality. We evaluated the

OnPlan: A Framework for Simulation-Based Online Planning 25

Fig. 13. Actions sampled from Pact for the first action to execute at iterations one,
five and ten.

magnitude of effect depending on the degree of domain noise. Domain noise
is given by movement speed of victims in our example. We compared victim
speed of 0.1 and 1.0 (m/s). Figure 14 shows the average accumulated reward of

26 L. Belzner et al.

Fig. 14. Mean accumulated reward of sampled episodes per iteration. Results are shown
as factor (i.e. gain) of mean accumulated reward in the initial iteration. The data shows
a tendency to increase episode quality with iterative updating of the sampling strategy.
The magnitude of the effect depends on domain noise. Boxes contain 50 % of measured
data, whiskers 99.3 %.

Fig. 15. Coefficient of variation (CV) of mean accumulated reward from the sampled
episodes per iteration. Results are shown as factor (i.e. gain) of CV of mean accumu-
lated reward in the initial iteration. The data shows a tendency to increase estimation
accuracy with iterative updating of the sampling strategy (i.e. decreasing CV). The
magnitude of the effect depends on domain noise. Boxes contain 50 % of measured data,
whiskers 99.3 %.

OnPlan: A Framework for Simulation-Based Online Planning 27

02468

0

100

200

300

Victims left

T
im

e

OnPlan

Vmc

Fig. 16. Comparison of an instance of OnPlan using Ceolp with a vanilla Monte
Carlo planner (Vmc). Lines show the median, dotted lines indicate interquartile range
(comprising 50 % of measured data).

the episodes generated in a particular iteration, grouped by domain noise. The
result is shown as a factor of the value in the initial iteration. The data shows
that the episodes’ average accumulated reward increases with iterations of strat-
egy updates. The magnitude of the effect depends on domain noise. Figure 15
shows the corresponding coefficient of variation (CV), the quotient of standard
deviation and mean of a sample set. This data is also grouped by domain noise.
The CV of accumulated reward per episode shows a tendency to be reduced
with iterations. This means that the estimation of the target value (accumulated
reward per episode) is likely to increase its accuracy due to iterative strategy
refinement. Again, the magnitude of the effect depends on domain noise.

Comparison with Vanilla Monte Carlo. Figure 16 shows the time needed
to collect the victims by the OnPlan and vanilla Monte Carlo (Vmc) plan-
ners. Both are able to autonomously synthesize behavior that leads to successful
completion of their task. System autonomy is achieved in a highly dynamic con-
tinuous state-action space with infinite branching factor and despite the noisy
simulation. However, the planner using our framework is collecting victims more
effectively. The benefit of making efficient use of simulation data by cross entropy
optimization to drive decisions about actions becomes particularly clear when
only a few victims are left. In these situations, only a few combinations of actions
yield goal-oriented behavior. Therefore it is valuable to identify uninformative
regions of the sampling space fast in order to distribute simulations more likely
towards informative and valuable regions.

28 L. Belzner et al.

5 Conclusion and Further Work

Modern application domains such as cyber-physical systems are characterized by
their immense complexity and high degrees of uncertainty. This renders unfea-
sible classical approaches to system autonomy which compile a single solution
from available information at design-time. Instead, the idea is to provide a sys-
tem with a high-level representation of its capabilities and the dynamics of its
environment. The system then is equipped with mechanisms that allow to com-
pile sensible behavior according to this high-level model and information that is
currently available at runtime. I.e., instead of providing a system with a single
predefined behavioral routine it is given a space of solutions and a way to evalu-
ate individual choices in this space. This enables systems to autonomously cope
with complexity and change.

In this paper we proposed the OnPlan framework for realizing this approach.
It provides simulation-based system autonomy employing online planning and
importance sampling. We defined the core components for the framework and
illustrated its behavioral skeleton. We showed two concrete instantiations of
our framework: Monte Carlo Tree Search for domains with discrete state-action
spaces, and Cross Entropy Open Loop Planning for continuous domains. We
discussed how each instantiates the plug points of OnPlan. We showed the
ability of our framework to enable system autonomy empirically in a search and
rescue domain example.

An important direction of future work is to extend OnPlan to support
learning of simulations from observations at runtime. Machine learning tech-
niques such as probabilistic classification or regression provide potential tools
to accomplish this task (see e.g. [23]). Also, other potential instantiations of
the framework should be explored, such as the gourmand planner based on
labeled real-time dynamic programming [1,24], sequential halving applied to
trees (shot) [25,26], hierarchical optimistic optimization applied to trees (hoot)
[27] or hierarchical open-loop optimistic planning (holop) [3,28]. It would also
be interesting to investigate possibilities to extend specification logics such as
LTL or CTL [29] with abilities for reasoning about uncertainty and solution
quality. Model checking of systems acting autonomously in environments with
complexity and runtime dynamics such as the domains considered in this paper
provides potential for further research. Another direction of potential further
research is simulation-based planning in collectives of autonomous entities that
are able to form or dissolve collaborations at runtime, so-called ensembles [30,31].
Here, the importance sampling approach may provide even more effectiveness
as in a single-agent context, as the search space typically grows exponentially in
the number of agents involved. Mathematically identifying information that is
relevant in a particular ensemble could provide a principled way to counter this
combinatorial explosion of the search space in multi-agent settings.

Acknowledgements. The authors thank Andrea Vandin for his help with the
MultiVeStA statistical model checker [17].

OnPlan: A Framework for Simulation-Based Online Planning 29

References

1. Kolobov, A., Dai, P., Mausam, M., Weld, D.S.: Reverse iterative deepening for
finite-horizon MDPS with large branching factors. In: Proceedings of the 22nd
International Conference on Automated Planning and Scheduling, ICAPS (2012)

2. Keller, T., Helmert, M.: Trial-based Heuristic Tree Search for Finite Horizon
MDPs. In: Proceedings of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013), pp. 135–143. AAAI Press, June 2013

3. Weinstein, A.: Local Planning for Continuous Markov Decision Processes. Ph.D.
thesis, Rutgers, The State University of New Jersey (2014)

4. Kephart, J.: An architectural blueprint for autonomic computing. IBM (2003)
5. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57(1), 97–109 (1970)
6. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 707.

Wiley, New York (2011)
7. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach

to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.
Springer Science & Business Media, New York (2013)

8. Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff
using variance estimates in multi-armed bandits. Theor. Comput. Sci. 410(19),
1876–1902 (2009)

9. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Game 4(1), 1–43 (2012)

10. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz,
J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212,
pp. 282–293. Springer, Heidelberg (2006)

11. Weinstein, A., Littman, M.L.: Open-loop planning in large-scale stochastic
domains. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence (2013)

12. Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., Teytaud,
O.: The grand challenge of computer go: Monte carlo tree search and extensions.
Commun. ACM 55(3), 106–113 (2012)

13. Silver, D., Sutton, R.S., Müller, M.: Temporal-difference search in computer go.
In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.) Proceedings of the
Twenty-Third International Conference on Automated Planning and Scheduling,
ICAPS 2013, Rome, Italy, June 10–14, 2013. AAAI (2013)

14. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in
computer go. Artif. Intell. 175(11), 1856–1875 (2011)

15. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

16. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

17. Sebastio, S., Vandin, A.: Multivesta: Statistical model checking for discrete event
simulators. In: Proceedings of the 7th International Conference on Performance
Evaluation Methodologies and Tools, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), pp. 310–315 (2013)

18. de Boer, P., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Annals OR 134(1), 19–67 (2005)

30 L. Belzner et al.

19. Margolin, L.: On the convergence of the cross-entropy method. Ann. Oper. Res.
134(1), 201–214 (2005)

20. Kobilarov, M.: Cross-entropy motion planning. I. J. Robotic Res. 31(7), 855–871
(2012)

21. Livingston, S.C., Wolff, E.M., Murray, R.M.: Cross-entropy temporal logic motion
planning. In: Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, HSCC 2015, pp. 269–278 (2015)

22. Box, G.E., Muller, M.E.: A note on the generation of random normal deviates.
Ann. Math. Stat. 29, 610–611 (1958)

23. Hester, T., Stone, P.: Texplore: real-time sample-efficient reinforcement learning
for robots. Mach. Learn. 90(3), 385–429 (2013)

24. Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time
dynamic programming. In: ICAPS, vol. 3, pp. 12–21 (2003)

25. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed
bandits. In: Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pp. 1238–1246 (2013)

26. Cazenave, T., Pepels, T., Winands, M.H.M., Lanctot, M.: Minimizing sim-
ple and cumulative regret in monte-carlo tree search. In: Cazenave, T., Winands,
M.H.M., Björnsson, Y. (eds.) CGW 2014. CCIS, vol. 504, pp. 1–15. Springer,
Heidelberg (2014)

27. Mansley, C.R., Weinstein, A., Littman, M.L.: Sample-based planning for contin-
uous action markov decision processes. In: Proceedings of the 21st International
Conference on Automated Planning and Scheduling, ICAPS (2011)

28. Weinstein, A., Littman, M.L.: Bandit-based planning and learning in continuous-
action markov decision processes. In: Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling, ICAPS (2012)

29. Baier, C., Katoen, J.P., et al.: Principles of Model Checking, vol. 26202649. MIT
Press, Cambridge (2008)

30. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems: Results of the ASCENS Project. LNCS, vol. 8998.
Springer, Heidelberg (2015)

31. Hölzl, M.M., Gabor, T.: Continuous collaboration: A case study on the devel-
opment of an adaptive cyber-physical system. In: 1st IEEE/ACM International
Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS
2015, pp. 19–25 (2015)

Software Component Design with the B Method
— A Formalization in Isabelle/HOL

David Déharbe1(B) and Stephan Merz2

1 UFRN/DIMAp, Natal, RN, Brazil
david@dimap.ufrn.br

2 Inria, 54600 Villers-lès-Nancy, France
Stephan.Merz@loria.fr

Abstract. This paper presents a formal development of an Isabelle/
HOL theory for the behavioral aspects of artifacts produced in the design
of software components with the B method. We first provide a formaliza-
tion of semantic objects such as labelled transition systems and notions
of behavior and simulation. We define an interpretation of the B method
using such concepts. We also address the issue of component composition
in the B method.

Keywords: B-method · Formal semantics · Isabelle/HOL · Simulation

1 Introduction

The B method is an effective, rigorous method to develop software compo-
nents [1]. There exist tools that support its application, and it is used in industry
to produce software components for safety-critical systems.

The B method advocates developing a series of artifacts, starting from an
abstract, formal specification of the functional requirements, up to an imple-
mentation of this specification, through stepwise refinements. The specification is
verified internally for consistency, and may be validated against informal require-
ments through animation. The specification and the successive refinements are
produced manually, and are subject to a posteriori verification. In order to sys-
tematize the correctness proofs, the B method associates proof obligations with
specifications and refinements, and these are automatically generated by the
support tools and discharged automatically or interactively by the user. Finally,
the implementation produced in the B method is translated to compilable source
code (there are code generators for C and Ada, for instance).

Improvements in the application of the B method can be achieved by increasing
the degree of automation in the construction of refinements and in the verification
activities. The BART project provides a language and a library of refinement rules

This work was partially supported by CNPq grants 308008/2012-0 and 573964/2008-
4 (National Institute of Science and Technology for Software Engineering—INES,
www.ines.org.br), and STIC/Amsud–CAPES project MISMT.

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 31–47, 2016.
DOI: 10.1007/978-3-319-28934-2 2

www.ines.org.br

32 D. Déharbe and S. Merz

that may be applied automatically [2]. However these rules have not been verified,
and the resulting artifacts must be submitted to formal verification. Verification
of proof obligations also benefits from advancement in automated theorem prov-
ing such as the use of SMT solvers [3,4]. One missing step in the verification
aspect of the B method is the code generation from the implementation arti-
facts. In practice, one apprach taken to mitigate risks of errors introduced in the
code generators is redundancy: apply multiple code generators and execute the
generated components in parallel.

Extending the scope of formal verification in the B method would benefit
from having a machine-checkable formalization of the semantics of the B method.
Such a formal semantic framework could be applied to prove the correctness of
refinement rules, or at least derive proviso conditions that would be simpler
to prove than the general-purpose proof obligations applied to refinements, as
shown in [5]. Moreover, it could also be the employed to establish a library of
verified refactoring rules, such as [6]. Finally, such a semantic framework could
be used to demonstrate the correctness of the code generator, assuming that it is
extended to include the constructions used in the target programming language.

In this paper, we present a formalization of the behavioral aspects of artefacts
of the B method that may be taken as a starting point towards the construction
of the formal semantic framework we envision. This formalization is carried out
using the proof assistant Isabelle/HOL [7]. We represent the behavior of a (B)
software component as a labeled transition system (LTS). We first provide a
formalization of LTS, as well as the classic notion of simulation relation between
LTSes. Next we formalize the concepts of B specification, refinement and project,
based on LTSes as underlying behavioral model. We adapt the notion of simu-
lation so that it matches the concept of refinement in the B method. Finally, we
address the composition of components in the B method.

Outline: Section 2 presents the technical background of the paper, namely the B
method and formalization in Isabelle/HOL. Section 3 contain a description of the
formalization of labeled transition systems and associated concepts: simulation,
traces, etc. Then, Sect. 4 formalizes software development in B, relating each type
of artifact to its semantic interpretation. Section 5 is devoted to the presentation
and formalization of component composition in B. Section 6 concludes the paper,
discussing related work and prospective extensions.

2 Background

2.1 The B Method

In the B method [1], an individual project consists in deriving a software system
that is consistent with a high-level specification. The derivation follows prin-
cipled steps of formal system development: specifications are decomposed into
(libraries of) modules from which executable programs are eventually obtained.
Each module has a specification, called a machine, and its implementation is
derived formally by a series of modules called refinements. Such modules may

Software Component Design with the B Method 33

be used to specify additional requirements, to define how abstract data may be
encoded using concrete data types, or to define how operations may be imple-
mented algorithmically. From a formal point of view, each module is simulated by
the subsequent refinement modules, and this relationship is ensured by discharg-
ing specific proof obligations. A refinement is called an implementation when its
data is scalar and behavior is described in a procedural style. Implementations
may be translated into an imperative programming language such as C.

At every level of the refinement chain, a module describes a state transition sys-
tem. A module contains variables and instances of other modules; the state space
of a module is the compositon of the set of all possible valuations of its variables
and the state spaces of its components. A module also contains an initialization
clause that establishes the possible initial states. And a module has operations
that describe how the system might transition from one state to another state.
Each operation has a name, it may have input and output parameters, as well as
a precondition, specifying the configurations of state and input parameters values
in which the operation is available and guaranteed to terminate.

To illustrate this, Fig. 1 provides a simple B machine of a counter from zero
to three. The state of the module is the value of variable counter. The invariant
provides the type and the range of possible values for this variable. The initial-
isation specifies two possible initial values for c: either 0 or 3. The operations
specify that the counter may always be reset to zero, that it may be incremented
only when it has not reached its upper bound. The operation get is always avail-
able, does not change the state and has a single output parameter which holds
the value of c.

Figure 2 contains the graph of the labelled transition system corresponding
to the B machine counter3. Each node depicts one of the four possible states,
and directed edges correspond to transitions between states. They are labelled
with events that correspond to the operations active in each state.

Fig. 1. A simple B machine, with one state variable, named c, and three operations
(zero, inc and get).

2.2 Formalization in Isabelle/HOL

Isabelle is a logical framework for building deductive systems; we use here
Isabelle/HOL, its instantiation for higher-order logic [7]. It provides a language

34 D. Déharbe and S. Merz

Fig. 2. Labelled transition system of the counter3 machine. Initial states are drawn
with thick lines. Each transition is labelled with the corresponding operation, possibly
decorated with parameter values.

combining functional programming and logic that is suitable to develop rigor-
ous formalizations. Isabelle also comes with numerous standard packages and
powerful tools for automating reasoning. In particular, Sledgehammer [8] pro-
vides access to external proof tools complete with proof reconstruction that is
checked by the trusted Isabelle kernel. Formalizations in Isabelle are structured
in so-called theories, each theory containing type and function definitions, as
well as statements and proofs of properties about the defined entities. Theories
and proofs are developed in the Isar [9] language.

Isabelle has an extensible polymorphic type system, similar to functional
languages such as ML. Predefined types include booleans and natural numbers,
as well as several polymorphic type constructors such as functions, sets, and
lists. Type variables are indicated by a quote, as in ′ev, and function types are
written in curried form, as in ′a ⇒ ′b ⇒ ′c. Terms can be built using conventional
functional programming constructions such as conditionals, local binding and
pattern matching. Formulas are built with the usual logic connectives, including
quantifiers. Type inference for expressions is automatic, but expressions can be
annotated by types for clarity. For example, e :: E specifies that expression e
should have type E, which must be an instance of the most general type inferred
for e. In the following we introduce the constructions of the language that are
used in the presentation of the theories developed in our formalization of the B
method.

Our development uses natural numbers, pairs, lists, sets, and options:

– Type nat is defined inductively with the constructors 0 and Suc (the successor
function).

– Pairs are denoted as (e1, e2), and the components may be accessed using the
functions fst and snd. If e1 and e2 have types E1 and E2, then the pair (e1, e2)
has type E1 × E2.

– The type ′a list represents finite lists with elements of type ′a; it is defined
inductively from the empty list [] and the cons operation # that prefixes a

Software Component Design with the B Method 35

list by an element. The standard library contains operators such as hd and
tl (head and tail of a list), @ (concatenation), ! (access by position), length,
and map (constructing a list from a given list by applying a function to every
element).

– The theory for sets defines type ′a set of sets with elements of type ′a and
contains definition for all the standard operations on sets. Syntax is provided
for conventional mathematical notation, e.g. {x . x mod 2 = 0} denotes the
set of even numbers. We use the generalized union operator, written UNION ,
of type ′a set set ⇒ ′a set, that returns the union of its argument sets and the
image operation ‘ :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set that is the counterpart of the
map operation for sets. Also, operator Collect yields the set characterized by
a given predicate.

– In Isabelle/HOL, all functions must be total. The type ′a option is handy to
formalize partial functions. It has constructors None :: ′a option and Some ::
′a ⇒ ′a option to represent either no or some value of type ′a. Also, operator
the accesses the value constructed with Some.

We also use Isabelle/HOL record types. A record is a possibly polymorphic,
named type that consists of a series of fields, each field having a name and a
type. The field name is also used as a getter function to access the corresponding
field in a record value. Record values and patterns can be written as (| fld1 =
val1, f ld2 = val2 |).

Our type definitions are either introduced via type-synonym (type abbre-
viations) or by record, in the case of record types. Values, including functional
values, are defined either through definition, in the case of equational defini-
tions, or inductive-set, in the case of inductively defined sets. Such commands,
in addition to adding a new binding to the current context, also create theorems
for use in subsequent proofs. For instance, an unconditional equational defini-
tion gives rise to a theorem expressing the equality between the defined value
and the defining expression. (Definitions are not expanded by default in proofs.)
Inductive definitions introduce introduction rules corresponding to each clause,
as well as theorems for performing case distinction and induction. For notational
convenience, a definition may also be accompanied by a syntax declaration, for
example for introducing an infix mathematical symbol.

Properties of the entities thus defined are introduced in the form of lemma,
theorem and corollary paragraphs (there is no formal distinction between
these levels of theorems). Properties are written as [[H1;H2; · · · Hn]] =⇒ C where
the Hi are hypotheses and C is the conclusion. An alternative syntax is

assumes H1 and H2 and . . . Hn

shows C

In an Isabelle theory, statements of properties are immediately followed by a
proof script establishing their validity. In this paper, we have omitted all proof
scripts.

36 D. Déharbe and S. Merz

3 Formalizing Transition Systems

The specification of a software component in the B formalism describes a labeled
transition system (LTS). We therefore start with an encoding of LTSs in Isabelle,
which may be of interest independently of the context of the B method.

3.1 Labeled Transition Systems and Their Runs

Our definitions are parameterized by types ′st and ′ev of states and events. We
represent a transition as a record containing a source and a destination state,
and an event labeling the transition. An LTS is modeled as a record containing
a set of initial states and a set of transitions.

record (′st, ′ev) Tr =
src :: ′st
dst :: ′st
lbl :: ′ev

record (′st, ′ev) LTS =
init :: ′st set
trans :: (′st, ′ev) Tr set

The auxiliary functions outgoing and accepted-events compute the set of
transitions originating in a given state, and the set of their labels.

definition outgoing where outgoing l s ≡ {t ∈ trans l . src t = s}
definition accepted-events where accepted-events l s ≡ lbl ‘ (outgoing l s)

The set of reachable states of an LTS l, written states l, is defined inductively
as the smallest set containing the initial states and the successors of reachable
states.

inductive-set states for l :: (′st, ′ev) LTS where
base : s ∈ init l =⇒ s ∈ states l

| step : [[s ∈ states l; t ∈ outgoing l s]] =⇒ dst t ∈ states l

The alphabet of an LTS is the set of all events that are accepted at some
reachable state.

definition alphabet where alphabet l ≡ UNION(states l)(accepted-events l)

Runs. We formalize two notions of (finitary) behavior of LTSs. The internal
behavior or run is an alternating sequence of states and events, starting and
ending with a state. In particular, a run consists of at least one state, and the
function append-tr extends a run by a transition, which is intended to originate
at the final state of the run.

record (′st, ′ev) Run =
trns :: (′st × ′ev) list
fins :: ′st

definition append-tr where
append-tr run t ≡

(| trns = (trns run) @ [(fins run, lbl t)],
fins = dst t |)

The set of runs of an LTS is defined inductively, starting from the initial
states of the LTS, and extending runs by transitions originating at the final
state.

Software Component Design with the B Method 37

inductive-set runs for l :: (′st, ′ev) LTS where
start : s ∈ init l =⇒ (| trns = [], fins = s |) ∈ runs l

| step : [[r ∈ runs l; t ∈ outgoing l (fins r)]] =⇒ append-tr r t ∈ runs l

We prove a few lemmas about runs. In particular, every run starts at an initial
state of the LTS, and the steps recorded in the run correspond to transitions.
Moreover, the reachable states of an LTS are precisely the final states of its runs.
The proofs are straightforward by induction on the definition of runs.

lemma runs-start-initial :
assumes r ∈ runs l
shows (if trns r = [] then fins r else fst (hd (trns r))) ∈ init l

lemma run-steps:
assumes r ∈ runs l and i < length (trns r)
shows (| src = fst (trns r ! i),

dst = (if Suc i < length (trns r) then fst (trns r ! (Suc i))
else fins r),

lbl = snd (trns r ! i) |) ∈ trans l

lemma states-runs: states l = fins ‘ (runs l)

Traces. The second, observable notion of behavior is obtained by recording only
the successive events that appear in a run. We call this projection a trace of the
LTS.

type-synonym ′ev Trace = ′ev list

definition trace-of where trace-of run ≡ map snd (trns run)
definition traces where traces l ≡ trace-of ‘ (runs l)

3.2 Simulations Between Labeled Transition Systems

Two transition systems l and l′ are naturally related by a notion of simulation
that ensures that every behavior of l can also be produced by l′. More formally,
given a relation between the states of l and l′, we say that l is simulated by l′ if
the two following conditions hold:

– Every initial state of l is related to some initial state of l′.
– Whenever two states s and s′ are related and t is an outgoing transition of s

then s′ has an outgoing transition t′ with the same label as t and such that
the destination states are related.

The following definitions express these conditions in Isabelle: they lift a rela-
tion on states to a relation on transitions, respectively on LTSs. We write l � l′ if
l is simulated by l′ for some relation r. We also sometimes refer to l as the concrete
and to l′ as the abstract LTS. Figure 3 illustrates the notion of simulation.

38 D. Déharbe and S. Merz

definition sim-transition where
sim-transition r ≡ { (t, t′) | t t′ . (src t, src t′) ∈ r ∧

(dst t, dst t′) ∈ r ∧ lbl t = lbl t′ }
definition simulation where

simulation r ≡
{ (l, l′) | l l′ . (∀s ∈ init l. ∃s′ ∈ init l′. (s, s′) ∈ r) ∧

(∀(s, s′) ∈ r. ∀t ∈ outgoing l s.
∃t′ ∈ outgoing l′ s′. (t, t′) ∈ sim-transition r) }

definition simulated (infix �) where
l � l′ ≡ ∃r. (l, l′) ∈ simulation r

Fig. 3. Example of two LTSs L,L′ such that L′ � L. Dotted lines depicts pairs of
states in the simulation relation. Initial states are depicted with a thicker border.

We prove some structural lemmas about simulation: every LTS is simulated
by itself through the identity relation on states, and the composition of two
simulations is a simulation. It follows that � is reflexive and transitive. All
proofs are found automatically by Isabelle after expanding the corresponding
definitions.

lemma simulation-identity :
(Id :: (′st, ′ev) LTS rel) ⊆ simulation (Id :: ′st rel)

lema simulation-composition:
assumes (l, l′) ∈ simulation r and (l′, l′′) ∈ simulation r′

shows (l, l′′) ∈ simulation (r O r′)
lemma simulates-reflexive: l � l

lemma simulates-transitive: [[l � l′; l′ � l′′]] =⇒ l � l′′

We now prove that simulation between LTSs gives rise to similar behaviors:
every behavior of the simulating LTS corresponds to a behavior of the simulated
one. In order to make this idea precise, we first lift a relation on states to a
relation on runs.

Software Component Design with the B Method 39

definition sim-run where
sim-run r ≡ { (run, run′) | run run′ .

length (trns run) = length (trns run′) ∧
(∀i < length (trns run).

(fst (trns run ! i), fst (trns run′ ! i)) ∈ r ∧
snd (trns run ! i) = snd (trns run′ ! i)) ∧

(fins run, fins run′) ∈ r }
By induction on the definition of runs, we now prove that whenever l is

simulated by l′ then every run of l gives rise to a simulating run of l′.

theorem sim-run:
assumes (l, l′) ∈ simulation r and run ∈ runs l
shows ∃run′ ∈ runs l′. (run, run′) ∈ sim-run r

Turning to external behavior, it immediately follows that any two similar
runs give rise to the same trace. Using the preceding theorem, it follows that the
traces of the concrete LTS are a subset of the traces of the abstract one.

lemma sim-run-trace-eq :
assumes (run, run′) ∈ sim-run r
shows trace-of run = trace-of run′

theorem sim-traces:
assumes (l, l′) ∈ simulation r and tr ∈ traces l
shows tr ∈ traces l′

corollary simulated-traces: l � l′ =⇒ traces l ⊆ traces l′

3.3 A Notion of Simulation Tailored for the B Method

The notion of simulation considered so far requires that for any two related
states, every transition of the concrete LTS can be matched by a transition with
the same label of the abstract one. In particular, the concrete LTS accepts a
subset of the events accepted by the abstract LTS. In the B method, it is required
on the contrary that the concrete LTS accepts at least the events accepted by
the abstract LTS. Concrete transitions labeled by events that are also accepted
by the abstract system must still be matched, but nothing is required of concrete
transitions for events that are not accepted by the abstract LTS. This idea is
formalized by the following definition.

definition simulation-B where
simulation-B r ≡

{ (l, l′) | l l′ . (∀s ∈ init l. ∃s′ ∈ init l′. (s, s′) ∈ r) ∧
(∀(s, s′) ∈ r.

accepted-events l s ⊇ accepted-events l′ s′ ∧
(∀t ∈ outgoing l s. lbl t ∈ accepted-events l′ s′ −→

(∃t′ ∈ outgoing l′ s′. (t, t′) ∈ sim-transition r))) }
definition simulated-B (infix �B) where

l �B l′ ≡ ∃r. (l, l′) ∈ simulation-B r

40 D. Déharbe and S. Merz

The analogous structural lemmas are proved for this notion of simulation as
for the previous one, implying that �B is again reflexive and transitive. However,
runs of the concrete LTS can in general no longer be simulated by runs of the
abstract LTS because they may contain events that the abstract LTS does not
accept at a given state. The following definition weakens the relation sim-run:
the abstract run corresponds to a simulating execution of a maximal prefix of
the concrete run. We show that whenever l is simulated by l′ then a simulating
run of l′ in this weaker sense can be obtained for every run of l.

definition sim-B-run where
sim-B-run r l′ ≡ { (run, run′) | run run′ .

length (trns run′) ≤ length (trns run) ∧
(∀i < length (trns run′).

(fst (trns run ! i), fst (trns run′ ! i)) ∈ r ∧
snd (trns run ! i) = snd (trns run′ ! i)) ∧
(if length (trns run′) = length (trns run)
then (fins run, fins run′) ∈ r
else snd (trns run ! (length (trns run′)))

/∈ accepted-events l′ (fins run′)) }
theorem sim-B-run:

assumes (l, l′) ∈ simulation-B r and run ∈ runs l
shows ∃run′ ∈ runs l′. (run, run′) ∈ sim-B-run r l′

Turning to observable behavior, we introduce a refined notion of a trace that
does not only record the events that occur in a run but also which events are
accepted at the end of the run.

definition traces-B where
traces-B l ≡ { (trace-of r, accepted-events l (fins r)) | r . r ∈ runs l }

Theorem sim-B-run implies that whenever l is simulated by l′ then for every
(B) trace of l there exists a maximal similar traces of l′.

theorem sim-traces-B :
assumes l �B l′ and (tr, acc) ∈ traces-B l
shows ∃(tr′, acc′) ∈ traces-B l′.

length tr′ ≤ length tr ∧ (∀i < length tr′. tr′ ! i = tr ! i) ∧
(if length tr′ = length tr then acc′ ⊆ acc
else tr ! (length tr′) /∈ acc′)

4 Formalizing Development in B

We now turn our attention to the artifacts produced by the application of the B
method and associate them to the formal entities we have defined in the preced-
ing section. We address successively B machines (i.e. specifications), refinements,
and the development process.

Software Component Design with the B Method 41

4.1 Specification

The semantics of a B machine identifies it with a labelled transition system,
together with an invariant, i.e. a predicate on the states of the LTS.

record (′st, ′ev) B-machine =
lts :: (′st, ′ev) LTS
invariant :: ′st ⇒ bool

This definition of B-machine puts no restriction whatsoever on the invariant
with respect to the LTS. In contrast, sound B machines are such that all the
reachable states of the LTS satisfy the invariant. They are identified by the
following predicate:

definition sound-B-machine where
sound-B-machine m ≡ ∀s ∈ states (lts m). invariant m s

The following theorem states two sufficient conditions to establish that a
machine is sound: all initial states must satisfy the invariant, and the transition
relation must preserve the invariant. These conditions correspond to the standard
proof obligations of the B method that express induction on the set of reachable
states.

theorem machine-po:
assumes

∧
s. s ∈ init (lts m) =⇒ invariant m s

and
∧

t. [[t ∈ trans (lts m); invariant m (src t)]]
=⇒ invariant m (dst t)

shows sound-B-machine m

4.2 Refinement

A B refinement is composed of an abstract and a concrete LTS related by a
gluing invariant. The gluing invariant is a binary predicate over the states of the
abstract LTS and the states of the concrete one; it corresponds to the relation
on states considered in Sects. 3.2 and 3.3.

record (′st, ′ev) B-refinement =
abstract :: (′st, ′ev) LTS
concrete :: (′st, ′ev) LTS
invariant :: ′st × ′st ⇒ bool

As in the previous definitions of simulation, we assume that the two LTSs
are defined over the same types of states and events. In practice, we expect the
type of states to be a mapping of variable names to values.

A refinement is considered sound if the invariant establishes a simulation (in
the sense established in Sect. 3.3) of the concrete component by the abstract
component.

definition sound-B-refinement where
sound-B-refinement ≡

(concrete r, abstract r) ∈ simulation-B (Collect (invariant r))

42 D. Déharbe and S. Merz

It then follows that every concrete execution corresponds to some execution
of the abstract LTS, and that the former is simulated by the latter.

lemma refinement-sim
assumes sound-B-refinement r
shows concrete r �B abstract r

We lift the structural properties of simulations to B refinements. First, the
trivial refinement of an LTS by itself where the gluing invariant is the identity
on states is a sound refinement.

definition refinement-id where
refinement-id l ≡ (| abstract = l, concrete = l, invariant = (λ(s, t).s = t) |)

lemma refinement-id : sound-B-refinement (refinement-id l)

Second, we define the composition of two refinements and show that the
composition of two refinements is sound, provided that the concrete LTS of the
first refinement is the abstract LTS of the second one. Moreover, the composition
of refinements admits identity refinements as left and right neutral elements, and
it is associative.

definition refinement-compose where
refinement-compose r r′ ≡

(| abstract = abstract r,
concrete = concrete r′,
invariant = λp. p ∈ Collect (invariant r′) ◦ Collect (invariant r) |)

lemma refinement-compose-sound:
assumes sound-B-refinement r and sound-B-refinement r′

and concrete r = abstract r′

shows sound-B-refinement (refinement-compose r r′)
lemma refinement-compose-neutral-left :

refinement-compose (refinement-id (abstract r)) r = r

lemma refinement-compose-neutral-right :
refinement-compose r (refinement-id (concrete r)) = r

lemma refinement-compose-associative :
refinement-compose (refinement-compose r r′) r′′ =
refinement-compose r (refinement-compose r′ r′′)

4.3 B Development

The development of software components in the B method proceeds by stepwise
refinement. We represent this process in a so-called B design as a sequence of
refinements. The idea is that the abstract LTS of the first refinement is gradually
refined into the concrete LTS of the last refinement. Such a design is sound if
every single refinement is sound and if the concrete LTS of each refinement is
the abstract LTS of its successor. By repeated application of lemma refinement-
compose-sound, it follows that the concrete LTS of the last refinement is simu-
lated by the abstract LTS of the first refinement in the sequence.

Software Component Design with the B Method 43

type synonym (′st, ′ev) B-design = (′st, ′ev) B-refinement list
definition sound-B-design where

sound-B-design refs ≡ ∀i < size refs.
sound-B-refinement (refs ! i) ∧
(Suc i < size refs −→ concrete (refs ! i) = abstract (refs ! (Suc i)))

lemma design-sim:
assumes sound-B-design refs and refs �= []
shows concrete (last refs) �B abstract (hd refs)

Finally, we define a B development as consisting of a B machine and a B
design. A sound B development consists of a sound B machine and a sound B
design such that the abstract LTS of the first refinement in the design is the LTS
of the B machine.

record (′st, ′ev) B-development =
spec :: (′st, ′ev) B-machine
design :: (′st, ′ev) B-design

definition sound-B-development where
sound-B-development dev ≡

sound-B-machine (spec dev)
∧ sound-B-design (design dev)
∧ (design dev �= [] −→ lts (spec dev) = abstract (hd (design dev)))

It follows that in a sound B development, the concrete LTS of the final
refinement simulates the initial specification.

theorem development-sim:
assumes sound-B-development d and design d �= []
shows concrete (last (design d)) �B lts (spec d)

5 Component Composition in B

The language B has several mechanisms for composing components:

– The SEES construction allows one component access to definitions found in
another component. This modularization mechanism aims at reusing defin-
itions of some module across several components. It is not related to the
behavioral aspects explored in this paper.

– The INCLUDES construction makes it possible to use instances of existing com-
ponents to build a new specification, say machine M. The state of M is a tuple
of the variables declared in M and the variables of the imported instances. The
imported instances are initialized automatically upon initialization of M. The
states of the imported instances are read-only in M, and each operation of M
may call at most one operation of each such instance.

44 D. Déharbe and S. Merz

– B offers constructions named EXTENDS and PROMOTES that are essentially syn-
tactic sugaring of the INCLUDES construction. A construction named USES
provides read access between several instances that are included by the same
machine, and provides additional flexibility to build a specification from com-
binations of INCLUDES components.

– The IMPORTS construction is to B implementations what the INCLUDES is for
specifications: existing components may be used as bricks to build implemen-
tations. Since B implementations define the body of operations as sequential
composition of atomic instructions, they may have multiple calls to operations
of imported components.

In the following, we present a formalization of the INCLUDES construction.
This formalization is carried out on the semantic objects associated to B com-
ponents: LTSs and runs. The inclusion of a component C in a component A is
represented by a record containing the LTS corresponding to C, a function to
project states of A to states C, and a function to map each event of A to at
most one event of C.

record (′st, ′ev) Includes =
lts :: (′st, ′ev) LTS
sync-st :: ′st ⇒ ′st
sync-ev :: ′ev ⇒ ′ev option

Next, we express the soundness conditions for such record. With respect to
a given LTS A, an Includes record I, with LTS C, is sound when it satisfies
two conditions. First, the state projection function π maps every initial state
of A to an initial state of C. Next, if t is a transition of A whose event is not
mapped to an event in C by the event mapping function σ, then π projects the
end states of t to the same C state; if the mapping σ yields an event e of C, then
C must contain a transition labeled by e relating the projections of the source
and destination states of t.

definition sound-includes where
sound-includes A I ≡

(let (C, π, σ) = (lts I, sync-st I, sync-ev I) in
π ‘ (init A) ⊆ (init C) ∧
(∀t ∈ trans A . (case σ(lbl t) of

None ⇒ π(src t) = π(dst t)
| Some e ⇒ (| src = π(src t), dst = π(dst t), lbl = e |) ∈ trans C)))

Sound inclusion ensures that the projection of every reachable state of the
including LTS is a reachable state of the included LTS.

theorem includes-states:
assumes s ∈ states A and sound-includes A I
shows (sync-st I) s ∈ states (lts I)

In order to obtain a similar result for runs, we need to define a relationship
between runs of a LTS and behaviors of the included LTS. We first define an

Software Component Design with the B Method 45

auxiliary function interaction-trns: given an LTS A, an include record I with a
LTS C, and a sequence of state and events corresponding to transitions of A, it
filters out those pairs that do not correspond to events in C, and projects the
result to states and events in C according to I. The function interaction uses
interaction-trns in order to construct a run of the included LTS C from a run
of A.

definition interaction-trns where
interaction-trns A I seq ≡
map (λ(s, e) . (sync-st I s, the (sync-ev I e)))

(filter (λ(s, e) . sync-ev I e �= None) seq)
definition interaction where

interaction A I run ≡
(| trns = interaction-trns A I (trns run),
fins = sync-st I (fins run) |)

The soundness result at the level of runs now states that the projection (in
the sense produced by interaction) of any run of the including LTS is a run of
the included LTS. It follows that the projection of any trace of the including
LTS to those events that are mapped to an event of the included LTS is a trace
of the included LTS.

theorem interaction-runs:
assumes r ∈ runs A and sound-includes A I
shows interaction A I r ∈ runs (lts I)

theorem interaction-traces:
assumes tr ∈ traces A and sound-includes A I
shows map (the ◦ sync-ev I) (filter (λe. sync-ev I e �= None) tr)

∈ traces (lts included)

6 Conclusion

This paper presents a formalization of the design of software components using
the formal method B. We focus on the concepts that are central to the behavioral
semantics of B components, namely labelled transition systems, as well as their
internal and external (observable) behavior. An important relation between such
entities is that of simulation: we express the classical definition of simulation
and we give a variation of simulation that corresponds to B’s view of refine-
ment properties between components. All concepts are formally defined in the
Isabelle/HOL proof assistant, and related by formally proved theorems. The for-
malization also addresses B components and the B design process at an abstract
level, relating these concepts to the semantic concepts and to simulation. Our
formalization also addresses inclusion, i.e. the fundamental mechanism for com-
ponent composition provided in the B specification language, and characterizes
soundness for such component inclusion.

The B method has previously been subject of several formalization efforts
addressing either the full B specification language or some aspects of this

46 D. Déharbe and S. Merz

language. Chartier [10] formalized the language of the B method, also with
Isabelle/HOL, with the goal of formally verifying proof obligations and to pro-
duce a formally verified proof obligation generator. A similar effort was carried
out by Bodeveix et al. [11], but using instead both Coq and PVS as formalization
engines. It is noteworthy that their work provides a semantics for the language in
terms of state transition systems, and is quite complementary to ours. Dunne [12]
produced a mathematical formalization of the generalized substitution language,
which was implemented in Isabelle/HOL by Dawson [13]. More recently, Jacquel
et al. [14] have used Coq to formalize a proof system for B, therefore providing
another rigorous framework to reason about the expression language of B.

In contrast to most previous work, our formalization focuses on the transition
system semantics of B and is independent on B’s concrete expression language.
It would therefore be interesting to specialize the mapping of B artifacts to
labelled transition systems as defined in this paper, based on the preexisting
work. As a result of such a formalization, we would like to derive a library of
sound refinement and refactoring rules for the B method.

References

1. Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University
Press, New York (2005)

2. Requet, A.: BART: a tool for automatic refinement. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 345. Springer,
Heidelberg (2008)

3. Marché, C., Filliâtre, J.-C., Mentré, D., Asuka, M.: Discharging proof obligations
from Atelier B using multiple automated provers. In: Derrick, J., Fitzgerald, J.,
Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012.
LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012)

4. Conchon, S., Iguernelala, M.: Tuning the alt-ergo SMT solver for B proof obliga-
tions. In: Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 294–297.
Springer, Heidelberg (2014)

5. Borba, P., Sampaio, A., Cornélio, M.: A refinement algebra for object-oriented
programming. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 457–482.
Springer, Heidelberg (2003)

6. Cornélio, M., Cavalcanti, A., Sampaio, A.: Sound refactorings. Sci. Comput. Pro-
gram. 75(3), 106–133 (2010)

7. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2283)

8. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reasoning 51(1), 109–128 (2013)

9. Paulson, L.C., Wenzel, M.: Isabelle/Isar. In: Wiedijk, F. (ed.) The Seventeen
Provers of the World. LNCS (LNAI), vol. 3600, pp. 41–49. Springer, Heidelberg
(2006)

10. Chartier, P.: Formalisation of B in isabelle/HOL. In: Bert, D. (ed.) B 1998. LNCS,
vol. 1393, pp. 66–82. Springer, Heidelberg (1998)

11. Bodeveix, J.P., Filali, M., Muñoz, C.: A formalization of the B-method in Coq
and PVS. In: Springer, (ed.) Electronic Proceedings B-User Group Meeting FM
99. LNCS, vol. 1709, pp. 33–49 (1999)

Software Component Design with the B Method 47

12. Dunne, S.: A theory of generalised substitutions. In: Bert, D., Bowen, J.P., C.
Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 270–
290. Springer, Heidelberg (2002)

13. Dawson, J.E.: Formalising generalised substitutions. In: Schneider, K., Brandt, J.
(eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 54–69. Springer, Heidelberg (2007)

14. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Verifying B proof rules using
deep embedding and automated theorem proving. Softw. Syst. Model. 14(1), 101–
119 (2015)

Asynchronous Coordination of Stateful
Autonomic Managers in the Cloud

Rim Abid, Gwen Salaün(B), Noel De Palma, and Soguy Mak-Kare Gueye

University of Grenoble Alpes, Inria, LIG, CNRS, Grenoble, France
rim.abid@inria.fr, Gwen.Salaun@imag.fr

Abstract. Cloud computing is now an omnipresent paradigm in mod-
ern programming. Cloud applications usually consist of several software
components deployed on remote virtual machines. Managing such appli-
cations is a challenging problem because manual administration is no
longer realistic for these complex distributed systems. Thus, autonomic
computing is a promising solution for monitoring and updating these
applications automatically. This is achieved through the automation of
administration functions and the use of control loops called autonomic
managers. An autonomic manager observes the environment, detects
changes, and reconfigures dynamically the application. Multiple auto-
nomic managers can be deployed in the same system and must make
consistent decisions. Using them without coordination may lead to incon-
sistencies and error-prone situations. In this paper, we present our app-
roach for coordinating stateful autonomic managers, which relies on
a simple coordination language, new techniques for asynchronous con-
troller synthesis and Java code generation. We used our approach for
coordinating real-world cloud applications.

1 Introduction

Autonomic computing [17] is increasingly used to solve complex systems, since it
reduces human errors [19]. It has become popular especially in cloud applications
where the management is a crucial feature. Autonomic computing is based on
the use of autonomic managers [18]. An autonomic manager is built as a control
loop. It observes the application execution, ensures a continuous monitoring,
and reacts to events and changes by automatically reconfiguring the application.
The increasing complexity of cloud applications implies the use of various and
heterogeneous autonomic managers, such as self-healing and self-protecting [5],
with the objective to reconfigure automatically themselves.

When multiple autonomic managers monitor the same system, they should
take globally coherent decisions. Hence, a manager should be aware of decisions
of other managers before reacting. When it reacts without taking into account
decisions of other managers handling the same application, error-prone situa-
tions may occur (e.g., removing a server that will be needed). In order to avoid
performance degradation and system consistency problems, and also to limit
energy consumption it is necessary to coordinate all autonomic managers.
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 48–65, 2016.
DOI: 10.1007/978-3-319-28934-2 3

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 49

In this paper, we present our approach, whose main goal is to synthesize a
controller that monitors and orchestrates the reconfiguration operations of the
involved managers. The controller also prevents a manager from violating global
objectives of the managers. All participants involved in the application interact
asynchronously with the controller and messages are stored/consumed into/from
FIFO buffers.

More precisely, an autonomic manager is described using a formal model,
namely a Labelled Transition System (LTS). We used reaction rules and regular
expressions to specify coordination requirements and interaction constraints. As
a consequence, each manager is not only able to manage its internal behaviour
but also its relationship with other autonomic managers, which is achieved in
accordance with the specification of the coordination requirements. As shown
in Fig. 1, we propose controller synthesis techniques for asynchronously commu-
nicating managers. These techniques rely on an encoding of our inputs (LTS
models and coordination requirements) into the LNT process algebra [6]. LNT
is one of the input languages of the CADP toolbox [11], a state-of-the-art verifi-
cation toolbox for concurrent systems. CADP compilers and minimization tools
are particularly useful for generating a reduced LTS from the LNT specification.
The generated LTS corresponds to all possible executions of the controller. It is
worth noting that since we rely on formal techniques and tools, all the verifica-
tion techniques available in the CADP toolbox can be used for validating the
generated controller.

Once we have synthesized the controller LTS, Java code is generated using
a code generator we developed. This Java code is finally deployed and used for
coordinating real applications. We validated our approach on several variants of a
N-tier Web application involving several autonomic managers, such as self-sizing
or self-repair managers. We emphasize that our approach covers the whole devel-
opment process from expression of the requirements to the final implementation
and deployment of the solution.

The rest of this paper is structured as follows. In Sect. 2, we introduce our
formal model for autonomic managers, the coordination language, and our run-
ning example (a multi-tier Web application). In Sect. 3, we present our synthesis
techniques that mainly rely on an encoding into process algebra and on LTS

Fig. 1. Overview of our approach

50 R. Abid et al.

manipulations. Section 4 introduces the code generation techniques for obtain-
ing Java code from controller models. We discuss related work in Sect. 5 and we
conclude in Sect. 6.

2 Models

In this section, we first present the abstract model used to represent autonomic
managers. In a second step, we introduce reaction rules and regular expressions
for specifying how the involved managers are supposed to interact together.
Manager models and coordination expressions are used as input to our synthesis
techniques (Sect. 3). At the end of this section, we introduce a typical example
of distributed cloud application that we use as running example.

2.1 Autonomic Manager

Each autonomic manager is modelled as a Labelled Transition System, which is
defined as follows:

Definition 1. A Labelled Transition System (LTS) is a tuple defined as LTS =
(Q,A, T, q0) where Q is a finite set of states, A = A! ∪ A? is an alphabet parti-
tioned into a set of send and receive messages, T ⊆ Q×A×Q is the transition
relation, and q0 is the initial state.

We write m! for a send message m ∈ A! and m? for a receive message m ∈ A?. A
transition is represented as q

l−→ q′ ∈ T where l ∈ A. We assume that managers
are deterministic, which can be easily obtained using standard determinization
algorithms [16]. Given a set of manager LTSs (Qi, Ai, Ti, q

0
i), we assume that

each message has a unique sender and a unique receiver: ∀i, j ∈ 1..n, i �= j,
A!

i ∩A!
j = ∅ and A?

i ∩A?
j = ∅. Furthermore, each message is exchanged between

two different managers: A!
i ∩ A?

i = ∅ for all i. Uniqueness of messages can be
achieved via renaming.

2.2 Coordination Requirements

In order to coordinate multiple autonomic managers, we use reaction rules and
regular expressions with their basic operators (sequence, choice, iteration) to
describe the behaviour one expects from the controller. The generated controller
aims at orchestrating the execution of the managers. A reaction rule consists of a
set of receptions followed by a set of emissions. Basically, it expresses that when
the controller receives a set of messages from managers within a certain period
of time (left hand part), it must send all the messages specified in the second
set (right hand part) once the period is expired. Note that the real period will
be chosen during the deployment phase and both sets of actions can be received
and emitted in any order.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 51

Definition 2. Given a set of managers {M1, . . . ,Mn} with Mi = (Qi, Ai, Ti, q
0
i),

a reaction rule R is defined as a1, ..., am → b1, ..., bp where aj ∈ A?
i and bk ∈ A!

i

for 1 � j � m and 1 � k � p.

The specification of the behaviour one expects from the controller is expressed
using a coordination expression.

Definition 3. A coordination expression C is a regular expression over reaction
rules R:

C ::= R | C1.C2 | C1 + C2 | C∗
where C1.C2 is a coordination expression C1 followed by C2, C1 +C2 is a choice
between C1 and C2, and C∗ is a repetition of C zero or several times.

It is worth noting that all participants, namely the autonomic managers
and the controller to be generated, communicate asynchronously using message
passing via FIFO buffers. Each participant is equipped with one input buffer.
Therefore, it consumes messages from its buffer and sends messages to the input
buffer of the message recipient. Once generated and added to the system, all
managers communicate through the controller, which means that the controller
acts as a centralized orchestrator for the whole system.

2.3 Running Example

Our running example is a JEE multi-tier application (Fig. 2) composed of an
Apache Web server, a set of replicated Tomcat servers, a MySQL proxy server,
and a set of replicated MySQL databases. The Apache server receives incoming
requests and distributes them to the replicated Tomcat servers. The Tomcat
servers access the database through the MySQL proxy server that distributes
fairly the SQL queries to a tier of replicated MySQL databases.

The autonomic manager architecture is based on the MAPE-K (Monitor
Analyse Plan Execute - Knowledge) reference model [17]. We describe this archi-
tecture using several LTS models. First, we model the behaviour of the monitor,
analyse, and execute functions of the managers by what we call the application
manager (Fig. 3, right), which sends messages when a change occurs in the sys-
tem and receives messages indicating actual administrative changes to perform
on the application. As for the plan functions, we use two models called self-
sizing and self-repair managers, resp. The self-sizing manager (Fig. 3, middle) is

Fig. 2. A multi-tier application

52 R. Abid et al.

Fig. 3. (left) Self-repair manager LTS, (middle) Self-sizing manager LTS, (right) Appli-
cation manager LTS

in charge of adapting dynamically the number of replicated servers by sending
the message add! (remove!, resp.) to the system when detecting an overload
(underload, resp.). The overload (underload, resp.) is detected when the average
of the load exceeds (is under, resp.) a maximum (minimum, resp.) threshold.
We associate one instance of the self-sizing manager to the Tomcat servers and
another instance to the MySQL databases. The self-repair manager (Fig. 3, left)
asks the system to repair a failure by creating a new instance of the failed server.
We have four instances of the self-repair manager, one per tier.

The absence of coordination between these managers may lead the whole
system to some undesired situation such as adding two new servers whereas one
was enough as a result of a server failure. More precisely, when the self-repair
manager repairs a failure, the other replicated servers receive more requests than
before the failure, which causes an overload and therefore the addition of another
(unnecessary) server by the self-sizing manager.

We present below an excerpt of the requirements for the controller we want to
generate for our running example. These rules ensure that all managers globally
satisfy the coordination objectives. Each line presents the actions that can be
received by the controller in a period T (left parts of reactions rules). At the
end of each period, if the received messages match the left part of one fireable
rule, it reacts by emitting the messages appearing in the right part of that rule.
All messages are prefixed by the manager name (app stands for the application
manager) and suffixed by the name of the tier to which is associated the manager.

(app_failure_apache? -> repair_failure_apache! (➊)

+ app_overload_tomcat? -> sizing_overload_tomcat! (➋)

+ app_failure_apache?, app_underload_tomcat?-> repair_failure_apache!(➌)

+ app_failure_tomcat?, app_overload_tomcat? -> repair_failure_tomcat!(➍)

+ ...) *

We distinguish two kinds of rules: (1) those where a unique message appears
in the left part of the reaction rule (see, e.g., ➊, ➋). In that case, the corre-
sponding controller immediately transfers that message to the manager; (2) those
encoding the coordination we want to impose on managers, e.g., rule ➍ permits
to generate a controller that can avoid to add two Tomcat servers by forwarding
only one of the two received messages on a same period of time. Last, since there
is no specific order between all these rules, we use a simple regular expression
where all rules can be fired at any time (combination of + and * operators).

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 53

3 Synthesis

In this section, we present our asynchronous controller synthesis techniques,
which rely on an encoding of our models and of the coordination requirements
into the LNT specification language. From this LNT specification, we can gener-
ate the corresponding LTS model using CADP compilers, hiding, and reduction
techniques. Validation of the generated controller is also possible using CADP
verification tools. This section ends with an illustration of all these techniques on
our running example. All the steps presented in this section are fully automated
by a tool that we developed in Python. This tool generates the LNT code as well
as SVL scripts [11] that are used for invoking CADP exploration and reduction
tools, which finally results in the generation of the controller LTS.

3.1 Process Algebra Encoding

The backbone of our solution is an encoding of all managers and of the coordina-
tion requirements into the LNT process algebra. The choice of LNT is motivated
by several reasons. First, LNT is an expressive behavioural specification language
which has a user-friendly syntax and provides expressive operators. Second, LNT
is supported by CADP [11], a toolbox that contains optimized state space explo-
ration techniques and verification tools. CADP tools allow to compile the LNT
specification into an LTS, which enumerates all the possible executions of the
corresponding specification. Third, CADP is a verification toolbox dedicated to
asynchronous systems consisting of concurrent processes interacting via message
passing. It provides many tools that can be used to make different kinds of
analysis, such as model checking.

The behavioural part of the LNT specification language consists of the
following constructs: action with input/output parameters, assignment (:=),
sequential composition (;), conditional structure (if), loop (loop), parallel com-
position (par), nondeterministic choice (select), and empty statement (null).
Each process defines an alphabet of actions, a list of typed parameters, and a
behaviour built using the aforementioned operators. Communication is carried
out by rendezvous on actions with bidirectional transmission of multiple values.
The parallel composition explicitly declares the set of actions on which processes
must synchronize. If the processes evolve independently from one another (inter-
leaving), this set is empty.

In the rest of this section, we successively present the encoding into LNT of
the different parts of our system.

Autonomic Manager. An LNT process is generated for each state in the
manager LTS. Each process is named using the state identifier. The alphabet
of the process contains the set of messages appearing on the LTS transitions.
The behaviour of the process encodes all the transitions of the LTS going out
from the corresponding state. If there is no such transition, the body of the
process is the null statement. If there is a single transition, the body of the

54 R. Abid et al.

process corresponds to the message labelling this transition, followed by a call
to the process encoding the target state of the transition. If there is more than
one transition, we use the select operator. Let us assume that two transitions

q
l−→ q’, q

l′−→ q’’ ∈ T have the same source state q. The behaviour of the process
encoding q in LNT is select l; q’[...] [] l’; q’’ end select, where the
LNT operator select encodes a nondeterministic choice between l and l’.

Since a message name can be used in different autonomic manager LTSs,
each message is prefixed with the manager name to avoid further name clashes.
We encode emitted messages (received messages, resp.) with a EM (REC, resp.)
suffix. These suffixes are necessary because LNT symbols ! and ? are used for the
data transfer only. As an example, m1 ∈ A! is encoded as m1 EM , and m2 ∈ A?

is encoded as m2 REC.

Coordination Requirements. The coordination requirements specified using
reaction rules and regular expressions correspond to an abstract version of the
controller to be generated. These requirements are encoded into an LNT process
called coordination. The process alphabet is composed of all received and emitted
messages appearing in the reaction rules. The body of this process encodes the
regular expression of reaction rules. Each reaction rule is translated to LNT
separating both sides of the rule using the sequential composition construct (;).
In order to make explicit in the controller LTS the logical interval of time that will
be chosen in the implementation step and during which the controller receives
messages, the left hand part of the reaction rule starts with an action TBEGIN
and ends with an action TEND. The left hand part is translated using the par
operator without synchronization since all messages can be received in any order.
After execution of the TEND action, the right hand part of the reaction rule is
translated using the parallel composition too, to express that all emissions can be
sent in any order. As far as the regular expression is concerned, a sequence (.) of
rules is encoded using the sequential composition, a choice (+) between several
rules is translated using the select construct and an iteration (∗) is encoded
using the loop operator.

Architecture. In this section, we present how all participants (managers and
coordination expression) are composed together. The communication between
them is achieved asynchronously. The coordination expression represents an
abstract description of the future controller, and all messages must go through
this controller, which acts as a centralized orchestrator. Each participant is
equipped with an input FIFO buffer. When a participant wants to read a mes-
sage, it reads the oldest message in its buffer. When a participant sends a message
to another participant, it sends the message to the input buffer of that partici-
pant. LNT functions are used to describe basic operations on these buffers (e.g.,
adding and retrieving messages). We present below, an example of function that
removes a message from a FIFO buffer (i.e., from the beginning).

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 55

function remove_MSG (q: TBUFFER): TBUFFER is
case q in

var hd: TMessage, tl: TBUFFER in
nil -> return nil

| cons(hd,tl) -> return tl

end case
end function

It is worth noting that our synthesis techniques allow one to choose buffer
bounds. One can either decide to fix an arbitrary bound for buffers or to use
unbounded buffers. In the first case, the only constraint is that the same buffer
bound should be used when deploying the controller, otherwise unexpected
behaviours and erroneous situations may occur. In the second case (unbounded
buffers), the risk is to attempt to generate a controller whose corresponding state
space is infinite [3]. As an intermediate solution, one can use the recent results
presented in [2] for identifying whether the interactions between managers with
unbounded buffers can be mimicked with bounded buffers. If this is the case, the
lower bound returned by these techniques is used as the minimum buffer bound
for both synthesis techniques and the deployment of the application.

A buffer in LNT is first encoded using an LNT list and classic operations on it.
Then, for the behavioural part, a buffer is encoded using a process with a buffer
data type as parameter. This process can receive messages from the other partic-
ipants, and can synchronize with its own participant when that one wants to read
a message. We generate a process encoding each couple (participant, buffer) that
corresponds to a parallel composition (par) of the participant with its buffer.
The synchronization set contains messages consumed by the participant from its
buffer.

Finally, the whole system (main process in LNT, see below) consists of the
parallel composition of all these couples. It is worth noting that since autonomic
managers communicate via the controller, they evolve independently from one
another and are therefore composed using the par operator without synchroniza-
tions. In contrast, the couple (coordination, buffer) must synchronize with all cou-
ples (manager, buffer) on all emissions from/to the managers, and this is made
explicit in the corresponding synchronization set of this parallel composition.

process main [message1:any, ..., messagen:any] is
par messagep, ..., messagek in

couple_buffer_coordination [...]

||

par
couple_buffer_manager1 [...]

|| . . . ||

couple_buffer_managern [...]

end par
end par

end process

56 R. Abid et al.

3.2 Compilation and Verification

Now that we have encoded our inputs (models and coordination requirements)
into LNT, we can use compilers to obtain the LTS corresponding to all behav-
iours of the LNT specification. In order to keep only the behaviour corresponding
to the most permissive controller [26], we need to hide message exchanges corre-
sponding to consumptions of the managers from their buffers and emissions from
managers to the coordination expression buffer. All these messages are replaced
by internal actions. We use minimization techniques available in CADP for elim-
inating all internal actions, removing duplicated paths, and determinizing the
final LTS. Finally, we preserve only local emissions/receptions from the coordi-
nation expression point of view (messages shown in the dashed grey rectangle
in Fig. 4). Transitions figuring in the final LTS are labelled with the messages
corresponding to the process alphabet of the couple (coordination, buffer).

Fig. 4. Exchange of messages between the coordination expression and the managers

Last but not least, let us stress that, since the writing of the coordination
expression is achieved manually by a designer, this step of our approach may lead
to an error-prone expression. However, we can take advantage of the encoding
into LNT to check either the controller LTS (and thus the coordination expres-
sion) or the LTS corresponding to the composition of all participants. To do
so, one can use the CADP model checker, which takes as input an LTS model
and a temporal property specified in MCL [20]. We distinguish two types of
properties: (i) those that depend on the application (e.g., the controller must
eventually transmit a specific message to a certain manager), (ii) those that do
not depend on the application (e.g., checking the absence of deadlock).

3.3 Running Example and Experiments

We present below an example of LNT process encoding the repair manager
shown in Fig. 3 and its buffer. This manager synchronizes with its buffer on
the repair failure REC message when this message is available in the buffer.
Note that the buffer process (buffer repair) is equipped with a parameter
corresponding to the buffer data type, that is the structure where messages are
stored, initialized to nil.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 57

process couple_buffer_repair [repair failure REC: any, repair repair EM:

any, repair failure EM: any] is
par repair failure REC is

repair R0 [repair failure REC, repair repair EM]

||

buffer repair [repair failure EM, ...] (nil)

end par

end process

From the encoded LNT specification obtained when calling the LNT code
generator, we use CADP compilers to generate the LTS describing the whole
system for our running example (consisting of 194,026,753 states and 743,878,684
transitions). Then, we use hiding and minimization techniques to generate the
LTS of the controller (consisting of 28,992,305 states and 46,761,782 transitions).
An excerpt of the controller LTS, which focuses on the failure and overload
detection in the same period of time, is shown in Fig. 5. We recall that we
use specific labels (namely TBEGIN and TEND) for characterizing the messages
received during a same period of time. This LTS shows that when the controller
receives a failure and an overload message (of a Tomcat server in this example)
during a same period, it forwards only the failure message and drops the overload
message. In contrast, when the controller receives these two messages in two
different periods, it forwards them to the repair and sizing manager, resp.

We show below two examples of liveness properties, the first one is checked
on the controller LTS and the second one on the LTS of the whole system:

– The reception of a failure message by the controller is eventually followed by
an emission of a repair message
[true* .app_failure_tomcat_REC] inev (app_repair_tomcat_EM)

– The emission of an overload message by the application manager is eventually
followed by an emission of a reparation or addition message by the controller
[true* .app_overload_tomcat_EM]

inev (app_repair_tomcat_EM or app_add_tomcat_EM)

This property shows that the overload message is handled by the repair man-
ager when both Tomcat failure and overload occur within a same period of
time. Otherwise, it is handled by the sizing manager.

Fig. 5. Excerpt of the controller LTS for the running example

58 R. Abid et al.

Table 1. Experimental results: LTSs size and synthesis time

|Managers| Whole system LTS Controller LTS Time
|states| |transitions| |states| |transitions| (m:s)

2 2,307 6,284 118 157 0:10
3 103,725 365,845 1,360 2,107 1:15
4 145 267 38 44 0:06
5 10,063,873 39,117,110 17,662 28,003 43:59
6 1,900 4,945 186 285 0:08
10 300,000 1,686,450 1,786 3,471 6:54

Both properties use the macro inev (M), which indicates that a transition labelled
with M eventually occurs. This macro is defined as follows:

macro inev (M) = mu X .(< true > true and [not (M)] X) end macro

Our approach was applied for validation purposes on many illustrative exam-
ples of our dataset (managers and coordination requirements). Table 1 summarizes
some of our experiments. Each managed application used as input is characterized
using the number of managers and the coordination requirements. We give the size
of the LTS (states/transitions) of the whole system as well as the controller LTS
obtained after minimization (wrt. a strong bisimulation relation). The last column
gives the overall time to synthesize the controller.

We observe that, for some examples (gray lines), the size of the generated
controller LTSs and the time required for generating those LTSs grow impor-
tantly when one of the managers exhibit looping behaviours, and particularly
cycles with send messages (see, e.g., the 4th example in Table 1). On a wider
scale, we note that LTS sizes and generation times increase with the number of
managers in parallel (see, e.g., the last line of Table 1).

4 Code Generation and Deployment

We present in this section our Java code generation techniques, which allow
to deploy controllers in the context of real-world applications. In particular,
we show some experimental results for our running example where the auto-
nomic managers are coordinated using a centralized controller generated with our
approach.

4.1 Java Code Generation Techniques

Our Java code generation techniques are based on the use of object-oriented
programming. They take as input the controller LTS synthesized beforehand,
and automatically generate all java classes, methods, and types necessary for
deploying it. The controller LTS is encoded as an instance of a Java class LTS.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 59

This class relies on two classes, namely a class State and a class transition
which represents the transitions between the states. The LTS class also defines an
attribute cstate representing the current active state in the controller model.
This variable is initialized with the LTS initial state. Some Java code is necessary
to interface the controller with the running application. We particularly define
a method called react that takes as input a list of messages received within a
period of time and applies successive moves according to the received messages,
the current state of the controller, and the behaviour of the generated controller.
This method computes the messages that the controller has to send as reaction
to these received messages, and updates the current state of the controller.

4.2 Deployment

Our generated Java code can be deployed and applied on concrete applications
using the event-based programming paradigm. The period of time described
using special actions TBEGIN and TEND in the controller LTS has to be instanti-
ated with a real value. This period is computed using sampling techniques and
implemented using the sleep method in Java. The choice of this period cannot
be realized during the synthesis phase and is achieved just before deployment. A
wrong choice of this period may lead to the reception of these actions in different
periods.

The main behaviour of the controller (run method) consists of an infinite
reactive loop, which successively receives events from the application, computes
reactions (messages to be sent by the controller), and encodes these messages
as events too. A part of the Java program is dedicated to converting the events
raised by the application into the input format of the react method, and con-
versely translates the output of the react method into a list of events executed
by the system. Each event contains the corresponding message and additional
information, for instance a failure event has also as parameter the impacted
server and further information (identifier, port, etc.).

4.3 Experiments on Our Running Example

In this section we present some experiments we performed when deploying and
running our controller for the multi-tier application introduced previously. To
do so, we used a virtualized experimental platform based on Openstack, which
consists of six physical machines on which we instantiate virtual machines.

The JEE multi-tier application is initially configured and deployed with a
server at each tier, i.e., an Apache Web server, a Tomcat server, a MySQL proxy,
and a MySQL database. The initial deployment phase is automated using a
dynamic management protocol allowing to connect and start the involved servers
and database in the right order [1,10]. In a second step, we use jmeter to inject
increasing load on the Apache server and thus to simulate the clients that send
HTTP requests on the managed system. Once we have at least two active Tomcat
servers and two MySQL databases, we start simulating failures using a failure
injector. When we start injecting failures, we stop augmenting the workload

60 R. Abid et al.

Fig. 6. Tomcat and MySQL failure/overload in a coordinated environment

on the Apache server and keep the same load for the rest of the execution. The
failure injector is flexible and can be used for affecting any active server (Apache,
Tomcat, MySQL, etc.), any number of times (single failure or multiple failures of
the same or of different servers), and at any time (same period of time, different
periods of time, etc.). We conducted our experiments on applications with or
without controller. We have considered different scenarios with failures of the
Apache server and of the MySQL proxy as well as failures/load variation of the
Tomcat servers and of the MySQL databases.

Figure 6 shows an excerpt of the system behaviour after 500 min since the
application deployment. We observe that, at this moment, the application is
composed of five Tomcat servers and three MySQL databases. Figure 6 presents
several cases of failure injection. As an example, at minute 508, a failure of a
replicated MySQL database causes a workload increase on the other replicated
servers. These two actions happen in the same period, but the controller forwards
only the failure detection to the repair manager. Accordingly, a single MySQL
database is added by the repair manager and the workload returns at once to
its average value.

We made several experiments in which we varied the number of failures,
the Apache load, and the minimum/maximum thresholds of the Tomcat servers
and of the MySQL databases. In all these cases, we observe that the controller
succeeds in detecting and correcting the problems while avoiding undesired oper-
ations, that is, the unnecessary addition/removal of VMs. Figure 7 shows exper-
imental results obtained with different number of failures. For instance, we see
that when injecting 14 failures to our running application, the controller applies
18 reconfiguration operations on the system (instead of 40 without controller),
and thus avoids 22 undesired operations.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 61

Fig. 7. Number of reconfiguration operations with/without coordination and number
of undesired operations avoided by coordination

5 Related Work

Controller synthesis for discrete event systems was originally introduced by
Ramadge and Wonham [24,26]. In [26], the authors present a controllable lan-
guage as a solution for the supervisory of hybrid control systems. This solution
generates controllers from a given system called plant and designed as a finite
automaton. [24] proposes a supervisor synthesis algorithm, which allows to auto-
matically generate a controller from a plant modelled as a finite automaton and
properties to be ensured by the controller. The generated controller permits all
possible legal executions. This synthesis approach is based on a classical two-
person game approach. These approaches can be characterized as restrictive
because they directly influence and impact the controlled system.

In [9], the authors introduce an approach based on contract enforcement
and abstraction of components to apply a modular discrete controller synthesis
on synchronous programs. These programs are presented by Synchronous Sym-
bolic Transition Systems. The authors integrate this approach in a high-level
programming language combining data-flow and automata. Another decentral-
ized supervisory control approach for synchronous reactive systems is presented
in [25]. This work is based on finite state machines and computes local controllers
that act on the subsystems to ensure a global property. The local controllers are
automatically generated and this approach was applied to several examples for
validation purposes. This approach allows decentralized control whereas we gen-
erate a centralized controller. Moreover, they rely on synchronous systems and
synchronous communication semantics, whereas we assume asynchronous sys-
tems and communication, meaning that the controllability hypothesis is impos-
sible in our context.

In [22], the authors propose a generic integration model that focuses terms
of reciprocal interference. This generic model can be used to manage the

62 R. Abid et al.

synchronization and coordination of multiple control loops, and it was applied
to a scenario in the context of cloud computing and evaluated under simulation-
based experiments. This paper does not provide any synthesis techniques for
coordinating the multiple loops, and coordination is achieved in a rather
manual way.

[21] presents a framework for the coordination of multiple autonomic man-
agers in the cloud computing context. These works use a protocol based on
synchronous mechanisms and inter-manager events and actions along with syn-
chronization mechanisms for coordinating these managers. The main difference
compared with our work is that this paper focuses on quality of service whereas
our focus was on behavioural and functional aspects of the system execution.

Other recent works [8,12,13] propose some techniques based on synchronous
discrete controller synthesis for coordinating autonomic managers, such as self-
repair and self-sizing managers. The communication between the generated con-
troller and the managers is synchronous and uses a synchronous language BZR,
which cannot impose a specific order between requirements and contains multiple
and complicated operations. This approach uses a background in synchronous
systems and languages, whereas our approach assumes that communication is
achieved asynchronously.

[7] presents the Aeolus component model and explains how some activities,
such as deployment, reconfiguration, and management phases of complex cloud
applications, can be automated in this model. Aeolus takes as inputs high-level
application designs, user needs, and constraints (e.g., the number of required
ports that can be bound to a client port) to provide valid configuration envi-
ronments. This work presents some similarities with ours, but does not propose
solutions for verifying that the constraints are satisfied in the target configura-
tions.

In [4], the authors present an extension of TOSCA (OASIS Topology and
Orchestration Specification for Cloud Applications) in order to model the behav-
iour of component’s management operations. More precisely, they specify the
order in which the management operations of an instantiated component must
be executed. In this work, the authors explain how management protocols are
described as finite state machines, where the states and transitions are associated
with a set of conditions on the requirements and capabilities of the components.

In [23], the authors introduce AutoMate, a framework for coordinating multi-
ple autonomic components hosted on Grid applications, using high-level rules for
their dynamic composition. The rules are executed using a decentralized deduc-
tive engine, called RUDDER, and composed of distributed specialized agents.
RUDDER deploys the rules and coordinates their execution. It assigns priorities
to these rules in order to resolve conflicting decisions between them. However,
it uses a manual administration to evaluate and update the interaction rules.

6 Conclusion

In this paper, we propose new controller synthesis techniques to generate a
centralized controller that allows to orchestrate a set of autonomic managers.

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 63

These managers are modelled as LTSs and the set of coordination requirements
is specified using reaction rules and regular expressions. The generated controller
communicates with the autonomic managers asynchronously using message pass-
ing via FIFO buffers. Our solution for controller synthesis relies on an encoding
of our models and of the coordination requirements into the LNT process alge-
bra. From this encoding, an LTS can be generated using CADP compilers, and
hiding and reduction techniques. This LTS exhibits all the possible executions of
the controller. One can also take advantage of this encoding to validate the gen-
erated controller with the CADP verification tools, such as the Evaluator model
checker. Indeed, since coordination requirements are written by a human being,
they can be erroneous, which results in that case in an erroneous controller as
well. Finally, we propose code generation techniques to automatically obtain the
Java code corresponding to the controller LTS. We validated our approach with
many variants of the multi-tier Web application we used as running example in
this paper.

It is worth noting that our approach covers all the development steps from
the design of the coordination requirements to the actual deployment of the syn-
thesized controller, which helps to coordinate at runtime real-world applications.
In addition, these synthesis techniques can be used to control other applications
where components are modelled as LTSs and communicate asynchronously. This
is the case in application areas such as Web services, multi-agent systems, or
hardware protocols.

A first perspective is to generate distributed controllers instead of a cen-
tralized controller. This would permit to preserve the degree of parallelism of
the system, where the involved participants could exchange messages without
systematically passing through a unique controller. Another perspective aims at
applying performance evaluation for the whole system using IMC (Interactive
Markov Chain) theory [14,15].

Acknowledgements. This work has been supported by the OpenCloudware project
(2012–2015), which is funded by the French Fonds national pour la Société Numérique
(FSN), and is supported by Pôles Minalogic, Systematic, and SCS.

References

1. De Palma, N., Salaün, G., Bongiovanni, F., Abid, R.: Verification of a
dynamic management protocol for cloud applications. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 178–192. Springer,
Heidelberg (2013)

2. Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: Proceedings of ASE 2014, pp. 743–754. ACM
(2014)

3. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

4. Brogi, A., Canciani, A., Soldani, J., Wang, P.: Modelling the behaviour of manage-
ment operations in cloud-based applications. In: Proceedings of PNSE 2015, vol.
1372 of CEUR Workshop Proceedings, pp. 191–205 (2015)

64 R. Abid et al.

5. Buyya, R., Calheiros, R.N., Li, X.: Autonomic cloud computing: open challenges
and architectural elements. In: Proceedings of EAIT 2012, pp. 3–10. IEEE Com-
puter Society (2012)

6. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Powazny, V., Lang, F., Serwe,
W., Smeding, G.: Reference Manual of the LOTOS NT to LOTOS Translator
(Version 5.4). INRIA/VASY (2011)

7. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

8. Delaval, G., Gueye, S.M.K., Rutten, E., De Palma, N.: Modular coordination of
multiple autonomic managers. In: Proceedings of CBSE 2014, pp. 3–12. ACM
(2014)

9. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller
synthesis. In: Proceedings of LCTES 2010, pp. 57–66. ACM (2010)

10. Etchevers, X., Salaün, G., Boyer, F., Coupaye, T., De Palma, N.: Reliable self-
deployment of cloud applications. In: Proceedings of SAC 2014, pp. 1331–1338.
ACM (2014)

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

12. Gueye, S.M.K., De Palma, N., Rutten, E., Tchana, A.: Coordinating multiple
administration loops using discrete control. SIGOPS Oper. Syst. Rev. 47(3), 18–25
(2013)

13. Gueye, S.M.K., Rutten, E., Tchana, A.: Discrete control for the coordination of
administration loops. In: Proceedings of UCC 2012, pp. 353–358. IEEE Computer
Society (2012)

14. Hermanns, H.: Interactive Markov Chains: And The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002)

15. Hermanns, H., Katoen, J.P.: Automated Compositional Markov Chain Generation
for a Plain-Old Telephone System. Sci. Comput. Program. 36(1), 97–127 (2000)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Reading (1979)

17. Huebscher, M.C., McCann, J.A.: A Survey of Autonomic Computing Degrees,
Models and Applications. ACM Comput. Surv. 40 (2008)

18. Kephart, J.O.: Research Challenges of Autonomic Computing. In: Proceedings of
ICSE 2005, pp. 15–22. ACM (2005)

19. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

20. Thivolle, D., Mateescu, R.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

21. De Oliveira, F.A., Ledoux, T., Sharrock, R.: A framework for the coordination
of multiple autonomic managers in cloud environments. In: Proceedings of SASO
2013, pp. 179–188. IEEE (2013)

22. Sharrock, R., Ledoux, T., Alvares de Oliveira Jr., F.: Synchronization of multi-
ple autonomic control loops: application to cloud computing. In: Sirjani, M. (ed.)
COORDINATION 2012. LNCS, vol. 7274, pp. 29–43. Springer, Heidelberg (2012)

23. Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G., Hariri, S.:
AutoMate: enabling autonomic applications on the grid. Cluster Comput. 9(2),
161–174 (2006)

24. Ramadge, P.J.G., Wonham, W.M.: The Control of Discrete Event Systems. Proc.
IEEE 77(1), 81–98 (1989)

Asynchronous Coordination of Stateful Autonomic Managers in the Cloud 65

25. Seboui, A.B., Hadj-Alouane, N.B., Delaval, G., Rutten, É., Yeddes, M.: An app-
roach for the synthesis of decentralised supervisors for distributed adaptive sys-
tems. Int. J. Crit. Comput.-Based Syst. 2(3/4), 246–265 (2011)

26. Wonham, W.M., Ramadge, P.J.G.: On the supremal controllable sublanguage of a
given language. SIAM J. Control Optim. 25(3), 637–659 (1987)

A Cost/Reward Method for Optimal Infinite
Scheduling in Mobile Cloud Computing

Luca Aceto1, Kim G. Larsen2, Andrea Morichetta3(B),
and Francesco Tiezzi4

1 Reykjavik University, Reykjavik, Iceland
2 Aalborg University, Aalborg, Denmark

3 IMT Institute for Advanced Studies Lucca, Lucca, Italy
andrea.morichetta@imtlucca.it

4 Università di Camerino, Camerino, Italy

Abstract. Computation offloading is a key concept in Mobile Cloud
Computing: it concerns the capability of moving application components
from a mobile device to the cloud. This technique, in general, improves
the efficiency of a system, although sometimes it can lead to a perfor-
mance degradation. To decide when and what to offload, we propose the
use of a method for determining an optimal infinite scheduler, which
is able to manage the resource assignment of components with the aim
of improving the system efficiency in terms of battery consumption and
time. In particular, in this paper we define a cost/reward horizon method
for Mobile Cloud Computing systems specified in the language MobiCa.
By means of the model checker UPPAAL, we synthesize an optimal infi-
nite scheduler for a given system specification. We assess our approach
through a case study, which highlights the importance of a scheduler for
reducing energy consumption and improving system performance.

1 Introduction

In the last few years, the ubiquity of the Internet and the increasing use of mobile
devices has changed the mobile application market. The majority of these appli-
cations are available everywhere at any time with a heavy traffic over the network
and a high computation demand. These characteristics require a large amount
of resource usage, especially concerning battery lifetime, in limited devices. The
current technological constraints have led to the emergence of a new concept
called Mobile Cloud Computing (MCC) [1,2]. MCC is a new paradigm given by
the combination of mobile devices and cloud infrastructures. This mix exploits
the computational power of the cloud and the ubiquity of mobile devices to offer
a rich user experience. It relies on the offloading concept, that is the possibility
of moving the computation away from a mobile device to the cloud.

The evolution of power-saving approaches at hardware level has led to mobile
devices that can adapt the speed of their processors. This allows devices to save
energy, but it is not powerful enough in case of power hungry applications. Since
battery life is the most important feature in mobile devices according to their
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 66–85, 2016.
DOI: 10.1007/978-3-319-28934-2 4

A Cost/Reward Method for Optimal Infinite Scheduling 67

users [3], computation offloading is clearly a cheaper alternative or a valid partner
to the hardware solutions to improve performance and efficiency.

Unfortunately, the use of remote infrastructures does not always come with-
out a cost, as sometimes computation offloading may degrade the application’s
performance. In general, a good rule of thumb is to offload an application compo-
nent only if the cost of its local execution is greater than the cost for the synchro-
nization of the input and output data plus that of the remote execution. This
could be highly influenced by network latency, bandwidth, computational power
of the mobile device, and computational requirements of the code to offload.
Notably, in the issues discussed above, when we talk about cost we consider
both time and the battery energy required to execute the application compo-
nent. Therefore, in this field it is critical for the developer to assess the cost of
the application execution during the development phase, in order to identify the
best trade-off between energy consumed and performance.

The decision of whether to offload a given application component can be
taken by means of a set of rules, i.e. the so-called scheduler. By applying the
scheduler rules, we obtain a sequence of offloading choices, called schedule, that
should allow the system to reach the desired goals while improving performance
and reducing battery consumption.

In this paper, we take into consideration schedulers that produce infinite
schedules ensuring the satisfaction of a property for infinite runs of the appli-
cation. This is particularly useful for MCC, where applications are supposed
to provide permanent services, or at least to be available for a long period. In
particular, considering that our model is equipped with constraints on duration,
costs and rewards, we are interested in identifying the optimal schedulers that
permit the achievement of the best result in terms of energy consumption and
execution time. In fact, over infinite behaviors, it is possible to recognize a cyclic
execution of components that is optimal and is determined by means of the
limit ratio between accumulated costs and rewards. Consequently, an optimal
scheduler is given by maximizing or minimizing the cost/reward ratio.

We propose here a cost/reward horizon method for MCC systems. We focus
on a domain specific language (DSL), called MobiCa [4], that has been devised
for modelling and analysing MCC systems. The use of a DSL increases the pro-
ductivity for non-experts as, due to its high-level of abstraction, it keeps MCC
domain concepts independent from the underlying model for the verification.
Since the semantics of MobiCa is given in terms of a translation into networks
of Timed Automata (TA), we show how the problem of designing and synthe-
sising optimal schedulers can be solved by using the well-known model checker
UPPAAL and the cost/reward method. Moreover, our approach also allows the
developer of MCC systems to define a custom scheduler and compare its quality
vis-a-vis the optimal one. In particular, by performing analysis with the statisti-
cal model checker UPPAAL-SMC [5] we are able to precisely quantify how much
the custom scheduler differs from the optimal one, to understand if the custom
scheduler is more suitable for time or energy optimization, and to simulate its
behavior in order to study how it scales as system executions grow longer.

68 L. Aceto et al.

Although the optimal scheduling research field already provides many differ-
ent techniques, we believe that model checking is an interesting approach for our
purposes, due to the flexibility provided by the use of logics for characterizing
different system properties and to its capability of performing analysis through
optimization techniques already implemented in model verification, which can
be fruitfully exploited for designing schedulers for MCC systems.

We illustrate our approach through a simple running example, and show its
effectiveness and feasibility by means of a larger case study.

The rest of the paper is structured as follows. Section 2 presents syntax and
semantics of the MobiCa language. Section 3 introduces our method for synthe-
sising optimal schedulers for MCC systems, while Sect. 4 illustrates how statis-
tical model checking can be used for evaluating the performance of schedulers.
Section 5 shows our approach at work on a navigator case study. Finally, Sect. 6
reports our conclusions and describes future work.

2 The MobiCa Language

In this section we recall syntax and semantics of the MobiCa language [4]. It is
designed to model MCC systems and, in particular, permits to specify both the
contextual environment where an MCC application will run and its behavior.

2.1 Language Syntax

Table 1 shows the syntax of MobiCa given as BNF grammar. A system in MobiCa
is expressed by a set of mobile devices and cloud machines composed in parallel.
A typical example of mobile device is a smartphone, a tablet or any kind of
device with limited computational and resource capabilities. A mobile device
(c, b, n,m)�Ã consists of a container of applications Ã (where x̃ denotes a tuple of
elements of kind x) and of a tuple of device information (c,b,n,m), which in order
denote: computational power (that is the number of instructions executed per
second), battery level, network bandwidth and used memory. A cloud machine
c � Ã is also a container of installed applications Ã, but as device information it
only specifies the number c of instructions executed per second. An application A
is organized in components F̃ , called ‘fragments’, whose composition is described
by a structure S. A fragment F can be a single functionality, a task or an action,
derived by partitioning the application in parts. It is described as a name f
that uniquely identifies the fragment, the number i of instructions composing
it, the amount m of memory required at runtime, the amount s of data to be
transferred for synchronization in case of offloading, and finally a boolean value o
indicating whether the fragment is designed to be offloadable or not. A structure
is a collection of terms of the form f1 Op f̃2, where from the source fragment
(f1) on the left of the operator Op the execution can proceed with one or more
target fragments (f̃2) defined on the right, according to three types of operators:

– Non-deterministic choice (−→) indicates that the execution will progress
from the source fragment to one of the target fragments, which is non-
deterministically selected.

A Cost/Reward Method for Optimal Infinite Scheduling 69

Table 1. MobiCa syntax

Systems: Sys ::= (c, b, n, m) � Ã | c � Ã | Sys1|Sys2

Applications: A ::= 〈F̃ ; S〉
Fragments: F ::= f [i, m, s, o]

Structure: S ::= f1 Op f̃2 | S1 ; S2

Operators: Op ::= −→|���| −�

– Sequential progress (���) allows the computation to sequentially progress from
the source fragment (on the left of ���) to each fragment in the ordered tuple
(on the right of ���). If the tuple contains more than one fragment, after
the execution of each of them the computation should go back to the source
fragment.

– Parallel execution (−�) allows the execution to progress from the source
fragment to all the target ones, by activating their parallel execution.

If we have more operators for the same source fragment, the system will non-
deterministically choose among them. Notably, self-loops are disallowed.

Below we show a scenario where an optimal infinite scheduling is necessary
for minimizing energy consumption and improving system performance.

Example 1 (A simple application). The example in Fig. 1 is inspired by one from
[6] and graphically describes a possible MobiCa application A. The application
is composed of three fragments, f0, f1 and f2, connected by means of the non-
deterministic operator (−→) and by the sequential operator (���). Since the
application behavior is deterministic in this case, the unique run is composed by
an initialization phase f0 → f2, followed by an infinite loop f2 → f0 → f2 →
f1 → f2. Each fragment of the sequence, can be executed either on the mobile or
in the cloud, with the only requirement of maintaining the data consistent. For
consistency we intend that either a fragment is executed on the same location of
its predecessor or at a different location only after the result of the predecessor
has been synchronized.

f0 −→ f2;
f2 ��� (f0, f1);
f1 −→ f2

Fig. 1. A simple example of a MobiCa application

70 L. Aceto et al.

In the figure, the fragments are annotated with 4 parameters; in order, we
have: the execution time on the mobile device (given by the number of instruc-
tions divided by the mobile computation power, i.e. i/c), the execution time on
the cloud, the synchronization time of the results on the bus (given by s/n)
and a boolean value representing the offloadability of the fragment (a false value
indicates that only the local execution is admitted, as in the case of f0). The
graphical notation in Fig. 1 is formalized in terms of the so-called System Graph
in Sect. 3 (Definition 1). Notably, the memory parameters introduced in MobiCa
are not considered in this particular formalization.

An infinite scheduler for the simple application shown in Fig. 1 should provide
a sequence of execution choices for each of the three fragments between the
available resources. A schedule is optimal if the total execution time or cost is
minimum, considering that the energy consumption per time unit for the mobile
device is 5 when it is in use, 1 in the idle state, and 2 for the synchronization.

The Gantt chart in Fig. 2 depicts three possible schedules for the proposed
example application. For each of them, we indicate the location of execution
between mobile and cloud, and the use of the bus. The values of T and E at the
end of the sequence are the time and the energy required by the scheduler for
computing a complete loop cycle. In the first schedule, the computation is main-
tained locally for all fragments; this behavior is reasonable when the network is
not available. Another approach might be to maintain the computation locally
only for the non-offloadable fragments (in our case only f0) and to try to move
the computation remotely as soon as possible; this allows one to manage the
task congestions in the mobile device. The third schedule instead takes into con-
sideration the sequence of offloadable fragments and executes the computation
remotely only when the synchronization of data is minimal. ��

Fig. 2. Schedules for the simple application

A Cost/Reward Method for Optimal Infinite Scheduling 71

2.2 TA-Based Semantics

We describe here the semantics of MobiCa, given in terms of a translation to
networks of Timed Automata (TA). Such a semantics can indeed be used to
solve the previously described scheduling problems, by resorting to the UPPAAL
model checker. We refer the interested reader to [4] for a more complete account
of the MobiCa semantics, and to [7] for the presented UPPAAL model.

The translation is divided in two parts: the passive part, which focusses on
resources, and the active one, which focusses on the applications. Thus, the TA
corresponding to a given MobiCa system is the composition of the results of the
passive and active translations merged together by means of a global declaration.
Below we describe the details of the translation in terms of UPPAAL models.

Global declaration. The global declaration consists of all the shared variables
used for the synchronization of fragments, clocks for keeping track of time, and
variables stating the internal state of the resources. In the global declaration
we find also the structure S of the application declared as an adjacency matrix.
A structure consists of three n × n matrices, one for each transition operator,
where n is the length of the F̃ . Let mij be the (i,j) entry of a matrix, mij � 1 if
the ith and jth fragments are connected, and 0 otherwise. Notably, the diagonal
of each matrix is always zero, as self-loops are not admitted. Table 2 shows the
corresponding three adjacency matrices, related to the example shown in Fig. 1.
In particular, we have:

(−→): the non-deterministic transition for fragment fi is activated if rowi has
non-zero cells, and the next fragment to be activated is non-deterministically
selected in {fj | mij = 1};
(−�): the parallel transition is similar to the non-deterministic one, with the
difference that the fragment fi activates all the fragments fj with mij = 1;
(���): the sequential operator matrix is slightly different from the previous ones,
as the values are not only 0 or 1. These values must be interpreted as a sequence
defining the order in which the target fragments are activated for each execution
of the source fragment. The activation of the sequential operator on a fragment
excludes the other operators until the sequence of activation is terminated. In our
example, fragment f2 activates first the execution of f0 and then the execution
of f1 (see the last row of the matrix at the right-hand side in Table 2).

Fragments. The TA for a generic fragment is depicted in Fig. 3; the template is
parametric, so that it is a valid representation for each fragment of the applica-
tion. The execution of the fragment starts from the initial location where it is
waiting for the activation. The activation is managed by the array activated[] as

Table 2. Operators translation

−→ f0 f1 f2
f0
f1
f2

−� f0 f1 f2
f0
f1
f2

��� f0 f1 f2
f0
f1
f2

72 L. Aceto et al.

Fig. 3. Fragment translation

follows: whenever the element in the array corresponding to the fragment index
becomes true, the corresponding fragment can move to the ready location. In this
latter location, it can continue its execution on the mobile device or the cloud,
depending on the evaluation of the guards on the transitions. They state that the
fragment can be executed locally only if the the results of the previous fragment
are updated locally (result[previous[id]][0]==1), or remotely only if they are
updated remotely and the fragment is offlodable (result[previous[id]][1]==1 and
Info[id].isOffloadable==true). When the execution of the fragment is completed,
it can proceed towards either the network location, in order to synchronize the
results locally and remotely (result[id][0]=1, result[id][1]=1), or the initial loca-
tion by following one operator in the structure. Indeed, the use of each operator
is rendered as an outgoing transition from the completed location to the init
one; these transitions are concurrent and enabled according to the correspond-
ing adjacency matrix, defined in the global declaration.

Fig. 4. Mobile translation

Resources. Each kind of resource
(i.e., mobile device, cloud and bus)
is translated into a specific TA;
since these TA are similar, we show
here just the one for the mobile
device (Fig. 4) and, for the sake
of presentation, we describe it in
terms of a general resource. A
resource can be in the idle state,

A Cost/Reward Method for Optimal Infinite Scheduling 73

waiting for some fragment, or inUse, processing the current fragment. When the
resource synchronizes with a fragment, it resets the local clock and remains in
the inUse state until the clock reaches the value corresponding to the occupation
time for the current fragment. Before releasing the resource, the battery level of
the mobile device is updated according to the permanence time and the energy
consumed by the resource. In this model, we assume that no energy is consumed
if there is nothing to compute, and the energy power consumed by the cloud
during its execution corresponds to the energy used by the mobile in the idle
state waiting for the results.

3 Synthesis of Optimal Infinite Schedulers for MCC

In this section, we formalize the notion of optimal infinite scheduler in terms of
two cost functions on a System Graph (SG). A SG provides a graphical represen-
tation of a MobiCa application, which is useful as an intermediate model between
the specification and the resulting network of TA generated by the translation.

Definition 1 (System Graph). Given an application 〈F̃ ;S〉 installed in a sys-
tem with a mobile device defined by information (c, b, n,m) and a cloud machine
defined by c′, its system graph SG is a tuple 〈N, −→, ���,−�, T, E,O〉 where:

– N = {f | f [i,m, s, o] ∈ F̃} is a set of fragment names.
– −→, ���, −� ⊆ N × N are three transition relations defined as f−→ f ′

(resp. f ��� f ′, f−� f ′) iff f ′ ∈ f̃ for some f̃ such that f−→ f̃ ∈ S (resp.
f ��� f̃ ∈ S, f−� f̃ ∈ S). We use f � f ′ to denote either f−→ f ′ or
f ��� f ′ or f−� f ′.

– T : N × {M,C,B} → N gives the execution time of a fragment on a
resource (where M is the mobile device, C the cloud, and B the bus);
given f [i,m, s, o] ∈ F̃ , we have: T (f,M) = 	i/c
, T (f, C) = 	i/c′
, and
T (f,B) = 	s/n
.

– E : {M,C,B} → N is the energy, expressed as a natural number, consumed
per time unit by the mobile device when a given resource is in use.

– O : N → {0, 1} represents the possibility of offloading a fragment (value 1) or
not (value 0); given f [i,m, s, o] ∈ F̃ , we have O(f) = o.

Notably, an SG is completely derived from the information specified in the corre-
sponding MobiCa system except for the energy function E. Energy consumption
information, indeed, is added to that provided by MobiCa specifications in order
to enable the specific kind of analysis considered in this work.

A path on SG is a finite sequence η = f0 � f1 � ... � fk (k ≥ 0).
Notably, in a path, parallel activations of fragments are interleaved.

Definition 2 (Scheduler). Given a system graph SG, a scheduler is a partial
function Θ : N × Op × N → {0, 1}2 that, given a transition f � f ′ in SG,
returns a pair of values πs, πt ∈ {0, 1} which indicate the execution location of
the source fragment f and of the target fragment f ′, respectively, where 0 denotes
a local execution and 1 a remote one.

74 L. Aceto et al.

When a scheduler is applied to a transition of the corresponding SG, it returns
information about offloading decisions for the involved fragments. By applying
a scheduler Θ to each transition of a sequence of transitions, i.e. a path η, we
obtain a schedule δ, written Θ · η = δ. A schedule consists of a sequence of
triples of the form (f, π, β), each one denoting a fragment f , belonging to the
considered path, equipped with its execution location π and the synchronization
flag β. Parameters π, β ∈ {0, 1} indicate the local (π = 0) and remote (π = 1)
execution and the need (β = 1) or not (β = 0) of data synchronization for f .
Formally, Θ · η = δ is defined as follows: for two consecutive fragments f and f ′

in the path η, there exist in δ two consecutive triples (f, π, β) � (f ′, π′, β′) iff
Θ(f,�, f ′) = (πs, πt) s.t. π = πs, π′ = πt and β = |πs − πt|. Notice that, as Θ
is a partial function, there may be transitions in η that are not in δ; for such
transitions the schedule does not provide any information about the offloading
strategy to apply, because they are not considered by the scheduler.

Taking inspiration from the approach in [8], we define two cost functions. In
particular, we consider the cost of executing a given path in the considered SG
using the scheduler, i.e. the cost functions are defined on schedules.

Definition 3 (Time and Energy Costs). The time and energy costs of a
schedule δ for a given SG = 〈N, −→, ���,−�, T, E,O〉 are defined as follows:

Time(δ) =
∑

(f,π,β)∈δ ((1 − π) × T (f,M) + π × T (f, C) + β × T (f,B))

Energy(δ) =
∑

(f,π,β)∈δ ((1 − π) × T (f,M) × E(M) + π × T (f, C) × E(C)
+ β × T (f,B) × E(B))

The function Time(δ) calculates the total time required by the schedule δ,
i.e. the time for executing a path of SG according to the scheduler that generates
δ. For each fragment f in the system, we add the time T (f,M) if the fragment
is executed locally (π = 0), or the time T (f, C) if the fragment is executed
remotely (π = 1). The function considers also the synchronization time T (f,B)
if two consecutive fragments are executed at different locations (β = 1).

The function Energy(δ) calculates the total energy required to complete the
scheduled path. The difference with respect to the previous function is that
here the time of permanence of a fragment in a resource is multiplied by the
corresponding energy required per time unit.

Relying on the cost functions introduced above, we can have the time-optimal
scheduler ΘT and the energy-optimal scheduler ΘE for a given SG, which
determine the sequence of actions that generates the less costly combination
of resources, in terms of Time(δ) and Energy(δ) respectively, for a path in SG.

Example 2 (Time and battery costs for the small application). We evaluate here
the schedules proposed in Example 1 (Fig. 2) using the cost functions introduced
above. Notice that in the calculation we consider only the cyclic part of the
application omitting the initialization that is not relevant in terms of an infinite
scheduler. Table 3 reports the time and energy consumed for the three schedules
calculated according to Definition 3.

A Cost/Reward Method for Optimal Infinite Scheduling 75

Table 3. Time and energy costs of the schedules for the simple application

Sch. Time Energy

1 T1=(3 + 10 + 16 + 10)= 39 E1=(3 + 10 + 16 + 10) × 5= 195

2 T2=(3 + 25 + 3 + 2 + 3 + 5)= 41 E2=(3 × 5 + 25 × 2 + 3 × 1 + 2 × 1 + 3 × 1 + 5 × 2)= 83

3 T3=(3 + 10 + 5 + 2 + 3 + 5)= 28 E3=(3 × 5 + 10 × 5 + 5 × 2 + 2 × 1 + 3 × 1 + 5 × 2)= 90

Evaluating the results, the time-optimal scheduling for the application is
achieved in Schedule 3, that is (f0, 0, 0) � (f2, 0, 1) � (f1, 1, 0) � (f2, 1, 1),
with a total time cost T3 = 28. The offloading choices for achieving such result
are formalized in terms of the scheduler (written here using a notation based on
triples) ΘT ={(f0−→ f2,0,0),(f2 ��� f1,0,1),(f1−→ f2,1,1),(f2 ��� f0,1,0)}. On
the other hand, Schedule 2, that is (f0, 0, 1) � (f2, 1, 0) � (f1, 1, 0) � (f2, 1, 1),
is the energy optimal one, with a total energy consumption E2 = 83. The corre-
sponding scheduler is ΘE={(f0−→ f2,0,1),(f2 ��� f1,1,1),(f1−→ f2,1,1),(f2 ���
f0,1,0)}. From this example it is clear that there may not be a correspondence
between energy and time consumption, since we have different cost results.
Hence, defining a scheduler optimized for more resources is not always a simple
task. ��

3.1 Cost/Reward Horizon Method

In order to find the optimal scheduler for an application with infinite behavior, as
discussed above, we propose a cost/reward horizon method. From the literature
[9,10], we know that the optimal ratio is computable for diverging and non-
negative rewards systems.

In what follows we first present the basic concepts behind our cost/reward
method and then we show how the optimal infinite scheduling problem can be
solved using TA and the UPPAAL model checker. The behavior of the appli-
cation is the starting point for defining an optimal infinite scheduler. It can be
described as a set of paths. For each path UPPAAL will generate all possible
schedules and will choose the best one according to a specific ratio (clarified
below). The chosen schedule is indeed the less costly one and, hence, it can be
used to synthesize the rules that compose the optimal scheduler.

Let’s start defining the ratio of a finite path η of a SG as follows:

Ratio(η) = Cost(η)/Rewards(η)

where Cost() and Rewards() are two functions keeping track of the accumulated
cost/reward along the path η. Now, we extend this ratio to an infinite path
γ=f0 �, ... ,� fn � ..., with γn the finite prefix of length n; the ratio of γ is:

Ratio(γ) = limn→∞(Cost(γn)/Rewards(γn))

An optimal infinite path γo is the one with the smallest Ratio(γ) among all
possible schedules.

76 L. Aceto et al.

Fig. 5. Cost/reward horizon method

Finding the smallest ratio is not always a tractable problem, but it is possible
to improve its tractability reducing the problem to a given horizon. From this
new point of view, we want to maximize the reward in a fixed cost window.
Notice that, the cost window should be of an appropriate length, in order to
complete the execution of at least one application cycle.

This technique can be implemented in UPPAAL considering the query:

E [] not (f1.Err, ..., fn.Err) and (Cost ≥ C imply Reward ≥ R) (1)

This query asks if there exists a trace were the system keeps running without
errors and whenever the predefined cost C is reached, the accumulated reward
should be at least R (Fig. 5).

For verifying the satisfaction of the above formula, the TA model includes
an additional template (Fig. 6) implementing the cost window using the reset
mechanisms. It consists of one state and a self-loop transition, where each time
the simulation reaches the cost C the transition will reset the accumulated Costs
and Rewards.

Fig. 6. Reset TA

In this way, the behavior of the application is split
in cost windows and in each of them the accumulated
rewards should satisfy the formula Reward≥R. Since we
are looking for the maximum reward given a predefined
cost, for finding the optimal scheduler it is necessary to
discover the maximum value of R for which the formula
(1) holds. The resulting trace generated by a satisfiable
formula has the structure depicted in Fig. 5. The trace
starts with some initial actions corresponding to the
application start-up and leads to its cyclic behavior.
As shown in the figure, the approach does not consider all possible traces, but
only the ones that satisfy the constraints of the query. The candidate schedule
is the piece of trace that is highlighted in red, which means that UPPAAL has
found a cyclic behavior in the application whose execution satisfies the formula
forever. This means that we have found an optimal schedule from which it is
possible to derive the set of rules that will generate the optimal scheduler.

A Cost/Reward Method for Optimal Infinite Scheduling 77

3.2 The Horizon Method at Work

In this section we show how the cost/reward horizon method can be applied to
MCC systems and, in particular, to the example presented in Fig. 1.

We are interested in finding a time-optimal and/or battery-optimal scheduler.
By applying the method presented in Sect. 3.1 to a MCC system, given an infinite
path γ, the time- and energy-based ratios become: rT = limn→∞(Time(γn)/
Fragments(γn)); rE = limn→∞(Energy(γn)/Fragments(γn)), respectively.

Thus, the accumulated costs are calculated by the functions Time() and
Energy() given in Definition 3. The rewards are instead defined by a function
Fragments() : η → N which counts the number of fragments executable in the
fixed window. The more fragments we are able to execute with the same amount
of time or energy, the better the resources are used.

To find the minimum time-based ratio using the UPPAAL model checker we
can ask the system to verify a query of the following form:

E[] forall(i:pid t) not(Fragment(i).Err) and (GlobalTime≥300 imply

(fragments>41))

In this specific case we want to know if, in a fixed window of 300 units of
time, it is always possible to execute 41 fragments. To find the minimum ratio
we have to iterate on the number of fragments in the denominator in order to
find the maximum number for which the query holds. In our running example,
the maximum value that satisfies the query is 41, giving a ratio 300/41 = 7.31.
The resulting trace generated by the presented query results in an execution
sequence that can be synthesized as the Schedule 3 shown in Fig. 2.

The query for determining the energy-based ratio is defined as:

E[] forall(i:pid t) not(Fragment(i).Err) and (battery≥900 imply

(fragments>43 and battery≤930))

In this case, the resulting ratio is 900/43 = 20.93. thus, the system requires
20.93 units of battery per fragment. Notice that in this query there is an extra
constraint defined as an upper bound on the right side of the imply keyword.
This is because we can have different schedules satisfying the formula, but we
consider only the ones that exceed the battery threshold as little as possible.
The resulting trace from the energy query gives us the energy optimal schedule,
that in this case can be synthesized as the Schedule 2 in Fig. 2.

To assess the truthfulness of the cost/horizon method, we can compare the
obtained results with the ones calculated directly in the Gantt chart in Fig. 2.
The energy ratio for Schedule 2 on one loop is given by 83/4 = 20.75. The slight
difference in the results is due to the size of the cost window. In the Gantt chart
we are considering a window that fits perfectly four fragments and, hence, we
do not have any incomplete fragment that affects the final result as in the case
of the horizon method, but the approximation is really close to the best case.

78 L. Aceto et al.

4 Evaluating Performance of a Custom Control Strategy

In this section, we present a technique for evaluating the performance of a cus-
tom scheduler using the Statistical Model Checking facilities [5,11] provided by
UPPAAL (the model checker is called UPPAAL-SMC, or SMC for short).

Let’s suppose now that a developer wants to define his own scheduler for an
application and to know how much the resulting custom scheduler is close to the
optimal one or to calculate some statistics. Possible reasons for customizing a
scheduler could be problems in the development phase related to hardware cost
or a less quantitative issue, such as security and privacy that force the developer
to introduce a static scheduler.

The new personalized scheduler in UPPAAL is modeled as a TA template
called Manager. The duty of this manager is to decide on which resource each
fragment should be executed. Considering the model presented in Fig. 3, here
we do not have anymore the decision in the ready location between mobile and
cloud transition, but just a transition that is synchronized with the manager. The
manager operates as a mediator, between the fragments and the resources. Once
the manager receives notice of a new fragment to execute, it decides according to
some rules in which resource’s waiting list to move it. The resources are modeled
following a busy waiting paradigm, where every time the queue is not empty, a
new fragment is consumed. Before executing the assigned fragment, the resource
checks the execution location of its predecessor; if data synchronization is not
required, it just executes the fragment, otherwise it synchronizes the data and
then processes it. Once the computation is completed, the resource returns the
control back to the executed fragment and passes to the next one.

4.1 A Custom Scheduler

The manager can contain different kinds of rules. One possibility is to define a
rule for each fragment or to specify a more general rule that can be applied to
the whole application. For example, to execute a fragment remotely when it is
offloadable is a very simple rule that a developer can consider to implement in
a MCC system.

Fig. 7. Manager TA

Figure 7 depicts the manager implement-
ing this custom strategy. In detail, after a
fragment is synchronized with the manager,
the latter decides to enqueue the fragment on
the corresponding waiting list according to the
guard Info[x].isOffloadable. In this way,
if the fragment x is offloadable it is queued
locally, otherwise remotely.

Looking more closely at the custom sched-
uler, we notice it realises the same behavior of Schedule 2 in Fig. 2, which we
already know to be energy-optimal.

A Cost/Reward Method for Optimal Infinite Scheduling 79

4.2 Evaluation via SMC

As previously said, usually a customized scheduler is defined for reasons related
to particular conditions of the environment. Here, we perform some statistical
analysis to quantify how much the customized scheduler above is far from the
optimal one, in order to have a quantitative measure of any performance loss.
In particular, below we present some verification activities and compare the
obtained results with the time/energy-optimal scheduling we found in Sect. 3.2.

By evaluating the following queries using the SMC tool, we can determine
the expected maximum value for the number of fragments that can be executed
in a given temporal window:

E[time<=300;2000](max:fragments) E[battery<=900;2000](max:fragments)

These two queries aim at finding the expected value over 2000 runs in a window
of 300 units of time and 900 units of battery, respectively. The results are: 29
fragments for the first query and 41 for the other one. Comparing these results
with those of optimal ones, we can clearly see that the scheduler defined by the
developer is almost as efficient as the energy-optimal one. Indeed, they differ
only for 2 fragments in the energy case. Instead, the performance of the custom
scheduler is very far from that of the time-optimal scheduler, as they differ for
14 fragments.

The proposed strategy can be also evaluated to see if it is closer either to the
energy-optimal scheduler or to the time-optimal one. This can be achieved by
checking if the probability to reach the time-optimal scheduler is greater than
the probability to reach the energy-optimal scheduler.

Pr[time<=300](<>fragments>=43)>=Pr[battery<=900](<> fragments>=41)

The result of this query is false with probability 0.9, meaning that the
probability of reaching the energy-optimal scheduler is greater than the one for
the time-optimal scheduler.

We can also simulate the system behavior executing the following commands:

simulate 1[time<=300]{battery,fragments}

Fig. 8. Simulation results

80 L. Aceto et al.

simulate 1[battery<=900]{time,fragments}

Their results are shown in Fig. 8. On the left-hand side, we have the number of
fragments compared with the consumed battery. On the right-hand side, instead,
we have the ratio of executed fragments and required time.

5 Experiments with a Navigator Case Study

In the previous sections we have illustrated the proposed approach by means
of a simple application. In this section, we aim at showing the effectiveness
and feasibility of the approach by means of a larger case study, drawn from
[4], concerning a navigator application. This kind of application is one of the
most complex and used in mobile devices. This is an interesting case study
for this work from the point of view of its complexity and its strong real-time
requirements to be satisfied at runtime. In particular, the greatest challenge for
navigation system developers is to provide an application that is able to find
the right route, and recalculate it as quickly as possible in case of changes,
considering the current traffic condition.

The corresponding MobiCa system is represented in Fig. 9. The system starts
when the user inserts the destination in the Configuration panel that conse-
quently activates the Controller. The Controller in turn asks the GPS for the
current coordinates and forwards them to the Path calculator. The Path calcu-
lator, interacting with the Map and the Traffic evaluator, will provide a possible
itinerary. The itinerary is processed by the Navigator, which forwards informa-
tion to the Navigation Panel. This latter component, with the help of the Voice
and Speed Trap Indicator, provides the navigation service to the end user. The
Navigator is also responsible for reactivating the Controller in order to check
possible updates of the route.

Fig. 9. Navigator case study: MobiCa specification

A Cost/Reward Method for Optimal Infinite Scheduling 81

Fig. 10. Navigator case study: optimal schedules

We present now the results obtained using the cost/reward horizon method
applied to this case study. The complexity of this example is a good test bed
for our method. Notice that the values of the parameters used in the example
are generated ad-hoc as a proof of concept. From real life we expect that the
developer can determine information about fragment instructions by performing
experimentation, statistics or simply studying the complexity in the code. The
diagram in Fig. 10 shows the resulting schedules synthesized from the verification
of the following queries:

E[] forall(i:pid t) not(Fragment(i).Err)
and (time≥100 imply (fragments>16 and time<120))

E[] forall(i:pid t) not(Fragment(i).Err)
and (battery≥400 imply (fragments>21 and battery<419))

The first query defines the time-optimal schedule with respect to a time window
of 100 units and with a maximum number of executed fragments equal to 16.
The ratio rT = 100/16 = 6.25 was reached keeping the execution local for almost
all fragments except for f8 and f9, which are executed in parallel remotely.

The opposite behavior is identified in the verification of the second query for
the energy-optimal case, where only three fragments are executed locally and
all the others remotely. Since the fragments f7 and f2 are not offloadable, they
are maintained locally together with the fragment f1. The choice to execute f1
locally is given by the necessity of the scheduler to wait for a suitable moment
to move the computation remotely. Clearly, moving the computation between
two non-offloadable fragments is not convenient; furthermore, sometimes it is
better to anticipate or postpone the offloading when the data synchronization is
minimal or less costly. The ratio of this scheduler is rE = 400/21 = 19.05 with
a final energy consumption equal to 272 units per cycle.

The cost/reward horizon method fits MCC systems perfectly. In particular,
during the sequential behavior of the application it tries to find the best moment
for moving the computation remotely, defining also different strategies according
to the role of the fragment. Instead, during parallel behavior, where there are
no direct relations between fragments, it tries to exploit the benefit derived by
allocating the computation both on the mobile and on the cloud.

As a final evaluation we present the results obtained verifying the custom
scheduler described in Sect. 4 on the navigator case study using SMC. Verifying
the expected maximum reward using the query E[battery<=400;2000](max:

82 L. Aceto et al.

Fig. 11. Navigator case study: fragments execution (Color figure online)

fragments), we obtain a cost energy ratio rE = 400/16 = 25. Even worse
is the score obtained by trying to optimize the performance using the query
E[time<=100; 2000](max: fragments), which achieves a ratio rT = 100/5 =
20. Thus, comparing the obtained values, it is possible to notice a substan-
tial growth of the ratio for the custom scheduler. Since a higher ratio means a
decrease in performance, we can claim that the strategy defined by the devel-
oper is not a good approximation of the optimal one. Furthermore, analyzing
the results in more detail, we notice that the custom scheduler is very far from
the time optimal, with a ratio that is four time larger than the one achieved
by the optimal scheduler. Considering instead the energy case, it is possible
to reach a ratio of 25 against the 19.05 of the optimal one. Looking at these
results, the developer is aware that using his custom scheduler he can achieve a
good performance if he is interested in energy optimization, although this is not
optimal.

By performing a simulation (we omit the picture due to lack of space), we
can see a significant gap between the number of executed fragments and the
elapsing of time according to the consumed battery power; there is indeed a
symmetric increase of values generated by the cyclic behavior of the application.
The plot in Fig. 11, instead, represents a scheduler synthesized using a histogram.
Using an appropriate simulation query, which takes into account the fragments
in execution on the resources, it is possible to represent each fragment as a
column of the same height of its identifier in the specific resource. For the sake
of readability, columns referring to cloud (red lines) and mobile (green lines) are
depicted on the same level of the graph, while the network columns (blue lines)
are reported just below. A peak in the blue line means that the corresponding
fragment above requires the synchronization on the bus before its execution.

A Cost/Reward Method for Optimal Infinite Scheduling 83

6 Concluding Remarks

We provide an approach for designing schedulers for MCC systems specified in
MobiCa. Using UPPAAL, and relying on a cost/reward horizon method intro-
duced here, we are able to synthesize an optimal infinite scheduler for a mobile
application. This scheduler defines offloading choices that allow the system to
reach the best results in terms of performance and energy usage.

Related Work. Optimization is a topic that is considered in many application
fields. Also in the MCC literature there is a significant effort on the optimization
of a utility function or specific metrics for the offloading technique. Among the
most significant works, we mention RPF [12], which derives its strategy using the
direct observation of the system. It runs processes alternatively between local
and remote machines in order to determine the best choices. This technique is
not optimized for highly dynamic systems, where the parameters of the resources
change constantly, but it can be a good solution for more static environments.
Another approach based on direct observation is MAUI [8], where information
about the environment is collected and used to formulate the problem as an
optimization problem. The proposed optimization function compares the time
required for executing a process locally against the time for the synchronization
of data plus the remote execution.

The limitations of methods based on the direct observation have been
addressed using the past history. The resulting systems, like Spectra [13],
Chroma [14] and Odessa [15], build a model on past inputs and use it to make
predictions or decisions rather than to observe the current system configuration.

Our approach is similar to the ones mentioned above, with the main differ-
ence that we provide a language that describes the system environment. This
language, called MobiCa, was presented for the first time in [4], and here is used
to generate an optimal infinite scheduling using the UPPAAL model checker.
Compared with the other works, we are able to foresee all the possible configu-
rations of the system at design time, by providing a scheduler that is optimal for
a certain interval of parameters. The optimal infinite scheduler is generated using
the cost/reward horizon method implemented with timed automata and solved
verifying a simple query by means of the model checker. The closest related
work, from which we take inspiration for the cost/reward horizon method is pre-
sented in [9,10], where a general version of this method was applied to the priced
automata formalism to find the best configuration of the considered system. The
flexibility of this method has permitted to obtain good results in the MCC field,
confirmed also by reasonable performances that are in the order of seconds for
the considered models.

Future Work. There are still several issues which are open for future work. A
possibility would be to extend our work in order to have an automatic procedure
for obtaining the maximum number of fragments in a given time window. Indeed
finding the optimal ratio requires one to consider several computations, that may

84 L. Aceto et al.

become unfeasible in case of high numbers. Thus, a possible idea to optimize the
methodology is to develop heuristics that allow one to reach the best result in
a faster way. Another aspect to consider is how the proposed approach can be
transferred to the technology. A possibility is to include the decision support
as part of a middleware that can provide to the developer an optimal scheduler
derived through our method. This middleware could be integrated also with the
runtime decision support proposed in [4]. Another interesting point of extension
is the re-scheduling at runtime. Indeed, a small variation of the environmental
parameters can lead to different results in the system optimization leading to an
obsolete scheduler. Thus, we need to consider its recalculation at runtime.

Acknowledgements. Luca Aceto has been supported by the projects ‘Nominal Struc-
tural Operational Semantics’ (nr. 141558-051) of the Icelandic Research Fund and
‘Formal Methods for the Development and Evaluation of Sustainable Systems’, grant
under the Programme NILS Science and Sustainability, Priority Sectors Programme of
the EEA Grants Framework. Kim G. Larsen is supported by the SENSATION FET
project, the Sino-Danish Basic Research Center IDEA4CPS, the Innovation Fund Cen-
ter DiCyPS and the ERC Advanced Grant LASSO. Andrea Morichetta and Francesco
Tiezzi have been supported by the EU projects ASCENS (257414) and QUANTICOL
(600708) and by the MIUR PRIN project CINA (2010LHT4KM).

References

1. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future
Gener. Comput. Syst. 29(1), 84–106 (2013)

2. Flinn, J.: Cyber foraging: bridging mobile and cloud computing. Synth. Lect. Mob.
Pervasive Comput. 7(2), 1–103 (2012)

3. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: can offloading computa-
tion save energy? Computer 43(4), 51–56 (2010)

4. Aceto, L., Morichetta, A., Tiezzi, F.: Decision support for mobile cloud computin-
gapplications via model checking. In: MobileCloud, vol. 1, pp. 296–302. IEEE
(2015)

5. Bulychev et al.: UPPAAL-SMC: statistical model checking for priced timed
automata. arXiv preprint arXiv:1207.1272 (2012)

6. Gruian, F., Kuchcinski, K.: Low-energy directed architecture selection and task
scheduling for system-level design. In: EUROMICRO, pp. 1296–1302. IEEE (1999)

7. MobiCa, U.: Model. http://www.amorichetta.eu/MobiCa/m u model.zip
8. Cuervo, et al.: MAUI: making smartphones last longer with code offload. In:

MobiSys, pp. 49–62. ACM (2010)
9. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-

priced timed automata. Formal Meth. Syst. Des. 32(1), 3–23 (2008)
10. Rasmussen, J.I., Larsen, K.G., Subramani, K.: On using priced timed automata to

achieve optimal scheduling. Formal Meth. Syst. Des. 29(1), 97–114 (2006)
11. Larsen, K.G., Mikučionis, M., van Vliet, J., Wang, Z., David, A., Legay, A.,

Poulsen, D.B.: Statistical model checking for networks of priced timed automata.
In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–
96. Springer, Heidelberg (2011)

http://arxiv.org/abs/1207.1272
http://www.amorichetta.eu/MobiCa/m_u_model.zip

A Cost/Reward Method for Optimal Infinite Scheduling 85

12. Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H.: The remote processing
framework for portable computer power saving. In: SAC, pp. 365–372. ACM (1999)

13. Flinn, J., Park, S., Satyanarayanan, M.: Balancing performance, energy, and qual-
ity in pervasive computing. In: Distributed Computing Systems, pp. 217–226 (2002)

14. Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T.: Tactics-based remote
execution for mobile computing. In: MobiSys, pp. 273–286. ACM (2003)

15. Ra, M. et al.: Odessa: enabling interactive perception applications on mobile
devices. In: MobiSys, pp. 43–56. ACM (2011)

A Contract-Oriented Middleware

Massimo Bartoletti(B), Tiziana Cimoli, Maurizio Murgia,
Alessandro Sebastian Podda, and Livio Pompianu

Università Degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

Abstract. Developing distributed applications typically requires to
integrate new code with legacy third-party services, e.g., e-commerce
facilities, maps, etc. These services cannot always be assumed to
smoothly collaborate with each other; rather, they live in a “wild” envi-
ronment where they must compete for resources, and possibly diverge
from the expected behaviour if they find it convenient to do so. To
overcome these issues, some recent works have proposed to discipline
the interaction of mutually distrusting services through behavioural con-
tracts. The idea is a dynamic composition, where only those services with
compliant contracts can establish sessions through which they interact.
Compliance between contracts guarantees that, if services behave hon-
estly, they will enjoy safe interactions. We exploit a theory of timed
behavioural contracts to formalise, design and implement a message-
oriented middleware where distributed services can be dynamically com-
posed, and their interaction monitored to detect contract violations. We
show that the middleware allows to reduce the complexity of develop-
ing distributed applications, by relieving programmers from the need to
explicitly deal with the misbehaviour of external services.

1 Introduction

Modern distributed applications are often composed by loosely-coupled services,
which can appear and disappear from the network, and can dynamically discover
and invoke other services in order to adapt to changing needs and conditions.
These services may be under the governance of different providers (possibly
competing among each other), and interact through open networks, where com-
petitors and adversaries can try to exploit their vulnerabilities.

In the setting outlined above, developing trustworthy services and applica-
tions can be a quite challenging task: the problem fits within the area of computer
security, since we have adversaries (in our setting, third-party services), whose
exact number and nature is unknown (because of openness and dynamicity).
Further, standard analysis techniques from programming languages theory (like
e.g., type systems) cannot be applied, since they usually need to inspect the
code of the whole application, while under the given assumptions one can only
reason about the services under their control.

A possible countermeasure to these issues is to discipline the interaction
between services through contracts. These are formal descriptions of service
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 86–104, 2016.
DOI: 10.1007/978-3-319-28934-2 5

A Contract-Oriented Middleware 87

behaviour, in terms of, e.g., pre/post-conditions and invariants [20], behavioural
types [16], etc. Contracts can be used at static or dynamic time to discover
and bind Web services, and to guarantee they interact in a protected manner:
when a service does not behave as prescribed by its contract, it can be blamed
(and punished) for breaching the contract [30]. Although several models and
architectures for contract-oriented services have been proposed in the last few
years [12,34,36], further evidence is needed in order to put this paradigm at work
in everyday practice. We also believe that contract-oriented services should be
equipped with a formal semantics, in order to make their analysis possible.

Contributions. We formalise, design, implement, and validate a middleware
which uses contracts to allow disciplined interactions between mutually distrust-
ing services. The middleware is designed to support different notions of contract,
which only need to share some high-level features:

– a compliance relation between contracts, which specifies when services con-
forming to their contracts interact correctly. The middleware guarantees that
only services with compliant contracts can interact.

– an execution monitor, which checks if the actions done by the services conform
to their contracts, and — otherwise — detects which services are culpable of
a contract violation.

Building upon these basic ingredients, our middleware extends standard
message-oriented middleware [4] (MOMs) by allowing services to advertise con-
tracts, establish sessions between services with compliant contracts, and interact
through these sessions. The execution monitor guarantees that, whenever a con-
tract is violated, the culprit is sanctioned. Sanctions negatively affect the repu-
tation of a service, and consequently its chances to establish new sessions. We
explore several ways to validate our middleware. First, we perform some scala-
bility tests, to measure the execution time of the core primitives as a function of
the number of advertised contracts. Second, we develop a distributed application
(to solve an RSA factoring challenge [29]), involving a master and a population
of workers, some of which do not always respect their contracts. We show that
our service selection mechanism allows to automatically marginalize the dishon-
est services, without requiring the master to explicitly handle their misbehaviour.
Third, we use the middleware as a (contract-oriented) communication layer for a
real distributed application, i.e. a reservation marketplace where service providers
can advertise resources, and clients can reserve them. Resources can be of hetero-
geneous nature, and their usage protocols are specified by contracts, which are
handled by the middleware to guarantee safe interactions.

A public instance of the middleware is accessible from [7], together with all
examples and experiments we carried out, and a suite of development tools.

Structure of the Paper. In Sect. 2 we overview the middleware features. In Sect. 3
we introduce a process calculus to specify services. In Sect. 4 we illustrate the
main design choices of the middleware, and in Sect. 5 we discuss its architecture;
validation is then accomplished in Sect. 6. In Sect. 7 we discuss some related

88 M. Bartoletti et al.

Fig. 1. A schema of the primitive behaviours.

approaches, and in Sect. 8 we conclude. An extended version of the paper, with
background and supplementary material, is available in [7].

2 The Middleware at a Glance

Figure 1 illustrates the main features of our middleware. In (1), the participant
A advertises its contract to the middleware, making it available to other par-
ticipants. In (2), the middleware determines that the contracts of A and B are
compliant, and then it establishes a session through which the two participants
can interact. This interaction consists in sending and receiving messages, simi-
larly to a standard MOM [4]: for instance, in (3) participant A delivers to the
middleware a message for B, which can then collect it from the middleware.

Unlike standard MOMs, the interaction happening in each session is moni-
tored by the middleware, which checks whether contracts are respected or not. In
particular, the execution monitor verifies that actions can only occur when pre-
scribed by their contracts, and it detects when some expected action is missing.
For instance, in (4) the execution monitor has detected an attempt of partic-
ipant B to do some illegal action. Upon detection of a contract violation, the
middleware punishes the culprit, by suitably decreasing its reputation. This is a
measure of the trustworthiness of a participant in its past interactions: the lower
is the reputation, the lower is the probability of being able to establish new ses-
sions with it. The reputation system exploits some of the techniques in [33] to
mitigate self-promoting attacks [21].

Item (5) shows another mechanism for establishing sessions: here, the par-
ticipant C advertises a contract, and D just accepts it. Technically, this requires
the middleware to construct the dual of the contract of C, to associate it with D,
and to establish a session between C and D. The interaction happening in this
session then proceeds as described previously.

Some simple examples of contract-oriented programs are shown in [7].

A Contract-Oriented Middleware 89

3 Specifying Contract-Oriented Services

In this section we introduce TCO2 (for timed CO2), a specification language for
contract-oriented services. This is a timed extension of the process calculus in [9],
through which we can specify services interacting through primitives analogous
to those sketched in Sect. 2. Rather than giving a tour de force formalization
of the whole middleware behaviour, we focus here on the core functionalities.
Extending the calculus with more advanced features (like e.g. value passing,
exceptions, reputation, etc.) can be done using standard techniques. A more
detailed account of TCO2 is contained in [7].

The formalisation of TCO2 is independent from the chosen contract language,
as we only pivot on a few abstract operators and relations on contracts. In
particular, we assume: (1) a compliance relation ��, which relates two contracts
whenever their interaction is “correct” [8]; (2) a predicate which says if a contract
admits a compliant one; (3) a function co(·) that, given a contract p, gives a
contract compliant with p (when this exists); (4) a transition relation −→→ between
contract configurations γ, γ′, which makes contracts evolve upon actions and time
passing. We denote with Γ0(A :p,B :q) the initial configuration of an interaction
between A (with contract p) and B (with contract q).

The syntax of TCO2 is defined as follows, where x, y, . . . ∈ V are variables,
s, t, . . . ∈ N are names, and u, v, . . . ∈ V ∪ N . Further, we assume a set of
participants (ranged over by A,B, . . .), a set of message labels (ranged over by
a, b, . . .), and a set of process names (ranged over by X,Y, . . .).

S : := 0
∣∣ A[P]

∣∣ s[γ]
∣∣ (u)S

∣∣ S | S
∣∣ {↓u p}A

P : := 0
∣∣ X(u)

∣∣ π . P
∣∣ (u)P

∣∣ u � {ai . P i}i∈I

π : := τ
∣∣ tell ↓u p

∣∣ sendu a
∣∣ idle(δ) ∣∣ accept(x)

∣∣ x̄y
∣∣ x(y)

Systems S, S ′, . . . are the parallel composition of agents A[P], sessions s[γ],
delimited systems (u)S , and latent contracts {↓u p}A. The latter represents a
contract p (advertised by A) which has not been stipulated yet; upon stipulation,
the variable u will be instantiated to a fresh session name.

Processes P ,Q, . . . are: prefixed processes π . P ; branching u � {ai . P i}i∈I ,
which behaves as the continuation P j upon receiving at session u a message
aj ; named processes X(u), used e.g., to specify recursive behaviours1; delimited
processes (u)P ; and the terminated process 0.

The prefix τ allows to do some internal actions, tell↓u p to advertise a
contract p. Intuitively, u is a place-holder for the name of the session where
p will be used. accept(x) allows to accept the contract received at x, sendu a
to send a message a at session u, and idle(δ) to delay by a time δ ∈ R≥0;
the prefixes x̄y and x(y) allow for the usual channel-based communication à

1 We denote with u a sequence of names/variables, and we assume each X to have a

unique definition X(x1, . . . , xj)
def
= P , with the free vars of P included in x1, . . . , xj .

90 M. Bartoletti et al.

Fig. 2. Reduction semantics of TCO2 (full set of rules in [7]).

la π-calculus [25]. Note that the primitive tell allows process to communicate
(when their contracts will be fused), in the absence of any pre-shared name.2

The semantics of TCO2 is summarised in Fig. 2 as a reduction relation
between systems. The labels are used to separate urgent actions from non-urgent
ones. When an urgent label is enabled, time is not allowed to pass (similarly to
the asap operator in U-LOTOS [28]). This enforces a fairness property: if an
urgent action is enabled, the scheduler can not prevent it by letting time pass.
In TCO2, every discrete action is urgent, except for fuse; this formalises the
intuition that a session between two compliant contracts can be created at any
time by the middleware, independently from the participants’ behaviour.

Rule [Tell] adds to the system a latent contract {↓u p}A, if p admits a com-
pliant contract. Rule [Fuse] searches the system for compliant pairs of latent
contracts, i.e. {↓xp}A and {↓y q}B such that p �� q (and A �=B). Then, a fresh
session s containing the initial configuration γ = Γ0(A : p,B : q) is established,
and the name s is shared between A and B. Rule [Acpt] allows A to accept a
latent contract q , which is passed through the channel x; then, the contract of
A at s will be co(q). Rule [Send] allows A to send a message !a to the other end-
point of session s. This is only permitted if the contract configuration at s can
take a transition on A : !a, whereas messages not conforming to the contract
will make A culpable of a violation. Rule [Recv] allows A to receive a message
aj from the other endpoint of s, and to behave like the continuation P j . Rule
[Delay-γ] allows a session s[γ] to idle, if permitted by the contract configuration
γ at s (note that idling may make one of the participants culpable). Rule [Idle]

2 To avoid confusion between “channel-kinded” variables used in input/output prefixes
and “session-kinded” variables, we forbid processes which improperly mix them, like
e.g. tell ↓y p.y(x), where y is used both as a session variable and a channel variable.

A Contract-Oriented Middleware 91

is standard [28], and it allows a process to idle for a certain time δ. The other
rules for dealing with time (and with the other constructs) are reported in [7].

A simple interaction in TCO2 is shown in [7].

4 System Design

In this section we show how the interaction paradigm sketched in Sect. 2 (and
formalised in Sect. 3) is supported by our middleware, and we illustrate the main
design choices.

4.1 Specifying Contracts

Although the design of the middleware is mostly contract-agnostic, in this paper
we describe and evaluate timed session types [6] (TSTs) as a particular instance
of contracts. TSTs extend binary session types [22,35] with clocks and timing
constraints, similarly to the way timed automata [2] extend (untimed) finite
state automata. We give below a brief overview of TSTs, and we refer to [6] for
the full technical development. Clocks x, y, . . . are variables over R≥0, which can
be reset, and used within guards g, g ′, Atomic guards are timing constraints
of the form x ◦ d or x − y ◦ d, where d ∈ N and ◦ ∈ {<,≤,=,≥, >}, and they
can be composed with the boolean connectives ∧, ∨, ¬.

A TST p (Definition 1) describes the behaviour of a single participant
involved in an interaction. An internal choice

∑
i!ai{gi, Ri} . pi models the fact

that its participant wants to do one of the outputs with label ai in a time window
where the guard gi is true; the clocks in Ri will be reset after the output is per-
formed. An external choice &i?ai{gi, Ri} . qi models the fact that its participant
is available to receive each message ai at any instant within the time window
where the guard gi is true; furthermore, the clocks in Ri will be reset after the
input is received. The term 1 denotes success (i.e., a terminated interaction).
Infinite behaviour can be specified through recursion recX. p.

Definition 1 (Timed session types [6]). Timed session types p, q, . . . are
terms of the following grammar:

p : := 1
∣∣ ∑

i∈I!ai{gi, Ri} . pi

∣∣ &i∈I?ai{gi, Ri} . pi

∣∣ rec X. p
∣∣ X

where (i) the set I is finite and non-empty, (ii) the labels in internal/exter-
nal choices are pairwise distinct, (iii) recursion is guarded and considered up-
to unfolding. True guards, empty resets, and trailing occurrences of 1 can be
omitted.

Message labels are grouped into contexts, which can be created and made
public through the middleware APIs. Each context defines the labels related to
an application domain, and it associates each label with a type and a verification
link. The type (e.g., int, string) is that of the messages exchanged with that
label. The verification link is used by the runtime monitor (Sect. 4.4) to delegate

92 M. Bartoletti et al.

the verification of messages to a trusted third party. For instance, the middleware
supports Paypal as a verification link for online payments (see Sect. 6.3). The
context also specifies the duration of a time unit: the shortest time unit supported
by the middleware is that of seconds, which is also the one we use in all the
examples in this paper.

4.2 Advertising Contracts

Once a contract has been created, a participant can advertise it to the mid-
dleware. At that point, the contract stays latent until the middleware finds a
compliant one, i.e. another latent contract with whom the interaction is guar-
anteed not to get stuck. When this is found, the middleware creates a session
between the two participants: the session consists of a private channel name and
a contract configuration, which keeps track of the state of the contract execution.

The notion of compliance between TSTs (Definition 6 in [6]) is based on
a transition system over contract configurations (Definition 5 in [6]). Contract
configurations have the form (p, ν) | (q, η), where p, q are TSTs, and ν, η are
clock evaluations (i.e., functions from clocks to R≥0); in the initial configuration
Γ0(A :p,B :q), the clock evaluations map each clock to 0. Intuitively, p and q are
compliant (in symbols, p �� q) if, in all reachable configurations, the “required”
behaviour of p (i.e., the branches in its internal choice) is “offered” by q in an
external choice, while respecting the time constraints.

Example 1. Let p = ?a{x ≤ 2} & ?b{x ≤ 5}, and consider the following TSTs:

q1 = !a{y ≤ 1} q2 = !a{y ≤ 3} q3 = !a{y ≤ 2} + !c{y ≤ 2}
We have that p �� q1: indeed, q1 wants to output a within one time unit, and p
is available to input a for two time units; compliance follows because the time
window for the input includes that for the output.

On the contrary, p ��� q2, since the time window required by q2 is larger than
the one offered by p.

Finally, p ��� q3: although the timing constraints for label a match, q3 can
also choose to send c, which is not among the labels offered by p in its external
choice.

Deciding Compliance. Compliance between TSTs is decidable (Theorem 1 in [6]).
To check if p��q , we use the encoding in [6] to translate p and q into Uppaal timed
automata [11], and then we model-check the resulting network for deadlock free-
dom. This amounts to solve the reachability problem for timed automata, whose
theoretical worst-case complexity is exponential (more precisely, the problem is
PSPACE-complete [2]). In practice, the overall execution time for compliance
checking for the TSTs in our test suite is in the order of milliseconds; e.g.,
in the experimental setup described in Sect. 6, it takes approximately 20ms to
check compliance between the largest TSTs on our hand, i.e. those modelling
PayPal Protection for Buyers [1]. Since, however, the execution time of compli-
ance checking is non-negligible, we do not perform an exhaustive search when

A Contract-Oriented Middleware 93

searching the contract store for compliant pairs of contracts; rather, we use the
techniques described in the following paragraphs to reduce the search space.

Compliance Pre-check. When a TST is advertised, the middleware stores in its
database the associated timed automaton (which is then computed only once
for each TST), and a digest of the TST; this digest comprises its context, and
one bit which tells whether its top-level operation is an internal or an external
choice (up-to unfolding). When looking for a contract compliant with p, the
digests are used to rule out (without invoking the Uppaal model checker) some
contracts which are surely not compliant with p. In particular, we rule out those
q belonging to a context different from that of p, and those with the same top-
level operator as p (as internal choices can only be compliant with external ones,
and vice versa). The remaining contracts are potentially compliant with p, and
so we restrict the search space to them. The search also takes into account the
reputation of the participants who have advertised these contracts, as described
in the following paragraph.

Reputation. The middleware assigns to each participant a reputation, which
measures its ability to respect contracts. Intuitively, the reputation is increased
when the participant successfully completes a session, while it is decreased when
it is found culpable of a contract violation (more details about the formulation
of the reputation system in Sect. 4.4). Reputation is used to sort latent contracts
when searching for compliant pairs: the higher the participant’s reputation, the
higher the probability to establish a session with it. When looking for a contract
compliant with p, we first construct the list of contracts potentially compli-
ant with it (sorted by descending reputation). Then, we randomly choose one
of them, according to the folded normal probability distribution. This causes
contracts with high reputation to be chosen with high probability, while giving
some chances also to contracts with low reputation. If the chosen contract is not
compliant with p, it is discarded, and the algorithm chooses another one.

Checking the Existence of a Compliant. Not all TSTs admit a compliant one.
For instance, no contract can be compliant with p = !a{y < 7}. ?b{y < 5},
because if p outputs a at time 6, the counterpart cannot send b in the required
time constraint. A sound and complete decision procedure for the existence of a
compliant is developed in [6]. When advertising a contract, we use this procedure
to rule out those contracts which do not admit a compliant one.

4.3 Accepting Contracts

As discussed in Sect. 2, a participant A can establish a session with B by accepting
one of its contracts, whose identifier has been made public by B. Technically,
when A declares to accept a contract p, the middleware constructs the dual of
p, and assigns it to A. The dual of p is the greatest contract compliant with p,
according to the subcontract preorder [6]: intuitively, it is the one whose offers
match all of p’s requests, and whose requests match all p’s offers.

94 M. Bartoletti et al.

Unlike in the untimed case, the näıve construction of the dual of a TST p
(i.e., the one which simply swaps inputs with outputs and internal choices with
external ones) does not always produce a compliant TST. For instance, the
näıve dual of p = ?a{x ≤ 2}. ?b{x ≤ 1} is q = !a{x ≤ 2}. !b{x ≤ 1}, which is
not compliant with p. Indeed, since q can output !a at any time 1 < δ ≤ 2, the
interaction between p and q can become deadlock, and so they are not compliant.

The dual construction used by the middleware is the one defined in [6],
which guarantees to obtain a TST compliant with p, if it exists. Roughly, the
construction turns all the internal choices into external ones (without changing
guards), and it turns external choices into internal ones, updating the guards to
preserve future interactions. For instance, in the example above we obtain the
TST !a{x ≤ 1}. !b{x ≤ 1}, which is compliant with p.

4.4 Service Interaction and Runtime Monitoring

When a session is established, the participants at the two endpoints can interact
by sending and receiving messages. At a more concrete level, sending a message
through a session is implemented by posting the message to the middleware,
through its RESTful API. The middleware logs the whole interaction history, by
recording and timestamping all the messages exchanged in the session. Receiving
a message is also implemented by invoking the middleware API; upon a receive
request, the middleware inspects the session history to retrieve the first unread
message (which is then marked as read). The interaction over the session is
asynchronous, as the middleware (similarly to a standard MOM) interprets the
session history as two unbounded FIFO buffers containing the messages sent by
the two endpoints3. However, differently from standard MOMs, our middleware
monitors the interaction to verify that contracts are respected.

The runtime monitor processes each message exchanged in a session, by
querying the verification link associated to it (to detect whether the message
is genuine or not), and by checking that the message is permitted in the current
contract configuration. Then, the monitor computes who is in charge of the next
move, and, in case of contract violations, it detects which of the two participants
is culpable. A participant A can become culpable for different reasons:

1. A sends a message not expected by her contract;
2. A’s contract is an internal choice, but A loses time until all the branches

become unfeasible (i.e., the time constraints are no longer satisfiable);
3. A sends some action at a valid time, but the trusted third party (associated

to the action by the verification link) rejects it. For instance, this can happen
if A tries to send a fake payment, but Paypal does not certify it.

The monitor guarantees that, in all possible states of the interaction, only
one of the participants can be in charge of the next action; if no one is in charge
nor culpable, then both participants have reached success (Lemma 3 in [6]).

3 Asynchronous communication is possible despite TSTs having a synchronous seman-
tics, as the middleware is delegated to receive messages on behalf of the recipient.

A Contract-Oriented Middleware 95

Fig. 3. A diagram of the middleware architecture.

Once a session terminates (either succesfully or not), the reputation of
the involved participants is updated. If the session terminates successfully,
then the reputation of both participants is increased; otherwise, the reputation
of the culpable participant is decreased, while the other participant’s reputation
is increased. Further, we make participants consume reputation points each time
they enter in session, and we use the fading memories technique of [33] to calcu-
late the reputation value without recording the whole history of interactions. We
weight recent negative behavior more than old positive behaviour, in order to
mitigate self-promoting attacks, where a malicious participant tries to gain repu-
tation by running successful sessions with himself or with some accomplices [21].

5 System Architecture

The middleware is a Java RESTful Web service; the primitives described in
Sect. 4 are organised in components, as shown in Fig. 3. We have adopted a 3-
tier architecture, consisting of a presentation layer, a business logic layer, and a
data storage layer. The Interface Manager, which is the only component in the
presentation layer, offers APIs to query the middleware, through HTTP POST
requests. APIs can be accessed through language-specific libraries, which allow
for an object-oriented programming style (see Appendix A in [7]). The data stor-
age layer comprises a relational DB and a Database Manager, which takes care of
handling queries, managing the cache, and modelling the data used in the other
layers. The business logic layer manages contracts and sessions. More specifi-
cally, the Contract Manager performs the contract validation, advertisement (as
in Sect. 4.2), and accept requests (Sect. 4.3); the Session Manager establishes
sessions, by allowing clients to send and receive messages, managing the session
history, and querying the Runtime Monitor to detect contract violations.

A client advertises a contract p with the tellContract API of the Inter-
face Manager, encoding the required data in the JSON data exchange format.

96 M. Bartoletti et al.

The Interface Manager validates p, then it asks the Contract Manager to store
it and to find a compliant contract, as outlined in Sect. 4.2. If no latent con-
tracts are compliant with p, then p is kept latent, otherwise a new session is
established. The Interface Manager also provides the acceptContract API, which
requires the Contract Manager to compute the dual of a latent contract q , whose
identifier has been made public by another participant.

When a session is established, participants can query the middleware to get
the current time, to send and receive messages, to check culpability, etc. The
Interface Manager provides the methods for handling such requests, delegating
the internal operations to the Session Manager. When a participant sends a mes-
sage, the Session Manager uses the Runtime Monitor to determine whether the
action is permitted (and in case it is not, to assign the blame). If the action is
permitted, the message is stored by the Database Manager, and then forwarded
to the other participant upon a receive. To verify a message, the Runtime Moni-
tor can invoke a trusted third party: if the verification fails, the action is rejected
(so, our monitor implements truncation, in the terminology of [24]).

6 Validation

In this section we validate our middleware, mainly focussing on the aspects
related to system scalability (Sect. 6.1), and to the effectiveness of the reputation
system to rule out services not respecting contracts (Sect. 6.2). We also discuss
how the middleware has been exploited to implement a large software system
for managing online reservations (Sect. 6.3).

We carry out our experiments using a public instance of the middleware,
accessible from the Web at co2.unica.it. The instance is a Web service running in
a dedicated cloud server, equipped with a quad-core Intel Xeon CPU @ 2.27 GHz,
16 GB of RAM and a 50 GB SSD hard drive; the server runs Ubuntu 14.04 LTS,
with Apache Tomcat and Oracle MySQL. Clients are tested in standard desktop
PCs and laptops, while the multi-threaded simulations are executed in a high-
level desktop configuration, with an octa-core Intel Core i7 @ 4.00 GHz and
16 Gb of memory, running Microsoft Windows 7 and Oracle JRE 1.7.

6.1 Scalability

In this section we assess the scalability of our middleware. We start by bench-
marking the tell primitive, which triggers a search for compliant pairs of TSTs
in the contract store. This is the most computationally expensive operation in
the middleware: although the heuristics discussed in Sect. 4.2 allow for limiting
the number of calls to the Uppaal model checker, the execution time of a tell
could be non-negligible for a high number of latent contracts. So, we measure
the execution time of tell p as a function of the number of TSTs in the contract
store, and of the number of latent TSTs compliant with p.

Our second experiment concerns the performance of the runtime monitor. As
described in Sect. 4.4, this component processes all the messages exchanged in

http://co2.unica.it

A Contract-Oriented Middleware 97

(a) Duration of tell p (in seconds). (b) Duration of send (in milliseconds).

Fig. 4. Results of the scalability tests. In (a), K is the number of contracts compliant
with p, and N is the total number of contracts.

sessions, to check if contracts are respected. Potentially, this could introduce a
relevant computational overhead, so we measure the execution time of send in
case the runtime monitor is turned on, or off. Note that, while the duration of
tell does not affect the interaction between the participants once a session is
established, a slowdown of the send can make an otherwise-honest participant
culpable for not respecting some deadline. So, it is important that the overhead
of the runtime monitor is negligible, w.r.t. the time scale of temporal constraints.

We build our scalability tests upon the discrete-event simulator DESMO-
J [18], and the statistical model-checker MultiVeStA [32]. In particular, we use
DESMO-J to define a single instance of the simulation, and MultiVeStA to run
sequences of simulations until reaching a given confidence interval.
Tell. We test the execution time of tell p as a function of the number N of
contracts stored in the middleware. The contract p used in our experiments is
a simplified version of the Paypal Protection for Buyers (Example 1 in [6]). We
assume that, among the N contracts, only K � N are compliant with p, while
the remaining N − K are not, but they still pass the pre-check discussed in
Sect. 4.2 (so, we are considering a worst-case scenario, because in the average
case we expect that only a fraction of the contracts would pass the pre-check).
We populate the contract store by choosing at each step whether to insert a con-
tract compliant with p or a non-compliant one, according to a random weighted
probability. Then, with DESMO-J we execute tell p, and we measure its exe-
cution time. MultiVeStA makes DESMO-J execute this simulation for several
times, each time collecting the new tell duration and updating the average
and the standard deviation; the simulations stop when the average fits into the
confidence interval.

The results of our experiments are shown in Fig. 4. As we can see, the tell
duration grows linearly with N , and it increases by a constant when the per-
centage K/N of contracts compliant with p decreases; note that the slope of the
curves does not seem to be significantly affected by K/N .
Runtime Monitor. The goal of this experiment is to quantify how the exe-
cution of a large number of simultaneous send affects the performance of the

98 M. Bartoletti et al.

middleware. To achieve this goal, we use a multi-threaded simulation, where all
the threads advertise a contract with an internal sum, wait the session to be
established, and then simultaneously perform the send. We repeat the measure
of the send duration until its standard deviation fits into the confidence inter-
val. The results of this experiment are reported in Fig. 4b, which shows that the
execution of a large number of simultaneous sends penalizes the duration of the
request, compared to the situation where the runtime monitor is switched off.
However, the performance degradation seem to grow sub-linearly in the number
of simultaneous requests, and in any case it is negligible w.r.t. the time scale of
temporal constraints (1 time unit = 1 second).

6.2 A Distributed Experiment: RSA Cracking

Consider a service (hereafter referred to as master, or just M) who wants to solve
a cryptographic problem by exploiting the computational resources of external
nodes (hereafter called workers, or W) distributed over the network. In particu-
lar, M wants to crack a set of public RSA keys, in order to get the corresponding
private keys. However, the master does not know the network structure (i.e.,
how many workers are available, where they are located, and how they are con-
nected), and it does not have any pre-shared channel for communicating with
them. Furthermore, the master does not trust the workers: they are not bound
to run any particular cracking algorithm, they can return wrong/incomplete
results, or they can fail to answer within the expected deadline.

To cope with these issues, the master exploits our middleware to automat-
ically discover and invoke suitable workers. For each public key in its set, the
master spawns a process which advertises the contract:

pM = !pubkey{;x}. (?confirm{x < 15}. ?result{x < 90}. !pay1xbt{x < 120}
& ?abort{x < 15})

Here, M is promising to send a public key (pubkey); doing so triggers a reset of
the clock x. Then, the worker has 15 seconds to either confirm that he will carry
on the task, or abort (e.g., if the key is considered too strong). If the worker
confirms, it must return the corresponding result (a private key) within 90
seconds since the public key was sent (the correctness of the result is checked by a
trusted third party,4 specified by the context of pW); finally, M rewards the worker
with 1 bitcoin (pay1xbt). At runtime, the master behaves as prescribed by its
contract; if the worker accepts the public key and it returns the corresponding
private key, then M removes that public key from the list; otherwise, it advertises
another instance of pM, and when the session is established it sends the same
public key to another worker.

The advantage offered by the middleware in terms of code succinctness is
clear, as the search of workers, the establishment of sessions, and the runtime
4 Note that verifying the correctness of private keys has a polynomial complexity in

the number of bits of the public key, while the problem of cracking RSA keys is
considered to be exponentially hard.

A Contract-Oriented Middleware 99

(a) OET with reputation enabled. (b) OET with reputation disabled.

Fig. 5. Overall Execution Time as a function of the number of keys to be broken. IW
is the number of inefficient workers, and T is the total number of workers.

monitoring is completely transparent to programmers. So, we assess below the
reputation system implemented in the middleware (Sects. 4.2 and 4.4). In par-
ticular, we measure the time taken by the master for cracking all the public keys
in its list (Overall Execution Time, OET). We do this in two configurations of
the middleware: the one where the reputation system is turned on, and the one
where it is turned off. Our conjecture is that turning the reputation system on
will reduce the OET, because it increases the probability of establishing sessions
with honest workers which produce correct results while respecting deadlines.

In our experiments, we assume that workers are drawn from two different
classes: those using an efficient cracking algorithm, which always return the cor-
rect result within the deadline; and those using an inefficient algorithm, which
sometimes may miss the deadline, because the computation takes too long. We
also assume that the number of public keys is bigger than the number of work-
ers, so each of them may receive many keys to break. Each worker iteratively
advertises its contract (the dual of pM), then waits for a public key, runs the
cracking algorithm, and finally return the private key to the master.

The results of our experiment are shown in Fig. 5, where we measure the OET
as a function of the number of keys to be broken, and of the ratio between efficient
and inefficient workers. The solid curve is identical in the two figures, since the
reputation system does not affect the selection of workers when there are only
efficient ones. In the dashed curve and in the dot-dashed one the percentage of
inefficient workers grows (to 20 % and 40 %, respectively), and we see that the
OET grows accordingly when the reputation system is turned off. This is because
the reputation system penalizes inefficient workers, by reducing the probability
they can establish sessions with the master.

6.3 Case Study: A Contract-Oriented Reservation Marketplace

To test the effectiveness and versatility of our middleware for the development
of real distributed applications, we have exploited it as a contract layer in a
software infrastructure for online reservations [5]. The infrastructure acts as a

100 M. Bartoletti et al.

marketplace wherein service providers make available their resources, which can
then be searched, reserved, and used by clients. These reservations can be of
arbitrary nature, as the infrastructure features an abstract model of resources,
which can be suitably instantiated by service providers. The infrastructure has
been tested with various instances of providers, offering e.g. car sharing facilities,
medical appointments, and hotel accommodations.

The reservation marketplace adds a search layer to that of the middleware:
clients can search among the resources, and when they find a suitable one they
can accept its contract. Contracts are constructed by service providers through
a GUI, starting from a template and then selecting among various options and
parameters. For instance, a simple contract for a service provider is the following:

p = ?pay{t < dpay}. ?details{t < dpay + 60, t}. p′ & ?cancel{t ≤ dcc}
p′ = recX.

(
?feedback{t < dfb} & ?cancel{t < dcc}. !refund{t ≤ drf } & p′′)

p′′ = ?move{t < dmv}.
(
!ok{t < dok}. ?feedback{t < dfb} + !no{t < dno}. X

)

The provider waits for a payment and some details about the reservation;
then, it gives the client a choice among three actions: accept the reservation (and
leave a feedback), cancel it (which involves a refund), or move it to another
date. Moving reservations is not always permitted (e.g., because the new date is
not available), so when the provider notifies no, it allows the client to try again.

Contracts are enforced by the runtime monitor of the middleware, which del-
egates the verification of payments and refunds to PayPal. Clients and providers
can check the state of their contracts through the GUI, which at any time also
highlights the permitted actions and their deadlines.

7 Related Work

Our middleware builds upon CO2 [9,10], a core calculus for contract-oriented
computing; in particular, the middleware implements all the main primitives of
CO2 (tell, send, receive), and it introduces new concepts, like e.g. the accept
primitive, time constraints, and reputation.

From the theoretical viewpoint, the idea of constraint-based interactions has
been investigated in other process calculi, e.g. Concurrent Constraint Program-
ming (CCP [31]), and cc-pi [17], albeit the kind of interactions they induce is
quite different from ours. In CCP, there is a global constraint store through
which processes can interact by telling/asking constraints. In cc-pi, interaction
is a mix of name communication à la π-calculus [25] and tell à la CCP (which
is used to put constraints on names). E.g., x̄〈z〉 and y〈w〉 can synchronise iff the
constraint store entails x = y; when this happens, the equality z = w is added to
the store, unless making it inconsistent. In cc-pi consistency plays a crucial role:
tells restricts the future interactions with other processes, since adding con-
straints can lead to more inconsistencies; by contrast, in our middleware telling
a contract enables interaction with other services, so consistency is immaterial.

The notion of time in behavioural contracts has been studied in [15], which
addresses a timed extension of multi-party asynchronous session types [23];

A Contract-Oriented Middleware 101

however, the goals of [15] are quite different from ours. The approach pursued
in [15] is top-down: a global type (specifying the overall communication protocol
of a set of services, and satisfying some safety properties, e.g. deadlock-freedom)
is projected into a set of local types; then, a composition of services preserves the
properties of the global type if each service type-checks against the associated
local type. Our middleware fosters a different approach to service composition:
a distributed application is built bottom-up, by advertising contracts to del-
egate work to external (unknown and untrusted) services. Both our approach
and [15,27] use runtime monitoring to detect contract violations and assign the
blame; additionally, in our middleware these data are exploited as an automatic
source of information for the reputation system. Another formalism for commu-
nication protocols with time constraints is proposed in [19], where live sequence
charts are extended with a global clock. The approaches in [15,19] cannot be
directly used in our middleware, because they do not provide algorithms to
decide compliance, or to construct a contract compliant with a given one.

From the application viewpoint, several works have investigated the problem
of service selection in open dynamic environments [3,26,37,38]. This problem
consists in matching client requests with service offers, in a way that, among the
services respecting the given functional constraints, the one which maximises
some non-functional constraints is selected. These non-functional constraints
are often based on quality of service (QoS) metrics, e.g. cost, reputation, guar-
anteed throughput or availability, etc. The selection mechanism featured by our
middleware does not search for the “best” contract compliant with a given one
(actually, typical compliance relations in behavioural contracts are qualitative,
rather than quantitative); the only QoS parameter we take into account is the
reputation of services (see Sect. 4.2). In [3,38] clients can require a sequence of
tasks together with a set of non-functional constraints, and the goal is to find
an assignment of tasks to services which optimises all the given constraints.
There are two main differences between these approaches and ours. First, unlike
behavioural contracts, tasks are considered as atomic activities, not requiring any
interaction between clients and services. Second, unlike ours, these approaches
do not consider the possibility that a service may not fulfil the required task.

In the work [26], a service selection mechanism is implemented where func-
tional constraints can be required in addition to QoS constraints: the first are
described in a web service ontology, while the others are defined as requested
and offered ranges of basic QoS attributes. A runtime monitor and a reputation
system are also implemented, which, similarly to ours, help to marginalise those
services which do not respect the advertised QoS constraints. Some kinds of QoS
constraints cannot be verified by the service broker, so their verification is dele-
gated to clients. This can be easily exploited by malicious participants to carry
on slandering attacks to the reputation system [21]: an attacker could destroy
another participant’s reputation by involving it in many sessions, and each time
declare that the required QoS constraints have been violated. In our middleware
there is no need to assume participants trusted, as the verification of contracts
is delegated to the middleware itself and to trusted third parties.

102 M. Bartoletti et al.

8 Conclusions

We have explored a new application domain for behavioural contracts, i.e. their
use as interaction protocols in MOMs. In particular, we have developed a middle-
ware where services can advertise contracts (in the form of timed session types,
TSTs), and interact through sessions, which are created only between services
with compliant contracts. To implement the middleware primitives, we have
exploited much of the theory of TSTs in [6]: in particular, a decidable notion of
compliance between TSTs, a decidable procedure to detect when a TST admits
a compliant one (and, if so, to construct it), and a decidable runtime monitoring.

We have validated our middleware through a series of experiments. The scal-
ability tests (Sect. 6.1) seem to suggest that the performance of middleware is
acceptable for up to 100K latent contracts. However, we feel that good perfor-
mance can be obtained also for larger contract stores, for two reasons. First,
in our experiments we have considered the pessimistic scenario where all latent
contracts in the store are potentially compliant with a newly advertised one.
Second, the current prototype of the middleware is sequential and centralised:
parallelising the instances of the compliance checker, or distributing those of the
middleware, would result in a performance boost. The experiments about the
reputation system (Sect. 6.2) show that the middleware can relieve developers
from dealing with misbehaviour of external services, and still obtain efficient
distributed applications, which dynamically reconfigure themselves to foster the
interaction among trustworthy services.

Although in this paper we have focussed on TSTs, the middleware only
makes mild assumptions about the nature of contracts, e.g., that their observable
actions are send and receive, and that they feature some notion of compliance
with a sound (but not necessarily complete) verification algorithm. Hence, with
minor efforts it would be possible to extend the middleware to support other con-
tract models. For instance, communicating timed automata [14] (which are timed
automata with unbounded communication channels) would allow for multi-party
sessions, while session types with assertions [13], would allow for an explicit spec-
ification of the constraints among the values exchanged in sessions.

Besides the issues related to the expressiveness of contracts and to the scal-
ability of their primitives (e.g., service binding and composition, runtime mon-
itoring, etc.), we believe that also security issues should be taken into account:
indeed, attackers could make a service sanctioned by exploiting discrepancies
between its contracts and its actual behaviour. These mismatches are not always
easy to spot (see e.g. the online bookstore example in Appendix A.4 in [7]); analy-
sis techniques are therefore needed to ensure that a service will not be susceptible
to this kind of attacks.

Acknowledgments. The authors thank Maria Grazia Patteri, Mirko Joshua Mascia
and Stefano Lande for their assistance in setting up the evalution and the case studies,
and Alceste Scalas for the discussion about Java APIs. This work is partially supported
by Aut. Reg. of Sardinia grants L.R.7/2007 CRP-17285 (TRICS), P.I.A. 2010 (“Social
Glue”), P.O.R. F.S.E. Operational Programme of the Aut. Reg. of Sardinia, EU Social

A Contract-Oriented Middleware 103

Fund 2007-13 – Axis IV Human Resources, Objective l.3, Line of Activity l.3.1), by
MIUR PRIN 2010-11 project “Security Horizons”, and by EU COST Action IC1201
“Behavioural Types for Reliable Large-Scale Software Systems” (BETTY).

References

1. PayPal buyer protection. https://www.paypal.com/us/webapps/mpp/ua/
useragreement-full#13. Accessed 8 July 2015

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Software Eng. 33(6), 369–384 (2007)

4. Banavar, G., Chandra, T., Strom, R.E., Sturman, D.: A case for message oriented
middleware. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 1–17. Springer,
Heidelberg (1999)

5. Bartoletti, M., Cimoli, T., Murgia, M., Patteri, M.G., Mascia, M.J., Podda, A.S.,
Pompianu, L., COREserve: a contract-oriented reservation marketplace (2015).
http://coreserve.unica.it

6. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: Compliance
and subtyping in timed session types. In: Graf, S., Viswanathan, M. (eds.) Formal
Techniques for Distributed Objects, Components, and Systems. LNCS, vol. 9039,
pp. 161–177. Springer, Heidelberg (2015)

7. Bartoletti, M., Cimoli,T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware (2015). http://co2.unica.it

8. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Kahramanogullari, O., et al. (eds.) Degano Festschrift. LNCS, vol. 9465,
pp. 103–121. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25527-9 9

9. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in CO2. Sci.
Ann. Comp. Sci. 22(1), 5–60 (2012)

10. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
11. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

12. Rueß, H., Schätz, B., Blech, J.O., Falcone, Y.: Behavioral specification based run-
time monitors for OSGi services. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 405–419. Springer, Heidelberg (2012)

13. Tuosto, E., Bocchi, L., Yoshida, N., Honda, K.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

14. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR (2015,
to appear)

15. Yang, W., Yoshida, N., Bocchi, L.: Timed multiparty session types. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer,
Heidelberg (2014)

16. Brogi, A., Canal, C., Pimentel, E.: Behavioural types for service integration:
achievements and challenges. ENTCS 180(2), 41–54 (2007)

17. Buscemi, M.G., Montanari, U.: CC-Pi: a constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)

https://www.paypal.com/us/webapps/mpp/ua/useragreement-full#13
https://www.paypal.com/us/webapps/mpp/ua/useragreement-full#13
http://coreserve.unica.it
http://co2.unica.it
http://dx.doi.org/10.1007/978-3-319-25527-9_9

104 M. Bartoletti et al.

18. Göbel, J., Joschko, P., Koors, A., Page, B.: The discrete event simulation frame-
work DESMO-J: review, comparison to other frameworks and latest development.
In: Proceedings of ECMS, pp. 100–109 (2013)

19. Harel, D., Marelly, R.: Playing with time: on the specification and execution of
time-enriched LSCs. In: MASCOTS, pp. 193–202 (2002)

20. Heckel, R., Lohmann, M.: Towards contract-based testing of Web services. Electr.
Notes Theor. Comput. Sci. 116, 145–156 (2005)

21. Hoffman, K.J., Zage, D., Nita-Rotaru, C.: A survey of attack and defense tech-
niques for reputation systems. ACM Comput. Surv. 42(1), 1:1–1:31 (2009)

22. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

23. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

24. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)

25. Milner, R., Parrow, P., Walker, D.: A calculus of mobile processes. I and II. Inf.
Comput. 100(1), 1–77 (1992)

26. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.: QoS-aware service composition
in Dino. In: ECOWS, pp. 3–12 (2007)

27. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: BEAT, pp. 19–26 (2014)

28. Larsen, K.G., Skou, A.: An overview and synthesis on timed process algebras. In:
Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer,
Heidelberg (1992)

29. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

30. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Automated
SLA monitoring for Web services. In: DSOM, pp. 28–41 (2002)

31. Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: POPL, pp.
232–245 (1990)

32. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: Proceedings of ValueTools, pp. 310–315 (2013)

33. Srivatsa, M., Xiong, L., Liu, L.: TrustGuard: countering vulnerabilities in repu-
tation management for decentralized overlay networks. In: WWW, pp. 422–431
(2005)

34. Strunk, A.: QoS-aware service composition: a survey. In: ECOWS, pp. 67–74. IEEE
(2010)

35. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

36. Tuosto, E.: Contract-oriented services. In: Beek, M.H., Lohmann, N. (eds.) WS-FM
2012. LNCS, vol. 7843, pp. 16–29. Springer, Heidelberg (2013)

37. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Trans. Web 1(1), 6 (2007)

38. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for Web services composition. IEEE Trans. Software Eng. 30(5),
311–327 (2004)

A Robust Framework for Securing
Composed Web Services

Najah Ben Said1, Takoua Abdellatif3,
Saddek Bensalem1, and Marius Bozga2(B)

1 University Grenoble Alpes, VERIMAG, 38000 Grenoble, France
2 CNRS, VERIMAG, 38000 Grenoble, France

marius.bozga@imag.fr
3 Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia

Abstract. This paper proposes a framework that automatically checks
and configures data security in Web Services starting from high level
business requirements. We consider BPEL-based composed Web Ser-
vices. BPEL processes and initial security parameters are represented as
component-based models labeled with security annotations. These mod-
els are formal and enable automated analysis and synthesis of security
configurations, under the guidance of the service designer. The security
property considered is the non-interference. The overall approach is prac-
tical since security is defined separately from functional processes and
automatically verified. We illustrate its utility to solve intricate security
problems using a smart grid application.

Keywords: Component-based systems · Information flow security ·
Non-interference · Dependency flow graph · Automated verification

1 Introduction

With the expansion of Web Services (WS) [1] deployed on the enterprise servers,
cloud infrastructures and mobile devices, Web Service composition is currently
a widely used technique to build complex Internet and enterprise applications.
Orchestration languages like BPEL [2] allow rapidly developing composed WS by
defining a set of activities binding sophisticated services. Nevertheless, advanced
security skills and tools are required to ensure critical information security.
Indeed, it is important to track data flow and prevent illicit data access by unau-
thorized services and networks; this task can be challenging when the service is
complex or when the composition is hierarchical (the service is composition of
composed services and atomic services). For example, a classical travel organi-
zation WS has to keep a client’s destination secret as messages are exchanged
between different services like travel agency services and the payment service.

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
ICT-318772 (D-MILS).

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 105–122, 2016.
DOI: 10.1007/978-3-319-28934-2 6

106 N. Ben Said et al.

Each piece of information depending on the destination, like ticket price, can
lead to the secret disclosure if it is not protected. WS security standards [3,4]
provide information flow security solutions for point-to-point inter-service com-
munication but fall short in ensuring end-to-end information flow security in
composed services. Furthermore, the BPEL language does not state any rules
on how to properly apply security mechanisms to services. Generally, developers
manually set up their system security configuration parameters which can be
tedious and error-prone.

Transformation

Syntehsis

graphs

OK

configuration

Dependency

Security analysis

Workflow
(BPEL)

Component Model
Secure

Configuration

counter
example

KO

Secure

Partial configuration

Fig. 1. Information flow analysis overview with component-based model

Information flow control, particularly the non-interference [5] property check,
is an alternative, more robust, approach than applying access control for point to
point communication. Indeed, it allows tracking information propagation in the
entire system and prevents secret or confidential information from being publicly
released. Information flow control relies on annotating system data with specific
levels of security and uses specific methods for checking non-interference, that is,
absence of leakage between different levels. Nonetheless, providing annotations
and establishing their correctness are equally difficult, especially for distributed
implementations, where only code is available and no higher-level abstractions
exist to give a better view and easier way of correction.

In this paper, we propose a robust tool assisting a designer ensuring end-
to-end information flow security in WS composition. Figure 1 shows a workflow
overview of this tool. The service designer describes in BPEL his process and
defines partial security constraints in a configuration file. The constraints are
expressed as authorization rights, that is, a list of services owners and authorized
readers for a subset of critical data. The BPEL process and the configuration
information are then automatically transformed into a component-based frame-
work. This framework was first adapted to abstract distributed WS orchestration
to a component-based model where all Web services are transformed into atomic
components communicating through interactions by sending and receiving vari-
ables and second, to synthesize security configuration for total system variables
with respect to security constraints by considering all implicit and explicit data
dependencies in the system. The calculated configuration is optimal that is only
data that need to be protected is configured as critical and its security level

A Robust Framework for Securing Composed Web Services 107

is minimal. It is indeed, very important to reduce the security processing over-
head like cryptography encryption and decryption, signature calculation, certifi-
cate verification, etc. In case a total configuration file is generated by the tool,
the system information flow is then considered non-interferent with respect to
initially defined configuration. Otherwise, the system is interferent and system
designer has to re-define the input initial configuration. As a security advisor,
automated configuration synthesis allows designers, developers and administra-
tors to focus on functional constraints and be confident that their secret data is
protected and people privacy respected. The proposed framework is based on a
formal compositional security model. It is implemented and tested on a smart
grid application. This application shows the practical usage of our tool since
only basic security skills are required and WS standards are respected.

The paper is structured as follows. Section 2 presents the functional and
security aspects of the adopted component-based framework. In Sect. 3, we
present a practical compositional approach to synthesize security configurations
in component-based system models. In Sect. 4, we apply this approach to Web
Service orchestration. We consider a transformation from BPEL orchestration
language to the component-based framework and we present the adopted secu-
rity annotation model and the tool implementation. In Sect. 5, we provide a
use-case as illustrative example. Finally, Sect. 6 discusses the related work and
Sect. 7 concludes and presents some lines for future work.

2 Component-Based Model

In the scope of this work, we consider systems composed of atomic components
interacting through point-to-point communications. Atomic components are in
form of finite automata extended with data. Communication is synchronous and
directed between one sender and one receiving component. Regarding security,
we consider transitive information flow policies expressed on system variables
and we focus on non-interference properties.

The proposed model is general enough to deal with information flow secu-
rity from a practical point of view for commonly used programming languages
and/or modeling frameworks such as BPEL. Nevertheless, it should be men-
tioned that this model is actually a strict subset of the secureBIP component
model previously introduced in [6,7]. The latter considers additional coordina-
tion mechanisms through multiparty interactions as well as different definitions
of non-interference. For the sake of readability we recall hereafter the key con-
cepts and we re-formulate the key results which are useful in our precise context,
on the restricted subset considered.

2.1 Preliminaries

Let D = {Dj}j∈J be a universal set of data domains (or data types) including
the Boolean domain DBool = {true, false}. Let Expr be an universal set of
operators, that is, functions of the form op : ×m

i=1Dji → Dj0 , where m ≥ 0,

108 N. Ben Said et al.

Dji ∈ D for all i = 0,m. We consider typed variables x : D where x denotes
the name of the variable and D � dom(x) ∈ D its domain of values. We define
expressions e as either (i) constant values u ∈ ∪jDj , (ii) variables x : D or
(iii) composed expressions op(e1, ..., em) constructed by applying operators op
on sub-expressions e1, ..., em such that, their number and their domains match
exactly the domain of op. We denote by use(e) the set of variables occurring
in expression e and by Expr[X] the set of expressions constructed from a set of
variables X and operators in Expr. We denote by Asgn[X] the set of assignments
to variables in X, that is, any subset {(xi, ei)}i∈I ⊆ X × Expr[X] where (xi)i∈I

are all distinct. An assignment (x, e) is denoted by x := e.
Given a set of variables X, we define valuations V of X as functions V : X →

∪j∈JDj which assign values to variables, such that moreover, V (x) ∈ dom(x),
for all x ∈ X. We denote by V [u/x] the valuation where variable x has assigned
value u and any other variable has assigned the same values as in V . For a subset
Y ⊆ X, we denote by V|Y the restriction of V to variables in Y .

Given an expression e ∈ Expr[X] and a valuation V on X we denote by e(V)
the value obtained by evaluating the expression according to values of X on the
valuation V . Moreover, given an assignment a ∈ Asgn[X] and a valuation V
of X we denote by a(V) the new valuation V ′ obtained by executing a on V ,
formally V ′(x) = e(V) iff x := e ∈ a and V ′(x) = V (x) otherwise.

2.2 Operational Model

An atomic component B is a tuple (Q,P,X, T) where Q is a set of states, X
is a set of local variables, P is a set of ports (or action names) and T is a
set of transitions. We distinguish respectively input ports P in ⊆ P and output
ports P out ⊆ P and we assume they are disjoint, P in ∩ P out = ∅. Every input
or output port p ∈ P in ∪ P out is associated to a unique variable var(p) ∈ X.
Every transition t ∈ T is a tuple (q, p, g, a, q′) where q � src(t), q′ � dst(t) ∈ Q
are respectively the source and the target states, p � port(t) ∈ P is a port,
g � guard(t) ∈ Expr[X] is the enabling condition and a � asgn(t) ∈ Asgn[X] is
the assignment of t.

In our model, atomic components have exclusive access on their variables.
Interactions between components take place only through explicit input/output
binary connectors. A connector defines a static communication channel from
one output port pout of a sender component B to an input port pin in a receiver
component B′ 	= B. The connector is denoted by the tuple (pout, pin). Intuitively,
when communication takes place, the value of var(pout) is assigned to var(pin).

Figure 2 provides examples of atomic components. The Producer component
contains two states l1 and l2 and one output port out. The transition labelled
with port produce takes place only if the guard [w ≤ 3] is true. Then, the variable
x is updated by executing the assignment x := 3x + 1.

We denote by Γ (B1, ..., Bn) the composition of a set of atomic components
Bi = (Qi,Xi, Pi, Ti)i=1,n through a set of connectors Γ . For the sake of simplic-
ity, we tacitly assume that every input and output port of every Bi is used in
exactly one connector in Γ . The operational semantics of a composition is defined

A Robust Framework for Securing Composed Web Services 109

Buffer ConsumerProducer

l2

l1
l4

l5

x:=0

[w ≤ 3]

z:=0

produce

u:=0
t:=1w:=0

consume in

y:=0

l3

in

out

outout in in

u:=z-tout
x:=3x+1

x y y z

Fig. 2. A Producer-Buffer-Consumer example

as a labelled transition system (Q,A,−→) where states correspond to system con-
figurations and transitions to internal steps or communication through connec-
tors. A system configuration 〈q ,V 〉 in Q where q = (q1, ..., qn), V = (V1, ..., Vn)
is obtained from component configurations (qi, Vi) where qi ∈ Qi and Vi is a
valuation of Xi, for all i = 1, n. The set of labels A is defined as Γ ∪{τ}, that is,
either communication on connectors or internal action (τ). The set of transitions
−→⊆ Q × A × Q between configurations are defined by the following two rules:

Inter

(qi, pi, gi, ai, q
′
i) ∈ Ti pi 	∈ P in

i ∪ P out
i

gi(Vi) = true V ′
i = ai(Vi) ∀k 	= i. (q′

k, V ′
k) = (qk, Vk)

〈(q1, ..., qn), (V1, ..., Vn)〉 τ−→ 〈(q′
1, ..., q

′
n), (V ′

1 , ..., V ′
n)〉

Comm

(pout
i , pin

j) ∈ Γ (qi, p
out
i , gi, ai, q

′
i) ∈ Ti (qj , p

in
j , gj , aj , q

′
j) ∈ Tj

gi(Vi) = gj(Vj) = true u = Vi(var(pout
i)) V ′

i = ai(Vi)
V ′

j = aj(Vj [u/var(pin
j)]) ∀k 	= i, j. (q′

k, V ′
k) = (qk, Vk)

〈(q1, ..., qn), (V1, ..., Vn)〉 pout
i pin

j−−−−−→ 〈(q′
1, ..., q

′
n), (V ′

1 , ..., V ′
n)〉

The system evolves either by performing asynchronously an internal step of
some component Bi (Inter rule) or by performing a synchronous communication
between two components Bi, Bj involving respectively ports pout

i , pin
j related

by a connector in Γ (Comm rule). Transitions are executed only if guards are
evaluated to true in the current configuration. As usual, next configurations are
obtained by taking into account variable assignments and communication.

A run ρ of the system Γ (B1, ..., Bn) is a finite sequence 〈q0,V 0〉 α1 〈q1,V 1〉
α2 ... α� 〈q �,V �〉 where 〈qk−1,V k−1〉 αk−−→ 〈qk,V k〉 for all k = 1, �. The set of
all runs starting from a configuration 〈q0,V 0〉 are denoted by Runs〈q0,V 0〉.

Finally, for a run ρ and a subset of variables Y ⊆ ∪n
i=1Xi we denote by

tr(ρ, Y) the trace of ρ with respect to Y . Traces represent what is actually
observable from a trace by having access to variables in Y . They are inductively
defined for runs as follows:

110 N. Ben Said et al.

tr(〈q ,V 〉, Y) = 〈q ,V |Y 〉

tr(〈q ,V)〉 α ρ′, Y) =

⎧⎪⎪⎨
⎪⎪⎩

tr(ρ′, Y)
if α = τ and tr(ρ′, Y) starts with 〈q ,V |Y 〉

〈q ,V |Y 〉 α tr(ρ′, Y)
otherwise

where V |Y denotes (V1|Y1 , ..., Vn|Yn
) for Yi = Y ∩Xi, for all i = 1, n. Finally, for

a trace tr(ρ, Y) we define the set Enable(tr(ρ, Y)) of configurations which are
enabling the same trace on alternative runs, formally:

Enable(tr(ρ, Y)) = { 〈q0,V 0〉 | ∃ρ′ ∈ Runs〈q0,V 0〉, tr(ρ, Y) = tr(ρ′, Y) }

2.3 Security Model

We consider transitive information flow policies expressed on system variables
and we focus on the non-interference properties. We restrict ourselves to con-
fidentiality and we ensure that no illegal flow of information exists between
variables having incompatible security levels.

Formally, we represent security domains as finite lattices (S,≤) where S

denotes the security levels and ≤ the flows to relation. For a level s, we denote
by [−, s] (resp. by [s,−]) the set of levels allowed to flow into (resp. from) s.
Moreover, for any subset S ⊆ S, we denote by �S (resp. �S) the unique least
upper (resp. greatest lower) bound of S according to ≤.

Let Γ (B1, ..., Bn) be a system and let X = ∪n
i=1Xi (resp. P = ∪n

i=1Pi) be the
set of all components variables (resp. ports). A security annotation on variables is
a function σ : X → S which associates security levels to variables. We denote by
σ−1 : 2S → 2X the pre-image of σ, defined as σ−1(S) = {x ∈ X | σ(x) ∈ S}, for
all S ⊆ S. For any s, define Ys = σ−1([−, s]), the set of variables having security
levels at most s. For a security level s, we denote by ≈s the indistinguishability
relation on configurations at level s defined by 〈q1,V 1〉 ≈s 〈q2,V 2〉 iff q1 = q2

and V 1|Ys
= V 2|Ys

. That is, configurations are identical on control states and
up to variables with security levels at most s. For a set of configurations C ⊆ Q,
we denote by [[C]]s = {c′ ∈ Q | ∃c ∈ C. c′ ≈s c}. We are now ready to define the
security criterion for an annotated system.

Definition 1. A security annotation σ is secure for a system Γ (B1, ..., Bn) and
initial configurations Init iff ∀s ∈ S. ∀〈q0,V0〉 ∈ Init . ∀ρ ∈ Runs〈q0,V0〉

Enable(tr(ρ, Ys)) = [[Enable(tr(ρ, Ys))]]s

Intuitively, the definition states that for any security level s, no additional infor-
mation is obtained by observing traces with respect to variables Ys behind the
equivalence ≈s. Or, any two indistinguishable initial states enable precisely the
same set of traces with respect to Ys. If this would not be the case for let
say, (q0,V 0) ≈s (q0,V

′
0), then one could find a run ρ0 ∈ Runs〈q0,V 0〉 such

that no run ρ′ ∈ Runs〈q0,V
′
0〉 had the same trace with respect to Ys. But then,

A Robust Framework for Securing Composed Web Services 111

this means (q0,V 0) ∈ Enable(tr(ρ0, Ys)) whereas (q0,V
′
0) 	∈ Enable(tr(ρ0, Ys)).

and consequently Enable(tr(ρ, Ys)) � [[Enable(tr(ρ, Ys))]]s.
The following proposition defines static conditions ensuring that a security

annotation on variables is secure for a system.

Proposition 1. A security annotation σ is secure for a system Γ (B1, ..., Bn)
with an arbitrary non-empty set of initial configurations Init whenever

– all local transitions t in components Bi are sequentially consistent
∀(x := e) ∈ asgn(t). ∀y ∈ use(e) ∪ use(guard(t)). σ(y)≤σ(x)

– all components Bi are port deterministic i.e., for all transitions t1, t2
src(t1) = src(t2) ∧ port(t1) = port(t2) ⇒ guard(t1) ∧ guard(t2) ≡ false

and moreover, there exists a security annotation on ports ς : P → S such that:

– ports of all causal local transitions t1, t2 have increasing levels of security
dst(t1) = src(t2) ⇒ ς(port(t1))≤ς(port(t2))

– ports of all conflicting local transitions t1, t2 have the same level of security
src(t1) = src(t2) ⇒ ς(port(t1)) = ς(port(t2))

– variables and ports are consistently annotated on all local transitions t
∀(x := e) ∈ asgn(t). ∀y ∈ use(guard(t)). σ(y)≤ς(port(t))≤σ(x)

– variables and ports are consistently annotated on connectors
∀(poutpin) ∈ Γ. σ(var(pout))≤ς(pout) = ς(pin)≤σ(var(pin))

Proof (Sketch). It can be shown that the conditions above imply the unwinding
conditions of [8] for indistinguishability ≈s at security level s. In turn, unwinding
conditions are guaranteeing non-interference and therefore security as defined in
Definition 1. A detailed proof is available in [6,7] for a slightly more general
component-based model allowing multiparty interactions between components.

3 Configuration Synthesis

The configuration synthesis problem is defined as follows. Given a partial secu-
rity annotation of a system, extend it towards a complete annotation which is
provable secure according to Proposition 1, or show that no such annotation
actually exists. We assume that system components are port deterministic.

We rely on flow dependency graphs as an intermediate artifact for solving
this problem. For every component Bi = (Qi,Xi, Pi, Ti), we define the flow
dependency graph Gi = (Ni, ↪→i) where the set of vertices Ni = Xi ∪Pi contains
the ports and variables of Bi and edges ↪→i ⊆ Ni × Ni correspond to flow
dependencies required by Proposition 1 and are defined below, for every x, y ∈
Xi, p, r ∈ Pi:

y↪→ix iff ∃t ∈ Ti. x := e ∈ asgn(t), y ∈ use(e) ∪ use(guard(t))
p↪→ix iff ∃t ∈ Ti. x := e ∈ asgn(t), p = port(t)

∨
p ∈ P in

i , x = var(p)
y↪→ip iff ∃t ∈ Ti. y ∈ use(guard(t)), p = port(t)

∨
p ∈ P out

i , y = var(p)
p↪→ir iff ∃t, t′ ∈ Ti. p = port(t), r = port(t′), (dst(t) = src(t′) ∨ src(t) = src(t′))

Using flow dependency graphs, the configuration synthesis problem is formally
rephrased as follows:

112 N. Ben Said et al.

– Given system Γ (B1, ..., Bn), partial annotation σ0 : X → S ∪ {⊥}
– Find complete annotation ζ : X ∪ P → S such that
(C1) (initial annotation) ∀x ∈ X. σ0(x) 	= ⊥ =⇒ ζ(x) = σ0(x)
(C2) (flow preservation) ∀i = 1, n. ∀x, y ∈ Pi ∪ Xi. x↪→iy =⇒ ζ(x)≤ζ(y)
(C3) (connector consistency) ∀γ = (poutpin) ∈ Γ. ζ(pout) = ζ(pin)

If a complete annotation ζ exists and satisfies the conditions (C1-C3) above,
then the system Γ (B1, ..., Bn) is provable secure for σ = ζ|X and ς = ζ|P , which
are respectively the projections of ζ to variables X and ports P . That is, all
conditions required by Proposition 1 on annotation of ports and variables within
components are captured by dependency graphs (Gi)i=1,n and satisfied according
to (C2). Connectors are consistently annotated according to (C3). Moreover, the
initial annotation is preserved by (C1).

An iterative algorithm to compute the complete annotation ζ is depicted as
Algorithm 1 below. If the algorithm terminates without detecting inconsisten-
cies, then ζ is the less restrictive annotation satisfying conditions (C1-C3). If an
inconsistency is detected, then no solution exists. In this case, the initial anno-
tation is inconsistent with respect to the information flow within the system.

Algorithm 1. Annotation Synthesis

1 ζ(n) ←
{

σ0(n) if n ∈ X, σ0(n) �= ⊥

S otherwise

� initialization

2 BList ← {Bi}i=1,n � inter-component outer loop
3 while BList �= ∅ do
4 choose-and-remove(BList, Bi)
5 nList ← Xi ∪ Pi � intra component inner loop for Gi

6 while nList �= ∅ do
7 choose-and-remove(nList, ni)
8 si ← �{ζ(n) | n↪→ini} � recompute security level of ni

9 if ζ(ni)≤si and si �= ζ(ni) then
10 if ni ∈ Xi and σ0(ni) �= ⊥ and σ0(ni)≤si then
11 stop � inconsistency detected

12 ζ(ni) ← si � update and propagate change within Gi

13 nList ← nList ∪ {n | ni↪→in}
14 foreach pi ∈ P out

i ∪ P in
i do

15 find pj ∈ P out
j ∪ P in

j with (pipj) ∈ Γ or (pjpi) ∈ Γ
16 if ζ(pi) �= ζ(pj) then
17 ζ(pj) ← ζ(pi) � update and propagate change across connectors
18 BList ← BList ∪ {Bj}

Initially, all system variables are either annotated by security levels given
from system designer σ0 if it exist or a default level that correspond to the
lowest security level (�S) in the lattice (line 1). The algorithm visits iteratively

A Robust Framework for Securing Composed Web Services 113

all components (lines 2–18). For every component Bi, it propagates forward the
current annotation ζ within the flow graph Gi (lines 3–13). The security level
ζ(ni) of every node ni is eventually increased to become more restrictive than
the levels of its predecessors (lines 8–13). An inconsistency is reported if the
security level increases for an initially annotated variable (lines 10–11). Any
change triggers recomputation of successors nodes of ni (lines 12–13). Finally,
once the annotation within Gi is computed, any change on security levels on
input/output ports is propagated to connected ports (lines 14–18). After this
propagation step, any pair of connected ports has again the same security level.
As for variables, notice that annotations for connected ports can only increase:
any increase due to propagation within a component is immediately propagated
to the connected port. The involved components need to be revisited again (line
18). Notice that both while loops are guaranteed to terminate as the number of
annotation changes is bounded for every node. That is, the security level can
only be increased finitely many times in a bounded lattice (S,≤).

Proposition 2. Algorithm1 solves the configuration synthesis problem.

Proof. Initially, the annotation ζ is defined to satisfy initial annotation con-
dition (C1). It equally satisfies connector consistency (C3) but not necessar-
ily flow preservation (C2). The algorithm propagates this annotation along the
flow graphs, without changing the initially annotated variables. Intra-component
propagation makes flow preservation (C2) hold for the component but may actu-
ally destroy (C3). On the contrary, the propagation across connectors re-establish
(C3) but may destroy (C2) for connected components. At termination, no anno-
tation changes are possible/needed, hence, the final annotation ζ satisfies both
flow preservation condition (C2) but and connector consistency (C3).

As an example, we apply Algorithm 1 to the Producer-Buffer-Consumer pre-
sented in Fig. 2 with initial annotation {x �→ M, z �→ H}, for security levels
L(ow), M(edium) and H(igh), such that L≤M≤H. The three flow dependency
graphs and their dependencies through connectors are depicted in Fig. 3. For
this initial labelling, the algorithm succeeds to generate a complete annotation
for variables {x �→ M,w �→ L, y �→ M, z �→ H, t �→ L, u �→ H} and all ports
are mapped to M . If however we add to the initial configuration a label to the
guard variable w, {w �→ H}, Algorithm 1 detects an inconsistency at the Pro-
ducer component and an illicit flow from the w variable to y variable through
port produce is reported to the user.

4 Application to Web Services

In this section, we apply the synthesis approach to generate secure configura-
tions of WS applications. We consider a composition of BPEL and elementary
services annotated using the decentralized label security model (DLM) [9]. We
briefly present how such WS compositions are represented in the component-
based model and we show how the DLM annotations are used in the BPEL
context.

114 N. Ben Said et al.

inout

produce
consume

Buffer ConsumerProducer

out

H

in
M

L

M

M M

M M
L

M

H

M
x

w

y

z

t

u

Fig. 3. Dependency graphs of Producer-Buffer-Consumer from Fig. 2

4.1 The BPEL Composition

BPEL provides structuring mechanisms to compose several WS into a new one.
We particularly focus on BPEL4WS [10] processes which compose services from
activities, that are either (1) basic such as receive, reply, invoke, assign, throw,
exist, or (2) structured such as sequence, if, while, repeatuntil, pick, flow.

The representation of BPEL processes in our component model is struc-
tural, that is, the structure of the source BPEL model is preserved in the target
model. More precisely, a process is represented as an atomic component where
the behavior encompasses all its basic and structured activities. All process vari-
ables are added to the atomic component. Basic activities such as 〈receive.../〉,
〈reply.../〉, 〈invoke.../〉 are translated into specific transitions triggered by respec-
tively Receive * and Reply * ports. Their corresponding variables are implicitly
attached to the above ports. The 〈assign.../〉 activity is translated as an internal
transition that executes the corresponding assignment.

Receive_Req1

[plan>threshold] [plan<threshold]

Assign_outplan

in

internal internal

outplan:=(0,0,0)

localplan

outplan outplan

out_plan:=
localplan

Assign_outplan

Reply1_outplan Reply1_outplan

Receive_ack
ack

outplan=f(ack)

Receive_Req1

Receive_ack
Reply2_outplan

Reply2_outplan

Reply1_outplanl1

l4

l8

l2

l3

l5l6

l7

l9

Fig. 4. Atomic component representation of a BPEL process

A Robust Framework for Securing Composed Web Services 115

Structured activities define the overall control flow of transitions in the
atomic component, in the usual way. In particular, transition guards are
extracted from 〈if..., while..., repeatuntil.../〉 and 〈pick.../〉 activities. As a
restriction, the parallel execution of activities within a 〈flow.../〉 is not sup-
ported. In this case, their execution is made sequential in an arbitrary order.

Finally, we define the connectors and the composition of the atomic compo-
nents by using the PartnerLinks defined for BPEL processes. Every 〈invoke.../〉,
〈receive.../〉 and 〈reply.../〉, 〈receive.../〉 interaction defined over partner links
is translated to a connector relating the corresponding components and their
respective ports. Let us notice that processes may interact through partner links
with external WS, that is, developed in other languages than BPEL (such as
Java, C, etc.). In this case, these WS are represented as atomic components
with an implicit behaviour, for arbitrarily sending and receiving data through
their connected ports.

Similar translations have been already defined in the literature [11]. As the
above translation is structural the resulting model remains comprehensive for
the WS designer. The representation relies basically on adapting reusable and
composable model components that directly maps processes with limited num-
bers of execution steps. Despite that, some features in BPEL language are not
considered such as fault/event handling and scopes. Security errors that can be
generated by these aspects are not in the scope of this paper.

4.2 Decentralized Label Model

The decentralized label model (DLM) [9] provides a universal labeling scheme
where security labels (or levels) are expressed using set of policies. A confi-
dentiality label L contains (1) an owner set, denoted O(L), that are principals
representing the originating sources of the information, and (2) contains for each
owner o ∈ O(L) a set of readers, denoted R(L,o), representing principals to whom
the owner o is willing to release the information. The association of an owner o
and a set of readers R(o) defines a policy. Principals are ordered using an acts for
partial order relation (denoted ≺) which is a delegation mechanism that enables
a principal to pass his rights to another principal (e.g., o1 ≺ o2 states that o2
can act for o1). A security domain is defined over the set of confidentiality labels
by using a flows to relation defined as follows:

L1≤L2 ≡ ∀o1 ∈ O(L1). ∀o2 ∈ O(L2). o1 ≺ o2 ∧
∀r1 ∈ R(L1, o1). ∃r2 ∈ R(L2, o2). r1 ≺ r2

The intuition behind the flows to relation ≤ above is that (1) the information
can only flow from one owner o1 to either the same or a more powerful owner
o2 where o2 can act for o1 and (2) the readers allowed by R(L2, o) must be a
subset of the readers allowed by R(L1, o) where we consider that the readers
allowed by a policy include not only the principals explicitly mentioned but also
the principals able to act for them.

In our setting for BPEL WS composition, the principals used to define the
acts for relation and the security domain are obtained from BPEL partner links

116 N. Ben Said et al.

that correspond to WS URI. That is, principals can be either BPEL processes
or atomic WS in some primitive language.

The designer expresses his security policy by tagging BPEL variables using
DLM labels. The security domain and these annotations are then transposed
as such on the component-based model. For example, a confidentiality label
L: {Prosumer:SMG} assigned to the variable outplan in the Prosumer process
presented in Fig. 4 (right side) is used directly, as it is, for the outplan variable
in Prosumer atomic component obtained by translation (left side).

4.3 Implementation

The configuration synthesis algorithm described in Sect. 3 is implemented and
available for download at http://www-verimag.imag.fr/∼bensaid/secureBIP/.
The user provides the WS composition in BPEL and a configuration file (.xml)
that contains an acts for relation defining authorities for different processes and
the DLM annotations for some process variables. An example of a configuration
file is provided in the Appendix. In a first step, the BPEL composition is struc-
turally transformed into a component-based model representation in BIP [12].
The transformation extends an already existing translation of BPEL to BIP
developed in [11] to study functional aspects. In a second step, the synthesis
tool takes as input the system model (.bip) and the configuration file (.xml),
builds the dependency graphs of components and runs the synthesis algorithm
to produce the complete configuration.

5 Use-Case: Smart Grid Application

To illustrate the use of our framework we consider a simplified model of a smart
grid system [13] managed through Internet network using WS. Smart grid sys-
tems usually interconect a number of cooperating prosumers, (that is, pro-ducers
and con-sumers) of electricity on the same shared infrastructure. In principle,
every prosumer is able to produce, store and consume energy within the grid.
However, its use of the grid has to be negotiated in advance (e.g., on a daily
basis) in order to adapt to external conditions (e.g., weather conditions, day-to-
day demands,...) as well as to maintain the behaviour of the grid in some optimal
parameters (e.g., no peak consumption). Smart grids are subject to requirements
related to safety and security e.g., the power consumption/production of a pro-
sumer must remain secret as it actually may reveal sensitive information.

In our WS model of the smart grid, the system consists of a finite number
of prosumer processes, Pri, communicating with a smart grid process, SMG.
Initially, each Pri sends its consumption and production plan, (Pi, Ci, Bi), for
the next day to the grid. Production Pi, consumption Ci and (storage) battery
Bi are expressed using energy units (integer) where 0 � Pi � 2, −3 � Ci � 0 and
−1 � Bi � 1. The SMG validates the plans received by checking that the overall
energy flow through the grid implied by these plans does not exceed the power
line capacity. This check measures the consumption exceed acknowledgment,

http://www-verimag.imag.fr/~bensaid/secureBIP/

A Robust Framework for Securing Composed Web Services 117

ack, compared to a bound, that is, ack=0 if the −1 � ∑n
i=1(Pi + Ci + Bi) �

4, otherwise, it returns the difference between the sum of the plans and the
consumption bounds. The SMG sends back to each Pri an acki to negotiate
updating its own plan, where ack =

∑n
i=1 acki. The negotiation terminates

when ack=0 meaning that the energy flow on the grid does not exceed the line
capacity. Figure 5 shows the system overview with two prosumers that exchange
queries with the smart grid.

SMG
Reply_ack Reply_ack

Request_plan Request_plan

Reply1_plan

Reply2_plan Reply2_plan

Pr1 Pr2

Reply1_plan

Fig. 5. Smart grid application overview

The information flow security requirements that we emphasize here con-
sist first, on ensuring the confidentiality of energy consumption plan for each
Pri, (which can reveal sensitive competitive information such as its production
capacity) and second, ensuring that no prosumer is able to deduce the consump-
tion plan of any other prosumer by observing the received ack information. For
instance, consider two prosumers such that one of them, Pr1, sends an extreme
consumption plan (0,−3,−1) to the SMG while the second, Pr2, sends (0,−3, 0)
as a consumption plan. The SMG first calculates the acknowledgment message
that is ack=3 then sends ack1=1, ack2=2 messages to respectively Pr1 and Pr2.
Assume now that Pr2 sends back a new consumption plan (1,−2, 1) and gets
back ack2=0. By only observing other ack1 message sent to Pr1, the Pr2 can
deduce that the consumption plan of Pr1 is equal to (0,-3,-1). The translation of
Pr1 process is given in Fig. 4 while the translation of the SMG process is given
in the appendix.

Rep_Pr1 Rep_Pr2

assign

assign2assign1
plan2
local_

plan1
local_

plan1
in_

ack

ack
local_

in_
plan2

ack

ack1
out_

ack2
out_

out_

Rep_SMG

2RP_peR1rP_peR

Rep_Pr1
Rep_Pr2

SMG

Pr1 Pr2

internal
out_
plan

Req1

ack

thresh−
old

local_
plan

assign

Req2

Req1

internal
out_
plan

ack

assign

Req2

thresh−
old

local_
plan

L1

L1

L1

L1

L1

L1

L1

L3

L1
L2

L2

L1

L2

L2

L2

L2

L2

L2

L2

L1

L1
L3

L3

L2

L1

L2
L3

L3L3

L1

L

L2

L1 L2

L1 L2

Fig. 6. Generated dependency graphs (fragments).

118 N. Ben Said et al.

For applying our approach to check system security, the designer introduces
initially his partial security policy by tagging intuitively some variables that
he considers sensitive in system model with security annotations. He also pro-
vides an acts for diagram for all model components where he gives authorities
to some of them to act for others. In this system the SMG component can only
acts for both Pr1 and Pr2. To ensure confidentiality of prosumers plan, the
system administrator annotates out plan1 with L1 = {Pr1 : SMG} label and
out plan2 with L2 = {Pr2 : SMG} label. Obviously, L1 	≤ L2 and L2 	≤ L1

are indicating that both prosumers represent separate security domains that
can only communicate with the SMG component. Then, the tool automatically
generates the dependency graph of the transformed smart grid system. Pre-
sented in Fig. 6, the dependency graph is build over ports (rectangles) and data
variables (circles) locally at each atomic component(big circles), where arrows
intra-circles represent dependencies between ports and data in the same atomic
component while arrow inter-circles represent inter-components dependencies.
The application of Algorithm 1 to the system dependency graph detects an
illegal information flow in the system and generates an error in the out plan
node for both prosumers. Indeed, the label propagation in the system creates at
ack node of the SMG component a new label L3 = L1 � L2. Obviously, label
L3 = {Pr1 : SMG ;Pr2 : SMG} is more restrictive than both labels L1 and L2.
Since the ack node depends on out ack1 in Pr1 and out ack2 in Pr2, then it
is labelled with L3 in both prosumers which causes security level inconsistency
at out plan nodes. Algorithm 1 generates an inconsistent security level error
between both out plan and ack nodes. Here, the system designer has to rede-
fine the initial configuration, for instance, by given more privilege to prosumers
to act for SMG component and enforce variable ack to higher security level
L3 = {SMG : SMG}. In this case, and with the authority that each prosumer
gain, flow can go from L3 to L1 and L2.

Table 1. Model size and configura-
tion time (in s) for smart grid appli-
cation with one initial security label
by each prosumer.

n P X σ0 t

4 26 24 3 1.82

13 98 87 12 1.94

25 194 171 24 2.01

101 802 703 100 2.82

As an evaluation of the compositional
approach performance, Table 1 presents
some experiments over configuration time t
for different variation of the number of pro-
sumer components, n, in the smart grid sys-
tem for a given number of variables X, ports
P and with initial labels number, σ0. Here
we can notice that our configuration synthe-
sis does not introduce an overhead even by
increasing the number of system components.

6 Related Work

There are many commercial tools like IBMs XML Security Gateway XS40,
application servers [14] and Web Service Enhancements for Microsoft .NET
(WSE) [15] that provide GUI to help users configure and verify WS security
but the user has to learn about standard WS-Security syntax and options.

A Robust Framework for Securing Composed Web Services 119

In [16], authors propose a high-level GUI for configuring WS security with
a business-policy-oriented view. It models the messaging with customers and
business partners, lists various threats, and presents best-practice security pat-
terns against these threats. A user can select among proposed generated basic
patterns according to the business policies, and then apply them to the mes-
saging model. The result of the pattern application is, afterwards, described in
the Web Services Security Policy Language (WS-Security Policy). None of these
tools handle the non-interference property like we do. Regarding formal models
for non-interference in WS, in [17], authors present WS data flows as exten-
sions of the Petri-net model and in [18], non-interference has been formalized for
Petri-nets. Nevertheless, these solutions have some drawbacks which are mainly
that data and resource description is manual and can be therefore error prone.
Later on, the same authors propose the IFAudit tool that represents data flow as
propagation graphs generated from workflow’s log data. The propagation graphs
are analyzed against the security policies.

Distinct security models are proposed in [19] where authors propose a classifi-
cation of security-aware WS. They list a set of works classified in information flow
category. Nevertheless, these works are restricted to verification rather than secu-
rity configuration synthesis. Here we propose a practical automated verification
method for transformed model of composed BPEL WS, based on formally proved
security conditions. In [20], the authors deal with chained services and security
is checked with a notion of back check procedure and pass-on certificate. It is
not clear how to apply this solution to WS orchestration workflows and how to
handle implicit interference. A recent work extends BPEL-orchestra engine [21]
to handle IFC security. This work is inspired from SEWSEC framework [22] by
adopting the distributed security label to annotate information. Nevertheless,
instead of using abstractions like PDG, this annotation is set inside the BPEL
code. Code annotation requires security skills, does not separate functional and
security concerns and induces development overhead.

Finally, our work is related to information flow security in component-based
systems. In contrast to [23] where authors verify security in a component-based
model by annotating the system ADL (Architecture Description Language) and
tracking information flow at intra- and inter-components separately, this work
provides a sound model with formal proofs guaranteeing system non-interference.
Besides, and compared to our previous work [6] where we adopted a more general
component-based model to build secure distributed systems, here we propose a
simpler message-based send-receive model suitable to model applications with
web-style primitives and communications like BPEL-based composed WS and we
propose not only a security verification but also a practical solution for security
configuration synthesis.

7 Conclusion and Future Work

In this paper, we propose a component-based approach to assist system design-
ers to analyze and enforce information flow security in WS compositions.

120 N. Ben Said et al.

We implemented a compositional synthesis algorithm that propagates labels and
generates secure system configurations starting from partial configurations.

As future work, we plan to extend this work in several directions. First, we are
seeking for less restrictive syntactic conditions for establishing non-interference.
In particular, we believe that a finer control flow analysis using for instance dom-
inance analysis [24] can provide finer dependencies amongst variables and ports.
Second, we are working on relaxing the non-interference property and introduc-
ing declassification mechanisms to our model. Declassification has been studied
for sequential interactive programs with inputs and outputs [25], nevertheless,
its extension to distributed concurrent component-based models such as Web
Services is less understood.

Appendix

Figure 7 shows a transformation of the SMG process of the smart grid system
given as BPEL workflow, into an atomic component. The behavior of the atomic
component represents the activities given in the BPEL process.

in
Receive_client

Request_Pr1

assign

Request_Pr2

Reply_Pr1
in_plan1

local_plan1
local_plan2

Reply_Pr2

Assign

in_plan2

local_ack

‘ck

ack

out_ack1

local_plan2:=

local_ack:=

in_plan1

in_plan2

Rep_Pr11

Rep_Pr12

Req_Pr12

out_ack2

Req_Pr11

out

Request_SMG
Reply_SMG

Assign

Reply_Pr1

Request_Pr2

Reply_Pr2

Reply_client

Request_Pr1

local_plan1:=

l1

l2

l3

l5

l6

l4

l7

l8l9

l10

l11

l12

l13

l14

l15

l16

Fig. 7. Translation of the SMG component

The designer input configuration file includes an acts for relation as well
as some annotated variables. Here we presented an example of a configuration
file of the smart grid system. In this xml file we define 〈authority/〉 to differ-
ent system components representing the acts for relation. Moreover, we specify
by 〈var config/〉 the annotations of variables from different atomic components
(processes).

A Robust Framework for Securing Composed Web Services 121

<?xml version="1.0"?>
<config>

<acts_for >
<authority >SMG: Prosumer1 , Prosumer2 , Prosumer3 </authority >

</acts_for >
<var_config >

<variable var="outplan" process="Prosumer1"
label="Prosumer1:SMG"></variable >

<variable var="outplan" process="Prosumer2"
label="Prosumer2:SMG"></variable >

<variable var="outplan" process="Prosumer3"
label="Prosumer3:SMG"></variable >

</var_config >
</config>

References

1. Walsh, A.: UDDI, SOAP, and WSDL: The Web Services Specification Reference
Book. Prentice Hall, Upper Saddle River (2002)

2. Juric, M.B.: Business Process Execution Language for Web Services BPEL and
BPEL4WS, 2nd edn. Packt Publishing, Birmingham (2006)

3. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Securing SOAP
e-services. Int. J. Inf. Secur. 1(2), 100–115 (2002)

4. Della-Libera, G., Gudgin, M., Hallam-Baker, P., Hondo, M., Granqvist, H., Kaler,
C., Maruyama, H., McIntosh, M., Nadalin, A., Nagaratnam, N., Philpott, R.,
Prafullchandra, H., Shewchuk, J., Walter, D., Zolfonoon, R.: Web services security
policy language (WS-SECURITYPOLICY). Technical report (2005)

5. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE
Symposium on Security and Privacy, pp. 11–20 (1982)

6. Bozga, M., Ben Said, N., Abdellatif, T., Bensalem, S.: Model-driven informa-
tion flow security for component-based systems. In: Bensalem, S., Lakhneck, Y.,
Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp. 1–20. Springer,
Heidelberg (2014)

7. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: Model-driven information
flow security for component-based systems. Technical report TR-2013-7, VER-
IMAG. http://www-verimag.imag.fr/TR/TR-2013-7.pdf

8. Rushby, J.: Noninterference, transitivity, and channel-control security policies.
Technical report CSL-92-2, SRI International (1992)

9. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9, 410–442 (2000)

10. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS,
Business Process Execution Language for Web Services Version 1.1. IBM (2003)

11. Stachtiari, E., Mentis, A., Katsaros, P.: Rigorous analysis of service composability
by embedding WS-BPEL into the BIP component framework. In: 2012 IEEE 19th
International Conference on Web Services, pp. 319–326 (2012)

12. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based design using the BIP framework. IEEE Softw. 28(3),
41–48 (2011). Special Edition - Software Components beyond Programming - from
Routines to Services

13. Koss, D., Sellmayr, F., Bauereiss, S., Bytschkow, D., Gupta, P., Schaetz, B.: Estab-
lishing a smart grid node architecture and demonstrator in an office environment
using the SOA approach. In: First International Workshop on Software Engineering
Challenges for the Smart Grid, SE4SG, pp. 8–14 (2012)

http://www-verimag.imag.fr/TR/TR-2013-7.pdf

122 N. Ben Said et al.

14. Corporation., I.B.M.: Using BPEL processes in WebSphere Business Integration
Server Foundation. IBM, International Technical Support Organization (2004)

15. Microsoft Development network. http://msdn.microsoft.com/
16. Tatsubori, M., Imamura, T., Nakamura, Y.: Best-practice patterns and tool sup-

port for configuring secure web services messaging. In: IEEE International Confer-
ence on Web Services (ICWS 2004), pp. 244–251 (2004)

17. Busi, N., Gorrieri, R.: A survey on non-interference with petri nets. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 328–344. Springer, Heidelberg (2004)

18. Busi, N., Gorrieri, R.: Structural non-interference in elementary and trace nets.
Math. Struct. Comput. Sci. 19(6), 1065–1090 (2009)

19. Movahednejad, H., Ibrahim, S.B., Sharifi, M., Selamat, H.B., Tabatabaei, S.G.H.:
Security-aware web service composition approaches: State-of-the-art. In: 13th
International Conference on Information Integration and Web-based Applications
and Services, iiWAS 2011, pp. 112–121. ACM (2011)

20. She, W., Yen, I., Thuraisingham, B.M.: Enhancing security modeling for web ser-
vices using delegation and pass-on. Int. J. Web Service Res. 7(1), 1–21 (2010)

21. Demongeot, T., Totel, E., Traon, Y.L.: Preventing data leakage in service orches-
tration. In: 7th International Conference on Information Assurance and Security,
IAS 2011, pp. 122–127 (2011)

22. Zorgati, H., Abdellatif, T.: Sewsec:a secure web service composer using information
flow control. In: Sixth International Conference on Risks and Security of Internet
and Systems, CRiSIS 2011, pp. 62–69 (2011)

23. Abdellatif, T., Sfaxi, L., Robbana, R., Lakhnech, Y.: Automating information flow
control in component-based distributed systems. In: 14th International ACM Sig-
soft Symposium on Component Based Software Engineering, CBSE 2011, pp. 73–
82. ACM (2011)

24. Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.): Domain
Engineering, Product Lines, Languages, and Conceptual Models. Springer, New
York (2013)

25. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for
dynamic languages. In: 22nd IEEE Computer Security Foundations Symposium,
CSF 2009, pp. 43–59 (2009)

http://msdn.microsoft.com/

Combinatory Synthesis of Classes
Using Feature Grammars

Jan Bessai1(B), Boris Düdder1, George T. Heineman2, and Jakob Rehof1

1 Technical University of Dortmund, Dortmund, Germany
{jan.bessai,boris.duedder,jakob.rehof}@tu-dortmund.de

2 Worcester Polytechnic Institute, Worcester, USA
heineman@cs.wpi.edu

Abstract. We describe a method for automatically transforming fea-
ture grammars into type-specifications which are subsequently used to
synthesize a code-generator for a product of a given feature selection.
Feature models are assumed to be given in the form of feature grammars
with constraints, and we present a generic type-theoretic representation
of such grammars. Our synthesis method is based on an extension of
previous work in combinatory logic synthesis, where semantic types can
be superimposed onto native APIs to specify a repository of components
as well as synthesis goals. In our case, semantic types correspond to
feature selections. We use an encoding of boolean logic in intersection
types, which allows us to directly represent logical formulas expressing
complex feature selection constraints. The novelty of our approach is the
possibility to perform retrieval, selection and composition of products in
a unified form, without sacrificing modularity. In contrast to constraint
based methods, multiple selections of a single feature can coexist.

Keywords: Feature models · Program synthesis · Type theory · Com-
binatory logic · Feature grammar

1 Introduction

Feature models are a hierarchical representation of all products of a software
product line (SPL) which can be distinguished by a set of features. A selection
of features leads to a product configuration. Selections are required to satisfy
imposed constraints, e.g., exclusive choices between features. Various equivalent
representations of feature models exist. Most prominently, feature diagrams have
been introduced by Czarnecki [15]. Feature grammars are a widely known alter-
native that avoids graphical representation issues in large systems [6,24]. Based
on ideas on product line validation by Mannion [26], a representation as proposi-
tional formulas has been independently suggested by Batory [6] and Benavides,
Trinidat and Ruiz [10]. The validity of feature selections w.r.t. constraints can
be obtained automatically in the two last representations, e.g., by using truth
maintenance systems. These approaches can only automatically solve the prob-
lem how to select features, but not the problem how to combine them into a
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 123–140, 2016.
DOI: 10.1007/978-3-319-28934-2 7

124 J. Bessai et al.

product. The latter problem is easy to solve with annotation-based techniques,
where all features are implemented in a single code-base [2]. However, as dis-
cussed in [2] annotation-based approaches bear several disadvantages because
of their lack of modularity. Our approach solves both problems - selection and
composition - in the presence of a component-orientented code-base.

An algorithm for combinatory logic synthesis [12,21] is used to compose fea-
tures guided by hierarchy information obtained from feature models. During
composition, types ensure that semantic constraints on selections are observed.
Connecting the domain specific problem space and the implementation specific
solution space via types, the process results in a composition specification suit-
able for product code generation. The synthesis algorithm is based on the type
inhabitation problem: given a type environment Γ representing a feature model
and a type τ representing an (incomplete) feature selection, can we generate
a valid composition specification e that is composable from features in Γ and
satisfies the selection τ , noted as Γ � e : τ? As soon as a feature model and code
generators for each single feature are given, this leads to an automated process,
directly presenting the user with all valid and ready to execute product choices
on the input of her individual feature requirements.

The paper is structured as follows. Feature models and their representations
are discussed in Sect. 2, and feature grammars (our chosen representation) are
defined by a meta-grammar which is illustrated by an example in Sect. 2.1. In
Sect. 3, the theoretical background of the translation into type environments and
of the synthesis problem are highlighted. The translation from feature grammars
is presented in detail, including a soundness proof, in Sect. 4. The translation,
synthesis and interpretation are applied to an example depicting resulting code
in Sect. 5. In Sect. 6 we discuss related work. Section 7 concludes the paper.

Gpl

Driver

Prog Benchmark

Number

Cycle

Connected

StrongC

Transpose StronglyConnected

MSTPrim

MSTKruskal

Shortest Src

DFS BFS

Wgt

Weighted Unweighted

Gtp

Directed Undirected

Fig. 1. Feature diagram for the GPL example

The contributions of this paper are: a translation of feature models given as
features grammars to type environments, the encoding of constraints as semantic
types, the synthesis and interpretation of composition specifications as program
code of products (possibly including feature replications), and an application of
translation and synthesis to an example.

Combinatory Synthesis of Classes Using Feature Grammars 125

2 Feature Models

A feature model is a representation of all products of a software product line
(SPL). Components of feature models are features and constraints organizing
them hierarchically. An instance or member of a feature model is a single prod-
uct, i.e. a combination of features satisfying the imposed constraints. We describe
members using feature configurations, specifying which features are selected (fea-
ture selection) and how they are organized wrt. to each other. There are at least
three equivalent ways of specifying feature models. Classically, annotated fea-
ture diagrams are used as a visual specification [15,25]. According to [24] feature
diagrams are a visual representation of feature grammars. In both approaches
constraints are represented as propositional formulas. This insight led to the
idea of representing features as well as their hierarchy as propositional formu-
las [6,10]. Standard constraints on features are naturally expressible by logical
connectives: Features that are mandatory (⇔), features that are optional (⇒),
subfeatures (children) (∧), alternative subfeatures (⊕), repeated subfeatures (∨),
and mutually exclusive features (NAND). This unified representation lends itself
to automating feature selection with constraint solvers. However, it does not
provide organizational information needed for a construction specification of the
resulting product. Grammars can provide such information and therefore they
are used in practical code generation tools like GenVoca [8] and AHEAD [5]. We
follow this line of work in our approach towards directly constructing feature
configurations and products from grammars.

2.1 Grammars and GPL Example

Batory [6] explains the stepwise conversion of feature diagrams into feature gram-
mars, following the ideas presented in [24]. We follow the standard example of
a Graph Product Line (GPL) as presented in [6], allowing for a comparison
between diagrams, grammars and later our approach.

Figure 1 shows the GPL example as a feature diagram. We see that a Graph
Product Line (Gpl) requires a driver consisting of a main procedure (Prog)
together with a benchmark. It can include at least one of the algorithms Num-
ber, Cycle, Connected, StrongC, MSTPrim, MSTKruskal and Shortest. Their
details are given in [6]. A Gpl also includes an optional traversal strategy (DFS
or BFS), an optional weight specification and a mandatory specification for
directed or undirected graphs. Batory [6] explains how to transform the diagram
of Fig. 1 into the grammar shown in Fig. 2. This grammar includes a production
for each feature and explicitly names productions (not visible in the diagram),
e.g., MainGpl. The grammar also adds constraints, which are imposed on the
product line by semantic requirements, e.g., minimum spanning trees are only
meaningful in weighted graphs. Table 1 assigns a numbered feature vector entry
to each terminal, non-terminal and pattern name of the grammar. We subsume
these extra-grammatical constraints as the constraint Global(ψ). It is defined
as the conjunction of the constraints listed in the rightmost column of Table 1.

126 J. Bessai et al.

Gpl : Driver Alg+ [Src] [Wgt] Gtp :: MainGpl;

Gtp : Directed | Undirected;

Wgt : Weighted | Unweighted;

Src : DFS | BFS;

Alg : Number | Connected | Cycle | MSTPrim | MSTKruskal | Shortest

| Transpose StronglyConnected :: StrongC;

Driver : Prog Benchmark :: DriverProg;

%% // constraints

Number implies Src;

Connected implies Undirected and Src;

StrongC implies Directed and DFS;

Cycle implies DFS;

MSTKruskal or MSTPrim implies Undirected and Weighted;

MSTKruskal or MSTPrim implies not (MSTKruskal and MSTPrim);

Shortest implies Directed and Weighted;

Fig. 2. Feature Grammar and constraints for the GPL example [6]

Table 1. Feature Vector entries and constraints

F Feature Name In Global(ψ)

φ0 Directed
φ1 Undirected
φ2 Gtp
φ3 Weighted
φ4 Unweighted
φ5 Wgt
φ6 DFS
φ7 BFS
φ8 Src
φ9 Number φ9 ⇒ φ8

φ10 Connected φ10 ⇒ φ1 ∧ φ8

φ11 Transpose

F Feature Name In Global(ψ)

φ12 Strongly Connected
φ13 Cycle φ13 ⇒ φ6

φ14 MSTPrim φ14 ∨ φ15 ⇒ φ1 ∧ φ3

φ15 MSTKruskal φ14 ∨ φ15 ⇒ ¬(φ14 ∧ φ15)
φ16 Shortest φ16 ⇒ φ0 ∧ φ3

φ17 Alg
φ18 Driver
φ19 Prog
φ20 Benchmark
φ21 MainGpl
φ22 StrongC φ22 ⇒ φ0 ∧ φ6

φ23 DriverProg

We use the GPL example to demonstrate our approach, which will be for-
malized in Sect. 4. The main idea is to turn the grammar representation into
combinators that build valid parse trees. For the Gpl production we take the
pattern MainGpl as the combinator name and turn each right hand side of the
production into a parameter. Types of iterated non-terminal parameters are
wrapped by List and types of optional basic terms are wrapped by Opt. Other
types just correspond to the name of the non-terminal. Non-optional terminals
are omitted, because they are constant and thereby do not constitute relevant
parameters. The resulting type encodes a tree (sentence) rooted in MainGpl.
Note that parameters are separated by →, i.e., the combinator is written as a
higher order function in curried form (e.g. (A × B) → C ∼= A → (B → C)).

MainGpl : Driver → List(Alg) → Opt(Src) → Opt(Wgt) → Gtp → MainGpl

Combinatory Synthesis of Classes Using Feature Grammars 127

Given that each parse tree node is linked to source code implementing the cor-
responding feature, we can identify the combinator specification with a code
generator interface type. A synthesis algorithm can construct a valid program
by providing valid arguments to all parameters. Values of type MainGpl are
feature configurations, as exemplified in Fig. 3. Up to this point, however, the
construction is limited to feature grammars without additional constraints. We
can include them by refining types, adding a vector F(ϕ) of features present in
each parameter and the result.

MainGpl :Driver ∩ F(ϕ1) → List(Alg) ∩ F(ϕ2) → Opt(Src) ∩ F(ϕ3) →
Opt(Wgt) ∩ F(ϕ4) → Gtp ∩ F(ϕ5) → MainGpl ∩ F(ψ)

We read a constraint like Driver ∩ F(ϕ1) as requiring an argument that is
of both types Driver and F(ϕ1). Each variable ϕ,ψ is substituted by a type
representing a feature selection. In the present form, features of arguments and
results are not yet linked. The link can be established by adding a constraint on
how to substitute variables:

MainGpl :Or(ϕ1, ϕ2, ψ1),Or(ϕ3, ψ1, ψ2),Or(ϕ4, ψ2, ψ3),Or(ϕ5, ψ3, ψ) ⇒
Driver ∩ F(ϕ1) → List(Alg) ∩ F(ϕ2) → Opt(Src) ∩ F(ϕ3) →
Opt(Wgt) ∩ F(ϕ4) → Gtp ∩ F(ϕ5) → MainGpl ∩ F(ψ)

The constraint Or(ϕ1, ϕ2, ψ1) can be read as ψ1 being substitutable by the
result of a componentwise disjunction of feature selections ϕ1 and ϕ2. All subse-
quent constraints have to be satisfied in conjunction. Finally, valid substitutions
for ψ are constrained to include all feature selections of all arguments. We read
C(α) ⇒ τ as τ being qualified by the constraint C(α), where α is a vector of
variables that might occur in τ . The present formulation still lacks the selec-
tion of features Gpl and MainGpl. We can add them introducing predicates
SetGpl(ψ4, ψ5) and SetMainGpl(ψ5, ψ), which allow all substitutions in which
Gpl (respectively MainGpl) are selected in ψ5 (ψ). Additionally, a constraint
Global(ψ) ensures that global constraints are satisfied.

MainGpl :Global(ψ),Or(ϕ1, ϕ2, ψ1),Or(ϕ3, ψ1, ψ2),
Or(ϕ4, ψ2, ψ3),Or(ϕ5, ψ3, ψ4)
SetGpl(ψ4, ψ5),SetMainGpl(ψ5, ψ) ⇒
Driver ∩ F(ϕ1) → List(Alg) ∩ F(ϕ2) →
Opt(Src) ∩ F(ϕ3) → Opt(Wgt) ∩ F(ϕ4) →
Gtp ∩ F(ϕ5) → MainGpl ∩ F(ψ)

MainGpl DriverProg (addAlg (singletonAlg Cycle) Number)

(someSrcDFS) (noneGtp) Undirected.

Fig. 3. Example for a combinatory term (inhabitant) representing a feature configura-
tion of the GPL example

128 J. Bessai et al.

To formalize the presented translation in Sect. 4, we need a more detailed
understanding of the type system.

3 Intersection Types

Sentences of feature grammars can be represented by combinatory terms. Such
terms are formed by application of combinators from a repository Γ mapping
combinator names D to their associated types τ .

Definition 1. (Combinatory Term)

E,E′ ::= D | (E E′), D ∈ dom(Γ)

Application is left-associative and we omit unnecessary parenthesis when possi-
ble. An example for a combinatory term is shown in Fig. 3. Types of combinators
are formed according to the grammar given in Definition 2.

Definition 2 (Intersection Types). The set TC is given by:

TC � σ, τ, . . . , τn ::= α | ω | τ1 → τ2 | τ1 ∩ τ2 | c(τ1, . . . , τn)

α ranges over type variables and c over polyadic type constructors C. We identify
nullary constructors with constants and omit empty parameter brackets.

Examples for type constructors with non-empty arguments are F(ϕ), List(σ)
and Opt(σ), marking feature vectors of type ϕ and lists or optionals of type σ.

For our type-system TC we choose the subtyping rules of the BCD inter-
section type system [4] and extend them to encompass covariant constructors.
Additionally, different constructors may be related by a customizable relation R
on their names. The extended rules are given in Table 2 with the original rules
in the upper part and the extension in the last three rows. We define equality
σ = τ on types as the transitive symmetric closure of ≤, i.e. σ ≤ τ and τ ≤ σ.

Types are assigned to combinatory terms according to the rules (V ar),
(→ E), (≤) and (∩) defined in Definition 3.

Definition 3. (Type Assignment in TC)

Substitution S
(Var)

Γ, D : τ � D : S(τ)

Γ � E : σ σ ≤ τ
(≤)

Γ � E : τ

Γ � E : σ → τ Γ � E′ : σ
(→ E)

Γ � EE′ : τ

Γ � E : σ Γ � E : τ
(∩)

Γ � E : σ ∩ τ

Given a repository Δ with constraints, we can reencode it to a repository Γ ,
where constraints are encoded by intersection types.

Combinatory Synthesis of Classes Using Feature Grammars 129

Table 2. Subtyping rules of TC based on BCD [4]

Description Rule

Subtyping is a preorder σ ≤ σ

if σ1 ≤ σ2 and σ2 ≤ σ3 then σ1 ≤ σ3

ω is the greatest type σ ≤ ω

Functions computing ω
equal ω

ω ≤ ω → ω

Intersection acts as meet σ ∩ τ ≤ σ σ ∩ τ ≤ τ

if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2

Intersection distributes
over function targets

(σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2

Functions are co- and
contravariant

if σ2 ≤ σ1 and τ1 ≤ τ2 then σ1 → τ1 ≤ σ2 → τ2

Constructors are covariant if τ1 ≤ τ ′
1, . . . , τn ≤ τ ′

n then c(τ1, . . . , τn) ≤ c(τ ′
1, . . . , τ

′
n)

Custom subtype relation
on constructor names

if R(c, c′) then c(τ1, . . . , τn) ≤ c′(τ1, . . . , τn)

Definition 4. (Constraint Elimination)

D : C1(α1), . . . , Cn(αn) ⇒ τ ∈ Δ S = {Substitution S |
n∧

i=1

Ci(S(αi))}
(C E)

D :
⋂
S∈S

S(τ) ∈ Γ

An example for a type-derivation is shown in Fig. 4, where we assume
Δ = {Shopper : FavoriteColor(α) ⇒ Item ∩ α → Shopper ∩ Happy, Shoes :
Item ∩ α}. First Δ is translated into Γ = {Shopper : Item ∩ b ∩ r →
Shopper ∩ Happy, Shoes : Item ∩ α} using the (C E)-rule, satisfying the con-
straint FavoriteColor, which limits α to be substituted only by b ∩ r (blue and
red). In the derivation, combinator Shoes is instantiated twice, with Item ∩ r
and Item ∩ b. Resulting types for Shoes are intersected applying the (∩)-rule.

Γ � Shopper : Item ∩ b ∩ r → Shopper ∩ Happy

S(α) = b

Γ � Shoes : Item ∩ b

S(α) = r

Γ � Shoes : Item ∩ r

Γ � Shoes : Item ∩ b ∩ r
(→ E)

Γ � Shopper Shoes : Shopper ∩ Happy
(≤)

Γ � Shopper Shoes : Happy

Fig. 4. Example type-derivation for a happy shopper

130 J. Bessai et al.

Now Shopper can be applied to Shoes using (→ E). Finally, the resulting happy
shopper can be upcast to a value of type Happy, by one application of (≤).

For feature vectors F we define constraints operating on vectors (constructed
by ×) of truth-values. We use t for true and f for false. An example feature vector
is F (×(t, f)).

Predicate Semantic Example
Or(ϕ,ψ, ψ′) ψ′ is the bitwise or of ϕ and ψ Or(×(t, f),×(f, t),×(t, t))
SetXn

(ϕ,ψ) The bit corresponding to SetX2(×(t, f),×(t, t))
feature Xn is set to true

Onlyan
(ϕ) Only the bit corresponding to Onlya2(×(f, t, f))

feature an is set to true
Empty(ϕ) All bits of ϕ are set to false Empty(×(f, f, f))

The table above lists all defined constraints. The Or constraint restricts its
third argument to be the bitwise or of the first and the second argument. SetXi

constraints are parameterized over a feature Xi. They copy their first argument
and set the bit corresponding to Xi to true. Similarly, Onlyan

sets all bits except
the bit corresponding to an to false and the bit for an to true. Empty forces
all bits of its argument to be false. Note that Onlyan

(ψ) is syntactic sugar for
Empty(ϕ),Setan

(ϕ,ψ).

4 Feature Grammar Translation

Feature Grammars are a formalized graphics-neutral representation of feature
models [6,24]. Their meta-grammar can be summarized by the following pro-
ductions:

P → ∅ | P,X : patterns

patterns → pattern ‘::’ Pat | pattern ‘::’ Pat ‘|’ patterns

pattern, p → optbasicterm+
optbasicterm, t → basicterm | ‘[’ basicterm ‘]’

basicterm, b → a | ref

ref → X | X ‘+’

Here, X is a placeholder for non-terminal symbols, Pat a placeholder for pattern
names and a for terminal symbols. The start symbol for the meta-grammar is P ,
which forms sets of productions of feature grammars. Each production assigns
patterns to a non-terminal. Each pattern is named and consists of at least one,
possibly optional (indicated by ‘[]‘), basic term. Basic terms are terminals or
references. References are either a single non-terminal or a non-terminal with
a +, which marks the non-terminal as repeatable. An instance of this meta-
grammar is given in the GPL example from Fig. 2, where pattern names for
productions using exactly one terminal are omitted. Reduction rules to build

Combinatory Synthesis of Classes Using Feature Grammars 131

sentences of a given feature grammar can be formalized1. We write the (multi-
step) reduction starting at the production X : patterns in the context of the
production set P to the sentence s ∈ Σ∗ as X : patterns@P −→∗ s.

We can now formalize the translation exemplified in Sect. 2.1. The transla-
tion relation =⇒ presented in Fig. 6 (last page) operates on productions and
translates them to a tuple (R;Δ), where R is a subtype relation on constructor
names and Δ is a repository of typed combinators (cf. Sect. 3).

Rule (T) creates a combinator for a production consisting of a single ter-
minal symbol a. The combinator is named after the pattern name Pat. Since
terminals encode constants, it does not take any parameters. Its result is an
instance of the type for trees rooted in the pattern name Pat. Further, the fea-
ture vector F(ψ′) is constrained to include only the features corresponding to
the terminal a, the left-hand side non-terminal X, and the pattern name Pat.
Names for type variables ϕ,ψ, ψ′ are chosen fresh to avoid name conflicts when
combining translation results. The extension of the subtype relation will become
clear when considering the next rule for non-terminal symbols.

Rule (NT) is constructed in an analogous fashion. It operates on produc-
tions including a single non-terminal symbol Y . In contrast to rule (T), the
non-terminal is not constant, therefore the resulting combinator is parameter-
ized over a type for trees rooted in sentences derived from the non-terminal Y .
This also explains why the subtype relation is extended by Pat ≤ X in each
step: types for trees rooted in Pat are subtypes of X, since all of them may be
used in places where sentences derived from X are required.

Both Rule (PT) and Rule (PNT) operate on patterns consisting of mul-
tiple optional basic terms. In their premises the first and remaining pattern
components are translated recursively, where in rule (PT) the first component
is a terminal symbol and in rule (PNT) the first component is a reference. Con-
straints are collected by conjoining them and computing the bitwise or of their
results. Disjunction of results ensures that features required to satisfy constraints
on sub-components remain effective. Special care is taken to update the result
type, which needs to include the feature vector parameterized over the disjunc-
tive result. To this end, the target ψ3 feature vector of the remaining pattern
components is extracted by tgt and updated by a substitution with the fresh
variable ψ4, restricted to contain the result of the bitwise or of ψ2 and ψ3. Con-
sidering the non-terminal case (PNT), advantages of the curried types become
obvious, since they avoid having to extract and update the arguments of the
type of the remaining pattern components τ .

Rule (CH) translates choices between patterns, by recursively translating
each subpattern and joining results.

Rule (LI) translates repeated non-terminal symbols Y +. The resulting com-
binator for the production is constructed by lifting the parameter of the com-
binator for the non-repeated non-terminal symbol Y to a list. Two additional
combinators are added for constructing non-empty lists. Combinator singletonY
1 Details available in the technical appendix at http://www-seal.cs.tu-dortmund.de/

seal/downloads/papers/facs15.zip.

http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/facs15.zip
http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/facs15.zip

132 J. Bessai et al.

takes a value of type Y and returns a singleton list containing just the argument
value. Combinator addY takes a value of type Y and prepends it to its second
argument, which is a non-empty list of values of type Y . Features effective in
any of the list constituents remain effective, due to the use of Or.

Both Rule (OPT) and Rule (OPNT) translate optional basic terms. They
again distinguish between terminal and non-terminal symbols, constructing their
combinators recursively. The resulting combinator for each production is para-
meterized over the type corresponding to the basic term lifted to be optional.
Optionals are of type Opt(σ). They are constructed via newly created combina-
tors someσ and noneσ, reflecting the presence or absence of the optional value.
The somea combinator for terminal symbols again omits its parameter, since it
is constant.

Figure 5 shows the result of applying the formal translation =⇒ to the GPL
example from Fig. 2. Note that some redundant Set constraints are produced,
due to the genericity of the translation. Automatic elimination of redundant
constraints can be achieved, but is purely a matter of optimization and is not
discussed in this paper. The Global constraint is added to the combinator
translation of the start symbol MainGpl.

In contrast to preexisting solutions which employ constraint solvers to find
valid feature selections, in combinatory logic terms can occur multiple times in
a solution. This distinction results from the generation of combinatory terms in
tree form instead of computing valuations. Constraints in our system are solved
for each sub-tree. Global constraints are met considering the presence of all
features in the tree, using the disjunction of feature vectors from all subtrees.

4.1 Translation Result

Applying the constraint elimination rule (C E) to the result (R;Δ) of our trans-
lation, (R;Γ) can be used as input for a type inhabitation algorithm. Type
inhabitation is the problem of enumerating combinatory terms E (inhabitants)
that satisfy a given goal type τ . We abbreviate the problem by Γ �? : τ . In
our scenario, such an inhabitant can be seen as a valid feature configuration
based on the feature selection specified in its type τ , which consists of the type
of a non-terminal X or pattern-name Pat and a feature vector F(ϕ). Values of
type X correspond to sentences derived from the grammar non-terminal X (i.e.
trees rooted in Pat). The notion of correspondence has been exemplified in the
example presented in Fig. 3 and is formalized in Lemma 3. By Lemma 4 inhab-
itation can be used to obtain all feature configurations. Theorem 1 (soundness)
combines both of these properties. Lemmas 1 and 2 ensure that the translation
is computable in finite time and produces unique results. We used Ott [29] to
formalize the translation and extract code2 for the automated theorem-prover
Coq [11].

2 Also available in the aforementioned technical appendix: http://www-seal.cs.
tu-dortmund.de/seal/downloads/papers/facs15.zip.

http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/facs15.zip
http://www-seal.cs.tu-dortmund.de/seal/downloads/papers/facs15.zip

Combinatory Synthesis of Classes Using Feature Grammars 133

Δ ={
MainGpl :Global(ψ14), SetGpl(ϕ1, ψ1), SetMainGpl(ψ1, ψ2),

SetGpl(ϕ2, ψ3), SetMainGpl(ψ3, ψ4),

SetGpl(ϕ3, ψ5), SetMainGpl(ψ5, ψ6),

SetGpl(ϕ4, ψ7), SetMainGpl(ψ7, ψ8),

SetGpl(ϕ5, ψ9), SetMainGpl(ψ9, ψ10),

Or(ψ2, ψ4, ψ11),Or(ψ11, ψ6, ψ12),Or(ψ12, ψ8, ψ13),Or(ψ13, ψ10, ψ14) ⇒
Driver ∩ F(ϕ1) → List(Alg) ∩ F(ϕ2) →
Opt(Src) ∩ F(ϕ3) → Opt(Wgt) ∩ F(ϕ4) → Gtp ∩ F (ϕ5) → MainGpl ∩ F(ψ14)

addAlg :Or(ψ1, ψ2, ψ3) ⇒ Alg ∩ F(ψ1) → List(Alg) ∩ F(ψ2) → List(Alg) ∩ F(ψ3)

singletonAlg :Alg ∩ F(ψ1) → List(Alg) ∩ F(ψ1)

someSrc :Src ∩ F(ϕ) → Opt(Src) ∩ F(ϕ)

noneSrc :Empty(ϕ) ⇒ Opt(Src) ∩ F(ϕ)

someWgt :Wgt ∩ F(ϕ) → Opt(Wgt) ∩ F(ϕ)

noneWgt :Empty(ϕ) ⇒ Opt(Wgt) ∩ F(ϕ)

DriverProg :OnlyP rog(ϕ1), SetDriver(ϕ1, ψ1), SetDriverP rog(ψ1, ψ2),OnlyBenchmark(ϕ2),

SetDriver(ϕ2, ψ3), SetDriverP rog(ψ3, ψ4),Or(ψ2, ψ4, ψ5) ⇒ DriverProg ∩ F(ψ5)

Number :OnlyNumber(ϕ), SetAlg(ϕ, ψ), SetNumber(ψ, ψ
′
) ⇒ Number ∩ F(ψ

′
)

Connected :OnlyConnected(ϕ), SetAlg(ϕ, ψ), SetConnected(ψ, ψ
′
) ⇒ Connected ∩ F(ψ

′
)

Cycle :OnlyCycle(ϕ), SetAlg(ϕ, ψ), SetCycle(ψ, ψ
′
) ⇒ Cycle ∩ F(ψ

′
)

StrongC :OnlyT ranspose(ϕ1), SetAlg(ϕ1, ψ1), SetStrongC(ψ1, ψ2),OnlyStronglyConnected(ϕ2),

SetAlg(ϕ2, ψ3), SetStrongC(ψ3, ψ4),Or(ψ2, ψ4, ψ5) ⇒ StrongC ∩ F(ψ5)

MSTPrim :OnlyMST P rim(ϕ), SetAlg(ϕ, ψ), SetMST P rim(ψ, ψ
′
) ⇒ MSTPrim ∩ F(ψ

′
)

MSTKruskal :OnlyMST Kruskal(ϕ), SetAlg(ϕ, ψ), SetMST Kruskal(ψ, ψ
′
) ⇒ MSTKruskal ∩ F(ψ

′
)

Shortest :OnlyCycle(ϕ), SetAlg(ϕ, ψ), SetShortest(ψ, ψ
′
) ⇒ Shortest ∩ F(ψ

′
)

DFS :OnlyDF S(ϕ), SetSrc(ϕ, ψ), SetDF S(ψ, ψ
′
) ⇒ DFS ∩ F(ψ

′
)

BFS :OnlyBF S(ϕ), SetSrc(ϕ, ψ), SetBF S(ψ, ψ
′
) ⇒ BFS ∩ F(ψ

′
)

Weighted :OnlyW eighted(ϕ), SetW gt(ϕ, ψ), SetW eighted(ψ, ψ
′
) ⇒ Weighted ∩ F(ψ

′
)

Unweighted :OnlyUnweighted(ϕ), SetW gt(ϕ, ψ), SetUnweighted(ψ, ψ
′
) ⇒ Unweighted ∩ F(ψ

′
)

Directed :OnlyDirected(ϕ), SetGtp(ϕ, ψ), SetDirected(ψ, ψ
′
) ⇒ Directed ∩ F(ψ

′
)

Undirected :OnlyUndirected(ϕ), SetGtp(ϕ, ψ), SetUndirected(ψ, ψ
′
) ⇒ Undirected ∩ F(ψ

′
)

}

R = {MainGpl ≤ Gpl, Directed ≤ Gtp, Undirected ≤ Gtp, Weighted ≤ Wgt,

Unweighted ≤ Wgt, BFS ≤ Src, DFS ≤ Src, Number ≤ Alg,

Connected ≤ Alg, Cycle ≤ Alg, MSTPrim ≤ Alg, MSTKruskal ≤ Alg,

Shortest ≤ Alg, StrongC ≤ Alg, DriverProg ≤ Driver}

Fig. 5. GPL-Example repository and subtyping relation

Lemma 1. (Translation Confluence)
For all productions X : patterns, if X : patterns =⇒ R1,Δ1 and
X : patterns =⇒ R2,Δ2, then R1 = R2 and Δ1 = Δ2.

Proof. By induction on the possible translations, where in each case only one
translation is applicable.

134 J. Bessai et al.

Lemma 2. (Translation Computability)
The translation relation =⇒ is computable.

Proof. For all productions X : patterns only one translation step =⇒ can be
applied. Premises of each translation rule only contain structurally smaller pro-
ductions to be translated. By Lemma 1, translations in premises have uniquely
determined results.

Lemma 3. (Translation Correctness)
Let P be a fixed set of productions and Δ and R be obtained by the union of
each Δi and Ri, st. Xi : patternsi ∈ P and Xi : patternsi =⇒ Ri;Δi. Let
Γ be obtained from Δ by applying (C E). There exists a translation function
� � : E → Σ∗, st.

if Γ � M : X, then X : patterns@P −→∗�M�.

Proof. � � fills in terminal symbols and unpacks lists as well as optionals. The
applicative shape of combinatory terms already matches the structure of sen-
tences. The side condition holds by induction over possible shapes of M and
typing rules.

Lemma 4. (Translation Completeness)
Let P be a fixed set of productions and Δ and R be obtained by the union of
each Δi and Ri, st. Xi : patternsi ∈ P and Xi : patternsi =⇒ Ri;Δi. Let
Γ be obtained from Δ by applying (C E). There exists a translation function
� �−1 : Σ∗ → E, st.

if X : patterns@P −→∗ s, then Γ � �s�−1 : X.

Proof. � �−1 discards terminal symbols and packs lists as well as optionals. The
structure of sentences already matches the applicative shape of combinatory
terms. The side condition holds by induction over possible shapes of patterns
and derivable sentences.

Theorem 1. (Translation Soundness)
The translation is sound with respect to −→∗ and �.
Proof. Direct consequence of Lemmas 3 and 4.

The inhabitant can be interpreted as a construction specification for a prod-
uct specified by a feature configuration. In contrast to feature selections, usually
provided by constraint-solvers, this configuration also provides order informa-
tion. In the next section we see how the typed combinators forming inhabitants
can be implemented as code generation functions, maintaining a tight correspon-
dence to grammar rules.

Combinatory Synthesis of Classes Using Feature Grammars 135

5 Experiments

Type inhabitation can be performed by an algorithm implemented in the (CL)S
framework [12]. Since all constraints considered in our context have finitely many
solutions, we may precompute them (e.g. using an SMT solver [28] like Z3 [18]).
Precomputed function tables can be encoded as intersection types [4] by (C E).
In the following example we consider a global constraint in which a selection of
feature X forces the selection of feature a, while the grammar only states that a
is optional. We translate the grammar and constraints into a repository Δ and
postprocess it to a repository Γ , where each function table entry is inserted via
intersection. The translation can be produced automatically by application of
the rules (Var) and (∩).

Global(×(φa, φP , φX)) iff φX implies φa

X : [a] :: P =⇒ {P ≤ X};
{ P :SetX(ϕ,ψ),SetP (ψ,ψ′) ⇒ Opt(a) ∩ F(ϕ) → P ∩ F(ψ′),
somea :Onlya ⇒ Opt(a) ∩ F(ϕ), . . . }

Δ = { P :Global(ψ′),SetX(ϕ,ψ),SetP (ψ,ψ′) ⇒
Opt(a) ∩ F(ϕ) → P ∩ F(ψ′),

somea :Onlya ⇒ Opt(a) ∩ F(ϕ), . . . }
Γ = { P :(Opt(a) ∩ F(×(f, f, f)) → P ∩ F(×(t, t, t))

∩(Opt(a) ∩ F(×(f, f, t)) → P ∩ F(×(t, t, t))
∩(Opt(a) ∩ F(×(f, t, f)) → P ∩ F(×(t, t, t))
∩(Opt(a) ∩ F(×(f, t, t)) → P ∩ F(×(t, t, t))
∩(Opt(a) ∩ F(×(t, f, f)) → P ∩ F(×(t, t, t))
∩ . . . ,

somea :Opt(a) ∩ F(×(t, f, f)), . . . }

We have assigned a Haskell implementation to each of the generated com-
binators for the GPL example (cf. Fig. 5). A functional datatype is assigned to
each type for non-terminal symbols. This datatype serves as a domain model
for a code generator building Java ASTs3. It is presented in Listing 1.1. The
toplevel type Gpl is a Java compilation unit, i.e. the AST of a full .java file.
Implementation types of combinators are direct translations of the types present
in the repository, e.g., mainGpl :: Driver -> [Alg] -> Maybe Src -> Maybe
Wgt -> Gtp -> Gpl. The result of the code generation is a Java program that
implements a product configuration built on top of the preexisting Java graph
library JGraphT4. Only necessary features are selected from the library and a
customized minimal interface is exposed, hiding genericity for unselected fea-
tures and implementing benchmark code. Listing 1.2 depicts an excerpt of the
3 http://github.com/vincenthz/language-java.
4 http://jgrapht.org/.

http://github.com/vincenthz/language-java
http://jgrapht.org/

136 J. Bessai et al.

generated Java code for a product. The top-level feature MainGpl is translated
to a class containing member functions for each selected algorithm and a main
method for the benchmark driver program. Combinator implementations, which
the interested reader may find included in the technical appendix, are straightfor-
ward AST constructions and manipulations. It is noteworthy that any language
capable of building and pretty-printing ASTs or supporting string templating
could have been used. Here, we chose Haskell for its support of Java ASTs and
the direct mapping from combinator types to code generator types.
type Gpl = CompilationUnit
data Gtp = Directed | Undirected
data Wgt = Weighted | Unweighted
data Src = DFS | BFS
data Alg = Number | Connected | Cycle | StrongC

| MSTPrim | MSTKruskal | Shor te s t
data Driver = DriverProg

Listing 1.1. Domain Model of a code generator for the GPL example

import java . u t i l . I t e r a t o r ;
. . .
import org . jg rapht . t r av e r s e . DepthF i r s t I t e r a to r ;
. . .
public c lass MainGpl <V> {
private ListenableUndirectedWeightedGraph<V, DefaultWeightedEdge> graph ;
public DepthF i r s t I t e ra to r<V, DefaultWeightedEdge> g e t I t e r a t o r () { . . . }
public MainGpl () { . . . }
public MainGpl (
ListenableUndirectedWeightedGraph<V, DefaultWeightedEdge> graph) { . . . }

public Map<V, Integer> number () { . . . }
public Set<DefaultWeightedEdge> mstKruskal () { . . . }
public stat ic void main (St r ing [] a rgs) { . . . }

}
Listing 1.2. Excerpt of a generated product of the GPL example

The product generated in Listing 1.2 has been generated by the inhabitation
question Γ �? : Gpl∩F(σ), where σ is the type of a feature vector ×(φ0, . . . , φ23)
in which φ9 (Number) and φ15 (MSTKruskal) is set to t. Unspecified features
are set to the least upper bound of t and f , which is the greatest element ω.
The inhabitation algorithm is free to select or deselect features obeying the
constraints, e.g., F(×(f, t)) ≤ F(×(ω, t)) and F(×(t, t)) ≤ F(×(ω, t)) are both
valid. The resulting inhabitants are all combinatory terms representing valid
feature configurations including the selected features. For the question above,
(CL)S automatically synthesizes an inhabitant:

MainGpl DriverProg (addAlg Number (singletonAlg MSTKruskal))
(someSrc DFS) (someWgt Weighted) Undirected

This inhabitant can be directly mapped to the Haskell implementation

mainGpl DriverProg (Number : [MSTKruskal])
(Just DFS) (Just Weighted) Undirected

Execution of this function yields a value of type CompilationUnit, the pretty
printing of which generates Listing 1.2. There are more inhabitants, for example
selecting breadth first search (BFS) instead of depth first search (DFS). (CL)S
generates all these inhabitants iteratively on demand growing in the number of
included features, allowing a user selection of the desired products.

Combinatory Synthesis of Classes Using Feature Grammars 137

X : patterns =⇒ R;Δ

fresh(ϕ) fresh(ψ) fresh(ψ′)

X : a :: Pat =⇒ {Pat ≤ X}; {Pat : Onlya(ϕ), SetX (ϕ, ψ), SetPat (ψ, ψ
′
) ⇒ Pat ∩ F(ψ

′
)} (T)

fresh(ϕ) fresh(ψ) fresh(ψ′)
X : Y :: Pat =⇒ {Pat ≤ X};

{Pat : SetX (ϕ, ψ), SetPat (ψ, ψ
′
) ⇒ Y ∩ F(ϕ) → Pat ∩ F(ψ

′
)}

(NT)

X : t :: Pat =⇒ R1; {Pat : Onlya(ϕ), SetX (ϕ, ψ1), SetPat (ψ1, ψ2) ⇒ Pat ∩ F(ψ2)}
X : p :: Pat =⇒ R2;Δ2, Pat : pr ⇒ τ
tgt (pr) = ψ3
fresh(ψ4)

X : t p :: Pat =⇒ {Pat ≤ X};Δ2∪
{Pat : Onlya(ϕ), SetX (ϕ, ψ1), SetPat (ψ1, ψ2), pr ,Or(ψ2, ψ3, ψ4) ⇒ [ψ3 := ψ4] τ}

(PT)

X : t :: Pat =⇒ R1;Δ1, Pat : SetX (ϕ, ψ1), SetPat (ψ1, ψ2) ⇒ σ ∩ F(ϕ) → Pat ∩ F(ψ2)
X : p :: Pat =⇒ R2;Δ2, Pat : pr ⇒ τ
tgt (pr) = ψ3
fresh(ψ4)

X : t p :: Pat =⇒ {Pat ≤ X};Δ1 ∪ Δ2∪
{Pat : SetX (ϕ, ψ1), SetPat (ψ1, ψ2), pr ,Or(ψ2, ψ3, ψ4) ⇒ σ ∩ F(ϕ) → [ψ3 := ψ4] τ}

(PNT)

X : p :: Pat =⇒ R1;Δ1
X : patterns =⇒ R2;Δ2

X : p :: Pat|patterns =⇒ R1 ∪ R2;Δ1 ∪ Δ2
(CH)

X : Y :: Pat =⇒ R; {Pat : SetX (ϕ, ψ), SetPat (ψ, ψ
′
) ⇒ Y ∩ F(ϕ) → Pat ∩ F(ψ

′
)}

fresh(ψ1) fresh(ψ2) fresh(ψ3)

X : Y+ :: Pat =⇒ {Pat ≤ X};
{Pat : SetX (ϕ, ψ), SetPat (ψ, ψ

′
) ⇒ List(Y) ∩ F(ϕ) → Pat ∩ F(ψ

′
)}∪

{addY : Or(ψ1, ψ2, ψ3) ⇒ Y ∩ F(ψ1) → List(Y) ∩ F(ψ2) → List(Y) ∩ F(ψ3)}∪
{singletonY : Y ∩ F(ψ1) → List(Y) ∩ F(ψ1)}

(LI)

X : a :: Pat =⇒ {Pat ≤ X}; {Pat : Onlya(ϕ), SetX (ϕ, ψ), SetPat (ψ, ψ
′
) ⇒ Pat ∩ F(ψ

′
)}

X : [a] :: Pat =⇒ {Pat ≤ X};
{Pat : SetX (ϕ, ψ), SetPat (ψ, ψ

′
) ⇒ Opt(a) ∩ F(ϕ) → Pat ∩ F(ψ

′
)}∪

{somea : Onlya(ϕ) ⇒ Opt(a) ∩ F(ϕ)}∪
{nonea : Empty(ϕ) ⇒ Opt(a) ∩ F(ϕ)}

(OPT)

X : ref :: Pat =⇒ {Pat ≤ X};Δ∪
{Pat : SetX (ϕ, ψ), SetPat (ψ, ψ

′
) ⇒ σ ∩ F(ϕ) → Pat ∩ F(ψ

′
)}

X : [ref] :: Pat =⇒ {Pat ≤ X};Δ∪
{Pat : SetX (ϕ, ψ), SetPat (ψ, ψ

′
) ⇒ Opt(σ) ∩ F(ϕ) → Pat ∩ F(ψ

′
)}∪

{someσ : σ ∩ F(ϕ) → Opt(σ) ∩ F(ϕ)}∪
{noneσ : Empty(ϕ) ⇒ Opt(σ) ∩ F(ϕ)}

(OPNT)

Fig. 6. Translation rules from grammar productions to type-environments

138 J. Bessai et al.

6 Related Work

The book on Feature-Oriented Software Product Lines [2] provides a detailed
overview and useful starting point on the subject. A broader overview is given
in [3]. For a specific review of the automated analysis and formal treatment of
feature models we refer the interested reader to [9]. The line of work we fol-
low is mainly concerned with automatic synthesis of feature configurations [20].
Starting with the insight that feature models can be represented as proposi-
tional formulas [6,10,26], various techniques have been employed to synthesize
feature selections. They are mostly characterized by the choice of the under-
lying logic truth maintenance system. Classically, SAT solving techniques have
been used [6,10,27]. Another important class of approaches is based on unifi-
cation [14,22]. It allows for flexible definition of user-defined constraints in a
Turing-complete programming language (Prolog). However, structural informa-
tion about solutions cannot be provided by the preexisting systems, which is why
type inhabitation plays an important role in our approach. It is not only helpful
for constructing products, but also allows for feature replication. Similar to Gen-
Voca [7], we focus on grammars, but aim to directly use them for synthesis and
code generation. This is possible by identifying grammar productions with code
generator interfaces. As of the state of this contribution code generators and
their compositions are well-typed wrt. to their implementation language (e.g.
Haskell), but not wrt. to the generated target language. There is an ongoing
effort to study the type-safe composition of product line code in object-oriented
languages [19,30]. The use of type inhabitation to generate object-oriented code
has been studied in [23] for auto-completion features of IDEs. Intersection type
inhabitation has been used to synthesize mixin composition chains [13]. The
further exploration of the role of staging [17] in type-inhabitation driven com-
position of object-oriented code [12] is a goal for future research.

The line of work presented in [1,16] also performs synthesis, but with the goal
of extracting feature models from logic specifications. Via the connection between
diagrams and grammars it might be possible to pipeline these approaches, in
order to use a logic feature specification as a starting point instead of a grammar.
There are however more direct ways to connect logic and type inhabitation via
the curry-howard isomorphism [31]. We chose not to take this path in order to
keep the close connection between code generator APIs and the problem space
as modeled by the feature diagram. More research would be necessary to obtain
this connection in a direct logic based encoding.

7 Conclusion

We presented a method for automatically transforming feature models into
type-specifications for synthesizing code-generators. Such a synthesized code-
generator produces a product of a given partial feature selection obeying feature
constraints. Feature models are given in the form of feature grammars with

Combinatory Synthesis of Classes Using Feature Grammars 139

constraints. Such grammars are shown to be representable in a generic type-
theoretic representation. Combinatory logic synthesis is used to synthesize com-
position specifications. Constraints on specifications are encoded as semantic
types. Using (CL)S we could demonstrate the applicability of our approach and
exemplified it for an implementation of a Graph Product Line.

References

1. Andersen, N., Czarnecki, K., She, S., Wasowski, A.: Efficient synthesis of feature
models. In: SPLC 2012, pp. 106–115. ACM (2012)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2013)

3. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)

4. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. J. Symbolic Logic 48(4), 931–940 (1983)

5. Batory, D.: Feature-oriented programming and the AHEAD tool suite. In: ICSE
2004, pp. 702–703. IEEE Computer Society (2004)

6. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

7. Batory, D., Geraci, B.J.: Composition validation and subjectivity in GenVoca gen-
erators. IEEE Trans. Softw. Eng. 23(2), 67–82 (1997)

8. Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M.: The GenVoca
model of software-system generators. IEEE Softw. 11(5), 89–94 (1994)

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

10. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature
models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

11. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer Science & Business Media, Heidelberg (2004)

12. Bessai, J., Rehof, J., Düdder, B., Martens, M., Dudenhefner, A.: Combinatory
logic synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS,
vol. 8802, pp. 26–40. Springer, Heidelberg (2014)

13. Bessai, J., Dudenhefner, A., Duedder, B., De’Liguoro, U., Chen, T.C., Rehof, J.:
Mixin Composition synthesis Based on Intersection Types. In: TLCA 2015 (2015),
(to appear)

14. Beuche, D.: Composition and Construction of Embedded Software Families. Ph.D.
thesis, Otto-von-Guericke-Universität Magdeburg, Universitätsbibliothek (2003)

15. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

16. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: there and back again.
In: SPLC 2007, pp. 23–34. IEEE (2007)

17. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001)

18. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

140 J. Bessai et al.

19. Delaware, B., Cook, W., Batory, D.: A machine-checked model of safe composition.
In: FOAL 2009, pp. 31–35. ACM (2009)

20. Düdder, B., Heineman, G.T., Hoxha, A., Rehof, J.: Towards migrating object-
oriented frameworks to enable synthesis of product line members. In: Proceedings
of SPLC 2015 (2015), (to appear)

21. Düdder, B., Martens, M., Rehof, J., Urzyczyn, P.: Bounded Combinatory Logic.
In: CSL 2012. LIPIcs, vol. 16, pp. 243–258, Schloss Dagstuhl (2012)

22. Eichberg, M., Klose, K., Mitschke, R., Mezini, M.: Component composition using
feature models. In: Grunske, L., Reussner, R., Plasil, L. (eds.) CBSE 2010. LNCS,
vol. 6092, pp. 200–215. Springer, Heidelberg (2010)

23. Gvero, T., Kuncak, V., Kuraj, I., Piskac, R.: On Fast Code Completion using Type
Inhabitation. Technical report, École polytechnique fédérale de Lausanne (2012)

24. de Jonge, M., Visser, J.: Grammars as feature diagrams. In: ICSR7 Workshop on
Generative Programming, pp. 23–24 (2002)

25. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, DTIC Document
(1990)

26. Mannion, M.: Using first-order logic for product line model validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, p. 176. Springer, Heidelberg (2002)

27. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: product-
lining, variability modeling and beyond. In: Semantics, Abstract Interpretation,
and Reasoning about Programs: Essays Dedicated to David A. Schmidt. EPTCS,
vol. 129, pp. 259–283 (2013)

28. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

29. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnǐsa, R.:
Ott: Effective tool support for the working semanticist. J. Funct. Program. 20(01),
71–122 (2010)

30. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines.
In: GPCE 2007, pp. 95–104. ACM (2007)

31. Venneri, B.: Intersection types as logical formulae. J. Logic Comput. 4(2), 109–124
(1994)

Towards Modular Verification of Threaded
Concurrent Executable Code Generated

from DSL Models

Dragan Bošnački1(B), Mark van den Brand1, Joost Gabriels1, Bart Jacobs2,
Ruurd Kuiper1, Sybren Roede1, Anton Wijs1, and Dan Zhang1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
dragan@win.tue.nl

2 KU Leuven, Leuven, Belgium

Abstract. An important problem in Model Driven Engineering is main-
taining the correctness of a specification under model transformations.
We consider this issue for a framework that implements the transfor-
mation chain from the modeling language SLCO to Java. In particular,
we verify the generic part of the last transformation step to Java code,
involving change in granularity, focusing on the implementation of SLCO
communication channels. To this end we use a parameterized modular
approach; we apply a novel proof schema that supports fine grained con-
currency and procedure-modularity, and use the separation logic based
tool VeriFast. Our results show that such tool-assisted formal verifica-
tion can be a viable addition to traditional techniques, supporting object
orientation, concurrency via threads, and parameterized verification.

1 Introduction

Model-Driven Software Engineering (MDSE) [18] is a methodology that recently
gained popularity as a method for efficient software development. Constructing
a model enables the developer to deal with difficult aspects at a higher and less
complex level of abstraction. Transformations are used to create new models,
source code, test scripts and other artifacts. By shifting the focus from the
code to the model, MDSE allows to tackle defects in the software already in the
modeling phase. Resolving errors in the early stages of the software development
process reduces the costs and increases the reliability of the end product.

An important question is whether transformations are correct. Various types
of correctness are relevant for model transformations, such as type correctness
and correspondence correctness [22]. In earlier work, we have addressed how
to determine that model-to-model transformations preserve functional proper-
ties [28–30]. In this paper, we focus on checking that model-to-code transforma-
tions preserve the behavioural semantics of the model [22]: If we have proven

R. Kuiper, A. Wijs and D. Zhang—This work was done with financial support from
the China Scholarship Council (CSC), the Netherlands Organisation for Scientific
Research (NWO), and ARTEMIS Joint Undertaking project EMC2 (grant agree-
ment 621429).

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 141–160, 2016.
DOI: 10.1007/978-3-319-28934-2 8

142 D. Bošnački et al.

that certain functional properties hold in a model, such as the absence of data
races or deadlocks, how can we ensure that those properties still hold in the
generated source code?

Specifically, we focus on models of systems consisting of concurrent, inter-
acting components, and wish to transform those models into multi-threaded
software. For compositional models, an Object Oriented (OO) implementation
language seems a natural choice, since it allows us to map components to objects.
We have chosen Java. The modelling language we use is called SLCO (Simple
Language of Communicating Objects) [1]. SLCO models consist of components
that communicate through channels. Each component is described in terms of a
finite number of concurrently operating state machines that can share variables.
After a chain of transformations of SLCO models, in which incrementally more
concrete information about the specified system can be added, multi-threaded
Java code should be generated based on the last SLCO model, in which each
SLCO state machine is mapped to its own thread.

SLCO has a coarse granularity that supports thinking about concurrency at
a convenient high level of abstraction. On the other hand, the generated code
implements concurrency through multi-threading, with a level of granularity
that is much more fine-grained. This approach facilitates the development of
correct, well-performing, complex software. However, the code generation step
is challenging to implement, since the transition from coarse to fine-grained
concurrency needs to be done in a way that correct and well-performing software
can be generated.

Our approach to setting up the model-to-code transformation step is to iden-
tify the concepts in SLCO that are model independent on the one hand, and
model dependent on the other. The model independent concepts can be trans-
formed to Java once, and from that moment on referred to in all code generated
from specific SLCO models. An example of a model independent SLCO con-
cept is the communication channel, while state machines are model dependent
concepts, since their structure differs from one model to another.

For the specification of the behaviour of Java objects, we opt for using sepa-
ration logic [23], since it allows us to specify behaviour in a way independent of
the implementation language. We require concurrency, so we actually work with
the version of separation logic with fractional permissions. Full verification of
semantics preservation of model-to-code transformations then involves establish-
ing that these specifications correspond with the semantics of the corresponding
SLCO constructs. For this to be possible, we require a modular approach, in
which the specification of constructs can be used for the verification of code in
which those constructs play a role.

As a first step, in this paper, we focus on how to formally specify the behaviour
of model independent concepts, such that modular verification of code using those
concepts is possible. In fact, using such specifications allows the verification of code
without relying on the actual implementation of the model independent concepts,
thereby truly realising a modular way of working. Our aim is to show that mod-
ular verification of model-to-code transformations of multi-component systems is
necessary and feasible, and we demonstrate how this can be concretely done.

Towards Modular Verification 143

The model independent concepts are implemented in what we refer to as
generic code. To verify this code, a theorem proving approach is called for,
because the generic code contains parameters that only get concrete values when
used in specific code derived from particular input models. Furthermore, since
the generic code has fine-grained concurrency, we require procedure-modularity,
and we use the approach from [16] that supports this. Tool-wise, we require
a verification tool that supports OO code, concurrency and separation logic
with fractional permissions, leading to the choice of VeriFast [15]. A procedure-
modular approach can be achieved by using ghost code and abstract predicates.

Contributions. First of all, we introduce a new modular specification schema
to specify the behaviour of modelling constructs in a setting where (1) fine-
grained parallelism is used, and (2) the environment is general, i.e., we do not
need to know anything about the environment to specify the constructs. Com-
pared to earlier work, our schema allows a better abstraction from the imple-
mentation details of the methods being specified.

We demonstrate our approach by specifying and verifying a representative
part of the generic code, namely the communication channel. This shows the
feasibility of the approach, but also that judicious choices of implementation
language, specification language, verification approach and tooling are required.

As mentioned in [22], proving correctness of a program is not as complex
as proving correctness of a transformation that produces programs. By making
a distinction between generic and specific code, the complexity of proving the
correctness of model-to-code transformations can be lowered. Generic code can
largely be treated as any other program, apart from the fact that it raises new
concerns regarding the larger program context in which code constructs can be
placed; these concerns are covered in this paper. As a result, the remaining proof
obligations for the transformation as a whole can be simplified; once we turn our
attention to the specific code, we can directly use the specifications of the generic
code constructs. With respect to related work (Sect. 6), this is a novel way to
address the correctness of model-to-code transformations.

Section 2 introduces SLCO and explains how SLCO models are transformed
to Java code. Section 3 explains the essentials of separation logic. In Sect. 4, the
new modular specification schema is described, and in Sect. 5 it is demonstrated
how to apply the schema to specify and verify a Java implementation of the
SLCO channel datatype using VeriFast. Section 6 discusses related work, and
Sect. 7 contains our conclusions and pointers to future work.

2 SLCO and Its Transformation to Java

In SLCO, systems consisting of concurrent, communicating components can be
described using an intuitive graphical syntax. The components are instances
of classes, and connected by asynchronous channels, over which they send and
receive signals. They are connected to the channels via their ports.

144 D. Bošnački et al.

SendRec
m == 6;

send S("a") to InOut;
receive T(s) from InOut

Rec2
receive Q(m | m >= 0) from In2;

m := m + 1

Rec1
receive P([[false]]) from In1

Com0

Com1

send P(true) to Out1

Com2

after 5 ms

send Q(5) to Out2;
receive S(s) from InOut;

send T(s) to InOut

Fig. 1. Behaviour diagram of an SLCO model

The behaviour of a
component is specified
using a finite number
of state machines, such
as in Fig. 1, where two
components are defined
(the two main rectan-
gles). The parallel exe-
cution of those machines
is formalised in the form
of interleaving semantics.
Variables either belong
to the whole component
or an individual state
machine. The variables
that belong to a component are accessible by all state machines that are part
of the component (for instance, variable m in the left component of Fig. 1).
Each transition has a source and target state, and a list of statements that are
executed when the transition is fired. A transition can be fired if it is enabled,
and it is enabled if the first of the associated statements is enabled. If a transi-
tion is fired but subsequent statements are blocked, the transition blocks until
they become enabled. SLCO supports a variety of statement types. For com-
munication between components, there are statements for sending and receiving
signals over channels. The statement send T (s) to InOut , for instance, sends
a signal named T with a single argument s via port InOut . Its counterpart
receive T (s) from InOut receives a signal named T from port InOut and
stores the value of the argument in variable s. A send statement is enabled if
the buffer of the channel is not full, and a receive statement is enabled if there
is a message in the buffer.

Statements such as receive P ([[false]]) from In1 offer a form of conditional
signal reception. Only those signals whose argument is equal to false will be
accepted. Another example is the statement receive Q(m | m ≥ 0) from In2 ,
which only accepts those signals whose argument is greater than or equal to 0.
For the above statements to be enabled, there must be a message available in
the channel buffer satisfying the conditions.

Boolean expressions, such as m==6 , denote statements that are enabled
iff the expression holds. Time is incorporated by means of delay statements.
For example, the statement after 5 ms blocks until 5 ms have passed since the
moment the source state was entered. Assignment statements, such as m :=
m + 1 , are used to assign values to variables. They are always enabled.

Our approach to derive executable code from an SLCO model is as shown
in the activity diagram of Fig. 2: generic code constructs are used for the basic
elements in SLCO, i.e., for channels (synchronous and asynchronous), states,
transitions, and a mechanism to move between states by performing transitions.
A model-to-code transformation takes an SLCO model as input and produces

Towards Modular Verification 145

Fig. 2. Activity diagram of the transformation process from SLCO to Java

model specific Java code that refers to the generic constructs as output. There is
a one-to-one mapping between SLCO state machines and Java threads. Finally,
this specific code is combined with the generic code to obtain a complete, exe-
cutable implementation that should behave as the SLCO model specifies.

3 Separation Logic

Separation logic [20,23] builds upon Hoare logic [13] and in the context of con-
current programs also on the Owicki-Gries method [21].

We assume a Java-like OO programming language that supports aliasing and
references: allocation and deallocation of heap addresses (memory cells), as well
as assignments to and from a heap memory cell. The main motivation behind
the separation logic is to describe in a succinct way the state of the heap during
program execution.

A separation logic assertion is interpreted on a program state (s, h), where
s and h are a store and a heap, respectively. The store is a function mapping
program variables to values and the heap is a partial map from pairs of object
IDs and object fields to values. A value is either an object or a constant. To
capture the heap related aspects, separation logic extends the syntax and seman-
tics of the assertional part of Hoare logic. Separation logic adds heap operators
(expressions) to the usual first order assertions of Hoare logic. The basic heap
expressions are emp, i.e., the empty heap, satisfied by states having a heap
with no entries, and E �→ F (read as “E points to F”), i.e., a singleton heap,
satisfied by a state with a heap consisting of only one entry at address E with
content F . For instance, o.x �→ v means that field x of object o has value v. Two
heap expressions H1 and H2 corresponding to heaps h1 and h2, respectively, can
be combined using the separating conjunction operator ∗, provided h1 and h2

have disjoint address domains. Expression H1 ∗ H2 corresponds to the (disjoint)
union h1 � h2 of the heaps. Note that H1 and H2 describe two separate parts of
the heap, h1 and h2, respectively. In contrast, the standard conjunction p1 ∧ p2,
where p1 and p2 are separation logic formulae, corresponds to the whole heap
satisfying both p1 and p2. Because of the domain disjointness requirement, the
separation logic formula (o.f �→ 10) ∗ (o.f �→ 10) evaluates to false, whereas
(o.f �→ 10 ∧ o.f �→ 10) is equivalent to (o.f �→ 10).

146 D. Bošnački et al.

Like in Hoare logic, the triple {P}C{Q}, where C is a (segment of) a program
and P and Q are assertions describing its pre- and post-condition, respectively,
only concerns partial correctness; termination of C needs to be proven separately.

Separation logic adds to the standard rules (axioms) of the Hoare framework
axioms for each of the new statements - allocation, deallocation, and assignments
involving the heap cells. An important characteristic of separation logic is tight
interpretation.

In some cases it is needed to embed a precise specification of a program
segment C into a more general context. A specific axiom that allows this by
enlarging the specification of a program segment C with an assertion R describ-
ing a disjoint heap segment which is not modified by any statement in C, is the
frame rule:1

{P} C {Q}
{P ∗ R} C {Q ∗ R}

In a concurrent setting, the programming language is extended with a fork
statement, allowing to run program components in separate threads. For syn-
chronized access to global objects, semaphores are added, together with the
corresponding methods acquire and release.

The Owicki-Gries method extends the Hoare approach to concurrent pro-
grams preserving modularity. The first idea is to capture component behavior
with non-shared ghost variables enabling separate proofs of concurrent compo-
nents (for more on ghost variables, see Sect. 4). The second idea is to link shared
resource and ghost variable values through an invariant that holds outside criti-
cal regions [21]. A resource A is a set of heap locations, and IA is its associated
invariant. The crucial idea is that each component may update or access these
locations only within critical regions [11,14] in which the component has exclu-
sive access to the locations. Although IA may be violated within the critical
region, it is guaranteed to hold at the beginning and at the end of the critical
region. This is reflected in the rules for acquire and release:

{emp}s.acquire(){IA(s)}
{IA(s)}s.release(){emp}

The above described approach allows compositional verification. Each
method m belonging to a class C is verified as a sequential program consid-
ering the invariants as extra constraints. Class C is considered verified when
all its methods are verified. Since the program can be seen as a combination of
classes and declarations, the whole program is verified when all its classes are
verified.

One of the central concepts in concurrent separation logic is ownership. Due
to tight interpretation, separation logic assertions can describe precisely the heap
“footprint” of a given program C, i.e., the parts of the heap which C is allowed
1 Here we disregard the usual side condition of the frame rule, since we assume a

Java-like programming language not supporting global variables.

Towards Modular Verification 147

to use. Let l be a program component location and E a heap address. The com-
ponent owns address E at location l iff E is contained in a heap corresponding
to an assertion H which is true at location l. If E �→ F is part of the heap
corresponding to H, then this can be seen as an informal permission [5] for the
verified component to read, write or dispose of the contents of the heap cell at
address E.

Partial permissions are introduced to allow shared ownership of variables.
Ownership is split into a number of fractional permissions, each of which only
allows read only access. Expression E �→ F denotes permission 1, i.e., exclusive
ownership, whereas a fractional permission is expressed as [z]E �→ F with
0 < z < 1. Expression [1]E �→ F is equivalent to E �→ F . Permissions can
be split and merged during a proof. For instance, two fractional permissions can
be merged according to the following rule: [z]E �→ F ∗ [z′]E �→ F , where
z + z′ ≤ 1, implies [z + z′]E �→ F . One acquires full ownership (and therefore
write access) in case z + z′ = 1. The split rule is analogous.

We use fractional permissions to enforce the syntactic rules and side condi-
tions of Owicki-Gries on the use of the (global) real and ghost variables. For
instance, by acquiring a semaphore, a component acquires the semaphore invari-
ant. The semaphore invariant provides full permission to change the real variables
and the ghost variables associated with the component. A component always
holds a fraction of the permission for its ghost variables, thereby ruling out that
other components change them. When releasing the semaphore, the component
also releases the acquired (partial) ownerships.

4 Modular Specification Schema

Our aim is to specify modelling constructs and verify the implementation of
those constructs in a modular way, meaning that each construct and its imple-
mentation should be independently specifiable and verifiable. The benefits of a
modular approach are (1) that it will scale better than a monolithic approach
and (2) that once a construct has been specified, we can abstract away its imple-
mentation details when verifying properties of the system.

It is crucial that implementations of constructs do not need to be verified
again when their context changes. Because of this, and the fine-grained nature
of the generic code, standard methods like Owicki-Gries do not suffice. In [16], a
modular specification schema was proposed to solve this problem. In this section,
we introduce an improved version of this modular approach which, compared
to [16], provides a better abstraction from the implementation of the verified
method.

As already mentioned, the Java methods in our transformation framework
implement fine-grained parallelism. This means that each method may acquire
and release access to multiple critical regions (CR) during its execution, instead
of following a coarse-grained approach in which the complete method is executed
in one big CR. As CRs tend to form performance bottlenecks in software, a fine-
grained approach tends to decrease the level of dependency between threads in
a multi-threaded system, and thereby increase the overall performance.

148 D. Bošnački et al.

In order to verify methods with fine-grained parallelism, so-called ghost code
must be inserted as part of the annotations. To see how this mechanism of code
insertion works, we consider a method m belonging to a class C instantiated in
an object o. We want to give a specification of m in the form of a standard Hoare
logic triple {P}o.m{Q}. Under fine-grained parallelism one cannot formulate P
and Q in terms of the actual fields determining the state of o. For instance,
consider method send(msg, G) that sends a message msg to a channel queue q (q
is a field of C), as in Listing 1. At line 8, the piece of code G given as a parameter
to send is inserted.

Listing 1. A fine-grained send operation

1 class C
2 queue q
3 semaphore s
4 method send (msg , G)
5 begin
6 s . acquire ()
7 q := q + msg
8 G
9 s . release ()

10 end

In a concurrent setting, multiple threads may send messages to the queue of
a single instance of C. In that case, q may be changed by some other send call
between the call to send(b) leaving the CR protecting q (line 9) and send(b)
returning the control to the calling client program (line 10). We cannot claim
that once send(a) is finished, the new content of q is q+a, where + indicates
concatenation. This is analogous to Owicki-Gries, where global variables altered
by multiple modules cannot be used directly to specify a module.2

To resolve this, ghost variables (also called logical or auxiliary variables) are
added to the program. Ghost variables are write-only, i.e., the instrumented
program can change them, but not read them. Hence, they do not change the
control flow of the program and are only auxiliary verification devices. Each ghost
variable is owned by a particular process, and only this process can potentially
change its content. To illustrate the use of ghost variables, let us assume that
send is used by a client program as shown in Listing 2.

Listing 2. A client using the send method.

1 o := New C ()
2 o . send (a) | | o . send (b)

Suppose we want to prove that if in the beginning of the program len(q) = 0
holds, where len gives the length of the queue, then at the end, len(q) = 2.
We specify the two instances of send by introducing ghost variables y and z
to capture the local effect on the length of q in the left and right method call,
respectively. Resource invariant IA ≡ len(q) = y + z captures how these local
effects relate to the global resource. Now we can specify send(a) with {y =
0}send(a){y = 1} and send(b) with {z = 0}send(b){z = 1}. Finally, we define
2 In the classical Owicki-Gries framework this is directly forbidden by the interplay of

the syntactic rules of the usage of the global variable and the side conditions of the
axioms for CR and parallel composition.

Towards Modular Verification 149

G ≡ y := 1 for send(a) and G ≡ z := 1 for send(b), to update y and z,
respectively, at line 8 in Listing 1 when send is executed.

With verification axioms similar to Owicki-Gries, it can be proved that these
assertions indeed confirm the correctness of the client property. In particular,
the conjunction of the postconditions of send(a) and send(b), and IA, i.e., y =
1 ∧ z = 1 ∧ len(q) = y + z, implies the desired client postcondition len(q) = 2.

Passing corresponding ghost codes G to instances of m allows for abstrac-
tion and parallelism, but it does not make the approach modular. Each context
and/or property likely requires different ghost variables, and hence different P ,
Q, IA, and G. Suppose that we want to verify a property about the content of
q using a function cnt mapping the queue content to a set of messages. Specif-
ically, we want to prove that if in the beginning, cnt(q) = ∅, then at the end,
cnt(q) = {a, b}. In this case, our ghost variables range over sets of messages, and
the specifications must be adjusted accordingly, i.e., {y = ∅}send(a){y = {a}},
{z = ∅}send(b){z = {b}}, IA ≡ cnt(q) = y ∪ z, and G ≡ y := {a} and
G ≡ z := {b} for send(a) and send(b), respectively. Even if we had a library of
predicate sets and ghost code blocks, in general we would not be able to cover
all possible contexts in which the generic code, i.e., m, could be used.

Greater generality can be achieved by a schema along the lines of [16] in
which P , Q, IA, and G are parameters of the specification of m. The schema
imposes some constraints on these parameters which become proof obligations
when verifying code involving m. Under these constraints, m needs to be ver-
ified only once. For each new context, the client only needs to verify that the
contraints hold. We propose a new modular specification schema (MSS) that
allows further abstraction from the implementation details of m, by supporting
parameterization based on CRs. Unlike in [16], the semaphores that implement
the CR as well as the names of the fields that determine the state of the object
(s and q, resp., in the send example) remain absent from the specification. As a
result one retains the flexibility of the OO approach. For example, if the imple-
mentation of the CR is changed such that locks are used instead of semaphores,
the specification can remain the same.

We proceed by giving the intuition behind the MSS. We first establish the
relationships between the parameters P , Q, IA, and G, that need to hold in
order for the specification to be correct. Later we lift these relationships to the
level of the whole method m to formulate the MSS.

Listing 3. A semaphore based implementation of a CR

1 {P}
2 s . acquire ()
3 {IA (s) ∗ P}
4 {O (v) ∗ I (v) ∗ P}
5 C
6 {O (post (v)) ∗ I (v) ∗ P}
7 G
8 {O (post (v)) ∗ I (post (v)) ∗ Q}
9 {IA (s) ∗ Q}

10 s . release ()
11 {Q}

150 D. Bošnački et al.

Assume that the body of m consists of only a single CR implemented by using
semaphore s. The CR is of the form s.acquire() C s.release() as given in
Listing 3. Without loss of generality, let us assume that the CR protects a single
field f of an instance o of class C. Field f can be changed only within the CR.

When establishing the relationships, we are guided by the correctness require-
ments for the annotation of Listing 3 in the familiar Hoare logic/Owicki-Gries
style. The validity of P and Q at lines 1 and 11, respectively, implies that IA(s)∗P
and IA(s) ∗ Q hold at lines 3 and 9, respectively (we write IA(s) instead of just
IA to emphasize that it is associated with s). This follows from the rules from
Sect. 3 (for acquire and release combined with the frame rule), and the fact
that P and Q do not refer to s and hence involve parts of the heap disjoint from
the parts affected by acquire and release. This is analogous to the proof rule
for the CR in Owicki-Gries.

To capture the environment constraints, next to ghost variables, IA(s) may
also depend on o.f. To avoid directly referring to f and thereby making the
approach modular, we introduce a so-called payload invariant I, parameterized
with a ghost variable v. In the example of Listing 2, IA(s) ≡ len(q) = y + z
would be substituted by I(v) ≡ len(v) = y + z. To link the actual field f with
its ghost counterpart v we use predicate O(v) (for the earlier send example, we
could define O(v) ≡ q = v). O(v) is an abstract predicate local to o that is not
visible for the client. By defining IA(s) = ∃v.O(v)∗I(v), we circumvent the need
to refer to o.f in the client invariant.

Line 4 in Listing 3 is obtained by substituting O(v) ∗ I(v) for IA(s) at line
3. Since C affects only actual variables, P holds also in the postcondition of C
at line 6. However, since the actual variables have changed while ghost variable
v remains the same, predicate O holds only for an adjusted value of v given by
post(v). In our example, post(v) ≡ len(v) + 1. G only affects y and z, so after
G, O(post(v)) remains valid. So, in order to recover the invariant IA, G at line
7 should be chosen such that it modifies the ghost variables occurring in I(v)
and P in such a way that I(post(v)) becomes true and P is transformed to Q
(line 8). Proving that G indeed has this property remains a proof obligation for
the client program calling m and as such becomes a premise of our schema. It
is easy to check that this constraint is satisfied by all instances of send in the
running example for both client properties. Finally, line 9 follows directly from
line 8 by the definition of IA(s).

The Modular Specification Schema. By summarizing the constraints on
the various elements of the annotation, and lifting them to the level of method
m, we obtain the MSS:

∀v • {P ∗ I(v)} G {Q(res(v)) ∗ I(post(v))}
{∃v • O(v) ∗ [π]o.A(I(v)) ∗ P} r := o.m(G) {∃v • O(v) ∗ [π]o.A(I(v)) ∗ Q(r)}

For simplicity, we assume that m has no parameters besides G. However,
additional parameters can be captured in the usual way for procedure verification
rules in Hoare logic. We also assume that m returns a result res(v) immediately

Towards Modular Verification 151

after leaving the CR, that is assigned to variable r. In general, Q depends on r.
Both res(v) and post(v) are fixed by the supplier of m.

Predicate A links semaphore s with the payload invariant I. Both A and
O are abstract predicates in the sense that the client does not need to know
their definition since they are local to o. For the send example, A would state
that there is a semaphore s that is properly initialized and it associates to A
a semaphore invariant IA(s) (formed using I(v) as described earlier). These
implementation details, including s, are hence not visible to the client calling m.
Finally, π is an arbitrary fraction denoting a fractional permission for A.

Note that MSS is not an axiom or a proof rule of separation logic, since for any
correct module it can be derived from other axioms and rules. The correctness
of MSS can be verified using the annotation in Listing 3.

MSS can be seen as a means to divide the proof obligations between the
client and the supplier of m. The schema is implicitly universally quantified over
P , Q, I, and G. Note that post and res are fixed by the supplier and that they
implicitly define the effect of C on o.f in a sequential environment. On the
other hand, the client is free to use any predicates P , Q, I, and G satisfying
the premise of MSS. For any such predicates, the supplier guarantees that the
implementation of m satisfies the triple in the consequent of MSS.

The premise of MSS ∀v.{P ∗ I(v)} G {Q(res(v))∗ I(post(v))} is analogous to
the premise of the Owicki-Gries CR axiom {P ∗ IA(s)} C {Q(r) ∗ IA(s)}. MSS,
however, shifts the verification from the actual code C and invariant IA to the
ghost code G and the payload invariant I. Although C does not appear in MSS,
its specification is reflected in v, post(v) and res(v). Although G has to reflect
all important aspects of each call of o.m, the method is still to a great extent
modular since the implementation and verification of the program text of o.m
remains completely independent of the call of o.m which is invoked.

The soundness of the modular schema follows from the same arguments pre-
sented in [16].

5 Specifying and Verifying the SLCO Channel

In this section we present the specification and verification of an essential part
of the generic code for our SLCO-to-Java transformation, namely the commu-
nication channel. We specify the channel for use in a generic, multi-threaded
environment. Using VeriFast, we verify the absence of race conditions and dead-
locks, and show how to prove properties of clients using the channel.

SLCO models use asynchronous non-blocking lossless channels that can hold
a predefined maximum number of messages. The channel datastructure provides
two operations, send and receive, to add and remove messages. It has a FIFO
structure, i.e., messages are added to the end and removed from the front of
a queue. Provided that the client program invoking a channel operation has
exclusive access to the channel, the specification of the operations is as follows.
The send operation has one parameter msg, the message that is being sent. If
the contents of the channel is q and it is not full when send is started, then

152 D. Bošnački et al.

after execution of send the contents of the channel is q + msg, where + denotes
concatenation of sequences of messages. Furthermore, send returns a Boolean
result indicating whether or not the operation was successful; if the channel
is already full when send is started, false is returned. Whenever receive is
started and the channel has contents msg + q, then the channel’s new contents
after execution of receive, provided that any provided conditions hold, is q,
and message msg is returned as a result. If the channel is empty when receive
starts executing, then receive is blocked until it succeeds to remove a message.
Since the channel is used in a multi-threaded environment, adding and removing
messages should be done atomically.

We illustrate our modular approach described in Sect. 4 on the send method
of the channel implementation. In VeriFast, each Java source code file being
verified is linked to a specification file only containing (abstract) predicates and
specifications of Java methods and ghost functions. The VeriFast specification
of the method following MSS is given in Listing 4. (The complete specification
and annotated implementation files will become part of the Java examples set
in the standard distribution of VeriFast.)

Listing 4. Part of the channel specification

1 public f ina l c lass Channel {
2 // . . .
3

4 boolean send (String msg)
5 /∗@
6 r e qu i r e s
7 [? p i]A(? I) &∗&
8 i s G S (?G, th i s , I , msg , ?P, ?Q) &∗& P() ;
9 @∗/

10 /∗@
11 ensure s
12 [p i]A(I) &∗& Q(r e s u l t) ;
13 @∗/
14 // . . .
15 }

The VeriFast specific text, i.e., specifications and ghost variable declarations,
is inside special comments delimited by @. The pre- and postconditions that form
the contract are denoted by the keywords requires and ensures, respectively.
Component predicates of the pre- and postcondition are glued by the separating
conjunction operator denoted by &*&. Predicates A, I, P, and Q correspond to
their namesakes in the MSS, whereas the assertion is G S implements the passing
of the ghost code G into the method. Both [?pi] and [pi] correspond to the
fractional permission [π]. The question mark ? in front of a variable means that
the value of the variable is recorded and that all later occurrences of that variable
in the contract must be equal to the first occurrence. For instance, in Listing 4,
the value of the fractional permission pi in the precondition must be the same
as the one in the postcondition (as also required in the MSS).

Predicates P, Q and is G S are left undefined and are supposed to be provided
by the client. More precisely, a lemma function G is supplied by the client based
on which VeriFast automatically creates the predicate is G S. A VeriFast lemma
function is a method without side effects which helps the verification engine.

Towards Modular Verification 153

The contract of a lemma function corresponds to a theorem, its body to the
proof, and a lemma function call to an application of the theorem. Listing 5
contains the specification of G that corresponds to the ghost statement block G.

Note that the specification of G in Listing 5 corresponds to the premise of
MSS, where post(v) specifies that if res = true, msg has been added to the
channel, and otherwise it has not (line 4).

Listing 5. A lemma function specifying the ghost statement block G

1 /∗@
2 typede f lemma void G(Channel c , p r ed i c a t e (l i s t <Object>, i n t) I ,

S t r ing msg , p r ed i c a t e () P, p r ed i c a t e (boolean) Q) (boolean r e s) ;
3 r e qu i r e s P() &∗& I (? items , ?qms) ;
4 ensure s Q(r e s) &∗& I (r e s ? append (items , cons (msg , n i l)) :

items , qms) ;
5 @∗/

Method send is part of the class Channel (Listing 6), implementing the
SLCO channel construct. Class Channel contains three fields: the list itemList
implementing the FIFO queue, semaphore s that is used to implement access to
the CR within the operations, and queueMaxSize defining the maximum channel
capacity. For verification purposes we add the ghost field inv which is used to
keep track of the invariant.

Semaphore invariant I A, corresponding to IA in Sect. 4, is given at lines
3–4 in Listing 6. The invariant is defined by means of a predicate constructor
parameterized with the payload invariant I. Corresponding to the definition of
IA, in I A, it is checked that for ghost variables items and qms, i.e., the contents
of the item list and the maximum number of messages, respectively, I holds.
The question mark ? is used to record the value of the variable following it, for
use later on in the predicate. Operator �→ is written in VeriFast as |->, and the
expression of the form [f] denotes fractional ownership with fraction f. When
f = 1, the fractions are omitted, and an arbitrary fraction is denoted as [].

Listing 6. A specification of the Channel class

1

2 /∗@
3 p r e d i c a t e c t o r I A (Channel channel , p r ed i c a t e (l i s t <Object>, i n t) I)

() =
4 channel .O(? items , ?qms) &∗& I (items , qms) ;
5 @∗/
6

7 public f ina l c lass Channel {
8 List itemList ;
9 Semaphore s ;

10 int queueMaxSize ;
11 //@ inv inv ;
12 //@ pred i c a t e O(l i s t <Object> items , i n t qms) = th i s . i t emLi s t |−>

? i t emLi s t &∗& itemLi s t . L i s t (i tems) &∗& th i s . queueMaxSize
|−> qms &∗& length (items) <= qms ;

13 //@ pred i c a t e A(p r ed i c a t e (l i s t <Object>, i n t) I) = . . . &∗& s |−>
?sem &∗& [] sem . Semaphore (I A (th i s , I)) ;

14 }

In predicate O (line 12), as explained earlier, the links are established between
ghost variables and fields. Its first conjunct channel.itemList |-> ?itemList

154 D. Bošnački et al.

implies exclusive ownership of the field itemList and at the same time that
the value of itemList is recorded for later use in the contract. Expression
itemList.List(items) states the fact that itemList is a list with elements
items. The final conjunct links queueMaxSize to ghost variable qms.

We use the VeriFast ownership concept to implement syntactic restrictions
on the variables. In particular, we need to ensure that the fields like itemList
can be modified only in the CR implemented by semaphore s and that the ghost
variables are modified exclusively by at most one method, in this case send.

Predicate A is given at line 13 in Listing 6. Like its MSS counterpart A, it is
parameterized with the payload invariant I (corresponding to I in MSS). Besides
some auxiliary conjuncts, it has two conjuncts to associate I A with s, the first
of which is parameterized with the payload invariant and the object itself.

Listing 7. The annotation of the Channel send method

1 public f ina l c lass Channel {
2 // . . .
3 public boolean send (String msg)
4 /∗@ requ i r e s . . . ensure s . . . @∗/
5 {
6 //@ open [p i]A(I) ;
7 //@ s . makeHandle () ;
8 s . acquire () ;
9 //@ open I A (th i s , I) () ;

10

11 boolean result = itemList . size () < queueMaxSize ;
12 i f (result)
13 itemList . add (msg) ;
14

15 //@ G(r e s u l t) ;
16 //@ length append (items , cons (msg , n i l)) ;
17 //@ c l o s e I A (th i s , I) () ;
18 s . release () ;
19 //@ c l o s e [p i]A(I) ;
20 return result ;
21 }
22 // . . .
23 }

Listing 8. Client program specification

1 public class Program {
2 //@ s t a t i c i n t sendCount ;
3 //@ s t a t i c i n t rece iveCount ;
4 public stat ic int messageMaxCount ; // k
5

6 public stat ic void main (String [] args)
7 //@ r equ i r e s c l a s s i n i t t o k e n (Program . c l a s s) &∗&

Program messageMaxCount (?mmc) &∗& 0 < mmc;
8 //@ ensure s Program messageMaxCount (mmc) &∗& []

Program sendCount (? sc) &∗& [] Program receiveCount (? rc) &∗&
mmc == sc &∗& mmc == rc ;

9 {
10 // . . .
11 }
12 }

Listing 7 contains the send method with its corresponding full annotation
that further facilitates verification. Since VeriFast does not automatically unfold
predicate definitions, ghost statement open is used to do this, i.e., to replace

Towards Modular Verification 155

the predicate with its definition. In this way the heap chunks of the defini-
tion are made visible to the verifier. The opposite effect is achieved by close
which replaces heap chunks with the corresponding predicate definition. At line
6 predicate A is unfolded to obtain the predicates needed for acquiring s. After
the acquisition of the semaphore also its invariant I A is opened at line 9 to get
access to the heap chunks related to itemList and queueMaxSize.

The code segment at lines 11–13 corresponds to C in the MSS, and affects
the “real” variables. The code at lines 15–17 is ghost code. The lemma function
performing the updates of the ghost variables is called at line 15. Annotation of
the receive method can be done in an analogous way.

Class Channel annotated as in Listing 7 is verifiable against its specification
in VeriFast. This means that it is free of deadlocks and race conditions. Those
requirements are not explicitly specified, but are always checked when VeriFast
tries to verify code. The class is now ready to be used by client programs to verify
specific properties, using the pre- and postconditions and the payload invariant.

Listing 9. SenderThread class specification

1 class SenderThread implements Runnable {
2 //@ pred i c a t e pre () = th i s . c |−> ? c &∗& [] c .A(I) &∗& []

Program sendCount (0) &∗& [] Program messageMaxCount (?mmc)
&∗& 0 < mmc;

3 //@ pred i c a t e post () = th i s . c |−> ? c &∗& [] c .A(I) &∗& []
Program messageMaxCount (?mmc) &∗& [] Program sendCount (? sc)
&∗& mmc == sc ;

4

5 Channel c ;
6 . . .
7

8 public void run ()
9 //@ r e qu i r e s pre () ;

10 //@ ensure s post () ;
11 {
12 for (i = 0 ; i < Program . messageMaxCount ; i++)
13 {
14 for (; ;) {
15 /∗@
16 pr ed i c a t e P() = [1 / 2] Program sendCount (i) &∗& [1 / 3]

Program messageMaxCount (mmc) ;
17 pr ed i c a t e Q(boolean r) = [1 / 2] Program sendCount (r ? i

+ 1 : i) &∗& [1 / 3] Program messageMaxCount (mmc) ;
18 lemma void ghost send (boolean r)
19 r e qu i r e s . . . ensure s . . .
20 {
21 open P() ;
22 . . .
23 }
24 @∗/
25 //@ produce lemma funct ion po inter chunk (ghost send) : G S

(c , I , m, P, Q) (r) { c a l l () ; } ;
26 //@ c l o s e P() ;
27 boolean success = this . c . send (”message”) ;
28 //@ open Q(suc c e s s) ;
29 }
30 }
31 //@ c l o s e post () ;
32 }
33 }

156 D. Bošnački et al.

Next, we discuss how the property ‘if k messages are sent over the channel,
k messages will be received’ can be specified for a program using the channel
via one sending and one receiving thread. First, of all, Listing 8 specifies the
client program we use. In the main method (lines 6 and onwards), an instance
of the channel is created, and a sending and a receiving thread are started,
one sending k, i.e. messageMaxCount, messages, and the other one trying to
receive them. To specify the property, we introduce two new ghost variables
for counting the number of messages (lines 2 and 3). In the precondition of
main, we require that the class has been properly initialized (conjunct 1 at line
7), link the messageMaxCount variable to the ghost variable mmc, and have an
additional requirement that it is at least equal to 1. In the post-condition, we
link sendCount and receiveCount respectively to sc and rc, and require that
they are both equal to mmc (line 8).

To determine that the post-condition holds, we need to specify the thread
sending the messages. In Listing 9, at lines 2 and 3, its pre- and post-condition
are specified. In the run method, the messages are sent. For the send call at
line 27, we need to provide ghost code G S. This is done in lemma ghost send,
where the ghost variables are updated. This lemma is linked to the call at line
25. The pre- and post-condition of send are specified as two predicates, P and
Q, see lines 16 and 17.

VeriFast was able to verify the code against its specification, meaning that
the property holds. Besides the environment with two threads, we were also able
to consider an environment consisting of multiple senders and receivers, to verify
that no conflicts can arise in such a setting.

6 Related Work

Much work has been done and continues to be done on the verification of model
transformations. For an overview of the field, see [22]. Here, we mention some
relevant work that also focusses on (1) model-to-code transformations, (2) for-
mal verification of correctness using theorem provers, and (3) correctness as the
preservation of behavioural semantics. The latter seems to be the most rele-
vant interpretation of correctness mentioned in [22], as it addresses behavioural
aspects, in our case, for example, race and deadlock freedom of communication
channels, both in SLCO and the Java implementation.

Amphion [2] is a tool to generate code from models of space geometry prob-
lems. It uses a theorem prover automatically, hiding the details from the user,
to create Fortran source code that is correct by construction. Besides address-
ing a different type of models, they do not separately consider the generic code
constructs used. We, on the other hand, have yet to prove correctness of our
entire transformation method. It would be interesting to see if their approach is
to some degree applicable for us.

In [24], the QVT language and transformations are formalised for use with
the KIV theorem prover, to verify Java code generators for security properties
and syntactic correctness. Their approach is operational, but scalability is still a

Towards Modular Verification 157

serious issue. We wonder whether a split similar to ours of the proof obligations
for generic and specific code would improve the scalability.

Other techniques address very similar issues, but work strictly indirectly, i.e.,
they focus on code generated from a concrete model as opposed to transforma-
tions that produce code. We mention some works here, since our work can to
some extent also be considered as indirect (one condition for directness given
in [22] is that the transformation rules are formalised, which we have not done
yet). Blech [4] verifies semantics preservation of a statechart-to-Java transforma-
tion using Isabelle/HOL. In [9,10], annotations are generated together with code
to assist automatic theorem proving. The latter is a very interesting approach
that we may consider for the analysis of our specific code.

An approach to generate Java code from Communicating Sequential
Processes (CSP) specifications is described in [27]. The authors describe how they
have verified that a CSP model of their implementation of a channel semanti-
cally corresponds with a simpler CSP model describing the desired functionality
of that channel. First of all, by working from a model describing the implemen-
tation, as opposed to the implementation itself, one still needs to prove that
the model corresponds exactly with the implementation to establish that the
implementation itself is correct. Second of all, it seems that a fully modular ver-
ification approach in the way we wish to have it is not completely possible; for
instance, although it would be possible to use their simpler CSP model of a chan-
nel within detailed implementation-level CSP models of systems using channels,
one could not abstract away the functionality of a channel to the same extent
as when using separation logic if one would like to prove a functional property
referring to communication, but not expressing how the communication itself
should proceed.

Regarding theorem proving, to the best of our knowledge the approach in [16]
was the first one supporting fully general modular specification and verification
of fine-grained concurrent modules and their clients. Compared to the schema
in [16], the MSS we propose imposes conditions on the ghost code instead of
the actual code, and abstracts away the implementation of the protected object
better than [16] does, thereby improving the modular nature of the approach.

An approach comparable to [16] appears in [26] where a new separation logic
is presented with concurrent abstract predicates. Furthermore, in [25] they have
applied their approach to prove correctness of some synchronisation primitives
of the Joins concurrent C# library. As far as we know, the authors do not intend
to eventually use their approach to verify model transformations. It remains to
be investigated whether theirs can be used for that as well.

Another viable option to verify model-to-code transformations seems to be
the use of software model checking techniques, in which a formalization of a
program is checked against an automaton capturing a specification [7,17]. How-
ever, it remains to be investigated whether one can verify implementations of
modelling constructs for general environments as we have done here.

The Java Modelling Language (JML) is a behavioural interface specifica-
tion language for Java. An advantage of JML over separation logic is that Java
expressions can be used. Several verification tools have been developed that

158 D. Bošnački et al.

use JML as a specification language [6]. The extended static checker for Java
(ESC/Java2) [8], for instance, was one of the first of such tools. However, it is
not designed to prove full functional correctness, but rather find common pro-
gramming errors, and hence it is not suitable for our task. Krakatoa [19] and
the Key tool [3], on the other hand, are program verifiers that may be used by
us as alternatives to VeriFast. To which extent this is possible remains to be
investigated.

Adding ownership types [12,33] to Java is a very effective technique to verify
that Java threads always access data correctly, i.e. for which they have acquired
the proper access rights. Such a technique offers an alternative way to verify that
our channel implementation is always correctly accessed. However, it cannot be
used to verify arbitrary functional properties that may rely on ownership, but
express more than that, such as that some desired behaviour is guaranteed to
always eventually happen. On the other hand, with separation logic, one can
express and verify such properties as well.

7 Conclusions

We introduced an MDSE approach where generated code is separated into a
generic and a model specific part. We presented an application of a modular
approach for the verification of fine grained concurrent code in this context
using the VeriFast tool. This paper showed the ideas behind and the feasibility
of such an approach. With its support of parameterized verification, concurrency
via threads, object-oriented code, and fast verification results,VeriFast was up to
the task - though an experienced user is required. This underlines the relevance
of the idea of re-using generic code that has to be verified only once.

We introduced a novel module specification schema which improves the mod-
ularity of the VeriFast approach. Although the schema was originally developed
having in mind separation logic and VeriFast, it can be straightforwardly adapted
for the standard Owicki-Gries method (assuming extensions with modules) or
similar formalisms for concurrent verification.

Finally, using theorem provers to verify the correctness of code still requires
considerable expert knowledge. We observe that by using model-to-code trans-
formations, experts can focus on proving correctness of those transformations,
thereby relieving developers from the burden to prove that code derived from
specific models is correct.

In future work, we plan to address liveness issues, both in the framework
and as regards verification, and we plan to address verification of the complete
model-to-code transformation, i.e., not only that the used generic code con-
structs are correct, but that it is guaranteed that the complete executable code
is always correct. This is quite challenging, since SLCO also supports the timing
of actions. SLCO models with timing can be formally verified by first discretising
the timing [31]. Other relevant challenges and ideas are reported in [32].

Acknowledgments. We would like to thank Suzana Andova for the discussions in
the early phases of the work described in this paper.

Towards Modular Verification 159

References

1. van Amstel, M., van den Brand, M., Engelen, L.: An exercise in iterative domain-
specific language design. In: EVOL/IWPSE. pp. 48–57. ACM (2010)

2. Baalen, J.V., Robinson, P., Lowry, M., Pressburger, T.: Explaining synthesized
software. In: ASE. pp. 240–248. IEEE (1998)

3. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Blech, J., Glesner, S., Leitner, J.: Formal verification of java code generation from
UML models. In: Fujaba Days, pp. 49–56 (2005)

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. ACM SIGPLAN Not. 40(1), 259–270 (2005)

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., Poll,
E.: An overview of JML tools and applications. STTT 7(3), 212–232 (2005)

7. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: ICSE, pp. 385–395. IEEE (2003)

8. Leavens, G.T., Poll, E., Kiniry, J.R., Chalin, P.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

9. Denney, E., Fischer, B.: Generating customized verifiers for automatically gener-
ated code. In: GPCE, pp. 77–88. ACM (2008)

10. Denney, E., Fischer, B., Schumann, J., Richardson, J.: Automatic certification
of kalman filters for reliable code generation. In: IEEE Aerospace Conference.
pp. 1–10. IEEE (2005)

11. Dijkstra, E.W.: Cooperating sequential processes. In: Brinch Hansen, P. (ed.) The
Origin of Concurrent Programming. From Semaphores to Remote Procedure Calls,
pp. 65–138. Springer, New York (2002)

12. Fogelberg, C., Potanin, A., Noble, J.: Ownership meets java. In: IWACO, pp. 30–33
(2007)

13. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

14. Hoare, C.A.R.: Towards a Theory of Parallel Programming. In: Brinch Hansen,
P. (ed.) The Origin of Concurrent Programming. From Semaphores to Remote
Procedure Calls, pp. 231–244. Springer, New York (2002)

15. Jacobs, B.: VeriFast website. people.cs.kuleuven.be/∼bart.jacobs/verifast/ (2012)
16. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.

In: POPL, pp. 271–282. ACM (2011)
17. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),

21:1–21:54 (2009)
18. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-

ture(TM): Practice and Promise. Addison-Wesley Professional, Boston (2005)
19. Marché, C., Paulin-Mohring, C., Urbain, X.: The krakatoa tool for certification of

java/javacard programs annotated in JML. J. Logic Algebraic Program. 58(1–2),
89–106 (2004)

20. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

21. Owicki, S., Gries, D.: Verifying properties of parallel programs: an axiomatic app-
roach. Commun. ACM 19(5), 279–285 (1976)

http://people.cs.kuleuven.be/ bart.jacobs/verifast/

160 D. Bošnački et al.

22. Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations.
Softw. Syst. Model. 14(2), 1003–1028 (2015)

23. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS,
pp. 55–74. IEEE (2002)

24. Stenzel, K., Reif, W., Moebius, N.: Formal verification of QVT transformations
for code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011.
LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011)

25. Svendsen, K., Birkedal, L., Parkinson, M.: Joins: a case study in modular specifica-
tion of a concurrent reentrant higher-order library. In: Castagna, G. (ed.) ECOOP
2013. LNCS, vol. 7920, pp. 327–351. Springer, Heidelberg (2013)

26. Parkinson, M., Birkedal, L., Svendsen, K.: Modular reasoning about separation
of concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013)

27. Welch, P., Martin, J.: Formal analysis of concurrent java systems. In: CPA,
pp. 275–301. IOS Press (2000)

28. Wijs, A.: Define, verify, refine: correct composition and transformation of concur-
rent system semantics. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS,
vol. 8348, pp. 348–368. Springer, Heidelberg (2014)

29. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 565–579. Springer, Heidelberg (2013)

30. Engelen, L., Wijs, A.: REFINER: towards formal verification of model trans-
formations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430,
pp. 258–263. Springer, Heidelberg (2014)

31. Wijs, A.: Achieving discrete relative timing with untimed process algebra. In:
ICECCS, pp. 35–44. IEEE (2007)

32. Zhang, D., Bošnački, D., van den Brand, M., Engelen, L., Huizing, C., Kuiper, R.,
Wijs, A.: Towards verified java code generation from concurrent state machines. In:
AMT, CEUR Workshop Proceedings, vol. 1277, pp. 64–69 (2014). CEUR-WS.org

33. Zibin, Y., Potanin, A., Li, P., Ali, M., Ernst, M.: Ownership and immutability in
generic java. In: OOPSLA. ACM SIGPLAN Notices, vol. 45, pp. 598–617. ACM
(2010)

http://ceur-ws.org/

An Operational Semantics of BPMN
Collaboration

Flavio Corradini, Andrea Polini, Barbara Re(B), and Francesco Tiezzi

School of Science and Technology, University of Camerino, Camerino, Italy
{flavio.corradini,andrea.polini,barbara.re,francesco.tiezzi}@unicam.it

Abstract. In the last years we are observing a growing interest in for-
malising the execution semantics of business process modelling languages
that, despite their lack of formal characterisation, are widely adopted in
industry and academia. In this paper, we focus on the OMG standard
BPMN 2.0. Specifically, we provide a direct formalisation of its opera-
tional semantics in terms of Labelled Transition Systems (LTS). This
approach permits both to avoid possible miss-interpretations due to the
usage of the natural language in the specification of the standard, and
to overcome issues due to the mapping of BPMN to other formal lan-
guages, which are equipped with their own semantics. In addition, it
paves the way for the use of consolidated formal reasoning techniques
based on LTS (e.g., model checking). Our operational semantics is given
for a relevant subset of BPMN elements focusing on the capability to
model collaborations among organisations via message exchange. More-
over, one of its distinctive aspects is the suitability to model business
processes with arbitrary topology. This allows designers to freely spec-
ify their processes according to the reality without the need of defining
well-structured models. We illustrate our approach through a simple, yet
realistic, running example about commercial transactions.

Keywords: Business process modelling · BPMN collaboration ·
Operational semantics

1 Introduction

Organisations, such as big companies or public administrations, nowadays oper-
ate in complex and volatile contexts, that ask for prompt reactions to emerging
changes in order to maintain competitiveness and efficiency. To answer to such a
need, in the last years a lot of effort has been put in the definition of modelling
languages and tools permitting to represent and reason on different perspectives
of such organisations. Among the others, Business Process (BP) modeling is cer-
tainly the activity that received the most attention, given its relevance in the
reflection and definition of strategies for the alignement of introduced IT sys-
tems and business activities. A BP is described as “a collection of related and

This research has been partially founded by EU project LearnPAd (GA:619583) and
by the Project MIUR PRIN CINA (2010LHT4KM).

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 161–180, 2016.
DOI: 10.1007/978-3-319-28934-2 9

162 F. Corradini et al.

structured activities undertaken by one or more organisations in order to pursue
some particular goal. Within an organisation a BP results in the provisioning
of services or in the production of goods for internal or external stakeholders.
Moreover BPs are often interrelated since the execution of a BP often results
in the activation of related BPs within the same or other organisations” [1]. In
deriving a BP model many different information and perspectives of an organi-
sation can be captured [2]. Among the others we focus on: information related
to the activities to be performed (function perspective), who should perform
them (organisation perspective), when they should be performed and how they
are organised in a flow (behaviour perspective). Many different languages and
graphical notations have been proposed to represent BP models with differences
both in the possibility to express aspects related to the perspectives, and in the
level of formality used to define the elements composing the notation. BPMN
2.01, which has been standardised by OMG [3], is currently acquiring a clear
predominance, among the various proposal, due to its intuitive graphical nota-
tion, the wide acceptance by industry and academia, and the support provided
by a wide spectrum of modelling tools2.

BPMN’s success comes from its versatility and capability to represent BPs
with different levels of detail and for different purposes. The notation acquired,
at first, acceptance within business analysts and operators, who use it to design
BP models. Successively, it has been more and more adopted by IT specialists
to lead the development and settlement of IT systems supporting the execution
of a BP model. Among the various characteristics of the notation, particularly
interesting is the possibility to model a collaboration of different organisations
exchanging messages and cooperating to reach a shared business goal. Collab-
oration diagrams are indeed the focus of our work since they contains enough
information to assess the alignment of participants behavior, and the message
flow specified to permit successful cooperations. If from the point of view of the
notation the inter-organisation message exchange could seem a simple graph-
ical element, its impact is absolutely relevant. When a modelling notation is
used in a homogeneous context, such as a single organisation, the precise defi-
nition of the meaning of the various elements constituting the notation can be
sometime avoided. Nevertheless, mutual understanding is possible thanks to the
direct communications among the involved stakeholders, and from the emer-
gence of established and accepted practices. This is not the case when two or
more organisations are involved. In particular, in order to correctly collaborate,
the involved organisations have to share the same understanding of communi-
cation mechanisms. Moreover, when a BP model includes the specification of
collaborations among more organisations, it becomes fundamental that they can
rely on a shared understanding of the model. In the last years, a relevant effort
has been devoted by the research community to provide a formal semantics to
the BPMN notation (we refer to Sect. 5 for an overview of major contributions

1 We use BPMN or BPMN 2.0 interchangeably to refer to version 2.0 of the notation.
2 BPMN is currently supported by 75 tools (see http://www.bpmn.org for a detailed

list).

http://www.bpmn.org

An Operational Semantics of BPMN Collaboration 163

on this side). Indeed, in defining the notation, OMG did not intend to provide
a rigorous semantics for the various graphical elements; instead the meaning is
given using natural language descriptions, permitting a wider adoption of the
notation in different contexts. The use of formal tools to define the semantics
of the various elements, and hence of a BP model, is relevant in order to enable
automatic analysis activities that allow the designers to check if the BP satis-
fies desired properties or not. This aspect seems to be even more relevant when
organisations get in contact with each other and need to analyse the impact of
collaborative actions. Consider for instance the merging of two companies, in
which there is not a common understanding of the models, and then the impor-
tance of analysis activities run to get a better understanding on the impact of
the integration, and to discover flaws in the collaboration resulting from the
possible integration.

In this paper, we intend to contribute to such a research effort aiming at
providing a precise characterisation of BPMN elements with a special emphasis
on communication within collaboration diagrams. This is mainly motivated by
the need of achieving inter-organisation correctness, which is still a challenge
[4]. More specifically, the contribution of the paper is a novel formalisation that
provides an operational semantics to BPMN in the SOS style [5] by relying on the
notion of Labeled Transition System (LTS). The major benefits of our semantics
are as follows:

– it is a native semantics, rather than a mapping to other formalisms (equipped
with their own semantics) like most of the proposals in the literature (see
Sect. 5);

– it provides a compositional approach based on LTS, which paves the way for
the use of consolidated analysis techniques and related software tools (see
Sect. 6);

– it is suitable to model business processes with arbitrary topology, without
imposing syntactical restrictions to the modeler, such as well-structuredness
[6] (which, e.g., imposes gateways in a process to form single-entry-single-exit
fragments) typically required by other proposals (see Sect. 5);

– besides core elements, such as tasks, gateways, etc., it takes into account
collaborations and message exchange, which are overlooked by other formali-
sations.

The rest of the paper is organised as follows. Section 2 reports some back-
ground material on BPMN 2.0. Sections 3 and 4 introduce BPMN syntax and
operational semantics we propose. Section 5 presents a detailed comparison of
our approach with the related ones available in the literature. Finally, Sect. 6
closes the paper with some conclusions and opportunities for future work.

2 Background Notions on BPMN 2.0

The focus of this section is not a complete presentation of the standard, but a
discussion of the main concepts of BPMN we use in the following. These concepts

164 F. Corradini et al.

Fig. 1. Considered BPMN 2.0 elements.

are briefly described below and reported in Fig. 1. Pools are used to represent a
participant or an organisation involved in the collaboration, and provide details
on internal process specifications and related elements. Pools are drawn as rec-
tangles. Events are used to represent something that can happen. An event can
be a Start Event, representing the point in which the process starts, while an
End Event is raised when the process terminates. Events are drawn as circles.
Tasks are used to represent a specific work to perform within a process. Tasks
are drawn as rectangles with rounded corners. Gateways are used to manage
the flow of a process both for parallel activities and choices. Gateways are drawn
as diamonds and act as either join nodes or split nodes. Different types of gate-
ways are available, and we report here the most used ones. A XOR gateway gives
the possibility to describe choices both in input (joining) and output (splitting);
it is activated each time the gateway is reached and, when executed, it activates
exactly one outgoing edge. An AND gateway enables a parallel flow execution:
when used to split the sequence flow, all outgoing branches are activated simul-
taneously; when it joins parallel branches, it waits for all incoming branches to
complete before triggering the outgoing flow. An OR gateway gives the possibil-
ity to select an arbitrary number of outgoing edges each time it is reached; all
active incoming branches must complete before joining. Notably, even if XOR
and OR splitting gateways may have guard conditions in their outgoing sequence
flows. In this work we do not consider such possibility, as conditions have a sig-
nificant role only when actual input values are taken into account, while our
aim is to enable the verification of all possible flows of a process, and not only
those triggered by specific input values. Finally, Connecting Edges are used
to connect process elements in the same or different pools. Sequence flow is used
to specify the internal flow of the process, thus ordering events, activities and
gateways in the same pool, while message flow is a dashed connector used to
visualise communication flows between organisations.

We introduce here a BPMN collaboration specification used throughout the
paper as a running example.

Running Example (1/3). Figure 2 shows an example of BPMN process which
combines the activities of a buyer organisation and a reseller one that have to
interact in the market in order to complete a commercial transaction. After
the buyer organisation analyses the market, it places its order by sending the
order message to the reseller. Then, the buyer forks into two parallel paths by
means of the AND gateway G1. The upper path receives the invoice from the
reseller and settles it; in parallel the lower path receives the products from the
reseller. Finally, the two flows of the buyer synchronise at the AND gateway G2

An Operational Semantics of BPMN Collaboration 165

Fig. 2. Buyer-Reseller example (source [7] p. 223).

and the buyer stops its activities. This exchange of messages is supported by
the behaviour of the reseller that, after receiving the order, forks its behaviour
into two parallel paths using the AND gateway G3. In the upper path, the
reseller sends the invoice and receives the payment, while in the bottom one it
performs the shipment of the ordered products. Finally, the flows of the reseller
synchronise at the AND gateway G4 and the process of the reseller ends after
the order is archived. ��
It is worth noticing that we focus on the control flow and interacting aspects of
business processes. This is mainly motivated by the need of keeping the semantics
of the considered language rigorous but still manageable. Therefore, we intention-
ally left out other aspects, including timed events, data objects, sub-processing,
error handling, and multiple instances. Instead, other aspects of BPMN can be
easily rendered with our syntax, such as intermediate message events that can
be reconducted to tasks with an incoming message flow. Anyway, we do not
consider this restriction on the syntax as a major limitation, because we focus
on the BPMN constructs most used in practice (indeed, even if the BPMN spec-
ification is quite wide, only less than 20 % of its vocabulary is used regularly in
designing BP models [8]).

3 BNF Syntax

The syntax of BPMN 2.0 is given in [3] by a metamodel in classical UML-style.
In this section we provide an alternative syntax, in BNF-style, that is more
suitable for defining a formal operational semantics.

The syntax is defined by grammar productions of the form N : : = A1 | . . . |
An, where N is a non-terminal symbol and alternatives A1, . . . , An are com-
positions of terminal and non-terminal symbols. In particular, in the grammar

166 F. Corradini et al.

Fig. 3. BPMN SyntaxBPMN syntax

in Fig. 3, the non-terminal symbols are C, P and G, representing collaborations,
processes and gateways, respectively, while the terminal symbols are the typical
graphical elements of a BPMN model, i.e. pools, events, tasks, gateways, and
edges.

Intuitively, a BPMN collaboration model is rendered in our syntax as a col-
lection of pools, where message edges can connect different pools. Each pool con-
tains a process, defined as a collection of nodes, with incoming and/or outgoing

An Operational Semantics of BPMN Collaboration 167

sequence edges. Such nodes are events, tasks and (XOR/AND/OR) gateways.
Notably, to obtain a compositional definition, each (message/sequence) edge is
divided in two parts: the part outgoing from the source node and the part incom-
ing into the target node. In fact, a term of the syntax can be straightforwardly
obtained from a BPMN model by decomposing the collaboration in collection of
pools, processes in collection of nodes, and edges in two parts.

We use the following disjoint sets of names: the set of organisation names
(ranged over by o), the set of message names (ranged over by m), the set of edge
names (ranged over by e), and the set of task names (ranged over by t). As a
matter of notation, we use edges of the form to denote edges of the form

either incoming into or outgoing from pools/tasks.
We only consider specifications that are well-defined, in the sense that they

comply with the following four syntactic constraints:

– Distinct pools (resp. tasks) have different pool (resp. task) names.
– In a collaboration, for each message edge labelled by m outgoing from a pool,

there exists only one corresponding message edge labelled by m incoming into
another pool, and vice versa.

– For each incoming (resp. outgoing) message edge labelled by m at pool level,
there exists only one corresponding incoming (resp. outgoing) message edge
labelled by m at the level of the process within the pool.

– In a process, for each sequence edge labelled by e outgoing from a node,
there exists only one corresponding sequence edge labelled by e incoming into
another node, and vice versa.

Well-definedness could be easily checked through a standard (and trivial) static
analysis; more practically, the rationale is that each term of the language can be
easily derived from a BPMN model whose only constraint is to have (pool, task,
edge) unique names.

Notably, in this work we do not consider specifications using the OR join
gateway, because formalising its semantics is a tricky task (see, e.g., [9–11]) that
would make our formalisation much more complicated and, hence, out of focus.

Running Example (2/3). The BPMN model presented in Sect. 2 is expressed in
our syntax as the following collaboration:

168 F. Corradini et al.

where (an excerpt of) process Pbuyer is defined as follows:

and process Preseller is defined in a similar way. ��

4 Operational Semantics

We give the semantics of BPMN in terms of marked collaborations, i.e. collections
of pools equipped with a marking. A marking is a distribution of tokens over
pool message edges and process elements that indicate message arrivals and
the process nodes that are active or not in a given step of the execution. This
resembles the notions of token and marking in Petri Nets; this is not surprising as
such formalism has strongly inspired the workflow constructs of BPMN. Similarly
to the token-passing semantics in [12,13], our tokens move along the syntax
constructs, acting as sort of program counters.

For the sake of presentation, the operational semantics of BPMN is defined
over an enriched syntax, w.r.t. the one given in Sect. 3, where pools’ message
edges are marked (i.e., labelled) by message tokens B, while processes’ edges,
events and tasks are marked by workflow tokens •. As a matter of notation, the
presence of a number of message (resp. workflow) tokens in the same place is
represented by means of one token of the form B n (resp. •n), where n ∈ N0

is the token multiplicity. The initial marking of a collaboration assigns a single
workflow token to the start events of the process of each pool in the collabora-
tion. Notably, in this work we only consider business processes instantiated with
single instances. In fact, dealing with multiple instances in presence of message
interactions would require to properly deliver each message to its appropriate
instance; this would add complexity to our formal treatment, which we want to
avoid in order to keep it as easy to understand as possible. On the other hand,
the use of tokens with multiplicity is necessary also with single instances, e.g.
due to the behaviour of the combined use of AND and XOR gateways as in the
following piece of BPMN model:

Formally, the operational semantics of marked collaborations is defined in
the SOS style by relying on the notion of Labeled Transition System (LTS). The
labeled transition relation of the LTS defining the semantics of collaborations,
at pool layer, is induced by the inference rules in Fig. 4. We write C

l� C ′ to

An Operational Semantics of BPMN Collaboration 169

mean that “collaboration C can perform a transition labeled by l and become C ′

in doing so”. Transition labels are generated by the following production rule:

(Labels) l : : = o : α | o1 → o2 : m

The meaning of labels is as follows: o : α denotes an action α peformed by the
process instance of organisation o, while o1 → o2 : m denotes the exchange of a
message m from organisation o1 to o2. The definition of the above relation relies
on an auxiliary transition relation defining the semantics of process instances
and induced by the inference rules in Figs. 5, 6, and 7. We write P

α� P ′ to
mean that “process P can perform a transition labeled by α and become P ′ in
doing so”. The labels used by this auxiliary transition relation are generated by
the following production rules:

(Actions) α : : = τ | !m | ?m
(Internal actions) τ : : = enabled t | completed t | (−ẽ1,+ẽ2)

where notation ẽ indicates a set of edges. The meaning of labels is as follows:
τ denotes an action internal to the process, while !m and ?m denote send
and receive actions, respectively. The meaning of internal actions is as follows:
enabled t and completed t denote the start and completion of the execution of
task t, respectively; the pair (−ẽ1,+ẽ2) denotes movement of workflow tokens in
the process graph, in particular one token is removed from each edge in ẽ1 and
one is added to each edge in ẽ2 (whenever one of the two sets of edges is empty,
its field is omitted from the pair).

We now briefly comment the rules in Fig. 4. The first three rules allow a
single pool, representing organisation o, to evolve according to the evolution
of its enclosed process P . In particular, if P performs an internal action (rule
Internal), a sending action (rule Send) or a receiving action (rule Receive), the
pool performs the corresponding action at collaboration layer, i.e. the label is
enriched with the name o of the organisation performing the action. Notably,
rule Receive can be applied only if there is at least one (n > 0) message m
queued in the corresponding message edge of the pool; of course, a message token
is consumed by this transition. Instead, when an organisation o1 indicates the
willingness to send a message m (represented by a transition labelled by o1 :!m),
such message is properly delivered to the receiving organisation o2 by applying
rule Deliver. The resulting transition, labelled by o1 → o2 : m, has the effect of
increasing in the pool of o2 the number of message tokens queued in the message
edge labelled by m. If organisation o2 does not have a message edge labelled by
m, i.e. o2 is not supposed to receive message m, no interaction between o1 and o2
takes place and label o1 :!m is propagated (rule Skip). It is worth noticing that,
as prescribed by the BPMN 2.0 specification, inter-organisation communication
is asynchronous: the sending action is not blocking, while the receiving one
is blocking when there is no message token to consume. The two Interleaving
rules permit to interleave the execution of actions performed by pools of the
same collaboration, so that if a part of a larger collaboration evolves, the whole
collaboration evolves accordingly. Interleaving is disallowed in case of a sending

170 F. Corradini et al.

Fig. 4. BPMN operational semantics: collaboration layer.

An Operational Semantics of BPMN Collaboration 171

Fig. 5. BPMN operational semantics: process layer (control flow constructs).

172 F. Corradini et al.

Fig. 6. BPMN operational semantics: process layer (task constructs).

An Operational Semantics of BPMN Collaboration 173

Fig. 7. BPMN operational semantics: process layer (node collection).

action, in order to force the use of rules Deliver and Skip for synchronising the
sending pool with the receiving one. In fact, labels of the form o1 :!m are never
exhibited by a well-defined collaboration (see Sect. 3), as they are just auxiliary
labels used for properly, and compositionally, inferring transitions labelled by
o1 → o2 : m.

Rules in Fig. 5 deal with control flow constructs, i.e. events and gateways.
All these rules are axioms (i.e., they have no premises) producing transition
labels of the form (−ẽ1,+ẽ2). This means that the effect of these rules is simply
changing the marking of the process, i.e. moving workflow tokens among edges.
For example, the effect of the rule AndSplit is to consume a token from the
incoming edge e1 of the AND gateway and to add a token to each outgoing edge
ei, with 2 ≤ i ≤ h. The propagation of marking updates to other nodes of the
process is dealt with by the interleaving rules in Fig. 7 (see comments below).

Rules in Fig. 6 are axioms devoted to the evolution of tasks. When a task is
enabled (rule Enable1), a token from its incoming edge is consumed and is placed
on the left of the task name to indicate the starting status of the task. Notably,
a task can be activated only when no token is placed inside the task rectangle
or on its message edges; this means that parallel executions of the same task
are not allowed. The fact that a task t is enabled is notified by applying either
rule Enable2 or Enable3, depending on the presence of message edges. When a
message edge is marked by a token, the corresponding sending or receiving action
is performed; moreover the token is moved to the next edge (rules Send1 or
Receive1) or on the top of the task name (rules Send2 or Receive2). Notice that
the order of message edges is relevant for the execution: messages are processed
from left to the right. This permits disambiguating the semantics of tasks in
case of multiple message edges. Finally, when all messages are processed, the
completion of the task execution is notified (rule Complete1) and the number of
tokens on the outgoing edge is increased by one (rule Complete2).

The last group of rules, shown in Fig. 7, deal with interleaving of process
node evolutions. The first two rules are applied when the evolution involves a
change in the marking of process edges, while the second two are applied in
the other cases. In particular, the former rules relies on the marking updating
function P ±ẽ1,ẽ2 , which returns a process obtained from P by unmarking (resp.
marking) edges in ẽ1 (resp. ẽ2). Formally, this function is inductively defined on
the structure of process P , by also relying on the following auxiliary function:

174 F. Corradini et al.

n ±e
ẽ1,ẽ2

=

⎧⎨
⎩

n−1 if e ∈ ẽ1
n+1 if e ∈ ẽ2
n otherwise

Notably, in the above definition we exploit the fact that, since self-loop are not
admitted in a process, it holds ẽ1 ∩ ẽ2 = ∅. In each base case of the inductive
definition of the marking updating function, we simply apply the auxiliary func-
tion to the multiplicity of all tokens that mark an edge of the process node. We
report below few significant cases of the definition (the others are similar):

Running Example (3/3). We describe here the semantics of the BPMN model
informally introduced in Sect. 2 and fomalised in Sect. 3. The initial state of the
execution is represented by the collaboration in Fig. 8(a), where the start events
of the processes of the two organisations are marked by a workflow token each.
Thus, the execution of both processes can start and, as a possible evolution,
after few computational steps the status of the collaboration becomes the one
shown in Fig. 8(b). In such a configuration, according to the position of the two
tokens, the buyer is performing the Analize Market task, while the reseller is
already waiting for the order from the buyer. After other few steps, the collab-
oration status becomes the one in Fig. 8(c), where the buyer has completed the
Analize Market task and sent the order message to the reseller (as indicated
by the message token B queued in the corresponding incoming message edge of
the reseller’s pool). Now, the reseller can consume the message and resume its
computation. Finally, after further steps, the collaboration reaches the final con-
figuration in Fig. 8(d), where two workflow tokens mark the final events of the two
processes. ��

5 Related Work

Much effort has been devoted to the formalisation of BPMN. Here we refer
to the most relevant attempts: we first consider the other direct formalisations
available in the literature, then we discuss some mappings from BPMN to well-
known formalisms.

With regard to direct formalisations, we refer to Van Gorp and Dijkman [14],
Christiansen et al. [9], El-Saber and Boronat [15], and Borger and Thalheim [16].

An Operational Semantics of BPMN Collaboration 175

Fig. 8. Semantics of the running example: an excerpt

Among them, our contribution was mainly inspired by the one presented in [14].
They propose a BPMN 2.0 formalisation based on in-place graph transforma-
tion rules; these rules are defined to be passed as input to the GrGen.NET tool,
and are documented visually using BPMN syntax. With respect to our work,
the used formalisation techniques are different, since we provide an operational
semantics in terms of LTS. This allows us to apply verification techniques based
on transition labels, as e.g. model checking of properties expressed as formulae of
action-based temporal logic. This gives us the possibility to be tool interdepen-
dent rather than be constrained to tools specific for graph transformation rules.

176 F. Corradini et al.

Another interesting work is described in [9], where Christiansen et al. propose a
direct formalisation of the BPMN 2.0 Beta 1 Specification using algorithms based
on incrementally updated data structures. The semantics is given for BPMNinc,
that is a minimal subset of BPMN 2.0 containing just inclusive and exclusive
gateways, start and end events, and sequence flows. This work differs from ours
with respect to the formalisation method, as it proposes a token-based semantics
à la Petri Nets, while we define an operational semantics with a compositional
approach à la process calculi. Moreover, the work in [9] also lacks to take into
account BPMN organisational aspects and the flow of messages, whose treat-
ment is a main contribution of our work. El-Saber and Boronat proposed in [15]
a formal characterisation of well-formed BPMN processes in terms of rewriting
logic, using Maude as supporting tool. This formalisation refers to a subset of
the BPMN specification considering elements that are used regularly, such as
flow nodes, data elements, connecting flow elements, artefacts, and swimlanes.
Interesting it is also the mechanism given to represent and evaluate guard con-
ditions in decision gateways. Differently from the other direct formalisations,
this approach can be only applied to well-structured processes. Concerning the
well-structuredness requirement, we are aware that enforcing such restriction
may have benefits, among which we refer to the importance of structuredness
as a guideline to avoid errors in business process modelling [17]. But we are also
aware that this requirement may result in a language more complex to use and
less expressive [18]. We therefore consider the arbitrary topology as a benefit,
because we assume that designers should be free to model the process accord-
ing to the reality they feel without needing to define well-structured models. In
addition, it should be considered that not all process models with an arbitrary
topology can be transformed into equivalent well-structured processes [19,20].
Moreover, the work in [15] has another drawback, concerning BPMN organisa-
tional aspects and messages flow. In particular, even if it is stated that messages
are included in the formalisation, their formal treatment is not explained in
the paper.

The most common formalisations of BPMN are given via mappings to vari-
ous formalisms, such as Petri Nets [6,21–25], YAWL [26,27] and process calculi
[28–34]. This kind of formalisations suffers the typical problems introduced by a
mapping. In fact, in these cases the semantics of BPMN is not given in terms of
features and constructs of the language, but in terms of low-level details of their
encodings. This makes the verification of BPMN models less effective, because
the verification results refer to the low-level implementation of the models and
may be difficult to be interpreted at BPMN level. Moreover, no formal proof of
the correctness of these encodings with respect to a native semantics of BPMN
is provided.

Regarding the mapping from BPMN to Petri Nets, the one proposed by
Dijkman et al. in [6] is probably the most relevant contribution. It enables the
use of standard tools for process analysis, such as soundness of BPMN models.
However, differently from our approach, even if the mapping deals with mes-
sages, it does not properly consider multiple organisation scenarios, and does
not provide information to the analysis phase regarding who are the partici-
pants involved in the exchange of messages.

An Operational Semantics of BPMN Collaboration 177

Other relevant mappings are those from BPMN to YAWL, a language with a
strictly defined execution semantics inspired by Petri Nets. Among the proposed
mappings, we would like to mention the ones by Ye and Song [26] and Dumas
et al. [27]. The former is defined under the well-formedness assumption, which
instead we do not rely on. Moreover, although messages are taken into account in
the mapping, pools and lanes are not considered; thus it is not possible to identify
who is the sender and who is the receiver in the communication. This results
in the lack of capability to introduce verification at message level considering
the involved organisations. The latter mapping, instead, formalises a very small
portion of BPMN elements. In particular, limitations about pools and messages
are similar to the previous approach: pools are treated as separate business
processes, while messages flow is not covered by the mapping.

Process calculi has been also considered as means for formalising BPMN.
Among the others, Wong and Gibbons presented in [29] a translation from a
subset of BPMN process diagrams, under the assumption of well-formedness,
to a CSP-like language based on Z notation. This enables the introduction of
formal verification to check properties like consistency and compatibility. Even
if messages have been omitted in the formalisation presented in [29], their treat-
ment is discussed in [28]. Messages are also considered by Arbab et al. in [30],
where the main BPMN modeling primitives are represented by means of the
coordination language Reo. Differently from the other mappings, this one con-
siders a significantly larger set of BPMN elements. Prandi et al., instead, defined
in [31] a semantics in term of a mapping from BPMN to the process calculus
COWS, which has been specifically devised for modelling service-oriented sys-
tems. Last but not least, also π-calculus was taken as target language of mapping
by Hutchison et al. [32] and Puhlmann [33]. Even if our proposal differs from
the above ones, as it is a direct semantics rather than a mapping, it has drawn
inspiration from those based on process calculi for the use of a compositional
approach in the SOS style.

6 Concluding Remarks

The lack of a shared, well-established, comprehensive formal semantics for BPMN
was the main driver of our work. This is also a critical point of the specification
considering the wide adoption of the language both from the industry and research
community. In this paper, we present an operational semantics in terms of
LTS. We focus on the collaboration capability supported by message exchange.
The proposed semantics enables designers to freely specify their processes with
an arbitrary topology supporting the adherence to the standard, without the
requirement of defining well-structured models.

The proposed formalisation allows one to verify properties on the model
using consolidated formal reasoning techniques based on LTS. For instance,
by expressing such properties by means of temporal logic, we can check, e.g.,
if after the enabling of a given task it can be eventually completed or not. More
in general, we can verify, e.g., if for all possible executions all processes involved

178 F. Corradini et al.

in a collaboration successfully terminates. This is quite relevant also with ref-
erence to the message exchange as, although communication is asynchronous,
message receiving is blocking. We intend to investigate verification of such kind
of properties in the near future. We plan to achieve this by implementing our
semantics in Maude3 that allows to render operational rules of the semantics in
terms of rewriting rules. This enables the (automatic or interactive) exploration
of the evolutions of BPMN models, and it permits to exploit the rich analysis tool
set provided by Maude. Even if we consider the use of Maude the most promising
approach for our purposes, we plan to also investigate other approaches, such
as [35,36]. Moreover, we intend to develop a tool chain integrating the verifica-
tion environment with a BPMN modelling environment, such as Eclipse BPMN
Modeller4. This will offer the possibility of going back and forth between the
modelling environment and the verification one, by e.g. graphically visualising
on the BPMN model the feedbacks of the verification.

We also aim at extending our formalisation to model more BPMN elements,
such as data objects, sub-processing, and error handling. In particular, we intend
to focus on tricky issues concerning multiple instances of the same process and
OR join gateway. Last but not least, we plan to prove some consistency properties
of our operational semantics ensuring, e.g., that some syntactic constraints are
preserved along the evolution of marked collaborations.

References

1. Lindsay, A., Downs, D., Lunn, K.: Business processes - attempts to find a definition.
Inf. Softw. Technol. 45(15), 1015–1019 (2003)

2. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies. Springer, Heidelberg (2012)

3. OMG: Business Process Model and Notation (BPMN v2.0), Normative document,
Jan 2011

4. Breu, R., Dustdar, S., Eder, J., Huemer, C., Kappel, G., Köpke, J., Langer, P.,
Mangler, J., Mendling, J., Neumann, G., Rinderle-Ma, S., Schulte, S., Sobernig,
S., Weber, B.: Towards living inter-organizational processes. In: CBI, pp. 363–366.
IEEE (2013)

5. Plotkin, G.: A structural approach to operational semantics. J. Log. Algebr. Pro-
gram. 60–61, 17–139 (2004)

6. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

7. Weske, M.: Business Process Management. Springer, Heidelberg (2012)
8. Recker, Jan, Muehlen, M.Z.: How much language is enough? theoretical and prac-

tical use of the business process modeling notation. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

9. Christiansen, D.R., Carbone, M., Hildebrandt, T.T.: Formal semantics and imple-
mentation of BPMN 2.0 inclusive gateways. In: WSFM, pp. 146–160 (2011)

3 http://maude.cs.illinois.edu/.
4 http://www.eclipse.org/bpmn2-modeler/.

http://maude.cs.illinois.edu/
http://www.eclipse.org/bpmn2-modeler/

An Operational Semantics of BPMN Collaboration 179

10. Wilmsmann, G., Völzer, H., Gfeller, B.: Faster or-join enactment for BPMN 2.0.
In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95,
pp. 31–43. Springer, Heidelberg (2011)

11. Dumas, M., Grosskopf, A., Hettel, T., Wynn, M.T.: Semantics of standard process
models with OR-joins. In: Tari, Z., Meersman, R. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 41–58. Springer, Heidelberg (2007)

12. Sinot, F.-R.: Call-by-name and call-by-value as token-passing interaction nets. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Heidelberg
(2005)

13. Kirchner, F., Sinot, F.: Rule-based operational semantics for an imperative lan-
guage. Electr. Notes Theor. Comput. Sci. 174(1), 35–47 (2007)

14. Van Gorp, P., Dijkman, R.: A visual token-based formalization of BPMN 2.0 based
on in-place transformations. Inf. Softw. Technol. 55(2), 365–394 (2013)

15. El-Saber, N., Boronat, A.: BPMN formalization and verification using maude. In:
BM-FA, pp. 1–12. ACM Press (2014)

16. Thalheim, B., Börger, E.: A method for verifiable and validatable business process
modeling. In: Börger, E., Cisternino, A. (eds.) Advances in Software Engineering.
LNCS, vol. 5316, pp. 59–115. Springer, Heidelberg (2008)

17. Laue, R., Mendling, J.: The impact of structuredness on error probability of process
models. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) Information Sys-
tems and e-Business Technologies. Lecture Notes in Business Information Process-
ing, vol. 5, pp. 585–590. Springer, Heidelberg (2008)

18. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow
modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
p. 431. Springer, Heidelberg (2000)

19. Polyvyanyy, A., Garcuelos, L., Dumas, M.: Structuring acyclic process models. Inf.
Syst. 37(6), 518–538 (2012)

20. Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maximal structuring
of acyclic process models. Comput. J. 57(1), 12–35 (2014)

21. Huai, W., Liu, X., Sun, H.: Towards trustworthy composite service through busi-
ness process model verification. In: UIC/ATC, pp. 422–427. IEEE (2010)

22. Koniewski, R., Dzielinski, A., Amborski, K.: Use of petri nets and business
processes management notation in modelling and simulation of multimodal logis-
tics chains. In: ECMS, pp. 99–102 (2006)

23. Ramadan, M., Elmongui, H.G., Hassan, R.: BPMN formalisation using coloured
petri nets. In: SEA (2011)

24. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in
process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) Business Process
Management Workshops. LNBIP, vol. 43, pp. 5–16. Springer, Heidelberg (2010)

25. Corradini, F., Polini, A., Re, B.: Inter-organizational business process verification
in public administration. Bus. Process Manag. J. 21(5), 1040–1065 (2015)

26. Ye, J., Song, W.: Transformation of BPMN diagrams to YAWL nets. J. Softw.
5(4), 396–404 (2010)

27. Dijkman, R., Decker, G., Garćıa-Bañuelos, L., Dumas, M.: Transforming BPMN
diagrams into YAWL nets. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 386–389. Springer, Heidelberg (2008)

28. Wong, P.Y., Gibbons, J.: Formalisations and applications of BPMN. Sci. Comput.
Program. 76(8), 633–650 (2011)

29. Gibbons, J., Wong, P.Y.H.: A process semantics for BPMN. In: Liu, S., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008)

180 F. Corradini et al.

30. Arbab, F., Kokash, N., Meng, S.: Towards using reo for compliance-aware business
process modeling. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation. CCIS, vol. 17, pp. 108–123. Springer,
Heidelberg (2008)

31. Quaglia, P., Zannone, N., Prandi, D.: Formal analysis of BPMN via a translation
into COWS. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol.
5052, pp. 249–263. Springer, Heidelberg (2008)

32. Weske, M., Puhlmann, F.: Investigations on soundness regarding lazy activities.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102,
pp. 145–160. Springer, Heidelberg (2006)

33. Puhlmann, F.: Soundness verification of business processes specified in the Pi-
calculus. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 6–23. Springer, Heidelberg (2007)

34. Corradini, F., Polini, A., Polzonetti, A., Re, B.: Business processes verification for
e-government service delivery. Inf. Syst. Manag. 27(4), 293–308 (2010)

35. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K framework distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

36. Rosu, G., Stefanescu, A.: Matching logic: a new program verification approach. In:
ICSE, pp. 868–871. ACM (2011)

k-Bisimulation: A Bisimulation for Measuring
the Dissimilarity Between Processes

Giuseppe De Ruvo1(B), Giuseppe Lettieri2, Domenico Martino1,
Antonella Santone1, and Gigliola Vaglini2

1 Department of Engineering, University of Sannio, Benevento, Italy
{gderuvo,santone}@unisannio.it, martinodomenico88@gmail.com

2 Department of Information Engineering, University of Pisa, Pisa, Italy
{g.lettieri,g.vaglini}@ing.unipi.it

Abstract. We propose to use bisimulation to quantify dissimilarity
between processes: in this case we speak of k-bisimulation. Two processes
p and q, whose semantics is given through transition systems, are k-
bisimilar if they differ from at most k moves, where k is a natural num-
ber. Roughly speaking, the k-bisimulation captures the extension of the
dissimilarity between p and q when they are neither strong nor weak
equivalent. The importance of the formal concept of k-bisimulation can
be seen in several application fields, such as clone detection, process
mining, business-IT alignment. We propose several heuristics in order
to efficiently check such a bisimulation. The approach can be applied to
different specification languages (CCS, LOTOS, CSP) provided that the
language semantics is based on the notion of transition system. We have
implemented a prototype tool and we have conducted experiments on
well-known systems for a proof of concept of our methodology.

1 Introduction and Motivation

Equivalence checking is important in many fields including formal verification,
temporal logic, set theory, XML indexing, clone detection, game theory, etc. In
essence, the problem is: given the description of two systems, are the behaviors of
these systems equivalent with respect to some notion of equivalence? A classical
application example is that in which one system describes the implementation,
and another one describes the specification. There are many different points of
view that can be taken in defining equivalence of systems. The different types
of equivalence proposed in literature can be organized, as described in [14], into
the linear-time/branching-time spectrum. Moreover, we can consider as equiv-
alence checking problems cases where we have to decide some general relation
between systems, not necessarily equivalence. For example, in the field of the
process mining a main point is the so-called conformance checking that aims at
the detection of inconsistencies between a predefined process model and an exe-
cution log, and their quantification by the formation of metrics. It is particularly
interesting whether the model describes the observed process in a suitable way,
i.e., its appropriateness. Appropriateness tries to capture the idea of Occam’s
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 181–198, 2016.
DOI: 10.1007/978-3-319-28934-2 10

182 G. De Ruvo et al.

Fig. 1. Three non bisimilar processes

razor, i.e., one should not increase, beyond what is necessary, the number of
entities required to explain anything.

Milner [19] introduced in the concurrency theory the notion of bisimulation to
support the definition of equivalence for transition systems. Moreover, he defined
the notion of observational equivalence for his Calculus of Communicating Sys-
tems (CCS) and thus for transition systems. Formal verification environments
such as Concurrency Workbench of the New Century [7] and CADP [13] incorpo-
rate bisimulation checkers in their tool sets: in this area the notion was primarily
used to minimize the state space of the system representation. Many works have
be done in this direction, [25] is just an example.

In this paper, we present the k-bisimulation that is a bisimulation aiming at
the observational equivalence between processes when some moves are hidden.
The importance of a formal concept of the k-bisimulation can be highlighted in
several application fields, such as clone detection, process mining, business-IT
alignment, wiki design and even malware analysis. We propose different heuris-
tics in order to efficiently check such a bisimulation. The approach can be applied
to various specification languages (CCS [19], LOTOS [3], CSP [16]) provided that
the language semantics is based on the notion of transition systems. We have
implemented a prototype tool and we have conducted experiments on five pop-
ular systems for a proof of concept of our methodology. Clearly, it is not very
interesting to apply k-bisimulation when two systems have a vastly different
structure and then the number of moves to hide is very near to the total number
of moves of the two systems. Nevertheless it is possible, even if the value of k is
not too high, to have a relevant difference between the number of moves to be
hidden in a system and the number hidden in the second one. Consequently, in
order to test our methodology we use small values of k and try to show that the
proposed method works well when processes are very similar.

Considering again the process mining context, the appropriateness relation
between systems can be divided into structural and behavioral appropriateness;
both these characteristics are well captured by the concept of bisimulation as
can be seen by examining the transition systems in Fig. 1. Processes A, B and
C include the same computation set, but the process A can be more appropriate
than B and C, because C allows more computations (it is less structurally appro-
priate than A) and B is less compact (it is less behaviorally appropriate) than
A. Bisimulation distinguishes the three processes; k-bisimulation gives a mea-
sure of their dissimilarity. As a first hint of the meaning of the k-bisimulation,

k-Bisimulation: A Bisimulation for Measuring 183

we anticipate that when considering A and C, we can see that they are 3-
bisimilar; while A and B are 2-bisimilar. Thus, if A is the predefined process
model and B and C are possible real processes retrieved from the log, the model
describes B with better appropriateness than C.

2 Preliminaries

Process algebras can be used to describe both implementations of processes and
specifications of their expected behaviors. Therefore, they support the so-called
single language approach to process theory, that is, the approach in which a sin-
gle language is used to describe both actual processes and their specifications.
An important ingredient of these languages is therefore a notion of behavioral
equivalence. The well-known Milner’s weak equivalence describes how an action
of a process can be matched by a sequence of actions from another one when
considering the same “observational content” (i.e., ignoring internal actions, also
called silent transitions and represented by a special action τ); weak equivalence
is based on the concept of bisimulation and then gives a very meaningful seman-
tics to processes. To develop our method in a specification language independent
way, we assume a set of processes Δ, a set of actions Θ and a function σ that
maps each p ∈ Δ to a finite set {(p, α1, p1), . . . , (p, αn, pn)} ⊆ Δ × Θ × Δ.
The existence of (p, α, p′) ∈ σ(p) means that p can perform the action α and
transform into the process p′; we can also express this capability as p

α−→ p′; we
assume the existence of the special action τ ∈ Θ. From now on, the transition
system of p, namely S(p), is the smallest sub-set of Δ × Θ × Δ such that:

1. σ(p) ⊆ S(p), and
2. whenever (p′, α, p′′) ∈ S(p), it is σ(p′′) ⊆ S(p) too.

We say also that each (q, α, q′) ⊆ S(p) is a transition of the transition system
and α is the action labelling the transition, that q, q′ are states of the transition
system.

Now we give the definition of weak equivalence [19] in our context: the fol-
lowing transition relation, based on σ, permits to ignore silent transitions.

Let p and q be processes in Δ: p
ε=⇒ q holds if and only if1 there is a (possibly

empty) sequence of silent transitions leading from p to q. If the sequence is
empty, then p = q. For each action α, it is p

α=⇒ q iff processes p′ and q′ exist
such that: p

ε=⇒ p′ α−→ q′ ε=⇒ q. Thus, p
α=⇒ q holds if p can reach q by performing

an α action, possibly preceded and followed by sequences of τ actions. For each
action α, α̂ stands for ε if α = τ , and for α otherwise.

Definition 1 (Weak Equivalence). Let p and q be two processes.

– A weak bisimulation, B, is a binary relation on Δ such that p B q implies:
(i) p

α−→ p′ implies ∃q′ such that q
α̂=⇒ q′ with p′ B q′; and

1 We use iff thereafter.

184 G. De Ruvo et al.

(ii) q
α−→ q′ implies ∃p′ such that p

α̂=⇒ p′ with p′ B q′

– p and q are weakly equivalent (p ≈ q) iff there exists a weak bisimulation B
containing the pair (p, q).

Note that we use the notation of ≈ equivalently for processes and for transition
systems.

3 The k-Bisimulation

Defining the similarity, or distance, between mathematical objects in some class
is generally an important undertaking, and there is no exception in process
algebra setting. Inspired by the Hamming and Levenshtein distance [12,15], we
propose a new bisimulation for processes defined in the process algebra context,
the k-bisimulation, which, to the best of our knowledge, has never been defined
before. In information theory, the Levenshtein distance between two strings is
the number of modifications needed to transform a string into the other, whilst
the Hamming’s distance refers to strings of equal length and measures the num-
ber of positions with corresponding different symbols. When we switch in the
process algebra setting, the k-bisimulation measures the minimum number of
transitions of two transition systems to be relabelled in order to make the two
processes equivalent. It is well known that a large number of graph similarity
measures have been proposed in literature, as, for example, the edit distance
[28]. The overall idea of a graph distance is to define the dissimilarity of two
graphs by the minimum amount of distortion that is needed to transform one
graph into another. Traditionally, the computation of a graph distance is carried
out by means of a tree search algorithm which explores the space of all possible
mappings of the nodes and edges of the first graph to the nodes and edges of the
second graph, performing several heavy graph operations, like edge-insertion,
edge-deletion, node-insertion, node-deletion. Using all these transformations we
could reach strong equivalence between processes. The aim is to obtain equiva-
lence in a simpler way and at a lower cost, so we try to reach weak equivalence
instead. Consequently, the only transformation we perform is the setting of the
labels of some transitions to τ . k-bisimulation captures the dissimilarity between
p and q when they are not weak equivalent. In fact, given a natural number k
and two processes p and q, we say that p and q are k-bisimilar if they differ from
at most k moves.

Note that the use of bisimulation allows us to obtain a measure of dissim-
ilarity that includes an evaluation of the structure of the two processes (even
if not so accurate as when using branching equivalence [14]) and not only of
the sequences of performed moves. We start from the definition of k-relabelled
transition system.

Definition 2 (k-relabelled Transition System). Let k be a natural number
and r a process, T k(r) is the set of the transition systems obtained relabeling by
τ at most k transitions of the standard transition system of r (denoted in the
following S(r)).

k-Bisimulation: A Bisimulation for Measuring 185

The notion of k-bisimulation is as follows.

Definition 3 (k-bisimulation). Two processes p and q are k-bisimilar (p ≈k q)
iff there exist a natural number k and two transition systems, t′ ∈ T k(p) and t′′ ∈
T k(q), such that t′ ≈ t′′.

For example, in Fig. 2, the process p and q are 1-bisimilar. In fact, it is
sufficient to relabel only one move of the process q, i.e., the transition q

a−→ q1
becomes q

τ−→ q1.

Fig. 2. Example of two transition systems not weak bisimilar

The following theorem holds, stating that if p and q are i-bisimilar then they
are also j-bisimilar, for each j > i. Roughly speaking, given a measure k of the
minimum level of dissimilarity between two processes, the same processes can be
made more dissimilar by changing into τ any two equal actions for transitions,
one in a process and one in the other.

Theorem 1. Let p and q be two processes and i, j two natural numbers such
that j ≥ i.

p ≈i q implies p ≈j q

Proof. Straightforward by Definition 3.

Obviously, when k = 0, T 0(p) = {S(p)} for any process p, then 0-bisimulation
between p and q coincides with the weak bisimulation (or with the strong bisim-
ulation in absence of τ labels in the standard transition systems of p and q),
which is an equivalence relation. It is worth noting that, on the contrary, the
k-bisimulation is not in general an equivalence relation: in fact, it is easy to
see that ≈k is reflexive and symmetric, but non transitive. As an example, con-
sider the set of processes Δ = {p, p1, p2, q, q1, q2, r, r1, r2}; the set of actions
Θ = {a, b, c, d}; and the function σ such that:

p
a−→ p1

b−→ p2; q
c−→ q1

b−→ q2; r
c−→ r1

d−→ r2

It turns out that: p ≈1 q, q ≈1 r, while p 	≈1 r.
Nevertheless, it is possible to prove that k-bisimulation establishes a distance

between processes since the triangle inequality holds (as in the example above).
Resuming, several simple upper and lower bounds can be set for the dissimilarity
between processes measured by the k-bisimulation:

186 G. De Ruvo et al.

– k is at least the maximum size of the sets (one for each process) of different
actions of the transitions of the two processes;

– k is at most the size of the biggest between the sets of transitions of the two
processes;

– k can be equal to zero iff if the processes are weak equivalent (or strong
equivalent in absence of τ labels).

4 Computing k-Bisimulation

Suppose that we want to check whether p ≈k q. A naive algorithm exhaustively
substitutes all subsets consisting of at most k labels in the transition system of
p with τ (the same for q) and, for each combination of substitutions, checks the
weak equivalence between the transformed processes. It is easy to see that such
algorithm has the complexity of computing all possible subsets containing 0 to
k transitions of S(p) combined with all possible subsets of transitions of S(q)
plus, for each combination, the cost of computing the weak equivalence. More
formally, the maximum number of attempts is given as follows:

Definition 4 (Maximum Number of Attempts). Let p and q be two
processes. The maximum number of attempts to compute whether p ≈k q is:

⎡
⎣min(k,n)∑

i=0

(
n

i

)⎤
⎦

⎡
⎣min(k,m)∑

i=0

(
m

i

)⎤
⎦ (1)

where n is the number of transitions in S(p) labelled with actions different to τ ,
m is the number of transitions in S(q) labelled with actions different to τ , and(
a
b

)
is the binomial coefficient indexed by a and b.

Thus, exhaustive algorithms cannot be applied in the case of large graphs. We
suggest the use of some heuristics for k-bisimulation checking; obviously, com-
puting a heuristic function can be costly too. Notwithstanding, heuristics should
be designed with care, otherwise the overhead introduced by the heuristics could
waste the advantages it should provide.

Such heuristics comes out by the intuition that some combinations (i.e., some
transitions which belong both to T k(p) and T k(q)) have a higher probability than
others to be the final solution. In this way, we reduce the cost of computing weak
equivalence since we explore only subsets of transitions. Therefore, if the solution
exists we can find it with lesser effort - compared with the effort required by the
naive algorithm itself that explores all the possible attempts given by Definition 4.

In the following subsections, we present four heuristics to efficiently com-
pute the k-bisimulation. Based on the aforementioned intuition, we consecu-
tively apply our heuristics, i.e., when a heuristic is not able to establish that two
transitions systems are k-bisimilar, we proceed by applying another one.

Before introducing the heuristics,we have to verifywhether p and q cannot be k-
bisimilar. Given the set of transitions of S(p) and S(q), we call, respectively, Lp and
Lq the set of actions different from τ labelling transitions in such sets. The following
theorem holds stating the condition of the non-existence of k-bisimilarity.

k-Bisimulation: A Bisimulation for Measuring 187

Fig. 3. k-bisimilar processes

Theorem 2 (Non-existence of k-bisimilarity). Let p and q two processes.
p and q cannot be k-bisimilar when:

k < max{|Lp − (Lp ∩ Lq)|, |Lq − (Lp ∩ Lq)|}︸ ︷︷ ︸
max value

(2)

Proof. Straightforward by Definition 3.

4.1 Preliminary Step: Sort Based Step

The first step is based on comparing the sets of the visible actions that the
processes can perform. If p and q are not k-bisimilar, the primary cause is the
existence of actions that p can perform and q cannot (or vice versa). Theorem 2
suggests that the transitions to be relabelled are all those having actions not in
the set Lp ∩ Lq. Accordingly, the “sort based” step operates as follows.

Definition 5 (Sort Based Step). Let S(p) and S(q) be two transition systems.
We define:

N = { (r, α, r′) ∈ S(p) | α 	∈ Lq }; M = { (s, α, s′) ∈ S(q) | α 	∈ Lp }.

Roughly speaking, the sort based step sets to τ all the actions which belong to
set Lp, but which do not belong to the set Lq (and vice versa). We apply once
the weak equivalence after simultaneously setting to τ all such actions. If the
processes are weak equivalent then they also are k-bisimilar. After applying the
sort based step, the number of actions set to τ is different for the two transition
systems: for S(p) that number is kp = k−|N | (i.e., we decrement k of the number
of actions set to τ in S(p)), while for S(q) that number is kq = k − |M | (i.e., we
decrement k of the number of actions set to τ in S(q)).

For instance, let us consider the transition systems of Fig. 3a. In order to
make p and q k-bisimilar for some k, it is necessary to change into τ at least the
action c in p, and the action b in q. In this case, it is p ≈1 q with lower bound
k = 1. For the transition systems of Fig. 3b, the two processes are 2-bisimilar
since two labels in p must be changed. Clearly, this heuristics is not useful when
Lp = Lq.

After this first necessary step, we define several heuristic functions that,
given S(p) and S(q), return two subsets of transitions N of S(p) and M of S(q).

188 G. De Ruvo et al.

These subsets are used to reduce the number of possible attempts stated by the
Definition 4, since we assume that the probability of relabeling to τ an action of
the triples in N and M is higher than that of relabeling any other triple.

More formally, an heuristic function is generically defined as:

Definition 6 (Heuristic Function h). Let T1 and T2 be two transition sys-
tems, h(T1, T2) = 〈N,M〉, where N ⊆ T1 and M ⊆ T2.

All the actions of triples which belong to N ∪ M represent all the possible
candidates to be set to τ . Thus, we first consider all the combinations given by
Definition 4 where n (resp. m) is the size of the set N (resp. M) returned by the
heuristic function. For each combination, we apply weak equivalence checking.
Note that, even if applying all the heuristic functions defined in the following
section, we do not necessarily succeed in deciding the k-bisimulation, we may
have to explore all the possible remaining configurations. Now we are ready to
introduce the first heuristics.

4.2 Counterexample Based Heuristics

When we perform equivalence checking, formal verification tools return a coun-
terexample when the result of the equivalence is false. Typically, counterexamples
are modelled as transition systems and specify the actions that one process can
carry out in a state while the other one in the corresponding state cannot, we
call θ the set of these actions; the “counterexample based” heuristics is built
upon θ.

Definition 7 (Counterexample Based Heuristics h1). Let S(p) and S(q)
be two transition systems.

– Check whether S(p) ≈ S(q). Let C be the counterexample returned and θ the
set of actions occurring in C such that one process can carry out it in a state
while the other one cannot when reached the corresponding state.

– h1(S(p),S(q)) = 〈N,M〉, where

N = { (r, α, r′) ∈ S(p) | α ∈ θ }; M = { (r, α, r′) ∈ S(q) | α ∈ θ }.

The Counterexample based heuristics uses the result of weak equivalence
checking between the initial processes and creates two subsets of transitions N
of S(p) and M of S(q) based on the generated counterexample. For example, from
the counterexample returned by CADP [13] we can easily individuate θ, since
the terminal states of the diagnostic have additional “error” outgoing transitions
with labels, for example, of the form “Present in p: α”(or “Absent in p: α”),
indicating that the action α cannot be matched by the other process q. Consider
again the processes q e p in Fig. 2, the “counterexample based” heuristic based
on CADP [13] builds θ = {a}. In fact, after reaching q1 through q

α−→ q1, q1

can perform only the action b, while each state reachable from p using α̂=⇒ can
perform also the action a besides b. Accordingly, we create the subsets N =
{(p, a, p1)} and M = {(q, a, q1), (q, a, q)}.

k-Bisimulation: A Bisimulation for Measuring 189

4.3 Different Behaviour Based Heuristics

This heuristics works by analysing the behaviour of the states of the transition
systems. Let s be a state of a transition system, O(s) denotes the set of actions
labelling ingoing and outgoing transitions of s. More precisely:

Definition 8 (O(s)). Let s be a process in Δ and T its labelled transition
system.

O(s) = 〈S1, S2〉 where:
S1 = {α | (r, α, r′) ∈ T and r′ = s, α 	= τ };
S2 = {α | (r, α, r′) ∈ T and r = s, α 	= τ }.

Roughly speaking, S1 (resp. S2) is the set of all ingoing (resp. outgoing) actions
labelling transitions of the state s. We can say that two states, s and s′, have
a “similar behaviour” when O(s) = O(s′). Thus, the heuristics looks for states
that have not a similar behaviour considering all the transitions of S(p) and
S(q). The “different behaviour based” heuristics operates as follows.

Definition 9 (Different Behaviour Based Heuristics h2). Let S(p) and
S(q) be two transition systems. First, we define the sets X and Y as follows:

X = {x state of S(p) | ∀y state of S(q) it holds that O(x) 	= O(y) };
Y = { y state of S(q) | ∀x state of S(p) it holds that O(y) 	= O(x) }.

Now, we define N and M :

N = { (r, α, r′) ∈ S(p), (r′, α, r) ∈ S(p) | r ∈ X };
M = { (s, α, s′) ∈ S(q), (s′, α, s) ∈ S(q) | s ∈ Y }.

Thus, h2(S(p),S(q)) = 〈N,M〉.
The “different behaviour based” heuristics creates O(s) (resp. O(s′)) for each state
of S(p) (resp. S(q)). Then, it collects (in the sets X and Y) all states s in a transi-
tion system for which there does not exist a state s′ in the other transition system
with a similar behaviour (O(s) = O(s′)) creating two subsets of transitions N
of S(p) and M of S(q). For example, let us consider again the processes q e p in
Fig. 2. The sets of O(s) for the transition system of p and q are:

O(p) = 〈∅, {a}〉 O(q) = 〈{a}, {a, b}〉
O(p1) = 〈{a}, {b}〉 O(q1) = 〈{a}, {b}〉
O(p2) = 〈{∅, {b}〉 O(q2) = 〈{b}, ∅〉
O(p3) = 〈{b}, ∅〉
O(p4) = 〈∅, ∅〉 .

It turns out that: X = {p, p2, p4}, while Y = {q}. Thus, we create the
following two subsets M and N as explained above:

N = {(p, a, p1), (p2, b, p3)}; M = {(q, a, q), (q, a, q1), (q, b, q2)}.

190 G. De Ruvo et al.

4.4 Jaccard Based Heuristics

The following heuristic can be used only when we want to check the k-bisimilarity
between two processes with k = 1. It employs the information gained by the
“different behaviour based” heuristic and exploits the dissimilarity between
processes calculated by means of the Jaccard index [17]. The latter is defined as
follows:

Definition 10 (Jaccard index). Let A and B be two sets, then:

J (A,B) =
|A ∩ B|
|A ∪ B| (3)

where 0 ≤ J (A,B) ≤ 1.

We use the following notation. If s ∈ Δ and O(s) = 〈A,B〉, with O′(s) we
denote the set A ∪ B. The heuristic operates as follows:

Definition 11 (Jaccard based heuristics h3). Let S(p) and S(q) be two tran-
sition systems. First, we define the sets X and Y as done for the Different
behaviour based heuristic.

X = {x state of S(p) | ∀y state of S(q) it holds that O(x) 	= O(y) };
Y = { y state of S(q) | ∀x state of S(p) it holds that O(y) 	= O(x) }.

Then,

S = { (s1, s2) | s1 ∈ X, s2 ∈ Y and J (O′(s1),O′(s2)) ≥ 0.5 };
N = { (r, α, r′) ∈ S(p), (r′, α, r) ∈ S(p) | ∃(r, s) ∈ S };
M = { (s, α, s′) ∈ S(q), (s′, α, s) ∈ S(q) | ∃(r, s) ∈ S }.

Thus, h3(S(p),S(q)) = 〈N,M〉.
Roughly speaking, the Jaccard based heuristics creates two subsets of transi-

tions N of S(p) based on X and M of S(q) based on Y . After that, it computes
S which considers the Jaccard index J (A,B) ≥ 0.5. In fact, if J (A,B) < 0.5
the processes are not 1-bisimilar, since it must be k ≥ 1.

For example, let consider the processes q and p in Fig. 4. The states where
O(s) 	= O(s′) are p3 and p6 belonging to S(p) and q3 and q6 belonging to S(q),
i.e., X = {p3, p6} and Y = {q3, q6}. It turns out that

O′(p3) = {d, c},

O′(p6) = {c, a},

O′(q3) = {d} and
O′(q6) = {a, d}.

k-Bisimulation: A Bisimulation for Measuring 191

Fig. 4. 1-bisimilar processes

The Jaccard similarities for these states are

J(p3, q3) = 0.5,

J(p3, q6) = 0.33,

J(p6, q3) = 0.33,

J(p6, q6) = 0.

Then, S = {(p3, q3)}.
Thus, we only have to consider the states p3 and q3 and build the two subsets

N = {(p, d, p3), (p3, c, p6)} and M = {(q, d, q3), (q3, d, q6)}.

4.5 Action Occurrence Based Heuristics

The last heuristics is based on the number of transitions labelled with the same
action belonging to a transition system S(p) compared to another transition
system S(q). The “action occurrence based” heuristics operates as follows.

Definition 12 (Action occurrence based heuristics h4). Let S(p) and S(q)
be two transition systems.

– for each α ∈ Lp, nα is the number of transitions (r, α, r′) ∈ S(p);
– for each α ∈ Lq, mα is the number of transitions (s, α, s′) ∈ S(q).

We define N and M as follows:

N = { (r, α, r′) ∈ S(p) | nα 	= mα };
M = { (s, α, s′) ∈ S(q) | nα 	= mα }.

Thus, h4(S(p),S(q)) = 〈N,M〉.
Roughly speaking, the action occurrence based heuristic compares the num-

ber of transitions labelled with an action α of a process with the number of
transitions labelled with the same action α of the other process. Then, it creates
the two subsets of transitions N of S(p) and M of S(q) based on the result of
the previous comparison.

192 G. De Ruvo et al.

Fig. 5. Flow chart describing the core of our methodology

For instance, let consider the processes p and q in Fig. 3b. The first process
contains: 2 times a and once for either b or c. Thus, na = 2 and nb = nc = 1.
Whilst the second one yet contains once either b or c, so nb = nc = 1. Thus, we
create two subsets N = {(p, a, pa), (p, a, p2)} and M = ∅.

4.6 How the Heuristics Are Applied

All the heuristics are independent each other and we may choose any order.
To efficiently figure out if two processes are k-bisimilar, we need to apply the
presented heuristics in a precise order, as shown in Fig. 5. Based on empiri-
cal evaluation, we figured out such a order. We apply the next heuristics only
when the previous one is not able to establish that two processes are k-bisimilar.
Of course, when we consider a new heuristics we avoid to call the weak equiva-
lence checker on the previous already explored space of solutions.

Before deciding the order of the application of each heuristic function, several
experiments were run with different combinations and the presented order gave
the best results.

Thus, Fig. 5 constitutes the core of our methodology. We called it “k-btH”,
i.e., k-bisimulation through Heuristics. Each heuristics re-applies weak equiva-
lence checking starting from k = 1 until the desired k.

The process starts with two transition systems, i.e., S(p) and S(q) and the
natural number k. First we verify whether the Theorem 2 holds. In this case
the processes are not k-bisimilar. Conversely, if the Theorem 2 does not hold we

k-Bisimulation: A Bisimulation for Measuring 193

apply the preliminary “Sort based” step setting to τ all the transitions which
belong to a process, but which do not belong to the other one (and vice versa).
If the processes are not yet k-bisimilar, the workflow proceeds only if we can
set to τ further actions either in S(p) or in S(q), applying the external min-
imization of the processes. Successively the “Counterexample based” heuristic
is executed. In case the latter is not able to figure out the k-bisimilarity, we
apply the “Jaccard based” heuristics only if k = 1. We keep applying the heuris-
tics “Different behaviour based”, and “Action occurrence based” until either the
processes are k-bisimilar or we apply the “brute force” way, i.e., the “Naive”
algorithm, which constitutes the last chance to check k-bisimilarity and it also is
the most inefficient way to do it. In fact, the “Naive” algorithm explores all the
possible remaining configurations. Notwithstanding, such an algorithm has not
been implemented strictly following Definition 4. Some optimizations have been
introduced in order to further improve the calculation of the k-bisimulation. For
example, we empirically noticed that it is better to examine first the configura-
tions with i = 0, for both processes and then for i = 1 and so on.

5 Application Fields of the k-Bisimulation

The concept of the k-bisimulation has, in our knowledge, never been proposed
before, but it can be usefully employed in several application fields. In the fol-
lowing we analyse in more detail the application of the k-bisimulation in five
different fields.

5.1 Clone Detection

Reusing code fragments by copying and pasting with minor modifications is
customary in software development. As a result, software systems often contain
sections of code that are similar, i.e., code clones. Clone detection [24] has been
recognized as an important issue in software analysis and it is an active field of
research. In [9] the authors presented the design and implementation of CD-Form
(Clone Detector based on FORmal Methods), a tool targeted at the detection
of Type-2 clones. CD-Form is based on the analysis of the Java bytecode that
is transformed into CCS processes, which are checked for equivalence. The more
suitable application field for the k-bisimulation is the detection of Type-3 clones,
where the minimum k gives a measure of the effort to obtain a clone of maximal
length. Clearly, there are other existing measures of Type-3 clone similarity.
However, the use of the k-bisimulation can be useful in the CD-Form tool that
is valuable also in different contexts.

5.2 Process Mining

Process mining is a process management technique that allows the analysis of
business processes using the event logs. The basic idea is to extract knowledge
from event logs recorded by the company information system to retrieve the

194 G. De Ruvo et al.

model of the performed process and to compare this model against the required
behavior for that type of company. Techniques and tools are defined and several
algorithms have been developed to reconstruct causality from a set of sequences
of events [2], as for example the α-algorithm [1]. k-bisimulation can be used to
evaluate the outputs of different algorithms and to compare how closely related
they are to the real processes [20].

5.3 Business-IT Alignment

Business organizations have become heavily dependent on information technol-
ogy (IT) services. The process of alignment is defined as the mutual synchro-
nization of business goals and IT services [27]. The alignment between business
objectives and the IT requirements, maintained over time, is crucial to the suc-
cess of an enterprise [8]. Thus, there is a need to elaborate and evaluate mod-
els, techniques and methodologies supporting the detection and understanding
of misalignment between business and technological objectives. Recent surveys,
however, concluded that in most companies IT is not aligned with business strat-
egy, therefore this is still a prominent area of concern. Process mining techniques,
aiming at discovering a process model from the log, can be usefully employed
for this purpose. k-bisimulation can help to evaluate the misalignment between
a predefined process model and the software system that should realize that
process in a company.

5.4 Wiki Design

Wikis are becoming a new work tool in enterprises and are widely spreading
everywhere. Indeed, it is important to consider the design and evolution of a
wiki. The k-bisimulation may be exploited to obtain a starting point to design
a wiki or a wiki category, i.e., a set of pages regarding a specific topic, looking
for similar structures [11].

5.5 Malware Analysis

Software that aims to produce damaging intent is defined as malicious code
(or malware). Malware analysis is the process of understanding the behavior
and purpose of a sample (such as a virus, worm, or Trojan horse), in order to
develop effective detection techniques and tools. Since malware is rare to change
even after a sequence of syntactic code transformations, researchers have inves-
tigated behaviour-based techniques [21]. We claim that after formal modelling a
malware, the k-bisimulation may constitute a building block to figure out even
subtle differences between malicious and non-malicious behaviours.

6 Experimental Results

In this section we discuss experimental results conducted on six well known
systems with increasing number of actions and states: Demos 13 A1 and

k-Bisimulation: A Bisimulation for Measuring 195

Table 1. Experimental results on six well known systems

Case Study Maximum number of k−btH Naive

(transitions, states) attempts: Definition 4 Algorithm

k=1 Demos 13 A1

(32, 16) 1055 5 352

Demos 13 B2

(48, 27) 991 11 744

2 Philosophers

(138, 74) 6319 85 6241

Diva

(418, 213) 99854 142 98590

CM-ASE

(1749, 926) 1763531 36 1143355

CRAIL

(17362, 3616) 130564901 7 1005488

k=2 Demos 13 A1

(32, 16) 231580 1748 197593

Demos 13 B2

(48, 27) 279313 5 273350

2 Philosophers

(138, 74) 9988761 34 3240

Diva

(418, 213) 2477102672 1829 39058

CM-ASE

(1749, 926) 777558453953 3618 930804953

Demos 13 B22 from CADP [13]; 2-philosophers: the popular dining philoso-
phers problem with a size of 2 [4]; Diva: a Video on Demand distributed applica-
tion developed at the University of Naples, called DIstributed Video Architecture
(DiVA), and it can be operated both in a WAN or a LAN scenario (a CCS spec-
ification can be found in [18]); CM-ASE: Context Management Application
Service Element (CM-ASE) - a model of the Application Layer of the Aeronau-
tical Telecommunications Network, developed by Gurov and Kapron3; Railway
system (Crail): the system specification given in [4]. This system describes the
British Rail’s Solid State Interlocking which is devoted “to adjust, at the request
of the signal operator, the setting of signal and points in the railway to permit
the safe passage of trains”. Note that in Table 1, the number of transitions of all
the case studies include the τ actions.
2 http://cadp.inria.fr/demos.html.
3 http://webhome.cs.uvic.ca/∼bmkapron/ccs.html.

http://cadp.inria.fr/demos.html
http://webhome.cs.uvic.ca/~bmkapron/ccs.html

196 G. De Ruvo et al.

We have implemented a prototype Java tool and employed the popular CADP
[13] toolbox as equivalence checker and external minimizator tool, for the purpose
of computing the k-bisimulation on the aforementioned systems.

In Table 1 we compare the performance of our methodology “k-btH” -
k-bisimulation through Heuristics - against the direct application of the Max-
imum number of attempts, given in Definition 4 and “Naive Algorithm” as
described in Sect. 4.6. For performance we do not intend execution time, but
the number of attempts to figure out whether the processes are k-bisimilar.

We checked the k-bisimulation with k = 1 and k = 2, since it is useful only
when two processes are very similar. Furthermore, in order to test our method-
ology for each case study we obtained the two processes to compare to randomly
modifying each one. In other words, we modified each process randomly chang-
ing at most one action or two actions (using actions in the sort of the process)
respectively for k = 1 and k = 2. The percentage of reduction was over 90 % in
all the experiments and in some case very near to 100 %, whilst the execution
time was maximum 10 min. It is worth noting that the k-bisimulation is useful
especially when the two processes are very similar. Thus, in order to test our
methodology we check the k-bisimulation with small values of k. Clearly, it is not
very interesting to apply k-bisimulation when the systems have a vastly different
structure. Therefore, the proposed method works well for processes that are very
similar and no advantage is obtained when the systems are not k-bisimilar.

7 Conclusion and Related Work

We have presented a methodology to quantify dissimilarities between processes
based on the concept of k-bisimulation. The latter takes into account the exten-
sion of the unlikeness between two given processes. In order to efficiently com-
pute the k-bisimulation, we have proposed several heuristics and a workflow
to properly apply them. Moreover, we have implemented a prototype tool for
the purpose of testing our methodology, obtaining very good results on six well
knowns systems. The application of such bisimulation may involve different con-
texts from clone detection to process mining and malware analysis.

In the last few years we can find in the literature different notions of distance
between processes that try to quantify “how far away” is a process to be related
with some other with respect to a certain semantics. Most of them base their
definitions on the (bi)simulation game that characterizes (bi)simulations between
processes [5,6]. These distances have a local character since only one of the
successors of each state is taken into account in their computation.

Moreover, these approaches cannot synthesize a system that minimizes a
distance from a given specification.

In our work we remove these limitations by means of our new k-bisimulation.
First of all, our k-bisimulation has a global view of the two processes, being able
to hide moves in every point of the two labelled transition systems representing
the two processes, still preserving weak equivalence. Secondly, we are able to
find the minimum k such that two processes are k-bisimilar. A similar approach

k-Bisimulation: A Bisimulation for Measuring 197

can be found in [22,23]. The authors propose a theoretical study of co-inductive
distances and they use quantitative versions of the bisimulation game.

We instead move from the theoretical study to the practical application,
proposing several heuristics to effectively compute the k-bisimulation. Moreover,
we focus only on the weak bisimulation reaching good results. We plan to apply k-
bisimulation in other fields, as for example secure information flow in concurrent
systems [10] or for both incremental design and system evolution scenarios [26].

References

1. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

2. Alkhammash, E., Fathabadi, A.S., Butler, M.J., Ĉırstea, C.: Building traceable
Event-B models from requirements. ECEASST 66, 1–16 (2013)

3. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst. 14(1), 25–59 (1987)

4. Bruns, G.: A case study in safety-critical design. In: von Bochmann, G., Probst,
D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 220–233. Springer, Heidelberg (1993)

5. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer,
Heidelberg (2010)

6. Chen, X., Deng, Y.: Game characterizations of process equivalences. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 107–121. Springer,
Heidelberg (2008)

7. Cleaveland, R., Sims, S.: The NCSU concurrency workbench. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

8. Conchon, S., Krstic, S.: Strategies for combining decision procedures. Theor. Com-
put. Sci. 354(2), 187–210 (2006)

9. Cuomo, A., Santone, A., Villano, U.: CD-Form: a clone detector based on formal
methods. Sci. Comput. Program. 95, 390–405 (2014)

10. De Francesco, N., Santone, A., Tesei, L.: Abstract interpretation and model check-
ing for checking secure information flow in concurrent systems. Fundamenta Infor-
maticae 54(2), 195–211 (2003)

11. De Ruvo, G., Santone, A.: Equivalence-based selection of best-fit models to support
wiki design. In: Reddy, S. (ed.) WETICE 2015, pp. 204–209. IEEE Press, New York
(2015)

12. Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. IEEE
Trans. Inf. Theor. 44(6), 2477–2504 (1998)

13. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

14. van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR ’90 Theories of Concurrency: Unification and Exten-
sion. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)

15. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J.
29(2), 147–160 (1950)

16. Hoare, C.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

17. Jacquart, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vand. Sci.
Nat. 44, 223–270 (1908)

198 G. De Ruvo et al.

18. Mazzocca, N., Santone, A., Vaglini, G., Vittorini, V.: Efficient model checking of
properties of a distributed application: a multimedia case study. Softw. Test. Verif.
Reliab. 12(1), 3–21 (2002)

19. Milner, R.: Communication and Concurrency. Prentice Hall, London (1989). Pren-
tice Hall International Series in Computer Science

20. Nguyen, H.N., Poizat, P., Zäıdi, F.: A symbolic framework for the conformance
checking of value-passing choreographies. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 525–532. Springer,
Heidelberg (2012)

21. Palahan, S., Babic, D., Chaudhuri, S., Kifer, D.: Extraction of statistically signifi-
cant malware behaviors. In: Paynre Jr., C.N. (ed.) ACSAC 2013, pp. 69–78. ACM,
New York (2013)

22. Romero Hernández, D., de Frutos Escrig, D.: Defining distances for all process
semantics. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS,
vol. 7273, pp. 169–185. Springer, Heidelberg (2012)

23. Romero-Hernández, D., de Frutos Escrig, D.: Coinductive definition of distances
between processes: beyond bisimulation distances. In: Ábrahám, E., Palamidessi,
C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 249–265. Springer, Heidelberg (2014)

24. Roy, C., Cordy, J., Koschke, R.: Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Sci. Comput. Program. 74(7), 470–
495 (2009)

25. Santone, A., Vaglini, G.: Abstract reduction in directed model checking CCS
processes. Acta Informatica 49(5), 313–341 (2012)

26. Santone, A., Vaglini, G., Villani, M.L.: Incremental construction of systems: an
efficient characterization of the lacking sub-system. Sci. Comput. Program. 78(9),
1346–1367 (2013)

27. Ullah, A., Lai, R.: A systematic review of business and information technology
alignment. ACM Trans. Manage. Inf. Syst. 4(1), 1–30 (2013)

28. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approx-
imating graph edit distance. PVLDB 2(1), 25–36 (2009)

Time Complexity of Concurrent Programs

– A Technique Based on Behavioural Types –

Elena Giachino1, Einar Broch Johnsen2, Cosimo Laneve1, and Ka I. Pun2(B)

1 Department of Computer Science and Engineering, University of Bologna – INRIA
FOCUS, Bologna, Italy

2 Department of Informatics, University of Oslo, Oslo, Norway
violet@ifi.uio.no

Abstract. We study the problem of automatically computing the time
complexity of concurrent object-oriented programs. To determine this
complexity we use intermediate abstract descriptions that record rele-
vant information for the time analysis (cost of statements, creations of
objects, and concurrent operations), called behavioural types. Then, we
define a translation function that takes behavioural types and makes
the parallelism explicit into so-called cost equations, which are fed to an
automatic off-the-shelf solver for obtaining the time complexity.

1 Introduction

Computing the cost of a sequential algorithm has always been a primary question
for every programmer, who learns the basic techniques in the first years of their
computer science or engineering curriculum. This cost is defined in terms of the
input values to the algorithm and over-approximates the number of the executed
instructions. In turn, given an appropriate abstraction of the CPU speed of a
runtime system, one can obtain the expected computation time of the algorithm.

The computational cost of algorithms is particularly relevant in mainstream
architectures, such as the cloud. In that context, a service is a concurrent pro-
gram that must comply with a so-called service-level agreement (SLA) regulat-
ing the cost in time and assigning penalties for its infringement [3]. The service
provider needs to make sure that the service is able to meet the SLA, for example
in terms of the end-user response time, by deciding on a resource management
policy and determining the appropriate number of virtual machine instances (or
containers) and their parameter settings (e.g., their CPU speeds). To help service
providers make correct decisions about the resource management before actu-
ally deploying the service, we need static analysis methods for resource-aware
services [6]. In previous work by the authors, cloud deployments expressed in
the formal modeling language ABS [8] have used a combination of cost analysis
and simulations to analyse resource management [1], and a Hoare-style proof
system to reason about end-user deadlines has been developed for sequential

Supported by the EU projects FP7-610582 Envisage: Engineering Virtualized Ser-
vices (http://www.envisage-project.eu).

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 199–216, 2016.
DOI: 10.1007/978-3-319-28934-2 11

http://www.envisage-project.eu

200 E. Giachino et al.

executions [7]. In contrast, we are here interested in statically estimating the
computation time of concurrent services deployed on the cloud with a given
dynamic resource management policy.

Technically, this paper proposes a behavioural type system expressing the
resource costs associated with computations and study how these types can be
used to soundly calculate the time complexity of parallel programs deployed
on the cloud. To succinctly formulate this problem, our work is developed for
tml, a small formally defined concurrent object-oriented language which uses
asynchronous communications to trigger parallel activities. The language defines
virtual machine instances in terms of dynamically created concurrent object
groups with bounds on the number of cycles they can perform per time interval.
As we are interested in the concurrent aspects of these computations, we abstract
from sequential analysis in terms of a statement job(e), which defines the number
of processing cycles required by the instruction – this is similar to the sleep(n)
operation in Java.

The analysis of behavioural types is defined by translating them in a code that
is adequate for an off-the-shelf solver – the CoFloCo solver [4]. As a consequence,
we are able to determine the computational cost of algorithms in a parametric
way with respect to their inputs.

Paper overview. The language is defined in Sect. 2 and we discuss restrictions
that ease the development of our technique in Sect. 3. Section 4 presents the
behavioural type system and Sect. 5 explains the analysis of computation time
based on these behavioural types. In Sect. 6 we outline our correctness proof of
the type system with respect to the cost equations. In Sect. 7 we discuss the
relevant related work and in Sect. 8 we deliver concluding remarks.

2 The Language tml

The syntax and the semantics of tml are defined in the following two subsections;
the third subsection discusses a few examples.

Syntax. A tml program is a sequence of method definitions T m(T x){ F y ; s },
ranged over by M , plus a main body { F z ; s′ } with k. In tml we distinguish
between simple types T which are either integers Int or classes Class (there
is just one class in tml), and types F , which also include future types Fut<T>.
These future types let asynchronous method invocations be typed (see below).
The notation T x denotes any finite sequence of variable declarations T x. The
elements of the sequence are separated by commas. When we write T x ; we
mean a sequence T1 x1 ; · · · ; Tn xn ; when the sequence is not empty; we
mean the possibly empty sequence otherwise.

The syntax of statements s, expressions with side-effects z and expressions e
of tml is defined by the following grammar:

s ::= x = z | if e { s } else { s } | job(e) | return e | s ; s
z ::= e | e!m(e) | e.m(x) | e.get | new Class with e | new local Class

e ::= this | se | nse

Time Complexity of Concurrent Programs 201

A statement s may be either one of the standard operations of an imperative
language or the job statement job(e) that delays the continuation by e cycles of
the machine executing it.

An expression z may change the state of the system. In particular, it may be
an asynchronous method invocation of the form e!m(e), which does not suspend
the caller’s execution. When the value computed by the invocation is needed, the
caller performs a non-blocking get operation: if the value needed by a process is
not available, then an awaiting process is scheduled and executed, i.e., await-
get. Expressions z also include standard synchronous invocations e.m(e) and
new local Class, which creates a new object. The intended meaning is to create
the object in the same machine – called cog or concurrent object group – of the
caller, thus sharing the processor of the caller: operations in the same virtual
machine interleave their evaluation (even if in the following operational seman-
tics the parallelism is not explicit). Alternatively, one can create an object on
a different cog with new Class with e thus letting methods execute in paral-
lel. In this case, e represents the capacity of the new cog, that is, the number of
cycles the cog can perform per time interval. We assume the presence of a special
identifier this.capacity that returns the capacity of the corresponding cog.

A pure expression e can be the reserved identifier this or an integer expres-
sion. Since the analysis in Sect. 5 cannot deal with generic integer expressions, we
parse expressions in a careful way. In particular we split them into size expres-
sions se, which are expressions in Presburger arithmetics (this is a decidable
fragment of Peano arithmetics that only contains addition), and non-size expres-
sions nse, which are the other type of expressions. The syntax of size and non-size
expressions is the following:

nse ::= k | x | nse ≤ nse | nse and nse | nse or nse
| nse + nse | nse − nse | nse × nse | nse/nse

se ::= ve | ve ≤ ve | se and se | se or se
ve ::= k | x | ve + ve | k × ve
k ::= rational constants

In the paper, we assume that sequences of declarations T x and method declara-
tions M do not contain duplicate names. We also assume that return statements
have no continuation.

Semantics. The semantics of tml is defined by a transition system whose states
are configurations cn that are defined by the following syntax.

cn ::= ε | fut(f, val) | ob(o, c, p, q) | invoc(o, f, m, v) act ::= o | ε
| cog(c, act, k) | cn cn val ::= v | ⊥

p ::= { l | s } | idle l ::= [· · · , x �→ v, · · ·]
q ::= ∅ | { l | s } | q q v ::= o | f | k

A configuration cn is a set of concurrent object groups (cogs), objects, invo-
cation messages and futures, and the empty configuration is written as ε. The
associative and commutative union operator on configurations is denoted by
whitespace. A cog is given as a term cog(c, act, k) where c and k are respectively
the identifier and the capacity of the cog, and act specifies the currently active

202 E. Giachino et al.

(Cond-True)
true = [[e]]l

ob(o, c, { l | if e { s1 } else { s2 } ; s }, q)
→ ob(o, c, { l | s1 ; s }, q)

false = [[e]]l
ob(o, c, { l | if e { s1 } else { s2 } ; s }, q)

→ ob(o, c, { l | s2 ; s }, q)

(New)
c′ = fresh() o′ = fresh() k = [[e]]l

ob(o, c, { l | x = new Class with e ; s }, q)
→ ob(o, c, { l | x = o′ ; s }, q)

ob(o′, c′, idle, ∅) cog(c′, o′, k)

(New-Local)
o′ = fresh()

ob(o, c, { l | x = new local Class ; s }, q)
→ ob(o, c, { l | x = o′ ; s }, q)

ob(o′, c, idle, ∅)

(Get-True)
f = [[e]]l v �= ⊥

ob(o, c, { l | x = e.get ; s }, q) fut(f, v)
→ ob(o, c, { l | x = v ; s }, q) fut(f, v)

f = [[e]]l
ob(o, c, { l | x = e.get ; s }, q) fut(f, ⊥)

→ ob(o, c, idle, q ∪ { l | x = e.get ; s }) fut(f, ⊥)

(Self-Sync-Call)
o = [[e]]l v = [[e]]l f ′ = l(destiny)

f = fresh() { l′ | s′ } = bind(o, f, m, v)
ob(o, c, { l | x = e.m(e) ; s }, q)

→ ob(o, c, { l′ | s′ ; cont(f ′) }, q ∪ { l | x = f.get ; s })
fut(f, ⊥)

(Self-Sync-Return-Sched)
f = l′(destiny)

ob(o, c, { l | cont(f) }, q ∪ { l′ | s })
→ ob(o, c, { l′ | s }, q)

(Cog-Sync-Call)
o′ = [[e]]l v = [[e]]l f ′ = l(destiny)

f = fresh() { l′ | s′ } = bind(o′, f, m, v)
ob(o, c, { l | x = e.m(e) ; s }, q)
ob(o′, c, idle, q′) cog(c, o, k)

→ ob(o, c, idle, q ∪ { l | x = f.get ; s }) fut(f, ⊥)
ob(o′, c, { l′ | s′ ; cont(f ′) }, q′) cog(c, o′, k)

(Cog-Sync-Return-Sched)
f = l′(destiny)

ob(o, c, { l | cont(f) }, q) cog(c, o, k)
ob(o′, c, idle, q′ ∪ { l′ | s′ })

→ ob(o, c, idle, q) cog(c, o′, k)
ob(o′, c, { l′ | s′ }, q′)

(Async-Call)
o′ = [[e]]l v = [[e]]l f = fresh()
ob(o, c, { l | x = e!m(e) ; s }, q)

→ ob(o, c, { l | x = f ; s }, q) invoc(o′, f, m, v) fut(f, ⊥)

(Bind-Mtd)
{ l | s } = bind(o, f, m, v)

ob(o, c, p, q) invoc(o, f, m, v)
→ ob(o, c, p, q ∪ { l | s })

(Context)
cn → cn′

cn cn′′ → cn′ cn′′

(Release-Cog)
ob(o, c, idle, q) cog(c, o, k)

→ ob(o, c, idle, q) cog(c, ε, k)

(Activate)
ob(o, c, idle, q ∪ { l | s }) cog(c, ε, k)

→ ob(o, c, { l | s }, q) cog(c, o, k)

(Return)
v = [[e]]l f = l(destiny)

ob(o, c, { l | return e }, q) fut(f, ⊥)
→ ob(o, c, idle, q) fut(f, v)

(Job-0)
[[e]]l = 0

ob(o, c, { l | job(e) ; s }, q)
→ ob(o, c, { l | s }, q)

(Assign-Local)
x ∈ l) v = [[e]]l

ob(o, c, { l | x = e ; s }, q)
→ ob(o, c, { l [x 	→ v] | s }, q)

Fig. 1. The transition relation of tml – part 1.

object in the cog. An object is written as ob(o, c, p, q), where o is the identifier of
the object, c the identifier of the cog the object belongs to, p an active process,
and q a pool of suspended processes. A process is written as { l | s }, where l
denotes local variable bindings and s a list of statements. An invocation mes-
sage is a term invoc(o, f, m, v) consisting of the callee o, the future f to which
the result of the call is returned, the method name m, and the set of actual
parameter values for the call. A future fut(f, val) contains an identifier f and
a reply value val, where ⊥ indicates the reply value of the future has not been
received.

The following auxiliary function is used in the semantic rules for invocations.
Let T ′ m(T x){ F x′; s } be a method declaration. Then

bind(o, f, m, v) = { [destiny �→ f, x �→ v, x′ �→ ⊥] | s{o/this} }

Time Complexity of Concurrent Programs 203

(Tick)

strongstable t(cn)
cn → Φ(cn, t)

where

Φ(cn, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ob(o, c, {l′ | job(k′) ; s}, q) Φ(cn′, t) if cn = ob(o, c, {l | job(e) ; s}, q) cn′

and cog(c, o, k) ∈ cn′

and k′ = [[e]]l − k ∗ t

ob(o, c, idle, q) Φ(cn′, t) if cn = ob(o, c, idle, q) cn′

cn otherwise.

Fig. 2. The transition relation of tml – part 2: the strongly stable case

The transition rules of tml are given in Figs. 1 and 2. We discuss the most
relevant ones: object creation, method invocation, and the job(e) operator. The
creation of objects is handled by rules New and New-Local: the former creates
a new object inside a new cog with a given capacity e, the latter creates an object
in the local cog. Method invocations can be either synchronous or asynchronous.
Rules Self-Sync-Call and Cog-Sync-Call specify synchronous invocations
on objects belonging to the same cog of the caller. Asynchronous invocations
can be performed on every object.

In our model, the unique operation that consumes time is job(e). We notice
that the reduction rules of Fig. 1 are not defined for the job(e) statement, except
the trivial case when the value of e is 0. This means that time does not advance
while non-job statements are evaluated. When the configuration cn reaches a
stable state, i.e., no other transition is possible apart from those evaluating the
job(e) statements, then the time is advanced by the minimum value that is
necessary to let at least one process start. In order to formalize this semantics,
we define the notion of stability and the update operation of a configuration cn
(with respect to a time value t). Let [[e]]l return the value of e when variables
are bound to values stored in l.

Definition 1. Let t > 0. A configuration cn is t-stable, written stable t(cn), if
any object in cn is in one of the following forms:

1. ob(o, c, { l | job(e); s }, q) with cog(c, o, k) ∈ cn and [[e]]l/k ≥ t,
2. ob(o, c, idle, q) and

i. either q = ∅,
ii. or, for every p ∈ q, p = { l | x = e.get; s } with [[e]]l = f and fut(f,⊥),
iii. or, cog(c, o′, k) ∈ cn where o �= o′, and o′ satisfies Definition 1.1.

A configuration cn is strongly t-stable, written strongstable t(cn), if it is t-
stable and there is an object ob(o, c, { l | job(e); s }, q) with cog(c, o, k) ∈ cn and
[[e]]l/k = t.

204 E. Giachino et al.

Notice that t-stable (and, consequently, strongly t-stable) configurations can-
not progress anymore because every object is stuck either on a job or on unre-
solved get statements. The update of cn with respect to a time value t, noted
Φ(cn, t) is defined in Fig. 2. Given these two notions, rule Tick defines the time
progress.

The initial configuration of a program with main method { F x; s } with k is

ob(start , start, { [destiny �→ fstart , x �→ ⊥] | s }, ∅)
cog(start, start , k)

where start and start are special cog and object names, respectively, and fstart
is a fresh future name. As usual, →∗ is the reflexive and transitive closure of →.

Examples. To begin with, we discuss the Fibonacci method. It is well known that
the computational cost of its sequential recursive implementation is exponential.
However, this is not the case for the parallel implementation. Consider

Int fib(Int n) {
if (n<=1) { return 1; }
else { Fut<Int> f; Class z; Int m1; Int m2;

job(1);
z = new Class with this.capacity ;
f = this!fib(n-1); g = z!fib(n-2);
m1 = f.get; m2 = g.get;
return m1 + m2; } }

Here, the recursive invocation fib(n-1) is performed on the this object while
the invocation fib(n-2) is performed on a new cog with the same capacity (i.e.,
the object referenced by z is created in a new cog set up with this.capacity),
which means that it can be performed in parallel with the former one. It turns
out that the cost of the following invocation is n.

Class z; Int m; Int x; x = 1;
z = new Class with x;
m = z.fib(n);

Observe that, by changing the line x = 1; into x = 2; we obtain a cost of n/2.
Our semantics does not exclude paradoxical behaviours of programs that

perform infinite actions without consuming time (preventing rule Tick to apply),
such as this one

Int foo() { Int m; m = this.foo(); return m; }

This kind of behaviours are well-known in the literature, (cf. Zeno behaviours)
and they may be easily excluded from our analysis by constraining recursive
invocations to be prefixed by a job(e)-statement, with a positive e. It is worth to
observe that this condition is not sufficient to eliminate paradoxical behaviours.
For instance the method below does not terminate and, when invoked with
this.fake(2), where this is in a cog of capacity 2, has cost 1.

Int fake(Int n) {
Int m; Class x;
x = new Class with 2*n; job(1); m = x.fake(2*n); return m; }

Time Complexity of Concurrent Programs 205

Imagine a parallel invocation of the method Int one() { job(1); } on an
object residing in a cog of capacity 1. At each stability point the job(1) of the
latter method will compete with the job(1) of the former one, which will win
every time, since having a greater (and growing) capacity it will require always
less time. So at the first stability point we get job(1−1/2) (for the method one),
then job(1 − 1/2 − 1/4) and so on, thus this sum will never reach 0.

In the examples above, the statement job(e) is a cost annotation that spec-
ifies how many processing cycles are needed by the subsequent statement in the
code. We notice that this operation can also be used to program a timer which
suspends the current execution for e units of time. For instance, let

Int wait(Int n) { job(n); return 0; }

Then, invoking wait on an object with capacity 1

Class timer; Fut<Class> f; Class x;
timer = new Class with 1;
f = timer!wait(5); x = f.get;

one gets the suspension of the current thread for 5 units of time.

3 Issues in Computing the Cost of tml Programs

The computation time analysis of tml programs is demanding. To highlight the
difficulties, we discuss a number of methods.

Int wrapper(Class x) {
Fut<Int> f; Int z;
job(1) ; f = x!server(); z = f.get;
return z; }

Method wrapper performs an invocation on its argument x. In order to determine
the cost of wrapper, we notice that, if x is in the same cog of the carrier, then its
cost is (assume that the capacity of the carrier is 1): 1+cost(server) because the
two invocations are sequentialized. However, if the cogs of x and of the carrier
are different, then we are not able to compute the cost because we have no clue
about the state of the cog of x.

Next consider the following definition of wrapper

Int wrapper_with_log(Class x) {
Fut<Int> f; Fut<Int> g; Int z;
job(1) ; f = x!server(); g = x!print_log(); z = f.get;
return z; }

In this case the wrapper also asks the server to print its log and this invo-
cation is not synchronized. We notice that the cost of wrapper with log is
not anymore 1 + cost(server) (assuming that x is in the same cog of the car-
rier) because print log might be executed before server. Therefore the cost of
wrapper with log is 1 + cost(server) + cost(print log).

Finally, consider the following wrapper that also logs the information received
from the server on a new cog without synchronising with it:

206 E. Giachino et al.

Int wrapper_with_external_log(Class x) {
Fut<Int> f; Fut<Int> g; Int z; Class y;
job(1) ; f = x!server(); g = x!print_log(); z = f.get;
y = new Class with 1;
f = y!external_log(z);
return z; }

What is the cost of wrapper with external log? Well, the answer here is debat-
able: one might discard the cost of y!external log(z) because it is useless
for the value returned by wrapper with external log, or one might count it
because one wants to count every computation that has been triggered by a
method in its cost. In this paper we adhere to the second alternative; however,
we think that a better solution should be to return different cost for a method:
a strict cost, which spots the cost that is necessary for computing the returned
value, and an overall cost, which is the one computed in this paper.

Anyway, by the foregoing discussion, as an initial step towards the time
analysis of tml programs, we simplify our analysis by imposing the following
constraint:

– it is possible to invoke methods on objects either in the same cog of the caller
or on newly created cogs.

The above constraint means that, if the callee of an invocation is one of the
arguments of a method then it must be in the same cog of the caller. It also
means that, if an invocation is performed on a returned object then this object
must be in the same cog of the carrier. We will enforce these constraints in the
typing system of the following section – see rule T-Invoke.

4 A Behavioural Type System for tml

In order to analyse the computation time of tml programs we use abstract
descriptions, called behavioural types, which are intermediate codes highlight-
ing the features of tml programs that are relevant for the analysis in Sect. 5.
These abstract descriptions support compositional reasoning and are associated
to programs by means of a type system. The syntax of behavioural types is
defined as follows:

t ::= -- | se | c[se] basic value
x ::= f | t extended value
a ::= e | νc[se] | m(t) → t | νf : m(t) → t | f� atom
b ::= a � Γ | a � b | (se){b } | b + b behavioural type

where c, c′, · · · range over cog names and f , f ′, · · · range over future names.
Basic values t are either generic (non-size) expressions -- or size expressions se
or the type c[se] of an object of cog c with capacity se. The extended values add
future names to basic values.

Atoms a define creation of cogs (νc[se]), synchronous and asynchronous
method invocations (m(t) → t and νf : m(t) → t, respectively), and synchroniza-
tions on asynchronous invocations (f�). We observe that cog creations always

Time Complexity of Concurrent Programs 207

carry a capacity, which has to be a size expression because our analysis in
the next section cannot deal with generic expressions. Behavioural types b are
sequences of atoms a � b′ or conditionals, typically (se){b } + (¬se){b′ } or
b+b′, according to whether the boolean guard is a size expression that depends
on the arguments of a method or not. In order to type sequential composition in
a precise way (see rule T-Seq), the leaves of behavioural types are labelled with
environments, ranged over by Γ , Γ ′, · · · . Environments are maps from method
names m to terms (t) → t, from variables to extended values x, and from future
names to values that are either t or t�.

The abstract behaviour of methods is defined by method behavioural types
of the form: m(tt, t){b } : tr, where tt is the type value of the receiver of the
method, t are the type value of the arguments, b is the abstract behaviour of
the body, and tr is the type value of the returned object. The subterm tt, t of
the method contract is called header ; tr is called returned type value. We assume
that names in the header occur linearly. Names in the header bind the names
in b and in tr. The header and the returned type value, written (tt, t) → tr,
are called behavioural type signature. Names occurring in b or tr may be not
bound by header. These free names correspond to new cog creations and will be
replaced by fresh cog names during the analysis. We use C to range over method
behavioural types.

The type system uses judgments of the following form:

– Γ � e : x for pure expressions e, Γ � f : t or Γ � f : t� for future names f ,
and Γ � m(t) : t for methods.

– Γ � z : x, [a � Γ ′] for expressions with side effects z, where x is the value,
a � Γ ′ is the corresponding behavioural type, where Γ ′ is the environment Γ
with possible updates of variables and future names.

– Γ � s : b, in this case the updated environments Γ ′ are inside the behavioural
type, in correspondence of every branch of its.

Since Γ is a function, we use the standard predicates x ∈ dom(Γ) or x �∈
dom(Γ). Moreover, we define

Γ [x �→ x](y)
def
=

{
x if y = x
Γ (y) otherwise

The multi-hole contexts C[] are defined by the following syntax:
C[] ::= [] | a � C[] | C[] + C[] | (se){ C[] }

and, whenever b = C[a1 � Γ1] · · · [an � Γn], then b[x �→ x] is defined as C[a1 �
Γ1[x �→ x]] · · · [an � Γn[x �→ x]].

The typing rules for expressions are defined in Fig. 3. These rules are not
standard because (size) expressions containing method’s arguments are typed
with the expressions themselves. This is crucial to the cost analysis in Sect. 5.
In particular, cog creation is typed by rule T-New, with value c[se], where
c is the fresh name associated with the new cog and se is the value associ-
ated with the declared capacity. The behavioural type for the cog creation is
νc[se] � Γ [c �→ se], where the newly created cog is added to Γ . In this way, it is
possible to verify whether the receiver of a method invocation is within a locally
created cog or not by testing whether the receiver belongs to dom(Γ) or not,

208 E. Giachino et al.

(T-Var)

x ∈ dom(Γ)

Γ � x : Γ (x)

(T-Se)

Γ � se : se
(T-Nse)

Γ � nse : --

(T-Method)

Γ (m) = () → ′

fv(′) \ fv() �= ∅ implies σ(′) fresh

Γ � m(σ()) : σ(′)

(T-New)

Γ � e : se c fresh

Γ � new Class with e : c[se], [νc[se] � Γ [c �→ se]]

(T-New-Local)

Γ � this : c[se]

Γ � new local Class : c[se], [0 � Γ]

(T-Invoke-Sync)

Γ � e : c[se] Γ (this) = c[se]
Γ � e : Γ � m(c[se],) : ′

Γ � e.m(e) : ′, [m(c[se],) → ′ � Γ]

(T-Invoke)

Γ � e : c[se] (c ∈ dom(Γ) or Γ (this) = c[se])
Γ � e : Γ � m(c[se],) : ′ f fresh

Γ � e!m(e) : f, [νf : m(c[se],) → ′ � Γ [f �→ ′]]

(T-Get)

Γ � e : f Γ (f) =

Γ � e.get : , [f� � Γ [f �→ �]]

(T-Get-Top)

Γ � e : f Γ (f) = �

Γ � e.get : , [0 � Γ]

Fig. 3. Typing rules for expressions

respectively (cf. rule T-Invoke). Object creation (cf. rule T-New-Local) is
typed as the cog creation, with the exception that the cog name and the capac-
ity value are taken from the local cog and the behavioural type is empty. Rule
T-Invoke types method invocations e!m(e) by using a fresh future name f that
is associated to the method name, the cog name of the callee and the argu-
ments. In the updated environment, f is associated with the returned value.
Next we discuss the constraints in the premise of the rule. As we discussed in
Sect. 2, asynchronous invocations are allowed on callees located in the current
cog, Γ (this) = c[se], or on a newly created object which resides in a fresh cog,
c ∈ dom(Γ). Rule T-Get defines the synchronization with a method invocation
that corresponds to a future f . The expression is typed with the value t of f in
the environment and behavioural type f�. Γ is then updated for recording that
the synchronization has been already performed, thus any subsequent synchro-
nization on the same value would not imply any waiting time (see that in rule
T-Get-Top the behavioural type is 0). The synchronous method invocation in
rule T-Invoke-Sync is directly typed with the return value t′ of the method
and with the corresponding behavioural type. The rule enforces that the cog of
the callee coincides with the local one.

The typing rules for statements are presented in Fig. 4. The behavioural type
in rule T-Job expresses the time consumption for an object with capacity se ′

to perform se processing cycles: this time is given by se/se ′, which we observe
is in general a rational number. We will return to this point in Sect. 5.

The typing rules for method and class declarations are shown in Fig. 5.

Time Complexity of Concurrent Programs 209

(T-Assign)

Γ � rhs : , [� Γ ′]
Γ � x = rhs : � Γ ′[x �→]

(T-Job)

Γ � e : se Γ � this : c[se′]

Γ � job(e) : se/se′ � Γ

(T-Return)

Γ � e : Γ � destiny :

Γ � return e : 0 � Γ

(T-Seq)

Γ � s : C[1 � Γ1] · · · [n � Γn]
Γi � s′ : ′

i

Γ � s ; s′ : C[1
′
1] · · · [n

′
n]

(T-If-Nse)

Γ � e : -- Γ � s : Γ � s′ : ′

Γ � if e { s } else { s′ } : + ′

(T-If-Se)

Γ � e : se Γ � s : Γ � s′ : ′

Γ � if e { s } else { s′ } : (se){ } + (¬se){ ′}

Fig. 4. Typing rules for statements

(T-Method)

Γ (m) = (t,) → r

Γ [this �→ t][destiny �→ r][x �→] � s : C[1 � Γ1] · · · [n � Γn]

Γ � T m (T x) { s } : m(t,){ C[1 � ∅] · · · [n � ∅] } : r

(T-Class)

Γ � M : Γ [this �→ start[k]][x �→] � s : C[1 � Γ1] · · · [n � Γn]

Γ � M { T x ; s } with k : , C[1 � ∅] · · · [n � ∅]

Fig. 5. Typing rules for declarations

Examples. The behavioural type of the fib method discussed in Sect. 2 is

fib(c[x],n) {

(n ≤ 1){ 0 � ∅ }

+ (n ≥ 2){

1/x � d[x] � νf : fib(c[x],n-1)→ -- � νg: fib(d[x],n-2)→ -- �

f�
� g�

�0 � ∅ } } : --

5 The Time Analysis

The behavioural types returned by the system defined in Sect. 4 are used to
compute upper bounds of time complexity of a tml program. This computation
is performed by an off-the-shelf solver – the CoFloCo solver [4] – and, in this
section, we discuss the translation of a behavioural type program into a set of
cost equations that are fed to the solver. These cost equations are terms

m(x) = exp [se]

where m is a (cost) function symbol, exp is an expression that may contain (cost)
function symbol applications (we do not define the syntax of exp, which may be

210 E. Giachino et al.

derived by the following equations; the reader may refer to [4]), and se is a size
expression whose variables are contained in x. Basically, our translation maps
method types into cost equations, where (i) method invocations are translated
into function applications, and (ii) cost expressions se occurring in the types are
left unmodified. The difficulties of the translation is that the cost equations must
account for the parallelism of processes in different cogs and for sequentiality of
processes in the same cog. For example, in the following code:

x = new Class with c; y = new Class with d;
f = x!m(); g = y!n(); u = g.get; u = f.get;

the invocations of m and n will run in parallel, therefore their cost will be
max(t, t′), where t is the time of executing m on x and t′ is the time execut-
ing n on y. On the contrary, in the code

x = new local Class; y = new local Class;
f = x!m(); g = y!n(); u = g.get; u = f.get;

the two invocations are queued for being executed on the same cog. Therefore
the time needed for executing them will be t + t′, where t is time needed for
executing m on x, and t′ is the time needed for executing n on y. To abstract away
the execution order of the invocations, the execution time of all unsynchronized
methods from the same cog are taken into account when one of these methods
is synchronized with a get-statement. To avoid calculating the execution time
of the rest of the unsynchronized methods in the same cog more than necessary,
their estimated cost are ignored when they are later synchronized.

In this example, when the method invocation y!n() is synchronized with
g.get, the estimated time taken is t+ t′, which is the sum of the execution time
of the two unsynchronized invocations, including the time taken for executing m
on x because both x and y are residing in the same cog. Later when synchronizing
the method invocation x!m(), the cost is considered to be zero because this
invocation has been taken into account earlier.

The Translate Function. The translation of behavioural types into cost equations
is carried out by the function translate, defined below. This function parses
atoms, behavioural types or declarations of methods and classes. We will use the
following auxiliary function that removes cog names from (tuples of) t terms:

	
 = 	e
 = e 	c[e]
 = e 	t1, . . . , tn
 = 	t1
, . . . , 	tn

We will also use translation environments, ranged over by Ψ , Ψ ′, · · · , which map
future names to pairs (e, m(t)) that records the (over-approximation of the) time
when the method has been invoked and the invocation.

In the case of atoms, translate takes four inputs: a translation environ-
ment Ψ , the cog name of the carrier, an over-approximated cost e of an execution
branch, and the atom a. In this case, translate returns an updated translation
environment and the cost. It is defined as follows.

Time Complexity of Concurrent Programs 211

translate(Ψ, c, e,a) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ψ, e + e′) when a = e′

(Ψ, e) when a = νc[e′]

(Ψ, e + m(�t�)) when a = m(t) → t′

(Ψ [f �→ (e, m(t))], e) when a = (νf : m(t) → t′)

(Ψ \ F, e + e1))) when a = f� and Ψ(f) = (ef , mf (c[e′], tf))
let F = { g | Ψ(g) = (eg, mg(c[e

′], tg)) } then
and e1 =

∑ { mg(�t′
g�) | (eg, mg(t′

g)) ∈ Ψ(F) }
(Ψ \ F,max(e, e1 + e2)) when a = f� and Ψ(f) = (ef , mf (c′[e′], tf)) and c
= c′

let F = { g | Ψ(g) = (eg, mg(c
′[e′], tg)) } then

e1 =
∑ { mg(�t′

g�) | (eg, mg(t′
g)) ∈ Ψ(F) }

and e2 = max{ eg | (eg, mg(t′
g)) ∈ Ψ(F) }

(Ψ, e) when a = f� and f /∈ dom(Ψ)

The interesting case of translate is when the atom is f�. There are three
cases:

1. The synchronization is with a method whose callee is an object of the same
cog. In this case its cost must be added. However, it is not possible to know
when the method will be actually scheduled. Therefore, we sum the costs of
all the methods running on the same cog (worst case) – the set F in the
formula – and we remove them from the translation environment.

2. The synchronization is with a method whose callee is an object on a different
cog c′. In this case we use the cost that we stored in Ψ(f). Let Ψ(f) =
(ef , mf (c′[e′], tf)), then ef represents the time of the invocation. The cost of
the invocation is therefore ef +mf (e′, 	tf
). Since the invocation is in parallel
with the thread of the cog c, the overall cost is max (e, ef + mf (e′, 	tf
)).
As in case 5, we consider the worst scheduler choice on c′. Instead of taking
ef + mf (e′, 	tf
), we compute the cost of all the methods running on c′ – the
set F in the formula – and we remove them from the translation environment.

3. The future does not belong to Ψ . That is the cost of the invocation which has
been already computed. In this case, the value e does not change.

In the case of behavioural types, translate takes as input a translation
environment, the cog name of the carrier, an over-approximated cost of the
current execution branch (e1)e2, where e1 indicates the conditions corresponding
to the branch, and the behavioural type a.

translate(Ψ, c, (e1)e2,b) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ (Ψ ′, (e1)e′
2) } when b = a � Γ and translate(Ψ, c, e2,a) = (Ψ ′, e′

2)

C when b = a � b′ and translate(Ψ, c, e2,a) = (Ψ ′, e′
2)

and translate(Ψ ′, c, (e1)e′
2,b

′) = C

C ∪ C′ when b = b1 + b2 and translate(Ψ, c, (e1)e2,b1) = C
and translate(Ψ, c, (e1)e2,b2) = C′

C when b = (e){b′ } and translate(Ψ, c, (e1 ∧ e)e2,b
′) = C

The translation of the behavioural types of a method is given below. Let dom(Ψ)

= { f1, · · · , fn }. Then we define Ψ� def
= f1

� � · · · � fn
�.

212 E. Giachino et al.

translate(m(c[e], t){b } : t) =

⎡

⎢
⎣

m(e, e) = e′
1 + e′′

1 [e1]
...

m(e, e) = e′
n + e′′

n [en]

where translate(∅, c, 0,b) = { Ψi, (ei)e′
i | 1 ≤ i ≤ n }, and e = 	t
, and e′′

i =
translate(Ψi, c, 0, Ψi

��∅). In addition, [ei] are the conditions for branching the
possible execution paths of method m(e, e), and e′

i+e′′
i is the over-approximation

of the cost for each path. In particular, e′
i corresponds to the cost of the syn-

chronized operations in each path (e.g., jobs and gets), while e′′
i corresponds to

the cost of the asynchronous method invocations triggered by the method, but
not synchronized within the method body.

Examples. We show the translation of the behavioural type of fibonacci pre-
sented in Sect. 4. Let b = (se){0 � ∅} + (¬se){b′}, where se = (n ≤ 1) and
b′ = 1/e � νf : fib(c[e], n − 1) → -- � νg: fib(c′[e], n − 2) → -- � f� � g� � 0 � ∅}.
Let also Ψ = Ψ1 ∪ Ψ2, where Ψ1 = [f �→ (1/e, fib(e, n − 1))] and Ψ2 = [g �→
(1/e, fib(e, n − 2))].

The following equations summarize the translation of the behavioural type
of the fibonacci method.

translate(∅, c, 0,b)
= translate(∅, c, 0, (se) { 0 � ∅}) ∪ translate(∅, c, 0, (¬se) {b′ })
= translate(∅, c, (se)0, { 0 � ∅}) ∪ translate(∅, c, (¬se)0, { 1/e � . . . })
= { (se)0 } ∪ translate(∅, c, (¬se)(1/e), { νf : fib(c[e], n − 1) → -- � . . . })
= { (se)0 } ∪ translate(Ψ1, c, (¬se)(1/e), { νg: fib(c′[e], n − 2) → -- � . . . })
= { (se)0 } ∪ translate(Ψ, c, (¬se)(1/e), { f� � g� � . . . })
= { (se)0 } ∪ translate(Ψ2, c, (¬se)(1/e + fib(e, n − 1)), { g� � . . . })
= { (se)0 } ∪ translate(∅, c, (¬se)(1/e +max(fib(e, n − 1), fib(e, n − 2))), { 0 � ∅})
= { (se)0 } ∪ { (¬se)(1/e +max(fib(e, n − 1), fib(e, n − 2))) }

translate(∅, c, 0, 0) = (∅, 0)
translate(∅, c, 0, 1/e) = (∅, 1/e)
translate(∅, c, 1/e, νf : fib(c[e], n − 1) → --) = (Ψ1, 1/e)
translate(Ψ1, c, 1/e, νg: fib(c′[e], n − 2) → --) = (Ψ, 1/e)
translate(Ψ, c, 1/e, f�) = (Ψ2, 1/e + fib(e, n − 1))
translate(Ψ2, c, 1/e + fib(e, n − 1), g�) = (∅, 1/e +max(fib(e, n − 1), fib(e, n − 2)))

translate(fib (c[e], n){b } : --) ={
fib(e, n) = 0 [n ≤ 1]

fib(e, n) = 1/e +max(fib(e, n − 1), fib(e, n − 2)) [n ≥ 2]

Remark 1. Rational numbers are produced by the rule T-Job of our type sys-
tem. In particular behavioural types may manifest terms se/se ′ where se gives
the processing cycles defined by the job operation and se ′ specifies the number
of processing cycles per unit of time the corresponding cog is able to handle.
Unfortunately, our backend solver – CoFloCo – cannot handle rationals se/se ′

Time Complexity of Concurrent Programs 213

where se ′ is a variable. This is the case, for instance, of our fibonacci example,
where the cost of each iteration is 1/x, where x is a parameter. In order to analyse
this example, we need to determine a priori the capacity to be a constant – say
2 –, obtaining the following input for the solver:

eq(f(E,N),0,[],[-N>=1,2*E=1]).
eq(f(E,N),nat(E),[f(E,N-1)],[N>=2,2*E=1]).
eq(f(E,N),nat(E),[f(E,N-2)],[N>=2,2*E=1]).

Then the solver gives nat(N-1)*(1/2) as the upper bound. It is worth to
notice that fixing the fibonacci method is easy because the capacity does not
change during the evaluation of the method. This is not always the case, as in
the following alternative definition of fibonacci:

Int fib_alt(Int n) {
if (n<=1) { return 1; }
else { Fut<Int> f; Class z; Int m1; Int m2;

job(1);
z = new Class with (this.capacity*2) ;
f = this!fib_alt(n-1); g = z!fib_alt(n-2);
m1 = f.get; m2 = g.get;
return m1+m2; } }

In this case, the recursive invocation z!fib alt(n-2) is performed on a cog with
twice the capacity of the current one and CoFloCo is not able to handle it. It
is worth to observe that this is a problem of the solver, which is otherwise very
powerful for most of the examples. Our behavioural types carry enough infor-
mation for dealing with more complex examples, so we will consider alternative
solvers or combination of them for dealing with examples like fib alt.

6 Properties

In order to prove the correctness of our system, we need to show that (i) the
behavioural type system is correct, and (ii) the computation time returned by
the solver is an upper bound of the actual cost of the computation.

The correctness of the type system in Sect. 4 is demonstrated by means of a
subject reduction theorem expressing that if a runtime configuration cn is well
typed and cn → cn′ then cn′ is well-typed as well, and the computation time
of cn is larger or equal to that of cn′. In order to formalize this theorem we
extend the typing to configurations and we also use extended behavioural types
k with the following syntax

k ::= b | [b]cf | k ‖ k runtime behavioural type

The type [b]cf expresses the behaviour of an asynchronous method bound to
the future f and running in the cog c; the type k ‖ k′ expresses the parallel
execution of methods in k and in k′.

We then define a relation �t between runtime behavioural types that relates
types. The definition is algebraic, and k �t k′ is intended to mean that the
computational time of k is at least that of k′+t (or conversely the computational
time of k′ is at most that of k− t). This is actually the purpose of our theorems.

214 E. Giachino et al.

Theorem 1 (Subject Reduction). Let cn be a configuration of a tml program
and let k be its behavioural type. If cn is not strongly t-stable and cn → cn′ then
there exists k′ typing cn′ such that k �0 k′. If cn is strongly t-stable and cn → cn′

then there exists k′ typing cn′ such that k �t k
′.

The proof of is a standard case analysis on the last reduction rule applied. The
second part of the proof requires an extension of the translate function to run-
time behavioural types. We therefore define a cost of the equations Ek returned
by translate(k) – noted cost(Ek) – by unfolding the equational definitions.

Theorem 2 (Correctness). If k �t k
′, then cost(Ek) ≥ cost(Ek′) + t.

As a byproduct of Theorems 1 and 2, we obtain the correctness of our technique,
modulo the correctness of the solver.

7 Related Work

In contrast to the static time analysis for sequential executions proposed in [7],
the paper proposes an approach to analyse time complexity for concurrent pro-
grams. Instead of using a Hoare-style proof system to reason about end-user
deadlines, we estimate the execution time of a concurrent program by deriving
the time-consuming behaviour with a type-and-effect system.

Static time analysis approaches for concurrent programs can be divided into
two main categories: those based on type-and-effect systems and those based on
abstract interpretation – see references in [9]. Type-and-effect systems (i) collect
constraints on type and resource variables and (ii) solve these constraints. The
difference with respect to our approach is that we do not perform the analy-
sis during the type inference. We use the type system for deriving behavioural
types of methods and, in a second phase, we use them to run a (non compo-
sitional) analysis that returns cost upper bounds. This dichotomy allows us to
be more precise, avoiding unification of variables that are performed during the
type derivation. In addition, we notice that the techniques in the literature are
devised for programs where parallel modules of sequential code are running. The
concurrency is not part of the language, but used for parallelising the execution.

Abstract interpretation techniques have been proposed addressing domains
carrying quantitative information, such as resource consumption. One of the
main advantages of abstract interpretation is the fact that many practically
useful optimization techniques have been developed for it. Consequently, several
well-developed automatic solvers for cost analysis already exist. These techniques
either use finite domains or use expedients (widening or narrowing functions) to
guarantee the termination of the fix-point generation. For this reason, solvers
often return inaccurate answers when fed with systems that are finite but not
statically bounded. For instance, an abstract interpretation technique that is
very close to our contribution is [2]. The analysis of this paper targets a language
with the same concurrency model as ours, and the backend solver for our analysis,
CoFloCo, is a slightly modified version of the solver used by [2]. However the two

Time Complexity of Concurrent Programs 215

techniques differ profoundly in the resulting cost equations and in the way they
are produced. Our technique computes the cost by means of a type system,
therefore every method has an associated type, which is parametric with respect
to the arguments. Then these types are translated into a bunch of cost equations
that may be composed with those of other methods. So our approach supports a
technique similar to separate compilation, and is able to deal with systems that
create statically an unbounded but finite number of nodes. On the contrary,
the technique in [2] is not compositional because it takes the whole program
and computes the parts that may run in parallel. Then the cost equations are
generated accordingly. This has the advantage that their technique does not
have any restriction on invocations on arguments of methods that are (currently)
present in our one.

We finally observe that our behavioural types may play a relevant role in a
cloud computing setting because they may be considered as abstract descriptions
of a method suited for SLA compliance.

8 Conclusions

This article presents a technique for computing the time of concurrent object-
oriented programs by using behavioural types. The programming language we
have studied features an explicit cost annotation operation that define the num-
ber of machine cycles required before executing the continuation. The actual
computation activities of the program are abstracted by job-statements, which
are the unique operations that consume time. The computational cost is then
measured by introducing the notion of (strong) t-stability (cf. Definition 1),
which represents the ticking of time and expresses that up to t time steps no
control activities are possible. A Subject Reduction theorem (Theorem 1), then,
relates this stability property to the derived types by stating that the consump-
tion of t time steps by job statements is properly reflected in the type system.
Finally, Theorem 2 states that the solution of the cost equations obtained by
translation of the types provides an upper bound of the execution times provided
by the type system and thus, by Theorem 1, of the actual computational cost.

Our behavioural types are translated into so-called cost equations that are
fed to a solver that is already available in the literature – the CoFloCo solver [4].
As discussed in Remark 1, CoFloCo cannot handle rational numbers with vari-
ables at the denominator. In our system, this happens very often. In fact, the
number pc of processing cycles needed for the computation of a job(pc) is divided
by the speed s of the machine running it. This gives the cost in terms of time
of the job(pc) statement. When the capacity is not a constant, but depends on
the value of some parameter and changes over time, then we get the untreatable
rational expression. It is worth to observe that this is a problem of the solver
(otherwise very powerful for most of the examples), while our behavioural types
carry enough information for computing the cost also in these cases. We plan to
consider alternative solvers or a combination of them for dealing with complex
examples.

216 E. Giachino et al.

Our current technique does not address the full language. In particular we are
still not able to compute costs of methods that contain invocations to arguments
which do not live in the same machine (which is formalized by the notion of cog
in our language). In fact, in this case it is not possible to estimate the cost
without any indication of the state of the remote machine. A possible solution
to this issue is to deliver costs of methods that are parametric with respect to the
state of remote machines passed as argument. We will investigate this solution
in future work.

In this paper, the cost of a method also includes the cost of the asynchro-
nous invocations in its body that have not been synchronized. A more refined
analysis, combined with the resource analysis of [5], might consider the cost of
each machine, instead of the overall cost. That is, one should count the cost
of a method per machine rather than in a cumulative way. While these values
are identical when the invocations are always synchronized, this is not the case
for unsynchronized invocation and a disaggregated analysis might return better
estimations of virtual machine usage.

References

1. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.,
Wong, P.Y.H.: Formal modeling of resource management for cloud architectures :
an industrial case study using Real-Time ABS. J. Serv.-Oriented Comput. Appl.
8(4), 323–339 (2014)

2. Albert, E., Correas, J., Johnsen, E.B., Román-Dı́ez, G.: Parallel cost analysis of
distributed systems. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp.
275–292. Springer, Heidelberg (2015)

3. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the 5th
utility. Future Gener. Comp. Syst. 25(6), 599–616 (2009)

4. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Heidelberg (2014)

5. Garcia, A., Laneve, C., Lienhardt, M.: Static analysis of cloud elasticity. In: Pro-
ceedings of PPDP vol. 2015 (2015)

6. Hähnle, R., Johnsen, E.B.: Resource-aware applications for the cloud. IEEE Com-
put. 48(6), 72–75 (2015)

7. Johnsen, E.B., Pun, K.I., Steffen, M., Tarifa, S.L.T., Yu, I.C.: Meeting deadlines,
elastically. In: From Action Systems to Distributed Systems: The Refinement App-
roach. CRC Press (to Appear, 2015)

8. Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.: Integrating deployment architectures,
resource consumption in timed object-oriented models. J. Logical Algebraic Meth.
Program. 84(1), 67–91 (2015)

9. Trinder, P.W., Cole, M.I., Hammond, K., Loidl, H., Michaelson, G.: Resource analy-
ses for parallel and distributed coordination. Concurrency Comput.: Pract. Experi-
ence 25(3), 309–348 (2013)

Composing Constraint Automata, State-by-State

Sung-Shik T.Q. Jongmans1,2,3(B), Tobias Kappé4, and Farhad Arbab3,4

1 School of Computer Science, Open University of the Netherlands,
Heerlen, The Netherlands

ssj@ou.nl
2 Institute for Computing and Information Sciences,

Radboud University Nijmegen, Nijmegen, The Netherlands
3 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands

4 Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands

Abstract. The grand composition of n automata may have a number
of states/transitions exponential in n. When it does, it seems not unrea-
sonable for the computation of that grand composition to require expo-
nentially many resources (time, space, or both). Conversely, if the grand
composition of n automata has a number of states/transitions only linear
in n, we may reasonably expect the computation of that grand compo-
sition to also require only linearly many resources.

Recently and problematically, we saw cases of linearly-sized grand
compositions whose computation required exponentially many resources.
We encountered these cases in the context of Reo (a graphical language
for coordinating components in component-based software), constraint
automata (a general formalism for modeling systems’ behavior), and
our compiler for Reo based on constraint automata. Combined with
earlier research on constraint automata verification, these ingredients
facilitate a correctness-by-construction approach to component-based
software engineering—one of the hallmarks in Sifakis’ “rigorous system
design”. To achieve that ambitious goal, however, we need to solve the
previously stated problem. In this paper we present such a solution.

1 Introduction

Context. Over the past decades, coordination languages emerged for modeling
and implementing interaction protocols among components in component-based
software. This class of languages includes Reo [1,2]. Reo facilitates composi-
tional construction of connectors: software entites that embody concurrency
protocols for coordinating the synchronization and communication among com-
ponents. Metaphorically, connectors constitute the “glue” that holds compo-
nents together in component-based software and mediates their communication.
Figure 1 already shows a number of example connectors in their usual graphical
syntax. Briefly, a connector consists of a number of channels (edges), through
which data can flow, and a number of nodes (vertices), on which channel ends
coincide. The graphical appearance of a channel indicates its type; channels of
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 217–236, 2016.
DOI: 10.1007/978-3-319-28934-2 12

218 S.-S.T.Q. Jongmans et al.

P1

P2

C

�

Alternator2

P1

P2

P3

C

�
�

Alternator3

C

P1

P2

�

�

�

�

�

�

EarlyAsyncBarrierMerger2

C

P1

P2

�

�

EarlyAsyncMerger2

P

C1

C2

�

� �

EarlyAsyncOutSequencer2

P

C1

C2

�

EarlyAsyncReplicator2

C

P1

P2

�

LateAsyncMerger2

P

C1

C2

�

�

LateAsyncReplicator2

P

C1

C2

�

�

LateAsyncRouter2

A1 A2

R1 R2

� �

�

Lock2

Fig. 1. Example connectors

different types have different data-flow behavior. Figure 1, for instance, includes
standard synchronous channels (normal edges) and asynchronous channels with
a 1-capacity buffer (rectangle-decorated edges), among others.

Reo has several formal semantics [9], with different purposes. The existence
of such formal semantics forms a crucial precondition for Reo-based rigorous
system design [16]: a design approach proposed by Sifakis centered around the
principles of component-based software engineering, separation of concerns, and
correctness-by-construction. In this paper, we focus on one particularly impor-
tant formal semantics of Reo: constraint automata (ca) [5]. Constraint automata
specify when during execution of a connector which data flow where (i.e., through
which channel ends). We can compute the global ca for a connector from the
local cas for that connector’s nodes and channels. As such, cas constitute a
compositional formal semantics of Reo. Both verification and compilation tools
for Reo leverage this compositionality (e.g., [3,4,10,11,13]); the combination of

Composing Constraint Automata, State-by-State 219

such tools facilitates a correctness-by-construction approach to component-based
software-engineering—one of the hallmarks in Sifakis’ rigorous system design.

Problem. Reo’s ca-based verification and compilation tools regularly need to
compute the grand composition of the local cas for a connector’s constituents
(i.e., its nodes/channels), to obtain its global ca for subsequent correctness
analyses or code generation. The grand composition of n constraint automata,
however, may yield a compound ca of a size exponential in n. The representation
of such exponentially-sized compound cas may require an exponential amount
of space; computation of such cas may require an exponential amount of time.

Recently, we reported on a number of experiments with our ca-based Reo-
to-Java compiler [11]. In these experiments, we indeed observed exponential
resource consumption for computing exponentially-sized grand compositions.
Curiously, however, we also observed exponential resource consumption for com-
puting linearly-sized grand compositions. Whereas exponential resource con-
sumption seems undesirable but understandable for exponentially-sized grand
compositions, it seems unacceptable and unintelligible for linearly-sized ones.
Before we can achieve the ambitious goal of Reo-based rigorous system design,
we must better understand this problem and find a solution.

Contribution. Based on earlier preliminary observations [11], we present a
careful analysis of the previously stated problem. Essentially, as we shortly
explain in more detail, our existing approach for computing grand compositions
sometimes involves the computation of exponentially many “intermediately-
reachable-but-finally-unreachable” states in “intermediate compounds”, which
become unreachable only in the “final compound”. Subsequently, we present a
solution for this problem in terms of a new approach for computing grand com-
positions; we prove the corresponding algorithm’s correctness using Hoare logic.
Finally, we present our implementation of this new approach and evaluate its
performance.

In Sect. 2, we discuss preliminaries on Reo and cas. In Sect. 3, we analyze
the previously stated problem. In Sect. 4, we present our solution. In Sect. 5,
we evaluate an implementation. Section 7 concludes this paper. An associated
technical report contains all formal definitions and in-depth proofs [12].

2 Preliminaries

2.1 Reo

Reo is a graphical language for compositional construction of interaction proto-
cols, manifested as connectors [1,2]. Connectors consist of channels and nodes,
organized in a graph-like structure. Every channel consists of two ends and a con-
straint that relates the timing and the contents of the data-flows at those ends.
Channel ends have one of two types: source ends accept data into their channels
(i.e., a source end of a channel connects to that channel’s data source/producer),
while sink ends dispense data out of their channels (i.e., a sink end of a channel

220 S.-S.T.Q. Jongmans et al.

connects to that channel’s data sink/consumer). Reo makes no other assump-
tions about channels and allows, for instance, channels with two source ends.
Table 1 shows four common channels. Users of Reo may freely extend this set of
common channels by defining their own channels with custom semantics.

Table 1. Graphical syntax and informal semantics of common channels

Syntax Semantics

e1 e2
Synchronously takes a datum d from its source end e1 and writes d to its
sink end e2.

e1 e2
Synchronously takes data from both its source ends and loses them.

e1 e2
Synchronously takes a datum d from its source end e1 and nondeterministi-
cally either writes d to its sink end e2 or loses d.

�
x

e1 e2
Asynchronously

[
takes a datum d from its source end e1 and stores d in a

buffer x
]
, then

[
writes d to its sink end e2 and clears x

]
.

Every node has at least one coincident channel end. A node with no coincident
sink channel end is called a source node. A node with no coincident source
channel end is called a sink node. A node with both source and sink coincident
channel ends is called a mixed node. The set of all source nodes and sink nodes
of a connector are collectively referred to as its boundary nodes. In Fig. 1, we
distinguish connectors’ white boundary nodes from their shaded mixed nodes.

Every sink channel end coincident on a node serves as a data source for that
node. Analogously, every source channel end coincident on a node serves as a
data sink for that node. A source node of a connector connects to an output
port of a component, which will act as its data source. Similarly, a sink node of
a connector connects to an input port of a component, which will act as its data
sink. Source nodes permit put operations (for components to send data), while
sink nodes permit get operations (for components to receive data); a connector
uses its mixed nodes only for internally routing data.

Contrasting channels, all nodes have the same, fixed data-flow behavior:
repeatedly, a node nondeterministically selects an available datum out of one
of its data sources and replicates this datum into each of its data sinks. A node’s
nondeterministic selection and its subsequent replication constitute one atomic
execution step; nodes cannot store, generate, or lose data. For a connector to
make a global execution step—usually instigated by pending i/o-operations—its
channels and its nodes must reach consensus about their combined behavior, to
guarantee mutual consistency of their local execution steps (e.g., a node should
not replicate a data item into a channel with an already full buffer). Subse-
quently, connector-wide data-flow emerges. A description of the behavior of the
connectors in Fig. 1 appears elsewhere [11].

Composing Constraint Automata, State-by-State 221

2.2 Constraint Automata

Although originally developed as a formal semantics of Reo [5], cas constitute a
general operational formalism for modeling the behavior of concurrent systems:
every ca models a component, which has a number of ports through which it
interacts with its environment. Often, we annotate ports with a direction of
data-flow (i.e., a component can use a port either for producing data or for
consuming data but not for both); in this paper, because these directions do
not matter to our current problem, we omit them. To formalize Reo’s semantics
in terms of ca-based components, we view a channel as a component with two
ports (one for each of its two ends), while we view a node with n coincident sink
ends and m coincident source ends as a component with n + m ports. Then, we
can compositionally compute the ca for a connector by computing the grand
composition of the cas for its constituents. But first, we formally define cas.

e1 e2

e1 e2
e1 e2

�
x

e1 e2

e1

e2

e3
N
N

e
e

{e1, e2},
d(e1) = d(e2)

{e1, e2},
d(e1) = d(e2)

{e1}, �

{e1},
d(e1) = x′

{e2},
x = d(e2)

{e1, e3},
d(e1) = d(e3)

{e2, e3},
d(e2) = d(e3)

{e,N},
d(e) = d(N)

Fig. 2. Constraint automata for the channels in Table 1 (first three from the left), for
a mixed node with two incoming and one outgoing channel (fourth from the left),
and for two boundary nodes, each with either one incoming or one outgoing channel
(fifth from the left). The latter ca is defined not only over the names of its coincident
channel ends but also over its own name. (Components use node names—not channel
end names—to perform i/o-operations on.)

Structurally, every ca consists of finite sets of states and transitions, which
model a component’s internal configurations and atomic execution steps. Every
transition has a label that consists of two elements: (i) a set, typically denoted
by P , containing the names of the ports that have synchronous data-flow in
that transition, called a synchronization constraint, and (ii) a logical formula,
typically denoted by φ, that specifies which particular data may flow through
which of the ports in P , called a data constraint. For instance, the atomic data
constraint d(p1) = d(p2) means that the same datum flows through ports p1 and
p2; the atomic data constraint � means that it does not matter which particular
data flow where. Let Dc denote a universal set of data constraints. More pre-
cisely, Dc serves as the carrier set in some Boolean algebra (Dc,∧,∨,¬,⊥,�),
including atoms of the form d(p1) = d(p2). The details of data constraints do not
matter in this paper, and therefore, we skip them. Let St denote the universal

222 S.-S.T.Q. Jongmans et al.

set of states, let Port denote the universal set of ports, and let Dc(P) denote
the set of data constraints in which only ports from P occur.

Definition 1. A constraint automaton is a tuple (Q,P all,−→, Q0), where Q ⊆
St is the state space, P all ⊆ Port is the set of known ports, −→ ⊆ Q × 2P all ×
Dc(P all) × Q is the transition relation, and Q0 ⊆ Q are the initial states. Aut
is the universal set of constraint automata, ranged over by α.

Figure 2 shows example cas. Let St(α), Port(α), Tr(α), and Init(α) denote α’s
state space, its set of ports, its transition relation, and its initial states.

Our behavioral equivalence in this paper is based on bisimulation. We define
this equivalence in two steps. First, we define simulation.

Definition 2. � ⊆ Aut × Aut × 2St×St is the relation defined as follows:⎡
⎢⎣

[[(q1, P, φ, q′
1) ∈ Tr(α1)

and (q1, q2) ∈ R

]
implies

[[(q2, P, φ, q′
2) ∈ Tr(α2)

and (q′
1, q

′
2) ∈ R

]
for some q′

2

]]

for all q1, q
′
1, q2, P, φ

⎤
⎥⎦

and
[[

q1 ∈ Init(α1) implies
[[

q2 ∈ Init(α2) and (q1, q2) ∈ R
]

for some q2

]]
for all q1

]

and Port(α1) = Port(α2) and R ⊆ St(α1) × St(α2)
α1 �R α2

In words, α2 simulates α1 under simulation relation R—in which case α1 �R α2

holds true—whenever we can relate the states of α1 and α2 such that: (i) α2

can mimic every transition that α1 can make in related states, and (ii) α2 can
already perform such mimicry in any of α1’s initial states. If we care only about
the existence of a simulation relation between (the states of) α1 and α2 but not
about its exact content, we often simply write α1 � α2. Formally, we “overload”
relation symbol � as follows.

Definition 3. � ⊆ Aut × Aut is the relation defined as follows:

α1 �R α2 for some R

α1 � α2

The definition of bisimulation now straightforwardly follows.

Definition 4.
 ⊆ Aut × Aut × 2St×St is the relation defined as follows:

α1 �R α2 and α2 �R-1 α1

α1
R α2

We favor this automata-centric definition of bisimilarity over its definition as
the maximal bisimulation on states, because automata are our primary objects
of interest instead of their states. As with simulation, if we care only about
the existence of a bisimulation relation between (the states of) α1 and α2 but
not about its exact content, we often simply write α1
 α2 and overload

accordingly.

Composing Constraint Automata, State-by-State 223

Definition 5.
 ⊆ Aut × Aut is the relation defined as follows:

α1
R α2 for some R

α1
 α2

Note that, as usual with (bi)simulations, α1
 α2 implies
[
α1 � α2 and α2 � α1

]
,

but
[
α1 � α2 and α2 � α1

]
does not imply α1
 α2.

To model component composition in terms of cas, we define the following
(synchronous) composition operation.

Definition 6. · ⊗ · : Aut × Aut → Aut is the function defined as follows:

α1 ⊗ α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

St(α1) × St(α2),Port(α1) ∪ Port(α2),⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′

1, q
′
2)

⎞
⎟⎟⎠

Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)

⎫⎪⎪⎬
⎪⎪⎭

,

Init(α1) × Init(α2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Out

In1

In2

e
1 e

2

e3
e4

�
x

e5 e6

(a) LateAsyncMerger2

�1

�2

{e6,Out},
x = d(e6) ∧ d(e6) = d(Out)

(b) Composition

�′
1

�′
2

{Out},
x = d(Out)

(c) Comp. and abstr.

�1 : {In1, e1, e2, e5}, d(e1) = d(e2) ∧ d(e2) = d(e5) ∧ d(e5) = x′

�2 : {In2, e3, e4, e5}, d(e3) = d(e4) ∧ d(e4) = d(e5) ∧ d(e5) = x′
�′
1 : {In1}, d(In1) = x′

�′
2 : {In2}, d(In2) = x′

(d) Transition labels

Fig. 3. Composition and abstraction of LateAsyncMerger2 in Fig. 1

Essentially, the previous definition of ⊗ formalizes the idea that two compo-
nents can fire a transition together only if they agree on the involvement of their
shared ports. Our composition differs slightly from its original definition [5],
where Baier et al. encode the possibility for one ca to idle, while the other ca
makes a transition, explicitly in the definition of composition. Here, we prefer
the equivalent alternative of encoding the idling of components explicitly in their
cas—instead of in the definition of composition—through self-loop transitions
labeled with ∅,�. This has the advantage of a simpler definition of composition,
without losing expressiveness. We stipulate that every example ca that we show
has implicit self-loops for idling in each of their states. (In principle, our the-
ory for cas does not require self-loops; for modeling Reo, however, cas require
self-loops.) Fig. 3 shows an example of composition. We adopt left-associative

224 S.-S.T.Q. Jongmans et al.

notation for ⊗ and omit brackets whenever possible (e.g., we write α1 ⊗ α2 ⊗α3

for (α1⊗α2)⊗α3). Similarly, we adopt left-associative notation for pairs of states
(e.g., we write (q1, q2, q3) for ((q1, q2), q3)). Behaviorally, bracketing is insignif-
icant, because ⊗ is associative/commutative modulo bisimulation. However, as
we reason also structurally about cas in this paper, bracketing matters.

To compute the formal semantics of a connector, we compute the grand
composition of the cas for its constituents using ⊗, in an iterative manner: for
an expression α1 ⊗ · · · ⊗ αn, we first compute α := α1 ⊗ α2, then α := α ⊗ α3,
then α := α ⊗ α4, and so on. We call every α ⊗ αi<n in this computation an
intermediate compound ; we call α ⊗ αn the final compound.

Beside multiplication, Baier et al. defined another operation on constraint
automata: abstraction [5]. Abstraction removes ports from the observables of a
ca, possibly internalizing transitions (i.e., making those transitions unobservable
from the environment). In practice, abstraction can significantly reduce the size
of a ca, both in terms of states and transitions. Although not the main topic of
this paper, due to its practical relevance, we use abstraction in Sect. 5. Its formal
definition appears below for completeness.

Definition 7. · � · : Aut × Port → Aut is the function defined as follows:

α � p = (St(α),Port(α)\{p},−→, Init(α))

where −→ is the relation defined as follows:

q1
∅,φ1−−−→∅ · · · ∅,φn−1−−−−→∅ qn

P,φn−−−→∅ qn+1 and P �= ∅
q1

P,φ1∧···∧φn−−−−−−−−→ qn+1

q
P,φ−−→∅ q′ and P �= ∅

q
P,φ−−→ q′

where −→∅ is the relation defined as follows:

(q, P, φ, q′) ∈ Tr(α)

q
P\{p},∃p.φ−−−−−−−→∅ q′

3 Problem

In ongoing work, we are developing a ca-based Reo-to-Java compiler; in recent
work, to study the effectiveness of one of our optimization techniques, we com-
pared the performance of the code generated by our compiler with and without
applying that technique [11]. Our comparison featured a number of k-parametric
families of connectors, where k controls the size of a coordinating connector
through its number of coordinated components. Figure 1 shows the k = 2 mem-
bers of the families with which we experimented. One can extend these k = 2
members to their k > 2 versions in a similar way as how we extended Fig. 1a to
b. We selected these families because each of them exhibits different behavior
in terms of synchrony, exclusion, nondeterminism, direction, sequentiality, and
parallelism, thereby aiming for a balanced comparison.

Composing Constraint Automata, State-by-State 225

Alternatork EarlyAsyncBarrierMergerk EarlyAsyncMergerk

EarlyAsyncOutSequencerk EarlyAsyncReplicatork LateAsyncMergerk

LateAsyncReplicatork LateAsyncRouterk Lockk

Fig. 4. Computation times (y-axis) for nine k-parametric families, for 2 ≤ k ≤ 64
(x-axis). Time is measured in seconds, except for EarlyAsyncReplicatork and LateA-
syncMergerk, where time is measured in milliseconds.

Although we focused our attention primarily on the performance of the gen-
erated code, we also made some observations about the performance of our com-
piler itself. Without applying the optimization technique under investigation, our
compiler uses the previously explained iterative approach to compute the grand
composition of the cas for a connector’s constituents. Figure 4 shows the compu-
tation times measured for the k-parametric families under study, for 2 ≤ k ≤ 64,
averaged over sixteen runs.1 For six families, the compiler exhausted its avail-
able resources (five minutes of time or 2 gb of heap space) long before reach-
ing k = 64. The cause: “rapid”—at least exponential—growth in k. For four
of these families, we have a good explanation for this phenomenon: the grand
compositions computed for EarlyAsyncMergerk, EarlyAsyncBarrierMergerk, LateA-
syncReplicatork, and LateAsyncRouterk grow exponentially in k, such that the
amount of resources required to compute those grand compositions logically
also grows at least exponentially in k. For the other two families, in contrast,

1 We recollected the data shown in Fig. 4 specifically for this paper, but we made our
initial observations based on our previous data [11].

226 S.-S.T.Q. Jongmans et al.

our measurements seem more difficult to explain: the grand compositions com-
puted for EarlyAsyncOutSequencerk and Lockk grow only linearly in k, making
an exponential growth in resource requirements rather surprising.

Analysis of the intermediate compounds of EarlyAsyncOutSequencerk and
Lockk taught us the following: even if final compounds grow linearly in k, their
intermediate compounds, as computed by the iterative approach, may neverthe-
less grow exponentially in k. We can explain this easiest for EarlyAsyncOutSe-
quencerk (cf. Fig. 1e), through the size of its state space, but the same argument
applies to Lockk. EarlyAsyncOutSequencerk consists of a subconnector that, in
turn, consists of a cycle of k buffered channels (of capacity 1). The first buffered
channel initially contains a dummy datum � (i.e., its actual value does not
matter); the other buffered channels initially contain nothing. As in the litera-
ture [1,2], we call this subconnector Sequencerk. Because no new data can flow
into Sequencerk, only � cycles through the buffers—ad infinitum—such that only
one buffer holds a datum at any time. Consequently, the ca for Sequencerk has
only k states, each of which represents the presence of � in exactly one of its k
buffers.

�

�
�

�

�

�

�

�

�

�

�

�

000 100

010 110

001 101

011 111

000 100

010 110

001 101

011 111

000 100

010 110

001 101

011 111

000 100

010 110

001 101

011 111

Fig. 5. Grand composition of the cas for a cycle of three buffered channels (of capacity
1), closed by a synchronous channel. State labels xyz indicate the emptiness/fullness
of buffers, where x refers to the first buffer, y to the second buffer, and z to the third
buffer; we omitted transition labels to avoid clutter.

However, if we compute the grand composition of the local cas for
Sequencerk’s constituents using the iterative approach, we “close the cycle” only
with the very last application of ⊗: until then, this soon-to-become-cycle still
appears an open-ended chain of buffered channels. Because new data can freely
flow into such an open-ended chain, this chain can have a datum in any buffer
at any time. Consequently, the ca for the largest chain has 2k states. Only when
we compose this penultimate compound with the last local ca, the state space
collapses into k states, as we “find out” that the open-ended chain actually forms
a cycle with exactly one datum. Because Sequencerk constitutes EarlyAsyncOut-
Sequencerk, also EarlyAsyncOutSequencerk suffers from this problem.

Composing Constraint Automata, State-by-State 227

Figure 5 shows our previous analysis in pictures. Most interestingly, the inter-
mediate compounds in Fig. 5 (i.e., the first three automata from the left) contain
progressively more states with the following peculiar property: they are reachable
from an initial state in those intermediate compounds, called intermediate-reach-
ability , but neither those states themselves nor any compound state that they con-
stitute, are reachable in the final compound, called final-unreachability . Thus, by
using the iterative approach for computing a grand composition, we may spend
exponentially many resources on generating a state space that we nearly com-
pletely discard in the end. This seems the heart of our problem.

4 Solution

The main idea to solve our problem is to compute grand compositions state-by-
state, instead of iteratively. In this new approach, we start computing a grand
composition from its straightforwardly computable set of initial states. Subse-
quently, we expand each of those states by computing their outgoing compound
transitions. These compound transitions enter new compound states, which we
subsequently recursively expand. As such, we compute only the reachable states
of the final compound, avoiding the unnecessary computation of intermediately-
reachable-but-finally-unreachable states. Easy to explain, the main challenge
we faced consisted of finding an elegant formalization of this state-by-state
approach—including an algorithm—amenable to formal reasoning and proofs.
Such proofs are crucially important in the correctness-by-construction principle
advocated in rigorous system design for component-based software engineering.

4.1 State-Based Decomposition/Recomposition

We start by formalizing the state-based decomposition of a ca into its per-state
“subautomata” and the recomposition of that ca from those decompositions.
Let σ denote the selection function (cf. relational algebra) that consumes as input
a transition relation −→ and a state q and produces as output the subrelation
of −→ consisting of precisely the transitions in −→ that exit q.

Definition 8. σ : 2St×2Port×Dc×St×St → 2St×2Port×Dc×St is the function defined
as follows:

σq(−→) = {(q, P̂ , φ̂, q̂′) | q
P̂ ,φ̂−−→ q̂′}

Next, let ·〈·〉 denote the (state-based) decomposition function that consumes as
input an automaton α and a state q and produces as ouput a ca consisting of
exactly the same set of states, set of ports, and set of initial states, and with a
transition relation consisting of precisely the transitions in α that exit q.

Definition 9. ·〈·〉 : Aut × St → Aut is the function defined as follows:

α〈q〉 = (St(α),Port(α), σq(Tr(α)), Init(α))

228 S.-S.T.Q. Jongmans et al.

We call q the significant state in α〈q〉. The following lemma states that decompo-
sition distributes over composition: instead of first computing the grand compo-
sition of n local cas and then decomposing the resulting global ca with respect
to a global state, we can equally first decompose every local ca with respect to
its local state and then compute the grand composition of the resulting per-state
decompositions. A detailed proof appears in the technical report [12].

Lemma 1. (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉
The previous definitions (and lemma) cover the essentials of state-based

decomposition; in the rest of this subsection, we discuss recomposition. Let
⊔

denote a recomposition function that consumes as input a set of cas and pro-
duces as output a ca by taking the grand union of the sets of states, sets of
ports, sets of transitions, and sets of initial states.

Definition 10.
⊔ · : 2Aut → Aut is the function defined as follows:

⊔
A =(⋃{St(α) | α ∈ A},

⋃{Port(α) | α ∈ A},
⋃{Tr(α) | α ∈ A},

⋃{Init(α) | α ∈ A})
The following lemma states that a ca equals the recomposition of its state-based
decompositions. A detailed proof appears in the technical report [12].

Lemma 2. α =
⊔{α〈q〉 | q ∈ St(α)}

The following theorem states the correctness of the state-by-state approach for
grand compositions, as outlined in the beginning of this section. Roughly, it
states that the grand composition of n local cas equals the recomposition of
that grand composition’s state-based decompositions. More precisely, however,
it states that this grand composition equals the recomposition of the composition
of state-based decompositions of the local CAs. This is a subtle but important
point: it means that to compute the grand composition of n local cas, we only
need to compute compositions of state-based decompositions of those local cas.
We further clarify this point in the next subsection.

Theorem 1

α1 ⊗ · · · ⊗ αn =
⊔{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1) × · · · × St(αn)}

Proof (Sketch). By applying Lemma 2, Definition 6 of ⊗, and Lemma 1. A
detailed proof appears in the technical report [12]. ��

4.2 Algorithm

Having formalized de/recomposition, we can now formulate an algorithm for
computing the reachable fragment of grand compositions. First, we formalize
reachability. We call a state q reachable iff q is an initial state or a finite sequence
of k transitions exists that form a path from some initial state to q. Let Reach
denote the reachability function that consumes as input a ca and produces as
output its reachable states.

Composing Constraint Automata, State-by-State 229

Definition 11. Reach : Aut → 2St is the function defined as follows:

Reach(α) = Init(α) ∪
{

qk
(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}

Next, let �·� denote the floor function, which takes as input a ca and produces as
output an equivalent—proven below—ca for its reachable states (i.e., the floor
function “rounds” a ca “down” to its reachable fragment).

Definition 12. �·� : Aut → Aut is the function defined as follows:

�α� =
⊔{α〈q〉 | q ∈ Reach(α)}

The following lemmas state that a ca simulates its floored version and vice versa.
Detailed proofs appear in the technical report [12].

Lemma 3. α �{(q,q)|q∈Reach(α)} �α�
Lemma 4. �α� �{(q,q)|q∈Reach(α)}-1 α

From these two lemmas, we can immediately conclude the following theorem,
which states that a ca and its floored version are bisimulation equivalent.

Theorem 2. α
{(q,q)|q∈Reach(α)} �α�
Proof (Sketch). By applying Lemmas 3 and 4 and Definition 4 of
. A detailed
proof appears in the technical report [12]. ��

{
true

}
A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1) × · · · × Init(αn)}
while α ∈ A′ \ A for some α do

A := A ∪ {α}
A′ := A′ ∪ {

α1〈q′
1〉 ⊗ · · · ⊗ αn〈q′

n〉 (q, P, φ, (q′
1, . . . , q

′
n)) ∈ Tr(α)

}
end while{⊔

A = 	α1 ⊗ · · · ⊗ αn
}

Fig. 6. Algorithm for computing the grand composition of n autamata using the state-
by-state approach

Figure 6 shows an algorithm for computing the grand composition of n local
cas using the state-by-state approach, including a precondition and a postcon-
dition, formulated in terms of de/recomposition and reachability. This algorithm
works as described in the beginning of this section. A denotes the subset of so-
far computed state-based decompositions whose significant state the algorithm

230 S.-S.T.Q. Jongmans et al.

already has expanded (i.e., the algorithm has processed all cas in A). A′, in con-
trast, denotes the full set of so-far computed state-based decompositions (i.e., A′

contains A such that A′\A contains the cas that the algorithm still needs to
process). After the algorithm terminates, A contains a number of state-based
decompositions. The postcondition subsequently asserts that the recomposition
of the cas in A equals the reachable fragment of the grand composition.

{
true

}
{
invar

[A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1) × · · · × Init(αn)}]
[A := ∅]

}
A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1) × · · · × Init(αn)}{
invar

}
while α ∈ A′ \ A for some α do{

α ∈ A′ \ A and invar and |St(α1 ⊗ · · · ⊗ αn)| − |A| = z
}

{[
invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z

]
[A′ := A′ ∪ {

α1〈q′
1〉 ⊗ · · · ⊗ αn〈q′

n〉 (q, P, φ, (q′
1, . . . , q

′
n)) ∈ Tr(α)

}
]

[A := A ∪ {α}]
}

A := A ∪ {α}
A′ := A′ ∪ {

α1〈q′
1〉 ⊗ · · · ⊗ αn〈q′

n〉 (q, P, φ, (q′
1, . . . , q

′
n)) ∈ Tr(α)

}
{
invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z

}
end while{
invar and

[
α /∈ A′ \ A for all α

]}
{⊔

A = 	α1 ⊗ · · · ⊗ αn
}

Fig. 7. Algorithm for computing the grand composition of n autamata using the state-
by-state approach, annotated with assertions for total correctness

Figure 7 shows the algorithm in Fig. 6 annotated with assertions for total
correctness; Fig. 8 shows the loop invariant. This invariant consists of four con-
juncts. The first conjunct states that A ∪ A′ contains the initial states in the
grand composition. The second conjunct states that the A and A′ contain only
state-based decompositions of the grand composition. The third conjunct states
that every ca in A∪A′ is a state-based decomposition of the grand composition,
with respect to some reachable state in that grand composition. The fourth con-
junct states that if a ca in A has a transition entering a (global) state q′, A∪A′

contains a decomposition of the grand composition with respect to q′. As soon
as the loop terminates, the invariant and the negated loop condition imply that
every ca in A has a reachable significant state (“soundness”; consequence of
the third conjunct) and that, in fact, A contains a ca for every reachable state
(“completeness”; consequence of the fourth conjunct).

Theorem 3. The algorithm in Fig. 6 is correct.

Composing Constraint Automata, State-by-State 231

invar: {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \ A)
and A, A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

and
[
⎡
⎢⎣

α ∈ A ∪ (A′ \ A) implies

[[α = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]
⎤
⎥⎦ for all α

]

and
[
⎡
⎢⎣

[
α ∈ A and (q, P, φ, q′) ∈ Tr(α)

]
implies

[[α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉
and α′ ∈ A ∪ (A′ \ A)

]
for some α′]

⎤
⎥⎦ for all α, q, q′, P, φ

]

Fig. 8. Addendum to Fig. 7

Proof (Sketch). By the assertions in Fig. 7 and the axioms of Hoare logic. A
detailed proof appears in the technical report [12].

Note that the invariant refers only to decompositions of the global ca with
respect to a global state (e.g., (α1 ⊗ · · · ⊗ αn)〈q〉 for a global state q), whereas
the algorithm refers only to decompositions of local cas with respect to local
states (e.g., α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 for local states q1, . . . , qn). Recognizing this
difference is important, because it highlights the main advantage of the state-by-
state approach: by using only decompositions of local cas, the algorithm never
needs to compute any intermediate compounds, so avoiding a potential source
of exponential resource requirements.

5 Implementation, Evaluation, and Discussion

We implemented the state-by-state approach for computing grand compositions
as an extension to our ca-based Reo-to-Java compiler. This compiler is imple-
mented in Java and extends the Ect, a collection of plugins for Eclipse that
serve as an ide for Reo (see http://reo.project.cwi.nl).

To evaluate the performance of the state-by-state approach in practice, we
experimented with the same k-parameteric families of connectors as those in
Fig. 4. Because not only composition but also abstraction play an important role
in practice (as mentioned at the end of Sect. 2), we consider three composition–
abstraction approaches:

– Alternating iterative approach. Variant of the iterative approach where we
abstract away all internal ports for mixed nodes (which do not contribute to the
observable behavior of a connector) in intermediate compounds directly after
their computation; this approach alternates between composition and abstrac-
tion. It has the advantage that intermediate compounds remain small (i.e.,
abstraction of internal ports eliminates internal transitions and collapses states
together), thereby reducing overall resource consumption (i.e., generally, com-
posing smaller cas requires fewer resources than composing larger cas).

http://reo.project.cwi.nl

232 S.-S.T.Q. Jongmans et al.

Alternatork EarlyAsyncBarrierMergerk EarlyAsyncMergerk

EarlyAsyncOutSequencerk EarlyAsyncReplicatork LateAsyncMergerk

LateAsyncReplicatork LateAsyncRouterk Lockk

Fig. 9. Computation times (y-axis) for nine k-parametric families, for 2 ≤ k ≤ 64
(x-axis), by applying the alternating iterative approach (blue lines), the phased iter-
ative approach before abstraction (dotted-red lines) and after (solid-red lines), and
the phased state-by-state approach before abstraction (dotted-yellow lines) and after
(solid-yellow lines). Time is measured in seconds, except for EarlyAsyncReplicatork and
LateAsyncMergerk, where time is measured in milliseconds. Page-size versions of these
plots appear in the technical report [12] (Color figure online).

– Phased iterative approach. Variant of the iterative approach where we abstract
away all internal ports only in the final compound and not in intermediate
compounds.

– Phased state-by-state approach. Variant of the state-by-state approach where
we abstract away all internal ports only after the composition phase.

Figure 9 shows the computation times that we measured for the various
approaches, connectors, and values of 2 ≤ k ≤ 64. We set a timeout of five
minutes and bounded the size of the heap at 2 gb.

The four families whose grand compositions grow exponentially in k (i.e.,
EarlyAsyncBarrierMergerk, EarlyAsyncMergerk, LateAsyncReplicatork, and LateA-
syncRouterk) logically provoke exponential growth in resource requirements not
only in the iterative approaches (as already observed in Sect. 3) but also in the

Composing Constraint Automata, State-by-State 233

phased state-by-state approach. Still, the phased state-by-state approach, per-
forms worse than the alternating iterative approach (at least for EarlyAsyncBar-
rierMergerk and EarlyAsyncMergerk).

For EarlyAsyncOutSequencerk and Lockk, the phased state-by-state approach
has substantially better performance: whereas both the alternating and the
phased iterative approaches fail for k > 14 (because these approaches require too
much resources to successfully complete their computation), the phased state-
by-state approach succeeds for all values of k under study. (These two families
formed the main motivation for doing the work reported on in this paper.)

For EarlyAsyncReplicatork and LateAsyncMergerk, the phased state-by-state
approach seems roughly twice as slow as the iterative approaches. A mundane
reason may be that we have not optimized our implementation of the state-by-
state approach as aggressively as the iterative approach (which has been under
development for several years). Another reason may be that the state-by-state
approach is not as cache/memory-friendly as the iterative approach (i.e., local-
ity issues), because the state-by-state approach continuously accesses all local
cas. Moreover—and more seriously—Alternatork forms a problematic case for
the phased state-by-state approach. Indeed, the alternating iterative approach
performs much better, exactly because it abstracts away internal ports as early as
possible. Interestingly, early abstraction does not have such a significant effect
for all families of connectors under study. This has to do with the particular
structure of Alternatork, explained in detail elsewhere and considered beyond the
scope of this paper [10]. Here, the important point is that, although the phased
state-by-state approach dramatically improves performance in some cases, it is
not a silver bullet. One piece of future work, therefore, concerns the development
of heuristics about which composition approach we should apply when. Another
piece of future work concerns the investigation of a variant of the state-by-state
approach with early abstraction similar to the alternating incremental approach.
The main challenge with this is that to perform abstraction, we require certain
information that, in the state-by-state approach, seems to become available only
once we have completed computing the grand composition. Therefore, we need
to develop clever techniques to obtain this kind of information earlier on.

6 Related Work

The main inspiration for our solution in this paper came from Proença’s distrib-
uted Reo engine [15]. On input of a connector, this engine starts an actor for
each of that connector’s constituents. Each of these actors has some kind of local
automaton (not quite a ca but the differences and details do not matter here) for
its corresponding node/channel. Together, the actors run a distributed consen-
sus algorithm to synchronize their behavior, by composing their local behaviors
into one consistent global behavior. As part of this consensus algorithm, actors
exchange data structures with information about their current state and that
state’s outgoing transitions (called frontiers by Proença). By doing so, the actors
effectively compute the composition of their automata at run-time, and only for

234 S.-S.T.Q. Jongmans et al.

their reachable states. Our state-by-state approach for computing grand compo-
sitions effectively does a similar computation at compile-time.

Some literature exists on algorithms for computing the composition of cas.
For instance, Ghassemi et al. documented that the order in which a tool composes
the cas in a grand composition matters [7]: although any order yields the same
final compound (because composition exhibits associativity and commutativity),
different orders may yield diffent intermediate compounds. Some orders may give
rise to relatively large intermediate compounds, with high resource requirements
as a result, while other orders may keep intermediate compounds small. Choosing
the right order, therefore, matters significantly in practice. In the same paper,
Ghassemi et al. also briefly mention the idea of computing the composition
of two cas in a state-by-state approach, but they do not generalize this to
arbitrary grand compositions as we do in this paper. Pourvatan and Rouhy also
worked on an algorithm for efficiently computing the composition of two cas [14].
Their approach consists of a special algebraic representation of cas, including
a reformulation of the composition operation for this representation. Pourvatan
and Rouhy claim that their approach computes composition twice as fast as the
approach by Ghassemi et al., but evidence remains limited.

State expansion based on reachability also surfaces in what Hopcroft et al.
call “lazy evaluation” of subsets in the powerset construction for determinizing a
nondeterministic finite automaton in classical automata theory [8]. The fact that
we need to compose cas during the expansion of global states—and explicitly do
not want to compute the grand composition beforehand—makes our situation
more complex, though. Lemma 1 plays a key role in this respect.

Our work is related also to on-the-fly model checking, proposed by Gerth
et al. [6], where the state space under verification is generated as needed during
the actual decision procedure instead of in its entirety, beforehand. If a coun-
terexample is found already early during state space generation/exploration,
then, no effort gets wasted on precomputing the entire state space. A key differ-
ence is our use of Hoare logic to prove our technique’s correctness, which to our
knowledge has not been done in the context of on-the-fly model checking.

7 Conclusion

Our performance evaluation shows that our new approach for computing grand
compositions substantially improves the problematic cases of the existing app-
roach. However, in other cases, our existing approach outperformed our new
approach. In future work, we want to investigate heuristics for deciding which
of these two approaches we should use when.

Constraint automata comprise a general operational formalism for modeling
the behavior of concurrent systems, where every ca models a component. To
analyze systems modeled as cas, efficiently computing the grand composition of
those cas is very important. This makes our work a relevant advancement to the
theory and practice of component-based software engineering. In this paper, we
focused on the “coordination subsystems”—connectors—among the components.

Composing Constraint Automata, State-by-State 235

When expressed in Reo, we can compositionally compute connector behavior
in terms of cas. This enables both verification (e.g., model checking [3,4,13])
and compilation (i.e., code generation [10,11]), whose combination subsequently
facilitates a correctness-by-construction approach to component-based software
engineering—one of the hallmarks in Sifakis’ rigorous system design [16].

We can use our new approach for computing grand compositions also beyond
Reo, whenever not only the coordinating connectors’ semantics exist as cas but
also the semantics of their coordinated components. For instance, the combi-
nation of cas and Reo has been used to model and verify a simple railway
network [3], a biomedical sensor network [4], and an industrial communication
platform [13]. To model check temporal logic properties of the composition of the
components and connectors of such systems (e.g., the composition never dead-
locks), we need to compute the grand composition of the cas for all components
and connectors. Here too, our new approach for computing grand compositions
constitutes a valuable alternative to the existing approach. In fact, the abstract
approach of computing compound global behavior out of primitive local behavior
under a “reachability-based” strategy, to avoid excessive intermediate resource
consumption, does not depend on cas and can be applied also to other models.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

2. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011)

3. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field, J., Vasconcelos, V.T.
(eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg
(2009)

4. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using Vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 97–111. Springer,
Heidelberg (2010)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

6. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)

7. Ghassemi, F., Tasharofi, S., Sirjani, M.: Automated mapping of Reo circuits to
constraint automata. In: FSEN 2005, ENTCS, vol. 159, pp. 99–115 (2006)

8. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation (2001)

9. Jongmans, S.S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

10. Jongmans, S.S., Arbab, F.: Toward sequentializing overparallelized protocol code.
In: ICE 2014, EPTCS, vol. 166, pp. 38–44 (2014)

236 S.-S.T.Q. Jongmans et al.

11. Jongmans, S.S., Arbab, F.: Can high throughput atone for high latency in compiler-
generated protocol code? In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS,
vol. 9392, pp. 238–258. Springer, Heidelberg (2015)

12. Jongmans, S.S., Kappé, T., Arbab, F.: Composing constraint automata, state-by-
state (Technical report). Technical report FM-1506, CWI (2015)

13. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical modeling and formal
verification. An industrial case study using Reo and Vereofy. In: Salaün, G., Schätz,
B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg (2011)

14. Pourvatan, B., Rouhy, N.: An alternative algorithm for constraint automata prod-
uct. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 412–422.
Springer, Heidelberg (2007)

15. Proença, J.: Synchronous coordination of distributed components. Ph.D. thesis,
Leiden University (2011)

16. Sifakis, J.: Rigorous system design. In: PODC 2014, p. 292 (2014)

Floating Time Transition System: More Efficient
Analysis of Timed Actors

Ehsan Khamespanah1,2(B), Marjan Sirjani2, Mahesh Viswanathan3,
and Ramtin Khosravi1

1 School of Electrical and Computer Engineering, University of Tehran,
Tehran, Iran

e.khamespanah@ut.ac.ir
2 School of Computer Science, Reykjavik University, Reykjavik, Iceland

3 Department of Computer Science, University of Illinois at Urbana-Champaign,
Champaign, USA

Abstract. The actor model is a concurrent object-based computational
model in which event-driven and asynchronously communicating actors
are units of concurrency. Actors are widely used in modeling real-time
and distributed systems. Floating-Time Transition System (FTTS) is
proposed as an alternative semantics for timed actors, and schedulabil-
ity and deadlock-freedom analysis techniques have been developed for
it. The absence of shared variables and blocking send or receive, and
the presence of single-threaded actors along with non-preemptive execu-
tion of each message server, ensure that the execution of message servers
do not interfere with each other. The Floating-Time Transition System
semantics exploits this by executing message servers in isolation, and
by relaxing the synchronization of progress of time among actors, and
thereby has fewer states in the transition system. Considering an actor-
based language, we prove a weak bisimulation relation between FTTS
and Timed Transition System, which is generally the standard semantic
framework for discrete-time systems. Thus, the FTTS semantics pre-
serves event-based branching-time properties. Our experimental results
show a significant reduction in the state space for most of the examples
we have studied.

Keywords: Actor model · Timed Rebeca · Verification · State space
reduction · Floating Time Transition System · Timed Transition System

1 Introduction

The semantics of real-time systems is often defined assuming an ambient global
time that proceeds uniformly for all participants in a distributed system. Even
when individual local clocks are assumed to have skews, these skews are modelled
relative to this ambient global time. For systems where the time domain is taken
to be discrete (i.e., the set of natural numbers), this results in the semantics being
described using a Timed Transition System (TTS). In a timed transition system,
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 237–255, 2016.
DOI: 10.1007/978-3-319-28934-2 13

238 E. Khamespanah et al.

transitions are partitioned into two classes: instantaneous transitions (in which
time does not progress), and time ticks when the global clock is incremented.
These time ticks happen when all participants “agree” for time elapse. Such
TTS-based semantics is standard and has been defined for a variety of formalisms
[8,12,16]. Note that, using TTS is not limited to discrete-time systems. It also
has been used to give semantics for timed languages and formalisms that assume
continuous or dense time domains.

The timed transition system semantics, unfortunately, suffers from the usual
state space explosion problem (in addition to being infinite in many cases). The
transition system contains arbitrary interleavings of independent actions of the
various components of a distributed system, resulting in a large state space. In
the presence of a global clock and timing information this may become even
more acute.

A very different semantics, called Floating Time Transition System (FTTS),
was proposed in [15] for a timed actor-based language called Timed Rebeca [22].
Timed Rebeca has been used in a number of applications. Examples of such case
studies include analysis of routing algorithms and scheduling policies in NoC
(Network on Chip) designs [24,25]; schedulability analysis of distributed real-
time sensor network applications [19], more specifically a real-time continuous
sensing application for structural health monitoring in [17]; evaluation of dif-
ferent dispatching policies in clouds with priorities and deadlines in Mapreduce
clusters, based on the work in [10].

Floating Time Transition Systems (FTTS) define a semantics where actors
in a distributed system proceed at their own rates with local clocks widely apart,
instead of moving in a lock step fashion with the global time as in TTS. Recall
that in the Actor model [3] of computation, actors encapsulate the concept of
concurrent behavior. Each actor provides services that can be requested by other
actors by sending messages to the provider. Messages are put in the message
buffer of the receiver; the receiver takes the message and executes the requested
service, possibly sending messages to some other actors. In FTTS semantics,
each transition is the complete execution of a message server of an actor (which
contains both timed and untimed statements), without any interleaving with
the steps of other actors. Since actors execute a message to completion in this
semantics, actors may have different local times in states of FTTS, as their local
times are increased by timed statements of message servers. Relaxing the syn-
chronization of progress of time among actors in FTTS can significantly reduce
the size of the state space as it avoids many of the interleavings present in the
TTS semantics.

The main contribution of this paper is the establishment of the bisimularity
of the TTS and FTTS semantics for Timed Rebeca. Moreover, since the starting
time of the execution of actions is also preserved, we can prove the preservation of
any timed property of actions that is bisimulation invariant. Examples of such
properties include μ-calculus with weak modalities. Such a logic preservation
result is stronger than previous results about this and other reduction techniques,
which only establish the preservation of “reachability”-type properties. In [15],

Floating Time Transition System: More Efficient Analysis of Timed Actors 239

we showed that FTTS preserves assertion-based properties like schedulability
and deadlock avoidance. Similarly, many other works on reduction techniques for
asynchronous systems papers like [7,11,18] consider assertion-based properties.

For timed systems, the norm is to show that there is a timed weak bisimula-
tion relation between two timed transition systems to prove that they preserve
the same set of timed branching-time properties (e.g. TCTL). Proving the exis-
tence of such a relation is impossible when one of the transition systems does
not have progress-of-time transitions which is the case of relation between TTS
and FTTS. In this paper, we proved that the actions and the execution time
of the actions are preserved in FTTS using an innovative approach for defining
relation between the states of a TTS and its corresponding FTTS.

Our bisimulation proof relies on observing that the FTTS semantics exploits
key features of the actor model of computation. In such a model there is no shared
memory, and sends and receives are non-blocking. Moreover, actors are single-
threaded, with message servers being executed non-preemptively. This means
that message servers can be executed in an isolated fashion, as is carried out in
FTTS, without compromising the semantics of the model. Since our correctness
proof of FTTS relies only on certain features of the actor model (rather than
something specific to timed Rebeca), it suggests that FTTSs can be used in
the analysis of other actor models and languages, and more generally, in other
asynchronous event-based models.

We present experimental results that demonstrate the savings obtained from
using FTTS. We have developed a toolset for generating the state space of
a given Timed Rebeca model based on both the TTS and FTTS semantics
that is accessible through the Rebeca homepage [1]. We show that using the
FTTS semantics results in a smaller state space, fewer transitions, and less model
checking time when compared with the TTS semantics (Sect. 4). In some case
studies, using FTTS results in a state space which is 10 times smaller than its
observational equivalent state space in TTS semantics.

2 Background

2.1 Timed Rebeca

Timed Rebeca is an extension of Rebeca [26] with time-related features for mod-
eling and verification of time-critical systems. We describe Timed Rebeca lan-
guage constructs using a simple ticket service example (see Fig. 1).

Each Timed Rebeca model consists of a number of reactive classes, each
describing the type of a certain number of actors (called rebecs in Timed
Rebeca). In this example (Fig. 1), we have three reactive classes TicketService,
Agent, and Customer. Each reactive class declares a set of state variables
which define the local state of the rebecs of that class (like issueDelay of
TicketService which defines the time needed to issue a ticket). Following the
actor model, the communication in the model takes place by rebecs sending asyn-
chronous messages to each other. Each rebec has a set of known rebecs to which
it can send messages. For example, a rebec of type TicketService knows a rebec

240 E. Khamespanah et al.

1 reactiveclass TicketService {

2 knownrebecs {Agent a;}

3 statevars {

4 int issueDelay, nextId;

5 }

6 msgsrv initial(int myDelay) {

7 issueDelay = myDelay;

8 nextId = 0;

9 }

10 msgsrv requestTicket() {

11 delay(issueDelay);

12 a.ticketIssued(nextId);

13 nextId = nextId + 1;

14 }

15 }

16 reactiveclass Agent {

17 knownrebecs {

18 TicketService ts;

19 Customer c;

20 }

21 msgsrv requestTicket() {

22 ts.requestTicket()

23 deadline(5);

24 }

25 msgsrv ticketIssued(int id) {

26 c.ticketIssued(id);

27 }

28 }

29 reactiveclass Customer {

30 knownrebecs {Agent a;}

31 msgsrv initial() {

32 self.try();

33 }

34 msgsrv try() {

35 a.requestTicket();

36 }

37 msgsrv ticketIssued(int id) {

38 self.try() after(30);

39 }

40 }

41
42 main {

43 Agent a(ts, c):();

44 TicketService ts(a):(3);

45 Customer c(a):();

46 }

Fig. 1. The Timed Rebeca model of ticket service system.

of type Agent (line 2), to which it can send messages (line 12). Reactive classes
declare the messages to which they can respond. The way a rebec responds to a
message is specified in a message server. A rebec can change its state variables
through assignment statements (line 13), make decisions through conditional
statements (not appearing in our example), and communicate with other rebecs
by sending messages (line 12). Iterative behavior is modeled by rebecs sending
messages to themselves (line 38). Since the communication is asynchronous, each
rebec has a message bag from which it takes the next incoming message. A rebec
takes the first message from its bag, executes the corresponding message server
atomically, and then takes the next message (or waits for the next message to
arrive) and so on.

Timed Rebeca allows nondeterministic assignment to model nondetermin-
istic behavior of message servers. In this paper we consider the fragment of
language without such nondeterministic assignment. Thus, message servers in
this paper specify deterministic behavior. Note, however, that even the Timed
Rebeca language considered in this paper exhibits nondeterminism that results
from the interleaving of the executions of different rebecs due to concurrency;
more details follow in the section defining the semantics.

Finally, the main block is used to instantiate the rebecs in the system. In our
example (lines 43–45), three rebecs are created receiving their known rebecs and
the arguments to their inital message servers upon instantiation.

Floating Time Transition System: More Efficient Analysis of Timed Actors 241

In a Timed Rebeca model, although there is a notion of global time, each
rebec has its own local clock. The local clocks can be considered as synchronized
distributed clocks. Though methods (message servers) are executed atomically,
passing of time while executing a method can still be modeled. In addition,
instead of a queue for messages, there is a bag of messages for each rebec, ordering
its messages based on their arrival time.

Timed Rebeca adds three primitives to Rebeca to address timing issues:
delay, deadline and after. A delay statement models the passing of time for a
rebec during execution of a message server (line 11). Note that all other state-
ments are assumed to execute instantaneously. The keywords after and deadline
can be used in conjunction with a method call. The term after n indicates that
it takes n units of time (based on the local time of the sender) for the message to
be delivered to its receiver. For example, the periodic task of requesting a new
ticket is modeled in line 38 by the customer sending a try message to itself and
letting the receiver (itself) take it from its bag only after 30 units of time. The
term deadline n shows that if the message is not taken in n units of time, it will
be purged from the receiver’s bag automatically. For example, line 23 indicates
that a requestTicket message to the ticket service must be started to execute
before five units from sending the message. Note that, the deadline is counted
from the time of the sending of the message.

2.2 Semantics of Timed Rebeca

Prior to the detailed definition of semantics of Timed Rebeca, we formalize the
definition of a rebec and a model in Timed Rebeca. A rebec ri with the unique
identifier i is defined as the tuple (Vi, Mi, Ki) where Vi is the set of its state
variables, Mi is the set of its message servers, and Ki is the set of its known
rebecs. The set of all the values of the state variables of ri is denoted by Valsi.
For a Timed Rebeca model M, there is a universal set I which contains identifiers
of all the rebecs of M.

A (timed) message is defined as tmsg = ((sid, rid,mid), ar, dl), where rebec
rsid sends the message mmid ∈ Mrid to rebec rrid. This message is delivered to
the rebec rrid at ar ∈ N0 as its arrival time and the message should be served
before dl ∈ N0 as its deadline. For the sake of simplicity, we assume parametrized
messages as different messages (i.e. the value of parameters are in the name of
the message) without loss of generality. Each rebec ri has a message bag Bi which
can be defined as a multiset of timed messages. Bi stores the timed messages
which are sent to ri. The set of possible states of Bi is denoted by Bagsi.

In the following sections, two different semantics for Timed Rebeca models
are defined, called timed transition system and floating time transition system.
FTTS is defined in [15] as the natural semantics of Timed Rebeca but the relation
between TTS and FTTS for Timed Rebeca has not been investigated before.
Timed transition system is generally the standard semantic framework for timed
systems, and we define the formal semantics of Timed Rebeca in TTS in Sect. 2.3.
Floating time transition system exploits key features of actor models to generate
smaller transition systems compared to TTS. The absence of shared variables,

242 E. Khamespanah et al.

and blocking send or receive, and the presence of single threaded actors along
with non-preemptive execution of each message server, ensures that the execution
of a message server does not interfere with the execution of another message
server of a different rebec. The floating time transition system semantics exploits
this by executing message servers in isolation, and thereby having fewer states
in the transition system.

2.3 Semantics of Timed Rebeca in Timed Transition System

Timed Transition System of the Timed Rebeca model M is a tuple of TTS =
(S, s0, Act,→) where S is the set of states, s0 is the initial state, Act is the set
of actions, and → is the transition relation.

States. A state s ∈ S consists of the local states of the rebecs, together with
the current time of the state. The local state of rebec ri in state s is defined as
the tuple (Vs,i, Bs,i, pcs,i, ress,i), where

– Vs,i ∈ Valsi is the values of the state variables of ri

– Bs,i ∈ Bagsi is the message bag of ri

– pcs,i ∈ {null} ∪ (Mi × N) is the program counter, tracking the execution of
the current message server (null if ri is idle in s)

– ress,i ∈ N0 is the resuming time, if ri is executing a delay in s

So, state s ∈ S can be defined as
(∏

i∈I (Vs,i, Bs,i, pcs,i, ress,i) , nows

)
where

nows ∈ N is the current time of s.

Initial State. s0 is the initial state of the Timed Rebeca model M where the
state variables of the rebecs are set to their initial values , the initial message is
put in the bag of all rebecs having such a message server (their arrival times are
set to zero), the program counters of all rebecs are set to null, and the resuming
time of all rebecs and the time of the state are set to zero.

Actions. There are three possible types of actions: taking a message tmsg ,
executing a statement by an actor (which we consider as an internal transition
τ), and progress of n ∈ N units of time. Hence, the set of actions is Act =⋃

i∈I ((I × i × Mi) × N × N) ∪ {τ} ∪ N.

Transition Relations. Before defining the transition relation, we introduce the
notation Es,i which denotes the set of enabled messages of rebec ri in state s
which contains the messages whose arrival time is less than or equal to nows.
The transition relation →⊂ S ×Act×S is defined such that (s, act, t) ∈→ if and
only if one of the following conditions holds.

1. (Taking a Message for Execution). In state s, there exists ri such that
pcs,i = null and there exists tmsg ∈ Es,i. Here, we have a transition of the

form s
tmsg−→ t. This transition results in extracting tmsg from the message bag

of ri, setting pct,i to the first statement of the message server corresponding
to tmsg, and setting rest,i to nowt (which is the same as nows). Note that Vt,i

remains the same as Vs,i. These transitions are called taking-event transitions
and ri is called enabled rebec.

Floating Time Transition System: More Efficient Analysis of Timed Actors 243

2. (Internal Action). In state s, there exist ri such that pcs,i �= null and
ress,i = nows (the value of ress,i does not change during the execution of a
message, except for running a delay statement). The statement of message
server of ri specified by pcs,i is executed and one of the following cases occurs
based on the type of the statement. Here, we have a transition of the form
s

τ→ t.
(a) Non-delay statement: the execution of such a statement may change the

value of a state variable of rebec ri or send a message to another rebec.
Here, pct,i is set to the next statement (or null if there is no more state-
ments). In this case now(t) and now(s) are the same.

(b) Delay statement with parameter d ∈ N: the execution of a delay statement
sets rest,i to nows +d. All other elements of the state remain unchanged.
Particularly, pct,i = pcs,i because the execution of delay statement is not
yet complete. The value of the program counter will be set to the next
statement after completing the execution of delay (as will be shown in
the third case).

These transitions are called internal transitions.
3. (Progress of Time). If in state s none of the conditions in cases 1 and 2

hold, meaning that �ri · ((pcs,i = null ∧ Es,i �= ∅) ∨ (pcs,i �= null ∧ ress,i =
nows)), the only possible transition is progress of time. In this case, nowt is
set to nows + d where d ∈ N is the minimum value which makes one of the
aforementioned conditions become true. The transition is of the form s

d→ t.
For any rebec ri, if pcs,i �= null and ress,i = nowt (the current value of pcs,i

points to a delay statement), pct,i is set to the next statement (or to null if
there are no more statements). These transitions are called time transitions.
Note that when such a transition exists, there is no other outgoing transition
from s.

Later, for each state of a TTS we need to find messages which are sent by a
given rebec. Therefore, we define the following function which returns a bag of
messages which are sent by a rebec.

Definition 1 (Sent Messages in TTS). For a given state s ∈ S and rebec
ri, function sent(s, ri) returns bag of messages which are sent by ri in state
s. In other words, tmsg ∈ sent(s, ri) if and only if for message tmsg =
((sid, rid,mid), ar, dl) there is ∃ rj · tmsg ∈ Bs,j ∧ sid = ri. ��

2.4 Semantics of Timed Rebeca in Floating Timed Transition
System

The notion of floating time transition system (FTTS) as a semantics for Timed
Rebeca has been introduced in [15]. States in floating time transition system
contain the local times of each rebec, in addition to values of their state variables
and the bag of their received messages. However, the local times of rebecs in a
state can be different, and there is no unique value for time in each state. Such
a semantics is reasonable when one is only interested in the order of visible

244 E. Khamespanah et al.

events. FTTS may not be appropriate for analyses that require reasoning about
all synchronized global states of a Timed Rebeca model. The key features of
Rebeca actors that make FTTS a reasonable semantics are having no shared
variables, no blocking send or receive, single-threaded actors, and atomic (non-
preemptive) execution of each message server which give us an isolated message
server execution. This means that the execution of a message server of a rebec will
not interfere with execution of a message server of another rebec. Therefore, we
can execute all the statements of a given message server (even delay statements)
during a single transition. This makes the transition system significantly smaller,
because there will be only one kind of action, which is taking a message and
executing the corresponding message server entirely.

The operational semantics of a Timed Rebeca model M is defined as a float-
ing time transition system FTTS = (S′, s′

0, Act′ , ↪→) and is as described below.
In this paper, we use the primed version for letters and notations related to FTTS
except for transitions which are shown by ↪→ (for TTS we use the unprimed let-
ters).

States. Similar to TTS, a state s ∈ S′ consists of the local states of the rebecs.
However, the current time is kept separately for each rebec, denoted by nows′,i.
We will see shortly, the message servers are executed entirely in one transition;
therefore, there is no need to keep track of the program counter and the resuming
time. So, the state s′ ∈ S′ is defined as s′ =

∏
i∈I (Vs′,i, Bs′,i, nows′,i).

Initial State. s′
0 is the initial state of the Timed Rebeca model M where the

state variables of the rebecs are set to their initial values (according to their
types), the initial message is put in the bag of rebecs (their arrival times are
set to zero), and the current times of all the rebecs are set to zero.

Actions. As mentioned before, there is only one kind of action, which is taking
a message and executing the corresponding message server entirely. Therefore,
Act′ =

⋃
i∈I ((I × {i} × Mi) × N × N) is defined as the set of all the possible

timed messages.

Transition Relations. We first define the notion of release time of a message.
A rebec ri in a state s′ ∈ S′ has a number of timed messages in its bag. The
release time of tmsg = ((sid, rid,mid), ar, dl) ∈ Bs′,i is defined as rttmsg =
max(nows′,i, ar) (Note that ar < nows′,i means that tmsg has arrived at some
time when ri has been busy executing another message server. Hence, tmsg is
ready to be processed at nows′,i). Consequently, the set of enabled messages of
rebec ri in state s′ is Es′,i = {tmsg ∈ Bs′,i|∀tmsg′ ∈ Bs′,i · rttmsg ≤ rttmsg′}
which are the messages with the smallest release time. For a set of enabled
messages Es′,i, enabling time ETs′,i is the release time of the members of Es′,i.

Now we define the transition relation ↪→⊂ S′ × Act′ × S′ such that for every
pair of states s′, t′ ∈ S′, we have (s′, tmsg, t′) ∈↪→ for every tmsg ∈ Es′,i ∧ (∀j ∈
I · ETs′,i ≤ ETs′,j). All the transitions of FTTS are called taking-event tran-
sitions and as a result of a taking-event transition labeled with tmsg, tmsg is
extracted from the bag of ri, the local time of ri is set to ETs′,i, and all the

Floating Time Transition System: More Efficient Analysis of Timed Actors 245

statements in the message server corresponding to tmsg are executed sequen-
tially. Here, ri is called enabled rebec. The effect of executing non-delay state-
ments is changing the state variables of ri and sending some messages to si or
other rebecs. The effect of executing a delay statement with parameter d ∈ N is
increasing the local time of ri by d units of time.

We define bag of sent messages in FTTS the same as what we defined in TTS.

Definition 2 (Sent Messages in FTTS). For a given state s′ ∈ S′ and rebec
ri, function sent(s′, ri) returns bag of messages which are sent by ri in state
s′. In the other words, tmsg ∈ sent(s′, ri) if and only if for message tmsg =
((sid, rid,mid), ar, dl) there is ∃ rj · tmsg ∈ Bs′,j ∧ sid = ri. ��

There is no explicit reset operator for the time in Timed Rebeca, so, progress
of time results in an infinite number of states in the transition systems of both
FTTS and TTS. However, Timed Rebeca models are models of reactive systems
which generally show periodic or recurrent behaviors. Hence, if we ignore the
absolute time of the states, usually finite number of untimed traces are gener-
ated for Timed Rebeca models. Based on this fact, in [15] we presented a new
notion for equivalence relation between two states to make the transition systems
finite, called shift equivalence relation. In shift equivalence relation two states are
equivalent if and only if they are the same except for the value of parts which
are related to the time (value of now, arrival times of messages, and deadlines
of messages) and shifting the value of parts which are related to the time in one
state makes it the same as the other one. This way, instead of preserving absolute
value of time, only the relative difference of timing parts of states are preserved.
As discussed in [15], shift equivalence relation makes transition systems of the
majority of Timed Rebeca models finite.

3 An Action-Based Weak Bisimulation Between TTS
and FTTS

As described in Sect. 2.4, in FTTS representation of a Timed Rebeca model,
all the statements of a message server are executed at once during a single
transition. In contrast, the TTS semantics executes one statement at a time, and
interleaves the execution of different message servers. We demonstrate despite
these differences, these semantics are equivalent in some sense. To this end, we
define an action-based weak bisimulation (observational equivalence) relation
between TTS = (S, s0, Act,→) and FTTS = (S′, s′

0, Act′, ↪→) for a given Timed
Rebeca model M. Note that in the following text we denote the states of FTTS
as the primed version of the states in TTS.

This definition is valid for Zeno-free Timed Rebeca models. As the model of
time in Timed Rebeca is discrete, the execution of infinite number of message
servers in zero time is the only scenario resulting Zeno behavior. So, the Zeno
behavior happens if and only if there is a cycle of message servers invocations
among different actors without progress of time, can be detected by performing
a depth-first-search (DFS) in both TTS and FTTS [14].

246 E. Khamespanah et al.

Prior to the formal definition of the relation between the states of FTTS and
TTS the following definitions and proposition are required to make the relation
easy to understand.

We begin by defining the observable and τ actions in both transitions sys-
tems. All actions in FTTS are observable. In the TTS, only taking-event transi-
tions are observable. Therefore, time transitions and internal transitions in TTS
are assumed to be τ transitions. In other words, only taking-event actions are
observable in TTS and FTTS. This definition conforms the definition of events
and observer primitives in the actor model which is introduced by Agha et al.
in [2] as a reference actor framework. Next, we define the notion of a completing
trace for a rebec ri in TTS state s as an execution which results in completing
the execution of the message server of ri that has already commenced in state s.
Note that during a completing trace for ri the other rebecs, may complete their
servers (or not), and may start the execution of new message servers. We begin
by first defining an execution.

Definition 3 (Execution Trace). Execution trace from state s in TTS is a
sequence of transitions from state s to one of its reachable states u, shown by
s

act1→ s1
act2→ · · · actn→ u. ��

Definition 4 (Completing Trace for a Rebec). A given execution trace
from state s to state u in TTS is a completing trace for rebec ri if and only if ri

does not execute any taking-event transition from s to u, pcu,i = null, and there
is no other state in the trace where the program counter of ri is null. Here, we
also define CTs,i as one of the completing traces from s for rebec ri (no matter
which one in the case there are more than one completing traces from s for rebec
ri). In case of pcs,i = null, there is CTs,i = ε as no more action is needed for
completing the execution of a message server of ri in s. ��

Note that, as there is no preemption in the message server execution and
there is no infinite message server body in Timed Rebeca, there is a completing
trace for all the rebecs from all the states.

We define three functions on the completing traces. The first one returns the
value of the state variables of the specific rebec at the last state of the trace (the
rebec that the completing trace is defined for). The second one returns the time
of the last state of the trace. The third one returns the bag of messages that are
sent by the specific rebec during this trace.

Definition 5 (Three Functions on Completing Traces). The values of
state variables of ri in the target state of trace CTs,i is return by function
statei(CTs,i). Function nowi(CTs,i) returns the time of the target state of
trace CTs,i. Function senti(CTs,i) returns a bag of messages where tmsg =
((sid, rid,mid), ar, dl) ∈ senti(CTs,i) if and only if tmsg is sent during the exe-
cution of completing trace CTs,i and sid = ri. ��

Based on the isolated execution of rebecs (no shared variables and no pre-
emption of a message server) we can easily conclude that in case of more than

Floating Time Transition System: More Efficient Analysis of Timed Actors 247

one completing trace for a rebec, any of the completing traces ends in the same
values for state variables, the same state time, and the same bag of sent messages.

Proposition 1 (Completing Traces End in the Same Final Condition).
Assume that there are two different completing traces CT 1

s,i and CT 2
s,i from a

given state s ∈ S and rebec ri. We have senti(CT 1
s,i) = senti(CT 2

s,i), nowi(CT 1
s,i)

= nowi(CT 2
s,i), and statei(CT 1

s,i) = statei(CT 2
s,i). This proposition is valid when

there is no nondeterminism in the body of message servers. At the beginning of
this section we made clear that in this work we address Timed Rebeca models
which do not have nondeterministic assignments.

Proof. As mentioned in the semantics of Timed Rebeca, execution of a message
server is not interfered with the execution of other rebecs because in Timed
Rebeca there is no shared variable or any kind of preemption of execution of
a message server while its executing. In addition, we assumed that there is no
non-deterministic expression in messages servers of rebecs. Therefore, in all the
completing traces from state s, execution of τ transitions which are related to
ri ends in the same values for state variables and bag of sent messages. On the
other hand, as delay statements which are related to the execution of ri are the
same in two different competing traces, the time at the target states of CT 1

s,i

and CT 2
s,i are the same. ��

Next, we define a projection function for states of TTS and FTTS. Projection
functions extract values of state variables and the collection of messages which
are sent by one rebec from a given TTS or FTTS state. Using these projection
functions, we get uniform views from states of TTS and FTTS which are nec-
essary for the definition of the action-based weak bisimulation relation. To this
aim, as the execution of a message in TTS is completed in several steps, the
projection function in TTS is defined based on completing traces to be able to
have access to the valuation of state variables and bags of sent messages after
completing the execution of currently executing messages.

Definition 6 (Projection Function in TTS). For a given TTS state s ∈ S
and rebec ri, projection function Proj(s, i) returns a collection of statei(CTs,i),
nowi(CTs,i), and sent(s, i)∪senti(CTs,i).Here, CTs,i is one of completing traces
of rebec ri in state s. ��
Definition 7 (Projection Function in FTTS). For a given FTTS state s′ ∈
S′ and rebec ri, projection function Proj(s′, i) returns a collection of the values
of state variables of ri in s′, now(s′, i), and sent(s′, i). ��

Using the above definitions, we define the action-based weak bisimulation
relation among states of TTS and FTTS. Two states in TTS and FTTS are in
the relation if and only if the projection of states to each rebec is the same. This
way, we will prove that two states have the same future behavior in Theorem 1.
Figure 2 shows how states in TTS are mapped to their corresponding states
in FTTS. As the observational behavior of s1 and s′

1 are the same (only the

248 E. Khamespanah et al.

Fig. 2. How states in TTS are mapped to states of FTTS with the same future
behaviors.

observable action a is enabled), s1 is mapped to s′
1 and as the observational

behavior of s2, s3, and s4 are the same as the observational behavior of s′
2 (the

observable actions b and c are enabled), they are mapped to s′
2.

Definition 8 (Relation among States of TTS and FTTS). Two states
s ∈ S and s′ ∈ S′ are in relation R ⊆ S×S′ if and only if Proj(s, i) = Proj(s′, i)
holds for every rebec ri. ��

Directly from the definition of relation R it is concluded that the bag of
enabled taking-event messages in s and s′ are the same.

Proposition 2 (Relation R Preserves Enabled Messages). Two states
s ∈ S and s′ ∈ S′ which are in relation R and Es,i �= ∅, have the same bag of
enabled messages and the enabled messages have the same enabling time.

Proof. Assume that for given states s ∈ S and s′ ∈ S′ there is s R s′.
Then, ∀ i ∈ I · Proj(s, i) = Proj(s′, i) which results in ∀ i ∈ I · sent(s, i) ∪
senti(CTs,i) = sent(s′, i). As a result, there is

⋃
i∈I (sent(s, i) ∪ senti(CTs,i)) =⋃

i∈I (sent(s′, i)) which implies that
⋃

i∈I (Bs,i) ∪ ⋃
i∈I senti(CTs,i) =⋃

i∈I (Bs′,i). As the messages in
⋃

i∈I senti(CTs,i) will be send in the future,
none of the enabled messages in s are in

⋃
i∈I senti(CTs,i). Therefore, enabled

messages in
⋃

i∈I (Bs′,i) are in
⋃

i∈I (Bs,i). On the other hand, based on
the definition of enabled messages in TTS, enabled rebecs are not busy with
the execution of messages in s. So, their completing trace are empty trace.
Assume that ri is one of the enabled rebecs of s. Having CTs,i = ∅ results
in nowi(CTs,i) = now(s). Therefore, as Proj(s, i) = Proj(s′, i) there is
now(s′, i) = nowi(CTs,i) = now(s). So, for enabled rebecs in s, their local times
in s′ is the same as the time of state s.

Finally, as in s and s′ there are the same messages in the bag of enabled
rebecs and their times are the same, based on the definition of enabled rebecs
in Sect. 2.2, s and s′ have the same bag of enabled rebecs. This property holds
for both conditions one and two. ��

Floating Time Transition System: More Efficient Analysis of Timed Actors 249

Having the same enabled messages (messages with the same signature and
the same execution time) in two given states s ∈ S and s′ ∈ S′ where s R s′, we
are able to prove that s and s′ have the same future behavior. To this aim, we
have to prove that R is an action-based weak bisimulation relation.

Definition 9 (Action-Based Weak Bisimulation Relation). A relation P
over two transition systems TS1 = (S1, s10 , Act1, →1) and τ -free transition sys-
tem TS2 = (S2, s20 , Act2,→2), is an action-based weak bisimulation relation if
the following conditions hold for states of TS1 and TS2.

1. ∀s1, t1 ∈ S1 and s2 ∈ S2 where s1 P s2, in case of s1
α→1 t1 where α ∈ Act1

then ∃ t2 ∈ S2 such that s2
α→2 t2 and t1 P t2 and in case of s1

τ→1 t1 there
is t1 P s2.

2. ∀s2, t2 ∈ S2 and s1 ∈ S1 where s1 P s2, for a message α ∈ Act2 such that
s2

α→2 t2 then ∃ s′, s′′, . . . , s(k), t1 ∈ S1 (for k ≥ 0) such that s1
τ→1 s′ τ→1

s′′ τ→1 · · · α→1 t1 and t1 P t2. ��
Theorem 1. The relation R is an action-based weak bisimulation relation
between states of TTS and FTTS.

Proof. It is presented in Appendix A.

We discussed in Sect. 2.4 that in actor systems we are interested in rela-
tion among actions of systems and the time where they are triggered (mes-
sages are taken from bags). So, we have to find the most expressive action-based
logic which is preserved in action-based weak bisimulation relation. As men-
tioned in [27], weak bisimulation relation preserves properties in form of modal
μ-calculus with weak modalities. Weak-bisimulation relation does not preserve
complete modal μ-calculus. Weak modal μ-calculus has the same syntax as modal
μ-calculus, where we assume that the diamond (〈a〉ϕ) and box ([a]ϕ) modali-
ties are restricted to observable transitions, i.e., action a must be a taking-event
transition. The semantics of this logic is identical to that of μ-calculus, except
for the semantics of the diamond and box operators — a state s satisfies 〈a〉ϕ
if there is an execution starting from state s to t, such that a is the only visible
action, and t satisfies (inductively) ϕ. The semantics of box is defined dually.

Corollary 1. Transition systems of Timed Rebeca models in TTS and FTTS are
equivalent with respect to all formulas that can be expressed in modal μ-calculus
with weak modalities where the actions are taking messages from bags. ��

4 Experimental Results

We developed a toolset for the model checking of Timed Rebeca models based on
the semantics of both FTTS and TTS, as a part of the Afra project1. The cur-
rent version of the model checking toolset supports schedulability and deadlock-
freedom analysis and assertion based verification of Timed Rebeca models. The
1 The latest version of the toolset (version 2.5.0) is accessible from http://www.

rebeca-lang.org/wiki/pmwiki.php/Tools/RMC

http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/RMC
http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/RMC

250 E. Khamespanah et al.

Timed Rebeca code of the case studies and the model checking toolset are acces-
sible from Rebeca homepage [1]. We provide four case studies of different sizes
to illustrate the reduction in state space size, number of transitions, and time
consumption of model checking using FTTS in comparison with TTS. The host
computer of model checking toolset was a desktop computer with 1 CPU (2
cores) and 6GB of RAM storage, running Microsoft Windows 7 as the operating
system. The selected case studies are the models of a Wireless Sensor and Actu-
ator Networks (WSAN), the simplified version of Scheduler of Hadoop, a Ticket
Service system, and simplified version of 802.11 Wireless Protocol.

The details of the Ticket Service case study is explained in Sect. 2.1. Catching
the deadline of issuing the ticket is the main property of this model. We created
different sizes of ticket service model by varying the number of customers, which
results in four to ten rebecs in the model. In the case of the simplified version of
802.11 Wireless Protocol, we modeled three wireless nodes which are communi-
cating via a medium. The medium sets random back-off time when more than
one node starts to send data, to resolve data collision in the medium. Deadlock
avoidance is the main property of this model. In the third case study, a WSAN is
modeled as a collection of actors for sensing, radio communication, data process-
ing, and actuation. Schedulability of the model is verified as the main property
of this model. Finally, we modeled a simplified version of the behavior of MapRe-
duce of Hadoop system, called YARN. We modeled one client which submits jobs
to YARN resource manager. The resource manager distributes the submitted job
among application masters and application masters split the job into some tasks
and distribute tasks among some nodes. This model has 32 rebecs and is model
checked to meet deadline of jobs.

Using FTTS results in significant reduction in the size of the state space
for the majority of timed actor models. As shown in Table 1, in Yarn model
we have about 90 % of reduction. The reason is many delay statements in the
message servers of Yarn model which results in splitting the execution of message
servers in TTS. Interleaving of the execution of these parts results in larger state
spaces in TTS. The same argument is valid to support results of Ticket Service
and WSAN. In the case of WSAN, in each row, the size (the numbers which
are separated by comma) is a combination of the sampling rate, the number
of nodes, the packet size, and the sensor task delay of the model, respectively.
As the complexity of these examples are less than Yarn model, the reduction
is about 50 %. There are some exceptional models in which the state space size
and the number of transitions in TTS and FTTS are close to each other. The
model of 802.11 prot. is one of them. As there is no delay statement in the
body of the message servers of 802.11 prot., the execution of the message servers
is without progress of time. Therefore, atomic execution of message servers in
FTTS and the rather fine-grain execution of message servers in TTS results in
state spaces with comparable sizes. The effectiveness of FTTS is reduced in this
kind of models. Table 1 also shows that using FTTS reduces the model checking
time consumption (even in case of 802.11 prot.). It is because of the simplicity of
the generated state space in FTTS, using atomic execution of message servers.

Floating Time Transition System: More Efficient Analysis of Timed Actors 251

Table 1. Number of states and transitions, time consumption, and reduction ratio in
model checking based on floating time transition system and timed transition system.

Problem Size Using FTTS Using TTS Reduction

states trans time states trans time states trans

Yarn - 1.30K 5.71K < 1 sec 11.03K 61.08K 6 secs 88% 91%

lWSAN 33,6,4,2 977 1.5K < 1 sec 1.92K 2.52K < 1 sec 49% 41%

25,5,4,10 1.85K 2.54K < 1 sec 3.72K 4.55K < 1 sec 50% 44%

30,6,4,2 4.75K 5.78K < 1 sec 9.35K 10.46K 2 secs 50% 45%

25,6,4,2 17.02K 20K 5 secs 34.5K 37.85K 24 secs 51% 47%

20,6,4,2 28.19K 32.19K 16 secs 57.62K 62.21K 64 secs 51% 48%

Ticket Service 1 5 6 < 1 sec 8 9 < 1 sec 38% 33%

2 51 77 < 1 sec 77 107 < 1 sec 34% 28%

3 252 418 < 1 sec 360 550 < 1 sec 30% 24%

4 1.29K 2.21K < 1 sec 1.82K 2.89K < 1 sec 30% 24%

5 7.53K 12.8K < 1 sec 10.7K 16.9K < 1 sec 30% 24%

6 51.6K 84.7K 2 secs 73.5K 114K 2 secs 30% 26%

7 408K 650K 18 secs 582K 884K 24 secs 30% 26%

802.11 Prot. 2 1.12K 2.09K 2 secs 1.92K 2.62K 2 secs 10% 4%

3 59K 196K 122 secs 61K 198K 153 secs 3% 1%

5 Related Work

Here, we give an overview of the approaches which are used for dealing with
time in some widely used real-time system modeling and verification languages.

Real-Time Maude. Real-Time Maude [20,21] is a high level declarative pro-
gramming language supporting specification of real-time and hybrid systems in
timed rewriting logic. Real-Time Maude supports both discrete and continuous
time models. A set of tools are developed for time-bounded analysis of real-
time Maude. Timed rewrite and Timed search build traces of the model from
its initial state and checks whether a specific state is reachable or not. Timed
model checking verifies models against time-bounded TLTL formulas. Recently,
Real-Time Maude is equipped with a model checker for TCTL properties [16].
In [23] we used these facilities for the model checking of Timed Rebeca models
against TCTL formulas. Comparing to FTTS, the mentioned tools are working
on lock step fashion which results in generating timed transition systems of the
Timed Rebeca models. To the best of our knowledge, no reduction technique is
implemented for real-time Maude models to relax lock step fashion. In addition,
timed transition systems of real-time Maude models are generated to the defined
time-bound. In contrary, using shift equivalence relation in FTTS, there is no
need to define time-bound to achieve finite transition system.

Timed Automata. Timed automata [4] model the behavior of timed systems
using a set of automata that is equipped with the set of clock variables. Although
clocks are the system variables, their values can only be checked or set to zero.

252 E. Khamespanah et al.

The values of all clocks are increased in the same rate or can be reset to zero
while moving from one state to other states. Constraints over clocks can be added
as enabling conditions on both states and transitions. Timed automata support
parallel composition as a convenient approach for modeling complex systems. As
described in [6], parallel composition of timed automata is based on the hand-
shaking actions. Timed automata support both continuous and discrete timed
models [9,13]. UPPAAL [8] generates region transition system of timed automata
(symbolic representation of timed transition system of the timed automata) and
apply verification techniques on it. Modeling of real-time distributed systems
with asynchronous message passing between components using synchronous com-
munication of automata increases the number of states dramatically (because
of many synchronizations among automta for model asynchronous behavior, as
shown in [15] in detail). In contrast, using FTTS requires fewer synchronizations,
because messages are executed atomically.

Erlang. Erlang is a dynamically-typed general-purpose programming language
which was developed in 1986 [5]. The concurrency model of Erlang is based on the
actor model. Fredlund et al. in [12] proposed a timed extension of McErlang as a
model checker of timed Erlang programs. In comparison with FTTS, McErlang
provides fine-grain model checker for Erlang systems which results in generating
timed transition system; however, states in FTTS are coarse-grain and more
abstract than that of McErlang. Experimental results in [15] show very well the
efficiency of FTTS in comparison with the results of the approach of McErlang.

Partial Order Reduction. The reduction from TTS to FTTS has aspects that
are similar to partial order reduction (POR). In fact the relationship between
POR and FTTS is subtle. FTTS is unaware of any independence relation, per-
sistence/ample sets for timed actor systems that will result in POR techniques
producing FTTS as the reduced transition system. Moreover, not only is the for-
mal relationship between FTTS and POR nontrivial, POR techniques for timed
systems were empirically compared against the FTTS semantics and found that
the FTTS results in smaller transition systems in [15].

6 Conclusion

In this paper we proved that there is a weak bisimulation relation between timed
transitions system (TTS) – as a standard semantics of discrete time systems –
and floating time transitions system (FTTS) – as a natural semantics for time
actor systems. FTTS was previously introduced in [15] along with an algorithm
for schedulability and deadlock freedom analysis. Proving the weak bisimilarity
of TTS and FTTS, enables one to use FTTS for verification of branching-time
properties in addition to previously proposed analyses. Experimental evidence
supports our theoretical observation that FTTS of Timed Rebeca models are
smaller than TTS in general. In case of models with many concurrently executing
actors, FTTS is up to 90 % smaller than TTS. Therefore, we can efficiently
model check more complicated models. In addition, our technique and the proofs
are based on the actor model of computation where the interaction is solely

Floating Time Transition System: More Efficient Analysis of Timed Actors 253

based on asynchronous message passing between the components. So, they are
generalized enough to be applied to computation models which have message-
driven communication and autonomous objects as units of concurrency such as
agent-based systems.

Acknowledgements. This work has been partially supported by the project “Timed
Asynchronous Reactive Objects in Distributed Systems: TARO” (nr. 110020021) of the
Icelandic Research Fund.

A Proof of Theorem 1

To prove that the first condition of action-based weak bismulation holds for R,
based on the type of tmsg the following two cases are possible.

– s
tmsg→ t: Based on the definition of relation R, in this case projection function

for all the rebecs in s and t return the same value except for the sender and
receiver of tmsg. For the sender rebec (assume that it is ri) the difference is in
the bag of sent messages, results in sentt,i = sents,i−tmsg. On the other hand,
projection function in s′ and t′ have the same value for all the rebecs except
the sender and receiver of tmsg. For the sender rebec (assume that it is ri) the
difference is in the bag of sent messages, results in sentt′,i = sents′,i − tmsg.

For the receiver rebec (assume that it is rj), there is a completing trace CTt,j

such that Proj(t, j) returns valuation of state variables of rj from the target
state of CTt,j and messages which are sent by rj in t in union with messages
which are sent during CTt,j . In FTTS state t′, projection function returns
valuation of state variables and the sent messages of rj after the execution of
all the statements of tmsg (i.e. doing transition tmsg in FTTS) which is the
same as what projection function returns in t. Therefore, there is t R t′ as the
results of projection function in t and t′ are the same for all the rebecs.

– s τ→ t: As transition from s to t is not observable, we have to show that there
is relation R between t and s′. This way, doing a τ transition from s results
in stuttering in s′ as one of the properties of action-based weak bisimulation
relations.

Assume that τ transition belongs to rebec ri. Doing τ transition by ri makes
projection function return the same result in s and t for all the rebecs except
ri. It is because of the fact that only ri has progress which may result in
changing the valuation of its state variables or sending a message to other
rebec. For ri in state s one of the completing traces is a trace which contains
τ transition from s to t as its first transition. Therefore, completing traces of
ri which are started from s and t are ended in the same target state, results
in Proj(s, i) = Proj(t, i). Therefore, result of projection function for all the
rebecs in TTS and FTTS are the same and t is in relation R with s′.

To prove the second condition, as all the transitions in FTTS are taking-event
transitions, tmsg must be taking-event transition. On the other hand, transition
tmsg is enabled in s as we discussed in Proposition 2. Now we can prove that

254 E. Khamespanah et al.

t and t′ are in relation R with the argument the same as what we did in case
s

tmsg→ t of condition one.
Finally, we have to show that the initial states of the transitions systems

are in relation R. As the program counter of all of the rebecs in s0 is set
to null, the completing traces started from s0 are ε. So, for any given rebec
ri, statei(CTs,i) = state(s, i) = state(s′, i), sent(CTs,i) = ∅ → sent(s0, i) =
sent(s′

0, i), and now(CTs,i) = now(s) = now(s′, i) = 0, results in s0 R s′
0. ��

References

1. Rebeca Home Page. http://www.rebeca-lang.org
2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-

tation. J. Funct. Program. 7(1), 1–72 (1997)
3. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed

Systems. MIT Press series in artificial intelligence. MIT Press, Cambridge (1990)
4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
5. Armstrong, J.: A history of Erlang. In: Ryder, B.G., Hailpern, B. (eds.) HOPL,

pp. 1–26. ACM (2007)
6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge

(2008)
7. Bultan, T., Ouederni, M., Basu, S.: Synchronizability for verification of asynchro-

nously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI
2012. LNCS, vol. 7148, pp. 56–71. Springer, Heidelberg (2012)

8. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a
tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger,
T.A., Sontag, E.D. (eds.) Hybrid Systems. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1995)

9. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

10. Cho, B., Rahman, M., Chajed, T., Gupta, I., Abad, C., Roberts, N., Lin, P.:
Natjam: design and evaluation of eviction policies for supporting priorities and
deadlines in mapreduce clusters. In: Lohman, G.M. (ed.) SoCC, p. 6. ACM (2013)

11. Desai, A., Garg, P., Madhusudan, P.: Natural proofs for asynchronous programs
using almost-synchronous reductions. In: Black, A.P., Millstein, T.D. (eds.) Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014,
20–24 October 2014, Portland, OR, USA, pp. 709–725. ACM (2014)

12. Fredlund, L.Å., Earle, C.B.: Verification of timed Erlang programs using McEr-
lang. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol.
7273, pp. 251–267. Springer, Heidelberg (2012)

13. Ibarra, O.H., Su, J.: Generalizing the discrete timed automaton. In: Yu, S., Păun,
A. (eds.) CIAA 2000. LNCS, vol. 2088, p. 157. Springer, Heidelberg (2001)

14. Khamespanah, E., Khosravi, R., Sirjani, M.: Efficient TCTL model checking algo-
rithm for timed actors. In: Boix, E.G., Haller, P., Ricci, A., Varela, C. (eds.)
Proceedings of the 4th International Workshop on Programming based on Actors
Agents & Decentralized Control, AGERE! 2014, 20 October 2014, Portland, OR,
USA, pp. 55–66. ACM (2014)

http://www.rebeca-lang.org

Floating Time Transition System: More Efficient Analysis of Timed Actors 255

15. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184–204 (2015)

16. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Timed CTL model checking in real-time
Maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 182–200. Springer,
Heidelberg (2012)

17. Linderman, L.E., Mechitov, K., Spencer, B.F.: TinyOS-based real-time wireless
data acquisition framework for structural health monitoring and control. Struct.
Control Health Monit. 20(6), 1007–1020 (2013)

18. Manohar, R., Martin, A.J.: Slack elasticity in concurrent computing. In: Jeuring,
J. (ed.) MPC 1998. LNCS, vol. 1422, p. 272. Springer, Heidelberg (1998)

19. Mechitov, K.A., Khamespanah, E., Sirjani, M., Agha, G.: A Model Checking
Approach for Schedulability Analysis of Distributed Real-Time Sensor Network
Applications (2015). Submitted for Publication

20. Ölveczky, P.C., Meseguer, J.: Specification and analysis of real-time systems using
real-time Maude. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 354–358. Springer, Heidelberg (2004)

21. Ölveczky, P.C., Meseguer, J.: Real-time Maude 2.1. Electr. Notes Theor. Comput.
Sci. 117, 285–314 (2005)

22. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014)

23. Khamespanah, E., Ölveczky, P.C., Sirjani, M., Khosravi, R., Sabahi-Kaviani, Z.:
Formal semantics and analysis of timed Rebeca in real-time Maude. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 178–194. Springer,
Heidelberg (2014)

24. Sharifi, Z., Mohammadi, S., Sirjani, M.: Comparison of NoC routing algorithms
using formal methods. In: PDPTA (2013)

25. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
ECEASST 66 (2013)

26. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Inform. 63(4), 385–410 (2004)

27. Sprenger, C.: A verified model checker for the modal µ-Calculus in Coq. In: Stef-
fen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 167. Springer, Heidelberg (1998)

Configuration Logics: Modelling
Architecture Styles

Anastasia Mavridou, Eduard Baranov, Simon Bliudze(B), and Joseph Sifakis

École Polytechnique Fédérale de Lausanne,
Station 14, 1015 Lausanne, Switzerland

{anastasia.mavridou,eduard.baranov,simon.bliudze,
joseph.sifakis}@epfl.ch

Abstract. We study a framework for the specification of architecture
styles as families of architectures involving a common set of types of com-
ponents and coordination mechanisms. The framework combines two log-
ics: (1) interaction logics for the specification of architectures as generic
coordination schemes involving a configuration of interactions between
typed components; (2) configuration logics for the specification of archi-
tecture styles as sets of interaction configurations. The presented results
build on previous work on architecture modelling in BIP. We show how
propositional interaction logic can be extended into a corresponding con-
figuration logic by adding new operators on sets of interaction configu-
rations. We provide a complete axiomatisation of the propositional con-
figuration logic, as well as a decision procedure for checking that an
architecture satisfies given logical specifications. To allow genericity of
specifications, we study first-order and second-order extensions of the
propositional logic. We provide examples illustrating the application of
the results to the characterization of architecture styles. Finally, we pro-
vide an experimental evaluation using the Maude rewriting system to
implement the decision procedure for the propositional logic.

1 Introduction

Architectures are common means for organizing coordination between compo-
nents in order to build complex systems and to make them manageable. They
depict generic coordination principles between components and embody design
rules that can be understood by all. Architectures allow thinking on a higher
plane and avoiding low-level mistakes. They are a means for ensuring global
coordination properties between components and thus, achieving correctness by
construction [1]. Using architectures largely accounts for our ability to master
complexity and develop systems cost-effectively. System developers extensively
use reference architectures ensuring both functional and non-functional proper-
ties, e.g. fault-tolerant, time-triggered, adaptive, security architectures.

Informally architectures are characterized by the structure of the interac-
tions between a set of typed components. The structure is usually specified as a
relation, e.g. connectors between component ports.
c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 256–274, 2016.
DOI: 10.1007/978-3-319-28934-2 14

Configuration Logics: Modelling Architecture Styles 257

Architecture styles characterize not a single architecture but a family of
architectures sharing common characteristics such as the type of the involved
components and the topology induced by their coordination structure. Simple
examples of architecture styles are Pipeline, Ring, Master/Slave, Pipe and Fil-
ter. For instance, Master/Slave architectures integrate two types of components,
masters and slaves, such that each slave can interact only with one master.
Figure 1 depicts four Master/Slave architectures involving master components
M1, M2 and slave components S1, S2. Their communication ports are respec-
tively m1, m2 and s1, s2. The architectures correspond to interaction config-
urations:

{{s1,m1}, {s2,m2}
}
,

{{s1,m1}, {s2,m1}
}
,

{{s1,m2}, {s2,m1}
}

and{{s1,m2}, {s2,m2}
}
. The set {si,mj} denotes an interaction between ports si

and mj . A configuration is a non-empty set of interactions. The Master/Slave
architecture style characterizes all the Master/Slave architectures for arbitrary
numbers of masters and slaves.

m1

s1

m2

s2

S2S1

{{s1,m1}, {s2,m2}}

M1 M2

m1 m2

s1 s2

M2

S1

M1

{{s1,m1}, {s2,m1}}
S2

m2

s2

m1

s1

S1 S2

{{s1,m2}, {s2,m1}}

M1 M2

m2

s1 s2

m1

S1 S2

{{s1,m2}, {s2,m2}}

M1 M2

Fig. 1. Master/Slave architectures

The paper studies the relation between architectures and architecture styles.
This relation is similar to the relation between programs and their specifications.
As program specifications can be expressed by using logics, e.g. temporal logics,
architecture styles can be specified by configuration logics characterizing classes
of architectures.

We propose a propositional configuration logic whose formulas represent, for
a given set of components, the allowed configuration sets. Then, we introduce
first-order and second-order logics as extensions of the propositional logic. These
allow genericity of description as they are defined for types of components.

The meaning of a configuration logic formula is a set of configurations, each
representing a particular architecture. Defining configuration logics requires con-
sidering three hierarchically structured semantic domains:

The lattice of interactions. An interaction a is a non-empty subset of P , the
set of ports of the integrated components. Its execution implies the atomic
synchronization of all component actions (at most one action per component)
associated with the ports of a.

The lattice of configurations. Configurations are non-empty sets of interac-
tions characterizing architectures.

258 A. Mavridou et al.

The lattice of configuration sets. Sets of configurations are properties
described by the configuration logic.

P = {p, q}

(a) I(P) = 2P (b) C(P) = 2I(P)\{∅} (c) CS(P) = 2C(P)\{∅}

Fig. 2. Lattices of interactions (a), configurations (b) and configuration sets (c).

Figure 2 shows the three lattices for P = {p, q}. For the lattice of configura-
tion sets, we show only how it is generated.

This work consistently extends results on modelling architectures by using
propositional interaction logic [2–4], which are Boolean algebras on the set of
ports P of the composed components. Their semantics is defined via a satisfac-
tion relation between interactions and formulas. An interaction a ⊆ P satisfies a
formula φ (we write a |=i φ) if φ evaluates to true for the valuation that assigns
true to the ports belonging to a and false otherwise. It is characterized exactly
by the formula

∧
p∈a p ∧ ∧

p�∈a p .
Configuration logic is a powerset extension of the interaction logic. Its for-

mulas are generated from the formulas of the propositional interaction logic by
using the operators union, intersection and complementation as well as a coalesc-
ing operator +. To avoid ambiguity, we refer to the formulas of the configuration
logic that syntactically are also formulas of the interaction logics as interaction
formulas. The semantics of the configuration logic is defined via a satisfaction
relation |= between configurations γ = {a1, ..., an} and formulas. An interaction
formula f represents any configuration consisting of interactions satisfying it;
that is γ |= f if, for all a ∈ γ, a |=i f . For set-theoretic operators we take
the standard meaning. The meaning of formulas of the form f1 + f2 is all con-
figurations γ that can be decomposed into γ1 and γ2 (γ = γ1 ∪ γ2) satisfying
respectively f1 and f2. The formula f1 + f2 represents configurations obtained
as the union of configurations of f1 with configurations of f2.

Despite its apparent complexity, configuration logic is easy to use because
of its stratified construction. From interaction logic it inherits the Boolean con-
nectives of conjunction (∧), disjunction (∨) and negation (̄). It also uses the
set-theoretic operations of union (�), complementation (¬) and coalescing (+).
It can be shown that intersection coincides with conjunction.

Formulas of the form f + true, denoted ∼ f , present a particular interest
for writing specifications. Their characteristic configuration set is the largest set
containing configurations satisfying f .

Configuration Logics: Modelling Architecture Styles 259

We provide a full axiomatisation of the propositional configuration logic and
a normal form similar to the disjunctive normal form in Boolean algebras. The
existence of such normal form implies the decidability of formula equality and
of satisfaction of a formula by an architecture model.

To allow genericity of specifications, we study first-order and second-order
extensions of the propositional logic. First-order logic formulas involve quan-
tification over component variables. Second-order logic formulas involve addi-
tionally quantification over sets of components. Second-order logic is needed to
express interesting topological properties, e.g. the existence of interaction cycles.

A complete presentation, with proofs and additional examples, of the results
in this paper can be found in the technical report [22].

The paper is structured as follows. Section 2 recalls some basic facts about
the interaction logic. Section 3 presents the propositional configuration logic, its
properties and the definition of a normal form. Section 4 proposes a methodol-
ogy for the specification of architecture styles. Section 5 presents first-order and
second-order extensions of the logic and illustrates their use by several architec-
ture style examples. Section 6 presents the results of an implementation of the
decision procedure in the Maude rewriting system. Section 7 discusses related
work. Section 8 concludes the paper.

2 Propositional Interaction Logic

The propositional interaction logic (PIL), studied in [2,3], is a Boolean logic used
to characterize the interactions between components on a global set of ports P .
In this section, we present only the results needed to introduce the propositional
configuration logic (Sect. 3). Below, we assume that the set P is given.

Definition 1. An interaction is a set of ports a ⊆ P such that a 	= ∅.
Syntax. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P.

Conjunction is defined as usual: φ1 ∧φ2
def= (φ1 ∨ φ2) . To simplify the notation,

we omit it in monomials, e.g. writing pqr instead of p ∧ q ∧ r.

Semantics. The meaning of a PIL formula φ is defined by the following sat-
isfaction relation. Let a ⊆ P be a non-empty interaction. We define: a |=i φ
iff φ evaluates to true for the valuation p = true, for all p ∈ a, and p = false,
for all p 	∈ a. Thus, the semantic domain of PIL is the lattice of configurations
C(P) = 2I(P)\{∅}, where I(P) = 2P (Fig. 2).

The operators meet the usual Boolean axioms and the additional axiom∨
p∈P p = true meaning that interactions are non-empty sets of ports.

An interaction a can be associated to a characteristic monomial ma =∧
p∈a p ∧ ∧

p�∈a p such that a′ |=i ma iff a′ = a.

260 A. Mavridou et al.

Example 1. Consider a system consisting of three components: a sender with
port p and two receivers with ports q and r respectively. We can express the
following interaction patterns:

– Strong synchronization between the components is specified by a single inter-
action involving all components, represented by the single monomial pqr.

– Broadcast defines weak synchronization among the sender and any number
of the receivers:

{{p}, {p, q}, {p, r}, {p, q, r}}
, represented by the formula p,

which can be expanded to pq r ∨ pqr ∨ pq r ∨ pqr.

3 Propositional Configuration Logic

3.1 Syntax and Semantics

Syntax. The propositional configuration logic (PCL) is a powerset extension of
PIL defined by the following grammar:

f ::= true | φ | ¬f | f + f | f � f ,

where φ is a PIL formula; ¬, + and � are respectively the complementation,
coalescing and union operators.

We define the usual notation for intersection and implication: f1 � f2
def=

¬(¬f1 � ¬f2) and f1 ⇒ f2
def= ¬f1 � f2.

The language of PCL formulas is generated from PIL formulas by using
union, coalescing and complementation operators. The binding strength of the
operators is as follows (in decreasing order): PIL negation, complementation, PIL
conjunction, PIL disjunction, coalescing, union. Henceforth, to avoid confusion,
we refer as interaction formulas to the subset of PCL formulas that syntactically
are also PIL formulas. Furthermore, we will use Latin letters f, g, h for general
PCL formulas and Greek letters φ, ψ, ξ for interaction formulas. Interaction for-
mulas inherit all axioms of PIL.

Semantics. Let P be a set of ports. The semantic domain of PCL is the lattice
of configuration sets CS(P) = 2C(P)\{∅} (Fig. 2(c)). The meaning of a PCL
formula f is defined by the following satisfaction relation. Let γ ∈ C(P) be a
non-empty configuration. We define:

γ |= true , always,
γ |= φ , if ∀a ∈ γ, a |=i φ, where φ is an interaction

formula and |=i is the satisfaction relation of
PIL,

γ |= f1 + f2 , if there exist γ1, γ2 ∈ C(P) \ {∅}, such that
γ = γ1 ∪ γ2, γ1 |= f1 and γ2 |= f2,

γ |= f1 � f2 , if γ |= f1 or γ |= f2,
γ |= ¬f , if γ 	|= f (i.e. γ |= f does not hold).

Configuration Logics: Modelling Architecture Styles 261

In particular, the meaning of an interaction formula φ in PCL is the set 2Ia \
{∅}, with Ia = {a ∈ I(P) | a |=i φ}, of all configurations involving any number
of interactions satisfying φ in PIL.

We say that two formulas are equivalent f1 ≡ f2 iff, for all γ ∈ C(P) such
that γ 	= ∅, γ |= f1 ⇔ γ |= f2.

Proposition 1. Equivalence ≡ is a congruence w.r.t. all PCL operators.

Example 2. The Master/Slave architecture style for two masters M1,M2 and
two slaves S1, S2 with ports m1, m2, s1 and s2 respectively characterizes the
four configurations of Fig. 1 as the union:

⊔
i,j∈{1,2}

(φ1,i + φ2,j),

where, for i 	= i′ and j 	= j′, the monomial φi,j = si mj si′ mj′ defines a binary
interaction between ports si and mj .

3.2 Conservative Extension of PIL Operators

Notice that from the PCL semantics of interaction formulas, it follows imme-
diately that PCL is a conservative extension of PIL. Below we extend the PIL
conjunction and disjunction operators to PCL.

PCL intersection is a conservative extension of PIL conjunction.

Proposition 2. φ1 ∧ φ2 ≡ φ1 � φ2, for any interaction formulas φ1, φ2.

Thus, conjunction and intersection coincide on interaction formulas. In the
rest of the paper, we use the same symbol ∧ to denote both operators.

Disjunction can be conservatively extended to PCL with the following seman-
tics: for any PCL formulas f1 and f2,

γ |= f1 ∨ f2 , ifγ |= f1 � f2 � f1 + f2. (1)

Proposition 3. For any interaction formulas φ1 and φ2 and any γ ∈ C(P)
such that γ 	= ∅, we have γ |= φ1 ∨ φ2 iff ∀a ∈ γ, a |=i φ1 ∨ φ2.

3.3 Properties of PCL Operators

Union, complementation and conjunction have the standard set-theoretic mean-
ing and consequently, they satisfy the usual axioms of propositional logic.

Coalescing + combines configurations, as opposed to union � , which com-
bines configuration sets. Coalescing has the following properties:

Proposition 4. + is associative, commutative and has an absorbing element
false def= ¬true.

Proposition 5. For any formulas f, f1, f2 and any interaction formula φ, we
have the following distributivity results:

262 A. Mavridou et al.

1. f ∨ (f1 � f2) ≡ (f ∨ f1) � (f ∨ f2),
2. f + (f1 ∨ f2) ≡ (f + f1) ∨ (f + f2),
3. f + (f1 � f2) ≡ f + f1 � f + f2,
4. φ ∧ (f1 + f2) ≡ (φ ∧ f1) + (φ ∧ f2).

Associativity of coalescing and union, together with the distributivity of
coalescing over union, immediately imply the following generalisation of the
extended semantics of disjunction (1).

Corollary 1. For any set of formulas {fi}i∈I , we have
∨
i∈I

fi ≡
⊔

∅�=J⊆I

∑
j∈J

fj ,

where
∑

j∈J fj denotes the coalescing of formulas fj, for all j ∈ J .

Example 3. A configuration γ satisfying the formula f = f1 ∨f2 ∨f3 can be par-
titioned into γ = γ1 ∪γ2 ∪γ3, such that γi |= fi. By the semantics of disjunction,
some γi can be empty. On the contrary, the semantics of coalescing requires all
elements of such partition to be non-empty. Hence, in order to rewrite f without
the disjunction operator, we take the union of all possible coalescings of f1, f2 and
f3. Thus, we have f ≡ f1 � f2 � f3 � (f1+f2) � (f1+f3) � (f2+f3) � (f1+f2+f3).

Notice that in general coalescing does not distribute over conjunction.

Example 4. Let P = {p, q} and consider f = p � q, f1 = p and f2 = q. Config-
uration

{{p}, {q}}
satisfies (f + f1) ∧ (f + f2), but not f + (f1 ∧ f2).

Coalescing with true presents a particular interest for writing specifications,
since they allow adding any set of interactions to the configurations satisfying
f . Notice that true is not a neutral element of coalescing: only the implication
f ⇒ f + true holds in general.

Definition 2. For any formula f , the closure operator ∼ is defined by putting
∼f

def= f + true. We give ∼ the same binding power as ¬.

Example 5. For P = {p, q, r} the formula f characterizing all the configurations
such that p must interact with both q and r, is f = ∼(pq + qr) = pq +pr + true.
Notice that the only constraint imposed by the formula f is that configurations
that satisfy it must contain an interaction pqr or both interactions pq and qr.
Configurations satisfying f can contain any additional interactions.

Proposition 6. For any formula f , we have ∼∼f ≡ ∼f .

The closure operator can be interpreted as a modal operator with existen-
tial quantification. The formula ∼ f characterizes configurations γ, such that
there exists a sub-configuration of γ satisfying f . Thus, ∼ f means “possible
f”. Dually ¬ ∼ ¬f means “always f” in the following sense: if a configuration
γ satisfies ¬ ∼ ¬f , all sub-configurations of γ satisfy f . Below, we show that,

Configuration Logics: Modelling Architecture Styles 263

for an interaction formula φ, holds the equivalence ∼ ¬φ ≡ ¬φ, which implies
¬ ∼¬φ ≡ ¬¬φ ≡ φ. However, this is not true in general. Consider f = ma +mb,
where ma and mb are characteristic monomials of interactions a and b respec-
tively. The only configuration satisfying f is γ = {a, b}. In particular, none of
the sub-configurations {a}, {b} ⊂ γ satisfies f . Thus, ¬ ∼¬(ma + mb) ≡ false.

Proposition 7. For any f1 and f2, we have

1. ∼(f1 � f2) ≡ ∼f1 � ∼f2 ≡ ∼(f1 ∨ f2),
2. ∼(f1 + f2) ≡ ∼f1 + ∼f2 ≡ ∼f1 ∧ ∼f2.

The following proposition allows us to address the relation between comple-
mentation and negation.

Proposition 8. For any interaction formula φ, we have

φ � φ � (φ + φ) ≡ true .

Notice that the three terms on the left are mutually disjoint and therefore,
for any interaction formula φ, we have

¬φ ≡ φ � (φ + φ) ≡ φ + true ≡ ∼φ . (2)

This means that complementation can also be interpreted as a modality.
Proposition 8 shows that the complementation of an interaction formula φ rep-
resents all configurations that contain φ . Equivalences ¬φ ≡ ∼ φ, ¬ ∼ φ ≡ φ ,
¬ ∼φ ≡ φ and ∼¬φ ≡ ¬φ, for interaction formulas φ, are direct corollaries of
Propositions 6 and 8. Proposition 9 generalises (2) to coalescings of interaction
formulas.

Proposition 9. For any set of interaction formulas Φ, we have

¬
(∑

φ∈Φ

φ
)

≡
⊔
φ∈Φ

φ � ∼
(∧

φ∈Φ

φ
)

.

Example 6. Consider a formula f = ¬(pq + pr) and a configuration γ |= f .
The PCL semantics requires that γ cannot be split into two non-empty parts
γ1 |= pq and γ2 |= pr. This can happen in two cases: (1) there exists a ∈ γ
such that a does not satisfy neither pq nor pr; (2) one of the monomials is not
satisfied by any interaction in γ. The former case can be expressed as ∼(pq pr)
and the latter as pq � pr . The union of these formulas gives the equivalence
¬(pq + pr) ≡ pq � pr � ∼(pq pr).

Proposition 9 allows the elimination of complementation. It is also possible to
eliminate conjunction of coalescings by using the following distributivity results
to push it down within the formula.

Proposition 10. For two sets of interaction formulas Φ and Ψ , we have
∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

264 A. Mavridou et al.

Example 7. Consider a formula f = (φ1 +φ2) ∧ (φ3 +φ4), where φ1, φ2, φ3 and
φ4 are interaction formulas, and a configuration γ |= f . The semantics requires
that there exists two partitions of γ: γ = γ1∪γ2 and γ = γ3∪γ4, such that γi |= φi

for i ∈ [1, 4]. Considering an intersection γi,j = γi ∩ γj we have γi,j |= φi ∧ φj .
Thus, γ =

⋃
γi,j satisfies φ1φ3 ∨φ1φ4 ∨ φ2φ3 ∨φ2φ4 even if some γi,j are empty.

However, disjunction allows configurations such that no interaction satisfy one
of the disjunction terms and consequently some φi. A coalescing of φi allows only
configurations such that each φi is satisfied by at least one interaction. Thus,
the conjunction of these formulas gives the equivalent representation:

f ≡ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) ∧ (φ1 + φ2 + φ3 + φ4)
≡ φ1 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ2 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)
+ φ3 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ4 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) .

The PCL lattice is illustrated in Fig. 3. The circle nodes represent interaction
formulas, whereas the red dot nodes represent all other formulas. Notice that
the PCL lattice has two sub-lattices generated by monomials:

– through disjunction and negation (isomorphic to the PIL lattice);
– through union and complementation (disjunction is not expressible).

Notice that coalescing cannot be expressed in any of these two sub-lattices.
Although some formulas involving the closure operator can be expressed in the
second sub-lattice, e.g. ∼φ ≡ ¬φ , in general this is not the case, e.g. the formulas
∼(φ ∧ ψ) and ∼φ � ∼ψ are not part of either sub-lattice. However, the closure
operator is expressible by taking as generators the interaction formulas:

Proposition 11. The lattice generated by interaction formulas through union
and complementation is closed under the closure operator ∼.

3.4 Deciding Equivalence and Satisfaction

In this subsection, we present an axiomatisation of the PCL equivalence ≡,
which is sound and complete with respect to the definition in Sect. 3.1. This
axiomatisation allows us to define a normal form for PCL formulas, similar to
the disjunctive normal form in Boolean algebras. The existence of such a normal
form immediately implies the decidability of (1) the equivalence of two PCL
formulas and (2) the satisfaction of a formula by a configuration.

Axioms. PCL operators satisfy the following axioms (for any formulas f , f1
and f2 and any sets of interaction formulas Φ and Ψ):

1. The PIL axioms for interaction formulas.
2. The usual axioms of propositional logic for � , ∧ , ¬.
3. + is associative, commutative and has an absorbing element false.
4. f + (f1 � f2) ≡ f + f1 � f + f2.

Configuration Logics: Modelling Architecture Styles 265

∼ φ∧ ∼ ψ ≡ ¬(φ � ψ)

φ ∨ ψ

φ ∧ ψ ∼ (φ ∧ ψ) ≡ ¬(φ ∨ ψ)

∼ ψ ≡ ¬ψ

φ + ψ

¬(φ + ψ)¬φ ≡∼ φ ¬ψ ≡∼ ψ

ψφ
¬(φ � ψ) ≡∼ φ ∧ ∼ ψ

¬(φ ∨ ψ) ≡∼ (φ ∧ ψ)

¬(φ ∧ ψ) ≡ ∼ φ � ∼ ψ

ψφ

φ � ψ

φ ∧ ψ

∼ φ � ∼ ψ ≡ ¬(φ ∧ ψ)

φ ∨ ψ

φ � ψ

∼ φ ≡ ¬φ

Fig. 3. PCL lattice (the blue arrows represent implications; red dashed and green solid
lines represent, respectively, PIL negation and complementation). (Color figure online)

5.
∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

6. ¬
(∑

φ∈Φ

φ
)

≡
⊔
φ∈Φ

φ � ∼
(∧

φ∈Φ

φ
)
.

Theorem 1. The above set of axioms is sound and complete for the equivalence
≡ in PCL.

Applying the axioms above, one can remove or push PCL operators down in
the expression tree of the formula. For instance, Ax. 5 allows one to push the
conjunction down, Ax. 6 removes the complementation.1

Definition 3. A PCL formula is in normal form iff it has the form⊔
i∈I

∑
j∈Ji

∨
k∈Ki,j

mi,j,k, where all mi,j,k are monomials.

Theorem 2. Any PCL formula has an equivalent normal form formula.

Example 8. The following example illustrates the normalization process:

(pq � r) ∧ (pr + ¬q) ≡ (pq � r) ∧ (pr + q + true) // Ax. 6
≡ (pq ∧ (pr + q + true)) � (r ∧ (pr + q + true)) // Ax. 2
≡ ((pq ∧ pr) + (pq ∧ q) + (pq ∧ true)) // Ax. 5

� ((r ∧ pr) + (r ∧ q) + (r ∧ true))
≡ (pqr + false + pq) � (pr + rq + r) // Ax. 1
≡ pr + rq + r . // Ax. 2, 3

1 Full details of the normal form derivation can be found in the technical report [22].

266 A. Mavridou et al.

The first step removes the complementation. Then the application of distrib-
utivity rules pushes conjunction down in the expression tree of the formula, to
the level of monomials. Finally, the formula is simplified, by observing that false
is the absorbing element of coalescing and the identity of union.

4 Architecture Style Specification Methodology

The methodology for writing architecture style specifications can be conceptually
simplified due to the fact that an architecture can be considered as a hypergraph
whose vertices are ports and edges are interactions. If a is an interaction then, its
characteristic monomial ma specifies in PCL a single configuration (hypergraph)
that contains only the interaction (edge) a. The formula ∼ ma specifies all the
configurations (hypergraphs) that contain the interaction (edge) a. It can be
considered as a predicate on ports expressing their connectivity.

A key idea in writing architecture style specifications is that these can be
expressed as logical relations between connectivity formulas of the form ∼ φ
where φ is an interaction formula. This allows simplification through separa-
tion of concerns: first configurations are specified as the conjunction of formulas
on Boolean variables representing connectivity formulas; then, after simplifica-
tion, the connectivity formulas are replaced. This may require another round of
simplifications based on specific properties of PCL. This idea is illustrated in
Example 9.

Example 9. Consider a system with three ports p, q, r and the following con-
nectivity constraint: If any port is connected to the two others, the latter have
to be connected between themselves. In order to specify this constraint in PCL,
we first define three predicates X = ∼ (pq), Y = ∼ (qr) and Z = ∼ (pr).
The constraint we wish to impose is then specified by the conjunction of the
three implications: (X ∧ Y ⇒ Z) ∧ (Y ∧ Z ⇒ X) ∧ (Z ∧ X ⇒ Y) ≡
¬Z ∧ ¬Y � ¬Y ∧ ¬X � ¬X ∧ ¬Z � X ∧ Y ∧ Z. Substituting ∼(pq), ∼(qr),
∼(pr) for X, Y , Z, respectively, we obtain:

(p ∨ r) ∧ (q ∨ r) � (q ∨ r) ∧ (p ∨ q) � (p ∨ q) ∧ (p ∨ r)
� ∼(pq) ∧ ∼(qr) ∧ ∼(pr)

≡ ¬(r ∨ p q) ∧ ¬(q ∨ p r) ∧ ¬(p ∨ q r) ⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)
≡ ∼(pr ∨ qr)∧ ∼(qr ∨ pq)∧ ∼(pq ∨ pr) ⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)
≡ ∼(pr)∧ ∼(qr)� ∼(qr)∧ ∼(pq)� ∼(pq)∧ ∼(pr)

⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)
≡ ∼(pr + qr)� ∼(pq + qr)� ∼(pq + pr) ⇒ ∼(pq + qr + pr) .

5 First and Second Order Extensions of PCL

PCL is defined for a given set of ports and a given set of components. In order
to specify architecture styles, we need quantification over component variables.
We make the following assumptions:

Configuration Logics: Modelling Architecture Styles 267

– A finite set of component types T = {T1, . . . , Tn} is given. Instances of a
component type have the same interface and behaviour. We write c : T to
denote a component c of type T .

– The interface of each component type has a distinct set of ports. We write
c.p to denote the port p of component c and c.P to denote the set of ports of
component c.

5.1 First-Order Configuration Logic

Syntax. The language of the formulas of the first-order configuration logic
extends the language of PCL by allowing set-theoretic predicates on component
variables, universal quantification and a specific coalescing quantifier Σc :T . Let
φ denote any interaction formula:

F ::= true | φ | ∀c :T
(
Φ(c)

)
.F | Σc :T

(
Φ(c)

)
.F | F � F | ¬F | F + F ,

where Φ(c) is some set-theoretic predicate on c (omitted when Φ = true).

Semantics. The semantics is defined for closed formulas, where, for each vari-
able in the formula, there is a quantifier over this variable in a higher nesting
level. We assume that the finite set of component types T = {T1, . . . , Tn} is
given. Models are pairs 〈B, γ〉, where B is a set of component instances of types
from T and γ is a configuration on the set of ports P of these components.
For quantifier-free formulas, the semantics is the same as for PCL formulas. For
formulas with quantifiers, the satisfaction relation is defined as follows:

〈B, γ〉 |= ∀c :T
(
Φ(c)

)
.F , iffγ |=

∧
c′:T∈B ∧ Φ(c′)

F [c′/c],

〈B, γ〉 |= Σc :T
(
Φ(c)

)
.F , iffγ |=

∑
c′:T∈B ∧ Φ(c′)

F [c′/c],

where c′ : T ranges over all component instances of type T ∈ T satisfying Φ and
F [c′/c] is obtained by replacing all occurrences of c in F by c′.

For a more concise representation of formulas, we introduce the notation
	(c1.p1, . . . , cn.pn), which expresses an exact interaction, i.e. all ports in the
arguments and only they participate in the interaction:

	(c1.p1, . . . , cn.pn) def=
n∧

i=1

ci.pi ∧
n∧

i=1

∧
p∈ci.P\{pi}

ci.p

∧
∧

T∈T

∧
c:T �∈{c1,...,cn}

∧
p∈c.P

c.p . (3)

Example 10. The Star architecture style is defined for a set of components of
the same type. One central component s is connected to every other component

268 A. Mavridou et al.

through a binary interaction, and there are no other interactions. It can be
specified as follows:

∃s :T. ∀c :T (c 	= s).
(∼(c.p s.p) ∧ ∀c′ :T (c′ 	∈ {c, s}). (c′.p c.p)

)
∧ (∀c :T. ¬ ∼	(c.p)

)
. (4)

The three conjuncts of this formula express respectively the properties: (1)
any component is connected to the center; (2) components other than the center
are not connected; and (3) unary interactions are forbidden.

Notice that the semantics of the first part of the specification, ∀c : T (c 	=
s). ∼ (c.p s.p), is a conjunction of closure formulas. In this conjunction, the
closure operator also allows interactions in addition to the ones explicitly defined.
Therefore, to correctly specify this style, we need to forbid all other interactions
with the second and third conjuncts of the specification. A simpler alternative
specification uses the Σ quantifier:

∃s :T. Σc :T (c 	= s). 	(c.p, s.p) . (5)

The 	 notation requires interactions to be binary and the Σ quantifier allows
configurations that contain only interactions satisfying 	(c.p, s.p), for some c.
Thus, contrary to (4), we do not need to explicitly forbid unary interactions and
connections between non-center components.

Example 11. The Pipes and Filters architecture style [13] involves two types of
components, P and F , each having two ports in and out. Each input (resp.
output) of a filter is connected to an output (resp. input) of a single pipe. The
output of any pipe can be connected to at most one filter. This style can be
specified as follows:

∀f :F. ∃p :P. ∼(f.in p.out) ∧ ∀p′ :P (p 	= p′).
(
f.in p′.out

)
(6)

∧ ∀f :F. ∃p :P. ∼(f.out p.in) ∧ ∀p′ :P (p 	= p′).
(
f.out p′.in

)
(7)

∧ ∀p :P. ∃f :F. ∀f ′ :F (f 	= f ′).
(
p.out f ′.in

)
(8)

∧ ∀p :P.
(
p.in p.out ∧ ∀p′ :P (p 	= p′).

(
p.in p′.in ∧ p.in p′.out

))
(9)

∧ ∀f :F.
(
f.in f.out ∧ ∀f ′ :F (f 	= f ′).

(
f.in f ′.in ∧ f.in f ′.out

))
. (10)

The first conjunct (6) requires that the input of each filter be connected to the
output of a single pipe. The second conjunct (7) requires that the output of each
filter be connected to the input of a single pipe. The third conjunct (8) requires
that the output of a pipe be connected to at most one filter. The fourth and fifth
conjuncts (9), (10) require that pipes only be connected to filters and vice-versa.

5.2 Second-Order Configuration Logic

Properties stating that two components are connected through a chain of interac-
tions, are essential for architecture style specification. For instance, the property

Configuration Logics: Modelling Architecture Styles 269

that all components form a single ring and not several disjoint ones can be refor-
mulated as such a property. In [18], it is shown that transitive closure, necessary
to specify such reachability properties, cannot be expressed in the first-order
logic. This motivates the introduction of the second-order configuration logic
with quantification over sets of components.

This logic further extends PCL with variables ranging over component sets.
We write C :T to denote a component set C of type T . Additionally, we denote
CT the set of all the components of type T . Finally, we assume the existence of
the universal component type U , such that any component or component set is
of this type. Thus, CU represents all the components of a model.

Syntax. The syntax of the second-order configuration logic is defined by the
following grammar (φ is an interaction formula):

S ::= true | φ | ∀c :T
(
Φ(c)

)
.S | Σc :T

(
Φ(c)

)
.S | S � S | ¬S | S + S

| ∀C : T
(
Ψ(C)

)
.S | ΣC : T

(
Ψ(C)

)
.S ,

where Φ(c), Ψ(C) are some set-theoretic predicates (omitted when true).

Semantics. Models are pairs 〈B, γ〉, where B is a set of component instances of
types from T and γ is a configuration on the set of ports P of these components.
The meaning of quantifier-free formulas or formulas with quantification only
over component variables is as for first-order logic. We define the meaning of
quantifiers over component set variables:

〈B, γ〉 |= ∀C :T
(
Ψ(C)

)
.S , iffγ |=

∧
C′:T⊆B∧Ψ(C′)

S[C ′/C],

〈B, γ〉 |= ΣC :T
(
Ψ(C)

)
.S , iffγ |=

∑
C′:T⊆B∧Ψ(C′)

S[C ′/C],

where C ′ :T ranges over all sets of components of type T that satisfy Ψ .

Example 12. The Repository architecture style [7] consists of a repository com-
ponent r with a port p and a set of data-accessor components of type A with
ports q. We provide below a list of increasingly strong properties that may be
used to characterize this style:

1. The basic property “there exists a single repository and all interactions
involve it” is specified as follows:

SingleRepo
def= ∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R(r′ 	= r). false.

2. The additional property “there are some data-accessors and any data-accessor
must be connected to the repository” is enforced as follows:

DataAccessor
def= SingleRepo ∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q).

270 A. Mavridou et al.

3. Finally, the additional property “there are no components of other types than
Repository and Data-accessor” is enforced by the formula:

DataAccessor ∧ ∀c :U(c 	∈ CR ∧ c 	∈ CA). false.

Example 13. In the Ring architecture style (with only one component type T),
all components form a single ring by connecting their in and out ports. This
style can be specified as follows:

Σc :T. ∃c′ :T (c 	= c′). 	(c.in, c′.out) ∧ Σc :T. ∃c′ :T (c 	= c′). 	(c.out, c′.in)
∧∀C :T (C 	= U). (∃c :T (c ∈ C). ∃c′ :T (c′ 	∈ C). ∼(c.in c′.out)) .

The last conjunct requires that there be a single ring and not several disjoint
ones.

6 Implementation of the Decision Procedure

The PCL decision procedure is based on the computation of the normal form
followed by a decision whether a model satisfies at least one union term of the
normal form or not. For the first- and second-order extensions, satisfaction of
a formula by a model can be decided by reduction to the decision procedure
of PCL. Indeed, given a model, all quantifiers can be effectively eliminated,
transforming a formula into a PCL one. More details can be found in [22].

We implemented the decision procedure for PCL using Maude 2.0. Maude
is a language and an efficient rewriting system supporting both equational and
rewriting logic specification and programming for a wide range of applications.
In the experimental evaluation we used a set of architecture styles including Star,
Ring, Request-Response [9], Pipes-Filters, Repository and Blackboard [8]. We
used configuration logic formulas (all formulas can be found in [22]) and models
of different sizes, including both correct and incorrect models. Quantifiers were
eliminated externally and the decision procedure was applied to quantifier-free
formulas. All experiments were performed on a 64-bit Linux machine with a
2.8 Ghz Intel i7-2640M CPU with 1 Gb memory limit and 600 sec time limit.

Figure 4 shows the average duration of the decision procedure for the six
examples, as a function of the total number of ports involved in the formula.
Simple architecture styles like Star are decidable within seconds even for 50
ports. For architecture styles requiring more complex specifications, the number
of ports that can be managed in 600 sec is smaller. For the Ring architecture the
memory limit is attained for the model with 24 ports.

7 Related Work

A plethora of approaches exist for characterizing architecture styles. Pat-
terns [9,16] are commonly used for this purpose in practical applications. They
incorporate explicit constructs for architecture modelling but, lacking formal
semantics, are not amenable to formal analysis. Among the formal approaches
for representing and analysing architecture styles, we distinguish two main cat-
egories:

Configuration Logics: Modelling Architecture Styles 271

0

2

4

6

8

10

12

0 10 20 30 40 50

Fig. 4. Decision procedure for architecture styles

– Extensional approaches, where one explicitly specifies all interactions among
the components (cf. the specification (5) of the Star pattern). All connections,
other than the ones specified, are excluded.

– Intentional approaches, where one does not explicitly specify all connections
among the components, but these are derived from a set of logical constraints,
formulating the intentions of the designer (cf. the specification (4) of the Star
pattern). In this case specifications are conjunctions of logical formulas.

The proposed framework encompasses both approaches. It allows explicit
specification of individual interactions, e.g. with interaction formulas, as well as
explicit specification of configuration sets, e.g. with formulas of the form ∼f .

A large body of literature, originating in [15,21], studies the use of graph
grammars and transformations [24] to define software architectures. Although
this work focuses mainly on dynamic reconfiguration of architectures, e.g.
[6,19,20], graph grammars can be used to extensionally define architecture styles:
a style admits all the configurations that can be derived by its defining gram-
mar. The main limitations, outlined already in [21], are the following: (1) the
difficulty of understanding the architecture style defined by a grammar; (2) the
fact that the restriction to context-free grammars precludes the specification of
certain styles (e.g. trees with unbounded number of components or interactions,
square grids); (3) the impossibility of combining several styles in a homogeneous
manner. To some extent, the latter two are addressed, respectively, by con-
sidering synchronised hyperedge replacement [11], context-sensitive grammars
[10,27] and architecture views [23]. Our approach avoids these problems. Com-
bining the extensional and intentional approaches allows intuitive specification
of architecture styles. The higher-order extensions of PCL allow imposing global
constraints necessary to specify styles that are not expressible by context-free

272 A. Mavridou et al.

graph grammars. Finally, the combination of several architecture styles is defined
by the conjunction of the corresponding PCL formulas.

The proposed framework has similarities, but also significant differences, with
the use of Alloy [17] and OCL [26] for intentional specification of architecture
styles, respectively, in ACME and Darwin [12,14] and in UML [5]. Our approach
achieves a strong semantic integration between architectures and architecture
styles. Moreover, configuration logic allows a fine characterization of the coor-
dination structure by using n-ary connectivity predicates. On the contrary, the
connectivity primitives in [12,14,26] are binary predicates and cannot tightly
characterize coordination structures involving multiparty interaction. To specify
an n-ary interaction, these approaches require an additional entity connected by
n binary links with the interacting ports. Since the behaviour of such entities is
not part of the architecture style, it is impossible to distinguish, e.g., between
an n-ary synchronisation and a sequence of n binary ones.

Both Alloy and OCL rely on first-order logics extended with some form of
the Kleene closure operator that allows to iterate over a transitive relationship.
In particular, this operator allows defining reachability among components. It
is known that the addition of the Kleene closure increases the expressive power
w.r.t. a first-order logic [18]. To the best of our knowledge, the expressiveness
relation between a first-order logic extended with Kleene closure and a corre-
sponding second-order logic remains to be established.

8 Conclusion

The presented work is a contribution to a long-term research program that we
have been pursuing for more than 15 years. The program aims at developing the
BIP component framework for rigorous systems design [25]. BIP is a language
and a set of supporting tools including code generators, verification and simu-
lation tools. So far the theoretical work has focused on the study of expressive
composition frameworks and their algebraic and logical formalization. This led in
particular, to the formalization of architectures as generic coordination schemes
applied to sets of components in order to enforce a given global property [1].

The presented work nicely complements the existing component framework
with logics for the specification of architecture styles. Configuration logic for-
mulas characterize interaction configurations between instances of typed compo-
nents.Quantificationover components and sets of components allows thegenericity
needed for architecture styles.Wehave shown through examples that configuration
logic allows full expressiveness combined with ease of use. It is integrated in a uni-
fied semantic framework which is equipped with a decision procedure for checking
that a given architecture model meets given style requirements.

As part of the future work, we will extend our results in several directions.
From the specification perspective, we are planning to incorporate hierarchically
structured interactions and data transfer among the participating ports. From
the analysis perspective, we will study techniques for deciding satisfiability of
higher-order extensions of PCL. Finally, from the practical perspective, we also

Configuration Logics: Modelling Architecture Styles 273

plan to extend to the higher-order logics the Maude implementation of the deci-
sion procedures. We will also study sublogics that are practically relevant and
for which more efficient decision procedures can be applied.

In parallel, we are currently using configuration logic to formally specify
reference architectures for avionics systems, in a project with ESA.

References

1. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014.
LNCS, vol. 8702, pp. 128–143. Springer, Heidelberg (2014)

2. Bliudze, S., Sifakis, J.: The algebra of connectors–structuring interaction in BIP.
IEEE Trans. Comput. 57(10), 1315–1330 (2008)

3. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. FMSD
36(2), 167–194 (2010)

4. Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the
construction of component-based systems. In: Apel, S., Jackson, E. (eds.) SC 2011.
LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011)

5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Welsley Longman Inc, Boston (1999)

6. Bruni, R., Lluch-Lafuente, A., Montanari, U., Tuosto, E.: Style-based architectural
reconfigurations. Bull. EATCS 94, 161–180 (2008)

7. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.:
Documenting Software Architectures: Views and Beyond. Pearson Education,
New York (2002)

8. Corkill, D.D.: Blackboard systems. AI Expert 6(9), 40–47 (1991)
9. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and Restful Web Services. Addison-Wesley, Boston (2011)
10. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to

graph rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp.
151–166. Springer, Heidelberg (2004)

11. Ferrari, G.-L., Tuosto, E., Hirsch, D., Lanese, I., Montanari, U.: Synchronised
hyperedge replacement as a model for service oriented computing. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol.
4111, pp. 22–43. Springer, Heidelberg (2006)

12. Garlan, D., Monroe, R., Wile, D.: Acme: An architecture description interchange
language.In: Proceedings CASCON 1997, pp. 159–173. IBM Press (1997)

13. Garlan, D., Shaw, M.: An introduction to software architecture. In: Advances in
Software Engineering and Knowledge Engineering, pp. 1–39. World Scientific Pub-
lishing Company (1993)

14. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for dis-
tributed systems. In: Proceedings of the First Workshop on Self-Healing Systems,
pp. 33–38. ACM (2002)

15. Hirsch, D., Inverardi, P., Montanari, U.: Modeling software architectures and styles
with graph grammars and constraint solving. In: Donohoe, P. (ed.) Software Archi-
tecture. IFIP—The International Federation for Information Processing, vol. 12,
pp. 127–143. Springer, US (1999)

16. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2003)

274 A. Mavridou et al.

17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

18. Keller, U.: Some remarks on the definability of transitive closure in first-order
logic and Datalog. Internal report, Digital Enterprise Research Institute (DERI),
University of Innsbruck (2004)

19. Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replace-
ment systems. Electron. Notes Theor. Comput. Sci. 194(4), 77–92 (2008)

20. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigura-
tions in Reo using high-level replacement systems. Sci. Comp. Prog. 76(1), 23–36
(2011)

21. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE Trans. Softw. Eng. 24(7), 521–533 (1998)

22. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics - modelling
architecture styles. Technical report EPFL-REPORT-206825, EPFL IC IIF RiSD,
March 2015. http://infoscience.epfl.ch/record/206825

23. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

24. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, Singapore (1997)

25. Sifakis, J.: Rigorous system design. Found. Trends Electron. Des. Autom. 6,
293–362 (2012)

26. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
With UML. Addison-Wesley, Boston (1998)

27. Zhang, D.-Q., Zhang, K., Cao, J.: A context-sensitive graph grammar formalism
for the specification of visual languages. Comput. J. 44(3), 186–200 (2001)

http://infoscience.epfl.ch/record/206825

Learning-Based Compositional Model Checking
of Behavioral UML Systems

Yael Meller1(B), Orna Grumberg1, and Karen Yorav2

1 CS Department, Technion, Haifa, Israel
{ymeller,orna}@cs.technion.ac.il

2 IBM Research, Haifa, Israel
yorav@il.ibm.com

Abstract. This work presents a novel approach for applying compo-
sitional model checking of behavioral UML models, based on learning.
The Unified Modeling Language (UML) is a widely accepted modeling
language for embedded and safety critical systems. As such the cor-
rect behavior of systems represented as UML models is crucial. Model
checking is a successful automated verification technique for checking
whether a system satisfies a desired property. However, its applicability
is often impeded by its high time and memory requirements. A success-
ful approach to tackle this limitation is compositional model checking.
Recently, great advancements have been made in this direction via auto-
matic learning-based Assume-Guarantee reasoning.

In this work we propose a framework for automatic Assume-Guarantee
reasoning for behavioral UML systems. We apply an off-the-shelf learn-
ing algorithm for incrementally generating environment assumptions that
guarantee satisfaction of the property. A unique feature of our approach is
that the generated assumptions are UML state machines. Moreover, our
Teacher works at the UML level: all queries from the learning algorithm
are answered by generating and verifying behavioral UML systems.

1 Introduction

This work presents a novel approach for learning-based compositional model
checking of behavioral UML systems. Our work focuses on systems that rely on
UML state machines, a standard graphical language for modeling the behavior
of event-driven software components. The Unified Modeling Language (UML)
[3] is becoming the dominant modeling language for specifying and constructing
embedded and safety critical systems. As such, the correct behavior of systems
represented as UML models is crucial and model checking techniques applicable
to such models are required.

Model checking [7] is a successful automated verification technique for check-
ing whether a given system satisfies a desired property. The system is usually
described as a finite state model such as a state transition graph, where nodes
represent the current state of the system and edges represent transitions of the

An extended version including full proofs is published as a technical report in [22].

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 275–293, 2016.
DOI: 10.1007/978-3-319-28934-2 15

276 Y. Meller et al.

system from one state to another. The specification is usually given as a tem-
poral logic formula. The model checking algorithm traverses all of the system
behaviors (i.e., paths in the state transition graph), and either concludes that
all system behaviors are correct w.r.t. to the checked property, or provides a
counterexample that demonstrates an erroneous behavior.

Model checking is widely recognized as an important approach to increase
the reliability of hardware and software systems and is vastly used in industry.
Unfortunately, its applicability is often impeded by its high time and memory
requirements. One of the most appealing approaches to fighting these problems is
compositional model checking, where parts of the system are verified separately.
The construction of the entire system is avoided and consequently the model
checking cost is reduced. Due to dependencies among components’ behaviors, it
is usually impossible to verify one component in complete isolation from the rest
of the system. To take such dependencies into account the Assume-Guarantee
(AG) paradigm [14,17,27] suggests how to verify a component based on an
assumption on the behavior of its environment, which consists of the other sys-
tem components. The environment is then verified in order to guarantee that
the assumption is actually correct.

Learning [2] has become a major technique to construct assumptions for the
AG paradigm automatically. An automated learning-based AG framework was
first introduced in [9]. It uses iterative AG reasoning, where in each iteration an
assumption is constructed and checked for suitability, based on learning and on
model checking. Many works suggest optimizations of the basic framework and
apply it in the context of different AG rules (e.g. [4,6,11,16,24,25]).

In this paper we propose a framework for automated learning-based AG
reasoning for UML state machines. Our framework is similar to the one pre-
sented in [9], with the main difference being that our framework remains at the
state machine level. That is, the system’s components are state machines, and
the learned assumptions are state machines as well. This is in contrast to [9],
where the system’s components and the learned assumptions are all presented
as Labeled Transition Systems (LTSs), which are a form of low-level state tran-
sition graphs. To the best of our knowledge, this is the first work that applies
learning-based assume guarantee reasoning in the context of behavioral UML
systems.

A naive implementation of our framework might translate a given behavioral
UML system into LTSs and apply the algorithm from [9] on the result. However,
due to the hierarchical and orthogonal structure of state machines such transla-
tion would result in LTSs that are exponentially larger than the original UML
system. Moreover, state machines communicate via event queues. Such transla-
tion must also include the event queues, which would also increase the size of
the LTSs by an order of magnitude. We therefore choose to define a framework
for automated learning-based AG reasoning directly on the state machine level.
Another important advantage of working with state machines is that it enables
us to exploit high level information to make the learning much more efficient.
It also enables us to apply model checkers designed for behavioral UML systems

Learning-Based Compositional Model Checking of Behavioral UML Systems 277

(e.g. [1,5,8,10,15,19,20,23,29]). Such model checkers take into account the spe-
cific structure and semantics of UML, and are therefore more efficient than model
checkers designed for low-level representations (such as state transition graphs).

We use the standard AG rule below, where M1 and M2 are UML state
machines. We replace 〈A〉 with [A], to emphasize that A is a state machine
playing the role of an assumption on the environment of M1. The first premise
(Step 1) holds iff A||M1 satisfies ϕ, and the second one (Step 2) holds iff every
execution of M2 in any environment has a representative in A. Together they
guarantee that M1||M2 satisfies ϕ in any environment.

Rule AG-UML (Step 1) [A] M1 ϕ
(Step 2) true M2 [A]

true M1||M2 ϕ

We assume ϕ is a safety property, and use the learning algorithm L∗ [2,28] to
iteratively construct assumptions Ai until both premises of the rule hold for Ai,
implying M1||M2 |= ϕ, or until a real counterexample is found, demonstrating
that M1||M2 �|= ϕ.

UML state machines communicate via asynchronous events using thread-
local event queues. When a state machine receives an event, it makes a run-to-
completion (RTC) step, in which it processes the event and continues execution
until it cannot continue anymore. During its execution, the state machine may
send events to other state machines. We exploit the notion of RTC steps for
defining the alphabet Σ of the learned assumptions. We define an alphabet
over sequences of events, where a letter (i.e., a sequence of events) represents
a single RTC step of the assumption. A word w over these letters corresponds
to an execution of the assumption. It also represents the equivalence class of all
executions of the checked system, which are interleaved with w. Our alphabet is
defined based on statically analyzing the behavior of M2.

Learning words over sequences of events makes L∗ highly efficient, as it avoids
learning sequences that can never occur in M2 and therefore should not be
considered in an assumption. Moreover, our learning is executed w.r.t. equiva-
lence classes of executions. Even though our learning process is over equivalence
classes, we show that our framework is sound and complete. That is, we do
not lose information from grouping executions according to their representative
word.

The remainder of the paper is organized as follows. Some background on UML
and AG reasoning is given in Sect. 2. UML computations, executions, words
and their relations are defined in Sect. 3. In Sect. 4 we present our framework,
implementing Rule AG-UML for UML systems. We conclude in Sect. 5.

2 Preliminaries

2.1 UML Behavioral Systems

We present here a brief overview of behavioral UML systems, and in particular,
UML state machines. We refer the interested reader to the UML specification [13].

278 Y. Meller et al.

Fig. 1. Example State Machine of Class client

Behavioral UML systems include objects (instances of classes) that process
events. Event processing is performed by state machines, which include com-
plex features such as hierarchy, concurrency and communication. UML objects
communicate by sending each other events (asynchronous messages) that are
kept in event queues (EQs). Every object is associated with a single EQ, and
several objects can be associated with the same EQ. In a multi-threaded system
there are several EQs, one for each thread. Each thread executes a loop, taking
an event from its EQ, and dispatching it to the target object, which then makes
an RTC step. Only when the target object finishes its RTC step, the thread
dispatches the next event available in its EQ. RTC steps of different threads are
interleaved.

Figure 1 describes the state machine of class client. UML state machines
include hierarchical states (states Work and Client in Fig. 1), a single initial
state in each hierarchical state (e.g., state s0 in Work), and transitions between
states. Each transition is labeled with t[g]/a, where t, g and a are trigger, guard,
and action, respectively. Each of them is independently optional. A trigger is
an event name, a guard is a Boolean expression over local and global variables,
and an action is a piece of code in the underlying language used by the model.
Actions can include statements generating event e and sending it to the relevant
EQ. We represent such statements as “GEN(e)”. An event e includes the name
of the event and the state machine to which the event is sent. The set of events
of a system includes events sent by a state machine in the system, and events
sent by the “environment” of the system (to be formally defined later).

A transition from state s is enabled if s is part of the current (possibly
hierarchical) active state, the trigger (if there is one) matches the current event
dispatched, and the guard holds (an empty guard is equivalent to true). Further,
all transitions contained in s are disabled. For example, in Fig. 1, the transition

Learning-Based Compositional Model Checking of Behavioral UML Systems 279

from Work to Cancel is enabled only if Work is active, the event dispatched is
e1, and the transitions from s0, s1, s2 and s3 are disabled. When a transition
is taken, the action labeling it is executed, and the state machine moves to
the target state. An object executes an RTC step by traversing on enabled
transitions, until it cannot continue anymore.

A state can include multiple orthogonal regions, separated by a dashed line,
which corresponds to the parallel execution of the state machines contained in
them (e.g., state Client has two orthogonal regions). When an event is dis-
patched to a state machine, and it has no enabled transitions, then the event is
discarded and the RTC step terminates immediately. Otherwise, if there exists
an enabled transition, we say that the event is consumed. In each RTC step only
the first transition may consume an event. An exception is the case of orthogonal
regions that share the same trigger. These transitions are executed simultane-
ously. Since the semantics of simultaneous execution is unclear, we assume that
the actions of transitions in orthogonal regions labeled with the same trigger do
not affect other transitions. That is, firing them in any order yields the same
effect on the system.

A computation of a system is defined as a sequence of system configurations.
A system configuration includes information about the current state of each state
machine in the system, the contents of all the EQs, and the value of all variables
in the system. The initial configuration in a computation matches the initial state
of the system, and the system moves from configuration c to configuration c′ by
executing an enabled transition or by receiving an event from the environment.
A formal definition of computations can be found in [21].

2.2 Assume Guarantee Reasoning and Compositional Verification

[9] presents a framework for automatically constructing assumption A in an iter-
ative fashion for applying the standard AG rule, where M1 and M2 are LTSs
and ϕ is a safety property. At each iteration i, an assumption Ai is constructed.
Afterwards, Step 1 (〈Ai〉M1〈ϕ〉) is applied in order to check whether M1 guar-
antees ϕ in an environment that satisfies Ai. A false result means that this
assumption is too weak, i.e., Ai does not restrict the environment enough for
ϕ to be satisfied. Thus, the assumption needs to be strengthened (which cor-
responds to removing behaviors from it) with the help of the counterexample
produced by Step 1. If Step 1 returns true then Ai is strong enough for the
property to be satisfied. To complete the proof, Step 2 (〈true〉M2〈Ai〉) must be
applied to discharge Ai on M2. If Step 2 returns true, then the compositional
rule guarantees 〈true〉M1||M2〈ϕ〉. That is, ϕ holds in M1||M2. If it returns false,
further analysis is required to identify whether M1||M2 violates ϕ or whether
Ai is stronger than necessary. Such analysis is based on the counterexample
returned by Step 2. If Ai is too strong it must be weakened (i.e., behaviors must
be added) in iteration i+1. The new assumption may be too weak, and thus the
entire process must be repeated. The framework in [9] uses a learning algorithm
for generating assumptions Ai and a model checker for verifying the two steps
in the rule.

280 Y. Meller et al.

2.3 The L∗ Algorithm

The learning algorithm used in [9] was developed by [2], and later improved
by [28]. The algorithm, named L∗, learns an unknown regular language and
produces a minimal deterministic finite automaton (DFA) that accepts it. Let U
be an unknown regular language over some alphabet Σ. In order to learn U , L∗

needs to interact with a Minimally Adequate Teacher, called Teacher. A Teacher
must be able to correctly answer two types of questions from L∗. A membership
query, consists of a string w ∈ Σ∗. The answer is true if w ∈ U , and false
otherwise. A conjecture offers a candidate DFA C and the Teacher responds
with true if L(C) = U (where L(C) denotes the language of C) or returns a
counterexample, which is a string w s.t. w ∈ L(C) \ U or w ∈ U \ L(C).

3 Representing Executions as Words

A behavioral UML system with n state machines is denoted by Sys = M1||...||Mn.
We assume state machines communicate only through events (all variables are
local), and assume also that every RTC step is finite. These assumptions enable
us to define sequences of events representing a single RTC step, which will be the
letters of our alphabet (formally defined later). For simplicity of presentation,
we assume the following restrictions: (a) Transitions with triggers do not gen-
erate events, and each transition may generate at most one event, (b) A state
machine does not generate events to itself, (c) An event e cannot be generated
by more than one state machine, and (d) Each state machine runs in a separate
thread1.

Given a state machine M , Con(M) and Gen(M) denote the events that M
can consume and generate, respectively. An over-approximation of these sets can
be found by static analysis. The events of a system include events sent by a state
machine in the system denoted ESys, and events sent by the “environment” of
the system denoted EEnv. For a system Sys, ESys(Sys) = Gen(M1) ∪ ... ∪
Gen(Mn), and EEnv(Sys) = {Con(M1) ∪ ... ∪ Con(Mn)} \ {Gen(M1) ∪ ... ∪
Gen(Mn)}. We denote EV (Sys) = ESys(Sys) ∪ EEnv(Sys). We assume the
most general environment, that can send any environment event at any time.
Note that the environment of a system might send events that will always be
discarded by the target state machine. Since we are handling safety properties,
such behaviors do not affect the satisfaction of the property, and we can therefore
ignore them.

Recall that a computation of Sys is a series of configurations. Based on the
above assumptions on Sys, each move from configuration c to configuration c′ in
a computation is labeled by at most one of tr(e) and gen(e), where tr(e) denotes
that when moving from c to c′ event e was dispatched to the target state machine,
and gen(e) denotes that event e was either generated by a state machine in Sys
(if e ∈ ESys(Sys)) or sent by the environment of Sys (if e ∈ EEnv(Sys)). Note
that it is possible that a move is denoted with neither (labeled with ε).

1 The case where several state machines run on the same thread is simpler, however
presentation of both is cumbersome. We present only the more complex case.

Learning-Based Compositional Model Checking of Behavioral UML Systems 281

Note that events are always generated before they are dispatched. UML2
places no restrictions on the implementation of the EQs, and neither do we.
However, a specific implementation implies restrictions on the possible order of
events. For example, if the EQs are FIFOs, then if e was generated before e′ and
the target of both events is M , then e will be dispatched before e′. Given a set of
events EV , a sequence of labels over {tr(e), gen(e)|e ∈ EV } is an execution over
EV if it adheres to the above ordering requirements. A computation matches
an execution ex if ex is the sequence of non-ε labels of the computation. We
denote the set of executions of Sys by Lex(Sys). Note that every computation
matches a single execution. However, different computations may match the
same execution.

Fig. 2. Example State Machine for Class server

Example. Consider the system Sys = server||client where client and server are
presented in Figs. 1 and 2, respectively. Then gen(e1), tr(e1), gen(req1), tr(req1),
gen(grant1) ∈ Lex(Sys)2. However, gen(e1), tr(e1), gen(cancel1) �∈ Lex(Sys),
since client, when in initial state, cannot generate cancel1 after consuming e1.

From here on we do not address computations of a system, and consider only
executions. We say that “execution ex satisfies a property ϕ” iff all computations
that match ex satisfy ϕ. Let EV ′ ⊆ EV be a set of events, and ex be an execution
over EV . The projection of ex w.r.t. EV ′, denoted ex �EV ′ , is the projection of
ex on {tr(e), gen(e)|e ∈ EV ′}. The following theorem is a result of the fact that
state machines communicate only through events.

Theorem 1. Let Sys = M1||...||Mn, and let ex be an execution over EV (Sys).
Then, ex ∈ Lex(Sys) iff for every i ∈ {1, ..., n}, ex �EV (Mi)∈ Lex(Mi).

In order to later apply the L∗ algorithm for learning assumptions on state
machines, we first need to define an alphabet.

Definition 2. Let M be a state machine. σ = (t, (e1, .., en)) is in the alphabet
of M , Σ(M), if t ∈ Con(M) and there exists an RTC step of M that starts
by consuming or discarding t, and continues by generating a sequence of events
e1, ..., en.

2 In the examples throughout the paper we assume EQs are implemented as FIFOs.

282 Y. Meller et al.

Letters in Σ(M) where n is 0 are denoted (t, ε). The idea behind our definition
is that since the state machines in our systems communicate only through events,
the alphabet maintains only the event information of the state machines. Since
every RTC is finite, then an over-approximation of Σ(M) can be found by static
analysis (by traversing the graph of M), and the over-approximation is finite.

Example. Let M = client (Fig. 1). Then Σ(M) = {(e1, (req1)), (deny1, ε),
(e1, (clr1, cancel1)), (e1, ε), (deny1, (clr1)), (grant1, ε), (ev1, (clr1)), (ev1, (cont1)),
(ev1, ε). For example, (e1, (clr1, cancel1)) ∈ Σ(M) (resulting from a possible RTC
step that starts when M is in state Req). Also (ev1, ε) ∈ Σ(M), since client can
discard ev1 (e.g., when in initial state).

For a letter σ = (t, (e1, ..., en)), trig(σ) = t and evnts(σ) = {e1, .., en}. We
extend these notations to the alphabet Σ in the obvious way. Also, EV (Σ) =
trig(Σ) ∪ evnts(Σ).

Following, we define the relation between executions and words. Intuitively,
an execution ex matches a word w if the behavior of M in ex matches w.

Definition 3. Let Sys be a system that includes state machine M , let ex =
f1, f2, ∈ Lex(Sys), and let w = σ1, σ2, ... ∈ Σ(M)∗. Let ξ1 = f ′

1, f
′
2, ... be the

projection of ex on {tr(e)|e ∈ Con(M))} ∪ {gen(e)|e ∈ Gen(M))}. Assume also
ξ2 = f ′′

1 , f ′′
2 , ... is the sequence created from w by replacing σ = (t, (e1, ..., en))

with tr(t), gen(e1), ..., gen(en). Then ex matches w, denoted ex � w, iff ξ1 = ξ2.

Note that an immediate result of the above definition is that if ex � w where
w ∈ Σ∗, then adding or removing from ex occurrences of events not in EV (Σ)
results in a sequence ex′ s.t. ex′ �w still holds. Another important thing to note
is that different executions can match the same word w. Thus w represents all
the different executions under which the behavior of M matches w.

Example. Consider execution ex = gen(e1), tr(e1), gen(req1) tr(req1),
gen(grant1), gen(ev1), tr(ev1) ∈ Lex(server||client). We denote with bold
the parts of the execution that represent behavior of client. For the word w =
(e1, req1), (ev1, ε) ∈ Σ(client)∗, ex � w. It also holds that for the execution ex′ =
gen(e1), gen(ev1), tr(e1), gen(req1), tr(req1), tr(ev1), gen(grant1), ex′ � w.

We consider safety properties over events, based on predicates such as
InQ(e), denoting that e is in the EQ, BeforeQ(e, e′) indicating that e is before
e′ in the EQ, and gen(e) (or tr(e)), indicating that e is generated (or dispatched).
We handle safety properties over LTLx, which is the Linear-time Temporal Logic
(LTL) [26] without the next-time operator. Model checking safety properties can
be reduced to handling properties of the form ∀Gp for a state formula p3 [18],
which means that along every execution path, p globally holds (every execution
path satisfies Gp). That is, every reachable configuration satisfies p. We therefore
assume ϕ = ∀Gp. The following theorem states that if an execution ex satisfies
Gp, then adding or removing occurrences that do not influence p, results in an
execution that satisfies Gp.
3 In LTL, the syntax of this property is AGp. We choose to denote it by ∀Gp in order

to differentiate the property from AG (which stands for Assume-Guarantee).

Learning-Based Compositional Model Checking of Behavioral UML Systems 283

Theorem 4. Let ex be an execution over EV and let p be a property over events
EV ′ ⊆ EV . Then ex |= Gp iff ex �EV ′ |= Gp.

4 AG for State Machines

Our goal is to efficiently adapt the AG framework for UML state machines. Fol-
lowing, we first show that Rule AG-UML (presented in Sect. 1) holds for UML
state machines, and present a framework for applying Rule AG-UML for UML
state machines (Sect. 4.1). We give a detailed description of the framework in
Sects. 4.2 and 4.3, discuss its correctness in Sect. 4.4, and present a performance
analysis in Section 4.5.

4.1 A Framework for Employing Rule AG-UML and Its Correctness

First, we formally define the meaning of the two premises in Rule AG-UML:
[A]M〈∀Gp〉 holds iff for every ex ∈ Lex(A||M), ex |= Gp. 〈true〉M [A] holds iff
EV (A) ⊆ EV (M) and for every ex ∈ Lex(M), ex �EV (A)∈ Lex(A).

Theorem 5. Let M1, M2 and A be state machines s.t. EV (A) ⊆ EV (M2), let
p be a property over events EV ′ ⊆ (EV (A) ∪ EV (M1)), and let ϕ = ∀Gp. Then
Rule AG-UML is sound.

We use L∗ to iteratively construct assumptions A, until either both premises
of Rule AG-UML hold, or until a real counterexample is found. L∗ learns
a language over words, where each word represents an equivalence class of
executions.

In order to apply the L∗ algorithm we define Σ, the alphabet of the language
learned by L∗. Intuitively, Σ includes details of M2 that are relevant for proving
ϕ with M1. The alphabet Σ(M2) (Definition 2) may include events of M2 which
are irrelevant. We therefore restrict Σ(M2) to Σ by keeping only elements of
EV (M2) that are relevant for the interaction with M1 and for ϕ.

Definition 6. Let M1||M2 be a system and ϕ be a safety property. Σ, the
assumption alphabet of M2 w.r.t. M1 and ϕ, is the maximal set, s.t. for every
σ = (t, (ei1 , ..., ein)) ∈ Σ there exists σ′ = (t, (e1, ..., em)) ∈ Σ(M2) s.t. both
requirements hold:

1. (ei1 , ..., ein) is the maximal sub-vector of (e1, ..., em) (i.e., 1 ≤ i1 < i2 < ... <
in ≤ m) where each eij is consumed by M1 or part of the property ϕ.

2. If t ∈ EEnv(M1||M2) and n = 0: add (t, ε) to Σ only if either t is part of ϕ
or there exists σ1 = (t, (e′

1, ..., e
′
k)) ∈ Σ s.t. k > 0.

Example. Let Sys = server||client where server is M1 and client is
M2, and let ϕ = ∀G(¬(InQ(grant1) ∧ InQ(deny1)). The events of ϕ are
grant1 and deny1. Σ, the assumption alphabet of M2 w.r.t. M1 and ϕ, is
{(e1, (req1)), (e1, ε), (grant1, ε), (deny1, ε), (e1, (cancel1))}. Note that although
(deny1, (clr1)) ∈ Σ(client), since clr1 is not consumed by the server and is not

284 Y. Meller et al.

part of ϕ, then it is not included in Σ. Similarly, (e1, (clr1, cancel1)) ∈ Σ(client),
but only (e1, (cancel1)) ∈ Σ. Note also that Σ includes all the interface informa-
tion between client and server. Thus, (e1, (req1)) ∈ Σ, although neither e1 nor
req1 are part of ϕ.

We define the notion of weakest assumption in the context of state machines.

Definition 7. A language Aw ⊆ Σ∗ is the weakest assumption w.r.t. M1 and ϕ
if the following holds: w ∈ Aw iff for every execution ex over EV (Σ)∪EV (M1),
if ex � w and ex �EV (M1)∈ Lex(M1), then ex |= Gp.

Assume we could construct a state machine MAw
that represents Aw. That is,

for every execution ex over EV (Σ), ex ∈ Lex(MAw
) iff there exists w ∈ Aw s.t.

ex�w. Then, MAw
describes exactly those executions over Σ that when executed

with M1 do not violate Gp. The following theorem states that 〈true〉M1||M2〈ϕ〉
holds iff every execution of M2 matches a word in Aw.

Theorem 8. 〈true〉M1||M2〈ϕ〉 holds iff for every execution ex ∈ Lex(M2), there
exists w ∈ Aw s.t. ex � w, where Aw is the weakest assumption w.r.t. M1 and ϕ.

Proof Sketch. The proof of direction ⇐ is based on the definitions of execu-
tions (full proof available in [22]). For the proof of direction ⇒, assume there
exists an execution ex1 ∈ Lex(M2) and no word w ∈ Aw s.t. ex1 �w. Thus, there
exists a word w ∈ Σ∗ \ Aw s.t. ex1 � w. We show that 〈true〉M1||M2〈ϕ〉 does not
hold. If w �∈ Aw, then there exists an execution ex2 over EV (Σ) ∪ EV (M1) s.t.
ex2 �EV (M1)∈ Lex(M1), ex2 � w, and ex2 �|= Gp. We then construct an execu-
tion ex by combining ex1 and ex2. Our construction ensures that ex �EV (Mi)∈
Lex(Mi) for i ∈ {1, 2}. We conclude that ex ∈ Lex(M1||M2), and show that
ex �|= Gp as well. Note that the construction of ex is not straightforward; ex1

and ex2 both match w, however the other parts of the executions might not match,
i.e., the interleaving of M2 and the environment in ex2 may be different from
the interleaving of M1 and Σ in ex1. Our construction of ex actually shows that
there exists an interleaving that is possible by both M1 and M2, and that still
violates Gp. �

From the definition of Aw and from the above theorem we conclude the
following corollary, which states that Rule AG-UML holds if we replace A
with MAw

.

Corollary 9. Let Aw be the weakest assumption w.r.t. M1 and ϕ. Assume there
exists a state machine MAw

that represents Aw. Then Rule AG-UML holds
when replacing A with MAw

.

The goal of L∗ is therefore to learn Aw. To automate L∗ in our setting we
now show how to construct a Teacher that answers membership and conjec-
ture queries. The Teacher answers queries by “translating” the queries into state
machines, and verifying properties on state machines via a model checker for
behavioral UML systems. The model checker must be able to always return a
definite answer (true or false) for properties of type ∀Gp. Also, when answering

Learning-Based Compositional Model Checking of Behavioral UML Systems 285

false it should give a counterexample. Model checkers for behavioral UML sys-
tems verify the behavior w.r.t. system configurations. Thus, a counterexample is
a computation of the system. It is straightforward to translate the counterexam-
ple into a counterexample execution or word. Although our goal is to learn Aw,
our automatic framework may stop with a definite true or false answer before
Aw is constructed.

For a membership query on w, the Teacher constructs a state machine for w,
and checks if, when executed with M1, ϕ is violated. For conjecture queries, the
Teacher constructs a state machine A(C) from conjecture C, and verifies Step 1
and Step 2 of Rule AG-UML w.r.t. A(C).

From now on, in our following constructions, we sometimes include an err
state in state machines. For simplicity of presentation, for a given system Sys
where some of its state machines include err state, Lex(Sys) represents only the
executions that do not reach err state on any of its state machines.

4.2 Membership Queries

To answer a membership query for w ∈ Σ∗, the Teacher must return true iff
w ∈ Aw. The Teacher creates a state machine M(w) s.t. Σ(M(w)) ⊆ Σ. M(w)
is constructed s.t. for every ex over EV (Σ) ∪ EV (M1): ex ∈ Lex(M(w)||M1) iff
ex �EV (M1)∈ Lex(M1) and ex � w. If this holds, then (by the definition of Aw in
Definition 7) w ∈ Aw iff for every execution ex ∈ Lex(M(w)||M1), ex |= Gp.

Let w = σ1, σ2, ..., σm and let σi = (ti, (ei1, e
i
2, ..., e

i
ki

)), for i ∈ {1, ...,m}. The
state machine M(w) is presented in Fig. 3. A transition labeled with a set of trig-
gers T (e.g., the transition from s1 to err) is a shorthand for a set of transitions,
each labeled with a single trigger t ∈ T . For σ = (t, (e1, ..., ek)), a compound
transition, denoted as a double arrow ⇒, labeled with trig[grd]/GEN(σ) is a
shorthand for a sequence of states and transitions, where the first transition is
labeled with trig[grd], the second is labeled with action GEN(e1), the third
with action GEN(e2), etc. The idea behind splitting the compound transition
into intermediate states is to enable all possible interleaving between M(w) and
M1, thus ensuring that every execution over EV (Σ) ∪ EV (M1) that represents
an execution of M1 and matches w is indeed a possible execution of M(w)||M1.

We explicitly define at each state si the behavior of M(w) in response to
any possible event t ∈ trig(Σ). Not specifying such a behavior implies that if
t is dispatched to M(w) then M(w) discards t and remains in the same state.

Fig. 3. M(w) constructed for w

286 Y. Meller et al.

This is an undesired behavior of M(w), which is supposed to execute w with no
additional intermediate letters. Thus, transitions that do not match w are sent
to state err. The following theorem describes the executions of M(w).

Theorem 10. Let M(w) be the state machine constructed for word w ∈ Σ∗.
For every execution ex over EV (Σ): ex ∈ Lex(M(w)) iff there exists a prefix w′

of w s.t. ex � w′.

Once M(w) is constructed, the Teacher model checks M(w)||M1 |= ∀G(p ∨
IsIn(err)), where IsIn(s) denotes that s is part of the current state of the sys-
tem. The model checker returns true iff for every execution one of the following
holds: (1) the execution does not reach state err, i.e. the execution matches a
prefix of w, and p is satisfied along the entire execution, or (2) the execution
reaches state err, meaning that the execution does not match w and therefore
we do not need to require p4. The Teacher returns true, indicating w ∈ Aw iff
the model checker returns true. The following theorem defines the correctness
of the Teacher.

Theorem 11. M(w)||M1 |= ∀G(p ∨ IsIn(err)) iff w ∈ Aw.

4.3 Conjecture Queries

A conjecture of the L∗ algorithm is a DFA over Σ. Our framework first trans-
forms this DFA, C, into a state machine A(C). Then, Step 1 and Step 2 are
applied in order to verify the correctness of A(C).

Constructing a State Machine from a DFA: A DFA is a five tuple C =
(Q,α, δ, q0, F), where Q is a finite non-empty set of states, α is the alphabet,
δ ⊆ Q×α×Q is a deterministic transition relation, q0 ∈ Q is the initial state, and
F ⊆ Q is a set of accepting states. For a string w, δ(q, w) denotes the state that
C arrives at after reading w, starting from state q. A string w is accepted by C iff
δ(q0, w) ∈ F . The language of C, denoted L(C), is the set {w|δ(q0, w) ∈ F}. The
DFAs returned by the L∗ algorithm are complete, minimal, and prefix-closed.
Thus they contain a single non-accepting state, qerr, and for every σ ∈ α and
q ∈ Q, δ(q, σ) is defined.

The alphabet α of the DFA in our framework is exactly Σ. Given a DFA C =
(Q,Σ, δ, q0, Q \ {qerr}), we construct a state machine A(C) where EV (A(C)) =
EV (Σ). We then show that A(C) represents L(C), i.e., for every execution ex
over EV (Σ), ex ∈ Lex(A(C)) iff there exists w ∈ L(C) s.t. ex � w.

Definition 12 (A(C) Construction). Let C = (Q,Σ, δ, q0, Q \ {qerr}). A(C)
includes 3 states: init, end and err, where init is the initial state. A(C) includes
a single variable qs whose domain is Q, initialized to q0. A(C) has the following
transitions:
4 It is ok to require p on a prefix leading to state err, since Aw is prefix closed for

safety properties.

Learning-Based Compositional Model Checking of Behavioral UML Systems 287

(1) For every q ∈ Q and σ = (t, (e1, .., en)) ∈ Σ where δ(q, σ) = q′ add a
compound transition labeled with t[qs = q]/qs := q′;GEN(σ) from init to
end (if q′ �= qerr) or to err (if q′ = qerr).

(2) Add a transition with no trigger, guard or action from end to init.

Example. For Sys = server||client and ϕ = ∀G(¬(InQ(grant1)∧InQ(deny1)),
the conjecture DFA C returned from the L∗ algorithm, and state machine A(C)
representing L(C), are presented in Fig. 4.

Fig. 4. The conjecture DFA C (left) and the state machine A(C) (right)

The construction ensures that for every t ∈ trig(Σ) and for every q ∈ Q
there exists a transition with trigger t and guard qs = q. That is, as long as
A(C) is at state init in the beginning of an RTC step, it does not discard events.
Also, according to the semantics of state machines, every RTC step that starts
at state init, either moves to state err, which is a sink state, or moves to state
end and returns to state init. The following theorem states that A(C) is indeed
a state machine representing L(C).

Theorem 13. Let A(C) be the state machine constructed for DFA C. For every
execution ex over EV (Σ): ex ∈ Lex(A(C)) iff there exists w ∈ L(C) s.t. ex � w.

After creating A(C), the Teacher uses two oracles and a counterexample
analysis to answer conjecture queries.

Check [A(C)]M 1〈ϕ〉: Oracle 1 performs Step 1 in the compositional rule by
model checking A(C)||M1 |= ∀G(p ∨ IsIn(err)). If the model checker returns
false with a counterexample execution cex, the Teacher informs L∗ that the
conjecture is incorrect, and gives it the word w ∈ Σ∗ s.t. cex � w to witness this
fact (w ∈ L(C) and w �∈ Aw). If the model checker returns true, indicating that
[A(C)]M1〈ϕ〉 holds, then the Teacher forwards A(C) to Oracle 2.

Check 〈true〉M 2[A(C)]: Oracle 2 preforms Step 2 in the compositional rule.
That is, check that for every execution ex ∈ Lex(M2), ex �EV (A(C))∈ Lex(A(C)).
Note that this is a language containment check. In state machines there is no
known algorithm for checking language containment. We present here a method
for this check in the special case where the abstract state machine is the state

288 Y. Meller et al.

machine A(C) previously defined. Step 2 is done by constructing a single state
machine, and applying model checking on the resulting state machine.

Given the state machines M2 and A(C), Oracle 2 constructs a new state
machine, M, that is composed from modifications of M2 and A(C) as two orthog-
onal regions. M is constructed so that the behavior of M2 is monitored by A(C)
after every RTC step. M includes a synchronization mechanism, so that when
an event is dispatched, first the region that includes M2 executes the RTC step.
When it finishes, the region that includes A(C) executes its step only if A(C)
has a behavior that matches M2. If A(C) does not have a matching behavior,
then M moves to an error state, indicating that 〈true〉M2[A(C)] does not hold.
The general structure of M is presented in Fig. 5.

From here on, we denote M2 and A(C) that are regions in M as M̂2 and
Â(C), respectively. We add a local queue, IQ, and two local variables, rtc and
tr, to M. tr “records” the event e dispatched to M, if e ∈ trig(Σ). IQ “records”
events generated by M̂2 which are from evnts(Σ). Whenever M̂2 generates an
event from evnts(Σ), it also pushes the event to IQ. Â(C) will, in turn, check
if it has a matching behavior by observing IQ. rtc is used for fixing the order
of execution along an RTC step of M. It is initialized to 0, and as long as the
monitoring is successful, the value of rtc at the end of the RTC step of M is 0.
rtc = 3 indicates that M̂2 is executing an RTC step that should be monitored.
rtc = 2 indicates that M̂2 finished its execution, and Â(C) can monitor the
behavior. rtc = 1 indicates that the monitoring step of Â(C) was successful, i.e.,
Â(C) has a behavior that matches M̂2. If the monitoring of Â(C) failed, then
rtc at the end of the RTC step is 2, indicating an error.

Fig. 5. General scheme for M created from A(C) and M2

The following modifications are applied to M2 for constructing M̂2: Set rtc
to 3 on transitions that consume event e ∈ trig(Σ), and add IQ.push(e′) on
transitions that generate event e′ ∈ gen(Σ).
The following modifications are applied to A(C) (Definition 12) for constructing
Â(C):

1. Add a new state called step to A(C), and for every t ∈ trig(Σ), add a
transition from init to step labeled t/tr := t.

2. Every compound transition from init to end labeled with:
t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0
is replaced with a transition from step to end labeled with:
[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 1

Learning-Based Compositional Model Checking of Behavioral UML Systems 289

3. Every compound transition from init to end labeled with: t[qs = q]/qs := q′

(no event generation), is replaced with a transition from step to end labeled
with: [tr = t ∧ qs = q ∧ ((rtc = 2 ∧ IQ = ()) ∨ rtc = 0)]/ qs := q′; rtc := 1

4. Every compound transition from init to err labeled with:
t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0
is replaced with a transition from step to err labeled with:
[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 2

5. Every compound transition from init to err labeled with: t[qs = q]/qs := q′

(no event generation), is replaced with a transition from step to err labeled
with: [tr = t ∧ qs = q ∧ ((rtc = 2 ∧ IQ = ()) ∨ rtc = 0)]/ qs := q′; rtc := 2

If Â(C) is at state step and rtc = 0 holds, then M̂2 discarded the event in
the current RTC step. Â(C) has a matching behavior if it has a behavior that
consumes an event and does not generate events. The transitions described in
(3) and (5) monitor RTC steps of M̂2 that consume event t and do not generate
any events, and also RTC steps that discard t. Note that items (2) and (4)
(respectively, (3) and (5)) are distinct in the target state (end or err) and in
the assignment to rtc on the action. The transitions in (2) and (3) monitor RTC
steps that are legal in Â(C), and transitions in (4) and (5) monitor RTC steps
that are not legal in Â(C).
The correctness of our construction is captured in the following theorem.

Theorem 14. For every ex ∈ Lex(M): ex reaches state RTCErr iff
ex �EV (M2)∈ Lex(M2) and ex �EV (A(C)) �∈ Lex(A(C)).

After constructing M, Oracle 2 model checks M |= ∀G(¬IsIn (RTCErr)).
If the model checker returns true, then the Teacher returns true and our frame-
work terminates the verification, because according to Rule AG-UML, ϕ has
been proved on M1||M2. Otherwise, if the model checker returns false with a
counterexample execution cex, then cex is analyzed as follows.

Counterexample Analysis: Note that only M̂2 generates events. Thus, by
projecting the execution cex on {tr(e)|e ∈ trig(Σ)} ∪ {gen(e)|e ∈ evnts(Σ)} we
can obtain w ∈ Σ∗ s.t. cex�w. The Teacher executes a membership query on w,
for checking whether w is in Aw (as presented in Sect. 4.2). If the membership
query succeeds (i.e., w ∈ Aw), the Teacher informs L∗ that the conjecture is
incorrect, and gives it w to witness this fact (since w ∈ Aw but w �∈ L(C)). If the
membership query fails then the Teacher concludes that 〈true〉M1||M2〈ϕ〉 does
not hold, since cex �EV (M2)∈ Lex(M2), cex �EV (M2)�w and w �∈ Aw (Theorem 8).
The Teacher then returns false.

Example. Consider the system server||client and the assumption A(C) (Fig. 4).
When checking 〈true〉client[A(C)], the model checker may return a counterex-
ample cex, represented by the word w = (e1, (req1)), (e1, (cancel1)), (e1, (req1))
(cex � w). cex �EV (M2)∈ Lex(client), cex �EV (M2) � w and w �∈ L(C).

During counterexample analysis, the Teacher performs a membership query
on w. This check fails, since there exists an execution of M(w)||server that vio-
lates the property ∀G(¬(InQ(grant1) ∧ InQ(deny1))). Note that the property is

290 Y. Meller et al.

violated even though server receives the event cancel1 before it receives the sec-
ond req1. However, there exists a behavior of the environment of M(w)||server
that causes violation of the property: if server receives event req2 after cancel1,
then when it receives the second req1 it will send deny1. Note that since every
state machine runs on a different thread, it is possible that the event grant1,
previously sent to client, was not yet dispatched. Thus, when deny1 is added to
the EQ of client, the property is violated. Since the membership query fails, we
conclude that server||client �|= ϕ.

4.4 Correctness

We first argue correctness of our approach, and then the fact that it terminates.

Theorem 15. Given state machines M1 and M2, and a property ∀Gp, our
framework returns true if M1||M2 |= ∀Gp and false otherwise.

Termination: Assuming the number of configurations of M1||M2 is finite, the
weakest assumption w.r.t. M1 and ϕ, Aw, is a regular language. To prove this, we
construct an accepting automaton for Aw similarly to the construction in [12].
Since Aw is a regular language, then by correctness of the L∗ algorithm, we are
guaranteed that if it keeps receiving counterexamples, it will eventually produce
Aw. The Teacher will then apply Step 2, which will return, based on Theorem 8,
either true or a counterexample.

4.5 Performance Analysis

Our framework for automated learning-based AG reasoning is applied directly
at the state machine level. That is, the system’s components and the learned
assumptions are state machines. However, the learning is done by applying an off-
the-shelf L∗ algorithm, whose conjectures are DFAs and its membership queries
are words. Thus we need to translate DFAs and words into state machines. On
the other hand we never need to translate from state machines back to low level
representation (such as LTSs or DFAs). It is important to emphasize that, as
shown above, the translation from DFAs and words to UML state machines is
simple and straightforward, since the state machines created do not include com-
plex features (such as hierarchy or orthogonality). On the other hand, a trans-
lation from UML state machines to LTSs may result in an exponential blowup,
since the hierarchy and orthogonal structure should be flattened. Moreover, the
event queues need to be represented explicitly, causing another blowup. Note
that applying such a translation to LTSs does not influence the number of the
membership or conjecture queries, as the learned assumption remains the same.
However, it complicates the model checking used to answer these queries, since
the system is much larger.

Our framework learns assumptions over an alphabet consisting of sequences
of events representing RTC steps of M2. We refer to this alphabet as RTC

Learning-Based Compositional Model Checking of Behavioral UML Systems 291

alphabet. Note that it is also possible to apply the framework (with minor mod-
ifications) over an alphabet consisting of single event occurrences (called event
alphabet) rather then over the RTC alphabet, while still keeping the learning
at the UML level. However, learning over the RTC alphabet is often better, as
discussed below.

The complexity of the L∗ algorithm can be represented by the number
of membership and conjecture queries it needs in order to learn an unknown
language U . As shown in [9,28], the number of membership queries of L∗ is
O(n2 · k + n · log(m)) and the number of conjecture queries is at most n − 1,
where n represents the number of states in the learned DFA, k is the size of
the alphabet, and m is the size of the longest counterexample returned by the
Teacher. This results from the characteristics of L∗, which learns the minimal
automaton for U , and from the fact that each conjecture is smaller than the
next one.

In theory, the size of the RTC alphabet might be much larger than the size
of the event alphabet. This happens when every possible sequence of events is a
possible RTC step of M2. However, in practice typical state machines exhibit only
a much smaller number of different RTC steps. Moreover, the number of states
in the DFA QRTC learned over the RTC alphabet may be much smaller than
the number of states in the DFA Qevnt over the event alphabet. This is because
a single transition in QRTC might be replaced by a sequence of transitions in
Qevnt, one for each of the events in the RTC.

The above observations are demonstrated in the following example.

Example. We re-visit the example presented throughout Sect. 4. ϕ =
∀G(¬(InQ(grant1) ∧ InQ(deny1))), and Sys = server||client where server is
M1, client is M2. The final DFA learned when using event sequences is presented
in Fig. 4(a). The total number of membership queries is O(32 · 5 + 3 · log2) and
there are 2 conjecture queries.

If we apply learning over single event occurrence, then there are O(42·5+4·log3)
membership queries and 3 conjecture queries, since the resulting DFA has 4 states
and the alphabet is {tr(e1), tr(grant1), tr(deny1), gen(req1), gen(cancel1)}.

5 Conclusion

We presented a framework for applying learning-based compositional verification
of behavioral UML systems. Note that our framework is completely automatic;
we use an off-the-shelf L∗ algorithm. However, our Teacher works at the UML
level. In particular, the assumptions generated throughout the learning process
are state machines. From the regular automaton learned by the L∗ algorithm, we
construct a state machine which is a conjecture on M2. Also, the Teacher answers
membership and conjecture queries by “translating” them to model checking
queries on state machines. Our framework is presented for Sys = M1||M2 where
both M1 and M2 are state machines. However, M1 and M2 can both be systems
that include several state machines, as long as the state machines of M2 run on
a single thread. If M2 includes multiple state machines M2

1 ||...||M2
k that run on

292 Y. Meller et al.

a single thread, then we can construct a single state machine M̃2 where each M2
i

is an orthogonal region in M̃2. The executions of M̃2 are equivalent to those of
M2. We can then apply our framework on M1||M̃2.

In the future we plan to investigate other assume-guarantee rules in the con-
text of behavioral UML system. For example, we would like to define a frame-
work for checking [A1]M [A2]. Such a framework will enable us to apply recursive
invocation of the AG rule, where M2 includes several state machines.

References

1. Majzik, I., Darvas, A., Beny, B.: Verification of UML statechart models of embed-
ded systems. In: Design and Diagnostics of Electronic Circuits and Systems Work-
shop (DDECS 2002), pp. 70–77. IEEE (2002)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Booch, G., Rumbaugh, J.E., Jacobson, I.: The unified modeling language user
guide. J. Database Manag. 10(4), 51–52 (1999)

4. Strichman, O., Chaki, S.: Optimized L*-based assume-guarantee reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)

5. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese,
J.D.: Model checking large software specifications. IEEE Trans. Softw. Eng. 24(7),
498–520 (1998)

6. Chen, Y.-F., Tsay, Y.-K., Clarke, E.M., Farzan, A., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press, Cambridge
(1999)

8. Clarke, E.M., Heinle, W.: Modular translation of statecharts to SMV. Technical
report CMU-CS-00-XXX, Carnegie-Mellon University School of Computer Science
(2000)

9. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

10. Dubrovin, J., Junttila, T.A.: Symbolic model checking of hierarchical UML state
machines. In: Application of Concurrency to System Design (ACSD 2008), pp.
108–117. IEEE (2008)

11. Farzan, A., Tsay, Y.-K., Chen, Y.-F., Wang, B.-Y., Clarke, E.M.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008)

12. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. Autom. Softw.Eng. 12(3), 297–320 (2005)

13. Object Management Group. OMG Unified Modeling Language (UML) Superstruc-
ture, version 2.4.1. formal/2011-08-06 (2011)

14. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (1994)

Learning-Based Compositional Model Checking of Behavioral UML Systems 293

15. Meller, Y., Yorav, K., Grumberg, O.: Applying software model checking techniques
for behavioral UML models. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 277–292. Springer, Heidelberg (2012)

16. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Form. Methods Syst. Des. 32(3), 285–301 (2008)

17. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

18. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods
Syst. Des. 19(3), 291–314 (2001)

19. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset
of UML statechart diagrams using the spin model-checker. Formal Asp. Comput.
11(6), 637–664 (1999)

20. Madhukar, K., Metta, R., Singh, P., Venkatesh, R.: Reachability verification of
rhapsody statecharts. In: International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW 2013), pp. 96–101. IEEE (2013)

21. Grumberg, O., Meller, Y., Yorav, K.: Verifying behavioral UML systems via
CEGAR. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp.
139–154. Springer, Heidelberg (2014)

22. Meller, Y., Grumberg, O., Yorav, K.: Learning-based compositional model check-
ing of behavioral UML systems. Technical report CS-2015-05, Department of Com-
puter Science, Technion - Israel Institute of Technology (2015)

23. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts
in PROMELA/SPIN. In: Workshop on Industrial-Strength Formal Specification
Techniques (WIFT 1998), pp. 90–101. IEEE (1998)

24. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifica-
tion by learning assumptions. Form. Methods Syst. Des. 32(3), 207–234 (2008)

25. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Form. Methods Syst. Des. 32(3), 175–205 (2008)

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eighteenth
Annual Symposium on Foundations of Computer Science (FOCS 1977) (1977)

27. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Formal Models of Concurrent Systems, pp. 123–144.
Springer-Verlag, Berlin (1985)

28. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: Symposium on Theory of Computing (STOC 1989), pp. 411–420. ACM (1989)

29. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The rhapsody UML verification
environment. In: Software Engineering and Formal Methods (SEFM 2004), pp.
174–183. IEEE (2004)

Typed Connector Families

José Proença1,2(B) and Dave Clarke3

1 HASLab – INESC TEC and Universidade Do Minho, Braga, Portugal
jose.proenca@cs.kuleuven.be

2 IMinds-DistriNet, Department of Computer Science, Ku Leuven, Belgium
3 Department of Information Technology, Uppsala University, Uppsala, Sweden

dave.clarke@it.uu.se

Abstract. Typed models of connector/component composition specify
interfaces describing ports of components and connectors. Typing ensures
that these ports are plugged together appropriately, so that data can flow
out of each output port and into an input port. These interfaces typi-
cally consider the direction of data flow and the type of values flowing.
Components, connectors, and systems are often parameterised in such
a way that the parameters affect the interfaces. Typing such connector
families is challenging. This paper takes a first step towards addressing
this problem by presenting a calculus of connector families with integer
and boolean parameters. The calculus is based on monoidal categories,
with a dependent type system that describes the parameterised inter-
faces of these connectors. As an example, we demonstrate how to define
n-ary Reo connectors in the calculus. The paper focusses on the structure
of connectors—well-connectedness—and less on their behaviour, mak-
ing it easily applicable to a wide range of coordination and component-
based models. A type-checking algorithm based on constraints is used to
analyse connector families, supported by a proof-of-concept implemen-
tation.

1 Introduction

Software product lines provide the flexibility of concisely specifying a family
of software products, by identifying common features of functionality among
these products and automatising the creation of products from a selection of
relevant features. Interesting challenges in this domain include how to specify
families and combinations of features, how to automatise the creation process,
how to identify features from a collection of products, and how to reason about
(e.g., verify) whole families of products.

This paper investigates such variability in coordination languages, i.e., it
studies connector families that exogenously describe how (families of) compo-
nents are connected. The key problem is that different connectors from a single
family can have different interfaces, i.e., different ways of connecting to other
connectors. Hence, specifying and composing such families of connectors while
guaranteeing that interfaces still match becomes non-trivial.

This research is supported by the FCT grant SFRH/BPD/91908/2012.

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 294–311, 2016.
DOI: 10.1007/978-3-319-28934-2 16

Typed Connector Families 295

Consider, for example a component c that produces 3 values, and a family
of connectors ∇n that merge n values into a single output. We say the interface
of c has 3 output ports, and the interface of each ∇n has n input ports and 1
output port. This paper provides a calculus to compose such n-ary connectors
while guaranteeing that all their ports can be properly connected. For example,
“c ; ∇3” denotes the sequential composition of c and a merger with 3 inputs,
connecting the output ports of the first to the input ports of the second, resulting
in a well-connected connector with 0 inputs and 1 outputs.

Fig. 1. Example of the composition of connectors.

Figure 1 exemplifies more complex compositions of n-ary connectors. The left
presents the composition of m parallel instances of the component c, written as
cm, with a merger with n inputs. This composition yields a new connector that,
given some n and m values, produces a new connector with a single (output)
port. This paper provides a type system that checks if such n and m values
exist, and their relation: n must be 3 times larger than m. More formally, the
connector is written as λm : N, n : N · (cm ; ∇n), and the type system yields both
the type ∀m : N, n : N ·0 → 1 and the constraint n = m∗3. This means that both
the connector and the type are parameterised by two numbers m and n, the
connector has type 0 → 1, and n = m ∗ 3 must hold for the connector to be well
typed. The right example of Fig. 1 shows a variation of this example, where the
instances of c are composed with k instances of a binary merger ∇2. The type
of the composed connector is ∀m : N, k : N · 0 → k constrained by 3 ∗ m = 2 ∗ k,
which means that 3 ∗ m = 2 ∗ k must hold for the connector to be well typed,
yielding a connector with 0 inputs and k outputs. By writing this connector as
λm : N, k : N · (c2∗m ; ∇k

2) the type becomes ∀m : N, k : N · 0 → 3 ∗ m, constrained
by k = 3 ∗ m.

To increase compositionality, parameterised connectors can also be com-
posed. Hence (λm : N·cm) ; (λn : N·∇n) has the same type as the left composition
of Fig. 1. Finally, extra constraints can be added to parameterised connectors.
For example, λm : N · (cm |m≤10) represents a parameterised connector that can
have at most 10 instances of the connector c. We call connector families such
connectors that can be parameterised, constrained, and composed.

Summarising, the main contributions of this paper are:

– a calculus for families of connectors with constraints;
– a type system to describe well-defined compositions of such families; and
– a constraint-based type-checking algorithm for this type system.

296 J. Proença and D. Clarke

Connectors are defined incrementally. We start by defining a basic connector
calculus for composing connectors inspired by Bruni et al.’s connector algebra
[3,5] (Sect. 2). This calculus is then extended with parameters and expressions,
over both integers and booleans (Sect. 3), being now able to specify connec-
tors (and interfaces) that depend on input parameters. Both the basic and the
extended calculus are accompanied by a type system; the latter is an extension of
the former, allowing integer and boolean parameters (and effectively becoming
a dependent type system). Section 4 introduces connector families, by explicitly
incorporating constraints over the parameters, and by lifting the composition
of connectors to the composition of constrained and parameterised connectors.
Section 5 describes an algorithm to type-check connector families with untyped
ports, i.e., when the type flowing over each port is not relevant, and presents
our prototype implementation. This paper wraps up with related work (Sect. 6),
conclusions and future work (Sect. 7).

2 Basic Connector Calculus

This section describes an algebraic approach to specify connectors (or compo-
nents) with a fixed interface, that is, with a fixed sequence of input and output
ports that are used to send and receive data. The main goal of this algebraic app-
roach is to describe the structure of connectors and not so much their behaviour.
We illustrate the usage of this algebra by using Reo connectors [2], which have
well-defined semantics, although our approach can be applied to any connector-
like model that connects entities with input and output interfaces.

We start by presenting an overview of how to specify connectors using our
calculus. We then describe the syntax of the basic connector calculus and a type
system to verify if connectors are well-connected, followed by a brief discussion
on how to describe the semantics of connectors orthogonally to this calculus.

2.1 Overview

Our basic connector calculus is based on monoidal categories—more specifically
on traced monoidal categories [14]—where connectors are morphisms, “;” is the
composition of morphisms with identity id, and “⊗” is the tensor product. The
operator “⊗” composes connectors in parallel, while the operator “;” connects
the ports of the given connectors. Objects of this category are interfaces, which
correspond to ports in our connectors and include the unit of the tensor product
represented by 0. The commutativity of the tensor product is captured by a
family of symmetries that swap the order of ports in parallel. Loops can be
represented via traces, which plug part of the right interface to the left interface
of the same connector.

The connector in Table 1 helps understanding the intuition behind our alge-
bra of connectors. Our algebra is inspired by the graphical notation used for
monoidal categories (see, e.g., Selinger’s survey [14]), and by Bruni et al.’s con-
nector algebra [3,5]. The Reo connector on the left is composed out of smaller

Typed Connector Families 297

subconnectors, connected with each other via shared ports . The second col-
umn describes a possible representation of the same connector, writing the names
of each subconnector parameterised by its ports. For example, the connector

is written as sdrain(a, b) to mean that it has two ports named a and b.
Composing connectors is achieved via the �� operator, which connects ports
with the same names – this is the most common way to compose Reo connectors
in the literature. In this paper we will use instead the algebraic representation on
the right of Table 1, where port names are not necessary. The connector Δ ⊗ Δ,
for example, puts two duplicator channels in parallel, yielding a new connec-
tor with 2 input ports and 4 output ports. This can be composed via “;” with
id ⊗ sdrain ⊗ fifo because this connector has 4 input ports: both the id and the
fifo channels have one input port and the sdrain has 2 input ports.

Table 1. Specification of the alternator connector with port names and algebraically.

2.2 Syntax

The syntax of connectors and interfaces of our basic connector calculus is pre-
sented in Fig. 2. Each connector has a signature I → J consisting of an input
interface I and an output interface J . For example, the identity connector idI

has the same input and output interface I, written idI : I → I. Ports of an
interface are identified simply with a capital letter, such as A, which capture the
type of messages that can be sent via that port. In our examples we assume that
A can only be the type 1, which represents any port type. This more specific
model is also exploited in our algorithm for constraint solving (later in Sect. 5).

The intuition of these connectors becomes clearer with the visual representa-
tions exemplified in Fig. 3. All connectors are depicted with their input interface
on the left side and the output interface on the right side. Each identity connec-
tor idI has the same input and output interface I; each symmetry γI,J swaps the
top interface I with the bottom interface J , hence it has input interface I ⊗ J
and output interface J ⊗I; and each trace TrI(c) creates a loop from the bottom
output interface I of c with the bottom input interface I of c, hence if c has
input interface I ′ ⊗ I and output interface J ′ ⊗ I then the trace has input and
output interaces I ′ and J ′, respectively.

Parallelism is represented by tensor products, plugging of connectors by mor-
phism composition, swapping order of parameters by symmetries, and loops by
traces. Connectors and types obey a set of Equations for Connectors that allow
their algebraic manipulation and capture the intuition behind the above men-
tioned representations. Figure 4 presents some of these equations, which reflect

298 J. Proença and D. Clarke

c ::= c1 ; c2
| c1 ⊗ c2
| idI

| γI,J

| TrI(c)
| p ∈ P

p ∈ P ::= ΔI I
| ∇I I
|
|
| . . .

I, J ::= I ⊗ J
| 0
| A

Fig. 2. Connectors (left), primitive connectors (top-right), interfaces (bottom-right).

id id ;
γ ⊗ , ∇ ⊗ id ⊗

Tr (γ ,)

Fig. 3. Visual representation of simple connectors.

properties of traced monoidal categories. For example, the fact that two symme-
tries in sequence with swapped interfaces are equivalent to the identity connector,
or how the trace of the symmetry γ1,1 is also equivalent to the identity.

2.3 Type Rules

Every connector c has an input interface I and an output interface J , written
c : I → J . We call these two interfaces the type of the connector. Every primitive
has a fixed type, for example, fifo : 1 → 1 and ∇1⊗1 : 1 ⊗ 1 → 1. The typing
rules for connectors (Fig. 5) reflect the fact that two connectors can only be
composed sequentially if the output interface of the first connector matches the
input interface of the second one. A connector is well-connected if and only if it
is well-typed.

For example, using these type rules it is possible to infer the type of the con-
nector Tr1⊗1(γ1⊗1,1 ; (fifo⊗fifo⊗fifo)) to be 1 → 1, but no type could be inferred
after removing one occurence of fifo. This connector is chaining in sequence 3
parallel fifo connectors.

idI ; c = c = c ; idJ (c : I → J)
γI,J ; γJ,I = idI⊗J

(c1 ⊗ c2) ⊗ c3 = c1 ⊗ (c2 ⊗ c3)
0 ⊗ I = I = I ⊗ 0

(I1 ⊗ I2) ⊗ I3 = I1 ⊗ (I2 ⊗ I3)

TrI(γI,I) = idI

Tr0(c) = c
c1 ; TrI(c2) = TrI(c1 ⊗ idI ; c2)
TrI(c1) ; c2 = TrI(c1 ; c2 ⊗ idI)
TrI(TrJ(c)) = TrI⊗J(c)

Fig. 4. Equations for Connectors – based on properties of traced monoidal categories.

Typed Connector Families 299

� c1 : I1 → J
� c2 : J → J2

� c1 ; c2 : I1 → J2

� c1 : I1 → J1

� c2 : I2 → J2

� c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2

� c : I1 ⊗ J → I2 ⊗ J

� TrJ(c) : I1 → I2

� γI,J : I ⊗ J → J ⊗ I � idI : I → I

p : I → J ∈ P
� p : I → J

Fig. 5. Type rules for basic connectors.

The type rules from Fig. 5 rely on the syntactic comparison of interfaces, e.g.,
rule (sequence) allows c1 and c2 to be composed only if the output interface J
of c1 is syntactically equivalent to the input interface of c2. To support more
complex notions of interfaces we use the constraint-based type rules from Fig. 6,
which explicitly compare interfaces that must be provably equivalent instead of
syntactically comparing them. Rules (sym), (id), and (prim) remain the same, only
with the context. The typing judgments now include a context Γ | φ consisting
both of a set of typed variables Γ (that will only be used in the next section)
and a set of constraints φ that must hold for the connector to be well-typed.
The context must be always well-formed, i.e., Γ cannot have repeated variables
and φ must have at least one solution, but for simplicity we do not include these
global restrictions in the type rules.

φ � c1 : I1 → J1 φ � c2 : I2 → J2

φ, J1 = I2 � c1 ; c2 : I1 → J2

φ � c1 : I1 → J1 φ � c2 : I2 → J2

φ � c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2

φ � c : J1 → J2

φ, J1=XI⊗I, J2=XJ⊗I � TrI(c) : XI → XJ

Fig. 6. Constraint-based type rules.

2.4 Connector Behaviour

Semantics for the behaviour of connectors can be given in various ways. For this
paper we use the Tile Model [7], as it aligns closely with the algebraic presenta-
tion of connectors. We also use the Reo coordination language—more specifically
its context independent semantics [3]—as the behaviour of our primitive connec-
tors, whose visual representation has been being used.

We use the same ideas from the Tile Model proposed for Reo [3], using a
variation of the category used to describe connectors. Each connector in the Tile
Model consists of a set of tiles, one for each possible behaviour, as exemplified in
Fig. 7. Each of these tiles contains 4 objects of a double category (two categories
with the same objects) and four morphisms between pairs of objects. Visually,

300 J. Proença and D. Clarke

a tile is depicted as a square with an object in each corner and with morphisms
on the sides of this square. These morphisms go from left to right and from
top to bottom: horizontal morphisms are from one category, describing the con-
struction of a connector, and the vertical morphisms are from another category,
describing the evolution in time of the connector. More specifically, horizontal
morphisms are connectors as specified in Fig. 2, and objects are interfaces. Verti-
cal morphisms are either flow, noFlow, or a tensor product of these, representing
a step where data flows over the ports where the flow morphism is applied, and
data does not flow over the ports where noFlow is applied.

•

Fig. 7. Tiles for the behaviour of the id1 (left) and the empty fifo (right) connectors.

Tiles can be composed vertically or horizontally when their adjacent mor-
phisms match, or composed in parallel using the tensor product ⊕. Note that two
morphisms being the same also implies that their domain and codomain must be
the same (i.e., the source and destination of the arrows). The rest of this paper
will focus on the horizontal composition of connectors, i.e., on the structural
composition of connectors, and not on the behaviour of connectors—the verti-
cal composition. This focus also makes the results presented here more easily
applicable to any other coordination or component model where connectors or
components have a set of interfaces that can be composed using our calculus.

3 Parameterised Connector Calculus

Connectors are now extended in two ways: (i) by adding integer and boolean
expressions to control n-ary replication and conditional choice, and (ii) by adding
free variables that can be instantiated with either natural numbers or booleans.
These variables are also used in the connector types, previously written as I → J ,
which are now given by the grammar:

T : := I → J | ∀x : P · T

where x is a variable and P ∈ {N, B} represents a primitive type that can be
either the natural numbers (N) or booleans (B).

This section introduces the extended syntax and some of its properties,
describes motivating examples, and extends the type rules for the connector
types described above with boolean and integer parameters.

Typed Connector Families 301

c ::= . . .
| cx←α n

| c1 ⊕φ c2
| λx : P · c
| c(φ)
| c(α)

I ::= . . .
| Iα n

| I ⊕φ J

α, β
φ, ψ

Fig. 8. Extended syntax of connectors (left) and interfaces (right).

3.1 Syntax

The extended syntax of connectors and interfaces with integers and booleans is
defined in Fig. 8. We write cα instead of cx←α when x is not a free variable in c.

This paper does not formalise integer and boolean expressions with typed
variables, since the details of these expressions are not relevant. The semantics
of the n-ary parallel replication, the conditional choice, and the instantiation of
parameters1 is captured by the new Equations for Connectors in Fig. 9. These
equations include a new notation—c[v/x]—that stands for the substitution of
all variables x in c that appear freely (i.e., not bounded by a λ quantifier) by
the expression v. This paper does not formalise free variables nor substitution,
which follow the standard definitions.

cx←α = = c[0/x] ⊗ . . . ⊗ c[α−1/x]
c1 ⊕true c2 = c1

c1 ⊕φ c2 = c2 ⊕¬φ c1
(λx : P · c)(v) = c[v/x]

Iα = I ⊗ . . . ⊗ I α
I1 ⊕true I2 = I1

I1 ⊕φ I2 = I2 ⊕¬φ I1

Fig. 9. Equations for Connector – replication, choice, and instantiation.

Although this extension allows an n-ary composition in parallel of connectors
and not in sequence, n-ary sequences of connectors can also be expressed by using
traces, as exemplified in the general sequence of fifo connectors on the top-left
corner of Fig. 10. We write expressions such as n−1 instead of the interface 1n−1

for simplicity, when it is clear that these expressions represent interfaces. Observe
that this example has been mentioned in the end of Sect. 2.3, for the specific case
of 3 fifos in sequence, already defined using traces and parallel replication. The
bottom example is more complex, and is based on the sequencer connector found
in Reo-related literature [2]. This connector forces n (synchronous) streams of
data to alternate between which one has dataflow. It uses the zip and unzip
connectors to combine γ connectors (symmetries) in order to regroup sequences
of pairs into a pair of sequences and vice-versa. The top-right corner instantiates
the zip connector to illustrate the overal idea; the visual representation unfolds
the trace, used to produce a sequence of connectors (as in seq-fifo).

1 Known as β-reduction in lambda calculus.

302 J. Proença and D. Clarke

=
λn : N ·
Trn−1

(γn−1,1 ; n)

= Tr12(
γ12,6;

(
id3−x ⊗ γx

1,1

⊗ id3−x

)
x←3

) ≈

= λn : N ·
(Δn ; unzip(n)) ⊗ Trn(γn−1,1 ;

(;Δ2)⊗
(; Δ2)

n−1 ; unzip(n)) ;
idn ⊗ (zip(n) ; n)

= λn : N · Tr2n2−2n(
γ2n2−2n,2n; (idn−x ⊗ γx

1,1⊗ idn−x)x←n)
= λn : N · Tr2n2−2n(

γ2n2−2n,2n; (idx+1 ⊗ γn−x−1
1,1 ⊗ idx+1)

x←n)

unzip(n)

unzip(n)

zip(n)•

Fig. 10. A sequence of n fifo connectors (top-left), an instance of the zip connector
(top-right), and an n-ary sequencer connector (bottom).

The details about the behaviour of the sequencer connector are out of the
scope of this paper. However, observe that the visual representation is no longer
precise enough, since the dotted lines only help to provide intuition but do not
specify completely the connector. The parameterised calculus, on the other hand,
precisely describes how to build a n-ary sequencer for any n ≥ 0.

3.2 Parameterised Type Rules

The extended type rules are presented in Fig. 11, which now use the context Γ
consisting of a set of variables and their associated primitive type (B or N).

As mentioned before, the context cannot contain repeated variables, but this
restriction is omitted from the type rules. The actual verification of the type of
the boolean and integer variables is done during the type-checking of boolean
and integer expressions, which is well known and not defined in this paper.
Hence the new type rules have some gray premises, corresponding to the type
rules for booleans and integer expressions. The typing judgment Γ |φ
 e : P for
integer and boolean expressions means that Γ
 e : P (i.e., the variables in the
boolean or integer expression e have the type specified in Γ) in a context where
φ is satisfiable. The notation I[e/x] denotes the substitution of free occurrences
of x in I by the expression e, similarly to the substitution in connectors, also
not formalised here. Observe that the constraint ψ in the (choice) rule does not
influence the typing of c1 and c2. Intuitively, if ψ and ¬ψ was to be added to
the context when typing c1 and c2, respectively, then very likely one of these
branches would have false in the context, meaning it could not be typed.

We illustrate the usage of these type rules by building the derivation tree for
the seq-fifo connector (Fig. 12), where we illustrate how to calculate the type
of this connector by consecutively applying type rules. At every step of this

Typed Connector Families 303

Γ, x : P | φ � c : T x /∈ φ

Γ | φ � λx : P · c : ∀x : P · T

Γ | φ � c : ∀x : P · T

Γ | φ � c(v) : T [v/x]

Γ, x : N | φ � c : I → J
φ1 = XI = I[0/x] ⊗ . . . ⊗ I[α − 1/x]

)
φ2 = XJ = J [0/x] ⊗ . . . ⊗ J [α − 1/x]

)
Γ | φ, φ1, φ2 � cx←α : XI → XJ

Γ | φ � c1 : I1 → J1

Γ | φ � c2 : I2 → J2

Γ | φ � c1 ⊕ψ c2 : I1⊕ψI2 → J1⊕ψJ2

Fig. 11. Parameterised type rules—x /∈ φ means x does not appear in φ. Previous type
rules remain unchanged.

� λn : N · Trn−1(γn−1, ; n) : ∀n : N · XI → XJ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x /∈ ⊗ (n − 1) = n, (n − 1) ⊗ = XI ⊗ (n − 1), n = XJ ⊗ (n − 1)
)

� Trn−1(γn−1, ; n) : XI → XJ⎡
⎢⎢⎢⎣

� γn−1, ; : (n − 1) ⊗ → n[
γn−1,1 : (n − 1) ⊗ → ⊗ (n − 1)

n : n → n

Fig. 12. Derivation tree for the seq-fifo connector; contexts are represented grey.

derivation tree the context is well-formed (Γ has no repeated variables and φ is
always satisfiable). From the existence of this derivation tree one can conclude
that the seq-fifo connector is well-typed, and by further analysing the constraints
in the context it is possible to simplify the type to ∀n : N · 1 → 1.

4 Connector Families

This section introduces connector families: parameterised connectors that can (i)
be restricted by given constraints ψ, written c |ψ, and (ii) be composed with each
other—sequentially, in parallel, via the choice or replication operators, or within
traces. These restricted and composable connector families represent families in
the same sense as software families in the context of software product lines (SPL)
engineering [12]. The added constraints represent the family, which in the SPL
community are often derived from feature models.

4.1 Restricted Connectors and Types

Connectors can now be written as c |ψ, meaning that the connector c is restricted
by the constraint ψ. For example, the connector with at most 5 fifo connectors

304 J. Proença and D. Clarke

Γ | φ � ψ Γ | φ, ψ � c : T

Γ | φ � c |ψ : T |ψ
Γ | φ � c1 : I1 → J1 |ψ1 Γ | φ � c2 : I2 → J2 |ψ2

Γ | φ � c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2 |ψ1,ψ2

Fig. 13. Adding restrictions to types. Other rules remain almost the same, adapted in
a similar way to the (parallel) rule.

in parallel can be written as λn : N · (fifon |n≤5). The type of this connector is
written similarly as ∀n : N · n → n |n≤5. More formally, types now include these
constraints, following the following syntax.

T : := I → J | ∀x : P · T | T |ψ
The main type rules are presented in Fig. 13. The new rule (restriction) introduces
a constraint ψ from the connector to the context. All other rules are adapted in a
similar way to the (parallel) rule, by simply collecting the restriction constraints in
the conclusions of the rules. For readability we write ‘ψ1, ψ2’ to denote ‘ψ1 ∧ψ2’.
A connector c is now well-typed if there is a derivation tree ∅ |φ
 c : T |ψ such
that φ∧ψ is satisfiable, i.e., ψ has at least one solution that does not contradict
at least one solution of φ. This approach resembles Jones’s qualified types [9],
where types can be qualified with general predicates; in our work predicates can
include only integer and boolean variables, and are not over type variables.

The example with a parameterised sequence of fifos from Fig. 12 can be
adapted to restrict to sequences of at most 5 fifos, yielding the typing judgment:

∅ | 1 ⊗ (n − 1) = 1n , (n − 1) ⊗ 1 = XI ⊗ (n − 1) , 1n = XJ ⊗ (n − 1)

 λn : N · (Trn−1(γn−1,1 ; fifon) |n≤5) : ∀n : N · XI → XJ |n≤5

The conjunction of the above constraints is satisfiable: the possible solutions
map XI and XJ to 1, and map n to any value between 0 and 5. Hence the
connector is well-typed.

4.2 Family Composition

Parameterised connectors (Sect. 3) allow integer and boolean expressions to influ-
ence the final connector. However, the existing type rules for composing connec-
tors do not describe how to compose connectors with parameters. The type
rules in Fig. 14 add support for composing connector families: the composition
of two parameterised connectors produces a new connector parameterised by the
parameters of both connectors. We write ∀x : P to represent a (possibly empty)
sequence of nested pairs ∀x : P . Note that connectors without parameters are
specific instances of connector families; indeed, the new rules (fam-*) coincide
with their simpler counterparts whenever the set of parameters is empty.

For example, both connectors below have the same type: ∀x1 : N, x2 : N, x3 : N·
1x1 → 1x2 ⊗ 1x3 , under a context where 1x1 = 1x2 ⊗ 1x3 . The first composes 3
connector families, while the second is a family that composes 3 connectors.

Typed Connector Families 305

Γ | φ � c1 : ∀x1 : T1 · I1 → J1 |ψ1 Γ | φ � c2 : ∀x2 : T2 · I2 → J2 |ψ2 x1 ∩ x2 = ∅

Γ | φ � c1 ⊗ c2 : ∀x1 : T1, x2 : T2 · I1 ⊗ I2 → J1 ⊗ J2 |ψ1,ψ2

Γ | φ � c1 : ∀x1 : T1 · I1 → J1 |ψ1 Γ | φ � c2 : ∀x2 : T2 · I2 → J2 |ψ2 x1 ∩ x2 = ∅

Γ | φ, J1 = I2 � c1 ; c2 : ∀x1 : T1, x2 : T2 · I1 → J2 |ψ1,ψ2

Γ | φ � α : N

Γ, x : N | φ � c : ∀x′ : P · I → J |ψ
φ1 = XI = I[0/x] ⊗ . . . ⊗ I[α − 1/x]

)
φ2 = XJ = J [0/x] ⊗ . . . ⊗ J [α − 1/x]

)
Γ | φ, φ1, φ2

� cx←α : ∀x′ : P · XI → XJ |ψ

Γ | φ � ψ : B

Γ | φ � c1 : ∀x1 : T1 · I1 → J1 |ψ1

Γ | φ � c2 : ∀x2 : T2 · I2 → J2 |ψ2

Γ | φ � c1 ⊕ψ c2 : ∀x1 : T1, x2 : T2 ·
I1⊕ψI2 → J1⊕ψJ2 |ψ1,ψ2

Γ | φ � c : ∀x : P · J1 → J2 |ψ
Γ | φ, I1 = XI ⊗ I, I2 = XJ ⊗ I � TrI(c) : ∀x : P · XI → XJ |ψ

Fig. 14. Type rules for the lifted composition operators of connectors.

(λx1 : N · idx1
1) ; (λx2 : N · idx2

1) ⊗ (λx3 : N · idx3
1)

λx1 : N, x2 : N, x3 : N · (idx1
1 ; idx2

1 ⊗ idx3
1)

Observe that the modularity gain with the composition of families is achieved
by serialising all input arguments. As a consequence the tensor product ⊗ no
longer obeys the property (c1 ⊗ c2); (c3 ⊗ c4) = (c1; c3)⊗ (c2; c4) with connector
families, since the serialisation of the arguments produces different orders.

5 Solving Type Constraints

This section describes an algorithm to check if the constraints produced by the
type rules are satisfiable; if so, this algorithm also provides an assignment of
variables to values or to other variables.

Constraint-based approaches to type-checking are well-known, for example,
for the lambda calculus [11, Chap. 22], where constraints are solved using an
unification algorithm. However, the unification algorithm used for the lambda
calculus is not enough for our calculus, because interfaces can include complex
expressions that cannot be just syntactically compared. Hence our algorithm per-
forms algebraic rewritings, uses an unification algorithm (for the simpler cases),
and invokes a constraint solver (for the more complex cases).

We focus only on untyped ports, represented by 1, which mean that any data
can go through these ports. Consequently, interfaces are interpreted as integer
expressions, denoting the number of ports, as we will shortly explain.

306 J. Proença and D. Clarke

5.1 Overview

In our type-checking algorithm interfaces are interpreted as integers, by mapping
constructors of interfaces to integer operations. For example, ([I⊗J]) = ([I])+([J])
and ([Iα]) = ([I]) ∗ α, where ([I]) represents the interpretation of I as an integer.
Both the constraints that appear in the context and the constraints that appear
in the type are combined, hence producing a type ∀x : P · I → J |ψ, where ψ
represents the conjunction of these constraints.

We exemplify our approach using the zip connector (Fig. 10), restricted to
when n is at least 5. The type rules produce the type ∀n : N · x3 → x4 |ψ, where
ψ is as follows (after interpreting the interfaces as integer expressions).

x3 + ((2∗n) ∗ (n−1)) = ((2∗n) ∗ (n−1)) + (2∗n) , x4 + ((2∗n) ∗ (n−1)) = x2 ,

x1 =
∑

0≤x<n(((n−x) + (2∗x)) + (n−x)) , x2 =
∑

0≤x<n(((n−x) + (2∗x)) + (n−x)) ,

(2∗n) + ((2∗n) ∗ (n−1)) = x1 , n < 5

Using algebraic laws such as distributivity, commutativity, and associativity of
sums and multiplications, the constraints are simplified as follows.

x3 = 2n , −2n + 2n2 + x4 = x2 , x1 = 2n2 , x2 = 2n2 , 2n2 = x1 , n < 5

The unification algorithm then produces the sequence of substitutions below,
leaving the n < 5 constraint to be handled in a later phase.

[2n/x3] ◦ [x4 + 2n2 − 2n/x2] ◦ [2n2/x1] ◦ [2n/x4]

The final step is to verify that the remaining constraint (n < 5) is satisfiable
using a constraint solver, allowing us to conclude that the connector is well-
typed. Furthermore, applying the substitution above to the type produced by
the type rules gives the most general type ∀n : N · 2n → 2n |n<5. The constraint
solver provides a solution, say {n → 0}, which can be used to produce an instance
of the general type: 0 → 0.

5.2 Three-Phase Solver

This section explains in more detail the three-phase algorithm used to reason
about constraints, exemplified in the previous subsection. These phases are per-
formed in sequence, and consist of the simplification phase, the unification phase,
and the constraint-solving phase, explained below.

Simplification. This first phase prepares the constraints obtained by the type
rules to be used by the unification phase. More specifically, it rewrites the con-
straints by applying algebraic laws of sums and multiplications, building a polino-
mial and manipulating the coefficients. For example, sums like

∑
n1≤x<n2(5∗x),

where 5 ∗ x is linear on x, are rewritten into (5 ∗ n2 + 5 ∗ n1) ∗ (n2 − n1)/2; to
avoid integer divisions the denominator 2 is dropped and the other coefficients
are multiplied by 2. Equalities are rewritten to match, if possible, the pattern
x = α, which is exploited by the unification phase.

Note that the type rules, apart from (restriction), only produce equalities of
integer expressions. Our choice of rewrites included in the prototype implemen-
tation took into account the constraints generated by the type rules using a

Typed Connector Families 307

(φ) =
(φ ;)

(, φ ; ψ) =
(φ ; ψ)

(α = α′, φ ; ψ) =⎧⎪⎪⎨
⎪⎪⎩

(φ ; ψ) α ≡ α′

(φ[α′/x] ; ψ) ◦ [α′/x] α ≡ x x /∈ fv(α′)
(φ[α/x] ; ψ) ◦ [α/x] α′ ≡ x x /∈ fv(α)
(φ ; ψ, α = α′)

Fig. 15. Unification algorithm for constraints over boolean and integer variables.

range of different connectors. These rewrites are able to simplify all the exam-
ples presented in this paper that do not use inequalities, most of which involve
only linear expressions or are reduced to linear expressions, to a point where
the constraint solving phase was not needed. Furthermore, other fast off-the-
shelf technologies, such as computer algebra systems, could be used to quickly
manipulate and simplify more complex expressions.

Unification. The second phase consists of a traditional unification algo-
rithm [11, Chap. 22] adapted to our type system, which produces both an uni-
fication and a set of constraints postponed to the constraint solving phase. An
unification is formally a sequence of substitutions σ1 ◦ · · · ◦ σn, and applying a
unification to a connector or interface t consists of applying the substitutions
in sequence ((t σ1) . . .)σn. For example, unifying the constraints x = 2 + y, z =
3+x, y = w produces the sequence of substitutions [2+y/x]◦ [3+2+y/z]◦ [w/y].
Applying this unification to an interface means first substituting x by 2+ y, fol-
lowed by the substitutions of z and y. The resulting interface is guaranteed to
have no occurrences of x, y, nor z, and not to have w bound by any constraint.

The unification algorithm is described by the unify function (Fig. 15) that,
given a set of constraints φ to be solved, returns a pair with a unification and a set
of postponed constraints. The core of unify is defined in the right side of Fig. 15.
For every equality α = α′, it first checks if they are syntactically equivalent
(using ≡). It then checks if either the left or the right side is a variable that does
not occur on the other side; if so, it adds the equality to the resulting unification.
If none of these cases apply, it postpones the analysis of the constraint for the
third phase, by using the second argument of unify as an accumulator.

Constraint Solving. The last phase consists of collecting the constraints post-
poned by the unification phase and use an off-the-shelf constraint solver. This
will tell us if the constraints are satisfiable, producing a concrete example of
a substitution that satisfies the constraints. In the example of the sequence of
fifos with at most 5 fifos (Sect. 5.1), a possible solution for the constraints is
{n → 4, x1 → 1, x2 → 1}. This substitution, when applied to the type obtained
for seq-fifo, yields a concrete type instance seq-fifo : 1 → 1. In this example the
concrete type instance matches its general type (∀n : N · 1 → 1), since the value
of n does not influence the type of the connector.

Note that a wide variety of approaches for solving constraints exist. One can
use, for example, numerical methods to find solutions, or SMT solvers over some

308 J. Proença and D. Clarke

import paramConnectors.DSL._

val x ="x":I ; val n = "n":I ; val b = "b":B

//----- λx : N · (fifox |x>5) ----- //

typeOf(lam(x, (fifo^x) | (x>5)))

// returns ∀x:I . x -> x | x > 5

typeInstance(lam(x, (fifo^x) | (x>5)))

// returns c© 6 -> 6

typeSubstitution (lam(x, (fifo^x) | (x>5)))

// returns c© [x:I -> 6]

//----- seq-fifo ----- //

typeOf(lam(x, Tr(x-1 , sym(x-1 ,1) & (fifo^x))))

// returns ∀x:I . 1 -> 1 [type obtained only after

constraint solving]

typeTree(lam(x, Tr(x-1 , sym(x-1 ,1) & (fifo^x))))

// returns ∀x:I . x1 -> x2 | ((x1 + (x - 1)) == ((x - 1) +

1))

// & ((x2 + (x - 1)) == x) & ((1 + (x - 1)) == x) & (x1 >=

0) & (x2 >= 0)

//----- sequencer ----- //

val sequencer =

typeOf(sequencer)

// returns ∀n:I . n -> n

Listing 1. Calculating the type of connectors using our tools.

specific theory. The expressive power supported by the constraint solver dictates
the expressivity of the expressions α and φ used in the connector, which we
are abstracting away in this paper. The choices made in our proof-of-concept
implementation, briefly explained in the next subsection, are therefore not strict
and can be rethought if necessary.

5.3 Implementation

We developed a proof-of-concept implementation in the Scala that covers all
the examples described in this paper, which can be found online.2 Listing 1
exemplifies the usage of this library—more examples can be also found online.

This implementation includes a simple domain specific language to specify
connectors, making them similar to the syntax used throughout this paper. It
provides three main top-level functions: typeTree, typeOf, typeInstance, and
typeSubstitution. The first creates the derivation tree (if it exists); typeOf
simplifies the constraints, uses the unification algorithm, invokes the constraint
solver, and returns the most general type found; and typeInstance and type-
Substitution perform the same steps as typeOf, but the former returns the
2 https://github.com/joseproenca/parameterised-connectors.

https://github.com/joseproenca/parameterised-connectors

Typed Connector Families 309

result of the constraint solving phase (even if the type is not the most general
one) and the latter returns the substitutions obtained by the unification and
the constraint solver phases. Hence the result of typeInstance never includes
constraints. The constraint solving phase uses the Choco solver3 to search for
solutions of the constraints.

Observe that the resulting type instance and substitution of the first connec-
tor start with c©—this means that the resulting type is a concrete instance of a
type, i.e., the constraint solving phase found more than one solution for the vari-
ables of the inferred type (after unification). However, if we would ask for a type
instance of (λx : N ·fifox|x > 5)(7), for example, the result would be also its (gen-
eral) type 7 → 7, without the c©. Typing the connector (λx : N · fifox|x > 5)(2)
gives a type error, because the constraints are not satisfied.

6 Related Work

Algebras of Connectors. The usage of symmetric monoidal categories to rep-
resent Reo connectors (and others) has been introduced by Bruni et al. [5], where
they introduce an algebra of stateless connectors with an operational seman-
tics expressed using the Tile Model [7]. The authors focus on the behavioural
aspects, exploiting normalisation and axiomatisation techniques. An extension
of this work dedicated to Reo connectors [3] investigates more complex seman-
tics of Reo (with context dependent connectors) using the Tile Model. Other
extensions to connector algebras exist. For example, Sobocinski [15], and more
recently Bonchi et al. [4], present stateful extensions to model and reason about
the behaviour of Petri Nets and of Signal Flow Graphs, respectively. The latter
also describes the usage of traces (Tr) as a possible way to specify loops in their
algebra. In all these approaches, interfaces (objects of the categories) can be
either input or output ports, independently of being on the left or right side of
the connector (morphism), focusing on the behaviour of connectors instead of
how to build families of these connectors.

In our work we do not distinguish input from output ports, assuming data
always flows from left to right, and use traces to support loops and achieve the
same expressivity. As a result, we found the resulting connectors to be easier to
read and understand. For example the connector fifo has type •◦ → 0 in Bruni
et al.’s algebra, meaning that the left side has 2 ports: an input • and an output ◦
one. Composing two fifos in sequence uses extra connectors (called nodes) and
has type 0 → ◦•—for a more complete explanation see [7]. Indeed, our algebra
has stronger resemblances with lambda calculus (and with pointfree style in
functional programming [8]), facilitating the extension to families of connectors,
which is the main novelty of this work.

Analysis of Software Product Lines. In the context of software product
lines Kästner et al. [10], for example, investigated how to lift a type-checking
algorithm from programs to families of programs. They use featherweight Java
3 http://choco-solver.org.

http://choco-solver.org

310 J. Proença and D. Clarke

annotated with constraints used during product generation, and present a type-
checking approach that preserves types during this product generation. Their
focus is on keeping the constraints being solved as small as possible, unlike
previous approaches in the generative programming community (e.g., by Thaker
et al. [16]) that compile a larger global set of constraints. Many other verification
approaches for software product lines have been investigated [1,6,13,17]. Post
and Sinz [13] verify families of Linux device drivers using the CBMC bouned
model checker, and Apel et al. [1] verify more general families of C programs
using the CPAchecker symbolic checker. More recently Thüm et al. [17] presents
an approach to use the KeY theorem prover to verify a feature-oriented dialect
of Java with JML annotations. They encode such annotated families of Java
programs into new (traditional) Java programs with new JML annotations that
can be directly used by KeY to verify the family of products. Dimovski et al. [6]
take a more general view and provide a calculus for modular specification of
variability abstractions, and investigate tradeoffs between precision and time
when analysing software product lines and abstractions of them.

Our approach targets connector and component interfaces instead of typed
languages, and explicitly uses parameters that influence the connectors. Conse-
quently, feature models can contribute not only with feature selections but also
with values used to build concrete connectors. Our calculus is simpler than other
more traditional programming languages since it has no statements, no notion
of heap or memory, nor tables of fields or methods.

7 Conclusion and Future Work

This paper formalises a calculus for connector families, i.e., for connectors
(or components) with an open number of interfaces and restricted to given
constraints. A dependant type system guarantees well-connectedness of such
families, i.e., that interfaces of subconnectors can be composed as long as the
parameters obey the constraints in the type. These constraints are reducible
to nonlinear constraints on integers when considering untyped ports (only the
type 1), in which case arithmetic properties and integer constraint solvers can be
used to check the constraints under which a connector family is well-connected.

In the future we will investigate connector families where the type of the data
passing through the ports is also checked. Finally, we also plan to investigate how
to reduce the size of the constraints being solved, by using the more dedicated
contexts while building the type tree instead of collecting the constraints for a
follow-up phase, similarly to the work of Kästner et al. [10].

References

1. Apel, S., Speidel, H., Wendler, P., von Rhein, A., Beyer, D.: Detection of fea-
ture interactions using feature-aware verification. In: Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2011, pp. 372–375. IEEE Computer Society, Washington, DC (2011)

Typed Connector Families 311

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

3. Arbab, F., Bruni, R., Clarke, I., Lanese, I., Montanari, U.: Tiles for Reo. In: Corra-
dini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55. Springer,
Heidelberg (2009)

4. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
Proceedings of the 42nd Annual Symposium on Principles of Programming Lan-
guages, POPL 2015, pp. 515–526. ACM, New York (2015)

5. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1–2), 98–120 (2006)

6. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: Trading pre-
cision for speed in family-based analyses (extended version) CoRR. abs/1503.04608
(2015)

7. Gadducci, F., Montanari, U.: The tile model. In: Plotkin, G.D., Stirling, C., Tofte,
M. (eds.) Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp.
133–166. The MIT Press (2000)

8. Gibbons, J.: A pointless derivation of radix sort. J. Funct. Program. 9(3), 339–346
(1999)

9. Jones, M.P.: A theory of qualified types. Sci. Comput. Program. 22(3), 231–256
(1994)

10. Kastner, C., Apel, S.: Type-checking software product lines - a formal approach.
In: Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2008, pp. 258–267. IEEE Computer Society,
Washington, DC (2008)

11. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
12. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.

Springer, Heidelberg (2005)
13. Post, H., Sinz, C., Configuration lifting,: Verification meets software configura-

tion. In Proceedings of the 23rd International Conference on Automated Software
Engineering, ASE ’08, pp. 347–350. IEEE Computer Society, 2008. (2008)

14. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 289–355.
Springer, Berlin Heidelberg (2011)

15. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 289–355.
Springer, Heidelberg (2011)

16. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines.
In Proceedings of the 6th International Conference on Generative Programming
and Component Engineering, GPCE 2007, pp. 95–104. ACM (2007)

17. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference on
Generative Programming and Component Engineering, GPCE 2012, pp. 11–20.
ACM, New York (2012)

Formal Architecture Modeling of Sequential
C-Programs

Jonas Westman(B) and Mattias Nyberg

Royal Institute of Technology (KTH), Stockholm, Sweden
jowestm@kth.se

Abstract. To enable verification of a complex C-program, so called
compositional verification can be used where the specification for the
C-program is split into a set of specifications organized such that the
fact that the C-program satisfies its specification can be inferred from
verifying that parts of the C-program satisfy their specifications. To sup-
port the approach in practice, specifications must be organized in parallel
to a formal architecture model capturing the C-program as a hierarchical
structure of components with well-defined interfaces. Previous modeling
approaches lack support for formal architecture modeling of C-programs.
Therefore, a general and formal approach for architecture modeling of
sequential C-programs is presented, to support compositional verifica-
tion, as well as to aid design and management of such C-programs in
general.

1 Introduction

Consider that, due to required effort/cost, it is infeasible to use a direct verifi-
cation approach to ensure that a complex C-program satisfies its specification.
A solution to such an issue is to use so called compositional verification [20]
where the specification is decomposed into a set of specifications organized such
that the fact that the C-program satisfies its specification can be inferred from
verifying that parts of the C-program satisfy their specifications. In addition,
compositional verification enables the verification of open systems, i.e. systems
to which the environment is unknown [20]. Thus, as shown in scenarios in [25],
compositional verification supports parallel development and outsourcing.

While providing a means to manage the development of complex C-programs,
as well as systems in general, compositional verification requires the effort of
iteratively decomposing specifications into lower-level specifications that can be
satisfied by parts of a system. As made clear in [27], in order to support such
an effort in practice, the specifications must be decomposed in parallel to an
architecture model of a system where the model formally captures a structure of
the system as a hierarchy of components with well-defined interfaces over which
specifications are expressed.

Hence, in order to provide practical support for compositional verification
of C-programs, an architecture model of a C-program is needed. Considering

c© Springer International Publishing Switzerland 2016
C. Braga and P.C. Ölveczky (Eds.): FACS 2015, LNCS 9539, pp. 312–329, 2016.
DOI: 10.1007/978-3-319-28934-2 17

Formal Architecture Modeling of Sequential C-Programs 313

current approaches for architecture modeling, general purpose Modeling Lan-
guages (MLs) such as SysML [8] or UML [21] and Architecture Description
Languages (ADLs) such as AADL [7] are often used for modeling C-programs,
but since there exists no uniform mapping from a C-program to these languages,
the modeling is essentially ad-hoc. Models of C-programs are used in approaches
for formal verification of C-programs (see e.g. [5,10] or [9] for an overview) where
a C-program is translated into a formal model that is fed into a tool for semi
or fully automated analysis. However, these formal models do not capture a C-
program as a hierarchical structure of components, and do not, therefore, provide
support for decomposing specifications.

Thus, despite the fact that the C-language is one of the most popular pro-
gramming languages [4], there exists limited support for architecture modeling of
C-programs. The need for such support is crucial to manage the development of
embedded SoftWare (SW) that is typically implemented as C-code. Moreover,
considering automotive embedded SW, the idea of compositional verification
has been adopted by the automotive functional safety standard ISO 26262 [11].
According to ISO 26262, top-level SW safety specifications must be decomposed
all the way down to low-level safety specifications for SW units, such that the
top-level SW safety specifications are satisfied, if the low-level safety specifica-
tions are satisfied [24,26]. In addition to providing support for compositional
verification as a means to manage the complexity of C-programs, as well as
to facilitate compliance with ISO 26262, architecture models can also serve as
high-level descriptions of C-programs. Considering these aspects, as the main
contribution, the present paper introduces a general and formal approach for
architecture modeling of C-programs intended for sequential execution.

More specifically, the proposed architecture model captures built-in means
of encapsulation in the C-language, i.e. C-modules and C-functions, as well as
higher-level encapsulation of C-modules into packages and layers that are intro-
duced by engineers to structure the C-program into e.g. Operating System (OS)
services (e.g. scheduling) and communication services (Controller Area Network
(CAN), I/O, etc.). Hence, the architecture model does not only provide a foun-
dation for organizing specifications hierarchically as required by ISO 26262, but
also allows capturing intended service dependencies [18] between layers and pack-
ages in the manner in which the specifications are organized. Each level of the
program structure is modeled as a component with a well-defined interface, pro-
viding fundamental support for expressing specifications. Furthermore, explicit
support is given for expressing specifications as contracts [3,17,22,25,26].

The architecture model is obtained by refining the well-established general
compositional framework [3,22] for Cyber-Physical Systems [16], i.e. systems
composed of heterogeneous parts, e.g. SW, HW, and physical, in a context of C-
programs. The framework [3,22] relies on a general formalism where component
interfaces are modeled as sets of variables and where assertions, i.e. sets of value
sequences (runs), are used for modeling specifications and component behaviors
over the interfaces. Considering the generality of the framework [3,22], the num-
ber of ways to model a C-program using the framework is practically infinite. The
refinement reduces the abstract notion of interfaces to instead model constructs

314 J. Westman and M. Nyberg

in the C-language, e.g. C-function prototypes, allowing a unique mapping from
a C-program to an architecture model. Component behaviors and specifications
are intentionally left expressed in the abstract form of assertions to both allow
the architecture model and its specifications to be combined with models of, and
specifications for, parts in other domains, as well as to support the instantiation
of a more concrete formalism, e.g. a specific ML or ADL, suitable for a particular
use-case. To illustrate support for the latter, it is shown how assertions can be
expressed as Labeled Transition Systems (LTSs), which are used in approaches
for SW verification, e.g. [5,23].

The proposed architecture model can be compared with formal models in SW
compositional frameworks (see e.g. [1,15,23] or [20] for a survey). Out of these,
the works [1,23] are the most similar to the present paper since the interfaces
of components are clear. However, the model in [23] does not support modeling
encapsulation of local C-variables and is tailored for capturing safety control flow
properties, whereas the architecture model in the present paper is not limited to
capturing any property in particular. In contrast to [1], the architecture model
in the present paper supports modeling recursion and global variables that are
written to by different parts of a C-program. Moreover, the works [1,23] do
not provide specific guidance on how a C-program can be modeled whereas the
present paper provides a unique mapping from a C-program to an architecture
model.

The paper is organized as follows. Sections 2 and 3 present relevant con-
cepts in the C-language and originating from the framework [3,22], respectively.
Section 4 presents a refinement of [3,22] and the proposed formal approach for
architectural modeling of C-programs. Section 5 presents an industrial case-study
and Sect. 6 summarizes the paper and draws conclusions.

2 The C-Language

This section introduces concepts describing constructs in the C-language [14]
or the manner in which C-code is organized into a program. The concepts will
be frequently used in Sect. 4 that presents the proposed general approach for
architecture modeling of sequential C-programs.

A C-module is a preprocessed .c-file, i.e. a file where all preprocessing direc-
tives, e.g. #include, as well as constants and macro definitions, have been
replaced by a preprocessor. A C-variable is a variable that is declared in a
C-module. A C-function is a block of C code consisting of: a prototype [14],
i.e. a full declaration of the C-function including the return type, the number
and order of arguments, and their types; and a body, i.e. a list of declarations
and statements, enclosed in brackets. In the following, a prototype that is part
of a C-function, but not within the body of the C-function, will be referred to
as the prototype of the C-function.

For example, consider the .c-files mod.c and mMod.c, shown in Fig. 1. Pre-
processed versions mod and mMod of mod.c and mMod.c, respectively, are
C-modules. The .c-file mod.c contains a C-function step that increases the value

Formal Architecture Modeling of Sequential C-Programs 315

1 // --------------mod.c--------------

2 int c=0; // initialization of global counter ’c’

3 int add(int a, int b) //C-function returning the sum a+b

4 {int s=0; s = a+b; return s;}

5 void step(void) //C-function that increases counter by 1

6 {c=add(c ,1);}

7 // --------------mMod.c-------------

8 extern int c;

9 int main (void) // repeated step -wise counting from 0 to 10

10 {while (1){ step (); if(c==10){c=0;}}}

Fig. 1. Code of c-files mod.c. and mMod.c.

of a global C-variable c by 1 and a C-function add that returns the sum of the
values of two formal parameters a and b. The C-function main calls step repeat-
edly, resetting c to 0 when it reaches 10. The block of code consisting of the lines
3-4 in Fig. 1 is the C-function add, contained in mod where code line 3 is the pro-
totype of add and where code line 4 is the body of add.

A C-program is the resulting binary from a successful compilation of a set
of C-modules. For example, a successful compilation of mod and mMod, shown in
Fig. 1, is a C-program. The set of C-modules of which the C-program is a com-
pilation of, is typically structured into packages and layers (see e.g. AUTOSAR
model [2] or Open Systems Interconnection (OSI)-layer model [12]) that encap-
sulate certain functionalities/services as part of the SW.

For example, Fig. 2 shows a structure of a C-program executing on an Electric
Control Unit (ECU) in a vehicle. The C-program consists of an application, a
middleware, and a basic SW layer that are further structured into packages of
C-modules (each shown as a white rectangles with a folded corner) according to
e.g. vehicle features (Braking, fuel estimation, etc.), communication (Controller
Area Network (CAN), I/O, etc.), or Operating System (OS) services and HW
interaction (Scheduling, Analogue to Digital Conversion (ADC) etc.).

The structure of the C-program provides an overview and captures the over-
all dependencies of services [18] between different parts of the C-program at
different levels. For example, the application layer relies on the middleware layer
to provide values that correspond to CAN-signals or sensor readings and the
middleware layer expects that basic SW layer delivers voltage values of the pins
of the ECU. Thus, as shown in [18,26], organizing the specifications in parallel to
the SW structure, provides a straightforward way of capturing the dependencies
of services in the specifications.

A structure of a C-program will be considered to be a rooted tree where:

– the root node in the structure represents the C-program;
– each C-module that is compiled with other C-modules into the C-program, is

represented by a node in the tree;

316 J. Westman and M. Nyberg

SW

Pkg: CAN comm.

Pkg: Fuel est.

Pkg: I/O

Pkg: Scheduling Pkg: ADC

Application
Layer

Middleware
Layer

Basic SW
Layer

Pkg: Braking

Fig. 2. A structure of a C-program executing on an ECU.

– the children of each node representing a C-module, represent the C-functions
contained in the C-module and these constitute the leaf nodes in the
C-program structure; and

– the children of each non-leaf node that does not represent a C-module, rep-
resent the packages/layers/C-modules that either the C-program or a pack-
age/layer, consists of.

Given a C-program structure, the term structure entity will be used to denote
any C-function/C-module/package/layer/C-program that is represented by a
node in the C-program structure. Furthermore, for convenience, the nodes in a
C-program structure will be referred to as structure entities themselves, despite
the fact that the nodes are only representations of structure entities. Terminol-
ogy from graph theory [6] will be borrowed to describe positions of structure
entities, relative to each other.

3 General Compositional Framework

This section summarizes relevant concepts originating from the compositional
framework in [3,22] where specifications are expressed as contracts [17]. Specifi-
cally, the concepts presented in this section are based on a generalization [25,26]
of [3,22]. The generalization is chosen over the original work since the concept
of an architecture, which is an essential concept in the present paper, is more
explicit in [25,26] than in [3,22]. In contrast to the framework in [25,26] where
the number of ways to model a C-program is practically infinite, Sect. 4 will
present a unique mapping from a C-program to an architecture model based on
a refinement of [25,26].

Let Ξ denote a global set of variables in the considered context. Given a
set of variables X = {x1, . . . , xN}, let vxi

denote a value of xi. Consider a set
υX,t = (vxi

)xi∈X , called a value set, labeled with a time-point t in a given time-
window T and ordered according to a total ordering on Ξ. A run for X, denoted
ωX , is an ordered set consisting of a value set υX,t for each t ∈ T , where ωX is
ordered such that υX,t < υX,t′ , if t < t′ ∈ T .

An assertion W over X is a possibly empty set of runs for X. The projection
of W onto a set of variables X ′ ⊆ X, denoted projX′(W), is the assertion
obtained by removing the value of each variable x /∈ X ′ from each value set in

Formal Architecture Modeling of Sequential C-Programs 317

each run in W. Given a set of variables X ′′ ⊇ X, let p̂rojX′′(W) denote the
assertion obtained by extending each run in W with all possible runs for X ′′ \X,
i.e. p̂rojX′′(W) = {ωX′′ |projX({ωX′′}) ∈ W}. In the following, let WΞ denote
p̂rojΞ(W).

An element is a pair E = (X,B) consisting of: a set of variables X, called the
interface of E and where each x ∈ X is called a port variable; and an assertion B
over X, called the behavior of E. An element is an abstract concept that can be
refined to model any part in general, such as a SW, hardware, or physical part,
as well as logical and functional design parts, e.g. as a SysML block [8] or as a
Heterogeneous Rich Component (HRC) [13].

3.1 Architecture

A set of elements can be organized into a hierarchy of elements called an archi-
tecture that models the structural relations between parts and where sharing of
port variables between element interfaces models interaction points between the
parts. Formally, in accordance with [25,26], an architecture is a set of elements
organized into a rooted tree, such that:

(a) for any non-leaf node E = (X,B), with children {(Xi,Bi)}N
i=1, it holds that

B = projX(
⋂N

i=1 B
Ξ
i) and X ⊆ ⋃N

i=1 Xi; and
(b) if there is a child E

′ = (X ′,B′) and a non-descendent E
′′ = (X ′′,B′′) of

E = (X,B), such that x ∈ X ′ and x ∈ X ′′, then it holds that x ∈ X.

The environment of an element E in an architecture, is the set of elements
{Ej}M

i=1 such that Ej is either a sibling or a sibling of a proper ancestor of E.
As expressed in part (a) of the definition, the individual behaviors of the chil-

dren of an element E is combined and abstracted by restricting their intersection
to the interface of E using projection. Note that since the individual behaviors
might be over dissimilar sets of variables, prior to using the intersection opera-
tor, the behavior of each child is transformed into an assertion over the global
set of variables Ξ, using the operator p̂roj. This is also done in general when
comparing or combining assertions with set-theoretic operations and relations.
Part (b) of the definition expresses that if a variable x is part of the interface
of both a child of an element E and an element in the environment of E, then x
must also be part of the interface of E.

To get a grasp of what an architecture is, as well as to give a preview of the
architecture modeling approach that will be presented in Sect. 4, Fig. 3a shows an
architecture that models a structure as shown in Fig. 3b of a C-program count10
containing the C-modules mod.c and mMod.c shown in Fig. 1. In Fig. 3a, the
rectangles filled with gray and the boxes on their edges represent the elements
in the architecture and their port variables, respectively, and where boxes are
connected with a line or present on several edges of rectangles if they represent
a shared port variable. The fact that a rectangle representing an element E

′

is within another rectangle representing an element E, represents that E
′ is a

proper descendant of E.

318 J. Westman and M. Nyberg

fadd
a
bEadd Estep

fstep

Emod

c
fmain

c

fstep
EmMod

E
M
mod c

fstep

Ecount10

Emainc

E
M
mMod

c
fmain

(a)

count10

mod mMod

step add main

(b)

Fig. 3. In (a), an architecture is shown modeling the structure of count10 shown in (b).

The elements Ecount10, Emod, EmMod, Estep, Eadd, Emain model count10,
mod, mMod, step, add, and main, respectively. The elements are actually refined
types of elements called components that will be formally introduced in Sect. 4.1
and that have interfaces modeling constructs such as C-function prototypes and
C-variables. The behaviors of EM

mod and E
M
mMod model properties of the memory.

The specifics regarding the mapping of count10 in Fig. 3b to the architecture
shown in Fig. 3a, as well as general principles of mapping a C-program structure
to an architecture, will be presented in Sects. 4.2 and 4.3, respectively.

The next section will show how the framework [25,26] supports specifying
and structuring contracts in parallel to an architecture to allow compositional
verification. The support is given for an architecture in general, which means the
same support is provided for an architecture model of a C-program where the
model is obtained by following the mapping principles that will be presented in
Sect. 4.

3.2 Compositional Verification

A specification for an element E = (X,B) is expressed as a contract, which
is a pair (A = {A1, . . . ,AN},G) where each Ai and G are assertions called an
assumption and the guarantee, respectively. The guarantee expresses an intended
property under the responsibility of the element, given any architecture where
the environment of the element fulfills the assumptions. The element E satisfies
the contract if AΞ

1 ∩ . . . ∩ AΞ
N ∩ BΞ ⊆ GΞ .

Consider that a contract ({A1, . . . ,AN},G) is expressed for each element E

in an architecture. The intent is that there are guarantees Gi,1, . . . , Gi,Ni
of

other contracts in the environment of E for each assumption Ai, as well as
guarantees G1, . . . , GM of contracts for elements that are children of E, such
that GΞ

i,1 ∩ . . . ∩ GΞ
i,Ni

⊆ AΞ
i holds for each i and GΞ

1 ∩ . . . ∩ GΞ
M ⊆ GΞ .

In accordance with [25,26], a Directed Acyclic Graph (DAG) is assumed
to be created where the nodes in the graph represent the assumptions and the
guarantees of the contracts and where the edges represent the intended relations.
Ignoring a few technicalities that are presented in depth in [25], given that all the
intended relations represented by the edges in the DAG hold, it can be shown
that the root element satisfies its contract, if the leaf elements in the architecture
satisfy their contracts. Thus, allowing compositional verification.

Formal Architecture Modeling of Sequential C-Programs 319

4 Architecture Modeling of Sequential C-Programs

This section presents the proposed formal approach for architectural modeling of
C-programs intended for sequential execution, i.e. with a single stack. As argued
in Sect. 1, such an approach is needed to support compositional verification of
C-programs, as well as to support their design and management in general. The
architecture model is complemented with a graphical representation for practical
application.

This is done by first formally introducing a refined type of element called a
component where a component models any type of structure entity of a
C-program structure as described in Sect. 2. Similar to [23], the behavior of a
component is specified given an infinite time-window where each time-point mod-
els an execution state of the C-program from the moment when a C-function in
the C-program is either called or returned to, up until and including the moment
when the C-function either calls another C-function or it returns. The first time-
step in the time-window models an invocation of the C-function main, which is
modeled to be invoked only one time.

In accordance with Sect. 3, it is then shown how structure entities in a
C-program structure can be mapped to components in an architecture that mod-
els the structure of the C-program in a context of a HW platform consisting of a
processor, memory, and a set of I/O-devices. The root element of the architecture
is a component with a behavior that models the execution of the C-program on
HW consisting of the processor and the memory. The interface of this component
models interaction points with the I/O-devices.

4.1 Function Interfaces and Components

Prior to introducing the definition of a component, the concept of function inter-
faces, modeling C-function prototypes, is introduced. A function interface F is
an ordered set of variables (f, (x1, . . . , xN)). The variable f is a pair (fs, fr) of
variables where fr models the return value of the C-function. The variable fs

takes values from {0, 1, 2} and models the execution state of the C-function that
the function interface models the prototype for. The values 0, 1 and 2 model
that the C-function is not on the stack, that it is on the stack and executing,
and that it is on the stack but not executing, respectively.

Each variable xi models an argument where the identifiers of x1, . . . , xN are
mapped to the identifiers of the formal parameters of the C-function, e.g. a func-
tion interface (fadd, (a, b))) models the prototype of the C-function add shown in
Fig. 1. The value domain of each variable xi corresponds to the data type of its
mapped formal parameter, except that the value domain of xi also includes a value
nil that models that no data is currently passed to the C-function. Variables mod-
eling arguments that are addresses or values of structs, have value domains that
include variable identifiers and nested ordered sets of values, respectively. The def-
inition of a component now follows.

A component is an element E = (X,B) where X is partitioned into sets
XF

1 , . . . , XF
N and X ′, such that:

320 J. Westman and M. Nyberg

– each set XF
i is organized as a function interface Fi labeled as either internal

or external of E; and
– each port variable in X ′ is either labeled as internal or external of E.

The behavior B models the properties imposed by a structure entity on non-
descendent C-modules of the structure entity, as well as on HW, considering its
constraints on the C-functions modeled by F1, . . . ,FN and C-variables modeled
by port variables in X ′. Each x ∈ X ′ has a value domain that corresponds to
the data type of the C-variable that x models. If x models a C-variable that is
not persistent in memory, then the value domain of x also includes a nil value,
modeling the fact that the C-variable does not exist on the stack.

For example, consider the component Eadd = (Xadd,Badd) that is shown
in Fig. 3a and that models add shown in Fig. 1, as well as the structure of the
C-program count10 as shown in Fig. 3b in a context of a HW platform consisting
solely of a processor and memory. The entire interface Xadd is organized as a
function interface (fadd, (a, b)) modeling the prototype of add. In general, if a
subset of a component interface is organized as a function interface F modeling
the prototype of a descendent of a structure entity (including itself), then F
is labeled as internal of the component modeling the structure entity. Hence,
the function interface (fadd, (a, b)) is labeled as internal of Eadd. In this case,
since Eadd models a C-function, i.e. add, it means that (fadd, (a, b)) models the
prototype of add. The C-variable s is not modeled as a port variable since s is
not read or written to by either step, main, or an I/O-device.

4.2 Representing and Modeling a C-Program Structure

This section introduces principles for architecture modeling of a C-program
structure, as well as how it can be represented, by mapping the structure of
the C-program count10 shown in Fig. 3b to the architecture shown in Fig. 3a.

Mapping C-Functions to Leaf Components. In Fig. 3a, the boxes repre-
senting the port variables that constitute the function interface (fadd, (a, b)) as
previously introduced, are enclosed in brackets. The fact that (fadd, (a, b)) is
labeled as internal of Eadd is captured by a hollow circle and triangles attached
to an edge of each of the boxes representing fadd, as well as a and b, respectively
where the edges are within the rectangle that represents Eadd. The hat on the
hollow circle represents that fadd is not of the type void.

Regarding Estep, the subset Xadd of Xstep is organized as the function inter-
face (fadd, (a, b)) labeled as external of Estep. This models the fact that step calls
add in an execution path of the C-program. Furthermore, the set {fstep} ⊂ Xstep

is organized as a function interface (fstep, ()) modeling the prototype of step
where (fstep, ()) is labeled as internal of Estep. Since step is of type void, no hat
is placed on the hollow circle attached to the box representing fstep.

The port variable c models the counter in the code shown in Fig. 1. The
counter is read and written to by both step and main and is, therefore, a port

Formal Architecture Modeling of Sequential C-Programs 321

variable of both Estep and Emain. Since the counter is not initialized in either
step or main, the port variable c is labeled as external of both Estep and Emain.

The prototype of main is modeled as a function interface (fmain, ()). As pre-
viously indicated, (fmain, ()) is labeled as internal of Emain as shown in Fig. 3a
since (fmain, ()) models the prototype of main and Emain models main. Consid-
ering that main calls step, (fstep, ()) is labeled as external of Emain.

Specifying Behaviors and Contracts Using LTSs. As previously presented,
behaviors of components are defined in the general form of assertions, which can,
however, be specified using more concrete formalisms. Specifically, this section
shows how behaviors, and also contracts, can be specified as LTSs. Technical
details are presented in the end of this section.

In Fig. 4a, an example is shown on how the behavior of the component Estep =
(Xstep,Bstep) can be specified as an LTS such that it models the static and
dynamic properties imposed by step on the rest of the code of the C-program
and on HW. A label on a state s is a constraint specifying a set of values of the
port variables in Xstep where all values of a port variable are in the set if it is
not constrained. Each transition (s, s′) corresponds to a time-step and a label
on (s, s′) specifies a relation on the labels of the two states where a primed x′

and non-primed version x of a port variable x, refer to the new and old values
of x, respectively.

The initial state s0 models that step is not on the call stack. The transition
(s0, s1) models an invocation of step. The transition (s1, s2) models a function
call from step to add where the value of c and 1 are passed as arguments a and
b. The transition (s2, s3) models a return of add to step. The transition (s3, s0)
models a return of step where the value of c is assigned to be equal to fadd,r

modeling the return value of add.
In general, the behavior of a component modeling a C-function that is not

of type void, will constrain the port variable modeling the return value of the
C-function to only have a value that is not equal to nil for each time-point that
models an execution state where the C-function has just returned. For example,
fadd,r is not equal to nil in state s3, but will be constrained to be nil at state s2
by Badd. However, since step is of type void, the port variable fstep,r modeling
the return value of step, is nil for each run and time-step as shown in Fig. 4a.

Furthermore, the behavior of a component modeling a C-function with formal
parameters, will constrain the port variables modeling each argument to only
have a value that is not equal to nil for each time-point that models an execution
state where the C-function has just been called. For example, the port variables
a and b have values that are not nil in the state s2, but will be constrained to
be nil at state s3 by Badd.

Consider an informal requirement on step: “the value of the counter when the
C-function returns, shall be equal to a step increase of the value of the counter
at the time when the C-function is called.” As can be seen in Fig. 1, for step to
be able to guarantee this requirement, it requires functionality provided by the
C-function add, i.e. that “ add returns the sum of its arguments to its caller”.

322 J. Westman and M. Nyberg

start

s0 :
fstep,s = 0∧
fstep,r = nil

s1 :
fstep,s = 1∧
fstep,r = nil

s2 :
fstep,s = 2∧
fadd,s = 1∧
fstep,r = nil

s3 :
fstep,s = 1∧
fadd,s = 0∧
fstep,r = nil

a′ = c∧
b′ = 1∧
c′ = c

c′ = fadd,r

(a)

fstep,s ≥ 1

fstep,s = 0

start c′ = xc + 1x′
c = c′

x′
c = xc

(b)

start

s0 :
fstep,s = 0

s1 :
fstep,s = 1

s2 :
fstep,s = 2∧
fadd,s = 1

s3 :
fstep,s = 1∧
fadd,s = 0

f ′
add,r = a + b

∧ c′ = c

(c)

start
c = 0

fstep,s = 0 fstep,s = 1
fstep,s = 2∧
fadd,s = 1

fstep,s = 1∧
fadd,s = 0

c′ = c

(d)

Fig. 4. In (a), the behavior of Estep is shown, specified as an LTS. In (b) and (c), the
guarantee Gstep and the intersection of the assumptions in Astep of a contract for Estep

are shown, respectively. In (d), the behavior of EM
mod is shown, specified as an LTS

Considering the interface of Estep, a contract (Astep,Gstep) that expresses the
informal requirement and the required functionality can be formulated as shown
in Fig. 4c and 4b. The guarantee Gstep is equal to the projection of the assertion
specified by the LTS in Fig. 4b onto {fstep,s, c}. Hence, the variable xc is simply
used as a support variable in order to specify that the value of c directly after
a time-step where the value of fstep,s switches from 1 to 0, shall be equal to a
step increase of the value of c at the time-point after the latest time-step where
the value of fstep,s switched from 0 to 1.

In Fig. 4c, the intersection of the assumptions in Astep is shown where the
intersection is specified as an LTS. The LTS captures the functionality that step
requires from add by having the label on the transition (s2, s3) modeling a return

Formal Architecture Modeling of Sequential C-Programs 323

of add to step, constrain the port variable fadd,r to be equal to the sum of the
old values of the port variables a and b. Additionally, the LTS in Fig. 4c specifies
that the port variable c is to remain constant in states that model step being
on the stack, but when step is not executing.

Consider the constraint specified in Fig. 4c to hold the counter constant if
step is on the stack but not executing, as well as the fact that the counter is
initialized to 0 as shown in Fig. 1. Notably, as can be seen in Fig. 4a, neither of
these constraints are captured in the behavior of Estep. The reason why the latter
constraint is not captured is because c is initialized in mod rather than in step.
The former constraint is not captured since it is a property of the memory, rather
than of step. Such constraints are instead captured separately in the behaviors
of the elements E

M
mod and E

M
mMod in Fig. 3.

As an example of how a behavior modeling properties of the memory can
be captured, consider the element E

M
mod = (XM

mod,B
M
mod). The interface XM

mod =
{fadd, fstep, c}, i.e. XM

mod contains the port variable f of each function interface
(f, (x1, . . . , xM)) labeled as internal of siblings of E

M
step, as well as each port

variable labeled as external or internal of siblings of EM
step. The behavior BM

mod is
shown in Fig. 4d and constrains the port variable c to be constant in states that
model when step is on the stack but not executing. The behavior also models
the initialization of the counter.

The elements modeling constraints on the memory are necessary in order for
the behavior of the component modeling the C-program to capture the execution
of the C-program on HW consisting of a processor and memory. Hence, if only
the structure of a C-program is of interest, elements such as E

M
mod and E

M
mMod

can be removed from a representation such as the one shown in Fig. 3.
In the examples shown in Fig. 4, the exact mapping between assertions and

LTSs was not explained in detail. The details of such a mapping follow. Each
assertion is specified as an LTS (S, I ⊆ S,R,LS , LR) where each state s ∈ S has
a label LS(s) equal to a set of value sets and each transition (s, s′) ∈ R ⊆ S × S
has a label LR((s, s′)) ⊆ LS(s)×LS(s′). For a given set of variables X and time-
window T = (t0, t1, t2, . . .), the assertion specified as an LTS, consists of each
run (υX,t0 , υX,t1 , υX,t2 , . . . ,) where there exists a sequence (s0 ∈ I, s1, s2, . . .)
such that for each i ≥ 0, it holds that (si, si+1) ∈ R and (υX,ti , υX,ti+1) ∈
LR((si, si+1)). Note that instead of declaring each value set in a label LS(s), the
label can be specified by a constraint. Similarly, instead of declaring the set of
pairs of value sets in a label LR((s, s′)), the label can be specified by a constraint
that restricts the set LS(s) × LS(s′) to the set LR((s, s′)).

Mapping Non-leaf Structure Entities to Components. Consider the com-
ponents Emod = (Xmod,Bmod) and EmMod = (XmMod,BmMod) modeling the
respective C-modules mod and mMod shown in Fig. 3. The C-function add is nei-
ther the main C-function nor an Interrupt Service Routine (ISR), nor is it called
by any non-descendent C-function of mod. Therefore, the port variables fadd, a,
and b are not part of Xmod. Since step is both a descendent C-function of mod
and called by the non-descendent and descendent C-function main of mod and

324 J. Westman and M. Nyberg

mMod, respectively, {fstep} is organized as the function interface (fstep, ()) labeled
as internal and external of Emod and EmMod, respectively. Due to the fact that
main is the main C-function of the C-program and a descendent of mMod, the
function interface (fmain, ()) is labeled as internal of EmMod. The C-function
main is not called by a descendent C-function of mod, and, hence fmain /∈ Xmod.

Furthermore, since the counter is read and written to by both the non-
descendent and descendent C-functions main and step of mod, respectively, the
port variable c is part of both Xmod and XmMod. Considering that the counter
is initialized in mod, the port variable c is labeled as internal and external of
Emod and EmMod, respectively. The fact that c is labeled as internal of Emod is
represented by attaching a hollow diamond to an edge of the box representing c
where the edge is within the rectangle representing Emod.

Regarding the component Ecount10 = (Xcount10,Bcount10) modeling the
C-program count10, since step is neither the main C-function nor an ISR, fstep

is not part of Xcount10. Due to same reasons, the port variable fmain is, however,
part of Xcount10 and is organized as the function interface (fmain, ()) labeled as
internal of Ecount10. The counter is not read or written to by an I/O-device and,
hence, c is not part of Xcount10.

4.3 Modeling C-Program Structures as Architectures

Consider a C-program structure in a context of a HW platform. This section
generalizes principles introduced in Sect. 4.2 into the general approach of how
structure entities can be mapped to components in an architecture modeling the
C-program structure.

The leaf components in the architecture, model the C-functions while the root
component models the C-program itself. The set {Ei = (Xi,Bi)}N

i=1 of children of
a component E = (X,B) that models a structure entity, consists of components
modeling each child of the structure entity, as well as a leaf element modeling
properties of the memory if there exists a port variable x of a component Ei

where x models a C-variable and is either: not part of each interface Xi; or
not part of the interface X and E is not the root component. Considering the
architecture shown in Fig. 3, that is why the root component Ecount10 does not
have a child that models properties of the memory.

The interface X of the component E is partitioned into sets XF
1 , . . . , XF

M and
X ′ where XF

1 , . . . , XF
M are organized into function interfaces F1, . . . ,FM .

C-Variables. Port variables in X ′ model each C-variable that is neither a pointer
nor compound data structure, i.e. arrays and structs, and where the C-variable is
either read or written to (including initialization), in an execution path of the
C-program both by a descendent C-function of the structure entity and by either a
non-descendent C-function of the structure entity or an I/O-device. Note that this
assumes that the C-program does not read or write to addresses that are not asso-
ciated with a C-variable. A trivial extension to this case is to also model addresses
as port variables.

Formal Architecture Modeling of Sequential C-Programs 325

If a port variable x ∈ X ′ models a C-variable that is initialized in either a
descendent C-function or a C-module of the structure entity, then x is labeled
as internal of E. Otherwise, the port variable x is labeled as external of E. In
the architecture, two different port variables do not model the same C-variable.

C-Functions, Interrupts, and Recursion. Function interfaces F1, . . . ,FM

model:

– the prototype of each descendent C-function of the structure entity where
either E models the C-function, the C-function is an ISR or the C-function
main of the C-program, or a non-descendent C-function of the structure entity
calls the C-function in an execution path of the C-program; and

– the prototype of each non-descendent C-function of the structure entity where
a descendent C-function of the structure entity calls the C-function in an
execution path of the C-program.

If Fj models the prototype of a descendent C-function of the structure entity,
then Fj is labeled as internal of the component. Otherwise, Fj is labeled as
external of the component.

Interrupts that are predicted to preempt certain C-functions and where the
triggered ISRs do not call other C-functions, can be modeled by a port variable
fISR,s modeling the execution state of an ISR, first switching from 0 to 1 and
then back to 0, simultaneously as a port variable fs modeling the execution state
of the interrupted C-function, switching from 1 to 2 and then back to 1. Since the
interrupt is predicted, the behavior of the component modeling the C-function
can be specified such that fs switches simultaneously as fISR,s despite fISR,s

not necessarily being part of the interface of the component.
To capture other forms of interrupts where ISRs also calls other C-functions,

each port variable fISR,s modeling the execution state of an ISR can be included
in the interface of each leaf component in the architecture. Hence, the behavior
of each component modeling a C-function foo, can be specified such that in any
time-point modeling an execution of foo, if a port variable fISR,s switches from
0 to 1 in the next time-step, then the port variable ffoo,s modeling the execution
state of foo switches from 1 to 2 in the same time-step. The variable ffoo,s can
then be specified to be equal to 2 until fISR,s switches back to 0.

To model a C-program where indirect recursion is used, i.e. when a C-function
calls another C-function on the stack, two separate components need to model the
same C-function. If indirect recursion is not used, only one component is needed
to model a C-function. This includes direct recursion, i.e. when a C-function calls
itself, which can be captured in the behavior of a single component.

Compound Data Structures. If a component has port variables that model
each C-variable in a compound data structure, then these port variables are
organized into an ordered set, which can be represented by enclosing these port
variables in brackets similar to how function interfaces are represented. Hier-
archies of compound data structures are organized as nested ordered sets and
represented accordingly.

326 J. Westman and M. Nyberg

Pointers. As previously discussed, C-variables that are pointers, are not mod-
eled as port variables of a component. Rather, if there exists an execution path of
the C-program where the C-function either reads or writes to a C-variable indi-
rectly through the use of a pointer, then the C-variable to which the pointer ulti-
mately points to, is modeled as a port variable of the component. This also holds
true for C-function pointers, i.e. if a C-function foo calls another C-function
foo’ indirectly through a function pointer, then a function interface modeling a
prototype of foo’, will be labeled as external of a component modeling foo.

Properties of Memory. If an element (XM ,BM), modeling properties of the
memory, has a parent that models a C-module, then XM contains each port
variable f of each function interface (f, (x1, . . . , xM)) labeled as internal of its
siblings, as well as each variable x labeled as external or internal of its sib-
lings. The behavior BM constrains each port variable x to be constant in states
modeling the execution of descendent C-functions of the C-module where these
C-functions never write or read to the C-variable modeled by x. The behavior
BM also models the initialization constraints on C-variables that are initialized
in the C-module. An example of such an element was previously shown in Fig. 4d.

In the case where the parent of (XM ,BM) is not a C-module, the interface
XM contains each port variable f of each function interface (f, (x1, . . . , xM))
labeled as internal of its siblings, as well as each port variable x labeled as
external or internal of its siblings where x is either not in the interface of the
parent component of the element or not in the interface of each sibling component
of the element. In case of the former, the behavior B constrains x to be constant
during states where none of the descendent C-functions of the structure entity
modeled by the parent component of the element, are executing. In case of the
latter, the behavior B constrains x to be constant during states modeling the
execution of non-descendent C-functions of structure entities modeled by each
sibling component of the element where the interface of the sibling component
does not contain x.

5 Industrial Case Study - Reading the Fuel Sensor

This section presents a case study where a subset of the structure of a real
industrial C-program is modeled as an architecture as shown in Fig. 5 using
the concepts described in Sect. 4. The modeled subset is part of a C-program
executing on an ECU in a Scania truck and is the part of the C-program that
manages the transformation from the digitally converted voltage value at a pin
connected to a fuel sensor, to a C-variable storing an estimated fuel level value.

To save space, components and port variables will in the following be referred
to as structure entities and C-variables/arguments. Elements modeling proper-
ties of the memory are omitted from the representation shown in Fig. 5.

The C-program ESW contains an application layer EAPPL, a middleware
layer EMIDD, a basic SW layer EBIOS , and a C-module EsigDB that serves as
a communication interface between EAPPL and EMIDD. The main C-function

Formal Architecture Modeling of Sequential C-Programs 327

Eexec

Emain

ffuel10
ESW

Eread sigDB sigDB
sig′ valfwrite

Efuel10

Ewrite

ffuel10
fanin10

fmain

fanin10

fread sig

Eanin10

fgetIO pin
EgetIO

Eadcc EBIOS

EMIDDEanin

EsigDB

EAPPLEfuel

adcRfifo

Fig. 5. An architecture modeling a subset of a structure of a C-program in an ECU.

Emain in the C-module Eexec calls the C-functions Eanin10 and Efuel10 in that
order. The C-function Eanin10 in the C-module Eanin calls the C-function EgetIO

in the C-module Eadcc, passing an integer as an argument pin that maps to a
specific pin on the ECU. If pin maps to the pin connected to the fuel sensor,
then EgetIO will return the average of the values of the C-variables in the array
adcRfifo. Each C-variable in the array maps to a specific part of the registry of
an ADC where that part of the registry stores a sampled voltage value of the pin
connected to the fuel sensor. The initialization and termination of the sampling,
which is done by deactivating and activating Direct Memory Access Channels
(DMACs), is not considered due to space restrictions.

After EgetIO returns, the C-function Eanin10 proceeds to call the C-function
Ewrite with the arguments sig′ and val where sig′ is an enum value corresponding
to an ID of a general I/O and where val is the corresponding value of the
I/O. If sig′ = fuelSensorLevel, then val corresponds to an estimation of the
fuel level acquired by transforming the averaged voltage value of the pin of the
fuel sensor. The estimated fuel level is stored in a specific position in an array
sigDB where the position maps to the ID fuelSensorLevel. The C-function
Efuel10 in the C-module Efuel calls the C-function Eread with the argument
sig = fuelSensorLevel. The C-function fetches the estimated fuel level from
the array and returns the value to Efuel10. The C-function fuel10 relies on the
estimated fuel level to calculate the fuel volume in the tank.

6 Conclusion

Compositional verification provides a means to manage the development of com-
plex C-programs, but in order to support compositional verification in practice,
an architecture model of a C-program is needed. Such support is paramount
for the embedded domain, in general, and the automotive domain, in partic-
ular, since compositional verification is an essential concept in the automotive
standard ISO 26262. Due to the lack of such much needed support in current

328 J. Westman and M. Nyberg

approaches [1,5,7–10,21,23], the present paper has introduced a general and
formal approach for architecture modeling of sequential C-programs.

The presented approach was shown to provide a foundation for decomposing
specifications in parallel to a hierarchy of components that model a C-program
structure as introduced by engineers. The well-defined component interfaces were
shown to provide support for expressing specifications as contracts. Although
further practical validation is needed, the presented case study indicates that
the approach is fully capable of modeling C-programs in an industrial context.
Thus, providing practical support for compositional verification.

In addition to providing practical support for compositional verification, an
architecture model can serve as a high-level description of a C-program, allow-
ing developers to understand, assess, and manage the C-program without hav-
ing to understand the intricate complexity of the code implementation. Given a
C-program, the presented approach provides a foundation for automatic genera-
tion of an architecture model from code using e.g. architecture recovery [19], ensur-
ing a high-level description that is consistentwith the code.The architecturemodel
can then also be used to verify the consistency of manually implemented models,
e.g. UML and SysML models, if they are mapped to the architecture model.

References

1. Alur, R., Grosu, R.: Modular refinement of hierarchic reactive machines. ACM
Trans. Program. Lang. Syst. 26(2), 339–369 (2004)

2. AUTOSAR: AUTomotive Open System ARchitecture. http://www.autosar.org/
3. Ferrari, A., Sofronis, C., Benveniste, A., Mangeruca, L., Passerone, Roberto,

Caillaud, Benôıt: Multiple viewpoint contract-based specification and design. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007.
LNCS, vol. 5382, pp. 200–225. Springer, Heidelberg (2008)

4. Cass, S.: Top 10 programming languages, July 2014. http://spectrum.ieee.org/
computing/software/top-10-programming-languages

5. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: Proceedings of the 25th International Conference on Software
Engineering, ICSE 2003, pp. 385–395, IEEE Computer Society, Washington (2003).
http://dl.acm.org/citation.cfm?id=776816.776863

6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2010)

7. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language, 1st edn. Addison-Wesley
Professional, Boston (2012)

8. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: Systems
Modeling Language. Morgan Kaufmann Inc., San Francisco (2008)

9. Greenaway, D.: Automated proof-producing abstraction of C code. Ph.D. thesis,
University of New South Wales (2014)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 235–239. Springer, Heidelberg (2003)

11. ISO 26262: Road vehicles-Functional safety (2011)

http://www.autosar.org/
http://spectrum.ieee.org/computing/software/top-10-programming-languages
http://spectrum.ieee.org/computing/software/top-10-programming-languages
http://dl.acm.org/citation.cfm?id=776816.776863

Formal Architecture Modeling of Sequential C-Programs 329

12. ISO 7498–1: Information technology - OSI - Basic Reference Model (1994)
13. Josko, B., Ma, Q., Metzner, A.: Designing embedded systems using heterogeneous

rich components. In: Proceedings of the INCOSE International Symposium (2008)
14. Kernighan, B.W.: The C Programming Language, 2nd edn. Prentice Hall Profes-

sional Technical Reference, New York (1988)
15. Laster, K., Grumberg, O.: Modular model checking of software. In: Steffen, B. (ed.)

TACAS 1998. LNCS, vol. 1384, pp. 20–35. Springer, Heidelberg (1998)
16. Lee, E.: Cyber physical systems: design challenges. In: 11th IEEE International

Symposium on Object Oriented Real-Time Distributed Computing (ISORC),
pp. 363–369, May 2008

17. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992).
http://dx.doi.org/10.1109/2.161279

18. Nyberg, M.: Failure propagation modeling for safety analysis using causal bayesian
networks. In: 2013 Conference on Control and Fault-Tolerant Systems (SysTol), pp.
91–97, October 2013

19. Rasool, G., Asif, N.: Software architecture recovery. Int. J. Comput. Inf. Syst. Sci.
Eng. 1(3), 206 (2007)

20. de Roever, W.-P.: The need for compositional proof systems: a survey. In: Roever,
W-Pl, Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, p. 1.
Springer, Heidelberg (1998)

21. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual. Pearson Higher Education, London (2004)

22. Dr, Taming, Sangiovanni-Vincentell, A.L., Damm, W., Passerone, R.: Taming Dr.
Franken: contract-based design for cyber-physical systems. Eur. J. Control 18(3),
217–238 (2012)

23. Soleimanifard, S., Gurov, D.: Algorithmic verification of procedural programs
in the presence of code variability. Sci. Comput. Program (2015). http://www.
sciencedirect.com/science/article/pii/S0167642315002592

24. Westman, J., Nyberg, M.: Extending contract theory with safety integrity levels.
In: 2015 IEEE 16th International Symposium on HASE, pp. 85–92, January 2015

25. Westman, J., Nyberg, M.: Environment-centric contracts for design of cyber-
physical systems. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, Emilio
(eds.) MODELS 2014. LNCS, vol. 8767, pp. 218–234. Springer, Heidelberg (2014)

26. Westman, J., Nyberg, M.: Contracts for specifying and structuring requirements
on cyber-physical systems. In: Rawat, D.B., Rodriques, J., Stojmenovic, I. (eds.)
Cyber Physical Systems: From Theory to Practice. Taylor & Francis (2015)

27. Whalen, M.W., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.P.,
Rayadurgam, S.: Your what is my how: iteration and hierarchy in system design.
IEEE Softw. 30(2), 54–60 (2013)

http://dx.doi.org/10.1109/2.161279
http://www.sciencedirect.com/science/article/pii/S0167642315002592
http://www.sciencedirect.com/science/article/pii/S0167642315002592

Author Index

Abdellatif, Takoua 105
Abid, Rim 48
Aceto, Luca 66
Arbab, Farhad 217

Baranov, Eduard 256
Bartoletti, Massimo 86
Belzner, Lenz 1
Ben Said, Najah 105
Bensalem, Saddek 105
Bessai, Jan 123
Bliudze, Simon 256
Bošnački, Dragan 141
Bozga, Marius 105
Brand, Mark van den 141

Cimoli, Tiziana 86
Clarke, Dave 294
Corradini, Flavio 161

De Palma, Noel 48
De Ruvo, Giuseppe 181
Déharbe, David 31
Düdder, Boris 123

Gabriels, Joost 141
Giachino, Elena 199
Grumberg, Orna 275
Gueye, Soguy Mak-Kare 48

Heineman, George T. 123
Hennicker, Rolf 1

Jacobs, Bart 141
Johnsen, Einar Broch 199
Jongmans, Sung-Shik T.Q. 217

Kappé, Tobias 217
Khamespanah, Ehsan 237
Khosravi, Ramtin 237
Kuiper, Ruurd 141

Laneve, Cosimo 199
Larsen, Kim G. 66
Lettieri, Giuseppe 181

Martino, Domenico 181
Mavridou, Anastasia 256
Meller, Yael 275
Merz, Stephan 31
Morichetta, Andrea 66
Murgia, Maurizio 86

Nyberg, Mattias 312

Podda, Alessandro Sebastian 86
Polini, Andrea 161
Pompianu, Livio 86
Proença, José 294
Pun, Ka I. 199

Re, Barbara 161
Rehof, Jakob 123
Roede, Sybren 141

Salaün, Gwen 48
Santone, Antonella 181
Sifakis, Joseph 256
Sirjani, Marjan 237

Tiezzi, Francesco 66, 161

Vaglini, Gigliola 181
Viswanathan, Mahesh 237

Westman, Jonas 312
Wijs, Anton 141
Wirsing, Martin 1

Yorav, Karen 275

Zhang, Dan 141

	Preface
	Organization
	Contents
	OnPlan: A Framework for Simulation-Based Online Planning
	1 Introduction
	2 A Framework for Simulation-Based Online Planning
	2.1 Online Planning
	2.2 Simulation-Based Online Planning

	3 Framework Instantiation in Discrete Domains
	3.1 Monte Carlo Tree Search
	3.2 UCT
	3.3 Framework Instantiation
	3.4 Empirical Results

	4 Framework Instantiation in Continuous Domains
	4.1 Cross Entropy Optimization
	4.2 Online Planning with Cross Entropy Optimization
	4.3 Framework Instantiation
	4.4 Empirical Results

	5 Conclusion and Further Work
	References

	Software Component Design with the B Method --- A Formalization in Isabelle/HOL
	1 Introduction
	2 Background
	2.1 The B Method
	2.2 Formalization in Isabelle/HOL

	3 Formalizing Transition Systems
	3.1 Labeled Transition Systems and Their Runs
	3.2 Simulations Between Labeled Transition Systems
	3.3 A Notion of Simulation Tailored for the B Method

	4 Formalizing Development in B
	4.1 Specification
	4.2 Refinement
	4.3 B Development

	5 Component Composition in B
	6 Conclusion
	References

	Asynchronous Coordination of Stateful Autonomic Managers in the Cloud
	1 Introduction
	2 Models
	2.1 Autonomic Manager
	2.2 Coordination Requirements
	2.3 Running Example

	3 Synthesis
	3.1 Process Algebra Encoding
	3.2 Compilation and Verification
	3.3 Running Example and Experiments

	4 Code Generation and Deployment
	4.1 Java Code Generation Techniques
	4.2 Deployment
	4.3 Experiments on Our Running Example

	5 Related Work
	6 Conclusion
	References

	A Cost/Reward Method for Optimal Infinite Scheduling in Mobile Cloud Computing
	1 Introduction
	2 The MobiCa Language
	2.1 Language Syntax
	2.2 TA-Based Semantics

	3 Synthesis of Optimal Infinite Schedulers for MCC
	3.1 Cost/Reward Horizon Method
	3.2 The Horizon Method at Work

	4 Evaluating Performance of a Custom Control Strategy
	4.1 A Custom Scheduler
	4.2 Evaluation via SMC

	5 Experiments with a Navigator Case Study
	6 Concluding Remarks
	References

	A Contract-Oriented Middleware
	1 Introduction
	2 The Middleware at a Glance
	3 Specifying Contract-Oriented Services
	4 System Design
	4.1 Specifying Contracts
	4.2 Advertising Contracts
	4.3 Accepting Contracts
	4.4 Service Interaction and Runtime Monitoring

	5 System Architecture
	6 Validation
	6.1 Scalability
	6.2 A Distributed Experiment: RSA Cracking
	6.3 Case Study: A Contract-Oriented Reservation Marketplace

	7 Related Work
	8 Conclusions
	References

	A Robust Framework for Securing Composed Web Services
	1 Introduction
	2 Component-Based Model
	2.1 Preliminaries
	2.2 Operational Model
	2.3 Security Model

	3 Configuration Synthesis
	4 Application to Web Services
	4.1 The BPEL Composition
	4.2 Decentralized Label Model
	4.3 Implementation

	5 Use-Case: Smart Grid Application
	6 Related Work
	7 Conclusion and Future Work
	References

	Combinatory Synthesis of Classes Using Feature Grammars
	1 Introduction
	2 Feature Models
	2.1 Grammars and GPL Example

	3 Intersection Types
	4 Feature Grammar Translation
	4.1 Translation Result

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Towards Modular Verification of Threaded Concurrent Executable Code Generated from DSL Models
	1 Introduction
	2 SLCO and Its Transformation to Java
	3 Separation Logic
	4 Modular Specification Schema
	5 Specifying and Verifying the SLCO Channel
	6 Related Work
	7 Conclusions
	References

	An Operational Semantics of BPMN Collaboration
	1 Introduction
	2 Background Notions on BPMN 2.0
	3 BNF Syntax
	4 Operational Semantics
	5 Related Work
	6 Concluding Remarks
	References

	k-Bisimulation: A Bisimulation for Measuring the Dissimilarity Between Processes
	1 Introduction and Motivation
	2 Preliminaries
	3 The k-Bisimulation
	4 Computing k-Bisimulation
	4.1 Preliminary Step: Sort Based Step
	4.2 Counterexample Based Heuristics
	4.3 Different Behaviour Based Heuristics
	4.4 Jaccard Based Heuristics
	4.5 Action Occurrence Based Heuristics
	4.6 How the Heuristics Are Applied

	5 Application Fields of the k-Bisimulation
	5.1 Clone Detection
	5.2 Process Mining
	5.3 Business-IT Alignment
	5.4 Wiki Design
	5.5 Malware Analysis

	6 Experimental Results
	7 Conclusion and Related Work
	References

	Time Complexity of Concurrent Programs
	1 Introduction
	2 The Language tml
	3 Issues in Computing the Cost of tml Programs
	4 A Behavioural Type System for tml
	5 The Time Analysis
	6 Properties
	7 Related Work
	8 Conclusions
	References

	Composing Constraint Automata, State-by-State
	1 Introduction
	2 Preliminaries
	2.1 Reo
	2.2 Constraint Automata

	3 Problem
	4 Solution
	4.1 State-Based Decomposition/Recomposition
	4.2 Algorithm

	5 Implementation, Evaluation, and Discussion
	6 Related Work
	7 Conclusion
	References

	Floating Time Transition System: More Efficient Analysis of Timed Actors
	1 Introduction
	2 Background
	2.1 Timed Rebeca
	2.2 Semantics of Timed Rebeca
	2.3 Semantics of Timed Rebeca in Timed Transition System
	2.4 Semantics of Timed Rebeca in Floating Timed Transition System

	3 An Action-Based Weak Bisimulation Between TTS and FTTS
	4 Experimental Results
	5 Related Work
	6 Conclusion
	A Proof of Theorem 1
	References

	Configuration Logics: Modelling Architecture Styles
	1 Introduction
	2 Propositional Interaction Logic
	3 Propositional Configuration Logic
	3.1 Syntax and Semantics
	3.2 Conservative Extension of PIL Operators
	3.3 Properties of PCL Operators
	3.4 Deciding Equivalence and Satisfaction

	4 Architecture Style Specification Methodology
	5 First and Second Order Extensions of PCL
	5.1 First-Order Configuration Logic
	5.2 Second-Order Configuration Logic

	6 Implementation of the Decision Procedure
	7 Related Work
	8 Conclusion
	References

	Learning-Based Compositional Model Checking of Behavioral UML Systems
	1 Introduction
	2 Preliminaries
	2.1 UML Behavioral Systems
	2.2 Assume Guarantee Reasoning and Compositional Verification
	2.3 The L Algorithm

	3 Representing Executions as Words
	4 AG for State Machines
	4.1 A Framework for Employing Rule AG-UML and Its Correctness
	4.2 Membership Queries
	4.3 Conjecture Queries
	4.4 Correctness
	4.5 Performance Analysis

	5 Conclusion
	References

	Typed Connector Families
	1 Introduction
	2 Basic Connector Calculus
	2.1 Overview
	2.2 Syntax
	2.3 Type Rules
	2.4 Connector Behaviour

	3 Parameterised Connector Calculus
	3.1 Syntax
	3.2 Parameterised Type Rules

	4 Connector Families
	4.1 Restricted Connectors and Types
	4.2 Family Composition

	5 Solving Type Constraints
	5.1 Overview
	5.2 Three-Phase Solver
	5.3 Implementation

	6 Related Work
	7 Conclusion and Future Work
	References

	Formal Architecture Modeling of Sequential C-Programs
	1 Introduction
	2 The C-Language
	3 General Compositional Framework
	3.1 Architecture
	3.2 Compositional Verification

	4 Architecture Modeling of Sequential C-Programs
	4.1 Function Interfaces and Components
	4.2 Representing and Modeling a C-Program Structure
	4.3 Modeling C-Program Structures as Architectures

	5 Industrial Case Study - Reading the Fuel Sensor
	6 Conclusion
	References

	Author Index

