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Foreword

Computer science has a rugged tradition of appropriating concepts and mechanisms
from classical mathematics, concepts once proudly considered pure and useless,
and adapting those concepts to describe and analyze phenomena that once could not
have been imagined. Today, the most abstract discoveries of number theory form
the foundations of modern cryptography and finance, graph theory lies at the heart
of communication networks, social networks, and search structures, and advanced
probability has myriad of everyday applications.

This book, too, presents novel adaptations and applications of basic concepts
from combinatorial and algebraic topology: in this case, paths and their homotopies.
The intuition is appealing: one can visualize an execution of a concurrent,
two-process program as a path winding its way through a planar region, where
progress by one process nudges the arrow along the x-axis, and progress by the
other along the y-axis. Certain regions of the plane are forbidden: they correspond
to zones of mutual exclusion. Two executions are considered equivalent if one can
be continuously deformed to the other without crossing a forbidden zone, and the
different ways in which paths can snake around these zones define the different
ways synchronization mechanisms can shape computation.

These paths, like time itself, cannot run backwards, so the classic theory of paths
and their homotopies must be adapted to incorporate a relentless sense of direction,
yielding a new theory of directed topology. This theory leads to novel formulations
of program semantics, new algorithmic techniques, and a rich description in the
language of category theory, itself another area with few prior concrete applica-
tions. In the tradition of theoretical computer science, this book takes classic
mathematical ideas, shapes them to new and unforeseen applications, and from
these ingredients produces a new mathematics.

Providence Maurice Herlihy
June 2015
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Preface

Fascinating links between the semantics of concurrent programs and algebraic
topology have been discovered and developed since the 1990s, motivated by the
hope that each field could enrich the other, by providing new tools and applications.
Soon enough, it turned out that this interaction had to evolve into something richer
than a simple dictionary: topological spaces were not exactly the right notion
(they must be refined in order to incorporate the direction of time). The algorithms
for verifying concurrent programs resulting from topological semantics were not
easy to invent while achieving reasonable complexity. Today, we think that enough
material has been understood to justify a book on the topic. We felt the urge for a
coherent, exhaustive, and yet introductory presentation of the subject, so that it can
gain a larger audience and constitute a panorama of the current knowledge upon
which future developments will be built.

The topic makes it natural to address both computer scientists and mathemati-
cians. We have done our best to write the book with this mixed audience in mind.
Except for the last chapters, we have tried to require few prerequisites, while
keeping a reasonable size for the text: only a general knowledge of semantics of
programming languages is required, as well as basic notions of (algebraic) topology
and category theory.

We thank Thibault Balabonski, Uli Fahrenberg, Eric Finster, Philippe Gaucher,
Rob van Glabeek, Marco Grandis, Tobias Heindel, Maurice Herlihy, Kathryn Hess
Bellwald, Mateusz Juda, Philippe Malbos, Nicolas Ninin, Sergio Rajsbaum,
Christine Tasson, Krzysztof Worytkiewicz, and Krzysztof Ziemiański for the
stimulating discussions without which this book could certainly not have been
written, and especially Jérémy Dubut, Sanjeevi Krishnan, and Tim Porter for a
careful proofreading of the book and many comments. We would also acknowledge
support from AS CNRS TAPESC, ACI project GEOCAL, ANR projects INVAL,
CHOCO, and CATHRE, and from the ESF research networking program ACAT.

Paris Samuel Mimram
September 2015
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Chapter 1
Introduction

Concurrent programs consist of multiple processes running in parallel. Their use has
become more and more widespread in order to efficiently exploit recent architec-
tures (processors with many cores, clouds, etc.), but they are notoriously difficult to
design and to reason about: one has to ensure that the program will not go wrong,
regardless of the way the different processes constituting the program are scheduled.
In principle, in order to achieve this task with the help of a computer, we could apply
traditional verification techniques for sequential programs on each of the possible
executions of the program. But this is not feasible in practice because the number
of those executions, or schedulings, may grow exponentially with the size of the
program. Fortunately, it can be observed that many of the schedulings are equiva-
lent in the sense that one can be obtained from the other by permuting independent
instructions: such equivalent executions will always lead to the same result. Hence,
if one of those executions can be shown not to lead to an error, neither will any other
execution which is equivalent to it.

This suggests that a model for concurrent programs should incorporate not only
the possible executions of the program (as in traditional interleaving semantics), but
also the commutations between instructions, following the principle of what is now
called true concurrency. Interestingly, the resulting models are algebraic structures
which can be interpreted geometrically: roughly as topological spaces in which paths
correspond to executions and two executions are equivalent when the corresponding
paths are homotopic, i.e., connected by a continuous deformation from one to the
other. In order to make this connection precise, it turns out that topological spaces
are not exactly the right notion for our purposes. One needs to use a directed variant,
i.e., to incorporate a notion of irreversible time.

Mutatis mutandis, starting from very practical motivations (the verification of
concurrent programs), questions of a more theoretical nature arise. What is a good
notion of a directed space, and how do classical techniques from algebraic topology
apply to this setting? What is the geometry of concurrent programs? How can a
geometrically refined understanding of concurrency be used in order to design new
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2 1 Introduction

and more efficient algorithms for studying concurrent programs? The goal of this
book is to give a general overview of our current understanding, regarding these
questions.

Models for Concurrency

Historically, the first models for concurrent programs were the so-called interleaving
models, which essentially consist of all sequences of actions that could occur in
the execution of a program. For instance, consider a program of the form A||B,
consisting of two instructions A and B executed in parallel. Its semantics would be
the following graph with four vertices and four edges:

x y1

y2 z

A

B B

A

(1.1)

Notice that the two maximal paths are labeled by A . B and B . A, i.e., the two
interleavings of A and B.

This semantics does not take into account when two sequences of instructions
are equivalent, i.e., when the two actions A and B are independent. For instance,
with A and B being respectively x:=1 and y:=2, the two actions are independent
because any execution of the program will lead to a state where the variables x
and y respectively contain 1 and 2. However, this is not the case when A and B
are, respectively, x:=2 and x:=2 ∗ x. Starting from a state where x contains 0, the
execution A . B will end in a state where x contains 4, while execution B . A will
end in a state where x contains 2. Even worse, the simultaneous execution of A and
B can even end in other states, as sometimes happens in practice. In this case, the
order in which the actions are scheduled matters. In order to distinguish between the
two cases, we will equip our graph with a relation ∼ on paths, indicating when they
are equivalent in this sense, in order to obtain what is called an asynchronous graph.

In order to avoid two incompatible instructions being executed at the same time,
most operating systems provide mutexes, particular kinds of resources which can be
held by at most one process at a time: given a mutex a, a process can either lock or
release the resource by respectively performing the instructions Pa or Va , and if a
process tries to lock amutexwhichwas already taken, it is then frozen until themutex
is released. From the point of view of the semantics, the usage of those instructions
has two effects: first, it forbids some states (those in which more than one process
would have locked the mutex), and second it explicitly states that some schedulings
are not equivalent. For instance, the semantics of (A1;A2;A3)||(B1;B2;B3) and
(Pa;A;Va)||(Pa;B;Va) are, respectively,
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Any two maximal paths in the first graph are equivalent, while the two maximal
paths in the second graph are not equivalent. Moreover, the second graph can be
obtained from the first one by removing vertices in the middle and adjacent edges
(those vertices would correspond to positions where the mutex a is locked twice):
we will see that a semantics of programs with mutexes can be generally obtained
in this way, by associating an asynchronous graph to a program, and then removing
forbidden vertices.

The Geometry of Concurrent Programs

In the asynchronous graph semantics presented above, the executions of the program
correspond to paths in the graph. Moreover, the squares where the paths in the
boundary are equivalent (i.e., those squares marked with “∼”) can be regarded as
“filled squares” and the other ones as “empty squares”: intuitively, when a square of
the form (1.1) is filled, there is enough room to allow for a deformation, or homotopy,
to exist between paths A . B and B . A. In order to make this intuition more formal,
it is tempting to investigate another type of geometric model for programs, based on
topological spaces instead of graphs, in which an execution corresponds to a path
and an equivalence corresponds to a homotopy between paths. For instance, to the
program (Pa;Pb;Vb;Va) || (Pb;Pa;Va;Vb) is associated the topological space
on the left below, obtained from [0, 1]× [0, 1] by removing the darkened region (the
points in this region would correspond to the states where either a or b has been
locked twice, which is forbidden):

(1.2)

In this space, the paths starting from the beginning position (the lower left corner)
and which are “increasing” (i.e., going right and up) correspond to executions. For
instance, the dotted path corresponds to the second process executing Pb .Pa .Va;
then the first process executing Pa ; then the second process executing Vb; and finally,
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the first process executing Pb .Vb .Va . Paths which are not increasing make no sense
from a computational point of view: they correspond to executions which go back-
wards in time at some point. We thus have to consider a variant of the notion of
topological space which is directed in the sense that the space comes equipped with
a time direction, i.e., extra structure specifying which paths can be considered as
“increasing” or “directed”. One can then study the geometry of these spaces, and in
particular the structure of directed paths up to a suitable notion of homotopy, which
corresponds to equivalence classes of executions, up to commutation of independent
actions, by adapting classical constructions from algebraic topology. The topolog-
ical semantics can also be precisely related to the asynchronous semantics: notice
the similarity of the topological space on the left with the asynchronous graph in
the middle! If the situation seems to be quite simple and clear in the above exam-
ples, many subtleties occur when more than two processes are involved, i.e., when
considering spaces of dimension greater than 2.

Verification of Concurrent Programs

Oneof themain interests in the connectionbetween semantics of concurrent programs
and algebraic topology is that algebraic topology provides one with a new point
of view on those programs, thus allowing for the formulation of new algorithms
for program verification. For instance, consider the rightmost state space in (1.2).
Illustrated is a deadlock point. Starting from this point, there exists no non-constant
increasing path; in other words, the point corresponds to a state of the program in
which no instruction can be executed. This kind of undesirable behavior is specific
to concurrent programs, and typically occurs when processes are waiting for each
other (e.g., to free a resource or to produce data). The points in the lower left square
are called unsafe: they correspond to states of the program from which an execution
might lead to a deadlock. The points in the upper right square are called unreachable:
no directed path from the beginning position ends in that square, which indicates the
existence of states which can never occur during an execution. While this is not an
error per se, their presence is often the sign of a poor design in the program (or
worse). Based on the geometric characterization of such states (and others of similar
interest), we will be able to formulate algorithms to compute them, thus providing
guarantees about the safety of programs.

Another fundamental application of the geometric techniques is the reduction of
the number of paths or states to explore, based on the idea that the evaluation of two
homotopic paths always leads to the same result. A first construction is provided by
the category of components, which identifies portions of programs in which “nothing
interesting happens” from the concurrency point of view, thus providing us with a
compact description of the geometry of the program. A second construction is the
computation of the path space (the space of directed paths up to homotopy): once this
space is computed, it suffices to apply traditional (sequential) verification techniques
on one representative of each homotopy class of paths, in order to cover all possible
schedulings of the program.



1 Introduction 5

Plan of the Book

We begin by introducing a toy programming language, provide its interleaving
semantics, and describe the properties of programs we are interested in (Chap.2).We
then add resources, such as mutexes in the language, and provide truly concurrent
semantics for programs; such semantics at first involve asynchronous graphs, and
later generalize to precubical sets (Chap. 3). The notion of a directed topological
space is introduced and used to provide new semantics, and we discuss a suitable
notion of homotopy between paths in the resulting models (Chap.4). Algorithms
based on the geometric semantics are then described for computing: cubical regions,
deadlocks, and factorizing processes (Chap.5). The two next chapters discuss more
advanced topics: categories of components (Chap. 6) and paths spaces (Chap. 7).
Finally, we conclude by hinting at topics not covered in the book and future devel-
opments (Chap.8).

Reader’s Guide

This book is intended both for mathematicians and computer scientists. Mathemati-
cians not accustomed to concurrent languages and their semantics should spend some
time reading Chaps. 2 and 3, whereas computer scientists might want to skip most of
the standard material up to Sect. 3.4. Similarly, mathematicians (in particular alge-
braic topologists) can skip the beginning of Sect. 4.2 recalling classical concepts in
algebraic topology, which are later on adapted in the directed setting. Chapters2–4
constitute the syntactical and theoretical core of the book. Subsequent chapters can
be mostly read independently:

• Chapter5 presents algorithms (for representing regions, computing deadlocks, and
factorizing processes);

• Chapter6 introduces a notion of “connected components” in directed topology,
which can be used to obtain a compact representation of the category of directed
paths up to homotopy;

• and Chap.7 constructs combinatorial models for the space of directed paths with
fixed endpoints up to homotopy, which lead to efficient computations.

These last two chapters, definitely the most mathematical, can be skipped by com-
puter scientists on a first reading. This book is still only an introduction to the subject,
with only hints of practical applications, and no detailed proofs. Readers interested
in details and further developments will find references in historical sections at the
end of the chapters and in Chap.8, which briefly mentions related approaches that
could not be developed here.

Notations

Somemathematical notationwill be consistently used throughout the book.Wewrite:
P(X) for the powerset of a set X ; [1 : n] for the set {1, . . . , n}; ]x, y[ (resp. [x, y])
for open (resp. closed) intervals (following French convention); ][x, y][ for intervals
which can be either open or closed on both sides; and f : x � y for a path with x
as source and y as target.
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Chapter 2
A Toy Language for Concurrency

Since the aim of this book is to introduce models and verification techniques for
programming languages, our first task is to introduce the programming language
through which we demonstrate the main ideas of this book. There are many possible
choices for such a language, from theoretical ones (e.g., CCS, the π -calculus [124])
which abstract away implementation details, to real-world standards and languages
(e.g., POSIX, Java)with large sets of tools to handle concurrency.We choose to invent
an intermediate language which is relatively concise while being somewhat realistic.
We begin by introducing the language (Sect. 2.1). We then describe its operational
semantics, which formalizes the way programs are to be executed (Sect. 2.2). Finally,
we describe the correctness properties that we will be interested in (Sect. 2.3). In this
chapter, the execution model of programs running in parallel is formalized in the
simplest possible way, as an interleaving of the actions of the programs, and will be
refined in the next chapter by truly concurrent models.

2.1 A Toy Language

Throughout the book, we consider a concurrent, shared-memory, imperative, toy
language for illustrative purposes. A program in this language consists of a sequence
of instructions, as in the following example:

x := 3;x := x+ 1;y := 2 ∗ x

The above sequence first assigns the value 3 to x, then increments x, and finally
assigns twice the value of x to y; here x and y are variables representing memory
cells which are supposed to contain integers. Such sequences of instructions can
be combined, using control flow constructs (e.g., conditional branching, conditional
loops), as in the following example:

© Springer International Publishing Switzerland 2016
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(2.1)

This program computes the elements of the Syracuse sequence—the smallest
sequence starting with x0 = 5, ending with 1, and inductively defined for n > 0
by xn+1 = xn/2 for xn even and xn+1 = 3xn + 1 for xn odd—before printing a mes-
sage. Here,x != 1 denotes the condition x �= 1. Such a program can be represented
graphically by its control flow graph:

x := 5 x != 1 x mod 2 != 0

¬(x mod 2 != 0)

x := 3*xx := x+1

x := x/2

¬(x != 1)

print "Reached 1!" (2.2)

The vertices correspond to the positions in the program (a position is roughly a
line number in the code), the solid arrows correspond to instructions, and the dotted
arrows correspond to branches which might be taken depending on a condition. An
execution of the program can be described as a path in this graph starting from the
leftmost vertex.

The language we will use is a variant of the IMP language, often used as a
setting for studying semantics [166], extended with a parallel composition operator.
We choose to illustrate our methods on an imperative language because those are
the most widespread, but they could be adapted to other flavors of programming
languages (functional, object-oriented, etc.).

Definition 2.1 We suppose a fixed countable set V ar of variables, and below x
denotes a variable and n an integer. The language PIMP (parallel IMP) comprises
three kinds of syntactic expressions, defined by their grammar:

• the set A of arithmetic expressions:

a ::= x | n | a + a | a * a

• the setB of Boolean expressions, or conditions:
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b ::= true | false | a < a | b and b | ¬b

• the set C of commands, or programs:

c ::= x := a | skip | c; c | if b then c else c |
while b do c | c || c

A command of the form “x := a” is called an action and we write Cact for the set
of actions. A program not containing the instruction “||” is called sequential.

A program is meant to be executed in an environment (the state of the memory)
consisting of the values for the variables, which are integers only (for simplicity, we
do not consider variables containing Booleans or other data types). Arithmetic and
boolean expressions evaluate to integers and Booleans, respectively, in the usual way
(e.g. , * refers to integer multiplication,¬ refers to logical negation). The commands
have an effect on memory or on the control flow of the program. Their respective
meanings are given in table below.

x := a assign the result of the evaluation of the arithmetic expression a
to the variable x

skip do nothing
c1; c2 sequentially execute c1 and then c2
if b then c1 else c2 branch conditionally, i.e., evaluate the Boolean expression b and

execute c1 (resp. c2) if the result is true (resp. false)
while b do c execute the command c as long as the Boolean expression b

evaluates to true
c1||c2 execute c1 in parallel with c2

We refer the reader to standard textbooks [166] for details about the first five opera-
tions, standard constructs in sequential programs. We will later discuss extensively
the last, and novel, operation “||” of parallel composition. The language is deliber-
ately small in order to ease the definitions, but other operators can easily be added, and
from time to time we incorporate such operators in our examples without comment,
e.g. , the arithmetic operator mod and the Boolean operator != in Example (2.1).

Convention 2.2 The sequence operator “;” bindsmore tightly than the parallel oper-
ator “||”: the program A; B||C is implicitly parenthesized as (A; B)||C . Moreover,
multiple sequences or multiple parallels are parenthesized on the right: A; B; C
means A; (B; C), A||B||C means A||(B|C), etc. This last convention is not really
important though, because these operators are essentially associative; see Proposi-
tion2.25.

We will focus on the study of concurrent programs, in which many subprograms
(also called threads or processes) run in parallel. Programs of such form are often
used in order to efficiently exploit the computing resources at our disposal and or
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be more reactive to external events. A prototypical example is image processing on
a multi-core machine, where each thread processes a part of the image for speed.
Another prototypical example is the control of a power plant, where one thread
controls physical hardware, another thread handles interactions between hardware
and operators, and a failure of the latter does not imperil the former. Most com-
mon operating systems provide facilities for dynamic thread creation and associated
operations, such as those formalized in the POSIX standard [79]. Once again, we
abstract away implementations details. Instead we include the operation || in the very
definition of a program; p1||p2 means that the programs p1 and p2 are run in parallel,
typically as two different threads. For instance, a simple image processing program
might look like

pi;(pl||pr); pd

where pi takes care of the initialization of the program, pl and pr process, respectively,
the left and right parts of the image, and pd displays the resulting image.

As a first approximation, the effect of p||q is the same as some interleaving of
actions of p and q: “the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its program”,
as phrased by Lamport [110]. We elaborate on the validity of this assumption, called
sequential consistency, in Remark2.17.

Remark 2.3 We limit ourselves in this book to the semantics of finitelymany threads,
whereas in most languages there are ways to define threads recursively, potentially
creating an unbounded number of threads. In many ways, going to that level of
generality would obscure the main purpose of the book without covering many
more applications in practice: many programs are essentially structured as the image
processing example above, creating all the threads after an initialization phase. To
give a simple idea of the difference made by adding recursive thread creation to a
parallel language, let us just mention that the state reachability problem for (our)
multithreaded programs is PSPACE complete when there are finitely many finite-
state threads [101] and undecidable with recursive threads [144].

2.2 Semantics of Programs

In this section, we formally introduce the notion of a transition graph (or a control
flow graph) associated to a program [1]. This classical construction allows one to
abstract away from the syntax of the programming language, to easily define a notion
of execution trace for a program, and to provide an operational semantics.
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2.2.1 Graphs

We begin by recalling some well-known constructions on graphs.

Definition 2.4 A graph G = (V, ∂−, ∂+, E) consists of a set V of vertices (or
states), a set E of edges (or transitions), and two functions ∂−, ∂+ : E → V , respec-
tively, associating to an edge its source and its target.

When graphs are indexed (such as G1), we often index the associated sets of ver-
tices (V1), edges (E1), and source and target functions (∂

−
1 and ∂+

1 ) correspondingly.

Definition 2.5 Given a setL of labels, a labeled graph (G, �) consists of a graph G,
as in Definition2.4, together with a function � : E → L . Given an edge e ∈ E , the
element �(e) is called the label of the edge e.

We sometimeswrite x
A→ y for an edge e such that ∂−(e) = x , ∂+(e) = y, and �(e) =

A. This notation is not ambiguous because we usually consider graphs in which the
edges between a given pair of vertices have different labels. A path t = e1 . e2 . . . en

is a finite nonempty sequence of edges ei ∈ E such that ∂+(ei ) = ∂−(ei+1) for
1 ≤ i < n, the integer n being the length of the path, or a vertex x denoting the empty
path on this vertex, often written as εx . We write ∂−(t) = ∂−(e1) (resp. ∂+(t) =
∂+(en)) for the source (resp. target) of the path. Two paths with the same source
(resp. target) are called coinitial (resp. cofinal). Given two paths t and u such that
∂+(t) = ∂−(u), we write t . u for their concatenation. Given two vertices x, y ∈ E ,
we say that y is reachable from x when there exists a path t with ∂−(t) = x and
∂+(t) = y, denoted t : x � y. When the graph is labeled in L , the sequence of
labels of edges in a path t forms a word inL ∗ that we denote as �(t).

A morphism f : G1 → G2 between two graphs consists of a pair of functions
f V : V1 → V2 and f E : E1 → E2 such that the function on edges is compatible
with source and target:

f V ◦ ∂−
1 = ∂−

2 ◦ f E and f V ◦ ∂+
1 = ∂+

2 ◦ f E

When the two graphs are labeled with the same set of labels, the morphism is more-
over required to preserve the labeling of edges: �1 = �2 ◦ f E . The two functions
f V and f E are often abusively denoted by the same symbol f, the context making
clear which one we are referring to. Two (labeled) graphs G1 and G2 are isomorphic
when there exists morphisms f : G1 → G2 and g : G2 → G1 such that g ◦ f = id
and f ◦ g = id.

In the following, we will make frequent use of the following operations in order
to combine graphs:

Definition 2.6 Suppose given two labeled graphs G1 = (V1, ∂
−
1 , ∂+

1 , E1, �1) and
G2 = (V2, ∂

−
2 , ∂+

2 , E2, �2). We define the following constructions on G1 and G2.
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• Their disjoint union G1 � G2 is the graph

G1 � G2 = (V1 � V2, ∂
−, ∂+, E1 � E2, �)

where ∂−(e) = ∂−
1 (e) if e ∈ E1 and ∂−(e) = ∂−

2 (e) if e ∈ E2, and similarly for ∂+
and �.

• Their tensor product G1 ⊗ G2 is the graph

G1 ⊗ G2 = (V1 × V2, ∂
−, ∂+, (E1 × V2) � (V1 × E2), �)

with ∂−(e, x) = (∂−
1 (e), x) and �(e, x) = �(e) for an edge (e, x) ∈ E1 × V2,

∂−(x, e) = (x, ∂−
2 (e)) and �(x, e) = �(e) for an edge (x, e) ∈ V1 × E2, and sim-

ilarly for ∂+.
• Given two vertices x, y ∈ V1 the quotient graph G1[x = y] is the graph obtained
by identifying the vertices x and y in G1, i.e., formally

G1[x = y] = (V1/ ≈, ∂−, ∂+, E1, �1)

where V1/ ≈ is the quotient of the set V1 by the equivalence relation ≈ on V1 such
that x ′ ≈ x ′′ whenever x ′ = x ′′, or x ′ = x and x ′′ = y, or x ′ = y and x ′′ = x ; and
∂− and ∂+ are the maps induced from ∂−

1 and ∂+
1 by the quotient.

• Given a subset V ⊆ V1 of vertices of G1, the restriction of G1 to V is the graph
G1|V = (V, E) where E = {

e ∈ E1 | ∂−(e) ∈ V and ∂+(e) ∈ V
}
.

Example 2.7 From the two graphs

G= x yA and H = z0 z1

z2
z3

B1
B2

B3

we can compute the following graphs:

G�H = x yA z0 z1

z2
z3

B1
B2

B3

G⊗H = (x,z0) (x,z3)

(y,z0)
(y,z2)

(y,z3)

(x,B1) (x,B3)

(y,B1)(y,B2)

(A,z0) (A,z3)

H[z0 = z3] = z0
z1 z2B1

B2

B3

H|{z1,z2} =
z1

z2B2

Notice that the tensor product can be thought of as multiple copies of edges coming
from either of the two graphs.
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From these operations one can derive most usual operations on graphs. For
instance, given a graph G, the graph obtained from G by adding an edge between
two vertices x and y is the graph (G � I )[x = x ′][y = y′] where I is the graph with
two vertices x ′ and y′ and one arrow x ′ → y′.

Remark 2.8 The tensor product is sometimes referred to as the “cartesian product”
of the two graphs. However, this terminology is incorrect since it is not a cartesian
product in the usual category of graphs (and to add to the confusion, the proper
cartesian product is usually called the tensor product). In fact, most of the classical
interleaving semantics of such concurrent systems was originally done using yet
another variant of product, called synchronized product [135]. The definition of the
tensor product given above should become more natural when seen as a particular
(one-dimensional) case of the tensor product of precubical sets, as defined inSect. 3.4.

2.2.2 The Transition Graph

The operations introduced in the previous section easily allow us to formalize the
notion of transition graph (or control flow graph) associated to a program as follows:

Definition 2.9 The transition graph G p = (G p, �p, sp, tp) associated to a pro-
gram p is a graphG p labeled in the setL = Cact � B togetherwith twodistinguished
vertices sp, tp ∈ E called the beginning and end. This graph is defined inductively
as follows:

• G A with A ∈ Cact is the graph with two vertices and one edge labeled by A:

sA tA
A

• Gskip is the graph with one vertex (being both the beginning and the end) and no
edge:

• G p;q is the graph obtained from the disjoint union of G p and Gq by identifying tp

with sq , such that sp;q = sp and tp;q = tq :

sp q = sp Gp tp sq Gq tq = tp q

• G p, with p=if b then p1 else p2, is the graph obtained from the disjoint union
of G p1 and G p2 by identifying tp1 and tp2 , the resulting vertex being tp, adding a

new vertex sp and two transitions sp
b→ sp1 and sp

¬b→ sp2 :

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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sp

sp1

sp2

b

¬b

tp1 = tp2 = tp

Gp1

Gp2

• G p, with p=while b do q, is obtained from Gq by adding a vertex tp, adding

an edge tq
¬b→ tp, and adding an edge tq

b→ sq , with sp = tq :

sp = tq sqGq

b

tp¬b

(notice that source of the graph Gq is on the right and the target on the left in the
above figure)

• G p||q is the graph G p ⊗ Gq with sp||q = (sp, sq) and tp||q = (tp, tq).

A vertex of G p is called a position of the program p.

Notice again that all the graphs above can be obtained using the constructions of
Definition2.6, for instance G p;q = (G p � Gq)[tp = sq ]. As shown above and in the
introductory example (2.1), the edges labeled by conditions in transition graphs are
drawn with dotted arrows to distinguish them from those labeled by actions. This is
only a drawing convention; there is no difference between the two types of edges
except the sets in which they are labeled.

Example 2.10 The Syracuse program (2.1) gives rise to the transition graph depicted
in (2.2).

Example 2.11 The transition graph of the program p = (A; B; C)||(D; E), where
A, B, C, D, E are arbitrary actions, is

sp

tp

A B C

A B C

A B C

D

E

D

E

D

E

D

E

By construction of the transition graph, we have

Lemma 2.12 For every program p and vertex x of its transition graph there are, by
construction, both a path from sp to x and a path from x to tp.



2.2 Semantics of Programs 15

Paths starting at the beginning vertex will be of particular importance since they
encompass all the sequences of actions that the program can give rise to.

Definition 2.13 A potential execution trace of a program p is a path starting
from sp in G p. We write Tpot(p) for the set of such paths.

Of course, not every such path corresponds to an actual execution of the program,
which is why they are called “potential.” Determining the ones which can actually
occur during an execution depends on the chosen semantics of the programming
language, as formalized in Definition2.19. Notice that the set Tpot(p) is closed under
prefix, itsmaximal elements are thus enough to describe it when traces are of bounded
length.

Example 2.14 Consider a program p of the form A; (if b then B else C).
Its maximal potential execution traces are labeled by A . b . B and A . ¬b . C . The
conditions occurring in those traces should be thought of as assumptions on the
memory state under which those traces make sense, which is why we call them
potential. For instance, the trace A . b . B should be read as: do A, now suppose that
the condition b is true, do B.

Example 2.15 Given an action A, the potential execution traces of the program
while b do A are labeled by words which are prefixes of words in (b . A)∗ . ¬b.
In particular, when the condition b is true, all those labeled in (b . A)∗ are valid: a
program can thus admit an infinite number of traces.

Example 2.16 Consider again the program p = (A; B; C)||(D; E) introduced in
Example2.11. Its maximal potential execution traces are labeled by elements of the
set {A . B . C} �� {D . E} of shuffles of the words A . B . C and D . E , i.e.,

{ A . B . C . D . E, A . B . D . C . E, A . D . B . C . E, D . A . B . C . E, A . B . D . E . C,

A . D . B . E . C, D . A . B . E . C, A . D . E . B . C, D . A . E . B . C, D . E . A . B . C }

Given two languages P, Q ⊆ L ∗, we recall that their shuffle P �� Q is defined
inductively by

P �� Q =
⋃

a∈L
{a} . ((P/a �� Q) ∪ (P �� Q/a))

with P/a = {u ∈ L ∗ | a . u ∈ P} and similarly for Q/a. Said otherwise, the words
u = a1 . . . an in P �� Q are those for which there exists a subset I ⊆ {1, . . . , n} such
that the subword of u consisting of letters with indices in I (resp. in {1, . . . , n} \ I )
is in P (resp. in Q). This example illustrates why we chose to interpret the parallel
composition by the tensor product of graphs in Definition2.9: in order to execute
p||q, one should either execute the first action of p and then the rest of p in parallel
with q, or the first action of q and then p in parallel with the rest of q. It is also
interesting to notice the large number of execution traces, considering the small size
of the program generating them: a word in the above shuffle is of length 3 + 2 = 5,
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and is characterized by the positions of the subword of length 2 in this word, so the
cardinality of the above set is

(
5
2

) = 5!/(2! 3!) = 10.

Remark 2.17 The assumption that the only behaviors that can occur in a concurrent
program are those which can be obtained as a sequential interleaving of the instruc-
tions of the processes executed in parallel is called sequential consistency [110]. Real
multiprocessors, however, use sophisticated techniques to achieve high performance:
the storage of buffers, hierarchies of local cache, speculative execution [154], etc.
These implementation details are not observable by single-threaded programs, but in
multithreaded programs different threads may see subtly different views of memory.
Such machines exhibit relaxed (or weak) memory models. For instance, consider a
standard x86 processor. Given two memory locations x and y (initially holding the
value 0), we look at the following program with two threads writing 1 to both x and
y and then reading from y and x:

(mov x, 1 ; mov eax, y) || (move y, 1 ; mov ebx, x)

The instruction “mov x, y” is essentially the assembly notation for x := y, and
eax and ebx are special memory locations called registers. Intuitively, the possi-
ble outcomes for (eax,ebx) are (1,1), (1,0), and (0,1). However, on standard
processors, some executions can also lead to (0,0) [131]. Throughout the book we
still make the assumption that the semantics is sequentially consistent for simplicity
(our approach could be refined to encompass a semantics with a relaxed memory
model) and because modern compilers help to ensure sequentially consistent seman-
tics at a higher level.

2.2.3 Operational Semantics

We now need to describe, formally, the effect of executing a program, by describing
a semantics for the language that we have been specifying. Notice that there can be
many different semantics for a given language: most of the following constructions
depend on our choice, and would be (slightly) different if we chose a different
semantics. A program is meant to be executed in a state (also sometimes called
an environment), which comprises the contents of the memory (as well as other
resources to which the program would have access). For instance, the effect of an
action like x:=x+1 is to modify the memory cell corresponding to the variable x
by incrementing x. Similarly, given a memory state, a condition such as x<1 can
be evaluated to either true or false depending on whether the cell x contains a value
below 1 or not. In the following, we write B = {⊥,�} for the set of Booleans,where
⊥ (resp. �) denotes false (resp. true).

Definition 2.18 We write Σ = Z
V ar for the set of states, consisting of functions

assigning an integer to each variable. The initial state σ0 ∈ Σ is the constant function
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equal to 0. The operational semanticsof our programming language consists of three
functions:

• �−�A : A → (Σ → Z) describing the evaluation of arithmetic expressions,
• �−�B : B → (Σ → B) describing the evaluation of Boolean expressions,
• �−�C ∗

act
: C ∗

act → (Σ → Σ) describing the effect of sequences of actions on the
state.

Thus, for instance, �−�A sends an element of A (an arithmetic expression) to a
function from the set Σ of states to the set of integers. Given an arithmetic expres-
sion a, we write �a�A : Σ → Z for its semantic interpretation, and similarly for
the other functions. Given a state σ ∈ Σ , the evaluation of arithmetic expressions is
defined by

�x�A (σ ) = σ(x) �n�A (σ ) = n �a1+a2�A (σ ) = �a1�A (σ ) + �a2�A (σ ) . . .

the evaluation of Boolean expressions by

�true�B(σ ) = � �false�B(σ ) = ⊥

�a1<a2�B(σ ) =
{

� if �a1�A (σ ) < �a2�A (σ )

⊥ otherwise
. . .

and the evaluation of sequences of actions in C ∗
act by

�u . v�C ∗
act

(σ ) = �v�C ∗
act

◦ �u�C ∗
act

(σ ) �ε�C ∗
act

(σ ) = σ

�x:=a�C ∗
act

(σ ) = σ
[
x �→ �a�A (σ )

]
. . . (2.3)

where ε denotes the empty word and, given n ∈ Z, σ [x �→ n] denotes the function
in Σ which associates n to x and σ(y) to each y �= x .

In the following, we generally drop the subscripts when the function to which we
are referring is clear fromcontext. The operational semantics allows us to characterize
those potential execution traces which are valid, in the sense that the assumptions
corresponding to the conditions occurring in those traces are satisfied. Given aword u
in (Cact � B)∗, we write �u� : σ → σ defined as in (2.3), extended with �b�(σ ) = σ ,
for a condition b ∈ B, in other words �u� = �v�C ∗

act
where v is the projection of u

onto C ∗
act. Finally, given a path t in a transition graph G p (see Definition2.9), its

labeling word �(t) is an element of (Cact � B)∗, and we sometimes write �t� instead
of ��(t)�. In particular, notice that �t� is defined for each potential execution trace
t ∈ Tpot(p), even if it is not valid.

Definition 2.19 A word u ∈ (Cact � B)∗ is valid when it is either

• the empty word ε,
• of the form u . A with u valid and A ∈ Cact,
• or of the form u . b with u valid, b ∈ B and �b� ◦ �u�(σ0) = �.
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An execution trace is a valid potential execution trace in Tpot(p), i.e., a path t ∈
Tpot(p) such that the word �(t) is valid. We write T(p) for the set of execution traces
of a program p.

Example 2.20 Consider the following program:

(x := 0 || x := 1); if x == 0 then c0 else c1

where the == operator compares two integer values for equality. Its four maximal
potential execution traces are

x:=0 .x:=1 .x==0 . c0 x:=0 .x:=1 . ¬x==0 . c1
x:=1 .x:=0 .x==0 . c0 x:=1 .x:=0 . ¬x==0 . c1

and only traces up to the right and below to the left are valid. For instance, the
one up to the left is not valid because when the condition x==0 is evaluated, the
variable x contains 1, and the condition is not true. Notice that this example shows
that our programs are nondeterministic because of parallelism: here, either c0 or c1
can be executed. It can be shown, however, that programs without parallelism are
deterministic.

The operational semantics, as we formulated them, can be related to a more stan-
dard small-step operational semantics for the programming language. We describe
them here briefly and refer to [166] for details about such definitions.

Definition 2.21 We define a reduction relation → on pairs 〈σ, c〉 consisting of a
state σ ∈ Σ and a command c, which formally describes how a command evaluates
in a given environment. The rules defining this relation are as follows, where each
“fraction” below should be interpreted so that the denominator also holds whenever
the numerator holds.

〈σ,c1〉→〈σ ′,c′
1〉

〈σ,c1;c2〉→〈σ ′,c′
1;c2〉 〈σ,skip;c〉→〈σ,c〉 〈σ,x:=a〉→〈σ[x �→�a�(σ )],skip〉
�b�(σ )=�

〈σ,if b then c1 else c2〉→〈σ,c1〉
�b�(σ )=⊥

〈σ,if b then c1 else c2〉→〈σ,c2〉
�b�(σ )=�

〈σ,while b do c〉→〈σ,c;while b do c〉
�b�(σ )=⊥

〈σ,while b do c〉→〈σ,skip〉
〈σ,c1〉→〈σ ′,c′

1〉
〈σ,c1||c2〉→〈σ ′,c′

1||c2〉
〈σ,c2〉→〈σ ′,c′

2〉
〈σ,c1||c2〉→〈σ ′,c1||c′

2〉

〈σ,skip||c〉→〈σ,c〉 〈σ,c||skip〉→〈σ,c〉

The relation between the semantics given in Definition2.18 and the one of Defini-
tion2.21 can be formalized as follows. We write →∗ for the reflexive and transitive
closure of →.

Proposition 2.22 Given states σ, σ ′ ∈ Σ and a command c, there is an execution
trace t ∈ T(c) such that �t�(σ ) = σ ′ if and only if there exists a command c′ such
that 〈σ, c〉 → 〈σ ′, c′〉.
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Remark 2.23 In order to show the previous proposition, it is important to remark that
in Definition2.21 the evaluation of arithmetic and Boolean conditions is “atomic”,
i.e., performed at once. Because of this, the two arithmetic expressions x+x and 2*x
are equivalent, in the sense that replacing one with another in a program does not
change the results of the program. This would not be true anymore if we had chosen
a small-step semantics for the evaluation of expressions as well, i.e., if we had added
the rules

〈σ, a1〉 → 〈σ ′, a′
1〉

〈σ, a1+a2〉 → 〈σ ′, a′
1+a2〉

〈σ, a2〉 → 〈σ ′, a′
2〉

〈σ, a1+a2〉 → 〈σ ′, a1+a′
2〉 〈σ, n1+n2〉 → 〈σ, n〉

with n1, n2 ∈ Z and n = n1 + n2, replaced the rule for assignation by the rules

〈σ, a〉 → 〈σ ′, a′〉
〈σ, x:=a〉 → 〈σ ′, x:=a′〉 〈σ, x:=n〉 → 〈σ [x �→ n] ,skip〉

with n ∈ Z, and similarly had replaced the other rules. Under these modified
rules, consider the program c defined by y:=(x+x)+1 || x:=x+1. We have
〈σ0, c〉 →∗ 〈σ,skip〉 where σ is a state such that σ(y) = 2, because the incremen-
tation of x can be interleaved between the two evaluations of the variable x occurring
in the expression defining y. This is not possible anymore if we replace x+x with
2*x. However, this kind of behavior could be simulated by introducing variables for
intermediate results during the evaluation of expressions.

Finally, we would like to briefly mention the concept of contextual equivalence
of programs, applied to concurrent programs.

Definition 2.24 Two commands c1 and c2 are contextually equivalent, written c1 ≈
c2, when for every state σ ∈ Σ we have �c1�(σ ) = �c2�(σ ).

It is well known that, up to contextual equivalence, sequential composition is associa-
tive and admits skip as its neutral element. Similar such identities hold for parallel
composition:

Proposition 2.25 For all commands c, c1, c2, and c3, the following equivalences
hold:

(c1||c2)||c3 ≈ c1||(c2||c3) skip||c ≈ c ≈ c||skip c1||c2 ≈ c2||c1
Remark 2.26 In our programming language, the classical equivalence

while b do c ≈ if b then (c;while b do c) else skip

can be shown, formalizing the intuition that a while loop can be seen as an infinite
sequence of nested conditional branchings. If one is interested in verifying loops of a
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program only up to a certain depth (i.e., imposing a bound on the number of times a
loop can be taken), one can unroll the program by replacing every while construct
by a finite series of conditional branchings as explained above. With this unrolling,
we can only verify weaker properties on programs (since we only ensure that the
properties are verified up to the depth of the loops). Still, it is sometimes useful since
loops are quite difficult to handle in verification.

2.3 Verifying Programs

2.3.1 Correctness Properties

In order to check that a program is “correct,” we have to specify what “correctness”
means, i.e., what properties we are interested in.We can identify three major families
of commonly encountered verification properties:

1. Functional properties. These describe how the result of the program complies
with amathematical specification. For instance, an implementation of the factorial
function actually computes the factorial, i.e., given an integer n ∈ N as input, it
returns the integer n!. These usually describe invariants or safety properties that
will hold true for all executions of the program, expressed in proof-theoretic
form [109] or using temporal logic, and generally verified using proof assistants,
model checking [27], or abstract interpretation [127].

2. Reachability properties. These properties consist in ensuring that some position
of a program, typically corresponding to an error, will not be reached. They can
also be used to ensure that operations are used within their domain of definition.
For instance, division is only defined if the denominator is non-null. In a program,
an expression such as y = 1/x could be treated as

if x == 0 then error else y := 1/x (2.4)

and then a reachability analysis could be used in order to ensure that the error is
unreachable (i.e., never executed), which means that x is always non-null at this
point of the program.One is also sometimes interested in knowingwhich positions
of a program can be reached, such as in code coverage analysis, to ensure that
every piece of code can be executed in some situation. Reachability is a particular
case of a liveness property [2], and of more general temporal properties as below.

3. Temporal properties. They specify the shape of expected execution traces. For
instance, in a computer graphics software, whenever the function to display the
image is called, the function to compute the image should have been called before.

For simplicity, we are going to focus on reachability properties in the rest of the book:
we want to ensure that a given setX of forbidden positions is never reached during
the execution of a program. For instance, suppose that there is a special instruction
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error, as in program p shown in (2.4), and we want to ensure that this instruction is
never executed, i.e., the position inX = {xerr} in the transition graph corresponding
to p is not reachable:

x0
¬

x1 x2

xerr x′
err

Definition 2.27 A program p is correct w.r.t. a set X of positions if there is no
execution trace with a state in X as target.

In order to verify that a program is correct starting from X0, we could thus verify
all its traces, by exploring all the paths in G p starting from the initial vertex sp,
following some exploration strategy (e.g. , depth-first, breath-first, etc.). During the
exploration, the state σ ∈ Σ reached by the path can be iteratively computed fol-
lowing Definition2.18, and it can be thus checked whether the path is valid (see
Definition2.19), i.e., if it is an execution trace: if the path is valid, the algorithm
should check that it does not reach a forbidden position, otherwise the exploration
of paths extending the current path can be skipped (since such extended paths will
not be valid either).

It can be noticed that the algorithm we have just described, essentially consists of
executing the program, with all its possible schedulings, and observing whether an
error occurs at some point. This state space exploration strategy is quite naive. For
instance, because of while loops, the number of traces is not necessarily finite, see
for instance, Example2.15: this problem is not specific to concurrent programs, and
traditional methods can be used in order to overcome this shortcoming (one can be
interested in correctness properties on execution traces of bounded length and unroll
loops, or use widening operators associated to abstract interpretation domains [29],
etc.).

2.3.2 Reachability in Concurrent Programs

In the rest of the book, we will put aside the problems encountered in the verification
of generic properties, such as the ones mentioned above, and will focus on those spe-
cific to concurrent programs. In this context, one of the main difficulties to overcome
is the following one. In order to check that a program is correct, one has to check that
all the execution traces coming from possible schedulings of the threads are correct:
even without loops, a concurrent program can generate a number of traces which is
exponential in the size of the program—namely, by generalizing observations made
in Example 2.16! it is easy to see that a program p of the form p = A||A|| . . . ||A
with n copies of some action A generates n! maximal execution traces. This major
problem is often referred to as the state space explosion problem [26].
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The notion of correctness of programs depends on the set X of positions which
we do not want to be reached by any execution. Apart from ensuring that the domain
of definition of used operators is respected, such as in the division example (2.4),
or more generally that invariants are preserved during computation, sets of positions
satisfying the following properties are interesting for concurrent programs: such
positions are witnessing potential errors in the code, and the properties are generic
in the sense that they are not tied to some particular instructions.

Definition 2.28 A vertex x in the transition graph G p of a program p is called

• unreachable when there is no execution trace with x as target,
• a deadlock when x is different from the terminal position tp and there is an
execution trace with x as target which is not a proper prefix of another execution
trace,

• unsafe when there is an execution trace with x as target which is the prefix of an
execution trace with a deadlock as target,

• doomed when there is an execution trace with x as target which is not a proper
prefix of an execution trace reaching the terminal position tp.

An unreachable position is a position that can never be reached during the execution
of a program: these positions are witnessing the presence of dead code, code that will
never be executed. In a critical system, every single piece of code is usuallywritten for
some purpose, and the fact that some part of the code is formally useless is generally
a good indicator of some misconception on the part of the programmer regarding
the possible executions of the program. Deadlocks are much more problematic per
se: they indicate positions in which the program is blocked and cannot do anything,
i.e., the program is “frozen.” This situation typically occurs in concurrent programs
when two threads (or more) are mutually waiting for each other to free a resource,
whence comes the term deadlock or deadly embrace [31]. Finally, an unsafe position
is one fromwhich the program can reach a deadlock position, and a doomed position
is one from which the program will eventually reach a deadlock or loop forever. A
program p is safe when its beginning position sp is not unsafe: in such a program,
no execution will lead to a deadlock.

Remark 2.29 The deadlock and unsafe situations are really specific to concurrent
programs (such a program exhibiting a deadlock is provided in Example 3.32): it can
be shown that a sequential program does not have deadlock positions.

Remark 2.30 We could have introduced a variant of the notion of deadlock (and
similarly for unsafe and doomed positions) by requiring that all the execution traces
reaching x cannot be extended. This would have not made any difference in what
follows, because we will restrict to programs (called “coherent programs”) whose
structure is such that a property of a position does not depend on the path reaching
it: for those programs either all the paths reaching x cannot be extended, or none.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Remark 2.31 Following the tradition in classical automata theory, we will only con-
sider finite executions. However, even in this case, there are some subtle differences
related to the presence of infinite executions (that will be silently ignored in the rest
of this book): for instance, a doomed position could have been defined as a reachable
position x such that every maximal path with x as source has a deadlock as target.
Notice that this definition is not equivalent to the one above for programs with loops.

The search for such positions in concurrent programs will be extensively discussed
and illustrated in the next section (in particular, Examples 3.22 and 3.23 provide
programs illustrating positions with these properties).

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3


Chapter 3
Truly Concurrent Models of Programs
with Resources

Thegraph-based semantics introduced in the previous chapter is often not informative
enough, because it does not take into account whether two actions commute or not. In
this chapter, we introduce truly concurrent models which incorporate this informa-
tion. We begin by extending our programming languages with resources (Sect. 3.1)
and restrict ourselves to conservative programs, in which resource consumption only
depends on the current state (Sect. 3.2).We then generalize the semantics to asynchro-
nous graphs, which explicitly describe the commutation of two actions (Sect. 3.3) and
to precubical sets, which can more generally express the commutation of n actions
(Sect. 3.4). Finally, links with other classical models for concurrency are mentioned
(Sect. 3.5).

3.1 Modeling Resources in the Language

3.1.1 Taming Concurrency

The programming language introduced in the previous chapter is quite minimal and
can of course be extended in many ways, in order to model more advanced features
of programming languages (functions, objects, pattern matching, etc.). Since we
focus here on concurrency aspects of programming languages, we will not detail
those possible extensions. Starting from the next section, we however extend the
language with a notion of resource, which will prove crucial in order to properly
capture archetypal challenges in concurrency.

Concurrent programming unfortunately carries unique problems, not found in
other modes of programming. When two threads access a shared resource, such as
memory, the outcome is often unspecified. For instance, consider the program

x:=0; (x:=x+1 || x:=x+1) (3.1)

© Springer International Publishing Switzerland 2016
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in which two threads concurrently increment a variable x whose value is initially 0.
The first intuition is that after the execution of the program the variable x should
contain the value 2. However, because of the way threads and accesses to memory
are implemented in practice, it happens that the variable might also contain 1, or even
a completely unrelated value: in most programming languages concurrent access to
shared memory is unspecified. In order to achieve reasonably predictable behavior
when using shared memory, most operating systems provide a construction, called
a mutex (short for mutual exclusion), which is a resource that can be held by at most
one thread. Given such a mutex a, a thread can perform two operations on it [32]:

• lock the resource, which is modeled by the instruction Pa,
• release the resource, which is modeled by the instruction Va.

The system guarantees that a mutex can be locked at most once: if a thread tries to
lock a resource that has been previously locked by another thread, it remains frozen
until the mutex is released (if multiple processes are frozen, only one of them is
awaken when the mutex is released). In order to guarantee predictable behavior, the
program (3.1) should thus be rewritten as

x:=0; (Pa;x:=x+1;Va || Pa;x:=x+1;Va)

Another useful feature of mutexes is that they ensure that a sequence p of instructions
is atomic, i.e., the sequence will never be interrupted: in a subprogram of the form
Pa; p;Va, we know that the instructions in p will not be interleaved with instruc-
tions from other subprograms running in parallel which are also using the locking
and unlocking the mutex a in the same way. The portion of code between Pa and Va

is thus called a blocking section. The operations P and V are often called synchro-
nization primitives because they help the programmer to regulate how threads will
execute w.r.t. each other, and to make it easier to reason about concurrent programs.
As an illustration of the use of atomic sequences, and more generally of the diffi-
culty of verifying concurrent programs, consider the following program (on the left)
launching two threads in parallel after an initialization phase:

d:=1; (d:=0
︸ ︷︷ ︸

user
input

|| if d!=0 then y:=x/d else y:=x
︸ ︷︷ ︸

scaling process

)

d:=1
d!=0

y:=x/d

y:=x/d
d:=0

d:=0 d:=0

d==0

y:=x

y:=x

d:=0 d:=0

This program should be thought of as an image scaling program. Initially, the scaling
factor d is set to 1. Then two processes are run in parallel: the first one takes the input
of the user (taken here to be the scaling factor d to 0), and the second one takes care
of the rescaling of the “image” (taken here to mean that the process takes a variable x
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thought of as the image, divides it by d, and stores the result in variable y). When the
scaling factor d is zero, the scaling process does not operate on the image as scaling
by zero is undefined.More realistically, the scaling process should be looping in order
to regularly update the image, but adding a loop would not have much influence on
the argument below. The transition graph of the above program is shown on the right
above (the two endpoints on the right are the same, but have been drawn as separate
vertices for clarity). At first it might seem that the scaling process is correct, in the
sense that it will never lead to division by zero, since the division is performed only
if the condition d!=0 is satisfied. However, because of the parallel construction,
the user input process can be interleaved arbitrarily with the scaling process, and it
might happen that the instruction d=0 is executed after the comparison d!=0 has
been performed but before the execution of the instruction y = x/d (corresponding
to the thick path in the above transition graph): in this case, a division by zero will
be performed! In order to solve this problem, the programmer has to ensure that no
instruction from another process will be executed between the comparison and the
division, which can be achieved using mutexes as explained above. The program
could thus be rewritten as

d:=1; (Pa;d:=0 : Va || Pa;(if d!=0 then y:=x/d else y:=x;Va)

to avoid the above problem.

3.1.2 Extending the Language with Resources

We introduce a notion of “resource” in the language, which is more general than
mutexes, in the sense that it can be specified to lock more than once. These resources
are also sometimes called counting semaphores in the operating system literature.

Fix a set R = {a, b, . . .} of resources together with a function κ : R → N

associating to each resource a a capacity (or arity) κa ∈ N, in particular a mutex is
a resource whose capacity is 1. The syntax of programs given in Definition2.1 is
extended with two new families of constructions:

p : := . . . | Pa | Va

where a ∈ R is a resource. If we write PR (resp. VR) for the set {Pa|a ∈ R}
(resp. {Va|a ∈ R}) of programs, the transition graph associated to a program is now
labeled in L = Cact � B � PR � VR, and is defined as in Definition2.9 extended
with the cases defining the graphs associated to the programs Pa and Va, which are
respectively

sPa tPa
Pa sVa tVa

Va

The operational semantics introduced in Sect. 2.2.3 is then modified as follows.
First, the set of states is now of the form Σ = Z

Var × Z
R, i.e., a state σ is now a

pair σ = (σv, σr) where σv ∈ Z
Var describes the contents of the variables as before,

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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and σr ∈ Z
R associates to each resource its availability. By abuse of notation,

given a variable x ∈ Var (resp. a resource a ∈ R), we often write σ(x) instead of
σv(x) (resp. σ(a) instead of σr(a)). The initial state σ0 is such that for any variable
x ∈ Var, σ0(x) = 0 and for any resource a ∈ R, σ0(a) = κa. The semantics for
actions different from Pa and Va is defined as before (as in Definition2.18), except
that variables are read from and written to σv, and that the σr component is left
unmodified. For instance, the interpretation of variables and assignations is given by

�x�A (σ ) = (σv(x), σr) �x:=a�C (σ ) = (σv
[
x �→ �a�A (σ )

]
, σr)

The action of the resource primitives is defined, for any resource a ∈ R, by

�Pa; t�(σ ) = �t�(σv, δ
−1
a (σr)) �Va; t�(σ ) = �t�(σv, δ

+1
a (σr))

where δ−1
a (σr) (resp. δ+1

a (σr)) is the function which is the same as σr except on a,
which has been decreased (resp. increased) by one; formally, δ−1

a (σr)(a) = σr(a)−1,
δ−1

a (σr)(b) = σr(b) for b �= a, and similarly for δ+1
a (σr). The notion of validity

extends Definition2.19 by allowing words in (Cact � B � PR � VR)∗ of the form

• t.Pa with a ∈ R and �t�(σ0)(a) > 0
• t.Va with a ∈ R and �t�(σ0)(a) < κa

which expresses the fact that in a valid execution trace, the locked resources have to
be available and one cannot add more instances of a resource than its capacity.

Remark 3.1 We could have implemented the primitives Pa and Va within the lan-
guage, but this is far from being easy [32]. In particular, to implement Pa we have to
ensure that a > 0, and then decrement a without some other thread decrementing a
in between. Similarly, general resources with arbitrary capacity can be implemented
from those with capacity one, i.e., mutexes. The point of having general resources
as basic constructs in the language allows us to enforce a certain discipline on their
usage, as we will see in the next section.

Remark 3.2 The assumption that σ0(a) = κa means that resources are available
to the maximum of their capacity at the beginning of the program. This assump-
tion is not restrictive: studying a program p in which the initial state σ0 is such
that 0 ≤ σ0(a) < κa, is equivalent to study the program Pa;Pa; . . . ;Pa; p, with
κa − σ0(a) occurrences of Pa at the beginning, in the initial state σ ′

0 defined as σ0

except σ ′
0(a) = κa.

Remark 3.3 The constructions provided in our programming language are for
instance close to those provided by Java [61] where threads are defined and exe-
cuted as objects of a Thread class (or implementing the Runnable interface).
Moreover, the operational semantics of both languages are close, although the com-
pliancewith interleaving semantics is not complete. In practice, onmodern platforms,
the code is not always executed in the order it was written, and sequential consis-
tency (see Remark2.17) or even linearizability [91] is not ensured, unless some

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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particular conditions are met (for instance, the memory locations on which writes
are done are declared volatile). For the purpose of this book though, the more
idealistic semantics we are considering is enough. It covers well the synchronization
aspects met in Java, which has, as in the POSIX standard [79] and implementations,
semaphores (including mutexes), ensuring mutual exclusion properties, and moni-
tors [32]. This allows for implementing weaker synchronization primitives such as
counting semaphores [31] as presented in this book.

Remark 3.4 The resources we have chosen to model are close to what is usually
called semaphores, of whichmutexes are a particular case. There are many other syn-
chronization primitives that can be used (e.g., monitors, barriers) to ease the imple-
mentation of some idiomatic structures (e.g., queues, message-passing concurrency).
They could be studied in a similarway, either bymodifying accordingly the semantics
or by implementing them with semaphores.

We will provide examples of programs with resources in the next sections, and many
other can be found in [33].

3.2 State Spaces for Conservative Resources

3.2.1 Conservative Programs

In order to study the resource consumption of a program, we introduce the following
notion which expresses the overall effect of a program on the resources.

Definition 3.5 Given a program p, its resource consumption Δ(p) : R → Z gives,
for each resource a, the number Δ(p)(a) of resources a it has taken or released
(depending on whether this number is negative or positive), i.e., the difference
between the number ofVa instructions and the number ofPa instructions encountered
in an execution of p. It is defined by induction on p by

Δ (A) = 0 Δ (skip) = 0

Δ (Pa) = −δa Δ (Va) = δa

Δ (p;q) = Δ (p)+Δ (q) Δ (p||q) = Δ (p)+Δ (q)

Δ (if b then p else q) = Δ (p) wheneverΔ (p) =Δ (q)
Δ (while b do p) = 0 wheneverΔ (p) = 0

whereA is an arbitrary action. Above, 0 denotes the constant function whose image is
0, the addition of two functions is the pointwise addition and δa denotes the function
such that δa(a) = 1 and δa(b) = 0 for any b �= a. Notice that the function is only
partially defined because of the side conditions in the cases of branching and loop.

Proposition 3.6 Given a program p such thatΔ(p) is defined, for any path t : sp � tp
in Gp and resource a ∈ R, we have �t�(σ0)(a) = κa + Δ(p)(a).
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The programs for which the resource consumption is well-defined can be character-
ized as those which are conservative, in the following sense.

Definition 3.7 A program p is conservative (or well-bracketed) w.r.t. resources
when for any state σ ∈ Σ , any pair of paths t, u : x � y in Gp, with same source
and same target, and any resource a ∈ R, we have �t�(σ )(a) = �u�(σ )(a).

Proposition 3.8 A program p is conservative if and only if Δ(p) is well-defined.

Example 3.9 A program of the form while b Pa is not conservative: indeed, the
two paths t, u : sp � tp which are respectively labeled by b.Pa and b.Pa.b.Pa satisfy
�t�(σ0)(a) = κa − 1 and �u�(σ0)(a) = κa − 2.

Remark 3.10 From the above proposition, determining whether a program p is con-
servative or not can be done by checking whether Δ(p) is defined or not, and this
can be done in linear time w.r.t. the size of p by directly implementing Definition3.5

Definition 3.11 Given a conservative program p, for every vertex x in Gp, we define
the resource potential r(x) : R → Z at x by r(x)(a) = �t�(σ0)(a) for any resource
a ∈ R, where t : sp � x is a path in Gp. The natural number r(x)(a) is called the
residual capacity of the resource a at position x.

Notice that the above definition is well-defined: for any vertex x there is a path
t : sp � x by Lemma2.12, and the potential does not depend on the choice of
the path t since p is conservative. The following proposition shows that resource
consumption along any path can be computed from the resource potential:

Proposition 3.12 For any path t : x � y in Gp, state σ ∈ Σ and resource a ∈ R,
we have �t�(σ )(a) = σ(a) + r(y)(a) − r(x)(a).

Remark 3.13 The terminology conservative comes from an analogy with physics:
a force is conservative when its work along a path only depends on the endpoints
of the latter. In this case, the force derives from a potential, which—following our
analogy—corresponds to the resources in a position.

The above proposition shows that, in a conservative program p, the resource
consumption of any potential execution path t : sp � x only depends on the target
vertex x and is given by r(x). In particular, suppose that a path t goes through a
vertex z which is such that r(z)(a) < 0. Since r(sp)(a) ≥ 0, and the operation Pa

is the only one which can decrease resource availability of a and it only decreases it
by one, we know that the path t is of the form

t = sp
u
� x

Pa→ y
v

� z
w
� z′

with r(x)(a) = 0 and r(y)(a) = −1. Therefore, the path t is not valid (in the sense
of Sect. 3.1.2) since it contains a prefix u.Pa with �u�(σ0)(a) = r(x)(a) = 0 and a
valid path should satisfy �u�(σ0)(a) > 0. We have just shown that no valid path goes
through a state x with r(x)(a) < 0 for some resource a ∈ R. A similar reasoning
can be held for paths going through a vertex x with r(x)(a) > κa.

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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Definition 3.14 Avertex is valid (and forbidden otherwise) when for every resource
a ∈ R, we have 0 ≤ r(x)(a) ≤ κa.

Proposition 3.15 For any execution trace t : sp � x reaching a vertex x, the
vertex x is valid.

The previous proposition can be rephrased more concisely by saying that vertices
which are not valid are unreachable (in the sense of Definition2.28).

3.2.2 Transition Graphs for Conservative Programs

In the following, we will suppose that all the programs we consider are conservative
(this is not very restrictive in practice, and anyway the condition can easily be checked
by Remark3.10). As we have seen in the previous section, we know that no valid path
can go through a vertex which is not valid. We can therefore restrict the transition
graph to vertices which are valid without removing (valid) execution traces. By
restricting, we mean the following.

Definition 3.16 The pruned transition graph Ǧp is obtained from the transition
graph by restricting to valid vertices (in the sense of Definition3.14), keeping the
terminal position. Formally, if we write V ′ for the set of valid vertices, we have

Ǧp =
{

Gp

∣
∣
V ′ if tp ∈ V ′

Gp

∣
∣
V ′ � tp otherwise

where tp denotes the graph containing tp as only vertex and no edge.

Remark 3.17 The initial position sp of a program is always valid, which explains
why we do not have special case similar to the one for the end position tp in the
preceding definition.

Lemma 3.18 The inclusion Ǧp ↪→ Gp induces a bijection between valid paths
from the initial vertex (i.e., execution traces) in the two graphs.

We saw in Lemma2.12 that every vertex can be reached from the initial vertex sp

and can reach the final vertex tp in the transition graph Gp of a program p. Since
we have removed vertices during the pruning, this is not necessarily true anymore
in Ǧp. This is quite interesting since it enables us to discover some of the problematic
positions described in Definition2.28.

Proposition 3.19 Given a conservative program p, the following holds.

• A position x in Ǧp such that there is no path from the initial vertex sp to x is
unreachable (positions which are not reachable in Ǧp are unreachable).

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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• A position x in Ǧp, which is different from tp, reachable by an execution trace,
and such that there is no edge with x as source in Ǧp, is a deadlock.

• A position x in Ǧp, such that there exists an execution trace reaching a deadlock
and there is a prefix of this trace reaching x, is unsafe.

• A position x in Ǧp, which is reachable by an execution trace, and such that there
is no path from x to tp, is doomed.

Remark 3.20 Notice that there is a subtle difference in the above proposition between
a position x of Ǧp which is “not reachable” from sp, which means that there is no path
from sp to x in the graph Ǧp, and “unreachable,” which will consistently be taken
in the sense of Definition2.28, meaning that there is no execution trace reaching x,
i.e., no valid path from sp to x in Ǧp.

The previous proposition is quite useful, since it can be directly used to implement
a simple verification algorithm. For the properties presented in Sect. 2.3.2.

Algorithm 3.21 Undesirable positions, in the sense of Definition2.28, can be dis-
covered from the pruned transition graph of a conservative program as follows:

• a position which is not reachable from the beginning position is unreachable,
• a position different from the end position and from which there is no transition is
a potential deadlock: it is either a deadlock or unreachable,

• a position from which there is a path to a deadlock is potentially unsafe: it is either
unsafe or unreachable,

• a position from which there is no path to the end position is potentially doomed:
it is either doomed or unreachable.

Above, the positions only “potentially” have these properties because they might not
be reachable, we will generally omit mentioning it in the following. The algorithm
is not complete: it only finds the positions satisfying the above properties (such as
potential deadlocks) because of the “structure of the program,” i.e., the way synchro-
nization primitives are used, but does not consider the values manipulated by the
program, which explains why it cannot find all such positions. We first provide some
examples, and discuss the reasons preventing the algorithm from being complete in
Remark3.25.

Example 3.22 (Swiss flag) Consider the following program p:

Pa;Pb;Vb;Va || Pb;Pa;Va;Vb

with a, b ∈ R mutexes (κa = κb = 1). We have drawn the transition graph Gp on
the left, and the pruned transition graph Ǧp on the right:

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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x00

x01

x02

x03

x04

x10

x11

x12

x13

x14

x20

x21

x22

x23

x24

x30

x31

x32

x33

x34

x40

x41

x42

x43

x44

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pa

Pb

Pb

Vb

Vb

Va

Va

x00

x01

x02

x03

x04

x10

x11

x13

x14

x20

x24

x30

x31

x33

x34

x40

x41

x42

x43

x44

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pa

Pb

Pb

Vb

Vb

Va

Va

The beginning and end vertex are respectively sp = x00 and tp = x44. We have only
shown the labels for the exterior edges, the labels for other edges can be deduced
using the convention that two edges drawn in parallel have the same label, e.g., the
edge x22 → x32 is labeled by Vb. This example is often called the Swiss flag because
of the shape of the pruned transition graph.

Since both a and b are mutexes, the resource potential at the beginning position
is r(x00)(a) = r(x00)(b) = 1. Because the transition x00 → x10 is labeled by Pa, and
the action of Pa is to decrement the number of resources a (see Sect. 3.1.2), we have
r(x10)(a) = 0 and r(x10)(b) = 1. By reasoning similarly on transitions x10 → x20
and x20 → x21, we have r(x20)(a) = r(x20)(b) = 0, as well as r(x21)(a) = 0 and
r(x21)(b) = −1. Therefore, the state x21 is not valid. It can be shown in the same
way that the states x12, x22, x32 and x23 are not valid either, and that all other states
are valid. The pruned transition graph is then obtained from the transition graph by
removing invalid vertices, as well as edges having those vertices as source or target.

Notice that in the pruned transition graph the vertex x11 is a deadlock since it is
distinct from the end vertex x44 and no transition originates from it: it corresponds
to the situation where the first process has taken the resource a and is waiting for the
resource b, while the other process has taken the resource b and is waiting for the
resource a. The vertex x33 is unreachable since it is not the beginning vertex x00 and
it is not the target of any transition.

Example 3.23 (Dining philosophers) We recast here the well-known example of
the dining philosophers due to Dijkstra, as reformulated by Hoare [93]. Consider n
Chinese philosophers seated together around a round table and ready to eat a meal
already served. Between each two philosophers there is a chopstick. A philosopher
has to take both the chopstick on his left and on his right, eat, and then put them
back. For instance, if we suppose that the philosophers start by taking the chopstick
on their left before the one on the right, the situation can be modeled as follows. The
chopsticks are represented by n mutexes ai (with κai = 1) and each philosopher is
modeled by a processes pi of the form

pi = Pai ;Pai+1; A;Vai ;Vai+1

where the indices i, above, are to be considered modulo n, so that they satisfy
1 ≤ i ≤ n. The two P actions correspond to taking the two chopsticks, the action A
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corresponds to eating, and the twoV actions correspond to putting the chopsticks back
on the table. The general situation is modeled by the process p = p1 ‖ p2 ‖ . . . ‖ pn

corresponding to the n philosophers around the table. For instance, with two and
three processes, the pruned transition graphs are respectively

sp

tp

xd

xu

Pa1 Pa2 A Va1 Va2

Pa1 Pa2 A Va1 Va2

Pa2

Pa1

A

Va2

Va1

Pa2

Pa1

A

Va2

Va1

Pa1

Pa2

Va2

Va1

sp

tp

Pa1 Pa2

Pa1

Pa2

Pa3

Pa3

Pa2
Pa3

Pa2

Pa3

Pa1

Pa1

A

A

A

A

A

A

Va1

Va2

Va1
Va2

Va3

Va3

Va2

Va3

Va2
Va3

Va1

Va1

Notice that with two philosophers the position xd is a deadlock. This corresponds to
the situationwhere each philosopher has taken his left chopstick and iswaiting for the
other philosopher to release the chopstick he has taken: they are stuck indefinitely
in this situation and will never eat. Dually, the position xu is unreachable. This
corresponds to the situation where both philosophers are ready to release their right
chopstick which means that both have already taken their left chopstick (because
they take the left one before the right one and release the right one before the left
one in our example) and therefore each chopstick would have been taken by both
philosophers, which is impossible. Similar positions can be found in the example
with three philosophers. Notice that if one of the philosophers is willing to take his
right chopstick before his left one then the deadlock vanishes. For instance, if we
replace p1 by Pa2;Pa1; A;Va2;Va1 while leaving the other unchanged, with two and
three processes we get the following pruned transition graphs without deadlocks or
unreachable positions:

sp

tp

Pa2 Pa1 A Va2 Va1

Pa2

Pa1

A

Va2

Va1

Pa2

Va1

Va1Va2A

Va1

Pa1

Pa2

Pa1

A

Va2
Pa2

Va1

Pa2
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Pa2 Pa2

Pa2

Pa2

Pa3

Pa3

Pa1
Pa3

Pa1

Pa3

Pa1

Pa1

A

A

A

A

A

A

Va2

Va2

Va2
Va2

Va3

Va3

Va1

Va3

Va1
Va3

Va1

Va1
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Example 3.24 In the following, we will sometimes write deadlock for the
quintessential deadlock program:

deadlock = Pa;Va

with κa = 0, whose transition graph is shown on the left:

Here, the position sdeadlock is clearly a deadlock and the position tdeadlock is
unreachable. Notice that the even simpler program Pa exhibits the same situation
(with the end position being not valid, illustrating why we might have to add it again
in Definition3.16). However, the above program will be simpler to use in other pro-
gramswhile having those programs be conservative (as in Remark3.25). If the reader
is worried about using resources of capacity 0 and is more assured with mutexes, the
following program deadlock’ = Pa;Pa;Va;Va with κa = 1, whose transition
graph is shown on the right, can generally be used instead in the examples.

Remark 3.25 It has already been noticed that Algorithm3.21 only allows us to dis-
cover some undesirable positions, but not all of them since we do not consider the
semantics of instructions. For instance, consider the program

p = if false then skip else skip

whose pruned transition graph is shown on the left

sp

xu

tp

false skip

¬false skip

sp

xd

tp

false

¬false skip
(3.2)

The position xu is unreachable because the boolean condition false is never true,
but not discovered by the algorithm. The following variant is also interesting:

p = if false then deadlock else skip

Its pruned transition graph is shown on the right of (3.2). The position xd is discovered
as a potential deadlock, but it is not a deadlock in the sense of Definition2.28 because
it is unreachable for similar reasons as above (however, because of the specific
programming language we chose, it can be shown that all deadlocks are discovered
by the algorithm). Finally, consider the following program p whose pruned transition
graph is shown on the right:

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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p = while true do skip
sp

tp

true

skip

¬true

The end position tp is unreachable because the condition ¬true is never true.
However, it is not discovered by the algorithm. This example is quite similar to
the previous one, but uses a while loop instead of a conditional branching. The
above examples make it clear that we could prune more by also removing vertices
which cannot be reached because branching conditions cannot be satisfied. However,
this would render pruning undecidable (even though we could use some heuristics or
static analysis to remove some of them), and moreover, as mentioned earlier, the aim
of this book is to focus on features of programming languages which are specific to
concurrency.

3.3 Asynchronous Semantics

3.3.1 Toward True Concurrency

As explained in Sect. 2.3, the number of paths to verify can be exponential in the
number of threads. In order to lower this number, we have to take commutations of
actions into account: two actions commute when the effect of their action on any
state does not depend on the order in which they are executed.

Definition 3.26 Two actions A, B ∈ Cact � PR � VR commute when

�B� ◦ �A� = �A� ◦ �B�

Put another way, for any transition graph containing a subgraph of the form

x y1

y2 z

A

B B

A

(3.3)

the semantics of the two paths from x to z are the same.

Example 3.27 The two actions A and B, which are respectively x:=2*x and
x:=x+1, do not commute because we have 1 = �B� ◦ �A�(σ0) �= �A� ◦ �B�(σ0) = 2
(we recall that we have σ0(x) = 0).

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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Example 3.28 The two actions x:=2*x and y:=y+1 are easily checked to com-
mute.

Remark 3.29 Since the only paths we are interested in when verifying programs
are the execution traces, the notion of commutation between actions which is really
interesting for our purposes is the following one: a square of the form (3.3) commutes
when, for every path t : sp � x, we have �B� ◦ �A� ◦ �t�(σ0) = �A� ◦ �B� ◦ �t�(σ0).
This notion of commutation is impossible to compute in practice, i.e., it is undecidable
whether four transitions are commuting, in contrast to the notion of Definition3.26.
Moreover, actions commuting in the sense of Definition3.26 are commuting in the
sense of this remark, which makes it a suitable over-approximation.

The commutation given in Example3.28 is an instance of a more general fact.
Given an action A, we write FV(A) for the set of (free) variables occurring in it. For
instance, FV(x:=2*y) = {x,y}.
Lemma 3.30 Any two actions A and B such that FV(A) ∩ FV(B) = ∅ commute.

Remark 3.31 The previous lemma could be refined by distinguishing between vari-
ables which are used for reading and those used for writing: if a common variable
is used only for reading, the two actions still commute. For instance, the actions
y:=2*x and z:=x+5 commute, even though they share x as free variable.

3.3.2 Asynchronous Semantics

In this section, we provide a semantics for concurrent programs using asynchronous
graphs, which are graphs equipped with a notion of equivalence between paths, used
to keep track of the commutation between actions described in the previous section.
This model is introduced here mostly for didactic and historic purposes: it can be
considered as a bridge between the sequential models based on graphs used up to
now, and the precubical models which are richer—and thus a bit more difficult to
grasp at first—since they can encode commutations between any n-tuple of actions,
as opposed to only pairs of actions.

Definition 3.32 A labeled asynchronous graph (G, I) consists of a labeled graphG
together with a set of independence tiles I consisting of pairs (e1.e′

2, e2.e′
1) of paths

of length 2 with the same source and the same target

x y1

y2 z

e1

e′
1

e2 e′
2∼

(3.4)
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such that �(e1) = �(e′
1) and �(e2) = �(e′

2), and I forms a relationwhich is symmetric.
A morphism f between two labeled asynchronous graphs (G, I) and (G′, I ′) is a
morphism f : G → G′ between the underlying labeled graphs, such that for every
pair of paths (e1.e′

2, e2.e′
1) in I , their image (f (e1).f (e′

2), f (e2).f (e′
1)) is in I ′.

We often use the symbol ∼, as in (3.4), to indicate the elements of I when drawing
an asynchronous graph.

An asynchronous graph can be seen abstractly as a two-dimensional space: the
vertices can be thought as points, the edges as generators for paths, and the tiles as
(generators for) two-dimensional surfaces between paths. This is what is suggested
by the diagram (3.4): since there is a surface between the paths e1 . e′

2 and e2 . e′
1,

we can consider that we have the possibility of “continuously” deforming the first
path into the second. It thus seems natural to call the relation introduced in the
next definition dihomotopy, since it is a combinatorial version of homotopy between
directed paths. This point of view will be extensively explained and developed in the
rest of this chapter and in the following one, see Sect. 4.2 in particular.

Definition 3.33 Given an asynchronous graph (G, I), the dihomotopy relation on
paths, denoted by∼, is the smallest equivalence relation on paths ofGwhich contains
I and is a congruence w.r.t. concatenation:

• given a pair of paths (s1, s2) ∈ I we have s1 ∼ s2,
• and for all paths s1, s2 : x � y, u : x′ � x and v : y � y′, we have

s1 ∼ s2 implies u . s1 . v ∼ u . s2 . v

One can easily show that two paths which are dihomotopic necessarily have the same
source and the same target. Moreover, since the dihomotopy relation is a congruence
by definition, the following category can be associated to any asynchronous graph;
it will play a major role in Chap.4.

Definition 3.34 Given an asynchronous graph (G, I), its fundamental category
�	1(G, I) is the category whose objects are the vertices of the graph and morphisms
from x to y are equivalence classes of paths from x to y by the dihomotopy relation.
In this case, any category isomorphic to �	1(G, I) is said to be presented by the
asynchronous graph (G, I).

The operations used in Sect. 2.2.2 can be extended to asynchronous graphs in order
to give a semantics within asynchronous graphs. Namely, we define the following
operations, extending those of Definition2.6 on graphs.

• The disjoint union (G1, I1) � (G2, I2) of two asynchronous graphs (G1, I1) and
(G2, I2) is the asynchronous graph (G1 � G2, I1 � I2).

• The tensor product (G1, I1) ⊗ (G2, I2) of two asynchronous graphs (G1, I1) and
(G2, I2) is the asynchronous graph (G1 ⊗ G2, I) where a tile in I is of one of the
following forms:

http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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1. ((e1, x2) .(e′
2, x2), (e2, x2) .(e′

1, x2)) with (e1 . e′
2, e2 . e′

1) ∈ I1 and x2 ∈ V2

2. ((x1, e1) .(x1, e′
2), (x1, e2) .(x1, e′

1)) with x1 ∈ V1 and (e1 . e′
2, e2 . e′

1) ∈ I2
3. ((e1, x2) .(y1, e2), (x1, e2) .(e1, y2))with e1 : x1 → y1 edgeofG1 and e2 : x2 → y2

edge of G2, or symmetrically.

(x,x2) (y1,x2)

(y2,x2) (z,x2)

(e1,x2)

(e′
1,x2)

(e2,x2) (e′
2,x2)∼

(x1,x) (x1,y1)

(x1,y2) (x1,z)

(x1,e1)

(x1,e′
1)

(x1,e2) (x1,e′
2)∼

(x1,x2) (y1,x2)

(x1,y2) (x2,y2)

(e1,x2)

(e1,y2)

(x1,e2) (y1,e2)∼

An edge in G1 ⊗ G2 comes from either G1 or G2. Two such edges thus commute
when they either come from different graphs, or they come from the same graph
and they already commuted in this graph.

• The quotient (G, I)[x = y] of an asynchronous graph (G, I) by identifying two
vertices x and y is (G[x = y], I).

• The restriction (G, I)|V ′ of an asynchronous graph (G, I) to a subset V ′ of the
vertices is the asynchronous graph (G|V ′ , I ′) where I ′ is the subset of I of those
pairs of paths whose constituent edges have both their source and their target in V ′.

Using these operations it is easy to define a model for programs:

Definition 3.35 The asynchronous transition graph Gp associated to a program p
is then defined as in Definition2.9, using the above operations on asynchronous
graphs. The pruned asynchronous transition graph Ǧp, also called the asynchronous
semantics of p, is then obtained by restricting to valid vertices as in Definition3.16.

Example 3.36 Consider a program of the form p = A ‖ B where A and B are
arbitrary actions. We have Ǧp = Gp = GA ⊗ GB and its asynchronous semantics
is shown on the left

sp

tp

A

A

B B∼
sp

tp

b

A

¬b B

The tile was introduced here by the tensor operation which declares as indepen-
dent two actions coming from two threads in parallel, such as A and B: every square
with sides of length 2, as in (3.4), whose vertical transitions and horizontal transitions
come from actions in two distinct threads has its sides related by an independence tile.
Because of this, the asynchronous semantics associated with the Swiss flag (Exam-
ple3.22, which is detailed in Example3.40) dining philosophers (Example3.23) and
many other previous example programs are obtained from their respective pruned
transition graphs by adding a tile for every square with sides of length 2. Not every
such square is filled by a tile though: we have for instance shown the asynchronous
transition graph of p = if b then A else B on the right.

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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Remark 3.37 In the previous example, it should be noticed that in the asynchronous
semantics of A ‖ B, the paths A . B and B . A are always dihomotopic, even though
the actions A and B might not commute in the sense of Definition3.26 (for instance
whenA andB are respectively x:=0 and x:=1). The cases where the two notions are
related are of course the desirable ones and those will be studied in next Sect. 3.3.3.

Example 3.38 The asynchronous semantics Ǧp of the following program

p = (x:=1 ‖ y:=2); (Pa;z:=x;Va ‖ Pa;z:=y;Va)

where a is a mutex, is

sp ∼ tp

x:=1

y:=2

y:=2

x:=1

Pa

z:=x

Va Pa

z:=y

Va

Pa

z:=y

Va Pa

z:=x

Va

which, as expected, encodes the fact that the actions x:=1 and y:=2 commute, but
the actions z:=x and z:=y do not.

Example 3.39 The previous example illustrates the meaning of holes w.r.t. the
semantics of programs. However, we will often be interested in shorter examples,
not involving manipulation of data, but still exhibiting a behavior which is interest-
ing from the point of view of concurrency. For instance, the conservative programs
Pa;Va ‖ Pb;Vb and Pa;Va ‖ Pa;Va, respectively have the following asynchronous
semantics:

sp

tp

∼ ∼
∼ ∼

Pa Va

Pa Va

Pb

Vb

Pb

Vb

sp

tp

Pa Va

Pa Va

Pa

Va

Pa

Va

Example 3.40 The asynchronous semantics of the Swiss flag (Example3.22) has
the pruned transition graph given in Example3.22 as underlying graph and I is the
symmetric closure of

{(
x00

Pa−→ x10
Pb−→ x11, x00

Pb−→ x01
Pa−→ x11

)
,
(

x03
Pa−→ x13

Vb−→ x14, x03
Vb−→ x04

Pa−→ x14
)

,

(
x30

Va−→ x40
Pb−→ x41, x30

Pb−→ x31
Va−→ x41

)
,
(

x33
Va−→ x43

Vb−→ x44, x33
Vb−→ x34

Va−→ x44
)}
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In the following, in order to tackle the problem of state space explosion explained
in Sect. 2.3.2, the general idea will be to consider execution traces up to dihomotopy,
i.e., up to commutation of independent actions, in order to reduce the number of
schedulings to consider. The following example illustrates the fact that this reduction
can be quite important in some cases.

Example 3.41 Consider Example3.23, that is, the dining philosophers. Below are,
for small values of n (the number of philosophers), the number of states, deadlocks,
maximal traces (including those leading to the deadlock), total traces (going from
the beginning to the end state), and maximal and total traces up to dihomotopy of
the philosophers problem:

n States Deadlocks Maximal traces Total traces Maximal traces up to
dihom.

Total traces up to dihom.

2 21 1 4 2 3 2
3 99 1 912 906 7 6
4 465 1 648348 648324 15 14

For n philosophers, there are more than 22n states, and more than 2(n−1)2 total traces,
and hence the state space and the path space are growing exponentially in the number
of philosophers. In comparison, there are only 2n −1 classes of maximal traces up to
dihomotopy, among which 2n − 2 are total (and one is leading to a deadlock), which
is much less than the number of traces without the quotient. This idea will be the
starting point of the developments from Chap.4 on, with the notion of trace up to
(di-)homotopy. A more trivial illustration of this phenomenon would be n processes
pi = Pai ;Vai , locking distinct resources, running in parallel. The number of states
is 3n, and the number of maximal traces (equal to total traces) is bigger than (n+1)!.
But there is just one total execution trace up to dihomotopy, and only one interesting
state (or “component,” see Chap.6).

3.3.3 Coherent Programs

In previous examples, it was noticed that the dihomotopy in the asynchronous graph
semantics was the “expected one,” i.e., two paths are homotopic when one can
be transformed into the other by permuting commuting actions. It can however
be noticed that nothing guarantees that the dihomotopy in the asynchronous graph
model (Definition3.33) coincides with the semantic one (Definition3.26), as noticed
in Remark3.37. Programs for which it is the case are called coherent: in such a
program, two dihomotopic paths have the same semantics.

Definition 3.42 A conservative program p is coherent when for every two dihomo-
topic paths t, u : x � y in the asynchronous semantics Ǧp, t is an execution trace
if and only if u is an execution trace, and in this case we have �t� = �u�.

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_6
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Another way to state the coherence property for a program p is that the semantics is
well-defined on morphisms of the fundamental category �	1(Ǧp).

Remark 3.43 Given a conservative program p, the dihomotopy in the asynchronous
semantics (Ǧp, Ǐp) is generated by the independence relation Ǐp, see Definition3.33.
The program p is therefore coherent if and only if for every pair of paths (t, u) ∈ I ,
we have �t� = �u� and one is an execution trace if and only if the other is. The latter
condition being the one used in practice.

Example 3.44 The program

p = (x:=0 || x:=1); if x==0 then deadlock else skip

whose asynchronous semantics is

sp tp∼
x:=0

x:=1

x:=1

x:=0

x==0

¬x==0
skip

is not coherent: the two paths t = x:=0 .x:=1 and u = x:=1 .x:=0 are related
by an independence tile, and are thus dihomotopic, but of course their semantics are
not the same since, for any state σ , we have �t�(σ )(x) = 1 �= 0 = �u�(σ )(x). And
in fact, here, the order in which the two instructions are executed really matters since
the program will either reach the end position tp or be stuck in a deadlock depending
on the scheduling. Notice however that if we had “protected” the parallel accesses
to the variable x, the program would be coherent. Namely, the following variant of
the program is coherent, where a is a mutex:

(Pa;x:=0;Va||Pa;x:=1;Va); if x==0 then deadlock else skip

Notice that in the semantics dihomotopic paths are generated by the “||” instruction,
which gets interpreted as a tensor of asynchronous graphs. For sequential programs
(without “||”), the dihomotopy relation is reduced to equality (t ∼ u implies t = u).
Coherence is thus immediate in this case.

Lemma 3.45 Every sequential program is coherent.

Since in a coherent program we know that two dihomotopic execution traces have
the same effect on the state, in order that the executions of the program are valid, it is
enough to check one representative in each dihomotopy class of execution traces (and
not all the representatives). This can be efficiently exploited in order to reduce the
space of traces to explore during verification, and gives results which are comparable
to partial-order reduction techniques [60, 159] which are for instance implemented
in the SPIN tool [94], as detailed in [71]. Even if execution traces are considered
up to dihomotopy, a program can still generate an exponential number of those, thus
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showing the intrinsic difficulty of verifying concurrent programs, see for instance
the n dining philosophers problem, Example3.23. Similarly, the example given at
the beginning of Sect. 2.3.2 can easily be adapted: the program p = q ‖ . . . ‖ q with
n copies of q = Pa;Va, where a is a mutex, has n! dihomotopy classes of execution
traces.

In the following, we are going to suppose that all the programs we manipulate are
coherent. The fact that this assumption is satisfied is left to the programmer, as in the
POSIX philosophy: the main way of ensuring coherence is to use mutexes as in the
previous example. This is necessary because, in general, the property of being coher-
ent for a program is undecidable. Notice that instead of supposing that coherence is
ensured by the programmer,we could have aswellmodified the asynchronous seman-
tics in order to remove independence tiles from Ǧp of the form of the left below such
that for every execution trace t : sp � x we have �t . A . B�(σ0) = �t . B . A�(σ0),
as shown for instance in the examples in the middle and the right:

x y1

y1 z

∼

A

B

A

B ∼

x:=1

y:=2

x:=1

y:=2

x:=1

x:=2

x:=1

x:=2

While this solution would be satisfactory from a theoretical point of view, in practice
it cannot be computed as already mentioned in Remark3.29. Below, we provide
particularly simple examples of classes of coherent programs, which follow mainly
from Lemma3.30. For instance,

Lemma 3.46 Suppose that p is a conservative program. If, for every two coinitial
transitions labeled respectively by A and B, we have FV(A) ∩ FV(B) = ∅, then the
program p is coherent.

In our illustrative programming language, there is only one kind of variable and it
contains integers, but it would be easy to extend it with another kind of variable
which contains boolean values. We thus suppose, in the rest of this section that we
can also store boolean values in variables: otherwise, the definition of the following
procedure, which transforms a program into a coherent one, would be unnecessarily
complicated.

Definition 3.47 Suppose given a conservative programp and amutexanot occurring
in p. We define a new program �p� inductively by

�A� = Pa;A;Va �skip� = skip

�Pb� = Pb �Vb� = Vb

�p;q� = �p�;�q� �p||q� = �p�||�q�
�if b then p else q� = �x:=b�; if x then �p� else �q�

�while b then p else q� = �x:=b�; while x do �p�

Above, A denotes any action. In the cases for if and while, the variable x is
supposed to be fresh, i.e., not used elsewhere.

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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Proposition 3.48 Given a conservative program p, the program �p� is coherent.

The above transformation ensures that when an action is performed the mutex a is
taken. This ensures that no two actions can be executed at the same time. Notice
in particular that the transformation in the cases of if and while ensures that no
other thread will be able to access the variables used by the boolean condition. Given
a program p, the pruned asynchronous transition graph associated to �p� has thus
almost no independence tile, which explains why the above proposition is true: the
only commutations are between the evaluation of the fresh variable corresponding
to a conditional branching or a loop, and another action, but the freshness of the
variable ensures coherence in this case.

Example 3.49 The program p = x:=1 ‖ x:=2 is not coherent since the actions
x:=1 and x:=2 do not commute: its associated pruned asynchronous transition
graph is shown on the left below and the two distinct paths which are dihomotopic
do not have the same semantics.

sp

tp

∼
x:=1

x:=2 x:=2

x:=1

s�p�

t�p�

Pa x:=1 Va

Pa

x:=2

Va

Pa

x:=2

Va

Pa x:=1 Va

The transformed program �p� is (Pa;x := 1;Va) ‖ (Pa;x := 2;Va) and the asso-
ciated pruned asynchronous transition graph is shown on the right: since there is no
nontrivial pair of dihomotopic paths, coherence is immediate.

Example 3.50 Consider the program

p = x:=1 ‖ (if x==0 then y:=0 else y:=1)

Its pruned asynchronous transition graph contains a tile of the form shown on the
left and is therefore not coherent:

sp

∼

x:=1

x==0

x:=1

x==0 ∼ ∼ ∼

Pa x:=1 Va

Pa x:=1 Va

b b

Namely, the path x==0 .x:=1 is an execution trace because σ0(x) = 0, whereas
the path x:=1 .x==0 is not an execution trace because the condition x==0 is not
satisfied. The transformed program �p� is
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(Pa;x:=1;Va) ||
(Pa;b:=(x==0);Va; if b then (Pa;y:=0; Va) else (Pa;y:=1; Va))

Even though the transformation removes most commutation tiles in the pruned asyn-
chronous graph, it does not remove all of them, for instance it contains the subgraph
shown on the right above.

Remark 3.51 The above translation seems to be particularly simple, but it is some-
times used in practice. This technique is for instance essentially the one used in the
OCaml language because of the constraints imposed by the implementation of the
garbage collector. Its documentation specifies [113]: “The OCaml run-time system is
not reentrant: at any time, at most one thread can be executing OCaml code[...]. Tech-
nically, this is enforced by a master lock that any thread must hold while executing
such code.”

Remark 3.52 Of course this translation is by no means optimal. First, it adds lots of
unnecessary blocking sections. For instance, if the program contains the instruction
x:=1 and x is never used elsewhere, or the structure of the program is such that no
other thread can access the variable x while it is assigned a value, then, following
Lemma3.30, it is unnecessary to enclose the action with Pa and Va. Lemma3.45 also
shows that there is no need to add any blocking section if the program is sequential.
The program transformation described inDefinition3.47 could also bemade coherent
in a more subtle way by using one mutex ax for each variable x and enclosing every
action A with Pax and Vax for each variable x occurring in A, such as in

Pax;Pay;Paz;x:=y+z;Vax;Vay;Vaz

One can even go further by distinguishing, in every action x:=e, the variable xwhich
is written to from the ones (occurring in e) that are just read; then removing a tile
(of the pruned graph) whose edges are labeled by the actions x:=e and y:=e′ only
when x ∈ FV(e) or y ∈ FV(e′). Doing so we would ensure that all dihomotopic
execution traces are semantically equivalent, and thus avoid the unpleasant (unde-
cidable) notion of coherent programs. Yet, we have explained earlier that, for sake
of realism, we have decided to stick with the POSIX approach. It was motivated
because most programming languages, contrarily to ours, have pointers: in this con-
text, two distinct variables might refer to the same memory location, thus making
the previous syntactic criterion irrelevant.

Example 3.53 (Producer-consumer) The coherence property for programs includ-
ing more general data structures, such as queues, would require an extension of our
toy language, as done in [51]. Nevertheless, for most practical applications, our cur-
rent language is sufficient. The most well-known class of programs involving such
data structures is the producer-consumer problem, which regulates the coordination
between a number of distinguished processes pi called producers (in practice, each
producer emits some value vi), and another number of distinguished processes ci

called consumers (which use the values emitted by producers in order, say, to update
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a global variable x). Each share a queue q, of capacity bounded by n: a queue is a
data type which allows for atomically pushing up to n values (using the operation
pushq) and retrieving them one by one (using popq) in the order they were put
in. We suppose that our semantics was appropriately extended in order to support
those. A classical way of ensuring the correct behavior of such a system is to use two
resources e (for “not empty”) and f (for “not full”) of capacity n, see [33]: when a
process acquires a lock on resource e (resp. f ), it will be ensured that the queue is
not empty (resp. not full). The resources are initialized so that f is not taken by any
process, but e is considered to be with 0 as resource potential (no process can yet
lock it unless some process releases it first). The producer and consumer processes
are respectively

pi = Pf ;pushq(vi);Ve ci = Pe; x := x ⊕ popq();Vf

where ⊕ is an arbitrary associative and commutative operation. If we suppose that
there are at least asmany consumers than there are producers, the program is coherent
(if we do not observe the contents of the queue). Below is depicted the asynchronous
semantics of the program in a few cases, depending on the number of producers and
consumers:

p1

c1
p1

c1 c2
p1 p2

c1 c1

p2 p1

∼
∼ ∼

1 p. / 1 c. 1 p. / 2 c. 2 p. / 1 c.

Notice that in the case with two producers and one consumer (on the right), the
program is not coherent since x will contain either v1 or v2 in the terminal position,
depending on the execution path taken to reach this position.

Remark 3.54 Usually, instead of having a fixed number of producers and consumers,
there is one producer which iteratively produces values, i.e., its code is the same
as above but encapsulated in a while loop, and similarly there is one consumer
which iteratively consumes values. Notice that the corresponding program is not
conservative, and hence cannot be described in the formalism of the book. Such a
program could still be taken in account by rewriting the producer-consumer code
using monitors [92], and extending the techniques developed here to handle those,
but this is outside the scope of this book.

3.3.4 Programs with Mutexes Only

In this section, we will be interested in programs where all the resources are mutexes,
i.e., have capacity 1. These are interesting because mutexes are the most widely used
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synchronization primitive, and one can show interesting properties in this particular
case. We begin by observing that the asynchronous semantics Ǧp of a conservative
program p always satisfies the following property:

Definition 3.55 An asynchronous graph has uniquely closing tileswhen given a pair
of solid edges as in the figures below, there is at most one pair of dotted edges such
that there is a tile relating both paths:

∼ ∼ ∼ ∼

In an asynchronous graph satisfying the above property, one can define the residual
of a path after another which intuitively corresponds to what “remains” of a path
once the other has been taken.

Definition 3.56 Given two coinitial paths s : x � y and t : x � z, the residual t/s
of t after s is the path defined by induction on both paths by

t/ε = t ε/s = s (e2 . t′)/(e1 . s′) = ((t/e′
1) . e′

2)/s

where the last case is defined only if the transitions e1 and e2 can be closed as a tile
of the form (3.4):

e1 s′

e2

t ′

∼

e′
1

e′
2

t ′/e′
1

((t ′/e′
1) .e

′
2)/s′ whenever

s = e1 .s
′

t = e2 . t
′

Lemma 3.57 Given two coinitial paths s and t, the residual t/s is defined if and
only if s/t is, and we have s .(t/s) ∼ t .(s/t).

When the program p contains only mutexes, its asynchronous semantics can be
shown to moreover satisfy the two following cube properties:

Definition 3.58 An asynchronous graph satisfies the forward cube property when
whenever it contains an asynchronous subgraph as on the left, it also contains a
subgraph as on the right (notice that the two “external” paths, e1 . e2 . e3 and e′

3 . e′
2 . e′

1,
are the same in both graphs):

e1

e2

e3

e′
3

e′
2

e′
1

∼ ∼
∼ ⇒

e1

e2

e3

e′
3

e′
2

e′
1

∼
∼ ∼

The right-to-left implication is called the backward cube property.
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Proposition 3.59 An asynchronous graph, whose tiles close uniquely and which
satisfies the forward cube property also satisfies the following.

1. Given coinitial paths s, s′, t, if s ∼ s′ then t/s = t/s′ (both residuals are simulta-
neously defined or not).

2. Given coinitial paths s, t, t′, if t ∼ t′ then t/s ∼ t′/s (both residuals are simulta-
neously defined or not).

3. Given paths s, t, t′, if s . t ∼ s . t′ then t ∼ t′.
4. Given paths s, s′, t, t′ such that s . s′ ∼ t . t′, the residuals s/t and t/s are both

defined and there exists a path u such that (t/s) . u ∼ s′ and (s/t) . u ∼ t′

s t

s′ t ′

t/s s/t
∼

u

∼ ∼

and moreover such a path u is unique up to dihomotopy.

Dual properties are satisfied when the backward cube property is verified.

Proof The proofs of 1, 2, and 3 are performed by induction on the derivation of
dihomotopyand the lengthof paths, using the forward cubeproperty. In 4, the required
morphisms are obtained by starting from the homotopy between s . s′ and t . t′, and
replacing all possible half cubes using the forward cube property. Uniqueness up to
homotopy of u follows from 3. �

Two coinitial morphisms f and g in a category are compatible when there exists
morphisms f ′ and g′ such that f ′ ◦ f = g′ ◦ g (and cocompatibility is defined dually).
From the previous proposition, wet get, immediately, the following:

Corollary 3.60 Given a conservative program p with mutexes only, the fundamental
category �	1(Ǧp) has pushout of compatible morphisms, pullbacks of cocompatible
morphisms, and every morphism is epi and mono.

Another interesting observation is that in this case, the homotopy classes of paths
are generated by posets in the following sense. To every finite poset (E,≤) one can
associate an asynchronous graph whose vertices are the downward closed subsets
of E, called its configurations, there is an edge from x to y whenever y = x � {e}
for some e ∈ E, and all possible squares are filled with tiles. For instance, the poset
whose Hasse diagram is shown on the left (elements are increasing from bottom to
top) generates the asynchronous graph on the right:
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b c

a

{a,b,c}

{a,c}{a,b}

{a}

/0
a

b c

c b
∼

The generated asynchronous graph satisfies the forward and backward cube property,
and tiles close uniquely. Moreover, all the paths from the initial configuration ∅ to
the terminal configuration E are homotopic. Conversely, in an asynchronous graph
satisfying those properties, every path homotopy class is generated by a partial order
in this way: the elements of this poset are the events, i.e., the equivalence classes
of transitions by the smallest equivalence relation identifying two transitions which
occur as parallel sides of an independence tile such as e1 and e′

1 in (3.4).
In the above construction, the partial order expresses the dependencies between

events; it can also be extended to the casewhere some events are incompatible, giving
rise to the notion of event structure [165]. Links between event structures and other
models such as asynchronous graphs are investigated in [126, 133, 167] and extended
to precubical models in [73]. A similar (and strongly related) cube condition was
introduced byGromov in order to characterize cubical complexes (which are roughly
geometric realizations of precubical sets) of non-positive curvature [78].

3.4 Cubical Semantics

3.4.1 Precubical Sets

In the previous section, we have enriched the structure of a graph in order to take
commutation of two actions into account. We now generalize this idea to n actions.
For instance, the program Pa;Va ‖ Pa;Va ‖ Pa;Va where a is a mutex such that
κa = 2 generates the following pruned asynchronous transition graph:

Pa

Pa

Va

Pa

Va
Pa

Va

Va

Pa

Va

Pa

Va

(3.5)



50 3 Truly Concurrent Models of Programs with Resources

where all the squares are filled, but the interior of the cube is empty. Notice that there
is no vertex in themiddle and the figure can thus be seen as an empty subdivided cube.
In the previous section, we saw the importance of distinguishing between empty and
filled squares. We would like to extend here this methodology to all n-dimensional
cubes: for instance, we would like to distinguish between an empty n-cube and a
filled one. In order to formalize this, we use a generalization of asynchronous graphs
called precubical sets. An asynchronous graph consists of three kinds of objects:
0-dimensional ones (the vertices), 1-dimensional ones (the edges), and 2-dimensional
ones (the independence tiles). A precubical set will consists of sets of n-dimensional
cubes for each n ∈ N, together with their faces: each n-dimensional cube has 2n
faces, i.e., a front and a back face in each direction i with 0 ≤ i < n.

Definition 3.61 A precubical set C consists of a family (Cn)n∈N of sets, whose
elements are called n-cubes together with for all indices n, i ∈ N with 0 ≤ i < n,
maps

∂−
n,i : Cn → Cn−1 and ∂+

n,i : Cn → Cn−1 (3.6)

respectively associating to an n-cube its back and front face in the ith direction,
such that

∂
β

n,j∂
α
n+1,i = ∂α

n,i∂
β

n+1,j+1 (3.7)

for 0 ≤ i ≤ j < n and α, β ∈ {−,+}. A morphism f : C → D between a
precubical set C and a precubical set D consists of a family (fn : Cn → Dn)n∈N of
functions such that for every integers n, i ∈ N with 0 ≤ i < n and α ∈ {−,+},

∂α
n,i ◦ fn = fn−1 ◦ ∂α

n,i

The 0-cubes and 1-cubes of a precubical set are often called its vertices and edges
respectively. Given a set L of labels, a labeled precubical set (C, �) consists of a
precubical set C together with a function � : C1 → L such that

� ◦ ∂−
2,0 = � ◦ ∂+

2,0 and � ◦ ∂−
2,1 = � ◦ ∂+

2,1

Remark 3.62 The category of precubical sets and their morphisms can be reformu-
lated as a category of functors. Namely, we define the precubical category � as the
opposite of the free category whose objects are integers and morphisms are gen-
erated by morphisms of the form (3.6) quotiented by the congruence generated by
relations (3.7). It is then immediate to see that the category of precubical sets is
isomorphic to the category �̂ of presheaves over �, i.e., of functors �op → Set and
natural transformations between them.

Example 3.63 A Möbius strip can be described as the precubical set M such that
M0 = {x, x1, x2}, M1 = {f1, f2, g, g1, g2}, M2 = {h1, h2} and Mn = ∅ for n > 2.
The faces are given by ∂−

1,0(f1) = x1, ∂+
1,0(f1) = x, ∂−

1,0(f2) = x2, ∂+
1,0(f2) = x,

∂−
1,0(g1) = x1, ∂

+
1,0(g1) = x2, ∂

−
1,0(g) = x, ∂+

1,0(g) = x, ∂−
1,0(g2) = x2, ∂

+
1,0(g2) = x1,

∂−
2,0(h1) = f1, ∂

+
2,0(h1) = f2, ∂

−
2,1(h1) = g1, ∂

+
2,1(h1) = g, etc. Graphically,
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x2

x

x1

x1

x

x2

g2

g

g1

f2

f1

f1

f2

h2

h1

x1

x

x2

f1

f2

g1

g

g2

h2

h1

Notice that every graph G = (V, ∂−, ∂+, E) can be seen as a precubical set C
with C0 = V , C1 = E, and Cn = ∅ for n > 1, with maps ∂−

1,0 = ∂−, ∂+
1,0 = ∂+. An

edge e ∈ E thus has the following source and target:

∂−
1,0(e) ∂+

1,0(e)
e

and this extends to labeled graphs and labeled precubical sets. Similarly, an asyn-
chronous graph (G, I) can be seen as a precubical set C with C0 and C1 as above,
C2 = I and Cn = ∅ for n > 2, with maps ∂−

1,0 and ∂+
1,0 as above, and given an

element h = (e1 . e′
2, e2 . e′

1) of I ,

∂−
2,0(h) = e1 ∂+

2,0(h) = e′
1 ∂−

2,1(h) = e2 ∂+
2,1(h) = e′

2 (3.8)

which corresponds to the following figure

∂ −
2,1(h)

∂ +
2,1(h)

∂ −
2,0(h) ∂ +

2,0(h)h

It is easy to see that this provides a full and faithful embedding of the category of
(asynchronous) graphs into the category of precubical sets: the morphisms between
asynchronous graphs are in bijection with the morphisms between the corresponding
precubical sets.

Example 3.64 The graph I = x y
f

with two vertices x and y, and one edge f
from x to y, can be seen as the precubical set C with C0 = {x, y}, C1 = {f } and
Cn = ∅ for n > 1, and face maps given by ∂−

1,0(f ) = x and ∂+
1,0(f ) = y.

Conversely, any labeled precubical set (C, �) has an underlying asynchronous tran-
sition graph (G, I), with C0 as vertices of the graph, C1 as edges of the graph, with
source and target respectively given by ∂−

1,0 and ∂+
1,0 and labels by �, and there is a

tile relating paths e1 . e′
2 and e2 . e′

1, as in (3.4), whenever there is a 2-cube h ∈ C2

satisfying the relations (3.8). We can thus easily import concepts from Sect. 3.3.2.
For instance,
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Definition 3.65 A path in a precubical set is a finite sequence e1, . . . , en of 1-cubes
such that ∂+

1,0(ei) = ∂−
1,0(ei+1) for every index i with 1 ≤ i < n. The dihomo-

topy relation ∼ on paths is the smallest equivalence relation, which is a congruence
w.r.t. concatenation, and such that (e1 . e′

2) ∼ (e2 . e′
1) whenever there is a 2-cube

h ∈ C2 satisfying the relations (3.8).

Similarly, the fundamental category of a precubical set C can be defined as the
fundamental category of its underlying asynchronous graph:

Definition 3.66 The fundamental category �	1(C) associated to a precubical set C
is the category whose objects are the vertices of C and morphisms from x to y are
paths from x to y up to dihomotopy.

The operations previously defined on asynchronous graphs can be extended with-
out difficulty to precubical sets, while coinciding with previous operations on the
embedding of asynchronous graphs. Given two precubical sets C and D,

• their disjoint union is the precubical set C � D defined by

(C � D)n = Cn � Dn

with boundary maps induced by those of C and D,
• their tensor product is the precubical set C ⊗ D defined by

(C ⊗ D)n =
∐

i+j=n

Ci × Dj

with boundary map ∂α
n,k : (C ⊗ D)n → (C ⊗ D)n−1 defined on (x, y) ∈ Ci × Dj,

with i + j = n, by

∂α
n,k(x, y) =

{
(∂α

n,k(x), y) if 0 ≤ k < i

(x, ∂α
n,k−i(y)) if i ≤ k < n

and other operations such as quotient or restriction can be defined similarly (when
restricting to a subset of vertices, one has to remove all cubes which admit, as iterated
face, a vertex in the complement of this subset). Moreover, these operations extend
as expected to labeled precubical sets.

Example 3.67 We write I for the precubical set described in Example3.64, corre-
sponding to the graph with one edge f : x → y, and S1 for the precubical set
corresponding to the graph with one vertex z and one edge g (from z to z):

I = x y
f

S1 =
z

g
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(notice that we could also have defined S1 as I[x = y]). The precubical set C
corresponding to an empty cylinder can be obtained as C = I ⊗S1. Namely, we have
C0 = {(x, z), (y, z)}, C1 = {(f , z), (x, g), (y, g)}, C2 = {(f , g)} and Cn = ∅ for
n > 2. Faces are given by ∂−

1,0(f , z) = (x, z), ∂+
1,0(f , z) = (y, z), ∂α

1,0(x, g) = (x, z),
∂α
1,0(y, g) = (y, z), ∂−

2,0(f , g) = (x, g), ∂+
2,0(f , g) = (y, g) and ∂α

2,1(f , g) = (f , z),
with α ∈ {−,+}. Graphically:

C = (x,g) (y,g)

(x,z) (y,z)

( f ,g)

( f ,z)

Many others classical examples arise from simple precubical sets using tensor prod-
ucts. For instance, the square is I ⊗ I , more generally an n-cube is I⊗n (the tensor
product of n copies I), an empty torus is S1⊗S1, a filled square toroid as I⊗I⊗S1, etc.

( f ,g)
(x,x) (y,x)

(x,y) (y,y)

( f ,x)

(x, f ) (y, f )

( f ,y)

(z, z)

(g, z)

(z, g)(g, g)

I ⊗ I S1 ⊗S1 I ⊗ I ⊗S1

Using the above constructions, we can define models of concurrent programs in
labeled precubical sets, generalizing the definitions given in Sect. 3.3.2

Definition 3.68 The precubical transition set Cp associated to a program p is then
defined as in Definition 2.9, using the above operations on precubical sets which are
labeled inL = Cact�B�PR �VR. The pruned precubical transition set Čp, which
will often be called the cubical semantics of p, is then obtained by restricting to
valid vertices (i.e., 0-cubes), as in Definition3.16

Example 3.69 Consider the following program:

p = Pa;Va ‖ Pa;Va ‖ Pa;Va

Depending on the capacity of the resource a, the cubical semantics Čp of p is as
follows:

• if κa = 3 then Čp is a subdivided filled cube,
• if κa = 2 then Čp is a subdivided hollow cube,
• if κa = 1 then Čp is a subdivided skeletal cube reduced to its edges,
• if κa = 0 then Čp only consists of 8 vertices.
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a = 3 = 2 = 1 = 0a a a

3.4.2 The Geometric Realization

In order to relate the algebraic approach developed in this chapter and the geometric
models that will be presented in following chapters, we recall how a precubical
set can be seen as a topological space obtained by gluing cubes according to the
precubical set.

Definition 3.70 The topological space In is called the standard n-cube.

For instance, I0 is a point, I1 is an interval, I2 is a square, I3 is a cube, etc.

. . . .

I0 I1 I2 I3 . . .

Notice that In has 2n faces, a back and a front face in each direction 0 ≤ i < n, which
are (n − 1)-cubes included in In that can be described as follows: given 0 ≤ i < n,
the ith back-face is given by the inclusion ι−n,i : In−1 → In defined by

ι−n,i(x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi, . . . , xn−1)

and the ith front face is given by the inclusion ι+n,i : In−1 → In defined similarly
with 1 instead of 0. It is natural to think about the standard n-cube as a topological
counterpart of an n-cube, and a precubical set as a gluing of such cubes:

Definition 3.71 The geometric realization of a precubical set C is the topological
space

|C| =
∐

n∈N
(Cn × In) / ≈

where Cn is equipped with the discrete topology, and ≈ is the equivalence relation
generated by relations (∂α

n,i(x), p) ≈ (x, iαn−1,i(p)) for n ∈ N, x ∈ Cn and p ∈ In−1.

Example 3.72 The topological realization of the Möbius strip precubical set given
in Example3.63 is a Möbius strip (in the usual topological sense), and similarly for
the other examples given in Example3.67.
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Remark 3.73 A more abstract point of view can be developed as follows. Recall
from Remark3.62 that precubical sets are presheaves over the category �. Now, one
can define a functor I : � → Top, which sends an object n to In and generators
∂α

n,i : (n − 1) → n of face maps to face maps ιαn,i : In−1 → In. The geometric
realization can then be obtained as the colimit

|C| = colim
(

y/C
π−→ � I−→ C

)
(3.9)

where y : � → �̂ is the Yoneda embedding, y/C is the slice category of the
functor y over C ∈ �̂ (its objects are pairs (n, f ) with n ∈ � and f : yn → C,
and it is sometimes called the category of elements of C), π : y/C → � is the first
projection functor (which is defined for any slice category) andC = Top. The interest
of this abstract version is that it can be easily generalized, by replacing Top by any
cocomplete category C , and I by any functor I : � → C : the definition (3.9) still
makes sense and satisfies the samemain properties as the usual geometric realization,
as presented in Definition3.71. This will be useful in order to study other models
such as directed topological spaces (see Definition4.10).

Unfortunately, the properties of this fundamental construction cannot be detailed
here [56, 111]. We only mention that the geometric realization functor admits a right
adjoint:

Proposition 3.74 The geometric realization functor |−| : �̂ → Top admits a right
adjoint, called the nerve functor N : Top → �̂, which is defined on objects X ∈ Top
and n ∈ �op by NXn = Top(In, X).

Also, given a precubical set C, to every 0-cube x ∈ C0 is canonically associated
a point in |C|, that we denote by |x|, and similarly elements of C1 can be seen as
segments, etc.

3.5 Historical Notes

One of the most classical semantics for concurrency is based on automata, or tran-
sition systems [99, 122, 128, 143], and is known as interleaving semantics [5, 135],
used heavily in the early days of process algebras (CCS, π -calculus, etc.) [93, 124].
Another classical semantics for concurrency originated in the work of Petri [139], in
reaction to the predominant automata-theoretic approach to semantics, starting with
the idea that automata “are not capable of representing the actual physical flow of
information” [139] in concurrent and distributed systems.

From there on, a huge literature started on so-called truly concurrent semantics,
where (sequential) non-determinism is considered as essentially different from the
apparent non-determinism that a sequential observer [140] would see when two or
more processes are executed concurrently. This has a number of advantages. First,

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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most truly concurrent semantics for concurrency give rise to smaller models than
interleaving semantics. It generally helps prevent the “state space explosion prob-
lem.” Instead of representing the potentially exponential number of interleavings
of independent actions, truly concurrent semantics generally encodes this implicitly
as some form of independence relation, as in Mazurkiewicz trace theory [30, 121]
or in asynchronous transition systems [70]. For instance, applications to efficient
model-checking based on partial-order reduction [60] and on Petri nets [159] have
been developed. Starting from the early 1990s, a series of seminal papers have been
advocating to generalize those models by using precubical sets in order to study con-
currency. Those have explored the use of precubical sets and Higher-Dimensional
Automata (which are labeled precubical sets equippedwith a distinguished beginning
vertex) [141, 160], have begun to suggest possible homology theories [63, 72], and
have found applications to serializability [82]. Notice that (pre)cubical sets, which
are natural in our context, are also classical objects in algebraic topology (although
somewhat less classical than simplicial sets), from the early work of Kan in alge-
braic topology starting from the 1940s and the thesis of Serre [153], to the Bangor
group [20], the work of Jardine [95], to important aspects of the proof of the Poincaré
conjecture (special cube complexes, see for instance [83]). There are also links with
other fields of computer science that will not be developed in this book, and are
only evoked in the concluding Chap.8. Let us mention rewriting theory, links with
Squier’s theorem [3, 157], models for higher-order type theory [10], bisimulation
semantics [39], etc.

A more domain theoretic approach, as opposed to the operational semantics
approach as in the above, has been introduced in [132], with links to Petri Nets, under
the name of (prime) event structures. A good reference for the relationships between
all thesemodels, and in particular asynchronous graphs, canbe found in [167], andhas
been generalized to precubical models in [73]. These representations are generally
also more modular. It has been advocated for instance [162] that these semantics may
help in deriving properties of concurrent systems at different levels of abstractions
(and not by having to enumerate all potential actions, as in interleaving semantics).
Second, it allows for describing finer properties. Obviously, these semantics distin-
guish concurrent executions from mutual exclusions, and for some, they even dis-
tinguish all kinds of weaker synchronizations (e.g., counting semaphores as we will
see later in the book) and the number of concurrent processes which are scheduled
at the same time on distinct processors. In short, general truly concurrent semantics
generalize properties that can be observed, from sequential to concurrent observers.
This is instrumental in a number of applications, such as in fault-tolerant protocols
for distributed systems, which will not be handled here, see [88] and Chap. 8.

http://dx.doi.org/10.1007/978-3-319-15398-8_8
http://dx.doi.org/10.1007/978-3-319-15398-8_8


Chapter 4
Directed Topological Models of Concurrency

In this chapter, we continue the presentation of various models for concurrent
programs and, in particular, study topological models, with the aim of importing
tools and techniques coming from algebraic topology in order to ease verification of
concurrent programs. In those models, the state space of a program is described as
a topological space, and an execution naturally corresponds to a path in this space.
However, usual topological spaces are not completely suitable for our purposes,
because they do not take the causality of the program into account: the execution
of a program can only go forward in time (a program cannot execute some actions
backward), whereas there is no corresponding constraint on the paths in a topological
space. In order for the models to behave properly, we are led to enrich the concept
of a topological space so that it takes causality into account. We shall then focus
our attention on directed paths, i.e., the ones respecting causality. Many variants of
this notion have been proposed, but we will mainly focus here on d-spaces as intro-
duced by Grandis, because they are technically more tractable and a widely accepted
notion nowadays. We only provide a brief introduction to those here (Sect. 4.1), the
reader interested in more detail is advised to consult the reference book about the
subject [77]. In particular,we explain howvarious classical notions in algebraic topol-
ogy extend to this setting: homotopy and the fundamental category (Sect. 4.2), the
Seifert–van Kampen theorem (Sect. 4.3.1), universal covering spaces (Sect. 4.3.2),
and hint at various other constructions (Sect. 4.4).

4.1 Directed Spaces

We first recall that the unit interval is the topological space I = [0, 1] equipped with
the Euclidean topology (open sets are generated by open intervals). A path f in
a topological space X is a continuous map f : I → X, the point f (0) is the source
and f (1) is the target of the path, and we sometimes write f : f (0) � f (1) to indicate
those endpoints. A loop is a path with the same source and target. The constant path,
whose image is a given point x, is written εx. Given two paths f , g : I → X, their
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concatenation is the path f . g such that f . g(t) is f (2t) if 0 � t � 1/2 and is g(2t − 1)
otherwise. A path f : I → I is a directed partial reparametrization if it is weakly
increasing (and a reparametrization whenever f (0) = 0 and f (1) = 1).

4.1.1 A Definition

A directed topological space is a topological space equipped with a coherent set of
paths that are considered as directed:

Definition 4.1 A d-space (X, dX) consists of a topological space X together with a
set dX of paths of X, the directed paths or d-paths or dipaths, such that

1. every constant path is directed,
2. the precomposition of a directed path with a directed partial reparametrization is

directed,
3. the concatenation of two directed paths is directed.

A morphism of d-spaces (or d-map) h : X → Y , is a continuous map h : X → Y
which preserves directed paths, in the sense that for every directed path f ∈ dX we
have h ◦ f ∈ dY . We write dTop for the category of d-spaces and d-maps.

Since partial reparametrizations are not necessarily surjective, the second condition
implies in particular that dX is closed under taking subpaths. A subspace (Y , dY) of
a d-space (X, dX) is a subset Y of X that inherits its topology and d-paths from X,
i.e., dY = {f ∈ dX | f (I) ⊆ Y} (in fact, every subset of a d-space can be equipped
with a d-space structure in this way).

Example 4.2 The fundamental example of a d-space is the directed unit interval
�I = (I, dI) where I = [0, 1] is the unit interval and dI is the set of paths f : I → I
which are weakly increasing, i.e., the partial reparametrizations. Notice that the
set dX of directed paths of a directed space X is in bijection with d-maps from �I to
X, i.e., dX ∼= dTop(�I, X). The d-space structure on a topological space is of course
not unique. For instance, the set of constant paths in I or the set of all paths in I also
define a d-space structure on I , see Proposition 4.6.

Example 4.3 A topological space X equipped with a partial order, whose graph is a
closed subspace ofX × X, is called a pospace. The condition imposes that the partial
order is compatible with the topology of the space: for instance, it ensures that the
limit of an increasing sequence of points is above all the points in the sequence, or that
limit is compatible with pointwise ordering of sequences. Every pospace defines a
d-space by defining dX as the set of weakly increasing paths f : I → X. The directed
unit interval �I of Example 4.2 is an instance of this construction, starting from the
pospace I = [0, 1] equipped with the usual partial order. Similarly, we write R for
the directed real line. The directed standard n-cube �In is the d-space generated by In

equipped with the product order (i.e., (x1, . . . , xn) � (y1, . . . , yn) iff for each index i,
we have xi � yi).
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Example 4.4 The directed complex plane �C is the complex plane C equipped with
the set dC of directed paths consisting of paths f : I → C such that the function
t �→ |p(t)| is (weakly) increasing and t �→ arg(p(t)) is (weakly) increasing modulo
2π : increasing paths are those which are turning counterclockwise and going further
away from the origin. The directed circle �S1 is the subspace consisting of points
z ∈ C such that |z| = 1, as figured on the left:

Similarly, the directed disk �D2 is the subspace of �C of points z satisfying |z| � 1
and is pictured on the right. Notice that neither of these spaces are generated from
a topological space equipped with a partial order as described in Example 4.3. One
can further remark that every point of the directed circle admits a neighborhood
homeomorphic to �I , on which the direction arises from a partial order, but this is
not the case for the directed complex plane: there is no neighborhood of the origin
whose direction is generated by a partial order (we have illustrated some directed
paths starting from the origin on the right). Such a point (with the property that every
neighborhood contains a nontrivial loop) is called a vortex.

Further examples of d-spaces can be constructed from the above ones using limits
and colimits described in next section.

4.1.2 Limits and Colimits

A major property of the category dTop is that it has all limits and colimits (we refer
the reader to Grandis’ book [77] for details and proofs):

Proposition 4.5 The category dTop is both complete and cocomplete.

In the nondirected setting, i.e., for the category Top of topological spaces and contin-
uous maps, this is also true and well studied: roughly, colimits correspond to gluing
spaces, whereas limits correspond to taking some products of spaces. A first intuition
about what (co)limits look like in the directed setting is given by the fact that they
coincide with usual (co)limits on the underlying topological spaces:

Proposition 4.6 The forgetful functor U : dTop → Top, which is defined on objects
by U(X, dX) = X, has both a left and a right adjoint. It thus preserves colimits and
limits.

Proof Given a topological space X, the collection of all constant paths (resp. all
paths) on X equips it with a d-space structure, and this operation extends to a functor
which is left (resp. right) adjoint to the forgetful functor. �
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Note that the previous proposition allows us to equip any topological space with two
possible canonical d-space structures. In particular, in the following, the unit interval
I will implicitly be seen as equipped with all paths as directed paths, except when it
occurs at the left of an arrow in which case only constant paths are directed: in the
d-space I × I every path is directed, but a map f : I → X denotes a nondirected path
in a d-space X.

Some usual (co)limits, which are topological analogs of the operations on graphs
provided in Sect. 2.2.1, can be described explicitly as follows:

• The terminal d-space 1 is the d-space containing only one point.
• The cartesian product X × Y of two d-spaces X and Y has d(X × Y) = dX × dY .
• The disjoint union X 	 Y of two d-spaces X and Y is such that d(X 	 Y) = dX 	

dY .
• The quotient X[x = y] of a d-space X by identifying two points x and y is the
d-space X where x and y have been identified, and a directed path is, up to repara-
metrization, a finite sequence of directed paths (fi : zi � z′

i)1�i�n in X such that
zi, z′

i ∈ {x, y}, except possibly z1 and z′
n, with z′

i �= zi+1.

Example 4.7 The product �S1 × �I is the directed empty cylinder, drawn on the left.
Similarly, the product �D2 × �I is the directed filled cylinder. The product �S1 × �S1 is
the empty torus shown on the right.

Example 4.8 Colimits in the category dTop do not always give the “expected” result
in the presence of vortexes. For instance, consider the pushout of the diagram

�S1 × �I ←− �S1 −→ 1

where the arrow pointing to the left is the inclusion of the directed circle at the
base of the directed empty cylinder (see Example 4.7), and the arrow pointing to
the right is the terminal arrow: the resulting space is obtained by squashing the base
of a cylinder to a point. We could expect the result to be the directed disk �D2 (see
Example 4.4), but this is not the case: while the underlying topological space is the
same, an “upward spiral” (such as the path t �→ tei/t , whose image at 0 is 0) cannot
be written as a finite concatenation of dipaths winding only once around the origin,
it is therefore not directed whereas it belongs to d �D2. For a workaround, see [87].

Given a directed topological spaceY , the setY�I of d-maps from�I toY is isomorphic
to the set dY as noted in Example 4.2. It can be equipped with the compact-open
topology, which is the topology generated by the sets of functions f : �I → Y such

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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that f (K) ⊆ U for some compact K ⊆ I and open U ⊆ Y (these form a subbasis
for the topology). From the resulting topological space, we can define a d-space by
declaring that the directed paths h : I → Y�I in dY�I are the continuous functions such
that the function t �→ h(t)(u) is a directed path in Y for every u ∈ �I . We will always
implicitly equip Y�I with this d-space structure, which is justified by the following
property, showing that �I is exponentiable:

Proposition 4.9 For all d-spaces X and Y, there is a natural bijection between
dTop(X × �I, Y) and dTop(X, Y�I).

Two directed paths f and g in a d-space X can be seen as points in X�I .
The standard directed n-cube �In defined in Example 4.3 is the space obtained as

the product of n copies of �I . As in Sect. 3.4, we can define a functor �I : � → dTop
which to every object n associates �In and images of morphisms are defined as in the
nondirected case. Because the category dTop is cocomplete, this induces a functor
|−| : �̂ → dTop associating a directed topological space to every precubical set,
see Remark 3.73.

Definition 4.10 The directed geometric realization functor |−| : �̂ → dTop is
the functor defined on a precubical set C by

|C| =
∐

n∈N
(Cn × �In)/≈

where the equivalence relation ≈ is defined as in Definition 3.71. In the above for-
mula, Cn is equipped with the discrete topology and the discrete d-space structure
(i.e., only constant paths are directed).

Example 4.11 The geometric realization of the precubical set corresponding to the
cylinder and the torus given in Example 3.67 are the directed torus cylinder and torus
described in Example 4.7.

Proposition 4.12 The directed geometric realization functor preserves all colimits
and sends tensor products of finite precubical sets to cartesian products.

Proof By Proposition 3.74, the geometric realization functor admits a right adjoint
and thus preserves colimits by the Freyd adjoint functor theorem [120]. The proof
of the second part of the proposition is more involved and we refer to [56] for
a proof. �

4.1.3 Directed Geometric Semantics

The constructions given in the previous section provide us with tools to define a
semantics for programs in directed topological spaces, mimicking the definition
provided for graphs in Sect. 2.2.2 (see Definition 2.9, in particular for illustrations of
the different cases).

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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Definition 4.13 Suppose an operational semantics is given. To any conservative
program p, we associate a quadruple (Gp, sp, tp, rp) consisting of a directed topolog-
ical space Gp together with two points sp, tp ∈ Gp, the beginning and the end, and a
function rp : Gp → (R → Z), the resource potential, defined inductively as follows:

• action: given A ∈ Cact,

GA = �I sA = 0 tA = 1 rA(x)(a) = 0

• locking: given a ∈ R,

GPa = �I sPa = 0 tPa = 1 rPa(x)(b) =
{
0 if b �= a or x � 0.5

−1 otherwise

• unlocking: given a ∈ R,

GVa = �I sPa = 0 tPa = 1 rVa(x)(b) =
{
0 if b �= a or x < 0.5

1 otherwise

• skip: writing 1 = {∗} for the terminal d-space,

Gskip = 1 sskip = ∗ tskip = ∗ rskip(a)(x) = 0

• sequence:

Gp;q = (
Gp 	 Gq

) [tp = sq] sp;q = sp tp;q = tq

rp;q(x)(a) =
{
rp(x)(a) if x ∈ Gp

rq(x)(a) + rp(tp)(a) if x ∈ Gq

• conditional branching: with p = if b then p1 else p2,

Gp = (Gb 	 G¬b 	 Gp1 	 Gp2)[sb = s¬b, tb = sp1 , t¬b = sp2 , tp1 = tp2 ]

sp = sb tp = tp1 rp(x)(a) =

⎧
⎪⎨

⎪⎩

0 if x ∈ Gb or x ∈ G¬b

rp1(x)(a) if x ∈ Gp1

rp2(x)(a) if x ∈ Gp2

• conditional loop: with p = while b do q,

Gp = (
Gb 	 G¬b 	 Gq

) [tb = sq, sb = tq, s¬b = tq] sp = sb tp = t¬b

rp(x)(a) =
{
0 if x ∈ Gb or x ∈ G¬b

rq(x)(a) if x ∈ Gq
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• parallel:

Gp||q = Gp × Gq sp||q = (sp, sq) tp||q = (tp, tq)

rp||q(x, y)(a) = rp(x)(a) + rq(y)(a)

In the above, given a conditionb,Gb denotes�I with sb (resp. tb) as source (resp. target).
The forbidden region is the subspace

Rp = {
x ∈ Gp | ∃a ∈ R, rp(x)(a) + κa < 0 or rp(x)(a) > 0

}

The geometric semantics Ǧp of a program p is the d-space defined as the subspace
Ǧp = Gp\Rp of Gp.

Remark 4.14 The assumption that the program p is conservative is crucial in order
to show that the definition of the resource function makes sense.

The geometric semantics can be seen as a “continuous” version of the semantics
developed up to now. It associates to each program a d-space whose directed paths
correspond to executions of programs. The possibility of continuously deforming
a path into another will mean that they are equivalent in the sense that they only
differ by exchanging commuting actions, see Sect. 3.3.1. A simple example is the
geometric semantics of a program of the form A;B, as shown on the left:

The space ǦA;B is the directed interval [0, 2], with the point 0 as beginning and 2 as
end. A directed path f : �I → [0, 2] in this space should be thought as an execution
of the program: the point p(t) ∈ ǦA;B will go increasingly from 0 to 2 when its argu-
ment t (corresponding to the current execution time) goes from 0 to 1. The action A
(resp. B) is performed precisely when p(t) is equal to 0.5 (resp. 1.5), which is why
we distinguished and labeled these points in the figure. For a slightly more inter-
esting example, consider the geometric semantics of the program p = (A;B)||C,
shown on the right (ignore the two dotted and dashed paths for now): we have
Ǧ(A;B)||C = ǦA;B × ǦC = [0, 2] × [0, 1], the beginning being (0, 0) and the end
(2, 1). A directed path f : �I → Ǧp is a pair f (t) = (f1(t), f2(t)), parametrized by a
time t ∈ �I , of points in f1(t) ∈ ǦA;B and f2(t) ∈ ǦC which are both increasing as
time increases, and the action A (resp. B, resp. C) is performed when f1(t) = 0.5
(resp. f1(t) = 1.5, resp. f2(t) = 0.5). We have drawn two such paths in the figure:
in the dotted one, A is performed, followed by B and then C (i.e., it corresponds
to the execution trace A . B . C) and the dashed one corresponds to the execution
trace C . A . B. Note that there are also such paths for which, at some instant t,
f1(t) = f2(t) = 0.5, i.e., the actions A and C are performed at the same time. One
should not give toomuch importance to the choice for the coordinates in the semantics

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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(e.g. 0.5 for A) or more generally the length. We could have as well adopted other
conventions, resulting in isomorphic spaces: what really matters here is the relative
position of the actions. Thus, in the following, we sometimes assimilate actions with
their coordinates and for instance write (A, C) for the point (0.5, 0.5) in the above
example.

Example 4.15 Consider the program p = Pa;Va. We write J for the pospace [0, 2]
and R for the pospace ] 1

2 ,
3
2 [. With κa = 1, the geometric semantics of the programs

p|| p and p|| p|| p are, respectively,

Ǧp||p = (J × J)\(R × R)

Ǧp||p||p = (J × J × J)\((J × R × R) ∪ (R × J × R) ∪ (R × R × J))

With κa = 2 the situation is quite different since the geometric semantics of p||p
is J × J and the one of p|| p|| p is (J × J × J)\(R × R × R). These are represented
in the table below:

For obvious reasons, the program on the bottom right is often called the “floating
cube”.

As shown in the above example, we often draw the forbidden area using a grayed
region.

Example 4.16 Consider the program p = Pa;(if b then Va else Va),
where a is a mutex. Its geometric semantics is the graph

Note that the interior of the square above is not filled: there are two maximal dipaths.

Example 4.17 The geometric semantics of the programs p = A;while b do B,
and q = (Pa; while b do (Va;Pa)) || (Pa;Va), where a is a mutex, are,
respectively,
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sp tp
A ¬b

B b

sp

tp

Pa
Va

Pa

bVa
Pa

¬b

Example 4.18 (Dining philosophers) The geometric semantics of the dining philoso-
phers (see Example 3.23) is, in dimensions 2 and 3:

Pa Pb Va Vb

Pb

Pa

Vb

Va

The geometric semantics introduced in this section bears many similarities with
the semantics defined in the previous chapters, in particularwith the cubical semantics
introduced in Sect. 3.4: In some sense, under minor assumptions on the program, it is
a continuous version of the cubical semantics, and reciprocally this explains why the
elements of the cubical semantics could intuitively be seen as points, lines, surfaces,
etc. This is formally described by the following theorem.

Proposition 4.19 Suppose given a conservative program p satisfying the following
condition: for every vertex x of the precubical set Cp the resource potential r is
such that for every resource a ∈ R, we have r(x)(a) � κa, i.e., the program never

releases more resources than the initial capacity. The geometric realization
∣
∣
∣Čp

∣
∣
∣ of

its cubical semantics Čp embeds, as a directed topological space, into its geometric
semantics Ǧp.

Proof The proof can roughly be done as follows. First, note that we have the isomor-
phismof d-spaces

∣
∣Cp

∣
∣ ∼= Gp: by induction, the isomorphism existswhen p is reduced

to an instruction, and the interpretations of other instructions correspond to each other
(for instance we have

∣
∣Cp||q

∣
∣ = ∣

∣Cp ⊗ Cq

∣
∣ = ∣

∣Cp

∣
∣ × ∣

∣Cq

∣
∣ = Gp ⊗ Gq because geo-

metric realization sends tensor to cartesian product by Proposition 4.12). Since Čp

was obtained from Cp by restriction, it can be shown that
∣
∣
∣Čp

∣
∣
∣ can be obtained from

∣
∣Cp

∣
∣ by removing some subspaceD. Finally, we have

∣
∣Cp

∣
∣ \D =

∣
∣
∣Čp

∣
∣
∣ ⊆ Ǧp = Gp\Rp

because Rp ⊆ D: the last inclusion follows from the fact that the resource potential
from cubical semantics induces a potential r′ on the geometric semantics which is
always such that r(x)(a) � r′(x)(a), and from the assumption on the resource poten-
tial of the program. �

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Remark 4.20 The embedding described in the previous proposition could be turned
into an isomorphism by slightly modifying Definition 4.13 of geometric semantics
and changing the definition for the resource functions of locking and unlocking to

rPa(x)(b) =
{
0 if b �= a or x = 0

−1 otherwise
rVa(x)(b) =

{
0 if b �= a or x<1

1 otherwise

We chose not to define semantics in this way because it leads to much less read-
able figures. In fact the precise choice for coordinates does not really matter in the
geometric model.

Example 4.21 (Swiss flag) Consider p = (Pa;Pb;Vb;Va)||(Pb;Pa;Va;Vb),
where a and b are mutexes, which was already studied in Example 3.22. The directed
geometric realization of its cubical semantics (see Example 3.40) is shown on the
left and its geometric semantics is shown in the middle: it is easy to see that there is
an embedding from the former to the later.

Pa Pb Vb Va

Pb

Pa

Va

Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

deadlock
UN
SA
FE

UN
REACH
ABLE

In the figure on the right, we have shown the point corresponding to the deadlock.
Namely, note that the point with coordinates (Pb,Pa) is the upper corner of a lower
concavity of the state space: no future execution is allowed from this point, since
increasing paths in the two coordinates would have to enter the forbidden region.
This point thus corresponds to a deadlock.We have also drawn two regions depicting
pointswhich are, respectively, unsafe (i.e.,might lead to a deadlock) and unreachable.
This will be detailed in Sect. 4.2.

We will complete this comparison between the two models by showing in Theo-
rem 4.38 that the directed paths in the geometric model correspond to paths in the
cubical model. This will in particular allow us to define the semantics of a directed
path as the semantics of the corresponding cubical path.

4.1.4 Simple Programs

In the following, in order to ease the presentation of some algorithms, we will often
suppose that the programs we consider are in the simple form described below. This
is of interest since their geometric semantics has a form which is particularly easy
to manipulate.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Definition 4.22 A program is simple when it is of the form p = p1|| p2 || . . .|| pn,
where the programs pi are sequences consisting of actions, resource operations,
and skip (i.e., the programs pi do not contain conditional branching, loops, or
parallel composition). In this case, the programs pi are called the processes and n the
dimension of the program.

Proposition 4.23 The geometric semantics of a simple program p = p1|| . . .|| pn

is isomorphic to a d-space of the form

Ǧp = �In\
l⋃

i=1

Ri with Ri =
n∏

j=1

]xi
j, yi

j[

with l ∈ N and, for every i ∈ [1 : l] and j ∈ [1 : n], xi
j, yi

j ∈ {−∞} 	 �I 	 {∞} are such
that xi

j < yi
j. The space Ri is called the ith forbidden region.

Example 4.24 The programs introduced in Example 4.15 (as well as Examples 4.18
and 4.21) are simple. For instance, with κa = 1, the program Pa;Va || Pa;Va has a
geometric semanticswhich is isomorphic to �I2\RwithR = ] 1

3 ,
2
3 [ × ] 1

3 ,
2
3 [. Again, the

precise coordinates of the forbidden regionR do not really matter since the properties
we consider are up to isomorphism of d-spaces.

The regions Ri can be chosen so that each of them corresponds to a conflict on
a particular resource ai, in the expected way. It can be shown that if the capacity
of ai is κai , the region Ri is extended infinitely in at least n − κai − 1 directions, i.e.,
xi

j = −∞ and yi
j = ∞ for at least n − κai − 1 values of j ∈ [1 : n]. For instance, the

Swiss flag program in dimension 3 described in Example 4.45 has only mutexes and
therefore the three forbidden regions are extended infinitely in one direction.

4.2 Homotopy in Directed Algebraic Topology

4.2.1 Classical Homotopy Theory

Algebraic topology is based on the notion of homotopy: two maps with the same
domain and the same codomain are homotopic when one can be continuously
deformed into the other. We only introduce the basic notions here, and the reader is
referred to standard textbooks [4, 84] for a more detailed overview of the field. Pos-
sible generalizations of those notions to directed spaces are discussed in following
sections.

Definition 4.25 Given two continuous maps f , g : X → Y between topological
spaces, a homotopy from f to g is a continuous map h : I × X → Y such that for
every x ∈ X, h(0, x) = f (x) and h(1, x) = g(x). When there exists such a homotopy
between f and g, the maps are said to be homotopic, which is denoted as f ∼ g.
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In the case where X = I , i.e., the maps f and g are paths in Y , such a homotopy is
endpoint-preserving when for every t, t′ ∈ I , h(t, 0) = h(t′, 0) and h(t, 1) = h(t′, 1).

Example 4.26 Consider the space X = I × I . It is easy to show that any two paths
f , g : I → X with same source and same target are necessarily homotopic. Namely,
it can easily be checked that the function h : I × I → X defined by h(t, x) =
(1 − t)f (x) + tg(x) is an endpoint-preserving homotopy between f and g.

In the following, when we consider a homotopy between two paths, we always
implicitly assume that it is endpoint-preserving. A space is simply connected when
it is path-connected and any two paths are homotopic.

One of the aim of algebraic topology is to classify homotopy types of spaces, i.e.,
spaces up to the following equivalence relation.

Definition 4.27 Two spaces X and Y are homotopy equivalent when there exists two
continuous maps f : X → Y and g : Y → X such that g ◦ f ∼ idX and f ◦ g ∼ idY .

Intuitively, two homotopy equivalent spaces have the “same shape”. For instance, a
famous example is that a mug and a doughnut are homotopy equivalent. We will not
discuss the generalizations of this notion in the directed setting and refer the reader
to [77] for possible definitions.

4.2.2 Homotopy Between Directed Paths in Dimension 2

In order to provide concrete intuitions, we first consider homotopy between paths
in geometric realizations of simple programs of dimension 2, which are subspaces
of �I × �I . As a first nontrivial example, consider the d-space X = �I × �I\ {(x0, y0)}
for some point (x0, y0) ∈ �I × �I . The following proposition characterizes when two
directed paths are homotopic, i.e.,we can continuously deformonepath into the other,
possibly going trough nondirected paths at intermediate stages. It follows directly
from Theorem 4.47 which will be shown in Sect. 4.2.4.

Proposition 4.28 Given two directed paths f , g : I → X with the same source and
same target endpoints, the following are equivalent:

(i) the dipaths f and g are homotopic,
(ii) for every t ∈ I, f (t) = (x0, y) implies y >< y0 and g(t) = (x0, y) implies y >< y0,

where >< is either < or >,
(iii) there exists t ∈ I such that f (t) = (x0, y) with y >< y0 and there exists t′ ∈ I such

that g(t′) = (x0, y) with y >< y0, where >< is either < or >.
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Example 4.29 We have drawn the space X = I × I\ {(x0, y0)}, on the left figure
below.

y0

x0
s

. t

g

f
g

f

g

f

In the middle left are shown two homotopic directed paths. In particular, notice that
the dashed one f is such that there are multiple instants t ∈ I such that the first
component of f (t) is x0. In the middle right, two nonhomotopic directed paths are
shown. The figure on the right illustrates the importance of supposing that both of
the paths are directed for (iii) to be equivalent to the others: here, the path f is not
directed and not homotopic to g, however there exists t ∈ I such that f (t) = (x0, y)
with y < y0 and similarly for g.

Given a simple two-dimensional program p, in the sense of Definition 4.22, the
previous proposition can for instance be used—either directly or after showing easy
variants left to the reader—to compute the homotopy classes of directed paths in
its geometric semantics. In particular, the maximal paths (from sp to tp when the
program is deadlock-free) are interesting because, as we will see in next section
(Theorem 4.38), they correspond to executions of the program modulo commutation
of actions.

Example 4.30 In the geometric semantics of the program p = Pb;Vb;Pa;Va||
Pa;Va, there are two maximal paths up to homotopy. For instance, the two directed
paths above the hole are homotopic, whereas the path below is not homotopic to the
two others:

sp

tp

Pb Vb Pa Va

Pa

Va

Example 4.31 The geometric realization of the programs

Pa;Va;Pb;Vb || Pa;Va;Pb;Vb and Pa;Va;Pb;Vb || Pb;Vb;Pa;Va

are, respectively.

Pa Va Pb Vb

Pa
Va

Pb

Vb

Pa Va Pb Vb

Pb

Vb

Pa
Va
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There are, up to homotopy with fixed endpoints, four maximal directed paths in the
first d-space, whereas there are only three on the second d-space (we have shown
one representative directed path for each homotopy class). Note however that their
underlying topological spaces are homeomorphic: this shows that considering d-
spaces instead of the underlying (nondirected) topological spaces often drastically
changes the properties of the situation.

Lemma 4.32 The homotopy relation satisfies the following properties:

• The relation ∼ is an equivalence relation.
• The relation ∼ is compatible with concatenation of paths: given four paths f , f ′ :

x � y and g, g′ : y � z in X, f ∼ f ′ and g ∼ g′ implies (f . g) ∼ (f ′ . g′).
• Concatenation of paths is associative and admits the empty path as identity up to

homotopy: given paths f : x � y, g : y � z, and h : z � t, we have (f . g) . h ∼
f .(g . h) and εx . f ∼ f ∼ f . εy.

One can thus define the following category of paths up to homotopy in a given
topological space; the previous lemma ensures that composition is well-defined and
that the axioms of categories are satisfied.

Definition 4.33 The fundamental groupoid Π1(X) associated to a topological
space X is the category whose objects are the points of X, and morphisms from x to y
are equivalence classes of paths with x as source and y as target modulo endpoint-
preserving homotopy. Composition of two paths is given by concatenation, and the
identity on an object x is the equivalence class of the empty path on x.

For every path p : I → X, the path p−1(t) = p(1 − t) can be shown to provide an
inverse for the corresponding morphism in the above category: every morphism is
invertible, i.e., it is agroupoid. In the settingof directed spaces, the notionof endpoint-
preserving homotopy between directed paths still makes sense, and one could define
a category of homotopy classes of directed paths associated to a d-space. However,
it turns out that this notion is not the right one: intuitively, this is because its allows
continuously deforming a directed path into another by going through paths which
might not be directed. This motivates the introduction in the next section of a directed
variant of homotopy. Incidentally, the twonotions of homotopy coincide in dimension
2, which is why no peculiarity could be observed in the examples up to now.

4.2.3 Dihomotopy and the Fundamental Category

Consider again the program p = Pa;Va||Pa;Va||Pa;Va, where a is a resource of
capacity 2, which has been used at the beginning of Sect. 3.4. Its cubical semantics is
shown on the left (all the squares of length 2 are filled with 2-cubes) and its geometric
semantics is the empty cube depicted on the right:

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Pa

Pa

Va

Pa

Va
Pa

Va

Va

Pa

Va

Pa

Va

sp

tp

In the cubical semantics, consider the two horizontal paths in themiddle, both labeled
by Pa .Va .Pa .Va: the corresponding paths have been drawn in the geometric seman-
tics. These two paths in the cubical semantics are not dihomotopic in the cubical
sense (see Definition 3.65). This can easily be understood, keeping in mind that the
resource a has initial capacity 2: after the “vertical” process has performed Pa, and
before it performs Va, the resource a has remaining capacity 1, and thus behaves as
a mutex. We are thus essentially considering the program Pa;Va||Pa;Va, which has
two non-dihomotopic paths as extensively discussed in Chap.3 (see Example 3.39 in
particular). Note however that in the geometric semantics, the two paths are homo-
topic. We can continuously deform one path into the other by going below the cube
for instance, as shown in the following “movie”:

Some of the paths used during this homotopy are not directed, and it is easy to see that
it is not possible to construct a homotopy between the two paths which would only
go through directed paths. Intuitively, this means that for this equivalence to be true,
one has to be able to execute some actions “backwards in time,” which is counter
to the interpretation in terms of program execution. In order for the equivalence
between paths in the geometric model and the cubical model to match, we therefore
investigate a directed variant of the notion of homotopy.

Definition 4.34 Given a d-space X, a dihomotopy between two directed paths f , g :
�I → X is an endpoint-preserving homotopy h : I × �I → X from f to g such that for
every t ∈ [0, 1], the path x �→ h(t, x) is directed. In this case the paths f and g are
called dihomotopic, and denoted as f ∼ g.

Note that, by Proposition 4.9, a dihomotopy can also be considered as a mor-
phism I → X�I , i.e., a nondirected path in the directed path space of X. Obviously,
two dihomotopic paths are homotopic, but the contrary is not necessarily true, as
explained above and illustrated in the following examples.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Example 4.35 (Room with three barriers) The geometric semantics associated to
the following program, see [51],

Pa;Va;Pb;Vb;Pc;Vc || Pb;Vb || Pa;Pb;Va;Pc;Vb;Vc

is shown below (with different views):

p1

p2
p3

f

g
p1

p2

p3

f

g

where a and c are mutexes, and b is a resource of capacity 2. We call the three
processes p1, p2, and p3, so that the above program is p1|| p2|| p3 in that order. The
first dipath f corresponds to the case where p3 locks a before p1 and then p2 locks
b after p1 and p3 have locked b together and released it, i.e., to the following trace,
where superscripts indicate the number of the process performing the action:

f = P3
a .P3

b .V3
a .P1

a .V1
a .P1

b .V1
b .P1

c .V1
c .P3

c .V3
b .V3

c .P2
b .V2

b

The second dipath g corresponds to the situation where p3 locks a before p1 and
then p1 locks b after p2 and p3 have locked b together and release it:

g = P3
a .P3

b .V3
a .P1

a .V1
a .P2

b .V2
b .P1

b .V1
b .P1

c .V1
c .P3

c .V3
b .V3

c

These twodipaths are homotopic, since one can deformcontinuously one into another
through paths going around the central hole. However, some of the paths in between
are necessarily nondirected and the two paths are not dihomotopic.

Example 4.36 (Two wedges) Consider the following program:

Pc;Pa;Pb;Vb;Pd;Vd;Vc;Va || Pb;Pd;Pa;Va;Pc;Vc;Vd;Vb

|| Pa;Pb;Va;Vb;Pc;Pd;Vc;Vd

where a, b, c, and d are resources of capacity 2, and where, once again, we call the
first, second, and third processes, p1, p2, and p3, respectively, from left to right. Its
geometric semantics has two wedges as forbidden region:
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p1

p2

p3

All dipaths from beginning to end are homotopic, including the one pictured above,
which corresponds to the execution trace below:

P1c .P2b .P1a .P1b .V1b .P2d .P2a .V2a .P3a .P3b .V3a .V3b .P3c .P3d .V3c .V3d .P1d .V1d .P2c .V2c .V1c .V1a .V2d .V2b

However, not all d-paths aremutuallydihomotopic: there are twodihomotopy classes,
one with paths going “in the middle” as the above one, and one going outside the
two wedges.

The dihomotopy relation satisfies the same properties as the homotopy relation listed
in Lemma 4.32, and we can therefore, as before, define a category as follows.

Definition 4.37 The fundamental category �Π1(X) of a d-space X is the category
whose objects are the points of X and whose morphisms are the directed paths up to
dihomotopy.

In Proposition 4.19, we saw that given a program p, its geometric semantics Ǧp

corresponds to its cubical semantics Čp via the directed geometric realization: for-

mally, Ǧp =
∣
∣
∣Čp

∣
∣
∣. In particular, to each vertex x in Čp corresponds a point |x| in Ǧp.

We are now ready to show that both semantics essentially have the same (directed)
paths, i.e., model the execution of programs in the same way. Of course there are
many more paths in the geometric model, so this correspondence will only be valid
up to dihomotopy. It would not be valid up to homotopy, which makes another strong
argument in favor of dihomotopy as the right notion of equivalence in the context of
directed spaces.

Theorem 4.38 Consider a conservative program p with Čp as cubical semantics and
Ǧp as geometric semantics. Given two vertices x and y there is a bijection between
paths in Čp from x to y up to dihomotopy (in the sense of cubical sets) and paths in
Ǧp from |x| to |y| up to dihomotopy. Equivalently, the functor induced by the directed
geometric realization

�Π1

(
Čp

)
↪→ �Π1

(
Ǧp

)

between the fundamental category of Čp (see Definition 3.36) and the fundamental
category of Ǧp (see Definition 4.37) is full and faithful.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Proof Starting from two dipaths f , g : x � y in Čp, whose realizations in Ǧp are
dihomotopic dipaths |f | , |g| : |x| � |y|, one has to show that f and g are dihomotopic
in Čp. The idea is to start from the dihomotopy h : I → X�I from |f | to |g|, and to show
that at each time t ∈ I , the path h(t) is dihomotopic to a dipath which is the realization
of a dipath in Čp. A standard compactness argument shows that one only needs to
consider a finite number of cubical dipaths in order to cover all the dipaths h(t) for
t ∈ I , up to dihomotopy, and those cubical paths can be shown to be dihomotopic.
Details can be found in [44]. �

Example 4.39 Consider the programPb;Vb;Pa;Va ||Pa;Va already seen in Exam-
ple 4.30. The cubical semantics is shown on the left and the geometric semantics on
the right. The dotted directed path in the geometric semantics is dihomotopic to the
dashed path which is the image of a path in the cubical semantics:

Pb Vb Pa Va

Pb Vb Pa Va

Pa

Va

Pa

Va

∼ ∼
∼ ∼

Pb Vb Pa Va

Pa

Va

At first, it might seem that the previous theorem could be extended in order to show
that there is an equivalence between the fundamental categories (or even that the two
spaces have the same “directed homotopy type”). This is not the case, and a suitable
categorical notion of equivalence adapted to this situation is quite subtle [77]. For
instance, if one considers a portion of the dotted path in the above example, no
dihomotopic path which is the image of a cubical path can be found. However, one
can always extend a path so that it is dihomotopic to the image of a cubical path:

Proposition 4.40 Given a conservative program p, for every path f ′ : x′ � y′ in Ǧp

there exists a path f : x � y in Čp and paths f ′
1 : |x| � x′ and f ′

2 : y′ � |y| such that
the path f ′

1 . f ′ . f ′
2 and |f | are dihomotopic:

x′ f ′
�� y′

f ′
2

��|x| |f |
��

f ′
1

��

|y|

Moreover, if x′ (resp. y′) is the realization of a point in Čp then x (resp. y) can always
be chosen to be this point.

Remark 4.41 The extensions f ′
1 and f ′

2 provided in the previous proposition are not
canonical. For instance, in the geometric semantics of Pa;Va||Pa;Va depicted on
the left, there are two possible extensions on the right f ′

2 and f ′′
2 of the path f ′:
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On the right is depicted the geometric realization of Čp (the interior of the square
is not filled), which has two maximal paths (from sp to tp) which are, respectively,
dihomotopic to f ′

1 . f ′ . f ′
2 and f ′

1 . f ′ . f ′′
2 .

We can now define the semantics of a path by reusing the semantics developed in
Chap.3 as follows.

Definition 4.42 Given a coherent conservative programp and twovertices x, y ∈ Čp,
the operational semantics of a path t : |x| � |y| is the function �t� : � → � defined
as �u� (in the sense of Definition 2.18 and Sect. 3.1.2) for some path u : x � y in Čp

such that |u| = t.

The existence of such a path u is granted by Theorem 4.38. Moreover, the definition
does not depend on the choice of the path u. Namely, if we have two paths u, u′ :
x � y such that |u| = ∣

∣u′∣∣ = t, then by Theorem 4.38 we have u ∼ u′, and therefore
�u� = �u′� because the program is supposed to be coherent. It can be shown that
extremal endpoints (such as sp, tp, deadlocks, etc.) are the geometric realization
of a vertex in Čp, so the above definition covers the majority of interesting paths
(in particular maximal execution traces t : sp � tp). This definition does not extend
easily to other paths since the extension given by Proposition 4.40 is not canonical in
general as noted in Remark 4.41. However, a semantics can actually be associated to
all paths by adapting the definitions elaborated in Sect. 2.2 to the geometrical setting,
i.e., we can formally define the “effect” of a geometric path on a state. We did not
do this here to avoid redundancies.

Remark 4.43 Consider a coherent programof the formp = A||B. Its cubical seman-
tics is shown on the left and its geometric semantics on the right:

Čp =

A

B

A

B∼ Ǧp =

A

B t

The dotted path t is dihomotopic to the geometric realization of the two maximal
paths, respectively, labeled by A . B and B . A in Čp, so that its semantics is �A . B� =
�B . A�. We can see here the importance of supposing the program to be coherent: for
instance, with A = x:=1 and B = x:=2, the program would not be coherent, and
indeed the semantics would clearly not be well-defined.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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The previous propositions also allow us to consider the following “undesirable
points,” which are the geometric counterparts of the positions introduced in Defini-
tion 2.28 and Proposition 3.19:

Definition 4.44 Given a conservative program p, we can identify the following
points in its geometric semantics Ǧp.

• A point x such that there is no dipath t : sp � x is unreachable.
• A point x different from tp and such that the only dipath from x is the constant
dipath εx is a deadlock.

• A point x such that there is a dipath t : x � y for some deadlock y is unsafe.
• A point x such that there is no dipath t : x � tp is doomed.

The subspace of Ǧp consisting of points which are unreachable (resp. unsafe,
resp. doomed) is called the unreachable region (resp. the unsafe region, resp. the
doomed region). Given a deadlock y, the set of points x such that every maximal
path originating in x has y as target is called the doomed region associated to the
deadlock y.

The unsafe and unreachable regions are illustrated in Example 4.21, for the Swiss
flag program.

4.2.4 Simple Programs with Mutexes

It was noted in Sect. 4.2.2 that homotopy seemed to be a reasonable notion for two-
dimensional simple programs. The explanation is that in this case, it coincides with
dihomotopy. We show here that this is the case for two-dimensional programs, and
more generally for programs with resources of capacity 1 (i.e., mutexes) only.

Suppose given a simple program p of given dimension n such that all the resources
used in the programaremutexes.WewriteX = Ǧp for its geometric semantics. Recall
from Proposition 4.23 that X is (up to isomorphism) a subspace of �In: it is of the
form �In\⋃l

i=1 Ri where the Ri are hypercubes. Moreover, since mutexes are used,
these hypercubes are infinitely extended in n − 2 dimensions.

Example 4.45 (3d Swiss flag) Consider the program p = Pa;Va ||Pa;Va ||Pa;Va

with κa = 1. Its geometric semantics is Ǧp = �I3\ (
R1 ∪ R2 ∪ R3

)
with the region

R1 = ]−∞,∞[ × ] 1
3 ,

2
3 [ × ] 1

3 ,
2
3 [; the other two forbidden regions Ri are obtained by

symmetry:

Given points x and y, we write xi for the ith coordinate of x (and similarly for vectors)
and y − x for the vector from x to y. We will consider the elements of X as partially

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_3
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ordered by the product order: given two points x and y, we have x � y when xi � yi

for every index i. Two points x and y such that neither x � y nor y � x are said to be
achronal: in particular, any two points in a directed path in X are not achronal. The
poset (�In,�) is a latticewith (x ∨ y)i = max(xi, yi) and (x ∧ y)i = min(xi, yi). Given
two points x and y, we write x�y = {z ∈ X | x ∧ y � z � x ∨ y} for the hypercube
generated by x and y. This structure can be used to show the following simple lemma,
whose proof technique can often be used in order to construct dihomotopies.

Lemma 4.46 Suppose given two directed paths f , g : x � y in X with the same
source and the same target. There exists directed paths f ′ and g′ with the same image
as f and g, respectively, such that for every t ∈ I, the points f ′(t) and g′(t) are either
achronal or equal.

Proof If x = y, the paths f and g are constant and f ′ = f and g′ = g satisfies the con-
ditions. Now, assume x �= y. We write v for the vector y − x and d for the straight line
from x to y, defined by d(t) = x + tv. Since the paths f and g are directed, we have
vi � 0 for every index i. Given t ∈ I , we also write Ht for the space orthogonal to d
going through the point d(t): Ht = {z ∈ X | (z − d(t)) · v = 0}. The space Ht inter-
sects the image of f (and similarly for g) in exactly one point. Namely, suppose that
z and z′ are two distinct points in their intersection, if vi = 0 then zi = z′

i = xi = yi

and therefore, since the vi are positive and (z − z′) · v = 0, there exists j and k such
that zj − z′

j > 0 and zk − z′
k < 0. Since both points belong to f , this contradicts the

fact that f is directed.

x

y

d(t)

Ht

g
f

g′(t)

f ′(t)

Wedefine f ′(t) (resp. g′(t)) as the intersection point ofHt with the image of f (resp. g),
and the paths thus defined are suitable for similar reasons as before: the coordinates
of the vector g′(t) − f ′(t) cannot be all of the same sign (if the vector is not null)
because both f ′(t) and g′(t) belong to Ht . �

In the previous lemma, it can be noted that the path f ′ we constructed is injective
when x �= y. It is therefore bijective on its image: this inverse is continuous because
I is compact, and preserves the order because I is totally ordered. Therefore, f
can be obtained from f ′ by a directed reparametrization: we have f = f ′ ◦ θ with
θ = f ′−1 ◦ f . From this it follows easily that the maps f and f ′ are dihomotopic and
similarly g ∼ g′. We can therefore use the preceding lemma to show that homotopy
and dihomotopy coincides in the space X.
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Theorem 4.47 Given two dipaths f and g in X, the following are equivalent:

(i) for every pair of achronal points x and y and in the image of f and g, respectively,
we have x�y ⊆ X,

(ii) the paths f and g are dihomotopic,
(iii) the paths f and g are homotopic.

Proof Suppose (i) verified and apply Lemma 4.46. Given t ∈ I , the points f ′(t)
and g′(t) are either achronal or equal, and therefore by (i) the straight line from one to
the other belongs to the space. The map h : I → X�I defined by h(t) = (1 − t)f ′ + tg′
is thus a well-defined dihomotopy from f ′ to g′ and (ii) is satisfied. Moreover, two
dihomotopic paths are necessarily homotopic, i.e., (ii) implies (iii). Finally, sup-
pose (iii) is verified and write h for a homotopy between f and g. Now, take two
achronal points x and y in the image of f and g, respectively, and suppose that a
point z ∈ x�y does not belong to X.

z

x

y

f

g

Now, suppose that we are dimension 2 (the general case will be deduced from this
one). Since f and g are increasing, it is easily shown that one of the two paths goes
“above” z and the other one goes “below” z. The nondirected path f . g is thuswinding
around z, and the homotopy h would induce a homotopy between f . g and g . g in
�I2\ {z}, where g is the nondirected path g taken backward. Since g . g is homotopic to
the constant path this is absurd, because �I2\ {z} is homotopy equivalent to a circle. If
we do not suppose that we are in dimension 2, we know that z belongs to a region Ri

which is infinitely extended in all dimensions but two. We can reach a contradiction
as before by keeping Ri as the only forbidden region and projecting on the plane
given by those two dimensions: the form of Ri ensures that if there is a homotopy in
the original space, there is one in the projected space. �

The geometric semantics of a simple program of dimension 2 can be shown to be
isomorphic to the geometric semantics of one using only mutexes: intuitively, since
there are only two processes, it is enough to have binary synchronizations. Therefore,
we have as a direct corollary,

Proposition 4.48 In the geometric semantics of a simple program of dimension 2,
two paths are homotopic if and only if they are dihomotopic.

This explains why the case of dimension 2, and more generally for programs with
only mutexes, is quite simple compared to the unrestricted case where the above
proposition does not hold as explained in Sect. 4.2.3.
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The previous theorem has a number of other interesting consequences. If we write
U : dTop → Top for the forgetful functor, the obvious functor �Π1(X) → Π1(UX)

is faithful, and therefore every morphism is both epi and mono in �Π1(X) because it
is the case in Π1(UX) since that is a groupoid. Notice that those properties are quite
similar to those shown in the algebraic counterpart in Sect. 3.3.4. Finally, difficult
algorithmic problems such as finding homotopy classes of paths can be efficiently
addressed in dimension 2 [152].

4.2.5 D-Homotopy

In this section, we investigate an alternative definition for directed homotopy. While
it provides a different equivalence than dihomotopy in general, it coincideswith diho-
motopy in geometric semantics of programs. A homotopy h : I × I → X between
two paths in a topological space X can be seen as a path h : I → XI in the space XI

of paths in X. It is thus natural to investigate a directed variant of this notion, usually
called d-homotopy.

Definition 4.49 Given a d-space X and two paths f , g ∈ X�I with same source and
same target, an elementary d-homotopy between f and g is a d-map h : �I → X�I such
that h(0) = f , h(1) = g. It is endpoint-preserving when for every t ∈ �I , h(t)(0) =
f (0) = g(0) and h(t)(1) = f (1) = g(1).

For two paths the relation of being related by a d-homotopy is not an equivalence
relation in general. We thus define:

Definition 4.50 The d-homotopy relation on paths of a given d-space X is the small-
est equivalence relation ∼d such that f ∼d g whenever there exists an elementary
endpoint-preserving d-homotopy from a path f to a path g in X.

It can easily be shown that two d-homotopic paths are necessarily dihomotopic, but
the converse is not true:

Example 4.51 Consider the 2-sphere S2 equipped with the d-space structure such
that directed paths are those with increasing latitude and constant longitude. Then
all d-paths from the south pole to the north pole are dihomotopic but two d-paths are
d-homotopic if and only if they share the same longitude.

However, the geometric models of concurrent programs are geometric realizations
of precubical sets satisfying particular properties (they are so-called geometric pre-
cubical sets), for which d-homotopy and dihomotopy coincide [44]. We will thus
only consider dihomotopy in the following.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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4.3 Constructions on the Fundamental Category

Weprovide, in this section, the extension to the directed setting of some classical con-
structions in algebraic topology on the fundamental category. These directed counter-
parts are howevermuch less well established and some details of their axiomatization
are still under debate. Another very important construction on the fundamental cat-
egory is the category of components, which will be described and investigated in
Chap.6.

4.3.1 The Seifert–Van Kampen Theorem

The so-called “Seifert–vanKampen theorem” is a celebrated result in algebraic topol-
ogy [84]: it enables one to compute the fundamental group of a space by knowing the
fundamental group of some suitable subspaces, thus providing some form of modu-
larity in the computation of fundamental groups. It has since then been generalized
to the computation of fundamental groupoids [19]. We describe here some of its gen-
eralizations to the setting of d-spaces, as a tool to compute fundamental categories
[66, 76].

Theorem 4.52 Suppose given a d-space X together with two subspaces Y and Z such
that the union of their interiors covers X: the diagram on the left, whose morphisms
are inclusion maps, is a pushout in dTop. Then its image, drawn on the right, is a
pushout in Cat.

Y ∩ Z ��

��

Z

��
Y �� X

�Π1(Y ∩ Z) ��

��

�Π1(Z)

��
�Π1(Y) �� �Π1(X)

Example 4.53 Consider the space X = �S1 the directed circle, see Example 4.4,
whose points are elements of the complex plane of the form zθ = eiθ with θ ∈ R.
Write Y (resp. Z) for the set �S1\ {

ei0
}
(resp. �S1\ {

eiπ
}
). The categories �Π1(Y) and

�Π1(Z) are both isomorphic to the category generated by the poset ]0, 1[. A compu-
tation of the pushout in Cat shows that the monoid �Π1(�S1)(x, x) is isomorphic to
(N,+, 0), and the whole category can be characterized in a similar way.

Example 4.54 The Seifert–van Kampen theorem can be used to compute the fun-
damental category of any graph. For instance, consider the graph G pictured on the
left:

http://dx.doi.org/10.1007/978-3-319-15398-8_6
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Its directed geometric realization |G| can be obtained as a colimit of the four open
directed topological spaces shown on the right, an edge not endingwith a vertex being
open. In a more general way, a (directed geometric realization of a) finite graph is
finitely covered by open stars around each vertex, an open star being a neighborhood
of a vertex that contains only one vertex. Theorem 4.52 can then be applied, on noting
that the fundamental category of an open star containing a vertex x is isomorphic
to the poset obtained by gluing (at the origin) n copies of (R−,�) and p copies of
(R+,�) at 0, where n (resp. p) is the number of ingoing (resp. outgoing) arrows of
the vertex x.

4.3.2 The Universal Dicovering Space

Many of the practical and theoretical constructions developed in this book assume
that the programs we consider are loop-free (this is in particular the case for simple
programs):we suppose that they do not contain while constructions, or equivalently
that the corresponding geometric semantics do not contain nontrivial directed loops,
i.e., the associated fundamental category is loop-free, see Chap. 6. In order to remove
this limitation, one is interested in theoretically unrolling programs with loops, by
unfolding the loops and convert them into (potentially infinite) programs without
loops.

A syntactical way of performing this is to consider the contextual equivalence

while b do c ≈ if b then(c;while b do c)else skip

presented in Remark 2.26: by applying this equivalence, from left to right, an infinite
number of times, a while loop can be replaced by an infinite sequence of con-
ditional branching, at the cost of considering infinite programs, or having a bound
on the length of considered executions. Such an approach can be formalized, and
is actually traditional in denotational semantics and verification. We present here a
more geometrical approach to this construction, based on universal covering spaces
for directed spaces.

The universal covering space of a topological space is well known and a widely
used construction in traditional algebraic topology: in some sense, it provides an
“unfolded” version of a space in the sense of unfolding loops used here. We inves-
tigate a directed variant of this construction, called the universal dicovering space,
introduced in [43, 46], which should fit the following specification: starting from a
d-space, it should produce another d-space, whose dipaths are suitably related with
those of the original space, which contains no nontrivial (directed) loops, or at least
no loops which are reachable from the start point in the case of the geometric seman-
tics of a program. Moreover, this construction should be conservative in the sense
that if we start from a (nondirected) topological space and see it as a d-space (with
all paths being directed) the universal dicovering space should be the universal cov-
ering space of the topological space. We begin by briefly recalling some classical

http://dx.doi.org/10.1007/978-3-319-15398-8_6
http://dx.doi.org/10.1007/978-3-319-15398-8_2
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definitions in the nondirected case, a more detailed presentation can be found in most
algebraic topology textbooks [84].

Definition 4.55 A continuous map p : Y → X between path-connected spaces X
and Y is a covering if for every point x ∈ X there exists a neighborhood U of x and
a set F such that p−1(U) is a disjoint union of a family of open sets (Ui)i∈F of Y
and for each i ∈ F the restriction pi : Ui → U of p is a homeomorphism. In this
situation, X is called the base space and Y a covering space. A morphism between
two coverings p1 : Y1 → X and p2 : Y2 → X of the same base spaceX is a continuous
map f : Y1 → Y2 such that p1 = p2 ◦ f .

These spaces enjoy quite nice properties, in particular the paths in the base space
have a counterpart in the covering space, which can be formalized as follows:

Definition 4.56 Given continuous maps f : X1 → X2 and g : Y1 → Y2 between
topological spaces, g has the unique right lifting propertywith respect to f if for every
pair of continuous maps h1 : X1 → Y1 and h2 : X2 → Y2 such that g ◦ h1 = h2 ◦ f ,
there exists a unique map h : X2 → Y1 such that h ◦ f = h1 and g ◦ h = h2:

X1

f

��

h1 �� Y1

g

��
X2 h2

��

h

��

Y2

In particular,when f : {0} → I is the inclusion of the one-point space into the interval,
we say that g has the unique path lifting property. More generally, when g has the
unique right lifting property w.r.t. the inclusion map f : X × {0} → X × I for any
topological space X, we say that g has the unique homotopy lifting property.

Proposition 4.57 Every covering map p : Y → X has the unique homotopy lifting
property (in particular, it has the unique path lifting property).

For a reasonable class of spaces, covering maps can actually be characterized as
maps having suitable unique lifting properties [18].

We now introduce universal covering spaces; it is advisable to do so in the setting
of pointed spaces.

Definition 4.58 A pointed space (X, x) is a pair consisting of a space X and a
base point x ∈ X, and a pointed morphism f : (X, x) → (Y , y) is a continuous map
f : X → Y such that y = f (x).

A covering space of a space X can be thought of as the space X in which some
loops have been unrolled, and it is natural to consider a “maximal” such space, in
which all loops have been unrolled. A pointed morphism p : (Y , y) → (X, x) such
that p : Y → X is a covering called a pointed covering.
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Definition 4.59 Apointed covering p : (X̃, x̃) → (X, x) is a universal covering if for
every pointed covering q : (Y , y) → (X, x), there exists a unique pointed morphism
f : (X̃, x̃) → (Y , y) satisfying p = q ◦ f .

Remark 4.60 If we write pTop for the category of pointed spaces and pointed mor-
phisms, the category of pointed coverings of a pointed space (X, x) can be seen as a
full subcategory of the slice category pTop/(X, x). A universal covering of (X, x) is
precisely an initial object in this category.

When the space X is well-connected (i.e., path-connected, locally path-connected,
and semilocally simply connected), a universal covering (X̃, x̃) of (X, x) exists; it
is uniquely defined up to covering isomorphism, and does not actually depend on
the choice of the base point x ∈ X up to homeomorphism: we thus simply refer to
the universal covering X̃ of X. The space X̃ can be shown to be simply connected,
i.e., all loops are contractible, and (X̃, x̃) can actually be characterized as the simply
connected pointed covering of (X, x).

Example 4.61 Themap p : (R, 0) → (S1, 1) given by p(t) = e2iπ t is a universal cov-
ering:

=
p−→ = S1

Given a path f : I → S1 and a point x ∈ R such that p(x) = f (0), there exists a unique
path g : I → R such that g(0) = x and p ◦ g = f . The paths in R can be thought of
as “unrollings” of paths in S1: a path f : I → R of the form f (t) = kt for some k ∈ R

maps to a path which loops the circle k times, and conversely paths in S1 which
loop k times lift to paths of length k.

Example 4.62 Themap q : (S1, 1) → (S1, 1) given by p(e2iπ t) = e8iπ t is a covering,
but not the universal one, in which every fiber p−1(x) has four elements. Note that
a path in the base space looping less than 4 times lifts to a nonlooping path, but a
path looping four times loops the covering only once: some, but not all, loops are
unrolled. The unique map from the universal covering is f (t) = eiπ

t
2 .

Remark 4.63 The above definitions of coverings and universal coverings would still
make sense if we do not assume that spaces are path-connected, but this generality
gives rise to situations which are less commonly encountered in topology. The uni-
versal pointed covering of a pointed space (X, x) which is not path-connected would
be the one defined as usual above over the path-connected component containing the
base point, and with empty fibers above other path components, reflecting the fact
that the empty set is an initial object in the unpointed slice category Top/X. In this
case, the universal covering would depend on which path component contains the
base point, but not on the choice within the component.

The universal covering space can be explicitly described as follows:
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Proposition 4.64 Given a pointed topological space (X, x), which is well
connected, the universal covering space exists and is isomorphic to the pointed
space (X̃, x̃) whose points are the equivalence classes [f ] under endpoint-preserving
homotopy of paths f : x � y in X starting from x, with base point x̃ the class of
the constant path x � x, and covering map p : X̃ → X the endpoint map defined by
p([f ]) = f (1). The topology on X̃ is generated by sets U[f ], where U ⊆ X is an open
set and [f ] ∈ X̃ is the homotopy class of paths in X such that f (1) ∈ U, defined by
U[f ] = {[f . g] | g : I → U, g(0) = f (1)}.
Remark 4.65 This construction is generalized to the directed case in Proposi-
tion 4.75, which is why we stress some properties that are used here. The topol-
ogy on X̃ clearly implies that the map p : (X̃, x̃) → (X, x) defined above is contin-
uous. Moreover, given a covering q : (Y , y) → (X, x), the unique pointed function
r : (X̃, x̃) → (Y , y) such that q ◦ h = p is determined by the unique path lifting prop-
erty: we have r([f ]) = f̂ (1) where f̂ : X → Y is the unique lift of f in Y with initial
point y given by Proposition 4.57. The reason for requiring the space X to be well
connected is, that otherwise, pmay not be a covering and/or r may not be continuous.
For the universal dicovering, Proposition 4.75, the maps p and r are defined as above,
but much less is required of the topology onX: a dicovering is defined by lifting prop-
erties and in particular it does not have to satisfy the local “layering” properties of
a classical covering. Hence, universal dicoverings exist for a much larger class of
d-spaces Proposition 4.75; in fact, there is a universal dicovering of every pointed
d-space. But the topology on the universal dicovering has to be made Δ-generated,
see Definition 4.73.

Thenotion of a (universal) covering space canbe generalized in the directed setting
as follows [43, 45, 46, 53]. Instead of mimicking the classical definition of coverings
(see Remark 4.82), this generalization focuses on the lifting (and “unrolling”) prop-
erties, see Proposition 4.57. It follows the intuition that, in the geometric semantics
of a program p, we only need to lift paths which correspond to execution traces, i.e.,
those which are starting from the beginning point sp. Moreover, a nice outcome of
this approach is that the resulting space can be described using a variant of the con-
struction given in Proposition 4.64, which is very natural from a computer-scientific
point of view. We will use the notion of (pointed) d-space, which is an immediate
extension of the one in the nondirected setting (see Definition 4.58). In the follow-
ing, the geometric semantics of a program will implicitly be considered as a pointed
space, with its beginning point as base point.

Definition 4.66 Given d-spaces X and Y , a morphism p : Y → X is a dicovering if
it has the unique right lifting property w.r.t. the inclusion d-maps

{0} ↪→ �I {(0, 0)} ↪→ (I × �I)/≈0 {(0, 0)} ↪→ (I × �I)/(≈0 ∪ ≈1)

where I is equipped with only constant paths as dipaths, and the equivalence rela-
tions ≈t used to define the above quotient d-spaces are defined by (s1, t1) ≈t (s2, t2)
if and only if t1 = t = t2. The universal dicovering of a pointed d-space (X, x)
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is the pointed dicovering p : (X̃, x̃) → (X, x) such that for every dicovering q :
(Y , y) → (X, x) there exists a unique pointed morphism r : (X̃, x̃) → (Y , y) satisfy-
ing p = q ◦ r.

In the above definition, three kinds of unique lifting properties are required: the first
amounts to impose that paths lift uniquely once given their initial point, the last that
endpoint-preserving homotopies between paths lift uniquely once given the initial
point. The second lifting property is more subtle, and required in order to obtain
lifting of more than just directed paths and dihomotopies, see Proposition 4.76.
We shall first explain a bit more its effect. The space (I × �I)/≈0 is isomorphic to
the “quarter disk” Q (also called a “fan”) which is the subset of C consisting of
points reiθ such that 0 � r � 1 and 0 � θ � π/2, and directed paths are those of
the form t �→ r(t)eiθ with r : I → I increasing and θ ∈ [0, π

2 ] (not depending on t).
The universal dicovering of Q is the identity map. If we remove the second lifting
property, the universal dicovering would be the space

∐
θ∈[0, π

2 ] �I/≈0, which has the
same points and directed paths as Q but is equipped with a much finer topology.

Remark 4.67 These conditions are enough to imply that the universal dicovering is
also the identity for higher dimensional “fans,” e.g. , if Q is the positive octant of a
3-disk with a similar d-structure, see Proposition 4.76.

Remark 4.68 If the pointed d-space (X, x) is well-pointed, i.e., every point in X
is the target of a dipath whose source is the base point, then instead of requiring
unique lifting of dipaths in (X, x), we could equivalently only require unique lifting
of dipaths with the base point x as source.

Example 4.69 Consider the d-space X obtained as the geometric semantics of a pro-
gram of the form A; while b do B. As described in Example 4.17, the space X
consists of a directed circle S1 glued to a directed interval [0, 2] by identifying 1 ∈ S1

to 1 ∈ [0, 2], as depicted on the right below. On the left is shown the associated uni-
versal dicovering X̃:

sp

p−→
sp

tp

It can be shown that it corresponds to the geometric semantics of the infinite program
obtained as the syntactic unfolding of the program p, as explained in the beginning
of the section.

Example 4.70 Consider the geometric semantics X of the program p = Pa;Va||
Pa;Va where a is a mutex (see Example 4.15). We have X = �I × �I\[ 1

4 ,
3
4 ]2. Its uni-

versal dicovering has two copies of the upper right square:
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p−→

Pa
Va

Pa

Va

This example shows that in the universal dicovering, some nondirected loops are also
unfolded.

Example 4.71 Consider the “directed box without bottom” B, which is the subspace
of �I3 consisting of points (x1, x2, x3) such that x1 ∈ {0, 1} or x2 ∈ {0, 1} or x3 ∈ {1},
with x = (0, 0, 0) as base point, as shown on the right:

x̃

p−→
x

Wehave depicted the universal dicoveringp. Note that it is the identitywhen restricted
to each of the five squares forming the boundary of the box. The fiber p−1(x1, x2, x3)
always has one element, except when x1 = x2 = 1 and 0 � x3 < 1, in particular p is
not a covering, if we consider B as a topological space. Also note that the underlying
topological space is homeomorphic to a disk, and therefore the universal covering in
the classical sense is the identity map: this illustrates the fact that distinct morphisms
of the directed fundamental category do not always come from distinct morphisms
of the fundamental groupoid.

Example 4.72 Consider the directed disk �D2, as described in Example 4.4, together
with 0 as basepoint. The associated universal dicovering is the identity map id :
�D2 → �D2. The universal dicovering space thus contains nontrivial directed loops,
such as the path g : 1 → 1 such that g(t) = e2iπ t . However, all the loops reachable
from the basepoint are trivial: for instance, if we consider the path f : 0 → 1 defined
by f (t) = t, it can easily be shown that the path f . g, obtained as the concatenation
of f and g is dihomotopic to f .

0 1
f

g

The universal dicovering of a pointed space always exists for abstract reasons [42,
53]. Moreover, there is an explicit construction along the lines of Proposition 4.64.
However, the topology on the universal dicovering is constructed to satisfy a topo-
logical condition defined as follows:

Definition 4.73 A space (or a d-space) X is Δ-generated, if the topology is such
that U ⊆ X open if and only if f −1(U) is open for every map f : Δn → X.
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Remark 4.74 A space X is Δ-generated if and only if it is I-generated, i.e., a subset
U ⊆ X is open if and only if f −1(U) is open for every path f : I → X, see [45], which
in turn is equivalent to requiring that a map g : X → Y is continuous if and only if
g ◦ f is continuous for every map f : I → X.

Any pointed d-space always admits a universal dicovering which can be constructed
using a variant of the construction provided in Proposition 4.64.

Proposition 4.75 Given a pointed d-space (X, x), its universal dicovering space is
isomorphic to the pointed space (X̃, x̃) whose points are classes [f ] of dipaths f :
x � y originating in x under endpoint-preserving dihomotopies, with x̃ the constant
path x̃ : x � x, and the dicovering p : (X̃, x̃) → (X, x) associating to each class of
a dipath f : x � y its endpoint y. The topology on X̃ is the Δ-generated topology
generated by sets U[f ], where U ⊆ X is an open set and [f ] ∈ X̃ is a dihomotopy

class of paths in X such that f (1) ∈ U, defined by U[f ] =
{
[g] ∈ X̃ | f ∼U g

}
. Here,

f ∼U g means that f can be continuously deformed into g through dipaths whose
source is x and target lies within U.

When the base space X is Δ-generated, it can moreover be shown that the universal
dicovering has the following unique lifting property:

Proposition 4.76 Suppose given a universal dicovering p : (Y , y) → (X, x), with X
Δ-generated, and a pointed Δ-generated d-space (Z, z). If for every z′ ∈ Z there is
exactly one path up to dihomotopy from z to z′, and if for every path f : I → Z there is
a “fan” map h : (I × �I)/≈0 → Z such that h(0, 0) = z and h(−, 1) = f , then every
pointed map g : (Z, z) → (X, x) lifts uniquely to (Y , y).

Proof The lifting ĝ : (Z, z) → (Y , y) of g is given by the unique lifting of all dipaths
with source z: the point ĝ(z′) is the endpoint of the unique lifting of a dipath from z to
z′. The endpoint of the lifting does not depend of the choice of dipath, since there is
only one up to dihomotopy and dihomotopies with fixed endpoints lift. Since Z isΔ-
generated, to show continuity of the lift, it suffices to see that ĝ ◦ f is continuous for
every path f : I → Z . Since there is a fan h : (I × �I)/≈0 → Z such that h(0, 0) = z
and h(−, 1) = f and since fans lift uniquely (and continuously), ĥ is the restriction
of ĝ and thus ĝ ◦ f is continuous. �

Example 4.77 Let f : I → �In be a path, then h(t, s) = sf (t) is a fan as above. The
topology on the n-cube is clearlyΔ-generated, so (�In, 0) satisfies the condition above.

Example 4.78 (Necklace of dicubes) Consider the space X obtained from k dicubes
�Ini , with i ∈ [1 : k], by identifying 1 ∈ �Ini with 0 ∈ �Ini+1 , with basepoint 0 ∈ �In1 . Also,
consider a path f : I → X. The fan is given as follows. Suppose f (I) ⊆ �Inj , thenh(t, s)
is a concatenation of a dipath g from the basepoint to 0 ∈ �Inj , h(t, s) = g(2t, s) for
0 � t � 1

2 with a fan, as in Example 4.77, in �Inj . Since the topology on the necklace
is given by the topology on each dicube plus the gluing, and the gluing is preserved
in the lift, it suffices to study paths in one dicube.
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Remark 4.79 The lifting properties we get here are similar to the classical case. For
a covering p : (Y , y) → (X, x), a map f : (Z, z) → (X, x)where Z is path-connected
and locally path-connected, lifts to a map f̂ : (Z, z) → (Y , y) if and only if the image
of the fundamental group f∗(π1(Z, z)) is a subgroup of p∗(π1(Y , y)). In particular,
if p is the universal covering, p∗(π1(Y , y)) is trivial, so f lifts if and only if every loop
in Z is contractible in the image [84]. For example, consider the fourfold covering
of the circle Example 4.62 p : (S1, 1) → (S1, 1) given by p(e2iπ t) = e8iπ t and let
f : (S1, 1) → (S1, 1) be given by f (e2iπ t) = e16iπ t . This lifts to the map f̂ (e2iπ t) =
e4iπ t , looping the covering space twice. The map g(e2iπ t) = e6iπ t does not lift, since
4 does not divide 3. Similarly in dicoverings with less unfolding, more maps lift.
Moreover, if (Z, z) is Δ-generated, if for every path f : �I → Z there is a “fan” map
h : (I × �I)/≈0 → Z such that h(0, 0) = z and h(−, 1) = f , if p : (Y , y) → (X, x) is
a dicovering and g : (Z, z) → (X, x) is a pointed d-map such that g∗( �Π1(Z)(z, w))

has only one element for allw ∈ Z , then g lifts. To see this, for z′ ∈ Z , choose a dipath
f from z to z′. The dipath g ◦ f lifts uniquely to a dipath ĝ ◦ f and ĝ(z) = ĝ ◦ f (1). As
above, this is unique, since the dipath g ◦ f is unique up to dihomotopy. To see that the
lift is continuous, use the lift of fans as above. In fact, the requirement on fans may be
relaxed as follows. For every path f : I → Z , there is amap h : (I × �I)/≈0 → Z such
that h(0, 0) = z and h(−, 1) = f and h(s0, t) are dipaths in Z , h is not necessarily
continuous, but g ◦ h is a d-map. The fan g ◦ h then lifts uniquely and again we may
conclude that ĝ is continuous.

Finally, from Proposition 4.75, it can be observed that the notion of universal dicov-
ering is an extension of the classical notion of universal covering for a large class of
spaces.

Proposition 4.80 Suppose given a well-connected and Δ-generated space (X, x)
with (X̃, x̃) as universal covering. If we see the space X as a d-space equipped
with dX = XI , i.e., if every path is directed, then X̃ is the underlying space of its
universal dicovering.

Remark 4.81 Note however that for an arbitrary d-space, the underlying space of
one of its dicoverings is not generally a covering, as illustrated by various examples
above.

Remark 4.82 The definition of universal dicovering is certainly not the most imme-
diate generalization of the notion of universal covering one could think of, but other
generalizations lack some nice properties. For instance, one could consider an imme-
diate directed variant of covering spaces, as introduced in Definition 4.55, and define
a d-covering map (we use this terminology in this remark only, to distinguish those
from the dicoverings of Definition 4.66) as a morphism p : Y → X of d-spaces such
that every point of X has a neighborhood U whose preimage is a disjoint union of
open sets dihomeomorphic to U though p. Applying this definition to the examples
mentioned above shows some differences with dicoverings, as defined in this section.
First, this construction adds unnecessary “pasts” for every point: for instance, con-
sider the directed square �I2\]0, 1[2, which is typically obtained as the geometric
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semantics of a program of the form if b then A else B (this is a variant of
Example 4.70), its universal d-covering is

p−→

Evenwhen restricting to points which are reachable from the base point, the resulting
space is not satisfactory. In the “box without bottom” Example 4.71, the identity map
is the only d-covering (and thus the universal one). This illustrates the fact that we get
really different results with the two definitions (even if we restrict to the reachable
part), and thus the construction given by Proposition 4.75, which is very useful in
practice, cannot be used to construct the universal d-covering. Moreover, in this
example, if we write y for the point (1, 1, 0), there are two non-dihomotopic dipaths
from x to y, which shows that the d-covering approach does not really “resolve”
the part of the fundamental category consisting of paths starting from x. Another
illustration of the difference of our construction and the d-covering is the disk with
a directed boundary circle. Consider the unit disk X = {z ∈ C | |z| � 1} such that
“only the boundary is directed,” the directed paths in dX are either constant paths
or paths of the form t �→ eiθ(t) where θ is increasing modulo 2π . The boundary
loop is not contractible, since there are no dipaths in the interior of the disk. The
associated universal d-covering X̃ is the space itself (together with the identity map).
In particular the directed boundary loop is not unrolled. The universal dicovering
with basepoint 1 ∈ C is the directed half-line R+ with covering map p(t) = ei2π t ,
where the directed loop is unrolled.

4.4 Historical Notes and Other Models

For some time, this geometric view on processes has been scarcely used, apart from
deriving some algorithms for finding deadlocks [24, 28] and determining serializ-
ability of transaction systems [118]. It came back to light due to considerations on
truly concurrent semantics [141], and the links with the cubical models presented in
Chap.3.

The book by Grandis on d-spaces [77] is the first (and up to now the only) math-
ematical book on directed algebraic topology. His approach based on d-spaces has
emerged as the most general and tractable one, however many other ways of for-
malizing the notion of direction have been explored and we briefly mention some
of them here. Historically, the notion of partially ordered space (or pospace) came
first [37, 128], see Example 4.3, originating in the study of positive cones of topo-
logical vector spaces occurring in functional analysis. Those spaces are convenient
to work with, but their main drawback is that they cannot represent spaces contain-
ing nontrivial directed loops, see Example 4.4. In order to overcome this limitation,

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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the notion of local pospace was introduced by some of the authors [51], which is a
suitable sheaf of pospaces, i.e., a space such that every point admits a neighborhood
with a pospace structure in a coherent way; for a gentle introduction to sheaves,
see [111]. Unfortunately, the resulting category is rather ill-behaved: it is finitely
complete but lacks infinite products (a product of local pospaces exists iff all but
finitely many terms are actually pospaces); the natural embedding of the category
of pospaces into the category of local pospaces is not full; some colimits of local
pospaces do not preserve the topology (this is due to the fact that a local pospace has
no vortex, see Example 4.4). Nevertheless most finite precubical sets can be realized
in the category of local pospaces [51]: this category is nice enough if we restrict
to computer-scientific applications. In order to encompass directed spaces with vor-
texes, the notion of stream was introduced by Krishnan [105]. This is a cosheaf of
locally preordered spaces: a stream consists of a topological space such that each
open subset U is equipped with a preorder in such a way that for all open coverings
(Ui)i∈I of U, the preorder on U is the least preorder containing all the preorders on
the Ui. This model turns out to be very close to d-spaces presented in this chapter:
there is an adjunction between the categories of streams and d-spaces, which induces
an isomorphism between subcategories that can be characterized explicitly [87]. The
preceding list is by no means exhaustive: approaches based on model categories [21,
57–59, 168], and locally presentable categories [53] have also been investigated in
this context.

The link between “continuous” dihomotopies in topologicalmodels and “discrete”
deformations in combinatorial models are reminiscent of (simplicial) approximation
theorems, in the classical case. Indeed, Theorem 4.38 is a particular case of a general
cubical approximation theorem [44, 106, 171]. Note that Proposition 4.40 has many
interesting consequences, and is in particular instrumental in the work on directed
homology by Dubut and coauthors [35]. The directed Seifert–van Kampen theorem,
Theorem 4.52 was first introduced for dihomotopy in a very restricted case [66], and
later proved in the general case for d-homotopy [76]. The theory about dicoverings
and the existence of a universal dicovering, see Proposition 4.75, was developed
by Fajstrup in [45] and later reformulated by Krishnan and coauthors [69]. Such
generalizations of coverings based on lifting properties have also been investigated
in the nondirected setting [18]. As a matter of fact, different choices can be made.
For instance, a theory of coverings has been developed for general streams (with also
particular applications to streams that are geometric realizations of precubical sets),
which are coverings in the usual sense of the underlying topological spaces [69].
This is not the case in general for the constructions in this chapter, but there is still a
suitable lifting property for dipaths modulo dihomotopy in both cases, making them
useful for applications. We should also mention that “unfolding” constructions, very
similar to dicoverings, are classical in models for concurrency such as Petri nets and
event structures [62, 132, 167].



Chapter 5
Algorithmics on Directed Spaces

In this section, we explain algorithms which are based on the geometric semantics
of programs. In order to ease the presentation, those algorithms are formulated for
simple programs, as defined in Sect. 4.1.4, and we only hint at generalizations: pro-
grams with branchings can generally be handled by adapting the algorithms, and
loops can be handled up to a finite depth by unrolling the programs (see Remark2.26
and Sect. 4.3.2). We have chosen to illustrate the wide variety of applications of the
geometric point of view by presenting a compact way of representing regions in the
geometric semantics (Sect. 5.1), an algorithm for detecting deadlocks (Sect. 5.2), and
an algorithm for factoring programs into independent parallel processes (Sect. 5.3).
These will also be used in subsequent chapters in order to compute components
(Sect. 6.3) and path spaces (Sect. 7.1.4). Most of the techniques described here have
been implemented in the tool alcool developed by some of the authors of the
book [67]. Directed topological models have found applications to validation and
static analysis [12, 48, 67, 71], serializability and correctness of databases [82], and
fault-tolerant protocols for distributed systems [75]. A panorama of applications can
be found in [51, 66] and in Chap. 8.

Throughout the section, we will consistently use the notations introduced in
Sect. 4.1.4 for simple programs: given such a program p of dimension n, its geometric
semantics Ǧp which we denote X in the following, is of the form

X = Ǧp = �I n\
l⋃

i=1

Ri with Ri =
n∏

j=1

]xi
j , yi

j [ (5.1)

with, for every i ∈ [1 : l] and j ∈ [1 : n], xi
j , yi

j ∈ {−∞} ∪ I ∪ {∞} and xi
j < yi

j .
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5.1 The Boolean Algebra of Cubical Regions

We consider here simple programs of dimension n, as mentioned in the introduction
of this chapter. In this situation, the space X is thus a cubical region in the following
sense:

Definition 5.1 Given a space X ⊆ �I n , a cubical cover R = (Ri )1≤i≤l of X is a
finite family of n-cubes (with open or closed boundaries) in X such that

⋃
R = X .

A space which admits a cubical cover is called a cubical region. We write Cn (resp.
Rn) for the set of cubical covers (resp. regions) of dimension n.

Note that in this section, R will refer to a such a cubical cover, and not only to the
cover of the forbidden region (which is an instance of a cubical region).

Remark 5.2 We insist on the fact that we are considering here cubes which can have
both open and closed boundaries, which makes some properties a bit more difficult
to formulate than if we had assumed that they were all open (or closed). For instance,
given two cubes, their union may be path-connected even if they have an empty
intersection. Moreover, the intervals defining the cubes may not have equal length.

Since cubical covers are supposed to be finite, they provide a way to represent the
associated cubical regions and manipulate them algorithmically. In this section, we
investigate the operations available on such representations.

Proposition 5.3 The set of cubical regions is closed under union, intersection, and
complement in �I n. It is thus a Boolean subalgebra of the powerset P( �I n).

Proof Given two cubical covers R and S of X = ⋃
R andY = ⋃

S, respectively, the
spaces X ∪Y and X ∩Y are both cubical regions since they, respectively, admit R ∪ S
and

{
Ri ∩ S j | Ri ∈ R and S j ∈ S

}
as covers, the later definition relying on the fact

that the intersection of two n-cubes is an n-cube and that intersection distributes over
union. Finally, the complement of an n-cube C is easily shown to admit a cubical
coverCc (see below) fromwhich follows that the complement X c of X can be covered
by

⋂ {(
Ri

)c | Ri ∈ R
}
(the intersection is in the sense of cubical regions defined

above). �

A cubical region generally admits multiple cubical covers, however there is always
a canonical one which represents the cubical region, and usual operations can be
performed quite efficiently on this representation. Given two cubical covers R and
S of the same cubical region X , we write R 	 S whenever for every n-cube Ri ∈ R
there exists an n-cube S j ∈ S such that Ri ⊆ S j . It can be shown that the poset of
cubical covers of X admits amaximumelement, called the normal form of the cubical
region: it consists of the maximal n-cubes included in the region. We write C n ⊆ Cn

for the set of cubical covers in normal form.
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Example 5.4 Consider the region shown on the left below:

Its cubical cover in normal form is R = {
R1, R2, R3, R3

}
. Note that it is not a

cubical cover with fewest elements, since
{

R1, R2
}
is also a cover for instance. It is

however “quite small” since adding to R any rectangles included in the region will
yield another cubical cover.

The situation can be presented more conceptually as follows:

Proposition 5.5 The setsCn (resp.Rn) can be seen as posets when equipped with the
partial order 	 (resp. inclusion). The functions Un : Cn → Rn such that Un(R) =⋃

R, and Mn : Rn → Cn associating to X the set Mn(X) of maximal n-cubes in X,
form a Galois connection (with Un left adjoint to Mn).

Since it can easily be checked that we have Un ◦ Mn = idRn , we deduce that

Proposition 5.6 The Galois connection of Proposition5.5 induces a bijection
between Rn and the subposet C n of Cn whose elements are covers in normal form.

Given an n-cube C = ∏n
j=1]x j , y j [, the normal form of its complement is given by

Ccmax = {
. . . × I × [0, x j ] × I × . . . , . . . × I × [y j , 1] × I × . . . | j ∈ [1 : n]}

and similar formulas can be given when some of the boundaries are closed. We
say that a cover is prenormal if it contains the associated normal cover: such a cover
can easily be converted into a normal one by removing cubes included in others.
It can be shown that the intersection and the complement of a prenormal cover, as
described in the proof of Proposition5.3, are still prenormal (if we use the above
complement for individual cubes when computing the complement). Since we have
the normal form of the complement of any cube, a cover can be turned into a prenor-
mal one by complementing it twice, and the union of two prenormal covers R and S
can be computed as (Rc ∩ Sc)c in order to preserve prenormality. In the following,
we will also use the operation R\S = R ∩ Sc.

When the geometric semantics of a program is a cubical region X = ⋃
R

described by a normal cubical cover R, its unsafe and doomed regions (see Defi-
nition4.44) can be computed as in Algorithm5.7. We first need some definitions. We
introduce a partial order � on the elements Ri of R as the reflexive and transitive
closure of the relation such that Ri � Ri ′

iff Ri ∪ Ri ′
is connected and Ri ′

contains
a point which is strictly above every point of Ri w.r.t. to the product order. In this
case, we say that Ri is in the past of Ri ′

: this means that there are some points of Ri ′

which are not in Ri but reachable from any point in Ri (in the case where Ri and Ri ′

are both open, or both closed, we have Ri � Ri ′
iff xi ′

j ∈ Ri and yi
j ∈ Ri ′

). Above, by

“Ri ∪ Ri ′
is connected,” we mean here that there is a nondirected path from every

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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point of Ri to every point of Ri ′
: this can be algorithmically decided by suitably com-

paring the boundaries, taking care of whether they are open or not. Given a region R,
we write �R for its downward closure w.r.t. �. The unsafe and doomed regions of a
simple program can then be computed as follows:

Algorithm 5.7 Given the normal cubical cover R of X :

1. compute the cover U (R) which consists of cubes Ri ∈ R such that

– Ri does not contain the maximal point of �I n , and
– Ri is maximal w.r.t. �,

2. a cover of the unsafe region can then be obtained as �U (R),
3. a cover of the doomed region isD(R) = �U (R)\�E (R) where E (R) is the set

of rectangles in R containing the maximal point of �I n .

Example 5.8 The geometric semantics of the Swiss flag program described in
Example4.21 contains eight maximal cubes. Two of them are shown on the left
and middle picture below, and the others can be obtained by symmetry.

Notice that U (R) is reduced to the square R1 displayed in the middle picture and
the doomed region D(R) is therefore reduced to the square on the right. The region
�E (R) consists of all the points except the dead ones (see figure on the right).

We have only briefly presented cubical regions as subspaces of �I n , but this can
easily be generalized to situations such as |G1| × . . . × |Gn|, where all the Gi are
finite graphs, thus allowing the handling of programs with loops: this stems from the
remark that if G is a finite graph, then the collection of finite unions of connected
subsets of its geometric realization |G| forms a Boolean subalgebra of the powerset
Boolean algebra P(|G|). The case developed in this section is the particular case
where all the graphs Gi are isomorphic to the graph with two vertices and one edge
between them.

Example 5.9 The “Swiss torus” is the space obtained by removing a cross as in the
Swiss flag example, but on a torus instead of �I 2. It can be modeled as the product of
the following graphs G1 and G2:

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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The space |G1| × |G2|, along with the forbidden region, is drawn on the left below:
in this representation, the parallel (vertical or horizontal) external edges should be
identified.

The maximal cover of the resulting space has three “rectangles:” one is shown in
the middle (notice that the region is in fact connected since a point on the boundary
below should be identified with the corresponding point on the boundary above),
one is obtained from the previous one by a rotation, and the last one is shown on the
right.

Efficient algorithms for representing cubical regions, and computing intersections
of cubes in particular, have appeared in numerous contexts such as in computational
geometry [142]. Unions of isothetic hypercubes as we use them here are called
“orthogonal polyhedra” in computational geometry and have also been used in hybrid
systems theory [16].

5.2 Computing Deadlocks

We provide an algorithm to detect deadlocks in simple programs, and more generally
doomed regions, which is based on the geometrical characterization of deadlocks,
in the sense of Definition4.44. This simple algorithm, introduced in [50], is more
efficient than the one based on cubical regions given in the previous chapter, and will
be the basis for the algorithms computing the trace space of programs in Chap. 7.

As in the previous section, we are interested in a simple program p of dimension n,
whose geometric semantics is of the form (5.1). In order to be as general as possible,
we generally do not make further hypothesis on the spaces we consider. However,
we will sometimes need the following property, which can easily be shown to be
satisfied for the geometric semantics of simple programs:

http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_7
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Definition 5.10 A d-space X of the form (5.1) is generic when given two distinct
indices i, i ′ ∈ [1 : l], if xi

j and xi ′
j are both equal, and different from −∞ then Ri ∩

Ri ′ = ∅.
The careful reader will have noticed that, to be precise, the genericity condition
applies not to X , but to the given cubical cover R of its complement. The main result
of this section is the following characterization of deadlock points.

Theorem 5.11 Suppose that yi
j �= ∞ for every i ∈ [1 : l] and j ∈ [1 : n]. Given a

point z ∈ X, such that z /∈ ⋃l
i=1 Ri , the following are equivalent:

(i) z is a deadlock
(ii) there exists a function i : [1 : n] → [1 : l] such that for every j ∈ [1 : n],

z j = xi( j)
j and ∀ j ′ ∈ [1 : n], j ′ �= j ⇒ xi( j ′)

j < xi( j)
j < yi( j ′)

j

If the space is supposed to be generic, this is moreover equivalent to

(iii) there exists an injective function i : [1 : n] → [1 : l] such that for every
j ∈ [1 : n],

z j = xi( j)
j and ∀ j ′ ∈ [1 : n], xi( j ′)

j ≤ xi( j)
j < yi( j ′)

j

(iv) there exists a subset L ⊆ [1 : l] of cardinal n satisfying

⋂

i∈L

Ri �= ∅ and z = inf

(
⋂

i∈L

Ri

)

and in this case z j = max
{

xi
j | i ∈ L

}
for every j ∈ [1 : n].

Proof We show the required implications.
(i) ⇒ (ii) Suppose that z is a deadlock. Given j ∈ [1 : n], if we write e j for the

unit vector of I n in direction j , we have that z + te j belongs to some rectangle Ri

for t > 0 small enough, and choosing such an index i( j) for each direction j provides
a suitable function i : [1 : n] → [1 : l] of indices of rectangles.

(ii) ⇒ (i) Suppose given a suitable function i : [1 : n] → [1 : l], and consider
a directed path f starting from z. We are going to show that this path is constant.
Suppose that there exists t ∈ I such that f (t) �= z. There exists a direction j ∈ [1 : n]
such that f (t) j �= z j , i.e. z j = xi( j)

j < f (t) j because the path f is directed.

Moreover, for t small enough, we also have f (t) j < yi( j)
j by continuity of f .

Finally, for j ′ �= j , we have z j ′ = xi( j ′)
j ′ , and therefore xi( j)

j ′ < z j ′ ≤ f (t) j ′ < yi( j)
j ′

for t small enough. We deduce that f (t) ∈ Ri( j) which is absurd. The path f is thus
constant and z is a deadlock.

(ii) ⇔ (iii) Straightforward.
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(iii)⇒ (iv) Suppose given a suitable function i : [1 : n] → [1 : l]. We define L to
be the image of i . Given i ∈ L and j ∈ [1 : n], we have xi

j ≤ z j < yi
j . Therefore, for

t > 0 small enough z + ∑n
i=1 tei belongs to every Ri for i ∈ L and

⋂
i∈L Ri �= ∅.

The other conditions are easy to check.
(iv) ⇒ (iii) Suppose given a suitable set L ⊆ [1 : l]. By hypothesis, we have

z j = inf
(⋂

i∈L Ri
j

)
= inf

(⋂
i∈L ]xi

j , yi
j [
)
and therefore z j = max

{
xi

j | i ∈ L
}

because
⋂

i∈L Ri �= ∅. Because of the genericity condition, there is exactly one
index i ∈ L such that z j = xi

j , that we denote by i( j). The function i : [1 : n] → L
thus defined is injective. Namely, given i ′ ∈ L which is not in the image of i , we
have, for every j ∈ [1 : n], xi ′

j < z j < yi ′
j by definition of z, and therefore z ∈ Ri ′

,
which contradicts the last hypothesis. Using a similar reasoning, one shows that, for
every j ′ ∈ [1 : n], we have xi( j ′)

j ≤ xi( j)
j < yi( j ′)

j . �

Remark 5.12 In the case (ii), the function i is not assumed to be injective, but one
can actually deduce that it is always injective from the conditions imposed on it.

Some examples illustrating the above theorem are provided below. We should first
notice that it allows us to directly formulate the following algorithm for detecting
deadlocks:

Algorithm 5.13 When the d-space X is generic, the deadlock points can be found
as follows:

1. find n intervals Ri1 , . . . , Rin such that
⋂n

j=1 Ri j �= ∅,
2. compute z defined by z j = max

{
xi1

j , . . . , xin
j

}
,

3. if for every i ∈ [1 : l], z /∈ Ri then z is a deadlock.

There are of course many possible optimizations to this algorithm in order to avoid
computing intersections multiple times, etc. These will not be detailed here, but the
reader canfind anoptimized algorithm for the closely related algorithm for computing
trace spaces in Chap.7.

The preceding algorithm can be extended in order to compute the doomed region
of a space. With the notations of the previous theorem, given a deadlock point z, the
interval

]z′, z] ⊆ �I n with z′
j = max

{
xi

j | i ∈ I, xi
j �= z j

}

for j ∈ [1 : n], contains only doomed points, from which the deadlock z will
eventually be reached. We call it the doomed interval associated to the deadlock z.
By iterating the computation of such intervals, the doomed region of a simple program
can be computed as follows:

Algorithm 5.14 The doomed regions of the space X = �I n\⋃l
i=1 Ri can be found

as follows:

1. find the deadlocks z1, . . . , zm using Algorithm5.13,
2. compute the associated doomed intervals Uk = ]z′

k, zk] for k ∈ [1 : m] as above,

http://dx.doi.org/10.1007/978-3-319-15398-8_7
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3. return those doomed intervals Uk as well as the doomed region of X\ ⋃m
k=1 Uk

using the algorithm recursively (notice that the intervals Uk are not open on the
right, however the previous algorithms can be straightforwardly adapted to handle
those).

Example 5.15 Consider the program p = Pa;Pb;Va;Pc;Vc;Vb || Pc;Pa;Va;
Pb;Vb;Vc whose geometric semantics Ǧp is shown on the left:

This geometric semantics is of the form �I 2\ ∪3
i=1 Ri with R1 = ] 1

7 ,
3
7 [ × ] 2

7 ,
3
7 [,

R2 = ] 2
7 ,

6
7 [ × ] 4

7 ,
5
7 [ and R3 = ] 4

7 ,
5
7 [ × ] 1

7 ,
6
7 [. The point z = ( 4

7 ,
4
7 ) is a deadlock:

one can apply Theorem5.11 with I = {2, 3}, or i(1) = 3 and i(2) = 2. The doomed
region U associated to z is also shown. Notice that adding the doomed region U
to the forbidden region (as shown on the right) produces a new deadlock z′ with
associated forbidden region U ′.

Remark 5.16 Consider the space X = �I 2\⋃2
i=1 Ri with R1 = ] 1

5 ,
4
5 [ × ] 1

4 ,
2
4 [ and

R2 = ] 2
5 ,

3
5 [ × ] 1

4 ,
3
4 [:

R1
R2

z

Notice that the point z = ( 2
5 ,

1
4 ) satisfies the conditions of Theorem5.11 (iii) or (iv)

with L = {1, 2}, or i(1) = 2 and i(2) = 1. However, z is not a deadlock. In fact, the
theorem does not apply because the space X is not generic: we have x1

2 = x2
2 .

Example 5.17 Consider the following program, from Lipski and Papadimitriou
[118], where a, b, c, d, e, and f are mutexes:

Pa;Pb;Pc;Va;P f ;Vc;Vb;V f || Pd;Pe;Pa;Vd;Pc;Ve;Va;Vc

|| Pb;P f ;Vb;Pd;V f ;Pe;Vd;Ve

Its geometric semantics is represented below, together, on the right-hand side, with
the request graph, a common tool for proving absence of deadlocks (see below).
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The request graph is constructed as follows: it has a node for every shared resource,
and there is an edge from a to b when a process has acquired a lock on a without
relinquishing it and is requesting a lock on b. For programs with mutexes, having an
acyclic request graph implies deadlock freedom. We can see with this example that
the converse is not true: the request graph for the Lipski and Papadimitriou program
is cyclic, but there is no deadlock. The following path never deadlocks and goes all
the way through the forbidden region:

P3b;P
3
f ;V

3
b;P

1
a;P

2
d;P

2
e;P

1
b;P

1
c;V

1
a;P

2
a;V

2
d;P

3
d;V

3
f ;P

1
f ;V

1
c;V

1
b;V

1
f ;P

2
c;V

2
e;V

2
a;V

2
c;P

3
e;V

3
d;V

3
e

In fact, the forbidden region is homotopically equivalent to the circle, and the dipath
above goes through the interior of the circle,which is not obviouswhenfirst observing
the program or its geometric semantics. Algorithm5.13 indeed finds that all generic
intersections of three forbidden cubes are included in other forbidden cubes, hence
do not account for deadlocking situations. The methods of Sect. 6.3 and of Sect. 7.1.3
will allow us to describe the seven dihomotopy classes of total dipaths.

Remark 5.18 The previous example is also an example of a nonserializable program.
Serializable programs are those for which every execution trace is equivalent to a
serial one, i.e., one which corresponds to the execution of each process, entirely, in
some order. This is a classical correctness criterion for concurrent databases, see [9].
Of course, this implies that there should be atmostn! classes of dipaths for serializable
programs, so for three processes as we have here we should have six, and not seven,
classes of dipaths for it to be serializable. Examples of serializable programs are
2PL (“two-phase locking”) programs where all processes lock first all resources
they need, and then, in a second phase, unlock them all. For instance, the Swiss flag
Example3.22 and the dining philosophers Example4.18 are such programs. The first
geometric proof of serializability of 2PL programswas given in [82], and later in [51]
using concepts from directed algebraic topology.

Remark 5.19 In Theorem5.11, the assumption that yi
j �= ∞ is necessary because a

hole might cause a deadlock on a boundary. For instance, in �I 2\(] 1
3 ,∞[ × ] 1

3 ,
2
3 [),

the point z = (1, 1
3 ) is a deadlock, as shown on the right:

http://dx.doi.org/10.1007/978-3-319-15398-8_6
http://dx.doi.org/10.1007/978-3-319-15398-8_7
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_4
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The theorem and the algorithm can easily be extended in order to handle those cases,
by adding new holes “outside the maximal boundaries” of the space �I 2 (or �I n in
general), as shown on the right (the regions S and T ): the deadlock z is now detected
with I = {R, T }, i(1) = T , and i(2) = R.

Generalizing the deadlock algorithm to programs with loops is straightforward:
it is enough to unroll all loops once and find deadlocks in the resulting program.
Finding the doomed region is not as easy: an overapproximation may be found by
unrolling once, but to find the exact doomed region requires more than one unrolling
in general as illustrated in following example:

Example 5.20 Consider the two following processes p and q, each containing a
loop:

p = Pd;Pa;(while b do p′);Va;Pe;Vd;Ve

q = Pe;Pa;(while b′ do q ′);Va;Pd;Ve;Vd

with

p′ = Pb;Va;Vd;Pc;Vb;Pa;Pd;Vc;Pb;Va;Pc;Vb;Pa;Vc;Pb;Va;Pc;Vb;Pa;Vc

q ′ = Pb;Va;Pc;Vb;Pa;Vc;Pb;Va;Pc;Vb;Pa;Vc

The geometric semantics of p||q contains a torus (with holes) corresponding to the
two loops in parallel, as shown on the left in the following pictures, which can be
obtained by gluing parallel faces of the rectangle on the right:

In a first unrolling, it seems that almost all states within the loops are doomed as
shown on the left. However, on further unrolling, it becomes clear that no state in
the loops is doomed. The dipaths from states in the loop to the final point may go
via several iterations of each loop as illustrated on the right:
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Geometrically, the above example is a torus knot, and similar examples may be
constructed for higher dimensional knots. In such cases, the doomed region can be
determined with a finite number of unrollings, and the criterion for computing the
number of times the program should be unrolled can also be extended to the case of
programs with nested loops [42].

5.3 Factorizing Programs

An important question, both from a theoretical and practical point of view, is whether
a concurrent program can be decomposed as several processes which are running
concurrently and are completely independent, i.e., the execution of one has no impact
on the execution of the other one in parallel [34, 125]. We consider only simple
programs for clarity.

Definition 5.21 In a program p||q, the processes p and q are independent when
Č p||q = Č p ⊗ Čq , or equivalently Ǧp||q = Ǧp × Ǧq .

In simple cases, independence can be detected syntactically. We write FR(p) for the
set of resources used in a process p.

Lemma 5.22 In a program p||q such that FR(p) ∩ FR(q) = ∅, the processes p
and q are independent.

In the general case, this problem can be reduced to factorizing the geometric seman-
tics of the program as a cartesian product of subspaces. An algorithm achieving this
task is provided here. It has some similarities with the factorization of integers as
products of primes. A more detailed presentation of this algorithm can be found
in [6]. An important point to note is that we want to be able to factorize p||q||r as
q||(p||r) for instance, when q and p||r are independent: this means that we have
to consider the programs up to associativity, but also up to permutation of processes,
i.e., up to the congruence ≈ such that p||q ≈ q||p, etc., which is allowed because
of Proposition2.25.

Consider a simple program p of dimension n. We know from Sect. 5.1 that its
geometric semantics X = Ǧp is a cubical region and thus admits a cubical cover R.

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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If we write A for the set of subintervals of �I , each n-cube can be seen as a word of
length n over the alphabet A, and R as a finite set of such words. Since all the words
of R have the same length, this set is said to be homogeneous. As a consequence,
the space �I 0 is a singleton whose unique element ε is the empty word on A. In
particular it is the only nonempty 0-dimensional cubical region. We write Sn for
the permutation group, i.e., the group of bijections on a set with n elements. This
group acts on both X and R by “permuting coordinates:” given σ ∈ Sn , a point x =
(x1, . . . , xn) is sent to σ · x = (xσ−1(1), . . . , xσ−1(n)), and a word u = u1 . . . un ∈ A

n

is sent to σ · u = uσ−1(1) . . . uσ−1(n). This actions obviously extends to cubical covers
by σ · R = {σ · C | C ∈ R}.

We can define a (graded) tensor product on the symmetric groups as follows:
given σ ∈ Sp and τ ∈ Sq , σ ⊗ τ ∈ Sp+q is the permutation defined by

(σ ⊗ τ)(i) =
{

σ(i) if 1 ≤ i ≤ p

τ(i − p) + p if p < i ≤ p + q

Since taking the cartesian product of two spaces amounts to concatenating the coor-
dinates of their points (and similarly the product of two cubical regions amounts
to concatenating the corresponding words), the group action is compatible with the
cartesian product:

Lemma 5.23 Given two spaces X ⊆ �I p and Y ⊆ �I q , and two permutations σ ∈ Sp

and τ ∈ Sq , we have (σ · X) × (τ · Y ) = (σ ⊗ τ) · (X × Y ) (and similarly for
regions).

It thus makes sense to define the following monoids.

Definition 5.24 The monoid of cubical regions RS = ∐
n∈N Rn/Sn is the set of

orbits of cubical regions under the action of Sn , equipped with the multiplication
induced by cartesian product (i.e., concatenation), and its neutral element is the
nonempty zero-dimensional cubical region. The monoid of normal cubical covers

C
S = ∐

n∈N C n/Sn is defined similarly as the quotient of cubical covers in normal
form under the action of the symmetric group.

Thesemonoids are easily shown to be commutative. The isomorphismsbetween cubi-
cal regions and cubical covers in normal form of Proposition5.6 induce a (graded)
isomorphism between the above two monoids. We will thus only speak about the
former in the following, but the algorithms are more naturally expressed when con-
sidering the latter.

Proposition 5.25 The monoids RS and C
S

are isomorphic.

The monoid of cubical regions can be thought of as an analogue to the polynomial
ring k[X1, . . . , Xn] over a ring k. Now suppose that k is factorial (i.e., every element
admits a factorization as a product of irreducible elements, which is unique up to
reordering and multiplying by invertible elements), for instance k = Z. In this case,
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it is well known that the ring k[X1, . . . , Xn] is also factorial [112]. For instance, we
have

∑5
i=0 Xi = (X + 1)(X2 − X + 1)(X2 + X + 1). However, this property fails

for semirings: even though N is factorial, the ring N[X ] is not, as illustrated by the
following example from [130],

5∑

i=0

Xi = (X3 + 1)(X2 + X + 1) = (X + 1)(X4 + X2 + 1)

because the factors P involved above, such as P = X3 + 1, are irreducible (i.e.,
if P = Q R then either Q or R is invertible) but not prime (if P divides Q R then
P divides Q or P divides R, and P is not invertible). However, in the case of the
monoid of regions this property holds (even though intuitively, it is closer to the case
of polynomialswith coefficients inN): an n-cube (up to permutation) corresponds to a
monomial of degree n, and a cubical region inRn/Sn to a homogeneous polynomial
of degree n.

Theorem 5.26 In the commutative monoid RS of cubical regions, every element
can be uniquely factored as a product of irreducible elements.

The decomposition of a cubical region can be performed algorithmically as fol-
lows. Given u = u1 . . . un ∈ A

n and a subset I ⊆ [1 : n] of indices, we write u|I for
the subword of u consisting of letters with indices in I . Given a homogeneous set of
words R ⊆ A

n , we also write R|I = {u|I | u ∈ R}.
Lemma 5.27 Given I ⊆ [1 : n], we write I c = [1 : n]\I . Given a homogeneous set
of words R ⊆ A

n, we have R = R|I × R|I c (in the commutative monoid of cubical
regions) if and only if for all words u, v ∈ R there exists a word w ∈ R such that
w|I = u|I and w|I c = v|I c .

Whether a region can be factored can thus be tested by the following algorithm,
which is a variant of the naive factorization algorithm for integers.

Algorithm 5.28 Given R ⊆ A
n , a cubical cover of the state space in normal form:

1. choose a set I ⊆ [1 : n] of cardinality p ≤ n/2,
2. compute the set S = {

πI c(π
−1
I (u)) | u ∈ πI (R)

} ⊆ P(An−p), where πI : R →
A

p is the function such that πI (u) = u|I ,
3. if S is a singleton then R factorizes as R = R|I × R|I c , otherwise try another set

I .

Example 5.29 Suppose given resources a, b, c with κa = κb = 1 and κc = 2, and
consider the program p = p1||p2||p3||p4 with

p1 = Pa;Pc;Vc;Va p2 = Pb;Pc;Vc;Vb p3 = p1 p4 = p2

The naive syntactic analysis of Lemma5.22 would not discover that this program
can be factored since all processes share the resource c. However, the following
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can be observed: thanks to the mutex a (resp. b), the processes p1 and p3 (resp. p2
and p4) cannot both hold the resource c at the same time. The resource c is thus
never taken simultaneously more than two times, which means that the instructions
Pc and Vc actually have no effect on the execution of the program. Moreover, if we
remove the instructions Pc and Vc, the naive algorithmwould detect that the resulting
program can be factored in two independent processes using disjoint resources. The
normal cubical cover R of the geometric semantics has 16 cubes (we are using [0, 5]4
instead of �I 4 for readability):
[0, 1[ × [0, 1[ × [0, 5] × [0, 5] [0, 1[ × [4, 5] × [0, 5] × [0, 5] [0, 1[ × [0, 5] × [0, 5] × [0, 1[
[0, 1[ × [0, 5] × [0, 5] × [4, 5] [4, 5] × [0, 1[ × [0, 5] × [0, 5] [4, 5] × [4, 5] × [0, 5] × [0, 5]
[4, 5] × [0, 5] × [0, 5] × [0, 1[ [4, 5] × [0, 5] × [0, 5] × [4, 5] [0, 5] × [0, 1[ × [0, 1[ × [0, 5]
[0, 5] × [0, 1[ × [4, 5] × [0, 5] [0, 5] × [4, 5] × [0, 1[ × [0, 5] [0, 5] × [4, 5] × [4, 5] × [0, 5]
[0, 5] × [0, 5] × [0, 1[ × [0, 1[ [0, 5] × [0, 5] × [0, 1[ × [4, 5] [0, 5] × [0, 5] × [4, 5] × [0, 1[
[0, 5] × [0, 5] × [4, 5] × [4, 5]

For instance, with I = {1, 2}, we have [0, 1[ × [0, 1[ × [0, 5] × [0, 5] ∈ R,
and therefore [0, 5] × [0, 5] ∈ πI c(π

−1
I ([0, 1[ × [0, 1[)). Because we have

[0, 1[ × [4, 5] × [0, 5] × [0, 5] ∈ R, we have [0, 1[ × [4, 5] ∈ πI (R). However,
[0, 5] × [0, 5] /∈ πI c(π

−1
I ([0, 1[ × [4, 5])) since [0, 1[ × [4, 5] × [0, 5] × [0, 5] /∈

R. The processes (p1||p2) and (p3||p4) are thus not independent.With I = {1, 3}
the condition 3 of Algorithm5.28 is satisfied and therefore the processes (p1||p3)
and (p2||p4) are independent, and the program cannot be factorized further.

Finally, we should mention two extensions of these results. First, these can be
generalized to programs of the form p1||p2|| . . .||pn , where the threads pi can
contain any instruction except parallel composition (including conditional branch-
ings and loops). Second, thanks to a result due to Ninin [134], the factorization can
be efficiently performed, by exploiting the Boolean algebra structure of the collec-
tion of n-dimensional cubical regions. By abuse of language, we say that a partition
I1, . . . , I4 of [1 : n] is a factorization of X when the set of regionsπI1(X), . . . , πI4(X)

is so.

Theorem 5.30 Let R ⊆ A
n be the cubical cover, in normal form, of the complement

of the state space X (in �I n). The factorization of X is the finest partition of [1 : n]
whose elements are unions of subsets of the form

{
i | πi (u) �= �I

}
, for u ∈ R.

Example 5.31 Building on Example5.29 the forbidden region of the program is

[1, 4[ × [0, 5] × [1, 4[ × [0, 5] ∪ [0, 5] × [1, 4[ × [0, 5] × [1, 4[

The factorization immediately follows from Theorem5.30, the associated partition
of [1 : 4] being {{1, 3} , {2, 4}}.



Chapter 6
The Category of Components

A major contribution of algebraic topology is to provide invariants of topological
spaces up to homotopy, such as homotopy groups or homology groups. One of the
simplest such invariants is the number of connected components of a space. Of course
this invariant is very coarse since it does not distinguish between a disk and a circle,
which both have one connected component:

Amore refined invariant canbeobtainedby consideringboth the number of connected
components and the number of homotopy classes of paths within each component
i.e., the associated fundamental group. For instance, the disk has only one homotopy
class of paths, while for the circle these homotopy classes are in bijection with Z:

. . . ,−1,0,1, . . .

From a more abstract point of view, these data can be obtained as the skeleton of
the fundamental groupoid�1(X) associated to a space X (see Definition4.33). Here,
taking the skeleton means considering the objects of the category up to isomorphism.
The resulting category is thus the disjoint union of all the fundamental groups of the
path-connected components of the space. Notice that this category, while retaining
much information about the original space, is quite small compared to it. For instance,
in the above examples, it has one object, which should be compared to the infinite
number of points of the corresponding topological spaces.

Transposing this first nontrivial invariant to the setting of directed spaces, and
defining a “directed component,” is a real challenge. The nondirected case described
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above suggests to us that we should begin by considering the fundamental cate-
gory ��1(X) associated to a d-space X, and “reduce” it in some way in order to obtain
the category of components ��0(X) of X. Two criteria that should be met by the def-
inition of the category of components are that it should provide a category with few
objects and morphisms, and that there is a functor Q : ��1(X) → ��0(X), from the
fundamental category to the category of components, which induces a bijection on
nonempty homsets (Theorem 6.23), i.e., it exhibits the same behavior as the original
category.

Notice that the fundamental category of a d-space often has no nontrivial isomor-
phisms (this is typically the case for geometric models of programs), and therefore
taking its skeleton will result in an isomorphic category, whereas we were aiming
at making it smaller. Therefore, instead of identifying objects related by an isomor-
phism, we should use a stronger quotient, and identify objects related by an “inessen-
tial morphism”: this notion should be a variant of the notion of isomorphism, which
remains to be precisely defined. For instance, consider the directed space X depicted
on the left, where directed paths are those going from left to right, obtained by gluing
three copies of �I:

f

g

One easily gets convinced that a reasonable category of components associated
to the topological space is the free category on the graph depicted on the right with
three objects and two generators for morphisms: it does not really matter where we
are, inside each interval �I . This is why we only need three objects in the category
of components, and the arrows correspond to directed paths from one interval to the
other.

Remark 6.1 This is more subtle than it appears: if one tries to construct component
categories by identifying any two points related by a dipath, i.e., whenever there is a
morphism in the category ��1(X), the resulting category has only one object for our
example. More generally, the category we obtain has one object for each zig-zag-
connected component of the space and no nontrivial morphisms. On the contrary, if
one identifies any two points x and y related both by a dipath from x to y and a dipath
from y to x then the category we obtain is ��1(X), which is not quotiented enough.

The category of components will provide a tool which will enable us to identify,
in concurrent programs, actions which really have an impact on the execution of
the program and forget about those which do not really matter up to commutation of
actions, and thus provide a compact description of the fundamental category of a pro-
gram, thus allowing for efficient exploration of its state space. For instance, consider
the program p which is Pa;x:=1;Va||Pa;x:=2;Va. Its geometric semantics Ǧp

is given on the left below:

http://dx.doi.org/10.1007/978-3-319-15398-8_6
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In some sense the execution corresponding to the directed path g was the “only
thing” we could do starting from the point y: given another path g′ starting from y,
there exists paths h and h′ such that g . h ∼ g′ . h′. In other words, up to dihomotopy,
having performed g or not does not bring much information: in the end the variable x
will contain the value 2. On the contrary, the path f corresponds to a real “choice” in
the program (or more precisely its scheduler). It corresponds to the second process
performing action Pa: once this is done, the first process has no chance to perform the
action x:=1 first and, therefore, the variable xwill have the value 2 in the end. If we
are in a state where the second process has not performed action Pa, it is still possible
that x ends up with value 1. From a geometric point of view this corresponds to the
fact that if we consider a path f ′ starting from x and going below the hole, there is no
way to extend both f and f ′ in order to get two homotopic paths as before, because of
the hole. The dotted lines in the figure delimit four connected regions of the space Ǧp.
It can be checked that a directed path should be considered as inessential in the sense
sketched above, if and only if it lies entirely in one of those regions. This explains
why the associated category of components depicted on the right has four objects,
and the arrows correspond to directed paths allowing to go from one region to the
other, as earlier.

While the notion of the fundamental category is an immediate generalization in
the directed setting of the notion of the fundamental groupoid, the definition of the
category of components requires much more work and can be considered as a true
novelty here: passing from a quotient w.r.t. every isomorphism to a quotient w.r.t. a
suitable family of weak isomorphisms was not an easy step to perform. This notion
was introduced in [49] and is now well understood for loop-free categories [86], but
for more general categories, the right definition still eludes us. From now on, we
therefore suppose given a (small) loop-free category C , of which we will define the
category of components:

Definition 6.2 A category C is loop-free if for every pair of objects x, y ∈ C ,
C (x, y) �= ∅ and C (y, x) �= ∅ implies x = y and C (x, x) = {idx}.
The category C we consider is typically the fundamental category ��1(Ǧp) of the
geometric semantics of a program p without loops. Programs with loops (which give
rise to non-loop-free categories) can be handled by either considering the universal
dicovering of their geometric semantics, or their unrolling (see Remark 2.26). These
can also be handled using the extensions mentioned in Sect. 6.4.

http://dx.doi.org/10.1007/978-3-319-15398-8_2
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6.1 Weak Isomorphisms

6.1.1 Systems of Weak Isomorphisms

We begin by defining the class of weak isomorphisms (in the category C ). These
contain and share many properties with isomorphisms, but are nontrivial for typical
categories, such as the fundamental category of the geometric semantics of concur-
rent programs, even though those generally contain only trivial isomorphisms. As
announced in the introduction, these will serve to identify objects when defining the
category of components from the fundamental category. In order to do so, we should
first observe some of the properties satisfied by isomorphisms.

Any morphism f : x → y in C induces, for every object z ∈ C , a function
f ∗ : C (y, z) → C (x, z) by precomposition: to a morphism g ∈ C (y, z) it associates
f ∗(g) = g◦ f . Similarly, it induces a function f∗ : C (z, x) → C (z, y) for every object
z ∈ C by post-composition.

Lemma 6.3 A morphism f : x → y is an isomorphism if and only if the induced
functions f ∗ and f∗ are bijections for every object z ∈ C .

From a semantic perspective, an object y such thatC (x, y) �= ∅ should be considered
as part of the “future” of the object x, in the sense that there is a way of reaching y
from x, and similarly x is in the “past” of y. It is thus reasonable that amorphismwhich
does not change the future nor the past of any object is considered as inessential.
We thus introduce a class of morphisms, which is wider than isomorphisms, by
weakening the condition of the previous lemma.

Definition 6.4 A morphism f : x → y is a weak isomorphism if

• for every object z ∈ C such that C (y, z) �= ∅, the function f ∗ : C (y, z) → C (x, z)
is a bijection, and

• for every object z ∈ C such that C (z, x) �= ∅, the function f∗ : C (z, x) → C (z, y)
is a bijection.

Example 6.5 Consider the category C = ��1(Ǧp) where p is the program already
considered in the introduction of this chapter: Pa;x:=1;Va || Pa;x:=2;Va. We
are interested in the morphisms f : x → y and f ′ : x′ → y′ below.



6.1 Weak Isomorphisms 109

Themorphism f on the left is not aweak isomorphism.Namely,we haveC (y, z) �= ∅,
for instance we have shown that the morphism g : y → z is in this set. However, the
function f ∗ : C (y, z) → C (x, z) is not an isomorphism: in the directed space Ǧp,
there is no way to extend the path f in order to obtain a path which will be homotopic
to h. From a computing point of view this reflects the fact that the execution of Pa

by the second process has an irreversible effect on the future: it will be no more
possible for the first process to execute x:=1 first. The morphism f ′ shown on the
right is a weak isomorphism. This corresponds intuitively to the fact that f ′ is, up to
dihomotopy, the only possible path (i.e., execution of the program) to reach y′ from x′
(we should however underline that this intuition should not be taken too seriously
in higher dimensions, for instance in the “floating cube,” there is a unique total
path which is not a weak isomorphism, see Sect. 6.2.3). Notice that the category C
has nontrivial weak isomorphisms (such as f ′), whereas the only isomorphisms are
identities.

In this example, we have seen that a weak isomorphism corresponded, from a
computing point of view, to the only way of executing a program up to homotopy.
Namely,

Lemma 6.6 Given a loop-free category C , if f : x → y is a weak isomorphism
then f is the only morphism from x to y.

Proof Let f : x → y be a weak isomorphism. The homset C (x, x) is a singleton
because C is loop-free and f∗ is a bijection from C (x, x) to C (x, y). �

We have illustrated why weak isomorphisms are a very reasonable notion. How-
ever, there are still too many of these. In order to convince the reader, consider
the fundamental category of the geometric semantics of the Swiss flag program,
see Example4.21:

(6.1)

Notice that the terminal position tp can be reached from point x, but not from point y:
in other words, the point y is doomed whereas x is not. Consequently, the morphism f
(drawn in the picture above) should not be considered as inessential. This illustrates
why, in order to rule out such morphisms, we need to impose further restrictions
upon the class of weak isomorphisms, making it closer to the class of isomorphisms.
With this goal in mind, we notice that isomorphisms are stable under pushouts and
pullbacks:

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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Lemma 6.7 Given an isomorphism f : x → y, for every coinitial morphism g :
x → z there exists a pushout

and the morphism f ′ obtained as the pushout of f along g is also an isomorphism,
and similarly for pullbacks w.r.t. cofinal morphisms.

In the following, we will thus be interested in weak isomorphisms which satisfy
similar stability properties and we will consider as inessential the morphisms in the
maximal system, w.r.t. inclusion, of weak isomorphisms:

Definition 6.8 A system of weak isomorphisms is a collection � of weak isomor-
phisms of C , which is stable under pushouts and pullbacks, and contains all isomor-
phisms.

Example 6.9 In the geometric semantics of the Swiss flag, a collection of the mor-
phisms containing the morphism f of (6.1) cannot be stable under pushouts since
there is no pushout with any path g : x � tp.

6.1.2 A Maximal System

Since the composite of weak isomorphisms is still a weak isomorphism, it is easy
to see that given a system of weak isomorphisms, its closure under composition is
still a system of weak isomorphisms. We will therefore suppose that the systems we
consider are closed under composition, and we denote by SWI(C ) the collection of
all such systems. When the category C is loop-free, those systems can be shown to
be pure, in the following sense.

Definition 6.10 A collection � of morphisms is said to be pure when for every pair
of composable morphisms f : x → y and g : y → z, if their composite g ◦ f belongs
to � then so do both f and g.

An element of a system of weak isomorphisms typically corresponds to an exe-
cution trace along which no choice is made, and it is thus natural to expect that any
part of such an execution trace also satisfies this property. The following lemma
shows that it is indeed the case. This result moreover plays a key role in the proof
of Proposition 6.12.

Lemma 6.11 Given a loop-free category C and � ∈ SWI(C ), the collection � is
pure.

The set SWI(C ) is partially ordered by inclusion thus giving rise to a complete
lattice: greatest lower bound of two systems is given by the set-theoretic intersection,
while least upper bound is the least system containing the set-theoretic union.
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Proposition 6.12 The poset SWI(C ) ordered by inclusion forms a complete lattice.

A maximal system of weak isomorphisms thus exists and will be the main object of
our attention.

This system can be obtained as an application of the Knaster–Tarski fixpoint
theorem [158] as follows. If wewriteW for the set of all weak isomorphisms ofC , the
setP(W )of subsets ofW orderedby inclusion is a latticewithW asmaximal element.
Given � ∈ P(W ), we write �(�) for the collection of morphisms f ∈ � such that
for every coinitial (resp. cofinal) morphism g ∈ C , the pushout (resp. pullback) of f
along g exists and belongs to �. The function � : P(W ) → P(W ) thus defined is
clearly order-preserving and its greatest fixpoint can be obtained as the limit of the
sequence�n(W ). This characterization of the greatest system of weak isomorphisms
can be used in order to compute it algorithmically for loop-free categories which are
finitely presented, such as the fundamental category of the cubical semantics of a
loop-free concurrent program. In the following, we will use it to reduce the size of
the category C by turning the morphisms in this system into identities.

6.1.3 Quotienting by Weak Isomorphisms

Supposegiven a class� ofmorphismsof a categoryC , andwewould like to somehow
“remove” the morphisms in � from C . There are two categorical constructions
available in order to do so. We can either force them to be identities by constructing
the quotient category C /�, or force them to be isomorphisms by constructing the
localization CΣ−1 of C w.r.t. �. We study the first construction in this section and
will consider localization in the next one.

Definition 6.13 The quotient of a category C by � consists of a category C /�,
together with a functor Q : C → C /� sending morphisms in � to identities
and called the quotient functor, such that a functor F : C → D factors uniquely
through Q if and only if it sends all morphisms in � to identities.

Such a category always exists, see [8].

Example 6.14 Given a d-space X, consider its fundamental category C and � the
collection of all morphisms of C . The category C /� is the discrete category whose
objects are the path-connected components of the space X.

Example 6.15 Consider the category associated to the monoid (N,+, 0): it has one
object, its morphisms are integers, and composition is given by addition. We will
continue to use N to denote this category. Given the set � = {1} of morphisms, the
quotient categoryN/� is the terminal category with one object and only the identity
on this object as morphism.
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Example 6.16 Consider the category C with two objects x and y and two nontrivial
arrows f , g : x → y, and � = {g}. The quotient category C /� is isomorphic to N,
as defined in Example6.15.

From now on, we suppose that � is a fixed system of weak isomorphisms in a
loop-free category C . We look in detail at the corresponding quotient categories and
in particular, the case where� is the maximal such system will give us our definition
of components:

Definition 6.17 The category of components ��0(C ) associated to a loop-free cat-
egory C is the quotient category C /� where � is the greatest system of weak
isomorphisms of C . Given a directed topological space X, we simply write ��0(X)

for ��0( ��1(X)).

Remark 6.18 We will also consider the case where � is not maximal in Sect. 6.3.
In this case, the category C /� is called a category of precomponents and can be
thought of as an approximation of the category of components, in the sense that the
latter is a quotient of the former.

We say that two objects x and y are � -connected when they can be joined by a
zig-zag of morphisms in �, i.e., there exists a finite sequence x0, . . . , xn of objects
ofC such that x0 = x, xn = y and for every index i, there is a morphism f : xi → xi+1

or a morphism f : xi+1 → xi in �. This defines an equivalence relation on objects
of C whose equivalence classes are called the �-components of C .

These components can be shown to be structured as follows. Given a �-compo-
nent K of C , consider the full subcategory K of C whose objects are the elements
of K . By Lemma 6.6, there is at most one morphism between two objects ofK , i.e.,
the category is a preorder, and since C is supposed to be loop-free this preorder is
actually a partial order.

Proposition 6.19 Let � be a system of weak isomorphisms of a loop-free
category C . Suppose given a �-component K of C . The following can be shown:

• the relation � on K defined by x � y whenever there is a morphism f : x → y
in C is a partial order,

• the resulting poset (K,�) is isomorphic to the full subcategory of C whose objects
are the elements of K,

• the poset (K,�) is a lattice.

If moreover � is the maximal system, a category C is a component (i.e., its objects
are all in the same �-component) if and only if C is a lattice.

Two objects x and y which are �-connected thus admit a greatest lower bound x ∧ y
(i.e., a coproduct) and a least upper bound x ∨ y (i.e., a product) in the category K
corresponding to their component as above. Moreover, there is a unique morphism
from x or y to x ∨ y, and from x ∧ y to x or y, and this morphism belongs to �. In the
category K , it is easy to see that the square
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(6.2)

is both a pushout and a pullback. It turns out that this property is preserved by the
embedding of K into C :

Proposition 6.20 Given a �-component K , the inclusion functor K ↪→ C pre-
serves pushouts and pullbacks, i.e., the image of a square (6.2) is both a pushout and
a pullback.

The above proposition is often quite useful to compute pushouts and pullbacks.
Namely, it implies that

Corollary 6.21 Given two arrows f : x → y and g : x → z in �, their pushout
exists and is given by the arrows y → y ∨ z and z → y ∨ z, and dually for pullbacks.

We now describe the quotient category C /� in the particular case when � is a
system a weak isomorphisms of a loop-free category C . This covers in particular the
construction of the category of components. Given an object x of C , we write [x] for
its �-component. Suppose given two morphisms f : x → y and f : x′ → y′ of C
such that x and x′ are �-connected, and y and y′ are �-connected. We say that f and
f ′ are �-equivalent when the diagram

commutes. This defines an equivalence relation on the morphisms ofC and we write
[f ] for the equivalence class of a morphism f of C . These equivalence classes enable
us to provide an easy description of the quotient category:

Theorem 6.22 The quotient category C /� is (isomorphic to) the category whose
objects are of the form [x] for some object x of C , morphisms are of the form [f ] for
some morphism f of C , composition is given by composition in C , and identities are
equivalence classes of those in C .

The above category can be shown to be well defined. Namely, composition in C is
easily checked to be compatible with �-equivalence. Moreover, suppose given two
morphisms f : x → y and g′ : y′ → z′ inC such that y and y′ are�-connected. These
induce morphisms [f ] : [x] → [y] and [g′] : [y′] → [z′] in the quotient category,
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with [y] = [y′]. We can find composable representatives in the classes [f ] and [g]
using Proposition 6.19 and the stability of � under pushouts:

Above, the morphism f ′ is obtained by composing f with the morphism y → y ∨ y′,
and g as the pushout of g′ along the morphism y′ → y ∨ y′. It can easily be shown
that f and f ′ are �-equivalent, as well as g and g′.

The quotient functor C → C /� is of course the functor sending an object x of C
to [x] and a morphism f to [f ]. From this, one can draw many interesting simple
observations. For instance, the quotient functor is surjective on morphisms, and if C
is finite then so is C /�. These properties are not true in the general case (for an
arbitrary set �), for instance, Example6.16 provides a counterexample to both of
them. One can also show the following fundamental property, which ensures that the
quotient category behaves locally as the original category:

Theorem 6.23 Given two objects x and y of C such that C (x, y) �= ∅, the function
C (x, y) → C /�([x], [y]) induced by the quotient functor is a bijection.

Proof Suppose given a morphism of C /�([x], [y]). This morphism is of the form
[f ′] for some morphism f ′ : x′ → y′ of C with x′ ∈ [x] and y′ ∈ [y]. By Proposition
6.19, we therefore have a diagram of the following form, without the dotted arrows:

Because we have supposed C (x, y) �= ∅, we have C /�([x], [y]) �= ∅ and therefore
C /�([x], [y ∨ y′]) �= ∅, by post-composing with iy. Since the morphism px is in �,
it is a weak isomorphism and therefore, since C /�([x], [y ∨ y′]) �= ∅, there exists a
unique morphism f ′′ : x → y ∨ y′ such that f ′′ ◦ px = iy′ ◦ f ′ ◦ px′ . Similarly, because
iy ∈ � and C /�([x], [y]) �= ∅, we have a unique morphism f : x → y such that
iy ◦ f = f ′′. We therefore have [f ] = [f ′] and f is the unique possible pre-image of
[f ′] under the quotient functor. �

Remark 6.24 If we had taken� to be a system ofmorphisms (i.e., a set ofmorphisms
containing isomorphisms and stable under composition, pushouts, and pullbacks),
without supposing themorphisms to beweak isomorphisms, Theorem6.23would not
be satisfied in general. For instance, consider the categoryC which is the fundamental
category of the asynchronous graph on the left below:
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It is easy to see that the class of morphisms � = {f1, g1, f2, g2, g1 ◦ f1, g2 ◦ f2} is a
system of morphisms and therefore the quotient category C /� is the free category
on the graph on the right above, i.e., it is the category N (this is a small variation
of Example6.16). Since the category C is finite and the set C /�(x, x) is not The-
orem6.23 clearly does not hold. This shows the importance of considering weak
isomorphisms when defining our quotient.

6.1.4 Other Definitions

The quotient construction of C /�, described in the previous section, amounts to
turning the morphisms of� into identities. Another possibility consists in converting
them into isomorphisms, thus giving rise to the notion of the localization C [�−1] of
C w.r.t. �. This notion is much more common than quotients, because in category
theory, constructions are usually performed up to isomorphism. We recall here its
definition and explain how it relates to the earlier quotient construction.

Definition 6.25 The localization of a category C with respect to � consists of a
category C [�−1], together with a functor L : C → C [�−1] sending morphisms
in � to isomorphisms, such that a functor F : C → D factors uniquely through L if
and only if it sends all morphisms in � to isomorphisms.

We refer to [13] for more details about this notion, which can be shown to exist for
any C and �. When the set � of morphisms satisfies certain well-known properties
(see calculus of fractions in [13]), which are satisfied by our systems of weak iso-
morphisms, the localization admits a nice description as a category of fractions with
a neater definition of the morphisms as “fractions” gf −1 with f ∈ �.

Example 6.26 Consider again the category N corresponding to the monoid of inte-
gers introduced in Example6.15, with � = {1}. The localization N[�−1] is the
category with one object, the set of morphisms is Z, and composition is given by
addition. Notice that N[�−1] is not isomorphic or even equivalent to the quotient
category N/� which is the terminal category, as described in Example6.15.
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The previous example illustrates the fact that we generally do not have an equivalence
of categories between C /� and C [�−1] if we do not suppose that C is loop-free.
The following question thus arises: what would have happened if we had defined the
category of components as C [�−1] with � some system of weak isomorphisms of
the categoryC ? Fortunately, in the casewhereC is loop-free, we have an equivalence
of categories, i.e., it would not have made a substantial difference.

Suppose that � is a system of weak isomorphisms for the loop-free category C
and consider the functor Q : C → C /�. By definition, Q sends morphisms in �

to identities and thus to isomorphisms. By definition of the localization, there thus
exists a functor P : C [�−1] → C /� such that P ◦ L = Q.

Theorem 6.27 The functor P : C [�−1] → C /� is an equivalence of categories.

It was explained in the introduction that the construction of the category of com-
ponents can be thought of as a directed variant of taking the skeleton of a groupoid.
Following this analogy, we should be able to exhibit ��0(C ) as a full subcategory ofC
which meets each component exactly once. In other words, we would like to provide
the quotient functor Q : C → C /� with a section, i.e., a functor S : C /� → C
such thatQ◦S is the identity functor onC /�. Thismotivates the following definition.

Definition 6.28 A choice function j is a function from the �-components of C to
the objects C such that for every�-component K the object j(K) belongs to K . Such
a choice function is admissible when for every pair of �-components K and K ′, if
there exists x ∈ K and x′ ∈ K ′ such that C (x, x′) �= ∅ then C (j(K), j(K ′)) �= ∅.
If the number of components is finite, an admissible choice function always exists.

Proposition 6.29 If the number of �-components is finite, then there exists an
admissible choice function.

Proof We write C0 for the set of objects of C and K for the set of �-components
of C . We suppose given a function i : K → P(C0), which to every component K
associates a set of objects such that i(K) ⊆ K and for every pair of components
K, K ′ ∈ K , if there exists (x, x′) ∈ K × K ′ such that C (x, x′) �= ∅, then there exists
(y, y′) ∈ i(K) × i(K ′) such that C (y, y′) �= ∅. Such a function clearly exists and we
can suppose that i(K) is finite for every component K , because the number of (pairs
of) components is supposed to be finite. The function j defined by j(K) = ∨

i(K)

can then be shown to be an admissible choice function. Notice that the least upper
bound of i(K) exists because the component K is a lattice by Proposition 6.19, and
there are finitely many components. �

Theorem 6.30 Given an admissible choice function j, the quotient category C /�

is isomorphic to the full subcategory of C whose objects are those in the image of j.

We could thus, alternatively, have defined the category of components as the full
subcategory on the image of an admissible choice function. Interestingly, this last
definition is the only one to give satisfactory results with loops, as mentioned in
Sect. 6.4.
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Example 6.31 Consider the fundamental category associated to thegeometric seman-
tics of the program Pa;Va||Pa;Va, which has four components K1, K2, K3, and K4

as shown on the left below:

We can build a choice function i by picking an arbitrary point xk in each component
Kk , as shown on the middle left, and defining i(Kk) = xk . However, the resulting
function will not be admissible in general: in our example, there is no morphism (i.e.,
directed path) from x1 to x2, because x2 is “below” x1 (hence x2 is not comparable
to x1 using the componentwise partial ordering), whereas some points of K2 can be
reached from some points in K1. The proof of Proposition 6.29 provides a way to
construct an admissible choice function j from the choice function i; on the middle
right, we have illustrated points x′

i such that j(Kk) = x′
k . The full subcategory with

the points x′
k as objects is drawn on the right, and is the category of components

by Theorem6.30.

6.2 Examples of Categories of Components

6.2.1 Trees

We now investigate the categories of components associated to the fundamental
categories of trees (or of their geometric realization).

Definition 6.32 A tree T is a graph which admits a vertex x0 called its root such
that for every vertex x there is a unique path x0 � x. A vertex of a tree is called a
leaf when it is the source of no edge and a branching when it is the source of at least
two distinct edges.

The fundamental category of the category generated by such a tree can be character-
ized as follows.

Proposition 6.33 Suppose given a finite tree T and write T∗ for the category gener-
ated by T. The categories of components ��0(T∗) and ��0(|T |) are both isomorphic
to the full subcategory of T∗, or of ��1(|T |), whose objects are the branching vertices
and the leaves.

Example 6.34 Consider the tree depicted on the left. We have circled the vertices
which are either branchings or leaves.The categoryof components ofT∗ or of ��1(|T |)
is isomorphic to the free category on the graph depicted on the right.
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Remark 6.35 Thefiniteness condition is necessary in the above proposition.Namely,
consider the (infinite) treewithN as set of vertices and for every n ∈ N there is an edge
from n to n + 1. There are no branching vertices or leaves. However, the associated
fundamental category is reduced to an object, i.e., it is the terminal category.

The simple characterization given for trees does not directly generalize to directed
acyclic graphs. For instance, the graph on the left admits the free category on the
graph on the right as category of components.

A path in a graph is non-branching when its vertices are the source of at most one
edge and the target of at most one edge, except maybe the source and the target of
the path. It can be shown that the directed components of a directed acyclic graph
are in bijection with the maximal non-branching paths of G.

6.2.2 Cubical Regions in Dimension 2

Consider a cubical region X in dimension 2. Since the set of cubical regions is closed
under complement (see Sect. 5.1), this space is of the form X = �I2 \ ⋃l

i=1 Ri with
Ri = ][xi

1, yi
1][ × ][xi

2, yi
2][ (where “][” is either “[” or “]”), and is typically generated

as the geometric semantics of a simple program in dimension 2, see Sect. 4.1.4.
The category of components ��0(X) of the associated fundamental category can
be computed as follows. For every lower left corner xi = (xi

1, xi
2) of a forbidden

rectangle, draw a horizontal straight line starting from x and extended to the left until
a dead point is met (or the boundary of �I2), as well as a vertical line extending x
downward until a dead point. Similarly, extend every upper right corner y = (yi

1, yi
2)

upward vertically and forward horizontally. The connected components of the space
obtained from X by removing those lines are the components of X. When a line splits
two neighboring components, whether its points belong to a component or the other
depend on whether the boundaries of the rectangle Ri from which it originates are
open or closed. There is a morphism from one component to another when there is
a directed path from a point of the first to a point of the second, and two morphisms
are equal when the corresponding paths are dihomotopic.

http://dx.doi.org/10.1007/978-3-319-15398-8_5
http://dx.doi.org/10.1007/978-3-319-15398-8_4
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Example 6.36 We have shown below four such spaces, as well as (superimposed)
the asynchronous graph (see Definition3.3.2) whose fundamental category is the
category of components of the space.

An algorithm based on similar ideas, generalized to any dimension, will be presented
in Sect. 6.3.

6.2.3 The Floating Cube and Cross

Consider the program p = Pa;Va||Pa;Va||Pa;Va with κa = 2. It has geometric
semantics Ǧp = �I3\] 1

3 ,
2
3 [3 which is a “floating cube,” as alreadymentioned in Exam-

ple4.15. The category of components associated to its fundamental category ��0(Ǧp)

has 26 objects and is in fact isomorphic to the fundamental category associated to
its cubical semantics ��1(Čp), which was shown in (3.5) at the beginning of Sect. 3.4
(see also the figure on the right below).

This can be shown as follows. Considering the hyperplane depicted on the left
below, we see that the morphism f1 is not a weak isomorphism, for the same reasons
as the morphism f in Example6.5. Moreover, the morphism f0 depicted in the second
picture below, from the left, has no pushout along the morphism g, because of the
presence of the hole (wehave pictured two incomparableways to close the span (f0, g)

as a commutative square). Furthermore, on the third picture, one readily checks that
f1 is the pullback of fi, with i ∈ {2, . . . , 5}, along with an appropriate morphism.
Hence, none of the morphisms f1, . . . , f5 belongs to a system of weak isomorphisms
because the latter is stable under pullbacks and has been proven not to contain f1.

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
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If we consider the same program p, but in the case where a is a mutex, the geometric
semantics is shown on the left, and the corresponding category of components has 14
objects, and is freely generated by the graph shown on the right:

6.3 Computing Components

In the case of the geometric semantics of simple programs, it can be observed that the
categories of components can always be presented as the fundamental category of an
asynchronous graph (i.e., a two-dimensional precubical set, see Definition3.32), as
illustrated in the previous section (see Example6.36 for instance). It is quite difficult
to compute such an asynchronous graph in general. However, we can easily compute
an asynchronous graph whose fundamental category corresponds to quotienting the
geometric semantics by some nontrivial system of weak isomorphisms, which is not
the maximal one in general. We briefly describe in this section an algorithm comput-
ing such an approximation of the category of components of a simple program: given
a program p, the algorithmwill compute a category which is a quotient of ��1(Ǧp), of
which the category of components ��0(Ǧp) is a quotient, and both quotients trivialize
weak isomorphisms only. In other words, it computes a category of precomponents,
in the sense of Remark 6.18.

6.3.1 The Case of One Hole

Recall from Sect. 6.2.2 that the geometric semantics of the simple program Pa;
Va||Pa;Va, where a is a mutex, is obtained by removing a square (named R below)
froma square, and the associated component category is the skeletal category pictured
on the right below, whose objects correspond to the four regions A, B, C, and D
pictured on the left, and morphisms f , g, h, and i correspond to common faces of
these regions:

(6.3)

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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Two interesting remarks can be made on this example. First, the category of compo-
nents is the free category on the graph above with four vertices and four edges, and
is thus the fundamental category of an asynchronous graph (with trivial dihomotopy
relation). Second, the regions can be obtained by separating the space by the dotted
lines which originate from the lowest and highest point of the forbidden square.

As another example, consider the category of components of a program consisting
of n copies of the programPa;Va in parallel, where the resource a is of capacity n−1.
It can be computed using a generalization of the computation for the floating cube
of Sect. 4.3.1, which is the particular case where n = 3. Similar remarks can be
formulated. First, for n = 3, the category of components is the fundamental category
of the two-dimensional precubical set with 26 vertices, 32 edges, and 24 squares
(or 2-cells), which describes the (cubical) barycentric subdivision of a simple hollow
cube (8 vertices, 8 edges, 6 squares). Second, the regions are obtained by separating
the space using 6 planes, each of which is following one of the 6 square faces of the
forbidden cube.

From these examples, one can build the following intuition for the general n-
dimensional case. There are two cases to consider.

• Consider the space Xn,n which is the complement of a hypercube of dimension
n (the forbidden region), in the interior of a bigger hypercube of dimension n.
This space is produced when n processes ask for locks on a resource of capacity
n − 1. Then the regions that will become objects in the category of components
are the 3n − 1 regions delimited by the 2n hyperplanes containing the 2n faces
of the forbidden region, minus the forbidden region. The unique morphism from
a region to the neighboring one is in bijection with their common face. Four
regions that intersect create relations between the morphisms from one of these
four components to some of its neighboring components.

• In analogywith the Swiss flag (see Example4.21), consider the spaceXn,n−k which
is the complement of a cylinder with hypercube section of dimension n − k,
going all though some bigger hypercube of dimension n. This type of hole arises
when considering at least n − k among n processes trying to lock a resource of
capacity n − k − 1 < n − 1 (many of these holes can be created by the semantics).
All these hypercubes are as usual isothetic hypercubes, so Xn,n−k is isomorphic
to Ik × Xn−k,n−k . As for the fundamental category, components commute with
the Cartesian product, and hence the maximal component category is the one of
Xn−k,n−k (with 3n−k − 1 regions).

6.3.2 The General Case

Suppose we want to determine now a category of components for a simple program
where the forbidden area is generated by multiple hypercubes, such as the program
p = Pa;Va;Pb;Vb||Pb;Vb;Pa;Va where a and b are mutexes. Its directed geo-
metric semantics is obtained from the one of Pa;Va||Pa;Va studied in the previous

http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_4
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section by carving a new square hole, as shown on the left of (6.4), and the corre-
sponding category of components is the fundamental category of the asynchronous
graph shown on the right, which corresponds to the subdivision of the space shown
in the middle.

(6.4)

If we start from only the hole R, as covered in the previous section, carving a new
hole such as R′ will create new hyperplanes from the lowest and highest points of
the hole (the dotted lines in the middle of (6.4)), which will cut the components we
had at the previous stage into new components. Moreover, these will cut new seg-
ments of hyperplanes, and hence will generate new morphisms from one component
to neighboring ones, as we sketched in Sect. 6.3.1. When adding R′, an interesting
situation can be observed: the fact that two of these hyperplanes can intersect in
a point produces two pairs of composable morphisms with the same start and end
regions. A simple argument shows that the corresponding composites should com-
mute; hence an independence tile should appear in the corresponding presentation
using asynchronous graphs. The intuition now is that regions of codimension 0 will
form points in the asynchronous graph corresponding to the category of components
we are describing, regions of codimension 1 (segments of hyperplanes) will form
edges, and regions of codimension 2 (points in general) will form independence tiles.

If we write XR for the space in the case where there is only the hole R, we know a
presentation of the associated category of components ��0(XR): following (6.3), it is
presented by the two-dimensional precubical set CR which contains four objects A,
B, C, and D; four morphisms f , g, h, and i; and no 2-cell. The case of the space XR′

containing only the hole R′ is obviously similar, and we use similar primed notations.
The elements of the category of components shown on the right of (6.4) can be seen
as pairs of elements of each category of components, a pair consisting of elements
of dimension k and l is of dimension k + l, as illustrated below. For instance (f , g′)
consists of two 1-cells and is thus a 2-cell (a tile), and similarly (A, A′) consists of
two 0-cells and is thus a 0-cell (a vertex).
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It can be noticed that those cells are elements of the tensor product CR ⊗ CR′ of
the two precubical sets. However, not every cell in the tensor product is part of the
above presentation: a simple criterion characterizing the cells which are present can
be formulated as follows. Each cell in CR corresponds to a portion of the space XR as
explained above: a 0-cell A corresponds to a region |A|, a 1-cell f to a segment |f |,
and a 2-cell I to a point |I|, and similarly for CR′ . A 0-, 1- or 2-cell (x, x′) ∈ CR ⊗CR′

is part of the above cubical set precisely when |x| ∩ ∣
∣x′∣∣ �= ∅. For instance, the cell

(f , g′) is present because the segments |f | and ∣
∣g′∣∣ intersect at a point, whereas (g, f ′)

is not present because the corresponding segments do not intersect.
The above observation leads to a general procedure for computing a presentation

of a category of precomponents for the geometric semantics of a simple program:

Algorithm 6.37 Suppose given a space of the formX = �In\⋃l
i=1 Ri where theRi are

cubical regions, a typical geometric semantics of a simple program of dimension n.

1. If l = 1, i.e., there is only one forbidden region R1, a presentation of a category
of components can be computed as explained in Sect. 6.3.1.

2. Otherwise,

a. choose l′ such that 1 ≤ l′ < l (typically l′ = l/2),
b. recursively compute two-dimensional precubical setsC andC′, respectively,

presenting categories of precomponents of �In \ ⋃l′
i=1 Ri and �In \ ⋃l

i=l′+1 Ri,
c. return the precubical subset of C ⊗C′ consisting of 0-, 1-, and 2-cells (x, x′)

such that |x| ∩ ∣
∣x′∣∣ �= ∅.

We insist on the fact that it gives a quotient category which is in general less quo-
tiented than the category of components (as illustrated in Example6.40): we get a
nontrivially “compressed” state space which might not be as optimal as the cate-
gory of components, but which is useful for static analysis as we exemplify briefly
below. We refer the reader to [67] for more details, and to [71] for formal relation-
ships between components and state-space reduction techniques, as used in model
checking (e.g. , persistent sets).

Example 6.38 (Swiss flag) Consider the Swiss flag Example3.22. Its geometric
semantics is shown on the left below (see Example4.21), together with its 10 com-
ponents. The category of components is presented by the asynchronous graph on the
right. Notice that we have two asynchronous tiles corresponding to the commutation
relations f ′

2 ◦ f ′
1 = f2 ◦ f1 and g′

2 ◦ g′
1 = g2 ◦ g1.

f1

f2

g2

g′
2

f ′1 f ′2

g′
1

g2

∼

∼

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_4
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Example 6.39 (Dining philosophers) In the case of the 2 and 3 dining philosophers
Example3.23, the category of components is presented by the precubical sets below,
where the filled surfaces represent 2-cells (i.e., commutation tiles).

By Theorem6.23, we know that we can deduce from any category of precomponents
the maximal morphisms, i.e., the equivalence classes of maximal execution traces.
In the case of the 2 dining philosophers, we find 3 maximal traces, 2 of which are
non-deadlocking, and in the case of the 3 dining philosophers, we find 7 maximal
traces, 6 of which are non-deadlocking. More generally, the n dining philosophers
exhibit 2n − 1 execution traces up to dihomotopy, one of which is deadlocking.

Example 6.40 This algorithm does not provide us with the category of components
(as opposed to precomponents). If we consider the space on the left, the outcome of
the algorithm is shown in the middle, whereas the category of components is shown
on the right:

6.3.3 The Seifert–Van Kampen Theorem

From a theoretical point of view, the category of components of a space can be
computed from subspaces as follows. Suppose given a loop-free d-space X together
with two subspaces Y and Z forming an open cover of X. In Sect. 4.31, we have
shown that the fundamental category of X could be computed from those of Y and Z
by a suitable pushout. Similarly, the category of components of X can be computed
from those of Y and Z , as we now explain. The diagram on the left below, whose
maps are the obvious inclusions, is a pushout in dTop:

http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_4
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By Theorem4.52, its image under the functor ��1, shown on the right above, is still a
pushout inCat. Supposewe have fixed a system�Y (resp.�Z ) ofweak isomorphisms
in ��1(Y) (resp. ��1(Z)), such that �Y and �Z are contained in the greatest system of
weak isomorphisms of ��1(X). As a consequence of Proposition 6.12, we can define
�X as the least system of weak isomorphisms containing both �Y and �Z . The
inclusion maps then give rise to functors between the associated quotient categories:

Theorem 6.41 The following diagram is a pushout in Cat:

Example 6.42 Consider again the d-space X of Example6.40, and write Y and Z for
the two halves separated by the vertical dashed line in the middle:

(technically, the spaces are a bit bigger than shown by the separation line so that
they overlap). Notice that a dipath from x to y is in the greatest system of weak
isomorphisms of ��1(Y), but not in the one of ��1(Z), which explains why we cannot
suppose in general that �Y and �Z are greatest systems of weak isomorphisms in
the above theorem. A suitable choice for �Y and �Z generates a set �X which is
the greatest system of weak isomorphisms of X and thus allows us to compute the
category of components of the space, which was described in Example6.40.

As explained in the example above, one of the drawbacks of this generalized form
ofVanKampen theorem is that one essentially has to “guess” the component category
in order to choose the right sets �x, �Y , and �Z of weak isomorphisms, but the
theorem still proves quite useful in practice. For instance, it allows the computation
of the category of components of programs with conditional branchings: the syntax
of the program defines in a quite straightforward manner the suitable covering of
their geometric semantics with subspaces of the form handled in Sect. 6.1.

6.4 Historical Notes, Applications, and Extensions

The first steps concerning categories of components appeared in [52] and were later
defined and studied thoroughly in Haucourt’s PhD thesis [85], see also [68], where
weak isomorphisms were called “Yoneda morphisms.” These categories are not

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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purely of theoretical interest. They provide a compact way of describing the fun-
damental category of simple programs, and thus to perform verification on those
efficiently as explained in Chaps. 2 and 3: Theorem6.23 ensures that we can use the
presentation of the category of components of a program to build representatives for
every execution traces up to dihomotopy, which is enough to cover all the possible
behaviors of the program if we suppose that it is coherent, see Sect. 3.3.3.

Various extensions of the notion of component have also been investigated, with
less success for now, and we report on those possible variations below.

6.4.1 Categories with Loops

So far, categories of components have been properly defined for loop-free categories
only, i.e., in practice for the fundamental categories of programs without while
loops. An obvious example which is not covered is the fundamental category of the
directed circle �S1 for which the fundamental category of components ��0(�S1) should
clearly be the category corresponding to the additive monoid N. Unfortunately, a
direct generalization of most of the previous (equivalent) definitions of categories
of components do not provide proper results, even in this simple case, as we now
explain.

The morphisms of the fundamental category ��1(�S1) are in one-to-one correspon-
dence with the elements S1 × N × S1: a path f : x � y is characterized by the
triple (x, n, y) consisting of its source x, its target y, and its winding number n. In
order to guess what the greatest system of weak isomorphisms of �S1 should be, we
suppose that it is pure, and stable under both composition and the group of auto-
morphisms of �S1 (these assumptions are legitimate because they can be proven in
the loop-free case). As a consequence, a morphism (x, 0, y) is a weak isomorphism
whenever (x, n, y) is so, for some n ∈ N. Moreover, it readily follows from stability
under automorphisms that if some morphism of the form (x, 0, y) is a weak isomor-
phism, then so are all the others. As these morphisms generate the category ��1(�S1),
one has to cope with the following dilemma: either ��1(�S1) has no weak isomor-
phism except identities, or every morphism is a weak isomorphisms. We favor the
second case, since in the first one the category of components would be isomorphic
to the original category. Writing � for the collection of morphisms of ��1(�S1), we
observe that the localization ��1(�S1)[�−1] is the fundamental groupoid of the circle,
and that the quotient ��1(�S1)/� boils down to the terminal category. In particular,
Theorem6.27 is no longer available in the presence of loops which makes Defini-
tion6.17 questionable. In fact it might be more reasonable to define the category of
components as the full subcategory whose objects are in the image of a choice func-
tion (see Theorem6.30). Indeed, we would then obtain ��0(�S1) = N which seems
more appropriate, even though it raises the technical problem of whether it is always
possible to find a choice function which preserves the reachability of components.

The problem of the category of components of programs with loops can also be
tackled through the universal covering space of their geometric semantics,which gen-

http://dx.doi.org/10.1007/978-3-319-15398-8_2
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_3
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erally does not contain loops (see Sect. 4.3.2). In particular, this approach strengthens
the belief that the category of components of the directed circle is the monoid N.

6.4.2 Past and Future Components

The current definition of components identifies objects which intuitively have the
same past and the same future up to dihomotopy, as formalized by the notion of
weak isomorphism (Definition6.4). By analogy with automata theory or bisimula-
tion, one might also be interested in identifying points which only have the same
past (resp. future) up to dihomotopy, giving rise to the notion of past components
(resp. future components). Attempts to define those have beenmade [68, 70], but their
theory still lacks many of the nice properties associated with the usual categories of
components as presented in this chapter.

http://dx.doi.org/10.1007/978-3-319-15398-8_4


Chapter 7
Path Spaces

The space of dipaths in the geometric semantics of a program is generally very large,
even for the most simple programs. In this chapter, we describe a method that allows
one to “compress” this space in the case of simple programs, and to provide a finite
combinatorial description of it which retains its essential topological characteristics:
we compute a combinatorial model of this space, whose geometric realization is
homotopy equivalent to it. This model will be a prod-simplicial complex (a variant
of a presimplicial complex). Perhaps surprisingly at first glance, and in contrast to
what happens for path spaces without the directedness assumption, this shows that
those (functional) spaces have the homotopy type of a finite (CW-)complex: the space
of directed paths itself is considered as a nondirected space.

The key to this description is a decomposition of a space of dipaths into subspaces
of particular shapes, called restricted spaces, which are geometrically very simple:
they are either emptyor contractible. Interestingly, every restricted space canbe coded
by a certain boolean matrix, where inclusion of subspaces corresponds to the natural
partial order on these matrices, and this gives rise to efficient computations. The
algorithm that we present was originally introduced in [146] and further developed
in [48]. To use it, one has to determine whether a particular restricted space is empty
or not which can be done by adapting the deadlock algorithm described in Sect. 5.2.

In Sect. 7.1, we describe the part of the algorithm that is sufficient to compute
the set of dipaths modulo dihomotopy, which is perhaps the most interesting from a
verification point of view. In Sect. 7.2,we provide detailed proofs and extend the algo-
rithm in order to construct a combinatorial model for the entire path space. Finally,
we discuss some further extensions. We will mainly focus on simple programs, but
will also mention how this can be extended to more general cases.
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7.1 An Algorithm for Computing Components of Trace
Spaces

7.1.1 Path Spaces for Simple Programs

Given two points x and y of a d-space X, we write X(x, y) for the subspace of X�I
consisting of all dipaths from x to y, equipped with the compact-open topology,
and call it the path space from x to y. In particular, a total path is an element
of Ǧp(0, 1) (see Definition4.13), i.e., a path from the beginning point 0 = (0, . . . , 0)
to the end point 1 = (1, . . . 1), and we will be mostly interested in those paths in the
following. The path components of X(0, 1) correspond to the dihomotopy classes of
total dipaths in X, and we shall call these dipath classes for short. In this section,
we will concentrate on how to get hold on the set of dipath classes for a space X
corresponding to a simple program: as explained in Sect. 3.3.3, these cover all the
possible behaviors in a coherent program since two dihomotopic paths will lead to
the same results, and can thus theoretically be used in order to verify a program.

Remark 7.1 Instead of considering dipaths, one may be interested in traces, which
are paths modulo increasing reparametrizations, and the resulting “trace spaces” are
often studied in the literature [41, 145]. Reparametrization equivalent dipaths are
easily seen to be dihomotopic; moreover, path spaces and trace spaces are homotopy
equivalent. For the sake of simplicity of the presentation, we focus here on path
spaces.

As in the previous chapters, we restrict for simplicity to simple programs of given
dimension n. We recall from Sect. 4.1.4 that the geometric semantics of such a pro-
gram p = p1|| . . .||pn is of the form

X = Ǧp = �In \
l⋃

i=1

Ri with Ri =
n∏

j=1

]xi
j, yi

j[

with, for every i ∈ [1 : l] and j ∈ [1 : n], xi
j, yi

j ∈ {−∞} ∪ I ∪ {∞} and xi
j < yi

j. We
moreover suppose that all resources are of capacity n − 1 (this is only to ease the
presentation, as explained in Remark7.23): this amounts to supposing that all the xi

j

and yi
j are different from −∞ and ∞. For instance, we will consider the semantics

of the following program p, which was already presented in Example4.31:

(7.1)

http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_3
http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_4
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7.1.2 The Index Poset

In order to study the total dipaths in the path spaceX(0, 1) = Ǧp(0, 1) of a state space
X up to dihomotopy, we focus on how they “turn around” each of the holes in X.
Here is a quick instructive description in dimension 2. For a given hole (for instance
the hole denoted 1 in (7.2) below), a dipath has either to stay below that hole or to
the left of it. Only one of these options occurs if the hole is extended in parallel to
one of the axes: extending a hole like the dark gray hole 1 parallel to the vertical axis
(i.e., carving the light gray “below hole 1” in the first situation) to the boundary of
the state space forces every dipath to stay to the left of that hole; extending it parallel
to the horizontal axis (light gray “to the left of 1” like in the second situation) forces
dipaths to stay below hole 1.

p1

p2

1

2
p1

p2

1

2
p1

p2

1

2
p1

p2

1

2

(7.2)

Consider all possible combinations of extensions like the four ones depicted in (7.2).
In some situations (the three first ones in our example) there exists a total dipath with
the given combination of behaviors; in others, the occurrence of a new deadlock (as
in the last case) shows that there is no total dipath with the described combination
of behaviors.

It turns out that this combinatorial information is enough to compute the space of
directed paths up to homotopy equivalence. The path space from (7.2) with the two
original dark gray holes denoted 1 and 2 has in fact three contractible components.

A simple way to encode the combinatorial information about the extension of
holes and of resulting dipaths is through boolean matrices.

Notation 7.2 We write Ml,n for the poset of l × n matrices M = (M(i, j)), with l
rows and n columns and coefficients in Z2 (the boolean field of two elements). This
set of matrices is given a partial order via the entrywise ordering 0 � 1, i.e., M � N
whenever M(i, j) � N(i, j) for every pair of indices (i, j) ∈ [1 : l] × [1 : n]. For later
reference, we write M R

l,n (resp. M C
l,n) for the subposet consisting of matrices such

that each row contains at least one coefficient equal to 1 (resp. each column contains
exactly one coefficient equal to 1).

Definition 7.3 Given a matrix M ∈ Ml,n, we write R (M) ⊆ X ⊆ �In for the
restricted subspace induced by M, obtained by extending downward each forbid-
den rectangle Ri in every direction j′ �= j for every j such that M(i, j) = 1. Formally,

R (M) = �In \
⋃

M(i,j)=1

R̃i
j (7.3)
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where

R̃i
j =

j−1∏

j′=1

[0, yi
j′ [ × ]xi

j, yi
j[ ×

n∏

j′=j+1

[0, yi
j′ [

The spaces R̃i
j are sometimes informally referred to as walls because of their geo-

metric representation, see Examples7.6 and 7.7 below. It is immediate from the
definitions that M � N impliesR (N) ⊆ R (M). In other words, given X = Ǧp, we
may conclude the following:

Lemma 7.4 The operation R can be considered as a functor from the opposite of
the posetal category (Ml,n,�) to dTop.

In order to study whether there is a total path in the space associated to a matrix,
we introduce the following notions.

Definition 7.5 Amatrix M is dead ifR (M) (0, 1) = ∅, i.e., there is no total dipath
in the d-space R (M), and alive otherwise. In particular, we write

Mdead = {
M ∈ Ml,n | M is dead

}

and

Malive = {
M ∈ M R

l,n | M is alive
}

The index poset that we will work with is the set Malive equipped with the partial
order described in Notation7.2.

In the definition ofMalive ⊆ M R
l,n, alive matrices are supposed to have a coefficient 1

in each row, i.e., each hole should be extended in at least one direction. This will
make sure that the spaceR (M) is geometrically very simple for a matrixM ∈ Malive

as shown in Proposition7.9.

Example 7.6 In the introductory example, the three extensions of holes (7.2) are,
respectively, encoded by the following matrices:

(
1 0
1 0

) (
0 1
1 0

) (
0 1
0 1

) (
1 0
0 1

)

The last matrix is dead: this indicates that there is no dipath passing to the left of
hole 1 and below hole 2. The three other matrices are alive.

Example 7.7 The geometric semantics of the program consisting of three copies of
the thread Pa;Va;Pb;Vb in parallel, with κa = κb = 2, is



7.1 An Algorithm for Computing Components of Trace Spaces 133

p1

p2

p3 1

2

The spaces R (M) corresponding to the matrices

(
1 0 0
0 0 1

) (
0 0 1
1 0 0

) (
0 0 0
1 1 1

)

are respectively

p1

p2

p3

p1

p2

p3

p1

p2

p3

The first two matrices are alive, as shown by the drawn total paths, and the last one
is dead.

From Lemma7.4, we may conclude:

Lemma 7.8 The set Mdead is upward closed withinMl,n, and the set Malive is down-
ward closed within M R

l,n.

The set Mdead (resp. Malive) is thus completely characterized by its minimal (resp.
maximal) elements.

The matrices in the index poset are suitable objects in the study of dipath classes
because the associated spacesR (M) are topologically very simple, as formalized in
the following proposition that will be proved in Proposition7.26.

Proposition 7.9 For any matrix M ∈ M R
l,n, the space R (M) (x, y) of dipaths from x

to y is either empty or contractible. Hence, a matrix in M R
l,n is alive (resp. dead) if

and only if R (M) (0, 1) is contractible (resp. empty).

In particular, if M is alive, then any two dipaths in R (M) (x, y) are dihomotopic.
Moreover, we will now explain that the dipath classes can be recovered from an
equivalence relation on the matrices in Malive:

Definition 7.10 Two matrices M, N ∈ M R
l,n are connected if they are related by the

smallest equivalence relation containing � on M R
l,n.

In particular, if the maximum of two matrices is alive, then the two matrices are
connected. Intuitively, alive matrices describe sets of mutually dihomotopic total
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paths. Whenever the maximum of two matrices is alive, there are paths which satisfy
the constraints imposed by both matrices, i.e., all dipaths satisfying the constraints of
either matrix aremutually dihomotopic. This observation is reflected in the following
result that we prove in Propositions7.27 and 7.28.

Proposition 7.11 There is a bijection between the set of connected components
of Malive and the set of dipath classes in X.

Example 7.12 Consider the “floating cube” program p = Pa;Va||Pa;Va||Pa;Va.
The associated path spaceXp is a cube fromwhich an interior cube has been removed.
The matrices inMalive are, along with the associated restricted spaces,

1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0

p1

p2
p3

p1

p2
p3

p1

p2
p3

p1

p2
p3

p1

p2
p3

p1

p2
p3

and they are all (transitively) connected. All dipaths in the geometric realization of
the program p are thus mutually dihomotopic, as was to be expected. On the triangle
on the left below

(100) (010)

(001)

(110)

(101) (011)

R 1 1 1
)

= p1

p2

p3

points correspond tominimalmatrices inMalive, and edges tomaximal suchmatrices.
In fact, we will see that this hollow triangle provides a model for the path space. The
interior of the triangle is not present since the matrix M = (

1 1 1
)
corresponds to an

empty path spaceR (M) (0, 1): there are too many walls for a dipath to get through,
as shown on the right.

7.1.3 Determination of Dipath Classes

The computation of the dihomotopy classes of total paths (dipath classes for short)
in the geometric semantics X = Ǧp of a given simple program p will be performed
in three steps.

1. We compute the setMdead of dead matrices; by Lemma7.8, it is actually enough
to determine the minimal ones in Mmin

dead = Mdead ∩ M C
l,n with exactly one entry

equal to 1 in each column.
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2. We use Mmin
dead to compute the index poset Malive; it is enough to determine the

maximal ones inMmax
alive .

3. We deduce the set of dipath classes by determining the quotient of Malive with
respect to connectedness.

In order to determine which matrices are dead, we start with the following simple
observation: when a matrix M ∈ Ml,n is dead, there is no total path inR (M) (0, 1).
In this case, any maximal dipath starting at 0 ends at a point x < 1, and x is thus a
deadlock. If this is true for every maximal dipath, then 0 is in the doomed region
(see Definition4.44) for one of the deadlocks that hence has to be produced by one
of the walls (see Definition7.3) for each of the n directions, i.e., the matrix M has
at least one entry equal to 1 in each column. On the other hand, if n walls (from a
matrixM ∈ M C

l,n with exactly one entry one per column) result in a deadlock, then the
associated doomed region has the start point 0 as itsminimal vertex, seeDefinition7.3
and Algorithm5.14. Hence, no dipath starting at 0 can avoid this deadlock. We have
thus shown:

Lemma 7.13 A matrix M ∈ M C
l,n is dead if and only if the space R (M) contains a

deadlock with 0 in the doomed region.

We apply the characterization of deadlocks in geometric semantics given in Theo-
rem5.11 of Sect. 5.2 to find the dead matrices by checking a number of inequal-
ities. This requires introducing further notation: given a subset I of [1 : l] and

an index j ∈ [1 : n], we write yI
j = min

{
yi

j | i ∈ I
}
, where y∅

j = ∞ by conven-

tion. Given a matrix M ∈ Ml,n, we define the set of nonzero rows of M by
R(M) = {i ∈ [1 : l] | ∃j ∈ [1 : n], M(i, j) �= 0}. For a matrix M ∈ M C

l,n, we write
i : [1 : n] → [1 : l] for the function characterized by M(i(j), j) = 1.

Proposition 7.14 A matrix M ∈ M C
l,n is dead iff it satisfies xi(j)

j < yR(M)
j for every

j ∈ [1 : n].
Proof Following Theorem5.11 a deadlock with 0 in the doomed region can only be
formed by the n walls R̃i(j)

j . Those intersect in the region
∏

j]xi(j)
j , yR(M)

j [, which is
nonempty if and only if the condition holds. �

Example 7.15 In the example below with l = 2 and n = 2, the matrix M =
(
0 1
1 0

)

is dead:

p1

p2

1

2

x11 x21 y11 y21

x12

y12

x22

y22

x12 = 1< 2= y{1,2}2

x21 = 2< 3= y{1,2}1

http://dx.doi.org/10.1007/978-3-319-15398-8_4
http://dx.doi.org/10.1007/978-3-319-15398-8_5
http://dx.doi.org/10.1007/978-3-319-15398-8_5
http://dx.doi.org/10.1007/978-3-319-15398-8_5
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Example 7.16 Consider the geometric semantics of the second program of
Example4.31. The minimal dead matrices are

1

2
p1

p2

1

2
p1

p2

1

2
p1

p2

D1 =
(

1 1
0 0

)

D2 =
(

0 0
1 1

)

D3 =
(

1 0
0 1

)

The above proposition enables us to compute the set of (minimal) dead matrices,
for instance by enumerating all matrices in M C

l,n and checking whether they satisfy
condition of Proposition7.14 (a more efficient method is described in Sect. 7.1.4).
From this set, the index posetMalive can be determined using the following property:

Lemma 7.17 A matrix M ∈ Ml,n is alive if and only if, for every matrix N ∈
Mdead, we have N � M, i.e., there exists indices i ∈ [1 : l] and j ∈ [1 : n] such that
M(i, j) = 0 and N(i, j) = 1.

Since the poset Malive ⊆ M R
l,n is downward closed by Lemma7.8, it is sufficient to

determine the subsetMmax
alive(X) of maximal matrices. Lemma7.17 provides a simple-

minded algorithm to achieve that purpose.

Algorithm 7.18 We writeMdead = {
D1, . . . , Dp

}
. Then we compute the sets Ck of

maximal matrices M ∈ M R
l,n such that Di � M for every i ∈ [1 : k]. We start from

the set C0 = {1} where 1 is the matrix containing only 1 as coefficients. Given a
matrix M, we write M¬(i,j) for the matrix obtained from M by replacing the (i, j)th
coefficient by 1 − M(i, j). The set Ck+1 is then computed from Ck by iteratively
performing the following steps for all matrices M ∈ Ck such that Dk � M:

1. Remove M from Ck ,
2. For every (i, j) such that Dk(i, j) = 1, and hence M(i, j) = 1, if there exists no

matrix N ∈ Ck such that M¬(i,j) � N and if M¬(i,j) ∈ M R
l,n, add M¬(i,j) to Ck .

The setMmax
alive is obtained as Cp.

Remark 7.19 In the previous algorithm, if we replace the second point by

2. for every (i, j) such that Dk(i, j) = 1 and M¬(i,j) ∈ M R
l,n, add M¬(i,j) to Ck .

we compute a set Cp such that Mmax
alive ⊆ Cp ⊆ Malive, which is enough to compute

connected components, and is faster to compute in practice. Other implementations
of the algorithm can be obtained by reformulating the computation of Mmax

alive as
finding a minimal transversal in a hypergraph, for which efficient algorithms have
been proposed [98].

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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Example 7.20 Consider again Example4.31. The algorithm starts with

C0 =
{

M0 =
(
1 1
1 1

)}

For C1, in order to achieve D1 � M¬(1,j)
0 , we change any of the two ones in the first

row into a zero:

C1 =
{

M1 =
(
0 1
1 1

)
, M2 =

(
1 0
1 1

)}

Similarly for C2, we have to change the bits on the second row so that D2 � M¬(2,j)
r :

C2 =
{

M3 =
(
0 1
0 1

)
, M4 =

(
0 1
1 0

)
, M5 =

(
1 0
0 1

)
, M6 =

(
1 0
1 0

)}

Finally, we have D3 � Mr for r = 3, 4, 6. We have to exclude M5 since D3 � M5

and M¬(i,j)
5 /∈ M R

2,2 for (i, j) = (1, 0) and (i, j) = (0, 1). We conclude that Malive =
Mmax

alive = C3 = {M3, M4, M6}. The path spaces corresponding to those matrices are
the three first depicted in (7.2). Since no two different of thosematrices are connected
in Malive, there are exactly three dipath classes (one class in each of the restricted
spaces).

Remark 7.21 For n = 2, no alive matrix M ∈ M R
l,2 is connected to another alive

matrix N ∈ M R
l,2. Every row is either

(
0 1

)
or

(
1 0

)
. A matrix N � M with N �= M

has a row (00) and is therefore not contained inM R
l,2. A matrix N � M with N �= M

has a row
(
1 1

)
that causes an empty path spaceR (N) (0, 1) and hence N ∈ Mdead.

As a consequence, for n = 2, there is a bijection between dipath classes and alive
matrices.

Remark 7.22 In order to determine dipath classes inX, one has to determinewhether
two maximal alive matrices M and N are connected. To do this in practice, it helps to
use the following characterization: two matrices M and N are connected if their meet
M ∧ N ∈ Ml,n (taken coordinatewise) belongs toM R

l,n. Take the transitive closure of
the relation defined by that condition. This coincides with the relation “connected”
from Definition7.10.

Remark 7.23 We have supposed up to now that resources were of capacity n − 1,
which amounts to imposing that the forbidden region is a product of intervals of the
form ]xi

j, yi
j[ where xi

j and yi
j are different from −∞ and ∞. This requirement can be

dropped, i.e., we can also handle cases where some of the forbidden regions intersect
the boundaries of �In in some directions.

We write B ∈ Ml,n for the boundary matrix with entries B(i, j) = 0 whenever
xi

j = −∞ (i.e., the ith hyperrectangle touches the lower boundaryof�In in dimension j)
and B(i, j) = 1 otherwise. The matrices in Mdead are then the matrices M ∈ Ml,n

of the form M = N ∧ B, for some matrix N ∈ M C
l,n, which satisfy the condition of

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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Proposition7.14 and such that for every j ∈ C(M), we have yR(M)
j = ∞, whereC(M)

is the set of indices of zero columns ofM. Based on similar techniques, all subsequent
developments can also be adapted to this case [48, 147].

7.1.4 An Efficient Implementation

Of course, it is not a good idea to check the condition from Proposition7.14 on all
ln matrices M ∈ M C

l,n in order to compute the set Mdead of dead matrices. Instead,
we go through these matrices columnwise from left to right and eliminate candidates
“as soon as possible”. The condition may fail after considering only the first few
columns, and then it will fail for every matrix with these first columns: a subset of
the columns gives rise to a submatrix M ′ with a subset R(M ′) ⊆ R(M) of nonzero
rows. If xi

j � yR(M ′)
j for one of the nonzero entries (i, j) coefficients, the matrix M

cannot satisfy the condition of Proposition7.14 because xi
j � yR(M ′)

j � yR(M)
j .

The actual function computing the dead matrices is presented in Fig. 7.1, in
pseudo-OCaml code. This recursive function investigates the jth column of a
matrix M (whose columns with index less than j are supposed to be handled already)

Fig. 7.1 Algorithm for computing dead matrices



7.1 An Algorithm for Computing Components of Trace Spaces 139

and performs the check: it tries to set M(i, j) to 1 (and all the others to 0) for every
index i ∈ [0 : l − 1] (in this code, indices are starting from 0 instead of 1 as cus-
tomary in programming languages). If a matrix with these first j columns is alive,
the computation is aborted by raising the Exit exception. Only when all n columns
pass the test, the complete matrix is added to the list dead of dead matrices. Since
a matrix M ∈ M C

l,n has exactly one nonzero coefficient in a given column, it will be
coded as an array of length n whose jth element is either Nonewhen all the elements
of the jth column are null, or Some i when the ith coefficient of the jth column is 1
and the others are 0. The argument rows is the set of indices of known nonzero rows
of M and yrows is an array of length n such that yrows.(j)= yrows

j . Note that the
algorithm takes advantage of the fact that when the coefficient i chosen for the jth
column is already in rows (i.e., when the variable changed_rows is false) then
many computations can be saved because the coefficients yrows

j are not changed.
Once the set of dead matrices is determined, the set Malive of alive matrices

is computed using the naive algorithm of Sect. 7.1.3, as explained in Example7.20.
Finally, the representatives of paths are computed as the connected components (in the
sense of Proposition7.11) of Malive, in a straightforward way. An explicit sequence
of instructions corresponding to every representative M can easily be computed: it
corresponds to the sequence of instructions crossed by any increasing total path in
the d-space R (M).

7.2 Combinatorial Models for Path Spaces

In this section, we prove some of the properties stated in Sect. 7.1. Using more
advanced tools from algebraic topology, we follow up and identify a path space
X(x, y) with a simplicial complex that allows one to reason about—and sometimes
to compute—higher topological invariants of the path spaces of interest, such as
its homology groups. In particular, this often allows one to qualitatively distinguish
path spaces with the same number of path components (i.e., dihomotopy classes of
dipaths).

7.2.1 Contractibility of Restricted Path Spaces

Webeginby showing that the restricted spacesR (M) are either emptyor contractible,
i.e., that they are homotopy equivalent to a point. Recall fromSect. 4.2.4 that the space
�In can be equipped with the product order, i.e., x � y whenever xi � yi for every
i ∈ [1 : n], and that the resulting poset forms a lattice with the join x ∨ y (resp. meet
x ∧ y) taken as the componentwise max (resp. min) of x and y.

A d-space X described by a cubical region is not stable under joins in general. For
instance, consider the space X = �I2 \ ] 1

3 ,
2
3 [2. The points x = ( 12 , 0) and y = (0, 1

2 )

http://dx.doi.org/10.1007/978-3-319-15398-8_4
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are contained inX, but their join x ∨ y = ( 12 ,
1
2 ) is not. The following lemma however

shows that the restricted spaces R (M) are closed under joins:

Lemma 7.24 For an arbitrary matrix M ∈ M R
l,n and points x, y ∈ R (M), the sub-

space R (M) ∩ [x, y] is closed under joins.

Proof The intersection of spaces that each are closed under joins is closed under
joins itself. A hypercube [x, y]n is clearly closed under joins. Since we haveR (M) =⋂

M(i,j)=1
�In \ R̃i

j, it is enough to show that �In \ R̃i
j is stable under joins for any given

(i, j). This is easily done by inspection. �
This operation allows us to construct dihomotopies between paths in such a space as
follows. Given a space Z , the endpoint map e : ZI → Z × Z is the function which to
a path f : I → Z associates e(f ) = (f (0), f (1)).

Proposition 7.25 For M ∈ M R
l,n, any two paths f , g ∈ R (M) (x, y) with same

source x and target y are dihomotopic. Moreover, there is a continuous section h
of the end point map e : R (M) (x, y)I → R (M) (x, y) × R (M) (x, y).

Proof The continuous function I × �I → R (M) (x, y) defined by (s, t) �→ f (t) ∨
g(st) is a dihomotopy between f and f ∨ g, which is well-defined by Lemma7.24
and contained inR (M) (x, y)I . Similarly, we can define a dihomotopy from f ∨ g to
g, and by concatenating the two, we obtain a dihomotopy h(f , g) : I → R (M) (x, y)
from f to g. The function h thus defined is continuous in f and g. �
As a consequence, path spaces R (M) (x, y) are topologically very simple:

Proposition 7.26 For every matrix M ∈ M R
l,n and every pair of points x, y ∈ R (M),

the path space R (M) (x, y) is either empty or contractible.

Proof Suppose that R (M) (x, y) is nonempty and choose an arbitrary path f that
it contains. We can define a homotopy H : I × R (M) (x, y) → R (M) (x, y) by
H(t, g) = h(f , g)(t), where h is the map constructed in Proposition7.25. It con-
tracts the space R (M) (x, y) to the element f since we have H(0, g) = f for every
g ∈ R (M) (x, y). �
The above proposition allows us to show Proposition7.11 from Sect. 7.1.2 via the
following two steps:

Proposition 7.27 For every dipath f ∈ X(0, 1) there exists a matrix M ∈ M R
l,n such

that f ∈ R (M) (0, 1).

Proof It is clear that X1(0, 1) ∩ X2(0, 1) = (X1 ∩ X2)(0, 1) for subspaces
X1, X2 ⊆ �In. It is thus enough to consider the statement in the case where X = �In \ R
with one removed hyperrectangle R = ∏n

j=1]xj, yj[ corresponding to a matrix with
one nonzero row. For any dipath f ∈ X(0, 1), consider t1 = min{
t | ∃j ∈ [1 : n], fj(t) = yj

}
, and t0 such that t0 < t1 and t0 < t < t1 implies

xj < fj(t) < yj, for some index j such that fj(t1) = yj. Since f (t) /∈ R for all such t,
there exists i �= j such that fi(t) � xi for t0 < t < t1. Since the path f is directed,
we have that 0 � t � t1 ⇒ fi(t) � xi and t1 � t � 1 ⇒ fj(t) � yj, hence f ∈ R (Mi)

(0,1) with Mi the row matrix with a single entry 1 in column i. �
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Proposition 7.28 Suppose given two alive matrices M, N ∈ Malive. Two dipaths
f ∈ R (M) (0, 1) and g ∈ R (N) (0, 1) are dihomotopic if and only if M and N are
connected.

Proof For the right-to-left implication, it is enough to consider the casewhereM � N
(the case where N � M is similar, and the general case is obtained by transitivity):
since R (N) ⊆ R (M) and both spaces are contractible, the result follows. We now
consider the left-to-right implication. The space of all alive matrices Malive decom-
poses into equivalence classeswith respect to the connectedness equivalence relation:
Malive = ⊔

J MJ . The subspaces R (MJ) (0, 1) = ⋃
Mi∈MJ

R (Mi) (0, 1) are both
open and closed. Let H ∈ X(0, 1)I denote a dihomotopy between f ∈ R (M) (0, 1)
and g ∈ R (N) (0, 1). By Proposition7.27, intermediate paths H(t) for t ∈ I , are
contained in R (Mt) (0, 1) for appropriate (alive) matrices Mt ∈ M R

l,n and hence
in R (MJ) (0, 1) for exactly one J . For each J , the set of all t ∈ I such that
H−1(R (MJ)) = {t ∈ I | Ht ∈ R (MJ)} is open, and the H−1(R (MJ)) form a cover
of the interval I by disjoint open sets. Hence the entire interval is contained in
H−1(R (MJ)) for a single J; in particular, M and N are connected. �

7.2.2 Presimplicial Sets and the Nerve Theorem

Recall from Sect. 3.4 that a precubical set consists of sets of abstract n-cubes together
with face relations. A presimplicial set is the analog where n-cubes are replaced by
n-triangles, which are more generally called n-simplices [84].

Definition 7.29 A presimplicial set (or semi-simplicial set or �-set) D consists of
a family (Dn)n∈N of sets, whose elements are called n-simplices, together with maps
∂n,i : Dn → Dn−1, for n � 1 and 0 � i � n, such that

∂n−1,i ◦ ∂n,j = ∂n−1,j−1 ◦ ∂n,i

for 0 � i < j � n. We often write ∂i instead of ∂n,i in the following. The category of
presimplicial sets can also be described as the presheaf category �̂, where � is the
presimplicial category whose objects are integers and a morphism f : m → n is an
injective increasing function f : [0 : m] → [0 : n].
Example 7.30 For instance the presimplicial set D, which can be pictured as

a

b

c
d

f g

h

iα

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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is definedbyD0 = {a, b, c, d},D1 = {f , g, h, i},D2 = {α} andDn = ∅ forn > 2, and
faces are given by ∂1(f ) = ∂1(h) = a, ∂0(f ) = ∂1(g) = b, ∂0(g) = ∂0(h) = ∂1(i) =
c, ∂0(i) = d, ∂0(α) = g, ∂1(α) = h and ∂2(α) = f .

As in the case of precubical sets, we have an adjunction between nerve and geometric
realization functors, see Sect. 3.4.2.

Definition 7.31 Given a cocomplete categoryC and a functor I : � → C , there are
two induced functors:

• the nerve NI : C → �̂ defined on A ∈ C by NI(A) = C (I−, A),

• the realization RI : �̂→C definedonD ∈ �̂byRI(D) = colim(y/D
π→ � I→ C ).

Proposition 7.32 The realization functor is left adjoint to the nerve functor.

We will be mostly interested in the following particular instances of these functors.
Firstly, consider the functor Δ : � → Top, sending n to the subspace of R

n, called
standard n-simplex anddenotedΔn, such thatΔn ={

(x1, . . . , xn)∈R
n
+ | ∑n

i=1 xi = 1
}
.

The associated realization functor can be described as follows.

Definition 7.33 The geometric realization functor |−| : �̂ → Top associates to
each presimplicial set D the topological space |D| = ∐

n∈N (Dn × Δn) / ≈, where
≈ is an equivalence relation identifying a point on the border of a simplex with
the corresponding point in its border simplex. A topological space obtained as the
geometric realization of a presimplicial set is called a simplicial complex.

Secondly, consider the functor I : � → Cat such that I(n) is the category associ-
ated to the poset [0 : n] equipped with the usual total order, called the categorical
n-simplex. The associated nerve functor NI : Cat → �̂ is often simply denoted N .

It is well known that the notion of colimit is not compatible with homotopy equiv-
alences: if we take a diagram in Top and replace one of the spaces by a homotopy
equivalent space, the colimits of the original and of the modified diagram will gen-
erally not be homotopy equivalent to each other. For instance, consider the pushout
on the left below, where both maps are inclusion from the discrete space with two
points as the two endpoints of the a segment: the pushout has the homotopy type of
a 1-sphere. However, if we replace the two segments by points (which are homo-
topy equivalent), as shown on the right, we obtain a point as pushout, which is not
equivalent to a 1-sphere.

(7.4)

http://dx.doi.org/10.1007/978-3-319-15398-8_3
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This is why we will consider the following variant of the notion of a colimit, called
a homotopy colimit, which can be thought of as the best way to correct the notion
of a colimit so that it respects homotopy equivalences. To build an intuition about it,
consider a pushout diagram

X Z
f�� g �� Y (7.5)

The construction of its colimit starts from the disjoint union X � Y , and quotients it
by the equivalence relation ≈ such that f (z) ≈ g(z) for every z ∈ Z . The homotopy
pushout will also start from X � Y , but instead of quotienting it, it will “add a line”
(i.e., a copy of Δ1) from f (z) to g(z) for every z ∈ Z .

Example 7.34 The homotopy colimits of the two diagrams (7.4) are the unions of
the mapping cylinders of the two maps over the two-point base; they can be drawn as

Both homotopy colimits are homotopy equivalent to the 1-sphere S1.

The general definition of homotopy colimits is a generalization of this idea: starting
from the disjoint union of spaces, it adds lines for relations between points, triangles
for relations between relations, and so on. We describe it only very briefly, after
introducing some preliminary definitions, because a detailed presentation is unfortu-
nately out of the scope of this book, see [17, 36] for instance. In this paragraph only,
we write � for the simplicial category, which is defined as the presimplicial cate-
gory (Definition7.29) except that morphisms are increasing functions (not required
to be injective), and call simplicial space a functor �op → Top. Given a diagram
F : J → Top of topological spaces, its simplicial replacement is the simplicial space
srepF : �op → Top such that, given n ∈ �op, we have

srepFn =
∐

j0←j1←...←jn

F(jn)

where the coproduct is indexed by chains of n composable morphisms in J . The
simplicial replacement can thus be seen as a diagram in Top of the form

srepF =
∐

j0

F(j0)
∐

j0←j1

F(j1)�� ����
∐

j0←j1←j2

F(j2)
�� ���� ����

. . .

where the morphisms are face maps ∂i : srepF(n + 1) → srepF(n), for
0 � i � n, and degeneracy maps σi : srepF(n) → srepF(n + 1), for 0 � i < n,
which are defined as follows. The face map ∂i, for 0 � i < n, maps F(jn+1)

at j0 ← j1 ← . . . ← jn+1 by the identity map to itself at
j0 ← . . . ← ji ◦ ji+1 ← . . . ← jn+1, whereas ∂n maps F(jn+1) at
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j0 ← j1 ← . . . ← jn+1 by F(jn ← jn+1) to F(jn) at j0 ← j1 ← . . . ← jn. Degenera-
cies can be described similarly by adding extra identities to chains of composable
morphisms. Finally, given a simplicial space X : �op → Top, its geometric realiza-
tion |X| is the following coequalizer

|X| = coeq

( ∐

f :m→n
Xn × Δm Xf ×Δm

��
Xn×Δf

��
∐

k
Xk × Δk

)

Note that we recover the usual geometric realization of a simplicial set when each Xn
is a discrete space.

Definition 7.35 The homotopy colimit hocolim F over a diagram F : J → Top of
topological spaces is the space |srepF|.
Example 7.36 The homotopy colimit of a diagram corresponding to a single map
f : X → Y (over the diagram · → ·) is the mapping cylinder of the map f , i.e., the
space ((X × [0, 1]) � Y)/≈, where ≈ identifies (x, 1) with f (x) for each x ∈ X.

Example 7.37 Given a pushout diagram (7.5), its homotopy colimit is the space
((X � Z � Y) × Δ0 � (Z � Z) × Δ1)/≈, where ≈ identifies points as in the figure
below:

X Z Y

Z×Δ 1 Z×Δ 1
z

f (z) g(z)

It can easily be checked that we recover the computations of Example7.34.

The homotopy lemma below [17, 102, 151, 164] allows for the construction of
homotopy equivalences between homotopy colimits by constructing them “level-
wise” on the diagrams. A morphism φ : F ⇒ G between two diagrams F, G : J →
Top of the same shape J is a natural transformation between the functors: it consists in
a natural collection of continuous maps φj : Fj → Gj indexed by objects j ∈ J . Such
amorphism induces amap hocolim φ : hocolim F → hocolim G between homotopy
colimit, which satisfies the following.

Theorem 7.38 (Homotopy lemma) If for every object j of J the map φj is a homotopy
equivalence, then hocolim φ : hocolim F → hocolim G is a homotopy equivalence
as well.

We are particularly interested in the case where diagrams of spaces arise from
an open cover U = (Ui)i∈I of a topological space X with I a totally ordered
set. Such a cover induces a poset PU consisting of all nonempty finite subsets
K = {i0 < · · · < in} ⊆ I such that the space UK = ⋂

i∈K Ui is nonempty, ordered
by reverse inclusion. We regard PU as a category (associated to the poset), and
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also as a presimplicial set whose n-simplices are the sets K of cardinality n + 1 as
above, the maps ∂n,k removing ik . The Čech nerve of the covering U is the geometric
realization |PU| of the associated presimplicial set.

Example 7.39 Consider the following space consisting of contractible subspaces of
the plane, shown in gray on the left; these subspaces have two-by-two contractible
intersections but the intersection of all three is empty. The Čech nerve of the cov-
ering of their union is thus a hollow triangle, as pictured on the right: each vertex
corresponds to one of the subspaces, each edge to one of the nonempty intersections.

This easy example illustrates that a space which is covered by several contractible
subspaces whose intersections are either empty or contractible is homotopy equiva-
lent to the nerve of the covering.

The topology of the space X can, under the conditions of the Nerve Theorem7.42
below, be partially recovered as follows. We consider two functors S and T from PU
(regarded as a category) to Top, defined on an object K ∈ PU by

• S(K) = UK , and reverse inclusion K ⊇ K ′ corresponds to inclusion UK ⊆ UK ′ ,
• ∗(K) = ∗, the one-point space.
Remark 7.40 Observe that the space X = ⋃

i∈I Ui can be recovered as the colimit
of S and that the homotopy colimit of ∗ is, by definition, the Čech nerve:

X = colim S |PU| = hocolim ∗

On the other hand, for a path-connected set X, colim ∗ is just a point.

To compare homotopy colimits and colimits, one may associate to any diagram of
spaces F : J → Top a fiber projection map p : hocolim F → colim F forgetting the
second coordinates (in the simplices Δn). It enjoys good properties if J comes from
the category PU associated to a covering of a paracompact topological space [17,
102, 151, 164]: A topological space is called paracompact if it is Hausdorff and
if every open covering admits a locally finite refinement. Note that every compact
space, every metric space, every CW-complex (and thus every simplicial or cubical
complex) is paracompact.

Theorem 7.41 (Projection lemma) Given a paracompact topological space X and
a finite open cover U = (Ui)i∈I , the projection hocolim S → colim S is a homotopy
equivalence.

The nerve theorem below is attributed to Borsuk [15], the presentation here follows
Kozlov [102].
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Theorem 7.42 (Nerve theorem) Suppose given a paracompact topological space X
and a finite open cover U = (Ui)i∈I such that every intersection UK , with ∅ �= K ⊆ I,
is either empty or contractible. Then the Čech nerve |PU| of the covering U is
homotopy equivalent to X.

Proof We compare the two spaces X and |PU| with hocolim S. The natural trans-
formation φ : S → ∗ sending each (nonempty) contractible intersection UK to ∗
induces a homotopy equivalence on homotopy colimits by Theorem7.38. Applying
Theorem7.41, we end up with a homotopy equivalence

X = colim S ← hocolim S → hocolim ∗ = |PU|

which allows us to conclude. �

7.2.3 Path Space as a Prod-Simplicial Complex

We will show that the space of all dipaths X(0, 1) from 0 to 1 in the space X = Ǧp

admits a particularly simple and tractable algebraic description in the formof a variant
of a simplicial complex: a prod-simplicial complex, which is a topological space
obtained by gluing products of simplices (i.e., spaces of the form Δi1 × · · · × Δil ),
see [102]. It turns out that the path space X(0, 1) is homotopy equivalent to such a
(finite-dimensional) prod-simplicial complex. To give an idea, we look at a few easy
examples; the results will be explained at the end of this section.

Example 7.43 In dimension two (two threads in parallel), the associated complex
is concentrated in dimension 0 and thus finite. Hence, the path space X(0, 1) is
homotopy equivalent to the disjoint union of finitelymany contractible (and therefore
connected) path components.

Example 7.44 We have already looked at the “floating cube” from Example7.12 in
dimension 3, where the corresponding complex is a hollow triangle. In any dimension
n � 2, the “floating hypercube” arises from a program that runs Pa;Va in parallel
n times, where a is a resource of capacity n − 1. The corresponding complex is a
hollow (n − 1)-simplex homotopy equivalent to a sphere Sn−2.

Example 7.45 A program running Pa;Va;Pb;Vb in parallel n times, where a and
b are resources of capacity n − 1, results in a forbidden region consisting of two
floating hypercubes on the “diagonal”, see Example7.7 for the case n = 3. It leads
to a path space X(0, 1) homotopy equivalent to a product Sn−2 × Sn−2.

We first need to take a closer look at the posetal categories of binary matrices intro-
duced in Sect. 7.1.2.

Definition 7.46 Amatrix M ∈ M R
l,n is basic if every row vector is a unit vector, i.e.,

with a single entry equal to one. We writeM R∗
l,n for the set of such matrices.



7.2 Combinatorial Models for Path Spaces 147

The set M R∗
l,n generates the lattice M R

l,n (under ∨, the componentwise maximum).
Theminimal alivematrices form a subsetMmin

alive = Malive ∩ M R∗
l,n . One checks easily

that R(M) ∩ R(N) = R(M ∨ N) and

R(M)(0, 1) ∩ R(N)(0, 1) = R(M ∨ N)(0, 1) (7.6)

Note that even when M and N are alive, M ∨ N may be dead. The path space X(0, 1)
is covered by the contractible subspaces of the form R (M) (0, 1) with M ∈ Mmin

alive.
Multiple intersections of such contractible path spaces correspond to the spaces
R (M) (0, 1) with M ∈ M R

l,n that can be dead or alive. More formally,

Definition 7.47 We write P : M op
alive → Top for the total path functor which to a

matrix M associates the space of total pathsPM = R (M) (0, 1). A relation M � N
induces an inclusion of path spaces PN ⊆ PM.

As an immediate consequence of Proposition7.27 and of (7.6), we conclude:

Lemma 7.48 X(0, 1) = colimP .

Remark 7.49 It is in general not true that the space X itself is a colimit of sub-
spaces R (M) (0, 1) corresponding to alive matrices. For instance, no deadlock is
contained in any of these subspaces.

Remark 7.50 The spacesPM are generally not open, but one may replace them by
subspaces that are a little larger and still contractible [146].

As a consequence, the path space X(0, 1) is homotopy equivalent to the nerve of
the covering given by the spaces PM with M ∈ Mmin

alive. This representation has the
disadvantage that the same subspacePM can occur as intersection of many different
choices of subspaces represented by basic matrices: the same matrix in Malive may
arise as the least upper bound of many choices of basic matrices, e.g.

(
1 1 0
1 1 0

)
=

(
1 0 0
1 0 0

)
∨

(
0 1 0
0 1 0

)
=

(
1 0 0
0 1 0

)
∨

(
0 1 0
1 0 0

)

To avoid the resulting combinatorial complexity, we apply a more conceptual way
to represent path space X(0, 1) that exploits the fact that the data can be viewed
as glued from products of simplices, each simplex corresponding to a forbidden
hyperrectangle Ri. More precisely, we consider the following functor:

Definition 7.51 We define the geometric realization of a nonzero binary vector
B ∈ {0, 1}n as the face T B of the (n − 1)-simplex Δn−1 consisting of points which
are spanned by the unit vectors ej such that B(j) = 1. It consists of the points
(x1, . . . , xn) ∈ R

n satisfying
∑n

j=1 xj = 1 and B(j) = 0 implies xj = 0. The geomet-
ric realization of a matrix M ∈ Ml,n is then defined as the product of the geometric
realizations of its rows: T M = ∏l

i=1 T M(i), where M(i) denotes the ith row of M.
This operation defines a functor T : Malive → Top. An inequality M � N corre-
sponds to the canonical inclusion of spaces T M ↪→ T N .
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Example 7.52 The matrices M and N below have the following geometric
realizations:

T M=T

(

1 1 0
1 1 0

)

= T N=T

(

1 1 1
1 1 0

)

=

Note that M � N results in an embedding of T M into T N .

If we take the colimit of the spaces T M over the matrices M in the posetal cate-
gory Malive, i.e., along the functor T , we obtain a prod-simplicial complex:

Definition 7.53 We write TX = colimT .

In the following, we compare the colimits of the functorsP andT to their homotopy
colimits (see Definition7.35).

Theorem 7.54 The path space X(0, 1) is homotopy equivalent to the prod-simplicial
complex TX.

Proof In analogy with the proof of the nerve Theorem7.42, we compare both
colimit spaces X(0, 1) and TX with the homotopy colimit of the trivial functor
∗ : Malive → Top sending each object into one-point space ∗. Note that, by definition
of homotopy colimits, we have hocolim ∗ = |N(Malive)| = hocolimM

op
alive

∗op. For
everymatrixM ∈ Malive, the (unique) continuousmapPM → ∗ (resp. T(M) → ∗)
is a homotopy equivalence, combining to give a natural transformation φ : P ⇒ ∗
(resp. ψ : T ⇒ ∗op). By Theorem7.38, the induced maps on homotopy colimits

hocolim φ : hocolimP → |N(Malive)| and hocolimψ : hocolimT → |N(Malive)|

are homotopy equivalences as well. Moreover, by Theorem7.41, the fiber projection
maps hocolimP → colimP = X(0, 1) and hocolimT → colimT = T(X) are
homotopy equivalences. To sum up, we have constructed the following sequence of
homotopy equivalences

colimP ← hocolimP → hocolim ∗op ↔ hocolim ∗ ← hocolimT → colimT

which are connecting X(0, 1) (on the left) with TX (on the right). �

Let us go through the cases announced in Examples7.43, 7.44 and 7.45.

Example 7.55 Consider again Example7.43. In dimension 2, the poset Malive con-
sists of matrices with rows either

(
1 0

)
or

(
0 1

)
. Hence, the partial order is trivial

and TX is a discrete space with as many points as there are matrices inMalive. Theo-
rem7.54 tells us that X(0, 1) consists of contractible components, one for each alive
matrix.
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Example 7.56 Consider again Example7.44. For a forbidden region consisting of a
single floating hypercube in dimension n, the associated matrices in Malive are all
single binary row vectors apart from

(
0 . . . 0

)
and

(
1 . . . 1

)
. The associated prod-

simplicial complex TX � X(0, 1) is the hollow (n − 1)-simplex ∂Δn−1 � Sn−2. It is
hollow since at least one coordinate has to be equal to 0.

Example 7.57 Consider again Example7.45. For a forbidden region consisting of l
floating hypercubes in dimension n along the diagonal, the alive matrices have row
vectors as in the previous example. Hence, the associated prod-simplicial complex
TX � X(0, 1) is a product

∏l
1 ∂Δn−1 � ∏l

1 Sn−2, whose homology is concentrated
in dimensions i × (n − 2) with 0 � i � l.

Example 7.58 A forbidden region consisting of two or more hyperrectangles all
intersecting in a hyperrectangle R gives rise to a path space X(0, 1) homotopy equiv-
alent to a single sphere Sn−2. In fact, this path space is homotopy equivalent to the
path space (�In \ R)(0, 1).

Example 7.59 For a forbidden region consisting of hyperrectangle obstructions that
are not totally orderable, the associated complex TX is often far more complicated.
We only mention one example here. Let F = R1 ∪ R2 denote a forbidden region
consisting of two disjoint incomparable hyperrectangles R1, R2 ⊆ �In and let Y =
�In \ F. For n = 3, such a state space corresponds, for example, to the program

where a and b have capacity 2. For n > 2, the space Y(0, 1) is homotopy equivalent
to the one-point union Sn−2 ∨ Sn−2, e.g. with n = 3:

In particular, it is connected and its homology is concentrated in dimensions 0 and n −
2. For n = 2, it consists of three contractible connected components.

More generally, the homology groups of path spaces Ǧp(0, 1) corresponding to
parallel programs consisting of n strings each of the form Pa1;Va1; . . .;Pak;Vak

(every lock is relinquished before a new one is acquired; the resources ai all have
capacity n − 1 but need not all be different) have been determined [149]: their homol-
ogy is concentrated in dimensions that are integer multiples of n − 2.

Remark 7.60 Far more general spaces can be obtained as path spaces. It has been
shown [172] that for any finite-dimensional simplicial complex P on n vertices,
there exists a simple program p with n threads, hence with a geometric semantics
X = Ǧp ⊆ �In, such that X(0, 1) is homotopy equivalent to the disjoint union of the
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complexP and a sphere Sn−2. For instance, a triangulation of the real projective plane
PR

2 on 6 vertices (and 10 triangles) gives rise to a space X with trace space X(0, 1)
which is homotopy equivalent to PR

2 � S4.

The previous methods and results can be extended to path spaces of more gen-
eral spaces, not necessarily generated by simple programs. In particular, programs
with loops are handled in [48]: the general idea is that the extension of holes can
only induce a finite number of spaces in each of the loops, and the trace space can
thus be described by some sort of automaton called the shadow automaton, see [47].
More generally, an analysis of path spaces in a general precubical complex (see
Sect. 3.4) has been performed in [148]. Current work [123] attempts to replace the
prod-simplicial complex TX by constructions making use of configuration space
techniques. In most cases, the dimension of the resulting complex decreases dramat-
ically. There are even benefits for the determination of components corresponding
to dihomotopy classes of dipaths.

http://dx.doi.org/10.1007/978-3-319-15398-8_3


Chapter 8
Perspectives

We hope that this panorama of relationships between directed algebraic topology and
concurrency has given the reader an impression of the profound links between the two
fields. Even thoughmost computational processes are intrinsically discrete, adopting
a geometric point of view to this investigation has brought many new insights, and
we believe that this is only a beginning. This book can only serve as a relatively short
introduction to the subject. Many related results and approaches were not presented,
and we would like to point the reader to some of those in this final chapter.

Concurrency Control in Distributed Databases

A distributed database can be seen as a shared-memory machine on which processes,
often called transactions, act by reading and writing, getting permissions to do so by
using the appropriate functions on attached semaphores. One of the main concerns in
this area is to maintain the coherence of the distributed database while ensuring good
performance. This is achieved through a definition of suitable policies (or protocols)
for transactions to perform their own actions, by usingP andV operations. Of course,
in this context, the deadlock-freedom of transactions is of great importance. The
correctness of a distributed database is itself very often expressed by some form of
a serializability or linearizability condition. Testing serializability is unfortunately
known to be a NP-complete problem [137], even when the model is only based on
simple binary semaphores.

A geometric approach to the study of distributed databases was initiated in [169]
and continued in [138], both relying on a directed topological approach to the se-
mantics of databases. Further work made this more explicit, with a notion of directed
homotopy, as in [118] (see also the last chapter of [142]) linkedwith the serializability
condition. Improvements of algorithms were given later in [169] and in [155], among
others. For deadlock detection, the directed topological approach was put forward
in [50]. An application to proving the serializability of 2-phase locked protocols was
given in [82], and in [51], explicitly using directed homotopy.
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Fault-Tolerant Protocols for Distributed Systems

Anatural extension to thework on databases is to consider the problemof committing
values, in case of faults (either in the underlying network or of computing nodes). This
is one of the core subjects of the field of fault-tolerant protocols [119]. The seminal
result in this field was established by Fisher et al. in 1985 [55]. They proved that there
exists a simple task that cannot be solved in a message-passing (or equivalently a
sharedmemory) systemwith atmost one potential crash. In particular, there is noway
in such a distributed system to solve the very fundamental consensus problem: each
processor starts with an initial value in local memory (typically an integer); they all
are to end up with a common value, which is one of the initial values. This created a
very active research area, see for instance [88, 119]. Later on, Biran,Moran, and Zaks
developed a characterization of the decision tasks that can be solved by a (simple)
message-passing system in the presence of one failure [11]. The argument uses a
“similarity chain,” which could be seen as a connectedness result of a representation
of the space of all reachable states, also called the view complex [103] or the (full-
information) protocol complex [90].

This argument turned out to be difficult to extend to models with more failures,
as higher-connectedness properties of the view complex matter in these cases. This
technical difficulty was first tackled, using homological calculations, by Herlihy and
Shavit [89] (and independently [14, 150]): there are simple decision tasks, such as
consensus once again that cannot be solved in the wait-free asynchronous model,
i.e., shared-memory distributed protocols on n processors, with up to n − 1 crash
failures. The full characterization of wait-free asynchronous decision tasks with
atomic read and write on registers was described by Herlihy and Shavit [90]. Their
analysis relies on the central notion of chromatic (or colored) simplicial complexes,
and subdivisions of those. All results above are deduced from the contractibility of
the so-called “standard” chromatic subdivision, which was completely formalized
in [103]. It corresponds to the view complex of distributed algorithms solving layered
immediate snapshot protocols. The central fact that the (iterated) protocol complexes
in that case are contractible (in fact, even collapsible) was shown independently by
Kozlov [104] and some of the authors of this book [74] in an effort to link this
(classical) topological approach, to the directed topological approach, started in [64,
65] and partially solved in [75]. We refer the reader to the excellent book [88] for
further details.

Higher-Dimensional Automata and Semantic Equivalences

The combinatorial approach to bisimulation equivalences between cubical models
was only hinted at in Sect. 3.5. It is very interesting and illuminating to make the
comparison betweenHigher-DimensionalAutomata (HDA), as introduced originally
in [141, 160] and further studied in [63], and other classical models for concurrency.
Apart from transition systems, one may consider (prime) event structures, asynchro-
nous transition systems, (safe) Petri nets, etc. Classical adjunctions between the latter
are fully described in [167], and adjunctions with HDA are developed in [73]. HDAs
are the most expressive model for concurrency currently in use; they even generalize

http://dx.doi.org/10.1007/978-3-319-15398-8_3


8 Perspectives 153

unsafe or “general” Petri nets [161]. To be complete in such comparisons, we would
have had to introduce semantic equivalences, such as bisimulation.

For geometric models such as HDA, some form of bisimulation equivalence has
been studied since the very beginning [25, 160], and then fully developed in terms
of open maps [96], by generalizing history preserving bisimulations [39] and ho-
motopy preserving bisimulations [40]. Very early on, it was suggested that these
semantic equivalences could be studied using some topological invariants: the idea
was that some geometric obstruction should explain why two models are not bisim-
ilar [72]. Hence some authors developed homology theories for directed topology,
starting with [63, 72]. Unfortunately, a form of directed homology is very difficult
to approach in a classical, abelian setting, as done in further work like [38, 77, 97].
Non-abelian approaches have been put forward originally by Krishnan, and devel-
oped by Dubut [35], in very promising approaches. A current line of research is to
link directed homology with some aspects of persistent homology [172] used for
topological data analysis [23, 135].

Rewriting Techniques

Another instance of topological reasoning that seems related to directed topology is
Squier’s theorem in rewriting systems theory [156]. This theorem gives a necessary
condition for the existence of a presentation of a given monoid by a finite canonical
rewriting system in terms of its homology (it must be of finite dimension). It is
definitely a computability result, in the same way as in fault-tolerant distributed
systems theory, but for something which looks sequential (rewriting). As hinted
in [63], it can be understood as a problem of concurrency theory since the study of
confluence of rewriting systems is related to parallel reduction techniques (as in [114]
for instance). The resolutions used in most of the proofs of this theorem [3, 54, 80,
81, 100, 107, 108] are very much like a Knuth–Bendix completion procedure, where
higher-dimensional objects fill in possible defects of local confluence. This looks
like building higher-dimensional transitions implementing the parallel (confluent)
reductions (see in particular [80] where the resolution is given as a cubical complex;
in dimension one it is generated by the transition system coming from the reduction
relation). Some other proof techniques are reminiscent of directed homotopy, as in
[157] for instance. Other interesting relations should be studied concerning “higher-
dimensional” word problems, as in [22].

Homotopy Type Theory

Last but not least, homotopy type theory [163] has current extensions toward directed
homotopy type theory [116, 117] that could lead to exciting new developments in
this young but promising branch of mathematics. This setting provides a very nat-
ural framework to manipulate higher-dimensional groupoids, and one might hope
that a directed variant could help manipulating higher-dimensional categories. Also,
many recent models of homotopy type theory are based on (variants of) cubical
sets [10, 115], which could constitute an interesting starting point in order to bridge
the two fields.
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