
 123

LN
CS

 9
84

0

20th International Conference, DLT 2016
Montréal, Canada, July 25–28, 2016
Proceedings

Developments
in Language Theory

Srecko Brlek
Christophe Reutenauer (Eds.)

Lecture Notes in Computer Science 9840

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Srečko Brlek • Christophe Reutenauer (Eds.)

Developments
in Language Theory
20th International Conference, DLT 2016
Montréal, Canada, July 25–28, 2016
Proceedings

123

Editors
Srečko Brlek
Université du Québec à Montréal
Montreal, QC
Canada

Christophe Reutenauer
Département de mathématiques
Université du Québec à Montréal
Montreal, QC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53131-0 ISBN 978-3-662-53132-7 (eBook)
DOI 10.1007/978-3-662-53132-7

Library of Congress Control Number: 2016946010

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The DLT 2016 Conference was organized by the Laboratoire de Combinatoire et
d’Informatique mathématique (LaCIM) during July 25–28, 2016. It was the 20th
edition of a series initiated in 1993 by G. Rozenberg and A. Salomaa in Turku (Fin-
land). These conferences took place every odd year in the first editions: Magdeburg,
Germany (1995), Thessaloniki, Greece (1997), Aachen, Germany (1999), and Vienna,
Austria (2001). Since then, the event was held in Europe on every odd year and outside
Europe on every even year. The locations of DLT conferences since 2002 have been:
Kyoto, Japan (2002), Szeged, Hungary (2003), Auckland, New Zealand (2004),
Palermo, Italy (2005), Santa Barbara, California, USA (2006), Turku, Finland (2007),
Kyoto, Japan (2008), Stuttgart, Germany (2009), London, Ontario, Canada (2010),
Milan, Italy (2011), Taipei, Taiwan (2012), Marne-la-Vallée, France (2013), Ekater-
inburg, Russia (2014), Liverpool (2015).

This series of International Conferences on Developments in Language Theory
provides a forum for presenting current developments in formal languages and auto-
mata. Its scope is very general and includes, among others, the following topics and
areas: combinatorial and algebraic properties of words and languages; grammars,
acceptors and transducers for strings, trees, graphs, arrays; algebraic theories for
automata and languages; codes; efficient text algorithms; symbolic dynamics; decision
problems; relationships to complexity theory and logic; picture description and anal-
ysis; polyominoes and bidimensional patterns; cryptography; concurrency; cellular
automata; bio-inspired computing; quantum computing.

This volume of Lecture Notes in Computer Science contains the papers that were
presented at DLT 2016. There were 48 submissions and each of them was reviewed by
at least three reviewers. The selection process was undertaken by the Program Com-
mittee with the help of generous reviewers who accepted to participate in the selection
of 32 papers within a tight schedule. The present volume also includes the abstracts
of the lectures given by four invited speakers

– Valérie Berthé: “Tree Sets: From Bifix Codes to Algebraic Word Combinatorics”
– Emilie Charlier: “Permutations and Shifts”
– Cédric Chauve: “Counting, Generating, and Sampling Tree Alignments”
– Janusz A. (John) Brzozowski: “Towards a Theory of Complexity for Regular

Languages”

We warmly thank Valérie, Émilie, Cédric, and Janusz for delivering sound lectures
intended for a large audience. We take this opportunity to thank all authors for their
submissions and the anonymous reviewers who provided numerous and constructive
reviews that led to the selection of high-standard contributions.

Special thanks are due to Alfred Hofmann and the Lecture Notes in Computer
Science team at Springer for having granted us the opportunity to publish this special
issue devoted to DLT 2016 and for their help during the final stages.

The organization of DLT 2016 benefited from the support of the Centre de
Recherches Mathématiques (CRM) and the Canadian Research Chair in Algebra,
Combinatorics and Computer Science. The reviewing process was facilitated by the
EasyChair conference system created by Andrei Voronkov.

Finally, we were fortunate to have a number of collaborators who contributed to the
success of the conference: the secretary Johanne Patoine, our postdoctoral fellows
Mathieu Guay-Paquet and Nathan Williams, our students Mélodie Lapointe, Nadia
Lafrenière, and Hugo Tremblay. Our warmest thanks for their invaluable assistance and
contribution in the organization of the event.

June 2016 Srečko Brlek
Christophe Reutenauer

VI Preface

Organization

Steering Committee

Marie-Pierre Béal Université Paris-Est-Marne-la-Vallée, France
Cristian S. Calude University of Auckland, New Zealand
Volker Diekert University of Stuttgart, Germany
Juraj Hromkovic ETH Zürich, Switzerland
Oscar H. Ibarra UCSB, Santa Barbara, USA
Masami Ito Kyoto Sangyo University, Japan
Natasha Jonoska University of South Florida, USA
Juhani Karhumäki (Chair) Turku University, Finland
Martin Kutrib University of Giessen, Germany
Michel Rigo University of Liege, Belgium
Antonio Restivo University of Palermo, Italy
Grzegorz Rozenberg Leiden Institute of Advanced Computer Science,

The Netherlands

Program Committee

Srečko Brlek (Chair) Université du Québec à Montréal, Canada
Christophe Reutenauer

(Co-chair)
Université du Québec à Montréal, Canada

Olivier Carton Université Paris-Diderot, France
Manfred Droste University of Leipzig, Germany
Vesa Halava Turku University, Finland
Lila Kari University of Western Ontario, Canada
Gregory Kucherov Université Paris-Est, France
Edita Pelantová Czech Technical University, Czech Republic
Jean-Éric Pin Université Paris-Diderot, France
Igor Potapov University of Liverpool, UK
Daniel Reidenbach Loughborough University, UK
Michel Rigo Université de Liège, Belgique
Marinella Sciortino Università di Palermo, Italy
Jeffrey Shallit University of Waterloo, Canada
Mikhail Volkov Ural Federal University, Russia

Organizing Committee

Alexandre Blondin Massé
(Chair)

LaCIM, Canada

Srečko Brlek (Co-chair) LaCIM, Canada

Mathieu Guay-Paquet LaCIM, Canada
Nadia Lafrenière LaCIM, Canada
Mélodie Lapointe LaCIM, Canada
Christophe Reutenauer LaCIM, Canada
Hugo Tremblay LaCIM, Canada
Nathan Williams LaCIM, Canada

Additional Reviewers

A.V. Sreejith
Aleksi Saarela
Alessandra Cherubini
Alexander Meduna
Alexander Okhotin
Andreas Maletti
Antoine Durand-Gasselin
Antoine Meyer
Antonio Restivo
Arnaud Carayol
Arturo Carpi
Benjamin Monmege
Bernard Boigelot
Christof Löding
Christophe Reutenauer
Damien Jamet
Damián López
Daniel Reidenbach
Dominik D.

Freydenberger
Edita Pelantova
Elena Pribavkina
Florin Manea
Frantisek Mraz
Gabriele Fici
Giovanni Pighizzini
Gregory Kucherov
Igor Potapov

Jacques Duparc
Jarkko Kari
Jarkko Peltomäki
Jean-Éric Pin
Joel Day
Julien Cassaigne
Karel Klouda
Laure Daviaud
Luca Breveglieri
Luigi Santocanale
Manfred Droste
Manfred Kufleitner
Marc Zeitoun
Marinella Sciortino
Markus Holzer
Markus Lohrey
Markus Whiteland
Mathieu Guay-Paquet
Maxime Crochemore
Michael Rao
Michal Kunc
Michel Rigo
Mika Hirvensalo
Narad Rampersad
Nathan Williams
Nils Jansen
Pascal Weil
Paul Bell

Paul Gastin
Pavel Semukhin
Petr Jancar
Philippe Schnoebelen
Pierre McKenzie
Reino Niskanen
Robert Mercas
Roman Kolpakov
Sabrina Mantaci
Sang-Ki Ko
Sebastian Maneth
Sergey Verlan
Srečko Brlek
Stepan Holub
Sylvain Lombardy
Tero Harju
Thomas Colcombet
Thomas Place
Valérie Berthé
Vesa Halava
Violetta Lonati
Vladimir Gusev
Volker Diekert
Vít Jelínek
Wojciech Plandowski
Zoltan Fülöp
Štepán Starosta

VIII Organization

Abstracts of Invited Talks

Tree Sets: From Bifix Codes to Algebraic
Word Combinatorics

Valérie Berthé

Université Paris-Diderot, Paris, France

Tree sets are languages defined with regard to a tree property: they are sets of factors of
a family of infinite words that are defined in terms of the possible left and right
extensions of their factors, with their extension graphs being trees. This class of words
with linear factor complexity includes classical families such as Sturmian words,
interval exchanges or else Arnoux-Rauzy words. We discuss here their combinatorial,
ergodic and algebraic properties. This includes algebraic properties of their return
words, and of maximal bifix codes defined with respect to their languages. This lecture
is based on joint work with C. De Felice, V. Delecroix, F. Dolce, J. Leroy, D. Perrin,
C. Reutenauer, G. Rindone.

Towards a Theory of Complexity
for Regular Languages

Janusz A. (John) Brzozowski

University of Waterloo, Waterloo, Canada

The state complexity of a regular language is the number of states in a complete
minimal deterministic finite automaton (DFA) recognizing the language. The state
complexity of an operation on regular languages is the maximal state complexity of the
result of the operation as a function of the state complexities of the operands. The state
complexity of an operation gives a worst-case lower bound on the time and space
complexity of the operation, and has been studied extensively for that reason. The first
results on the state complexity of union, concatenation, Kleene star and four other less
often used operations were stated without proof by Maslov in 1970, but this paper was
unknown in the West for many years. In 1994, Yu, Zhuang and K. Salomaa studied the
complexity of basic operations (union, intersection, concatenation, star and reversal)
and provided complete proofs. Since then, many authors obtained numerous results for
various subclasses of the class of regular languages, and for various operations.
Moreover, other measures of complexity, including the size of the syntactic semi-group
of a language, have been added. In this talk I will summarize the results obtained in the
past few years in the area of complexity of regular languages and finite automata.

Permutations and Shifts

Émilie Charlier

Université de Liège, Liège, Belgique

The entropy of a symbolic dynamical system is usually defined in terms of the growth
rate of the number of distinct allowed factors of length n. Bandt, Keller and Pompe
showed that, for piecewise monotone interval maps, the entropy is also given by the
number of permutations defined by consecutive elements in the trajectory of a point.
This result was the starting point of several works of Elizalde where he investigates
permutations in shift systems, notably in full shifts and in beta-shifts. The goal of this
talk is to survey Elizalde’s results. I will end by mentioning the case of negative
beta-shifts, which has been simultaneously studied by Elizalde and Moore on the one
hand, and by Steiner and myself on the other hand.

A full version is available at http://dlt2016.lacim.uqam.ca/en/files/charlier.pdf.

http://dlt2016.lacim.uqam.ca/en/files/charlier.pdf

Counting, Generating and Sampling
Tree Alignments

Cédric Chauve

Simon Fraser University, Burnaby, Canada

Pairwise alignment of ordered rooted trees is a natural extension of the classical
pairwise sequence alignment, with applications in several fields, such as RNA sec-
ondary structure comparison for example. Motivated by this application, and the need
to explore the space of possibly sub-optimal alignments, we introduce the notion of
unambiguous tree alignment. We first take an enumerative combinatorics point of view
and propose a decomposition scheme for unambiguous tree alignments, under the form
of a context-free grammar, that leads to precise asymptotic enumerative results, by
mean of basic analytic combinatorics. We then shift our focus to algorithmic questions,
and show our grammar can be refined into a dynamic programming algorithm for
sampling tree alignments under the Gibbs-Boltzmann probability distribution. We also
provide some surprising average case complexity results on the tree alignment problem.
This work, in collaboration with Yann Ponty and Julien Courtiel, illustrates the
potential of considering algorithmic questions from the point of view of enumerating
the solution space.

Contents

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata. . . . 1
H.J.S. Basten

Complementation of Branching Automata for Scattered and Countable
Series-Parallel Posets . 13

Nicolas Bedon

Cayley Automatic Groups and Numerical Characteristics
of Turing Transducers . 26

Dmitry Berdinsky

A Perfect Class of Context-Sensitive Timed Languages 38
Devendra Bhave, Vrunda Dave, S.N. Krishna, Ramchandra Phawade,
and Ashutosh Trivedi

Position Automaton Construction for Regular Expressions with Intersection . . . 51
Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

A Language-Theoretical Approach to Descriptive Complexity. 64
Michaël Cadilhac, Andreas Krebs, and Klaus-Jörn Lange

k-Abelian Equivalence and Rationality . 77
Julien Cassaigne, Juhani Karhumäki, Svetlana Puzynina,
and Markus A. Whiteland

Schützenberger Products in a Category . 89
Liang-Ting Chen and Henning Urbat

Outfix-Guided Insertion (Extended Abstract) . 102
Da-Jung Cho, Yo-Sub Han, Timothy Ng, and Kai Salomaa

Both Ways Rational Functions . 114
Christian Choffrut and Bruno Guillon

Aperiodic String Transducers . 125
Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier

An Automata Characterisation for Multiple Context-Free Languages 138
Tobias Denkinger

Weighted Automata and Logics on Infinite Graphs 151
Stefan Dück

http://dx.doi.org/10.1007/978-3-662-53132-7_1
http://dx.doi.org/10.1007/978-3-662-53132-7_2
http://dx.doi.org/10.1007/978-3-662-53132-7_2
http://dx.doi.org/10.1007/978-3-662-53132-7_3
http://dx.doi.org/10.1007/978-3-662-53132-7_3
http://dx.doi.org/10.1007/978-3-662-53132-7_4
http://dx.doi.org/10.1007/978-3-662-53132-7_5
http://dx.doi.org/10.1007/978-3-662-53132-7_6
http://dx.doi.org/10.1007/978-3-662-53132-7_7
http://dx.doi.org/10.1007/978-3-662-53132-7_8
http://dx.doi.org/10.1007/978-3-662-53132-7_9
http://dx.doi.org/10.1007/978-3-662-53132-7_10
http://dx.doi.org/10.1007/978-3-662-53132-7_11
http://dx.doi.org/10.1007/978-3-662-53132-7_12
http://dx.doi.org/10.1007/978-3-662-53132-7_13

Degrees of Infinite Words, Polynomials and Atoms. 164
Jörg Endrullis, Juhani Karhumäki, Jan Willem Klop, and Aleksi Saarela

Ternary Square-Free Partial Words with Many Wildcards. 177
Daniil Gasnikov and Arseny M. Shur

Alternating Demon Space Is Closed Under Complement and Other
Simulations for Sublogarithmic Space . 190

Viliam Geffert

Weighted Symbolic Automata with Data Storage . 203
Luisa Herrmann and Heiko Vogler

On Families of Full Trios Containing Counter Machine Languages 216
Oscar H. Ibarra and Ian McQuillan

Non-regular Maximal Prefix-Free Subsets of Regular Languages. 229
Jozef Jirásek Jr.

Operations on Unambiguous Finite Automata . 243
Jozef Jirásek Jr., Galina Jirásková, and Juraj Šebej

The Trace Monoids in the Queue Monoid and in the Direct Product
of Two Free Monoids . 256

Dietrich Kuske and Olena Prianychnykova

On Ordered RRWW-Automata . 268
Kent Kwee and Friedrich Otto

Bispecial Factors in the Brun S-Adic System . 280
Sébastien Labbé and Julien Leroy

Compositions of Tree-to-Tree Statistical Machine Translation Models 293
Andreas Maletti

On the Solvability Problem for Restricted Classes of Word Equations 306
Florin Manea, Dirk Nowotka, and Markus L. Schmid

Unambiguous Büchi Is Weak . 319
Henryk Michalewski and Michał Skrzypczak

One-Unknown Word Equations and Three-Unknown Constant-Free
Word Equations . 332

Dirk Nowotka and Aleksi Saarela

Avoidability of Formulas with Two Variables. 344
Pascal Ochem and Matthieu Rosenfeld

XVI Contents

http://dx.doi.org/10.1007/978-3-662-53132-7_14
http://dx.doi.org/10.1007/978-3-662-53132-7_15
http://dx.doi.org/10.1007/978-3-662-53132-7_16
http://dx.doi.org/10.1007/978-3-662-53132-7_16
http://dx.doi.org/10.1007/978-3-662-53132-7_17
http://dx.doi.org/10.1007/978-3-662-53132-7_18
http://dx.doi.org/10.1007/978-3-662-53132-7_19
http://dx.doi.org/10.1007/978-3-662-53132-7_20
http://dx.doi.org/10.1007/978-3-662-53132-7_21
http://dx.doi.org/10.1007/978-3-662-53132-7_21
http://dx.doi.org/10.1007/978-3-662-53132-7_22
http://dx.doi.org/10.1007/978-3-662-53132-7_23
http://dx.doi.org/10.1007/978-3-662-53132-7_24
http://dx.doi.org/10.1007/978-3-662-53132-7_25
http://dx.doi.org/10.1007/978-3-662-53132-7_26
http://dx.doi.org/10.1007/978-3-662-53132-7_27
http://dx.doi.org/10.1007/978-3-662-53132-7_27
http://dx.doi.org/10.1007/978-3-662-53132-7_28

Deciding Equivalence of Linear Tree-to-Word Transducers
in Polynomial Time. 355

Adrien Boiret and Raphaela Palenta

On Finite and Polynomial Ambiguity of Weighted Tree Automata 368
Erik Paul

An Extremal Series of Eulerian Synchronizing Automata 380
Marek Szykuła and Vojtěch Vorel

Monoid-Based Approach to the Inclusion Problem on Superdeterministic
Pushdown Automata . 393

Yuya Uezato and Yasuhiko Minamide

Author Index . 407

Contents XVII

http://dx.doi.org/10.1007/978-3-662-53132-7_29
http://dx.doi.org/10.1007/978-3-662-53132-7_29
http://dx.doi.org/10.1007/978-3-662-53132-7_30
http://dx.doi.org/10.1007/978-3-662-53132-7_31
http://dx.doi.org/10.1007/978-3-662-53132-7_32
http://dx.doi.org/10.1007/978-3-662-53132-7_32

Context-Free Ambiguity Detection
Using Multi-stack Pushdown Automata

H.J.S. Basten1,2(B)

1 Basten Science & Software LLP, Zevenhuizen, The Netherlands
basten@bsns.nl

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Abstract. We propose a method for detecting ambiguity in context-free
grammars using multi-stack pushdown automata. Since the ambiguity
problem is undecidable in general, we use restricted MPDAs that have
a limited configuration space. The analysis might thus not be complete,
but it is able to detect both ambiguity and unambiguity. Our method
is general in the type of automata used. We discuss the suitability of
existing MPDAs in our setting and present a new class called bounded-
balance MPDAs. These MPDAs allow for infinitely deep nesting/nesting
intersection, as long as the nesting depth differences within each scope
stay within the balance bound. We compare our contributions to various
related MPDAs and ambiguity detection methods.

1 Introduction

Context-free ambiguity detection and related problems like intersection empti-
ness and inclusion are important in various fields like programming language
development [5], program verification [13], model checking and bioinformatics [7].
For instance, context-free grammars are very suitable for specifying formal lan-
guages because they allow the definition of regular as well as nested language
constructs. However, they have the often undesirable property that they can
be ambiguous. Their combinatorial complexity makes ambiguities very hard to
spot, which makes automated ambiguity detection essential.

Unfortunately, deciding the ambiguity of a grammar is undecidable in the
general case. Still, various ambiguity detection methods exist that aim at being
either sound or complete. They limit the possibly infinite search space to either a
finite subset [3,6,9,12,13,22,25] or an infinite overapproximation that is check-
able in finite time [4,7,21]. For practical purposes however, it is desirable for
a method to be able to answer both ‘ambiguous’ and ‘unambiguous’. In this
paper we describe a novel way to search an infinite subset in finite time, without
approximation. This allows us to detect both ambiguity and unambiguity.

We propose a framework for ambiguity detection using restricted multi-stack
pushdown automata. These types of automata are often used in model check-
ing [1,8,10,16,17,20] because they can represent concurrent recursive processes.
In general they are Turing complete, but with certain restrictions their configu-
ration space can be limited and searched in finite time. Our framework is general
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 1–12, 2016.
DOI: 10.1007/978-3-662-53132-7 1

2 H.J.S. Basten

in the type of MPDA used, allowing the reuse of results from the model checking
literature.

In addition, we propose a new class of multi-pushdown automata called
bounded-balance multi-stack pushdown automata. The balance of a scope—the
part of a run between the matching push and pop of a symbol—is the number of
symbols pushed but not popped on other stacks during this scope. In the context
of language intersection, limiting the balances in a run has several advantages
over limiting the number of contexts or phases. First, it enables the possibility
to detect the unambiguity of a grammar. Second, it allows for full intersection
of the regular structures within a grammar with other regular or nesting struc-
tures. Third, nesting-only intersection can reach unbounded depth, as long as
the nesting depths within each scope do not differ more than the balance bound.

Outline. This paper is structured as follows. The next section starts by intro-
ducing some basic definitions and notational conventions. In Sect. 3 we pro-
pose our ambiguity detection method and discuss the use of different automata
types. Section 4 presents bounded-balance multi-stack pushdown automata. In
Sect. 5 we compare our ambiguity detection method and MPDA type to other
approaches and MPDAs. Section 6 concludes.

2 Preliminaries and Notational Conventions

Throughout this paper we use the following definitions and notations.

2.1 Context-Free Grammars

A context-free grammar G is a 4-tuple (N,T, P, S) consisting of N , a finite set
of nonterminals, T , a finite set of terminals (the alphabet), P , a finite subset of
N × (N ∪ T)∗, called the production rules, and S ∈ N , the start symbol. The
character ε represents the empty string. We use V to denote the set N ∪ T
and T ε for T ∪ {ε}. The following characters are used to represent different
symbols and strings: a, b, . . . are terminals, A,B, . . . are nonterminals, α, β, . . .
are strings in V ∗, u, v, . . . are strings in T ∗. A production (A,α) in P is written
as A→α. We use the function pid :P →N to relate each production to a unique
integer. Given the string αBγ and a production rule B → β from P , we can write
αBγ =⇒ αβγ—read αBγ directly derives αβγ. The language of a grammar G is
L(G) = {u |S =⇒+ u}. A nonterminal A is said to be self-embedding or nesting
iff A =⇒+ uAv, otherwise its language is regular.

The parse tree of a sentential form describes how it is derived from S, but
disregards the order of the derivation steps. To represent parse trees we use brack-
eted strings, which are described by bracketed grammars [11]. From a grammar
G = (N,T, P, S) a bracketed grammar Gb can be constructed by adding unique
terminals to the beginning and end of every production rule. The bracketed
grammar Gb is defined as the 4-tuple (N,Tb, Pb, S), where Tb = T ∪ T〈 ∪ T〉,

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata 3

T〈 = { 〈i | ∃p ∈ P : i = pid(p)}, T〉 = { 〉i | ∃p ∈ P : i = pid(p)}, and
Pb = {A → 〈iα〉i | A → α ∈ P, i = pid(A → α)}. Vb is defined as Tb ∪ N .
The homomorphism yield from V ∗

b to V ∗ maps each string in T ∗
b to T ∗. It

is defined by yield(〈i) = ε, yield(〉i) = ε, and yield(a) = a. L(Gb) describes
exactly all parse trees of all strings in L(G). The set of ambiguous strings of G
is A(G) = {yield(u) | u, v ∈ L(Gb), u 	= v, yield(u) = yield(v)}. A grammar G is
ambiguous iff A(G) is non-empty.

2.2 Pushdown Automata

A pushdown automaton, or PDA, M is a 6-tuple (Q,T ε, Γ,Δ, q0, F) consisting
of: Q, a finite set of states, T ε, a finite set of input symbols, Γ , a finite set
of stack symbols containing a bottom-of-stack symbol ⊥, Δ = Δ→ ∪ Δ↓ ∪ Δ↑
is the transition relation, Δ→ over Q × T ε × Q are shift transitions, Δ↓ over
Q × {↓ } × Γ × Q are push transitions, Δ↑ over Q × {↑ } × Γ × Q are pop
transitions, q0 ∈ Q, is the start state, F ⊆ Q, a finite set of accepting states. To
distinguish between pushes and pops of stack symbols we define Γ ′ = {↓ , ↑}×Γ .
We use p to represent stack symbols in Γ , π for strings in Γ ∗ and ϕ for symbols
in T ε ∪ Γ ′. An element in Q × Γ ∗ is called a configuration, representing a state
and stack contents. We assume every PDA to start with the initial configuration
c0 = (q0,⊥). The relation Δ defines state transitions. We write q

α→ q′ for tuples

in Δ→, q
↓p→ q′ for tuples in Δ↓ and q

↑p→ q′ for tuples in Δ↑. Configuration
transition is denoted with �. We write (q, π) �α (q′, π) if q

α→ q′, (q, π) �↓p

(q′, πp) if q
↓p→ q′ and (q, πp) �↑p (q′, π) if q

↑p→ q′. A run ρ is a sequence of �
steps. We write c0 �ρ cn if ρ = p1 . . . pn ∈ (T ε ∪ Γ ′)+ and for every i ∈ [n] there
exists ci s.t. ci−1 �pi ci, where [n] denotes the set {1 . . . n}. The set of possible
configurations of M is C(M) = {c | c0 �∗ c}. The set of accepting runs of M is
R(M) = {ρ | ∃qf ∈ F, π ∈ Γ ∗ : c0 �ρ (qf , π)}.

A multi-stack pushdown automaton, or MPDA, Mn with n stacks is a tuple
(Q,T, ˜Γn,Δ, q0, F) where Q,T,Δ, q0 and F are defined the same as for a PDA
and ˜Γn =

⋃n
i=1 Γi are the n stack alphabets, each containing ⊥i. W.l.o.g. we

assume all subsets Γi ⊂ ˜Γn to be disjoint. We use {πi}i∈[n] to denote a set of
stacks. A configuration is a tuple over Q×Γ ∗

1 ×· · ·×Γ ∗
n and c0 = {q0, {⊥i}i∈[n]}.

We write (q, {πi}i∈[n]) �α (q′, {πi}i∈[n]) if q
α→ q′; (q, {πi}i∈[n]) �↓p (q′, {π′

i}i∈[n])

if q
↓p→ q′, p ∈ Γj , π′

j = πjp and π′
i = πi for i 	= j; and (q, {πi}i∈[n]) �↑p

(q′, {π′
i}i∈[n]) if q

↑p→ q′, p ∈ Γj , πj = π′
jp and π′

i = πi for i 	= j.

3 Ambiguity Detection with MPDAs

We present a framework for ambiguity detection of context-free grammars using
multi-stack automata.

4 H.J.S. Basten

3.1 Checking Ambiguity

Given a PDA M that defines the derivations of a context-free grammar G, we
can express the ambiguity problem for the grammar using an MPDA. This can
be done on the condition that there is a bijective relation between the runs of
the PDA and parse trees of G, let us call it tree : R(M) → L(Gb). Two different
runs of the same input string then prove the ambiguity of G.

We build a 2-stack MPDA that simulates two runs of the PDA for the same
input string. The states of this MPDA consist of pairs of states of the PDA. Both
stacks can be modified independently of each other, but non-empty shifts are
synchronized to ensure both runs parse the same input string. Different runs for
the same input string both start from q0 but eventually split up. There are two
ways in which the runs can deviate from a common state: the runs can each take
different transitions, or only one of the two continues independently until the
next common shift. W.l.o.g. we distinguish three possible phases in this process:

1. the runs are not split up yet and alternately follow the same transitions;
2. the first run continues with independent transitions while the second run

waits for the next shift;
3. both runs are in different states.

We add two additional fields to the state pairs to register these phases: an
integer field denoting the current phase and a symbol from T ε ∪ ˜Γ ′

2 to record the
last action taken by the first run. The second field is used to synchronize shifts
and internal transitions during phase 1, and to recognize phase transitions.

Definition 1. Given a PDA M = (Q,T ε, Γ,Δ, q0, F) the ambiguity MPDA of
M is a 2-stack MPDA Ma = (Qa, T ε, ˜Γ2,Δ

a, qa
0 , F a), where Qa ⊆ Q×Q×(T ε ∪

˜Γ ′
2) × [3], qa

0 = (q0, q0,⊥, 1), F a = F × F × (T ε ∪ ˜Γ ′
2) × {2, 3}, Δ↓↑ = Δ↓ ∪ Δ↑,

Δa ={ (q, q,⊥, 1)
ϕ→ (q′, q, ϕ, 1) | q

ϕ→ q′ ∈Δ↓↑}∪
{ (q′, q, ϕ, 1)

ϕ→ (q′, q′,⊥, 1) | } ∪
{ (q, q,⊥, 1) α→ (q′, q, α, 1) | q

α→ q′ ∈Δ→}∪
{ (q′, q, α, 1) ε→ (q′, q′,⊥, 1) | } ∪
{ (q, q,⊥, 1)

ϕ→ (q′, q,⊥, 2) | q
ϕ→ q′ ∈Δ↓↑}∪

{ (q′, q, ϕ, 1)
ϕ′
→ (q′, q′′,⊥, 3) | q

ϕ′
→ q′′ ∈Δ↓↑, ϕ′ 	= ϕ ∨ q′′ 	= q′}∪

{ (q′, q, α, 1) ε→ (q′, q′′,⊥, 3) | q
α→ q′′ ∈Δ→, q′′ 	= q′}∪

{ (q, q′,⊥, y)
ϕ→ (q′′, q′,⊥, y) | q

ϕ→ q′′ ∈Δ↓↑, y∈{2, 3}}∪
{ (q, q′,⊥, y) ε→ (q′′, q′,⊥, y) | q

ε→ q′′ ∈Δ→, y∈{2, 3}}∪
{ (q, q′,⊥, y) b→ (q′′, q′, b, y) | q

b→ q′′ ∈Δ→, y∈{2, 3}}∪
{ (q, q′, b, y) ε→ (q, q′′,⊥, 3) | q′ b→ q′′ ∈Δ→, y∈{2, 3}}∪
{ (q, q′, x, 3)

ϕ→ (q, q′′, x, 3) | q′ ϕ→ q′′ ∈Δ↓↑}∪
{ (q, q′, x, 3) ε→ (q, q′′, x, 3) | q′ ε→ q′′ ∈Δ→}.

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata 5

The input strings of runs leading to accepting states are the ambiguous
strings of G. To test for ambiguity we choose a restricted MPDA class and
compute the image of {qa

0 , {⊥i}i∈[n]} under �∗. If we can reach a state in F a

the MPDA’s language is non-empty and G is ambiguous. On the other hand,
if the chosen MPDA class allows the complete exploration of the configuration
space of Ma and no accepting state can be reached then G is unambiguous.
Otherwise, the problem remains unanswered. This is formalized by the following
statements.

Lemma 2. Given a grammar G, a PDA M and a bijective relation tree :
R(M) → L(Gb), the language L(Ma) equals A(G).

Definition 3. Given an MPDA class Cm, a PDA M is MSA(Cm)-ambiguous
iff Ma has at least one run that complies with the restrictions of Cm. The PDA
is MSA(Cm)-unambiguous iff Ma is a member of Cm and L(Ma) is empty.

Definition 4. Given a PDA class Cp and an MPDA class Cm, a grammar
G is MSA(Cp, Cm)-ambiguous iff a Cp-PDA of G is MSA(Cm)-ambiguous.
Similarly, G is MSA(Cp, Cm)-unambiguous iff a Cp-PDA of G is MSA(Cm)-
unambiguous.

Definition 5. Given a PDA class Cp and an MPDA class Cm, a grammar
G is in MSA(Cp, Cm) iff it is MSA(Cp, Cm)-ambiguous or MSA(Cp, Cm)-
unambiguous.

Theorem 6. Given a PDA class Cp, an MPDA class Cm and a grammar G,
if G is MSA(Cp, Cm)-ambiguous then G is ambiguous.

Theorem 7. Given a PDA class Cp, an MPDA class Cm and a grammar G,
if G is MSA(Cp, Cm)-unambiguous then G is unambiguous.

3.2 Choice of Pushdown Automaton

Since our method is parametric in the type of PDA, it can apply different strategies
for exploring parse trees. Furthermore, this allows for easy integrationwith existing
parser implementations. The parse tree exploration depends on the way a PDA
uses its stack. For instance, recursive descent parsers—like LL [15]—push on every
entry of a production and pop on a reduce. This makes the stack depth correspond
to parse tree height. The number of pushes in a run corresponds to the number of
non-leaf parse tree nodes. Shift-reduce parsers—like LR [14]—push on every shift
and pop when a production is reduced, followed by another push of the reduced
nonterminal. In this case the number of pushes in a run corresponds to the total
number of parse tree nodes.

In general, the less stack activity a PDA requires for a given language, the
larger the set of parse trees that can be covered by the configuration space of
the restricted MPDA. Reduce incorporated parsers [24] are aimed at reducing the
stack activity of a parser. They use the PDA as a DFA for regular structures and

6 H.J.S. Basten

only use the stack to record the derivation of nesting nonterminals. Parse trees of
the regular structures are built using special ε-transitions that mark reductions.
However, when a nesting nonterminal is also right or left recursive the stack is
used to track these kinds of derivations as well. To reduce the stack activity
even further—and use it purely for nesting—we can apply a similar strategy as
Nederhof ([19] Sect. 4.2), which completely separates the regular structures in a
grammar from the context-free ones. This way we can completely intersect the
regular structures in a grammar with each other and with the nesting ones, and
fully use the stack space for nesting/nesting intersection. We do not define such
a PDA here, but only mention their possibility. We will call them Nesting Stack
PDAs or NSPDAs.

3.3 Choice of Multi-stack Pushdown Automaton

Below we discuss various existing MPDA types and explore their suitability for
detecting ambiguity and unambiguity. To detect the ambiguity of a grammar
with a certain type of MPDA, it suffices to explore a single path in Ma to an
accepting state. The more paths an MPDA can cover, the higher the chance of
finding an ambiguous one. In advance we can state that this is possible with all
MDPA types described below, to varying extents. However, to detect unambi-
guity we need to ensure no state in F a can be reached at all. This requires the
configuration space of the MPDA to cover all possible paths of Ma. In order to
do so, an MPDA type should pose no restrictions on nesting depth, since every
nesting nonterminal will create paths in (at least) phase 1 that push to infinite
stack depths and pop out of these as well. We will see that no discussed MPDA
is able to cover such paths.

Another criteria we will look at is to what extent an MPDA type is able
to intersect the regular structures in a grammar with other regular structures
as well as with nesting structures. Since the emptiness of both regular/regular
intersection and regular/nesting intersection is decidable, making use of these
results enlarges the class of grammars the MPDA can decide the ambiguity
of. With NSPDAs all MPDAs allow full regular/regular intersection, since this
requires no stack activity. For full regular/nesting intersection an MPDA should
allow one stack to reach and return from infinite depths, while the other remains
untouched.

Bounded nesting depth MPDAs [10] pose an intuitive restriction, which allows
complete regular/regular intersection, but only limited regular/nesting and nest-
ing/nesting intersection. They are thus suitable for ambiguity detection, but not
for unambiguity detection.

Bounded-context switching MPDAs [20] use the concept of contexts—a part
of a run in which only one stack can push and pop—and restrict runs to a limited
number of contexts. This allows for complete regular/regular and regular/nesting
intersection. However, the depth of nesting/nesting intersection is bounded since
every alternate nesting requires a context-switch. Bounded-context MPDAs can
be useful for finding ambiguity, but not for finding unambiguity.

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata 7

Bounded-phase MPDAs [16] use the concept of phases, in which only one
stack can pop, but others are free to push. These MPDAs cover a strictly larger
search space than bounded-context MPDAs [17] and are thus better suitable
for finding ambiguity. Stacks can nest simultaneously to unlimited depth, but
only pop out together for a limited number of steps. Hence, they can still not
completely explore all configurations of phase 1.

MPDAs with scope-bounded matching relations [17,18] require that every
push is popped within a bounded number of rounds, or never at all. During
a round all stacks are allowed one context each, in a predefined order. These
MPDAs have a larger coverage than bounded-context MPDAs, but are incom-
parable with bounded-phase [17]. The fact that pushes do not have to be popped
can be helpful for finding ambiguity, but not for detecting unambiguity if we
require all pushes to be popped. In this case, the first push of any stack has to
immediately start a scope and the MPDA reverts to a bounded-context explo-
ration.

Budget bounded MPDAs [1] allow unlimited context switches for stacks whose
depth is below a certain bound, and a limited number of contexts for as long
as they are above this depth bound. In other words, once the depth limit is
reached, a new scope is started which has to be closed within a bounded number
of contexts. Budget bounded MPDAs are thus closely related to scope-bounded
MPDAs, but because they also allow pops before the start of a scope they have
a larger coverage. Nevertheless, there remains a bound on the nesting depth.

Ordered MPDAs [8], the earliest type of restricted MPDA, assume an order-
ing of the stacks and allow only the first non-empty stack to pop. All stacks can
push freely at any time. At first sight this concept might not seem suitable for
nesting/nesting intersection, because it does not allow simultaneous pops. How-
ever, ordered MDPAs can simulate bounded-phase MPDAs [2] and thus allow
bounded nesting/nesting intersection. In fact, they are even more expressive
than bounded-phase, which makes them at least equally suitable for detecting
ambiguity and unambiguity.

Concluding, we can say that all discussed MPDA types are suitable to find
ambiguities with our scheme, resulting in different exploration strategies of
strings and prefixes. All MPDAs can either simultaneously push into bounded or
unbounded nesting depths, and some can simultaneously pop a bounded number
of steps as well. However, none of the MPDAs are able to let both stacks pop
out of infinitely deep nestings together, making them unsuitable for detecting
the unambiguity of context-free grammars in general. In the next section we
describe a new type of restricted MPDA that does have this property.

4 Bounded-Balance Multi-Stack Pushdown Automata

We propose a new type of restricted MPDA called bounded-balance multi-stack
pushdown automata, or BBMPDAs. They are MPDAs with an upper bound on
the number of symbols that are pushed but not popped within each scope of
matching push and pop transitions.

8 H.J.S. Basten

4.1 Definition

First we introduce the concepts of scope and balance. A scope is the part of a run
between the push of a symbol and the pop of that symbol. We use μ ⊆ N×N to
hold matching transition indices that open and close a scope (as in [18]). Given
a run ρ = c0 �ϕ1 c1 �ϕ2 · · · �ϕm cm, a pair (s, t) ∈ μρ iff s < t and exists p ∈ Γi

for some i ∈ [n] s.t. ϕs =↓p, ϕt =↑p and

– for all s < s′ < t, if ϕs′ =↓ p′, p′ ∈ Γi then there exists s′ < t′ < t such that
(s′, t′) ∈ μρ, and

– for all s < t′ < t, if ϕt′ =↑ p′, p′ ∈ Γi then there exists s < s′ < t′ such that
(s′, t′) ∈ μρ.

The balance of a scope is the number of stack symbols that were pushed but
not popped within the scope.

Definition 8. The balance of a scope (s, t) ∈ μρ is balance(s, t) = |{ s′ | (s′, t′) ∈
μρ, s < s′ < t < t′}|.

Viewed differently, balance corresponds to the stack depth differences built
up during a scope. By limiting the balances during runs, we acquire a new class
of restricted MPDAs, which we call bounded-balance MPDAs.

Definition 9. An n-MPDA Mn is a BB(k)MPDA iff for every run ρ ∈ R(Mn)
and scope (s, t) ∈ μρ it holds that balance(s, t) ≤ k.

A finite balance bound allows for a finite representation of the possibly infinite
configuration space of BBMPDAs. This makes testing for the BB(k) property
decidable. In the following section we show how a BBMPDA can be simulated
by a standard single stack PDA, which enables using existing techniques for
configuration space exploration [23].

4.2 Configuration Exploration

BB(k)MPDAs can be simulated by a standard PDA that can pop from the
topmost k + 1 symbols of its stack, by temporarily remembering up to k stack
symbols in its states. It has a single stack over ˜Γn, storing pushes of all stacks
sequentially. When a certain stack needs to be popped, but its top symbol is
not at the top of the simulating stack, intermediary symbols are popped and
temporarily stored in the PDA states, until the required symbol is reached. This
symbol is then popped as per usual, and temporarily stored symbols are pushed
back to the stack again. The number of the stack to be popped is also stored in
the states, so a series of borrows is always targeted at a single stack. To make
sure that the order in which the symbols of the individual stacks are pushed and
popped remains unchanged, a stack cannot be borrowed from once it has been
targeted, i.e. only the top of the targeted stack can be popped. The number 0 is
used to indicate no stack is currently targeted.

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata 9

Definition 10. Given an n-stack MPDA M = (Q,T ε, ˜Γn,Δ, q0, F) the
k-borrowing PDA of M is M b

k = (Qb, T ε, ˜Γn,Δb, (q0, 0, ε), F × {0} × {ε}), where
Qb = Q × {0 . . . n} × (˜Γn ∪ {ε})k, Δb =

{ (q, 0, ε)
X→ (q′, 0, ε) | q

X→ q′ ∈ Δ} ∪ (copy of Δ)

{ (q, i, π)
↑p→ (q, j, pπ) | q

↑p′
→ q′ ∈ Δ↑, p′ ∈ Γj , p /∈ Γj , i ∈ {0, j}} ∪ (borrows)

{ (q, i, π)
↑p→ (q′, 0, π) | q

↑p→ q′ ∈ Δ↑, p ∈ Γi} ∪ (pops)

{ (q, 0, pπ)
↓p→ (q, 0, π) | }. (returns)

The initial configuration of M b
k is ((q0, 0, ε),⊥1 . . . ⊥n).

Theorem 11. The k-borrowing PDA M b
k of a BB(k)MPDA M simulates

exactly all runs of M .

Testing whether an MPDA is BB(k) for a fixed k comes down to constructing
M b

k+1 and testing whether no states with borrowed stacks of size k + 1 can be
reached. Note that this scheme allows for incremental search with increasing k.
The computational complexity depends on the chosen model checking algorithm,
of which most are polynomial in the size of the PDA. The number of states and
transitions of M b

k is exponential in k, which puts our approach in exptime.

4.3 Application to Ambiguity Detection

When applied in the ambiguity detection scheme of Sect. 3, BBMPDAs yield
several desirable properties. First, they allow for full regular/regular intersection
and regular/nesting intersection of the paths of M in Ma. In combination with
NSPDAs, regular/regular intersection requires no stack activity and will not
build up any balance. During regular/nesting intersection, which starts with
the opening of a scope on one stack and ends when this scope is closed or the
other stack becomes active, pushes on the active stack do add to the balance
of the current scope of the other stack. However, this balance is only compared
to the bound at the moment the regular/nesting intersection ends. During the
intersection the nesting stack is allowed to grow and shrink indefinitely.

Second, full nesting/nesting intersection is also possible in case Ma meets the
BB(k) condition. Both stacks are allowed to reach unbounded depths together
and pop out of them as well, as long as the scope balances stay within the bound.

Third, BBMPDAs have the possibility of detecting the unambiguity of gram-
mars with nesting structures, which is a consequence from the previous property.
As the next theorem states, the scope balances in the paths of Ma in phase 1
will never be more than 1. Therefore, the configuration space of BB(k)MPDAs
with k ≥ 1 will at least cover all these paths. If in the continuations of these
paths in phases 2 and 3, the scope balances stay within the balance bound as
well and no end state is reached, the tested grammar is unambiguous.

Theorem 12. Given a PDA M , for all partial runs c0 . . . �↑p ((q, q′, x, 1),
{πi}i∈[n]) in phase 1 of Ma, the balance of the closed scope of p is at most 1.

10 H.J.S. Basten

5 Comparisons and Related Work

In this section we compare our contributions to related MPDAs and ambiguity
detection methods.

5.1 Multi-Stack Pushdown Automata

We show that BBMPDAs include bounded depth MPDAs but that they are incom-
parablewithbounded-context switchingMPDAs.This implies they are also incom-
parable with the larger MPDA classes mentioned in Sect. 3.3—bounded-phase,
scope-bounded, budget-bounded and ordered MPDAs—since none of these can, in
general, cover all paths in phase 1 of Ma. For detecting ambiguity however, these
MPDAs and BBMPDAs are complementary.

Theorem 13. If M is a n-stack MPDA with depth bound k, its scope balances
are bounded by k ∗ (n − 1).

Theorem 14. The class of BBMPDAs is incomparable with bounded-context
switching MPDAs.

Regarding simulation, any 1-stack MPDA with enough freedom to be a plain
PDA can simulate BBMPDAs. With the exception of bounded depth MPDAs
this is the case for all MPDA types mentioned above.

5.2 Ambiguity Detection Methods

In this section we will discuss related work in ambiguity detection and compare
it with our approach if possible.

Bounded-Search Methods. There are several methods that enumerate strings
in L(G) of bounded length and test them for ambiguity [3,6,9,12,13,22,25].
In general these approaches are only able to detect ambiguities, because they
can never entirely cover L(G). In essence our approach also applies a bounded
search, but with the difference that the search space can cover an infinitely large
language. Depending on G and the types of PDA and MPDA we can cover
L(G) entirely and detect unambiguity. However, with certain types of PDA and
MPDA, our method can also be set up for bounded string exploration. For
example, using a—nondeterministic—LR PDA with a bounded-context MPDA
will result in the exploration of strings and prefixes of bounded length. An LR
PDA pushes with every shift, requiring a context switch to allow both stacks to
push. Every reduction requires a number of pops and a push, but each stack can
perform all its reductions within one context, either after the last push or before
the next push, requiring no additional context switches.

Conservative Approximation Methods. Contrary to bounded search, other
methods apply conservative approximation to reduce the infinite L(G) to a lim-
ited space. This yields the possibility of detecting unambiguity, but prohibits
detecting ambiguity in most cases. The ACLA-test [7] applies regular approx-
imation to the languages of individual production rules and searches for the

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata 11

absence of horizontal and vertical ambiguities using intersection and overlap
operations. The NU-test [21] approximates the set of parse trees of a grammar
and searches for the absence of different trees for the same ambiguous string.
An extension to the NU-test allows the detection of harmless productions, which
are rules that do not contribute to any ambiguity [4]. The rules can be filtered
from the grammar to incrementally improve the approximation.

A significant difference between both approximative methods and our app-
roach is that they are less able to recognize the unambiguity of nesting structures.
Due to the regular approximation they lose the ability to match the left and right
contexts of nestings, i.e. count the nesting depth. The ACLA-test applies pro-
duction unfolding to counter this disadvantage, but this is only possible up to a
certain depth. As an example, both tests are not able the detect the unambiguity
of the following grammar, which is MSA(LL(0), BB(3))-unambiguous.

S → A | B, A → aAb | ab, B → aBb | a (1)

6 Conclusion

We present a novel method for detecting ambiguity in context-free grammars
using restricted multi-stack pushdown automata. It is able to find both ambi-
guity and unambiguity. We discuss the use of existing MPDA classes within
our framework, as well as propose a new class called bounded-balance MPDAs.
These MPDAs are particularly useful for language intersection since they allow
for unbounded nesting/nesting intersection, as long as the nesting depth differ-
ences stay within the balance bound.

References

1. Abdulla, P., Atig, M., Rezine, O., Stenman, J.: Budget-bounded model-checking
pushdown systems. Form. Methods Syst. Des. 45(2), 273–301 (2014)

2. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

3. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an
incremental SAT solver. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 410–422. Springer, Heidelberg (2008)

4. Basten, H.J.S.: Tracking down the origins of ambiguity in context-free grammars.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010.
LNCS, vol. 6255, pp. 76–90. Springer, Heidelberg (2010)

5. Basten, H.J.S.: Ambiguity detection for programming language grammars. Ph.D.
thesis, Universiteit van Amsterdam (2011)

6. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In:
Proceedings of the Tenth Workshop on Language Descriptions, Tools and Appli-
cations (LDTA 2010), pp. 5:1–5:9. ACM (2010)

7. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. Sci. Comput. Program. 75(3), 176–191 (2010)

12 H.J.S. Basten

8. Breveglieri, L., Cherubini, A., Citrini, C., Reghizzi, S.C.: Multi-push-down lan-
guages and grammars. Int. J. Found. Comput. Sci. 07(03), 253–291 (1996)

9. Cheung, B.S.N., Uzgalis, R.C.: Ambiguity in context-free grammars. In: Proceed-
ings of the 1995 ACM Symposium on Applied Computing (SAC 1995), pp. 272–276.
ACM, New York (1995)

10. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

11. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. J. Comput. Syst.
Sci. 1(1), 1–23 (1967)

12. Gorn, S.: Detection of generative ambiguities in context-free mechanical languages.
J. ACM 10(2), 196–208 (1963)

13. Kieżun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: Proceedings of the 2009 International Symposium on
Software Testing and Analysis (ISSTA 2009), pp. 105–116. ACM (2009)

14. Knuth, D.E.: On the translation of languages from left to right. Inf. Control 8(6),
607–639 (1965)

15. Knuth, D.E.: Top-down syntax analysis. Acta Informatica 1, 79–110 (1971)
16. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive

languages. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pp. 161–170. IEEE (2007)

17. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

18. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: fixed-
point, sequentialization, and tree-width. In: IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2012),
pp. 173–184 (2012)

19. Nederhof, M.: Practical experiments with regular approximation of context-free
languages. Comput. Linguist. 26(1), 17–44 (2000)

20. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

21. Schmitz, S.: Conservative ambiguity detection in context-free grammars. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 692–703. Springer, Heidelberg (2007)

22. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Techni-
cal report (2001). compilertools.net, http://accent.compilertools.net/Amber.html

23. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis, Technische Univer-
sität München, June 2002

24. Scott, E., Johnstone, A.: Generalized bottom up parsers with reduced stack activ-
ity. Comput. J. 48(5), 565–587 (2005)

25. Vasudevan, N., Tratt, L.: Detecting ambiguity in programming language grammars.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
157–176. Springer, Heidelberg (2013)

http://www.compilertools.net
http://accent.compilertools.net/Amber.html

Complementation of Branching Automata
for Scattered and Countable

Series-Parallel Posets

Nicolas Bedon(B)

LITIS (EA 4108), Université de Rouen, Rouen, France
Nicolas.Bedon@univ-rouen.fr

Abstract. We prove the closure under complementation of the class of
languages of scattered and countable N-free posets recognized by branch-
ing automata. The proof relies entirely on effective constructions.

Keywords: Transfinite N-free posets · Series-parallel posets · SP-
rational languages · Automata · Commutative monoids

1 Introduction

Automata over finite words have been widely studied since their introduction
by Kleene in the last fifties, because they are a natural model for sequential
computation with bounded memory, and they are linked to many other areas,
as for example formal logic, coding theory or formal series. The depth of those
links and the richness of the results led the community to develop generalizations
o f Kleene automata, as for example automata over trees [18], ω-words [6,17],
ordinals [7], and more recently, over linear orderings [5].

Among those generalizations, Lodaya and Weil proposed a notion of
branching-automata that are a natural model for parallel computation with the
Fork/Join principle. The Fork/Join principle splits an execution flow f into
n concurrent flows f1, . . . , fn and joins f1, . . . , fn before it continues. Divide-
and-conquer concurrent programming naturally uses this Fork/Join principle.
Traces of execution of programs are in this case finite N-free posets, or equiva-
lently, finite series-parallel posets [19,22]. Lodaya and Weil extended some fun-
damental results of automata on words to branching-automata, as for exam-
ple a Kleene-like Theorem or algebraic recognizability [13–16]. Unfortunately,
and contrarily to the finite words case, the algebraic counterpart of branching
automata may be infinite, leading to difficulties regarding the generalization
of fundamental results over finite words to finite N-free posets. Kuske [11,12]
extended branching-automata to recognition of ω-N-free posets, and established
a connection with monadic second-order logic (MSO[<]) in the particular case
of languages of N-free posets with bounded-size antichains. The logical charac-
terization of languages of finite N-free posets recognized by branching automata
of Lodaya and Weil is provided in [3] in the general case.
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 13–25, 2016.
DOI: 10.1007/978-3-662-53132-7 2

14 N. Bedon

In [4], branching automata are generalized to N-free posets with finite
antichains and countable and scattered chains, and a Kleene-like Theorem is
provided. The connection with MSO[<] is established in [2] in the particular
case of languages of N-free posets with bounded-size antichains. In this paper,
we prove that the class of languages recognized by the generalization of branch-
ing automata of [4] is closed under complement. The (effective) proof relies on an
algebraic approach of branching automata, on the use of Simon’s factorization
forests proposed by Colcombet in [9] for regular languages of linear orderings,
and on the closure under complementation of the class of rational sets of finitely
generated commutative monoids [10].

2 Notation and Basic Definitions

Let E be a set. We denote by |E|, P(E), P+(E) and M>1(E) respectively the
cardinality of E, the set of subsets of E, the set of non-empty subsets of E and
the set of multi-subsets of E with at least two elements. For any integer n, the
set {1, . . . , n} is denoted by [n] and the group of permutations of [n] by Sn.

We start by some basic definitions on linear orderings. We refer to [20] for a
survey on the subject. Let J be a set equipped with an order <. The ordering
J is linear if all elements are comparable : for any distinct j and k in J , either
j < k or k < j. For any linear ordering J , we denote by −J the backward linear
ordering obtained from the set J with the reverse ordering. A linear ordering J
is dense if for any j, k ∈ J such that j < k, there exists an element i of J such
that j < i < k. It is scattered if it contains no dense sub-ordering. The orderings
ω = (N, <) and ζ = (Z, <) are scattered. Ordinals are also scattered orderings.
We denote by O the class of countable ordinals and S the class of countable
scattered linear orderings. An interval K of J ∈ S is a subset K ⊆ J such that
∀k1, k2 ∈ K,∀j ∈ J , if k1 < j < k2 then j ∈ K.

A poset (P,<) is a set P partially ordered by <. In order to lighten the
notation we often denote the poset (P,<) by P . An antichain is a subset P ′

of P such that all elements of P ′ are incomparable (with <). The width of
P is wd(P) = sup{|E| : E is an antichain of P} where sup denotes the least
upper bound of the set. If x, y ∈ P , we denote by x− = {z ∈ P : z < x},
x+ = {z ∈ P : x < z} and x ∼< y if x− ∪ x+ ∪ {x} = y− ∪ y+ ∪ {y}. In this
paper, we restrict to countable scattered posets of finite width which are thus
partially ordered countable sets without any dense sub-ordering. Let (P,<P)
and (Q,<Q) be two disjoint posets. The parallel composition of (P,<P) and
(Q,<Q) is the poset (P ∪Q,<) where x < y if and only if (x, y ∈ P and x <P y)
or (x, y ∈ Q and x <Q y). The sum (or sequential composition) P + Q of P and
Q is the poset (P ∪ Q,<) such that x < y if and only if one of the following
three conditions is true: (1): x ∈ P , y ∈ P and x <P y; (2): x ∈ Q, y ∈ Q
and x <Q y; (3): x ∈ P and y ∈ Q. The sum of two posets can be generalized
to any linearly ordered sequence of pairwise disjoint posets: if J is a linear
ordering and ((Pj , <j))j∈J is a sequence of posets, then

∑

j∈J Pj = (∪j∈JPj , <)
such that x < y if and only if (x ∈ Pj , y ∈ Pj and x <j y) or (x ∈ Pj and

Complementation of Branching Automata 15

y ∈ Pk and j < k). The sequence ((Pj , <j))j∈J is called a J-factorization, or
factorization for short, of the poset

∑

j∈J Pj . A nonempty poset P is sequential
if it admits a J-factorization where J contains at least two elements, or P is a
singleton. It is a parallel poset otherwise. The only poset (∅, <) of width 0 is called
empty poset and is denoted by ε. The class SP � of series-parallel scattered and
countable posets is the smallest class of posets containing ε, the singleton and
closed under finite parallel composition and sum indexed by countable scattered
linear orderings. It has a nice characterization in terms of graph properties: SP �

coincides with the class of scattered and countable N -free posets without infinite
antichain (see [4]). We denote by SP �+ = SP � − {ε}.

The sets of (Dedekind-MacNeille) cuts of a poset P is defined as a general-
ization of cuts of linear orderings. It is the set of all pairs (A,B), with A,B ⊆ P ,
such that B consists of all the elements of P greater than all the elements of A,
and reciprocally, A consists of all the elements of P less than all the elements
of B. The cuts are partially ordered with inclusion on the first component,
and with the elements of P with (A,B) < x if x ∈ B. The partially ordered
set of all cuts of P is denoted P̂ , and we usually denote by P ∪ P̂ the partially
ordered set consisting of the elements of P with its cuts. Note that an equivalence
class of cuts of P for ∼< is totally ordered. The notation P̂ ιι′

with ι, ι′ ∈ {[,]}
excludes or not the minimum and maximum elements from P̂ . We denote also
by P̂ ∗ = P̂ − {(∅, P), (P, ∅)}. We define the partial ordering � over the cuts of
P by (A,B) � (A′, B′) if and only if A ∪ B = A′ ∪ B′ and A ⊆ A′.

An alphabet is a nonempty set whose elements are called letters. In this paper,
we use only finite alphabets, thus the term “finite” is omitted. A poset labeled by
A is a poset (P,<) equipped with a labeling map P → A which associates a letter
to any element of P . The notion of a labeled poset corresponds to the notion of
a pomset in the literature. Also, the finite labeled posets of width 1 correspond
to the usual notion of words. In order to shorten the notation, we make no
distinction between a poset and a labeled poset, except for operations. The
sequential product (or concatenation, denoted by P ·P ′ or PP ′ for short) and the
parallel product (denoted by P ‖ P ′) of labeled posets are respectively obtained
by the sequential and parallel compositions of the corresponding (unlabeled)
posets. The class of posets of SP � labeled by A (or over A) is denoted by
SP �(A). We set A� = {P ∈ SP �(A) : wd(P) ≤ 1}. Observe that the elements
of A� are precisely the usual words on scattered and countable linear orderings,
as defined in [5]. A language of SP �(A) is a subset of SP �(A). Let A and B
be two alphabets and let P ∈ SP �(A), L ⊆ SP �(B) and ξ ∈ A. The labeled
poset P in which each occurrence of the letter ξ is non-uniformly replaced by a
labeled poset of the language L is denoted by L◦ξP . The substitution, sequential
and parallel products can be easily extended from labeled posets to languages
of posets.

3 Rational Languages and Branching Automata

Let A be an alphabet and ξ ∈ A. Using the definition of substitution ◦ξ, we define
the iterated substitution on languages. By the way the usual rational operations

16 N. Bedon

on linear orderings are recalled. Let L and L′ be languages of SP �(A):

L ◦ξ L′ =
⋃

P∈L′
L ◦ξ P , L∗ = {

∏

j∈n

Pj |n ∈ N, Pj ∈ L}

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = (∪
j≤i

Ljξ) ◦ξ L

Lω = {
∏

j∈ω

Pj |Pj ∈ L} L−ω = {
∏

j∈−ω

Pj |Pj ∈ L}

L� = {
∏

j∈α

Pj |α ∈ O, Pj ∈ L} L−� = {
∏

j∈−α

Pj |α ∈ O, Pj ∈ L}

L L′ = {
∏

j∈J∪Ĵ∗

Pj : J ∈ S − {0} and Pj ∈ L if j ∈ J and Pj ∈ L′ if j ∈ Ĵ∗}

A language L ⊆ SP �(A) is rational if it is empty, or obtained from the
letters of the alphabet A using usual rational operators : finite union ∪, finite
concatenation ·, and finite iteration ∗, ω and −ω iterations, iteration and reverse
iteration on ordinals � and −� as well as diamond operator , and using also the
rational operators of finite parallel product ‖, substitution ◦ξ and iterated sub-
stitution ∗ξ, provided that the letter ξ ∈ A appears only inside parallel factors.
This latter condition excludes from the rational languages those of the form
(aξb)∗ξ = {anξbn : n ∈ N}, for example, which are known to be not Kleene
rational. Observe also that the usual Kleene rational languages are a particular
case of the rational languages defined above, in which the operators ‖, ◦ξ and
∗ξ are not allowed. Note also that the rational expressions are precisely those
of Bruyère and Carton [5] over labeled posets on scattered and countable linear
orderings, with additional operators ‖, ◦ξ and ∗ξ for parallelism and substitution.

Example 1. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ. Then L is the smallest
language containing c and such that if x ∈ L, then a ‖ (bx) ∈ L. Thus we have
L = {c, a ‖ (bc), a ‖ (b(a ‖ (bc))), . . . }. �

Let L be a language where the letter ξ is not used. In order to lighten the
notation we use the following abbreviation: L� = {ε} ◦ξ (L ‖ ξ)∗ξ = {‖i<n Pi :
n ∈ N, Pi ∈ L} and L⊕ = L� −{ε}. A subset L of A� is linear if it has the form
L = a1 ‖ · · · ‖ ak ‖ (∪i∈I(ai,1 ‖ · · · ‖ ai,ki

)
)� where the ai and ai,j are elements

of A and I is a finite set. It is semi-linear if it is a finite union of linear sets. The
class of ‖-rational languages of A� is the smallest containing the empty set, {ε},
{a} for all a ∈ A, and closed under finite union, parallel product ‖, and finite
parallel iteration �. The notions of rational, ‖-rational, linear and semi-linear
languages, which are defined over free algebras, also naturally apply to non-free
algebras. It is known (see [10]) that the ‖-rational sets of a commutative monoid
M are precisely the semi-linear sets of M . Observe also that when L is a rational
language of SP �+(A), then L ⊆ A� if and only if L is ‖-rational.

We refer to [4] for a proof of the following Lemma:

Complementation of Branching Automata 17

Lemma 2 (Lemma 19 of [4]). Let A be an alphabet and let ξ, X be two
new symbols. Let M ⊆ SP �(A) and let L ⊆ SP �(A ∪ {X}) \ SP �(A). Then
M ◦ξ (ξ ◦X L)∗ξ is the unique solution of the equation X = M + L.

Automata on countable, scattered and series-parallel posets are a gen-
eralization of automata on finite series-parallel posets [13–16], series-parallel
ω-posets [12] and automata on linear orderings [5]. A branching automaton
over an alphabet A is a tuple A = (Q,A,E, I, F) where Q is a finite set of
states, I ⊆ Q is the set of initial states, F ⊆ Q the set of final states, and
E is the set of transitions of A. The set of transitions E is partitioned into
E = (Eseq, Ejoin, Efork), according to the different kinds of transitions. The set
Eseq ⊆ (Q×A×Q)∪ (Q×P+(Q))∪ (P+(Q)×Q) contains the sequential transi-
tions, which are usual transitions (elements of (Q × A × Q)) or limit transitions
(elements of (Q × P+(Q)) ∪ (P+(Q) × Q)). The sets Efork ⊆ Q × M>1(Q) and
Ejoin ⊆ M>1(Q)×Q are respectively the sets of fork and join transitions. Tran-
sitions (p, a, q) ∈ Q × A × Q and (P, q) ∈ P+(Q) × Q are sometimes respectively
denoted by p

a→ q and P → q. A path γ from a state p to a state q is either the
empty poset (in this case p = q), or a non-empty poset labeled by transitions,
with a unique minimum and a unique maximum element. The states p and q
are respectively called source (or origin) and destination of γ. Two paths γ and
γ′ are consecutive if the destination of γ is also the source of γ′. The paths
γ labeled by P ∈ SP �(A) and of content C(γ) ∈ P+(Q) in A are defined as
follows. For all p ∈ Q there is an empty path from p to p labeled by ε and of
content {p}. For all sequential transition t = (p, a, q), γ = t is a path from p to
q labeled by a and of content {p, q}. For any finite sequence (γj)j≤k of paths
(with k ≥ 1) respectively labeled by P0, . . . , Pk, from p0, . . . , pk to q0, . . . , qk, if
t = (p, {p0, . . . , pk}) is a fork transition and t′ = ({q0, . . . , qk}, q) a join tran-
sition, then γ = t(‖j≤k γj)t′ is a path from p to q, labeled by ‖j≤k Pj and of
content C(γ) = {p, q}: observe that C(γ) does not depend on the parallel parts
γ0, . . . , γk of γ. Furthermore, if the paths (γj)j≤k are consecutive with respec-
tive contents (C(γj))j≤k, then

∏

j≤k γj is a path labeled by
∏

j≤k Pj from the
source of γ0 to the destination of γk, and of content ∪j≤kCj . Finally, for any
sequence (γj)j∈ω of consecutive paths respectively labeled by (Pj)j∈ω and of
contents (C(γj))j∈ω, if R = {q ∈ Q : ∀i ∈ ω ∃j > i q ∈ C(γj)}, then for any
transition t = (R, q), (

∏

j∈ω γj)t is a path from the source of γ0 and to q, labeled
by

∏

j∈ω Pj and of content (∪j∈ωCj) ∪ {q}. The case −ω is symmetrical to ω.

In A, a path γ from p to q labeled by P of content C is denoted by γ : p
P=⇒

C,A
q.

The label, content or automaton can be omitted in the notation of a path when
they are implicit or of no interest. A labeled poset is accepted by an automaton
if it is the label of a successful path leading from an initial state to a final state.
The language L(A) is the set of labeled posets accepted by the automaton A.

Note that branching automata without fork and join transitions are precisely
the automata on scattered and countable linear orderings defined by Bruyère
and Carton [5]. The same way, if limit transitions are removed, we get branching
automata for finite labeled posets of Lodaya and Weil [13–16]. As for finite words,

18 N. Bedon

rational languages and branching automata for scattered series-parallel posets
are connected with a Kleene-like Theorem:

Theorem 3 [4]. Let L ⊆ SP �(A). Then L is the language of a branching
automaton if and only if it is rational.

Example 4. The automaton A = ([6], {a, b, c}, E, {1}, {6}) defined by Eseq =
{(2, a, 4), (3, b, 5), (6, c, 1), ({1, 6}, 6), (6, {1, 6})}, Efork = {(1, {2, 3})} and
Ejoin = {({4, 5}, 6)} verifies L(A) = (a ‖ b) c. �

An automaton is sequentially separated if, for all pairs (p, q) of states, all
labels of paths from p to q are parallel posets, or all labels of paths from p to q
are sequential posets. For every automaton A there is a sequentially separated
automaton B such that L(A) = L(B). Also, for every pair of states (p, q) of an
automaton, it is decidable whether there is a path from p to q or not.

The following Theorem states the main result of this paper:

Theorem 5. Let A be an alphabet. The class of rational languages of SP �+(A)
is effectively closed under complement.

Section 5 is devoted to a sketch of its proof, which essentially relies on the alge-
braic approach of automata.

4 Algebras

We now focus on the definitions of algebras for the recognition of languages of
SP �(A), with A an alphabet. Recall that an algebra is finite if it is composed of a
finite number of elements. Even if in this paper we deal with infinite algebras, we
use notions of universal algebras which are usually defined on finite algebras, and
that can be easily generalized to our case. We refer to [1] for the basic algebraic
definitions. A semigroup (S, ·) is a set S equipped with an associative binary
operation · called product. A ‖-semigroup [13–16] (S, ·, ‖) is an algebra such
that (S, ·) is a semigroup and (S, ‖) is a commutative semigroup. In ambiguous
contexts, the · and ‖ products are respectively called sequential (or series) and
parallel. The -semigroups are a generalization of semigroups for the recognition
of words of A� (see [8] for more details): a -semigroup (S,

∏

) is a set equipped
with a map

∏

(also called sequential product) which associates an element of
S to any countable and linearly ordered sequence s = (sj)j∈J (with J ∈ S)
of elements of S, such that

∏

(t) = t for any t ∈ S and
∏

is associative (i.e.
for any factorization of the sequence s into a sequence of sequences (tj)j∈J ′ ,
∏

(s) =
∏

((
∏

tj)j∈J ′)). Finally, a ‖--semigroup (S,
∏

, ‖) is an algebra such
that (S,

∏

) and (S, ‖) are respectively a − and a commutative semigroup. In
order to lighten the notation we often denote an algebra by its set of elements: for
example, we denote the semigroup (S, ·) by S. We denote by S1 the algebra S if S
has an identity 1 for all its operations, S ∪{1} otherwise. We also denote by A+,
SP (A) and A� respectively the free semigroup, ‖-semigroup, and -semigroup
over the alphabet A. In this paper we particularly focus on SP �(A) which is the

Complementation of Branching Automata 19

free ‖--semigroup over A. Let S and T be two algebras of the same type. A
morphism ϕ : S → T recognizes a subset X of S if ϕ−1ϕ(X) = X. We say that T
recognizes X if there exists a morphism from S into T recognizing X. A subset
X of an algebra S is recognizable if there exist a finite algebra T with the same
type as S and a morphism ϕ : S → T that recognizes X. Recognizable languages
of SP+(A) are rational. However, in general, rational languages of SP+(A) are
not recognizable. As an example, (a ‖ b)⊕ is not recognizable, since its syntactic
‖-semigroup is isomorphic to Z (see [13]). Let (S,

∏

, ‖) be a ‖--semigroup. Its
sequential product

∏

is a finite projection if there exists X ⊆ S such that
(X,

∏

) is a finite -semigroup and
∏

maps every sequential product of at least
two elements of S to an element of X. By extension of the work of Wilke [23]
on ω-words, when

∏

is a finite projection, it can be equivalently replaced by an
associative binary sequential product · and two maps ω : S → S and −ω : S → S
such that, for all s, t ∈ S, s · (t · s)ω = (s · t)ω, (s · t)−ω · s = (t · s)−ω, (sn)ω = sω

and (sn)−ω = s−ω for all n ∈ N
∗. Observe that it suffices to define ω and −ω

over finitely many elements: the idempotents (for the sequential product) of S.

Example 6. Let A = {a, b} and L ⊆ SP �+(A) be the language of non-empty
posets P such that P has width at most 2 and each letter a that appears into a
parallel part of P is incomparable with a b. Let S = (X,

∏

, ‖) be the finite ‖--
semigroup defined by X = {a, b, ab, p, 0}, the following ‖ commutative product:
a ‖ a = ab ‖ a = 0, p ‖ x = 0 for all x ∈ S, a ‖ b = ab ‖ b = ab ‖
ab = b ‖ b = p and the sequential product

∏

such that, for any non-empty
sequence (sj)j∈J (J ∈ S − {∅}) of elements of S,

∏

((sj)j∈J) = a if (sj)j∈J

contains only as,
∏

((sj)j∈J) = ab if (sj)j∈J contains at least one a and one
b,

∏

((sj)j∈J) = b if (sj)j∈J contains only bs, and
∏

((sj)j∈J) = p if (sj)j∈J

contains only p, a, b, ab, with at least one p. The element 0 is a zero for both
∏

and ‖. Let ϕ : SP �+(A) → S be the morphism defined by ϕ(a) = a and ϕ(b) = b.
Then L = ϕ−1({a, b, ab, p}). Furthermore, the sequential product of S is a finite
projection since S has a finite number of elements. Then S can be equivalently
defined by W = (X, ·, ω,−ω, ‖) where x · x′ =

∏

(x, x′) and xω = x−ω = x for
all x, x′ ∈ X. �

The following notions are adapted from [9]. Let P be a partially ordered
set and S a semigroup. A mapping σ from ordered pairs (x, y) ∈ P 2 such that
x ∼< y, to S, is an additive labeling from P to S if σ(x, y)σ(y, z) = σ(x, z)
for all x < y < z in P . From a morphism of semigroups ϕ : (SP �(A), ·) → S
and P ∈ SP �(A), one can build an additive labeling ϕP : (P̂ ,�) → S with
ϕP ((A,B), (A′, B′)) = ϕ(B∩A′). A split of height n of P is a mapping s : P → [n]
(n = 0 is possible; in this case P = ∅). Two elements x, y such that x ∼< y and
s(x) = s(y) = k are k-neighbors if s(z) ≥ k for all z ∈ [x, y] with z ∼< x.
Note that k-neighborhoodness is an equivalence relation over the elements of P .
Let σ be an additive labeling from P to a semigroup S. Then a split s of P is
Ramseyan for σ if for every equivalence class C for k-neighborhoodness there
exists an idempotent e such that σ(x, y) = e for all x < y in C.

20 N. Bedon

The notion of a finite projection of a semigroup S is self-understanding from
its definition on ‖--semigroups. Theorem 4 of [9] can be reformulated for posets
as follows:

Theorem 7. For every poset P ∈ SP �, every semigroup S with a finite projec-
tion fp(S) and additive labeling σ from P to S, there exists a Ramseyan split of
P for σ of height at most 2|fp(S)| + 1.

5 Sketch of the Proof of Theorem5

Let A be an alphabet, A = (Q,A,E, I, F) a branching automaton, and L =
L(A). When X ⊆ SP �+(A), we denote by Seq(X) the set of sequential posets
of X. Denote also by Lp,q (resp. Lp,q,C with C ∈ P+(Q)) the set of non-empty
labels of paths from state p to state q (resp. of content C) in A.

The proof of Theorem 5 consists in constructing a rational expression e for
SP �+(A) − L. When φ : SP �+(A) → S is a morphism of ‖--semigroups and
D ∈ P(Q2 × P+(Q)), denote by Δφ

D = {φ(P) : p
P=⇒

C,A
q iff (p, q, C) ∈ D}. The

first step is to construct a ‖--semigroup from A, by a generalization of the
usual technique used to construct a finite semigroup from a Kleene automaton
on finite words. This consists in defining a congruence ∼A of ‖--semigroups
over the posets of SP �+(A), by P ∼A P ′ if and only if P can be substituted
by P ′ in any part of any path γ : p

R=⇒
C,A

q of A in order to build another path

γ′ : p
R′

=⇒
C,A

q of same source, destination and content and whose label R′ is R in

which some occurrences of P have been replaced by P ′. The natural morphism
ϕ∼A : SP �+(A) → SP �+(A)/∼A which associates to each poset P ∈ SP �+(A)
its equivalence class in SP �+(A)/∼A recognizes Lp,q,C for each p, q, C ∈ Q2 ×
P+(Q), and L. Note that SP �+(A)/∼A may be infinite, as it is illustrated by
the following example.

Example 8. Consider the automaton A of Fig. 1 of language L(A) = (a ‖ b)⊕ c.
For all k1, k2, k3, k4 ∈ N such that k1 − k2 = k3 − k4 and k2, k4 > 0 we have
a‖k1 ‖ b‖k2 ∼A a‖k3 ‖ b‖k4 . Also, P ∼A P ′ for all P, P ′ ∈ (a ‖ b)⊕ c − (a ‖ b)⊕.

Let S = Z ∪ {a, b, c, 0c, c0, 0c0,⊥}. Equip S with a commutative parallel
product with z ‖ z′ = z +Z z′, a ‖ z′ = 1 ‖ z′, b ‖ z′ = −1 ‖ z′ for all
z, z′ ∈ Z, a ‖ b = 0, and all other parallel product are sent to ⊥. Equip also
S with a sequential product such that for all sequence s = (si)i∈I of elements
of S, I ∈ S − {0, 1},

∏

i∈I si = 0c0 if s ∈ 0 c, c0c = c, z2 = zx = xz =
c2 = ⊥2 = ⊥ for all z ∈ Z ∪ {a, b}, x ∈ S. As the sequential product of S is
a finite projection and the idempotents for the sequential product are 0c, c0,⊥,
it can equivalently be defined by the binary product as above and (0c)ω =
0c0 = (c0)−ω, (0c)−ω = 0c, (c0)ω = c0. Note that (S, ‖) is finitely generated
by {−1, 1, a, b, c, 0c, c0, 0c0,⊥}. Let ϕ : SP �+(A) → S defined by ϕ(x) = x for
all x ∈ A. Then L = ϕ−1({0, 0c0}). Furthermore, SP �+(A)/∼A is isomorphic
to S. �

Complementation of Branching Automata 21

0

1

2

3

4

a

b

{0, 9} → 9

0 → {0, 9}

5

6

7

8

a

b

9c

Fig. 1. An automaton A for (a ‖ b)⊕ � c. Fork transitions are (0, {1, 5}), (5, {5, 5}) and
(1, {1, 1}), join transitions are ({2, 3}, 4), ({6, 7}, 8), ({4, 8}, 9), ({4, 4}, 4), ({8, 8}, 8)
and ({3, 6}, 9)

However, (SP �+(A)/∼A, ‖) is finitely generated by ϕ∼A(Seq(SP �+(A))),
ϕ∼A(Lp,q) is a ‖-rational set of SP �+(A)/∼A for all p, q ∈ Q, and thus, so
is ϕ∼A(L). We also have ϕ−1

∼A(Δ
ϕ∼A
D) = Δid

D for all D ∈ P(Q2 × P+(Q)). Recall
that the ‖-rational sets of a commutative monoid M form a boolean algebra [10,
Theorem 3], which is effective when M is finitely generated (as emphasized
in [21]). As a consequence, Δ

ϕ∼A
D is a ‖-rational set of SP �+(A)/∼A for all D.

As SP �+(A)−L = ∪ D∈P(Q2×P+(Q))
D∩I×F ×P+(Q)=∅

Δid
D, it suffices to show that ϕ−1

∼A(Δ
ϕ∼A
D)

is a rational set of SP �+(A) for all D. We translate the problem into a ‖--
semigroup N

k∗ with more properties than SP �+(A)/∼A. Very informally speak-
ing, denote by G = {g1, . . . , gk} the finite generator of (SP �+(A)/∼A, ‖). We
may suppose that A is sequentially separated. Thus that the elements of G are
indecomposable with respect to the parallel product, that is to say, each gi ∈ G
can not be written gi = s ‖ s′ with s, s′ ∈ SP �+(A)/∼A. We are going to define
a morphism μ : SP �+(A) → N

k∗ that enables, for every P ∈ SP �+(A) whose
maximal parallel factorization is P = P1 ‖ · · · ‖ Pn, the count of all i, i ∈ [n],
such that ϕ∼A(Pi) = gj , for every j ∈ [k]. Also, every language recognized by
SP �+(A)/∼A is recognized by N

k∗.
Denote by (Nk∗,+) the commutative semigroup whose elements are k-tuples

of non-negative integers, without (0, . . . , 0). It is generated by the k-tuples with
all components set to 0, except one which is set to 1. For short we denote by 1i the
element of the generator of Nk∗ with the ith component set to 1. The (parallel)
product + of (Nk∗,+) is the sum componentwise. Define a surjective morphism
of commutative semigroups ψ : (Nk∗,+) → (SP �+(A)/∼A, ‖) by ψ(1i) = gi

for all i ∈ [k]. As ψ−1(gi) = {1i} for all i ∈ [k], ψ−1(ss′) is a singleton for all
s, s′ ∈ SP �+(A)/∼A. Now we equip (Nk∗,+) with a structure of ‖--semigroup
by setting, for all n, n1, n2 ∈ N

k∗, n1n2 = ψ−1(ψ(n1)ψ(n2)), nω = ψ−1((ψ(n))ω)
and n−ω = ψ−1((ψ(n))−ω). This sequential product is a finite projection. We
define a surjective morphism of ‖--semigroups μ : SP �+(A) → N

k∗ by μ(a) =
ψ−1ϕ∼A(a) for all a ∈ A. The diagram of Fig. 2 sums up the situation. For all
s ∈ SP �+(A)/∼A, ϕ−1

∼A(s) = μ−1ψ−1(s). We also have ψ−1(Δ
ϕ∼A
D) = Δμ

D and
μ−1(Δμ

D) = Δid
D for all D ∈ P(Q2 × P+(Q)). According to [10, Corollary III.2]

Δμ
D is a ‖-rational set of N

k∗, and thus semi-linear: it has the form Δμ
D =

22 N. Bedon

Fig. 2. The morphisms between the ‖-�-semigroups. Full arrows represent morphisms
of ‖-�-semigroups, and dashed arrows morphisms of commutative semigroups

∪i∈ID
(aD,i + B�

D,i) for some finite set ID, aD,i ∈ N
k∗, BD,i some finite part of

N
k∗. For all i ∈ ID set Δμ

D,i = aD,i + B�
D,i. We may assume that all the Δμ

D,i

are pairwise disjoint [10, Theorem IV]. Setting BD,i = {bD,i,1, . . . , bD,i,lD,i
} it

holds μ−1(Δμ
D,i) = μ−1(aD,i) ‖ {μ−1(bD,i,1) ∪ · · · ∪ μ−1(bD,i,lD,i

)}�, so it just
remain to show that

Lemma 9. For all n ∈ N
k∗, μ−1(n) is a rational set of SP �+(A).

Proof. (Sketch of) Let ϕ : SP �+(A) → S be a morphism of ‖--semigroups.
For each j,M non-negative integers, x ∈ S, and ι, ι′ ∈ {[,]}, define Sιι′

j,M (x) (or
Sιι′

j (x) for short) as the posets P of ϕ−1(x) such that P̂ ιι′
admits a Ramseyan

split s, for ϕP , of height M ; and s is also a Ramseyan split of {(A,B) ∈ P̂ ιι′
:

A ∪ B = P}, for ϕP , of height j.
Considering linear orderings only, Colcombet [9] expressed Sιι′

j+1(x) with an
equality that depends only of the Sι′′ι′′′

j (s), s ∈ S, ι′′, ι′′′ ∈ {[,]} and that uses
only the rational operators for linear orderings:

S
ιι′
j+1(x) = S

ιι′
j (x) +

∑

yz=x

S
ι[
j (y)S

]ι′
j (z) +

∑

yez=x

e2=e

S
ι[
j (y)Ce,j+1S

]ι′
j (z)

+
∑

yeωz=x

e2=e

S
ι[
j (y)C

ω
e,j+1S

[ι′
j (z) +

∑

ye−ωz=x

e2=e

S
ι]
j (y)C

−ω
e,j+1S

]ι′
j (z) +

∑

yeζz=x

e2=e

S
ι]
j (y)C

ζ
e,j+1S

[ι′
j (z)

with ϕ−1(x) = S
[]
2|S|(x), S

][
0 (x) = ϕ−1(x) ∩ A, S

[[
0 (x) = S

]]
0 (x) = ϕ−1(x) ∩ {ε},

S
[]
0 (x) = ∅, and Ce,j+1, Cω

e,j+1, C−ω
e,j+1, Cζ

e,j+1 rational sets that depend only of
the languages of the form Sι′′ι′′′

j (s), s ∈ S, ι′′, ι′′′ ∈ {[,]}.
We adapt this to the case where P ∈ SP �+(A), replacing ϕ by μ :

SP �+(A) → N
k∗. There are several points to consider. First, technically the

empty poset is not taken into consideration in the framework of posets. Sec-
ond, P̂ ιι′

admits a Ramseyan split for ϕP and of height j if and only if
C = {(A,B) ∈ P̂ ιι′

: (A,B) = P} admits a Ramseyan split for ϕP and of
height j, and, for each Pi between two consecutive elements of C with |Pi| > 1

(thus Pi =‖j∈Ji
Pj for some |Ji| > 1 and nonempty Pj), each P̂j

[]
admits itself

a Ramseyan split for ϕP and of height |2k + 1|. And third, as Nk∗ is infinite but
partitioned into finitely many Δμ

D,i in which all elements are equivalent regarding

Complementation of Branching Automata 23

to the sequential product, we need to replace any occurrence of some x involved
in a sequential product in the right member of the equality above by some Δμ

D,i.
The set Sιι′

j+1(Δ
μ
D,i) is composed of all the sequential posets of Sιι′

j+1(g) for all
g ∈ G ∩ Δμ

D,i, and, if ιι′ =][, all the parallel posets and letters of μ−1(Δμ
D,i). For

simplicity we write Δμ
D,ix = y (resp. xΔμ

D,i = y) when zx = y (resp. xz = y)
for all z ∈ Δμ

D,i. With the help of Theorem7, the equalities of Colcombet above
can be rewritten in N

k∗ as

Sιι′
j+1(x) = Sιι′

j (x) +
∑

Δμ
D,iΔ

μ

D′,i′=x

S
ι[
j (Δμ

D,i)S
]ι′

j (Δμ
D′,i′)

+
∑

Δμ
D,i

eΔμ
D′,i′=x

e2=e

S
ι[
j (Δμ

D,i)Ce,j+1S
]ι′

j (Δμ
D′,i′) +

∑

Δμ
D,i

eωΔμ
D′,i′=x

e2=e

S
ι[
j (Δμ

D,i)C
ω
e,j+1S

[ι′

j (Δμ
D′,i′)

+
∑

Δμ
D,i

e−ωΔμ
D′,i′=x

e2=e

S
ι]
j (Δμ

D,i)C
−ω
e,j+1S

]ι′

j (Δμ
D′,i′) +

∑

Δμ
D,i

eζΔμ
D′,i′=x

e2=e

S
ι]
j (Δμ

D,i)C
ζ
e,j+1S

[ι′

j (Δμ
D′,i′)

where Ce,j+1, Cω
e,j+1, C−ω

e,j+1, Cζ
e,j+1 are rational sets that depend only of the

languages of the form Sι′′ι′′′
j (Δμ

D,i) and can be obtained precisely as in the case of
linear orderings (see [9, Proof of Theorem 6]), D ∈ P+(Q), i ∈ ID, ι′′, ι′′′ ∈ {[,]},
and with

Sιι′
j+1(Δ

μ
D,i) =

⎧

⎨

⎩

Sιι′
j+1(aD,i) + Sιι′

j (Δμ
D,i) if Δμ

D,i = aD,i + B�
D,i

(
∑

b∈BD,i

Sιι′
j+1(b)) + Sιι′

j (Δμ
D,i) if Δμ

D,i = B�
D,i

(1)

S
][
0 (Δμ

D,i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S
][
0 (aD,i) + S

[]
2k+1(aD,i) ‖ (

∑

b∈BD,i

S
[]
2k+1(b))

⊕

if Δμ
D,i = aD,i + B�

D,i,

(
∑

b∈BD,i

S
][
0 (b)) + (

∑

b∈BD,i

S
[]
2k+1(b)) ‖ (

∑

b∈BD,i

S
[]
2k+1(b))

⊕

if Δμ
D,i = B�

D,i

(2)

S
][
0 (x) = (μ−1(x) ∩ A)

∑

y+z=x

S
[]
2k+1(y) ‖ S

[]
2k+1(z) (3)

S
[[
0 (x) = S

]]
0 (x) = S

[]
0 (x) = S

[[
0 (Δμ

D,i) = S
]]
0 (Δμ

D,i) = S
[]
0 (Δμ

D,i) = ∅ (4)

Note that the choices for y, z in (3) are finite since we are in N
k∗. This gives

a finite system of equations, where recursion occurs only in parallel parts, and
whose solution is rational with the help of Lemma 2. As μ−1(n) = S

[]
2k+1(n) then

μ−1(n) is rational for all n ∈ N
k∗.

24 N. Bedon

Immediately, μ−1(Δμ
D) and ϕ−1

∼A(ΔSP �+(A)/∼A
D) are rational sets of SP �+(A)

for all D ∈ P(Q2 × P+(Q)). Note that all the constructions are effective.

References

1. Almeida, J.: Finite Semigroups and Universal Algebra. Series in Algebra, vol. 3.
World Scientific, Singapore (1994)

2. Bedon, N.: Logic and bounded-width rational languages of posets over countable
scattered linear orderings. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS,
vol. 5407, pp. 61–75. Springer, Heidelberg (2008)

3. Bedon, N.: Logic and branching automata. Log. Meth. Comput. Sci. 11(4:2), 1–38
(2015)

4. Bedon, N., Rispal, C.: Series-parallel languages on scattered and countable posets.
Theor. Comput. Sci. 412(22), 2356–2369 (2011)

5. Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. Syst. Sci. 73(1),
1–24 (2007)

6. Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In:
Proceedings of International Congress on Logic, Methodology and Philosophy of
Science, Berkeley 1960 (1962)

7. Büchi, J.R.: Transfinite automata recursions and weak second order theory of ordi-
nals. In: Proceedings of International Congress on Logic, Methodology, and Phi-
losophy of Science 1964 (1965)

8. Carton, O., Rispal, C.: Complementation of rational sets on countable scattered
linear orderings. Int. J. Found. Comput. Sci. 16(4), 767 (2005)

9. Colcombet, T.: Factorisation forests for infinite words and applications to countable
scattered linear orderings. Theor. Comput. Sci. 411, 751–764 (2010)

10. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J.
Algebra 13(2), 173–191 (1969)

11. Kuske, D.: Infinite series-parallel posets: logic and languages. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 648–662. Springer,
Heidelberg (2000)

12. Kuske, D.: Towards a language theory for infinite N-free pomsets. Theor. Comput.
Sci. 299, 347–386 (2003)

13. Lodaya, K., Weil, P.: A Kleene iteration for parallelism. In: Arvind, V., Sarukkai, S.
(eds.) FST TCS 1998. LNCS, vol. 1530, pp. 355–367. Springer, Heidelberg (1998)

14. Lodaya, K., Weil, P.: Series-parallel posets: algebra, automata and languages.
In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–565.
Springer, Heidelberg (1998)

15. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theor. Comput. Sci. 237(1–2), 347–380 (2000)

16. Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Inform. Com-
put. 171, 269–293 (2001)

17. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of Fourth
Annual Symposium on Switching circuit theory and logical design. IEEE (1963)

18. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

19. Rival, I.: Optimal linear extension by interchanging chains. Proc. AMS 89(3), 387–
394 (1983)

20. Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1982)

Complementation of Branching Automata 25

21. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

22. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.
SIAM J. Comput. 11, 298–313 (1982)

23. Wilke, T.: An algebraic theory for regular languages of finite and infinite words.
Int. J. Algebra Comput. 3(4), 44–489 (1993)

Cayley Automatic Groups and Numerical
Characteristics of Turing Transducers

Dmitry Berdinsky(B)

Department of Computer Science, The University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand

berdinsky@gmail.com

Abstract. This paper is devoted to the problem of finding characteri-
zations for Cayley automatic groups. The concept of Cayley automatic
groups was recently introduced by Kharlampovich, Khoussainov and
Miasnikov. We address this problem by introducing three numerical char-
acteristics of Turing transducers: growth functions, Følner functions and
average length growth functions. These three numerical characteristics
are the analogs of growth functions, Følner functions and drifts of sim-
ple random walks for Cayley graphs of groups. We study these numerical
characteristics for Turing transducers obtained from automatic presen-
tations of labeled directed graphs.

Keywords: Cayley automatic groups · Turing transducers · Growth
function · Følner function · Random walk

1 Introduction

This paper contributes to the field of automatic structures [11–13] with partic-
ular emphasis on Cayley automatic groups [10]. Recall that a finitely generated
group G is called Cayley automatic if for some set of generators S the labeled
directed Cayley graph Γ (G,S) is an automatic structure (or, FA–presentable).
All automatic groups in the sense of Thurston are Cayley automatic. However,
the class of Cayley automatic groups is considerably wider than the class of auto-
matic groups. For example, all finitely generated nilpotent groups of nilpotency
class at most two and all fundamental groups of three–dimensional manifolds
are Cayley automatic [10]. The Baumslag–Solitar groups are Cayley automatic
[1]. Cayley automatic groups retain the key algorithmic properties which hold
for automatic groups: the word problem for Cayley automatic groups is decid-
able in quadratic time, the conjugacy problem for Cayley biautomatic groups
is decidable, and the first order theory for Cayley graphs of Cayley automatic
groups is decidable.

Oliver and Thomas found a characterization of FA–presentable groups by
showing that a finitely generated group is FA–presentable if and only if it is
virtually abelian [16]. Their result is based partly on the celebrated Gromov’s
theorem on groups of polynomial growth. But, the problem of finding charac-
terizations for Cayley automatic groups is more complicated, and it seems to
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 26–37, 2016.
DOI: 10.1007/978-3-662-53132-7 3

Cayley Automatic Groups and Num. Characteristics of Turing Transducers 27

require new approaches. In this paper we address this problem by introducing
some numerical characteristics for Turing transducers of the special class T .

In Sect. 2 we define the class of Turing transducers T . Then we show that
automatic presentations of Cayley graphs of groups can be expressed in terms of
Turing transducers of the class T . This explains why study of admissible asymp-
totic behavior for some numerical characteristics of Turing transducers of the
class T is relevant to the problem of finding characterizations for Cayley auto-
matic groups. In Sect. 3 we introduce three numerical characteristics for Turing
transducers of the class T . In this paper, wreath products of groups are used
as the source of examples of Cayley automatic groups. Therefore, in Sect. 4 we
briefly recall basic definitions for wreath products of groups. In Sect. 5 we dis-
cuss asymptotic behavior of the numerical characteristics of Turing transducers
of the class T . Section 6 concludes the paper.

2 Turing Transducers of the Class T and Automatic
Presentations of Labeled Directed Graphs

Recall that a (k + 1)–tape Turing transducer T for k � 1 is a multi–tape Turing
machine which has one input tape and k output tapes. See, e.g., [14, Sect. 10] for
the definition of Turing transducers. The special class of Turing transducers T
that we consider in this paper is described as follows. Let us be given a (k + 1)–
tape Turing transducer T ∈ T and an input word x ∈ Σ∗. Initially, the input
word x appears on the input tape, the output tapes are completely blank and all
heads are over the leftmost cells. First the heads of T move synchronously from
the left to the right until the end of the input x. Then the heads make a finite
number of steps (probably no steps) further to the right, where this number of
steps is bounded from above by some constant which depends on T . After that,
the heads of T move synchronously from the right to the left until it enters a
final state with all heads over the leftmost cells.

We say that T accepts x if T enters an accepting state; otherwise, T rejects x.
Let L ⊆ Σ∗ be the set of inputs accepted by T . We say that T translates x ∈ L
into the outputs y1, . . . , yk if for the word x fed to T as an input, T returns the
word yi on the ith output tape of T for every i = 1, . . . , k. It is assumed that for
every input x ∈ L, the output yi ∈ L for every i = 1, . . . , k. Let L′ ⊆ Lk be the
set of all k–tuples of outputs (y1, . . . , yk). We say that T translates L into L′.

For a given finite alphabet Σ put Σ� = Σ ∪ {�}, where � /∈ Σ. The con-
volution of n words w1, . . . , wn ∈ Σ∗ is the string w1 ⊗ · · · ⊗ wn of length
max{|w1|, . . . , |wn|} over the alphabet Σn

� defined as follows. The kth symbol of
the string is (σ1, . . . , σn), where σi, i = 1, . . . , n is the kth symbol of wi if k � |wi|
and � otherwise. The convolution ⊗R of a n–ary relation R ⊆ Σ∗n is defined as
⊗R = {w1⊗· · ·⊗wn|(w1, . . . , wn) ∈ R}. Recall that a n–tape synchronous finite
automaton is a finite automaton over the alphabet Σn

� \{(�, . . . , �)}. Let T ∈ T .
Lemma 1 below shows connection between Turing transducers of the class T and
multi–tape synchronous finite automata.

28 D. Berdinsky

Lemma 1. There exists a (k + 1)–tape synchronous finite automaton M such
that a convolution x ⊗ y1 ⊗ · · · ⊗ yk ∈ Σ

(k+1)∗
� is accepted by M iff T translates

the input x into the outputs y1, . . . , yk. In particular, the language L is regular.

Proof. The lemma can be obtained straightforwardly from the following two well
known facts. The first fact is that the class of regular languages is closed under
reverse. The second fact is as follows. Let the convolutions ⊗R1 and ⊗R2 of two
relations R1 = {(x, y)|x, y ∈ Σ∗} and R2 = {(y, z)|y, z ∈ Σ∗} be accepted by
two–tape synchronous finite automata. Then the convolution ⊗R of the relation
R = {(x, z)|∃y[(x, y) ∈ R1 ∧ (y, z) ∈ R2]} is accepted by a two–tape synchronous
finite automaton. 	

In other words, one can say that multi–tape synchronous finite automata simu-
late Turing transducers of the class T . In different context, the notion of simu-
lation for finite automata appeared, e.g., in [3,4].

For a given k, put Σk = {1, . . . , k}. Let T ∈ T be a (k + 1)–tape Turing
transducer translating a language L into L′ ⊆ Lk. We construct the labeled
directed graph ΓT with the labels from Σk as follows. The set of vertices V (ΓT)
is identified with L. For given u, v ∈ L there is an oriented edge (u, v) labeled
by j ∈ Σk if T translates u into some outputs w1, . . . , wk such that wj = v. It
is easy to see that each vertex of the graph ΓT has k outgoing edges labeled by
1, . . . , k.

Let Γ be a labeled directed graph for which every vertex has k outgoing edges
labeled by 1, . . . , k. Recall that Γ is called automatic if there exists a bijection
between a regular language and the set of vertices V (Γ) such that for every
j ∈ Σk the set of oriented edges labeled by j is accepted by a synchronous two–
tape finite automaton. From Lemma 1 we obtain that ΓT is automatic. Suppose
that Γ is automatic. Lemma 2 below shows that Γ can be obtained as ΓT for
some (k + 1)–tape Turing transducer T ∈ T .

Lemma 2. There exists a (k + 1)–tape Turing transducer T ∈ T for which
ΓT

∼= Γ .

Proof. The lemma can be obtained from the following fact. Let R = {(x, y)|x, y ∈
L} be a binary relation such that ⊗R is recognized by a two–tape synchronous
finite automaton, where L is a regular language. Suppose that for every x ∈ L
there exists exactly one y ∈ L such that (x, y) ∈ R. Then there exists a two–tape
Turing transducer TR ∈ T for which TR translates x into y iff (x, y) ∈ R and TR

rejects x iff x /∈ L. The construction of the Turing transducer TR can be found,
e.g., in [6, Theorem 2.3.10]. The resulting (k +1)–tape Turing transducer T ∈ T
is obtained as the combination of k two–tape Turing transducers TR1 , . . . , TRk

,
where R1, . . . , Rk are the binary relations defined by the directed edges of Γ
labeled by 1, . . . , k, respectively. 	

Lemmas 1 and 2 together imply the following theorem.

Theorem 3. The labeled directed graph Γ is automatic iff there exists a Turing
transducer T ∈ T for which Γ ∼= ΓT . 	

Cayley Automatic Groups and Num. Characteristics of Turing Transducers 29

Let Γ (G,S) be a Cayley graph for some set of generators S = {s1, . . . , sk}. Let us
fix an order of elements in S as s1, . . . , sk. We say that the Cayley graph Γ (G,S)
is presented by T ∈ T if, after changing labels from j to sj for every j ∈ Σk

in ΓT , ΓT
∼= Γ (G,S). The isomorphism ΓT

∼= Γ (G,S) defines the bijection
ψ : L → G up to the choice of the word of L corresponding to the identity
e ∈ G. By Theorem 3 we obtain that if Γ (G,S) is presented by T ∈ T , then
G is a Cayley automatic group and T provides an automatic presentation for
the Cayley graph Γ (G,S). Moreover, for each automatic presentation of Γ (G,S)
there is a corresponding Turing transducer T ∈ T for which Γ (G,S) is presented
by T .

3 Numerical Characteristics of Turing Transducers

We now introduce three numerical characteristics for Turing transducers of the
class T . Let T ∈ T be a (k + 1)–tape Turing transducer translating a language
L into L′ ⊆ Lk. Given a word w ∈ L, feed w to T . Let w1, . . . , wk ∈ L be the
outputs of T for w. We denote by T (w) the set T (w) = {w1, . . . , wk}. Given a
set W ⊆ L, we denote by T (W) the set T (W) =

⋃

w∈W

T (w). Let us choose a

word w0 ∈ L. Put W0 = {w0}, W1 = T (W0) and, for i > 1, put Wi+1 = T (Wi).

Let Vn =
n
⋃

i=0

Wi, n � 0. Put bn = #Vn.

– We call the sequence bn, n = 0, . . . ,∞ the growth function of the pair (T,w0).

For a given finite set W ⊆ L put

∂W = {w ∈ W |T (w) �⊆ W}.

In other words, ∂W is the set of words w ∈ W for which at least one of the
outputs of T for w is not in W . Define the function Føl(ε) : (0, 1) → N as

Føl(ε) = min{#W |#∂W < ε#W}.

It is assumed that the function Føl(ε) is defined on the whole interval (0, 1), i.e.,
for every ε ∈ (0, 1) the set {W |#∂W < ε#W} is not empty.

– We call the sequence fn = Føl(1
n), n = 1, . . . ,∞ the Følner function of T .

Let M be a finite multiset consisting of some words of L. We denote by
T (M) the multiset obtained as follows. Initially, T (M) is empty. Then, for every
word w in M add the outputs of T for w to T (M). If w has the multiplicity m
in M , then this procedure must be repeated m times. Let M0 be the multiset
consisting of the word w0 with the multiplicity one. Put M1 = T (M0) and, for
i > 1, put Mi+1 = T (Mi). The total number of elements (multiplicities are taken
into account) in the multiset Mn is kn. Put �n to be

�n =

∑

w∈Mn

mw|w|

kn
, (1)

30 D. Berdinsky

where mw is the multiplicity of a word w in Mn and |w| is the length of w. In
other words, �n is the average length of the words in the multiset Mn.

– We call the sequence �n, n = 1, . . . ,∞ the average length growth function of
the pair (T,w0).

4 Wreath Products of Groups: Basic Notation

Most of the labeled directed graphs in this paper are obtained as Cayley graphs
of wreath products of groups. For the sake of convenience we describe basic
notation for restricted wreath products A � B in the present section. For more
details on wreath products see, e.g., [9]. For given two groups A and B, we denote
by A(B) the set of all functions f : B → A having finite supports. Recall that
a function f : B → A has finite support if the set {x ∈ B|f(x) �= e} is finite,
where e is the identity of A. Given f ∈ A(B) and b ∈ B, we define f b ∈ A(B)

as follows. Put f b(x) = f(bx) for all x ∈ B. The group A � B is the set product
A(B) × B with the group multiplication given by (f, b) · (f ′, b′) = (ff ′ b−1

, bb′).
We denote by iA the embedding iA : A → A � B for which iA : a �→ (fa, e),

where e is the identity of the group B and fa ∈ A(B) is the function fa : B → A
such that fa(e) = a and fa(x) is the identity of the group A for every x �= e. We
denote by iB the embedding iB : B → A � B for which iB : b �→ (e, b), where e
is the identity of the group A(B); in other words, e is the function which maps
all elements of B to the identity of the group A. For the sake of convenience
we will identify A and B with the subgroups iA(A) � A � B and iB(B) �
A � B, respectively. Let SA = {a1, . . . , an} ⊆ A and SB = {b1, . . . , bm} ⊆ B
be some sets of generators of the groups A and B, respectively. Then the set
S = iA(SA)∪ iB(SB) is a set of generators of A �B. The Cayley graph Γ (A �B,S)
can be obtained as follows. The vertices of Γ (A �B,S) are the elements of A �B,
i.e., all pairs (f, b) such that f ∈ A(B) and b ∈ B. The right multiplication
of an element (f, b) by ai, i = 1, . . . , n is (f, b)ai = (̂f, b), where ̂f(s) = f(s)
if s �= b and ̂f(b) = f(b)ai. The right multiplication of an element (f, b) by
bj , j = 1, . . . ,m is (f, b)bj = (f, bbj).

5 Asymptotic Behavior of the Numerical Characteristics

In this section we discuss asymptotic behavior of the numerical characteristics
of Turing transducers of the class T .

5.1 Growth Functions and Følner Functions

We first consider the behavior of growth function bn, n = 0, . . . ,∞ for Turing
transducers of the class T .

Let G be a group with a finite set of generators Q ⊆ G. Put S = Q ∪ Q−1.
Recall that the growth function of the pair (G,Q) is the function #Bn, n =
0, . . . ,∞, where #Bn is the number of elements in the ball Bn = {g ∈ G|�S(g) �
n}. Let T ∈ T be a Turing transducer translating a language L into L′ ⊆ Lk,
where k = #S. Choose any word w0 ∈ L. The following claim is straightforward.

Cayley Automatic Groups and Num. Characteristics of Turing Transducers 31

Claim. Suppose that the Cayley graph Γ (G,S) is presented by T . Then the
growth function bn of the pair (T,w0) coincides with the growth function of the
pair (G,Q). 	

One of the important questions in the group theory is whether or not for a given
pair (G,Q) the growth series is rational. A similar question naturally arises for
a pair (T,w0). It is easy to show an example of a pair (T,w0), T ∈ T for which
the growth series is not rational.

Example 4. Stoll proved that the growth series of the Heisenberg group H5 with
respect to the standard set of generators is not rational [18]. The Cayley graph
of H5 is automatic [10, Example 6.7]. Therefore, we obtain that there exists a
pair (T,w0), T ∈ T for which the growth series

∑

bnzn is not rational. 	

Moreover, a Turing transducer of the class T may have a function bn, n =
0, . . . ,∞ of intermediate growth.

Example 5. Miasnikov and Savchuk constructed an example of a 4–regular auto-
matic graph which has intermediate growth [15]. Therefore, we obtain that there
exists a pair (T,w0), T ∈ T for which the function bn, n = 0, . . . ,∞ has inter-
mediate growth. 	

We now consider the behavior of Følner function fn, n = 1, . . . ,∞ for Turing
transducers of the class T . Følner functions were first considered by A. Vershik
for Cayley graphs of amenable groups [19]. Recall first some necessary definitions
regarding Følner functions [7].

Let G be an amenable group with a finite set of generators Q ⊆ G. Put
S = Q ∪ Q−1. Let E be the set of directed edges of Γ (G,S). For a given finite
set U ⊆ G the boundary ∂U is defined as

∂U = {u ∈ U |∃v ∈ G[(u, v) ∈ E ∧ v /∈ U]}.

The function FølG,Q : (0, 1) → N is defined as

FølG,Q(ε) = min{#U |#∂U < ε#U}.

The Følner function FølG,Q : N → N is defined as FølG,Q(n) = FølG,Q(1
n). The

following claim is straightforward.

Claim. Suppose that the Cayley graph Γ (G,S) is presented by a Turing trans-
ducer T ∈ T . Then for the Følner function fn of T , fn = FølG,Q(n). 	

In this subsection we say that f1(n) ∼ f2(n) if there exists K ∈ N such
that f1(Kn) � 1

K f2(n) and f2(Kn) � 1
K f1(n), i.e., f1(n) and f2(n) are equiv-

alent up to a quasi–isometry. Let Q′ ⊆ G be another set generating G. Then
FølG,Q(n) ∼ FølG,Q′(n). In this subsection Følner functions are considered up to
quasi–isometries. So, instead of FølG,Q(n), we will write FølG(n).

Let G1 = Z � Z. Put Gi+1 = Gi � Z, i � 1. It is shown [7, Example 3] that
FølGi

(n) ∼ n(ni). It follows from [2, Theorem 3] that for every integer i � 1 there
exists a Turing transducer Ti ∈ T for which a Cayley graph of Gi is presented
by Ti. The following theorem shows that the logarithm of Følner functions for
Turing transducers of the class T can grow faster than any given polynomial.

32 D. Berdinsky

Theorem 6. For every integer i � 1 there exists a Turing transducer of the
class T for which fn ∼ n(ni). 	

Remark 7. Consider the group Z � (Z � Z). It is shown [7, Example 4] that
FølZ�(Z�Z)(n) ∼ n(nn). In particular, FølZ�(Z�Z)(n) grows faster than FølGi

(n)
for every i � 1. However, it is not known whether or not there exists a Turing
transducer T ∈ T for which a Cayley graph of Z � (Z � Z) is presented by T . 	

5.2 Random Walk and Average Length Growth Functions

Recall first some necessary definitions [20]. Let G be an infinite group with a set
of generators Q = {s1, . . . , sm} ⊆ G.

Put S = Q ∪ Q−1 = {s1, . . . , sm, s−1
1 , . . . , s−1

m }. For a given g ∈ G we denote
by �S(g) the minimal length of a word representing g in terms of S. We denote
by Bn the ball of the radius n, Bn = {g ∈ G|�S(g) � n}. Let μ be a symmetric
measure defined on S, i.e., μ(s) = μ(s−1) for all s ∈ S. The convolution μ∗n(g)
on Bn is defined as

μ∗n(g) =
∑

g=g1...gn

∏

i=1,...,n

μ(gi),

where gi ∈ S, i = 1, . . . , n.
Let cn(g) be the number of words of length n over the alphabet S representing

the element g ∈ G. If μ is the uniform measure on S, then μ∗n(g) = cn(g)
(2m)n .

Therefore, μ∗n(g) is the probability that a n–step simple symmetric random walk
on the Cayley graph Γ (G,S), which starts at the identity e ∈ G, ends up at the
vertex g ∈ G. In this paper we consider only uniform measures μ. We denote
by Eμ∗n [�S] the average value of the functional �S on the ball Bn with respect
to the measure μ∗n. For some Cayley graphs of wreath products of groups we
will show asymptotic behavior of Eμ∗n [�S] of the form Eμ∗n [�S] � f(n), where
g(n) � f(n) means that δ1f(n) � g(n) � δ2f(n) for some constants δ2 � δ1 > 0.

Let T ∈ T be a Turing transducer translating a language L into L′. Suppose
that the Cayley graph Γ (G,S) is presented by T . Let us choose any word w0 ∈ L.
The Turing transducer T provides the bijection ψ : L → G such that ψ−1(e) =
w0. Therefore, we can consider the average of the functional |w| on the ball Bn

with respect to the measure μ∗n, where |w| is the length of a word w ∈ L. The
following claim is straightforward.

Claim. For a n–step symmetric simple random walk on the Cayley graph
Γ (G,S), Eμ∗n [|w|] = �n, where �n is the nth element of the average length
growth function of the pair (T,w0). 	

The following proposition relates �n and Eμ∗n [�S].

Proposition 8. There exist constants C1 and C2 such that �n � C1Eμ∗n [�S] +
C2 for all n.

Proof. Recall that, by definition, there exists a constant c such that for every
input x ∈ L and an output yj ∈ L, j = 1, . . . , 2m, |yj | � |x| + c. Put C1 = c and
C2 = |w0|. Therefore, we obtain that the inequality �n � C1Eμ∗n [�S] + C2 holds
for all n. 	

Cayley Automatic Groups and Num. Characteristics of Turing Transducers 33

It is easy to give examples of Turing transducers of the class T for which �n � √
n

and the growth function bn is polynomial using a unary–like representation of
integers. See Example 9 below.

Example 9. Let Q = {s1, . . . , sm} be the standard set of generators of the group
Z

m, where si = (δ1i , . . . , δm
i) and δj

i = 1 if i = j, δj
i = 0 if i �= j. Put S =

Q ∪ Q−1. It can be seen that there exists a (2m + 1)–tape Turing transducer
T ∈ T translating a language L into a language L′ ⊆ L2m for which Γ (Zm, S) is
presented by T . It is easy to see that a language L and an isomorphism between
ΓT and Γ (Zm, S) can be chosen in a way that �S(g) = |w|, where g ∈ Z

m and
w ∈ L is the word corresponding to g. In particular, put the empty word ε to be
the representative of the identity (0, . . . , 0) ∈ Z

m. Therefore, for such a Turing
transducer T , �n = Eμ∗n [�S]. For a symmetric simple random walk on the m–
dimensional grid, Eμ∗n [�S] � √

n. For the proof see, e.g., [17]. So, for the pair
(T, ε), �n � √

n. The growth function bn of (T, ε) is polynomial. Thus, we obtain
(2m+1)–tape Turing transducers Tm,m = 1, . . . ,∞ for which �n � √

n and the
growth function bn is polynomial. 	

A more complicated technique is required in order to show an example of a
Turing transducer of the class T for which �n � √

n and the growth function bn

is exponential. We will construct such a Turing transducer in Lemma11.
Let H be a group with a set of generators SH = {t1, . . . , tk}. Consider the

group Z2 �H. Let h ∈ Z
(H)
2 be the function h : H → Z2 such that h(g) = e if g �= e

and h(e) = a, where a is the nontrivial element of Z2. Let Q = {t, th, ht, hth|t ∈
SH} be the set of generators of the group Z2 � H. Put S = Q ∪ Q−1. Consider a
symmetric simple random walk on the Cayley graph Γ (Z2 � H,S). It is easy to
see that a n–step random walk on Γ (Z2 � H,S) corresponds to a n–step random
walk on H. Put P = SH ∪S−1

H . Let Rn be the number of different vertices visited
after walking n steps on Γ (H,P). We call Rn the range of a n–step random walk
on Γ (H,P). In the following proposition the asymptotic behavior of Eμ∗n [�S] is
expressed in terms of Eμ∗n [Rn] – the average range for a n–step random walk
on Γ (H,P).

Proposition 10. Let H and S be as above. For a symmetric simple random
walk on Γ (Z2 � H,S), Eμ∗n [�S] � Eμ∗n [Rn].

Proof. For the proof see [5, Lemma 2]. 	

Lemma 11. There exists a set of generators S1 of the lamplighter group Z2 � Z
for which the following statements hold.

(a) For a simple symmetric random walk on Γ (Z2 � Z, S1), Eμ∗n [�S1] � √
n.

(b) There exists a Turing transducer T1 ∈ T such that Γ (Z2 �Z, S1) is presented
by T1 and �n � √

n.

Proof. Let us consider the lamplighter group Z2 � Z. Let t be a generator of the
subgroup Z � Z2 � Z and h ∈ Z

(Z)
2 � Z2 � Z be the function h : Z → Z2 such

that h(z) = e if z �= 0 and h(0) = a. Let Q1 = {t, th, ht, hth} be the set of

34 D. Berdinsky

generators of Z2 � Z and S1 = Q1 ∪ Q−1
1 . For a simple symmetric random walk

on Γ (Z, {t, t−1}), Eμ∗n [Rn] ∼ √
n, where ∼ here means asymptotic equivalence.

For the proof see, e.g., [17]. Therefore, from Proposition 10 we obtain that for a
simple symmetric random walk on Γ (Z2 � Z, S1), Eμ∗n [�S1] � √

n.
Let Q′

1 = {t, h} be a set of generators of Z2 � Z. Put S′
1 = Q′

1 ∪ Q′−1
1 =

{t, t−1, h}. In [2, Theorem 2] we constructed an automatic presentation of the
Cayley graph Γ (Z2 �Z, S′

1), the bijection ψ1 : L1 → Z2 �Z, for which the inequal-
ities 1

3�S′
1
(g) + 2

3 � |w| � �S′
1
(g) + 1 hold for all g ∈ Z2 � Z, where L1 is a

regular language, w = ψ−1
1 (g) ∈ L1 is the word corresponding to g and |w| is

the length of w. It is easy to see that 1
2�S1(g) � �S′

1
(g) � 3�S1(g). Therefore, we

obtain that 1
6�S1(g) + 2

3 � |w| � 3�S1(g) + 1 for all g ∈ Z2 � Z. This implies that
1
6Eμ∗n [�S1]+

2
3 � Eμ∗n [|w|] � 3Eμ∗n [�S1]+1. The bijection ψ1 : L1 → Z2 �Z pro-

vides an automatic presentation for the Cayley graph Γ (Z2 �Z, S1). By Lemma 2,
we obtain that there exists a 9–tape Turing transducer T1 ∈ T translating the
language L1 into some language L′

1 ⊆ L8
1 for which Γ (Z2 �Z, S1) is presented by

T1. Therefore, we obtain that for T1, �n � √
n. Since the growth function of the

group Z2 � Z is exponentinal, the growth function bn of T1 is exponential. 	

It is easy to give examples of Turing transducers of the class T for which �n � n
and the growth function bn is exponential. See Example 12 below.

Example 12. Let Fm be the free group over m generators s1, . . . , sm. Put Q =
{s1, . . . , sm} and S = Q ∪ Q−1. There exists a natural automatic presentation
of the Cayley graph Γ (Fm, S), the bijection ψ : L → Fm, for which L is the
language of all reduced words over the alphabet S. In particular, the empty
word ε represents the identity e ∈ Fm. The bijection ψ maps a word w ∈ L
into the corresponding group element of Fm. It is clear that �S(g) = |w|, where
w = ψ−1(g). For a symmetric simple random walk on Γ (Fm, S), Eμ∗n [�S] �
n. Therefore, Eμ∗n [|w|] � n. Therefore, for each m > 1 we obtain the pair
(T, ε), T ∈ T for which �n � n. Since the growth function of the free group Fm

is exponential, the growth function bn of the pair (T, ε) is exponential. 	

Is there a Turing transducer of the class T for which �n grows between

√
n and

n? We will answer on this question positively in Theorem 14 which follows from
Proposition 13 below.

Let G be a group with a set of generators SG = {g1, . . . , gm}. Put P = SG ∪
S−1

G . Assume that for a symmetric simple random walk on Γ (G,P), �n(μ) � nα

for some 0 < α � 1. Consider the wreath product G � Z. Let t be a generator of
the subgroup Z � G � Z. Let hi ∈ G(Z) � G � Z, i = 1, . . . ,m be the functions
hi : Z → G such that hi(z) = e if z �= 0 and hi(0) = gi. Put Q = {hp

i th
q
j | i, j =

1, . . . ,m; p, q = −1, 0, 1} to be the set of generators of the group G � Z and
S = Q ∪ Q−1. Consider a n–step random walk on Γ (G � Z, S). The following
proposition shows asymptotic behavior of Eμ∗n [�S].

Proposition 13. Let G, S and α be as above. For a symmetric simple random
walk on Γ (G � Z, S), Eμ∗n [�S] � n

1+α
2 .

Proof. For the proof see [8, Lemma 3]. 	

Cayley Automatic Groups and Num. Characteristics of Turing Transducers 35

Theorem 14. For every α < 1 there exists a Turing transducer T ∈ T for
which �n � nβ for some β such that α < β < 1 and the growth function bn is
exponential.

Proof. Let us consider the sequence of wreath products Gm,m = 1, . . . ,∞ such
that G1 = Z2 � Z and Gm+1 = Gm � Z, m � 1. From Lemma 11(a) and Propo-
sition 13 we obtain that for every m > 1 there exists a proper set of generators
Qm ⊆ Gm such that for a symmetric simple random walk on the Cayley graph
Γ (Gm, Sm), Eμ∗n [�Sm

] � n1− 1
2m , where Sm = Qm ∪ Q−1

m . It follows from [2,
Theorem 3] that for every m > 1 there is an automatic presentation of the Cay-
ley graph Γ (Gm, S′

m), the bijection ψm : Lm → Gm, for which the inequalities
δ′
1�S′

m
(g) + λ′

1 � |w| � δ′
2�S′

m
(g) + λ′

2 hold for all g ∈ Gm for some constants
δ′
2 > δ′

1 > 0, λ′
1, λ

′
2, where Lm is a regular language and S′

m = Q′
m ∪ Q′

m
−1

for some proper set of generators Q′
m ⊆ Gm, and w = ψ−1

m (g) is the word rep-
resenting g. Therefore, the inequalities δ1�Sm

(g) + λ1 � |w| � δ2�Sm
(g) + λ2

hold for all g ∈ Gm for some constants δ2 > δ1 > 0, λ1, λ2. This implies that
δ1Eμ∗n [�Sm

]+λ1 � Eμ∗n [|w|] � δ2Eμ∗n [�Sm
]+λ2. Therefore, Eμ∗n [|w|] � n1− 1

2m .
For every m > 1 the bijection ψm : Lm → Gm provides an automatic pre-

sentation of the Cayley graph Γ (Gm, Sm). It follows from Lemma 2 that there
is a (km + 1)–tape Turing transducer Tm ∈ T translating the language Lm into
L′

m ⊆ Lkm
m for which, after proper relabeling, ΓTm

∼= Γ (Gm, Sm). The numbers
km,m = 1, . . . ,∞ can be obtained recurrently as follows. It is easy to see that
km+1 = 2(km+1)2 for m � 1 and k1 = 8, which is simply the number of elements
in S1 (see Lemma 11). So, we obtain that for Tm,m > 1, �n � n1− 1

2m . For every
m > 1, since the growth function of the group Gm is exponential, the growth
function bn of Tm is exponential. 	

6 Discussion

In this paper we addressed the problem of finding characterizations of Cayley
automatic groups. Our approach was to define and then study three numerical
characteristics of Turing transducers of the special class T . This class of Tur-
ing transducers was obtained from automatic presentations of labeled directed
graphs. The numerical characteristics that we defined are the analogs of growth
functions, Følner functions and drifts of simple random walks for Cayley graphs
of groups. We hope that further study of asymptotic behavior of these three
numerical characteristics of Turing transducers of the class T will yield some
characterizations for Cayley automatic groups.

Two open questions are apparent from the results of Sect. 5.

– Theorem 6 shows that for every integer i � 1 there exists a Turing transducer
of the class T for which fn ∼ n(ni). Is there a Turing transducer T ∈ T for
which the Følner function grows faster than n(ni) for all i � 1?

36 D. Berdinsky

– Theorem 14 tells us that for every α < 1 there exists a Turing transducer
T ∈ T for which �n � nβ for some β such that α < β < 1. Is there a Turing
transducer T ∈ T for which �n grows faster than nα for every α < 1 but slower
than n?

Acknowledgments. The author thanks Bakhadyr Khoussainov and the anonymous
reviewers for useful suggestions. The author thanks Sunny Daniels for proofreading a
draft of this paper and making several changes to it.

References

1. Berdinsky, D., Khoussainov, B.: On automatic transitive graphs. In: Shur, A.M.,
Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 1–12. Springer, Heidelberg
(2014)

2. Berdinsky, D., Khoussainov, B.: Cayley automatic representations of wreath prod-
ucts. Int. J. Found. Comput. Sci. 27(2), 147–159 (2016)

3. Calude, C., Calude, E., Khoussainov, B.: Deterministic automata simulation, uni-
versality and minimality. Ann. Pure Appl. Logic 90(1), 263–276 (1997)

4. Calude, C.S., Calude, E., Khoussainov, B.: Finite nondeterministic automata: sim-
ulation and minimality. Theor. Comput. Sci. 242(1), 219–235 (2000)

5. Dyubina, A.: An example of the rate of growth for a random walk on a group.
Russ. Math. Surv. 54(5), 1023–1024 (1999)

6. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S.,
Thurston, W.P.: Word Processing in Groups. Jones and Barlett Publishers, Boston
(1992)

7. Erschler, A.: On isoperimetric profiles of finitely generated groups. Geom. Dedicata
100(1), 157–171 (2003)

8. Erschler, A.: On the asymptotics of drift. J. Math. Sci. 121(3), 2437–2440 (2004)
9. Kargapolov, M.I., Merzljakov, J.I.: Fundamentals of the Theory of Groups.

Springer, New York (1979)
10. Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures

to automatic groups. Groups Geom. Dyn. 8(1), 157–198 (2014)
11. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Proceed-

ings of Logic Colloquium, pp. 132–176 (2007)
12. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D.

(ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Berlin Heidelberg (1995)
13. Khoussainov, B., Nerode, A.: Open questions in the theory of automatic structures.

Bull. EATCS 94, 181–204 (2008)
14. Meduna, A.: Automata and Languages: Theory and Applications. Springer,

London (2000)
15. Miasnikov, A., Savchuk, D.: An example of an automatic graph of intermediate

growth. Ann. Pure Appl. Logic 166(10), 1037–1048 (2015)
16. Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups.

In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704.
Springer, Heidelberg (2005)

17. Spitzer, F.: Principles of Random Walk. Van Nostrand, Princeton (1964)
18. Stoll, M.: Rational and transcendental growth series for the higher Heisenberg

groups. Invent. Math. 126, 85–109 (1996)

Cayley Automatic Groups and Num. Characteristics of Turing Transducers 37

19. Vershik, A.: Countable groups that are close to finite ones. In: Greenleaf, F.P.
(ed.) Invariant Means on Topological Groups and their Applications. Mir, Moscow
(1973). (Appendix, in Russian). A revised English translation: Amenability and
approximation of infinite groups. Selecta Math. 2(4), 311–330 (1982)

20. Vershik, A.: Numerical characteristics of groups and corresponding relations. J.
Math. Sci. 107(5), 4147–4156 (2001)

A Perfect Class of Context-Sensitive
Timed Languages

Devendra Bhave1(B), Vrunda Dave1, S.N. Krishna1, Ramchandra Phawade1,
and Ashutosh Trivedi1,2

1 IIT Bombay, Mumbai, India
devendra@cse.iitb.ac.in

2 CU Boulder, Boulder, USA

Abstract. Perfect languages—a term coined by Esparza, Ganty, and
Majumdar—are the classes of languages that are closed under Boolean
operations and enjoy decidable emptiness problem. Perfect languages
form the basis for decidable automata-theoretic model-checking for the
respective class of models. Regular languages and visibly pushdown lan-
guages are paradigmatic examples of perfect languages. Alur and Dill ini-
tiated the language-theoretic study of timed languages and introduced
timed automata capturing a timed analog of regular languages. How-
ever, unlike their untimed counterparts, timed regular languages are not
perfect. Alur, Fix, and Henzinger later discovered a perfect subclass of
timed languages recognized by event-clock automata. Since then, a num-
ber of perfect subclasses of timed context-free languages, such as event-
clock visibly pushdown languages, have been proposed. There exist exam-
ples of perfect languages even beyond context-free languages:—La Torre,
Madhusudan, and Parlato characterized first perfect class of context-
sensitive languages via multistack visibly pushdown automata with an
explicit bound on number of stages where in each stage at most one stack
is used. In this paper we extend their work for timed languages by char-
acterizing a perfect subclass of timed context-sensitive languages called
dense-time multistack visibly pushdown languages and provide a logical
characterization for this class of timed languages.

Keywords: Perfect languages · Context-sensitive languages · Multi-
stack automata · Timed languages

1 Introduction

A class C of languages is called perfect [10] if it is closed under Boolean opera-
tions and permits algorithmic emptiness-checking. Perfect languages are the key
ingredient for the Vardi-Wolper recipe for automata-theoretic model-checking:—
given a system specification S and a system implementation M as languages in C,
the model-checking involves deciding the emptiness of the language M∩¬S ∈C.
The class of (ω-)regular languages is a well-known class of perfect languages,

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 38–50, 2016.
DOI: 10.1007/978-3-662-53132-7 4

A Perfect Class of Timed Context-Sensitive Languages 39

while other classes of languages such as context-free languages (CFLs) or context-
sensitive languages (CSLs) are, in general, not perfect. CFLs are not perfect since
they are not closed under intersection and complementation, although emptiness
is decidable.On the other hand, CSLs are closed under Boolean operations but
emptiness, in general, is undecidable for CSLs [6].

Alur and Madhusudan [4] discovered a perfect subclass of CFLs, called vis-
ibly pushdown languages (VPLs), characterized by visibly pushdown automata
(VPA) that operate over words that dictate the stack operations. This notion
is formalized by giving an explicit partition of the alphabet into three disjoint
sets of call, return, and internal symbols and the VPA must push one symbol
to stack while reading a call symbol, and must pop one symbol (given stack is
non-empty) while reading a return symbol, and must not touch the stack while
reading an internal symbol. This visibility enables closure of these automata
under all of the Boolean operations, while retaining the decidable emptiness
property. Building upon this work, La Torre et al. [11] introduced a perfect class
of CSLs, called multistack visibly pushdown languages (MVPLs), recognized by
VPA with multiple stacks (and call-return symbols for each stack) where the
number of switches between various stacks for popping-purposes is bounded.

Example 1. L = {anbn : n ≥ 0} is a VPL with a as call and b as return symbol for
the unique stack, whereas L′ = {an

1am
2 bn

1 bm
2 : n,m ≥ 0} is a MVPL considering

ai and bi as call and return symbols, respectively, for stack-i where i ∈ {1, 2}.
Finally, L′′ = {anbncn : n ≥ 0} is neither VPL nor MVPL for any partition of
alphabets as call and respectively alphabets of various stacks.

In this paper we introduce a timed extension of this context-sensitive language
and study language-theoretic properties of the class in [14]. We characterize
a perfect subclass of timed context-sensitive languages and provide a logical
characterization for this class of timed languages.

Quest for Perfect Timed Languages. Alur and Dill [2] initiated automata-
theoretic study of timed languages and characterized the class of timed-regular
languages as the languages defined by timed automata. Unlike untimed regular
languages, Alur and Dill showed that timed regular languages are not perfect
as they are not closed under complementation. However, the emptiness of timed
automata is a decidable using a technique known as region-construction. To over-
come the limitation of timed automata for model-checking, Alur et al. introduced
a perfect class of timed languages called the event-clock automata [3] (ECA) that
achieves the closure under Boolean operations by making clock resets visible—
the reset of each clock variable is determined by a fixed class of events and hence
visible just by looking at the input word. The decidability of the emptiness for
ECA follows from the decidability of regular timed languages.

Two of the well-known models for context-free timed languages include
recursive timed automata (RTAs) [15] and dense-time pushdown automata
(dtPDAs) [1]. RTAs generalize recursive state machines with clock variables,
while dtPDAs generalize pushdown automata with clocks and stack with variable
ages. In general, the emptiness problem for the RTA in undecidable, however [15]

40 D. Bhave et al.

characterizes classes of RTA with decidable emptiness problem. However, with-
out any further restrictions, such as event-clock or visible stack, the languages
captured by these classes are not perfect, since they strictly generalize both
timed regular languages and CFLs. Tang and Ogawa in [16] proposed a first per-
fect timed context-free language class characterized by event-clock visibly push-
down automata (ECVPA) that generalized both ECA and VPA. For the proposed
model they showed determinizability as well as closure under Boolean operations,
and proved the decidability of the emptiness problem. However, ECVPAs, unlike
dtPDAs, do not support pushing the clocks on the stack. We proposed [7] a gener-
alization of ECVPA called dense-time visibly pushdown automata (dtVPA), that
are strictly more expressive than ECVPA as they support stack with variable ages
(like dtPDA) and showed that dtVPA characterize a perfect timed context-free
language.

Contributions. We study a class of timed context-sensitive languages called
dense-time multistack visibly pushdown languages (dtMVPLs), characterized
by dense-time visibly pushdown multistack automata (dtMVPA), that generalize
MVPLs with multiple stacks with ages as shown in the following example.

Example 2. Consider the timed language whose untimed component is of the
form {aybzcydz | y, z ≥ 1} with the critical timing restrictions among various
symbols in the following manner. The first c must appear after 1 time-unit of
last a, the first d must appear within 3 time-unit after last b, and finally the
last b must appear within 2 time units of the beginning and last d must appear
precisely at 4 time unit. This language is accepted by a dtMVPA with two stacks
shown in Fig. 1. Let a and c (b and d, resp.) be call and return symbols for the
first (second, resp.) stack. Stack alphabets for first stack is Γ 1 = {α, $} and for
second stack is Γ 2 = {β, $}. In the figure a clock xa measures the time since the
occurrence of last a, while constraints pop(γ) ∈ I checks if the age of the popped
symbol is in a given interval I. The correctness of the model is easy to verify.

l0

start

l1 l2

l3

l4 l5
a, push1($)

a, push1(α)

b, push2($)

b, push2(β)

c, xa ≥ 1, pop1(α)

c, pop1($) ∈[2, 2]

c, pop1(α)∈ [0, 2]
c, pop1($) ∈[2, 2]

d, pop2(β)

d, pop2($) ∈[4, 4]

Fig. 1. Dense-time multistack visibly pushdown automata used in Example 2

In this paper we show dtMVPLs are closed under Boolean operations and
enjoy decidable emptiness problem. Although, the emptiness problem for restric-
tions of context sensitive languages has been studied extensively [5,9,12–14], ours

A Perfect Class of Timed Context-Sensitive Languages 41

is the first attempt to formalize perfect dense-time context-sensitive languages.
We will also give a logical characterization of this class of languages. We believe
that dtMVPLs provide an expressive yet decidable model-checking framework
for concurrent time-critical software systems (See [8] for an example).

The paper is organized as follows. We begin by introducing dense-time visibly
pushdown multistack automata in the next section. In Sect. 3 we show closure
under Boolean operations for this model, followed by logical characterization in
Sect. 4. Details of the proof for decidability of emptiness can be found in [8].

2 Dense-Time Visibly Pushdown Multistack Automata

We assume that the reader is comfortable with standard concepts from automata
theory (such as context-free languages, pushdown automata, MSO logic), con-
cepts from timed automata (such as clocks, event clocks, clock constraints, and
valuations), and visibly pushdown automata. Due to space limitation, we only
give a very brief introduction of required concepts in this section, and for a
detailed background on these concepts we refer the reader to [2–4].

A finite timed word over Σ is a sequence (a1, t1), (a2, t2), . . . , (an, tn) ∈
(Σ×R≥0)∗ such that ti ≤ ti+1 for all 1 ≤ i ≤ n − 1. Alternatively, we can
represent timed words as tuple (〈a1, . . . , an〉, 〈t1, . . . , tn〉). We use both of these
formats depending on technical convenience. We represent the set of finite timed
words over Σ by TΣ∗. Before we introduce our model, we recall the definitions
of event-clock automata and visibly pushdown automata.

2.1 Preliminaries

Event-clock automata (ECA) [3] are a determinizable subclass of timed
automata [2] that for every action a ∈ Σ implicitly associate two clocks xa

and ya, where the “recorder” clock xa records the time of the last occurrence of
action a, and the “predictor” clock ya predicts the time of the next occurrence
of action a. Hence, event-clock automata do not permit explicit reset of clocks
and it is implicitly governed by the input timed word. This property makes ECA
determinizable and closed under all Boolean operations.

Notice that since clock resets are “visible” in input timed word, the clock
valuations after reading a prefix of the word is also determined by the timed
word. For example, for a timed word w = (a1, t1), (a2, t2), . . . , (an, tn), the value
of the event clock xa at position j is tj−ti where i is the largest position preceding
j where an action a occurred. If no a has occurred before the jth position, then
the value of xa is undefined denoted by a special symbol �. Similarly, the value
of ya at position j of w is undefined if symbol a does not occur in w after the
jth position. Otherwise, it is tk − tj where k is the first occurrence of a after j.

We write C for the set of all event clocks and we use R�
>0 for the set R>0∪{�}.

Formally, the clock valuation after reading j-th prefix of the input timed word
w, νw

j : C
→ R
�
>0, is defined in the following way: νw

j (xq) = tj−ti if there exists
an 0 ≤ i < j such that ai = q and ak �= q for all i < k < j, otherwise νw

j (xq) = �

42 D. Bhave et al.

(undefined). Similarly, νw
j (yq) = tm − tj if there is j < m such that am = q and

al �= q for all j < l < m, otherwise νw
j (yq) =�. A clock constraint over C is a

boolean combination of constraints of the form z ∼ c where z ∈ C, c ∈ N and
∼∈ {≤,≥}. Given a clock constraint z ∼ c over C, we write νw

i |= (z ∼ c) to
denote if νw

j (z) ∼ c. For any boolean combination ϕ, νw
i |= ϕ is defined in an

obvious way: if ϕ = ϕ1 ∧ϕ2, then νw
i |=ϕ iff νw

i |=ϕ1 and νw
i |= ϕ2. Likewise, the

other boolean combinations are defined.

Definition 3. An event clock automaton is a tuple A = (L,Σ,L0, F,E) where
L is a set of finite locations, Σ is a finite alphabet, L0 ∈ L is the set of initial
locations, F ∈ L is the set of final locations, and E is a finite set of edges of the
form (
,
′, a, ϕ) where
,
′ are locations, a ∈ Σ, and ϕ is a clock constraint.

The class of languages accepted by event-clock automata are closed under
boolean operations with decidable emptiness property [3].

Visibly pushdown automata [4] are a determinizable subclass of pushdown
automata that operate over words that dictate the stack operations. This notion
is formalized by giving an explicit partition of the alphabet into three disjoint
sets of call, return, and internal symbols and the visibly pushdown automata
must push one symbol to stack while reading a call symbol, and must pop one
symbol (given stack is non-empty) while reading a return symbol, and must not
touch the stack while reading the internal symbol.

Definition 4. A visibly pushdown alphabet is a tuple Σ = 〈Σc, Σr, Σint〉 where
Σ is partitioned into a call alphabet Σc, a return alphabet Σr, and an internal
alphabet Σint. A visibly pushdown automata (VPA) over Σ = 〈Σc, Σr, Σint〉 is a
tuple (L,Σ, Γ, L0, δ, F) where L is a finite set of locations including a set L0 ⊆ L
of initial locations, Γ is a finite stack alphabet with special end-of-stack symbol
⊥, Δ ⊆ (L×Σc×L×(Γ\⊥)) ∪ (L×Σr×Γ×L) ∪ (L×Σint×L) is the transition
relation, and F ⊆ L is final locations.

The class of languages accepted by visibly pushdown automata are closed under
boolean operations with decidable emptiness property [4].

2.2 Dense-Time Visibly Pushdown Multistack Automata (dtMVPA)

We introduce the dense-time visibly pushdown automata as an event-clock
automaton equipped with multiple (say n ≥ 1) timed stacks along with a visibly
pushdown alphabet Σ = 〈Σh

c , Σh
r , Σh

int〉n
h=1 where Σi

x ∩ Σj
x = ∅ for i �= j, and

x ∈ {c, r, int}. Due to space limitation and notational convenience, we assume
that the partitioning function is one-to-one, i.e. each symbol a ∈ Σh has unique
recorder xa and predictor ya clocks assigned to it. Let Γh be the stack alphabet
of the h-th stack. Let Γ =

⋃n
h=1 Γh and let Σh = 〈Σh

c , Σh
r , Σh

int〉. Let CΣh (or
Ch when Σh is clear) be a finite set of event clocks. Let Φ(Ch) be the set of clock
constraints over Ch and I be the set of intervals.

Definition 5. A dense-time visibly pushdown multistack automata (dtMVPAs)
over 〈Σh

c , Σh
r , Σh

int〉n
h=1 is a tuple (L,Σ, Γ, L0, F,Δ=(Δh

c ∪Δh
r ∪Δh

int)
n
h=1) where

A Perfect Class of Timed Context-Sensitive Languages 43

– L is a finite set of locations including a set L0 ⊆ L of initial locations,
– Γh is the finite alphabet of the hth stack with special end-of-stack symbol ⊥h,
– Δh

c ⊆ (L×Σh
c ×Φ(Ch)×L×(Γh\⊥h)) is the set of call transitions,

– Δh
r ⊆ (L×Σh

r ×I×Γh×Φ(Ch)×L) is set of return transitions,
– Δh

int ⊆ (L×Σh
int×Φ(Ch)×L) is set of internal transitions, and

– F ⊆ L is the set of final locations.

Let w = (a0, t0), . . . , (ae, te) be a timed word. A configuration of the dtMVPA
is a tuple (
, νw

i , (((γ1σ1, age(γ1σ1)), . . . , (γnσn, age(γnσn))) where
 is the cur-
rent location of the dtMVPA, νw

i gives the valuation of all the event clocks at
position i ≤ |w|, γhσh ∈ Γh(Γh)∗ is the content of stack h with γh being the top-
most symbol and σh is the string representing the stack content below γh, while
age(γhσh) is a sequence of real numbers encoding the ages of all the stack sym-
bols (the time elapsed since each of them was pushed on to the stack). We follow
the assumption that age(⊥h) = 〈�〉 (undefined). If for some string σh ∈ (Γh)∗

we have that age(σh) = 〈t1, t2, . . . , tg〉 and for τ ∈ R≥0 we write age(σh) + τ for
the sequence 〈t1 + τ, t2 + τ, . . . , tg + τ〉. For a sequence σh = 〈γh

1 , . . . , γh
g 〉 and a

member γh we write γh :: σh for 〈γh, γh
1 , . . . , γh

g 〉.
A run of a dtMVPA on w = (a0, t0), . . . , (ae, te) is a sequence of configurations

(
0, νw
0 , (〈⊥1〉, 〈�〉), . . . , (〈⊥n〉, 〈�〉)), (
1, νw

1 , ((σ1
1 , age(σ1

1)), . . . , (σ
n
1 , age(σn

1))),
. . . , (
e+1, ν

w
e+1, (σ

1
e+1, age(σ1

e+1)), . . . , (σ
n
e+1, age(σn

e+1)))) where
i ∈ L,
0 ∈ L0,
σh

i ∈ (Γh ∪ {⊥h})+, and for each i, 0 ≤ i ≤ e, we have:

– If ai ∈ Σh
c , then there is (
i, ai, ϕ,
i+1, γ

h) ∈ Δh
c such that νw

i |= ϕ. The symbol
γh ∈ Γh\{⊥h} is then pushed onto the stack h, and its age is initialized to
zero, i.e. (σh

i+1, age(σh
i+1)) = (γh :: σh

i , 0 :: (age(σh
i)+(ti − ti−1))). All symbols

in all other stacks are unchanged, and age by ti − ti−1.
– If ai ∈ Σh

r , then there is (
i, ai, I, γh, ϕ,
i+1) ∈ Δh
r such that νw

i |=ϕ. Also,
σh

i = γh :: κ ∈ Γh(Γh)∗ and age(γh) + (ti − ti−1) ∈ I. The symbol γh is
popped from stack h obtaining σh

i+1 = κ and age(σh
i+1) = age(σh

i)+(ti−ti−1).
However, if γh = 〈⊥h〉, then γh is not popped. The contents of all other stacks
remains unchanged, and simply age by (ti − ti−1).

– If ai ∈ Σh
int, then there is (
i, ai, ϕ,
i+1) ∈ Δh

int such that νw
i � ϕ. In this case

all stacks remain unchanged i.e. σh
i =σh

i+1, and age(σh
i+1)=age(σh

i)+(ti −ti−1)
for all 1 ≤ h ≤ n. All symbols in all stacks age by ti − ti−1.

A run ρ of a dtMVPA M is accepting if it terminates in a final location. A
timed word w is an accepting word if there is an accepting run of M on w. The
language L(M) of a dtMVPA M , is the set of all timed words w accepted by M .

A dtMVPA M = (L,Σ, Γ, L0, F,Δ) is said to be deterministic if it has
exactly one start location, and for every configuration and input action exactly
one transition is enabled. Formally, we have the following conditions: for
every (
, a, φ1,

′, γ1), (
, a, φ2,

′′, γ2) ∈ Δh

c , φ1 ∧ φ2 is unsatisfiable; for every
(
, a, I1, γ, φ1,

′), (
, a, I2, γ, φ2,

′′) ∈ Δh

r , either φ1 ∧ φ2 is unsatisfiable or
I1 ∩ I2 = ∅; and for every (
, a, φ1,

′), (
, a, φ2,

′) ∈ Δh

int, φ1 ∧ φ2 is unsatis-
fiable. An ECMVPA is a dtMVPA where the stacks are untimed. A ECMVPA
(L,Σ, Γ, L0, F,Δ) is an dtMVPA if I = [0,+∞] for every (
, a, I, γ, φ,
′) ∈ Δh

r .

44 D. Bhave et al.

Let Σ = 〈Σh
c , Σh

r , Σh
int〉n

h=1be a visibly pushdown alphabet. A context over
Σh = 〈Σh

c , Σh
r , Σh

int〉 is a timed word in (Σh)∗. The empty word ε is a con-
text. For ease, we assume in this paper that any context has at least one symbol
from Σ. A round over Σ is a timed word w over Σ of the form w1w2 . . . wn

such that each wh is a context over Σh. A k-round over Σ is a timed word
w that can be obtained as a concatenation of k rounds over Σ. That is,
w = u1u2 . . . uk, where each ui is a round. Let Round(Σ, k) denote the set
of all k-round timed words over Σ. For any fixed k, a k-round dtMVPA over Σ
is a tuple A = (k, L,Σ, Γ, L0, F,Δ) where M = (L,Σ, Γ, L0, F,Δ) is a dtMVPA
over Σ. The language accepted by A is L(A) = L(M)∩Round(Σ, k) and is called
k-round dense time multistack visibly push down language. The class of k-round
dense time multistack visibly push down languages is denoted k-dtMVPL. The
set

⋃

k≥1 k-dtMVPL is denoted bd-dtMVPL, and is the class of dense time multi-
stack visibly push down languages with a bounded number of rounds. We define
k-ECMVPL and bd-ECMVPL in a similar fashion. Also, we write k-dtMVPA and
k-ECMVPA to denote k-round dtMVPA and k-round ECMVPA. The key result of
the paper is the following.

Theorem 6 (A Perfect Timed Context-Sensitive Language). The
classes of languages accepted by k-dtMVPA and k-ECMVPA are perfect:— they
are closed under Boolean operations with decidable emptiness problem.

We sketch key lemmas towards this proof in the following section. As an appli-
cation of this theorem we show Monadic second-order logic characterization of
the languages accepted by k-dtMVPA in Sect. 4.

3 Proof of Theorem6

The closure under union and intersection for both k-dtMVPA and k-ECMVPA is
straightforward and is sketched in [8]. In order to show closure under comple-
mentation, the main hurdle is to show determinizability of these automata. We
sketch the key ideas required to get determinizability for k-ECMVPA in Sect. 3.1
and for k-dtMVPA in Sect. 3.2. The decidability of the emptiness problem for
k-ECMVPA follows as for every k-ECMVPA, via region construction [3], one
can get an untimed-bisimilar k-MVPA, which has a decidable emptiness [14].
In Sect. 3.2 we show that for every k-dtMVPA we get an emptiness-preserving
k-ECMVPA and hence this result in combination with previous remark yield
decidability of emptiness for k-dtMVPA.

3.1 Determinizability of k-ECMVPA

For the determinizability proof the key observation is the since the words
accepted by A is a catenation of k rounds, and the stacks (or contexts) do
not interfere with each other, the k-ECMVPA A can be considered as a “compo-
sition” of n ECVPA A1, . . . , An, with stack of each Ai corresponds to i-th stack

A Perfect Class of Timed Context-Sensitive Languages 45

of the k-ECMVPA. A has to simulate the n ECVPAs in a round robin fashion for
k rounds.

If w ∈ L(A), then w = u1u2 . . . uk, and ui = ui1ui2 . . . uin, where uij is the
jth context in the ith round. Starting in an initial location
11, control is passed
to A1, which runs on u11 and enters location
′

11 =
12. Let ν′
11 = ν12 be the

values of all clocks after processing u11. At this point of time, A2 runs on u12

starting in location
12, and so on, until An runs on u1n starting in location
1n.
Now first round is over, and u1 is processed. An ends in some location
′

1n =
21.
Now A1 starts again in
21 and processes u21. The values of all recorders and
predictors change according to the time that elapsed during the simulation of
A2, . . . , An. It must be noted that between two consecutive rounds i and i+1 of
any Aj , none of the clocks pertaining to Aj get reset; they only reflect the time
that has elapsed since the last round of Aj . This continues for k rounds, until ukn

is processed. Aj processes in order, u1j , u2j , . . . , ukj over (Σj)∗ for 1 ≤ j ≤ n. In
round i, 1 ≤ i ≤ k, each Aj , 1 ≤ j ≤ n−1, starts in location
ij , runs on uij and
“computes” a location
ij+1. Similarly, An moves from round i to round i+1, by
starting in
in, runs on uin and computes a location
i+11. The (i + 1)th round
begins in this location with A1 running on ui+11. Thus, by stitching together the
locations needed to switch from Aj to Aj+1, we can obtain a simulation of A.

Let uij = (a1
j , t

1
ij) . . . (alast

j , tlast
ij), where t1ij , . . . , t

last
ij are the time stamps

on reading uij . Let κj = u1j(#1, t
last
1j)u2j(#2, t

last
2j) . . . ukj(#k, tlast

kj). The new
symbols #i help disambiguate Aj processing u1j , . . . , ukj in k rounds. We first
focus on each ECVPA Aj which processes u1j , u2j , . . . , ukj . Let cmax be the
maximum constant used in clock constraints of Σj in the ECMVPA A. Let
I = {[0, 0], [0, 1], . . . , [cmax, cmax], [cmax,∞)} be a set of intervals. A correct
sequence of round switches for Aj with respect to κj is a sequence of pairs Vj =
P1jP2j . . . Pkj , where Phj = ((
hj , Ihj),
′

hj), 2 ≤ h ≤ k, P1j = ((
1j , ν1j),
′
1j)

and Ihj ∈ I such that

1. Starting in
1j , with the jth stack containing ⊥j , and an initial valuation ν1j

of all recorders and predictors of Σj , the ECMVPA A processes u1j and reaches
some
′

1j with stack content σ2j and clock valuation ν′
1j . The processing of u2j

by A then starts at location
2j , and a time t ∈ I2j has elapsed between the
processing of u1j and u2j . Thus, A starts processing u2j in (
2j , ν2j) where
ν2j is the valuation of all recorders and predictors updated from ν′

1j with
respect to t. The stack content remains same as σ2j when the processing of
u2j begins.

2. In general, starting in (
hj , νhj), h > 1 with the jth stack containing σhj , and
νhj obtained from νh−1j by updating all recorders and predictors based on
the time interval Ihj that records the time elapse between processing uhj−1

and uhj , A processes uhj and reaches (
′
hj , ν

′
hj) with stack content σh+1j . The

processing of uh+1j starts after time t ∈ Ih+1 has elapsed since processing
uhj in a location
h+1j , and stack content being σh+1j .

46 D. Bhave et al.

Lemma 7 (Round Switching Lemma for Aj). Let A = (k, L,Σ, Γ, L0, F,Δ) be
a k-ECMVPA. Let w = u1u2 . . . uk with ui = ui1ui2 . . . uin, 1 ≤ i ≤ k. Then we
can construct a ECVPA Aj over Σj ∪ {#1, . . . ,#k} which reaches a location Vj

on reading κj iff Vj is a correct sequence of round switches for Aj.

Proof. Recall that κj is defined by annotating u1ju2j . . . ukj with new sym-
bols {#1, . . . ,#k} and appropriate time stamps. Let Vj = P1j . . . Pkj be
a correct sequence of round switches for Aj . Given the k-ECMVPA A =
(k, L,Σ, Γ, L0, F,Δ) with w, the ECVPA Aj is constructed by simulating the
transitions of A on Σj by guessing Vj in its initial location. The alphabet of Aj

is Σj ∪ {#1, . . . ,#n}, and hence has event clocks xa, x#i
, a ∈ Σj . Whenever

Aj reads the #i, the control location as well as the valuation of all recorders
and predictors are changed according to Pi+1j , 1 ≤ i ≤ k − 1. On reading
#k, Aj enters the location Vj from its current location
′

kj . The locations of
Aj are Vj ∪ {(i,
ij , Vj), (i,
ij , Vj ,#), (i,
ij , Vj , a) | 1 ≤ i ≤ k,
 ∈ L, a ∈
Σj , Vj ∈ ((L × I) × L)k},∪((L × I) × L)k, I ∈ I. The set of initial locations are
{(1,
1j , Vj) | Vj ∈ ((L × I) × L)k, I ∈ I}. Starting in (1,
1j , Vj), Aj processes
u1j . When the last symbol a of u1j is read, it enters a location (1,
′

1j , Vj , a).
From this location, only #1 transitions are enabled. On reading #1, we move
from (1,
′

1j , Vj , a) to a location (2,
2j , Vj ,#), where P2 = ((
2j , I2j),
′
2j) and

P1 = ((
1j , ν1j),
′
1j), after checking no time elapse since a (check xa = 0). This

ensures that no time is spent in processing #1 after u1j . Now Aj starts processing
u2j starting in location (2,
2j , Vj ,#). From (2,
2j , Vj ,#), on reading a symbol
a ∈ Σj , we check that the time elapse since #1 lies in the interval I2j (check
x#1 ∈ I2j) as given by P2 and so on. When round k is reached, Aj starts process-
ing in some location (k,
kj , Vj ,#), and reaches (k,
′

kj , Vj , a). When #k is read,
Aj enters location Vj . The details of transitions δj of Aj can be found in [8]. It
is easy to see that Vj is reached by Aj only when the guessed Vj in the initial
location is a correct sequence of round switches for Aj . ��

While each Vj describes the correct sequence of round switches, 1 ≤ j ≤ n,
the sequence V1V2 . . . Vn is called a globally correct sequence iff we can stitch
together the individual Vi’s to obtain a complete simulation of A on w by mov-
ing across contexts and rounds. For instance, consider Vj = P1jP2j . . . Pkj and
Vj+1 = P1j+1P2j+1 . . . Pkj+1 for 1 ≤ j ≤ n − 1. Recall that Pij = ((
ij , Iij),
′

ij)
and Pij+1 = ((
ij+1, Iij+1),
′

ij+1) for 1 ≤ i ≤ k. The sequence V1V2 . . . Vn is
globally correct iff
′

ij =
ij+1, j ≤ n − 1 and
′
in =
i+11 for 1 ≤ i ≤ k.

Lemma 8. Let w = u1u2 . . . uk be a timed word in Round(Σ, k), with A =
(k, L,Σ, Γ, L0, F,Δ) being a k-ECMVPA over Σ, and let ui = ui1ui2 . . . uin and
κj be as defined above. Then w ∈ L(A) iff for 1 ≤ j ≤ n, there exists a correct
switching sequence Vj of the ECVPA Aj for κj such that V1V2 . . . Vn is a globally
correct sequence for A with
11 ∈ L0 and
′

kn ∈ F .

Proof. The proof essentially shows how one can simulate A by composing the
Aj ’s using a globally correct sequence V1V2 . . . Vn. The idea is to simulate each Aj

one after the other, allowing Aj+1 to begin on uij+1 iff the location reached
′
ij

A Perfect Class of Timed Context-Sensitive Languages 47

at the end of uij by Aj matches with
ij+1, the proposed starting location of
Aj+1 on uij+1. Lets construct a composition of A1, . . . , An which runs on w,
and accepts w iff there exists a globally correct sequence V1V2 . . . Vn. The initial
locations are of the form (p1, p2, . . . , pn, 1, 1), where the last two entries denote
the current round number and context number and pj is an initial location of
Aj . The transitions Δ of the composition are defined using the transitions δj

of Aj .
In some chosen initial location, we first run A1 updating only the first entry

p1 of the tuple until u11 is completely read. The first entry of the tuple then
has the form p′

1 = (1,
′
11, V1, a) where a is the last symbol of u11. When A1

reads #1, the current location in the composition is (p′
1, p2, . . . , pn, 1, 1). In the

composition of A1, . . . , An, since there are no #’s to be read, we start sim-
ulation of A2 on u12 from (p′

1, p2, . . . , pn, 1, 1) iff p2 is (2,
12, V2) such that
the
′

11 in p1 is same as the
12 in p2. We then add the transition from
(p′

1, p2, . . . , pn, 1, 1) to (p′′
1 = (2,
21, V1, a), q, . . . , pn, 1, 2) where q is obtained

from p2 by a transition in A2 on the first symbol of u12. The a in p′′
1 is the

last symbol of u11 taken from p′
1 = (1,
′

11, V1, a), and the
21 in p′′
1 is obtained

from P21 = ((
21, I21),
′
21) of V1. We continue like this till we reach u1n, the

last context in round 1, and reach some location (s1, s2, . . . , sn−1, p
′
n, 1, 1) with

s1 = (2,
21, V1, a1), s2 = (2,
22, V2, a2), . . . , sn−1 = (2,
2 n−1, Vn−1, an−1) and
p′

n = (1,
′
1n, Vn, an).

Now, to start the second round, that is on u21, we allow the transition from
the above location iff
′

1n =
21 and if xa1 ∈ I21 and we start simulating A1 again,
after updating p′

n, the context and round number. That is, we have the transition
(s1, . . . , sn−1, p

′
n, 1, n) on the first symbol of u21 to (r, . . . , sn−1, sn, 2, 1) where

sn = (2,
2 n, Vn, an) iff
′
1n =
21 and xa1 ∈ I21. Also, r is obtained from s1 by

a transition of A1 on the first symbol of u21. The check xa1 ∈ I21 is consistent
with the check of x#1 ∈ I21 in A1. From (r, . . . , sn−1, sn, 2, 1), the processing of
u21 happens as in A1, and we continue till we finish processing u2n. The same
checks are repeated at the start of each fresh round.

So we have a run on w in the composition only when we have a globally
correct sequence. On completing ukn, we reach location (V1, . . . , Vn−1, Vn, k, n),
each Vj obtained from the individual Aj . We define the accepting locations
of the composition to be {(V1, . . . , Vn) | Pkn = (
′

kn, [0,∞)),
′
kn ∈ F}. Clearly,

whenever there is a run in A on w that ends up in
′
kn ∈ F , we have an accepting

run on w in the composition. ��
The key idea of the determinization of k-ECMVPA follows from Lemma 8 and
the determinizability of ECVPA [16]. Details are given in [8].

Theorem 9. k-ECMVPAs are determinizable.

3.2 Determinizability of k-dtMVPA

Given a k-dtMVPAM , we first construct (untiming construction) a k-ECMVPAM ′

and a morphism h such that L(M) = h(L(M ′)). We then use the determinizability

48 D. Bhave et al.

of k-ECMVPA (Theorem 9) to obtain a deterministic k-ECMVPA M ′′ such that
L(M ′) = L(M ′′). We then show how to obtain a k-dtMVPAD from M ′′ preserving
the determinism of M ′′ such that L(D) = h(L(M ′′)) = h(L(M ′)) = L(M).

We give an intuition to the untiming construction. Each time a symbol is
pushed on to a stack (say stack i), we guess its age (the time interval) at the
time of popping. For instance, in the dtMVPA M , while pushing a symbol a if the
guessed constraint is < κ for κ ∈ N, then in the ECMVPA M ′, we push the symbol
(a,< κ, first) in the stack i, if this is the first symbol for which the guessed age
is < κ. If < κ has already been guessed as the age for a symbol pushed earlier,
then we push (a,< κ) onto the stack i. The guess <i κ is remembered in the
finite control of the M ′. Thus, for each symbol a pushed in stack i of the M , we
push in stack i of the M ′, either (a,< κ, first) or (a,< κ) and remember <i κ in
the finite control as a set of obligations. This information <i κ is retained in the
finite control until popping the symbol (a,< κ, first) from stack i. New symbols
<i κ are added as internal symbols to the M ′. The number of these symbols is
finite since we have finitely many stacks and there is a maximum constant used in
age comparisons of the M . After pushing (a,< κ, first) onto the stack i, we read
the internal symbol <i κ, ensuring no time elapse since the last input symbol.
Thus the event clock x<iκ is reset at the same time as pushing (a,< κ, first)
on the stack. While popping (a,< κ, first), we check that the value of the event
clock x<iκ is less than κ. Constraints of the form > κ are handled similarly. Since
the n stacks do not interfere with each other, this construction (adding extra
symbols <i κ one per stack, retaining these symbols in the finite control until
popping (a,< κ, first) from stack i) can be done for all stacks, mimicking the
timed stack. Note that the language accepted by the M is h(L(M ′)), where h is
the morphism which erases symbols of the form <i κ and >i κ from L(M ′). This
gives an ECMVPA preserving emptiness of the dtMVPA. We can determinize the
ECMVPA M ′ obtaining det(M ′) using Theorem 9. It remains to eliminate the
transitions on the new symbols <i κ and >i κ from det(M ′) and argue that the
resulting machine stays deterministic and accepts L(M).

Theorem 10. k-dtMVPAs have decidable emptiness and are determinizable.

4 Logical Characterization of k-dtMVPA

We consider a timed word w = (a0, t0), (a1, t1), . . . , (am, tm) over alphabet Σ =
〈Σi

c, Σ
i
int, Σ

i
r〉n

i=1 as a word structure over the universe U = {1, 2, . . . , |w|} of
positions in the timed word. The predicates in the structure are Qa(i) for a ∈
Σ which evaluates to true at position i iff w[i] = a, where w[i] denotes the
ith position of w. Following [11], we use the matching relation μj(i, k) which
evaluates to true iff the ith position is a call and the kth position is its matching
return corresponding to the jth stack. We also introduce three predicates �a,
�a, and θj capturing the following relations: For an interval I, the predicate
�a(i) ∈ I evaluates to true on the structure iff νw

i (xa) ∈ I for recorder xa;
the predicate �a(i) ∈ I evaluates to true iff νw

i (ya) ∈ I for predictor ya; the
predicate θj(i) ∈ I evaluates to true iff w[i] ∈ Σj

r , and there is some k < i such
that μj(k, i) evaluates to true and ti − tk ∈ I. The predicate θj(i) measures the

A Perfect Class of Timed Context-Sensitive Languages 49

time elapse between position k, where a call was made on the stack j and its
matching return, i. This time elapse is the age of the symbol pushed on to the
stack during the call at position k. Since position i is the matching return, this
symbol is popped at position i; if the age lies in the interval I, the predicate
evaluates to true. We define MSO(Σ), the MSO logic over Σ, as:

ϕ :=Qa(x) | x ∈ X | μj(x, y) | �a(x) ∈ I | �a(x) ∈ I | θj(x) ∈ I |¬ϕ | ϕ∨ϕ| ∃ x.ϕ | ∃ X.ϕ

where a ∈ Σ, xa ∈ CΣ , x is a first order variable and X is a second order
variable.

The models of a formula φ ∈ MSO(Σ) are timed words w over Σ. The
semantics of this logic is standard where first order variables are interpreted
over positions of w and second order variables over subsets of positions. We
define the language L(ϕ) of an MSO sentence ϕ as the set of all words satisfying
ϕ. Words in Round(Σ, k), for some k rounds, can be captured by an MSO
formula Bdk(ψ). For instance if k = 1, and n stacks, the formula ∃x1.(Qa1(x1)∧
∀y1(y1 ≤ x1 → Qa1(y1)) ∧ ∃x2.(x1 < x2 ∧ Qa2(x2) ∧ ∀y2(x1 < y2 < x2 →
Qa2(y2)) ∧ . . . ∧ ∃xn(xn−1 < xn ∧ Qan(xn) ∧ last(xn) ∧ ∀yn(xn−1 < yn < xn →
Qan(yn))))), where ai ∈ Σi and last(x) denotes x is the last position, captures a
round. This can be extended to capture k-round words. Conjuncting the formula
obtained from a dtMVPA M with Bdk(ψ) accepts only those words which lie in
L(M)∩Round(Σ, k). Likewise, if one considers any MSO formula ζ = ϕ∧Bdk(ψ),
it can be shown that the dtMVPA M constructed for ζ will be a k-dtMVPA. The
two directions, dtMVPA to MSO, as well as MSO to dtMVPA can be handled
using standard techniques, and can be found in [8].

Theorem 11. A language L over Σ is accepted by an k-dtMVPA iff there is a
MSO sentence ϕ over Σ such that L(ϕ) ∩ Round(Σ, k) = L.

References

1. Abdulla, P., Atig, M., Stenman, J.: Dense-timed pushdown automata. In: LICS,
pp. 35–44 (2012)

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)
3. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class

of timed automata. TCS 211(1–2), 253–273 (1999)
4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory

of Computing, pp. 202–211 (2004)
5. Atig, M.F.: Model-checking of ordered multi-pushdown automata. Log. Methods

Comput. Sci. 8(3), 1–31 (2012)
6. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-

ture grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung 14, 143–172 (1961)

7. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A logical charac-
terization for dense-time visibly pushdown automata. In: Dediu, A.-H., Janoušek,
J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 89–101.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-30000-9 7

http://dx.doi.org/10.1007/978-3-319-30000-9_7

50 D. Bhave et al.

8. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of
context-sensitive timed languages. Technical report, IIT Bombay (2016). www.cse.
iitb.ac.in/internal/techreports/reports/TR-CSE-2016-80.pdf

9. Czerwiński, W., Hofman, P., Lasota, S.: Reachability problem for weak multi-
pushdown automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 53–68. Springer, Heidelberg (2012)

10. Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification.
In: LICS, pp. 285–294. IEEE Computer Society (2012)

11. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS, pp. 161–170 (2007)

12. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer,
Heidelberg (2014)

13. La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack pushdown
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 377–389. Springer, Heidelberg (2014)

14. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
96–107. Springer, Heidelberg (2010)

15. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A.,
Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg
(2010)

16. Van Tang, N., Ogawa, M.: Event-clock visibly pushdown automata. In: Nielsen,
M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.)
SOFSEM 2009. LNCS, vol. 5404, pp. 558–569. Springer, Heidelberg (2009)

www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2016-80.pdf
www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2016-80.pdf

Position Automaton Construction for Regular
Expressions with Intersection

Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis(B)

CMUP, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
{sbb,nam,rvr}@dcc.fc.up.pt, ajmachia@fc.up.pt

Abstract. Positions and derivatives are two essential notions in the con-
version methods from regular expressions to equivalent finite automata.
Partial derivative based methods have recently been extended to regu-
lar expressions with intersection. In this paper, we present a position
automaton construction for those expressions. This construction gen-
eralizes the notion of position making it compatible with intersection.
The resulting automaton is homogeneous and has the partial derivative
automaton as its quotient.

1 Introduction

The position automaton, introduced by Glushkov [12], permits the conversion
of a simple regular expression (involving only the sum, concatenation and star
operations) into an equivalent nondeterministic finite automaton (NFA) without
ε-transitions. The states in the position automaton (Apos) correspond to the
positions of letters in the corresponding regular expression plus an additional
initial state. McNaughton and Yamada [15] also used the positions of a regular
expression to define an automaton, however they directly computed a determin-
istic version of the position automaton. The position automaton has been well
studied [3,8] and is considered the standard automaton simulation of a regular
expression [16]. Some of its interesting properties are: homogeneity, i.e. for each
state, all in-transitions have the same label (letter); whenever deterministic, these
automata characterize certain families of unambiguous regular expressions, and
can be computed in quadratic time [4]; other automata simulations of regular
expressions are quotients of the Apos, e.g. partial derivative automata (Apd) [9]
and follow automata [14].

Many authors observed that the position automaton construction could not
directly be extended to regular expressions with intersection [3,6], as intersection
(and also complementation) is not compatible with the notion of position. In fact,
considering positions of letters in the expression (ab�)∩a, whose language is {a},
we obtain the regular expression (a1b

�
2) ∩ a3. Interpreting a1 and a3 as distinct

alphabet symbols, the language described by this expression is empty and there is

This work was partially supported by CMUP (UID/MAT/00144/2013), which is
funded by FCT (Portugal) with national (MEC) and European structural funds
through the programs FEDER, under the partnership agreement PT2020.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 51–63, 2016.
DOI: 10.1007/978-3-662-53132-7 5

52 S. Broda et al.

no longer a correspondence between the languages of (ab�)∩a and (a1b
�
2)∩a3, as

it is the case for expressions without intersection. However, the conversions from
expressions to automata based on the notion of derivative or partial derivative
can still be extended to regular expressions with intersection [2,5,7]. In this
paper, we present a position automaton construction for regular expressions
with intersection by generalizing the notion of position. Instead of positions,
sets of positions are considered in such a way that marking a regular expression
is made compatible with the intersection operation. We also show that the partial
derivative automaton is a quotient of the position automaton.

2 Preliminaries

In this section we recall the basic definitions we use throughout this paper and
the notation. For further details we refer to [13,17].

Let Σ be an alphabet (set of letters). A word over Σ is a finite sequence of
letters, where ε is the empty word. The size of a word x, |x|, is the number of
alphabet symbols in x. Σ� denotes the set of all words over Σ, and a language
over Σ is any subset of Σ�. The concatenation of two languages L1 and L2

is defined by L1 · L2 = { xy | x ∈ L1, y ∈ L2 }, and L� denotes the set
{ x1x2 · · · xn | n ≥ 0, xi ∈ L }. The left quotient of a language L ⊆ Σ� w.r.t. a
word x ∈ Σ� is the language x−1L = { y | xy ∈ L }.

The set RE∩ of regular expressions with intersection over Σ is defined by the
following grammar

α, β := ∅ | ε | a ∈ Σ | (α + β) | (α · β) | (α�) | (α ∩ β), (1)

where the concatenation operator · is often omitted. We consider RE∩ expressions
modulo the standard equations for ∅ and ε, i.e. α+ ∅ = ∅+α = α · ε = ε ·α = α,
α ·∅ = ∅·α = α∩∅ = ∅∩α = ∅, and ∅� = ε. Throughout this paper we often refer
to regular expressions with intersection just as regular expressions. The set of
alphabet symbols with occurrences in α is denoted by Σα. Expressions containing
no occurrence of the operator ∩ are called simple regular expressions. A linear
regular expression is a regular expression in which every alphabet symbol occurs
at most once. We let |α|, |α|Σ and |α|∩ denote for α ∈ RE∩ the number of
symbols, the number of occurrences of alphabet symbols and the number of
occurrences of the binary operator ∩, respectively. The language L(α) for α ∈
RE∩ is defined as usual, with L(α∩β) = L(α)∩L(β). The language of S ⊆ RE∩ is
L(S) = ∪α∈SL(α). Given an expression α ∈ RE∩, we define ε(α) = ε if ε ∈ L(α),
and ε(α) = ∅ otherwise. A recursive definition of ε : RE∩ −→ {∅, ε} is given by
the following: ε(a) = ε(∅) = ∅, ε(ε) = ε(α�) = ε, ε(α + β) = ε(α) + ε(β), and
ε(αβ) = ε(α ∩ β) = ε(α) · ε(β).

A nondeterministic finite automaton (NFA) is a tuple A = 〈S,Σ, S0, δ, F 〉,
where S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial
states, δ : S × Σ −→ P(S) the transition function, and F ⊆ S a set of final
states. The extension of δ to sets of states and words is defined by δ(X, ε) = X
and δ(X, ax) = δ(∪s∈Xδ(s, a), x). A word x ∈ Σ� is accepted by A if and only

Position Automaton Construction for Reg. Expr. with Intersection 53

if δ(S0, x) ∩ F �= ∅. The language of A, L(A), is the set of words accepted
by A. The right language of a state s, Ls, is the language accepted by A if
we take S0 = {s}. An NFA is initially connected or accessible if each state is
reachable from an initial state and it is trimmed if, moreover, the right language
of each state is non-empty. Given A, we denote by Aac and At the result of
removing unreachable states from A and trimming A, respectively. It is clear
that L(A) = L(Aac) = L(At).

We say that an equivalence relation ≡ over S is right invariant w.r.t. A iff

1. ∀s, t ∈ S, s ≡ t ∧ s ∈ F =⇒ t ∈ F
2. ∀s, t ∈ S,∀a ∈ Σ, s ≡ t =⇒ ∀s1 ∈ δ(s, a) ∃t1 ∈ δ(t, a), s1 ≡ t1.

If ≡ is right invariant, then we can define the quotient automaton A/≡ in the
usual way, and L(A/≡) = L(A).

The notions of partial derivatives and partial derivative automata were intro-
duced by Antimirov [1] for simple regular expressions. Bastos et al. [2] presented
an extension of the Antimirov construction from RE∩ expressions.

Definition 1. For α ∈ RE∩ and a ∈ Σ, the set ∂a(α) of partial derivatives of
α w.r.t. a is defined by:

∂a(∅) = ∂a(ε) = ∅
∂a(b) =

{

{ε}, if a = b

∅ otherwise
∂a(α�) = ∂a(α) � α�

∂a(α + β) = ∂a(α) ∪ ∂a(β)

∂a(αβ) =

{

∂a(α) � β ∪ ∂a(β), if ε(α) = ε

∂a(α)β, otherwise
∂a(α ∩ β) = ∂a(α) ∩· ∂a(β),

where for S, T ⊆ RE∩ and β ∈ RE∩, S � β = { αβ | α ∈ S }, β � S = { βα | α ∈
S }, and S ∩· T = { α ∩ β | α ∈ S, β ∈ T }.

This definition is extended to any word w by ∂ε(α) = {α}, ∂wa(α) =
⋃

αi∈∂w(α) ∂a(αi), and ∂w(R) =
⋃

αi∈R ∂w(αi), where R ⊆ RE∩. The set of par-
tial derivatives of an expression α is ∂(α) =

⋃

w∈Σ� ∂w(α). As for simple regular
expressions, the partial derivative automaton of an expression α ∈ RE∩ is defined
by Apd(α) = 〈∂(α), Σ, {α}, δpd, Fpd〉, where Fpd = { γ ∈ ∂(α) | ε(γ) = ε } and
δpd(γ, a) = ∂a(γ). It follows that L(Apd(α)) is exactly L(α) and by construction
Apd(α) is accessible. Bastos et al. [2] showed also that |∂(α)| ≤ 2|α|Σ−|α|∩−1 + 1
and asymptotically and on average an upper bound for the number of states is
(1.056 + o(1))n, where n is the size of the expression.

3 Indexed Expressions

Given an alphabet Σ and a nonempty set of indexes J ⊆ N, let ΣJ = { aj |
a ∈ Σ, j ∈ J }. An indexed regular expression is a regular expression over the
alphabet ΣJ such that for all ai, bj ∈ ΣJ occurring in the expression, a �= b
implies i �= j. We let ρ, ρ1, ρ2, . . . denote indexed regular expressions. If ρ is an
indexed expression, then ρ is the regular expression over the alphabet Σ obtained

54 S. Broda et al.

by removing the indexes. The set of all indexes occurring in ρ is denoted by
ind(ρ) = { i | ai ∈ Σρ }. Given an indexed expression ρ and i ∈ ind(ρ),
ρ(i) is
the letter indexed by i in ρ. From now on, we will simply write
(i) for
ρ(i) since
it will always be clear that we are referring to a specific expression ρ. Given an
indexed expression ρ, let

Iρ = { I ⊆ ind(ρ) | I �= ∅ and ∀i1, i2 ∈ I,
(i1) =
(i2) }.

For I ∈ Iρ we extend the definition of
 by
(I) =
(i), i ∈ I. Finally, we
say that ρ is well-indexed if for all subterms of ρ of the form ρ1 ∩ ρ2 one has
ind(ρ1) ∩ ind(ρ2) = ∅.

Example 2. For ρ = a1(a4b
�
5 ∩ a4) one has ρ = a(ab� ∩ a), ind(ρ) = {1, 4, 5},

(4) =
({1, 4}) = a and Iρ = {{1}, {4}, {5}, {1, 4}}. However, this expression is
not well-indexed, since a4 occurs on both sides of an intersection.

Definition 3. Consider an indexed expression ρ. For L ⊆ I�
ρ and x = I1 · · · In ∈

L, we define
(x) =
(I1) · · ·
(In) and
(L) = {
(x) | x ∈ L }. The indexed
intersection of two words x = I1 · · · Im, y = J1 · · · Jn ∈ I�

ρ is defined by x ∩I y =
(I1 ∪J1) · · · (In ∪Jn) if
(x) =
(y)1, and undefined otherwise. Then, the indexed
intersection of two languages L1, L2 ∈ I�

ρ is defined as follows:

L1 ∩I L2 = { x ∩I y | x ∈ L1, y ∈ L2 }.

We define the index-language LI(ρ) ⊆ I�
ρ associated to ρ as follows.

LI(∅) = ∅,
LI(ε) = {ε},

LI(ai) = {{i}},
LI(ρ�) = LI(ρ)�,

LI(ρ1 + ρ2) = LI(ρ1) ∪ LI(ρ2),
LI(ρ1 · ρ2) = LI(ρ1) · LI(ρ2),

LI(ρ1 ∩ ρ2) = LI(ρ1) ∩I LI(ρ2).

Example 4. For ρ = (a1a2+b3+a4)�∩(a5+b6)�, we have LI(ρ) = {{4, 5}, {3, 6},
{1, 5}{2, 5}, {4, 5}{4, 5}, {4, 5}{3, 6}, . . .}, and
(LI(ρ)) = {a, b, aa, ab, . . .} (since

({1, 5}{2, 5}) =
({4, 5}{4, 5}) = aa).

Proposition 5. Given an indexed expression ρ, one has
(LI(ρ)) = L(ρ).

4 A Position Automaton for RE∩ Expressions

Let α ∈ RE∩. We define the set of positions in α by pos(α) = {1, . . . , |α|Σ}. As
usual, we let α denote the expression obtained from α by indexing each letter
with its position in α. The same notation is used to remove the indexes, as
already stated, thus, α = α. Note that for α ∈ RE∩, the indexed expression α is
always linear (thus well-indexed), and also pos(α) = ind(α).

1 Note that �(x) = �(y) implies that m = n and that �(x ∩I y) = �(x) = �(y).

Position Automaton Construction for Reg. Expr. with Intersection 55

Given an indexed linear expression ρ we define the following sets:

First′(ρ) = { I | Ix ∈ LI(ρ) },

Last′(ρ) = { I | xI ∈ LI(ρ) },

Follow′(ρ) = { (I, J) | xIJy ∈ LI(ρ) }.

Then, given α ∈ RE∩, we define First(α) = First′(α), Last(α) = Last′(α), and
Follow(α) = Follow′(α).

Definition 6. The position automaton of an expression α ∈ RE∩ is

Apos(α) = 〈Spos, Σ, {{0}}, δpos, Fpos〉,

where Spos = {{0}} ∪ {I ∈ Iα | xIy ∈ LI(α) for some x, y ∈ I�
α },

δpos = { (I,
(J), J) | (I, J) ∈ Follow(α) } ∪ { ({0},
(I), I) | I ∈ First(α) },

Fpos =

{

Last(α) ∪ {{0}}, if ε(α) = ε;
Fpos = Last(α), otherwise.

Proposition 7. Given an expression α ∈ RE∩, one has L(Apos(α)) = L(α).

Note that for regular expressions without intersection (simple regular expres-
sions) the automaton is, by the definition of LI , isomorphic to the classic position
automaton, with the difference that now states are labelled with singletons {i}
instead of i ∈ pos(α) ∪ {0}. We now give definitions for recursively computing
sets corresponding to First, Last and Follow. These definitions lead to supersets
of the corresponding sets but we will proof that extra elements can be discarded
and if we trim the resulting NFA we obtain Apos.

Definition 8. Given a indexed well-indexed expression ρ, let Fst(ρ) ⊆ Iρ be
inductively defined as follows,

Fst(∅) = Fst(ε) = ∅
Fst(ai) = {{i}}
Fst(ρ�) = Fst(ρ)

Fst(ρ1 + ρ2) = Fst(ρ1) ∪ Fst(ρ2)

Fst(ρ1 · ρ2) =

{

Fst(ρ1) ∪ Fst(ρ2), if ε(ρ1) = ε

Fst(ρ1), otherwise
Fst(ρ1 ∩ ρ2) = Fst(ρ1) ⊗ Fst(ρ2).

where for F1, F2 ⊆ Iρ, F1 ⊗ F2 = { I1 ∪ I2 |
(I1) =
(I2) and I1 ∈ F1, I2 ∈ F2 }.

By construction, all elements I ∈ Fst(ρ) are non-empty and such that
(i1) =

(i2) for all i1, i2 ∈ I, guaranting that ⊗ is well defined and Fst(ρ) ⊆ Iρ.

Example 9. We have Fst(a�
1b

�
2∩a3) = Fst(a�

1b
�
2)⊗Fst(a3) = {{1}, {2}}⊗{{3}} =

{{1, 3}}.

56 S. Broda et al.

Definition 10. Given a well-indexed expression ρ, the set Lst(ρ) ⊆ Iρ is defined
as Fst(ρ), with the difference that for concatenation we have:

Lst(ρ1 · ρ2) =

{

Lst(ρ1) ∪ Lst(ρ2), if ε(ρ2) = ε

Lst(ρ2), otherwise.

The set Fol(ρ) ⊆ Iρ × Iρ is inductively defined as follows,

Fol(∅) = Fol(ε) = Fol(ai) = ∅
Fol(ρ�) = Fol(ρ) ∪ Lst(ρ) × Fst(ρ)

Fol(ρ1 + ρ2) = Fol(ρ1) ∪ Fol(ρ2)
Fol(ρ1 ∩ ρ2) = Fol(ρ1) ⊗ Fol(ρ2)

Fol(ρ1 · ρ2) = Fol(ρ1) ∪ Fol(ρ2) ∪ Lst(ρ1) × Fst(ρ2).

where, for S1, S2 ⊆ Iρ × Iρ,

S1 ⊗ S2 = { (I1 ∪ I2, J1 ∪ J2) | (I1, J1) ∈ S1, (I2, J2) ∈ S2 and

(I1) =
(I2),
(J1) =
(J2) }.

In the next definition we will use the projection functions on the first and
second coordinates, π1 and π2, respectively.

Definition 11. Given α ∈ RE∩, let Aposi(α) = 〈Sposi, Σ, {{0}}, δposi, Fposi〉 be
the NFA where Sposi = {{0}}∪Fst(α)∪Lst(α)∪π1(Fol(α))∪π2(Fol(α)), and δposi

and Fposi are defined as δpos and Fpos, substituting the functions First, Last and
Follow, by Fst, Lst and Fol, respectively.

We will now show that L(Apos(α)) = L(Aposi(α)), and that Apos(α) is
obtained by trimming Aposi(α), as the result of the two following lemmas. An
example is presented at the end of this section.

Lemma 12. Given an indexed linear expression ρ, one has: 1)First′(ρ) ⊆
Fst(ρ); 2) Last′(ρ) ⊆ Lst(ρ); 3)Follow′(ρ) ⊆ Fol(ρ).

Example 13. For ρ = (a1 ∩ b2)c3d4, we have ({3}, {4}) ∈ Fol(ρ), but ({3}, {4}) �∈
Follow(ρ). Thus, Fol(ρ) �⊆ Follow(ρ).

The previous Lemma shows that for any α ∈ RE∩, Apos(α) is a subautoma-
ton of Aposi(α), and thus L(Apos(α)) ⊆ L(Aposi(α)). We now show that both
recognize the same language and can be made isomorphic by trimming Aposi.

Lemma 14. Given an indexed linear expression ρ and some n ≥ 1, if In ∈
Lst(ρ) and there exist I1, . . . , In ∈ Iρ such that

({0},
(I1), I1), (I1,
(I2), I2), . . . , (In−1,
(In), In) ∈ δposi,

then I1 · · · In ∈ LI(ρ).

Theorem 15. For any α ∈ RE∩, L(Apos(α)) = L(Aposi(α)).

From these results, it follows that if we trim the automaton Aposi we obtain
exactly Apos.

Position Automaton Construction for Reg. Expr. with Intersection 57

{0} {1, 7}

{4, 5}

{2, 5} {2, 6}

{3, 7}{4, 6}

b

a

a

b

a

a
b

Fig. 1. Aposi((ba
�b + a) ∩ (aa + b)�)

Example 16. Consider α = (ba�b + a) ∩ (aa + b)�. Then α = (b1a�
2b3 + a4) ∩

(a5a6 + b7)�, Fst(α) = {{1, 7}, {4, 5}}, Lst(α) = {{3, 7}, {4, 6}}, and Fol(α) =
{({2, 5}, {2, 6}), ({2, 6}, {2, 5}), ({2, 6}, {3, 7}), ({1, 7}, {2, 5}), ({1, 7}, {3, 7})}.

The automaton Aposi(α) is represented in Fig. 1. The trimmed automaton,
Aposi(α)t, is obtained removing the states labeled by {4, 5} and {4, 6}, and the
correspondent transitions.

5 A c-Continuation Automaton for RE∩ Expressions

In the case of simple regular expressions, Champarnaud and Ziadi [9] defined a
nondeterministic automaton isomorphic to the position automaton, called the c-
continuation automaton, in order to show that the partial derivative automaton
can be seen as a quotient of the position automaton. With the same purpose, in
this section, we present a c-continuation automaton for expressions with intersec-
tion. Moreover, instead of considering derivatives of regular expressions [5], we
use partial derivatives to restate some known results for simple regular expres-
sions.

The notion of continuation was defined by Berry and Sethy [3], and developed
by Champarnaud and Ziadi [9], by Ilie and Yu [14], and by Chen and Yu [10].
Given a ∈ Σ and a linear simple expression α, the set of partial derivatives
∂xa(α), for any word x ∈ Σ�, is either ∅ or has a unique element γ called
the continuation of a in α. Note that using partial derivatives, continuations
and non-null c-continuations coincide. Furthermore, the continuation can be
obtained by some refinement of the inductive definition of partial derivatives,
exploring the linearity of α. In order to establish similar results for linear well-
indexed expressions, we introduce the notion of partial index-derivative of a
well-indexed expression ρ w.r.t. an index I ∈ Iρ.

Given a well-indexed expression ρ, a subexpression τ of ρ, and a set of indexes
I ∈ Iρ, let I

∣

∣

τ
denote the set of indexes in I that occur in τ . This definition is

naturally extended to words x = I1 · · · In ∈ I�
ρ by x

∣

∣

τ
= I1

∣

∣

τ
· · · In

∣

∣

τ
, for n ≥ 0.

58 S. Broda et al.

Definition 17. The set of partial index-derivatives of a well-indexed expression
ρ by I ∈ Iρ ∪ {∅}, ∂I(ρ), is defined by

∂I(∅) = ∂I(ε) = ∅
∂I(ai) =

{

{ε}, if I = {i}
∅, otherwise

∂I(ρ�) = ∂I(ρ) � ρ�

∂I(ρ1 + ρ2) = ∂I(ρ1) ∪ ∂I(ρ2)

∂I(ρ1 · ρ2) =

{

∂I(ρ1) � ρ2 ∪ ∂I(ρ2), if ε(ρ1) = ε

∂I(ρ1) � ρ2, otherwise

∂I(ρ1 ∩ ρ2) =

{

∂I|ρ1
(ρ1) ∩· ∂I|ρ2

(ρ2), if I = I
∣

∣

ρ1
∪ I

∣

∣

ρ2

∅, otherwise.

The set of partial index-derivatives of ρ by a word x ∈ I�
ρ is then inductively

defined by ∂ε(ρ) = {ρ} and ∂xI(ρ) =
⋃

ρ′∈∂x(ρ)
∂I(ρ′). If S is a set of well-indexed

expressions, ∂x(S) =
⋃

ρ∈S ∂x(ρ).

It is straightforward to see that ∂∅(ρ) = ∅ for all ρ. Although ∅ �∈ Iρ, the
notion of partial index-derivative includes the derivative by an empty set of
indexes, in order to guarantee that the derivative of an intersection is well-
defined. Also note that the partial index-derivative of a well-indexed expression
is still well-indexed. Finally, the set of partial index-derivatives of ρ by all I ∈ Iρ

can be calculated simultaneously using an extension of the linear form defined
by Antimirov [1], i.e. considering pairs (I, ρ′) where ρ′ ∈ ∂I(ρ). The following
lemma is proved by induction on n.

Lemma 18. If x = I1 · · · In and ∂x(ρ) �= ∅, then x = x
∣

∣

ρ
.

Example 19. We have ∂{1,3}(a�
1b

�
2 ∩ a3) = ∂{1}(a�

1b
�
2) ∩· ∂{3}(a3) = {a�

1b
�
2 ∩ ε}.

Proposition 20. Consider a well-indexed expression ρ and I ∈ Iρ. Then,

I−1LI(ρ) = LI(∂I(ρ)) and LI(ρ) = LI
(

⋃

I∈Iρ
(I � ∂I(ρ)) ∪ ε(ρ)

)

.

Corollary 21. For every well-indexed expression ρ ∈ RE∩ and word x ∈ I�
ρ ,

one has x−1LI(ρ) = LI(∂x(ρ)) and LI(ρ) = LI(
⋃

x∈I�
ρ
(x � ∂x(ρ)) ∪ ε(ρ)).

The following is an adaptation, for partial index-derivatives and intersection,
of a result due to Berry and Sethi [3].

Proposition 22. Consider a linear indexed expression ρ ∈ RE∩ and xI ∈ I�
ρ ,

and let suff(x) denote the set of all suffixes of x. The partial index-derivative
∂xI(ρ) of ρ satisfies:

Position Automaton Construction for Reg. Expr. with Intersection 59

∂xI(∅) = ∂xI(ε) = ∅,

∂xI(ai) =

{

{ε}, if xI = {i},

∅, otherwise,

∂xI(ρ1 + ρ2) =

⎧

⎪

⎨

⎪

⎩

∂xI(ρ1), if xI = (xI)
∣

∣

ρ1
,

∂xI(ρ2), if xI = (xI)
∣

∣

ρ2
,

∅ otherwise

∂xI(ρ1 · ρ2) =

⎧

⎪

⎨

⎪

⎩

∂xI(ρ1) � ρ2, if xI = (xI)
∣

∣

ρ1
,

∂zI(ρ2), if x = yz, ε(∂y(ρ1)) = ε, zI = (zI)
∣

∣

ρ2
,

∅, otherwise,

∂xI(ρ�) ⊆
⋃

v∈suff(x)

∂vI(ρ) � ρ�,

∂xI(ρ1 ∩ ρ2) =

{

∂(xI)|ρ1
(ρ1) ∩· ∂(xI)|ρ2

(ρ2), if xI = (xI)
∣

∣

ρ1
∩I (xI)

∣

∣

ρ2
,

∅, otherwise.

The previous proposition implies that if ∂xI(ρ) �= ∅, then it has only one
element for every x ∈ I�

ρ . This fact is proved in Proposition 24 and the unique
element (if exists) is defined below.

Definition 23. Given a linear indexed expression ρ and a set of indexes I, the
c-continuation cI(ρ) of ρ w.r.t. I is defined by the following rules.

cI(∅) = cI(ε) = ∅
cI(ai) =

{

ε, if I = {i}
∅, otherwise

cI(ρ�) = cI(ρ)ρ�

cI(ρ1 + ρ2) =

{

cI(ρ1), if cI(ρ1) �= ∅
cI(ρ2), otherwise

cI(ρ1 · ρ2) =

{

cI(ρ1) · ρ2, if cI(ρ1) �= ∅
cI(ρ2), otherwise

cI(ρ1 ∩ ρ2) =

{

cI|ρ1
(ρ1) ∩ cI|ρ2

(ρ2), if I = I
∣

∣

ρ1
∪ I

∣

∣

ρ1

∅, otherwise.

It is easy to verify that cI(ρ) �= ∅ implies I ⊆ ind(ρ), i.e. I
∣

∣

ρ
= I.

Proposition 24. Consider a linear indexed expression ρ and I ∈ Iρ. Then, for
every x ∈ I�

ρ such that ∂xI(ρ) �= ∅, one has ∂xI(ρ) = {cI(ρ)} and cI(ρ) �= ∅.
Proof. We proceed by induction on the structure of ρ. For ∅ and ε the set
of partial index-derivatives is ∅. Let ρ be ai. We need to prove that ∀I ∈
Iai

∀x ∈ I�
ai

(∂xI(ai) �= ∅ =⇒ ∂xI(ai) = {cI(ai)} �= {∅}) . Let ∂xI(ai) �= ∅, then
by Proposition 22, ∂xI(ai) = {ε} and xI = {i}. Then I = {i} and cI(ai) = ε.
Thus, we conclude that ∂xI(ai) = {cI(ai)} �= {∅}. Let us suppose that for ρi,
i = 1, 2 we have ∀I ∈ Iρi

∀x ∈ I�
ρi

(∂xI(ρi) �= ∅ =⇒ ∂xI(ρi) = {cI(ρi)} �= {∅}).
Let ρ = ρ1 + ρ2 be such that ∂xI(ρ1 + ρ2) �= ∅. Then, ∂xI(ρ1 + ρ2) = ∂xI(ρi)

60 S. Broda et al.

with xI = (xI)
∣

∣

ρi
, for some i ∈ {1, 2}. By the induction hypothesis, ∂xI(ρi) =

{cI(ρi)} �= {∅}. Thus, cI(ρi) �= ∅ and cI(ρ1 + ρ2) = cI(ρi). Let ρ = ρ1ρ2. If
∂xI(ρ1ρ2) �= ∅ then we have to consider two cases. Let ∂xI(ρ1ρ2) = ∂xI(ρ1) � ρ2
and xI = (xI)

∣

∣

ρ1
. Then, ∂xI(ρ1) �= ∅ and ∂xI(ρ1) = {cI(ρ1)}. We conclude that

cI(ρ1) �= ∅ and cI(ρ1ρ2) = cI(ρ1). In the second case, ∂xI(ρ1ρ2) = ∂zI(ρ2) �= ∅,
x = yz, ε(∂y(ρ1)) = ε and zI = (zI)

∣

∣

ρ2
. We conclude that y = y

∣

∣

ρ1
and

I = I
∣

∣

ρ2
. Then, cI(ρ1) = ∅ and cI(ρ1ρ2) = cI(ρ2). By the induction hypothe-

sis, ∂zI(ρ2) = {cI(ρ2)} and the result follows. Let ρ = ρ�
1. If ∂xI(ρ�

1) �= ∅, we can
write ∂xI(ρ�

1) = ∂v1I(ρ1) � ρ�
1 ∪ · · · ∪ ∂vnI(ρ1) � ρ�

1, with n ≥ 1, such that for all
1 ≤ i ≤ n, x = uivi and ∂viI(ρ1)�ρ�

1 �= ∅. By the induction hypothesis, each non-
empty set of partial index-derivatives ∂viI(ρ1) is equal to {cI(ρ1)} �= {∅}. Thus,
∂xI(ρ�

1) = {cI(ρ1)ρ�
1}. Finally, let ρ = ρ1 ∩ρ2 be such that ∂xI(ρ1 ∩ρ2) �= ∅. Then

∂xI(ρ1∩ρ2) = ∂(xI)|ρ1
(ρ1)∩· ∂(xI)|ρ2

(ρ2), xI = (xI)
∣

∣

ρ1
∩I(xI)

∣

∣

ρ2
and ∂(xI)|ρi

(ρi) �= ∅,
for i = 1, 2. Moreover, ∂(xI)|ρi

(ρi) = {cI|ρi
(ρi)}. The result follows by the induc-

tion hypothesis and from the definition of cI(ρ1 ∩ ρ2). ��
This result guarantees that, given a linear indexed expression ρ and I ∈ Iρ,

all sets of partial index-derivatives ∂xI(ρ) different from ∅ are singletons with an
unique c-continuation cI(ρ) of ρ w.r.t. I.

Lemma 25. Consider a linear indexed expression ρ. Then, I ∈ Lst(ρ) if and
only if ε(cI(ρ)) = ε.

Lemma 26. Consider a linear indexed expression ρ and sets of indexes I, J ∈
I�

ρ . Then, (I, J) ∈ Fol(ρ) if and only if J ∈ Fst(cI(ρ)).

Definition 27. The c-continuation automaton of an expression α ∈ RE∩ is

Ac(α) = 〈Sc, Σ, {({0}, c{0}(α))}, δc, Fc〉,
where Sc = { (I, cI(α)) | I ∈ Sposi }, Fc = { (I, cI(α)) | ε(cI(α)) = ε },
c{0}(α) = α, δc = { ((I, cI(α)),
(J), (J, cJ(α))) | J ∈ Fst(cI(α)) }.

By Lemmas 25 and 26, and considering ϕ : Sc → Sposi such that ϕ((I, cI(α))) = I,
the following holds.

Theorem 28. For α ∈ RE∩, we have Aposi(α) � Ac(α).

Example 29. Consider the expression α = (b1a�
2b3 + a4) ∩ (a5a6 + b7)�, from

Example 16, and let ρ2 = (a5a6 + b7)�. We have the following c-continuations:
c{1,7}(α) = a�

2b3 ∩ ρ2, c{4,5}(α) = ε ∩ a6ρ2, c{4,6}(α) = ε ∩ ρ2, c{2,5}(α) =
a�
2b3 ∩ a6ρ2, c{2,6}(α) = a�

2b3 ∩ ρ2, and c{3,7}(α) = ε ∩ ρ2.

6 The Apd as a Quotient of Apos

Using Ac we show that the partial derivative automaton Apd is a quotient
of Apos. This extends the corresponding result for simple regular expressions,

Position Automaton Construction for Reg. Expr. with Intersection 61

although the proof cannot use the same technique. Recall that, for a simple reg-
ular expression α, one builds Apd(α), and then shows that when its transitions
are unmarked, the result Apd(α) is isomorphic to a quotient of Ac(α). However,
with α ∈ RE∩, this method cannot be used because, as mentioned in the intro-
duction, intersection does not commute with marking. For α ∈ RE∩, we will
present a direct isomorphism between Apd(α) and a quotient of Ac(α). The next
lemmas will be needed to build that isomorphism.

Lemma 30. Consider a linear indexed expression ρ and I ∈ Iρ. If I ∈ Fst(ρ),
then cI(ρ) �= ∅ and cI(ρ) ∈ ∂I(ρ).

Lemma 31. Consider a linear indexed expression ρ and I, J ∈ Iρ, such that
J ∈ Fst(cI(ρ)). Then, cJ(ρ) ∈ ∂J(cI(ρ)).

Lemma 32. Consider well-indexed expressions ρ′, ρ and I ∈ Iρ, such that ρ′ ∈
∂I(ρ). Then, ρ′ ∈ ∂	(I)(ρ).

Lemma 33. Consider a well-indexed expression ρ, a ∈ Σ and β ∈ ∂a(ρ). Then,
there exist I ∈ Iρ and ρ′ ∈ ∂I(ρ) with
(I) = a and ρ′ = β. Furthermore, for
x = a1 · · · an ∈ Σ�, if β ∈ ∂x(ρ), there exist I1 · · · In ∈ I�

ρ and ρ′ ∈ ∂I1···In(ρ)
with
(I1 · · · In) = x and ρ′ = β.

Given α ∈ RE∩, consider Ac(α) and the equivalence relation ≡	 on Sc given
by (I, cI(α)) ≡	 (J, cJ(α)) if and only if cI(α) = cJ(α), for I, J ∈ Iα ∪ {{0}}.

Lemma 34. The relation ≡	 is right invariant w.r.t. Ac.

Theorem 35. For α ∈ RE∩, Apd(α) � Ac(α)ac/≡	.

Proof. Let Ac(α)ac/≡	 = (S	, Σ, δ	, [({0}, α)], F). We define the map ϕ : S	 →
∂(α) , by ϕ([(I, cI(α))]) = cI(α). We have to show that: 1) ϕ is well-defined; 2) ϕ
is bijective; 3) ϕ(δ	(s, a)) = δpd(ϕ(s), a) for every s ∈ S	, a ∈ Σ; 4) ϕ(F) = Fpd;
5) ϕ([({0}, c{0}(α))]) = α.

Claim 1 follows from Lemmas 30 and 31. The last two are obvious. That ϕ is
injective follows from the definition of ≡	. Furthermore, if β ∈ ∂(α), then there
are terms β0 = α, β1, . . . , βn = β and letters a1, . . . , an ∈ Σ, with n ≥ 0, such
that βi+1 ∈ ∂ai+1(βi) for 0 ≤ i ≤ n−1. It follows from Lemma 33 that there exist
I1 · · · In ∈ I�

ρ and ρ′ ∈ ∂I1···In(α) with
(I1 · · · In) = a1 · · · an and ρ′ = β. Further-
more, by Proposition 24, we know that ∂I1···In(α) = {cIn(α)}, with cIn(α) �= ∅.
Thus, [(In, cIn(α))] ∈ S	 and we conclude that ϕ is surjective. For 3) we consider
both inclusions. Consider β ∈ ϕ(δ	(s, a)), for s ∈ S	 and a ∈ Σ. Then, there exist
I, J ∈ Iα such that [(I, cI(α))] = s, cJ(α) = β, (J, cJ(α)) ∈ δc((I, cI(α)),
(J)) and

(J) = a, i.e. J ∈ Fst(cI(α)). By Lemma 31, we have cJ(α) ∈ ∂J(cI(α)) and by
Lemma 32, cJ(α) ∈ ∂a(cI(α)). Thus, cJ(α) ∈ δpd(cI(α), a). Now, let β ∈ δpd(τ, a),
where τ = cI(α), for some I ∈ Iα and a ∈ Σ. Then, there is a sequence of
terms τ0 = α, τ1, . . . , τn = τ and a sequence of letters a1, . . . , an ∈ Σ such
that τi+1 ∈ ∂ai+1(τi), for 0 ≤ i ≤ n − 1, and β ∈ ∂a(τ), i.e. β ∈ ∂a1···ana(α). By
Lemma 33, there exist J1, . . . , Jn, J ∈ Iα, with
(J1 · · · JnJ) = a1 · · · ana, and ρ′ ∈

62 S. Broda et al.

∂J1···JnJ(α) such that ρ′ = β. By Proposition 24, ρ′ = cJ(α). On the other hand,
it is straightforward to show by structural induction on a well-indexed expres-
sion ρ, that ∂J(ρ) �= ∅ implies J ∈ Fst(ρ). Thus, [(J, cJ(α))] ∈ δ	([(I, cI(α))],
(J))
and consequently β = cJ(α) ∈ ϕ(δ	([(I, cI(α))], a)). ��
Example 36. Consider α = (ba�b + a) ∩ (aa + b)� from Examples 16 and 29. Set
β = (aa + b)�. For the positions present in Ac(α)ac, we have c{4,5}(α) = ε ∩ aβ,
c{3,7}(α) = ε ∩ β, c{2,5}(α) = a�b ∩ aβ, and c{1,7}(α) = c{2,6}(α) = a�b ∩ β.
Merging states ({1, 7}, c{1,7}(α)) and ({2, 6}, c{2,6}(α)) in Ac(α)ac, one obtains
an NFA isomorphic to Apd(α), which is represented in Fig. 2.

α

a b ∩ β

ε ∩ aβ

a b ∩ aβ ε ∩ β

b

a

a

b

a

Fig. 2. Apd((ba
�b + a) ∩ (aa + b)�)

7 Final Remarks

For simple regular expressions of size n, the size of Apos(α) is O(n2), and using
Ac(α) it is possible to efficiently compute Apd(α) [9]. For regular expressions
with intersection the conversion to NFA’s has exponential computational com-
plexity [11] and both the size of Apos and Apd can be exponential in the size of
the regular expression. On the average case, however, the size of these automata
seem to be much smaller [2], and thus feasible for practical applications. In this
scenario, algorithms for building Apd using Apos seem worthwhile to develop.

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the state com-
plexity of partial derivative automata for regular expressions with intersection. In:
Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp.
45–59. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41114-9 4

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret.
Comput. Sci. 48, 117–126 (1986)

4. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 48, 197–213 (1993)

http://dx.doi.org/10.1007/978-3-319-41114-9_4

Position Automaton Construction for Reg. Expr. with Intersection 63

5. Brzozowski, J.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)
6. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

7. Caron, P., Champarnaud, J., Mignot, L.: A general framework for the derivation
of regular expressions. RAIRO - Theor. Inf. Appl. 48(3), 281–305 (2014)

8. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput.
Sci. 233(1–2), 75–90 (2000)

9. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002)

10. Chen, H., Yu, S.: Derivatives of regular expressions and an application. In: Dinneen,
M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS,
vol. 7160, pp. 343–356. Springer, Heidelberg (2012)

11. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. Theor. Comput. Sci. 411(31–33), 2987–2998 (2010)

12. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Reading (1979)

14. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
15. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.

IEEE Trans. Elect. Comput. 9, 39–47 (1960)
16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,

Cambridge (2009)
17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

A Language-Theoretical Approach
to Descriptive Complexity

Michaël Cadilhac(B), Andreas Krebs, and Klaus-Jörn Lange

Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13, Tübingen, Germany
michael@cadilhac.name, mail@krebs-net.de, lange@informatik.uni-tuebingen.de

Abstract. Logical formulas are naturally decomposed into their sub-
formulas and circuits into their layers. How are these decompositions
expressed in a purely language-theoretical setting? We address that ques-
tion, and in doing so, introduce a product directly on languages that
parallels formula composition. This framework makes an essential use of
languages of higher-dimensional words, called hyperwords, of arbitrary
dimensions. It is shown here that the product thus introduced is asso-
ciative over classes of languages closed under the product itself; this
translates back to extra freedom in the way formulas and circuits can be
decomposed.

Keywords: Logic · Languages · Descriptive complexity · Hyperwords ·
Circuits

1 Introduction

The theory of constant-depth polysize unbounded-fan-in circuits (hereafter sim-
ply circuits) abounds in fine classes of languages and open problems about their
relationships. Some of the main classes of focus in the literature are:

– AC0, the class of languages recognized by circuits with Boolean gates;
– TC0, based on AC0 circuits with additional threshold gates, which output 1 if

the majority of their input bits is 1;
– NC1, which, while being usually defined with log-depth, polysize, bounded-

fan-in Boolean circuits, is also characterized by AC0 circuits with additional
regular oracle gates, which output 1 if their input is in a prescribed regular
language.

Strikingly, all these classes admit characterizations that rely on language recog-
nition by first-order logic formulas—these are the classical results of [1,5], that
we recall in Proposition 16 (see [10] for a lovely account). In this framework, the
variables of a logical formula range over the positions in an input word, and
the language described by the formula is the set of words satisfying it. Simi-
larly, algebraic characterizations of AC0 and NC1 relying on programs over finite
monoids [1] and of TC0 relying on recognition by typed monoids [6] are known.
This however is not a mere coincidence, and tokens of the pervasiveness of this
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 64–76, 2016.
DOI: 10.1007/978-3-662-53132-7 6

A Language-Theoretical Approach to Descriptive Complexity 65

interplay between logic, circuits, and algebra were unveiled in more general set-
tings [2,7,10,12], including in restrictions of these classes to a linear number of
gates [3]. Each time, these results are shown inductively by identifying building
blocks (simple formulas, simple circuits, etc.) and an appropriate composition
operation (substitution, stacking of circuits, etc.).

There is, however, a missing link in this picture: a purely language-theoretical
construct that would unify these frameworks. As they all are used in fine as
language specifications, this calls for a better understanding of their building
blocks and compositions, without appeal to a specific model of computation.
This is what we aim for in this article.

Higher Dimensions. A prominent feature of our study is its reliance on words
of higher dimension, that we call hyperwords. Contrary to previous works where
pictures are 2-dimensional, i.e., mappings from {1, 2, . . . ,m} × {1, 2, . . . , n} to
some alphabet [9], our hyperwords are labeled squares, cubes, etc., and more
generally, mappings from {1, 2, . . . , n}d to an alphabet. Going to higher dimen-
sions constitutes a severe change that is prompted by multiple considerations:
1. In the logical framework, composition of formulas (the so-called “substitu-
tion”) is a process that replaces letter predicates ca(x), asserting that there there
is an a at position x in the input, by a formula with one distinguished variable.
Generalizing this substitution to a greater number of variables naturally leads
to consider letter predicates of the form ca(x1, x2, . . . , xd), hence formulas recog-
nizing d-dimensional hyperwords. 2. In the circuit framework, one can speak of
the language accepted by a circuit with n inputs. However, a layer of the cir-
cuit may have a polynomial number of input gates, say nd, and thus accepts a
hyperword of dimension d. 3. Since the early stages of descriptive complexity,
there has been a great interest in quantifiers that bind more than one variable.
For instance, the majority of pairs quantifier, (MAJ2 x, y)[ϕ], asserts that there
is a majority of positions (i, j) of the input word making ϕ(x := i, y := j) true.
Barrington, Immerman, and Straubing conjectured in the seminal paper [1] that
MAJ2 is more powerful than the majority quantifier over a single variable, and
this was proven in [8]. A quantifier of that type, a so-called Lindström quanti-
fier, is entirely described by a set of hyperwords; for instance, the truth value
of (MAJ2 x, y)[ϕ] depends solely on whether the 2-dimensional hyperword map-
ping (i, j) to the truth value of ϕ(x := i, y := j) contains a majority of “true.”
Thus again, quantifiers are determined by hyperword languages.

Our contributions are the following:

1. We adapt the traditional logic framework to the description of hyperword
languages, and define a notion of substitution that extends the one for single
variable formulas (see Sect. 4);

2. We introduce a purely language-theoretical framework, relying on hyperword
languages, and a product over languages (“block product”) that allows to
express logic-defined languages (and thus ultimately languages of circuit fam-
ilies) independently of a model (see Sects. 3 and 6);

66 M. Cadilhac et al.

3. We show that the product thus defined verifies a certain associativity prop-
erty: there is a trade-off between the possible bracketings of an expression
and the dimensions of the languages therein (see Theorem21).

2 Preliminaries

For an integer n, we write [n] for the set {1, 2, . . . , n}. For a function f : X → Y ,
and for a set X ′, we write f�X′ for the function from X ∩ X ′ to Y that agrees
with f on its domain. If x1, x2, . . . , xe are some variables, we write x for the
vector (x1, x2, . . . , xe), and if i is a vector of same length, then x = i is to be
understood component-wise.

In the following, A and B will be alphabets, i.e., finite sets of symbols, and V
will be a finite set of variable symbols included in1 {. . . , v−2, v−1, v0, v1, v2, . . .},
and we will use x, y, x1, x2, . . . to refer to these variables. Such sets V are naturally
ordered, and we will often speak of the i first variables of V.

A stripped hyperword over A of dimension d ≥ 0 and length n ≥ 0 is a map
from [n]d to A; the set of stripped hyperwords of dimension d for any length
is written Hd(A), and in particular, we have that A∗ = H1(A). We will also
naturally identify A with H0(A).

Hyperwords will always be paired with valuations of a (possibly empty) finite
set of variables: we let Hd(A) ⊗ V be the set of pairs W = (strW , valW) such
that strW ∈ Hd(A) and valW : V → {1, . . . , n}, with n the length of strW . These
objects will be called simply hyperwords, and we define the length of W , written
|W |, to be that of strW , its strip to be strW , and its valuation to be valW . A
language of dimension d is then a set of hyperwords of this dimension, and we
identify subsets of Hd(A) with languages in Hd(A)⊗∅. Further, for a hyperword
W ∈ Hd(A) ⊗ V and i ∈ [|W |]d, we write W (i) for the letter strW (i), and if
x ∈ V, then W (. . . , x, . . .) denotes W (. . . , valW (x), . . .). For a variable x that
may or may not be in V and i ∈ [|W |], we write Wx=i for the hyperword with
strip strW and valuation valW modified so that x is mapped to i (hence x is
added to the domain of valW if x /∈ V). Hyperwords of dimension 1 will usually
be called words. For a language L ⊆ Hd(A) ⊗ V, we denote its characteristic
function by χL : Hd(A) ⊗ V → {0, 1}.

3 Composing Languages

We begin with an intuitive presentation. Suppose we are given a language L ⊆
Hd(A) ⊗ {v1}, and we wish to extract from it the language L′ ⊆ Hd(A) of
hyperwords in L that have an even valuation of v1. In symbols, we want to
define L′ = {W | (∃i ∈ 2N)[Wv1=i ∈ L]}. When checking whether W ∈ L′,
we are thus interested in the different values of χL(Wv1=i) for i ranging from 1

1 We only make scarce use of the variables with nonpositive indexes explicitly, with
the notable exception of the first part of the proof of Theorem 21.

A Language-Theoretical Approach to Descriptive Complexity 67

to |W |; indeed, if K is the set of words over {0, 1} having at least one 1 in an
even position, then W ∈ L′ if and only if:

χL(Wv1=1) · χL(Wv1=2) · · · χL(Wv1=|W |) ∈ K.

This construction is a particular example of the block product2 of two languages,
and we shall later write L′ = K � L. Our definition of the block product follows
the definition of Lindström quantifiers (e.g., [1]) by making the following three
generalizations:

1. We extend the valuation of v1 to a set of variables; for instance, for two
variables v1 and v2, rather than checking whether the word whose i-th letter
is χL(Wv1=i) belongs to K, it should be checked whether the hyperword whose
letter at position (i, j) is χL(Wv1=i,v2=j) belongs to K;

2. The membership tests χL(Wv1=i) are allowed to range over a finite number
of different languages L; this implies that K in our example is not simply a
language over {0, 1}, but over {0, 1}k for some k > 0;

3. We introduce mappings from the truth values of these membership tests to
different alphabets; in other words, we implement a mechanism to let K be
over any alphabet.

Definition 1 (Simple join). Let (Li)i∈[k] be languages. When (and only when)
all the Li’s share the same alphabet A, dimension d, and variable set V, we write
L = [L1, L2, . . . , Lk] to denote the vector whose i-th component is Li.

This vector L is called a simple join of length k over Hd(A) ⊗ V, and we
naturally extend the characteristic functions to such objects by letting, for any
W ∈ Hd(A) ⊗ V, χL(W) =

(

χL1(W), χL2(W), . . . , χLk
(W)

) ∈ {0, 1}k.

Definition 2 (Block product). Let K be a language in He(B) ⊗ V and L be
a simple join of length k over Hd(A) ⊗ (X ∪ V) with X = {x1, x2, . . . , xe} the
first e variables of X ∪ V, in order. Further, let g : {0, 1}k → B.

Let W ∈ Hd(A)⊗V. The transcript τ(W) ∈ He(B)⊗V of W is the hyperword
with strip:

[|W |]e → B

(i1, i2, . . . , ie) �→ g(χL(Wx=i)),

and valuation valW . The block product of K and L (with alphabet replace-
ment g) is then K �g L = {W ∈ Hd(A) ⊗ V | τ(W) ∈ K}.
Notation 3. We will often use alphabet replacements from {0, 1}k to {0, 1}. In
this case, we see 0, 1 as Boolean values, and use the notations ∧,∨,↔, . . . directly
in the list L. For instance, L = K � [L1 ∨ (L2 ↔ L3)] defines g : {0, 1}3 → {0, 1}
2 This nomenclature stems from the algebraic operation bearing the same name. There

is a precise relationship between block products of monoids and block products of
languages of words (Definition 2) that will be made explicit in an extended version
of this article.

68 M. Cadilhac et al.

by g(i, j, k) = i ∨ (j ↔ k), and then L = K �g [L1, L2, L3]. Further, we omit
the alphabet replacement when it is the identity, and if L is a language, we write
K � L for K � [L].

The following operators do not directly relate to the block product. However,
they will be part of our elementary set of tools to define more complex languages.

Definition 4 (Variable operators). Let L ⊆ Hd(A) ⊗ V. The following two
operators respectively decrease and increase the number of variables used.

The variable renaming identifies and renames variables of V. Let σ : V → V ′

be a given partial map, for a set V ′ of variables. First, extend σ to all of V by
letting σ(x) = x if σ was undefined on x. Then for a valuation val of σ(V), write
σ−1(val) for the valuation of V mapping x to val(σ(x)). The variable renaming
of L by σ is ren(L, σ) = {W ∈ Hd(A) ⊗ σ(V) | (strW , σ−1(valW)) ∈ L}.

The variable extension augments the set of variables V with untested vari-
ables. Let V ′ be a finite set of variables, the variable extension of L by V ′ is
var-ext(L,V ′) = {W ∈ Hd(A) ⊗ (V ∪ V ′) | (strW , valW�V) ∈ L}.

4 The Descriptive Complexity Framework

We present a generalized version of the classical framework of descriptive com-
plexity for expressing languages (e.g., [1,10]). The generalization lies essentially
in the ability for a formula to recognize a language of hyperwords. A logic will
be given by the set of allowed quantifiers and numerical predicates, which will
have a preset semantics. As an example, we want to be able to write formulas
such as (MAJ2,1 v1, v2)[ca(v1, v2)], expressing that there is a majority of pairs of
positions (i, j) such that the 2-dimensional input hyperword has an a in position
(i, j). As usual (e.g., [1,8]), we also allow multiple formulas under the scope of
a quantifier.

Definition 5 (Quantifier, numerical predicate). An (e, k)-ary quantifier is
a pair (L, g) where L ⊆ He(A)⊗V, for some alphabet A and variable set V, and
g : {0, 1}k → A. Intuitively, e will be the number of variables quantified and k
the number of formulas over which the quantifier ranges.

An e-ary numerical predicate is a subset of H1({a}) ⊗ {v1, v2, . . . , ve}.
Definition 6 (Logic). Given a set of quantifiers Q and a set of numerical
predicates N , we define the logic Q[N] as the set of following formulas with the
provided semantics:

– Syntax. A formula of dimension d over the alphabet A is built from the fol-
lowing syntax, where the xi’s are variables that are not necessarily distinct,
except in Case 3:

ϕ:: = ca(x1, x2, . . . , xd) where a∈ A (1)
| N(x1, x2, . . . , xe) for any N ∈ N of arity e (2)
| (Q x1, x2, . . . , xe)[ϕ1, ϕ2, . . . , ϕk] for any Q∈ Q of arity (e, k) (3)
| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 (4)

A Language-Theoretical Approach to Descriptive Complexity 69

We rely on the usual vocabulary concerning variables: a variable used in a
formula is bounded if it always appears after being quantified, otherwise it
is free. This includes the variables that may appear within a quantifier, e.g.,
if Q = (L, g) is a quantifier where L ⊆ H1(A) ⊗ V, then all variables of
V are free in (Q x)[ϕ]. If {vi1 , vi2 , . . . , vin

} are the free variables of ϕ, with
i1 < i2 < · · · < in, we write ϕ(x1, x2, . . . , xk), with k ≤ n, for the formula
ϕ with vij

replaced by xj, for all j ∈ [k]; we let the formulas obtained in this
fashion also belong to Q[N].

– Semantics. Let ϕ be a formula of dimension d over the alphabet A, and V a
set containing all its free variables. A hyperword W ∈ Hd(A)⊗V is said to be
a model of ϕ, written W |= ϕ, when (the cases refer to the above syntax):

• (Case 1). W (x1, x2, . . . , xd) = a, recalling our use of W (. . . , xi, . . .) as
short for W (. . . , valW (xi), . . .).

• (Case 2). The word (a|W |, {vi �→ valW (xi)}i∈[e]) is in N .
• (Case 3). W ′ ∈ L, where Q = (L, g) with L ⊆ He(B) ⊗ V ′, and W ′ is

defined as the hyperword with strip:

[|W |]e → B

(i1, i2, . . . , ie) �→ g
(

(Wx=i |= ϕ1) · (Wx=i |= ϕ2) · · · (Wx=i |= ϕe)
)

,

(where “Wx=i |= ϕj” is 1 if true, and 0 otherwise) and valuation valW�V′ .
• (Case 4). For ∧, when W |= ϕ1 and W |= ϕ2, and likewise for ∨ and ¬.

Finally, we let L(ϕ), the language of ϕ, be {W ∈ Hd(A) ⊗ V | W |= ϕ}, with V
the set of free variables of ϕ, and also identify Q[N] with the class of languages
of its formulas.

Example 7 (Some standard quantifiers). The first-order quantifiers FO = {∃,∀}
are defined as follows. The (1, 1)-ary quantifier ∃ consists of the pair (L, g) where
g is the identity over {0, 1}, and L the set of words {0, 1}∗ · 1 · {0, 1}∗. The
quantifier ∀ is defined similarly with L = 1∗.

The (e, k)-ary majority quantifier MAJe,k is the pair (L, g) where
g : {0, 1}k → {−k, . . . , k} computes the difference of the number of 1’s and 0’s
and L consists of hyperwords of He({−k, . . . , k}) such that the sum of all let-
ters appearing is greater than 0. The counting quantifier ∃=v1 can be expressed
correspondingly.

Example 8 (Some standard numerical predicates). The 2-ary numerical predi-
cate = is the set of words w such that valw(v1) = valw(v2); we always assume
that this predicate belongs to N when defining a logic. The 2-ary numerical
predicate < is defined similarly. Next, + is a 3-ary numerical predicate for which
valw(v1) + valw(v2) = valw(v3). The 2-ary numerical predicate +1 is the one for
which the words verify valw(v1) + 1 = valw(v2). The 1-ary numerical predicate
max is the set of words w for which valw(v1) = |w|.
Definition 9 (Substitution). Let ϕ ∈ Q[N] be a formula of dimension e over
the alphabet B, and ϕ1, ϕ2, . . . , ϕk ∈ Q[N] be formulas of dimension d over the

70 M. Cadilhac et al.

alphabet A. Further let g : {0, 1}k → B. The formula ϕ ◦g [ϕ1, ϕ2, . . . , ϕk] is
obtained from ϕ by replacing its atomic formulas ca(x1, x2, . . . , xe), a ∈ B, by:

∨

v∈g−1(a)

(

∧

i:vi=1

ϕi(x1, x2, . . . , xe) ∧
∧

i:vi=0

¬ϕi(x1, x2, . . . , xe)
)

.

This results in a formula of Q[N] of dimension d over the alphabet A called a
substitution of ϕ.

5 Examples

Example 10 (Existential quantification, logical and). Let Li ⊆ Hd(A)⊗{v1}, for
i = 1, 2, be defined as {W | W |= ϕi} for some formulas ϕi of dimension d with
free variable v1. We wish to express L defined by the formula (∃v1)[ϕ1 ∧ ϕ2]
using the block product. To this end, let E = {0, 1}∗ · 1 · {0, 1}∗, we claim that:

L = E � [L1 ∧ L2].

Indeed, the transcript of a hyperword W has a 1 in position i iff, by definition,
χ[L1,L2](Wv1=i) = (1, 1), that is, iff Wv1=i ∈ L1 ∩ L2. The language E then
checks that there exists one position of the transcript that contains a 1.

Example 11 (Identities). Example 10 seems to indicate that Boolean operations
on languages ought to be expressed under the scope of a quantifier (existential in
the example). This is correct, but does not come at the expense of introducing
new variables, since we may speak about 0-dimensional hyperwords, that is,
letters. Thus any language L is equal to {1} � L, where the left-hand side is of
dimension 0.

Now let L ⊆ Hd(A) ⊗ V, we wish to express L by using it as the left-hand
side of a block product. Let V ′ = {v1, v2, . . . , vd}, and define for all a ∈ A the
language Ca ⊆ Hd(A) ⊗ V ′ to be the set of hyperwords W with W (v) = a.
Finally, with A = {a1, a2, . . . , a�}, let g : {0, 1}� → A map (b1, b2, . . . , b�) to ai if
bi = 1 for some unique i—the other values of g being irrelevant. It then holds
that:

L = L �g [var-ext(Ca1 ,V), var-ext(Ca2 ,V), . . . , var-ext(Ca�
,V)].

Example 12 (Boolean operations). Now given a Boolean expression on k vari-
ables, that is, a function g : {0, 1}k → {0, 1}, and a simple join [L1, L2, . . . , Lk],
the language obtained by combining the languages using the expression is:

{1} �g [L1, L2, . . . , Lk].

In particular, we have:

L1 ∪ L2 = {1} � [L1 ∨ L2], L1 ∩ L2 = {1} � [L1 ∧ L2].

A Language-Theoretical Approach to Descriptive Complexity 71

6 Logics and Their Language Classes

In this section, we show that, given a logic, the class of languages recognized
by its formulas is the closure, under mainly block product, of a set of languages
associated with its quantifiers and numerical predicates.

Definition 13 (Block closure). A class of languages C is block-closed if it is
closed under block products, variable extension, and variable renaming. Further,
for a class of languages C, we let �∗ (C) be the smallest block-closed class that
contains C and the languages CA,d

a , defined for any alphabet A, a ∈ A, and
d ≥ 0, as:

CA,d
a = {W ∈ Hd(A) ⊗ {v1, v2, . . . , vd} | W (v1, v2, . . . , vd) = a}.

For a map g : A → B and a hyperword W ∈ Hd(A) ⊗ V, write g(W) for the
hyperword W where each letter a ∈ A of strW is replaced by g(a).

Theorem 14. Let Q be a set of quantifiers and N be a set of numerical predi-
cates. Let Q′ = {g−1(L) | (L, g) ∈ Q}. Then Q[N] = �∗ (Q′ ∪ N).

Proof. (Q[N] ⊆ �∗ (Q′ ∪ N)). This is proved by induction; let ϕ ∈ Q[N] over A
with free variables in V, then:

– If ϕ ≡ ca(x1, x2, . . . , xd), then L(ϕ) = ren(CA,d
a , σ), with σ = {vi �→ xi}i∈[e];

– If ϕ ≡ N(x1, x2, . . . , xe) for N ∈ N of arity e, then L(ϕ) = ren(N,σ) with
σ = {vi �→ xi}i∈[e];

– If ϕ ≡ (Q x1, x2, . . . , xe)[ϕ1, ϕ2, . . . , ϕk], with Q = (L, g) ∈ Q of arity (e, k),
then let by induction Li = L(ϕi) ∈ �∗ (Q′ ∪ N), for i ∈ [k]. Further, rename
the variables of all the Li’s and K = g−1(L) so that x1, x2, . . . , xe appear first
among all the variables used, and extend these languages to a common set of
variables. Then L(ϕ) = K � [L1, L2, . . . , Lk];

– If ϕ ≡ ϕ1 ∧ ϕ2, then, noting that {1}, as 0-dimensional, is C
{0,1},0
1 , and by

Example 12, L(ϕ) = C
{0,1},0
1 � [var-ext(L(ϕ1),V) ∧ var-ext(L(ϕ2),V)];

– The cases ϕ ≡ ϕ1 ∨ ϕ2 and ϕ ≡ ¬ϕ1 are similar to the previous one.

Additionally, renaming of variables is achieved through ren. In each case, we
inductively have that L(ϕ) ∈ �∗ (Q′ ∪ N).

(�∗ (Q′ ∪ N) ⊆ Q[N]). Again, this is done by induction; let L ∈ �∗ (Q′ ∪ N),
with L ⊆ Hd(A) ⊗ V, then:

– If L = N for N ∈ N of arity e, then L = L(ϕ) for ϕ ≡ N(v1, v2, . . . , ve) seen
as a formula of dimension 1 over {a};

– If L = g−1(L′) for Q = (L′, g) ∈ Q, then A = {0, 1}k for some k. We then
have that L = L(ϕ) with:

ϕ ≡ (Q v1, v2, . . . , vd)
[

∨

u∈{0,1}k:u1=1

cu(v1, v2, . . . , vd),

...
∨

u∈{0,1}k:uk=1

cu(v1, v2, . . . , vd)
]

;

72 M. Cadilhac et al.

– If L = CA,d
a , then L = L(ϕ) with ϕ ≡ ca(v1, v2, . . . , vd) seen as a formula

over A;
– If L = var-ext(L′,V ′), then with ϕ′ such that L′ = L(ϕ′), define ϕ as the

formula ϕ′ ∧ ∧

x∈V′ x = x. We thus have that L(ϕ) is L(ϕ′) over the variables
V ∪ V ′, hence L = L(ϕ);

– If L = ren(L′, σ), then we simply apply the renaming σ to the formula defin-
ing L′;

– Finally, if L = K �g [L1, L2, . . . , Lk], let ϕi such that L(ϕi) = Li for all i, and
ϕK such that L(ϕK) = K, then L = L(ϕK ◦g [ϕ1, ϕ2, . . . , ϕk]).z ��
A salient property of this characterization is that there is no syntactic dif-

ference made between the languages coming from quantifiers, and those coming
from numerical predicates. From this, we naturally derive the following restate-
ment of Theorem 14 starting from languages:

Theorem 15. Let C be a class of languages containing the numerical predicate
=. Let Q be the set of quantifiers (L, g) such that L ∈ C. It holds that Q[=] =
�∗ (C).

We note that Theorem 14 immediately implies that some complexity classes
can be expressed as the block-closure of simple languages, namely:

Proposition 16. The following equalities hold:

– DLOGTIME-uniform TC0 = �∗ ({MAJ2,1, <});
– DLOGTIME-uniform NC1 = �∗ ({MAJ2,1,S5, <}), with S5 the symmetric

group on 5 elements, seen as the language of words σ1σ2 · · · σn, with each
σi ∈ S5, that evaluate to the identity permutation;

– P = �∗ ({MAJ2,1,CVP, <}), where CVP is the circuit valuation problem, that
is, encoding of Boolean circuits that evaluate to one.

7 Associativity of the Block Product

In the context of the block product of algebraic structures,3 it is well known
that parenthesizing plays a crucial role. Indeed, the composition (M � N) � K
is sometimes called the weak product [3,11], by opposition to the strong one
M � (N � K), and it can be proved that the former recognizes, in general, less
languages than the latter. Similarly—equivalently in fact [11,12]—the classical
notion of formula substitution (akin to our definition but with formulas of dimen-
sion one) depends intrinsically on the parenthesizing: ϕ1 ◦ (ϕ2 ◦ (ϕ3 ◦ · · ·)) can
express all formulas starting from formulas of depth 1 (i.e., formulas with one
quantifier), while ((· · · (ϕ1 ◦ ϕ2) ◦ ϕ3) ◦ · · ·) can only express formulas with two
variables (that may be reused). Here, we show that we can get more freedom
in the parenthesizing, provided that we allow products of languages of higher
dimensions. We place this result in a purely language-theoretical framework
3 The reader not versed in that topic can think of block products of monoids as block

products of the languages of dimension 1 recognized by them.

A Language-Theoretical Approach to Descriptive Complexity 73

(i.e., with languages and block products), and by Theorem14 and its proof,
it would carry over to the logical setting (i.e., with logical formulas and substi-
tutions).

Naturally, as products of one-dimensional languages are nonassociative, we
cannot hope for K � (L1 � L2) to be equal to (K � L1) � L2 in general. We
will however see in the proof of the forthcoming Theorem21, that it is enough
to provide a dimensional jump of L1:

Definition 17 (Dimensional jump). Let L ⊆ Hd(A) ⊗ V. For 0 < c ≤ |V|,
we let �L�c, the c-dimensional jump of L, be the language of hyperwords W in
Hc+d(A) ⊗ V defined as copies of L in the following sense. Let {x1, x2, . . . , xc}
be the c first variables of V. For v ∈ [|W |]c, define W (v, •) as the d-dimensional
hyperword of strip mapping u ∈ [|W |]d to W (v,u), and of valuation valW . Then:

W ∈ �L�c ⇔ W (x1, x2, . . . , xc, •) ∈ L.

If [L1, . . . , Lk] is a join, we let �L1, . . . , Lk�c = [�L1�
c, . . . , �Lk�c].

Further, to treat simple lists, we will need the following symmetric operators
that increase the dimension of hyperwords by a constant, the original hyperwords
appearing in the first or the last components. With the notations of Definition 17:

Definition 18 (Dimensional extensions). The right dimensional extension
of L ⊆ Hd(A) ⊗ V for any e > 0, written dim-ext(L, e), is defined as the set
{W ∈ Hd+e(A) ⊗ V | (∀v ∈ [|W |]e)[W (v, •) ∈ L]}.

Similarly, its left dimensional extension dim-ext(e, L) is the set of hyperwords
{W ∈ He+d(A) ⊗ V | (∀v ∈ [|W |]e)[W (•,v) ∈ L]}.

Finally, we will need to be able to “enlarge” the alphabets at hand:

Definition 19 (Alphabet product extension). Let L ⊆ Hd(A) ⊗ V and
B be an alphabet. The right alphabet product extension of L by B, written
alph-prod(L,B), is the set of hyperwords in Hd(A × B) ⊗ V such that dropping
the second component of each letter gives a hyperword in L. The left alphabet
product extension alph-prod(B,L) is defined symmetrically, resulting in hyper-
words in Hd(B × A) ⊗ V.
Lemma 20. Any block-closed class �∗ (C) containing the language 1∗ is closed
under dimensional jump, dimensional extensions, and alphabet product exten-
sions.

The aforementioned associativity property of the block product is then:

Theorem 21. Every language of a block-closed class �∗ (C) can be written from
the languages of C and the languages CA,d

a using block products, variable exten-
sions, variable renaming, dimensional jump and extensions, and alphabet product
extensions, in such a way that no right-hand side of a block product contains a
block product.

74 M. Cadilhac et al.

Proof. Any language of �∗ (C) can be written, by definition, from the languages of
C and the languages CA,d

a using block products, variable extension, and variable
renaming. It is not hard to show that the variable related operators and the
dimensional jump can be pushed to the language level, so that a block product
is never under the scope of such operators.

To show the main claim, we proceed inductively on the structure of the
expression defining a language L of �∗ (C), assuming that the variable operators
are at the language level. The claim is true for languages of C, their jumps, and
their variable extensions and renaming.

We consider first a simplified situation. Let K,L1, L2 be languages of dimen-
sions i, j, and k respectively. We claim that K � (L1 � L2) = (K � �L1�

i) � L2,
assuming that the left-hand side is well-defined.

Indeed, let W be a hyperword; we show that the transcript of W at the
outermost product of the left-hand side is the same as the transcript of W at
the innermost product of the right-hand side. This proves the equality, as the
membership of W to either side depends only on this transcript.

The transcript W ′ of W at the outermost product of the left-hand side is the
i-dimensional hyperword whose strip maps v to 1 iff W ′′ = Wx=v ∈ L1 � L2,
where x denotes the i first variables of L1. In turn, this holds iff the transcript
of W ′′ at the innermost product of the left-hand side is in L1; define U as the
(i + j)-dimensional hyperword such that U(v, •) is that transcript, for any v of
dimension i, and valuation valW . We have that W ′(v) = 1 iff U(v, •)x=v ∈ L1,
that is, iff Ux=v ∈ �L2�

i. Now U is precisely the transcript of W at the outermost
product of the right-hand side. Thus the transcript of U at the innermost product
of the right-hand side is an i-dimensional hyperword whose strip maps v to 1 iff
Ux=v ∈ �L2�

i, and this transcript is W ′. This shows the equality.
We now introduce simple lists in two steps. Writing [L1, L2] �g L for the

simple list [L1 �g L, L2 �g L], first note that:

K �f

(

[L1, L2] �g L)

= (K �f �L1, L2�
i) �g L.

Now to treat the general case and conclude this proof, consider the expression
K �f [L1 �g L, L2 �g′ L′]. Clearly, for it to be well-defined, L1 and L2 must have
the same set of variables, thus write Li ⊆ Hdi

(Ai) ⊗ V, i = 1, 2. Further, define
L′
1 = alph-prod(L1, A2) and L′

2 = alph-prod(A1, L2). Using techniques similar
to the above, we may assume that all the languages in L and L′ are over the
variables X � V and X ′ � V, respectively, so that: 1. |X | = d1, |X ′| = d2; 2. All
the variables in X are smaller than those in X ′; and 3. All the variables in X ′ are
smaller than those in V. Finally, write g′′(u,v) = (g(u), g(v)). It then readily
holds that the above expression is equal to:

K �f

(

[

dim-ext(L1, d2), dim-ext(d1, L2)
]

�g′′
[

var-ext(L,X ′), var-ext(L′,X)
]

)

,

where var-ext is applied component-wise to all languages of L and L′. This con-
cludes the proof, as this is of the simpler above form. ��

A Language-Theoretical Approach to Descriptive Complexity 75

Example 22 (Majorities). As alluded to, the majority of pairs quantifier MAJ2,1

is more powerful than the simple majority quantifier MAJ1,1, even when nested.
It is thus interesting to see which quantifiers arise from Theorem21.

Consider the language M of words over {0, 1} containing more 1’s than 0’s.
Let L′ = M � (var-ext(M, {v1}) � L) be a well-defined language, where v1 is the
first variable of L. Then L′ = (M � �var-ext(M, {v1})�1) � L, by the proof of
Theorem 21. Let Z = (M � �var-ext(M, {v1})�1), which is a subset of H2({0, 1});
we describe Z. A hyperword W ∈ H2({0, 1}) is in Z iff its transcript is in M ,
by definition. This transcript has a 1 in position i ∈ [|W |] iff W (i, •) ∈ M .
Thus, seeing two-dimensional hyperwords as arrays, a hyperword W is in Z iff
there is a majority of rows of W that contain a majority of 1. There lies the
intrinsic difference with MAJ2,1, a quantifier that would translate to a language
of two-dimensional hyperwords having more 1’s than 0’s.

For two language classes C and D, write C � D for the block closure of the
set of languages L � L′ for all L ∈ C and L′ a simple join of languages in D.

Corollary 23. For any classes C, D, E obtained as block closures, we have:

C � (D � E) = (C � D) � E .

8 Conclusion

We presented a novel purely language-theoretical framework to express classes
of languages described by logics. This addresses two shortcomings of the simi-
lar algebraic theory of typed monoids [6,7]. First, quantifiers on tuples can be
expressed, providing for instance a shorter, arguably more compelling character-
ization of TC0, and thus overcoming the limitation of “linear fan-in.” Second, by
allowing words of higher dimensions, we obtain a product mimicking the classi-
cal block product of algebraic structures that exhibits a property reminiscent of
associativity—this may allow to translate techniques than only applied to weak
parenthesizing (e.g., [4]) to a more general setting.

We believe that the results herein advocate for the use of hyperwords, leading
to a unified framework in which the freedom of speaking of partial formulas (and
hence partial circuits) is balanced by the dimensions used in expressing their
composition.

Acknowledgments. We thank Charles Paperman for stimulating discussions.

References

1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci 41(3), 274–306 (1990)

2. Behle, C., Lange, K.J.: FO[<]-uniformity. In: Proceedings of the 21st Annual IEEE
Conference on Computational Complexity (CCC 2006), pp. 183–189 (2006)

76 M. Cadilhac et al.

3. Behle, C., Krebs, A., Mercer, M.: Linear circuits, two-variable logic and weakly
blocked monoids. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708,
pp. 147–158. Springer, Heidelberg (2007)

4. Behle, C., Krebs, A., Reifferscheid, S.: Regular languages definable by majority
quantifiers with two variables. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS,
vol. 5583, pp. 91–102. Springer, Heidelberg (2009)

5. Immerman, N.: Expressibility and parallel complexity. SIAM J. Comput. 18(3),
625–638 (1989)

6. Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite
groups. Theor. Comput. Syst. 40(4), 303–325 (2007)

7. Krebs, A.: Typed semigroups, majority logic, and threshold circuits. Ph.D. thesis,
Eberhard Karls University of Tübingen (2008)

8. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive com-
plexity approach to LOGCFL. J. Comput. Syst. Sci. 62(4), 629–652 (2001)

9. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages: Volume 3
Beyond Words. Springer, Heidelberg (1997)

10. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston (1994)

11. Straubing, H., Thérien, D.: Weakly iterated block products of finite monoids. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 91–104. Springer, Heidelberg
(2002)

12. Thérien, D., Wilke, T.: Nesting until and since in linear temporal logic. Theor.
Comput. Syst. 37(1), 111–131 (2004)

k-Abelian Equivalence and Rationality

Julien Cassaigne1, Juhani Karhumäki2, Svetlana Puzynina3,4,
and Markus A. Whiteland2(B)

1 Institut de Mathématiques de Marseille, Marseille, France
julien.cassaigne@math.cnrs.fr

2 Department of Mathematics and Statistics, University of Turku, Turku, Finland
{karhumak,mawhit}@utu.fi

3 LIP, ENS de Lyon, Université de Lyon, Lyon, France
4 Sobolev Institute of Mathematics, Novosibirsk, Russia

s.puzynina@gmail.com

Abstract. Two words u and v are said to be k-abelian equivalent if, for
each word x of length at most k, the number of occurrences of x as a
factor of u is the same as for v. We study some combinatorial properties of
k-abelian equivalence classes. Our starting point is a characterization of
k-abelian equivalence by rewriting, so-called k-switching. We show that
the set of lexicographically least representatives of equivalence classes is
a regular language. From this we infer that the sequence of the numbers
of equivalence classes is N-rational. We also show that the set of words
defining k-abelian singleton classes is regular.

Keywords: k-abelian equivalence · Regular languages · Rational
sequences

1 Introduction

k-abelian equivalence has attracted quite a lot of interest recently, see, e.g.,
[1,2,8,10,12,15]. It is an equivalence relation extending abelian equivalence and
allowing an infinitary approximation of the equality of words defined as follows:
for an integer k, two words u and v are k-abelian equivalent, denoted by u ∼k v,
if, for each word w of length at most k, w occurs in u and v equally often.

k-abelian equivalence, originally introduced in [7], has been studied, e.g., in
the following directions: avoiding k-abelian powers [6,15], estimating the number
of k-abelian equivalence classes, that is, k-abelian complexity [11], analyzing
the growth and the fluctuation of the k-abelian complexity of infinite words
[1], analyzing k-abelian palindromicity [8], and studying k-abelian singletons [9].

J. Karhumäki—Supported by the Academy of Finland, grant 257857.
S. Puzynina—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Univer-
sité de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).
M.A. Whiteland—Supported by the Academy of Finland, grant 257857.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 77–88, 2016.
DOI: 10.1007/978-3-662-53132-7 7

78 J. Cassaigne et al.

We continue the approach of analyzing the structure of k-abelian equivalence
classes. We also study some numerical properties of the equivalence classes.

Our starting point is a k-switching lemma, proved in [9], which allows a char-
acterization of k-abelian equivalence in terms of rewriting. This is quite different
from the other existing characterizations, so it is no surprise that it opens new
perspectives of k-abelian equivalence. This is what we intend to explore here.

A fundamental observation from the characterization of k-abelian equiva-
lence using k-switching is that certain languages related to k-abelian equivalence
classes are regular (or rational). More precisely, the union of all singleton classes
forms a regular language, for any parameter k, and any size m of the alpha-
bet. Similarly, the set of lexicographically least (or greatest) representatives of
k-abelian equivalence classes forms a regular language. Summing up all mini-
mal elements of a fixed length we obtain the number of equivalence classes of
words of this length. As a consequence, we conclude that the complexity func-
tion of k-abelian equivalence, that is, the function computing the number of the
equivalence classes of all lengths, is a rational function.

Everything above is algorithmic. So, given the parameter k and the size m
of the alphabet, we can algorithmically compute a rational generating function
giving the numbers of all equivalence classes of words of length n. However, the
automata involved are – due to the non-determinism and the complementation
– so huge that in practice this can be done only for very small values of the
parameters. We illustrate these in a few examples.

Inspired by the connection to automata theory, we study k-switching in con-
nection with regular languages. We show that regular languages are closed under
the k-switching operation. On the other hand, we show that regular languages
are not closed under the transitive closure of this operation. Using the former
result, we conclude that the union of k-abelian equivalence classes of size two
is regular. On the other hand, it remains open whether this extends, instead of
classes of size two, to larger classes. Another open problem is to determine the
asymptotic behavior of the complexity function of equivalence classes.

2 Preliminaries and Notation

We recall some notation and basic terminology from the literature of combina-
torics on words. We refer the reader to [13] for more on the subject.

The set of finite words over an alphabet Σ is denoted by Σ∗ and the set of
non-empty words is denoted by Σ+. The empty word is denoted by ε. A set
L ⊆ Σ∗ is called a language. We let |w| denote the length of a word w ∈ Σ∗. By
convention, we set |ε| = 0. The language of words of length n over the alphabet
Σ is denoted by Σn.

For a word w = a1a2 · · · an ∈ Σ∗ and indices 1 ≤ i ≤ j ≤ n, we let w[i, j]
denote the factor ai · · · aj . For i > j we set w[i, j] = ε. Similarly, for i < j we let
w[i, j) denote the factor ai · · · aj−1, and we set w[i, j) = ε when i ≥ j. We say
that a word x ∈ Σ∗ has position i in w if the word w[i, |w|] has x as a prefix.
For u ∈ Σ+ we let |w|u denote the number of occurrences of u as a factor of w.

k-Abelian Equivalence and Rationality 79

Two words u, v ∈ Σ∗ are k-abelian equivalent, denoted by u ∼k v, if |u|x =
|v|x for all x ∈ Σ+ with |x| ≤ k. The relation ∼k is clearly an equivalence
relation; we let [u]k denote the k-abelian equivalence class defined by u. A word
u is called a k-abelian singleton if |[u]k| = 1.

In [9], k-abelian equivalence is characterized in terms of rewriting, namely by
k-switching. For this we define the following. Let k ≥ 1 and let u ∈ Σ∗. Suppose
that there exist x, y ∈ Σk−1, not necessarily distinct, and indices i, j, l and m,
with i < j ≤ l < m, such that x has positions i and l in u and y has positions j
and m in u. In other words, we have

u = u[1, i) · u[i, j) · u[j, l) · u[l,m) · u[m, |u|],
where both u[i, |u|] and u[l, |u|] begin with x and both u[j, |u|] and u[m, |u|] begin
with y. Furthermore, u[i, j), u[l,m) �= ε but we allow l = j, in which case y = x
and u[j, l) = ε. We define a k-switching on u, denoted by Su,k(i, j, l,m), as

Su,k(i, j, l,m) = u[1, i) · u[l,m) · u[j, l) · u[i, j) · u[m, |u|]. (1)

A k-switching operation is illustrated in Fig. 1.

Fig. 1. Illustration of a k-switching. Here v = Sk,u(i, j, l,m); the white rectangles
symbolize x and the black rectangles symbolize y.

Example 1. Let u = aabababaaabab and k = 4. Let then x = aba, y = bab, i = 2,
j = 3, l = 4 and m = 11. We then have

u = a · a · b · ababaaa · bab

Su,4(i, j, l,m) = a · ababaaa · b · a · bab.

Note here that the occurrences of x are overlapping. With i = 2, j = l = 4, and
m = 10 we obtain the same word as above:

u = a · ab · ababaa · abab

Su,4(i, j, j,m) = a · ababaa · ab · abab.

In this example we have j = l, whence x = y = aba and u[j, l) = ε.

Let us define a relation Rk of Σ∗ by uRkv if and only if v is obtained from u by
a k-switching. Now Rk is clearly symmetric, so that the reflexive and transitive
closure R∗

k of Rk is an equivalence relation on Σ∗. In [9], k-abelian equivalence
is characterized using R∗

k:

80 J. Cassaigne et al.

Lemma 2. For u, v ∈ Σ∗, we have u ∼k v if and only if uR∗
kv.

We need a few basic properties of regular (or rational) languages, such
as equivalent definitions of regular languages with various models of finite
automata, e.g., nondeterministic finite automata which can read the empty word
(ε-NFA), and some basic closure properties of regular languages. We refer to [3]
for this knowledge. In addition to classical language theoretical properties, we
use the theory of languages with multiplicities. This counts how many times a
word occurs in a language. This leads to the theory of N-rational sets. Using the
terminology of [16], a multiset over Σ∗ is called N-rational if it is obtained from
finite multisets by applying finitely many times the rational operations product,
union, and taking quasi-inverses, i.e., iteration restricted to ε-free languages.
Further, a unary N-rational subset is referred to as an N-rational sequence. We
refer to [16] for more on this topic. The basic result we need is (see [16]):

Proposition 3. Let A be a nondeterministic finite automaton over the alphabet
Σ. The function fA : Σ∗ → N defined as

fA(w) = # of accepting paths of w in A
is N-rational. In particular, the function �A : N → N,

�A(n) = # of accepting paths of length n in A (2)

is an N-rational sequence. Consequently, the generating function for �A is a
rational function.

3 Properties of k-Switchings

Our starting point for the study of structural properties of k-abelian equivalence
classes is the characterization of k-abelian equivalence in terms of k-switchings.
We proceed to describe a k-switching operation on languages. We show that this
operation preserves regularity. That is, given a regular language L, the language
obtained by this operation is also regular. This result will be used later on.

We now describe k-switchings on languages. For a language L ⊂ Σ∗, we
define the k-switching of L, denoted by Rk(L), as the language

Rk(L) = {w ∈ Σ∗ | wRkv for some v ∈ L}.

Similarly, we define R∗
k(L) =

⋃

n∈N
Rn

k (L) =
⋃

w∈L[w]k.
Note that, from a regular language L, it is straightforward to identify all

words that admit a k-switching (i.e., the words on the top row of Fig. 1). It is
not at all clear that, by performing all possible k-switchings on all words of L
(i.e., taking the union of all words on the bottom row of Fig. 1), the obtained
language is also regular. We give a direct automata theoretic construction to
show this.

Theorem 4. Let L be a regular language. Then Rk(L) is also regular.

k-Abelian Equivalence and Rationality 81

Proof. For a language L and fixed words x, y ∈ Σk−1, consider the language

Rx,y(L) = {w ∈ Σ∗ | w =Sk,u(i, j, l,m) for some i < j ≤ l < m, u ∈ L,

with u[i, i + k − 1) = u[l, l + k − 1) = x and
u[j, j + k − 1) = u[m,m + k − 1) = y}.

We will construct, for a regular language L recognized by a deterministic finite
automaton A = (Q,Σ, δ, pinit, F), an ε-NFA Â which recognizes Rx,y(L). The
claim then follows for Rk(L), as Rk(L) =

⋃

x,y∈Σk−1 Rx,y(L) is a finite union of
regular languages.

In essence, Â is a cartesian product of form Â = A1×Ax×Ay ×Ax×Ay. The
first component automaton A1 consists of 5|Q|4 copies of A, some of which are
connected by ε-transitions. The second and fourth components are copies of an
automaton Ax recognizing the language xΣ∗ and the third and fifth components
are copies of an automaton Ay recognizing the language yΣ∗. The components
2, 3, 4, and 5 are initiated according to the computations performed in A1. We
shall now make this construction more formal.

We first construct A1 = (Q1, Σ, δ1, p̃init, F1) as follows. For each state p ∈ Q,
we have p(c,(p1,p2),(p3,p4)) ∈ Q1 for all c = 1, . . . , 5 and pr ∈ Q, r = 1, . . . , 4. We
also add the initial state p̃init, from which we have ε-transitions to all the states of
form p

(1,(p1,p2),(p3,p4))
init , p1, p2, p3, p4 ∈ Q. Thus the computation of A1 begins with

an ε-transition. We then add the following ε-transitions for all p1, p2, p3, p4 ∈ Q:

p
(1,(p1,p2),(p3,p4))
1

ε−→ p
(2,(p1,p2),(p3,p4))
2 , p

(2,(p1,p2),(p3,p4))
3

ε−→ p
(3,(p1,p2),(p3,p4))
4 ,

p
(3,(p1,p2),(p3,p4))
2

ε−→ p
(4,(p1,p2),(p3,p4))
1 , p

(4,(p1,p2),(p3,p4))
4

ε−→ p
(5,(p1,p2),(p3,p4))
3 .

Otherwise the computation of A1 respects the original automaton, that is,

δ1(p(i,(p1,p2),(p3,p4)), a) = q(i,(p1,p2),(p3,p4))

if and only if there is a transition δ(p, a) = q in A. Finally, F1 consists of all
states of form f (5,(p1,p2),(p3,p4)), where f ∈ F and p1, p2, p3, p4 ∈ Q.

We remark the following about A1. Firstly, once the first ε-transition is
taken, the states p1, p2, p3, and p4 are fixed for the remainder of the compu-
tation. Secondly, the states pr, r = 1, . . . , 4, determine between which states an
ε-transition can be performed. Furthermore, the parameter c counts the number
of ε-transitions performed. The parameters c, p1, p2, p3, and p4 together deter-
mine at which time and between which states an ε-transition can be performed.

We now describe the behavior of the rest of the component automata of Â.
For s ∈ {2, . . . , 5}, the sth component automaton of Â is initiated during the
sth ε-transition performed in A1 (the first ε-transition being the first compu-
tation step of A1). We also require from Â that, after the second and fourth
ε-transition performed in A1, at least one letter is read before performing the
next ε-transition. This is not required after the third ε-transition. Note that
these requirements can be encoded, e.g., into the parameter c of the states in
A1. Finally, Â accepts if and only if all its components are in accepting states.

82 J. Cassaigne et al.

We first show that Rx,y(L) ⊆ L(Â). In order to see this, let u ∈ L and let v =
Sk,u(i, j, l,m) ∈ Rx,y(L). Let qt, t = 1, . . . , |u|, denote the state δ(pinit, u[1, t))
(note that some of the states qt can be the same). We then find an accepting
computation of A1 for v as follows. We first take the ε-transition from p̃init to the
state p

(1,(qi,ql),(qj ,qm))
init . After this, the computation is as in Fig. 2 by following the

dashed lines. The computation of A on u follows the continuous lines. Note that
the other components of Â also end up in accepting states, since by the definition
of the k-switching Sk,u(i, j, l,m), x and y have positions in v corresponding to
the initiations of the copies of the automata Ax and Ay. Thus Rx,y(L) ⊆ L(Â).

pinit qi qj ql qm f

p
(1)
init

p̃init
ε

q
(1)
i

q
(2)
l q

(2)
m

q
(3)
j q

(3)
l

q
(4)
i q

(4)
j

q
(5)
m f (5)

ε

ε

ε

ε

Fig. 2. The computation of automaton A on an accepted word u (in continuous lines)
and a computation of A1 on Sk,u(i, j, l,m) (in dotted lines). We have abbreviated the

states q
(c,(qi,ql),(qj ,qm))
r by q

(c)
r (for c ∈ {1, . . . , 5}, r ∈ {init, i, j, l,m}).

We now show the converse. For this, let v ∈ L(Â) and consider an accept-
ing path of Â on v. By construction, the automaton A1 starts with an
ε-transition to a state p

(1,(p1,p2),(p3,p4))
init . After this, the computation contains

four more ε-transitions, suppose they occur just before reading the ith, jth, lth
and mth letter, with i < j ≤ l < m, respectively. (Here we use the require-
ment for not allowing an ε-transition immediately after the second and fourth
ε-transitions.) Furthermore, by the acceptance of the other component automata
of Â, x has positions i and l, and y has positions j and m in v. We claim that
u = Sk,v(i, j, l,m) ∈ L. It then follows, by the symmetry of the k-switching
relation, that v ∈ Rx,y(L). Indeed, turning back to the computation of A1 on v,
we obtain the following paths in A:

1. a path from pinit to p1 labeled by v[1, i),
2. a path from p2 to p3 labeled by v[i, j),
3. a path from p4 to p2 labeled by v[j, l),

k-Abelian Equivalence and Rationality 83

4. a path from p1 to p4 labeled by v[l,m), and
5. a path from p3 to an accepting state of A labeled by v[m, |v|].
Thus u = v[1, i)v[l,m)v[j, l)v[i, j)v[m, |v|] ∈ L, as was claimed.
�
Remark 5. This result may also be proved using MSO logic for words, as sug-
gested by one of the anonymous referees.

The following example shows that the family of regular languages is not
closed under the language operation R∗

k.

Example 6. Fix k ≥ 1 and let L = (abk)+. It is straightforward to verify by, e.g.,
comparing the number of occurrences of factors of length k, that

R∗
k(L) =

{

abr1abr2 · · · abrn | n ≥ 1, ri ≥ k − 1,

n
∑

i=1

ri = nk

}

.

Let now h be a morphism defined by h(a) = abk−1 and h(b) = b. It is again
straightforward to show that h−1(R∗

k(L)) = {w ∈ a{a, b}∗ | |w|a = |w|b}, which
is clearly not regular. It follows that R∗

k(L) is not regular.

4 On the Number of k-Abelian Equivalence Classes

In this section we focus on the number Pk,m(n) of k-abelian equivalence classes
of words of length n over Σ, |Σ| = m, where k and an m are fixed. We first
recall a result from [11]:

Theorem 7. We have, for k and m fixed, Pk,m(n) = Θ(nmk−1(m−1)), where the
constants in Θ depend on k and m.

We are also interested in the number Sk,m(n) of k-abelian singletons of length
n over Σ, |Σ| = m, where k and an m are fixed. We recall a result proved in [9].

Theorem 8. For k and m fixed, we have Sk,m(n) = O(nNm(k−1)−1), where the
constants in O depend on k and m. Here Nm(l) = 1

l

∑

d|l ϕ(d)ml/d is the number
of conjugacy classes (or necklaces) of words in Σl, where |Σ| = m.

The main result of this section is the following:

Theorem 9. The sequences Pk,m(n) and Sk,m(n) are N-rational.

In order to prove this, we define the following languages. Here ≤ denotes a
lexicographic ordering of Σ∗.

Lmin = {w ∈ Σ∗ | w ≤ u for all w ∼k u},

Lmax = {w ∈ Σ∗ | w ≥ u for all w ∼k u}, and
Lsing = {w ∈ Σ∗ | |[w]k| = 1}.

In other words, Lmin (resp., Lmax) is the language of lexicographically minimal
(resp., maximal) representatives of k-abelian equivalence classes, while Lsing is
the language of k-abelian singletons. We also recall a technical lemma from [9],
a refinement of Lemma 2.

84 J. Cassaigne et al.

Lemma 10. Let u ∼k v with u �= v. Let p be the longest common prefix of u
and v. Then there exists z ∈ Σ∗ such that zRku and the longest common prefix
of z and v has length at least |p| + 1.

Lemma 11. The languages Lmin, Lmax, and Lsing are regular languages.

Proof. Let u be the minimal element in [u]k. If there exists a k-switching on
u which yields a new element, it has to be lexicographically greater than u. In
particular, u does not contain factors from the language

((xbΣ∗ ∩ Σ∗y)Σ∗ ∩ Σ∗x) aΣ∗ ∩ Σ∗y,

where x, y ∈ Σk−1, a, b ∈ Σ, a < b. On the other hand, by the above lemma,
any word u avoiding such factors is lexicographically least in [u]k. We thus have

Lmin =
⋂

x,y∈Σk−1

a,b∈Σ, a<b

Σ∗ (((xbΣ∗ ∩ Σ∗y)Σ∗ ∩ Σ∗x) aΣ∗ ∩ Σ∗y) Σ∗, (3)

where, for a regular expression R, R denotes the complement language Σ∗\R.
Similarly, for Lmax, by reversing a < b to a > b in (3), we obtain the claim.
Finally, Lsing = Lmin ∩ Lmax so that Lsing is regular. Another, perhaps more

informative, way to see this is as follows: for k-abelian singletons, we are avoid-
ing all possible k-switchings that give a different word. By requiring a �= b, as
opposed to a < b, in (3), we obtain the expression for Lsing.
�
Proof (of Theorem 9). Consider first the language Lmin and a DFA A recognizing
it. We transform the automaton to a unary NFA A′ by identifying all input
letters. Since A is deterministic, the transformation is faithful, that is, for each
word w accepted by A, there exists a unique corresponding accepting path in
A′, and vice versa. By the construction of A′, �A′(n) = Pk,m(n) for all n ∈ N,
from which the claim follows for Pk,m. The case for Sk,m is similar.
�
Remark 12. Let A be the adjacency matrix of the unary automaton A′ described
above. It is known that, for all large enough n,

�A′(n) =
∑

λ∈Eig(A)

pλ(n)λn (4)

where the summation is taken over all distinct eigenvalues of A, and pλ is a
complex polynomial of degree at most μλ − 1. Here μλ is the multiplicity of λ
as a root of the minimal polynomial of A (see for instance [3,17]).

4.1 Complexities for Small Values of k and m

We now give some examples illustrating the results obtained above for small
values of k and m. We also compute closed formulas for Pk,m and Sk,m for some
small values of k and m.

k-Abelian Equivalence and Rationality 85

Example 13. In Fig. 3, we have two minimal DFAs, one recognizing the mini-
mal representatives of 2-abelian equivalence classes and the other recognizing
2-abelian singletons over Σ = {a, b}. The sink states are not included in the
figures. We also note that all other states are accepting, since the languages are
defined by avoiding certain patterns.

Fig. 3. DFAs recognizing the minimal representatives of 2-abelian equivalence classes
(left) and 2-abelian singletons (right) over the alphabet {a, b}.

Using the idea of the proof of Theorem9, we first construct deterministic
automata for Lmin and Lsing for small k and m. We then use the automata to
compute the function � as in Remark 12. We state these conclusions without
proofs:

Proposition 14.

For all n ≥ 1, P2,2(n) = n2 − n + 2,

for all n ≥ 2, P2,3(n) = 1
18n4 − 5

18n3 + 65
36n2 − 23

6 n − 1
8 (−1)n

+ 2
27e− πi

3 (e
2πi
3)n + 2

27e
πi
3 (e− 2πi

3)n + 1307
216 , and

for all n ≥ 4, P3,2(n) = 1
960n6 + 7

320n5 + 67
384n4 − 19

32n3 + 1457
480 n2

− (1569640 + 3
128 (−1)n)n + 741

256 + 27
256 (−1)n.

Proposition 15.

For all n ≥ 4, S2,2(n) = 2n + 4,

for all n ≥ 6, S2,3(n) = 3n2 + 27n − 63, and

for all n ≥ 9, S3,2(n) =
1
2
n2 + 16n +

2
3
(e

2πi
3 n + (e− 2πi

3)n) − 535
12

− 3
4
(−1)n.

86 J. Cassaigne et al.

The formulae for P2,2 and S2,2 have previously been proved, using different
methods, in [5,9], respectively. We note that Eero Harmaala (private commu-
nication) has previously computed the values for P2,3 and P3,2 (n = 2, . . . , 18
and n = 4, . . . , 21, respectively). We also note that computing the first few val-
ues of S2,3(n) and S3,2(n) is an easy task. The On-Line Encyclopedia of Integer
Sequences (http://oeis.org, accessed June 10, 2016) does not contain any of the
above sequences.

The methods used here are far from being practical for computing closed
formulae for larger values of k and m, as is illustrated by the following example.

Example 16. For the binary alphabet, the number of states in the minimal DFA
recognizing Lmin for k = 2, 3, 4 is 10, 49, and 936, respectively. This makes com-
puting a closed formula for P4,2 already a computationally challenging problem.

Remark 17. The exponential blow-up of the computation time is due to com-
plementation and non-determinism of the automata obtained from the regular
expressions (3). Also, by Theorem 7, the automaton obtained from (3) has to
grow necessarily exponentially with respect to k when the alphabet is fixed;
some of the polynomials pλ in (4) have degree mk−1(m − 1).

For the case of k-abelian singletons, Theorem 8 does not give a large blow-
up immediately, though in [9] it is conjectured that Sk,m(n) = Θ(nNm(k−1)−1),
which would also yield a large blow-up in the number of states.

5 Towards a Structure of Fixed Sized Equivalence Classes

The regularity of the languages Lmin and Lsing raises questions for the structure
of larger equivalence classes. We are thus interested in the k-abelian equivalence
classes of fixed cardinality. We employ the result of Theorem4 to obtain a first
step in this direction.

Proposition 18. The languageL2 = {w ∈ Σ∗ | |[w]k| = 2} is a regular language.
Proof. Consider the regular language L = Σ∗\(Lmin ∪ Lmax): we have

L = {w ∈ Σ∗ | |[w]k| ≥ 3 and w is not minimal or maximal},

since all classes containing at most two elements are removed. By Lemma 2,
Rk(Rk(L)) ∪ Rk(L) ∪ L then gives exactly the language

L′ = {w ∈ Σ∗ | |[w]k| ≥ 3},

and by Lemma 2, L′ is regular. Finally, the complement of L′ is the language
{w ∈ Σ∗ | |[w]k| ≤ 2}. We thus have that L2 = L′\Lsing is a regular language.
�
Larger classes were not considered here, but we have no reason to suspect that
the corresponding languages would not be regular. In fact, we suspect that modi-
fications of Theorem 4 could yield methods, similar to the ones used in the above,
to obtain some structure of larger classes.

http://oeis.org

k-Abelian Equivalence and Rationality 87

6 Open Problems and Future Research

The topic of this paper opens up new aspects of k-abelian equivalence, and
presents a series of questions. Though explicit formulas for the functions Pk,m

and Sk,m were obtained, it remains to compute the corresponding generating
functions (which, by our results, are rational functions).

To conclude, we suggest the following open problems.

– What are the generating functions for Pk,m and Sk,m?
– When is Pk,m(n) ∼ Cnmk−1(m−1) for some constant C? This is the case for

small values of k and m.
– Is the language of words w having |[w]k| = l, where l is a fixed constant, a

regular language? For l = 2, this is settled in the positive by Proposition 18.

Acknowledgments. The automata used to calculate the functions in Proposi-
tions 14 and 15 were constructed using the java package dk.brics.automaton [14]. The
automata in Fig. 3 were created using the software Graphviz [4]. We would like to
thank the anonymous referees for valuable comments which helped to improve the
presentation.

References

1. Cassaigne, J., Karhumäki, J., Saarela, A.: On growth and fluctuation of k-Abelian
complexity. In: 10th International Computer Science Symposium Computer Sci-
ence - Theory and Applications, CSR 2015, Proceedings, Listvyanka, Russia, 13–17
July 2015, pp. 109–122 (2015). http://dx.doi.org/10.1007/978-3-319-20297-6 8

2. Ehlers, T., Manea, F., Mercas, R., Nowotka, D.: k-Abelian pattern matching. J.
Discrete Algorithms 34, 37–48 (2015). http://dx.doi.org/10.1016/j.jda.2015.05.004

3. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press Inc.,
New York (1974)

4. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Prac. Experience 30(11), 1203–1233 (2000).
http://www.graphviz.org

5. Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and
finite automata. In: Rainbow of Computer Science - Dedicated to Hermann Maurer
on the Occasion of His 70th Birthday, pp. 90–101 (2011). http://dx.doi.org/10.
1007/978-3-642-19391-0 7

6. Huova, M., Saarela, A.: Strongly k-Abelian repetitions. In: 9th Interna-
tional Conference on Combinatoricson Words, WORDS 2013, Turku, Finland,
Proceedings, pp. 161–168, 19–20 September 2013. http://dx.doi.org/10.1007/
978-3-642-40579-2 18

7. Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Inf. control
47(3), 155–165 (1980). http://dx.doi.org/10.1016/S0019-9958(80)90493–3

8. Karhumäki, J., Puzynina, S.: On k-Abelian palindromic rich and poor words. In:
18th International Conference on Developments in Language Theory, DLT 2014,
Proceedings, Ekaterinburg, Russia, 26–29 August 2014, pp. 191–202 (2014). http://
dx.doi.org/10.1007/978-3-319-09698-8 17

http://dx.doi.org/10.1007/978-3-319-20297-6_8
http://dx.doi.org/10.1016/j.jda.2015.05.004
http://www.graphviz.org
http://dx.doi.org/10.1007/978-3-642-19391-0_7
http://dx.doi.org/10.1007/978-3-642-19391-0_7
http://dx.doi.org/10.1007/978-3-642-40579-2_18
http://dx.doi.org/10.1007/978-3-642-40579-2_18
http://dx.doi.org/10.1016/S0019-9958(80)90493--3
http://dx.doi.org/10.1007/978-3-319-09698-8_17
http://dx.doi.org/10.1007/978-3-319-09698-8_17

88 J. Cassaigne et al.

9. Karhumäki, J., Puzynina, S., Rao, M., Whiteland, M.A.: On cardinalities of
k-Abelian equivalence classes. Theor. Comput. Sci. (2016). doi:10.1016/j.tcs.2016.
06.010

10. Karhumäki, J., Puzynina, S., Saarela, A.: Fine and Wilf’s theorem for
k-Abelian periods. Int. J. Found. Comput. Sci. 24(7), 1135–1152 (2013).
http://dx.doi.org/10.1142/S0129054113400352

11. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiva-
lence and complexity of infinite words. J. Comb. Theor. Ser. A 120(8), 2189–2206
(2013). http://dx.doi.org/10.1016/j.jcta.2013.08.008

12. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund theo-
rem for k-Abelian equivalence. In: 18th International Conference on Developments
in Language Theory, DLT 2014, Proceedings, Ekaterinburg, Russia, 26–29 August
2014, pp. 203–214 (2014). http://dx.doi.org/10.1007/978-3-319-09698-8 18

13. Lothaire, M. (ed.): Combinatorics on Words, 2nd edn. Cambridge University Press,
Cambridge (1997). http://dx.doi.org/10.1017/CBO9780511566097, Cambridge
Books Online

14. Møller, A.: dk.brics.automaton - finite-state automata and regular expressions for
Java (2010). http://www.brics.dk/automaton/

15. Rao, M., Rosenfeld, M.: Avoidability of long k-abelian repetitions. Mathematics of
Computation (published electronically, 18 February 2016). http://dx.doi.org/10.
1090/mcom/3085

16. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, New York (1978).
http://dx.doi.org/10.1007/978-1-4612-6264-0

17. Weintraub, S.H.: Jordan canonical form: theory and practice. In: Synthesis Lectures
on Mathematics and Statistics, Morgan & Claypool Publishers (2009). http://dx.
doi.org/10.2200/S00218ED1V01Y200908MAS006

http://dx.doi.org/10.1016/j.tcs.2016.06.010
http://dx.doi.org/10.1016/j.tcs.2016.06.010
http://dx.doi.org/10.1142/S0129054113400352
http://dx.doi.org/10.1016/j.jcta.2013.08.008
http://dx.doi.org/10.1007/978-3-319-09698-8_18
http://dx.doi.org/10.1017/CBO9780511566097
http://www.brics.dk/automaton/
http://dx.doi.org/10.1090/mcom/3085
http://dx.doi.org/10.1090/mcom/3085
http://dx.doi.org/10.1007/978-1-4612-6264-0
http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006
http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006

Schützenberger Products in a Category

Liang-Ting Chen1 and Henning Urbat2(B)

1 Department of Information and Computer Sciences,
University of Hawaii at Manoa, Honolulu, HI, USA

ltchen@hawaii.edu
2 Institut Für Theoretische Informatik,

Technische Universität Braunschweig, Braunschweig, Germany
urbat@iti.cs.tu-bs.de

Abstract. The Schützenberger product of monoids is a key tool for the
algebraic treatment of language concatenation. In this paper we gener-
alize the Schützenberger product to the level of monoids in an algebraic
category D , leading to a uniform view of the corresponding construc-
tions for monoids (Schützenberger), ordered monoids (Pin), idempotent
semirings (Kĺıma and Polák), and algebras over a field (Reutenauer). In
addition, assuming that D is part of a Stone-type duality, we derive a
characterization of the languages recognized by Schützenberger products.

1 Introduction

Since the early days of automata theory, it has been known that regular lan-
guages are precisely the languages recognized by finite monoids. This observa-
tion is the origin of algebraic language theory. One of the classical and ongoing
challenges of this theory is the algebraic treatment of the concatenation of lan-
guages. The most important tool for this purpose is the Schützenberger product
M � N of two monoids M and N , introduced in [23]. Its key property is that
it recognizes all marked products of languages recognized by M and N . Later,
Reutenauer [22] showed that M � N is a “smallest” monoid with this property:
any language recognized by M � N is a boolean combination of such marked
products.

In the past decades, the original notion of language recognition by finite
monoids has been refined to other algebraic structures, namely to ordered
monoids by Pin [16], to idempotent semirings by Polák [19], and to asso-
ciative algebras over a field by Reutenauer [21]. For all these structures,
a Schützenberger product was introduced separately [15,17,21]. Moreover,
Reutenauer’s characterization of the languages recognized by Schützenberger
products has been adapted to ordered monoids and idempotent semirings,
replacing boolean combinations by positive boolean combinations [17] and finite
unions [15], respectively.

L.-T. Chen—Acknowledges support from AFOSR.
H. Urbat—Acknowledges support from DFG under project AD 187/2-1.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 89–101, 2016.
DOI: 10.1007/978-3-662-53132-7 8

90 L.-T. Chen and H. Urbat

This paper presents a unifying approach to Schützenberger products, covering
the aforementioned constructions and results as special cases. Our starting point
is the observation that all the algebraic structures appearing above (monoids,
ordered monoids, idempotent semirings, and algebras over a field K) are monoids
interpreted in some variety D of algebras or ordered algebras, viz. D = sets,
posets, semilattices, and K-vector spaces, respectively. Next, we note that these
categories D are related to the category S-Mod of modules over some semiring S.
Indeed, semilattices and vector spaces are precisely modules over the two-element
idempotent semiring S = {0, 1} and the field S = K, respectively. And every
set or poset freely generates a semilattice (i.e. a module over {0, 1}), viz. the
semilattice of finite subsets or finitely generated down-sets. Precisely speaking,
each of the above categories D admits a monoidal adjunction

S-Mod
U ��
� D
F

�� (1.1)

for some semiring S, where U is a forgetful functor and F is a free construction.
In this paper we introduce the Schützenberger product at the level of an

abstract monoidal adjunction (1.1): for any two D-monoids M and N , we con-
struct a D-monoid M � N that recognizes all marked products of languages
recognized by M and N (Theorem 32), and prove that M � N is a “smallest”
D-monoid with this property (Theorem37). Further, we derive a characteriza-
tion of the languages recognized by M �N in the spirit of Reutenauer’s theorem
[22]. To this end, we consider another variety C that is dual to D on the level of
finite algebras. For example, for D = sets we choose C = boolean algebras, since
Stone’s representation theorem gives a dual equivalence between finite boolean
algebras and finite sets. We then prove that every language recognized by M �N
is a “C -algebraic combination” of languages recognized by M and N and their
marked products (Theorem 40). The explicit use of duality makes our proof con-
ceptually different from the original ones.

By instantiating (1.1) to the proper adjunctions, we recover the
Schützenberger product for monoids, ordered monoids, idempotent semirings
and algebras over a field, and obtain a new Schützenberger product for algebras
over a commutative semiring. Moreover, our Theorems 32 and 40 specialize to
the corresponding results [15,17,22] for (ordered) monoids and idempotent semi-
rings. In the case of K-algebras, Theorem 40 appears to be a new result. Apart
from that, we believe that the main contribution of our paper is the identification
of a categorical setting for language concatenation. We hope that the generality
and the conceptual nature of our approach can contribute to an improved under-
standing of the various ad hoc constructions and separate results appearing in
the literature.

Related work. In recent years, categorical approaches to algebraic language the-
ory have been a growing research topic. The present paper is a natural continu-
ation of [2], where we showed that the construction of syntactic monoids works
at the level of closed monoidal categories (see also [13]), allowing for a uniform

Schützenberger Products in a Category 91

treatment of syntactic (ordered) monoids, idempotent semirings and algebras
over a field. The systematic use of duality in algebraic language theory originates
in the work of Gehrke et al. [11], who interpreted Eilenberg’s variety theorem
in terms of Stone duality. In [1,3,9] we extended their approach to an abstract
Stone-type duality, leading to a uniform view of Eilenberg-type theorems for reg-
ular languages. See also [4,24]. Recently, Bojańczyk [6] proposed to use monads
instead of monoids to get a categorical grasp on languages beyond finite words.
By combining this idea with our duality framework, we established in [8,25] a
variety theorem that covers most Eilenberg-type correspondences known in the
literature, e.g. for ∞-languages, tree languages, and cost functions.

2 Preliminaries

A variety D of algebras or ordered algebras is commutative [10] if, for any A,B ∈
D , the set [A,B] of morphisms from A to B is an algebra of D with operations
(and order) taken pointwise in B. Examples include Set (sets), Pos (posets)
and S-Mod (modules over a commutative semiring S with 0, 1). Recall that an
S-module is a commutative monoid (M,+, 0) with a scalar product · : S× M →
M satisfying (r + s)x = rx + sx, r(x + y) = rx + ry, (rs)x = r(sx), 0x = 0,
1x = 1 and r0 = 0. Two special cases are the category JSL of join-semilattices
with 0 (choose S = {0, 1}, the two-element semiring with 1 + 1 = 1), and the
category K-Vec of vector spaces over a field K (choose S = K).

Notation 1. Let A , B, C , D always denote commutative varieties of algebras
or ordered algebras. We write Ψ = ΨD : Set → D for the left adjoint to the
forgetful functor |−|: D → Set; thus ΨX is the free algebra of D over a set
X. For simplicity, we assume that X is a subset of |ΨX| and the universal map
X � |ΨX| is the inclusion. Denote by 1D = Ψ1 the free one-generated algebra.

Example 2. (1) For D = Set or Pos we have ΨX = X (discretely ordered).
(2) For D = JSL we get ΨX = (PfX,∪), the semilattice of finite subsets of X.
(3) For D = S-Mod we have ΨX = S

(X), the S-module of all finite-support
functions X → S with sum and scalar product defined pointwise.

Definition 3. Let A, B, C ∈ D . By a bimorphism from A, B to C is meant
a function f : |A| × |B| → |C| such that the maps f(a,−): |B| → |C| and
f(−, b): |A| → |C| carry morphisms of D for every a ∈ |A| and b ∈ |B|. A tensor
product of A and B is a universal bimorphism tA,B : |A| × |B| → |A⊗ B|, in the
sense that for any bimorphism f : |A|×|B| → |C| there is a unique f ′: A⊗ B → C
in D with f ′ ◦ tA,B = f . We denote by a⊗ b the element tA,B(a, b) ∈ |A⊗ B|.
Example 4. In Set and Pos we have A⊗ B = A × B. In S-Mod, A⊗ B is the
usual tensor product of S-modules, and tA,B is the universal S-bilinear map.

Remark 5. (1) Tensor products exist in any commutative variety D , see [10].
(2) ⊗ is associative and commutative and has unit 1D , i.e. there are natural

isomorphisms αA,B,C : (A⊗ B)⊗C ∼= A⊗ (B ⊗C), σA,B : A⊗ B ∼= B ⊗A,
ρA: A⊗1D and λA: 1D ⊗ A ∼= A.

92 L.-T. Chen and H. Urbat

(3) Given f : A → C and g: B → D in D , denote by f ⊗ g: A⊗ B → C ⊗ D the

morphism induced by the bimorphism |A|×|B| f×g−−−→ |C|×|D| tC,D−−−→ |C ⊗ D|.
Definition 6. A D-monoid (M, 1, •) consists of an object M of D and a monoid
(|M |, 1, •) whose multiplication |M | × |M | •−→ |M | is a bimorphism of D . A
morphism h: (M, 1, •) → (N, 1, •) of D-monoids is a morphism of D preserving
the unit and multiplication. We denote the category of D-monoids by Mon(D).

Example 7. Monoids in D = Set, Pos, JSL and S-Mod are precisely monoids,
ordered monoids, idempotent semirings, and associative algebras over S.

Proposition 8 (see[1]). The free D-monoid on a set Σ is carried by ΨΣ∗ ∈ D ,
the free algebra in D on the set Σ∗ of finite words over Σ. Its multiplication
extends the concatenation of words in Σ∗, and its unit is the empty word ε.

Example 9. (1) In D = Set or Pos we have ΨΣ∗ = Σ∗ (discretely ordered).
(2) In D = JSL we have ΨΣ∗ = PfΣ∗, the idempotent semiring of all finite

languages over Σ w.r.t. union and concatenation of languages.
(3) In D = Mod(S) we get ΨΣ∗ = S[Σ], the S-algebra of all polynomials

Σn
i=1c(wi)wi (equivalently, finite-support functions c: Σ∗ → S) w.r.t. the

usual sum, scalar product and multiplication of polynomials.

Remark 10. Since the multiplication •: |M | × |M | → |M | of a D-monoid
(M, 1, •) forms a bimorphism, it corresponds to a morphism μM : M ⊗M → M
in D , mapping m⊗m′ ∈ |M ⊗ M | to m • m′ ∈ |M |. Likewise, the unit 1 ∈ |M |
corresponds to the morphism ιM : 1D → M sending the generator of 1D to 1.
We can thus represent a D-monoid (M, 1, •) as the triple (M, ιM , μM).

Remark 11. For any two D-monoids M and N , the tensor product M ⊗N in
D carries a D-monoid structure with unit 1D

∼=−→ 1D ⊗1D
ιM ⊗ ιN−−−−−→ M ⊗ N and

multiplication (M ⊗N)⊗ (M ⊗ N)
∼=−→ (M ⊗ M)⊗ (N ⊗N)

μM ⊗ μN−−−−−−→ M ⊗ N ,
see e.g. [20]. Equivalently, the unit of M ⊗ N is the element 1M ⊗ 1N , and the
multiplication is determined by (m⊗ n) • (m′ ⊗n′) = (m •M m′)⊗ (n •N n′).

Definition 12. A monoidal functor (G, θ): C → D is a functor G: C → D
with a morphism θ1: 1D → G1C and morphisms θA,B : GA⊗ GB → G(A⊗ B)
natural in A, B ∈ C such that the following squares commute (omitting indices):

(GA⊗ GB)⊗ GC
α ��

θ ⊗ GC ��

GA⊗ (GB ⊗GC)
GA ⊗ θ��

G(A⊗ B)⊗ GC
θ ��

GA⊗ G(B ⊗C)
θ��

G((A⊗ B)⊗ C)
Gα

�� G(A⊗ (B ⊗C))

GA⊗1D
GA ⊗ θ��

ρ ��

GA⊗ G1C

θ��
GA G(A⊗1C)

Gρ��

1D ⊗ GA
θ ⊗ GA��

λ ��

G1C ⊗GA
θ��

GA G(1C ⊗A)Gλ��

Schützenberger Products in a Category 93

Given another monoidal functor (G′, θ′): C → D , a natural transformation
ϕ: G → G′ is called monoidal if the following diagrams commute:

GA⊗ GB
ϕA ⊗ ϕB ��

θ ��
G′A⊗ G′B

θ′��
G(A⊗ B)

ϕA ⊗ B

�� G′(A⊗ B)

1D
θ

�������� θ′
��������

G1C ϕ1C

�� G′1C

Example 13. (1) The functor |−|: D → Set is monoidal w.r.t. the universal
map 1 � |1D | = |Ψ1| and the bimorphisms tA,B : |A| × |B| → |A⊗ B|. Its
left adjoint Ψ : Set → D is also monoidal: there is a natural isomorphism
θX,Y : ΨX ⊗ΨY ∼= Ψ(X × Y) with θ−1

X,Y (x, y) = x⊗ y for (x, y) ∈ X × Y .
Together with θ1 = id : 1D → Ψ1, this makes Ψ a monoidal functor.

(2) In particular, the functors |−|: JSL → Set and Pf : Set → JSL (see Exam-
ple 2(2)) are monoidal w.r.t. the morphisms chosen as in (1).

(3) The forgetful functor U : JSL → Pos has a left adjoint Df : Pos → JSL
constructed as follows. For any poset A and X0 ⊆ A denote by ↓X0 :=
{ a ∈ A : a ≤ x for some x ∈ X0 } the down-set generated by X0. Then Df

maps a poset A to Df (A) := {X ⊆ A : X = ↓X0 for some finite X0 ⊆ A },
the semilattice (w.r.t. union) of finitely generated down-sets of A, and a
monotone map h: A → B to the semilattice morphism Df (h): Df (A) →
Df (B) with Df (h)(X) = ↓h[X]. Both U and Df carry monoidal functors;
the required morphisms, see Definition 12, are chosen in analogy to |−| and
Pf in (2).

(4) As a trivial example, the identity functor Id: D → D is monoidal w.r.t. the
identity morphisms id : 1D → Id(1D) and id : Id(A)⊗ Id(B) → Id(A⊗ B).

The importance of monoidal functors is that they preserve monoid structures:

Lemma 14. Let (G, θ): C → D be a monoidal functor. Then G lifts to the func-
tor G: Mon(C) → Mon(D) mapping a C -monoid (M, ι, μ) to the D-monoid

(GM, 1D
θ−→ G1C

Gι−−→ GM, GM ⊗ GM
θ−→ G(M ⊗M)

Gμ−−→ GM), and a
C -monoid morphism h to Gh.

Example 15. (1) Pf : Set → JSL lifts to Pf : Mon(Set) → Mon(JSL), map-
ping a monoid M to the semiring PfM of finite subsets of M , with union as
addition, and multiplication XY = {xy: x ∈ X, y ∈ Y }.

(2) Df : Pos → JSL lifts to Df : Mon(Pos) → Mon(JSL), mapping an ordered
monoid M to the semiring Df (M) of finitely generated down-sets of M , with
union as addition, and multiplication XY = ↓{xy : x ∈ X, y ∈ Y }.

Lemma 16. Let (G, θ): A → B and (H,σ): B → C be monoidal func-
tors. Then the composite HG: A → C is a monoidal functor w.r.t. to
H(θ1)◦σ1: 1C → HG(1A) and H(θA,B)◦σGA,GB : HGA⊗ HGB → HG(A⊗ B).

Definition 17. A monoidal adjunction between C and D is an adjunction F
U : C → D such that U and F are monoidal functors and the unit η: IdD → UF
and counit ε: FU → IdC are monoidal natural transformations.

94 L.-T. Chen and H. Urbat

Example 18. Id Id: D → D , Df U : JSL → Pos and Ψ |−|: D → Set are
monoidal adjunctions. We call the latter the monoidal adjunction of D .

Remark 19. If (H V : C → B, η′, ε′) and (G U : B → A , η, ε) are monoidal
adjunctions, so is the composite adjunction (HG UV : C → A , Uη′G ◦ η, ε′ ◦
HεV). Here HG and UV are the composites of Lemma 16.

Definition 20. A monoidal adjunction F U : C → D is called a concrete
monoidal adjunction if its composite with the monoidal adjunction of D is the
monoidal adjunction of C .

3 Languages and Algebraic Recognition

In this section we set the scene for our approach to Schützenberger products. Fix
a commutative variety D of algebras or ordered algebras, a commutative semiring
S = (S,+, ·, 0, 1), and a concrete monoidal adjunction F U : S-Mod → D
(i.e. apply Definition 20 to C = S-Mod). We denote the unit by η: Id → UF .
This gives the diagram of functors below. Here S-Alg = Mon(S-Mod)) is the
category of S-algebras (see Example 7), U and F are the liftings of U and F (see
Lemma 14), the vertical functors are the forgetful functors, and Ψ and S

(−) are
the left adjoints to the forgetful functors of D and S-Mod, see Example 2.

S-Alg
��

U �� Mon(D)
F

��

��
S-Mod

U ��

|−| ��������
D

F
��

|−|�����������
Set

Ψ
		���������

S
(−)

������

Example 21. In our applications we will choose the concrete monoidal adjunc-
tions listed below. (The third and last column will be explained later.)

Notation 22. We can view the semiring S as (i) an S-algebra SAlg ∈ S-Alg with
scalar product given by the multiplication of S, (ii) a D-monoid SMon ∈ Mon(D)
(by applying U to SAlg), (iii) an S-module SMod ∈ S-Mod (by applying the
forgetful functor to SAlg) and (iv) an object SD of D (by applying U to SMod).
The D-monoid SMon is carried by the object SD , and its multiplication is a
morphism of D that we denote by σ: SD ⊗SD → SD . For ease of notation we
will usually drop the indices and simply write S for SD , SMod, etc.

Definition 23. (1) A language (a.k.a. a formal power series) over a finite alpha-
bet Σ is a map L: Σ∗ → S. Denote by LD : ΨΣ∗ → S the adjoint trans-
pose of L w.r.t. the adjunction Ψ |−|: D → Set. A D-monoid morphism
f : ΨΣ∗ → M recognizes L if there is a morphism p: M → S in D with
LD = p ◦ f . In this case, we also say that M recognizes L (via f and p).

Schützenberger Products in a Category 95

S C D S-Mod
U ��

D
F

�� D-monoids M � N carried by

1 {0, 1} BA Set JSL
|−| ��

Set
Pf

�� monoids M × Pf (M × N) × N

2 {0, 1} DL Pos JSL
U ��

Pos
Df

�� ord. monoids M × Df (M × N) × N

3 {0, 1} JSL JSL JSL
Id ��

JSL
Id

�� id. semirings M × (M ∗ N) × N

4 K K-Vec K-Vec K-Vec
Id ��

K-Vec
Id

�� K-algebras M × (M ⊗N) × N

5 S ? S-Mod S-Mod
Id ��

S-Mod
Id

�� S-algebras M × (M ∗ N) × N

(2) The marked Cauchy product of two languages K, L: Σ∗ → S w.r.t. a letter
a ∈ Σ is the language KaL: Σ∗ → S with (KaL)(u) =

∑

u=vaw K(v) ·L(w).

For S = {0, 1}, a language L: Σ∗ → {0, 1} corresponds to a classical language
L ⊆ Σ∗ by taking the preimage of 1. Under this identification, we have KaL =
{vaw: v ∈ K, w ∈ L }. Our concept of language recognition by D-monoids
originates in [2] and specializes to several related notions from the literature:

Example 24. (1) D = Set with S = {0, 1}: a map p: M → {0, 1} corresponds
to a subset p−1[1] ⊆ M . Thus a monoid morphism f : Σ∗ → M recognizes the
language L ⊆ Σ∗ iff L is the preimage under f of some subset of M . This is
the classical notion of language recognition by a monoid, see e.g. [18].

(2) D = Pos with S = {0, 1}: given an ordered monoid M , a monotone map
p: M → {0, 1} defines an upper set p−1[1] ⊆ M . Hence a monoid morphism
f : Σ∗ → M recognizes L ⊆ Σ∗ iff L is the preimage under f of some upper
set of M . This notion of recognition is due to Pin [16].

(3) D = JSL with S = {0, 1}: for any idempotent semiring M , a semilattice
morphism p: M → {0, 1} defines an ideal I = p−1[0], i.e. a nonempty down-
set closed under joins. Hence a language L ⊆ Σ is recognized by a semiring
morphism f : PfΣ∗ → M via p iff L� = Σ∗ ∩ f−1[I]. Here we identify Σ∗

with the set of all singleton languages {w}, w ∈ Σ∗. This is the concept of
language recognition by idempotent semirings introduced by Polák [19].

(4) D = S-Mod: given an S-algebra M , a formal power series L: Σ∗ → S is
recognized by f : S[Σ] → M via p: M → S iff LS-Mod = p ◦ f . This notion
of recognition is due to Reutenauer [21]. If S is a commutative ring, the
power series recognizable by S-algebras of finite type (i.e. S-algebras whose
underlying S-module is finitely generated) are precisely rational power series.

4 The Schützenberger Product

We are ready to introduce the Schützenberger product for D-monoids. Fix two
D-monoids (M, 1, •) and (N, 1, •), and write xy for x•y. Our goal is to construct

96 L.-T. Chen and H. Urbat

a D-monoid M � N that recognizes all marked products of languages recog-
nized by M and N , and is a “smallest” such D-monoid (Theorems 32, 37, 40).

A

fi

��
π �� ��

f
����

�� A′ f ′
i ��

��
m��

Bi

∏

i Bi

pi

����

Construction 25. As a preliminary step, we define a
D-monoid M ∗ N as follows. Call a family { fi: A → Bi }i∈I

in D separating if the morphism f : A → ∏

i Bi with
f(a) = (fi(a))i∈I is injective (resp. order-reflecting when
D is a variety of ordered algebras). Any family {fi} yields
a separating family { f ′

i : A′ → Bi }i∈I by factorizing f = m ◦π with π surjective
and m injective (resp. order-reflecting), and setting f ′

i := pi◦m, where pi is the
projection. Now consider the family of all morphisms σ ◦ (p⊗ q): M ⊗ N → S,
where p: M → S and q: N → S are arbitrary morphisms in D . Applying the
above construction to this family {σ ◦ (p⊗ q) }p,q gives an algebra M ∗ N
in D , a surjective morphism π: M ⊗ N � M ∗ N , and a separating family
{ p ∗ q: M ∗ N → S }p,q, making the following diagram commute for all p and q:

S⊗ S σ

���������

M ⊗N

pvq ��							
π

�� �� M ∗ N p ∗ q
�� S

(4.1)

Notation 26. For any m ∈ |M | and n ∈ |N |, we write m ∗ n for the element
π(m⊗ n) ∈ |M ∗ N |.
Lemma 27. There exists a (unique) D-monoid structure on M ∗ N such that
π : M ⊗ N � M ∗ N is a D-monoid morphism. The multiplication is determined
by (m ∗ n) • (m′ ∗ n′) = (mm′) ∗ (nn′), and the unit is 1 ∗ 1.

Example 28. For D = Set, Pos or K-Vec, the family {σ◦(p⊗ q) }p,q is already
separating, and therefore M ∗ N = M ⊗N and p ∗ q = σ ◦ (p⊗ q). For D =
JSL and in case M and N are finite idempotent semirings, we can describe
the idempotent semiring M ∗ N as follows. For any subset X ⊆ M × N , let
[X] ⊆ M × N consist of those elements (m, n) ∈ M × N such that, for all ideals
I ⊆ M and J ⊆ N with m �∈ I and n �∈ J , there exists some (x, y) ∈ X with
x �∈ I and y �∈ J . This gives us the closure operator X �→ [X] on the power set
of M × N in [15]. One can show that M ∗ N is isomorphic to the idempotent
semiring of all closed subsets of M × N , with sum and product defined by
[X] ∨ [Y] = [X ∪ Y] and [X][Y] = [XY], where XY = {xy : x ∈ X, y ∈ Y }.

Definition 29. The Schützenberger product of M and N is the D-monoid M �N
carried by the product M×UF (M ∗ N)×N in D and equipped with the following
monoid structure: representing elements (m,a, n) ∈ |M | × |F (M ∗ N)| × |N | as

upper triangular matrices
(

m a
0 n

)

, the multiplication and unit are given by

(

m a
0 n

) (

m′ a′

0 n′

)

=
(

mm′ η(m ∗ 1) · a′ + a · η(1 ∗ n′)
0 nn′

)

and
(

1 0
0 1

)

.

Here η: M ∗ N → UF (M ∗ N) is the universal map, and the sum, product and
0 in the upper right components are taken in the S-algebra F (M ∗ N).

Schützenberger Products in a Category 97

Lemma 30. M � N is a well-defined D-monoid, and the product projections
πM : M � N → M and πN : M � N → N are D-monoid morphisms.

Example 31. For the categories and adjunctions of Example 21, we recover four
notions of Schützenberger products known in the literature, and obtain a new
Schützenberger product for S-algebras:

(1) D = Set: given monoids M and N , the Schützenberger product M � N is
carried by the set M × Pf (M × N) × N , with multiplication and unit

(

m X
0 n

)(

m′ X ′

0 n′

)

=
(

mm′ mX ′ ∪ Xn′

0 nn′

)

and
(

1 ∅
0 1

)

,

where mX ′ = { (my, z) : (y, z) ∈ X ′ } and Xn′ = { (y, zn′): (y, z) ∈ X }.
This is the original construction of Schützenberger [23].

(2) D = Pos: for ordered monoids M and N , the Schützenberger product M �N
is carried by the poset M × Df (M × N) × N with multiplication and unit

(

m X
0 n

)(

m′ X ′

0 n′

)

=
(

mm′ ↓(mX ′ ∪ Xn′)
0 nn′

)

and
(

1 ∅
0 1

)

.

This construction is due to Pin [17].
(3) D = JSL: given idempotent semirings M and N , the Schützenberger prod-

uct M � N is carried by the semilattice M × (M ∗ N) × N . If M and N are
finite, Example 28 shows that M ∗ N is the idempotent semiring of closed
subsets of M × N , and the multiplication and unit of M � N are given by

(

m X
0 n

)(

m′ X ′

0 n′

)

=
(

mm′ [mX ′ ∪ Xn′]
0 nn′

)

and
(

1 ∅
0 1

)

.

For the finite case, this construction is due to Kĺıma and Polák [15].
(4) D = K-Vec: for K-algebras M and N , the Schützenberger product M �N is

carried by the vector space M × (M ⊗N) × N with multiplication and unit
(

m z
0 n

) (

m′ z′

0 n′

)

=
(

mm′ mz′ + zn′

0 nn′

)

and
(

1 0⊗ 0
0 1

)

,

where mz′ = (mm0)⊗ n0 for z′ = m0 ⊗n0, and extending via bilinearity for
arbitrary z; similarly for zn′. This construction is due to Reutenauer [21].

(5) D = S-Mod: given S-algebras M and N , the Schützenberger product M �N
is carried by the S-module M × (M ∗ N) × N with multiplication and unit

(

m z
0 n

)(

m′ z′

0 n′

)

=
(

mm′ mz′ + zn′

0 nn′

)

and
(

1 0 ∗ 0
0 1

)

,

where mz′ = (mm0) ∗ n0 for z′ = m0 ∗ n0, and similarly for zn′. This example
specializes to (3) and (4) by taking S = {0, 1} and S = K, respectively, but
appears to be new construction for other semirings S.

98 L.-T. Chen and H. Urbat

The following theorem gives the key property of M � N .

Theorem 32. Let K,L: Σ∗ → S be languages recognized by M and N , respec-
tively. Then M � N recognizes the languages K, L and KaL for all a ∈ Σ.

Next, we aim to show that M �N is a “smallest” D-monoid satisfying the state-
ment of the above theorem. This requires further assumptions on our setting.

Notation 33. Recall from (4.1) the morphism p ∗ q: M ∗ N → S. We denote
its adjoint transpose w.r.t. the adjunction F U by p ∗ q: F (M ∗ N) → S.

Assumption 34. From now on, suppose that:

(i) D is locally finite, i.e. every finitely generated algebra of D is finite.
(ii) Epimorphisms in D and S-Mod are surjective.
(iii) D(M,S), D(N,S), and {U(p ∗ q): UF (M ∗ N) → S }p: M→S, q: N→S are

separating families of morphisms in D .
(iv) There is a locally finite variety C of algebras such that the full subcate-

gories Cf and Df on finite algebras are dually equivalent. We denote the
equivalence functor by E: Dop

f � Cf .
(v) The semiring S is finite, and E(S) ∼= 1C .

Let us indicate the intuition behind our assumptions. First, (i) and (ii) imply
that M �N is finite if M and N are. This is important, as one is usually interested
in language recognition by finite D-monoids. (iii) expresses that the semiring S

has enough structure to separate elements of M , N and UF (M ∗ N), the three
components of the Schützenberger product M �N , by suitable morphisms into S.
This technical condition on S is the crucial ingredient for proving the “smallness”
of M � N (Theorem 37). Finally, the variety C in (iv) and (v) will be used to
determine, via duality, the algebraic operations to express languages recognized
by M � N in terms of languages recognized by M and N (Theorem 40).

Example 35. The categories and adjunctions of Example 21(1)–(4) satisfy our
assumptions. Here we briefly sketch the dualities; see [1,3] for details.

(1) For D = Set, choose C = BA (boolean algebras). Stone duality [14] gives
a dual equivalence E: Setop

f � BAf mapping a finite set to the boolean
algebra of all subsets.

(2) For D = Pos, choose C = DL (distributive lattices with 0, 1). Birkhoff
duality [5] gives a dual equivalence E: Posop

f � DLf mapping a finite poset
to the lattice of all down-sets.

(3) For D = JSL, choose C = JSL. The dual equivalence E: JSLop
f � JSLf

maps a finite semilattice (X,∨) to its opposite semilattice (X,∧), see [14].
(4) For D = K-Vec, K a finite field, choose C = K-Vec. The dual equivalence

E: K-Vecf � K-Vecop
f maps a space X to its dual space X∗ = hom(X,K).

Notation 36. For any D-monoid morphism f : ΨΣ∗ → M � N , put

LM,N (f) := {K,L,KaL | a ∈ Σ, πM ◦ f recognizes K,πN ◦ f recognizes L }

Schützenberger Products in a Category 99

Theorem 37. Let f : ΨΣ∗ → M � N and e: ΨΣ∗ → P be two D-monoid mor-
phisms. If e is surjective and recognizes all languages in LM,N (f), then there
exists a (necessarily unique) D-monoid morphism h: P → M �N with h◦ e = f .

Using our duality framework, this theorem can be rephrased in terms of language
operations. Recall that E(S) ∼= 1C by Assumption 34(v). Putting OC := E(1D),
we obtain a bijection i: S ∼= D(1D ,S) ∼= C (E(S), E(1D)) ∼= C (1C , OC) ∼= |OC |.
Definition 38. For any n-ary operation symbol γ in the signature of C and
languages L1, . . . , Ln: Σ∗ → S, the language γ(L1, . . . , Ln): Σ∗ → S is given by
γ(L1, . . . , Ln)(u) := i−1(γOC (i(L1u), . . . , i(Lnu))). The operations γ are called
the C -algebraic operations on the set of languages over Σ.

Example 39. OBA
∼= {0, 1} is the two-element boolean algebra, and the BA-

algebraic operations are precisely the boolean operations (union, intersection,
complement, ∅, Σ∗) on languages. For example, the operation symbol ∨ induces
the language operation (K ∨ L)(u) = K(u)∨L(u) corresponding to the union of
languages. Similarly, for C = DL we get union, intersection, ∅, Σ∗, for C = JSL
we get union and ∅, and for C = K-Vec we get sum, scalar product and ∅.

All our constructions and results so far apply to arbitrary D-monoids. However,
in the following theorem we need to restrict to finite D-monoids. Recall that the
derivatives of a language L: Σ∗ → S are the languages a−1L, La−1: Σ∗ → S
(where a ∈ Σ) defined by (a−1L)(u) = L(au) and (La−1)(u) = L(ua).

Theorem 40. Let M and N be finite D-monoids and f : ΨΣ∗ → M � N be a
D-monoid morphism. Then every language recognized by f lies in the closure of
LM,N (f) under the C -algebraic operations and derivatives.

Our proof uses the Local Variety Theorem of [1]: for any finite set V of recogniz-
able languages closed under C -algebraic operations and derivatives, there is a
finite D-monoid recognizing precisely the languages of V. Coincidentally, for each
of our categories of Example 21(1)–(4) it suffices to take the closure of LM,N (f)
under C -algebraic operations, as this set is already derivative-closed. For exam-
ple, for C = K-Vec we have a−1(KaL) = (a−1K)aL + K(ε)L, i.e. a−1(KaL)
is a linear combination of languages in LM,N (f) and thus lies in the closure of
LM,N (f) under K-Vec-operations. For D = Set, Pos and JSL, Theorem 40
then gives

Corollary 41. (Reutenauer [22], Pin [17], Kĺıma and Polák [15]). Let M
and N be finite monoids [ordered monoids, idempotent semirings]. Then any
language recognized by the Schützenberger product M�N is a boolean combination
[positive boolean combination, finite union] of languages of the form K, L and
KaL, where K is recognized by M , L is recognized by N , and a ∈ Σ.

For D = K-Vec, we obtain a new result for formal power series:

Corollary 42. Let M and N be finite algebras over a finite field K. Then any
language recognized by M �N is a linear combination of power series of the form
K, L and KaL, where K is recognized by M , L is recognized by N , and a ∈ Σ.

100 L.-T. Chen and H. Urbat

5 Conclusions and Future Work

We presented a categorical framework that encompasses all known instances of
Schützenberger products in the setting of regular languages. Two related con-
structions are the Schützenberger products for ω-semigroups [7], and for boolean
spaces with internal monoids [12]. Neither of these structures are monoids in the
categorical sense, and thus are not covered by our present setting. The use of
monads as in [6,8,25] might pave the way to extending the scope of our work.

References

1. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized Eilenberg theorem
I: local varieties of languages. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS).
LNCS, vol. 8412, pp. 366–380. Springer, Heidelberg (2014). http://arxiv.org/pdf/
1501.02834v1.pdf

2. Adámek, J., Milius, S., Urbat, H.: Syntactic monoids in a category. In: Proceedings
of CALCO 2015. LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

3. Adámek, J., Myers, R., Milius, S., Urbat, H.: Varieties of languages in a category.
In: LICS 2015. IEEE (2015)

4. Ballester-Bolinches, A., Cosme-Llopez, E., Rutten, J.: The dual equivalence of
equations and coequations for automata. Inform. Comput. 244, 49–75 (2015)

5. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)
6. Bojańczyk, M.: Recognisable languages over monads. In: Potapov, I. (ed.) DLT

2015. LNCS, vol. 9168, pp. 1–13. Springer, Heidelberg (2015)
7. Carton, O.: Mots infinis, ω-semigroupes et topologie. Technical report, Université

Paris 7 , report LITP-TH 93–08 (1993)
8. Chen, L.T., Adámek, J., Milius, S., Urbat, H.: Profinite monads, profinite equations

and Reiterman’s theorem. In: Jacobs, B., Löding, C. (eds.) Proceedings of FoSSaCS
2016. LNCS, vol. 9634, pp. 531–547. Springer, Heidelberg (2016). http://arxiv.org/
abs/1511.02147

9. Chen, L.T., Urbat, H.: A fibrational approach to automata theory. In: Proceedings
of CALCO 2015. LIPIcs, Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

10. Davey, B.A., Davis, G.: Tensor products and entropic varieties. Algebra Univers.
21(1), 68–88 (1985)

11. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 246–257. Springer, Heidelberg (2008)

12. Gehrke, M., Petrisan, D., Reggio, L.: The schützenberger product for syntactic
spaces. In: Proceedings of ICALP 2016 (2016, to appear). Preprint: http://arxiv.
org/abs/1603.08264

13. Goguen, J.A.: Discrete-time machines in closed monoidal categories. Int. J. Com-
put. Syst. Sci. 10(1), 1–43 (1975)

14. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
15. Kĺıma, O., Polák, L.: On schützenberger products of semirings. In: Gao, Y., Lu,

H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 279–290. Springer,
Heidelberg (2010)

16. Pin, J.É.: A variety theorem without complementation. Russ. Math. 39, 80–90
(1995)

http://arxiv.org/pdf/1501.02834v1.pdf
http://arxiv.org/pdf/1501.02834v1.pdf
http://arxiv.org/abs/1511.02147
http://arxiv.org/abs/1511.02147
http://arxiv.org/abs/1603.08264
http://arxiv.org/abs/1603.08264

Schützenberger Products in a Category 101

17. Pin, J.É.: Algebraic tools for the concatenation product. Theor. Comput. Sci. 292,
317–342 (2003)

18. Pin, J.É.: Mathematical foundations of automata theory (October 2015). http://
www.liafa.jussieu.fr/∼jep/PDF/MPRI/MPRI.pdf

19. Polák, L.: Syntactic semiring of a language. In: Sgall, J., Pultr, A., Kolman, P.
(eds.) MFCS 2001. LNCS, vol. 2136, pp. 611–620. Springer, Heidelberg (2001)

20. Porst, H.E.: On categories of monoids, comonoids, and bimonoids. Quaestiones
Math. 31, 127–139 (2008)

21. Reutenauer, C.: Séries formelles et algèbres syntactiques. J. Algebra 66, 448–483
(1980)

22. Reutenauer, C.: Sur les variétés de langages et de monóıdes. In: 4th GI-Conference
on Theoretical Computer Science. LNCS, vol. 67, pp. 260–265. Springer (1979)

23. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform.
Control 8, 190–194 (1965)

24. Uramoto, T.: Semi-galois categories: the classical Eilenberg variety theory. In: Pro-
ceeding of LICS 2016 (2016, to appear). Preprint: http://arxiv.org/abs/1512.04389

25. Urbat, H., Adámek, J., Chen, L.T., Milius, S.: One Eilenberg theorem to rule them
all (2016). Preprint: http://arxiv.org/abs/1602.05831

http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://arxiv.org/abs/1512.04389
http://arxiv.org/abs/1602.05831

Outfix-Guided Insertion

(Extended Abstract)

Da-Jung Cho1, Yo-Sub Han1, Timothy Ng2, and Kai Salomaa2(B)

1 Department of Computer Science, Yonsei University,
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{dajungcho,emmous}@yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada

{ng,ksalomaa}@cs.queensu.ca

Abstract. Motivated by work on bio-operations on DNA strings, we
consider an outfix-guided insertion operation that can be viewed as a
generalization of the overlap assembly operation on strings studied pre-
viously. As the main result we construct a finite language L such that the
outfix-guided insertion closure of L is nonregular. We consider also the
closure properties of regular and (deterministic) context-free languages
under the outfix-guided insertion operation and decision problems related
to outfix-guided insertion. Deciding whether a language recognized by a
deterministic finite automaton is closed under outfix-guided insertion can
be done in polynomial time.

Keywords: Language operations · Closure properties · Regular lan-
guages

1 Introduction

Gene insertion and deletion are basic operations occurring in DNA recombina-
tion in molecular biology. Recombination creates a new DNA strand by cutting,
substituting, inserting, deleting or combining other strands. Possible errors in
this process directly affect DNA strands and impair the function of genes. Errors
in DNA recombination cause mutation that plays a part in normal and abnormal
biological processes such as cancer, the immune system, protein synthesis and
evolution [1]. Since mutational damage may or may not be easily identifiable,
researchers deliberately generate mutations so that the structure and biological
activity of genes can be examined in detail. Site-directed mutagenesis is one of
the most important techniques in laboratory for generating mutations on specific
sites of DNA using PCR (polymerase chain reaction) based methods [7,11]. For a
site-directed insertion mutagenesis by PCR, the mutagenic primers are typically
designed to include the desired change, which could be base addition [15,16]. This
enzymatic reaction occurs in the test tube with a DNA strand and predesigned
primers in which the DNA strand includes a target region, and a predesigned

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 102–113, 2016.
DOI: 10.1007/978-3-662-53132-7 9

Outfix-Guided Insertion 103

primer includes a complementary region of the target region. The complemen-
tary region of primers leads it to hybridize the target DNA region and generate
a desired insertion on a specific site as a mutation. Figure 1 illustrates the pro-
cedure of site-directed insertion mutagenesis by PCR.

Input: A given DNA

Output: A desired DNA

Inserted part

Step 1: Cut given DNA using primers a and b

mutagenic primer a

mutagenic primer b

Step 2: Annealing inserted sequence using primers c and d

mutagenic primer c

mutagenic primer d

Product A

Product B

Product C

Step 3: Ligation PCR with product A,B and C

Desired DNA

Inserted part

Fig. 1. An example of site-directed insertion mutagenesis by PCR. Given a DNA
sequence and four predesigned primers a, b, c and d, two primers a and b lead the
DNA sequence to break and extend into two products A and B under enzymatic reac-
tion (Step 1). Two primers c and d complementarily bind to desired insertion region
according to the overlapping region and extend into product C (Step 2). Then, the
products A,B and C join together to create recombinant DNA that include the desired
insertion (Step 3).

104 D.-J. Cho et al.

In formal language theory, the insertion of a string means adding a substring
to a given string and deletion of a string means removing a substring. The
insertions occurring in DNA strands are in some sense context-sensitive and Kari
and Thierrin [13] modeled such bio-operations using contextual insertions and
deletions [8,19]. A finite set of insertion-deletion rules, together with a finite set
of axioms, can be viewed as a language generating device. Contextual insertion-
deletion systems in the study of molecular computing have been used e.g. by
Daley et al. [3], Krassovitskiy et al. [14] and Takahara and Yokomori [21]. Further
theoretical studies on the computational power of insertion-deletion systems were
done e.g. by Margenstern et al. [17] and Pǎun et al. [18]. Enaganti et al. [6] have
studied related operations to model the action of DNA polymerase enzymes.

We formalize site-directed insertion mutagenesis by PCR and define a new
operation outfix-guided insertion that partially inserts a string y into a string x
when two non-empty substrings of x match with an outfix of y, see Fig. 2(b).
The outfix-guided insertion is an overlapping variant of the ordinary insertion
operation, analogously as the overlap assembly [2,4,5], cf. Fig. 2(a), is a variant
of the ordinary string concatenation operation.

x

y

x

y

(a) Overlap assembly (b) Outfix-guided insertion

u v

v w

v wu

u v

u v

w

w

u v

Fig. 2. (a) If suffix v of x overlaps with the prefix v of y, then the overlap assembly
operation partially catenates x and y appending suffix w of y to x. (b) If the outfix of
y consisting of u and v matches the substring uv of x, then the outfix-guided insertion
operation inserts w between u and v in the string x.

This paper investigates the language theoretic closure properties of outfix-
guided insertion and iterated outfix-guided insertion. Note that since outfix-
guided insertion, similarly as overlap assembly, is not associative, there are more
than one way to define the iteration of the operation. We consider a general
outfix-guided insertion closure of a language which is defined analogously as the
iterated overlap assembly by Enaganti et al. [4]. Iterated (overlap) assembly is
defined by Csuhaj-Varju et al. [2] in a different way, which we call right one-sided
iteration of an operation.

It is fairly easy to see that regular languages are closed under outfix-guided
insertion. Closure of regular languages under outfix-guided insertion closure
turns out to be less obvious. It is well known that regular languages are not closed

Outfix-Guided Insertion 105

under the iteration of the ordinary (non-overlapping) insertion operation [12].
However, the known counter-examples, nor their variants, do not work for iter-
ated outfix-guided insertion. Here using a more involved construction we show
that there exists even a finite language L such that the outfix-guided insertion
closure of L is nonregular. On the other hand, we show that the outfix-guided
insertion closure of a unary regular language is always regular.

It is well known that context-free languages are closed under ordinary (non-
iterated) insertion. We show that context-free languages are not closed under
outfix-guided insertion. The outfix-guided insertion of a regular language into a
context-free language (or vice versa) is always context-free. Also we establish that
a similar closure property does not hold for the deterministic context-free and
the regular languages. Finally in the last section we consider decision problems
on whether a language is closed under outfix-guided insertion (or og-closed).
We give a polynomial time algorithm to decide whether a language recognized
by a deterministic finite automaton (DFA) is og-closed. We show that for a given
context-free language L the question of deciding whether or not L is og-closed
is undecidable. Most proofs are omitted in this extended abstract.

2 Definition of (Iterated) Outfix-Guided Insertion

We assume the reader to be familiar with the basics of formal languages, in
particular, with the classes of regular languages and (deterministic) context-
free languages [20,22]. More details on variants of the insertion operation and
iterated insertion can be found in [12].

The symbol Σ stands always for a finite alphabet, Σ∗ is the set of strings
over Σ, |w| is the length of a string w ∈ Σ∗, wR is the reversal of w and ε is the
empty string. For i ∈ N, Σ≥i is the set of strings of length at least i.

If w = xy, x, y ∈ Σ∗, we say that x is a prefix of w and y is a suffix of w.
If w = xyz, x, y, z ∈ Σ∗, we say that (x, z) is an outfix of w. If additionally
x �= ε and z �= ε, (x, z) is a non-trivial outfix of w. Sometimes (in particular,
when talking about the outfix-guided insertion operation) we refer to an outfix
(x, z) simply as a string xz (when it is known from the context what are the
components x and z). For example, with Σ = {a, b, c} and w = abca the non-
trivial outfixes of w are aa, aba, aca and abca.

We begin by recalling some notions associated with the non-overlapping
insertion operation.1 The non-overlapping insertion of a string y into a string
x is defined as the set of strings x

nol← y = {x1yx2 | x = x1x2}. The
insertion operation is extended in the natural way for languages by setting
L1

nol← L2 =
⋃

x∈L1,y∈L2
x

nol← y. Following Kari [12] we define the left-iterated
insertion of L2 into L1 inductively by setting

LI
(0)(L1, L2) = L1 and LI

(i+1)(L1, L2) = LI
(i)(L1, L2)

nol← L2, i ≥ 0.

1 We use the term “non-overlapping” to make the distinction clear to outfix-guided
insertion which will be the main topic of this paper.

106 D.-J. Cho et al.

The left-iterated insertion closure of L2 into L1 is LI
∗(L1, L2) =

⋃∞
i=0

LI
(i)(L1, L2). It is well known that the iterated non-overlapping insertion oper-

ation does not preserve regularity [10,12]. The left-iterated insertion closure of
the string ab into itself is nonregular because LI

∗(ab, ab) ∩ a∗b∗ = {aibi | i ≥ 0}.
Next we define the main notion of this paper which can be viewed as a

generalization of the overlap assembly operation [2,4]. The “inside part” of a
string y can be outfix-guided inserted into a string x if a non-trivial outfix of y
overlaps with a substring of x in a position where the insertion occurs. This differs
from contextual insertion (as defined in [13]) in the sense that y must actually
contain the outfix that is matched with a substring of x (and additionally [13]
specifies a set of contexts where an insertion can occur).

Definition 1. The outfix-guided insertion of a string y into a string x is defined
as

x
ogi← y = {x1uzvx2 | x = x1uvx2, y = uzv, u �= ε, v �= ε}.

Using the above notations, when x1uzvx2 ∈ x
ogi← y we say that the nonempty

substrings u and v are the matched parts. Note that the matched parts form a
non-trivial outfix of the inserted string y.

Since we are almost exclusively dealing with outfix-guided insertion, in the
following for notational simplicity we write just ← in place of

ogi←. Outfix-guided
insertion is extended in the usual way for languages by setting L1 ← L2 =
⋃

wi∈Li,i=1,2 w1 ← w2.

Example 2. Outfix-guided insertion is not associative. Let Σ = {a, b, c, d}. Now
abcd ∈ (acd ← abc) ← abcd but abc ← abcd = ∅.

Since outfix-guided insertion is non-associative we define the (i + 1)th iter-
ated operation (analogously as was done with iterated overlap assembly [4]) by
inserting to a string of the ith iteration another string of the ith iteration.

Definition 3. For a language L define inductively

OGI
(0)(L) = L, and OGI

(i+1)(L) = OGI
(i)(L) ← OGI

(i)(L), i ≥ 0.

The outfix-guided insertion closure of L is OGI
∗(L) =

⋃∞
i=0 OGI

(i)(L).

For talking about specific iterated outfix-guided insertions, we use the nota-

tion x
[y]⇒ z to indicate that string z is in x ← y, x, y, z ∈ Σ∗. A sequence of

steps

x
[y1]⇒ z1

[y2]⇒ z2
[y3]⇒ · · · [ym]⇒ zm, m ≥ 1,

is called a derivation of zm from x.
When we want to specify the matched substrings, they are indicated by

underlining. If x = x1uvx2 derives z by inserting uzv (where u and v are the
matched prefix and suffix, respectively,) this is denoted

x1uvx2
uyv⇒ z.

Outfix-Guided Insertion 107

Also, sometimes underlining is done only in the inserted string if this makes it
clear what must be the matched substrings in the original string.

By a trivial derivation step we mean a derivation x
[x]⇒ x where x is obtained

from itself by selecting the outfix to consist of the entire string x. Every string
of length at least two can be obtained from itself using a trivial derivation step.
This means, in particular, that for any language L, L − (Σ ∪ {ε}) ⊆ OGI

(1)(L).
The sets OGI

(i)(L), i ≥ 1, cannot contain strings of length less than two and,
consequently OGI

(i)(L) ⊆ OGI
(i+1)(L), for all i ≥ 1.

Definition 3 iterates the outfix-guided insertion by inserting a string from the
ith iteration of the operation into another string in the ith iteration. Since the
operation is non-associative we can define iterated insertion in more than one
way. The right one-sided insertion of L2 into L1 outfix-guided inserts a string
of L2 into L1 and the iteration of the operation inserts a string obtained in the
process into L1. The iterated left one-sided outfix-guided insertion is defined
symmetrically. In fact, when considering iterated ordinary insertion, Kari [12]
uses a definition that we call left one-sided iterated insertion (and the operation
was defined as LI∗(L1, L2) above). Csuhaj-Varju et al. [2] define iterated overlap
assembly using right one-sided iteration of the operation.

Definition 4. Let L1 and L2 be languages. The right one-sided iterated inser-
tion of L2 into L1 is defined inductively by setting ROGI

(0)(L1, L2) = L2 and
ROGI

(i+1)(L1, L2) = L1 ← ROGI
(i)(L1, L2), i ≥ 0. The right one-sided inser-

tion closure of L2 into L1 is ROGI
∗(L1, L2) =

⋃∞
i=0 ROGI

(i)(L1, L2).
The left one-sided iterated insertion of L2 into L1 is defined inductively by

setting LOGI
(0)(L1, L2) = L1 and LOGI

(i+1)(L1, L2) = LOGI
(i)(L1, L2) ← L2,

i ≥ 0. The left one-sided insertion closure of L2 into L1 is LOGI
∗(L1, L2) =

⋃∞
i=0 LOGI

(i)(L1, L2).

The one-sided iterated insertion closures are defined for two argument lan-
guages. Naturally it would be possible to extend also the definition of unre-
stricted iterated outfix-guided insertion for two arguments. Note that for any lan-
guage L, OGI

(1)(L) = LOGI
(1)(L,L) = ROGI

(1)(L,L) = L ← L. On the other
hand, the iterated version of unrestricted outfix-guided insertion is considerably
more general than the one-sided variants. For any language L, ROGI

∗(L,L) and
LOGI

∗(L,L) are always included in OGI
∗(L) and, in general, the inclusions can

be strict.

Example 5. Let Σ = {a, b, c} and L1 = {aacc}, L2 = {abc}. Now
ROGI

∗(L1, L2) = a+bc+. For example, by inserting abc into aacc derives aabcc:

aacc
abc⇒ aabcc. (1)

A right one-sided iterated insertion of L2 into L1 could then be continued, for

example, as aacc
aabcc⇒ aaabcc. In this way right one-sided derivations can gen-

erate all strings of a+bc+. Since all inserted strings must contain the symbol b,

108 D.-J. Cho et al.

the first matched part must always belong to a+ and the second matched part
must belong to c+. This means that ROGI

∗(L1, L2) ⊆ a+bc+.
On the other hand, LOGI

∗(L1, L2) = {aabcc, aacc}. In a left one-sided iter-
ated insertion of L2 into L1, the only non-trivial derivation step is (1).

By denoting L3 = L1 ∪ L2, it can be verified that

OGI
∗(L3) = ROGI

∗(L3, L3) = LOGI
∗(L3, L3) = a+bc+ ∪ a2a∗c2c∗.

The next example illustrates that unrestricted outfix-guided insertion closure
of a language L′ can be larger than LOGI

∗(L′, L′). The language L used in the
proof of Theorem 9 in the next section gives an example where the unrestricted
insertion closure is larger than ROGI

∗(L,L) (as explained before Proposition 15).

Example 6. Let Σ = {a, b, c, d, e, f} and L′ = {abce, bcde, acdef}. We note that

abce
bcde⇒ abcde. Furthermore, it is easy to verify that by outfix-guided insert-

ing strings of L′ into L′ ∪ {abcde} one cannot produce more strings and, thus,
LOGI

∗(L′, L′) = L′ ∪ {abcde}. On the other hand, we have

acdef
abcde⇒ abcdef ∈ OGI

(2)(L′).

3 Outfix-Guided Insertion and Regular Languages

As can be expected, the family of regular languages is closed under outfix-guided
insertion. On the other hand, the answer to the question whether regular lan-
guages are closed under outfix-guided insertion closure seems less clear. From
Kari [12] we recall that it is easy to construct examples that establish the non-
closure of regular languages under iterated non-overlapping insertion. However,
such straightforward counter-examples do not work for the unrestricted outfix-
guided insertion closure. Using a more involved construction we establish that
even the outfix-guided insertion closure of a finite language need not be regular.
The nonclosure of regular languages under right one-sided insertion closure is
established by a more straightforward construction.

Proposition 7. If L1 and L2 are regular, then so is L1 ← L2.

It seems difficult to extend the proof of Proposition 7 for outfix-guided inser-
tion closure because on strings with iterated insertions, the computations on
corresponding prefix-suffix pairs can, in general, depend on each other and when
processing a part inserted in between, an NFA would need to keep track of such
pairs, as opposed to simply keep track of a set of states. On the other hand, it is
not equally easy as in the case of non-overlapping iterated insertion to construct
a counter-example, i.e., a regular language whose outfix-guided insertion closure
is nonregular.

Next we show that regular languages, indeed, are not closed under iter-
ated outfix-guided insertion. For the construction we use the following technical
lemma.

Outfix-Guided Insertion 109

Lemma 8. Let Σ = {a1, a2, a3, b1, b2, b3} and define

L1 = {a3a1a2b1, a2b2b1b3, a1a2a3b2, a3b3b2b1, a2a3a1b3, a1b1b3b2}.

Then L1 ← L1 = L1.

Theorem 9. There exists a finite language L such that OGI
∗(L) is nonregular.

Proof (Sketch). Let Σ = {a1, a2, a3, b1, b2, b3} and define

L = {$a3a1b1b3$, a3a1a2b1, a2b2b1b3, a1a2a3b2, a3b3b2b1, a2a3a1b3, a1b1b3b2}.

Note that L−{$a3a1b1b3$} is equal to the language L1 from Lemma 8. For ease
of discussion we introduce names for the strings of L1: y1 = a3a1a2b1, y2 =
a2b2b1b3, y3 = a1a2a3b2, y4 = a3b3b2b1, y5 = a2a3a1b3, y6 = a1b1b3b2. and
define the finite set

Smiddle = {a1b1, a1a2b1, a1a2b2b1, a1a2a3b2b1, a1a2a3b3b2b1, a1a2a3a1b3b2b1}.

We claim that

OGI
∗(L) = {$a3(a1a2a3)iz(b3b2b1)ib3$ | i ≥ 0, z ∈ Smiddle}. (2)

To establish the inclusion from right to left, we note that

$a3a1b1b3$
[y1]⇒ $a3a1a2b1b3$

[y2]⇒ $a3a1a2b2b1b3$
[y3]⇒ $a3a1a2a3b2b1b3$

[y4]⇒
$a3a1a2a3b3b2b1b3$

[y5]⇒ $a3a1a2a3a1b3b2b1b3$
[y6]⇒ $a3a1a2a3a1b1b3b2b1b3$ = w1.

The first five insertions generate the strings $a3zb3$, z ∈ Smiddle, and the
last string w1 again has “middle part” a3a1b1b3. By cyclically outfix-guided
inserting the strings y1, . . . y6 into w1 we get all strings $a3(a1a2a3)z(b3b2b1)b3$,
z ∈ Smiddle, and the string $a3(a1a2a3)2a1b1(b3b2b1)2b3$. By simple induction it
follows that OGI

∗(L) contains the right side of (2).
To establish the converse inclusion, we verify using Lemma 8 that all strings

obtained by iterated outfix-guided insertion from strings of L must be obtained
as above, that is, all non-trivial derivations producing new strings must be as
above. �

We conjecture that the iterated outfix-guided insertion closure of a regular
language need not be even context-free. However, a construction of such a lan-
guage would seem to be considerably more complicated than the construction
used in the proof of Theorem 9.

Contrasting the result of Theorem 9 we show that unary regular languages
are closed under iterated outfix-guided insertion. The construction is based on a
technical lemma which shows that, for unary languages, outfix-guided insertion
closure can be represented as a variant of the iterated overlap assembly [2,4].

110 D.-J. Cho et al.

Definition 10. Let x, y ∈ Σ∗. The 2-overlap catenation of x and y, x�2
y, is

defined as

x�2
y = {z ∈ Σ+ | (∃u,w ∈ Σ∗)(∃v ∈ Σ≥2) x = uv, y = vw, z = uvw}.

For L ⊆ Σ∗, we define inductively 2OC
(0)(L) = L and 2OC

(i+1)(L) = 2OC
(i)

(L)�22OC
(i)(L), i ≥ 0. The 2-overlap catenation closure of L is 2OC

∗(L) =
⋃∞

i=0 2OC
(i)(L).

Due to commutativity of unary languages we get the following property which
will be crucial for establishing closure of unary regular languages under outfix-
guided insertion closure.

Lemma 11. If x, y ∈ a∗ are unary strings, then x ← y = x�2
y.

Corollary 12. If L is a unary language then OGI
∗(L) = 2OC

∗(L).

The 2-overlap closure of a regular language is always regular. The construc-
tion does not depend on a language being unary, so we state the result for regular
languages over an arbitrary alphabet. Csuhaj-Varju et al. [2] have shown that
iterated overlap assembly preserves regularity. The proof of Lemma 13 is inspired
by Theorem 4 of [2] but does not follow from it because [2] defines iteration of
operations as right one-sided iteration and, furthermore, 2-overlap catenation
has an additional length restriction on the overlapping strings.

Lemma 13. The 2-overlap catenation closure of a regular language is regular.

By Corollary 12 and Lemma 13 we have shown that unary regular lan-
guages are closed under outfix-guided insertion closure, contrasting the result of
Theorem 9 for general regular languages.

Theorem 14. The outfix-guided insertion closure of a unary regular language
is always regular.

The left and right one-sided insertion closures are restricted variants of
the general outfix-guided insertion closure, so Theorem9 does not, at least
not directly, imply the existence of regular languages L1 and L2 such that
LOGI

∗(L1, L2) or ROGI
∗(L1, L2) are non-regular. Here we show that the one-

sided outfix-guided insertion closures are not, in general, regularity preserving.
For left-one one-sided outfix-guided insertion closure the construction is similar
to that used in the proof of Theorem 9. However, this construction does not
work for right one-sided closure because if L is the language used in the proof
of Theorem 9, then ROGI

∗(L,L) is the finite language L ∪ {$a3a1a2b1b3$}.

Proposition 15. There exist finite languages L1, L2, L3 and L4 such that
ROGI

∗(L1, L2) and LOGI
∗(L3, L4) are non-regular.

Outfix-Guided Insertion 111

4 Outfix-Guided Insertion and Context-Free Languages

It is well known that the family of context-free languages is closed under ordi-
nary insertion. Contrasting the result of Proposition 7 we show that context-free
languages are not closed under (non-iterated) outfix-guided insertion.

Theorem 16. There exists a context-free language L such that L ← L is not
context-free.

It follows that context-free languages are not closed under one-sided outfix-
guided iteration because, for any language L, OGI

(1)(L) = ROGI
(1)(L,L) =

LOGI
(1)(L,L) = L ← L. On the other hand, the outfix-guided insertion of

a regular (respectively, context-free) language into a context-free (respectively,
regular) language is always regular.

Theorem 17. If L1 is context-free and L2 is regular, then L1 ← L2 and L2 ←
L1 are context-free.

The analogy of Theorem 17 does not hold for deterministic context-free lan-
guages. Techniques for proving that a language is not deterministic context-free
are known already from [9].

Theorem 18. If L1 is deterministic context-free and L2 is regular, the lan-
guages L1 ← L2 or L2 ← L1 need not be deterministic context-free.

Theorem 16 raises the question how complex languages can be obtained from
context-free languages using iterated outfix-guided insertion. Note that if L1 and
L2 are context-free, it is easy to verify that L1 ← L2 is at least deterministic
context-sensitive.

Proposition 19. If L1 and L2 are context-free then ROGI
∗(L1, L2) and LOGI

∗

(L1, L2) are context-sensitive.

In the proof of Proposition 19 it is sufficient to know that the languages
L1 and L2 are context-sensitive, and as a consequence it follows that context-
sensitive languages are closed under one-sided outfix-guided insertion closure.

Corollary 20. If L1 and L2 are context-sensitive then so are ROGI
∗(L1, L2)

and LOGI
∗(L1, L2).

We conjecture that, for any context-free language L, OGI
∗(L) must be

context-sensitive. Constructing a linear bounded automaton for OGI
∗(L) is more

difficult than in the case of the right or left one-sided insertion closures, because
a direct simulation of a derivation of w ∈ OGI

∗(L) (i.e., simulation of the iter-
ated outfix-guided insertion steps producing w) would need to remember, at a
given time, an unbounded number of substrings of the input.

Also we do not know how to make the procedure in the proof of Proposition 19
deterministic and it remains open whether the one-sided outfix-guided insertion
closures of context-free languages are always deterministic context-sensitive.

112 D.-J. Cho et al.

5 Deciding Closure Under Outfix-Guided Insertion

We say that a language L is closed under outfix-guided insertion, or og-closed
for short, if outfix-guided inserting strings of L into L does not produce strings
outside of L, that is, (L ← L) ⊆ L.

A natural algorithmic problem is then to decide for a given language L
whether or not L is og-closed. If L is regular, by Proposition 7, we can decide
whether or not L is og-closed. For a given DFA A, Proposition 7 yields only an
NFA for the language L(A) ← L(A). In general, the NFA equivalence or inclu-
sion problem is PSPACE complete [22], however, inclusion of an NFA language
in the language L(A) can be tested efficiently when A is deterministic.

Proposition 21. There is a polynomial time algorithm to decide whether for a
given DFA A the language L(A) is og-closed.

The method used in Proposition 21 does not yield an efficient algorithm if the
regular language L is specified by an NFA. The complexity of deciding og-closure
of a language accepted by an NFA remains open. On the other hand, using a
reduction from the Post Correspondence Problem it follows that the question
whether or not a context-free language is og-closed in undecidable.

Theorem 22. For a given context-free language L, the question whether or not
L is og-closed is undecidable.

6 Conclusion

Analogously with the recent overlap assembly operation [2,4], we have intro-
duced an overlapping insertion operation on strings and have studied closure
and decision properties of the outfix-guided insertion operation. While closure
properties of non-iterated outfix-guided insertion are straightforward to estab-
lish, the questions become more involved for the outfix-guided insertion closure.
As the main result we have shown that the outfix-guided insertion closure of a
finite language need not be regular.

Much work remains to be done on outfix-guided insertion. One of the main
open questions is to determine upper bounds for the complexity of the outfix-
guided insertion closures of regular languages. Does there exist regular languages
L such that the outfix-guided insertion closure of L is non-context-free?

Acknowledgments. Cho and Han were supported by the Basic Science Research Pro-
gram through NRF funded by MEST (2015R1D1A1A01060097), the Yonsei University
Future-leading Research Initiative of 2015 and the International Cooperation Program
managed by NRF of Korea (2014K2A1A2048512). Ng and Salomaa were supported by
Natural Sciences and Engineering Research Council of Canada Grant OGP0147224.

Outfix-Guided Insertion 113

References

1. Bertram, J.S.: The molecular biology of cancer. Mol. Asp. Med. 21(6), 167–223
(2000)

2. Csuhaj-Varju, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages.
Theoret. Comput. Sci. 374, 74–81 (2007)

3. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual inser-
tions/deletions with applications to biomolecular computation. In: String Process-
ing and Information Retrieval Symposium, pp. 47–54 (1999)

4. Enaganti, S., Ibarra, O., Kari, L., Kopecki, S.: On the overlap assembly of strings
and languages. Nat. Comput. (2016). dx.doi.org/10.1007/s11047-015-9538-x

5. Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: Further remarks on DNA over-
lap assembly, manuscript (2016)

6. Enaganti, S.K., Kari, L., Kopecki, S.: A formal language model of dna polymerase
enzymatic activity. Fundam. Inform. 138, 179–192 (2015)

7. Flavell, R., Sabo, D., Bandle, E., Weissmann, C.: Site-directed mutagenesis: effect
of an extracistronic mutation on the in vitro propagation of bacteriophage qbeta
RNA. Proc. Natl. Acad. Sci. 72(1), 367–371 (1975)

8. Galiukschov, B.: Semicontextual grammars (in Russian). Mat. Log. Mat.
Lingvistika 38–50 (1981)

9. Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9,
620–648 (1966)

10. Haussler, D.: Insertion languages. Inf. Sci. 31, 77–89 (1983)
11. Hemsley, A., Arnheim, N., Toney, M.D., Cortopassi, G., Galas, D.J.: A simple

method for site-directed mutagenesis using the polymerase chain reaction. Nucleic
Acids Res. 17(16), 6545–6551 (1989)

12. Kari, L.: On insertion and deletion in formal languages. Ph.D. thesis, University
of Turku (1991)

13. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

14. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-
deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)

15. Lee, J., Shin, M.K., Ryu, D.K., Kim, S., Ryu, W.S.: Insertion and deletion muta-
genesis by overlap extension PCR. In: Braman, J. (ed.) In Vitro Mutagenesis Pro-
tocols, 3rd edn, pp. 137–146. Humana Press, New York (2010)

16. Liu, H., Naismith, J.H.: An efficient one-step site-directed deletion, insertion, single
and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8(1), 91–101
(2008)

17. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)

18. Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characteriza-
tions of languages in Chomsky hierarchy by means of insertion-deletion systems.
Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)

19. Pǎun, G.: On semicontextual grammars. Bull. Math. Soc. Sci. Math. Rouman. 28,
63–68 (1984)

20. Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, Cambridge (2009)

21. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2, 321–336 (2003)

22. Yu, S.: Regular languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/s11047-015-9538-x

Both Ways Rational Functions

Christian Choffrut and Bruno Guillon(B)

IRIF, CNRS and Université Paris 7 Denis Diderot, Paris, France
guillonb@liafa.unif-paris-diderot.fr

Abstract. We consider binary relations on words which can be recog-
nized by finite two-tape devices in two different ways: the traditional way
where the two tapes are scanned in the same direction and a new one
where they are scanned in different directions. The devices of the former
type define the family of rational relations, while those of the latter define
an a priori really different family. We characterize the partial functions
that are in the intersection of the two families. We state a conjecture for
the intersection for general, nonfunctional, relations.

Keywords: Rational relations · Finite automata · Two-way transduc-
ers · Two-tape automata · Word relations

1 Introduction

A binary word relation is a set of pairs of words, i.e., a subset of the direct
product of two free monoids. Rabin and Scott introduced in 1959 the notion of
finite two-tape (actually multitape) automata as a natural extension of finite
(one-tape) automata and used them as recognition device for pairs of words, [8].
The two words are stored on two tapes and are scanned at different speeds but in
the same direction, from left to right. The machine has no write capability and its
memory is finite. In 1965 Elgot and Mezei proved a Kleene-like theorem showing
that the set of relations thus defined is precisely the set of rational subsets of the
direct product of two free monoids, [4]. Decision issues were investigated in [6].

The question we tackle is the following. Modify the Rabin-Scott model so
that scanning the two-tapes is done in opposite directions, the remaining fea-
tures being otherwise kept. Under which condition can the same relation be
recognized in these two different models? We somehow improperly call both ways
rational the family BwRat of such binary relations which is the subject of this
contribution.

We now explain how we came across the problem. Three years ago we started
investigating the expressive power of two-way transducers which are nothing more
than finite two-way automata provided with a one-way output tape. They can be
viewed as accepting devices with two tapes which, contrary to Rabin-Scott model,
play asymmetric roles since one is two-way (traditionally viewed as an input tape)
and the other is one-way (the output tape). The two-way transducers still remain
ill-understood except for the deterministic case, [5], which is no wonder because
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 114–124, 2016.
DOI: 10.1007/978-3-662-53132-7 10

Both Ways Rational Functions 115

two-way automata obtained from two-way transducers by eliminating the one-
way output tape pose challenging longstanding open problems such as that of the
cost of simulating a nondeterministic machine (a 2NFA) by a deterministic one (a
2DFA), [10]. What is lacking for transducers is operations on relations that would
mimic the behavior of the tapes. In [2] we used the notions of Hadamard product
and Hadamard star of a relation which capture the idea that the input tape can
be scanned repeatedly from left to right. This happens to be sufficient in the case
where the two tapes contain words on unary alphabets but it is clearly too weak to
solve the general case, [7].

The literature on one-tape two-way automata considers weaker versions of
the model such as sweeping [11] or rotating [10] automata. We proceed similarly
by imposing the most possible drastic restrictions on the move of the input head
of two-way transducers: the head makes a unique traversal from left to right or
it makes a unique traversal from right to left. Of course the first constraint is
equivalent to the initial model of Rabin and Scott but not the second. The both
ways rational relations are the relations that are recognized by both of these two
restricted transducers.

Now in order to present our main result we need to introduce a couple of
definitions. The left-reverse of a relation in Σ∗ × Δ∗ is the relation obtained
by taking the mirror image of the first component of its elements. A relation
is factorizable if it is a composition1 of two rational relations through a unary
alphabet, i.e., if it is equal to R◦S for some rational R ⊆ Σ∗×Γ ∗ and S ⊆ Γ ∗×Δ∗

with |Γ | = 1.
In this paper we settle the case where R is the graph of a partial func-

tion (abbreviated as “function”), i.e., for all u ∈ Σ∗, v, w ∈ Δ∗ the condition
(u, v), (u,w) ∈ R implies v = w. For this particular case, we give the characteri-
zation below.

Theorem 1. Given a function f : Σ∗ → Δ∗ the following conditions are equiv-
alent:

(1) f is both ways rational
(2) f is factorizable
(3) f is rational and its image2 is a finite union of subsets of the form xy∗z for

some x, y, z ∈ Δ∗.

This characterization yields a procedure for testing membership of a rational
function to BwRat. We conjecture that the equivalence of the first two points
extends to the whole of BwRat. The arguments in favor of this claim is that all
factorizable relations are both ways rational and that these two families satisfy
the same closure properties under the usual operations. It is not difficult to
work out an example of nonfunctional relation in BwRat that does not satisfy
Point 3.

1 We compose the relations from left to right: R ◦ S denotes the relation
{(u, v) | ∃w, (u, w) ∈ R and (w, v) ∈ S}.

2 The image of a relation R is the subset {v ∈ Δ∗ | ∃u ∈ Σ∗, (u, v) ∈ R}.

116 C. Choffrut and B. Guillon

We now turn to the discussion of the material of this manuscript. In Sect. 2
we collect all the basic definitions along with the different operators on binary
relations such as inverse and the three types of reversals. In Sect. 3 we concentrate
on the two families BwRat and Fact and show that the second one is included
in the first one. We investigate their closure and non-closure properties and
observe that these two families behave alike. The main result, which characterizes
the relations in BwRat that are functions, is proved in Sect. 4. We evaluate the
complexity of determining whether or not a given rational relation is in BwRat.

Due to space constraints, we are obliged to omit some proofs.

2 Preliminaries

In this section, we recall the two main families of subsets of a given monoid M ,
and their well-known properties and characterizations. Then we introduce some
additional operations on relations, namely the inverse and three kinds of rever-
sals.

2.1 Rational and Recognizable Subsets

The family of rational subsets, denoted Rat(M), is the smallest family F of
subsets of M which contains the finite subsets and which is closed under set
union, set concatenation (X,Y ∈ F ⇒ X · Y = {xy | x ∈ X, y ∈ Y } ∈ F)
and Kleene star (X ∈ F ⇒ X∗ = {x1 · · · xn | n ≥ 0, xi ∈ X} ∈ F). We use
the convention that the product x1 · · · xn reduces to the identity element of the
monoid if n = 0.

A subset X ⊆ M is recognizable if it is the inverse image of a morphism of M
onto a finite monoid. The family of such relations is denoted Rec(M). When M
is a free monoid, Kleene Theorem asserts that Rat(M) = Rec(M) holds.

2.2 Free Monoids and Direct Products Thereof

We denote by Σ∗ the free monoid generated by the set Σ. Its elements are words
and its identity element is the empty word denoted 1. For all words u ∈ Σ∗, we
denote by |u| its length, by |u|c the number of occurrences of the letter c in u
and by u the reverse of u, i.e., if u = a1 · · · an we have u = an · · · a1 and we
set 1 = 1.

We are mainly interested in direct products of free monoids, say Σ∗ × Δ∗,
where the operation is the componentwise concatenation: (u1, v1)(u2, v2) =
(u1u2, v1v2). We use the term “relations” for their subsets. In the case of direct
products of free monoids, the previous two families of subsets possess nice char-
acterizations which facilitate the study of their properties.

We start by considering Rat(Σ∗ × Δ∗). We take for granted that the reader
is acquainted with the classical notion of finite one tape deterministic and
nondeterministic finite automaton, [9, Chapter IV]. A two-tape nondetermin-
istic automaton introduced by Rabin and Scott in 1965, [8], is a structure

Both Ways Rational Functions 117

A = (Q,Σ,Δ, I, E, F) where Q is a finite set of states, I ⊆ Q and F ⊆ Q
are respectively the subsets of initial and final states and where

E ⊆ (Q × Σ × {1} × Q) ∪ (Q × {1} × Δ × Q) (1)

is a set of transitions. The notions of successful paths, labels and subsets accepted
by A are natural extensions of those of ordinary finite automata. In particular
the label of a path is the componentwise concatenation of the labels of the
transitions in the path. The fundamental result is that the family of relations
accepted by two-tape finite automata is precisely the family Rat(Σ∗ × Δ∗) of
rational subsets of the monoid Σ∗ × Δ∗ [4].

The second family of relations is characterized as follows.

Theorem 2 (Elgot-Mezei, [4]). A subset R ⊆ Σ∗ ×Δ∗ is recognizable if and
only if it is a finite union of subsets of the form X ×Y where X ∈ Rec(Σ∗) and
Y ∈ Rec(Δ∗).

We assume the reader is familiar with the main closure properties of rational
relations, such as the composition of relations, the intersection with recognizable
relations, and the strict inclusion of Rec(Σ∗ × Δ∗) in Rat(Σ∗ × Δ∗) when Σ
and Δ are nonempty, cf. [1,3,9].

2.3 Elementary Operators on Binary Relations

Our main result is on a decomposition of relations. Since we are led to manipu-
late compositions of (binary) relations, we find it more appropriate to compose
them left to right. Thus, for two binary relations R and S, the composition
R ◦ S is the relation {(x, y) | ∃z, (x, z) ∈ R and (z, y) ∈ S}. We identify par-
tial functions, simply functions in the sequel, with binary relations R such that
(x, y), (x, z) ∈ R implies y = z. Given an alphabet Θ, we define the identity IΘ
and its reverse JΘ as follows:

IΘ = {(u, u) | u ∈ Θ∗} and JΘ = {(u, u) | u ∈ Θ∗} .

Observe that IΘ is rational but JΘ is not [1, p. 65] and that JΘ ◦ JΘ = IΘ.

Definition 1. Given R ⊆ Σ∗ × Δ∗, we set

– inverse of R: R−1 = {(v, u) | (u, v) ∈ R},
– reversal of R: JΣ ◦ R ◦ JΔ = {(u, v) | (u, v) ∈ R},
– left-reversal of R: JΣ ◦ R = {(u, v) | (u, v) ∈ R},
– right-reversalof R: R ◦ JΔ = {(u, v) | (u, v) ∈ R}.

The following proposition is not difficult to check.

Proposition 1. Given a relation R ⊆ Σ∗ × Δ∗, the next claims are equivalent:
(1) R is rational, (2) R−1 is rational, (3) JΣ ◦ R ◦ JΔ is rational.

As an immediate consequence, we get:

Corollary 1. Let R ⊆ Σ∗ × Δ∗. Then JΣ ◦ R is rational if and only if R ◦ JΔ

is rational.

118 C. Choffrut and B. Guillon

3 Both Ways Rational Relations

3.1 Formal Definitions

We recall the definition of the families of relations under study.

Definition 2. A relation R ⊆ Σ∗×Δ∗ is both ways rational if both R and JΣ◦R
are rational. The family of such relations is denoted BwRat(Σ∗ ×Δ∗) or simply
BwRat when it is clear from the context.

Definition 3. A rational relation R ⊆ Σ∗ × Δ∗ is factorizable if there exists a
unary alphabet Γ = {a} and two rational relations S ⊆ Σ∗×Γ ∗ and T ⊆ Γ ∗×Δ∗

such that R = S ◦ T . The family of such relations is denoted Fact(Σ∗ × Δ∗) or
simply Fact when it is clear from the context.

The following statement gives two interesting families of examples of relations
in BwRat. Since Proposition 3 asserts that the family BwRat is closed under
composition, it leads to a sufficient condition for a relation to be in BwRat,
namely being in Fact, (cf. Corollary 2). We suspect it is also necessary. The
main result of this paper, Theorem 1, is to show that it is indeed necessary
when the relation is a function, see Sect. 4.

Proposition 2. If |Σ| = 1 or |Δ| = 1 then any rational relation in Σ∗ × Δ∗ is
both ways rational, i.e., BwRat(Σ∗ × Δ∗) = Rat(Σ∗ × Δ∗).

3.2 Closure Properties

We investigate the closure properties under natural operators of the two families
Fact of factorizable relations and BwRat of both ways rational relations. The
main objective of this section is to support the conjecture that the two families
coincide. For each operation considered, either both families are closed or both
are not.

Proposition 3. The families BwRat and Fact are closed under inverse, the
three types of reversals, composition and union.

The first consequence of the previous properties is the inclusion of Fact
in BwRat.

Corollary 2. All factorizable relations are both ways rational, i.e., Fact ⊆
BwRat.

As a second consequence we get an interesting, though not surprising, family
of examples of relations in Fact.

Corollary 3. Let R ⊆ Σ∗ ×Δ∗ be rational and assume it satisfies the condition
(u, v) ∈ R implies (u, v′) ∈ R for all |v′| = |v|. Then R ∈ Fact.

Now we verify that recognizable relations are in Fact and thus, by Corollary
2, in BwRat. This simple result but it serves, in conjunction with Proposition
5, as a means to prove that certain relations are not in Fact or BwRat.

Both Ways Rational Functions 119

Proposition 4. If R is a recognizable relation, it belongs to Fact and thus
to BwRat.

Proof. By Theorem 2 and since by Proposition 3 the family Fact is closed
under union, it suffices to consider the case R = X × Y with X ∈ Rec(Σ∗)
and Y ∈ Rec(Δ∗). Let Γ = {a} for some new symbol a. Then X × {a} and
{a} × Y are rational and therefore X × Y = X × {a} ◦ {a} × Y is in Fact by
definition.
�
Summarizing the situation whenever |Σ| > 1 and |Δ| > 1, the following inclu-
sions hold: Rec � Fact ⊆ BwRat � Rat.

This provides us with an extra closure property because the situation is
similar to that of rational relations. Indeed, the family of recognizable relations
is a “small” subfamily of rational relations. It is very well-known that though the
rational relations are not closed under intersection, the intersection of a rational
relation and a recognizable relation is rational, e.g., [9, Proposition IV.1.8]. A
similar property holds for the two families as proved in the next proposition.

Proposition 5. Consider two relations R, S ⊆ Σ∗×Δ∗ where S is recognizable.
If R is in Fact (resp. in BwRat), then R ∩ S is in Fact, (resp. in BwRat).

Proof. First of all, observe that, since the intersection distributes over the union
and because both the families BwRat and Fact are closed under union, it is
sufficient to prove that the results hold when S = X ×Y for some X ∈ Rec(Σ∗)
and Y ∈ Rec(Δ∗).

R ∈ Fact: We observe the following general equality where T0 ⊆ Σ∗ × Γ ∗,
T1 ⊆ Γ ∗ × Δ∗, A ⊆ Σ∗ and B ⊆ Δ∗.

(T0 ◦ T1) ∩ (A × B) = (T0 ∩ (A × Γ ∗)) ◦ (T1 ∩ (Γ ∗ × B))

We apply this equality to the case R ∈ Fact, by specifying that R = T0 ◦ T1

with T0 and T1 rational, |Γ | = 1, A = X and B = Y . Then:

R ∩ (X × Y) = (T0 ∩ (X × Γ ∗)) ◦ (T1 ∩ (Γ ∗ × Y))

The relations T0∩(X ×Γ ∗) and T1∩(Γ ∗ ×Y) are rational and their composition
is in Fact by definition.

R ∈ BwRat: By using the equality JΣ ◦ (R ∩ S) = (JΣ ◦ R) ∩ (JΣ ◦ S) and the
notation X = {x | x ∈ X}, we have:

JΣ ◦ (R ∩ S) = (JΣ ◦ R) ∩ (JΣ ◦ (X × Y)) = (JΣ ◦ R) ∩ (X × Y)

Since X is recognizable and JΣ ◦ R is rational by hypothesis, its intersection
with the recognizable relation X × Y is also rational.
�

The next result is yet another property shared by the two families.

Proposition 6. Let R,S ⊆ Σ∗ × Δ∗. If R is in Fact (resp. BwRat) and if S
is recognizable, then S · R and R · S are in Fact (resp. BwRat).

120 C. Choffrut and B. Guillon

3.3 Non-closure Properties

We call Hadamard product of two binary relations R,S ⊆ Σ∗ × Δ∗ the relation
(cf. [2])

R S = {(u, vw) ∈ Σ∗ × Δ∗ | (u, v) ∈ R, (u,w) ∈ S} .

The families Fact and BwRat are not closed under concatenation, Hadamard
product and Kleene star.

Proposition 7. With Σ = {a, b,#}, the relations

R1 =
{

(w, ap) | w ∈ {a, b}∗
, p = |w|a

}

, R2 = {(#, 1)} ,
R3 =

{

(w, br) | w ∈ {a, b}∗
, r = |w|b

}

are in Fact. However the relation R1 ·R2 ·R3 is not in BwRat and the relation
R1 R3 is not rational. The relation R1 ·R2 ∪R2 ·R3 is in Fact but the relation
(R1 · R2 ∪ R2 · R3)∗ is not in BwRat.

4 The Case of Functions

4.1 A Sufficient Condition Concerning the Image

The following general result is the key argument for the both ways rational
functions. We recall that the image of a binary relation R ⊆ Σ∗ × Δ∗ is the
subset Image (R) = {v ∈ Δ∗ | ∃u ∈ Σ∗, (u, v) ∈ R}.

Proposition 8. Let R ⊆ Σ∗ ×Δ∗ be a rational relation whose image is a finite
union of subsets of the form xy∗z. Then R is factorizable, cf. Definition 3.

Proof. Indeed, assume that the image of R is Image (R) =
⋃n

i=0 xiy
∗
i zi. Each

relation Ri = R ∩ (Σ∗ × xiy
∗
i zi) is rational because it is the intersection of a

rational and a recognizable relation. Define, for each i, the rational relation Si =
{

(xiy
k
i zi, a

p) | p = k(n + 1) + i
}

which is one-to-one, i.e., Si◦Si
−1 is the identity

on xiy
∗
i zi. Furthermore, (

⋃n
i=0 Si) ◦ (

⋃n
i=0 Si

−1) is the identity on Image (R).
Indeed, this relation contains all pairs (xiy

k
i zi, xjy

�
jzj) such that k(n + 1) + i =

�(n + 1) + j. This implies i = j and k = �. Then, observing that R ◦ (
⋃n

i=0 Si) ⊆
Σ∗ ×a∗ and

⋃n
i=0 Si

−1 ⊆ a∗ ×Σ∗, the relation R = (R ◦ (
⋃n

i=0 Si))◦(
⋃n

i=0 Si
−1)

belongs to Fact.
�

4.2 Regular Subsets of Words Invariant Under Reversal-Like
Operations

As will be explained in the proof of Proposition 10, we need a result concerning
the regular subsets of a free monoid consisting of words invariant under opera-
tions akin to word reversal. More precisely, let α be an involution of Γ which we
extend to an antiisomorphism of the free monoid: α(uv) = α(v)α(u). We inves-
tigate the regular sets consisting of words which are invariant under α. E.g.,
with α equal to the identity, the operation consists of taking the reversal, in
which case the subsets in question consist of palindromes.

Both Ways Rational Functions 121

Proposition 9. Let Γ be an alphabet and let α be the extension to Γ ∗ of an
antiisomorphism acting as an involution on Γ . A subset X of Σ∗ is a rational
subset all elements of which are invariant under α, if and only if X is a finite
union of subsets of the form

x(yz)∗yα(x) with y = α(y) and z = α(z).

Proof. The condition is clearly sufficient, so we prove that it is necessary. We
start with a couple of lemmas concerning a trim3 deterministic automaton recog-
nizing X. We let q− be its initial state and Q be its set of states. A maxi-
mal strongly connected component, abbreviated SCC, is a maximum subset of
states P such that for any pair p, q ∈ P there exists a word taking p to q. It is
trivial if it reduces to a unique state without loop on it.

Lemma 1. Let u, v, with |u| ≤ |v|, taking the initial state q− to the same non-
trivial SCC. Then u is a prefix of v.

Proof. Assume first that u and v take q− to the same state p, i.e.,
q− · u = q− · v = p. Since p belongs to a nontrivial SCC, we may choose a word w
with |w| > |v|, taking p to a final state. Then we have

uw = α(uw) = α(w)α(u) and vw = α(vw) = α(w)α(v),

and thus u and v are prefixes of α(w).
Now if q− ·u = p and q− ·v = p′, let v′ take p′ to p. By the above observation u

and vv′ are prefixes one another, thus so are u and v.
�
Lemma 2. All nontrivial SCC consist of a unique cycle.

Proof. Let q be a state in a SCC. Let w be a word taking the initial state to q
and assume there exist two different simple cycles around q, say labeled by u
and v. By the previous Lemma wu and wv are prefix of one another and thus
so are u and v contradicting the simplicity of the cycles.
�
Lemma 3. Two nontrivial SCCs are not accessible from one another.

Proof. Assume by contradiction that a nontrivial SCC C ′ is accessible from a
different SCC C. Let v be a word labeling a path starting in C in state q and
arriving in C ′ in state p. Without loss of generality, we may assume that the
only state of C visited by this path is q, or equivalently that if a is the first letter
of v, i.e., v = av′, then the state q · a does not belong to C. Let w label a path
from the initial state q− to q, x label a nontrivial loop around q and y label a
nontrivial loop around p.

Then for some integer n the word wvyn is longer than the word wxv. By
Lemma 1 wxv is a prefix of wvyn which implies that x and v are prefixes one
another. This contradicts the fact that x and v start with two different letters.

�
3 An ε-free automaton is trim if each of its state q is accessible (i.e., there exists a path

from the initial state to q) and co-accessible (i.e., there exists a path from q to some
accepting state). Every finite automaton is equivalent to some trim automaton.

122 C. Choffrut and B. Guillon

q− q pw av′

x y

Fig. 1. Two hypothetical different connected components accessible from one another.

We now turn to the proof of the Proposition 9 which involves classical ele-
ments of combinatorics on words. We assume X is not finite otherwise there is
nothing to prove. The previous lemmas show that X decomposes into a finite
set along with finitely many subsets of the form xy∗z where x labels a path from
the initial state to a state q belonging to a nontrivial SCC, y labels the unique
cycle around q and z takes q to a final state (Fig. 1).

The elements of xy∗z are invariant under the action of α. Without loss of
generality, assume that |x| ≤ |z|. Consider an integer n such that |x|+(n−1) |y| ≥
|z|. In the equation xynz = α(z)α(y)nα(x), by comparing the prefixes of length
|z|+ |y| in both handsides, see Fig. 2, for some p > 0 we obtain xypy1 = α(z)α(y)
for some y1y2 = y. Since |y| = |α(y)| this yields α(y) = y2y1 and α(z) = xyp−1y1.
Now, y = y1y2 implies α(y) = α(y2)α(y1) = y2y1 and thus y1 = α(y1) and y2 =
α(y2).

x (y1y2)
n zy1 y2

y1 y2 . . .

α(z) α(y)n α(x)y1y2
y1y2. . .

Fig. 2. Invariance of xynz.

Because of z = α(y1)α(y)p−1α(x) we get

xynz = xynα(y1)α(y)p−1α(x) = xyn+p−1y1α(x) = x(y1y2)n+p−1y1α(x)

as claimed in Proposition 9.

4.3 Back to Both Ways Rational Functions

Proposition 10. Let R be a function belonging to BwRat. Then its image is
a finite union of subsets of the form xy∗z.

Proof. Compute S = R−1 ◦ (R ◦ JΔ) = {(v, v) | ∃u ∈ Σ∗, (u, v) ∈ R}. If R
is in BwRat then by Corollary 1 the above relation is rational and length-
preserving, thus by [3, Thm IX 6.1.], S is a rational subset of the free monoid
generated by the pairs in Θ = Δ × Δ. Let α be the involution of Θ defined by

Both Ways Rational Functions 123

α(a, b) = (b, a) and extend it to Θ∗ as an antiisomorphism: α(uv) = α(v)α(u).
Then all elements in S are invariant under α. By virtue of Proposition 9, S is a
finite union of subsets of the form x(yz)∗yα(x) with y = α(y) and z = α(z). Con-
sequently, denoting x = (x1, x2), y = (y1, y2), z = (z1, z2), α(x) = (t1, t2) ∈ Θ∗,
S is a finite union of subsets of the form

{(x1(y1z1)ny1t1, x2(y2z2)ny2t2) | n ∈ N} (2)

with the extra condition that (x2, x1) = α(x1, x2) = (t1, t2). Then by projecting
Expression 2 on the first component we get the subset x1(y1z1)∗y1x2 which
completes the proof.
�
Proof (of Theorem 1). The implication 2 ⇒ 1 is due to Corollary 2. The impli-
cation 1 ⇒ 3 is proved in Proposition 10. The implication 3 ⇒ 2 is proved in
Proposition 8.
�

4.4 Complexity Considerations

Here we show briefly how the membership problem is decidable, i.e., we are
given a two-tape automaton A = (Q,Σ,Δ, I, E, F) recognizing a partial function
in Σ∗ → Δ∗ whose transition set is as in (1) and we ask whether or not it is both
ways rational. By Theorem 1 it suffices to investigate the image of the function.
A finite automaton recognizing the image is obtained by ignoring the second
component of the quadruples in E, i.e., by considering the finite automaton
with the same set of states, the same subsets of initial and final states and with
the transition set

E′ = {(q, y, p) | ∃x ∈ Σ ∪ {1} , (q, x, y, p) ∈ E}.

Then we compute an equivalent deterministic automaton by eliminating the
transitions labeled by 1 (the so-called ε-transitions), followed by the subset con-
struction and finally by eliminating the states that are not accessible or co-
accessible. This sequence of constructions can be achieved in exponential time
relative to the number of states of A. Then, because of Lemmas 2 and 3, we
must verify that the nontrivial maximal strongly connected components of this
automaton (SCC for short) consist of simple cycles which are not accessible one
another. To that purpose, we run Tarjan’s algorithm which computes the SCCs
in linear time. Verifying that each SCC is reduced to a cycle is also done in linear
time because a SCC is a simple cycle if and only if each state is the origin of a
unique transition. It then remains to verify that the SCCs are not accessible one
from another and this is achieved by a depth-first search.

Consequently, given a two-tape automaton A defining a function, testing
whether or not the function is both ways rational can be determined in time
exponential relative to the size of A.

124 C. Choffrut and B. Guillon

References

1. Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner, Stuttgart
(1979)

2. Choffrut, C., Guillon, B.: An algebraic characterization of unary two-way trans-
ducers. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part
I. LNCS, vol. 8634, pp. 196–207. Springer, Heidelberg (2014)

3. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press,
New York (1974)

4. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
J. 10, 47–68 (1965)

5. Engelfriet, J., Hoogeboom, H.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

6. Fischer, P.C., Rosenberg, A.L.: Multitape one-way nonwriting automata. J. Com-
put. Syst. Sci. 2(1), 88–101 (1968)

7. Guillon, B.: Sweeping weakens two-way transducers even with a unary output
alphabet. In: Proceedings of Seventh Workshop on NCMA 2015, Porto, Portugal,
August 31 – September 1, 2015, pp. 91–108 (2015)

8. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 125–144 (1959)

9. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
New York (2009)

10. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
1–3 May 1978, San Diego, California, USA, pp. 275–286 (1978)

11. Sipser, M.: Lower bounds on the size of sweeping automata. In: Proceedings of the
11th Annual ACM Symposium on Theory of Computing, April 30 – May 2, 1979,
Atlanta, Georgia, USA, pp. 360–364 (1979)

Aperiodic String Transducers

Luc Dartois1(B), Ismaël Jecker1, and Pierre-Alain Reynier2

1 Université Libre de Bruxelles, Brussel, Belgium
{ldartois,ijecker}@ulb.ac.be

2 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France
pierre-alain.reynier@lif.univ-mrs.fr

Abstract. Regular string-to-string functions enjoy a nice triple charac-
terization through deterministic two-way transducers (2DFT), streaming
string transducers (SST) and MSO definable functions. This result has
recently been lifted to FO definable functions, with equivalent repre-
sentations by means of aperiodic 2DFT and aperiodic 1-bounded SST,
extending a well-known result on regular languages. In this paper, we
give three direct transformations: (i) from 1-bounded SST to 2DFT,
(ii) from 2DFT to copyless SST, and (iii) from k-bounded to 1-bounded
SST. We give the complexity of each construction and also prove that
they preserve the aperiodicity of transducers. As corollaries, we obtain
that FO definable string-to-string functions are equivalent to SST whose
transition monoid is finite and aperiodic, and to aperiodic copyless SST.

Keywords: Transducer · Streaming · Two-way · Monoid · Aperiodic

1 Introduction

The theory of regular languages constitutes a cornerstone in theoretical computer
science. Initially studied on languages of finite words, it has since been extended
in numerous directions, including finite and infinite trees. Another natural exten-
sion is moving from languages to transductions. We are interested in this work in
string-to-string transductions, and more precisely in string-to-string functions.
One of the strengths of the class of regular languages is their equivalent presen-
tation by means of automata, logic, algebra and regular expressions. The class of
so-called regular string functions enjoys a similar multiple presentation. It can
indeed be alternatively defined using deterministic two-way finite state trans-
ducers (2DFT), using Monadic Second-Order graph transductions interpreted
on strings (MSOT) [8], and using the model of streaming string transducers
(SST) [1]. More precisely, regular string functions are equivalent to different
classes of SST, namely copyless SST [1] and k-bounded SST, for every positive
integer k [3]. Different papers [1–3,8] have proposed transformations between
2DFT, MSOT and SST, summarized on Fig. 1.

This work is supported by the ARC project Transform (French speaking community
of Belgium), the Belgian FNRS PDR project Flare, and the PHC project VAST
(35961QJ) funded by Campus France and WBI.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 125–137, 2016.
DOI: 10.1007/978-3-662-53132-7 11

126 L. Dartois et al.

(aperiodic) 1-b. SST

(FOT) MSOT(aperiodic) 2DFT

)cidoirepa(TSSsselypoc)cidoirepa(k-b. SST

[1, 3]

[3]

[3]

[1] [2]
[11]

[8]

[4]

⊆⊆

Fig. 1. Summary of transformations between equivalent models. k-b. stands for
k-bounded. Plain (resp. dotted) arrows concern regular models (resp. bracketed mod-
els). Original constructions presented in this paper are depicted by thick dashed arrows
and are valid for both regular and aperiodic versions of the models.

The connection between automata and logic, which has been very fruitful for
model-checking for instance, also needs to be investigated in the framework of
transductions. As it has been done for regular languages, an important objective
is then to provide similar logic-automata connections for subclasses of regular
functions, providing decidability results for these subclasses. As an illustration,
the class of rational functions (accepted by one-way finite state transducers)
owns a simple characterization in terms of logic, as shown in [9]. The corre-
sponding logical fragment is called order-preserving MSOT. The decidability of
the one-way definability of a two-way transducer proved in [10] thus yields the
decidability of this fragment inside the class of MSOT.

The first-order logic considered with order predicate constitutes an impor-
tant fragment of the monadic second order logic. It is well known that lan-
guages definable using this logic are equivalent to those recognized by finite
state automata whose transition monoid is aperiodic (as well as other models
such as star-free regular expressions). These positive results have motivated the
study of similar connections between first-order definable string transformations
(FOT) and restrictions of state-based transducers models. Two recent works pro-
vide such characterizations for 1-bounded SST and 2DFT respectively [4,11]. To
this end, the authors study a notion of transition monoid for these transducers,
and prove that FOT is expressively equivalent to transducers whose transition
monoid is aperiodic by providing back and forth transformations between FOT
and 1-bounded aperiodic SST (resp. aperiodic 2DFT). In particular, [11] lets as
an open problem whether FOT is also equivalent to aperiodic copyless SST and
to aperiodic k-bounded SST, for every positive integer k. It is also worth noticing
that these characterizations of FOT, unlike the case of languages, do not allow
to decide the class FOT inside the class MSOT. Indeed, while decidability for
languages relies on the syntactic congruence of the language, no such canonical
object exists for the class of regular string transductions.

Aperiodic String Transducers 127

In this work, we aim at improving our understanding of the relationships
between 2DFT and SST. We first provide an original transformation from
1-bounded (or copyless) SST to 2DFT, and study its complexity. While the
existing construction used MSO transformations as an intermediate formalism,
resulting in a non-elementary complexity, our construction is in double exponen-
tial time, and in single exponential time if the input SST is copyless. Conversely,
we describe a direct construction from 2DFT to copyless SST, which is similar to
that of [1], but avoids the use of an intermediate model. These constructions also
allow to establish links between the crossing degree of a 2DFT, and the number of
variables of an equivalent copyless (resp. 1-bounded) SST, and conversely. Last,
we provide a direct construction from k-bounded SST to 1-bounded SST, while
the existing one was using copyless SST as a target model and not 1-bounded
SST [3]. These constructions are represented by thick dashed arrows on Fig. 1.

In order to lift these constructions to aperiodic transducers, we introduce
a new transition monoid for SST, which is intuitively more precise than the
existing one. We use this new monoid to prove that the three constructions we
have considered above preserve the aperiodicity of the transducer. As a corollary,
this implies that FOT is equivalent to both aperiodic copyless and k-bounded
SST, for every integer k, two results that were stated as conjectures in [11].
Omitted proofs can be found in [7].

2 Definitions

2.1 Words, Languages and Transducers

Given a finite alphabet A, we denote by A∗ the set of finite words over A, and
by ε the empty word. The length of a word u ∈ A∗ is its number of symbols,
denoted by |u|. For all i ∈ {1, . . . , |u|}, we denote by u[i] the i-th letter of u.

A language over A is a set L ⊆ A∗. Given two alphabets A and B, a trans-
duction from A to B is a relation R ⊆ A∗ × B∗. A transduction R is functional
if it is a function. The transducers we will introduce will define transductions.
We will say that two transducers T, T ′ are equivalent whenever they define the
same transduction.

Automata. A deterministic two-way finite state automaton (2DFA) over a finite
alphabet A is a tuple A = (Q, q0, F, δ) where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is a set of final states, and δ is the transition function,
of type δ : Q × (A � {�,�}) → Q × {+1, 0,−1}. The new symbols � and � are
called endmarkers.

An input word u is given enriched by the endmarkers, meaning that A reads
the input � u �. We set u[0] = � and u[|u| + 1] = �. Initially the head of A is
on the first cell � in state q0 (the cell at position 0). When A reads an input
symbol, depending on the transitions in Δ, its head moves to the left (−1), or
stays at the same position (0), or moves to the right (+1). To ensure the fact
that the reading of A does not go out of bounds, we assume that there is no

128 L. Dartois et al.

transition moving to the left (resp. to the right) on input symbol � (resp. �). A
stops as soon as it reaches the endmarker � in a final state.

A configuration of A is a pair (q, i) ∈ Q × N where q is a state and i is a
position on the input tape. A run ρ of A is a finite sequence of configurations. The
run ρ = (p1, i1) . . . (pm, im) is a run on an input word u ∈ A∗ of length n if im �
n+1, and for all k ∈ {1, . . . ,m−1}, 0 � ik � n+1 and (pk, u[ik], pk+1, ik+1−ik) ∈
Δ. It is accepting if p1 = q0, i1 = 0, and m is the only index where both im = n+1
and pm ∈ F . The language of a 2DFA A, denoted by L(A), is the set of words
u such that there exists an accepting run of A on u.

Transducers. Deterministic two-way finite state transducers (2DFT) over A
extend 2DFA with a one-way left-to-right output tape. They are defined as 2DFA
except that the transition relation δ is extended with outputs: δ : Q×(A�{�,�})
→ B∗ × Q × {−1, 0,+1}. When a transition (q, a, v, q′,m) is fired, the word v is
appended to the right of the output tape.

A run of a 2DFT is a run of its underlying automaton, i.e. the 2DFA obtained
by ignoring the output (called its underlying input automaton). A run ρ may be
simultaneously a run on a word u and on a word u′ �= u. However, when the
input word is given, there is a unique sequence of transitions associated with ρ.
Given a 2DFT T , an input word u ∈ A∗ and a run ρ = (p1, i1) . . . (pm, im) of T
on u, the output of ρ on u is the word obtained by concatenating the outputs of
the transitions followed by ρ. If ρ contains a single configuration, this output is
simply ε. The transduction defined by T is the relation R(T) defined as the set
of pairs (u, v) ∈ A∗ × B∗ such that v is the output of an accepting run ρ on the
word u. As T is deterministic, such a run is unique, thus R(T) is a function.

1 2 3

a|a,+1
+1

b| −1
−1

a|b,−1

b| +1
+1

a| +1

b| +1

a
X = Xa
Y = Y b

b
X = XY
Y =

XY

Fig. 2. Aperiodic 2DFT (left) and SST (right) realizing the function f .

Streaming String Transducers. Let X be a finite set of variables denoted by
X,Y, . . . and B be a finite alphabet. A substitution σ is defined as a mapping
σ : X → (B ∪ X)∗. Let SX ,B be the set of all substitutions. Any substitution
σ can be extended to σ̂ : (B ∪ X)∗ → (B ∪ X)∗ in a straightforward manner.
The composition σ1σ2 of two substitutions σ1 and σ2 is defined as the standard
function composition σ̂1σ2, i.e. σ̂1σ2(X) = σ̂1(σ2(X)) for all X ∈ X . We say
that a string u ∈ (B ∪ X)∗ is k-linear if each X ∈ X occurs at most k times in
u. A substitution σ is k-linear if σ(X) is k-linear for all X. It is copyless if for

Aperiodic String Transducers 129

any variable X, there exists at most one variable Y such that X occurs in σ(Y),
and X occurs at most once in σ(Y).

A streaming string transducer (SST) is a tuple T = (A,B,Q, q0, Qf , δ,
X , ρ, F) where (Q, q0, Qf , δ) is a one-way automaton, A and B are finite sets
of input and output alphabets respectively, X is a finite set of variables,
ρ : δ → SX ,B is a variable update and F : Qf ⇀ (X ∪ B)∗ is the output
function.

Example 1. As an example, let f : {a, b}∗ → {a, b}∗ be the function mapping any
word u = ak0bak1 · · · bakn to the word f(u) = ak0bk0ak1bk1 · · · aknbkn obtained
by adding after each block of consecutive a a block of consecutive b of the same
length. Since each word u over A can be uniquely written u = ak0bak1 · · · bakn

with some ki being possibly equal to 0, the function f is well defined. We give
in Fig. 2a 2DFT and an SST that realize f .

The concept of a run of an SST is defined in an analogous manner to that of
a finite state automaton. The sequence 〈σr,i〉0�i�|r| of substitutions induced by
a run r = q0

a1−→ q1
a2−→ q2 . . . qn−1

an−−→ qn is defined inductively as the following:
σr,i = σr,i−1ρ(qi−1, ai) for 1 < i � |r| and σr,1 = ρ(q0, a1). We denote σr,|r| by
σr and say that σr is induced by r.

If r is accepting, i.e. qn ∈ Qf , we can extend the output function F to r by
F (r) = σεσrF (qn), where σε substitutes all variables by their initial value ε. For
all words u ∈ A∗, the output of u by T is defined only if there exists an accepting
run r of T on u, and in that case the output is denoted by T (u) = F (r). The
transformation R(T) is then defined as the set of pairs (u, T (u)) ∈ A∗ × B∗.

An SST T is copyless if for every transition t ∈ δ, the variable update ρ(t)
is copyless. Given an integer k ∈ N>0, we say that T is k-bounded if all its runs
induce k-linear substitutions. It is bounded if it is k-bounded for some k.

The following theorem gives the expressiveness equivalence of the models we
consider. We do not give the definitions of MSO graph transductions as our
results will only involve state-based transducers (see [9] for more details).

Theorem 2 [1,3,8]. Let f : A∗ → B∗ be a function over words. Then the
following conditions are equivalent:

– f is realized by an MSO graph transduction,
– f is realized by a 2DFT,
– f is realized by a copyless SST,
– f is realized by a bounded SST.

2.2 Transition Monoid of Transducers

A (finite) monoid M is a (finite) set equipped with an associative internal law ·M
having a neutral element for this law. A morphism η : M → N between monoids
is an application from M to N that preserves the internal laws, meaning that
for all x and y in M , η(x ·M y) = η(x) ·N η(y). When the context is clear, we
will write xy instead of x ·M y. A monoid M divides a monoid N if there exists

130 L. Dartois et al.

an onto morphism from a submonoid of N to M . A monoid M is said to be
aperiodic if there exists a least integer n, called the aperiodicity index of M ,
such that for all elements x of M , we have xn = xn+1.

Given an alphabet A, the set of words A∗ is a monoid equipped with the
concatenation law, having the empty word as neutral element. It is called the
free monoid on A. A finite monoid M recognizes a language L of A∗ if there exists
an onto morphism η : A∗ → M such that L = η−1(η(L)). It is well-known that
the languages recognized by finite monoids are exactly the regular languages.

The monoid we construct from a machine is called its transition monoid.
We are interested here in aperiodic machines, in the sense that a machine is
aperiodic if its transition monoid is aperiodic. We now give the definition of the
transition monoid for a 2DFT and an SST.

u

p

q

Deterministic Two-Way Finite State Transducers. As
in the case of automata, the transition monoid of a 2DFT T is
the set of all possible behaviors of T on a word. The following
definition comes from [4], using ideas from [14] amongst others.
As a word can be read in both ways, the possible runs are split into four relations
over the set of states Q of T . Given an input word u, we define the left-to-left
behavior bh��(u) as the set of pairs (p, q) of states of T such that there exists
a run over u starting on the first letter of u in state p and exiting u on the left
in state q (see Figure on the right). We define in an analogous fashion the left-
to-right, right-to-left and right-to-right behaviors denoted respectively bh�r(u),
bhr�(u) and bhrr(u). Then the transition monoid of a 2DFT is defined as follows:

Let T = (Q,A, δ, q0, F) be a 2DFT. The transition monoid of T is A∗/∼T

where ∼T is the conjunction of the four relations ∼ll, ∼lr, ∼rl and ∼rr defined for
any words u, u′ of A∗ as follows: u ∼xy u′ iff bhxy(u) = bhxy(u′), for x, y ∈ {	, r}.
The neutral element of this monoid is the class of the empty word ε, whose
behaviors bhxy(ε) is the identity function if x �= y, and is the empty relation
otherwise.

Note that since the set of states of T is finite, each behavior relation is of
finite index and consequently the transition monoid of T is also finite. Let us
also remark that the transition monoid of T does not depend on the output and
is in fact the transition monoid of the underlying 2DFA.

Streaming String Transducers. A notion of transition monoid for SST was
defined in [11]. We give here its formal definition and refer to [11] for advanced
considerations. In order to describe the behaviors of an SST, this monoid
describes the possible flows of variables along a run. Since we give later an alter-
native definition of transition monoid for SST, we will call it the flow transition
monoid (FTM).

Let T be an SST with states Q and variables X . The flow transition monoid
MT of T is a set of square matrices over the integers enriched with a new
absorbent element ⊥. The matrices are indexed by elements of Q×X . Given an
input word u, the image of u in MT is the matrix m such that for all states p, q
and all variables X,Y , m[p,X][q, Y] = n ∈ N (resp. m[p,X][q, Y] = ⊥) if, and

Aperiodic String Transducers 131

only if, there exists a run r of T over u from state p to state q, and X occurs n
times in σr(Y) (resp. iff there is no run of T over u from state p to state q).

Note that if T is k-bounded, then for all word w, all the coefficients of its
image in MT are bounded by k. The converse also holds. Then MT is finite if,
and only if, T is k-bounded, for some k.

It can be checked that the machines given in Example 1 are aperiodic.
Theorem 2 extends to aperiodic subclasses and to first-order logic, as in the
case of regular languages [12,13]. These results as well as our contributions to
these models are summed up in Fig. 1.

Theorem 3 [4,11]. Let f : A∗ → B∗ be a function over words. Then the fol-
lowing conditions are equivalent:

– f is realized by a FO graph transduction,
– f is realized by an aperiodic 2DFT,
– f is realized by an aperiodic 1-bounded SST.

3 Substitution Transition Monoid

In this section, we give an alternative take on the definition of the transition
monoid of an SST, and show that both notions coincide on aperiodicity and
boundedness. The intuition for this monoid, that we call the substitution tran-
sition monoid, is for the elements to take into account not only the multiplicity
of the output of each variable in a given run, but also the order in which they
appear in the output. It can be seen as an enrichment of the classic view of
transition monoids as the set of functions over states equipped with the law of
composition. Given a substitution σ ∈ SX ,B , let us denote σ̃ the projection of
σ on the set X , i.e. we forget the parts from B. The substitutions σ̃ are homo-
morphisms of X ∗ which form an (infinite) monoid. Note that in the case of a
1-bounded SST, each variable occurs at most once in σ̃(Y).

Substitution Transition Monoid of an SST. Let T be an SST with states
Q and variables X . The substitution transition monoid (STM) of T , denoted
Mσ

T , is a set of partial functions f : Q ⇀ Q × SX ,∅. Given an input word u, the
image of u in Mσ

T is the function fu such that for all states p, fu(p) = (q, σ̃r) if,
and only if, there exists a run r of T over u from state p to state q that induces
the substitution σ̃r. This set forms a monoid when equipped with the following
composition law: Given two functions fu, fv ∈ Mσ

T , the function fuv is defined
by fuv(q) = (q′′, σ̃ ◦ σ̃′) whenever fu(q) = (q′, σ̃) and fv(q′) = (q′′, σ̃′).

We now make a few remarks about this monoid. Let us first observe that
the FTM of T can be recovered from its STM. Indeed, the matrix m associated
with a word u in MT is easily deduced from the function fu in Mσ

T . This obser-
vation induces an onto morphism from Mσ

T to MT , and consequently the FTM
of an SST divides its STM. This proves that if the STM is aperiodic, then so is
the FTM since aperiodicity is preserved by division of monoids. Similarly, copy-
less and k-bounded SST (given k ∈ N>0) are characterized by means of their

132 L. Dartois et al.

STM. This transition monoid can be separated into two main components: the
first one being the transition monoid of the underlying deterministic one-way
automaton, which can be seen as a set of functions Q → Q, while the second
one is the monoid SX of homomorphisms on X , equipped with the composi-
tion. The aware reader could notice that the STM can be written as the wreath
product of the transformation semigroup (X ∗,SX) by (Q,QQ). However, as the
monoid of substitution is obtained through the closure under composition of the
homomorphisms of a given SST, it may be infinite.

The next theorem proves that aperiodicity for both notions coincide, since
the converse comes from the division of STM by FTM.

Theorem 4. Let T be a k-bounded SST with 	 variables. If its FTM is aperiodic
with aperiodicity index n then its STM is aperiodic with aperiodicity index at
most n + (k + 1)	.

4 From 1-Bounded SST to 2DFT

The existing transformation of a 1-bounded (or even copyless) SST into an equiv-
alent 2DFT goes through MSO transductions, yielding a non-elementary com-
plexity. We present here an original construction whose complexity is elementary.

Theorem 5. Let T be a 1-bounded SST with n states and m variables. Then we
can effectively construct a deterministic 2-way transducer that realizes the same
function. If T is 1-bounded (resp. copyless), then the 2DFT has O(m2m2mnn)
states (resp. O(mnn)).

Proof. We define the 2DFT as the composition of a left-to-right sequential trans-
ducer, a right-to-left sequential transducer and a 2-way transducer. Remark that
this proves the result as two-way transducers are closed under composition with
sequential ones [5]. The left-to-right sequential transducer does a single pass on
the input word and outputs the same word enriched with the transition used by
the SST in the previous step. The right-to-left transducer uses this information
to enrich each position of the input word with the set of useful variables, i.e.
the variables that flow to an output variable according to the partial run on
the suffix read. The two sequential transducers are quite standard. They realize
length-preserving functions that simply enrich the input word with new infor-
mation. The last transducer is more interesting: it uses the enriched information
to follow the output structure of T . The output structure of a run is a labeled
and directed graph such that, for each variable X useful at a position j, we have
two nodes Xj

i and Xj
o linked by a path whose concatenated labels form the value

stored in X at position j of the run (see [11] and Fig. 3).
The transition function of the two-way transducer is described in Fig. 4. It

first reaches the end of the word and picks the first variable to output. It then
rewinds the run using the information stored by the first sequential transducer,
producing the said variable using the local update function. When it has fin-
ished to compute and produce a variable X, it switches to the following one

Aperiodic String Transducers 133

qi−1 qi
ai qi+1

ai+1
qi+2

ai+2

X:= aa

Z:=aZab

X:= aXc
Y:= bZ

X:= XaaYb

Xi:

Xo:

Yi:

Yo:

Zi:

Zo:

• • •
• •
•

•
•
• •

a

aa c

aa
b

a

ab

b

Fig. 3. The output structure of a partial run of an SST used in the proof of Theorem 5.

u :
(a, q, S) (a , q , S)

(X, i)(Y, i)
σ(X) = uY..

(X, o)

σ(X) = u

(Y, o)
σ (Y) = ..Xu

Y ∈ S
(X , i)

σ (Y) = ..XuX ..

Y ∈ S

Fig. 4. The third transducer follows the output structure. States indexed by i corre-
spond to the beginning of a variable, while states indexed by o correspond the end. σ
(resp. σ′) stand for the substitution at position a (resp. a′).

using the information of the second transducer to know which variable Y X is
flowing to, and starts producing it. Note that such a Y is unique thanks to the
1-boundedness property. If T is copyless, then this information is local and the
second transducer can be bypassed. From [4,6], we can infer that the composi-
tion of a one-way transducer of size n with a two-way transducer of size m can
be done by a two-way transducer of size O(mnn). Then given a 1-bounded SST
with n states and m variables, we can construct a deterministic two-way trans-
ducer of size O(m2m2mnn). If T is copyless, the second sequential transducer is
omitted, resulting in a size of O(mnn).

Theorem 6. Let T be an aperiodic 1-bounded SST. Then the equivalent 2DFT
constructed using Theorem 5 is also aperiodic.

Proof. The aperiodicity of the three transducers gives the result as aperiodicity is
preserved by composition of a one-way by a two-way [4]. The aperiodicity of the
two sequential transducers is straightforward since their runs depend respectively
on the underlying automaton and the update function. The aperiodicity of the
2DFT comes from the fact that since it follows the output structure of the
SST, its partial runs are induced by the flow of variables and their order in the
substitutions, which is an information contained in the FTM and thus aperiodic
thanks to Theorem 4.

134 L. Dartois et al.

5 From 2DFT to Copyless SST

In [1], the authors give a procedure to construct a copyless SST from a 2DFT,
using the intermediate model of heap based transducers. We give here a direct
construction with similar complexity. This simplified presentation allows us to
prove that the construction preserves the aperiodicity.

Theorem 7. Let T be a 2DFT with n states. Then we can effectively construct
a copyless SST with O((2n)2n) states and 2n − 1 variables that computes the
same function.

Sketch of Proof. The main idea is for the constructed SST to keep track of the
right-to-right behavior of the prefix read until the current position, similarly
to the construction of Shepherdson [14]. This information can be updated upon
reading a new letter, constructing a one-way machine recognizing the same input
language. The idea from [3] is to have one variable per possible right-to-right
run, which is bounded by the number of states. However, since two right-to-
right runs from different starting states can merge, this construction results in a
1-bounded SST. To obtain copylessness, we keep track of these merges and the
order in which they appear. Different variables are used to store the production
of each run before the merge, and one more variable stores the production after.

The states of the copyless SST are represented by sets of labeled trees hav-
ing the states of the input 2DFT as leaves. Each inner vertex represents one
merging, and two leaves have a common ancestor if the right-to-right runs from
the corresponding states merge at some point. Each tree then models a set of
right-to-right runs that all end in a same state. Note that it is necessary to also
store the end state of these runs. For each vertex, we use one variable to store
the production of the partial run corresponding to the outgoing edge.

Given such a state and an input letter, the transition function can be defined
by adding to the set of trees the local transitions at the given letter, and then
reducing the resulting graph in a proper way (see Fig. 5).

Finally, as merges occur upon two disjoint sets of states of the 2DFT (initially
singletons), the number of merges, and consequently the number of inner vertices
of our states, is bounded by n − 1. Therefore, an input 2DFT with n states can
be realized by an SST having 2n − 1 variables. Finally, as states are labeled
graphs, Cayley’s formula yields an exponential bound on the number of states.

Theorem 8. Let T be an aperiodic 2DFT. Then the equivalent SST constructed
using Theorem 7 is also aperiodic.

Proof. If the input 2DFT is aperiodic of index n, then for any word w, wn and
wn+1 merge the same partial runs for the four kinds of behaviors, by definition,
and in fact the merges appear in the same order. As explained earlier, the state
q1 (resp. q2) reached by the constructed SST over the inputs uwn (resp. uwn+1)
represents the merges of the right-to-right runs of T over uwn (resp. uwn+1).
Since these runs can be decomposed in right-to right runs over u and partial runs

Aperiodic String Transducers 135

au

q5 q5

q4 q4

q3 q3

q2 q2

q1 q1

q0 q0
•

•

•

⇒

ua

q5

q4

q3

q2

q1

q0

•

•

Fig. 5. Left: The state of the SST is represented in black. The red part corresponds
to the local transitions of the 2DFT. Right: After reading a, we reduce the new forest
by eliminating the useless branches and shortening the unlabeled linear paths. (Color
figure online)

over wn and wn+1, the merge equivalence between wn and wn+1 implies that
q1 = q2. Moreover, since variables are linked to these merges, the aperiodicity of
the merge equivalence implies the aperiodicity of both the underlying automaton
and the substitution function of the SST, concluding the proof.

Corollary 9. Let f : A∗ → B∗ be a function over words. Then f is realized by
a FO graph transduction iff it is realized by an aperiodic copyless SST.

6 From k-Bounded to 1-Bounded SST

The existing construction from k-bounded to 1-bounded, presented in [3], builds
a copyless SST. We present an alternative construction that, given a k-bounded
SST, directly builds an equivalent 1-bounded SST which preserves aperiodicity.

Theorem 10. Given a k-bounded SST T with n states and m variables, we can
effectively construct an equivalent 1-bounded SST. This new SST has n2N states
and mkN variables, where N = O(nn(k+1)nm2

) is the size of the flow transition
monoid MT .

Proof. In order to move from a k-bounded SST to a 1-bounded SST, the natural
idea is to use copies of each variable. However, we cannot maintain k copies of
each variable all the time: suppose that X flows into Y and Z, which both occur
in the final output. If we have k copies of X, we cannot produce in a 1-bounded
way (and we do not need to) k copies of Y and k copies of Z.

Now, if we have access to a look-ahead information, we can guess how many
copies of each variable are needed, and we can easily construct a copyless SST
by using exactly the right number of copies for each variable and at each step.
The construction relies on this observation. We simulate a look-ahead through a

136 L. Dartois et al.

subset construction, having copies of each variable for each possible behavior of
the suffix. Then given a variable and the behavior of a suffix, we can maintain
the exact number of variables needed and perform a copyless substitution to
a potential suffix for the next step. However, since the SST is not necessarily
co-deterministic, a given suffix can have multiple successors, and the result is
that its variables flow to variables of different suffixes. As variables of different
suffixes are never recombined, we obtain a 1-bounded SST.

Theorem 11. Let T be an aperiodic k-bounded SST. Then the equivalent 1-
bounded SST constructed using Theorem 10 is also aperiodic.

As a corollary, we obtain that for the class of aperiodic bounded SST is expres-
sively equivalent to first-order definable string-to-string transductions.

Corollary 12. Let f : A∗ → B∗ be a function over words. Then f is realized by
a FO graph transduction iff it is realized by an aperiodic bounded SST (k ∈ N>0).

7 Perspectives

There is still one model equivalent to the generic machines whose aperiodic
subclass elude our scope yet, namely the functional two-way transducers, which
correspond to non-deterministic two-way transducers realizing a function. To
complete the picture, a natural approach would then be to consider the con-
structions from [15] and prove that aperiodicity is preserved. One could also
think of applying this approach to other varieties of monoids, such as the
J -trivial monoids, equivalent to the boolean closure of existential first-order for-
mulas BΣ1[<]. Unfortunately, the closure of such transducers under composition
requires some strong properties on varieties (at least closure under semidirect
product) which are not satisfied by varieties less expressive than the aperiodic.
Consequently the construction from SST to 2DFT cannot be applied. On the
other hand, the other construction could apply, providing one inclusion. Then
an interesting question would be to know where the corresponding fragment of
logic would position.

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: FSTTCS.
LIPIcs, vol. 8, pp. 1–12. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2010)

2. Alur, R., Durand-Gasselin, A., Trivedi, A.: From monadic second-order definable
string transformations to transducers. In: LICS, pp. 458–467 (2013)

3. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
LICS, pp. 65–74 (2012)

4. Carton, O., Dartois, L.: Aperiodic two-way transducers and fo-transductions. In:
CSL. LIPIcs, vol. 41, pp. 160–174. Schloss Dagstuhl, Leibniz-Zentrum für Infor-
matik (2015)

Aperiodic String Transducers 137

5. Chytil, M.P., Jákl, V.: Serial composition of 2-way finite-state transducers and
simple programs on strings. In: Salomaa, A., Steinby, M. (eds.) ICALP 1977. LNCS,
vol. 52, pp. 135–137. Springer, Heidelberg (1977)

6. Dartois, L.: Méthodes algébriques pour la théorie des automates. Ph.D. thesis,
LIAFA-Université Paris Diderot, Paris (2014)

7. Dartois, L., Jecker, I., Reynier, P.A.: Aperiodic string transducers. CoRR
abs/1506.04059 (2016). http://arXiv.org/abs/1506.04059

8. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

9. Filiot, E.: Logic-automata connections for transformations. In: Banerjee, M.,
Krishna, S.N. (eds.) ICLA. LNCS, vol. 8923, pp. 30–57. Springer, Heidelberg (2015)

10. Filiot, E., Gauwin, O., Reynier, P.A., Servais, F.: From two-way to one-way
finite state transducers. In: LICS, pp. 468–477. IEEE Computer Society (2013).
lics13.pdf

11. Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations.
In: FSTTCS 2014. LIPIcs, vol. 29, pp. 147–159. Schloss Dagstuhl, Leibniz-Zentrum
für Informatik

12. McNaughton, R., Papert, S.: Counter-Free Automata. The M.I.T. Press, Cam-
bridge, London (1971)

13. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

14. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

15. de Souza, R.: Uniformisation of two-way transducers. In: Dediu, A.-H., Mart́ın-
Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 547–558. Springer,
Heidelberg (2013)

http://arXiv.org/abs/1506.04059

An Automata Characterisation for Multiple
Context-Free Languages

Tobias Denkinger(B)

Faculty of Computer Science, Technische Universität Dresden,
Nöthnitzer Str. 46, 01062 Dresden, Germany

tobias.denkinger@tu-dresden.de

Abstract. We introduce tree stack automata as a new class of automata
with storage and identify a restricted form of tree stack automata that
recognises exactly the multiple context-free languages.

1 Introduction

Prominent classes of languages are often defined with the help of their generating
mechanism, e.g. context-free languages are defined via context-free grammars,
tree-adjoining languages via tree-adjoining grammars, and indexed languages via
indexed grammars. To achieve a better understanding of how languages from a
specific language class can be recognised, it is natural to ask for an automa-
ton model. For context-free languages, this question is answered with pushdown
automata [2,11], yield languages of tree-adjoining grammars are recognised by
embedded pushdown automata [14, Sect. 3], and indexed languages are recog-
nised by nested stack automata [1].

Mildly context-sensitive grammars are currently prominent in natural lan-
guage processing as they are able to express the non-projective constituents and
dependencies that occur in natural languages [9,10]. Multiple context-free gram-
mars [13] describe many mildly context-sensitive grammars. Yet, to the author’s
knowledge, there is no corresponding automaton model. Thread automata [3,4],
introduced by Villemonte de la Clergerie to describe parsing strategies for mildly
context-sensitive grammar formalisms, already come close to such an automaton
model. A construction of thread automata from ordered simple range concate-
nation grammars (which are equivalent to multiple context-free languages) was
given [4, Sect. 4]. A construction for the converse direction as well as proofs of
correctness, however, were not provided.

Based on the idea of thread automata, we introduce a new automaton model,
tree stack automata, and formalise it using automata with storage [5,12] in the
notation of Herrmann and Vogler [7], see Sect. 3. Tree stack automata possess, in
addition to the usual finite state control, the ability to manipulate a tree-shaped
stack that has the tree’s root at its bottom. We find a restriction of tree stack
automata that makes them equivalent to multiple context-free grammars and we
give a constructive proof for this equivalence, see Sect. 4. An extended version
of this paper can be found at http://arxiv.org/abs/1606.02975.
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 138–150, 2016.
DOI: 10.1007/978-3-662-53132-7 12

http://arxiv.org/abs/1606.02975

An Automata Characterisation for Multiple Context-Free Languages 139

2 Preliminaries

In this section we fix some notation and briefly recall formalisms used throughout
this paper. We denote the set of natural numbers (including 0) by N, N\{0} by
N+, and {1, . . . , n} by [n] for every n ∈ N. The reflexive, transitive closure of
some endorelation r is denoted as r∗. For two sets A and B, we denote the set
of partial functions from A to B by A → B. The operator → shall be right
associative. Let f : A → B, a ∈ A, and b ∈ B. The domain of f , denoted by
dom(f), is the subset of A for which f is defined. If dom(f) = A we call f total.
We define f [a �→ b] as the partial function from A to B such that f [a �→ b](a) = b
and f [a �→ b](a′) = f(a′) for every a′ ∈ dom(f)\{a}. We sometimes construe
partial functions as relations in the usual manner. Let S be a countable set
(of sorts) and s ∈ S. An S-sorted set is a tuple (B, sort) where B is a set
and sort : B → S is total. We denote the preimage of s under sort by Bs and
abbreviate (B, sort) by B; sort will always be clear from the context. Let A be a
set and L ⊆ A∗. We call L prefix-closed if for every w ∈ A∗ and a ∈ A we have
that wa ∈ L implies w ∈ L. An alphabet is a finite set (of symbols). Let Γ be an
alphabet. The set of trees over Γ , denoted by TΓ , is the set of partial functions
from N

∗
+ to Γ with finite and prefix-closed domain. The usual definition of trees

[6, Sect. 2] additionally requires that for every ρ ∈ N
∗
+ and n ≥ 2: if ρn is in the

domain of a tree then ρ(n − 1) is as well; we drop this restriction here.

Parallel multiple context-free grammars. We fix a set X = {xj
i | i, j ∈ N+}

of variables. Let Σ be an alphabet. The set of composition representations
over Σ is the (N∗

+ × N+)-sorted set RFΣ where for every s1, . . . , s�, s ∈ N+

we define X(s1···s�,s) = {xj
i | i ∈ [�], j ∈ [si]} ⊆ X and (RFΣ)(s1···s�,s) =

{[u1, . . . , us](s1···s�,s) |u1, . . . , us ∈ (Σ ∪ X(s1···s�,s))∗} as a set of strings in which
parentheses, brackets, commas, and the elements of N+, Σ, and X(s1···s�,s) are
used as symbols. Let f = [u1, . . . , us](s1···s�,s) ∈ RFΣ . The composition function
of f , also denoted by f , is the function from (Σ∗)s1 × · · · × (Σ∗)s� to (Σ∗)s

such that f((w1
1, . . . , w

s1
1), . . . , (w1

� , . . . , ws�

�)) = (u′
1, . . . , u

′
s) where (u′

1, . . . , u
′
s)

is obtained from (u1, . . . , us) by replacing each occurrence of xj
i by wj

i for every
i ∈ [�] and j ∈ [s�]. The set of all composition functions for some composition
representation over Σ is denoted by FΣ . From here on we no longer distinguish
between composition representations and composition functions. We define the
fan-out of f as s. We call f linear (non-deleting) if in u1 · · · us every element
of X occurs at most once (at least once, respectively). The subscript is dropped
from f if its sort is clear from the context.

A parallel multiple context-free grammar (short: PMCFG) is a tuple G =
(N,Σ, I,R) where N is a finite N+-sorted set (of non-terminals), Σ is an alpha-
bet (of terminals), I ⊆ N1 (initial non-terminals), and R ⊆ ⋃

k,s,s1,...,sk∈N
Ns ×

(FΣ)(s1···sk,s) × (Ns1 × · · · × Nsk
) is finite (rules). A rule (A, f,A1 · · · Ak) ∈ R

is usually written as A → f(A1, . . . , Ak); it inherits its sort from f . A PMCFG
that only contains rules with linear composition functions is called a multiple

140 T. Denkinger

context-free grammar (short: MCFG). An MCFG that contains only rules of
fan-out at most k is called a k-MCFG.

For every A ∈ N , we recursively define the set of derivations in G from A
as DG(A) = {r(d1, . . . , dk) | r = A → f(A1, . . . , Ak) ∈ R,∀i ∈ [k]: di ∈ DG(Ai)}.
The elements of DG(A) can be construed as trees over R. Let d ∈ DG(A). By
projecting each rule in d on its second component, we obtain a term over FΣ ;
the tuple generated by d, denoted by [[d]], is obtained by evaluating this term. We
identify 1-tuples of strings with strings. The set of (complete) derivations in G
is DG =

⋃

A∈N DG(A) (Dc
G =

⋃

S∈I DG(S), respectively). The language of G is
L(G) = {[[d]] | d ∈ Dc

G}.

Automata with storage. A storage type is a tuple S = (C,P, F,Ci) where
C is a set (of storage configurations), P ⊆ P(C) (predicates), F ⊆ C → C
(instructions), and Ci ⊆ C. An automaton with storage is a tuple M =
(Q,S,Σ, qi, ci, δ,Qf) where Q is a finite set (of states), S = (C,P, F,Ci) is a
storage type, Σ is an alphabet (of terminals), qi ∈ Q (initial state), ci ∈ Ci (ini-
tial storage configuration), δ ⊆ Q× (Σ ∪{ε})×P ×F ×Q is finite (transitions),
and Qf ⊆ Q (final states).

Let τ = (q, ω, p, f, q′) ∈ δ be a transition. We call q the source state of τ , p the
predicate of τ , f the instruction of τ , and q′ the target state of τ . A configuration
of M is an tuple (q, c, w) where q ∈ Q, c ∈ C, and w ∈ Σ∗. We define the run
relation with respect to τ as the binary relation 	τ on the set of configurations of
M such that (q, c, w) 	τ (q′, c′, w′) iff (w = ωw′)∧(c ∈ p)∧(f(c) = c′). The set of
runs in M is the smallest set RM ⊆ δ∗ where for every k ∈ N and τ1, . . . , τk ∈ δ,
the string θ = τ1 · · · τk is in RM if there are q0, . . . , qk ∈ Q, c0, . . . , ck ∈ C, and
ω1, . . . , ωk ∈ Σ ∪{ε} such that (q0, c0, ω1 · · · ωk) 	τ1 (q1, c1, ω2 · · · ωk) 	τ2 . . . 	τk

(qk, ck, ε); we may then write (q0, c0, ω1 · · · ωk) 	θ (qk, ck, ε) or (q0, c0) 	θ (qk, ck)
or [[θ]] = ω1 · · · ωk. The set of valid runs in M, denoted by Rv

M, contains exactly
the runs θ ∈ RM where (qi, ci) 	θ (q, c) for some q ∈ Qf and c ∈ C. For θ ∈ Rv

M
we say that M recognises [[θ]]. The language of M is L(M) = {[[θ]] | θ ∈ Rv

M}.

3 Tree Stack Automata

Informally, a tree stack is a tree with a designated position in it. The root of
the tree serves as bottom-most symbol and the leaves are top-most symbols. We
allow the stack pointer to move downward (i.e. to the parent) and upward (i.e.
to any child). We may write at any position except for the root. We may also
push a symbol to any vacant child position of the current node. Formally, for an
alphabet Γ , a tree stack over Γ is a tuple (ξ[ε �→ @], ρ) where ξ ∈ TΓ , @ /∈ Γ ,
and ρ ∈ dom(ξ)∪{ε}. The set of all tree stacks over Γ is denoted by TS(Γ). We
define the following subsets (or predicates) of and partial functions on TS(Γ):

– equals(γ) = {(ξ, ρ) ∈ TS(Γ) | ξ(ρ) = γ} for every γ ∈ Γ and
– bottom = {(ξ, ρ) ∈ TS(Γ) | ρ = ε}.
– id: TS(Γ) → TS(Γ) where id(ξ, ρ) = (ξ, ρ) for every (ξ, ρ) ∈ TS(Γ),

An Automata Characterisation for Multiple Context-Free Languages 141

– push: N → Γ → TS(Γ) → TS(Γ) where pushn(γ)(ξ, ρ) = (ξ[ρn �→ γ], ρn) for
every (ξ, ρ) ∈ TS(Γ), n ∈ N with ρn /∈ dom(ξ), and γ ∈ Γ ,

– up: N → TS(Γ) → TS(Γ) where upn(ξ, ρ) = (ξ, ρn) for every (ξ, ρ) ∈ TS(Γ)
and n ∈ N with ρn ∈ dom(ξ),

– down: TS(Γ) → TS(Γ) where down(ξ, ρn) = (ξ, ρ) for every (ξ, ρn) ∈ TS(Γ)
with n ∈ N, and

– set: Γ → TS(Γ) → TS(Γ) where set(γ)(ξ, ρ) = (ξ[ρ �→ γ], ρ) for every γ ∈ Γ
and (ξ, ρ) ∈ TS(Γ) with ρ �= ε.

We may denote a tree stack (ξ, ρ) ∈ TS(Γ) by writing ξ as a set and underlining
the unique tuple of the form (ρ, γ) in this set. Consider for example a tree
ξ ∈ T{@,∗,#} with domain {ε, 2, 23} such that ξ: ε �→ @, 2 �→ ∗, 23 �→ #. We
would then denote the tree stack (ξ, 2) ∈ TS({∗,#}) by {(ε,@), (2, ∗), (23,#)}.

Definition 1. Let Γ be an alphabet. The tree stack storage with respect to Γ
is the storage type (TS(Γ), P, F, {{(ε,@)}}), abbreviated by TS(Γ), where P =
{bottom, equals(γ),TS(Γ) | γ ∈ Γ} and F = {id,pushn(γ),upn,down, set(γ)
| γ ∈ Γ, n ∈ N}. �

We call automata with tree stack storage tree stack automata (short: TSA).
In a storage configuration (ξ, ρ) of a TSA M we call ξ the stack (of M) and ρ
the stack pointer (of M).

Example 2. Let Σ = {a,b, c,d} and Γ = {∗,#}. Consider the TSA M =
(

[5],TS(Γ), Σ, 1, {(ε,@)}, δ, {5}) where δ is shown in Fig. 2 (p. X). Figure 2 also
shows the valid run τ1τ2τ3τ4τ5τ6τ7τ8τ9 in M recognising abcd. The language of
M is L(M) = {anbncndn |n ∈ N} and thus not context-free.

While M only uses a monadic stack, branching is useful to recognise L′ =
{aibjcidj | i, j ∈ N}; Fig. 1 shows a valid run of a TSA (that recognises L′) on
the word bd. �

Restricted TSA. Similar to Villemonte de la Clergerie [4], we are interested
in how often any specific position in the stack is reached from below. For every
TSA M we define (cM(θ): N∗

+ → N+ | θ ∈ Rv
M) as the family of total functions

where cM(ε)(ρ) = 0 for every ρ ∈ N
∗
+, and for every θτ ∈ Rv

M with τ ∈ δ
we have cM(θτ) = cM(θ) if τ has neither a push- nor up-instruction, and we
have cM(θτ) = cM(θ)[ρ �→ cM(θ)(ρ) + 1] if τ has a push- or up-instruction and
{(ε,@)} 	θτ (ξ, ρ) for some tree ξ. We call M k-restricted if cM(θ)(ρ) ≤ k holds
for every θ ∈ Rv

M and ρ ∈ N
∗
+. Note that M from Example 2 is 2-restricted.

Since (unrestricted) TSA can write at any position (except for ε) arbitrarily
often, they can simulate Turing machines. It is apparent that 1-restricted TSA
are exactly as powerful as pushdown automata. The power of k-restricted TSA
for k ≥ 2 is thus between the context-free and recursively enumerable languages.

Normal forms. We will see that loops that do not move the stack pointer as
well as acceptance with non-ε stack pointers can be removed.

142 T. Denkinger

Let M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) be a TSA. For each q, q′ ∈ Q and

γ, γ′ ∈ Γ ∪ {@} we define RM(q, q′)|γ→γ′
stay as the set of runs θ in M such that θ

only uses set- or id-instructions and there are tree stacks (ξ, ρ), (ζ, ρ) ∈ TS(Γ)
with ξ(ρ) = γ, ζ(ρ) = γ′, and (q, (ξ, ρ)) 	θ (q′, (ζ, ρ)).

Definition 3. We call a TSA M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) cycle-free if
RM(q, q)|γ→γ

stay = {ε} for every q ∈ Q and γ ∈ Γ ∪ {@}. �
Lemma 4. For every (k-restricted) TSA M, there is a (k-restricted) cycle-free
TSA M′ such that L(M) = L(M′).

Proof idea. Instead of performing all iterations of some non-empty loop θ ∈
RM(q, q)|γ→γ

stay \{ε} at the same position ρ in the stack, we insert additional push-
instructions before each iteration of the loop. In order to find position ρ again
after the desired number of iterations, we write symbols ∗ or # before every push,
where a ∗ signifies that we have to perform at least two further down-instructions
to reach ρ and # signifies that we will be at ρ after one more down-instruction.
After returning to ρ, we enter a state q̃ that is equivalent to q except that it
prevents us from entering the loop again. �
Definition 5. We say that a TSA M is in stack normal form if the stack pointer
of M is ε whenever we reach a final state. �
Lemma 6. For every (k-restricted) TSA M, there is a (k-restricted) TSA M′

in stack normal form such that L(M) = L(M′).

Proof idea. We introduce a new state qf as the only final state and add transi-
tions such that, beginning from any original final state, we may perform down-
instructions until the predicate bottom is satisfied and then enter state qf. �

Note that M from Example 2 is cycle-free and in stack normal form.

4 The Equivalence of MCFG and Restricted TSA

4.1 Every MCFG Has an Equivalent Restricted TSA

The following construction applies the idea of Villemonte de la Clergerie [4,
Sect. 4] to the case of parallel multiple context-free grammars where, addition-
ally, we have to deal with copying, deletion, and permutation of argument compo-
nents. The overall idea is to incrementally guess for an input word w a derivation
d of G (that accepts w) on the stack while traversing the relevant components of
the composition functions on the right-hand sides of already guessed rules (in d)
left-to-right. This specific traversal of the derivation tree is ensured using states
and stack symbols that encode positions in the rules of G.1

1 The control flow of our constructed automaton is similar to that of the treewalk
evaluator for attribute grammars [8, Sect. 3]. The two major differences are that
the treewalk evaluator also treats inherited attributes (which are not present in
PMCFGs) and that our constructed automaton generates the tree on the fly (while
the treewalk evaluator is already provided with the tree).

An Automata Characterisation for Multiple Context-Free Languages 143

Construction 7. Let G = (N,Σ, I,R) be a PMCFG, Γ = {�} ∪ R ∪ R̄, and
R̄ =

{〈r, i, j〉 | r = A → [u1, . . . , us](A1, . . . , A�) ∈ R, i ∈ [s], j ∈ {0, . . . , |ui|}
}

.
Intuitively, an element 〈r, i, j〉 ∈ R̄ stands for the position in r right after the
j-th symbol of the i-th component. The automaton with respect to G is M(G) =
(Q,TS(Γ), Σ,�, {(ε,@)}, {�}, δ) where Q = {q, q+, q− | q ∈ R̄ ∪ {�}} and δ is
the smallest set such that for every r = S → [u](A1, . . . , A�) ∈ R with S ∈ I, we
have the transitions

init(r) =
(

�, ε,TS(Γ),push1(�), 〈r, 1, 0〉) ,

suspend1(r, 1,�) =
(〈r, 1, |u|〉, ε, equals(�), set(r),�−

)

, and

suspend2(�) =
(

�−, ε,TS(Γ),down,�
)

in δ;

for every r = A → [u1, . . . , us](A1, . . . , A�) ∈ R, i ∈ [s], j ∈ [|ui|] where σ ∈ Σ is
the j-th symbol in ui, we have the transition

read(r, i, j) =
(〈r, i, j − 1〉, σ,TS(Γ), id, 〈r, i, j〉) in δ,

and for every r = A → [u1, . . . , us](A1, . . . , A�) ∈ R, i ∈ [s], j ∈ [|ui|], κ ∈ [�],
r′ = Aκ → [v1, . . . , vs′](B1, . . . , B�′) ∈ R, m ∈ [s′] where xm

κ ∈ X is the j-th
symbol in ui, we have the transitions (abbreviating 〈r, i, j〉 by q)

call(r, i, j, r′) =
(〈r, i, j − 1〉, ε,TS(Γ),pushκ(q), 〈r′,m, 0〉) ,

resume1(r, i, j) =
(〈r, i, j − 1〉, ε,TS(Γ),upκ, q+

)

,

resume2(r, i, j, r′) =
(〈r, i, j − 1〉+, ε, equals(r′), set(q), 〈r′,m, 0〉) ,

suspend1(r
′,m, q) =

(〈r′,m, |vm|〉, ε, equals(q), set(r′), q−
)

, and

suspend2(q) =
(

q−, ε,TS(Γ),down, q
)

in δ. �
Let us abbreviate a run suspend1(r′,m, q) suspend2(q) by suspend(r′,m, q)

and a run resume1(r, i, j) resume2(r, i, j, r′) by resume(r, i, j, r′).

Example 8. Consider the MCFG G = ({S,A,B}, {a, b, c, d}, {S}, R) where

R : r1 = S → [x1
1x

1
2x

2
1x

2
2](A,B) r2 = A → [ax1

1, cx
2
1](A) r3 = A → [ε, ε]()

r4 = B → [bx1
1,dx2

1](B) r5 = B → [ε, ε]() .

Then L(G) = {aibjcidj | i, j ∈ N}. Figure 1 shows that M(G) recognises bd. �
For the rest of Sect. 4.1 let G = (N,Σ, I,R) and R̄ be defined as in Construction 7.

Observation 9. The TSA M(G) is k-restricted if G is a k-MCFG. �
Lemma 10. L(G) ⊆ L(M(G)).

Proof. For every A ∈ N and every derivation d = r(d1, . . . , dm) ∈ DG(A) where
sort(r) = (s1 · · · sm, s) and r = A → [u1, . . . , us](B1, . . . , Bm), we recursively
construct a tuple (θ1, . . . , θs) of runs in M(G). For d1, . . . , dm we already have
the tuples (θ11, . . . , θ

s1
1), . . . , (θ1m, . . . , θsm

m), respectively. For every κ ∈ [s], let

144 T. Denkinger

� , {(ε, @)})

�init(r1) 〈r1, 1, 0〉, {(ε, @), (1, �)})

�call(r1,1,1,r3) 〈r3, 1, 0〉, {(ε, @), (1, �), (11, 〈r1, 1, 1〉)})

�suspend(r3,1,〈r1,1,1〉) 〈r1, 1, 1〉, {(ε, @), (1, �), (11, r3)}
)

�call(r1,1,2,r4)
read(r4,1,1)

〈r4, 1, 1〉, {(ε, @), (1, �), (11, r3), (12, 〈r1, 1, 2〉)})

�call(r4,1,2,r5) 〈r5, 1, 0〉, {(ε, @), (1, �), (11, r3), (12, 〈r1, 1, 2〉), (121, 〈r4, 1, 2〉)})

�suspend(r5,1,〈r4,1,2〉) 〈r4, 1, 2〉, {(ε, @), (1, �), (11, r3), (12, 〈r1, 1, 2〉), (121, r5)}
)

�suspend(r4,1,〈r1,1,2〉) 〈r1, 1, 2〉, {(ε, @), (1, �), (11, r3), (12, r4), (121, r5)}
)

�resume(r1,1,3,r3) 〈r3, 2, 0〉, {(ε, @), (1, �), (11, 〈r1, 1, 3〉), (12, r4), (121, r5)}
)

�suspend(r3,2,〈r1,1,3〉) 〈r1, 1, 3〉, {(ε, @), (1, �), (11, r3), (12, r4), (121, r5)}
)

�resume(r1,1,4,r4)
read(r4,2,1)

〈r4, 2, 1〉, {(ε, @), (1, �), (11, r3), (12, 〈r1, 1, 4〉), (121, r5)}
)

�resume(r4,2,2,r5) 〈r5, 2, 0〉, {(ε, @), (1, �), (11, r3), (12, 〈r1, 1, 4〉), (121, 〈r4, 2, 2〉)})

�suspend(r5,2,〈r4,2,2〉) 〈r4, 2, 2〉, {(ε, @), (1, �), (11, r3), (12, 〈r1, 1, 4〉), (121, r5)}
)

�suspend(r4,2,〈r1,1,4〉) 〈r1, 1, 4〉, {(ε, @), (1, �), (11, r3), (12, r4), (121, r5)}
)

�suspend(r1,1,�) � , {(ε, @), (1, r1), (11, r3), (12, r4), (121, r5)}
)

Fig. 1. Run of M(G) that recognises bd (cf. Example 8). The symbols b and d are
read by read(r4, 1, 1) and read(r4, 2, 1), respectively, all other transitions in this run
read ε.

uκ = ω1 · · · ω� where ω1, . . . , ω� ∈ Σ ∪ X. We define θκ = ω′
1 · · · ω′

� as the
run in M(G) such that for every κ′ ∈ [�], we have that ω′

κ′ = read(r, κ, κ′) if
ωκ′ ∈ Σ, ω′

κ′ = call(r, κ, κ′, r′) θ1i suspend(r′, 1, 〈r, κ, κ′〉) if ωκ′ = x1
i for some

i ≥ 1, and ω′
κ′ = resume(r, κ, κ′, r′) θj

i suspend(r′, j, 〈r, κ, κ′〉) if ωκ′ = xj
i for

some i ≥ 1 and j ≥ 2, where r′ = di(ε). We can prove by structural induction
on d that [[d]] = ([[θ1]], . . . , [[θs]]). If d ∈ Dc

G, then s is 1 and hence the valid run
init(r) θ1 suspend(r, 1,�) recognises exactly [[d]]. �
Lemma 11. Let τ1, . . . , τn ∈ δ with θ = τ1 · · · τn ∈ RM(G) and let ρ ∈ N

∗
+\{ε}.

There is a rule ϕθ(ρ) in G such that, during the run θ, the automaton M(G) is
in some state 〈ϕθ(ρ), i, j〉 ∈ R̄ whenever the stack pointer is at ρ.

Proof. The rule ϕθ(ρ) is selected when ρ is first reached (with call). Then when-
ever we enter ρ with resume, a previous suspend1 has stored ϕθ(ρ) at position
ρ and resume2 enforces the claimed property. The claimed property is preserved
by read. And whenever we enter ρ with suspend, a previous call or resume2 has
stored an appropriate state in the stack and suspend merely jumps back to that
state, observing the claimed property. �

An Automata Characterisation for Multiple Context-Free Languages 145

Examining the form of runs in M(G) (Construction 7) and using Lemma 11
we observe:

Observation 12. Let τ, τ ′ ∈ δ, q, q′, q′′ ∈ Q, ξ, ξ′, ξ′′ ∈ TS(Γ), ρ ∈ N
∗
+, i ∈ N+,

and ϕθ(ρi) be of the form A → [u1, . . . , us](A1, . . . , A�). Then:

1. If (q′, (ξ′, ρ)) 	τ (q, (ξ, ρi)) with q ∈ R̄, then q = 〈ϕθ(ρi), j, 0〉 for some j ∈ [s]
and τ must be either an init- or call-transition.

2. If (q′′, (ξ′′, ρ)) 	τ (q′, (ξ′, ρi)) 	τ ′ (q, (ξ, ρi)) with q′ ∈ {q+ | q ∈ R̄}, then
q = 〈ϕθ(ρi), j, 0〉 for some j ∈ [s], τ is a resume1-transition, and τ ′ is a
resume2-transition.

3. If (q, (ξ, ρi)) 	τ (q′, (ξ′, ρi)) 	τ ′ (q′′, (ξ′′, ρ)), then q = 〈ϕθ(ρi), j, |uj |〉 for some
j ∈ [s], τ is a suspend1-transition, and τ ′ is a suspend2-transition. �

Lemma 13. L(G) ⊇ L(M(G)) if G only has productive non-terminals.

Proof. For every run θ ∈ RM(G) we define ϕ′
θ: N

∗ → R by ϕ′
θ(ρ) = ϕθ(1ρ) for

every ρ ∈ N
∗
+ with 1ρ ∈ dom(ϕθ) (cf. Lemma 11). Then ϕ′

θ is a tree. One could
show for every d ∈ DG with d ⊇ ϕ′

θ by structural induction on ϕ′
θ that for every

ρ ∈ dom(ϕ′
θ) and every maximal interval [a, b] where ρa, . . . , ρb have prefix ρ, we

have [[τa · · · τb]] = [[d|ρ]]m with qa = 〈ϕ′
θ(ρ),m, 0〉 for some m ∈ N+. Let us call

this property (†). Let τ1, . . . , τn ∈ δ with θ = τ1 · · · τn ∈ Rv
M(G). Consider the run

(�, (@, ε)) 	τ1 (q1, (ξ1, 1ρ1)) 	τ2 . . . 	τn−1 (qn−1, (ξn−1, 1ρn−1)) 	τn
(�, (ξn, ε)).

By (†) we obtain that [[τ2 · · · τn−1]] = [[d]]. By Observation 12 and the fact that
only an init-transition may start from � we obtain that τ1 is an init-transition
and τn is a suspend2-transition. Thus [[τ1]] = ε = [[τn]] and therefore [[θ]] = [[d]]. �
Proposition 14. L(G) = L(M(G)) if G only has productive non-terminals.

Proof. The claim follows directly from Lemmas 10 and 13. �
M(G) is almost a parser forG. Let (ξ, ε) be a storage configuration of M(G)
after recognising some word w and let ξ|1 be the first subtree of ξ, defined by
the equation ξ|1(ρ) = ξ(1ρ). Then every complete derivation d in G with ξ|1 ⊆ d
generates w. If G only contains rules with non-deleting composition functions,
we even have that ξ|1 is a derivation in G generating w. In Fig. 1, for example,
we see that r1(r3, r4(r5)) is a derivation of bd in G (cf. Example 8).

4.2 Every Restricted TSA Has an Equivalent MCFG

We construct an MCFG G′(M) that recognises the valid runs of a given
automaton M, and then use the closure of MCFGs under homomor-
phisms. A tuple of runs (θ1, . . . , θm) can be derived from non-terminal
〈q1, q′

1, . . . , qm, q′
m; γ0, . . . , γm〉 iff the runs θ1, . . . , θm all return to the stack posi-

tion they started from and never go below it, and θi starts from state qi and
stack symbol γi−1 and ends with q′

i and γi for every i ∈ [m]. We start with an
example.

146 T. Denkinger

δ: τ1 = 1, a, TS(Γ) , push1(∗) , 1
)

τ2 = 1, ε, TS(Γ) , push1(#), 2
)

τ3 = 2, ε, equals(#), down , 2
)

τ4 = 2, b, equals(∗) , down , 2
)

τ5 = 2, ε, bottom , up1 , 3
)

τ6 = 3, c , equals(∗) , up1 , 3
)

τ7 = 3, ε, equals(#), down , 4
)

τ8 = 4, d, equals(∗) , down , 4
)

τ9 = 4, ε, bottom , id , 5
)

1, {(ε, @)} , abcd
)

�τ1 1, {(ε, @), (1, ∗)} , bcd
)

�τ2 2, {(ε, @), (1, ∗), (11, #)}, bcd
)

�τ3 2, {(ε, @), (1, ∗), (11, #)}, bcd
)

�τ4 2, {(ε, @), (1, ∗), (11, #)}, cd
)

�τ5 3, {(ε, @), (1, ∗), (11, #)}, cd
)

�τ6 3, {(ε, @), (1, ∗), (11, #)}, d
)

�τ7 4, {(ε, @), (1, ∗), (11, #)}, d
)

�τ8 4, {(ε, @), (1, ∗), (11, #)}, ε
)

�τ9 5, {(ε, @), (1, ∗), (11, #)}, ε
)

Fig. 2. Set of transitions and a valid run in M (cf. Example 2).

Example 15. Recall the TSA M from Example 2 (also cf. Fig. 2). Note that M
is cycle-free and in stack normal form. Let us consider position ε of the stack.
The only transitions applicable there are τ1, τ2, τ5, and τ9. Clearly, every valid
run in M starts with τ1 or τ2 and ends with τ9, every τ5 must be preceded by
τ4 or τ3, and every τ9 must be preceded by τ8 or τ7. Thus each valid run in M
is either of the form θ = τ1θ1τ4τ5θ2τ8τ9 or θ′ = τ2θ

′
1τ3τ5θ

′
2τ7τ9 for some runs θ1,

θ2, θ′
1, and θ′

2. The target state of τ1 is 1 and the source state of τ4 is 2. Also τ1
pushes a ∗ to position 1 and the predicate of τ4 accepts only ∗. Thus θ1 must
go from state 1 to 2 and from stack symbol ∗ to ∗ at position 1. Similarly, we
obtain that θ2, θ′

1, and θ′
2 go from state 3 to 4, 2 to 2, and 3 to 3, respectively,

and from stack symbol ∗ to ∗, # to #, and # to #, respectively, at position
1. The runs θ1 and θ2 are linked since they are both executed while the stack
pointer is in the first subtree of the stack; the same holds for θ′

1 and θ′
2.

Clearly, linked runs need to be produced by the same non-terminal. For the
pair (θ1, θ2) of linked runs, we have the non-terminal 〈1, 2, 3, 4; ∗, ∗, ∗〉 and for
(θ′

1, θ
′
2) we have 〈2, 2, 3, 3;#,#,#〉. Since θ and θ′ go from state 1 to 5 and from

storage symbol @ to @, we have the rules

〈1, 5;@,@〉 → [

τ1x
1
1τ4τ5x

2
1τ8τ9

](〈1, 2, 3, 4; ∗, ∗, ∗〉) and

〈1, 5;@,@〉 → [

τ2x
1
1τ3τ5x

2
1τ7τ9

](〈2, 2, 3, 3;#,#,#〉) in G′(M).

Next, we explore the non-terminal 〈1, 2, 3, 4; ∗, ∗, ∗〉, i.e. we need a run that
goes from state 1 to 2 and from storage symbol ∗ to ∗ and another run that goes
from state 3 to 4 and from storage symbol ∗ to ∗. There are only two kinds of
suitable pairs of runs:

(

τ1θ1τ4, τ6θ2τ8
)

and
(

τ2θ
′
1τ3, τ6θ

′
2τ7

)

for some runs θ1, θ2,
θ′
1, and θ′

2. The runs θ1, θ2, θ′
1, and θ′

2 of this paragraph then have the same

An Automata Characterisation for Multiple Context-Free Languages 147

state and storage behaviour as in the previous paragraph and we have rules

〈1, 2, 3, 4; ∗, ∗, ∗〉 → [

τ1x
1
1τ4, τ6x

2
1τ8

](〈1, 2, 3, 4; ∗, ∗, ∗〉) and

〈1, 2, 3, 4; ∗, ∗, ∗〉 → [

τ2x
1
1τ3, τ6x

2
1τ7

](〈2, 2, 3, 3;#,#,#〉) in G′(M).

For non-terminal 〈2, 2, 3, 3;#,#,#〉, we may only take the pair of empty
runs and thus have the rule 〈2, 2, 3, 3;#,#,#〉 → [

ε, ε
]()

in G′(M). �
For all q, q′ ∈ Q, γ, γ′ ∈ Γ , and j ∈ N+ we define the following sets:

δ(q, q′)|γ↗•
upj

= {(q, ω, p,upj , q
′) ∈ δ | γ ∈ p} ,

δ(q, q′)|γ↗γ′
pushj

= {(q, ω, p,pushj(γ
′), q′) ∈ δ | γ ∈ p} , and

δ(q, q′)|γ↘•
down = {(q, ω, p,down, q′) ∈ δ | γ ∈ p} .

γ γ′

q q′

stay β
γ γ′

q q′

stay pushj β
γ γ′

q q′

stay upj

RM(q, q′)|γ→γ′
stay Ω↑

M(q, q′; γ, γ′; j, β)

β′

γ γ′

q q′

down stay β′ β
γ γ′

q q′

down stay pushj β′ β
γ γ′

q q′

down stay upj

Ω↓
M(q, q′; γ, γ′; β′) Ω↓↑

M(q, q′; γ, γ′; β′, j, β)

Fig. 3. Groups of runs in M where dashed arrows signify the change of states and
continuous arrows signify the change in the storage.

For every q, q′ ∈ Q, γ, γ′ ∈ Γ ∪ {@}, β, β′ ∈ Γ , and j ∈ N+ we distinguish
the following groups of runs (to help the intuition, they are visualised in Fig. 3):

1. A sequence of id- or set-instructions followed by an up- or push-instruction:

Ω↑
M(q, q′; γ, γ′; j, β) =

⋃

q̄∈Q
RM(q, q̄)|γ→γ′

stay · (

δ(q̄, q′)|γ′↗β
pushj

∪ δ(q̄, q′)|γ′↗•
upj

)

2. A down-instruction followed by id- or set-instructions:

Ω↓
M(q, q′; γ, γ′;β′) =

⋃

q̄∈Q
δ(q, q̄)|β′↘•

down · RM(q̄, q′)|γ→γ′
stay

3. A down-instruction, then a sequence of id- or set-instructions and finally an
up- or push-instruction:

Ω↓↑
M(q, q′; γ, γ′;β′, j, β) =

⋃

q̄∈Q
δ(q, q̄)|β′↘•

down · Ω↑
M(q̄, q′; γ, γ′; j, β)

148 T. Denkinger

The arguments of Ω↑
M, Ω↓

M, and Ω↓↑
M are grouped using semicolons. The first

group describes the state behaviour of the run; the second group describes the
storage behaviour at the parent position (i.e. the position of the set- and id-
instructions), and the third group describes the storage behaviour at the child
positions (i.e. the positions immediately above the parent position).

We build tuples of runs from the three groups above by matching the storage
behaviour of neighbouring runs at the parent position. A tuple t = (θ0, . . . , θ�)
of runs is admissible if � = 0 and θ0 only uses id- and set-instructions; or if � ≥ 1,
θ0 is in group 1, θ� is in group 2, and for every i ∈ [�], we have

θi−1 ∈ Ω↑
M(q, q′; γ, γ̄; j, β) ∪ Ω↓↑

M(q, q′; γ, γ̄;β′, j, β) and

θi ∈ Ω↓
M(q′′, q′′′; γ̄, γ′;β′′′) ∪ Ω↓↑

M(q′′, q′′′; γ̄, γ′;β′′′, j′, β′′)

for some γ, γ̄, γ′ ∈ Γ ∪ {@}, β, β′, β′′, β′′′ ∈ Γ , q, q′, q′′, q′′′ ∈ Q, and j, j′ ∈ N+.
Note that only the γ̄ has to match. Then θi−1θi may not be a run in M since
it is not guaranteed that q′ = q′′ and β = β′. We therefore say that there is a
(q′, q′′; j, β, β′)-gap between θi−1 and θi. Let q1, q2 ∈ Q and γ1, γ2 ∈ Γ ∪ {@}.
We say that t has type 〈q1, q2; γ1, γ2〉 if � = 0 and θ0 ∈ RM(q1, q2)|γ1→γ2

stay ; or if
� ≥ 1, the first transition in θ0 has source state q1 and its predicate contains
γ1, the last transition of θ� has target state q2, the last set-instruction occurring
in t, if there is one, is set(γ2), and γ1 = γ2 if no set-instruction occurs in t.
The set of admissible tuples in Ω∗

M is denoted by Ω�
M. We define t[y1, . . . , y�] =

θ0y1θ1 · · · y�θ� for every y1, . . . , y� ∈ X to later fill the gaps with variables.
Let T = (t1, . . . , ts) ∈ (Ω�

M)∗ and �1, . . . , �s be the counts of gaps in t1, . . . , ts,
respectively. For every i ∈ [s] and κ ∈ [�i] we set q(i,κ), q

′
(i,κ) ∈ Q, β(i,κ), β

′
(i,κ) ∈ Γ ,

and j(i,κ) ∈ N+ such that the κ-th gap in ti is a (q(i,κ), q′
(i,κ); j(i,κ), β(i,κ), β

′
(i,κ))-

gap. Let ϕT , ψT : N+ × N+ → N+ and πT : N+ × N+ → N+ × N+ be partial
functions such that for every i ∈ [s] and κ ∈ [�i], the number j(i,κ) is the
ϕT (i, κ)-th distinct number occurring in J = j(1,1) · · · j(1,|t1|) · · · j(s,1) · · · j(s,|ts|)
when read left-to-right, j(i,κ) occurs for the ψT (i, κ)-th time at the element with
index (i, κ) in J , and πT (i, κ) = (ϕT (i, κ), ψT (i, κ)). Moreover let m be the count
of distinct numbers in J . We call T admissible if

– the κ-th run in ti ends with a push-instruction whenever ϕT (i, κ) = 1,
– β′

π−1
T (κ′,κ)

= βπ−1
T (κ′,κ+1) for every κ′ ∈ [m] and κ ∈ [�κ′ − 1], and

– there are q1, q̄1, . . . , qs, q̄s ∈ Q and γ0, . . . , γs ∈ Γ ∪ {@} such that for every
κ ∈ [s], we have that tκ is of type 〈qκ, q̄κ; γκ−1, γκ〉.

We then say that T has type (A;B1, . . . , Bm), denoted by type(T) =
(A;B1, . . . , Bm), where A = 〈q1, q̄1, . . . , qs, q̄s; γ0, . . . , γs〉, and for every κ′ ∈ [m]:

Bκ′ = 〈qπ−1
T (κ′,1), q

′
π−1

T (κ′,1), . . . , qπ−1
T (κ′,�κ′), q

′
π−1

T (κ′,�κ′)
;

βπ−1
T (κ′,1), β

′
π−1

T (κ′,1), . . . , β
′
π−1

T (κ′,�κ′)
〉 .

The set of admissible elements of (Ω�
M)∗ is denoted by Ω��

M.

An Automata Characterisation for Multiple Context-Free Languages 149

Construction 16. Let M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) be a cycle-free
k-restricted TSA in stack normal form. Define the k-MCFG G′(M) =
(N,Σ, I,R′) where N = {A,B1, . . . , Bm | 〈A;B1, . . . , Bm〉 ∈ type(Ω��

M)}, I =
{〈qi, q; @,@〉 | q ∈ Qf}, and R′ contains for every T = (t1, . . . , ts) ∈ Ω��

M the
rule A → [

u1, . . . , us

]

(B1, . . . , Bm) where (A;B1, . . . , Bm) is the type of T and
uκ = tκ[xψT (κ,1)

ϕT (κ,1), . . . , x
ψT (κ,�κ)
ϕT (κ,�κ)

] for every κ ∈ [s]. Let G(M) be a k-MCFG recog-
nising {[[θ]] | θ ∈ L(G′(M))}.2 �
Proposition 17. L(M) = L(G(M)) for every cycle-free k-restricted TSA M
in stack normal form.

Proof. We can show by induction that G′(M) generates exactly the valid runs
of M. Our claim then follows from the definition of G(M). �

4.3 The Main Theorem

Theorem 18. Let L ⊆ Σ∗ and k ∈ N+. The following are equivalent:

1. There is a k-MCFG G with L = L(G).
2. There is a k-restricted tree stack automaton M with L = L(M).

Proof. We get the implication (1 =⇒ 2) from Observation 9 and Proposition 14
and the implication (2 =⇒ 1) from Lemmas 4 and 6 and Proposition 17. �

5 Conclusion

The automata characterisation of multiple context-free languages presented in
this paper is achieved through tree stack automata that possess, in addition
to the usual finite state control, the ability to manipulate a tree-shaped stack;
tree stack automata are then restricted by bounding the number of times that
the stack pointer enters any position of the stack from below (cf. Sect. 3). The
proofs for the inclusions of multiple context-free languages in restricted tree stack
languages and vice versa are both constructive; the former even works for parallel
multiple context-free grammars, although the resulting automaton may then no
longer be restricted (cf. Sect. 4). Theorem 18 closes a gap in formal language
theory open since the introduction of MCFGs [13]. The proof allows for the easy
implementation of a parser for parallel multiple context-free grammars.

References

1. Aho, A.V.: Nested stack automata. JACM 16(3), 383–406 (1969)
2. Chomsky, N.: Formal properties of grammars. In: Luce, R.D., Bush, R.R., Galanter,

E. (eds.) Handbook of Mathematical Psychology, vol. 2. Wiley, New York (1962)

2 The k-MCFG G(M) exists since [[·]] is a homomorphism and k-MCFLs are closed
under homomorphisms [13, Theorem 3.9].

150 T. Denkinger

3. Villemonte de la Clergerie, É.: Parsing MCS languages with thread automata. In:
Proceedings of TAG+02, pp. 101–108 (2002)

4. Villemonte de la Clergerie, É.: Parsing mildly context-sensitive languages with
thread automata. In: Proceedings of COLING 2002, vol. 1, pp. 1–7. ACL (2002)

5. Engelfriet, J.: Context-free grammars with storage. CoRR (2014)
6. Guessarian, I.: Pushdown tree automata. Math. Syst. Theor. 16(1), 237–263 (1983)
7. Herrmann, L., Vogler, H.: A Chomsky-Schützenberger theorem for weighted

automata with storage. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 115–
127. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23021-4 11

8. Kennedy, K., Warren, S.K.: Automatic generation of efficient evaluators for
attribute grammars. In: Proceedings of POPL 1976 (1976)

9. Kuhlmann, M., Satta, G.: Treebank grammar techniques for non-projective depen-
dency parsing. In: Proceedings of EACL 2009, pp. 478–486. ACL (2009)

10. Maier, W.: Direct parsing of discontinuous constituents in German. In: Proceedings
of SPMRL 2010, pp. 58–66. ACL (2010)

11. Schützenberger, M.P.: On context-free languages and push-down automata. Inf.
Control 6(3), 246–264 (1963)

12. Scott, D.: Some definitional suggestions for automata theory. J. Comput. Syst. Sci.
1(2), 187–212 (1967)

13. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
TCS 88(2), 191–229 (1991)

14. Vijay-Shanker, K.: A study of tree adjoining grammars. Ph.D. thesis (1988)

http://dx.doi.org/10.1007/978-3-319-23021-4_11

Weighted Automata and Logics
on Infinite Graphs

Stefan Dück(B)

Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
dueck@informatik.uni-leipzig.de

Abstract. We show a Büchi-like connection between graph automata
and logics for infinite graphs. Using valuation monoids, a very general
weight structure able to model computations like average or discounting,
we extend this result to the quantitative setting. This gives us the first
general results connecting automata and logics over infinite graphs in
the qualitative and the quantitative setting.

Keywords: Quantitative automata · Infinite graphs · Graphs · Quan-
titative logic · Valuation monoids

1 Introduction

The coincidence between the languages recognizable by a finite state machine and
the languages definable in monadic second order theory is one of the most fruitful
results in theoretical computer science. Since Büchi, Elgot, and Trakhtenbrot
[6,18,36] established this fundamental result, it has not only been the corner
stone of multiple applications, like verification of finite-state programs, but also
lead to multiple extensions covering finite and infinite trees [28,31], traces [32],
pictures [22], (infinite) nested words [1], and texts [24]. A general result for finite
graphs was given by Thomas [33].

It has remained an open question whether it is possible to get such a result for
infinite graphs. In particular, this question is unanswered in the case of infinite
pictures. The main contributions of this paper are the following:

• We show a Büchi-like equivalence between infinite graph acceptors and an
EMSO-logic for infinite graphs.

• We establish a valuation-weighted automata model over graphs, which gener-
alizes semiring-weighted automata and comprises previous automata models
over special classes of graphs.

• Using methods of weighted logics, we extend our Büchi-like result from the
qualitative to the quantitative setting, i.e., we show the equivalence of weighted
infinite graph automata to a restricted weighted MSO-logic.

S. Dück—Supported by Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg
1763 (QuantLA).

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 151–163, 2016.
DOI: 10.1007/978-3-662-53132-7 13

152 S. Dück

Formally introduced by Schützenberger [30], the study of quantitative ques-
tions (How often does an event arise?; What is the cost of this solution?; etc.) is
another flourishing theory (see e.g. [2,17] and the recent handbook [13]). Quan-
titative automata modeling the long-time average or discounted behavior of sys-
tems were investigated, e.g., by Chatterjee et al. [7].

Recently, Bollig and Kuske [4] considered a logic FO∞ featuring a first-order
quantifier expressing that there are infinitely many elements satisfying a formula.
In a different context than ours (for Muller message-passing automata), they
were able to relate an extended Ehrenfeucht-Fräıssé game and k-equivalence of
two formulas of FO∞, thus developing a Hanf-like theorem [23] for this logic.
We show how this result can be applied to infinite graphs to connect EMSO∞

and infinite graph automata, yielding our first main result.
Using weighted MSO-logic [11], its extension to graphs [10], and valua-

tion monoids [14], we generalize our graph automata model and our Büchi-like
result to a quantitative setting. Here, one crucial part is the closure under the
(restricted) weighted universal quantification (the valuation-quantification). An
essential part of proving this closure is utilizing [4] to show that FO∞ corre-
sponds to one-state infinite graph acceptors.

To enhance readability, we first develop our weighted results in the finite case.
Note that using valuation monoids, this model and the results are also new for
finite graphs and enable us to consider examples using average or discounting in
this general setting, as well as classical (possibly non-commutative) semirings.
Furthermore, our approach is designed in an adaptable way, thereby facilitating
the later extensions to infinite graphs.

2 Graphs and Graph Acceptors

In this section, we introduce the basic concepts around graphs and graph accep-
tors. Following [10,34], we define a (directed) unpointed graph as a relational
structure G = (V, (Pa)a∈A, (Eb)b∈B) over two finite alphabets A and B, where
V is the set of vertices, the sets Pa, a ∈ A, form a partition of V , and the sets
Eb, b ∈ B, are pairwise disjoint irreflexive binary relations on V , called edges.
We denote by E =

⋃

b∈B Eb the set of all edges. Then the elements of A are the
vertex labels, and the elements of B are the edge labels. A graph is bounded by
t if every vertex has an (in- plus out-) degree less than or equal to t.

We call a class of graphs pointed if every graph G of this class has a dis-
tinguished vertex. Formally, this assumption can be defined by adding a unary
relation root to G with root = {u}.

We consider subgraphs of a pointed graph (G, u) around a vertex v as follows.
We call τ = (H, v,w) a tile if (H, v) is a pointed graph and either w is an
additionally distinguished vertex of H or w = empty. Let r ≥ 0. We denote by
dist(x, y) ≤ r that there exists a path (x = x0, x1, ..., xj = y) with j ≤ r and
(xi, xi+1) ∈ E or (xi+1, xi) ∈ E for all i < j. We call (H, v, u) an r-tile if for
every vertex x of H, it holds that dist(x, v) ≤ r. We denote by sphr((G, u), v)
the unique r-tile (H, v,w) consisting of all vertices x of G with dist(x, v) ≤ r

Weighted Automata and Logics on Infinite Graphs 153

together with their edges and w = u if dist(u, v) ≤ r and w = empty, otherwise.
We say v is the center of τ = (H, v,w), resp. of τ = (H, v) = (H, v, empty).

In this work, we assume all graphs to be pointed. We may omit the explicit
root u of a graph and the radius r of a tile if the context is clear. Moreover, our
results not explicitly utilizing the root also hold for unpointed graphs G.

We denote by LabG(v) the label of the vertex v of the graph G. We denote
by DGt(A,B) the class of all finite, directed, and pointed graphs over A and B,
bounded by t. We denote by DG∞

t (A,B) the class of all infinite, directed, and
pointed graphs over A and B, bounded by t. Note that r-tiles of finite or infinite
graphs are finite structures, and there exist only finitely many non-isomorphic
r-tiles since the degree of every considered graph is bounded.

Definition 1 ([33,34]). A graph acceptor (GA) A over DGt(A,B) is defined
as a quadruple A = (Q,Δ,Occ, r) where

– Q is a finite set of states,
– r ∈ N is the tile-radius,
– Δ is a finite set of pairwise non-isomorphic r-tiles over A × Q and B,
– Occ, the occurrence constraint, is a boolean combination of formulas

“occ(τ) ≥ n”, where n ∈ N and τ ∈ Δ.

Note that Thomas (cf. [33,34]) uses non-pointed graphs. Here, the pointing
can be seen as optional additional information to distinguish tiles from each
other.

Given a finite graph G = (G, u) of DGt(A,B) and a mapping ρ : V → Q, we
consider the graph Gρ = (Gρ, u) ∈ DGt(A × Q,B), which consists of the same
vertices and edges as G and is additionally labeled with ρ(v) at every vertex v.

We call ρ a run (or tiling) of A on G if for every v ∈ V , sphr(Gρ, v) is
isomorphic to a tile in Δ. We say Gρ satisfies occ(τ) ≥ n if there exist at least n
distinct vertices v ∈ V such that sphr(Gρ, v) is isomorphic to τ . The semantics
of “Gρ satisfies Occ” are then defined in the usual way.

We call a run ρ accepting if Gρ satisfies Occ. We say that A accepts the
graph G ∈ DGt(A,B) if there exists an accepting run ρ of A on G. We define
L(A) = {G ∈ DGt(A,B) | A accepts G}, the language accepted by A. We call a
language L ⊆ DGt(A,B) recognizable if L = L(A) for some GA A.

Next, we introduce the logic MSO(DGt(A,B)), short MSO, cf. [34]. We
denote by x, y, ... first-order variables ranging over vertices and by X,Y, ... second
order variables ranging over sets of vertices. The formulas of MSO are defined
inductively by

ϕ ::= Pa(x) | Eb(x, y) | root(x) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ A and b ∈ B. An FO-formula is a formula of MSO without set
quantifications, i.e., without using ∃X. An EMSO-formula is a formula of the
form ∃X1...∃Xk.ϕ where ϕ is an FO-formula.

The satisfaction relation |= for graphs and MSO-sentences is defined in the
natural way. Then for a sentence ϕ ∈ MSO, we define the language of ϕ as

154 S. Dück

L(ϕ) = {G ∈ DGt(A,B) | G |= ϕ}. We call a language L ⊆ DGt(A,B) MSO-
definable (resp. FO-definable) if L = L(ϕ) for some MSO-sentence (resp. FO-
sentence) ϕ.

Theorem 2 ([34]). Let L ⊆ DGt(A,B) be a set of graphs. Then:

1. L is recognizable by a one-state GA iff L is definable by an FO-sentence.
2. L is recognizable iff L is definable by an EMSO-sentence.

3 Infinite Graph Acceptors

In the following, we extend Theorem2 to the infinite setting, thus showing a
Büchi-like result for infinite graphs. We introduce infinite graph acceptors with
an extended acceptance condition and an EMSO∞ logic featuring a first-order
quantifier ∃∞x.ϕ to express that there exist infinitely many vertices fulfilling ϕ.

Using the occurrence constraint as acceptance condition, the introduced
graph acceptor for finite graphs could also be interpreted as a model for infi-
nite graphs. However, every occurrence constraint only checks for occurrences
up to a certain threshold, i.e., it cannot express that a tile occurs infinitely many
often. This motivates the following definition.

Definition 3. An infinite graph acceptor (GA∞) A over DG∞
t (A,B) is defined

as a quadruple A = (Q,Δ,Occ, r) where

– Q, Δ, and r are defined as before, and
– Occ, the extended occurrence constraint, is a boolean combination of formulas

“occ(τ) ≥ n” and “occ(τ) = ∞”, where n ∈ N and τ ∈ Δ.

The notions of an accepting run ρ of A on G ∈ DG∞
t (A,B) and a recognizable

language L = L(A) ⊆ DG∞
t (A,B) are defined as before.

Next, following [4], we introduce the logic MSO∞(DG∞
t (A,B)), short MSO∞,

by the following grammar

ϕ ::= Pa(x) | Eb(x, y) | root(x) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃∞x.ϕ | ∃X.ϕ

We denote by FO∞, resp. EMSO∞, the usual first-order, resp. existential frag-
ment. Defining an assignment σ and an update σ[x → v] as usual, the sat-
isfaction relation |= is defined as before, together with (G, σ) |= ∃∞x.ϕ iff
(G, σ[x → v]) |= ϕ for infinitely many v ∈ V .

Using an extended Ehrenfeucht-Fräıssé game, Bollig and Kuske [4] succeeded
in proving a Hanf-like result for these structures. It says that for a given k ∈ N

and a fixed maximal degree, there exists a sufficiently large tile-radius r and a
threshold h such that two graphs which cannot be distinguished by an extended
occurrence constraint over r and h are also indistinguishable by any FO∞-
formula up to quantifier depth k.

From this result, which was originally developed in a different context, namely
Muller message-passing automata, we can deduce the following corollary.

Weighted Automata and Logics on Infinite Graphs 155

Corollary 4. Let ϕ be an FO∞-sentence. Then there exists an extended occur-
rence constraint Occ such that G |= ϕ iff G |= Occ for all G ∈ DG∞

t (A,B).

This result provides us with the means to prove our first main theorem.

Theorem 5. Let L ⊆ DG∞
t (A,B) be a set of infinite graphs. Then:

1. L is recognizable by a one-state GA∞ iff L is definable by an FO∞-sentence.
2. L is recognizable iff L is definable by an EMSO∞-sentence.

4 Weighted Graph Automata

In this section, we introduce and investigate a quantitative version of graph
acceptors for finite graphs. We follow the approach of [10], but use more general
structures than semirings, the (graph-) valuation monoid (cf. [14] for valuation
monoids over words), which are able to model aspects like average, discounting,
and other long-time behaviors of automata.

By abuse of notation, we also consider finite graphs DGt(M,B) over an
infinite set M . Note that we use this notation only in our weight assignments of
the weighted automaton and never as part of the input or within a tile.

Definition 6. A (graph-) valuation monoid D = (D,+,Val, 0) consists of a
commutative monoid (D,+, 0) together with an absorptive valuation function
Val : DGt(D,B) → D, i.e., Val(G) = 0 if at least one vertex of G is labeled 0.

In the following, D will always refer to a valuation monoid1.
Note that we do not enforce distributivity or another form of compatibility

between + and Val. The choice of valuation monoids is a natural one when you
want to consider strictly more general structures than semirings and incorporate
examples like average or discounting, as follows. In the context of trees, another
closely related structure are multi-operator monoids (see e.g. [20]).

Example 7. Let dia(G) be the diameter of G = (G, u) ∈ DGt(A,B). We define

avg(G) =
1

|V |
∑

v∈V

LabG(v) and discλ(G, u) =
∑

r=0,...,dia(G)

∑

dist(v,u)=r

λr LabG(v).

Then D1 = (R ∪ {−∞}, sup, avg,−∞) and D2 = (R ∪ {−∞}, sup,discλ,−∞)
are two valuation monoids. Note that D1 does not use the root of the graph;
therefore, we can omit it. In contrast, D2 is only utilizable for pointed graphs.

Definition 8. A weighted graph automaton (wGA) over DGt(A,B) and D is
a tuple A = (Q,Δ,wt,Occ, r) where

– A′ = (Q,Δ,Occ, r) is a graph acceptor over DGt(A,B),
– wt : Δ → D is the weight function assigning to every tile of Δ a value of D.

1 [14] enforced Val(d) = d, which was later shown to be not required even in the word
case, see e.g. [21].

156 S. Dück

An accepting run ρ : V → Q of A on G ∈ DGt(A,B) is defined as an
accepting run of A′ on G. As in the unweighted case, the pointing of G = (G, u)
is optional.

For an accepting run ρ, we consider the graph GD
ρ , where every vertex is

labeled with the weight of the tile the run ρ defines around this vertex. More
precisely, for a vertex v of G, let τρ(v) be the r-tile of Δ which is isomorphic to
sphr(Gρ, v). Then GD

ρ is defined as the unique graph over DGt(D,B) resulting
from the graph G where for all vertices v, LabGD

ρ
(v) = wt(τρ(v)).

We denote by accA(G) the set of all accepting runs of A on G. The behavior
[[A]] : DGt(A,B) → D of a wGA A is defined, for each G ∈ DGt(A,B), as

[[A]](G) =
∑

ρ∈accA(G)

Val(GD
ρ).

We call any function S : DGt(A,B) → D a series. Then S is recognizable if
S = [[A]] for some wGA A. By the usual identification of languages with functions
assuming values in {0, 1}, we see that graph acceptors are expressively equivalent
to wGA over the Boolean semiring B.

Following [14], we call D regular if all constant series of D are recognizable,
i.e., for every d ∈ D, there exists a wGA Ad with [[Ad]](G) = d for every G ∈
DGt(A,B).

Example 9. Let A = {a, b} and B = {x}. For a given graph, we are interested
in the value maxa∈A |V |a&no outgoing/|V | which is the maximal proportion of
nodes which are labeled with the same symbol and have no outgoing edges. For
instance, in a tree the numerator would refer to the number of leafs labeled
with a. We can compute this value with the following wGA over D1 = (R ∪
{−∞}, sup, avg,−∞).

Set A = ({q1, q2},Δ,wt,Occ, r), with r = 1, Δ = {τ | τ is a 1-tile}, and

Occ =
∧

{τ | center(τ)∈{(a,q1),(b,q2)}}
occ(τ) = 0∨

∧

{τ | center(τ)∈{(a,q2),(b,q1)}}
occ(τ) = 0.

Furthermore, we define wt(τ) = 1 if the center v of τ is labeled with q1 and
the center has no outgoing edges. Then [[A]](G) is the desired proportion. ��
Example 10. Let us assume our graph represents a social network. Now, we are
interested into the affinity of a person to a certain characteristic (a hobby, a
political tendency, an attribute, etc.) be it to use this information in a matching
process or for personalized advertising. We assume that this affinity is closely
related to the social environment of a person (e.g., I am more inclined to watch
soccer if I play soccer myself, or I have friends who are interested into it).

We define a one-state wGA A = ({q}, {τ | τ is a 1-tile},wt, true, 1) over
A = {a, b}, B = {x}, and D2 = (R∪{−∞}, sup,discλ,−∞), with wt(τ) = #a(τ),
where #a(τ) is the number of vertices of τ labeled with a. Then depending on λ,
A computes for a pointed graph (G, u) the affinity of u to the characteristic a.

Weighted Automata and Logics on Infinite Graphs 157

Additionally introducing a nondeterministic choice for the center vertex u
into the wGA, modifying the valuation function accordingly, and taking the
supremum of all resulting runs, we can construct a nondeterministic automaton
computing the maximal affinity of all vertices of a non-pointed graph. ��
In the following, we give some results using ideas of [10]. These statements utilize
the following formula. Let τ∗ = {τ1, ..., τm} be a finite set of tiles. For N ∈ N,
we shall write

(
∑

τ∈τ∗
occ(τ)

) ≥ N short for
∨

∑m
i=1 ni=N

ni∈{0,...,N}

∧

i=1,...,m

occ(τi) ≥ ni. (1)

We can interpret τ∗ as a set of tiles matching a certain pattern. Then this formula
is true iff the occurrence number of all tiles matching this pattern is at least N .

Let S : DGt(A,B) → D be a series recognizable by a wGA A with tile-
radius s. Then we can show that for all r ≥ s, S is recognizable by a wGA B
with tile-radius r.

We extend the operation + of our valuation monoid to series by means of
point-wise definition, i.e., (S + T)(G) = S(G) + T (G) for each G ∈ DGt(A,B).

Proposition 11. The class of recognizable series is closed under +.

Let S : DGt(A,B) → D and L ⊆ DGt(A,B). We define the restriction S ∩ L :
DGt(A,B) → D by letting (S ∩ L)(G) = S(G) if G ∈ L and (S ∩ L)(G) = 0,
otherwise.

Proposition 12. Let S : DGt(A,B) → D be a recognizable series and L ⊆
DGt(A,B) be recognizable by a one-state GA. Then S ∩ L is recognizable.

Proof (sketch). We build the wGA recognizing S ∩ L as a product-automaton
from the wGA A recognizing S and the GA B recognizing L. The occurrence-
constraint is combined by conjugating the projections to the constraints of A
and B together with formula (1). Since B has exactly one state, we can control
the number of runs of C.

In the following, we show that recognizable series are closed under projection.
Let h : A′ → A be a mapping between two alphabets. Then h naturally defines a
relabeling of graphs from DGt(A′, B) into graphs from DGt(A,B), also denoted
by h. Let S : DGt(A′, B) → D be a series. We define h(S) : DGt(A,B) → D by

h(S)(G) =
∑

G′∈DGt(A
′,B)

h(G′)=G

S(G′). (2)

Proposition 13. Let S : DGt(A′, B) → D be a recognizable series and h : A′ →
A. Then h(S) : DGt(A,B) → D is recognizable.

158 S. Dück

5 Weighted Logics for Graphs

In the following, we introduce a weighted MSO-Logic for finite graphs, following
the approach of Droste and Gastin [11] for words. We also incorporate an idea of
Bollig and Gastin [3] to consider unweighted MSO-formulas as explicit fragment
of our logic. We utilize an idea of Gastin and Monmege [21] to consider formulas
with an ‘if..then..else’-operator β?ϕ1 : ϕ2 instead of a weighted conjunction
ϕ1 ⊗ ϕ2. This operator is able to model the essential step-functions (resp. the
almost FO-boolean fragment) without the need to add a second operation to the
valuation monoid (the product �).

Note that our underlying structure may still provide a product (e.g. as in
the case of semirings). In this case, it remains possible to enrich our logic with a
second operation (previously denoted by ⊗), therefore getting a direct connection
to previous works [10,11,14].

In both cases, we are able to prove a Büchi-like connection between our
introduced weighted graph automata and the (restricted) weighted MSO logic.
Since the second operation enforces additional technical restrictions, we omit the
details for this case here.

Definition 14. We define the weighted logic MSO(D,DGt(A,B)),MSO(D), as

β ::= Pa(x) | Eb(x, y) | root(x) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

ϕ ::= d | ϕ ⊕ ϕ | β?ϕ : ϕ | ⊕

x ϕ | ⊕

X ϕ | Valx ϕ

where d ∈ D; x, y are first-order variables; and X is a second order variable.

Let G ∈ DGt(A,B) and ϕ ∈ MSO(D). We follow classical approaches for logics
and semantics. Let free(ϕ) be the set of all free variables in ϕ, and let V be a
finite set of variables containing free(ϕ). A (V, G)-assignment σ is a function
assigning to every first-order variable of V an element of V and to every second
order variable a subset of V . We define the update σ[x → v] as the (V ∪{x}, G)-
assignment mapping x to v and equaling σ everywhere else. The assignment
σ[X → I] is defined analogously.

We represent the graph G together with the assignment σ as a graph (G, σ)
over the vertex alphabet AV = A×{0, 1}V where 1 denotes every position where
x resp. X holds. A graph over AV is called valid if every first-order variable is
assigned to exactly one position.

We define the semantics of ϕ ∈ MSO(D) as a function [[ϕ]]V : DGt(AV , B) →
D inductively for all valid (G, σ) ∈ DGt(AV , B), as seen in Fig. 1. For not valid
(G, σ), we set [[ϕ]]V(G, σ) = 0. We write [[ϕ]] for [[ϕ]]free(ϕ).

Whether a graph is valid can be checked by an FO-formula, hence the lan-
guage of all valid graphs over AV is recognizable. For the Boolean semiring B,
the unweighted MSO is expressively equivalent to MSO(B).

The following lemma shows that for each finite set of variables containing
free(ϕ), the semantics [[ϕ]]V are consistent with each other (cf. [11]).

Weighted Automata and Logics on Infinite Graphs 159

Fig. 1. Semantics

Lemma 15. Let ϕ ∈ MSO(D) and V be a finite set of variables with V ⊇
free(ϕ). Then [[ϕ]]V(G, σ) = [[ϕ]](G, σ�free(ϕ)) for each valid (G, σ) ∈ DGt(AV , B).
Furthermore, if [[ϕ]] is recognizable, then [[ϕ]]V is recognizable.

Now, we show that recognizable series are closed under
⊕

x and
⊕

X quan-
tification (in previous papers called the weighted existential quantification).

Lemma 16. Let [[ϕ]] be recognizable. Then [[
⊕

x ϕ]] and [[
⊕

X ϕ]] are recognizable.

The interesting case is the Valx-quantification (previously called the weighted
universal quantification [11]). Similarly to [11], our unrestricted logic is strictly
more powerful than our automata model. Therefore, inspired by [14,21], we
introduce the following fragment.

We call a formula ϕ ∈ MSO(D) almost FO-boolean if ϕ is built up inductively
from the grammar, ϕ ::= d | β?d : ϕ, where d ∈ D and β is an unweighted FO-
formula.

This fragment is equivalent to all formulas ϕ such that [[ϕ]] is an FO-step
function, i.e., it takes only finitely many values and for each value its preimage
is FO-definable. Denoting the constant series d(G) = d for all G ∈ DGt(A,B)
also with d, we get the following. If ϕ is almost FO-boolean, then [[ϕ]] has a
representation [[ϕ]] =

∑m
i=1 di1Li

=
∑m

i=1 di ∩ Li, where m ∈ N, di ∈ D, Li

are languages definable by an unweighted FO-formula, and (Li)i=1...m form a
partition of DGt(A,B).

Proposition 17. Let ϕ ∈ MSO(D) such that [[ϕ]] is an FO-step function. Then
[[Valx ϕ]] is recognizable.

Proof (sketch). Let V = free(Valx ϕ) and W = V ∪{x}. Then [[ϕ]] =
∑m

i=1 di1Li
,

where Li are FO-definable languages forming a partition of all of DGt(AW , B).
Now, we can encode the information in which language a given graph falls

into an FO-formula L̃ over an extended alphabet. Using Theorem2 yields a one-
state GA Ã with L(Ã) = L̃. Finally, we define a wGA A by adding weights to
every tile depending on the state-label at its center and taking special care of
the occurrence constraint. Then we can show that [[A]] = [[Valx ϕ]].

Let ϕ ∈ MSO(D). We call ϕ FO-restricted if all unweighted subformulas β are
FO-formulas and for all subformulas Valx ψ of ϕ, ψ is almost FO-boolean.

160 S. Dück

These restrictions are motivated in [11] (restriction of Valx ψ) and [19]
(restriction to FO) where it is shown that the unrestricted versions of the logic
are strictly more powerful than weighted automata on words, resp. pictures. For
graphs this is also true, even for the Boolean semiring. We summarize our results.

Proposition 18. If D is regular, then for every FO-restricted MSO(D)-sentence
ϕ, there exists a wGA A with [[A]] = [[ϕ]].

Proof (sketch). We use structural induction on ϕ. One new case is [[β?ϕ1 : ϕ2]] =
[[ϕ1]] ∩ L(β) + [[ϕ2]] ∩ L(¬β), which is recognizable by Propositions 11 and 12,
because L(β) and L(¬β) are recognizable by a one-state GA, since β is an FO-
formula. The other cases are covered by regularity of D and the proven closure
results (Lemma 16 and Proposition 17 together with Lemma 15).

Now, we show that every wGA can be simulated by an MSO(D)-sentence.

Proposition 19. For every wGA A, there exists an FO-restricted MSO(D)-
sentence ϕ with [[A]] = [[ϕ]].

Together with Proposition 18, this gives our second main result,
a Büchi-like connection of the introduced weighted graph automata and the
restricted weighted logic.

Theorem 20. Let D = (D,+,Val, 0) be a regular valuation monoid and let
S : DGt(A,B) → D be a series. Then the following are equivalent:

1. S is recognizable.
2. S is definable by an FO-restricted MSO(D)-sentence.

Examples of a regular valuation monoid are the introduced valuation monoids
using average or discounting and all semirings.

6 Weighted Automata and Logics for Infinite Graphs

In the following, we extend our results in the weighted setting to infinite graphs.
We utilize ∞-valuation monoids to introduce weighted infinite graph automata.

We call a commutative monoid (D,+, 0) complete if it has infinitary sum
operations

∑

I : DI → D for any index set I such that

–
∑

i∈∅ di = 0,
∑

i∈{k} di = dk,
∑

i∈{j,k} di = dj + dk for j �= k,
–

∑

j∈J(
∑

i∈Ij
di) =

∑

i∈I di if
⋃

j∈J Ij = I and Ij ∩ Ik = ∅ for j �= k.

Definition 21. An ∞-(graph)-valuation monoid (D,+,Val∞, 0) consists of a
complete monoid (D,+, 0) together with an absorptive ∞-valuation function
Val∞ : DG∞

t (D,B) → D.

Example 22. Let R̄+ = {x ∈ R | x ≥ 0} ∪ {∞,−∞}. Let t > 1 be the maximal
degree of our graphs and 0 < λ < 1

t−1 . Then D = (R̄+, sup,disc∞
λ ,−∞), with

disc∞
λ (G, u) = lim

n→∞

n
∑

r=0

∑

dist(v,u)=r

λr LabG(v), is an ∞-valuation monoid.

Weighted Automata and Logics on Infinite Graphs 161

Definition 23. A weighted infinite graph automaton (wGA∞) over
DG∞

t (A,B) and D is a tuple A = (Q,Δ,wt,Occ, r) where

– A′ = (Q,Δ,Occ, r) is an infinite graph acceptor over DG∞
t (A,B),

– wt : Δ → D is the weight function assigning to every tile of Δ a value of D.

We transfer the previous notions of accepting run and recognizable series.
The weighted MSO∞-logic for infinite graphs and its fragments is defined

as extensions of MSO∞ as in the finite case (using Val∞ instead of Val) and
is denoted by MSO∞(D). Again, the significant difference is that we have the
operator ∃∞x in our underlying unweighted fragment. Adapting our previous
notations and results to the infinite setting, we get our third main result.

Theorem 24. Let D be a regular ∞-valuation monoid and let S :
DG∞

t (A,B) → D be a series. Then S is recognizable by a wGA∞ if and only if
S is definable by an FO∞-restricted MSO∞(D)-sentence.

The proof mainly follows the proof of Theorem20. A notably difference is found
in the closure under Valx ϕ (in previous papers the weighted universal quantifi-
cation). Since we have to deal with the additional quantifier ∃∞x, we cannot
apply Theorem 2. However, Theorem 5 gives us one-state infinite graph accep-
tors Ai recognizing Li. Then the automata constructions of Proposition 17 give
us a wGA∞ A with [[A]] = [[Valx ϕ]].

7 Conclusion

Utilizing Bollig and Kuske [4] and a Hanf-like theorem for a first-order logic
together with an infinity operator, we have proven a Büchi-like theorem for
infinite graphs.

We introduced a weighted automata model over graphs which is robust
enough to compute very general weight functions and is adaptable to infinite
graphs. We gave new examples for this model, employing average and dis-
counting. Introducing a suitable weighted MSO-logic, we successfully generalized
Büchi-like results from the unweighted setting [35] to the weighted setting, from
words [11] to graphs and from finite graphs [10] to infinite graphs.

Similar to [10], it can be shown that weighted word, tree, picture, and nested
word automata are special instances of these weighted graph automata, which
gives us, e.g., results of [11,16,19,26] and [12,14] as corollaries. Note that these
lists are not exhaustive, as graphs are a very general structure comprising many
other structures like traces [27], texts [25], distributed systems [5], and others.

Infinite graphs cover for example infinite words [15], infinite trees [29], infinite
traces [8], and infinite nested words [9] and it would be interesting to study the
expressive power of weighted infinite graph automata over these special classes.

Acknowledgments. I want to thank Manfred Droste and Tobias Weihrauch for help-
ful discussions and insightful remarks on earlier drafts of this paper.

162 S. Dück

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009)

2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs in Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)

3. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg
(2009)

4. Bollig, B., Kuske, D.: Muller message-passing automata and logics. In: LATA 2007,
Report 35/07, pp. 163–174. Universitat Rovira i Virgili, Tarragona (2007)

5. Bollig, B., Meinecke, I.: Weighted distributed systems and their logics. In: Artemov,
S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 54–68. Springer, Heidelberg
(2007)

6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kamin-
ski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer,
Heidelberg (2008)

8. Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz traces. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
211–222. Springer, Heidelberg (2000)

9. Droste, M., Dück, S.: Weighted automata and logics for infinite nested words. In:
Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 323–334. Springer, Heidelberg (2014)

10. Droste, M., Dück, S.: Weighted automata and logics on graphs. In: Italiano, G.F.,
Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 192–204.
Springer, Heidelberg (2015)

11. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1–2), 69–86 (2007)

12. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over
valuation monoids and their characterization by weighted logics. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020,
pp. 30–55. Springer, Heidelberg (2011)

13. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)

14. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 44–59 (2012)

15. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer,
Heidelberg (2006)

16. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Com-
put. Sci. 366(3), 228–247 (2006)

17. Eilenberg, S.: Automata, Languages, and Machines, Pure and Applied Mathemat-
ics, vol. 59-A. Academic Press, New York (1974)

18. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–52 (1961)

19. Fichtner, I.: Weighted picture automata and weighted logics. Theory Comput. Syst.
48(1), 48–78 (2011)

Weighted Automata and Logics on Infinite Graphs 163

20. Fülöp, Z., Stüber, T., Vogler, H.: A Büchi-like theorem for weighted tree automata
over multioperator monoids. Theory Comput. Syst. 50(2), 241–278 (2012)

21. Gastin, P., Monmege, B.: A unifying survey on weighted logics and weighted
automata. Soft Comput. (2015). http://dx.doi.org/10.1007/s00500-015-1952-6

22. Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-order
logic over rectangular pictures and recognizability by tiling systems. Inf. Comput.
125(1), 32–45 (1996)

23. Hanf, W.: Model-theoretic methods in the study of elementary logic. In: Addison,
J., Henkin, L., Tarski, A. (eds.) The Theory of Models, pp. 132–145. North-Holland,
Amsterdam (1965)

24. Hoogeboom, H.J., ten Pas, P.: Monadic second-order definable text languages.
Theory Comput. Syst. 30(4), 335–354 (1997)

25. Mathissen, C.: Definable transductions and weighted logics for texts. Theory Com-
put. Sci. 411(3), 631–659 (2010)

26. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 221–232. Springer,
Heidelberg (2008)

27. Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch,
E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006)

28. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

29. Rahonis, G.: Weighted muller tree automata and weighted logics. Int. J. Autom.
Lang. Comb. 12(4), 455–483 (2007)

30. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–
3), 245–270 (1961)

31. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81
(1968)

32. Thomas, W.: On logical definability of trace languages. In: Diekert, V. (ed.) Pro-
ceedings of Workshop on ASMICS 1989, pp. 172–182. Technical University of
Munich (1990)

33. Thomas, W.: On logics, tilings, and automata. In: Albert, J.L., Monien, B.,
Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer, Hei-
delberg (1991)

34. Thomas, W.: Elements of an automata theory over partial orders. In: Proceedings
of DIMACS Workshop, POMIV 1996, pp. 25–40. AMS Press Inc., New York (1996)

35. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York
(1997)

36. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSR 140, 326–329 (1961). (in Russian)

http://dx.doi.org/10.1007/s00500-015-1952-6

Degrees of Infinite Words,
Polynomials and Atoms

Jörg Endrullis1(B), Juhani Karhumäki2, Jan Willem Klop1,3,
and Aleksi Saarela2

1 Department of Computer Science, VU University Amsterdam,
Amsterdam, The Netherlands

{j.endrullis,j.w.klop}@vu.nl
2 Department of Mathematics and Statistics & FUNDIM,

University of Turku, Turku, Finland
{karhumak,amsaar}@utu.fi

3 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

Abstract. Our objects of study are finite state transducers and their
power for transforming infinite words. Infinite sequences of symbols are of
paramount importance in a wide range of fields, from formal languages to
pure mathematics and physics. While finite automata for recognising and
transforming languages are well-understood, very little is known about
the power of automata to transform infinite words.

We use methods from linear algebra and analysis to show that there
is an infinite number of atoms in the transducer degrees, that is, minimal
non-trivial degrees.

1 Introduction

The transformation realised by finite state transducers induces a partial order
of degrees of infinite words: for words v, w ∈ ΔN, we write v ≥ w if v can be
transformed into w by some finite state transducer. If v ≥ w, then v can be
thought of as at least as complex as w. This complexity comparison induces
equivalence classes of words, called degrees, and a partial order on these degrees,
that we call transducer degrees.

The ensuing hierarchy of degrees is analogous to the recursion theoretic
degrees of unsolvability, also known as Turing degrees, where the transforma-
tional devices are Turing machines. The Turing degrees have been widely studied
in the 60’s and 70’s. However, as a complexity measure, Turing machines are too
strong: they trivialise the classification problem by identifying all computable
infinite words. Finite state transducers give rise to a much more fine-grained
hierarchy.

We are interested in the structural properties of the hierarchy of transducer
degrees. In this paper, we investigate the existence of atom degrees. An atom
degree is a minimal non-trivial degree, that is, a degree that is directly above
the bottom degree without interpolant degree.

This research has been supported by the Academy of Finland under the grant 257857.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 164–176, 2016.
DOI: 10.1007/978-3-662-53132-7 14

Degrees of Infinite Words, Polynomials and Atoms 165

Our Contribution. In [4,7] it has been proven that the degree of the words
〈n〉 and 〈n2〉 are atoms. Surprisingly, we find that this does not hold for 〈n3〉.
In particular, we show that the degree of 〈nk〉 is never an atom for k ≥ 3
(see Theorem 22). On the other hand, we prove that for every k > 0, there
exists a unique atom among the degrees of words 〈p(n)〉 for polynomials p(n) of
order k (see Theorem 31). (To avoid confusion between two meanings of degrees,
namely degrees of words and degrees of polynomials, we speak of the order of a
polynomial.) We moreover show that this atom is the infimum of all degrees of
polynomials p(n) of order k.

Further Related Work. The paper [11] discusses complexity hierarchies derived
from notions of reduction. The paper [9] gives an overview over the subject of
transducer degrees and compares them with the well-known Turing degrees [12,
15]. Restricting the transducers to output precisely one letter in each step, we
arrive at Mealy machines. These gives rise to an analogous hierarchy of Mealy
degrees that has been studied in [2,13]. The structural properties of this hierarchy
are very different from the transducer degrees, see further [9].

2 Preliminaries

Let Σ be an alphabet. We write ε for the empty word, Σ∗ for the set of finite
words over Σ, and let Σ+ = Σ∗\{ε}. The set of infinite words over Σ is ΣN =
{σ | σ : N → Σ} and we let Σ∞ = Σ∗ ∪ ΣN. Let u,w ∈ Σ∞. Then u is called a
prefix of w, denoted u � w, if u = w or there exists u′ ∈ Σ∞ such that uu′ = w.

A sequential finite state transducer (FST) [1,14], a.k.a. deterministic gener-
alised sequential machine (DGSM), is a finite automaton with input letters and
finite output words along the edges.

Definition 1. A sequential finite state transducer A = 〈Σ,Γ,Q, q0, δ, λ〉 consists
of a finite input alphabet Σ, a finite output alphabet Γ , a finite set of states Q,
an initial state q0 ∈ Q, a transition function δ : Q × Σ → Q, and an output
function λ : Q × Σ → Γ ∗. Whenever the alphabets Σ and Γ are clear from the
context, we write A = 〈Q, q0, δ, λ〉.

We only consider sequential transducers and will simply speak of finite state
transducers henceforth.

Definition 2. Let A = 〈Σ,Γ,Q, q0, δ, λ〉 be a finite state transducer. We homo-
morphically extend the transition function δ to Q × Σ∗ → Q by: for q ∈ Q,
a ∈ Σ, u ∈ Σ∗ let δ(q, ε) = q and δ(q, au) = δ(δ(q, a), u). We extend the output
function λ to Q × Σ∞ → Γ∞ by: for q ∈ Q, a ∈ Σ, u ∈ Σ∞, let λ(q, ε) = ε and
λ(q, au) = λ(q, a) · λ(δ(q, a), u).

We note that finite state transducers can be viewed as productive term rewrite
systems [6] and the transduction of infinite words as infinitary rewriting [5].

166 J. Endrullis et al.

3 Transducer Degrees

In this section, we explain how finite state transducers give rise to a hierarchy of
degrees of infinite words, called transducer degrees. First, we formally introduce
the transducibility relation ≥ on words as realised by finite state transducers.

Definition 3. Let w ∈ ΣN, u ∈ ΓN for finite alphabets Σ, Γ . Let A =
〈Σ,Γ,Q, q0, δ, λ〉 be a finite state transducer. We write w ≥A u if u = λ(q0, w).
We write w ≥ u, and say that u is a transduct of w, if there exists a finite state
transducer A such that w ≥A u.

Note that the transducibility relation ≥ is a pre-order. It thus induces a
partial order of ‘degrees’, the equivalence classes with respect to ≥ ∩ ≤. We
denote equivalence using ≡. It is not difficult to see that every word over a finite
alphabet is equivalent to a word over the alphabet 2 = { 0, 1 }. For the study of
transducer degrees it suffices therefore to consider words over the latter alphabet.

Definition 4. Define the equivalence relation ≡ = (≥ ∩ ≤). The (transducer)
degree w≡ of an infinite word w is the equivalence class of w with respect to ≡,
that is, w≡ = {u ∈ 2N | w ≡ u}. We write 2N/≡ to denote the set of degrees
{w≡ | w ∈ 2N}.

The transducer degrees form the partial order 〈2N/≡,≥〉1 induced by the
pre-order ≥ on 2N, that is, for words w, u ∈ 2N we have w≡ ≥ u≡ ⇐⇒ w ≥ u.

The bottom degree 0 of the transducer degrees is the least degree of the
hierarchy, that is, the unique degree a ∈ 2N/≡ such that a ≤ b for every b ∈
2N/≡. The bottom degree 0 consists of the ultimately periodic words, that is,
words of the form uvvv · · · for finite words u, v where v �= ε.

An atom is a degree that has only 0 below itself.

Definition 5. An atom is a minimal non-bottom degree, that is, a degree a ∈
2N/≡ such that 0 < a and there exists no b ∈ 2N/≡ with 0 < b < a.

4 Spiralling Words

We now consider spiralling words over the alphabet 2 = {0, 1} for which the
distance of consecutive 1’s in the word grows to infinity. We additionally require
that the sequence of distances of consecutive 1’s is ultimately periodic modulo
every natural number. The class of spiralling words allows for a characterisation
of their transducts in terms of weighted products.

For a function f : N → N, we define 〈f〉 ∈ 2N

〈f〉 =
∏∞

i=0 10f(i) = 10f(0) 10f(1) 10f(2) · · · .

We write 〈f(n)〉 as shorthand for 〈n �→ f(n)〉.
1 We note that finite state transducers transform infinite words to finite or infinite
words. The result of the transformation is finite if the transducer outputs the empty
word ε for all except a finite number of letters of the input word. We are interested
in infinite words only, since the set of finite words would merely entail two spurious
extra sub-bottom degrees in the hierarchy of transducer degrees.

Degrees of Infinite Words, Polynomials and Atoms 167

Definition 6. A function f : N → N is called spiralling if

(i) limn→∞ f(n) = ∞, and
(ii) for every m ≥ 1, the function n �→ f(n) mod m is ultimately periodic.

A word 〈f〉 is called spiralling whenever f is spiralling.

For example, 〈p(n)〉 is spiralling for every polynomial p(n) with natural numbers
as coefficients. Spiralling functions are called ‘cyclically ultimately periodic’ in
the literature [3]. For a tuple α = 〈α0, . . . , αm〉, we define

– the length |α| = m + 1, and
– its rotation by α′ = 〈α1, . . . , αm, α0〉.
Let A be a set and f : N → A a function. We write Sk(f) for the k-th shift of f
defined by Sk(f)(n) = f(n + k).

We use ‘weights’ to represent linear functions.

Definition 7. A weight α is a tuple 〈a0, . . . , ak−1, b〉 ∈ Q
k+1 of rational num-

bers such that k ∈ N and a0, . . . , ak−1 ≥ 0. The weight α is called

– non-constant if ai �= 0 for some i < k, else constant,
– strongly non-constant if ai, aj �= 0 for some i < j < k.

Now, let us also consider a tuple of tuples. For a tuple α = 〈α0, . . . ,αm−1〉 of
weights we define ||α|| =

∑m−1
i=0 (|αi| − 1) .

Definition 8. Let f : N → Q be a function. For a weight α = 〈a0, . . . , ak−1, b〉
we define α · f ∈ Q by α · f = a0f(0) + a1f(1) + · · · + ak−1f(k − 1) + b .
For a tuple of weights α = 〈α0,α1, . . . ,αm−1〉, we define the weighted product
α ⊗ f : N → Q by induction on n:

(α ⊗ f)(0) = α0 · f

(α ⊗ f)(n + 1) = (α′ ⊗ S |α0|−1(f))(n) (n ∈ N)

We say that α ⊗ f is a natural weighted product if (α ⊗ f)(n) ∈ N for all
n ∈ N.

Weighted products are easiest understood by an example.

Example 9. Let f(n) = n2 be a function and α = 〈α1,α2〉 a tuple of weights
with α1 = 〈1, 2, 3, 4〉, α2 = 〈0, 1, 1〉. Then the weighted product α ⊗ f can be
visualised as follows

f · · ·0 1 4 9 16 25 36 49 64 81

α ⊗ f · · ·18 17 248 82

×1 ×2 ×3
+4

×0 ×1
+1

×1 ×2 ×3
+4

×0 ×1
+1

Intuitively, the weight α1 = 〈1, 2, 3, 4〉 means that 3 consecutive entries are
added while being multiplied by 1, 2 and 3, respectively, and 4 is added to the
result.

168 J. Endrullis et al.

We introduce a few operations on weights. We define scalar multiplication
of weights in the obvious way. We also introduce a multiplication � that affects
only the last entry of weights (the constant term).

Definition 10. Let c ∈ Q≥0, α = 〈a0, . . . , a�−1, b〉 a weight, β =
〈β0, . . . ,βm−1〉 a tuple of weights. We define

cα = 〈ca0, . . . , ca�−1, cb〉 α � c = 〈a0, . . . , a�−1, bc〉
cβ = 〈cβ0, . . . , cβm−1〉 β � c = 〈β0 � c, . . . ,βm−1 � c〉

The following lemma follows directly from the definitions.

Lemma 11. Let c ∈ Q≥0, α a tuple of weights, and f : N → Q a function.
Then c(α ⊗ f) = (cα) ⊗ f = (α � c) ⊗ (cf). ��

It is straightforward to define a composition of tuples of weights such that
β ⊗ (α ⊗ f) = (β ⊗ α) ⊗ f for every function f : N → Q. Note that α ⊗ f is
already defined. For the precise definition of β ⊗ α, we refer to [8]. It involves
many details whose explicitation would not be illuminating. We will employ the
following two properties of composition.

Lemma 12. Let α,β be tuples of weights. Then we have that β ⊗ (α ⊗ f) =
(β ⊗ α) ⊗ f for every function f : N → Q. ��
Lemma 13. Let α be tuple of weights, and β a tuple of strongly non-constant
weights. Then α ⊗ β is of the form 〈γ0, . . . , γk−1〉 such that for every i ∈ N<k,
the weight γi is either constant or strongly non-constant. ��

We need a few results on weighted products from [4].

Lemma 14 ([4]). Let f : N → N, and α a tuple of weights. If α ⊗ f is a natural
weighted product (i.e. ∀n ∈ N. (α ⊗ f)(n) ∈ N), then 〈f〉 ≥ 〈α ⊗ f〉. ��

For the proof of Theorem 21, below, we use the following auxiliary lemma.
The lemma gives a detailed structural analysis, elaborated and explained in [4],
of the transducts of a spiralling word 〈f〉.
Lemma 15 ([4]). Let f : N → N be a spiralling function, and let σ ∈ 2N be
such that 〈f〉 ≥ σ and σ �∈ 0. Then there exist n0,m ∈ N, a word w ∈ 2∗, a tuple
of weights α, and tuples of finite words p and c with |α| = |p| = |c| = m > 0
such that σ = w ·∏∞

i=0

∏m−1
j=0 pj c

ϕ(i,j)
j where ϕ(i, j) = (α⊗Sn0(f))(mi+j), and

(i) cω
j �= pj+1c

ω
j+1 for every j with 0 ≤ j < m − 1, and cω

m−1 �= p0c
ω
0 , and

(ii) cj �= ε, and αj is non-constant, for all j ∈ N<m. ��
Example 16. We continue Example 9. We have α = 〈α0, α1〉. Accordingly, we
have prefixes p0, p1 ∈ 2∗ and cycles c0, c1 ∈ 2∗. Then the transduct σ in
Lemma 15, defined by the double product, can be derived as follows:

Degrees of Infinite Words, Polynomials and Atoms 169

f · · ·0 1 4 9 16 25 36 49 64 81

α ⊗ f · · ·18 17 248 82
α0 α1 α0 α1

σ = w · · ·· p0 c180 · p1 c171 · p0 c2480 · p1 c821

The infinite word σ is the infinite concatenation of w followed by alternating p0c
e0
0

and p1c
e1
1 , where the exponents e0 and e1 are the result of applying weights α0

and α1, respectively.

The following theorem characterises the transducts of spiralling words up to
equivalence (≡).

Theorem 17 ([4]). Let f : N → N be spiralling, and σ ∈ 2N. Then 〈f〉 ≥ σ if
and only if σ ≡ 〈α ⊗ Sn0(f)〉 for some n0 ∈ N, and a tuple of weights α.

Roughly speaking, the next proposition states that polynomials of order k
are closed under transduction.

Proposition 18 ([4]). Let p(n) be a polynomial of order k with non-negative
integer coefficients, and let σ be a transduct of 〈p(n)〉 with σ /∈ 0. Then σ ≥
〈q(n)〉 for some polynomial q(n) of order k with non-negative integer coefficients.

5 The Degree of 〈nk〉 is Not an Atom for k ≥ 3

We show that the degree of 〈nk〉 is not an atom for k ≥ 3. For this purpose, we
prove a strengthening of Theorem 17, a lemma on weighted products of strongly
non-constant weights, and we employ the power mean inequality.

First, we recall the power mean inequality [10].

Definition 19. For p ∈ R, the weighted power mean Mp(x) of x =
〈x1, x2, . . . , xn〉 ∈ R

n
>0 with respect to w = 〈w1, w2, . . . , wn〉 ∈ R

n
>0 with

∑n
i=1 wi = 1 is

Mw,0(x) =
∏n

i=1 xwi
i Mw,p(x) = (

∑n
i=1 wix

p
i)

1/p .

Proposition 20 (Power mean inequality). For all p, q ∈ R, x,w ∈ R
n
>0:

p < q =⇒ Mw,p(x) ≤ Mw,q(x)
(p = q ∨ x1 = x2 = · · · = xn) ⇐⇒ Mw,p(x) = Mw,q(x) .

Theorem 17 characterises transducts of spiralling sequences only up to
equivalence. This makes it difficult to employ the theorem for proving non-
transducibility. We improve the characterisation for the case of spiralling trans-
ducts as follows.

Theorem 21. Let f, g : N → N be spiralling functions. Then 〈g〉 ≥ 〈f〉 if and
only if some shift of f is a weighted product of a shift of g, that is:

Sn0(f) = α ⊗ Sm0(g)

for some n0,m0 ∈ N and a tuple of weights α.

170 J. Endrullis et al.

Theorem 21 is a strengthening of Theorem 17 in the sense that the character-
isation uses equality (= and shifts) instead of equivalence (≡). We will employ
the gained precision to show that certain spiralling transducts of 〈nk〉 cannot
be transduced back to 〈nk〉, and conclude that 〈nk〉 is not an atom for k ≥ 3.
See further Theorem 22. Note, however, that Theorem 21 only characterises
spiralling transducts whereas Theorem 17 characterises all transducts.

Proof (Theorem 21). For the direction ‘⇐’, assume that Sn0(f) = α ⊗ Sm0(g).
Then we have 〈g〉 ≡ 〈Sm0(g)〉 ≥ 〈α ⊗ Sm0(g)〉 = 〈Sn0(f)〉 ≡ 〈f〉 by invariance
under shifts and by Lemma 14.

For the direction ‘⇒’, assume that 〈g〉 ≥ 〈f〉. Then by Lemma 15 there exist
m0,m ∈ N, w ∈ 2∗, α, p and c with |α| = |p| = |c| = m > 0 such that:

〈f〉 = w · ∏∞
i=0

∏m−1
j=0 pj c

ϕ(i,j)
j (1)

where ϕ(i, j) = (α ⊗ Sm0(g))(mi + j) such that the conditions (i) and (ii) of
Lemma 15 are fulfilled.

Note that, as limn→∞ f(n) = ∞, the distance of ones in the sequence 〈g〉
tends to infinity. For every j ∈ N<m, the word pj occurs infinitely often in 〈f〉
by (1), and hence pj can contain at most one occurrence of the symbol 1.

By condition (ii), we have for every j ∈ N<m that cj �= ε, and the weight αj

is not constant. As limn→∞ g(n) = ∞, it follows that c2j appears infinitely often
in 〈f〉 by (1). Hence cj consists only of 0’s, that is, cj ∈ {0}+ for every j ∈ N<m.

By condition (i) we never have cω
j = pj+1c

ω
j+1 for j ∈ N<m (where addition

is modulo m). As cω
j = 0ω and pj+10ω = pj+1c

ω
j+1, we obtain that pj+1 must

contain a 1. Hence, for every k ∈ N<m, the word pj contains precisely one 1.
Finally, we apply the following transformations to ensure pj = 1 and cj = 0

for every j ∈ N<m:

(i) For every j ∈ N<m such that cj = 0h for some h > 1, we set cj = 0 and
replace the weight αj in α by hαj .

(ii) For every j ∈ N<m such that pj = 0h10� for some h ≥ 1 or � ≥ 1, we set
pj = 1 and replace the weight αj in α by (αj + �) and the weight αj−1 by
(αj−1 + h). Here, for a weight γ = 〈x0, . . . , x�−1, y〉 and z ∈ Q, we write
γ + z for the weight 〈x0, . . . , x�−1, y + z〉. If j = 0, we moreover append 0h

to the word w.

Note that both transformations leave Eq. (1) valid, they do not change the result
of the double product.

Thus we now have pj = 1 and cj = 0 for every j ∈ N<m. It follows from (1)
that 〈f〉 = w〈α ⊗ Sm0(g)〉. Hence Sn0(f) = α ⊗ Sm0(g) for some n0 ∈ N. ��
Theorem 22. For k ≥ 3, the degree of 〈nk〉 is not an atom.

Proof. Define f : N → N by f(n) = nk. We have 〈f〉 ≥ 〈g〉 where g : N → N

is defined by g(n) = (2n)k + (2n + 1)k. Assume that we had 〈g〉 ≥ 〈f〉. Then,

Degrees of Infinite Words, Polynomials and Atoms 171

by Theorem 21 we have Sn0(f) = α ⊗ Sm0(g) for some n0,m0 ∈ N and a tuple
of weights α. Note that g = 〈〈1, 1, 0〉〉 ⊗ f and

Sn0(f) = α ⊗ Sm0(〈〈1, 1, 0〉〉 ⊗ f)

= α ⊗ (〈〈1, 1, 0〉〉 ⊗ S2m0(f)) = β ⊗ S2m0(f)

where β = α ⊗ 〈〈1, 1, 0〉〉. By Lemma 13 every weight in β is either constant or
strongly non-constant. As Sn0(f) is strictly increasing (and hence contains no
constant subsequence), each weight in β must be strongly non-constant.

Let β = 〈β0, . . . ,β�−1〉. For every n ∈ N we have:

Sn0(f)(�n) = (β ⊗ S2m0(f))(�n) = β0 · S2m0+||β||·n(f) . (2)

Then we have

Sn0(f)(�n) = (n0 + �n)k =
∑k

i=0

(

k
i

)

ni
0�

k−ink−i

= �knk + kn0�
k−1nk−1 + · · · + knk−1

0 �n + nk
0 . (3)

Let β0 = 〈a0, a1, . . . , ah−1, b〉. We define ci = ai||β||k and di = (2m0 + i)/||β||.
We obtain

β0 · S2m0+||β||·n(f) = b +
∑h−1

i=0 aif(2m0 + ||β|| · n + i)

= b +
∑h−1

i=0 aif(||β||(n + 2m0+i
||β||))

= b +
∑h−1

i=0 ai||β||k(n + di)k = b +
∑h−1

i=0 ci(n + di)k

= b +
∑h−1

i=0 ci(nk + kdin
k−1 + · · · + kdk−1

i n + dk
i) . (4)

Recall Eq. (2). Comparing the coefficients of nk, nk−1 and n in (3) and (4) we
obtain

�k =
h−1
∑

i=0

ci kn0�
k−1 =

h−1
∑

i=0

cikdi knk−1
0 � =

h−1
∑

i=0

cikdk−1
i , and hence

1 =
h−1
∑

i=0

ci

�k

n0

�
=

h−1
∑

i=0

ci

�k
di

nk−1
0

�k−1
=

h−1
∑

i=0

ci

�k
dk−1

i .

This is in contradiction with the weighted power means inequality (Proposi-
tion 20). Clearly all di are distinct, and, as a consequence of β0 being strongly
non-constant, there are at least two i ∈ N<h for which ci �= 0. Thus our assump-
tion 〈g〉 ≥ 〈f〉 must have been wrong. Hence the degree of 〈nk〉 is not an
atom. ��

6 Atoms of Every Polynomial Order

In the previous section, we have seen that 〈nk〉 is not an atom for k ≥ 3. In this
section, we show that for every order k ∈ N there exists a polynomial p(n) of

172 J. Endrullis et al.

order k such that the degree of the word 〈p(n)〉 is an atom. As a consequence,
there are at least ℵ0 atoms in the transducer degrees.

As we have seen in the proof of Theorem 22, whenever k ≥ 3, we have that
〈nk〉 ≥ 〈g(n)〉, but not 〈g(n)〉 ≥ 〈nk〉 for g(n) = (2n)k + (2n + 1)k. Thus there
exist polynomials p(n) of order k for which 〈p(n)〉 cannot be transduced to 〈nk〉.
However, the key observation underlying the construction in this section is the
following: Although we may not be able to reach 〈nk〉 from 〈p(n)〉, we can get
arbitrarily close (Lemma 25, below). This enables us to employ the concept of
continuity.

In order to have continuous functions over the space of polynomials to allow
limit constructions, we now permit rational coefficients. For k ∈ N, let Qk be
the set of polynomials of order k with non-negative rational coefficients. We also
use polynomials in Qk to denote spiralling sequences. However, we need to give
meaning to 〈q(n)〉 for the case that the block sizes q(n) are not natural numbers.
For this purpose, we make use of the fact that the degree of a word 〈f(n)〉 is
invariant under multiplication of the block sizes by a constant, as is easy to see.
More precisely, for f : N → N, we have 〈f(n)〉 ≡ 〈d · f(n)〉 for every d ∈ N with
d ≥ 1. So to give meaning to 〈q(n)〉, we multiply the polynomial by the least
natural number d > 0 such that d · q(n) is a natural number for every n ∈ N.

Definition 23. We call a function f : N → Q naturalisable if there exists a
natural number d ≥ 1 such that for all n ∈ N we have (d · f(n)) ∈ N.

For naturalisable f : N → Q we define 〈f〉 = 〈d · f〉 where d ∈ N is the least
number such that d ≥ 1 where for all n ∈ N we have (d · f(n)) ∈ N. (Note that,
for f : N → N, 〈f(n)〉 has been defined in Sect. 4.)

Observe that every q(n) ∈ Qk is naturalisable (multiply by the least com-
mon denominator of the coefficients). Also, naturalisable functions are preserved
under weighted products.

Now, Lemma 14 can be generalised as follows. There is no longer need to
require that the weighted product is natural. All weighted products of natural-
isable functions can be realised by finite state transducers.

Lemma 24. Let f : N → Q be naturalisable, and α a tuple of weights. Then
α ⊗ f is naturalisable and 〈f〉 ≥ 〈α ⊗ f〉.
Proof. Let α = 〈α0, . . . ,αm−1〉 for some m ≥ 1. Let c ∈ N with c ≥ 1 be
minimal such that all entries of cα are natural numbers. Let d ∈ N with d ≥ 1
be the least natural number such that ∀n ∈ N (d · f(n)) ∈ N.

Then we obtain ((dcα) ⊗ f)(n) ∈ N for ever n ∈ N. By the definition of
weighted products it follows immediately that (dcα)⊗f = dc(α⊗f), and hence
α ⊗ f is naturalisable. Let e ∈ N with e ≥ 1 be the least natural number such
that ∀n ∈ N (e · (α ⊗ f)(n)) ∈ N.

Degrees of Infinite Words, Polynomials and Atoms 173

We have the following transduction

〈f〉 = 〈df〉 by Definition 23
≥ 〈((cα) � d) ⊗ (df)〉 by Lemma 14
= 〈(dcα) ⊗ f〉 = 〈dc(α ⊗ f)〉 by Lemma 11

≥ 〈〈〈 e

dc
, 0〉〉 ⊗ (dc(α ⊗ f))〉 by Lemma 14

= 〈e(α ⊗ f)〉 = 〈α ⊗ f〉 by Definition 23

This concludes the proof. ��
The following lemma states that every word 〈q(n)〉, for a polynomial q(n) ∈

Qk of order k, can be transduced arbitrarily close to 〈nk〉.
Lemma 25. Let k ≥ 1 and let q(n) ∈ Qk be a polynomial of order k. For every
ε > 0 we have 〈q(n)〉 ≥ 〈nk +bk−1n

k−1+ · · ·+b1n〉 for some rational coefficients
0 ≤ bk−1, . . . , b1 < ε.

Proof. Let q(n) = aknk + ak−1n
k−1 + · · · + a1n + a0, and let ε > 0 be arbitrary.

Then for every d ∈ N, we have

〈q(n)〉 ≥ 〈q(dn)〉 ≥ 〈q(dn)
akdk

〉 = 〈nk +
ak−1

akd
nk−1 + . . . +

a1

akdk−1
n1 +

a0

akdk
〉

≥ 〈nk +
ak−1

akd
nk−1 + . . . +

a1

akdk−1
n1〉

The first transduction is picking a subsequence of the blocks. The second trans-
duction is a division of the size of each block (application of Lemma 24 with the
weight 〈〈1/akdk, 0〉〉). The last transduction amounts to removing a constant
number of zeros from each block (application of Lemma 24 with the weight
〈〈1,−a0/(akdk)〉〉). Finally, note that the last polynomial in the transduction is
of the desired form if d ∈ N is chosen large enough. ��

For polynomials p(n) ∈ Qk, we want to express weighted products 〈α〉 ⊗ p
in terms of matrix products. For that purpose we need a couple of definitions.

Definition 26. For weights α = 〈a0, . . . , ak−1, b〉 we define a column vector
U(α) = (a0, . . . , ak−1)T .

Definition 27. If p(n) =
∑k

i=0 cin
i is a polynomial of order k, we define a

column vector V (p(n)) = (c1, . . . , ck)T and a square matrix

M(p(n)) = (V (p(kn + 0)), . . . , V (p(kn + k − 1))) .

We also write V (p) short for V (p(n) and M(p) for M(p(n)).

Note that we have omitted the constant term c0 from the definition of V (p).
The reason is that for every f : N → N and c ∈ N we have 〈f(n)〉 ≡ 〈f(n) + c〉.
These words are of the same degree because a finite state transducer can add
(or remove) a constant number of symbols 0 to (from) every block of 0’s. For
the same reason, b was omitted from the definition of U(α).

174 J. Endrullis et al.

Example 28. Consider the polynomial n3:

V (n3) =

⎛

⎝

0
0
1

⎞

⎠ and M(n3) =

⎛

⎝

0 9 36
0 27 54
27 27 27

⎞

⎠

where the columns vectors of the matrix M(n3) are given by V ((3n)3), V ((3n+
1)3) and V ((3n + 2)3).

Lemma 29. Let k ≥ 1. Let α = 〈a0, . . . , ak−1, b〉 be a weight and p(n) ∈ Qk.
Then M(p)U(α) = V (〈α〉 ⊗ p).

Proof. A direct calculation shows that

M(p)U(α) =
k−1
∑

i=0

aiV (p(kn + i)) = V
(

k−1
∑

i=0

aip(kn + i)
)

= V
(

k−1
∑

i=0

aip(kn + i) + b
)

= V (〈α〉 ⊗ p) ,

which proves the lemma. ��
Let us take a closer look at the matrix M(nk). The element on the ith row

and jth column is Mi,j =
(

k
i

)

ki(j − 1)k−i. Dividing the ith row by
(

k
i

)

ki for
each i gives a Vandermonde-type matrix, which is invertible. Thus also M(nk)
is invertible.

Lemma 30. For k ≥ 1, M(nk) is invertible. ��
Theorem 31. Let k ≥ 1. Let a0, . . . , ak−1 be positive rational numbers, α =
〈a0, . . . , ak−1, 0〉, and

p(n) = (〈α〉 ⊗ nk)(n) =
k−1
∑

i=0

ai(kn + i)k.

Then 〈q(n)〉 ≥ 〈p(n)〉 for all q(n) ∈ Qk. Moreover, the degree 〈p(n)〉≡ is an
atom. Note that the degree 〈p(n)〉≡ is the infimum of all degrees of words 〈q(n)〉
with q(n) ∈ Qk.

Proof. By Lemma 29, M(nk)U(α) = V (p). By Lemma 30, M(nk) is invertible
and we can write U(α) = M(nk)−1V (p). By Lemma 25, for every ε > 0 there
exists qε ∈ Qk such that 〈q(n)〉 ≥ 〈qε(n)〉 and

qε(n) = nk + bk−1n
k−1 + · · · + b1n

with 0 ≤ bi ≤ ε for every i ∈ {1, . . . , k − 1}. We will show that if ε is small
enough, then 〈qε(n)〉 ≥ 〈p(n)〉.

We have limε→0 M(qε) = M(nk). As det(M(n3)) �= 0 and the determinant
function is continuous, also det(M(qε)) �= 0 for all sufficiently small ε. Then

Degrees of Infinite Words, Polynomials and Atoms 175

M(qε) is invertible, and we define Uε = M(qε)−1V (p). We would like to have
Uε = U(γ) for some weight γ. This is not always possible, because some ele-
ments of Uε might be negative. However, by the continuity of matrix inverse and
product,

lim
ε→0

Uε = lim
ε→0

(M(qε)−1V (p)) = (lim
ε→0

M(qε))−1V (p) = M(nk)−1V (p) = U(α)

Since every element of U(α) is positive, we can fix a small enough ε so that
every element of Uε is positive. Then we have Uε = U(γ) for some weight γ.

We have M(qε)U(γ) = V (〈γ〉 ⊗ qε) by Lemma 29, and M(qε)U(γ) = V (p)
by the definition of Uε. As a consequence (〈γ〉 ⊗ qε)(n) = p(n) + c for some
constant c. By Lemma 24, we obtain 〈qε(n)〉 ≥ 〈p(n)〉.

It remains to show that the degree 〈p(n)〉≡ is an atom. Assume that 〈p(n)〉 ≥
w and w �∈ 0. By Proposition 18 we have w ≥ 〈q(n)〉 for some q(n) ∈ Qk. As
shown above, 〈q(n)〉 ≥ 〈p(n)〉, thus w ≥ 〈p(n)〉. Hence 〈p(n)〉≡ is an atom. ��

7 Future Work

Our results hint at an interesting structure of the transducer degrees of words
〈p(n)〉 for polynomials p(n) of order k ∈ N. Here, we have only scratched the
surface of this structure. Many questions remain open, for example:

(i) What is the structure of ‘polynomial spiralling’ degrees (depending on k ∈
N)? Is the number of degrees finite for every k ∈ N?

(ii) Are there interpolant degrees between the degrees of 〈nk〉 and 〈pk(n)〉?
(iii) Are there continuum many atoms?
(iv) Is the degree of the Thue–Morse sequence an atom?

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications Generaliza-
tions. Cambridge University Press, New York (2003)

2. Belov, A.: Some algebraic properties of machine poset of infinite words. ITA 42(3),
451–466 (2008)

3. Berstel, J., Boasson, L., Carton, O., Petazzoni, B., Pin, J.E.: Operations preserving
regular languages. Theor. Comput. Sci. 354(3), 405–420 (2006)

4. Endrullis, J., Grabmayer, C., Hendriks, D., Zantema, H.: The degree of squares is
an atom. In: Manea, F., Nowotka, D. (eds.) WORDS 2015. LNCS, vol. 9304, pp.
109–121. Springer, Heidelberg (2015)

5. Endrullis, J., Hansen, H.H., Hendriks, D., Polonsky, A., Silva, A.: A coinduc-
tive framework for infinitary rewriting and equational reasoning. In: Proceedings
of Conference on Rewriting Techniques and Applications (RTA 2015). Schloss
Dagstuhl (2015)

6. Endrullis, J., Hendriks, D.: Lazy productivity via termination. Theor. Comput.
Sci. 412(28), 3203–3225 (2011)

7. Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. J. Integers 11B(A6),
1–40 (2011). Proceedings of the Leiden Numeration Conference 2010

176 J. Endrullis et al.

8. Endrullis, J., Karhumäki, J., Klop, J., Saarela, A.: Degrees of infinite words, poly-
nomials and atoms (extended version). CoRR (2016)

9. Endrullis, J., Klop, J.W., Saarela, A., Whiteland, M.: Degrees of transducibility. In:
Manea, F., Nowotka, D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 1–13. Springer,
Heidelberg (2015)

10. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press,
Cambridge (1988). Reprint of the 1952 edition

11. Löwe, B.: Complexity hierarchies derived from reduction functions. In: Löwe, B.,
Piwinger, B., Räsch, T. (eds.) Classical and New Paradigms of Computation
and their Complexity Hierarchies. Trends in Logic, vol. 23, pp. 1–14. Springer,
Amsterdam (2004)

12. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam (1999)

13. Rayna, G.: Degrees of finite-state transformability. Inf. Control 24(2), 144–154
(1974)

14. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2003)

15. Shoenfield, J.R.: Degrees of Unsolvability. North-Holland, Elsevier, New York
(1971)

Ternary Square-Free Partial Words
with Many Wildcards

Daniil Gasnikov and Arseny M. Shur(B)

Ural Federal University, Ekaterinburg, Russia
legionlon@gmail.com, arseny.shur@urfu.ru

Abstract. We contribute to the study of square-free words. The classi-
cal notion of a square-free word has a natural generalization to partial
words, studied in several papers since 2008. We prove that the maximal
density of wildcards in the ternary infinite square-free partial word is
surprisingly big: 3/16. In addition, we introduce a related characteristic
of infinite square-free words, called flexibility, and find its values for some
interesting words and classes of words.

Keywords: Partial word · Square-free word · Letter density

1 Introduction

Partial words are a natural generalization of “ordinary” words. A partial word
is a word with some positions undefined; more formally, a partial word over an
alphabet Σ is a word over the alphabet Σ ∪ {�}, where the wildcard symbol �
has a special meaning. Namely, when two words are being compared, a wildcard
matches any symbol. Thus, the partial word a�bc matches �c�c. In the study of
partial words, the matching relation replaces equality in such notions as periods,
powers, etc. The main feature of the matching relation is its nontransitivity.
This makes many problems on partial words hard. For example, the pattern
matching problem, studied for partial words since 1974 [7], is at least as hard as
the boolean multiplication [10].

Combinatorics of partial words is much younger than their algorithmics; it
began with the paper by Berstel and Boasson [2] and subsequent works [4,15].
These and other early papers focused on periodicity properties. The study of
avoidability began with the paper [9], which focused mostly on cube-free partial
words. A suitable definition of a square-free partial word was proposed in [8]
and independently in [5]; in both these papers the existence of infinite ternary
square-free partial words with infinite number of wildcards was proved. In fact,
it was demonstrated that wildcards in such a word can have nonzero density: the
construction from [8] gives a word with the density 1/39. Thus, a natural question
arises: what is the maximum possible density of wildcards in an infinite ternary
square-free partial word? A related question about the minimum k such that
any factor of length k of some infinite ternary square-free partial word contains

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 177–189, 2016.
DOI: 10.1007/978-3-662-53132-7 15

178 D. Gasnikov and A.M. Shur

a wildcard was answered in [3]; the answer is k = 7. Moreover, a thorough
analysis of the word from [3] shows that the density of wildcards in it is 7/39.

We study the density of wildcards in a more general context. Every square-
free partial word can be obtained by taking a square-free word and replacing
some of its letters with wildcards. Thus, for infinite square-free words we have
a natural characteristic which we call flexibility : the maximum density of the
set of positions, in which letters can be simultaneously replaced by wildcards
preserving square-freeness (we refer to such sets as wildcard sets). Our main
result is the exact value of the maximal flexibility of infinite ternary square-free
words: 3/16. First, we prove that not only density, but even the upper density
of a wildcard set for an infinite ternary square-free word cannot exceed 3/16.
Second, we construct a square-free word G (which probably never appeared in the
study of square-free words before) with flexibility 3/16. Moreover, the wildcard
set for G is periodic with period 16. Additional results include the flexibility of
the Arshon word (1/9) and the Dejean word (2/19), and also a series of “rigid”
square-free words, which have no room for wildcards at all. Our technique is
based on the encoding of ternary square-free words by the walks in the weighted
K33 graph. This encoding was proposed by the second author [14] and proved
useful in solving different problems on ternary square-free words [11–13].

The further text consists of preliminary Sect. 2, technical Sect. 3, and proofs
of the main results in Sect. 4.

2 Preliminaries

Definitions and Notation. We study words over the ternary alphabet Σ =
{a, b, c}; by default, the letters x, y, z denote variable symbols from Σ. Finite
(infinite) words over Σ are treated as functions w : {1, . . . , n} → Σ (resp.,
w : N → Σ); the numbers from the domain of such a function are positions
(in w). In this setting partial words are partial functions; the wildcard symbol �
is used to fill undefined positions.

Standard notions of factor, prefix, and suffix are used for both words and
partial words. We write λ for the empty word, |w| for the length of w, w[i]
for the ith letter of w and w[i..j] for the factor of w occupying the positions
i, i+1, . . . , j. A factor v = w[i..j] is referred to as the occurrence of v in w at
the ith position. Two partial words u and v match if |u| = |v| and for each
i = 1, . . . , |u| either u[i] = v[i] or at least one of u[i], v[i] is a wildcard.

A finite word w has period p < |w| if w[1..|w|−p] = w[p+1..w]. The exponent
exp(w) of w is the ratio between its length and its minimal period. The local
exponent lexp(w) of a finite or infinite word w is the supremum of the exponents
of the finite factors of w. The extension of a factor v = w[i..j] is the factor
u = w[i′..j′] such that i′ ≤ i, j′ ≥ j, u has period |v| but the factors w[i′..j′+1],
w[i′−1..j′] has not.

A square is a nonempty word of the form uu. A word is square-free if it
has no squares as factors. The set of ternary square-free words (both finite and
infinite) is denoted by SF. A partial square is a word of the form uu′ such that

Ternary Square-Free Partial Words with Many Wildcards 179

u matches u′. A (partial or not) square is called p-square if |u| = p. Partial
1-squares of the form �x or x� occur in every partial word u such that |u| > 1
and u contains a wildcard, so we regard them as trivial. A partial word contain-
ing no 1-squares and no partial p-squares for any p > 1, is called square-free.
Ternary square-free infinite partial words exist [5,8]; we write PSF for the partial
counterpart of SF.

Words of the form uv and vu are conjugates; conjugacy is an equivalence rela-
tion. Linking up the ends of a finite word, we obtain a circular word. A circular
word represents a conjugacy class in an obvious way. The factors of a circular
word are just words, so one can speak about square-free circular words.

Let P ⊂ N and dn = |P ∩ {1, . . . , n}|/n. Then the density of P is the limit
d = limn→∞ dn if it exists; otherwise, we speak about upper and lower density,
meaning lim sup dn and lim inf dn, respectively.

Basic Properties. The following basic property of partial words is important.

Lemma 1. If partial words u and v match and u′ is obtained from u by replacing
a letter with a wildcard, then u′ and v match.

Lemma 2. Let a partial word u be square-free and u[i] = �. The partial word u′

obtained from u by replacing u[i] with a letter distinct from the adjacent letters
is square-free.

Proof. Assume that u′ contains a square. It is not a 1-square by construction
and it contains u′[i]. Then u must contain a square at the same position by
Lemma 1. This contradicts the square-freeness of u. 	

Proposition 3. Every finite or infinite square-free partial word matches some
square-free word. In the case of ternary alphabet, such a matching word is unique
up to the first and the last letter.

Proof. The existence of a matching square-free word follows by repeated applica-
tion of Lemma 2. Further, a square-free partial word has no factors of the form
x�x, because such a factor forms a 2-square with any subsequent/preceding
symbol. Thus, the letters adjacent to a wildcard are distinct. If the alphabet is
ternary, there is only one possibility to replace this wildcard. 	

Due to Proposition 3, any element of PSF can be seen as a word from SF in
which the letters in some positions are replaced by wildcards. Let u ∈ SF, P ⊂ N.
We denote by uP the partial word obtained by replacing the letters in u at the
positions from P by wildcards. We call P a wildcard set for u if uP ∈ PSF. The
maximum density of a wildcard set for u is a natural combinatorial characteristic
of u; we call it flexibility1. The original question about the density of wildcards
can be reformulated as
1 As mentioned above, some sets do not have density; to avoid additional notions
we postulate that upper (lower) bounds on flexibility should work for upper (resp.,
lower) densities of the corresponding wildcard sets.

180 D. Gasnikov and A.M. Shur

– What is the maximum flexibility of an infinite ternary square-free word?

We give an upper bound in Sect. 4.1 and a matching lower bound in Sect. 4.2.
Another natural question is about words of zero flexibility. We say that an infinite
word u ∈ SF is rigid (resp., almost rigid) if it has no nonempty wildcard sets
(resp., only finite wildcard sets). In Sect. 3.1, we characterize a class of almost
rigid words and find a series of rigid words in it.

Codewalks. The representation of ternary square-free words described in this
subsection was proposed in [14]. These words contain three-letter factors of the
form xyx, called jumps (of one letter over another). Jumps occur quite often:
if u[i..i+2] is a jump in u ∈ SF, then the next jump in u occurs at one of
the positions i+2, i+3, i+4. (A jump at position i+1 produces a 2-square at
position i, while no jump up to position i+5 leads to a 3-square at position i+1.)
Moreover, a jump in a word can be uniquely reconstructed from the previous (or
the next) jump and the distance between them. Indeed, let u[i..i+2] = xyx. If
the next jump is in the position i+2 (resp., i+3, i+4), then u[i..i+4] = xyxzx
(resp., u[i..i+5] = xyxzyz, u[i..i+6] = xyxzyxy). Thus,

(�) a word u ∈ SF can be uniquely reconstructed from the following information:
the leftmost jump, its position, the sequence of distances between successive
jumps, the number of positions after the last jump (for finite words).

The property (�) allows one to encode square-free words by walks in the
weighted K33 graph shown in Fig. 1. A word u ∈ SF is encoded by the
walk visiting the vertices in the order in which jumps occur when read-
ing u left to right. If the leftmost jump occurs in u at position i > 1,
then we add the edge of length i−1 to the beginning of the walk; note
that in this case the walk begins with an edge, not a vertex. A symmetric

aba bcb cac

bab cbc aca

3

2

1
1 3 2

2

1

3

Fig. 1. The graph of jumps in ternary
square-free words. Vertices are jumps; two
jumps that can follow each other in a
square-free word are connected by an edge
of length i, where i is the number of
positions between the starting positions of
these jumps. Due to symmetry, the graph
is undirected.

procedure applies to the end of u if
u is finite. By (�), we can omit the
vertices (except for the first one), keep-
ing just the lengths of edges and mark-
ing the “hanging” edges in the begin-
ning and/or the end. Due to symme-
try, we can omit even the first vertex,
retaining all information about u up to
renaming the letters. For example, u =
abcbabcacbacabc has the jumps (left to
right) bcb, bab, cac, aca and is encoded,
according to Fig. 1, by 11232.

Such a code is called codewalk
and denoted by cwk(u). The code-
walk 11232 is decoded by any word
xyzyxyzxzyxzxyz, where {x, y, z} =
{a, b, c}. Note that the choice of decoding does not affect the properties concern-
ing periods and squares. A codewalk is closed if it marks a closed walk without

Ternary Square-Free Partial Words with Many Wildcards 181

hanging edges in K3,3; e.g., 121212 is closed and 1212 is not. For a codewalk w
without hanging edges, its literal length �(w) is the distance between the posi-
tions of the last and the first jumps in the decoded word; it can be computed by
adding |w| to the sum of digits of w. Note that if a codewalk wv = cwk(u) has
period |w| and w is closed, then u has period �(w).

Clearly, not all walks in the weighted K33 graph encode square-free words.

Remark 4. The codewalk 11 is decoded by a word of the form xyxzxyx, which
is square-free but cannot be extended to a square-free word by any letter. This
property is shared by the codewalk 333 and, moreover, by any codewalk of the
form v3v, where v3 is closed. The codewalks of the form vxv, where x ∈ {1, 2}
and vx is closed, encode words containing squares. The codewalks 223 and 322
decode to square-free words that cannot be extended by any letter to the left
(resp., to the right).

A sufficient condition for square-freeness was proved in [14].

Lemma 5. A codewalk having (a) no factors 11, 222, 223, 322, 333, and (b) no
factors of the form vxyv, where x, y are symbols and the codewalk vxy is closed,
encodes a square-free word.

3 White and Black Positions

Assume that u ∈ SF is fixed. We say that a position i is white if it belongs
to some wildcard set for u and black otherwise. Usually, the set of all white
positions is not a wildcard set for u, because some white positions “interact” in
the sense that a wildcard set can contain some of them but not all of them; the
simplest interactions are considered in Lemma 10 below.

We start the study of white and black positions with the following criterion.

Proposition 6. Given a fixed u ∈ SF, a position i is black if for some factor
vxv of u, where v �= λ and x ∈ Σ, i is either the position of x, or the position
preceding the left v, or the position following the right v. Otherwise, i is white.

Proof. The set of wildcard sets for u is closed downwards by Lemma 1. Then a
position i is white if and only if {i} is a wildcard set for u. Placing a wildcard
in a position described in the conditions of the proposition gives us a (|v|+1)-
square, so all such positions are black. Conversely, let some position i be black
and x = u[i]. Since {i} is not a wildcard set, u has a factor of the form vxwvyw,
turning into a square when x is replaced by a wildcard. If either v or w is empty,
the position of x satisfies the conditions of the proposition. Otherwise, note that
x �= y and w[1] = v[|v|] = z, where z �= x, z �= y since u is square-free. Hence
u[i−1..i+1] = zxz, and the position of x satisfies the conditions again. 	

Example 7. The word u = abcbabcacb has two white positions: 2 and 9. All other
positions are black by Proposition 6; e.g., the factor u[2..4] = bcb makes black
the positions 1, 3, and 5, while 4 and 8 are black due to u[1..7] = abc b abc. If we
consider u′ = u[2..10] instead of u, the position of the second b (now position 3)
will be white. More generally,

182 D. Gasnikov and A.M. Shur

(∗) in some words with the prefix xyxzx the position 3 is white.

The distribution of white positions in infinite square-free words (and in their
finite factors) is densely related to jumps.

Proposition 8. Let u ∈ SF be an infinite word.
(1) Every white position in u is either the first or the last position of a jump.
(2) Modulo the single exclusion (∗), every jump in u contains at most one white
position, and every white position belongs to exactly one jump.

Proof. The middle position of a jump and a position adjacent to a jump are
black by Proposition 6. Since two consecutive jumps are separated by at most
one position, statement 1 is proved.

Consider two consecutive jumps in u. Depending on the length of the edge
between them, they form a factor v1 = xyxzx, v2 = xyxzyz, or v3 = xyxzyxy
(see Fig. 1). The position of the middle x in v1 is black if v1 is not a prefix of
u (cf. Example 7); if v1 is a prefix, then we have the exclusion (∗). Applying
Proposition 6 to v2 and v3 we see that all positions except for 1, 6 in v2 and for
3, 5 in v3 are black. Statement 2 now follows. 	

So, the further study of the distribution of the white positions in a word
should clarify which jumps contain white positions and which do not. From the
proof of Proposition 8 we have the following basic picture (see Fig. 2). We call
the positions of question marks potentially white.

? ? ? ? ? ?

Fig. 2. Black and potentially white positions in the pairs of consecutive jumps. The
jumps in the left (resp., middle, right) picture are connected in the K33 graph by the
edge of length 1 (resp., 2, 3).

Our main interest is in the asymptotic distribution of white positions in
infinite words. So we pay little attention to special cases concerning prefixes of
these words (like (∗) and “almost squares” described in Remark 4). We call a
factor of a codewalk regular if it is not its prefix. The following three lemmas
form the basis for the proof of our main results.

Lemma 9. A jump in u ∈ SF contains no white position if it is located in the
place indicated by a dot in any of the following regular factors of cwk(u):

1.2, 2.1, 2.2, 3.3, 13., .31, .1221., .2332., (1)

.1212.321, 123.2121., .13132312., .21323131., 323.1321., .1231.323 (2)

Ternary Square-Free Partial Words with Many Wildcards 183

Proof. For the first four factors in (1), it is enough to look at Fig. 2. In the jump
that follows 1 in the codewalk, the last position is potentially white; but if the
next edge has length 2, this position is black. The same argument works for
21, 22 and 33.

For the remaining factors we use Proposition 6. Decoding each of these factors
(together with its unique extension if necessary), we get a factor of u of the form
vxv; for convenience, the v’s are overlined:

113 → zxyxzxyzzzxz 12123212 → xxxyxzxyzyxyzxzzzyxzxyzyxyzx
311 → xyxxxzyxyzyx 21232121 → xzyxyzyxzxyzzzxzyxyzyxzxyxxx
1221 → xxxyxzxyzyxzxyxxx 13132312 → xxxyxzxyzxzyzxyzyxzxyzxzyzxyxxx
2332 → xxxyxzyzxyzyxzyzxyxxx 21323131 → xxxyxzyzxzyxzxyzyxzyzxzyxzxyxxx

13231321 → xzyzxyzyxzxyzzzxzyzxyzyxzxyxxx
12313231 → xxxyxzxyzyxzyzxzzzyxzxyzyxzyzx

In the jumps indicated by dots, the potentially white positions are those with
boldface letters (see Fig. 2); all these positions are black by Proposition 6. 	

Lemma 10. For every u ∈ SF and every i > 1, a wildcard set for u cannot
contain simultaneously i and i+5, or i and i+6.

Proof. Assume that both positions i and i+5 are white (otherwise, there is
nothing to prove). Examining the location of white positions in jumps (Fig. 2),
we see the only possibility: these positions are located in consecutive jumps
connected by an edge of length 2 (the middle picture). This 2 in the codewalk
gives a factor of the form zxyxzyzx (note that i > 1, so the initial z exists).
Placing wildcards in both white positions, we get a partial 4-square z�yx zy�x.

A slightly longer analysis shows that the white positions i and i+6 are always
in the jumps connected by the codewalk 33: they cannot be connected by 11 by
Remark 4 and by 13 or 31 by Lemma 9. The codewalk 33 gives us a factor of
the form xyxzyxyzxyx. If we place wildcards in both white positions, we get a
partial word starting with a partial 5-square xy�zy xyz�y. 	

Lemma 11. Let P be a wildcard set for an infinite word u ∈ SF, j, j+k ∈ P
and j+1, . . . , j+k−1 /∈ P . Then (1) k /∈ {1, 3, 5, 6, 8}, (2) if k = 2 (resp.,
k = 4; k = 7) then j, j+k are located in jumps connected by 3 (resp., by 1; by
one of the paths 12, 21, 23, or 32) in cwk(u).

Proof. The statement readily follows from Proposition 8 and Fig. 2 for k =
1, 2, 3, 4 and from Lemma 10 for k = 5, 6. Further, it is easy to check that the
distance between potentially white positions in jumps connected by a codewalk
of length 3 is at least 9. Thus, for k = 7, 8 the jumps containing j and j+k are
connected by a two-edge codewalk. This codewalk is not 11 by Remark 4, not 13
or 31 by Lemma 9, and not 33 by Lemma10. If it equals 12, 21, 23, or 32, we have
k = 7. If it equals 22, we have k = 8. But 22 is followed by 1 in cwk(u), which
means that the position j+k is black by Lemma 9, contradicting the condition
j+k ∈ P . Hence, k �= 8. The lemma is proved. 	

184 D. Gasnikov and A.M. Shur

3.1 Rigid Words

Lemma 9 implies the following result about almost rigid words.

Proposition 12. Let u ∈ SF be an infinite word. If cwk(u) contains finitely
many 3’s, then u is almost rigid.

It is not a priori clear whether a word required in Proposition 12 (or, equiv-
alently, an infinite word u ∈ SF such that cwk(u) contains no 3’s) exists. For-
tunately, this is the case. Consider the alphabet {1, 2} and take the Fibonacci
word F which is the fixed point of the morphism φ:

φ(2) = 21, φ(1) = 2; F = 2122121221221 · · ·
The 1-2-bonacci word is the ternary word F12 = ab · · · such that cwk(F12) = F.
As was proved in [13], lexp(F12) = 11/6. This means the existence of an infinite
set of rigid square-free words, as the next proposition shows.

Proposition 13. Any suffix u of the 1-2-bonacci word such that cwk(u) =
11221 · · · is a rigid square-free word.

Proof. By Proposition 8(2), every jump in u has at most one white position:
since u = xyz · · · , we avoid the case (∗). By Lemma 9, all positions in the jumps
are black. The first position of u precedes a jump, so it is also black. 	

4 Proofs of Main Results

4.1 Upper Bound on Flexibility

Theorem 14. The flexibility of any infinite word w ∈ SF is at most 3/16.

Proof. Let P be any infinite wildcard set for w. We aim at building a factor-
ization w = u0u1 · · · un · · · such that the lengths of all factors ui are bounded
and ui contains pi ≤ 3|ui|

16 positions from P for any i > 0. The existence of such
a factorization implies the upper bound 3/16 on the upper density of P , thus
proving the theorem.

We factorize w greedily from left to right, checking that each factor ui, i > 0,
satisfies the conditions |ui| ≤ 22, pi ≤ 3|ui|

16 , and begins with a position from
P whenever pi > 0. To define the position of u1, consider the third from the
left jump in w. By Proposition 8, it contains at most one position from P . If
it contains a position from P , u1 begins at this position; otherwise, it begins
at any position of this jump. Now assume that all factors up to ui−1 are built
and ui begins at the jth position of w. We should define k = |ui|. Let l <
l′ < l′′ < l′′′ be the first four positions from P on the right of j. If j /∈ P ,
then put k = min{22, l−j}. If j ∈ P , the choice of k depends on the distances
between j, l, l′, l′′, l′′′ and is described in Table 1. In all possible cases ui satisfies
the prescribed conditions; the desired factorization is thus constructed. 	

Ternary Square-Free Partial Words with Many Wildcards 185

Table 1. Choosing the length of ui in the proof of Theorem14. The possible distances
between consecutive positions from P as well as the corresponding fragments of cwk(w)
are taken from Lemma 11. For impossible sets of distances, the contradictions are given.

l − j l′ − l l′′ − l′ l′′′ − l′′ Fragment of cwk(w) k pi
3k
16

≥ 7 any any any irrelevant min{22, l−j} 1 ≥ 21
16

4 ≥ 7 any any irrelevant min{22, l′−j} 2 ≥ 33
16

4 4 any any
j
|1

l
|1

l′
| w /∈ SF by Remark 4

4 2 any any
j
|1

l
|3

l′
| l′ /∈ P by Lemma9

2 ≥ 9 any any irrelevant min{22, l′−j} 2 ≥ 33
16

2 7 ≥ 7 any irrelevant min{22, l′′−j} 3 ≥ 3

2 7 4 ≥ 9 irrelevant 22 4 66
16

2 7 4 7
j
|3

l
|R

l′
|1
l′′
|Q

l′′′
| R ∈ {12, 32}: l′ /∈ P by Lemma9

Q ∈ {21, 23}: l′′ /∈ P by Lemma9

R = 21 or Q = 12: w /∈ SF by Remark 4

R = 23, Q = 32: l′ /∈ P by Lemma9(2)

2 7 4 4
j
|3

l
|R

l′
|1
l′′
|1
l′′′
| w /∈ SF by Remark 4

2 7 4 2
j
|3

l
|R

l′
|1
l′′
|3
l′′′
| l′′′ /∈ P by Lemma9

2 7 2 any
j
|3

l
|R

l′
| 3

l′′
| j [resp. l; l′; l′′] /∈ P by Lemma9

for R = 12 [resp. 32; 23; 21]

2 4 any any
j
|3

l
|1

l′
| j /∈ P by Lemma9

2 2 any any
j
|3

l
|3

l′
| l /∈ P by Lemma9

4.2 Word of Maximal Flexibility

Return to the 1-2-bonacci word from Sect. 3.1 and consider the codewalk H =
η(F12), where the morphism η : Σ∗ → {1, 2, 3}∗ is defined by

η(a) = 1232 132323
η(b) = 1232 13232 132323
η(c) = 1232 132323 12323

Theorem 15. The word G = ab · · · with the codewalk H is square-free and has
flexibility 3/16.

Proof. To prove square-freeness of G, it suffices to show that H satisfies the
conditions of Lemma5. The condition (a) is obviously satisfied; let us check (b).
Note that any conjugate of a closed codewalk is closed; hence if g is a codewalk
with period p and some factor of g of length p is a closed codewalk, then all
such factors are closed. According to the condition (b), our aim is to prove that
for any closed codewalk h its extension in H, denoted below by g, has length
< 2|h| − 2. Since K3,3 is bipartite, closed codewalks have even lengths.

186 D. Gasnikov and A.M. Shur

It is easy to check (b) for closed walks of length 4 (1232 and 1323) and 6 (no
such codewalks in H). So let |h| ≥ 8. Assume to the contrary that |g| ≥ 2|h| − 2.
Then g has a factor of length |h| beginning with 1. So we assume w.l.o.g. that h
begins with 1. We call the codewalks 1232, 12323, 13232, 132323 miniblocks; they
constitute the blocks η(a), η(b), η(c). Let h = u1 · · · unun+1, where u1, . . . , un

are miniblocks, while un+1 is a prefix of a miniblock but not a miniblock itself.
Then h is followed in H by a symbol distinct from 1 = h[1]. Hence g ends at
the same position in H as h. On the other hand, g extends h to the left by less
than |un+1| < 6 symbols. Since |h| ≥ 8, this contradicts our assumption on |g|.
Therefore, h is a product of miniblocks.

To know which codewalks are closed, we partition them into six types: λ,
1, 2, 3, 12, and 13. A codewalk u has type t = type(u) if the paths in K3,3 with a
common starting point and labels u and t, respectively, have a common endpoint.
In particular, the codewalks of type λ, and only they, are closed. The concatena-
tion of codewalks has the same type as the concatenation of their types, and the
latter can be easily computed by Fig. 1. For miniblocks, one has type(1232) = λ,
type(12323) = 3, type(13232) = 2, type(132323) = 12.

A direct check of types of concatenations of miniblocks shows that h, which
is closed, is long enough; in particular, h contains at least two occurrences of the
miniblock 1232, each followed by 1 (not by 3). Then some factor of g of length |h|
starts with the leftmost factor 12321 in g (otherwise g would be too short); we
assume w.l.o.g. that h begins with this leftmost 12321. Then h = η(w)u, where
w �= λ and u is a proper prefix of a block, but not a block. If u is nonempty,
h is not followed by 12321 in H, so g extends h to the right by at most four
symbols. At the same time, g extends h to the left by less than |u| symbols. This
contradicts our assumption on |g|. Therefore, h = η(w) is a product of blocks.
Note that type(η(a)) = 12, type(η(b)) = 3, type(η(c)) = 2. Since h is closed,
|w| ≥ 3; e.g., type(η(abc)) = λ. Let w = x1 · · · xn.

By the choice of h and square-freeness of F12, the extension of w in F12 equals
x1 · · · xnx1 · · · xn−i for some i ≥ 1. Hence this extension occurs in F12 inside the
factor ŵ = x̄x1 · · · xnx1 · · · xn−ix̂, where x̄ �= x1, xn; x̂ �= xn−i, xn−i+1. Then
|g| = 2|h| − |η(xn−i+1 · · · xn)| + M + N , where M is the length of the common
suffix of η(x̄) and η(xn), while N is the length of the common prefix of η(x̂ · · ·)
and η(xn−i+1 · · ·). One has M = 9 for the pair (a, b) and M = 4 otherwise;
N = 14 for the pair (a, c) and N = 9 otherwise. If i > 2, then clearly |g| < 2|h|−2;
hence i ≤ 2.

Case i = 1. Since lexp(F12) = 11/6, we have |w| ≤ 6. Note that F12 has
no factors of the form xyzxy, because F contains no 3’s (this is why we have
chosen F12 as the argument of η); hence |w| ≥ 4. It is easy to check that the only
candidates to w have the form xyzy or xyzyxz, but then η(w) is not closed for
any values of x, y, and z.

Case i = 2. We have M = 9, N = 14, |η(xn−1xn)| = 25, and, respectively,
|g| = 2|h| − 2. Then x̄ ∈ {a, b}, x̂ ∈ {a, c}, a ∈ {xn−1, xn}. By square-freeness of
F12 we get

ŵ = b c u bca c u b a or ŵ = a c u bab c u b c ,

Ternary Square-Free Partial Words with Many Wildcards 187

where w is underlined, u ∈ Σ∗. We have exp(ŵ) ≤ 11/6 and then |w| ≤ 12. It
appears that the only possibility for u, giving a square-free word ŵ such that
cwk(ŵ) contains no 3’s, is u = ba (resp., u = ca) for the left (resp., right) case.
But then η(w) is not closed. This finishes the proof of condition (b); so G is
square-free by Lemma 5.

To find the flexibility of G, we need a technical lemma.

Lemma 16. All factors of G of the forms vxv and vxyv have periods ≤ 10.

Proof. Consider a factor w = vuv of G with the minimal period p = |vu| ≥ 11 and
minimal possible |u|. Then w is the extension of vu. Aiming at a contradiction,
assume that |u| ≤ 2. Consider the codewalk w′ starting at the leftmost jump
and ending at the rightmost jump in w. Since v is long enough to contain at
least two jumps, the walk between the leftmost and the rightmost jump in v
repeats twice, so w′ = v′u′v′, where v′u′ is closed and �(v′u′) = p. Now compute
|w|. By the definition of extension, the left and right v in w are preceded (and
also followed) in G by different letters. Hence the first (resp., last) jump in w is
preceded (resp., followed) by at most two letters. The length of the last jump is
3, and the remaining part of w has length �(v′u′v′). Thus, |w| ≤ 2p − �(u′) + 7.
Since w′ is a factor of H, we know that |u′| ≥ 3 by condition (b). Then �(u′) ≥ 9,
where the equality takes place for u′ = 123, 132, 213, 231, 312, 321. If �(u′) ≥ 10,
we obtain |w| ≤ 2p− 3 and |u| ≥ 3, contradicting our assumption. Let �(u′) = 9.
Then v′[|v′|] ∈ {2, 3}. Since H has no factors 22 and 33, either u[1] or the symbol
following w′ in H is 1. Hence the last jump in w is followed by just one letter,
not two; we again have |w| ≤ 2p − 3, contradicting the assumption |u| ≤ 2. 	

By Lemma 16 and Proposition 6, the potentially white positions in all jumps
in G, except for those described in Lemma 9(1), are white. The set P of all white
positions in G is periodic with period 16 and has density 3/16. Indeed, white
positions in the jumps connected by 3 (resp., 12, 23, 21, 32) in the codewalk, are
at distance 2 (resp., 7) by Lemma 11:

G = 12|3|21|32|3|23|12|3|21|32|3|21|32|3|23|12|3|21|32|3|23|12|3|23| · · ·

It remains to prove that P is a wildcard set. Assume to the contrary that the
partial word GP contains a partial square vv′, m = |v|. A direct check shows
that m > 10. We transform vv′, whenever possible, replacing back wildcards
with the letters from the same positions of G. The replacement rules are as
follows. Consider all pairs (v[i], v′[i]). If one symbol is x and the other is a
wildcard obtained from x, replace the wildcard; if both are wildcards obtained
from the same x, replace both; if both are wildcards obtained from different
letters, replace one of them. Let uu′ be the resulting partial square. At least one of
the words u[2..m−1], u′[2..m−1] contains a wildcard; otherwise G has the factor
u[2..m−1]u[m]u′[1]u[2..m−1] with period m, contradicting Lemma 16. W.l.o.g.,
u[i] is a wildcard obtained from a letter z and 1 < i < m. Then u′[i] = y �= z.
One of the letters u[i−1], u[i+1] is y; the corresponding letter of u′ cannot be
y, hence it is a wildcard. Thus, the wildcard u[i] matches a letter adjacent to

188 D. Gasnikov and A.M. Shur

another wildcard. This condition is quite restrictive. A case analysis shows that
only short factors of GP match under this condition, and the square uu′ cannot
exist. This finishes the proof of square-freeness of GP and thus of the theorem.

Some details of the case analysis follow. Up to symmetry, there are two
possible fragments of G that can contain the position of u[i] (this position is
indicated by a wildcard replacing z):

2|32: x y x z y � x yyy z y x z x 21|3: z xxx y x z y z x � y x z x
yyy z xxx y x z z y x z y z x y xxx

zzz y x z z x y zzz x z
y x z xxx y zzz x z y x zzz y xxx

x z y x yyy z xxx y x z z yyy x y
z y x zzz y z zzz x y

zzz x yyy y z yyy x zzz

Below each line, the maximal factors of G that match the top word are given;
here all boldface symbols occupy white positions and can be replaced by wild-
cards. These factors are computed to satisfy both Fig. 2 and the structure of
the codewalk H. For example, the factor w = yxzxxxyzzzxzyx in the left column
contains two white positions at distance 2, so the corresponding jumps are sur-
rounded by 2’s in H: 2|3|2. Then w is preceded by z and followed by y, the letters
mismatching their counterparts in the top word. 	

4.3 Morphic and Substitutional Flexible Words

The flexibility of well-known square-free words is of certain interest. The proofs
of the next results are similar to Theorem 15 and omitted due to space con-
straints. The result of Theorem 17 is the best we have for purely morphic words.

Theorem 17. The Dejean word [6] has flexibility 2/19.

Theorem 18. The Arshon word [1] has flexibility 1/9.

5 Conclusion and Open Problems

The problem of finding the maximum density of wildcards in a ternary infinite
square-free partial word can be conveniently reformulated in terms of placing
wildcards at some positions in square-free words. We developed a technique to
find the appropriate sets of positions (wildcard sets) and define flexibility of a
square-free word as the maximum density of its wildcard set. We proved that
the maximum flexibility of a ternary square-free word is 3/16. Besides that, we
proved the existence of rigid words, having no positions for wildcards at all. Two
open problems can direct further development of this topic:

1. What is the maximum flexibility of a morphic/purely morphic ternary square-
free word?

2. What is the minimum local exponent of a rigid word?

Ternary Square-Free Partial Words with Many Wildcards 189

References

1. Arshon, S.E.: Proof of the existence of asymmetric infinite sequences. Mat. Sbornik
2, 769–779 (1937). in Russian, with French abstract

2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoret.
Comput. Sci. 218, 135–141 (1999)

3. Blanchet-Sadri, F., Black, K., Zemke, A.: Unary pattern avoidance in partial words
dense with holes. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011.
LNCS, vol. 6638, pp. 155–166. Springer, Heidelberg (2011)

4. Blanchet-Sadri, F., Hegstrom, R.A.: Partial words and a theorem of Fine and Wilf
revisited. Theor. Comput. Sci. 270(1–2), 401–419 (2002)

5. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for
partial words. Theoret. Comput. Sci. 410, 793–800 (2009)

6. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory. Ser. A 13, 90–99 (1972)
7. Fischer, M., Paterson, M.: String matching and other products. SIAM-AMS Proc.

7, 113–125 (1974)
8. Halava, V., Harju, T., Kärki, T.: Square-free partial words. Inform. Process. Lett.

108(5), 290–292 (2008)
9. Manea, F., Mercaş, R.: Freeness of partial words. Theoret. Comput. Sci. 389(1–2),

265–277 (2007)
10. Muthukrishnan, S., Ramesh, H.: String matching under a general matching rela-

tion. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 356–367.
Springer, Heidelberg (1992)

11. Petrova, E.A., Shur, A.M.: Constructing premaximal ternary square-free words of
any level. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol.
7464, pp. 752–763. Springer, Heidelberg (2012)

12. Petrova, E.A., Shur, A.M.: On the tree of ternary square-free words. In: Manea,
F., Nowotka, D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 223–236. Springer,
Heidelberg (2015)

13. Petrova, E.A.: Avoiding letter patterns in ternary square-free words. Electr. J.
Comb. 23(1), P1.18 (2016)

14. Shur, A.M.: On ternary square-free circular words. Electronic J. Combinatorics 17,
R140 (2010)

15. Shur, A.M., Konovalova, Y.V.: On the periods of partial words. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 657–665. Springer, Hei-
delberg (2001)

Alternating Demon Space Is Closed Under
Complement and Other Simulations

for Sublogarithmic Space

Viliam Geffert(B)

Department of Computer Science,
P.J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia

viliam.geffert@upjs.sk

Abstract. We present new simulations for ASpacedm(s(n)), the class of
languages that can be accepted by alternating Turing machines starting
with s(n) worktape cells delimited initially. Under weak constructibility
assumptions, not excluding monotone functions below log n, we show:
(i) ASpacedm(s(n)) ⊆ DTime(n·2O(s(n))). This extends, to sublogarith-
mic space, the classical simulation of alternating space by determinis-
tic time. (ii) ASpacedm(s(n)) ⊆ NTimeSpace(n ·2O(s(n)), 2O(s(n))), a
simulation with simultaneous bounds on time and space. This improves
the known inclusion, stating that ASpacedm(s(n)) ⊆ NSpace(2O(s(n))).
(iii) ASpacedm(s(n)) = co-ASpacedm(s(n))), i.e., the alternating space
is closed under complement. This simulation does not depend on whether
s(n) is above log n nor on whether the original machine gets into infinite
loops, which solves a long-standing open problem.

Keywords: Computational complexity · Alternation · Sublogarithmic
space

1 Introduction

Space complexity of a computation, introduced in [10] in 1965, is the second in
importance among various computational complexity measures, right after the
time complexity. It turns out that log n is the most significant boundary among
all space complexity bounds, since the space complexity classes below log n are
radically different from those above.

For example, if s(n) ≥ Ω(log n), it is trivial to show that DSpace(s(n)) is
closed under complement. However, the trivial argument does not work below
log n, because the machine may reject by getting into an infinite loop and we
do not have enough space to detect such loops by counting executed steps, up
to n ·2Ω(s(n)). To show that DSpace(s(n)) = co-DSpace(s(n)) without any
assumption on s(n), a more sophisticated simulation was necessary [18]. In the
nondeterministic case, we have that NSpace(s(n)) is closed under complement

Supported by the Slovak grant contracts VEGA 1/0142/15 and APVV-15-0091.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 190–202, 2016.
DOI: 10.1007/978-3-662-53132-7 16

Alternating Demon Space Is Closed Under Complement 191

for s(n) ≥ Ω(log n) [14,20] but, for s(n) below log n, the problem is still open.
The problem stays open even if we consider another reasonable way to define
space complexity, studied, e.g., in [1,5]: the classes1 NSpacedm(s(n)).

The same problem arises for the alternating machines, introduced in [4]
by generalization of nondeterminism and parallelism. It is trivial to invert the
roles of existential and universal decisions and of accepting and rejecting states,
which gives a machine for the complement of the original language, if the orig-
inal machine never gets into an infinite loop. Thus, both ASpace(s(n)) and
ASpacedm(s(n)) are closed under complement for s(n) ≥ Ω(log n), since we can
force the machine to halt [4, Theorem 2.6]. This does not imply anything for
s(n) below log n. For example, by inductive counting [14,20] (see also [21]), the
hierarchy of s(n) space bounded machines making a constant number of alterna-
tions collapses and hence Σk- and Πk-Space(s(s)) are closed under complement
for s(n) ≥ Ω(log n), but they are provably not closed, if s(n) ≤ o(log n) [3,7,16].

The importance of even the lowest levels of space bounded computations
is established by several results. For example, we know that NSpace(log n)
separates from DSpace(log n) if and only if there exists a unary language in
NSpace(log log n)−DSpace(log log n) [8]. The sublogarithmic alternating space
classes may actually be quite strong, e.g., there exists a binary NP-complete lan-
guage such that its unary coded version is in ASpace(log log n) [9].

In this paper, we first provide a new time efficient simulation of alternating
machines with small space by deterministic machines. Namely, we show that

ASpacedm(s(n)) ⊆ DTime(n·2O(s(n))),

for each s(n) such that �s(n)� can be computed by a deterministic multi-tape
Turing machine in n·2O(s(n)) time. Such constructibility condition is very weak
and does not exclude2 even functions below log log n. This extends, to sublog-
arithmic space bounds, the classical result [4] stating that ASpace(s(n)) ⊆
DTime(2O(s(n))) for s(n) ≥ log n.

Our deterministic simulation within n·2O(s(n)) time uses superlinear space,
namely, n·2Ω(s(n)). However, it turns out that the simulating machine has several
additional special properties, and hence it can be simulated space efficiently by
more powerful machine models. Based on this, we shall derive that

ASpacedm(s(n)) ⊆ 1-NTimeSpacedm(n·2O(s(n)), 2O(�s(n)�)),
1 By XSpacedm(s(n)), for X ∈ {D,N,A}, we denote the classes of languages accepted

by deterministic, nondeterministic, and alternating Turing machines starting with a
worktape consisting of �s(n)� blank cells delimited by endmarkers (here �x� denotes
the largest integer satisfying i ≤ x, for the given real value x), as opposed to the more
common complexity classes XSpace(s(n)) where the worktape is initially empty and
the machine must use its own computational power to make sure that it respects,
along each computation path on each input of length n, the space bound of s(n).
The notation “dm” derives from “Demon” Turing Machines [5].

2 It is known that ASpace(o(log log n)) contains only regular languages [15]. However,
it is still possible to accept some nonregular languages, if �s(n)� ≤ o(log log n) work-
tape cells are delimited automatically at the very beginning. As an example [2], take
L = {1n : n mod �log log log n� = 0}, contained in DSpacedm(log log log log n).

192 V. Geffert

which represents a simulation by one-way nondeterministic machines starting
with a delimited worktape of size 2O(�s(n)�) and executing at most n·2O(s(n)) steps
along each computation path, without any assumptions on s(n). This improves
the known inclusion ASpace(s(n)) ⊆ NSpace(2O(s(n))) that was proved for
s(n) above Ω(log log n) under some weak constructibility assumptions [19]. If
�s(n)� can be computed by a deterministic machine in n·2O(s(n)) time and,
simultaneously, in 2O(s(n)) space, we obtain a nondeterministic simulation using
worktapes that are initially empty. The new machine is no longer one-way:

ASpacedm(s(n)) ⊆ NTimeSpace(n·2O(s(n)), 2O(s(n))).

Finally, we convert a two-way alternating machine into a machine for the
complement of the original language, keeping the same amount of space. The
conversion does not depend on whether s(n) is above log n nor on whether the
original machine gets into infinite loops:

ASpacedm(s(n)) = co-ASpacedm(s(n)) for each s(n).

This solves a long-standing open problem [3]. Quite surprisingly, this comple-
menting does not eliminate infinite loops — the new machine itself rejects by
going into infinite loops along some computation paths.

We assume the reader is familiar with standard deterministic, nondeterminis-
tic, and alternating Turing machines, equipped with a finite-state control, a two-
way read-only input tape, and a fixed number of two-way read-write worktapes.
(See, e.g., [4,13,21].) Throughout the paper, DTime(n·2O(s(n))) is a shorthand
notation representing

⋃

k≥1 DTime(n·2k·s(n)); the same kind of notation is used
for other classes. Because of the page limit, all proofs are sketched.

2 Simulations

The first lemma presents a little bit artificial deterministic machine, with many
additional special properties not stated here explicitly. The lemma serves as a
basis for all subsequent simulations by more natural machine models.

Lemma 1. If a language L is accepted by an alternating Turing machine A using
an initially delimited worktape of size �s(n)�, then L is accepted by a determin-
istic Turing machine A′ working in time n·2O(s(n)), equipped, besides a two-way
read-only input tape, with two worktapes: a so-called primary worktape that is
initially empty, containing the left endmarker followed by infinitely many blank
symbols, and a secondary worktape, containing initially �s(n)� blank symbols
delimited in between two endmarkers. This holds for each s(n) ≥ 1.

Proof. Let Δ be worktape alphabet of A and Q the set of its states. A memory
state of A is a triple p = 〈q, x, h〉, where q ∈ Q is a finite control state, x ∈
Δ�s(n)� a content of the worktape, and h ∈ {0, . . . , �s(n)�+1} a position of the
worktape head. A configuration is a pair P = 〈p, i〉, where p is a memory state

Alternating Demon Space Is Closed Under Complement 193

and i ∈ {0, . . . , n+1} a position of the input head. We shall encode a memory
state to a number j ∈ {0, . . . , 2ψ(n)−1} by the use of ψ(n) bits, where

ψ(n) =
log ‖Q‖� + �s(n)� ×
1 + log ‖Δ‖� + 1 ≤ O(s(n)). (1)

That is, we code the finite control state, each symbol on the worktape, and, for
each worktape position, the presence/absence of the head by one extra bit. By
coding the initial state by 0�log ‖Q‖� and the worktape blank symbol with absent
head by 0�1+log ‖Δ‖�, we achieve that the initial memory state is coded by j = 0.
We are now ready to simulate A by a deterministic Turing machine A′.

Phase I. Starting with the delimited �s(n)� blank cells, A′ computes 2ψ(n)−1
and saves this value in a separate track of the secondary worktape. After that,
consulting the given input tape w� = a1 . . . an �, the machine prepares, on
its primary worktape, the string in the form

ŵ = $P0 . . . $Pi . . . $Pn+1, where
Pi = ai¢Pi,0¢ . . . ¢Pi,j¢ . . . ¢Pi,2ψ(n)−1¢ai.

That is, ŵ consists of blocks corresponding to the n+2 input tape positions. The
i-th block, apart from the input symbol ai at the very beginning and at the very
end,3 consists of records corresponding to the 2ψ(n) memory states. The record
Pi,j represents the configuration with the input head position i and the memory
state binary coded by j. The record itself is of constant length, namely,

Pi,j ∈ {0, 1}�, where � = 7 +
log ‖Δ‖� +
log ‖Q‖�.
The first 3 bits in Pi,j encode a mode of the given configuration, which is a value
mi,j ∈ {root, accept, reject, unknown, lockL, lockR}. Initially, we set the mode to
root in the initial configuration P0,0, to accept and reject in configurations that
halt in accepting and rejecting states, respectively, and to unknown in all remain-
ing configurations. In all these cases, the remaining �−3 bits in the corresponding
record Pi,j are initially cleared to zero. Later, in Phase II, they will be utilized
to save a backup link bi,j ∈ {−1, 0,+1}×{−1, 0,+1}×Δ×Q. After creating ŵ,
A′ clears all intermediate data and returns both worktape heads to the left.

Phase II. Using ŵ on the primary worktape, A′ traverses the directed graph the
nodes of which are configurations and the edges are single computation steps of A
on the given input w. The depth-first search starts in P0,0, the initial configura-
tion of A. (Without loss of generality, no node has more than 2 sons and the root
has exactly 1 son.) For each explored configuration Pi,j , A′ evaluates whether
the subtree of all computation paths rooted in Pi,j is accepting or rejecting, and
saves this information in the structure ŵ. Every time A′ is visiting Pi,j on the
primary worktape, the memory state j is loaded in a secondary worktape track
and the current input symbol ai is loaded in the finite state control.
3 For i ∈ {0, n+1}, we take ai ∈ {�, �}, two new symbols representing the respective

endmarkers.

194 V. Geffert

Moreover, if A′ arrived to Pi,j from some of its “parents”, by following a single-
step edge from some Pi′,j′ , the machine A′ keeps, in the finite state control, a
backup link b = 〈dI, dW, σ, q〉 ∈ {−1, 0,+1}×{−1, 0,+1}×Δ×Q. This link can
be used to restore the original configuration Pi′,j′ by “undo” operations on Pi,j .
Namely, dI and dW describe the reversed directions for the input and the worktape
head movements, after which the original worktape symbol under the head and
the finite control state can be restored by the use of σ and q.

Conversely, if A′ arrived to Pi,j from some of its “sons”, i.e., by backing up
against the direction of an edge from Pi,j to some Pi′,j′ , the machine A′ keeps,
in the finite state control, a result r ∈ {accept, reject}. This result depends on
whether the subtree of all computation paths rooted in Pi′,j′ is accepting or
rejecting. Now we are ready to present details for this depth-first search.

(a) If A′ arrives to Pi,j from some of its parents, it checks the mode mi,j

in Pi,j on the primary worktape, after which we have the following cases:
(a.1) mi,j = unknown, i.e., Pi,j has not been explored yet. First, A′ saves

the current backup link b as bi,j in the record Pi,j on the primary worktape.
Then, by inspecting j on the secondary worktape and the current input sym-
bol ai in the finite state control, A′ can determine the first executable instruc-
tion of A, together with the new backup link b and the input head movement
d ∈ {−1, 0,+1} related to this instruction. By applying this instruction, the mem-
ory state changes from j to some j′. Then the mode in Pi,j is updated; from
mi,j = unknown to mi,j = lockL, if Pi,j has two sons, but to mi,j = lockR, if it
has one son.

It remains to position the primary worktape head on Pi+d,j′ . Consider first
the case of d = −1. By moving to the left, A′ finds the $-symbol in between Pi−1

and Pi, updates the current input tape symbol in the finite state control from
ai to ai−1, and, in an auxiliary track on the secondary worktape, it writes down
j̃ = 2ψ(n)−1. Then, counting down in j̃, it moves along Pi−1 to the left until it
gets to the record with j̃ = j′. The cases of d = 0 and d = +1 are similar.

(a.2) mi,j ∈ {accept, reject}, i.e., Pi,j has been explored already (we are
just visiting Pi,j from another parent) or Pi,j represents a halting configuration.
In either case, A′ loads mi,j ∈ {accept, reject} to the finite state control, as
the result r. Then, using the backup link b = 〈dI, dW, σ, q〉 in the finite state
control, A′ backs up to the recent parent Pi′,j′ , against the direction of the edge.
Namely, in j on the secondary worktape, A′ updates the head position by the
difference dW, after which it restores the worktape symbol under the head to σ
and the finite control state to q. This changes j to j′. Then A′ places the primary
worktape head on Pi+dI,j′ , in the same way as in (a.1).

(a.3) mi,j ∈ {lockL, lockR, root}, i.e., in the course of exploring the subtree of
all computation paths rooted in Pi,j , the machine A′ visits Pi,j again, having
followed a computation path of A that enters a loop. Therefore, A′ backs up to
the recent parent Pi′,j′ with the result r = reject, in the same way as if, in (a.2),
the mode mi,j were equal to reject.

(b) If A′ arrives to Pi,j from some of its sons, it checks the mode mi,j , after
which we have the following cases:

Alternating Demon Space Is Closed Under Complement 195

(b.1) mi,j = lockL, i.e., A′ comes with a result r ∈ {accept, reject} from
the first son. First, A′ inspects whether the memory state j on the secondary
worktape is existential or universal.

If r = reject and j is existential, or r = accept and j is universal, A′ changes
the mode on the primary worktape from mi,j = lockL to mi,j = lockR. Then, by
inspecting j on the secondary worktape and the current input symbol ai in the
finite state control, A′ determines the second executable instruction, together
with the related backup link b and the input head movement d ∈ {−1, 0,+1}.
By applying this instruction, A′ changes j to some j′ and traverses to the second
son, in the same way as described earlier for the first son, in (a.1).

If r = accept and j is existential, or r = reject and j is universal, A′ changes
the mode from mi,j = lockL to mi,j = r. Then A′ loads bi,j from the primary
worktape to the finite state control and, using this updated backup link b, it
traverses back to the parent, as described earlier, in (a.2).

(b.2) mi,j = lockR, i.e., A′ comes with a result r ∈ {accept, reject} from the
second son. (This covers also the case of Pi,j with only one son.) A′ changes the
mode on the primary worktape from mi,j = lockR to mi,j = r, loads bi,j from
the primary worktape to the finite state control, and, using the updated backup
link b, it traverses to the parent configuration, as in (a.2).

(b.3) mi,j = root, i.e., A′ comes with a result r ∈ {accept, reject} to the initial
configuration P0,0, from its only son. After erasing all data on the secondary
worktape and parking the primary worktape head at the leftmost symbol in ŵ,
A′ halts and accepts or rejects, in accordance with the value r.

(c) Initially, after moving the primary worktape head from the left endmarker
to P0,0, the depth-first search is activated by traversing along the edge from the
initial configuration to its only son, keeping the mode m0,0 = root unchanged.

Consider now the time requirements for Phase II. In each of the above cases,
we charge at most O(ψ(n)2) steps of A′ per each traversal along one edge in the
configuration graph of A and per each position on the primary worktape visited
by this traversal. Since the traversal along one edge visits O(2ψ(n)) primary
worktape positions, none of the edges is traversed more than twice (backup
included), the number of configurations of A is bounded by (n+2)·2ψ(n), and no
configuration has more than 2 sons, the total time for Phase II is bounded by
O(n·2ψ(n)×2ψ(n)×ψ(n)2) ≤ n·2O(ψ(n)) ≤ n·2O(s(n)), using (1). ��

It is well known that ASpace(s(n)) ⊆ DTime(2O(s(n))) for s(n) ≥ log n [4].
The next theorem is an extension to sublogarithmic space bounds. (For example,
the functions like log log log n or log∗n satisfy the weak constructibility assump-
tions of this theorem—see also Footnote 2.)

Theorem 2. ASpacedm(s(n)) ⊆ DTime(n·2O(s(n))), provided that �s(n)� can
be computed by a deterministic multi-tape Turing machine in n·2O(s(n)) time.

Proof. The standard deterministic machine computes �s(n)�, marks a seg-
ment of size �s(n)� on one of its worktapes, and then it simulates A′ from
Lemma 1. ��

196 V. Geffert

Next, we present a simulation with simultaneous bounds on time and space by
nondeterministic one-way machines, with no assumptions on s(n), but starting
with delimited 2O(�s(n)�) space. The simulation is based on crossing sequence
techniques [6,12,17]—introduced in [11]—with several innovations: crossing
sequences are considered for one of the worktapes of a machine equipped with an
input tape and two worktapes and, moreover, the simulation of the first phase
of the original computation (in which the input head is used) is skipped.

Theorem 3. ASpacedm(s(n)) ⊆ 1-NTimeSpacedm(n·2O(s(n)), 2O(�s(n)�)), for
each s(n) ≥ 1.

Proof. Let A be the original alternating Turing machine, and let A′ be the equiv-
alent deterministic machine constructed in Lemma 1. We shall devise an equiva-
lent nondeterministic one-way machine A′′ using three worktapes, starting with
a delimited worktape space of size 2k·�s(n)�, for a fixed integer constant k ≥ 1.

Let us recall some details about A′. In Phase I, for the given input w =
a1 . . . an, A′ constructs ŵ on the primary worktape, of length O(n ·2ψ(n)). In
Phase II, A′ traverses the configuration graph of A, using the secondary worktape
of size �s(n)� and storing partial results in ŵ on the primary worktape.

Let a secondary memory state of A′ be a triple π = 〈q, xS, hS〉, where q is a
finite control state, xS is a content of the secondary worktape, and hS a posi-
tion of the secondary worktape head. Clearly, we can write π with O(s(n)) bits.
A′ starts Phase II at the left end of the primary worktape in the unique sec-
ondary memory state π′

II and, depending on the outcome, it halts in the unique
accepting/rejecting secondary memory state π′

A or π′
R, respectively.

Next, let h ∈ {1, . . . , |ŵ|} be a position along the primary worktape, and
let th denote the number of times the head of A′ is placed on h in the course
of Phase II. As pointed out in Lemma 1, we charge at most O(ψ(n)2) steps
of A′ per each traversal along one edge in the configuration graph of A and per
each primary worktape position h visited by this traversal. If the position h is
located on a block Pi, for some i, only traversals of those edges that start in the
configurations of A with the input head positions in the range {i−1, i, i+1} can
make contributions to th. There are at most O(2ψ(n)) such edges, and hence

th ≤ O(2ψ(n) × ψ(n)2) ≤ 2O(ψ(n)), for each h ∈ {1, . . . , |ŵ|}. (2)

Finally, consider a computation of A′ in Phase II, and a boundary between
h and h+1. Let π̄h,g denote the secondary memory state when the primary
worktape head crosses this boundary for the g-th time. Then the list Πh =
(π̄h,1, π̄h,2, . . . , π̄h,g, . . .) will be called a secondary crossing sequence for the given
boundary. Using (2), s(n) ≥ 1, and fixing a sufficiently large constant k, the list
Πh can be written with (th+th+1)×O(s(n)) ≤ 2O(s(n)) ≤ 2k·�s(n)� bits.

The machine A′′ simulates the computation of A′ in the course of Phase II.
The machine A′′ prepares the prerequisites for Phase II in a different way by
itself, so Phase I is skipped. In a loop running for h = 1, . . . , |ŵ|, the machine A′′

nondeterministically guesses secondary crossing sequences Π2, . . . , Π|ŵ|−1 and
verifies if they correspond to a valid accepting computation of A′ on ŵ in Phase II.

Alternating Demon Space Is Closed Under Complement 197

In the body of this loop, A′′ checks whether Πh−1,Πh are compatible with
respect to ŵh, the h-th symbol of ŵ. The machine A′′ keeps the two adjacent lists
Πh−1,Πh on two separate worktapes, using the third worktape for π, the current
secondary memory state in the course of simulation. In the finite state control,
A′′ keeps also σ, the current symbol at the position h on the primary read-write
worktape. There are two special cases. If h = 1, A′′ works with Π0 = (π′

II) and
Π1 = (π′

II, π
′
A). If h = |ŵ|, A′′ works with the empty list Π|ŵ|.

Since h ≤ |ŵ| ≤ O(n·2ψ(n)) and, by (2), we simulate at most th ≤ 2O(ψ(n))

steps of A′ at each position h, taking time O(ψ(n)2) per each simulated step,
the cost of the simulation can be bounded by n·2O(ψ(n)) ≤ n·2O(s(n)).

The only problem is that A′′ does not have enough space to keep the pri-
mary read-write worktape of A′ which, at the beginning of Phase II, contains ŵ.
For this reason, the initial primary worktape containing ŵ is manipulated “on
demand”. More precisely, the current position h in ŵ is represented by (i) a block
Pi in ŵ, given implicitly by the input head of A′′ pointing to the symbol ai on
the input tape, (ii) a record Pi,j in Pi, given by j ∈ {0, . . . , 2ψ(n)−1} kept in a
separate track of the third worktape, and (iii) a relative position d of the current
symbol in the string ¢Pi,j , kept in the finite state control. For j = 0, the position
d points to a symbol in $ai¢Pi,0 and, for j = 2ψ(n)−1, the position d points to
a symbol in ¢Pi,2ψ(n)−1¢ai.

Each time A′′ needs to read the current symbol in ŵ, it uses the d-th symbol
in ¢Pi,j (with obvious differences for j ∈ {0, 2ψ(n)−1}). For the first 3 bits in Pi,j ,
this requires to determine whether j represents a memory state in which A halts
and accepts/rejects and whether Pi,j = P0,0.

Each time A′′ needs to move forward along ŵ, it increases d modulo |¢|Pi,j

(or modulo |¢|Pi,j +2, if j ∈ {0, 2ψ(n)−1}). If, after that, d = 0, A′′ increases j
modulo 2ψ(n) and then, if j = 0, it moves the input head to the right. ��

With an additional very weak constructibility assumption, we can obtain
a simulation by a nondeterministic machine using worktapes that are initially
empty. The price we pay is that the new machine is no longer one-way.

Theorem 4. ASpacedm(s(n)) ⊆ NTimeSpace(n ·2O(s(n)), 2O(s(n))), provided
that �s(n)� can be computed by a deterministic multi-tape Turing machine in
n·2O(s(n)) time and, simultaneously, in 2O(s(n)) space.

Proof. We can devise a new machine that marks off a worktape space of size
2k·�s(n)� by itself and then it simulates A′′ presented in Theorem 3. ��

The deterministic two-way machine constructed in Lemma 1 uses large
amount of space, namely, n·2Ω(s(n)). Now we shall convert it back into an alter-
nating machine using O(s(n)) space, this time accepting the complement of the
original language. The conversion works with no assumptions on s(n), even if
the original machine rejects by going into infinite loops.

Theorem 5. ASpacedm(s(n)) = co-ASpacedm(s(n)), for each s(n) ≥ 1.

198 V. Geffert

Proof. Let A be the original alternating machine, and let A′ be the equivalent
deterministic machine from Lemma 1. This time we shall construct an alternating
machine A′′′ equipped with a single worktape, starting with a delimited worktape
space of size �s(n)�, such that A′′′ accepts if and only if A′ rejects.

Similarly as A′′ in Theorem 3, A′′′ simulates A′ in the course of Phase II only,
skipping Phase I and using the virtual string ŵ instead. The current position
h in ŵ is represented as described in Theorem 3, with O(s(n)) space. However,
besides read-current-symbol and move-forward, implemented in the same way
as in Theorem 3, the machine A′′′ shall also use a move-backward operation,
implemented as the “undo” operation of move-forward.

Recall that A′ starts Phase II at the left end of the primary worktape in the
secondary memory state π′

II and, depending on the outcome, it halts there in the
accepting/rejecting secondary memory state π′

A or π′
R, respectively. Moreover,

by (2) and (1), the machine A′ does not visit any position h on the primary
worktape more than th ≤ 2O(ψ(n)) ≤ 2O(s(n)) times. By fixing a sufficiently large
constant k′, we obtain th < 2k′·�s(n)�.

Now, for h ∈ {1, . . . , |ŵ|} and g ∈ {1, . . . , 2k′·�s(n)�−1}, let π̇h,g denote the
secondary memory state when, in the course of Phase II, the machine A′ visits
the position h for the g-th time. If g > th, we take π̇h,g = undefined. Note that
π̇1,1 = π′

II and π̇1,2 ∈ {π′
A, π

′
R}, for each input w. Moreover, w /∈ L(A) if and only

if w /∈ L(A′) which, in turn, holds if and only if π̇1,2 = π′
R.

In order to decide whether w /∈ L(A), A′′′ decides whether π′
R = π̇1,2. To this

aim, consider a more general task, testing whether π = π̇h,g, for any given π, h, g.
Testing this predicate is implemented in the form of an alternating procedure
test(π, h, g). Thus, A′′′ calls the procedure test(π′

R, 1, 2).
The procedure test(π, h, g) starts in a special finite control state qtest with π

and g written in two tracks of the worktape of A′′′, and the primary worktape
head placed at the position h on ŵ. (Actually, the string ŵ on the primary
worktape of A′ is virtual, we only imitate a two-way read-only access to it.)
Depending on whether π = π̇h,g, the alternating subtree of all computation paths
rooted in the point of activation of test(π, h, g) will be accepting or rejecting.
The procedure test is allowed to reject by going into infinite loops.

In the body of this procedure, the machine A′′′ runs a “local” simulation of A′

on the segment of the primary worktape cells at the positions h−1, h, h+1, in the
course of Phase II. This way A′′′ obtains the value π̇h,g, which is then compared
with π. (An example of a local simulation is displayed in Fig. 1.) During the local
simulation, A′′′ maintains the following data about A′:

(a) σ−1, σ0, σ+1, the current contents in the primary worktape cells at the
respective positions h−1, h, h+1, kept in the finite state control. Initially,
A′′′ loads the respective symbols ŵh−1, ŵh, ŵh+1 by the use of the operations that
handle the virtual string ŵ, namely, by the use of read-current-symbol, move-
forward, and move-backward, so that the original position h on ŵ is preserved.

(b) g−1, g0, g+1, the local time counters for the positions h−1, h, h+1, kept in
separate worktape tracks, in which A′′′ counts the number of times the primary

Alternating Demon Space Is Closed Under Complement 199

Fig. 1. An example of a local simulation (left), testing whether π = π̇h,6 by calling
test(π, h, 6), and the structure of existential and universal decisions in the corresponding
fragment of the computation tree (right).

worktape head of A′ visits the corresponding position in the course of the local
simulation. Initially, A′′′ assigns g−1 := 1, g0 := 0, and g+1 := 0.

(c) h′ ∈ {−1, 0,+1}, the current position of the head of A′ on the primary
worktape, relative to h, kept the finite state control. Initially, h′ := −1.

(d) π′, the current secondary memory state of A′, kept in a separate work-
tape track. The initial value π′ := π̇h−1,1 is guessed existentially. After guessing,
A′′′ branches universally. The first branch starts the local simulation, assum-
ing π′ is correct. The second branch verifies whether π′ = π̇h−1,1, that is, it
“recursively” activates test(π′, h−1, 1), running in parallel with the first branch.
Thus, A′′′ replaces the “old” values π and g, written in the corresponding work-
tape tracks, by the “new” ones, namely, by π′ and 1, respectively. After that,
A′′′ moves backward along the virtual string ŵ, by the use of the operation move-
backward. This replaces the “old” value h by h−1. Finally, A′′′ switches to the
state qtest. This restarts test(π′, h−1, 1) for testing whether π′ = π̇h−1,1.

Now, while A′ does not leave the primary worktape cells at the positions
h−1, h, h+1, the simulation is straightforward. In accordance with the progress
of the computation of A′, the machine A′′′ updates π′, h′, and σ−1, σ0, σ+1. Before
each simulated step, A′′′ increments the corresponding local time counter gh′ .

If A′ leaves the local area on the primary worktape to the left, in some
secondary memory state π′ with h′ = −1 and some g−1 ≥ 1, the machine A′′′ first
increments g−1. Now A′′′ resumes the local simulation by guessing existentially
π′ := π̇h−1,g−1 . After guessing, A′′′ branches universally. The first branch resumes
the local simulation, assuming π′ is correct. The second branch verifies whether
π′ = π̇h−1,g−1 , that is, it activates test(π′, h−1, g−1), running in parallel with
the first branch. Namely, A′′′ replaces π and g in the corresponding worktape
tracks by π′ and g−1, after which A′′′ moves backward along the virtual string ŵ,
by the use of the operation move-backward. Then A′′′ switches to the state qtest.

200 V. Geffert

Thus, we have a parallel alternating subtree rooted in the point of activation of
test(π′, h−1, g−1), testing whether π′ = π̇h−1,g−1 .

Similarly, if A′ leaves the local area on the primary worktape to the right, in
some secondary memory state π′ with h′ = +1 and some g+1 ≥ 1, the machine
A′′′ proceeds in the same way, using move-forward instead of move-backward and
activating test(π′, h+1, g+1) instead of test(π′, h−1, g−1), in a parallel path.

When, in the course of the local simulation, the local time counter g0 reaches
the value g, the simulation is stopped and, depending on whether π = π′, the
machine A′′′ accepts or rejects. (If all existential guesses were correct, we have
π′ = π̇h,g.) Conversely, when one of the counters g−1, g+1 overflows, i.e., it reaches
2k′·�s(n)�, the machine A′′′ rejects — wrong guess in the past.

In the special case of h = 1, the local simulation does not start with an
existentially guessed π′ = π̇h−1,1 and h′ = −1 but, rather, with π′ := π′

II (equal
to π̇1,1), h′ := 0, g0 := 1, and σ−1 :=. Note also that the computation of
test(π, 1, 1) is deterministic: if, in addition, g = 1, the local simulation is stopped
immediately after initialization, since then g0 = g at the very beginning. After
that, depending on whether π = π′

II, the machine A′′′ accepts or rejects.
It can be shown that, depending on whether π = π̇h,g, the alternating sub-

tree of all computation paths rooted in the point of activation of test(π, h, g) is
accepting or rejecting. ��

3 Conclusion

By combining Theorems 2 and 4 with ASpacedm(s(n)) ⊆ DSpace(2O(s(n))),
shown in [19], we have, for each s(n) ≥ log log n such that �s(n)� can be com-
puted deterministically in n·2O(s(n)) time and, simultaneously, in 2O(s(n)) space,
that

ASpacedm(s(n)) ⊆ DTime(n·2O(s(n))) ∩ DSpace(2O(s(n))) and
ASpacedm(s(n)) ⊆ NTimeSpace(n·2O(s(n)), 2O(s(n))).

It should be pointed out that even though this gives ASpace(log log n) ⊆
ASpacedm(log log n) ⊆ DTime(n·(log n)O(1)) ∩ DSpace((log n)O(1)), we do not
know whether each language in ASpace(log log) can be accepted determinis-
tically in polynomial time and, simultaneously, in polylogarithmic space, i.e.,
whether ASpace(log log) ⊆ SC. So far, by Theorem 4, we have obtained such
inclusion only for the nondeterministic counterpart of SC.

We have also shown that ASpacedm(s(n)) is closed under complement even
for sublogarithmic space, which solved a long-standing open problem [3]:

ASpacedm(s(n)) = co-ASpacedm(s(n)), for each s(n). (3)

As a future work, we are going to show that (3) holds also for ASpace(s(n)); the
problem of complement stays open for both NSpace(s(n)) and NSpacedm(s(n));
the answer to the analogous question for DSpace(s(n)) and DSpacedm(s(n)) is
affirmative, by the Sipser’s simulation [18].

Alternating Demon Space Is Closed Under Complement 201

It is somewhat annoying that though we have a construction of a comple-
mentary machine A′′′ that does not depend on whether s(n) is below log n and
works even if the original machine A can reject by going into infinite loops, the
machine A′′′ itself rejects by going into infinite loops along some computation
paths. This, despite (3), leaves us with a fascinating question:

Is it possible to replace each O(s(n)) space bounded alternating Turing
machine by an equivalent alternating machine using the same amount of
space, such that it halts along each computation path on every input?

This kind of problem is open for both ASpace(s(n)) and ASpacedm(s(n)), for
space complexity classes not satisfying s(n) ∈ Ω(log n).

References

1. Allender, E., Mix Barrington, D., Hesse, W.: Uniform circuits for division: con-
sequences and problems. In: Proceedings of IEEE Conference on Computer Com-
plexity, pp. 150–159 (2001)

2. Bertoni, A., Mereghetti, C., Pighizzini, G.: On languages accepted with simulta-
neous complexity bounds and their ranking problem. In: Pŕıvara, I., Ružička, P.,
Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841, pp. 245–255. Springer, Heidelberg
(1994)

3. Braunmühl, B., Gengler, R., Rettinger, R.: The alternation hierarchy for subloga-
rithmic space is infinite. Comput. Complex. 3, 207–230 (1993)

4. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach.
28, 114–133 (1981)

5. Chang, R., Hartmanis, J., Ranjan, D.: Space bounded computations: review and
new separation results. Theoret. Comput. Sci. 80, 289–302 (1991)

6. Geffert, V.: A speed-up theorem without tape compression. Theoret. Comput. Sci.
118, 49–65 (1993)

7. Geffert, V.: A hierarchy that does not collapse: alternations in low level space.
RAIRO Inform. Théor. Appl. 28, 465–512 (1994)

8. Geffert, V.: Bridging across the log(n) space frontier. Inform. Comput. 142, 127–
158 (1998)

9. Geffert, V., Pardubská, D.: Unary coded NP-complete languages in
ASPACE(log log n). Int. J. Found. Comput. Sci. 24, 1167–1182 (2013)

10. Hartmanis, J., Lewis II, P., Stearns, R.: Hierarchies of memory limited computa-
tions. In: IEEE Conference on Record on Switching Circuit Theory and Logical
Design, pp. 179–190 (1965)

11. Hennie, F.: One-tape, off-line Turing machine computations. Inform. Control 8,
553–578 (1965)

12. Hong, J.: A tradeoff theorem for space and reversal. Theoret. Comput. Sci. 32,
221–224 (1984)

13. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, Reading (2001)

14. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17, 935–938 (1988)

15. Iwama, K.: ASPACE(o(log log n)) is regular. SIAM J. Comput. 22, 136–146 (1993)

202 V. Geffert

16. Lískiewicz, M., Reischuk, R.: The sublogarithmic alternating space world. SIAM
J. Comput. 25, 828–861 (1996)

17. Mereghetti, C.: Testing the descriptional power of small Turing machines on non-
regular language acceptance. Int. J. Found. Comput. Sci. 19, 827–843 (2008)

18. Sipser, M.: Halting space bounded computations. Theoret. Comput. Sci. 10, 335–
338 (1980)

19. Sudborough, I.: Efficient algorithms for path system problems and applications
to alternating and time-space complexity classes. In: Proceedings of the IEEE
Symposium on Foundations of Computer Science, pp. 62–73 (1980)

20. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Inform. 26, 279–284 (1988)

21. Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843.
Springer, Heidelberg (1994)

Weighted Symbolic Automata with Data Storage

Luisa Herrmann(B) and Heiko Vogler

Faculty of Computer Science, Technische Universität Dresden,
Nöthnitzer Str. 46, 01062 Dresden, Germany

{Luisa.Herrmann,Heiko.Vogler}@tu-dresden.de

Abstract. We introduce weighted symbolic automata with data stor-
age, which combine and generalize the concepts of automata with stor-
age types, weighted automata, and symbolic automata. By defining two
particular data storages, we show that this combination is rich enough
to capture symbolic visibly pushdown automata and weighted timed
automata. We introduce a weighted MSO-logic and prove a Büchi-Elgot-
Trakhtenbrot theorem, i.e., the new logic and the new automaton model
are expressively equivalent.

1 Introduction

Finite-state (string) automata have been generalized in at least three directions.
Due to the introduction of a wealth of new automata models, like push-

down automata, stack automata, nested stack automata, and counter automata,
Scott proposed a homogeneous framework [16]. Using the notions of [9], such an
automaton with storage consists of an automaton and a storage type; in each
transition, the automaton can test the current storage configuration by a predi-
cate (like: top = γ?) and transform it by an instruction (like: push(δ) or pop).

In a second generalization, each transition of a finite-state automaton was
equipped with a weight taken from some semiring in order to analyse quanti-
tative aspects of the recognition process. This led to the concept of weighted
automata and its well investigated theory, cf. e.g. [3,8,13,15]. In recent work,
unital valuation monoids were used as weight algebras [4] in order to calculate
along a run of an automaton also with non-sequential operations, like average.
In the literature, combinations of the first two generalizations were investigated:
weighted pushdown automata over semirings [13] and unital valuation monoids
[6], and weighted automata over arbitrary storage types and unital valuation
monoids [11,20].

In a third generalization, finite-state automata were allowed to process input
strings over an arbitrary, not necessarily finite set. This extension is relevant,
e.g., when dealing with XML-documents involving data. An example of such
automata are symbolic automata [17,19] in which each transition τ involves a
unary predicate π; τ is applicable to the current input symbol if it satisfies π.

In this paper, we introduce a new automaton model, called weighted symbolic
automata with data storage. It captures all three mentioned generalizations and it

L. Herrmann—Supported by DFG Graduiertenkolleg 1763 (QuantLA).

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 203–215, 2016.
DOI: 10.1007/978-3-662-53132-7 17

204 L. Herrmann and H. Vogler

is defined in the same modular style as automata with storage introduced in [9,16].
As weight structure we choose unital valuation monoids. We extend the concept of
storage type to that of a data storage type. There, predicates and instructions do
not only depend on the current storage configuration, but also on storage inputs.
In each transition, a predicate checks a property of the current data symbol of the
input string (as in symbolic automata); via an encoding function specified in the
automaton, this data symbol is transformed into a storage input. In this sense,
predicates and instructions become ‘sensitive’ to the input string.

It turns out that our combination of symbolicalness of input strings and of sen-
sitivity of predicates and instructions is rich enough to capture two recently intro-
duced classes of automata which can process words over infinite sets. We define
the data storage types VP(N) and TIME(C) and show that weighted automata
over VP(N) and TIME(C) are exactly the (weighted version of) symbolic visibly
pushdown automata [1] and weighted timed automata [7], respectively.

Moreover, we introduce a weighted MSO-logic over data storage types extend-
ing [20] by employing an infinite set of input symbols and a data storage type. Each
formula of this logic has the form

∑η
B e where η is an encoding of input symbols

into storage inputs, and
∑

B represents the weighted version of a second-order
existential quantification over the second-order behavior variable B; it ranges
over behaviors of the underlying data storage type. Intuitively, a behavior is an
executable string (p1, f1) . . . (pn, fn) of pairs of predicates pi and instructions fi.
The subformula e is an expression as defined in [20] (also cf. [10, Definition 3.1]);
we note that, for semirings, such expressions are equivalent to the fragment of
restricted weighted MSO-logic introduced in [2] (cf. [10, Proposition 5.14]).

Weprove aBüchi-Elgot-Trakhtenbrot (BET) theorem(cf.Theorems 13and16)
stating that weighted symbolic automata over data storage types are expressively
equivalent to weighted MSO-logic over data storage types. In particular, we obtain
theBETtheorem forweighted symbolic visibly pushdownautomata (which is new)
and for weighted timed automata (which is an alternative to [14, Theorem 41]). As
a consequence of our BET theorem we obtain that, for each bounded lattice, the
satisfiability problem of weighted MSO-logic over VP(N) is decidable.

2 Preliminaries

Notations and Notions. We denote the set of natural numbers including zero by
N. For n ∈ N we let [n] denote the set {i ∈ N | 1 ≤ i ≤ n}. Thus [0] = ∅. In the
following let A, A1, . . . , An, and B be sets. The set of all words over A is denoted
by A∗. For each w ∈ A∗, |w| is the length of w, pos(w) = {1, . . . , |w|} is the set
of positions of w, and wi is the label at the i-th position of w. The empty word
(of length 0) is denoted by ε. We let A+ = A∗\{ε}. A relabeling is a mapping
ρ : A → P(B). We denote the unique extension of ρ to the morphism from the
free monoid (A∗, ·, ε) to the monoid (P(B∗), ◦, {ε}), where ◦ denotes language
concatenation, also by ρ. For each L ⊆ A∗ we define ρ(L) =

⋃

w∈L ρ(w). For
each i ∈ [n] we define the i-th projection as function (.)i : A1 × . . . × An → Ai

such that for each (a1, . . . , an) ∈ A1 × . . . × An we have (a1, . . . , an)i = ai. We
require that each function which we consider in this work is computable.

Weighted Symbolic Automata with Data Storage 205

Unital Valuation Monoids. The concept of valuation monoid was introduced in
[4] and extended in [6] to unital valuation monoid. A unital valuation monoid is a
tuple (K,+, val, 0, 1) where (K,+, 0) is a commutative monoid and val : K∗ → K
is a mapping such that (i) val(k) = k for each k ∈ K, (ii) val(k) = 0 for each
k ∈ K∗ whenever ki = 0 for some i ∈ [|k|], (iii) val(k1k′) = val(kk′) for every
k, k′ ∈ K∗, and (iv) val(ε) = 1. Moreover, K is called zero-sum-free, if k+k′ = 0
implies k = k′ = 0. In the rest of this paper, we let K denote an arbitrary unital
valuation monoid (K,+, val, 0, 1) unless specified otherwise.

Example 1. Recall that a strong bimonoid [5] is a structure (K,+, ·, 0, 1), where
(K,+, 0) is a commutative monoid, (K, ·, 1) is a monoid, and a · 0 = 0 · a = 0
for every a ∈ K. A semiring is a strong bimonoid in which · distributes over +
from both sides. A particular semiring is the Boolean semiring (B,∨,∧, 0, 1) with
B = {0, 1}. A bounded lattice is a strong bimonoid in which both operations are
idempotent (and other laws are satisfied). It is clear that each strong bimonoid is
a unital valuation monoid (K,+, val, 0, 1), where for every n ∈ N and k1, . . . , kn ∈
K we let val(k1 . . . kn) = k1·. . .·kn (see [6]). Unital valuation monoids can be used
to compute averages. For this consider Kavg = (R∪{∞,−∞}, sup, avg,−∞,∞)
with avg(a1 . . . an) = 1

n · ∑

1≤i≤n ai for every a1, . . . , an ∈ R.

Weighted Languages. Let D be a non-empty set. A K-weighted language (over
D) is a mapping of the form r : D∗ → K. We denote the set of all such mappings
by K〈〈D∗〉〉. Let r ∈ K〈〈D∗〉〉. We denote the set {w ∈ D∗ | r(w) �= 0} by supp(r)
(support of r). Moreover, let L ⊆ D∗ and w ∈ D∗. We define the weighted
language (r ∩ L) ∈ K〈〈D∗〉〉 by (r ∩ L)(w) = r(w) if w ∈ L, and 0 otherwise.
Now let r′ ∈ K〈〈D∗〉〉. We define the sum of r and r′ as the weighted language
r + r′ ∈ K〈〈D∗〉〉 by (r + r′)(w) = r(w) + r′(w).

Label Structure. Let D be a non-empty set. A predicate over D is a mapping
π : D → {0, 1} and we identify π with {a ∈ D | π(a) = 1}. We say that π is
decidable if it is decidable whether π �= ∅. We denote by Pred(D) the set of
all decidable predicates over D. For every Π ⊆ Pred(D) we define the Boolean
closure BC(Π) as usual and we denote the always true predicate by T. Obviously,
if Π is recursively enumerable, then so is BC(Π). A label structure (over D) is a
tuple (D,Π), where Π ⊆ Pred(D) is a recursively enumerable set of predicates
such that BC(Π) = Π. If D is clear from the context, then we only write Π
instead of (D,Π).

3 Weighted Symbolic Automata with Data Storage

Data Storage Types and Behavior. We extend the notion of storage type [9,16] in
such a way that the predicates and instructions do not only depend on the current
configuration, but also on storage inputs (which, in their turn, are encodings of
the input of an automaton).

A data storage type is a tuple S = (C,M,P, F, c0) where C is a set (config-
urations), M is a set (storage inputs), P is a set of functions each of the type

206 L. Herrmann and H. Vogler

p : C × M → {true, false} (predicates), F is a set of partial functions each of the
type f : C × M → C (instructions), and c0 ∈ C (initial configuration).

If M is a singleton, then we reobtain the concept of storage type as introduced
in [11,20]. Throughout this paper we let S denote an arbitrary data storage type
(C,M,P, F, c0) unless specified otherwise.

Example 2. (1) For some fixed elements c and m we define the trivial storage type
as the data storage type Triv = ({c}, {m}, {ptrue}, {fid}, c) where ptrue(c,m) =
true and fid(c,m) = c.

(2) Let Count be the data storage type (N,N, {T?, 0?}, {+,−}, 0) where for
every c, d ∈ N we let T?(c, d) = true, 0?(c, d) = true iff c = 0, +(c, d) = c + d,
and −(c, d) = c − d if c ≥ d and undefined otherwise.

A central notion of our MSO-logic is the concept of storage behavior. Let
Ω be a finite subset of P × F . Also, let n ∈ N, m1, . . . ,mn ∈ M , and
b = (p1, f1) . . . (pn, fn) ∈ Ω∗. We call b an m1 . . . mn-behavior (over Ω) if
for every i ∈ [n] we have pi(c′,mi) = true and fi(c′,mi) is defined where
c′ = fi−1(. . . f1(c0,m1) . . . ,mi−1). Note that c′ = c0 for i = 1. We denote the
set of all m1 . . . mn-behaviors over Ω by B(Ω,m1 . . . mn).

Example 3. Consider Count and w = 284770 ∈ N
∗ with |w| = 6. Then the word

(T?,+)3(T?,−)2(0?,+) is a w-behavior over {T?, 0?} × {+,−}.

Weighted Symbolic Automata with Data Storage. Let D be a set. A K-weighted
symbolic automaton with data storage type S and input D (short: (S,D,K)-
automaton) is a tuple A = (Q,Π,Q0, Qf , T,wt, η) where Q is a finite set (states),
Π is a label structure over D, Q0 ⊆ Q (initial states), Qf ⊆ Q (final states),
T ⊆ Q×Π ×P ×Q×F is a finite set (transitions), wt : T ×D → K is a function
(weight assignment), and η : D → M is a relabeling (storage encoding). We call
A projective if η is a projection. Moreover, we call A homogeneous if for each
transition τ ∈ T and for every d1, d2 ∈ (τ)2 we have wt(τ, d1) = wt(τ, d2). In
this case we view wt as function of type T → K.

The set of A-configurations is the set Q × D∗ × C. For each transition
τ = (q, π, p, q′, f) in T we define the binary relation �τ on the set of A-
configurations as follows: for every d ∈ D, w ∈ D∗, and c ∈ C, we let
(q, dw, c) �τ (q′, w, f(c, η(d))) if π(d) is true, p(c, η(d)) is true, and f(c, η(d))
is defined. The computation relation of A is the binary relation �=

⋃

τ∈T �τ .
A computation is a sequence ξ0 �τ1 ξ1 · · · �τn ξn such that n ∈ N,

τ1, . . . , τn are transitions, ξ0, . . . , ξn are A-configurations, and ξi−1 �τi ξi for
each i ∈ [n]. Sometimes we abbreviate this computation by ξ0 �τ1...τn ξn. Let
w = d1 . . . dn ∈ D∗ with di ∈ D. A successful computation on w is a computa-
tion θ = ((q0, w, c0) �τ1...τn (qf , ε, c′)) for some q0 ∈ Q0, qf ∈ Qf , c′ ∈ C, and
τ1, . . . , τn ∈ T . The weight of θ is the element in K defined by

wt(θ) = val(wt(τ1, d1) . . . wt(τn, dn))

and we denote the set of all successful computations on w by ΘA(w).

Weighted Symbolic Automata with Data Storage 207

e o f

τ1 = (e, even, �?, e,+)

τ2 = (e, odd, �?, o, −)

τ3 = (o, odd, �?, o, −)

τ4 = (o, zero, 0?, f,+)

wt(τ1, d) = d
if d < 7

wt(τ1, d) = ∞
if d ≥ 7

wt(τ2, d) = ∞
wt(τ3, d) = ∞
wt(τ4, d) = ∞
η(d) = d

[[A]](284770) = avg(wt(τ1, 2) wt(τ1, 8) wt(τ1, 4) wt(τ2, 7) wt(τ3, 7) wt(τ4, 0))
= avg(2 ∞ 4 ∞ ∞ ∞) = avg(2 4) = 3

Fig. 1. The projective (Count,N,Kavg)-automaton A recognizing r.

The weighted language recognized by A is the K-weighted language
[[A]] : D∗ → K defined for every w ∈ D∗ by

[[A]](w) =
∑

θ∈ΘA(w)
wt(θ).

A weighted language r : D∗ → K is (S,D,K)-recognizable if there is an
(S,D,K)-automaton A such that r = [[A]]. In the obvious way, we define pro-
jectively (S,D,K)-recognizable and homogeneously (S,D,K)-recognizable.

Example 4. Consider the language L ⊆ N
∗ consisting of words u1 . . . unv1 . . .

vm0, m,n ≥ 1, such that ui is even and vj is odd for each i ∈ [n], j ∈ [m],
and u1 + . . . + un = v1 + . . . + vm. We define the weighted language r : N∗ →
Kavg with supp(r) = L; each word in L is mapped to the average value of
all even symbols in u1 . . . un which are smaller than 7. The projective, non-
homogeneous (Count,N,Kavg)-automaton A = ({e, o, f},Π, {e}, {f}, T,wt, η)
shown in Fig. 1 recognizes r, where Π = BC({even, odd, zero}) with the intuitive
interpretations.

Lemma 5. For each (S,D,B)-automaton A there is a homogeneous (S,D,B)-
automaton B with [[B]] = [[A]].

Special Cases. (1) Let D be a finite set. Then it is easy to see that each weighted
automaton with storage (in the manner of [20]) is a homogeneous (S,D,K)-
automaton (for some data storage type S).

(2) Let K = B. Since we can assume each (S,D,B)-automaton A to be
homogeneous and, therefore, the weight assignment wt does not depend on its
second argument we can presume that the set of transitions of A consists of those
transitions which are mapped to 1. Thus, we can specify an (S,D,B)-automaton
by a tuple A = (Q,Π,Q0, Qf , T, η) and define the language recognized by A as
the set L(A) = supp([[A]]).

(3) Let S = Triv. Then we drop all references to S from the concepts intro-
duced for (S,D,K)-automata. Thus T ⊆ Q×Π ×Q and we speak about (D,K)-
automata and (D,K)-recognizable. Note that homogeneous (D,K)-automata
can be seen as a K-weighted version of symbolic automata.

(4) Let S = Triv and K = B. Then we use both conventions mentioned
above and speak about D-automata and D-recognizable. Moreover, we say that

208 L. Herrmann and H. Vogler

a D-automaton A = (Q,Π,Q0, Qf , T) is deterministic if |Q0| = 1 and for every
two transitions (q, π1, q1) and (q, π2, q2) in T with π1 ∩ π2 �= ∅ we have q1 = q2,
and total if for each q ∈ Q, d ∈ D there is a transition (q, π, q′) ∈ T with d ∈ π.

Closure Properties. In [18, Theorem 1] it was proved that symbolic tree automata
can be made total and deterministic. As a special case we easily obtain:

Lemma 6 (cf. [18, Theorem1]). For every D-automaton A there is a total
and deterministic D-automaton B such that L(A) = L(B).

By slightly modifying usual constructions we obtain the following two results:

Lemma 7. Let r1, r2 be (S,D,K)-recognizable weighted languages and let L1,
L2 be D-recognizable languages. Then the weighted languages r1+r2 and r1∩L1

are (S,D,K)-recognizable. Moreover, L1\L2 is D-recognizable (cf. [19]).

Lemma 8. Let D, D′ be sets, L a D-recognizable language, and ρ : D → P(D′)
a relabeling. Then ρ(L) is D′-recognizable.

4 Data Storage for Symbolic Visibly Pushdown Automata

A nested set is a set N = Ni ∪ Nc ∪ Nr, where Ni (internal symbols), Nc

(call symbols), and Nr (return symbols) are pairwise disjoint sets. Let M =
(Q,Q0, Γ, δi, δc, δr, δb, Qf) be a symbolic visibly pushdown automaton (svpda)
as defined in [1] (with pushdown alphabet Γ). As explained there, M uses binary
predicates over matching positions. A pair (i, j) of positions of an input word
is matching if the pushdown cell pushed at i is popped at j. We introduce the
data storage type VP(N) which simulates the pushdown part of an svpda and
encodes these binary predicates as parameters of storage instructions.

Let N be a nested set. We define the data storage type VP(N) =
(C,N,P, F, ε) where C = (Λ × Nc)∗ and Λ is an infinite set of pushdown
symbols, P = {true}, and F = {pushγ | γ ∈ Λ} ∪ {popγ,π | γ ∈ Λ, π ⊆
Nc × Nr decidable} ∪ {stayi, stayr} such that for each γ ∈ Λ, π ⊆ Nc × Nr,
c ∈ C, and d ∈ N we have

– pushγ(c, d) = (γ, d)c if d ∈ Nc,
– popγ,π(c, d) = c′ if d ∈ Nr, c = (γ, a)c′ for some a ∈ Nc, and (a, d) ∈ π,
– stayi(c, d) = c if d ∈ Ni and stayr(c, d) = c if d ∈ Nr and c = ε,

and undefined otherwise.

Theorem 9. Let N be a nested set and L ⊆ N∗. Then L is recognizable by a
symbolic visibly pushdown automaton with decidable label theory (introduced in
[1]) if and only if L is projectively (VP(N), N,B)-recognizable.

Weighted Symbolic Automata with Data Storage 209

Table 1. The svpda M (left) and the (VP(N), N)-automaton A (right), both recog-
nizing L.

M = (Q, Q0, Γ, δi, δc, δr, δb, Qf) A = (Q, Π, Q0, Qf , T, η)

Q = Q0 = Qf = {q} Q = Q0 = Qf = {q}
Γ = {e, o}
δi = {(q,T, q)}, δb = {(q,T, q)} {(q,T, true, q, stayi), (q,T, true, q, stayr)} ⊆ T

δc = {(q, even, q, e), (q, odd, q, o)} {(q, even, true, q, pushe), (q, odd, true, q, pusho)} ⊆ T

δr = {(q, ∼, e, q), (q,T, o, q)} {(q,T, true, q, pope,∼), (q,T, true, q, popo,T)} ⊆ T

Instead of a formal proof we demonstrate our construction by an example.
For this let Ni = N, Nc = {〈x | x ∈ N}, and Nr = {x〉 | x ∈ N}. We consider the
language L ⊆ N∗ which consists of all words w such that for every two symbols
〈x and y〉 at matching positions of w we have x = y if x is even. For an example
consider w = 3〉〈2 4 〈3 5〉 2〉 ∈ L with |w| = 6 and matching positions (2, 6) and
(4, 5). Clearly, L can be recognized by the svpda M shown in Table 1(left). Note
that M uses a label theory (cf. [1]), which can be seen as the Boolean closure
of the unary predicates even and odd with their intuitive interpretations, and
of the binary predicate ∼ where (〈x, y〉) ∈ ∼ iff x = y. Then we construct the
projective (VP(N), N,B)-automaton A as shown in Table 1(right), which uses
the label structure Π = BC({even, odd}). Clearly, L(A) = L.

Now Theorem 9 opens the possibility of considering weighted svpda. For
example we can easily construct a (VP(N), N,Kavg)-automaton A′ which maps
each word in L to the average value of all its even call symbols.

5 Data Storage for Weighted Timed Automata

Our definition of timed words and weighted timed automata closely resembles
the one in [14]. The only difference is that in our definition of timed words, each
symbol stores the time difference to its predecessor as in [7], while in [14] the
corresponding point in time is recorded. Clearly, both views are isomorphic. In
the course of this section let Σ be a finite set and K a semiring.

A timed word (over Σ) is a non-empty finite sequence (a1, t1) . . . (an, tn) ∈
(Σ × R≥0)+. The set of timed words over Σ is denoted by TΣ+ and for some
semiring K a mapping r : TΣ+ → K is called a timed series (over Σ and K).

A clock variable is a variable ranging over R≥0 and we denote the set of all
clock variables by C. The set of all clock constraints over C is denoted by Φ(C).
A clock valuation is a function ν : C → R≥0, we let ν0(x) = 0 for each x ∈ C,
and for t ∈ R≥0 and λ ⊆ C we let the clock valuations ν + t (where t is added
to each clock) and ν[λ := 0] (where all clocks in λ are set to 0) be defined as in
[14]. Moreover, the satisfaction relation |=⊆ R≥0

C × Φ(C) is defined as usual.
A K-weighted timed automaton over Σ (and C) is a tuple A =

(Q,Qi, Qf , C, E, ewt,dwt), where Q is a finite set (states), Qi ⊆ Q (ini-
tial states) and Qf ⊆ Q (final states), C is a finite set of clock variables,

210 L. Herrmann and H. Vogler

E ⊆ Q × Σ × Φ(C) × 2C × Q is a finite set (edges), ewt: E → K is a func-
tion (edge weights), and dwt: Q×R≥0 → K is a function (delay weights). A run
of A is a finite sequence

ρ = (q0, ν0)
t1−→ e1−→ . . .

tn−→ en−→ (qn, νn)

where n ≥ 1, q0, . . . , qn ∈ Q, νi are clock valuations, ti ∈ R≥0, and ei ∈ E
satisfying the following conditions: q0 ∈ Qi, qn ∈ Qf , and ei = (qi−1, ai, φi, λi, qi)
such that νi−1 + ti |= φi and νi = (νi−1 + ti)[λi := 0]. The label of ρ is the
timed word label(ρ) = ((e1)2, t1) . . . ((en)2, tn), and the running weight rwt(ρ)
of ρ is given by rwt(ρ) =

∏

i∈[n] dwt(qi−1, ti) · ewt(ei). For any timed word
w ∈ TΣ+ let RunA(w) denote the set of all runs ρ of A with label(ρ) = w.
The timed series recognized by A is the mapping [[A]] : TΣ+ → K such that
[[A]](w) =

∑

ρ∈RunA(w) rwt(ρ).
Now we define a data storage type TIME(C) to simulate the clock behavior

of weighted timed automata. Let C be a finite set of clock variables and let
TIME(C) = (R≥0

C ,R≥0, P, F, ν0) where P = {pφ | φ ∈ Φ(C)}, F = {fλ | λ ⊆ C},
and for every φ ∈ Φ(C), λ ⊆ C, ν ∈ R≥0

C , and t ∈ R≥0 we let

– pφ(ν, t) = true iff (ν + t) |= φ, and
– fλ(ν, t) = (ν + t)[λ := 0].

Theorem 10. Let K be a semiring and r : TΣ+ → K a timed series. Then r
is recognized by a K-weighted timed automaton over Σ and C if and only if r is
projectively (TIME(C), Σ × R≥0,K)-recognizable.

The formal proof uses the following ideas. In “⇒” each transition results
from a given edge, and the weight amounts to the product of ewt and dwt; the
resulting (TIME(C), Σ × R≥0,K)-automaton is (in general) not homogeneous.
In “⇐” we code the transitions and the finite part of the input symbols into
states, split up each transition, and then simulate the weight assignment with
dwt.

6 Weighted Symbolic MSO-Logic with Storage Behavior

Our new logic is based on the concepts of M-expression [10, Definition 3.1] and
B-expression [20, Definition 5]. Since these expressions depend on unweighted
MSO formulas, we first extend unweighted MSO-logic to symbolic MSO-logic.

Symbolic MSO-Logic. As usual, we use first-order variables, like x, y, and second-
order variables, like X,Y . Furthermore, we introduce one more variable B which
we call second-order behavior variable and which ranges over behaviors of S.

Let D be a set, Π a label structure over D, and Ω a finite subset of P × F .
We define the set of formulas of symbolic MSO-logic over Ω and Π, denoted by
MSO(Ω,Π), by the following EBNF:

ψ ::= Pπ(x) | next(x, y) | x ∈ X | B(x) = (p, f)
ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ

Weighted Symbolic Automata with Data Storage 211

where π ∈ Π and (p, f) ∈ Ω. Let ϕ ∈ MSO(Ω,Π). The set of free variables of ϕ
and bound variables of ϕ, denoted by Free(ϕ) and Bound(ϕ), resp., is defined as
usual. In particular, we set Free(Pπ(x)) = {x} and Free(B(x) = (p, f)) = {x,B}.

Let V be a finite set of variables with B ∈ V, let η : D → M be a relabeling,
and let w ∈ D∗. A (V, η)-assignment for w is a function with domain V which
maps each first-order variable in V to an element of pos(w), each second-order
variable in V to a subset of pos(w), and B to an η(w)-behavior over Ω. We let
Φ(V,η),w denote the set of all (V, η)-assignments for w. In the usual way we define
updates of (V, η)-assignments. Let σ ∈ Φ(V,η),w and i ∈ pos(w). By σ[x �→ i]
we denote the (V ∪ {x}, η)-assignment for w that agrees with σ on V\{x} and
that satisfies σ[x �→ i](x) = i. Similarly, we define the updates σ[X �→ I] and
σ[B �→ b] for each set I ⊆ pos(w) and each behavior b ∈ B(Ω, η(w)), respectively.

Extending the usual technique we encode a pair (w, σ), where w ∈ D∗ and
σ ∈ Φ(V,η),w, as a word over an extended set as follows. For each finite set V of
variables with B ∈ V we let

DV = D × P(fo(V) ∪ so(V)) × Ω

where fo(V) and so(V) are the subsets of all first-order and second-order variables
occurring in V, respectively. Let ζ = ζ1 . . . ζn ∈ D∗

V . We call ζ fo-valid if for each
x ∈ fo(V) there is a unique i ∈ pos(ζ) such that x occurs in the second component
of ζi. We denote the set of all fo-valid words over DV by D∗fo

V . Moreover, we call
ζ η-valid if the word (ζ1)3 . . . (ζn)3 is an η((ζ1)1 . . . (ζn)1)-behavior over Ω. We
denote the set of all η-valid words over DV by D∗η

V .
It is clear that, for each finite set V of variables with B ∈ V and relabeling

η : D → M , there is a one-to-one correspondence between the set {(w, σ) | w ∈
D∗, σ ∈ Φ(V,η),w} and the set D∗fo

V ∩D∗η
V . Thus, as usual, we will not distinguish

between the pair (w, σ) and the corresponding word ζ ∈ D∗fo
V ∩ D∗η

V .

Lemma 11. Let D be a set and let V be a finite set of variables with B ∈ V.
Then D∗fo

V is DV -recognizable.

Let ϕ ∈ MSO(Ω,Π) and V be a finite set of variables such that Free(ϕ) ⊆ V
and B ∈ V. Moreover, let η : D → M be a relabeling. For every (w, σ) ∈ D∗fo

V ∩
D∗η

V we define the relation (w, σ) |= ϕ by extending the usual models operator
of classical MSO-logic as shown for atoms in Fig. 2. Then we define the set of
models of ϕ as the set

LV,η(ϕ) = {(w, σ) | w ∈ D∗, σ ∈ Φ(V,η),w, (w, σ) |= ϕ}.

Thus, LV,η(ϕ) ⊆ D∗fo
V ∩ D∗η

V .

Lemma 12. Let D be a set and Π a label structure over D, let Ω be a finite
subset of P × F , and let η : D → M be a relabeling. For each ϕ ∈ MSO(Ω,Π)
and each finite set V ⊇ Free(ϕ) of variables with V ∩ Bound(ϕ) = ∅ and B ∈ V
there is a DV -recognizable language L such that LV,η(ϕ) = L ∩ D∗η

V .

212 L. Herrmann and H. Vogler

(w, σ) |= Pπ(x) is true ⇐⇒ wσ(x) ∈ π

(w, σ) |= next(x, y) is true ⇐⇒ σ(x) + 1 = σ(y)

(w, σ) |= (x ∈ X) is true ⇐⇒ σ(x) ∈ σ(X)

(w, σ) |= (B(x) = (p, f)) is true ⇐⇒ σ(B)σ(x) = (p, f).

Fig. 2. Models operator for atoms.

Weighted Symbolic MSO-Logic. Here we introduce our new weighted MSO-logic
over data storage types. This logic extends the one in [20, Definition 5] from a
finite set Σ to an arbitrary set D.

Let D be a set, Π a label structure over D, and Ω a finite subset of P × F .
We define the set BExp(Ω,Π,K) of B-expressions over (Ω,Π,K) to be the set
generated by the EBNF:

e ::= Valκ | (e + e) | (ϕ � e) |
∑

x
e |

∑

X
e,

where κ : DU → K is a relabeling for some finite set U of variables with B ∈ U ,
and ϕ ∈ MSO(Ω,Π). As in the unweighted case the sets Free(e) and Bound(e)
for each B-expression e are defined as usual where we set Free(Valκ) = U .

We define the set Exp(Ω,Π,K) of MSO-expressions over (Ω,Π,K) as the set
of all expressions of the form

∑η
B e with e ∈ BExp(Ω,Π,K), Free(e) = {B}, and

relabeling η : D → M . An MSO-expression over (S,D,K) is an MSO-expression
over (Ω,Π,K) for some finite Ω ⊆ P × F and label structure Π over D.

[[Valκ]]V,η(ζ) = val(κ(ζU)) where ζU is obtained from ζ by replacing each
symbol (a, V, ω) by (a, V ∩ (fo(U) ∪ so(U)), ω)

[[e1 + e2]]V,η ζ
)
= [[e1]]V,η ζ

)
+ [[e2]]V,η ζ

)

[[ϕ � e]]V,η ζ
)
= [[e]]V,η ζ

)
, if ζ ∈ LV,η(ϕ), and 0 otherwise

[[
∑

x
e]]V,η ζ

)
=

∑

i∈pos(ζ)

[[e]]V∪{x},η w, σ[x �→ i]
)

[[
∑

X
e]]V,η ζ

)
=

∑

I⊆pos(ζ)

[[e]]V∪{X},η w, σ[X �→ I]
)

Fig. 3. Semantics of B-expressions (also cf. [20, Definition 6]).

Let e ∈ BExp(Ω,Π,K), V be a finite set of variables containing Free(e), and
η : D → M be a relabeling. The semantics of e with respect to V and η is the
weighted language [[e]]V,η : D∗

V → K such that supp([[e]]V,η) ⊆ D∗fo
V ∩D∗η

V and for
each ζ = (w, σ) ∈ D∗fo

V ∩ D∗η
V we define [[e]]V,η(ζ) inductively as shown in Fig. 3.

Let e =
∑η

B e′ be an MSO-expression over (Ω,Π,K). We define the weighted
language [[e]] : D∗ → K for each w ∈ D∗ by:

[[
∑η

B
e′]](w) =

∑

b∈B(Ω,η(w))
[[e′]]{B},η

(

w, [B �→ b]
)

.

Weighted Symbolic Automata with Data Storage 213

We say that a weighted language r : D∗ → K is definable by an MSO-expression
over (S,D,K) if there is an MSO-expression e over (S,D,K) such that r = [[e]].

From Automata to Logic. The proof of the claim that recognizability implies
definability follows the standard construction idea and is exactly the same as
the proof of Lemma 9 of [20] where D is a finite set (there denoted by Σ),
except that (1) the atomic formula Pa(x) (for a ∈ Σ) in ψ1 has to be replaced
by Pπ(x) and (2) κ((d, V, ω)) = wt(τ, d) if V = {Xτ} and 0 otherwise, where wt
is the weight function of the given automaton.

Theorem 13. Let r : D∗ → K. If r is (S,D,K)-recognizable, then r is definable
by some MSO-expression over (S,D,K).

From Logic to Automata. We can prove the following lemma by induction on the
structure of the B-expression e. The proof of the cases are easy generalizations
of Lemmas 11–14 of [20].

Lemma 14. Let e ∈ BExp(Ω,Π,K) and V ⊇ Free(e) a finite set of variables
with V ∩ Bound(ϕ) = ∅ and B ∈ V. Moreover, let η : D → M be a relabeling.
There is a (DV ,K)-recognizable weighted language r such that [[e]]V,η = r∩D∗η

V .

Due to the symbolicness of the automata, the next lemma is slightly more
complicated to prove than the corresponding Lemma 15 of [20].

Lemma 15. Let e ∈ BExp(Ω,Π,K) with Free(e) = {B} and η : D → M be
a relabeling. If [[e]]{B},η = r ∩ D∗η

{B} for some (D{B},K)-recognizable weighted
language r, then [[

∑η
B e]] is an (S,D,K)-recognizable weighted language.

Proof. Let A = (Q,Π,Q0, Qf , T,wt) be a (D{B},K)-automaton such that
[[e]]{B},η = [[A]] ∩ D∗η

{B}. We will construct the (S,D,K)-automaton A′ = (Q′,
BC(Π ′), Q′

0, Qf , T ′,wt′, η) such that [[A′]] = [[
∑η

B e]], using the following idea.
Since each predicate π ⊆ D × {∅} × Ω occurring in T combines elements from
D and Ω, we have to keep these combinations also in A′. For this, we partition
Π into a family Π × Ω and keep track of elements of Ω in the state set of A′.

Formally, we let Q′ = (Q × Ω) ∪ Qf and Q′
0 = Q0 × Ω. We let Π ′ = Π × Ω

such that for every (π, (p, f)) ∈ Π ′ we have (π, (p, f)) = {d | (d, ∅, (p, f)) ∈ π}.
If τ = (q, π, q′) is in T , then for every (p, f), (p′, f ′) ∈ Ω we let τ ′ =
((q, (p, f)), (π, (p, f)), p, (q′, (p′, f ′)), f) be in T ′. Moreover, if q′ ∈ Qf , then also
τ ′ = ((q, (p, f)), (π, (p, f)), p, q′, f) is in T ′. For every τ ′ ∈ T ′ and d ∈ D we
define wt′(τ ′, d) = wt(τ, (d, ∅, (p, f))) if (τ ′)2 = (π, (p, f)) and d ∈ (π, (p, f)),
and wt′(τ ′, d) = 0 otherwise (where τ is the transition from which τ ′ was con-
structed). It is not difficult to prove that [[A′]] = [[

∑η
B e]]. ��

Using Lemma 14 for V = {B} and Lemma 15 we obtain the following theorem.

Theorem 16. Let r : D∗ → K. If r is definable by some MSO-expression over
(S,D,K), then r is (S,D,K)-recognizable.

214 L. Herrmann and H. Vogler

Decidability Result. Based on the method introduced by Kirsten in [12] and the
zero generation problem (ZGP), we can prove the following theorem (also cf. [20,
Theorem 17]), where a strong bimonoid (K,+, ·, 0, 1) is commutative if · is so.

Theorem 17 (cf. [12, Theorem1]). Let K be a zero-sum-free commutative
strong bimonoid. Then, for each (S,D,K)-recognizable weighted language r, the
support supp(r) is (S,D,B)-recognizable. Moreover, if (K, ·, 1) has a decidable
ZGP, then there is an effective construction of an (S,D,B)-automaton recogniz-
ing supp([[A]]) from any given (S,D,K)-automaton A.

In particular, each bounded lattice satisfies the conditions of Theorem17. An
MSO-expression e over (S,D,K) is satisfiable if supp(r) �= ∅.

Corollary 18. Let N be a nested set, K a zero-sum-free commutative strong
bimonoid with a decidable ZGP, and r a projectively (VP(N), N,K)-recognizable
weighted language. (1) It is decidable whether supp(r) = ∅. (2) The satisfiability
problem of each MSO-expression over (VP(N), N,K) is decidable.

Proof. (1) follows from Theorem 17, Theorem 9, and the decidability of the
emptiness problem of symbolic visibly pushdown automata [1, Theorem 4].
(2) follows from Theorem 16 and (1).

References

1. D’Antoni, L., Alur, R.: Symbolic Visibly Pushdown Automata. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 209–225. Springer, Heidelberg
(2014)

2. Droste, M., Gastin, P.: Weighted Automata and Weighted Logics. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 513–525. Springer, Heidelberg (2005)

3. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)

4. Droste, M., Meinecke, I.: Describing Average- and Longtime-Behavior by Weighted
MSO Logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
537–548. Springer, Heidelberg (2010)

5. Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids.
Inf. Sci. 180(1), 156–166 (2010)

6. Droste, M., Vogler, H.: The Chomsky-Schützenberger Theorem for Quantitative
Context-Free Languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol.
7907, pp. 203–214. Springer, Heidelberg (2013)

7. Droste, M., Perevoshchikov, V.: A Nivat Theorem for Weighted Timed Automata
and Weighted Relative Distance Logic. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182.
Springer, Heidelberg (2014)

8. Eilenberg, S.: Automata, Languages, and Machines. Pure and Applied Mathemat-
ics, vol. 59. Academic Press, New York (1974)

9. Engelfriet, J.: Context-free grammars with storage. Technical report 86–11, Uni-
versity of Leiden (1986), see also: arXiv:1408.0683 [cs.FL] (2014)

http://arxiv.org/abs/1408.0683

Weighted Symbolic Automata with Data Storage 215

10. Fülöp, Z., Stüber, T., Vogler, H.: A Büchi-like theorem for weighted tree automata
over multioperator monoids. Theor. Comput. Syst. 50(2), 241–278 (2012)

11. Herrmann, L., Vogler, H.: A Chomsky-Schützenberger theorem for weighted
automata with storage. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 115–
127. Springer, Switzerland (2015)

12. Kirsten, D.: The support of a recognizable series over a zero-sum free, commutative
semiring is recognizable. Acta Cybern. 20(2), 211–221 (2011)

13. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)

14. Quaas, K.: MSO logics for weighted timed automata. Form. Methods Syst. Des.
38(3), 193–222 (2011)

15. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009)

16. Scott, D.: Some definitional suggestions for automata theory. J. Comput. Syst. Sci.
1, 187–212 (1967)

17. Veanes, M.: Applications of Symbolic Finite Automata. In: Konstantinidis, S. (ed.)
CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013)

18. Veanes, M., Bjørner, N.: Symbolic tree automata. Inf. Process. Lett. 115(3), 418–
424 (2015)

19. Veanes, M., Bjørner, N., de Moura, L.: Symbolic Automata Constraint Solving.
In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 640–654.
Springer, Heidelberg (2010)

20. Vogler, H., Droste, M., Herrmann, L.: A weighted MSO logic with storage behav-
iour and its Büchi-Elgot-Trakhtenbrot theorem. In: Dediu, A.H., Janoušek, J.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 127–139.
Springer, Switzerland (2016)

On Families of Full Trios Containing Counter
Machine Languages

Oscar H. Ibarra1 and Ian McQuillan2(B)

1 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer Science, University of Saskatchewan,

Saskatoon, SK S7N 5A9, Canada
mcquillan@cs.usask.ca

Abstract. We look at NFAs augmented with multiple reversal-bounded
counters where, during an accepting computation, the behavior of the
counters during increasing and decreasing phases is specified by some
fixed “pattern”. We consider families of languages defined by various
pattern behaviors and show that some correspond to the smallest full
trios containing restricted classes of bounded semilinear languages. For
example, one such family is exactly the smallest full trio containing all
the bounded semilinear languages. Another family is the smallest full
trio containing all the bounded context-free languages. Still another is
the smallest full trio containing all bounded languages whose Parikh map
is a semilinear set where all periodic vectors have at most two non-zero
coordinates. We also examine relationships between the families.

Keywords: Counter machines · Full trios · Semilinearity · Bounded
languages

1 Introduction

A language L is bounded if L ⊆ w∗
1 · · · w∗

k, for non-empty words w1, . . . , wk.
Further, L is bounded semilinear if there exists a semilinear set Q ⊆ Nk

0 such
that L = {w | w = wi1

1 · · · wik
k , (i1, . . . , ik) ∈ Q} [10]. It is known that every

bounded semilinear language can be accepted by a one-way nondeterministic
reversal-bounded multicounter machine (NCM, [9]). Also, every bounded lan-
guage accepted by an NCM can be accepted by a deterministic reversal-bounded
multicounter machine (DCM, [10]). Thus, every bounded semilinear language
can be accepted by a DCM.

Recently, several families of languages that are both bounded and semilinear
have been defined and studied [7]. The notion of bounded semilinear above is

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by Natural Sciences and Engi-
neering Research Council of Canada Grant 327486-2010.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 216–228, 2016.
DOI: 10.1007/978-3-662-53132-7 18

Full Trios, Counter Machines, Bounded Languages, and Semilinear Sets 217

referred to as bounded Ginsburg semilinear to distinguish from other types. Two
other interesting types are: a language L ⊆ w∗

1 · · · w∗
k over alphabet Σ is bounded

Parikh semilinear if L = {w | w = wi1
1 · · · wik

k , the Parikh map of w is in Q},
where Q is a semilinear set with |Σ| components; L is bounded general semilinear
if L is both bounded and semilinear. It was shown that the family of bounded
Parikh semilinear languages is a strict subset of the family of bounded Ginsburg
semilinear languages, which is a strict subset of the family of bounded general
semilinear languages. However, it was shown that in any language family L
that is a semilinear trio (the family only contains semilinear languages, and
is closed under λ-free homomorphism, inverse homomorphism, and intersection
with regular languages), all bounded languages within L are bounded Ginsburg
semilinear, and can therefore be accepted by machines in NCM and even DCM.
This implies that the equality problem, containment problem, and disjointness
problem are decidable for bounded languages in L since they are decidable for
DCM. Furthermore, a criterion was developed for testing when the bounded
languages within L and the family accepted by machines in DCM coincide; this
occurs if and only if L contains all distinct-letter-bounded Ginsburg semilinear
languages. This was shown to be the case for finite-index ET0L languages [12],
and therefore the bounded languages within these families are the same.

In this paper, we attempt to restrict the operation of NCM in order to pre-
cisely characterize types of languages that are bounded and semilinear. Indeed,
restricting the behavior of NCM can naturally capture several interesting fam-
ilies through the use of so-called instruction languages. Informally, a k-counter
machine M is said to satisfy instruction language I ⊆ {C1,D1, . . . , Ck,Dk}∗ if,
for every accepting computation of M , replacing each increase of counter i with
Ci, and decrease of counter i with Di, gives a sequence in I. Then, for a family of
instruction languages I, NCM(I) is the family of NCM machines satisfying some
I ∈ I. Several interesting instruction language families are defined and studied.
For example, if one considers BDiLBd, the family of instruction languages con-
sisting of bounded increasing instructions followed by letter-bounded decreasing
instructions, then we show that the family of languages accepted by machines
in NCM(BDiLBd) is the smallest full trio containing all bounded Ginsburg semi-
linear languages (and therefore, the smallest full trio containing all bounded
languages from any semilinear trio). It is also possible to characterize exactly
the bounded context-free languages with a subfamily of counter languages. Sev-
eral other families are also defined and compared. For each, characterizations are
given such that the families are the smallest full trios containing the languages.
Using these characterizations, we are able to give even simpler criteria than those
in [7] for testing if the bounded languages within a semilinear full trio coincide
with those accepted by machines in DCM. We then give applications to several
interesting families, such as the multi-pushdown languages [1], and restricted
types of Turing machines, and it is shown that the bounded languages within
each are the same as those accepted by machines in DCM. In a future paper, we
will examine closure and decision properties of the models.

218 O.H. Ibarra and I. McQuillan

All proofs in this paper are omitted due to space constraints and
appear in a technical report [8].

2 Preliminaries

In this paper, we assume knowledge of automata and formal languages, and refer
to [6] for an introduction. Let Σ be a finite alphabet. Then, Σ∗ (resp. Σ+) is
the set of all words (non-empty words) over Σ. A word is any w ∈ Σ∗, and a
language is any L ⊆ Σ∗. The empty word is denoted by λ. The complement of
L with respect to Σ∗ is L = Σ∗ − L. The shuffle of words u, v ∈ Σ∗ is u v =
{u1v1 · · · unvn | n ≥ 1, u = u1 · · · un, v = v1 · · · vn, ui, vi ∈ Σ∗, 1 ≤ i ≤ n},
extended to languages L1 L2 = {u v | u ∈ L1, v ∈ L2}.

A language L ⊆ Σ∗ is bounded if there exist w1, . . . , wk ∈ Σ+ such that
L ⊆ w∗

1 · · · w∗
k, and is letter-bounded if w1, . . . , wk are letters. Furthermore, L is

distinct-letter-bounded if each letter is distinct.
Let N be the set of positive integers and N0 = N ∪ {0}. A linear set is a set Q ⊆

Nm
0 if there exist v0,v1, . . . ,vn such that Q = {v0+i1v1+ · · ·+invn | i1, . . . , in ∈

N0}. The vector v0 is called the constant, and v1, . . . ,vn are the periods. A semi-
linear set is a finite union of linear sets. Given an alphabet Σ = {a1, . . . , am}, the
length of a word w ∈ Σ∗ is denoted by |w|. And, given a ∈ Σ, |w|a is the num-
ber of a’s in w. Then, the Parikh map of w is ψ(w) = (|w|a1 , . . . , |w|am

), and the
Parikh map of a language L is ψ(L) = {ψ(w) | w ∈ L}. Also, alph(w) = {a ∈ Σ |
|w|a > 0}. We refer to Sect. 1 for the definitions of bounded Ginsburg semilinear
and bounded Parikh semilinear languages.

For a class of machines M, we let L(M) be the family of languages accepted
by machines in M. Let L(CFL) be the family of context-free languages. A trio
(resp. full trio) is any family of languages closed under λ-free homomorphism
(resp. homomorphism), inverse homomorphism, and intersection with regular
languages. A full semi-AFL is a full trio closed under union [2]. Many well-known
families of languages are trios, such as every family of the Chomsky hierarchy.
Many important families are full trios and full semi-AFLs as well, such as the
families of regular and context-free languages. Given a language family L, Lbd

are the bounded languages in L.
We only define one-way k-counter machines informally and refer to [8,9]

for formal definitions. These machines are similar to pushdown automata, with
k independent pushdowns that each have one symbol plus an end-marker.
A configuration is a tuple (q, w, i1, . . . , ik) where q is the current state, w is
the remaining input, and i1, . . . , ik ∈ N0 are the contents of the k counters. The
derivation relation �M and its reflexive, transitive closure �∗

M are defined in the
usual way [8]. The language accepted by M is denoted by L(M).

Further, M is l-reversal-bounded if, in every accepting computation, the
counter alternates between increasing and decreasing at most l times. We will
often associate labels from an alphabet T to the transitions of M bijectively, and
then write �t

M to represent the changing of configurations via transition t. This
is generalized to derivations over words in T ∗.

Full Trios, Counter Machines, Bounded Languages, and Semilinear Sets 219

Then NCM(k, l) is the class of one-way l-reversal-bounded k-counter
machines, and NCM is all reversal-bounded multicounter languages, and replac-
ing N with D gives the deterministic variant.

3 Instruction NCM Machines

It is known that all of the bounded languages in every semilinear trio are in
L(NCM) [7]. We start this section by considering subclasses of L(NCM) in order
to determine more restricted methods of computation where this property also
holds. We are able to do this optimally. Furthermore, characterizations of the
restricted families are also possible, and lead to even simpler methods to deter-
mine the bounded languages within semilinear full trios.

First, we define restrictions of NCM depending on the sequences of counter
instructions that occur. These restrictions will only be defined on NCMs that
we will call well-formed. A k-counter NCM M is well-formed if M ∈ NCM(k, 1)
whereby all transitions change at most one counter value per transition, and all
counters decrease to zero before accepting. Indeed, an NCM (or DCM) can be
assumed without loss of generality to be 1-reversal-bounded by increasing the
number of counters [9]. It is also clear that all counters can be forced to change one
counter value at a time, and decrease to zero before accepting without loss of gen-
erality. Thus, every language in L(NCM) can be accepted by a well-formed NCM.
Let Δ be an infinite set of new symbols, Δ = {C1,D1, C2,D2, . . .}, and for k ≥
1,Δk = {C1,D1, . . . , Ck,Dk},Δ(k,c) = {C1, . . . , Ck},Δ(k,d) = {D1, . . . , Dk}.

Given a well-formed k-counter NCM machine M , let T be a set of labels in
bijective correspondence with transitions of M . Then, define a homomorphism
hΔ from T ∗ to Δk that maps every transition label associated with a transition
that increases counter i to Ci, maps every label associated with a transition
that decreases counter i to Di, and maps all labels associated with transitions
that do not change any counter to λ. Also, define a homomorphism hΣ that
maps every transition that reads a letter a ∈ Σ to a, and erases all others.
Then, we say that M satisfies instruction language I ⊆ Δ∗

k if every sequence
of transitions α ∈ T ∗ corresponding to an accepting computation — that is
(q0, w, 0, . . . , 0) �α

M (q, λ, c1, . . . , ck), q a final state — has hΔ(α) ∈ I. This means
that M satisfies instruction language I if I describes all possible counter increase
and decrease instructions that can be performed in an accepting computation by
M , with Ci occurring for every increase of counter i by one, and Di occurring
for every decrease of counter i by one.

Given a family of languages I with each I ∈ I over Δk, for some k ≥ 1, let
NCM(k, I) be the subset of well-formed k-counter NCM machines that satisfy
I for some I ∈ I with I ⊆ Δ∗

k; these are called the k-counter I-instruction
machines. The family of languages they accept, L(NCM(k, I)), are called the
k-counter I-instruction languages. Furthermore, NCM(I) =

⋃

k≥1 NCM(k, I)
(resp. L(NCM(I)) =

⋃

k≥1 L(NCM(k, I))) are the I-instruction machines (and
languages). We will only consider instruction languages I where, for all w ∈ I,
every occurrence of Ci occurs before any occurrence of Di, for all i, 1 ≤ i ≤ k,
which is enough since every well-formed machine is 1-reversal-bounded.

220 O.H. Ibarra and I. McQuillan

First, we will study properties of these restrictions before examining some
specific types.

Proposition 1. Given any family of languages I over Δk, L(NCM(k, I)) is a
full trio. Furthermore, given any family of languages I, where each I ∈ I is over
some Δk, k ≥ 1, L(NCM(I)) is a full trio.

Next, we require another definition. Given a language I over Δk, let

Ieq = {w | w ∈ I, |w|Ci
= |w|Di

, every Ci occurs before any Di, for 1 ≤ i ≤ k}.

Further, given a language family I over Δ where each I ∈ I is over Δk, for some
k ≥ 1, then Ieq is the family of all languages Ieq, where I ∈ I.

Proposition 2. Let I be a family of languages where each I ∈ I is a subset
of Δ∗

k, for some k ≥ 1, and I is a subfamily of the regular languages. Then
L(NCM(I)) is the smallest full trio containing Ieq.

We will consider several instruction language families that define interesting
subfamilies of L(NCM).

Definition 3. We define instruction language families:

– LBiLBd = {I = Y Z | k ≥ 1, Y = a∗
1 · · · a∗

m, ai ∈ Δ(k,c), 1 ≤ i ≤ m,Z =
b∗
1 · · · b∗

n, bj ∈ Δ(k,d), 1 ≤ j ≤ n},
(letter-bounded-increasing/letter-bounded-decreasing instructions),

– StLBid = {I | k ≥ 1, I = a∗
1 · · · a∗

m, ai ∈ Δk, 1 ≤ i ≤ m, there is no 1 ≤ l <
l′ < j < j′ ≤ m such that al = Cr, al′ = Cs, aj = Dr, aj′ = Ds, r �= s},
(stratified-letter-bounded instructions),

– LBid = {I | k ≥ 1, I = a∗
1 · · · a∗

m, ai ∈ Δk, 1 ≤ i ≤ m},
(letter-bounded instructions),

– BDiLBd = {I = Y Z | k ≥ 1, Y = w∗
1 · · · w∗

m, wi ∈ Δ∗
(k,c), 1 ≤ i ≤ m,Z =

a∗
1 · · · a∗

n, aj ∈ Δ(k,d), 1 ≤ j ≤ n},
(bounded-increasing/letter-bounded-decreasing instructions),

– LBiBDd = {I = Y Z | k ≥ 1, Y = a∗
1 · · · a∗

m, ai ∈ Δ(k,c), 1 ≤ i ≤ m,Z =
w∗

1 · · · w∗
n, wj ∈ Δ∗

(k,d), 1 ≤ j ≤ n},
(letter-bounded-increasing/bounded-decreasing instructions),

– BDid = {I | k ≥ 1, I = w∗
1 · · · w∗

m, wi ∈ Δ∗
k, 1 ≤ i ≤ m},

(bounded instructions),
– LBd = {I | k ≥ 1, I = Y Z, Y = Δ∗

(k,c), Z = a∗
1 · · · a∗

n, aj ∈ Δ(k,d), 1 ≤ j ≤
n}, (letter-bounded-decreasing instructions),

– LBi = {I | k ≥ 1, I = Y Z, Y = a∗
1 · · · a∗

m, ai ∈ Δ(k,c), 1 ≤ i ≤ m,Z =
Δ∗

(k,d), }, (letter-bounded increasing instructions),
– LB∪ = LBd ∪ LBi,

(either letter-bounded-decreasing or letter-bounded-increasing instructions),
– ALL = {I | k ≥ 1, I = Δ∗

k}.

Full Trios, Counter Machines, Bounded Languages, and Semilinear Sets 221

For example, every NCM machine M where the counters are increased and
decreased according to some bounded language, then there is an instruction
language I such that M satisfies I, and I ∈ BDid, and L(M) ∈ L(NCM(BDid)).
Even though not all instructions in I are necessarily used, the instructions used
will be a subset of I since the instructions used are a subset of a bounded
language. It is also clear that L(NCM) = L(NCM(ALL)).

Example 4. Let L = {uaivbjwaixbjy | i, j > 0, u, v, w, x, y ∈ {0, 1}∗}. We can
easily construct a well-formed 2-counter machine M to accept L where, on input
uaivbjwai′

xbj′
y, M increases counter 1 i times, then increases counter 2 j times,

then decreases counter 1 verifying that i = i′, then decreases counter 2 verifying
that j = j′. This machine satisfies instruction language C∗

1C∗
2D∗

1D
∗
2 , which is a

subset of some instruction language in every family in Definition 3 except for
StLBid, and therefore L ∈ L(NCM(I)) for each of these families I.

Example 5. Let L = {a2+i+2jb3+2i+5j | i, j ≥ 0}. Note that the Parikh map of
L is a linear set Q = {(2, 3) + (1, 2)i + (2, 5)j | i, j ≥ 0}. L can be accepted by a
well-formed 4-counter NCM (see [8] for construction).

The instructions of M as constructed are a subset of I =
(C1C2)∗(C3C4)∗D∗

1D
∗
3D

∗
2D

∗
4 . This is a subset of some language in each of

BDiLBd,BDid, LBd but not the other families, and therefore M is in each of
NCM(BDiLBd),NCM(BDid),NCM(LBd). Even though M is not in the other
classes of machines such as NCM(LBi), it is possible for L(M) to be in
L(NCM(LBi)) (using some other machine that accepts the same language).
Indeed, we will see that L(M) is also in L(NCM(LBiBDd)) and L(NCM(LBi)).

Example 6. Let L1 = {w#aibj | |w|a = i, |w|b = j}. This can indeed be accepted
by a machine M1 ∈ NCM(LBd) (see [8] for construction).

Example 7. Let L = {w | w ∈ {a, b}+, |w|a = |w|b > 0}. L can be accepted
by an NCM which uses two counters that increments counter 1 (resp. counter 2)
whenever it sees an a (resp., b). Then it decrements counter 1 and counter 2 simul-
taneously and accepts if they reach zero at the same time. This counter usage
does not have a pattern in any of the restrictions above. It is quite unlikely that
L(M) ∈ L(NCM(I)) for any of the families in the definition above except the full
L(NCM(ALL)) = L(NCM).

Every family I in Definition 3 is a subfamily of the regular languages.
Therefore, by Proposition 2, the following can be shown by proving closure under
union:

Proposition 8. Let I be any family of instruction languages from Definition 3.
Then L(NCM(I)) is the smallest full trio (and full semi-AFL) containing Ieq.

As a corollary, if we consider the instructions languages of ALL (thus, the
instructions are totally arbitrary), and for i ≥ 1, let Li = {Cn

i Dn
i | n ≥ 0},

then ALLeq = {I | I = L1 L2 · · · Lk, k ≥ 1}. Hence, L(NCM) can be
characterized as the smallest full trio containing ALLeq, by Proposition 2. Or, it
could be stated as follows (this is essentially already known, and follows from
work in [4,5]).

222 O.H. Ibarra and I. McQuillan

Corollary 9. [4,5] L(NCM) is the smallest shuffle or intersection closed full trio
containing {anbn | n ≥ 0}.

Indeed, it is known that L(NCM) is shuffle and intersection closed full trio [9].
For intersection, this follows since each instruction language I above can be repre-
sentedby taking eachLi, andahomomorphismhi thatmapsCi andDi to itself, and
erases all other letters ofΔk. Then letL′

i = h−1
i (Li).Then,L1 L2 · · · Lk =

L′
1 ∩ L′

2 ∩ · · · ∩ L′
k.

Since {anbn | n ≥ 0} is in L(NCM(I)) for all I in Definition 3, the following
is also immediate from Corollary 9:

Corollary 10. For all I in Definition 3, L(NCM) is the smallest shuffle or
intersection closed full trio containing L(NCM(I)).

Thus, any instruction family I whereby L(NCM(I)) � L(NCM) and {anbn | n ≥
0} ∈ L(NCM(I)) is immediately not closed under intersection and shuffle.

Next, we will prove the following lemma regarding many of the instruction
language families showing that letter-bounded instructions can be assumed to
be distinct-letter-bounded, and for bounded languages, for each letter in Δk in
the words to only appear once.

First, we need a definition. For each of the instruction families of Definition
3, we place an underline below each LB if the letter-bounded language is forced
to have each letter occur exactly once (and therefore be distinct-letter-bounded),
and we place an underline below BD if each letter a ∈ Δk appears exactly once
within the words w1, . . . , wm. Thus, as an example, LBiBDd is the subset of
LBiBDd equal to {I = Y Z | k ≥ 1, Y = a∗

1 · · · a∗
k, ai ∈ Δ(k,c), |a1 · · · ak|a =

1, for all a ∈ Δ(k,c), Z = w∗
1 · · · w∗

n, wi ∈ Δ∗
(k,d), 1 ≤ j ≤ n, |w1w2 · · · wn|a =

1, for all a ∈ Δ(k,d)}. Thus, each letter appears exactly once in the words or
letters. The construction uses multiple new instruction letters and counters, in
order to allow each letter to only appear once.

Lemma 11. The following are true:

L(NCM(LBiLBd)) = L(NCM(LBiLBd)), L(NCM(LBid)) = L(NCM(LBid)),
L(NCM(LBiBDd)) = L(NCM(LBiBDd)), L(NCM(LBd)) = L(NCM(LBd)),
L(NCM(BDiLBd)) = L(NCM(BDiLBd)), L(NCM(LBi)) = L(NCM(LBi)).

The next goal is to separate some families of NCM languages with different
instruction languages.

A (quite technical) lemma that is akin to a pumping lemma is proven, but
is done entirely on derivations rather than words, so that it can be used twice
starting from the same derivation within Proposition 13. Due to the length and
technicality, the statement of the lemma and proof can be found in [8].

The next result follows from Lemma 11 and this new pumping lemma.

Proposition 12. {anbncn | n > 0} /∈ L(NCM(LBid)).

In addition, the following can be shown with Lemma 11 and two applications of
the pumping lemma.

Full Trios, Counter Machines, Bounded Languages, and Semilinear Sets 223

Proposition 13. {anbncldl | n, l > 0} /∈ L(NCM(LBiLBd)).

Therefore, the following is immediate:

Proposition 14. L(NCM(LBiLBd)) � L(NCM(LBid)) � L(NCM(BDid)).

4 Generators for the Families

We will go through certain families individually while creating a more restricted
set of generators than is provided by Proposition 8.

First, we will give two characterizations of L(NCM(LBid)).

Proposition 15. L(NCM(LBid)) is the smallest full trio containing all distinct-
letter-bounded languages of the form {ai1

1 · · · aim
m | aj = Cl, an = Dl imply ij =

in}, where a1, . . . , am is a permutation of Δk such that aj = Cl, an = Dl implies
j < n.

A similar characterization can be obtained with a single language for each k.

Proposition 16. Let k ≥ 1, and let LLBid

k = {ai1
1 ai2

2 · · · aim
m | {a1, . . . , am} is a

permutation of Δk, and (Cj = al,Dj = an implies both l < n and il = in), for
each j, 1 ≤ j ≤ k}.

Then L(NCM(LBid)) is the smallest full trio containing LLBid

k , for each k ≥ 1.

Next, we will give characterizations for L(NCM(LBiLBd)), whose proof is
similar to Proposition 15.

Proposition 17. The family L(NCM(LBiLBd)) is the smallest full trio contain-
ing all distinct-letter-bounded languages of the form {al1

1 · · · alk
k bj1

1 · · · bjk
k | ai =

Cm, bn = Dm imply li = jn}, where a1, . . . , ak is a permutation of Δ(k,c) and
b1, . . . , bk is a permutation of Δ(k,d).

This can similarly be turned into one language for each k, as follows with a
proof similar to Proposition 16:

Proposition 18. Let k ≥ 1, and let LLBiLBd

k = {al1
1 · · · alk

k bj1
1 · · · bjk

k | a1, . . . , ak

is a permutation of Δ(k,c), b1, . . . , bk is a permutation of Δ(k,d), and (Cm =
ai,Dm = bn implies li = jn), for each j, 1 ≤ j ≤ k}.

Then L(NCM(LBiLBd)) is the smallest full trio containing LLBiLBd

k , for each
k ≥ 1.

Next, we will provide an alternate interesting characterization for both fam-
ilies using properties of semilinear sets. Let m ≥ 1. A linear set Q ⊆ Nn

0 , n ≥ 1,
is m-bounded if the periodic vectors of Q have at most m non-zero coordinates.
(There is no restriction on the constant vector.) A semilinear set Q is m-bounded
if it is a finite union of m-bounded linear sets.

Let L ⊆ a∗
1 · · · a∗

n, a1, . . . , an ∈ Σ be a distinct-letter-bounded language. L is
called a distinct-letter-bounded 2-bounded semilinear language if there exists a

224 O.H. Ibarra and I. McQuillan

2-bounded semilinear set Q such that L = {ai1
1 · · · ain

n | (i1, . . . , in) ∈ Q}. L is
called a distinct-letter-bounded 2-bounded overlapped semilinear language if there
exists a 2-bounded semilinear set Q with the property that in any of the linear
sets comprising Q, there are no periodic vectors v with non-zero coordinates at
positions i < j, and v′ with non-zero coordinates at positions i′ < j′ such that
1 ≤ i < j < i′ < j′ ≤ n, and L = {ai1

1 · · · ain
n | (i1, . . . , in) ∈ Q}. (They overlap in

the sense that, for any such Q, v, i, j, v′, i′, j′, then the interval [i, j] must overlap
with [i′, j′].)

Proposition 19.

1. The family L(NCM(LBid)) is the smallest full trio containing all distinct-
letter-bounded 2-bounded semilinear languages.

2. The family L(NCM(LBiLBd)) is the smallest full trio containing all distinct-
letter-bounded 2-bounded overlapped semilinear languages.

Next we will give a characterization of the smallest full trio containing all
bounded L(CFL) languages. For that, we consider instruction family StLBid. An
example of an StLBid language (counter behavior) is C∗

1C∗
2C∗

3D∗
3C

∗
2D∗

2C
∗
1D∗

1 .
But the counter behavior C∗

1C∗
2C∗

3D∗
3C

∗
2D∗

2C
∗
1D∗

2C
∗
1D∗

1 is not an StLBid language
since C2 appears, then C1, then D2, then D1, violating the StLBid definition.

The next results show that L(NCM(StLBid)) is the smallest full trio contain-
ing all bounded context-free languages. It has previously been found that there
is no principal full trio (ie. generated by a single language [2]) accepting these
languages [11] (this paper does not use the ‘principal’ notation). Our proof uses a
known characterization of distinct-letter-bounded context-free languages (CFLs)
from [3].

Proposition 20. The family L(NCM(StLBid)) is the smallest full trio contain-
ing all bounded context-free languages.

From this, the following can be determined:

Corollary 21.

1. L(NCM(StLBid)) � L(NCM(LBid)).
2. L(NCM(StLBid) and L(NCM(LBiLBd)) are incomparable.

Next, we will show that all bounded Ginsburg semilinear languages are in
two of the language families (and therefore in all larger families).

Lemma 22. All bounded Ginsburg semilinear languages are in L(NCM(BDiLBd))
and in L(NCM(LBiBDd)).

From the definition, it is immediate that if I ⊆ I ′, then L(NCM(I)) ⊆
L(NCM(I ′)). It is clear that all of LBid,BDiLBd, LBiBDd are a subset of BDid.
We will show that three of these counter families coincide.

Proposition 23. L(NCM(BDiLBi)) = L(NCM(LBiBDd)) = L(NCM(BDid)) is
the smallest full trio containing all bounded Ginsburg semilinear languages, and
the smallest full trio containing all bounded Parikh semilinear languages.

Full Trios, Counter Machines, Bounded Languages, and Semilinear Sets 225

Corollary 24. For all I ∈ {BDiLBd, LBiBDd,BDid, LBd, LBi, LB∪,ALL}, then
L(NCM(I)) contains all bounded Ginsburg semilinear languages, and all bounded
languages in L(NCM).

Next, we establish two simple sets of generators for L(NCM(BDid)). These
languages will therefore be a simple mechanism to show whether or not a full
trio L contains every bounded Ginsburg semilinear language, and therefore has
exactly the same bounded languages as NCM, and has all bounded languages
contained in any semilinear trio.

Proposition 25. For k ≥ 1, let

LBDiLBd

k = {wx1
1 · · · wxm

m Dy1
1 · · · Dyk

k | wj ∈ Δ+
(k,c), xj > 0, 1 ≤ j ≤ m,

for 1 ≤ i ≤ k, |w1w2 · · · wm|Ci
= 1,

(Ci ∈ alph(wj) implies yi = xj)},

LLBiBDd

k = {Cy1
1 · · · Cyk

k wx1
1 · · · wxm

m | wj ∈ Δ+
(k,d), xj > 0, 1 ≤ j ≤ m,

for 1 ≤ i ≤ k, |w1w2 · · · wm|Di
= 1,

(Di ∈ alph(wj) implies yi = xj)}.

Then L(NCM(BDiLBd)) = L(NCM(LBiBDd)) = L(NCM(BDid)) is the smallest
full trio containing LBDiLBd

k , for each k ≥ 1, and also the smallest full trio
containing LLBiBDd

k , for each k ≥ 1.

Then, by Proposition 23, Proposition 25, and [7], the following is true:

Proposition 26. Let L be a full trio. Then, the following are equivalent:

– L contains all bounded Ginsburg semilinear languages,
– L contains all distinct-letter-bounded Ginsburg semilinear languages,
– L contains all bounded Parikh semilinear languages,
– L(NCM)bd(= L(DCM)bd = L(NCM(BDid))bd) is contained in L,
– L(NCM(BDiLBd))(= L(NCM(LBiBDd)) = L(NCM(BDid))) is contained in L,
– L contains LBDiLBd

k , for each k ≥ 1,
– L contains LLBiBDd

k , for each k ≥ 1.

Furthermore, if L is also semilinear, then these conditions are equivalent to
Lbd = L(NCM)bd = L(DCM)bd.

By Proposition 12 and Proposition 26, the following is immediate:

Corollary 27. NCM(LBid) and L(NCM(LBiLBd)) do not contain all bounded
Ginsburg semilinear languages, or all bounded Parikh semilinear languages.

There is another simple equivalent form of the family L(NCM(BDid)). Let
SBDid be the subset of BDid that is the family

{I | k ≥ 1, I = w∗
1 · · · w∗

m, wi ∈ Δ+
k , |wi| ≤ 2, 1 ≤ i ≤ m}.

Proposition 28. The family L(NCM(SBDid)) contains all bounded Ginsburg
semilinear languages. Hence, L(NCM(SBDid)) = L(NCM(BDid)).

226 O.H. Ibarra and I. McQuillan

Thus, SBDid is enough to generate all bounded Ginsburg semilinear lan-
guages, whereas LBid is not.

Next, we will explore the language families NCM(LBd) and NCM(LBi).

Proposition 29. L(NCM(LBd)) is the smallest full trio containing, for each
k ≥ 1, (here, w0 ∈ Δ∗

(k,c), and wk ∈ D∗
k),

LLBd

k = {w0w1 · · · wk | wi ∈ {Ci+1, Ci+2, . . . , Ck,Di}∗, 0 ≤ i ≤ k,
|w0w1 · · · wj−1|Cj

= |wj |Dj
> 0, 1 ≤ j ≤ k} ⊆ Δ∗

k.

The next proposition follows with a similar proof.

Proposition 30. L(NCM(LBi)) is the smallest full trio containing, for each
k ≥ 1, (here, w0 ∈ C∗

1 , and wk ∈ Δ∗
(k,d)),

LLBi

k = {w0 · · · wk | wi ∈ {D1, . . . , Di, Ci+1}∗, 0 ≤ i ≤ k,
|wj−1|Cj

= |wjwj+1 · · · wk|Dj
> 0, 1 ≤ j ≤ k} ⊆ Δ∗

k.

5 Applications to Existing Families

We will apply the results of this paper to quickly characterize the bounded lan-
guages inside known language families. It has been recently shown that finite-
index ET0L languages contain all bounded Ginsburg semilinear languages [7].
This implies L(NCM(BDid)) ⊆ L(ET0Lfin) (the family of finite-index ET0L lan-
guages, which is a full trio [12]; we refer to this paper for the formal definitions
of ET0L systems and languages), and the bounded languages within DCM,NCM,
and ET0Lfin coincide by Proposition 26. Here, we strengthen this result. First,
it is shown that each LLBd

k and LLBi

k is in L(ET0Lfin).

Lemma 31. For each k ≥ 1, LLBd

k , LLBi

k ∈ L(ET0Lfin).

It was also shown that that there are L(ET0Lfin) languages that are not in
L(NCM) [7]. Then, this sub-family of L(NCM) is strictly contained in L(ET0Lfin).

Proposition 32. L(NCM(LB∪)) � L(ET0Lfin), L(ET0Lfin)bd = L(DCM)bd.

We leave as an open problem whether there are languages accepted by NCM
that cannot be generated by a finite-index ET0L system. We conjecture that over
Σk = {a1, . . . , ak}, {w | |w|a1 = · · · = |w|ak

} is not in L(ET0Lfin), for some k.
One might think that the (non-finite-index ET0L) one-sided Dyck language on
one letter is a candidate witness, but this language is not in L(NCM) [4].

Next, the class of TCA machines are Turing machines with a one-way read-
only input tape, and a finite-crossing1 read/write worktape. This language fam-
ily is a semilinear full trio [5]. Therefore, L(TCA)bd ⊆ L(NCM)bd. To show
1 There is a fixed c such that the number of times the boundary between any two
adjacent input cells is crossed is at most c.

Full Trios, Counter Machines, Bounded Languages, and Semilinear Sets 227

that there is equality, we will simulate NCM(BDiLBd). Let M be a well-formed
k-counter machine satisfying instruction language I ⊆ w∗

1w
∗
2 · · · w∗

l D∗
i1

· · · D∗
in

,
where wi ∈ Δ∗

(k,c), 1 ≤ i ≤ l,Dj ∈ Δ(k,d), 1 ≤ j ≤ n. Then we build a TCA

machine M ′ with worktape alphabet Δk that, on input w, simulates a derivation
of M , whereby, if M increases from counters in the sequence Cj1 , . . . , Cjm , M ′

instead writes this sequence on the worktape. Then, M ′ simulates the decreasing
transitions of M as follows: for every section of decreases in D∗

ij
, for 1 ≤ j ≤ n,

M ′ sweeps the worktape from right-to-left, and corresponding to every decrease,
replaces the next Cij symbol with the symbol Dij (thereby marking the symbol).
This requires n sweeps of the worktape, and M ′ accepts if all symbols end up
marked and the simulated computation is in a final state.

Proposition 33. L(NCM(BDiLBd)) ⊆ L(TCA) and L(TCA)bd = L(DCM)bd.

Next, the family of multi-push-down automata and languages has been
introduced [1]. We let MP be these machines. They have some number k of push-
downs, and allow to push to every pushdown, but only pop from the first non-
empty pushdown. This can clearly simulate every machine inNCM(LBd) (distinct-
letter-bounded, which is enough to accept every language in L(NCM(LBd)) by
Lemma 11). Furthermore, it follows from results within [1] that L(MP) is closed
under reversal (since it is closed under homomorphic replication with reversal,
and homomorphism). Therefore, L(MP) also contains L(NCM(LB∪)). Also, this
family only contains semilinear languages [1]. Therefore, the bounded languages
within L(MP) coincide with those in L(NCM) and L(DCM).

Proposition 34. L(NCM(LB∪)) ⊆ L(MP) and L(MP)bd = L(DCM)bd.

References

1. Breveglieri, L., Cherubini, A., Citrini, C., Reghizzi, S.: Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci. 7(3), 253–291 (1996)

2. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland Publishing Company, Amsterdam (1975)

3. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
Inc., New York (1966)

4. Greibach, S.: Remarks on blind and partially blind one-way multicounter machines.
Theoret. Comput. Sci. 7, 311–324 (1978)

5. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A.: Some decision problems concern-
ing semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294 (2002)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA (1979)

7. Ibarra, O.H., McQuillan, I.: On bounded semilinear languages, counter machines,
and finite-index ET0L. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol.
9705, pp. 138–149. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40946-7 12

8. Ibarra, O., McQuillan, I.: On families of full trios containing counter machine
languages. Technical Report 2016–01, University of Saskatchewan (2016). http://
www.cs.usask.ca/documents/technical-reports/2016/TR-2016-01.pdf

http://dx.doi.org/10.1007/978-3-319-40946-7_12
http://www.cs.usask.ca/documents/technical-reports/2016/TR-2016-01.pdf
http://www.cs.usask.ca/documents/technical-reports/2016/TR-2016-01.pdf

228 O.H. Ibarra and I. McQuillan

9. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

10. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-
way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6), 1291–
1306 (2012)

11. Kortelainen, J., Salmi, T.: There does not exist a minimal full trio with respect
to bounded context-free languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011.
LNCS, vol. 6795, pp. 312–323. Springer, Heidelberg (2011)

12. Rozenberg, G., Vermeir, D.: On ET0L systems of finite index. Inf. Control 38,
103–133 (1978)

Non-regular Maximal Prefix-Free Subsets
of Regular Languages

Jozef Jirásek Jr.(B)

Kuzmányho 27, 04001 Košice, Slovakia
jirasekjozef@gmail.com

Abstract. We investigate non-regular maximal prefix-free subsets
(MPFS) of regular languages. We give a method to decide whether or
not a regular language has any non-regular MPFS.

Next, we prove that if a regular language has any non-regular MPFS,
then it also has a MPFS which is context-sensitive but not context-free,
it has a MPFS which is recursive but not context-sensitive, and it has a
MPFS which is not recursively enumerable.

We show that no regular language has a MPFS which is recursively
enumerable but not recursive. Finally, for any regular language we can
decide whether or not it has a context-free non-regular MPFS.

1 Introduction

A language is prefix-free if it does not contain two distinct strings such that
one of them is a prefix of the other. Prefix-free languages are used in prefix-
codes, for example variable-length Huffman codes or country calling codes. In
a prefix-code, no codeword is a proper prefix of any other codeword. Hence, a
receiver can identify each codeword without any special marker between words.
Motivated by prefix-codes, the class of prefix-free regular languages has been
recently investigated [2–4,6–10].

A subset M of a language L is called a maximal prefix-free subset (MPFS)
of L if (informally) M is prefix-free, but adding any other string from L to M
would make it no longer be prefix-free.

In [7], we have been interested in finding maximal prefix-free subsets of regu-
lar languages. We have shown that a regular MPFS of a regular language can be
obtained from a minimal deterministic finite automaton (DFA) for this language
by removing all the out-transitions from every final state. Other properties as
well as descriptional complexity of regular MPFS of regular languages have been
investigated in [7].

Here we further deepen the study of MPFS. A regular language can have a
non-regular MPFS. We focus on these non-regular MPFS of regular languages.
First we show how to decide whether or not a regular language has a non-regular
MPFS. We describe a property P of a language such that a language has a non-
regular MPFS if and only if it has the property P . The property P can be
decided by examining the minimal DFA for the language.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 229–242, 2016.
DOI: 10.1007/978-3-662-53132-7 19

230 J. Jirásek Jr.

Next, we describe a method for constructing some MPFS of a regular lan-
guage L which has the property P . For a given set of integers S we can construct a
MPFS M of L, such that two different starting sets result in two different MPFS.
This means that the language has uncountably many MPFS. Therefore, for any
countable class of languages (such as regular languages, context-free languages,
context-sensitive languages, recursively enumerable languages, etc.) there exists
a MPFS of L which does not belong to this class.

A natural question to ask is whether a MPFS belonging to a specific class
of languages exists. Using a refinement of the above method, we answer this
question for the layers of the Chomsky hierarchy: If a language has the property
P , then it has a MPFS which is context-sensitive but not context-free, a MPFS
which is recursive but not context-sensitive, and a MPFS which is not recur-
sively enumerable. Next, no regular language has a MPFS which is recursively
enumerable but not recursive. Finally, a regular language may or may not have
a context-free MPFS which is not regular. We give a sufficient and necessary
condition for minimal automata accepting languages which have one.

2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata. For details or unexplained notions, we refer to [5,11].

For a finite alphabet Σ, let Σ∗ be the set of all strings over Σ, including the
empty string ε. Let Σ+ be the set of all non-empty strings over Σ. Throughout
the paper, we assume that |Σ| ≥ 2, since every prefix-free subset of a unary
language contains at most one string.

If u, v, w are strings in Σ∗ and w = uv, then the string u is a prefix of the
string w. If, moreover, v �= ε, then u is a proper prefix of w. We denote by ≤p the
partial order on Σ∗ defined by u ≤p v iff u is a prefix of v. We also say that u and
v are comparable. For a string w, let [w] = {u ∈ Σ∗ | u ≤p w}∪{u ∈ Σ∗ | w ≤p u}
be the set of strings that are comparable to w. Note that [w] is a regular language.
Observe that if x /∈ [w], then x is incomparable with wy for any y ∈ Σ∗.

A language over Σ is prefix-free if it does not contain two distinct strings
such that one is a prefix of the other. A subset M ⊆ L is a maximal prefix-free
subset (MPFS) of L if M is prefix-free, and for each u in L there exists some w
in M such that u ∈ [w]. Equivalently, M is a MPFS of L if M is prefix-free, but
for any w ∈ L \ M the set M ∪ {w} is not prefix-free.

A MPFS is not necessarily unique, in fact it is unique if and only if L itself
is prefix-free, then M = L is the unique MPFS. A regular language may have a
non-regular MPFS: the language a∗b∗ has a MPFS {aibi | i ≥ 1}.

For a regular language L and u ∈ L, let Lu be the left quotient of L by
u, that is, Lu = {w ∈ Σ∗ | uw ∈ L}. Note that Lu is regular. For a DFA
A = (Q,Σ, ·, s, F) and for q ∈ Q, let Lq be the language accepted by A from q,
that is, Lq = {w ∈ Σ∗ | q · w ∈ F}. Note that Lq is regular.

Let q ∈ F . If Lq = {ε}, we say that q is an ε-state. Otherwise we say that q
is a final non-ε-state. It is known that the language accepted by a minimal DFA

Non-regular Maximal Prefix-Free Subsets of Regular Languages 231

A = (Q,Σ, ·, s, F) is prefix-free if and only if A has only one final state, and this
final state is an ε-state.

Proposition 1. Let L be a language accepted by a DFA A = (Q,Σ, ·, s, F). Let
A′ be an incomplete DFA obtained from A by removing all the out-transitions
from every final state of A. Then the language accepted by A′ is a regular maximal
prefix-free subset of L.

Proof. The set L(A′) is a prefix-free subset of L since every final state in A′ is
an ε-state. Let u ∈ L. Then u is accepted by A. Let p be the first final state on
the computation of A on u. Thus u = u′u′′ with s · u′ = p. Then u′ is in L(A′)
and u′ ≤p u. Hence L(A′) is maximal. �	
Proposition 2. Let L be a regular language and w ∈ L. Then we can find a
DFA recognizing a regular maximal prefix-free subset M ⊆ L with w ∈ M .

Proof. Let L′ = L \ [w]. Let M ′ be a regular MPFS of L′ (obtained from
Proposition 1). Let M = M ′ ∪ {w}. Then M is prefix-free, since no string
comparable with w is in M ′. Finally M is maximal, since every string in L is
either comparable with w, or in L′ and therefore comparable with a string in
M ′. �	

3 Characterization of Regular Languages with
Non-regular Maximal Prefix-Free Subsets

The aim of this section is to give a sufficient and necessary condition for a regular
language to have a non-regular maximal prefix-free subset.

Let L be a regular language accepted by a minimal DFA A = (Q,Σ, ·, s, F).
Since A is minimal, it may contain at most one ε-state, and we denote it by qε.
We say that a state q in Q is reachable from a cycle in A if there is a state p in
Q and two strings u and v in Σ∗, such that p ·u = p, p · v = q, and u and v differ
in the first symbol.

We are now ready to define the property P mentioned in the introduction:

Definition 3. A DFA has the property P if it contains a final non-ε-state that
is reachable from a cycle.

For short, we also say that a regular language L has the property P if the
minimal DFA accepting L has the property P .

See Fig. 1 for an illustration of this property.
Our next goal is to show that a language has a non-regular MPFS if and only

if it has the property P . First we show the “only if”:

Lemma 4. Let L be a regular language. If L has a non-regular maximal prefix-
free subset, then L has the property P .

232 J. Jirásek Jr.

s p q1 q2
x v

u

y

Fig. 1. A final non-ε-state q1 that is reachable from a cycle

Proof. We prove the inverse, that is, if L does not have the property P , every
MPFS of L is regular. Let L be accepted by a minimal DFA A = (Q,Σ, ·, s, F).
Assume that no final non-ε-state of A is reached from a cycle in A. Let M be a
maximal prefix-free subset of L. We shall show that M is regular.

If A has a final ε-state, let this state be qε. Let K = {w ∈ Σ∗ | s · w = qε}
(the language of strings accepted by A in the state qε). Further let M1 = M \K
and M2 = M ∩ K. Note that M is a disjoint union of M1 and M2. If A does not
have a final ε-state, let M1 = M .

First we show that M1 is regular. Let q be a final non-ε-state. Let Fq be the
set of strings accepted by A in q, that is, Fq = {w ∈ Σ∗ | s · w = q}. Denote by
Uq the set of strings u accepted by A in state q such that the state q does not
occur inside the computation on u, that is,

Uq = {u ∈ Σ∗ | s · u = q and s · v �= q for each proper prefix v of u}.

Notice that we must have |u| ≤ |Q| for each u in Uq because otherwise q would
be reached from a cycle of A. Thus Uq is finite.

Next, let us show that there is at most one non-empty string w with q ·w = q
such that the computation on q

w−→ q does not pass through q. Suppose for a
contradiction that w1 and w2 are two such distinct non-empty strings. Then
w1 and w2 are not comparable, thus w1 = uax and w2 = uby for two distinct
symbols a and b and some strings u, x, y. Let p = q ·u. Then we have p ·axu = p
and p · by = q, so q is reached from a cycle of A, a contradiction.

Notice that Fq = {uwi | u ∈ Uq, i ≥ 0} if such w exists, and Fq = Uq

otherwise. Further, for u ∈ Uq at most one string in {uwi | i ≥ 0} may be in
the prefix-free set M1. Since Uq is finite, M1 may therefore contain only finitely
many strings accepted in q, that is, M1 ∩ Fq is finite. The set M1 consists of
strings accepted in non-ε states, so it is a finite union of these finite sets, and
therefore M1 is regular.

Observe that K is prefix-free and no string in K is a proper prefix of another
string in L. Therefore if M is a MPFS, it must contain all the strings in K which
do not have a proper prefix in M1. Thus we have M = M1 ∪ (K \ (M1 · Σ∗)).
Since both M1 and K are regular, M must be regular as well. �	

3.1 A Maximal Prefix-Free Subset CS for a Set of Integers S

In this section we describe a method of obtaining MPFS of a regular language
with particular properties. Given a regular language L with the property P and

Non-regular Maximal Prefix-Free Subsets of Regular Languages 233

a set of non-negative integers S ⊆ N0, we want to create a MPFS of L. We want
this method to create different MPFS when starting with two different sets S.

Let L be a regular language with the property P accepted by a minimal DFA
A = (Q,Σ, ·, s, F). Let q1 be a final non-ε-state reachable from a cycle in A, and
let p ∈ Q, q2 ∈ F , x ∈ Σ∗, u, v, y ∈ Σ+ be such that p · u = p, p · v = q1, and u
and v differ in the first symbol; finally s ·x = p and q1 ·y = q2. The string x must
exist since A is minimal and therefore p is reachable from s, and y must exist
because q1 is a non-ε-state. (See Fig. 1 for an illustration.) Let S ⊆ N0. Then:

• L \ [x] is a regular language. Let C0 be a regular MPFS of this language given
by Proposition 1.

• Lx \ [u] is a regular language. Both v and vy belong to this language, since u
and v differ in the first symbol. Let C1 be a regular MPFS of this language
containing v, and let C2 be a regular MPFS of this language containing vy.
These can be obtained by Proposition 2.

• Let
CS = C0 ∪

⋃

i∈S

(xui · C1) ∪
⋃

i∈N0\S

(xui · C2)

Lemma 5. Let L be a regular language with the property P , and let S ⊆ N0.
Then the set CS obtained as above is a maximal prefix-free subset of L. Further-
more, if T ⊆ N0 and S �= T , then CS �= CT .

Proof. (1) CS is a subset of L: C0 ⊆ L. Next, for i ≥ 0 we have s ·xui = p = s ·x,
and both C1 and C2 are subsets of Lx. Therefore xui · C1 ⊆ L and xui · C2 ⊆ L.
So CS ⊆ L.

(2) CS is prefix-free: C0 is prefix-free. C0 does not contain any string from
[x], thus all strings from xui · C1 (resp. C2) are incomparable with all strings in
C0. For a given i ≥ 0, both xui · C1 and xui · C2 are prefix-free, since C1 and C2

are prefix-free and do not contain any string from [u]. Given i < j, wi = xuici,
and wj = xujcj , wi, wj ∈ CS , and ci, cj in C1 or C2 as needed, we have ci /∈ [u]
and wj = xuiuz, thus wi and wj are incomparable. Therefore CS is prefix-free.

(3) CS is maximal: Consider a string w ∈ L. There are four possible cases:

• w /∈ [x]. Then there is a w′ comparable with w in C0, since C0 is a MPFS.
• w ≤p x. Then w ≤p xv and w ≤p xvy. One of these is in CS , which one

depends on whether 0 ∈ S.
• w = xuiz, i ≥ 0, z ≤p u. Then w ≤p xui+1v, resp. xui+1vy, one of which is in

CS depending on whether i + 1 ∈ S.
• w = xuiz, i ≥ 0, z /∈ [u]. We have s · xui = p = s · x, therefore z ∈ Lx. Since

C1 and C2 are MPFS, there is a z′ comparable with z in either C1 or C2,
depending on whether i ∈ S. Then w = xuiz is comparable with xuiz′ ∈ CS .

In every case we can find a string in CS comparable with w, so CS is a MPFS
of L.

(4) CS �= CT . Without loss of generality, let i ∈ S, i /∈ T . Then we have
xuiv ∈ CS and xuivy ∈ CT . Since CS is prefix-free, xuivy /∈ CS , therefore
CS �= CT . This concludes the proof of the lemma. �	

234 J. Jirásek Jr.

Corollary 6. Since there are uncountably many sets of integers, Lemma 5 gives
us uncountably many MPFS of L. Therefore, if L has the property P , for any
countable class of languages (such as regular, context-free, recursively enumer-
able, etc.) there must exist a MPFS of L which does not belong in this class.

We can now prove the main goal of this section:

Theorem 7. A regular language L has a non-regular maximal prefix free subset
if and only if L has the property P .

Proof. Immediate from Lemma 4 and Corollary 6. �	

4 Maximal Prefix-Free Subsets and Chomsky Hierarchy

In this section we further investigate non-regular maximal prefix-free subsets of
regular languages. We have already shown that if a language has the property P ,
then it has uncountably many MPFS. However, it might be possible that all of
these MPFS are incredibly complex, maybe not even recursively enumerable. In
this section we show that we can always find MPFS of “reasonable” complexity,
specifically those belonging to certain levels of the Chomsky hierarchy.

Let Reg,CF,CS,Rec, and RE denote the classes of regular, context-free,
context-sensitive, recursive, and recursively enumerable languages, respectively.
Recall that these classes are recognized by regular automata, context-free gram-
mars, linear bounded automata, Turing machines that halt on every input, and
Turing machines, respectively.

4.1 MPFS in CS \ CF, Rec \ CS, and Not in RE

We use the method given in Lemma 5 to find MPFS which are context-sensitive
but not context-free, and recursive but not context-sensitive.

Theorem 8. Let L be a regular language with the property P . Then L has a
maximal prefix-free subset which is context-sensitive, but not context-free.

Proof. We continue using the notation of Lemma 5 with S = {2k | k ≥ 0}. We
shall show that CS is context-sensitive, but not context-free.

Since the sets C0, C1, and C2 are regular languages over Σ, there exist regular
grammars Gi = (Ni,Σ, Si, Pi) such that L(Gi) = Ci for i = 0, 1, 2. Next, the
language K = {a2k | k ≥ 0} over a unary alphabet {a} is context-sensitive, and
its complement Kc is context-sensitive as well. Hence there are context-sensitive
grammars G3 = (N3, {a}, S3, P3) and G4 = (N4, {a}, S4, P4) with L(G3) = K
and L(G4) = Kc.

We can assume that the sets of non-terminals Ni (0 ≤ i ≤ 4) are disjoint.
Let A and S be new non-terminals which are not in any Ni. In G3 and G4,
we replace all the occurrences of the terminal a with the non-terminal A, and
denote the corresponding set of new productions by P ′

3 and P ′
4. Define a grammar

G = (N,Σ, S, P), where N = N0 ∪ N1 ∪ N2 ∪ N3 ∪ N4 ∪ {A,S}; P = P0 ∪ P1 ∪
P2 ∪ P ′

3 ∪ P ′
4 ∪ P ′, where P ′ contains the following productions:

Non-regular Maximal Prefix-Free Subsets of Regular Languages 235

• S → S0;
• S → xS3S1;
• S → xS4S2; and
• A → u.

Then L(G) = CS , and since u �= ε, the grammar G is context-sensitive. Hence
the set CS is context-sensitive.

Now we prove that CS is not context-free. Assume for a contradiction that
CS is context-free. Recall that v /∈ C2 and u and v differ in the first symbol.
Therefore we have CS ∩ {xu�v | � ≥ 0} = {xu2k

v | k ≥ 0}. Since CF is closed
under intersection with regular languages, the latter set should be context-free.
However, the pumping lemma for context-free languages gives a pumping con-
stant p and a string w in this language with |xu2p

v| < |w| < |xu2p+1
v|, which is

a contradiction. �	
Theorem 9. Let L be a regular language with the property P . Then L has a
maximal prefix-free subset which is recursive, but not context-sensitive.

Proof. Let Σ be an alphabet with |Σ| ≥ 2 and a ∈ Σ. Let A1, A2, A3, . . . be
the list of halting Turing machines for context-sensitive languages over Σ; cf. [5,
Theorem9.8]. Using the notation of Lemma 5, now let S = {k ≥ 0 | ak /∈ L(Ak)}.
Then the set {ak | k ∈ S} is accepted by the Turing decider TS described by
Algorithm 1:

Algorithm 1. Turing decider TS for {ak | k ∈ S}
1 if w /∈ a∗ then REJECT
2 else
3 k ← |w|
4 simulate Ak on w
5 if Ak on w accepts then REJECT
6 else ACCEPT

Next, CS is accepted by the Turing decider described by Algorithm 2:

Algorithm 2. Turing decider for CS

1 if w ∈ C0 then ACCEPT

2 if there is no k ≥ 0 with w = xukw′ and u �p w′ then REJECT
3 else execute TS on ak

4 if TS accepts ak then
5 if w′ ∈ C1 then ACCEPT
6 else REJECT
7 else
8 if w′ ∈ C2 then ACCEPT
9 else REJECT

236 J. Jirásek Jr.

Now we prove that CS is not context-sensitive. Assume for a contradiction
that CS is context-sensitive. Recall that v /∈ C2 and u and v differ in the first
symbol. Therefore we have CS ∩ {xu�v | � ≥ 0} = {xukv | k ∈ S}. Since CS is
closed under intersection with regular languages, the latter set should also be
context-sensitive. Let T be a linear bounded automaton for {xukv | k ∈ S}. We
can describe a linear bounded automaton T ′ for {ak | k ∈ S}:

Algorithm 3. Linear bounded automaton T ′ for {ak | k ∈ S}
1 if v /∈ a∗ then REJECT
2 else
3 write the string x on the work tape
4 for every a on input, write the string u on the work tape
5 write the string v on the work tape
6 execute the linear bounded automaton T on the string xukv
7 if T accepts then ACCEPT
8 else REJECT

Since x, u, and v are constant strings, the length of xukv is linear in k. Next,
the automaton T is linear bounded, so it uses space linear in |xukv|. It follows
that T ′ is linear bounded. Therefore there is some i such that L(T ′) = L(Ai). If
Ai rejects ai, then i ∈ S, so ai should be accepted by T ′. If Ai accepts ai, then
i /∈ S, and T ′ should not accept ai. In either case we arrive at a contradiction
with L(T ′) = L(Ai). It follows that the set CS is not context-sensitive. �	
Theorem 10. Let L be a regular language with the property P . Then L has a
maximal prefix-free subset which is not recursively enumerable.

Proof. Immediate from Corollary 6. �	

4.2 MPFS in RE \ Rec

In this subsection we prove that no regular language has a maximal prefix-free
subset which is recursively enumerable but not recursive.

Theorem 11. Let L be a regular language. Let M be a recursively enumerable
maximal prefix-free subset of L. Then M is recursive.1

Proof. We describe an algorithm for a Turing decider which accepts strings w
such that w ∈ M .

First, if w /∈ L, we immediately REJECT. Now let w ∈ L. Since M is
recursively enumerable, we can enumerate all strings u of M until we find a
string with u ≤p w or w ≤p u. Such a string u must exist, since w ∈ L and M
is a MPFS of L. Therefore the computation halts after a finite time.

Then if u = w we have w ∈ M , otherwise w /∈ M since M is prefix-free. �	
1 In the special case of L = Σ∗, this corresponds to Lemma 10 of [1].

Non-regular Maximal Prefix-Free Subsets of Regular Languages 237

4.3 MPFS in CF \ Reg

Finally, we investigate maximal prefix-free subsets belonging to CF \ Reg. We
show that a regular language with the property P may or may not have a MPFS
in this class. We give a sufficient and necessary condition for a language to have
such a MPFS. This condition can be decided by examining the minimal DFA
for the language.

Example 12. The regular language a∗b∗ has a MPFS {aibi | i ≥ 1}. This set is
context-free, but not regular. However, it can be shown that the language given
by the regular expression a∗(b + bb) has the property P , but does not have any
MPFS in CF \ Reg. The proof can be obtained using Lemma 18 below.

Let us define a new property P2.

Definition 13. A DFA A = (Q,Σ, ·, s, F) has the property P2, if there exist
p, q ∈ Q, x ∈ Σ∗, u, y, v ∈ Σ+, such that all of the following holds:

• s · x = p, p · u = p, p · y = q, q · v = q
• u and y differ in the first symbol
• either q is a final state, or Lq \ [v] is not prefix-free.

We say that a regular language L has the property P2, if the minimal DFA
accepting L has the property P2.

See Fig. 2 for an illustration.

s p qx y

u v

Fig. 2. Sketch of a DFA for a language with the property P2

In the following we show that a regular language L has a MPFS which is
context-free, but not regular, if and only if L has the property P2.

Lemma 14. Let L be a regular language with the property P2. Then L has a
maximal prefix-free subset which is context-free, but not regular.

Proof. Let A, p, q, x, v, y, and u be as in Definition 13. Define the following:

• Let C0 be a regular MPFS of L \ [x].
• Let C1 be a regular MPFS of (Lp \ [u]) \ [y].
• (Case 1) q ∈ F

• Let C2 be a regular MPFS of Lq \ [v].
• Let

C = C0 ∪ {xui | i ≥ 0} · C1 ∪ {xuiyvi | i ≥ 0} ∪ {xuiyvj | 0 ≤ j < i} · C2

238 J. Jirásek Jr.

• (Case 2) q /∈ F , therefore Lq \ [v] is not prefix-free.
• Let z, z′ be two strings in Lq \ [v] such that z is a proper prefix of z′.
• Let C2 be a regular MPFS of Lq \ [v] containing z, and let C3 be a regular

MPFS of Lq \ [v] containing z′.
• Let

C = C0 ∪ {xui | i ≥ 0} · C1 ∪ {xuiyvi | i ≥ 0} · C2 ∪ {xuiyvj | i, j ≥ 0; i �= j} · C3

We can obtain all the required MPFS using Propositions 1 and 2.
The proof that C is a MPFS of L is very similar to the proof of Lemma 5,

thus we omit it here. See Appendix for the full proof. Here we show that C is in
CF \ Reg.

C is obtained as a combination of unions and concatenations of context-free
languages, thus C is in CF.

Let us show that C is not regular.
(Case 1) Consider the set C ∩ {xuiyvj | i, j ≥ 0}. We have ε /∈ C2, so this

set is equal to {xuiyvi | i ≥ 0}, which is not regular.
(Case 2) Consider the set C ∩ {xuiyvjz | i, j ≥ 0}. We have z /∈ C3, so this

set is equal to {xuiyviz | i ≥ 0}, which is not regular.
In both cases we have an intersection of C and a regular language. Since

regular languages are closed under intersection, C is not regular. �	
Lemma 15. Let L be a regular language with a maximal prefix-free subset which
is context-free, but not regular. Then L has the property P2.

Proof. For the entirety of this proof, let L be accepted by the minimal DFA
A = (Q,Σ, ·, s, F), and let M be a MPFS of L in CF \ Reg. For a contradiction,
assume that L does not have the property P2.

If A has a final ε-state, let this state be qε. Let K = {w ∈ Σ∗ | s · w = qε}
(the language of strings accepted by A in the state qε). Further let M1 = M \K
and M2 = M ∩ K. Note that M is a disjoint union of M1 and M2, and both M1

and M2 are context-free. If A does not have a final ε-state, let M1 = M .
First let us prove that M1 is regular.
Let w ∈ M1 and let the computation of A on w = a1a2 · · · ak; ai ∈ Σ, be

s = q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−→ qk; qk ∈ F \ {qε}.

Then we can prove the following:

Lemma 16. For every state qi, 0 ≤ i ≤ k, there is at most one non-empty string
sqi

such that qi · sqi
= qi, and the computation qi

sqi−−→ qi does not pass through
qi except for the first and last state.

Lemma 17. Let AC(qk) = {w′ ∈ Σ∗ | s · w′ = qk, and the computation s
w′
−→ qk

does not contain any state more than once}. Let � be the first index such that
q� occurs in the computation on w more than once, if such a state exists. Then
w = rsi

q�
t, where r, t ∈ Σ∗, i ≥ 0, and rt ∈ AC(qk).2

2 AC for acyclic. The computation does not contain a cycle.

Non-regular Maximal Prefix-Free Subsets of Regular Languages 239

Lemma 18. Let R, S, and T be finite languages. Let L ⊆ {rsit | r ∈ R, s ∈
S, t ∈ T, i ≥ 0} be a context-free language. Then L is regular.

See Appendix for a proof of these three lemmas.
Now we are ready to show that M1 is regular. Let w ∈ M1. If w ∈ AC(qk),

let r = ε, t = w, i = 0. Otherwise there is a state in the computation on w that
occurs more than once, and let r, sq�

, t, i be as in Lemma 17. Every w ∈ M1 can
therefore be written as rsi

pt such that rt ∈ AC(q) for some p, q ∈ Q. Since AC(q)
is finite for every state q, there can only be finitely many distinct strings r and
t used among all w ∈ M1. Since sp is unique for every state p, there can be only
finitely many distinct strings sp used among all w ∈ M1. We know that M1 is
context-free, and thus it fulfills all the conditions for Lemma 18. Therefore M1

is regular. We can show that M is also regular in the same way as in Lemma 4.
We have arrived at a contradiction with the fact that M ∈ CF \ Reg, and

therefore L must have the property P2. �	
Theorem 19. Let L be a regular language. Then L has a maximal prefix-free
subset which is context-free, but not regular, if and only if L has the property P2.

Proof. Immediate from Lemmas 14 and 15. �	

5 Conclusions

We have investigated the existence of non-regular maximal prefix-free subsets
of regular languages. We have defined a property P : The minimal DFA for the
regular language L has a final non-ε-state which is reachable from a cycle. We
have shown that if a language L does not have the property P , then L has only
regular MPFS. On the other hand, if L has the property P , then it always has
all of the following:

• A MPFS in the class CS \ CF.
• A MPFS in the class Rec \ CS.
• A MPFS which is not recursively enumerable.
• Uncountably many MPFS.

In the first two cases we have given a description of such MPFS as a context-
sensitive grammar, resp. Turing decider.

Further we have shown that no regular language has a MPFS in the class
RE \ Rec.

Finally, for languages which have the property P , we have defined a second
property P2, such that a language has the property P2 if and only if it has a
MPFS in the class CF \ Reg.

Both properties P and P2 can be determined by examining the minimal DFA
for the language.

240 J. Jirásek Jr.

Appendix

Lemma 14. Let L be a regular language with the property P2. Then L has a
maximal prefix-free subset which is context-free, but not regular.

Proof. Here we show that the set C obtained as described in Lemma 14 is a
MPFS of L. The proof of the lemma in the article shows that C ∈ CF \ Reg.

Let D1 = {xui | i ≥ 0} · C1. In Case 1, let D2 = {xuiyvi | i ≥ 0}, D3 =
{xuiyvj | i ≥ 1, 0 ≤ j < i} · C2. In Case 2, let D2 = {xuiyvi | i ≥ 0} · C2,
D3 = {xuiyvj | i, j ≥ 0; i �= j} · C3.

(1) C ⊆ L: C0 ⊆ L. We have s · xui = p, and C1 ⊆ Lp. Next, s · xuiyvj = q
for i, j ≥ 0. In Case 1, q ∈ F and C2 ⊆ Lq. In Case 2, C2, C3 ⊆ Lq. Therefore
C ⊆ L.

(2) C is prefix-free: C0 is prefix-free. C0 does not contain any string in [x],
therefore strings in C0 are incomparable with any string in D1 ∪ D2 ∪ D3.

Since C1 is prefix-free and does not contain any strings in [u], D1 is prefix-
free as well. C1 does not contain any string in [u] or [y], so strings in D1 are
incomparable with any string in D2 ∪ D3.

Since C2 and C3 are prefix-free and do not contain any string in [v], for a
given i, j ≥ 0 the languages xuiyvj · C2 and xuivj · C3 are also prefix-free. Let
i1 < i2. Then xui1yv and xui2yv are incomparable, since u and y differ in the first
symbol. Let j1 < j2. Then any string in uxiyvj1 · C2, resp. C3 is incomparable
with any string in uxiyvj2 · C2, resp. C3, since no string in C2, resp. C3 is in [v].

(3) C is maximal. Let w ∈ L. Consider the following cases:

• w /∈ [x]. Then w is comparable to a string in C0.
• w ≤p x. Then in Case 1 w ≤p xy ∈ D2, in Case 2 w ≤p xyz ∈ D2.
• w = xuiw1, i ≥ 0, w1 /∈ [u] ∪ [y]. Then w1 is comparable to a string w′

1 in C1

and w is comparable to xuiw′
1 ∈ D1.

• w = xuiw1, i ≥ 0, w1 ≤p u. Then in Case 1 w ≤p xui+1yvi+1 ∈ D2, in Case 2
w ≤p xui+1yvi+1z ∈ D2.

• w = xuiw1, i ≥ 0, w1 ≤p y. Then in Case 1 w ≤p xuiyvi ∈ D2, in Case 2
w ≤p xuiyviz ∈ D2.

• w = xuiyvjw2, i, j ≥ 0, w2 /∈ [v].
• Case 1: If j ≥ i, then w ≥p xuiyvi ∈ D2. Otherwise w2 is comparable to

a w′
2 ∈ C2 and w is comparable to xuiyvjw′

2 ∈ D3.
• Case 2: If j = i, then w2 is comparable to a w′

2 ∈ C2 and w is comparable
to xuiyviw′

2 ∈ D2. Otherwise w2 is comparable to a w′′
2 ∈ C3 and w is

comparable to xuiyvjw′′
2 ∈ D3.

• w = xuiyvjw2, i, j ≥ 0, w2 ≤p v.
• Case 1: If j ≥ i, then w ≥p xuiyvi ∈ D2. Otherwise w ≤p xuiyvi ∈ D2.
• Case 2: w ≤p xuiyvi+j+1z′ ∈ D3.

Therefore for any w ∈ L there is a w′ ∈ C such that w is comparable to w′.
Then C is a MPFS. �	

Non-regular Maximal Prefix-Free Subsets of Regular Languages 241

In the following, we use the notation introduced in Lemma 15.
Lemma 16. For every state qi, 0 ≤ i ≤ k, there is at most one non-empty string
sqi

such that qi · sqi
= qi, and the computation qi

sqi−−→ qi does not pass through
qi except for the first and last state.

Proof. For a contradiction, let qi · s1 = qi and qi · s2 = qi for non-empty s1 �= s2,
where the computations on s1 and s2 do not pass through qi. Then s1 and s2
are not comparable, and we have s1 = s′as′

1 and s2 = s′bs′
2 for s, s′

1, s
′
2 ∈ Σ∗

and a, b ∈ Σ, a �= b. Let q0 · x′ = qi and qi · z′ = qk.
Let p = q = qi · s′, x = x′s′, , u = v = as′

1s
′, y = bs′

2s
′. Then L has the

property P2 since either q = qi is a final state if i = k (Case 1), or Lq \ [v] is not
prefix-free, since q · bs′

2s
′z′ = qf and qf is a final non-ε state (Case 2).

Lemma 17. Let AC(qk) = {w′ ∈ Σ∗ | s · w′ = qk, and the computation s
w′
−→ qk

does not contain any state more than once}. Let � be the first index such that
q� occurs in the computation on w more than once, if such a state exists. Then
w = rsi

q�
t, where r, t ∈ Σ∗, i ≥ 0, and rt ∈ AC(qk).

Proof. Let q� be the first and q�′ be the last occurrence of the state q� in the com-
putation on w. By Lemma 16, the only possible string that can be read between
two consecutive passes through q� must be sq�

. The computation therefore looks
like this:

q0
a1−→ q1

a2−→ · · · a�−→ q�

sq�−−→ q�

sq�−−→ · · · sq�−−→ q�′
a�′+1−−−→ q�′+1

a�′+2−−−→ · · · ak−→ qk

Let r = a1a2 · · · a� and t = a�′+1a�′+2 · · · ak. Let us show that rt ∈ AC(qk); that
is, the states q0, q1, . . . , q�−1, q�′+1, . . . , qk are all distinct.

We know that q� is the first state which occurs in the computation more than
once, therefore if two states qi and qj for i < j among the above are equivalent,
it must be that �′ < i < j ≤ k.

Thus the computation goes through a cycle q�

sq�−−→ q�, potentially several
times. After that, the computation goes through the cycle qi

sqi−−→ qi. This cycle
does not contain q�, since q′

� is the last occurrence of this state and �′ < i. The
computation must therefore “leave” the q� cycle at some point. Let qp be the
last state in the computation that follows this cycle. Without further technical
details, let us observe that we have p = qp, q = qi, x = a1a2 · · · ap, u = sqp

,
y = ap+1ap+2 · · · ai, v = sqi

and L has the property P since either q = qi = qk

is final, or the final non-ε state qk is reachable from qi and thus Lqi
is not

prefix-free.
This is a contradiction with the initial assumption that the language L does

not have the property P . �	
Lemma 18. Let R, S, and T be finite languages. Let L ⊆ {rsit | r ∈ R, s ∈
S, t ∈ T, i ≥ 0} be a context-free language. Then L is regular.

242 J. Jirásek Jr.

Proof. It holds that:
L =

⋃

r∈R
s∈S
t∈T

{rsit | rsit ∈ L},

that is, L is a union of finitely many languages of the form {rsit | rsit ∈ L}
for some specific r, s, t. For each of these languages we have {rsit | rsit ∈ L} =
r · {si | rsit ∈ L} · t = r · (r\L/t) · t, where \ and / are the left and right quotient
operation, respectively. This set is context-free, since L is context-free and CF
is closed under concatenation and left and right quotients by regular languages.

It follows that r\{rsit | rsit ∈ L}/t = {si | rsit ∈ L} is also context-free,
and since CF is closed under inverse homomorphism, the set {ai | rsit ∈ L}
is context-free as well. However, the latter language is unary, and every unary
context-free language is also regular. Therefore every language {rsit | rsit ∈
L} = r · {si | rsit ∈ L} · t is regular as well, and L is a union of finitely many
regular languages. Hence L is regular. �	

References

1. Calude, C.S., Staiger, L.: On universal computably enumerable prefix codes. Math.
Struct. Comput. Sci. 19(1), 45–57 (2009)

2. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inform. 90(1–2), 93–106
(2009)

3. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free reg-
ular languages. In: Automata, Formal Languages, and Related Topics - Dedicated
to Ferenc Gécseg on the Occasion of his 70th Birthday, pp. 99–115 (2009)

4. Han, Y.-S., Salomaa, K., Yu, S.: State complexity of combined operations for prefix-
free regular languages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.)
LATA 2009. LNCS, vol. 5457, pp. 398–409. Springer, Heidelberg (2009)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Languages and
Computation. Addison-Wesley, Reading (1979)

6. Jirásek, J., Jirásková, G.: Cyclic shift on prefix-free languages. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 246–257. Springer, Heidelberg
(2013)

7. Jirásek, J.Š., Šebej, J.: Prefix-free subsets of regular languages and descriptional
complexity. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp.
129–140. Springer, Heidelberg (2015)

8. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In: Pro-
ceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Sys-
tems, DCFS 2010, Saskatoon, Canada, 8–10th, pp. 197–204, August 2010

9. Krausová, M.: Prefix-free regular languages: closure properties, difference, and left
quotient. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 114–122. Springer, Heidelberg (2012)

10. Palmovský, M., Šebej, J.: Star-complement-star on prefix-free languages. In:
Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 231–242.
Springer, Heidelberg (2015)

11. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

Operations on Unambiguous Finite Automata

Jozef Jirásek Jr.1,2, Galina Jirásková1(B), and Juraj Šebej2

1 Mathematical Institute, Slovak Academy of Sciences, Grešákova 6,
040 01 Košice, Slovakia

jirasekjozef@gmail.com, jiraskov@saske.sk
2 Faculty of Science, Institute of Computer Science, P.J. Šafárik University,

Jesenná 5, 040 01 Košice, Slovakia
juraj.sebej@gmail.com

Abstract. A nondeterministic finite automaton is unambiguous if it has
at most one accepting computation on every input string. We investigate
the complexity of basic regular operations on languages represented by
unambiguous finite automata. We get tight upper bounds for intersection
(mn), left and right quotients (2n − 1), positive closure (3

4
· 2n − 1), star

(3
4
· 2n), shuffle (2mn − 1), and concatenation (3

4
· 2m+n − 1). To prove

tightness, we use a binary alphabet for intersection and left and right quo-
tients, a ternary alphabet for star and positive closure, a five-letter alpha-
bet for shuffle, and a seven-letter alphabet for concatenation. We also get
some partial results for union and complementation.

1 Introduction

A nondeterministic machine is unambiguous if it has at most one accepting
computation on every input string. Ambiguity was studied intensively mainly
in connection with context-free languages and it is well known that the classes
of ambiguous, unambiguous, and deterministic context-free languages are all
different. Ambiguity in finite automata was first considered by Schmidt [21] in his
unpublished thesis, where he obtained a lower bound 2Ω(

√
n) on the conversion

of unambiguous finite automata into deterministic finite automata, as well as
for the conversion of nondeterministic finite automata into unambiguous finite
automata. He also developed an interesting lower bound method for the size of
unambiguous automata based on the rank of certain matrices.

Stearns and Hunt [23] provided polynomial-time algorithms for the equiva-
lence and containment problems for unambiguous finite automata (UFAs), and
they extended them to ambiguity bounded by a fixed integer k. Chan and Ibarra
[5] provided a polynomial space algorithm to decide, given a nondeterministic
finite automaton (NFA), whether it is finitely ambiguous. They also showed that
it is PSPACE-complete to decide, given an NFA M and an integer k, whether
M is k-ambiguous.

G. Jirásková—Research supported by VEGA grant 2/0084/15 and grant APVV-15-
0091.
J. Šebej—Research supported by VEGA grant 1/0142/15 and grant APVV-15-0091.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 243–255, 2016.
DOI: 10.1007/978-3-662-53132-7 20

244 J. Jirásek Jr. et al.

Ibarra and Ravikumar [12] defined the ambiguity function aM (n) : N → N
of an NFA M such that aM (n) is the maximum number of distinct accepting
computations of M on any string of length n, and they proved that the exponen-
tial ambiguity problem is decidable for NFAs. Weber and Seidl [24] showed that
if an n-state NFA is finitely ambiguous, then it is at most 5n/2nn-ambiguous.
Allauzen et al. [1] considered ε-NFAs, and they showed that, given a trim ε-cycle-
free NFA A, it is decidable in time that is cubic in the number of transitions of
A, whether A is finitely, polynomially, or exponentially ambiguous.

Ravikumar and Ibarra [20] considered the relationship between different
types of ambiguity of NFAs to the succinctness of their representations, and
they provided a complete picture for unary and bounded languages. Exponen-
tially and polynomially ambiguous NFAs were separated by Leung [15] by pro-
viding, for every n, an exponentially ambiguous n-state NFA such that every
equivalent polynomially ambiguous NFA requires 2n − 1 states.

The UFA-to-DFA tradeoff was improved to the optimal bound 2n by
Leung [16]. He described, for every n, a binary n-state UFA with a unique initial
state whose equivalent DFA requires 2n states. A similar binary example with
multiple initial states was given by Leiss [14], and a ternary one was presented
already by Lupanov [17]; note that the reverse of Lupanov’s ternary witness for
NFA-to-DFA conversion is deterministic. Leung [16] elaborated Schmidt’s lower
bound method for the number of states in a UFA. He considered, for a lan-
guage L, a matrix whose rows are indexed by strings xi and columns by strings
yi, and the entry in row xi and column yj is 1 if xiyj ∈ L and it is 0 otherwise. He
showed that the rank of such a matrix provides a lower bound on the number of
states in any UFA for L. Using this method, he was able to describe for every n
an n-state finitely ambiguous NFA, whose equivalent UFA requires 2n −1 states.

A lower bound method was further elaborated by Hromkovič et al. [11]. They
used communication complexity to show that so-called exact cover of all 1’s with
monochromatic sub-matrices in a communication matrix of a language provides
a lower bound on the size of any UFA for the language. This allowed them to
simplify proofs presented in [21,23]. Using communication complexity methods,
Hromkovič and Schnitger [10] showed a separation of finitely and polynomially
ambiguous NFAs, and even proved a hierarchy for polynomial ambiguity.

A survey paper on unambiguity in automata theory was presented by Col-
combet [6], where he considered word automata, tropical automata, infinite tree
automata, and register automata. He showed that the notion of unambiguity
is not well understood so far, and that some challenging problems, including
complementation of UFAs, remain open.

Unary unambiguous automata were examined by Okhotin [19], who proved
that the tight upper bound for UFA-to-DFA conversion in the unary case is given
by a function in eΘ(3

√
n(lnn)2), while the trade-off for NFA-to-UFA conversion is

e
√

n lnn(1+o(1)). He also considered the operations of star, concatenation, and
complementation on unary UFA languages, and obtained the tight upper bound
(n−1)2 +1 for star, an upper bound mn for concatenation which is tight if m,n
are relatively prime, and a lower bound n2−ε for complementation.

Operations on Unambiguous Finite Automata 245

In this paper, we continue this research and study the complexity of basic
regular operations on languages represented by unambiguous finite automata.
First, we restate the lower bound method from [16,21]. Using the notions of
reachable and so-called co-reachable states in an NFA N , we assign a matrix
MN to the NFA N in such a way that the rank of MN provides a lower bound
on the number of states in any UFA for the language L(N). We use this to
get all our lower bounds. To get upper bounds, we first construct an NFA for
the language resulting from an operation, and then we apply the (incomplete)
subset construction to this NFA to get an incomplete DFA, so also UFA, for the
resulting language.

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages
and automata theory. For details, the reader may refer to [22].

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ,Δ, I, F),
where Q is a finite nonempty set of states, Σ is a finite nonempty input alphabet,
Δ ⊆ Q × Σ × Q is the transition relation, I ⊆ Q is the set of initial states,
and F ⊆ Q is the set of final states. Each element (p, a, q) of Δ is called a
transition of N . A computation of N on an input string a1 · · · an is a sequence
of transitions (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ Δ∗. The computation is
accepting if q0 ∈ I and qn ∈ F ; in such a case we say that the string a1 · · · an

is accepted by N . The language accepted by the NFA N is the set of strings
L(N) = {w ∈ Σ∗ | w is accepted by N}.

An NFA N = (Q,Σ,Δ, I, F) is unambiguous (UFA) if it has at most one
accepting computation on every input string, and it is deterministic (DFA) if
|I| = 1 and for each state p in Q and each symbol a in Σ, there is at most one
state q in Q such that (p, a, q) is a transition of N . Let us emphasize that we
allow NFAs to have multiple initial states, and DFAs to be incomplete.

The transition relation Δ may be viewed as a function from Q × Σ to 2Q,
which can be extended to the domain 2Q × Σ∗ in the natural way. We denote
this function by ·. Using this notation we get L(N) = {w ∈ Σ∗ | I · w ∩ F �= ∅}.

Every NFA N = (Q,Σ, ·, I, F) can be converted to an equivalent incomplete
DFA N ′ = (2Q\{∅}, Σ, ·′, I, F ′), where F ′ = {R ∈ 2Q\{∅} | R ∩ F �= ∅}, and for
each R in 2Q\{∅} and each a in Σ, the partial transition function ·′ is defined
as follows: R ·′ a = R · a if R · a �= ∅ and R ·′ a is undefined otherwise. We call
the DFA N ′ the incomplete subset automaton of NFA N . Since every incomplete
DFA is a UFA, we get the following observation.

Proposition 1. If a language L is accepted by an n-state NFA, then L is
accepted by a UFA of at most 2n − 1 states. 	

The reverse wR of a string w is defined by εR = ε and (va)R = avR where
a ∈ Σ and v ∈ Σ∗. The reverse of a language L is the language LR defined by
LR = {wR | w ∈ L}. The reverse of an automaton N = (Q,Σ, ·, I, F) is the
NFA NR obtained from N by swapping the role of initial and final states and

246 J. Jirásek Jr. et al.

by reversing all the transitions. Formally, we have NR = (Q,Σ, ·R, F, I), where
q ·R a = {p ∈ Q | q ∈ p · a} for each state q in Q and each symbol a in Σ. The
NFA NR accepts the reverse of the language L(N).

Let N = (Q,Σ, ·, I, F) be an NFA. We say that a set S is reachable in N
if there is a string w in Σ∗ such that S = I · w. Next, we say that a set T is
co-reachable in N if T is reachable in NR. In what follows we are interested in
non-empty reachable and co-reachable sets, and we use the following notation:

R = {S ⊆ Q | S is reachable in N and S �= ∅}, (1)
C = {T ⊆ Q | S is co-reachable in N and T �= ∅}. (2)

The next observation uses the notions of reachable and co-reachable sets in
an NFA to get a characterization of unambiguous automata.

Proposition 2. Let R and C be the families of non-empty reachable and co-
reachable sets in an NFA N . Then N is unambiguous if and only if |S ∩ T | ≤ 1
for each S in R and each T in C. 	

If NR is deterministic, then each co-reachable set in N is of size one, and we
get the following result.

Corollary 3. Let N be an NFA. If NR is deterministic, then N is unambiguous.

Recall that the state complexity of a regular language L, sc(L), is the small-
est number of states in any complete DFA accepting the language L. The state
complexity of a regular operation is the maximal state complexity of languages
resulting from the operation, considered as the function of state complexities of
the arguments. The nondeterministic state complexity of languages and opera-
tions is defined analogously using NFA representation of languages. We define
the unambiguous state complexity of a regular language L, usc(L), as the smallest
number of states in any UFA for L.

To prove that a DFA is minimal, we only need to show that all its states are
reachable from the initial state, and that no two distinct states are equivalent. To
prove minimality of NFAs, a fooling set lower bound method may be used [2,8].
To prove a lower bound for the size of a UFA, a method based on ranks of certain
matrices was developed by Schmidt [21, Theorem 3.9], Leung [16, Theorem 2] and
Hromkovič et al. [11]. We use it in the following statement.

Proposition 4 ([11,16,21]). Let L be accepted by an NFA N . Let R and C
be the families of non-empty reachable and co-reachable sets in N , respectively.
Let MN be the matrix in which the rows are indexed by sets in R, the columns
are indexed by sets in C, and in the entry (S, T), we have 0/1 if S and T are/are
not disjoint. Then usc(L) ≥ rank(MN). 	

Proof. Let A be a minimal UFA accepting L. Consider a matrix M ′

A, in which
rows are indexed by the states of A and columns are indexed by strings generating
the co-reachable sets in C. The entry (q, w) is 1 if wR is accepted by A from q, and
it is 0 otherwise. Then every row of MN is a sum of the rows of M ′

A corresponding

Operations on Unambiguous Finite Automata 247

to the states in S: Notice that since A is a UFA, for every column there is at most
one such row that contains a 1. Thus every row of MN is a linear combination
of rows in M ′

A, and therefore rank(MN) ≤ rank(M ′
A) ≤ usc(L). 	

Throughout our paper, we use the following observation from [15] and its
corollary stated in the proposition below.

Lemma 5 ([15, Lemma 3]). Let |Q| = n and Mn be a 2n − 1 × 2n − 1 matrix
over the field with characteristic 2 with rows and columns indexed by a non-
empty subsets of Q such that Mn(S, T) = 1 if S ∩ T �= ∅ and Mn(S, T) = 0
otherwise. Then the rank of Mn is 2n − 1. 	

Proposition 6. Let L be accepted by an NFA N . Let R be the family of all
non-empty reachable sets in N . If each non-empty set is co-reachable in NFA N ,
then usc(L) ≥ |R|. 	

Proof. Let N = (Q,Σ, ·, I, F) be an NFA for L with |Q| = n. Consider the
matrix MN given by Proposition 4. Notice that MN contains |R| rows of the
matrix Mn given in Lemma 5. By Lemma 5, the rank of Mn is 2n −1, so the rows
of Mn are linearly independent. Therefore all the rows of MN must be linearly
independent, and we have rank(MN) = |R|. Hence usc(L) ≥ rank(MN) = |R|
by Proposition 4. 	

3 Operations on Unambiguous Finite Automata

We start with the reversal and intersection operations. Then we continue with
left and right quotients. Notice that if an NFA N is unambiguous then NR is
also unambiguous. Hence we get the following result.

Theorem 7 (Reversal). Let L be a regular language. Then usc(LR) = usc(L).

Theorem 8 (Intersection). Let K and L be languages over Σ with usc(K)=
m and usc(L) = n. Then usc(K ∩ L) ≤ mn, and the bound is tight if |Σ| ≥ 2.

The left quotient of a language L by a string w is w\L = {x | w x ∈ L},
and the left quotient of a language L by a language K is the language K\L =
⋃

w∈K w\L. The state complexity of the left quotient operation is 2n − 1 [25],
and its nondeterministic state complexity is n+1 [13]. In both cases, the witness
languages are defined over a binary alphabet. Our next result shows that the
tight upper bound for UFAs is 2n−1. To prove tightness we use a binary alphabet.

The right quotient of a language L by a string w is L/w = {x | xw ∈ L},
and the right quotient of a language L by a language K is L/K =

⋃

w∈K L/w.
If a language L is accepted by an n-state DFA or NFA A, then the language
L/K is accepted by an automaton that is exactly the same as A, except for the
set of final states that consists of all states of A, from which some string in K is
accepted by A [25]. Thus sc(L/K) ≤ n and nsc(L/K) ≤ n. The tightness of the
first upper bound has been shown using binary languages in [25]. The second
upper bound is met by unary languages a≥m−1 and a≤n−1. Our next aim is to
show that the tight upper bound for unambiguous finite automata is 2n −1, with
witnesses defined over a binary alphabet.

248 J. Jirásek Jr. et al.

Theorem 9 (Left and Right Quotient). Let K,L ⊆ Σ∗, usc(K) = m, and
usc(L) = n. Then

(a) usc(K \L) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2;
(b) usc(L/K) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2.

Proof. (a) To get an upper bound, let A be an n-state UFA for L. Construct an n-
state NFA N for K \L from A by making initial all states of A that are reachable
from the initial set by some string in K. By Proposition 1, usc(K \L) ≤ 2n − 1.

0 1 . . . n−2 n−1
a

b

a

b

a a

b

a

Fig. 1. The UFA of a language L with usc(K \L) = 2n − 1, where K = a≥m−1.

For tightness, let K = {ak | k ≥ m − 1} and L be the language accepted
by the n-state DFA A = ({0, 1, . . . , n− 1}, {a, b}, {0}, {0, 1, . . . , n− 1}) shown in
Fig. 1. Notice that each state of A is reachable by some string in K. Construct
an n-state NFA N for K \L from A by making all the states initial. Hence the
initial set of N is {0, 1, . . . , n−1}. Next, we can shift every reachable subset right
by one (modulo n) by reading a, and we can remove the state n from any subset
containing state n by reading b. Therefore each non-empty set is reachable in N .

To construct NR, we only need to reverse the transitions on a in N . The initial
subset of NR is {0, 1, . . . , n − 1}, and we can again shift any subset and remove
one state as before. It follows that every non-empty set is reachable in NR, that
is, co-reachable in NFA N . By Proposition 6, we have usc(K \L) ≥ 2n − 1.

(b) To get an upper bound, let A be an n-state UFA for L. Construct an
n-state NFA for L/K as described above. By Proposition 1, usc(L/K) ≤ 2n−1.

0 1 . . . n−2 n−1
a

b

a

b

a a

b

a

Fig. 2. The UFA of a language L with usc(L/K) = 2n − 1, where K = a≥m−1.

To prove tightness, let K = {ak | k ≥ m−1} and L be the language accepted
by the n-state NFA A = ({0, 1, . . . , n−1}, {a, b}, {0, 1, . . . , n−1}, {n−1}) shown
in Fig. 2. Since the automaton AR is deterministic, the NFA A is unambiguous
by Corollary 3. Since a string in K is accepted by A from each state of A, we
construct an NFA N for L/K from A by making all the states of A final. Notice
that we obtain the same NFA as in the proof of the previous lemma, thus by the
same arguments usc(L/K) ≥ 2n − 1. 	

Operations on Unambiguous Finite Automata 249

Now let us continue with the shuffle and concatenation operations. The
shuffle of two strings u and v over an alphabet Σ is defined as the set of strings
u v = {u1v1 · · · ukvk | u = u1 · · · uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗}.
The shuffle of languages K and L over Σ is defined by K L =

⋃

u∈K,v∈L u v.
The state complexity of the shuffle operation on languages represented by incom-
plete deterministic automata was studied by Câmpeanu et al. [3]. They proved
that 2mn − 1 is a tight upper bound for that case. Here we show that the same
upper bound is tight also for UFAs, and to prove tightness, we use almost the
same languages as in [3, Theorem 1]. To the best of our knowledge, the problem
is still open for complete deterministic automata.

Theorem 10 (Shuffle). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) = n. Then
usc(L K) ≤ 2mn − 1, and the bound is tight if |Σ| ≥ 5.

Proof. Let A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B , IB , FB) be m- and
n-state UFAs for K and L respectively. Then K L is accepted by an mn-
state NFA N = (QA ×QB , Σ, ·, IA × IB, FA ×FB), where for each state (p, q) in
QA×QB and each symbol a in Σ, we have (p, q)·a = (p·Aa×{q})∪({p}×q ·B a).
Hence usc(K L) ≤ 2mn − 1 by Proposition 1.

To prove tightness, let Σ = {a, b, c, d, f}. Let K and L be the regular lan-
guages accepted by DFAs A = ({0, 1, . . . ,m − 1}, Σ, ·A, {0}, {m − 1}) and B =
({0, 1, . . . , n−1}, Σ, ·B , {0}, {n−1}) shown in Fig. 3(left); notice that these DFAs
are the same as in [3, Theorem 1] up to the position of final states. Construct
an NFA N for K L as described above. Figure 3(right) shows a sketch of the
resulting NFA. It is shown in [3] that each non-empty set is reachable in N : The
initial set {(0, 0)} goes to the full set {0, 1, . . . ,m−1}×{0, 1, . . . , n−1} by cmdn,
and for each subset S with (i, j) ∈ S, we have S · am−ibn−jfaibj = S\{(i, j)}.
Next, in NR we have {(m−1, n−1)}·Rcmdn = {0, 1, . . . ,m−1}×{0, 1, . . . , n− 1},
and S ·R aibjfam−ibn−j = S\{(i, j)} for each subset S with (i, j) ∈ S. It follows
that each non-empty set is co-reachable in N , so usc(L) ≥ 2mn − 1. 	

0 1 . . . m−1
a, c

d

a, c

d, f

a, c

a

d, f

0 1 . . . n−1
b, d

c

b, d

c, f

b, d

b

c, f

d d d

b b b

c

c

c

a

a

a b
a

df df df

cf

cf

cf

cd

. . .

...

. . .

Fig. 3. Witness UFAs for shuffle (left) and a sketch of the resulting NFA N .

250 J. Jirásek Jr. et al.

The concatenation of languages K and L is KL = {uv | u ∈ K and v ∈ L}.
The state complexity of concatenation is m2n − 2n−1, and its nondeterminis-
tic state complexity is m + n. In both cases, the witnesses are defined over a
binary alphabet [9,13,18,25]. In the next theorem we get a tight upper bound
for concatenation on UFAs. To prove tightness, we use a seven-letter alphabet.

Theorem 11 (Concatenation). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) =
n, where m,n ≥ 2. Then usc(KL) ≤ 3

4 · 2m+n − 1, and the bound is tight if
|Σ| ≥ 7.

Proof. Let A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B , IB , FB) be UFAs for
languages K and L, respectively. Let |QA| = m, |FA| = k, |QB | = n, |IB | = �.
Construct an NFA N = (QA ∪ QB , Σ, ·, I, FB) for KL, where for each q in
QA ∪ QB and each a in Σ,

q · a =

⎧

⎪

⎨

⎪

⎩

q ·A a, if q ∈ QA and q ·A a ∩ FA = ∅;
q ·A a ∪ IB , if q ∈ QA and q ·A a ∩ FA �= ∅;
q ·B a, if q ∈ QB ,

and I = IA if IA ∩ FA = ∅ and I = IA ∪ IB otherwise. Notice that if a set S
is reachable in the NFA N and S ∩ FA �= ∅, then IB ⊆ S. It follows that the
number of reachable sets is 2m−k2n + (2m − 2m−k)2n−�, which is maximal if
� = 1. In such a case, this number equals (2m + 2m−k)2n−1, which is maximal if
k = 1. After excluding the empty set, we get the upper bound.

q0 q1 . . . qm−2 qm−1
a, b

α, β, γ, b, c, d

a, b, c

α, β, γ, d

a, b, c a, b, c

α, β, γ, d

a

α, β, γ

0 1 . . . n−2 n−1
α

a, b, c, d, β

α, β

a, b, c, d, γ

α, β α, β

a, b, c, d, γ

α, β

a, b, c, d, γ

Fig. 4. Witness UFAs for concatenation meeting the upper bound 3
4
· 2m+n − 1.

For tightness, we can use K and L over {a, b, c, d, α, β, γ} accepted by
automata A and B shown in Fig. 4, where QA = {q0, q1, . . . , qm−1} and QB =
{0, 1, . . . , n − 1}. Notice that AR and B are deterministic. 	

Now we consider the Kleene closure (star) and positive closure operations. For
a language L, the star of L is the language L∗ =

⋃

i≥0 Li, where L0 = {ε} and
Li+1 = Li L. The positive closure of L is L+ =

⋃

i≥1 Li. The state complexity of

Operations on Unambiguous Finite Automata 251

the star operation is 3
4 · 2n with binary witness languages [18,25]. In the unary

case, the tight upper bound is (n − 1)2 + 1 [4,25]. The nondeterministic state
complexity of star is n + 1, with witnesses defined over a unary alphabet [9].

Theorem 12 (Positive Closure and Star). Let L be a language over Σ with
usc(L)= n, where n ≥ 2. Then

(a) usc(L+) ≤ 3
4 · 2n − 1, and the bound is tight if |Σ| ≥ 3;

(b) usc(L∗) ≤ 3
4 · 2n, and the bound is tight if |Σ| ≥ 3.

Proof. (a) To get an upper bound, let A = (Q,Σ, ·, I, F) be an n-state UFA
for L. Construct an NFA N = (Q,Σ, ·+, I, F) for L+ where the transition func-
tion ·+ is defined as

q ·+ a =

{

q · a ∪ I, if q · a ∩ F �= ∅;
q · a, otherwise

for each state q in Q and each symbol a in Σ. Notice that if a set S is reachable
in N and S ∩ F �= ∅, then I ⊆ S. We can show that there are at most 3

4 · 2n − 1
reachable non-empty subsets in N . This proves the upper bound.

To prove tightness, let L be the language accepted by the ternary DFA A
shown in Fig. 5(top). Construct the NFA N for L+ as described above. Notice
that the DFA A restricted to the alphabet {a, b} is the same as the witness DFA
for the star operation from [25, Theorem 3.3, Fig. 4] In particular, this means
that N has 3

4 · 2n − 1 non-empty reachable subsets. We can show that each
non-empty set is co-reachable in N .

0 1 . . . n − 3 n − 2 n − 1
a a, b a, b a, b a, b

ab

bc c c c

0 1 . . . n − 3 n − 2 n − 1
a a a a a

c c c c

a
ac

Fig. 5. The witness UFA for positive closure meeting the upper bound 3
4
·2n−1 (top),

and the transitions on a, c in the NFA NR (bottom).

(b) The upper bound follows from the case (a) since if ε ∈ L, then L+ = L∗,
and otherwise we only need to add one more initial and final state to the UFA
for L+ to accept the empty string. The resulting automaton is unambiguous
since the new state accepts only the empty string which is not accepted by UFA
for L+. For tightness, consider the language L accepted by the UFA A shown
in Fig. 5(top). Construct an NFA N for L∗ from UFA A by adding a new initial

252 J. Jirásek Jr. et al.

and final state q0, and by adding the transitions on a, b from n − 2 to 0, and the
transition by c from n − 1 to 0. As shown in [25, Theorem 3.3] the NFA N has
3
4 · 2n reachable sets: the initial set {q0, 0}, all the subsets of {0, 1, . . . , n − 1}
containing state 0, and all the non-empty subsets of {1, 2, . . . , n − 2}. Consider
the NFA NR. The initial set of NR is {q0, n − 1}. Next, as we have shown that
each non-empty set is reachable in NR. Now consider the 3

4 ·2n ×2n matrix MN ,
and show that its rank is 3

4 · 2n × 2n. 	

4 Partial Results for Complementation and Union

In this section we present partial results for the complementation and union oper-
ations on UFA languages. The complement of a language L over Σ is the language
Lc = Σ∗\L. A language and its complement have the same state complexity since
to get a DFA for the complement of L, we only need to interchange the sets of final
and non-final states in a DFA for L. For NFAs, the tight upper bound for comple-
mentation is 2n with witnesses defined over a binary alphabet [9,13]. For unary
UFAs, the problem was studied by Okhotin, who provided a lower bound n2−o(1)

for complementation of unary UFAs [19, Theorem 6]. In the next theorem we deal
with an upper bound. Then we consider union.

Theorem 13 (Complementation: Upper Bound). Let L be a regular lan-
guage with usc(L) = n, where n ≥ 7. Then usc(Lc) ≤ 20.79n+log n.

Proof. Let A be an n-state UFA for L and R and C be the sets of non-empty
reachable and co-reachable sets of A. First, we show that usc(Lc)≤ min{|R|, |C|}.
We have usc(Lc) ≤ |R| since we can get a DFA for Lc by applying the subset
construction to A and by interchanging the sets of final and non-final states in the
resulting DFA that has |R| reachable states. Next, we have usc(Lc) ≤ |C| since
the NFA AR is unambiguous, so usc((LR)c) ≤ |C| which means that usc(Lc) ≤ |C|
since complement and reversal commutes and the reverse of a UFA is a UFA.

Next, let k = max{|X| | X ∈ R}, and pick a set S in R of size k. Then each
set in R has size at most k, and each set in C may have at most one element in
S by Proposition 2. Thus

|R| ≤
(

n

1

)

+
(

n

2

)

+ · · · +
(

n

k

)

and |C| ≤ (k + 1)2n−k.

If k ≥ n/2, then |C| ≤ (n/2 + 1) · 2n/2 ≤ 20.5n+log n, and the theorem follows.
Now assume that k < n/2. Then |R| ≤ k

(

n
k

) ≤ n(enk)k and |C| ≤ n2n−k. Let
r(k) = n(enk)k and c(k) = n2n−k. Then r(k) increases, while c(k) decreases with
k. It follows that if we pick a k0 such that k0 < n/2, then usc(Lc) ≤ r(k0)
if k ≤ k0, and usc(Lc) ≤ c(k0) otherwise. By setting k = nx and by solving
(en

nx)nx = 2n−nx, we get x0 = 0.2144, k0 = 0.2144n, r(k0) ≤ 20.7856n+log n, and
c(k0) ≤ 20.785629n+log n. This completes our proof. 	

Operations on Unambiguous Finite Automata 253

Proposition 14 (Union). Let K and L be languages over Σ with usc(K) = m
and usc(L) = n, where 1 ≤ m ≤ n. Then

(a) usc(K ∪ L) ≤ m + n · usc(Kc) ≤ m + n20.79n+log n;
(b) the bound mn + m + n is met if |Σ| ≥ 4.

Proof. (a) The claim follows from the equality K ∪ L = K∪̇(L ∩ Kc), where ∪̇
denotes a disjoint union, since we have usc(L ∩ Kc) ≤ n · usc(Lc) by Theorem 8,
and, moreover, the NFA for a disjoint union of UFAs is unambiguous. The second
inequality is given by Theorem13. We can prove the lower bound in (b) using a
four-letter alphabet. 	

5 Conclusions

We investigated the complexity of operations on unambiguous finite automata.
Since the reverse of an unambiguous automaton is unambiguous, a language
and its reversal have the same complexity for UFAs. Next, we got tight upper
bounds for intersection (mn), left and right quotients (2n − 1), positive closure
(34 · 2n − 1), star (34 · 2n), shuffle (2mn − 1), and concatenation (34 · 2m+n − 1).

To get upper bounds, we constructed an NFA for the language resulting
from an operation, and applied the (incomplete) subset construction to it. For
lower bounds, we defined witness languages in such a way that we were able to
assign a matrix to a resulting language. The rank of this matrix provided a lower
bound on the unambiguous state complexity of the resulting language. To prove
tightness, we used a binary alphabet for intersection and left and right quo-
tients, a ternary alphabet for star and positive closure, a five-letter alphabet for
shuffle, and a seven-letter alphabet for concatenation. For complementation and
union, we provided upper bounds 20.79n+log n and m+n20.79n+log n, respectively.
Finally, we got a lower bound mn + m + n for union.

In the case of complementation, we tried to use a fooling set lower bound
method, but we were able to describe a fooling set for the complement of an
n-state UFA language only of size n + log n. Moreover, it seems that every such
fooling set is of size which is quadratic in n [7]. Thus the fooling set technique
cannot be used to get a larger lower bound. Neither the method based on the
rank of matrices can be used here since the matrices of a language and its
complement have the same rank, up to one. Therefore to get a larger lower
bound for complementation, some other techniques should be developed.1

References

1. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the
ambiguity of finite automata and the double-tape ambiguity of finite-
state transducers. Int. J. Found. Comput. Sci. 22(4), 883–904 (2011).
http://dx.doi.org/10.1142/S0129054111008477

1 The full version can be found at http://im.saske.sk/∼jiraskov/UFA/ufa.pdf.

http://dx.doi.org/10.1142/S0129054111008477
http://im.saske.sk/~jiraskov/UFA/ufa.pdf

254 J. Jirásek Jr. et al.

2. Birget, J.: Partial orders on words, minimal elements of regular lan-
guages and state complexity. Theor. Comput. Sci. 119(2), 267–291 (1993).
http://dx.doi.org/10.1016/0304-3975(93)90160-U

3. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of
shuffle of regular languages. J. Autom. Lang. Comb. 7(3), 303–310 (2002)

4. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis,
R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-39310-5 26

5. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential
machines. Theor. Comput. Sci. 23, 95–101 (1983). http://dx.doi.org/10.1016/
0304-3975(88)90012-6

6. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A.
(eds.) DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-19225-3 1

7. Eliáš, P.: Fooling sets for complements of UFAs. Unpublished manuscript (2016)
8. Glaister, I., Shallit, J.: A lower bound technique for the size of non-

deterministic finite automata. Inf. Process. Lett. 59(2), 75–77 (1996).
http://dx.doi.org/10.1016/0020-0190(96)00095-6

9. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of reg-
ular languages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003).
http://dx.doi.org/10.1142/S0129054103002199

10. Hromkovič, J., Schnitger, G.: Ambiguity and communication. Theory Comput.
Syst. 48(3), 517–534 (2011). http://dx.doi.org/10.1007/s00224-010-9277-4

11. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communi-
cation complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172(2), 202–217 (2002). http://dx.doi.org/10.1006/inco.2001.3069

12. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision
problems for acceptors and transducers. In: Monien, B., Vidal-Naquet, G.
(eds.) STACS 1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1986).
http://dx.doi.org/10.1007/3-540-16078-7 74

13. Jirásková, G.: State complexity of some operations on binary regular lan-
guages. Theor. Comput. Sci. 330(2), 287–298 (2005). http://dx.doi.org/10.1016/
j.tcs.2004.04.011

14. Leiss, E.L.: Succint representation of regular languages by boolean automata.
Theor. Comput. Sci. 13, 323–330 (1981). http://dx.doi.org/10.1016/S0304-
3975(81)80005-9

15. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998). http://
dx.doi.org/10.1137/S0097539793252092

16. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int.
J. Found. Comput. Sci. 16(5), 975–984 (2005). http://dx.doi.org/10.1142/
S0129054105003418

17. Lupanov, O.B.: A comparison of two types of finite automata. Problemy
Kibernetiki 9, Kibernetiki (1963), (in Russian) German translation: Über den
Vergleich zweier Typen endlicher Quellen. Probleme der. Kybernetik 6, 328–335
(1966)

18. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11, 1373–375 (1970)

19. Okhotin, A.: Unambiguous finite automata over a unary alphabet. Inf. Comput.
212, 15–36 (2012). http://dx.doi.org/10.1016/j.ic.2012.01.003

http://dx.doi.org/10.1016/0304-3975(93)90160-U
http://dx.doi.org/10.1007/978-3-642-39310-5_26
http://dx.doi.org/10.1016/0304-3975(88)90012-6
http://dx.doi.org/10.1016/0304-3975(88)90012-6
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.1016/0020-0190(96)00095-6
http://dx.doi.org/10.1142/S0129054103002199
http://dx.doi.org/10.1007/s00224-010-9277-4
http://dx.doi.org/10.1006/inco.2001.3069
http://dx.doi.org/10.1007/3-540-16078-7_74
http://dx.doi.org/10.1016/j.tcs.2004.04.011
http://dx.doi.org/10.1016/j.tcs.2004.04.011
http://dx.doi.org/10.1016/S0304-3975(81)80005-9
http://dx.doi.org/10.1016/S0304-3975(81)80005-9
http://dx.doi.org/10.1137/S0097539793252092
http://dx.doi.org/10.1137/S0097539793252092
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.1016/j.ic.2012.01.003

Operations on Unambiguous Finite Automata 255

20. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata
to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282
(1989). http://dx.doi.org/10.1137/0218083

21. Schmidt, E.M.: Succinctness of description of context-free, regular, and finite lan-
guages. Ph. D. thesis. Cornell University (1978)

22. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

23. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for unam-
biguous regular expressions, regular grammars and finite automata. SIAM J. Com-
put. 14(3), 598–611 (1985). http://dx.doi.org/10.1137/0214044

24. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991). http://dx.doi.org/10.1016/0304-3975(91)90381-B

25. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic oper-
ations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994).
http://dx.doi.org/10.1016/0304-3975(92)00011-F

http://dx.doi.org/10.1137/0218083
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1016/0304-3975(91)90381-B
http://dx.doi.org/10.1016/0304-3975(92)00011-F

The Trace Monoids in the Queue Monoid
and in the Direct Product of Two Free Monoids

Dietrich Kuske and Olena Prianychnykova(B)

Fachgebiet Automaten und Logik, Technische Universität Ilmenau,
Helmholtzplatz 5, 98684 Ilmenau, Germany

olena.prian@tu-ilmenau.de

Abstract. We prove that a trace monoid embeds into the queue monoid
if and only if it embeds into the direct product of two free monoids. We
also give a decidable characterization of these trace monoids.

Keywords: Trace monoid · Queue monoid · Coding problem

1 Introduction

Trace monoids model the behavior of concurrent systems whose concurrency
is governed by the use of joint resources. They were introduced into computer
science by Mazurkiewicz in his study of Petri nets [9]. Since then, much work has
been invested on their structure, see [4] for comprehensive surveys. A basic fact
about trace monoids is that they can be embedded into the direct product of free
monoids [1]. Since the proof of this fact is constructive, an upper bound for the
number of factors needed in such a free product is immediate (it is the number α
of cliques needed to cover the dependence alphabet). If the dependence alphabet
is a path on n vertices, than this upper bound equals the exact number, namely
n − 1. But there are cases where the exact number is considerably smaller (the
examples are from [3]): if the independence alphabet is the disjoint union of two
copies of C4 (the cycle on four vertices), then α = 4, but 3 factors suffice; if
the independence alphabet is the disjoint union of n copies of Kk (the complete
graph on k vertices), then α = kn, but k factors suffice.

The strongest result in this respect is due to Kunc [8]: Given a C3- and
C4-free dependence alphabet and a natural number k, it is decidable whether
the trace monoid embeds into the direct product of k free monoids. In this paper,
we extend this positive result to all dependence alphabets (also those containing
C3 or C4), but only for the case k = 2. More precisely, we give a complete and
decidable characterization of all independence alphabets whose generated trace
monoid embeds into the direct product of two free monoids.

Queue monoids, another class of monoids, have been introduced recently
[6,7]. They model the behavior of a single fifo-queue. Intuitively, the basic actions
(i.e., generators of the monoid) are the action of writing the letter a into the

Supported by the DFG-Project “Speichermechanismen als Monoide”, KU 1107/9-1.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 256–267, 2016.
DOI: 10.1007/978-3-662-53132-7 21

The Trace Monoids in the Queue Monoid and in the Direct Product 257

queue (denoted a) and reading the letter a from the queue (denoted ā). Sequences
of actions are equivalent if they induce the same state change on any queue. For
instance, writing a symbol into the queue and reading another symbol from the
other end of the queue are two actions that can be permuted without chang-
ing the overall behavior, symbolically: ab̄ ≡ b̄a. But there are also more com-
plex equivalences that can be understood as “conditional commutativity”, e.g.,
abb̄ ≡ ab̄b. The unconditional commutations allow to embed the direct product
of two free monoids into the queue monoid [7]. In [7], it is conjectured that
the monoid N

3 cannot be embedded into the queue monoid. Note that these
two monoids are special trace monoids and that any trace monoid embedding
into the direct product of two free monoids consequently embeds into the queue
monoid. In this paper, we prove the conjecture from [7] and characterize, more
generally, the class of trace monoids that embed into the queue monoid.

In summary, this paper characterizes two classes of trace monoids defined by
their embedability into {a, b}∗ ×{c, d}∗ and into the queue monoid, respectively.
As it turns out, these two classes are the same, i.e., a trace monoid embeds into
the direct product of two free monoids if and only if it embeds into the queue
monoid, and this property is decidable. Since this class is not closed under free
or direct products, it follows that the classes of submonoids of {a, b}∗ × {c, d}∗

and of the queue monoid Q are not closed under these operations.
All missing proofs can be found in the complete version of this paper [5].

2 Preliminaries and Main Result

2.1 The Trace Monoid

Trace monoids are meant to model the behavior of concurrent systems whose
concurrency is governed by the use of joint resources. Here, we take a slightly
more abstract view and say that two actions are independent if they use disjoint
resources. More formally, an independence alphabet is a pair (Γ, I) consisting of
a countable (i.e., finite or of size ℵ0) set Γ and an irreflexive and symmetric
relation I ⊆ Γ 2 called the independence relation. By D = Γ 2\I, we denote the
complementary dependence relation.

An independence alphabet (Γ, I) induces a trace monoid as follows: Let ≡I

denote the least congruence on the free monoid Γ ∗ with ab ≡I ba for all pairs
(a, b) ∈ I. Then the trace monoid associated with (Γ, I) is the quotient M(Γ, I) =
Γ ∗/≡I , the equivalence class containing u ∈ Γ ∗ is denoted [u]I . Thus the defining
equations of the trace monoid are the equations ab ≡I ba for some pairs of
letters (a, b).

We only need the following very basic properties of the trace monoid from [1]:

Proposition 1. Let (Γ, I) be an independence alphabet.

(1) Let Γ =
⋃

0≤i<n Ci with I = Γ 2\ ⋃

0≤i<n Ci ×Ci and n ∈ N∪{ω}. Then the
trace monoid M(Γ, I) embeds into the direct product of n free monoids with
2 generators each.

258 D. Kuske and O. Prianychnykova

(2) The trace monoid M(Γ, I) is cancellative, i.e., uvw ≡I uv′w implies v ≡I v′

for all words u, v, v′, w ∈ Γ ∗.

In this paper, we will often use graph-theoretic terms to speak about an
independence alphabet (Γ, I) – where we identify I with the set of edges {a, b}
for (a, b) ∈ I. In other words, we think of (Γ, I) as a symmetric and loop-free
graph. We will also take the liberty to write (C, I) for the subgraph of (Γ, I)
induced by C ⊆ Γ . We call a connected component C of (Γ, I) nontrivial if it
is not an isolated vertex. The connected component C is bipartite if I ∩ C2 ⊆
(C1 × C2) ∪ (C2 × C1) for some partition C1 � C2 of C. It is complete bipartite
if I ∩ C2 = (C1 × C2) ∪ (C2 × C1). Finally, an independence alphabet (Γ, I)
is P4-free if no induced subgraph is isomorphic to P4, i.e., if there are no four
distinct vertices a, b, c, d with (a, b), (b, c), (c, d) ∈ I and (b, d), (d, a), (a, c) ∈ D.

2.2 The Queue Monoid

The queue monoid models the behavior of a fifo-queue whose entries come from
a finite set A. Consequently, the state of a valid queue is an element from A∗. In
order to have a defined result even if a read action fails, we add the error state ⊥.
The basic actions are writing of the symbol a ∈ A into the queue (denoted a) and
reading the symbol a ∈ A from the queue (denoted a). Formally, A is a disjoint
copy of A whose elements are denoted a. Furthermore, we set Σ = A∪A. Hence,
the free monoid Σ∗ is the set of sequences of basic actions and it acts on the set
A∗ ∪{⊥} by way of the function: (A∗ ∪{⊥})×Σ∗ → A∗ ∪{⊥}, which is defined,
for q ∈ A∗, a ∈ A, and u ∈ Σ∗, as follows:

q.ε = q q.au = qa.u q.au =

{

q′.u if q = aq′

⊥ otherwise
⊥.u = ⊥

Definition 2. Two words u, v ∈ Σ∗ are equivalent if q.u = q.v for all queues
q ∈ A∗. In that case, we write u ≡ v. The equivalence class wrt. ≡ containing
the word u is denoted [u].

Since ≡ is a congruence on the free monoid Σ∗, we can define the quotient
monoid QA = Σ∗/≡ that is called the queue monoid.

Note that two queue monoids are not isomorphic if the generating sets have
different size. But, for any finite generating set A, the queue monoid QA embeds
into Q{a,b} [7, Corollary 5.5]. Since this paper is concerned with submonoids of
QA, the concrete size of A does not matter (as long as it is finite and at least 2).
Hence we will simply write Q for QA, no matter what the finite non-singleton
set A is.

Theorem 3 ([7, Theorem 4.3]). The equivalence relation ≡ is the least con-
gruence on the free monoid Σ∗ satisfying the following for all a, b, c ∈ A:

ab ≡ ba if a �= b; abc ≡ bac; abc ≡ acb

The Trace Monoids in the Queue Monoid and in the Direct Product 259

The second and third of these equations generalize nicely to words (we write
a1a2 . . . an for the word a1 a2 . . . an for any a1, . . . , an ∈ A):

Lemma 4 ([7, Corollary 3.6]). Let u, v, w ∈ A∗.

– If |u| ≤ |w|, then uvw ≡ vuw.
– If |u| ≥ |w|, then uvw ≡ uwv.

Let π : Σ∗ → A∗ be the homomorphism defined by π(a) = a and π(a) = ε
for all a ∈ A. Similarly, define the homomorphism π : Σ∗ → A∗ by π(a) = ε and
π(a) = a for all a ∈ A. Then, from Theorem 3, we immediately get

u ≡ v =⇒ π(u) = π(v) and π(u) = π(v)

for all words u, v ∈ Σ∗. Hence the homomorphisms π and π define homomor-
phisms from Q to A∗ by [u] �→ π(u) and [u] �→ π(u). The words π(u) and π(u)
are called the positive and negative projection of u (or [u]).

Applying Lemma 4 iteratively to prefixes of uv, one gets

Corollary 5. Let u ∈ A∗ and v ∈ Σ∗ with |u| ≥ |π(v)|. Then uv ≡ uπ(v)π(v).

Ordering the equations from Theorem3 from left to right, we obtain a semi-
Thue system. This semi-Thue system is confluent and terminating. Hence any
equivalence class of ≡ has a unique normal form. To describe these normal
forms, we write

〈

a1a2 . . . an, b1b2 . . . bn
〉

for a1b1a2b2 . . . anbn (where n ∈ N and
ai, bi ∈ A for all 1 ≤ i ≤ n). Then a word u ∈ Σ∗ is in normal form iff there are
three words u1, u2, u3 ∈ A∗ with u = u1〈u2, u2〉u3. We write nf(u) for the unique
word from the equivalence class [u] in normal form. Furthermore, the mixed or
central part of the word nf(u), i.e., the word u2 with nf(u) = u1〈u2, u2〉u3 is
denoted μ(u). The importance of this word μ(u) is described by the following
observation: Let u, v ∈ Σ∗. Then the following are equivalent:

(1) u ≡ v (2) nf(u) = nf(v) (3) π(u) = π(v), π(u) = π(v), and μ(u) = μ(v)

Next, we describe the normal form of the product of two words. For this, we
need the concept of the overlap of two words: Let u, v ∈ A∗. Then the overlap
of u and v is the longest word x that is both, a suffix of u and a prefix of v. We
write ol(u, v) for this overlap.

Theorem 6. ([7, Theorem 5.5]). Let u, v ∈ Σ∗. Then μ(uv) =
ol(μ(u)π(v), π(u)μ(v)).

With s, t ∈ A∗ such that sμ(uv) = π(uv) and μ(uv) t = π(uv), we therefore
have nf(uv) = s〈μ(uv), μ(uv)〉t.

In the following lemma we describe the normal form of the n-th power of an
element of the queue monoid Q. Its inductive proof uses Theorem 6 as well as
some tedious arguments about suffixes and prefixes of words.

Lemma 7. Let u ∈ A∗. Then for every n ≥ 1 we have

μ(un) = ol(μ(u)π(u)n−1, π(u)n−1μ(u)).

260 D. Kuske and O. Prianychnykova

2.3 The Main Result

The results of this paper are summarised in the following theorem. It character-
izes those trace monoids that can be embedded into the queue monoid as well
as those that embed into the direct product of two free monoids. In particular,
these two classes of trace monoids are the same. And, in addition, given a finite
independence alphabet, it is decidable whether the generated trace monoid falls
into this class.

Theorem 8. The following are equivalent for any independence alphabet (Γ, I):

(1) The trace monoid M(Γ, I) embeds into the queue monoid Q.
(2) The trace monoid M(Γ, I) embeds into the direct product {a, b}∗ × {c, d}∗ of

two free monoids.
(3) One of the following conditions hold:

(3.a) All nodes in (Γ, I) have degree ≤1.
(3.b) The independence alphabet (Γ, I) has only one non-trivial connected

component and this component is complete bipartite.

The implication “(2) implies (1)” follows immediately from [6, Proposi-
tion 8.2] since there, we showed that {a, b}∗ × {c, d}∗ embeds into the queue
monoid Q. In the following section, we present embeddings of M(Γ, I) whenever
(Γ, I) satisfies condition (3). The main work here is concerned with independence
alphabets satisfying (3.a). The subsequent section shows that any trace monoid
that embeds into the queue monoid satisfies condition (3).

Remark 9. From this technically rather hard proof of the implication (1)⇒(3),
one can extract a direct proof of the implication (2)⇒(3).

If a trace monoid M(Γ, I) embeds into the direct product of two free monoids,
then there is a “weak coding”, i.e., an embedding with certain additional proper-
ties, of M(Γ, I) into a direct product of two free monoids [8, Proposition 5.5]. As
proposed by one of the reviewers, starting from this weak coding might simplify
the extracted proof even further, but we do not see whether this is possible.

3 (3) Implies (2) in Theorem 8

Let (Γ, I) be an independence alphabet satisfying (3.a) or (3.b) of Theorem8.
We will prove that M(Γ, I) embeds into the direct product of two free monoids.

Lemma 10. Let (Γ, I) be an independence alphabet such that all nodes in (Γ, I)
have degree ≤1. Then M(Γ, I) embeds into the direct product of two countably
infinite free monoids.

Proof (sketch). Consider the independence alphabet (Σ, I) with Σ = {ai, bi | i ∈
N} and I = {(ai, bi), (bi, ai) | i ∈ N}. Then (Γ, I) can be seen as a sub-alphabet
of (Σ, I) so that M(Γ, I) embeds into M(Σ, I).

We embed M(Σ, I) into the direct product M = {ci | i ∈ N} × {di | i ∈ N}.
In this monoid (ci, di) and (ci, didi) commute. Hence there is a homomorphism

The Trace Monoids in the Queue Monoid and in the Direct Product 261

η : M(Σ, I) → M with η(ai) = (ci, di) and η(bi) = (ci, didi) for all i ∈ N. Using
lexicographic normal forms we can show that this homomorphism is injective.
Hence η embeds M(Σ, I) into M and we get M(Γ, I) ↪→ M(Σ, I) ↪→ M. ��
Theorem 11. Let (Γ, I) be an independence alphabet such that one of the fol-
lowing conditions holds:

1. all nodes in (Γ, I) have degree ≤1 or
2. (Γ, I) has only one non-trivial connected component and this component is

complete bipartite

Then M(Γ, I) embeds into {a, b}∗ × {c, d}∗.

Proof. Let (Γ, I) be such that the first condition holds. Then by Lemma10 there
is an embedding of M(Γ, I) into a direct product of two countably infinite free
monoids.

Now let (Γ, I) be such that the second condition holds. Then the correspond-
ing dependence alphabet (Γ,D) can be covered by two cliques. Consequently,
[2, Corollary 1.4.5 (General Embedding Theorem), p. 26] implies that M(Γ, I)
is a submonoid of a direct product of two countably infinite free monoids.

Note that the countably infinite free monoid {ai | i ∈ N}∗ embeds into {a, b}∗

via ai �→ aib. Hence, in any case, M(Γ, I) embeds into {a, b}∗ × {c, d}∗. ��

4 (1) Implies (3) in Theorem 8

Definition 12. Let (Γ, I) be an independence alphabet and η : M(Γ, I) ↪→ Q
be an embedding. We partition Γ into sets Γ+, Γ−, and Γ± according to the
emptiness of the projections of η(a):
– a ∈ Γ+ iff π(η(a)) �= ε and π(η(a)) = ε (i.e., η(a) has no negative projection).
– a ∈ Γ− iff π(η(a)) = ε and π(η(a)) �= ε (i.e., η(a) has no positive projection).
– a ∈ Γ± iff π(η(a)) �= ε and π(η(a)) �= ε (i.e., η(a) has both projections).

We will prove the following:

– (Γ+ ∪ Γ−, I) is complete bipartite (Proposition 13).
– Every node a ∈ Γ± has degree ≤1 (Corollary 22 which is the most difficult

part of the proof).
– Any letter from Γ+ ∪ Γ− is connected to any edge (Proposition 15).
– The graph (Γ, I) is P4-free (Proposition 24).

At the end of this section, we infer that the independence alphabet (Γ, I) has
the required property from Theorem8(3).

4.1 (Γ+ ∪ Γ−, I) Is Complete Bipartite

Proposition 13. Let (Γ, I) be an independence alphabet, let η : M(Γ, I) ↪→ Q be
an embedding. Then (Γ+, I) and (Γ−, I) are discrete and (Γ+∪Γ−, I) is complete
bipartite.

262 D. Kuske and O. Prianychnykova

Proof. We first show that (Γ+, I) is discrete.
Towards a contradiction, suppose there are a, b ∈ Γ+ with (a, b) ∈ I. Consider

the non-empty words u = nf(η(a)) and v = nf(η(b)). Since π ◦ η : M(Γ, I) → A∗

is a homomorphism and since [ab]I = [ba]I , we get uv = vu. Hence u and v have
a common root, i.e., there is a word p and there are i, j > 0 with u = pi and
v = pj . Hence

η(a)j = uj = vi = η(b)i.
Since η is injective, this implies aj ≡I bi and therefore a = b, contradicting
(a, b) ∈ I. Hence, there are no a, b ∈ Γ+ with (a, b) ∈ I, i.e., (Γ+, I) is discrete.

Symmetrically, also (Γ−, I) is discrete.
It remains to be shown that (a, b) ∈ I for any a ∈ Γ+ and b ∈ Γ−. There are

words u, v ∈ A∗ with η(a) = [u] and η(b) = [v] (note that u and v are nonempty
since η is an injection). We have the following:

η(abb|u|) = [uvv|u|]

= [vuv|u|] by the dual form of Corollary 5 since |u| ≤ |v|u||
= η(bab|u|)

Since η is injective, this implies abb|u| ≡I bab|u| and therefore ab ≡I ba. Now
(a, b) ∈ I follows from a �= b. ��

4.2 Nodes from Γ+ ∪ Γ− Are Connected to Any Edge

Lemma 14. Let u, v, w ∈ Σ+ such that π(u) = ε, vw ≡ wv and v �= w. Then
there exist vectors −→x = (xu, xv, xw) and −→y = (yu, yv, yw) in N

3 such that xv +
xw �= 0 and

uxuvxvuwxw ≡ uyuwywuvyv . (1)

Proof (sketch). First note that since vw ≡ wv, there exist primitive words p
and q and natural numbers av, aw, bv, bw satisfying π(v) = pav , π(v) = qbv ,
π(w) = paw , and π(w) = qbw . Since v, w �= ε, we get av + bv �= 0 �= aw + bw.

The crucial step (to be found in the complete version [5] of this paper) is to
show that there are natural numbers xv, xw, yv, yw (not all zero) that satisfy the
following system of linear equations.

avxv = awyw
awxw = avyv

bvxv + bwxw = bwyw + bvyv

⎫

⎬

⎭

(2)

Furthermore, let xu = yu ∈ N such that |π(vxvuwxw)| ≤ |u| · xu = |uxu |. Then
we have the following:

uxuvxvuwxw ≡ uxu π(vxvuwxw) π(vxvuwxw) by Corollary 5

= uxu qbvxv+bwxw pavxvupawxw

= uyu qbwyw+bvyv pawywupavyv

= uyu π(wywuvyv) π(wywuvyv)
≡ uyuwywuvyv by Corollary 5

The Trace Monoids in the Queue Monoid and in the Direct Product 263

Thus, we found −→x ,−→y ∈ N
3 satisfying Eq. (1) with xv + xw �= 0. ��

Proposition 15. Let (Γ, I) be an independence alphabet and let η : M(Γ, I) ↪→
Q be an embedding. Let a ∈ Γ+ ∪Γ− and b, c ∈ Γ with (b, c) ∈ I. Then (a, b) ∈ I
or (a, c) ∈ I.

Proof. If a ∈ {b, c}, we get (a, b) ∈ I or (a, c) ∈ I from (b, c) ∈ I. So assume
a /∈ {b, c}. Let u = nf(η(a)), v = nf(η(b)), and w = nf(η(c)). Since (b, c) ∈ I,
we get [vw] = η(bc) = η(cb) = [wv] and therefore vw ≡ wv. Furthermore,
[v] = η(b) �= η(c) = [w] since η is injective and since b �= c follows from (b, c) ∈ I.
Hence in particular v �= w.

We first consider the case a ∈ Γ+, i.e., π(u) = ε. From Lemma 14, we find
natural numbers xu, xv, xw, yu, yv, yw with uxuvxvuwxw ≡ uyuwywuvyv and xv +
xw + yv + yw �= 0. Consequently,

η(axubxvacxw) = [uxuvxvuwxw]
= [uyuwywuvyv]
= η(ayucywabyv).

Since η is injective, this implies axubxvacxw ≡I ayucywabyv .
If xv �= 0, then (a, b) ∈ I. Similarly, if xw �= 0, then (a, c) ∈ I. This settles

the case π(u) = ε.
Now let π(u) = ε. By duality, Lemma 14 yields natural numbers xu, xv, xw,

yu, yv, yw with xv + xw + yv + yw �= 0 and vxvuwxwuxu ≡ wywuvyvuyu . Then
we can derive (a, b) ∈ I or (a, c) ∈ I as above. ��

4.3 Nodes from Γ± Have Degree ≤ 1

Let a ∈ Γ±. Then there are nonempty primitive words p and q with π(η(a)) ∈ p+

and π(η(a)) ∈ q+, i.e., p and q are the primitive roots of the two projections
of η(a). The proof of the fact that a has at most one neighbor in (Γ, I) dis-
tinguishes two cases: first, we handle the case that p and q are not conjugated
(recall that p and q are conjugated if there are words g ∈ A∗ and h ∈ A+ with
p = gh and q = hg). The second case, namely that p and q are conjugated, turns
out to be far more difficult.

Non-conjugated Roots.

Proposition 16. Let (Γ, I) be an independence alphabet and let η : M(Γ, I) ↪→
Q be an embedding. Let furthermore b ∈ Γ and p, q ∈ A+ be primitive and not
conjugated such that

π(η(b)) ∈ p+ and π(η(b)) ∈ q+.

Then there is at most one letter a ∈ Γ with (a, b) ∈ I.

264 D. Kuske and O. Prianychnykova

Proof (sketch). By contradiction, let a, c ∈ Γ be distinct with (a, b), (b, c) ∈ I.
Choose u = nf(η([ab]I)), v = nf(η(b)), and w = nf(η([bc]I)). First, one constructs
a nontrivial solution to the equation

uxuvxvwxw ≡ uyuvyvwyw (3)

in natural numbers as follows. Length conditions on the positive and negative
projections yield the following system of linear equations

auxu + avxv + awxw = auyu + avyv + awyw
buxu + bvxv + bwxw = buyu + bvyv + bwyw

}

(4)

Since this system consists of two equations in the unknowns xu−yu, xv −yv and
xw − yw, it has an integer solution that can be increased by arbitrary natural
numbers, i.e., there is a “sufficiently large” solution that makes the positive
(and negative) projections of uxuvxvwxw and uyuvyvwyw equal. Using that this
solution is “sufficiently large” and that p and q are not conjugated, we employ
some combinatorics on words to prove that also the mixed parts of the normal
forms of these two words are equal. Consequently, the normal forms of these
two words coincide. Hence they are equivalent, i.e., as required, we found a non-
trivial solution −→x , −→y of Eq. (3). Injectivity of η implies axubxu+xv+xwcxw ≡I

ayubyu+yv+ywcyw . Since the letters a, b, and c are mutually distinct, this implies−→x = −→y , a contradiction. ��

Conjugated Roots. We now want to prove a similar result in case p and
q are conjugated. The proof, although technically more involved, will proceed
similarly, i.e., we will determine and use a non-trivial solution of Eq. (3). But
the use of the solution of (4) is more involved since words that are suffixes of qm

and prefixes of pn can be arbitrary long. First, Lemma19 describes the mixed
part of the normal form of uxuvxvwxw . Then, Lemma 20 determines a nontrival
solution to (some rotation of) Eq. (3), before, finally, Proposition 21 proves the
analogue to Proposition 16 for conjugated roots.

The combinatorial lemma below describes words that are prefixes of some
power of p and, at the same time, suffixes of some power of q (where p and q are
conjugated).

Lemma 17. Let g ∈ A∗, h ∈ A+ such that p = gh and q = hg are both
primitive words. Let furthermore y be some suffix of qi and some prefix of pj for
some i, j ≥ 1 such that |y| ≥ |q|. Then y = gqk = pkg where k =

⌊

|y|
|q|

⌋

.

Using this combinatorial lemma, we can often determine the overlap of two
words via the following corollary:

Corollary 18. Let g ∈ A∗, h ∈ A+ such that p = gh and q = hg are both
primitive words. Furthermore, let p′ be a suffix of p with |p′| < |p| and let q′ be
a prefix of q with |q′| < |q|.

Then for every i, j ∈ N we have ol(p′gqi, pjgq′) = gqmin(i,j).

The Trace Monoids in the Queue Monoid and in the Direct Product 265

The following two lemmas are, technically, the centre of our proof of
Proposition 21. The first one can be shown by straightforward but tedious cal-
culations using Lemma 17 and Corollary 18.

Lemma 19. Let g ∈ A∗, h ∈ A+ such that p = gh and q = hg are primitive. Let
u, v, w ∈ Q such that the following holds for some au, av, aw, bu, bv, bw ∈ N\{0}
and cu, cv, cw ∈ Z:

π(u) = pau π(u) = qbu cu =

{−1 if |μ(u)| < |g|
⌊

|µ(u)|
|q|

⌋

otherwise

π(v) = pav π(v) = qbv cv =

{−1 if |μ(v)| < |g|
⌊

|µ(v)|
|q|

⌋

otherwise

π(w) = paw π(w) = qbw cw =

{−1 if |μ(w)| < |g|
⌊

|µ(w)|
|q|

⌋

otherwise

Let −→x = (xu, xv, xw) ∈ N
3 with xu, xv, xw ≥ 2. Then μ(uxuvxvwxw) =

gqX−→x = pX−→x g where X−→x is the minimum of the three numbers

min(au, bu)xu+ bvxv+ bwxw+ cu − min(au, bu),
auxu+ min(av, bv)xv+ bwxw+ cv − min(av, bv), and
auxu+ avxv+ min(aw, bw)xw+ cw − min(aw, bw).

Lemma 20. Let g ∈ A∗, h ∈ A+ such that p = gh and q = hg are primitive.
Let u′, v′, w′ ∈ Σ+ with π(u′), π(v′), π(w′) ∈ p+ and π(u′), π(v′), π(w′) ∈ q+.

Then there exist a rotation (u, v, w) of (u′, v′, w′)1 and distinct vectors of
non-negative integers −→x = (xu, xv, xw) and −→y = (yu, yv, yw) such that

uxuvxvwxw ≡ uyuvyvwyw . (5)

Proof (sketch). We choose the rotation (u, v, w) such that one of the following
three conditions holds:

1. |π(u)| = |π(u)|, |π(v)| = |π(v)|, and |π(w)| = |π(w)| or
2. |π(u)| > |π(u)| or
3. |π(w)| < |π(w)|.
Given this rotation, we define the natural numbers au, av, aw, bu, bv, bw, cu, cv, cw
as in Lemma 19 and find a nontrival integer solution to the system of linear equa-
tions (4). Increasing all entries in this solution by the minimal entry plus 2 yields
a nontrivial solution

−→
x′ = (x′

u, x′
v, x

′
w) and

−→
y′ = (y′

u, y′
v, y

′
w) with

−→
x′ ,

−→
y′ ∈ N

3

and x′
u, x′

v, x
′
w, y′

u, y′
v, y

′
w ≥ 2. From this solution by Lemma 19 we then con-

struct a nontrivial solution −→x , −→y that, in addition, satisfies X−→x = X−→y . This is
done by considering the three possible cases for the rotation (u, v, w) separately.
We finally show that the two words uxuvxvwxw and uyuvyvwyw agree in their
projections and their normal forms agree in their mixed part. Hence they are
equivalent, i.e., as required, we found a non-trivial solution −→x , −→y of Eq. (5). ��
1 i.e., (u, v, w) is one of the triples (u′, v′, w′), (v′, w′, u′) and (w′, u′, v′).

266 D. Kuske and O. Prianychnykova

Using Lemma 20, we can now infer for conjugated roots a result similar to
Proposition 16 for non-conjugated roots.

Proposition 21. Let (Γ, I) be an independence alphabet and let η : M(Γ, I) ↪→
Q be an embedding. Let furthermore b ∈ Γ and p, q ∈ A+ be primitive and
conjugated such that

π(η(b)) ∈ p+ and π(η(b)) ∈ q+.

Then there is at most one letter a ∈ Γ with (a, b) ∈ I.

Proof (sketch). The proof is basically the same as the proof of Proposition 16.
Towards a contradiction, suppose there are distinct letters a and c in Γ with
(a, b), (b, c) ∈ I. Let u′ = nf(η([ab]I)) , v′ = nf(η(b)) , and w′ = nf(η([bc]I)).

The crucial point in the proof is that by Lemma20 there exists a rotation
(u, v, w) of (u′, v′, w′) and distinct vectors −→x , −→y ∈ N

3 satisfying Eq. (5). We
consider the three possible rotations separately. We obtain that in all cases injec-
tivity of η and commutation of b with a and with c yields

cxvbxu+xv+xwaxw ≡I cyvbyu+yv+ywayw .

From the distinctness of a, b and c, we get −→x = −→y which contradicts our choice
of these two vectors as distinct. Thus there are no two distinct letters a and c
with (a, b), (b, c) ∈ I. ��

The following corollary is the main result of this section. Its proof is an
immediate consequence of Propositions 16 and 21 (depending on whether the
roots of the two projections of η(a) are conjugated or not).

Corollary 22. Let (Γ, I) be an independence alphabet, let η : M(Γ, I) ↪→ Q be
an embedding, and let a ∈ Γ . If π(η(a)) �= ε and π(η(b)) �= ε, then the degree of
a is ≤1.

4.4 (Γ, I) Is P4-free

The proof of the next lemma is structurally similar to the proof of Lemma14,
but uses also Corollary 22.

Lemma 23. Let t, u, v, w ∈ Σ+ such that π(u) = ε, π(v) = ε, vw ≡ wv, and
tu ≡ ut. Then there exists a tuple −→x = (xt, xu1 , xu2 , xv, xw) of natural numbers
with xt, xw �= 0 and

uxu1 vxvwtxtwxwuxu2 ≡ uxu1 wuxu2 wxw txtvxv . (6)

The following proposition is a consequence of Lemma 23. Its proof is similar
to the proof of Proposition 15.

Proposition 24. Let (Γ, I) be an independence alphabet and let η : M(Γ, I) ↪→
Q be an embedding. Then (Γ, I) is P4-free.

The Trace Monoids in the Queue Monoid and in the Direct Product 267

4.5 Proof of the Implication (1)⇒(3) in Theorem 8

Theorem 25. Let (Γ, I) be an independence alphabet and η : M(Γ, I) → Q be
an embedding. Then one of the following conditions holds:

1. all nodes in (Γ, I) have degree ≤1 or
2. (Γ, I) has only one non-trivial connected component and this component is

complete bipartite.

Proof. Suppose (Γ, I) contains a node a of degree ≥2. Then, by Corollary 22,
a ∈ Γ+ ∪ Γ−. From Proposition 15, we obtain that a is connected to any edge,
i.e., it belongs to the only nontrivial connected component C of (Γ, I). Now
Proposition 15 implies Γ+ ∪ Γ− ⊆ C. Note that all nodes in C\(Γ+ ∪ Γ−) have
degree 1 by Corollary 22. Hence, by Proposition 13, the connected graph (C, I)
is a complete bipartite graph together with some additional nodes of degree 1. It
follows that (C, I) is bipartite. By Proposition 24, it is a connected and P4-free
graph. Hence its complementary graph (C,D) is not connected [10]. But this
implies that (C, I) is complete bipartite. ��

References

1. Cori, P., Perrin, D.: Automates et commutations partielles. R.A.I.R.O. Informa-
tique Théorique et Applications 19, 21–32 (1985)

2. Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990)
3. Diekert, V., Muscholl, A., Reinhardt, K.: On codings of traces. In: Mayr, E.W.,

Puech, C. (eds.) STACS 1995. LNCS, vol. 900. Springer, Heidelberg (1995)
4. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publ. Co., River

Edge (1995)
5. Kuske, D., Prianychnykova, O.: The trace monoids in the queue monoid and in the

direct product of two free monoids. arXiv:1603.07217 (2016)
6. Huschenbett, M., Kuske, D., Zetzsche, G.: The monoid of queue actions. In: Csuhaj-

Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 340–351. Springer, Heidelberg (2014)

7. Huschenbett, M., Kuske, D., Zetzsche, G.: The monoid of queue actions (2016,
submitted)

8. Kunc, M.: Undecidability of the trace coding problem and some decidable cases.
Theor. Comput. Sci. 310(1–3), 393–456 (2004)

9. Mazurkiewicz, A.: Concurrent program schemes and their interpretation. Technical
report, DAIMI Report PB-78, Aarhus University (1977)

10. Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theory (B)
16, 191–193 (1974)

http://arxiv.org/abs/1603.07217

On Ordered RRWW-Automata

Kent Kwee and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{kwee,otto}@theory.informatik.uni-kassel.de

Abstract. It is known that the deterministic ordered restarting automa-
ton accepts exactly the regular languages, while its nondeterministic vari-
ant accepts some languages that are not even growing context-sensitive.
Here we study an extension of the ordered restarting automaton, the so-
called ORRWW-automaton, which is obtained from the previous model
by separating the restart operation from the rewrite operation. First we
show that the deterministic ORRWW-automaton still characterizes just
the regular languages. Then we prove that this also holds for the stateless
variant of the nondeterministic ORRWW-automaton, which is obtained
by splitting the transition relation into two parts, where the first part
is used until a rewrite operation is performed, and the second part is
used thereafter. Finally, we show that the nondeterministic ORRWW-
automaton is even more expressive than the nondeterministic ordered
restarting automaton.

Keywords: Restarting automaton · Ordered rewriting · Language
class · Closure property

1 Introduction

The restarting automaton was introduced in [3] as a formal model for the linguis-
tic technique of analysis by reduction, and since then many variants of restarting
automata have been considered (see, e.g., [12]). Essentially, there are two main
variants: those restarting automata that must restart immediately after perform-
ing a rewrite operation (denoted as RWW-automata), and those that have sep-
arate rewrite and restart operations and which therefore may continue scanning
the tape after executing a rewrite operation (denoted as RRWW-automata).
Under various restrictions, e.g., determinism and/or monotonicity, these two
types of automata are equivalent [4,11], but it is still open whether (unrestricted)
RRWW-automata are more expressive than RWW-automata. Here we address
this question in the setting of ordered restarting automata.

The deterministic ordered restarting automaton (or det-ORWW-automaton)
was introduced in [10] in the setting of picture languages. It is a very restricted
form of the shrinking restarting automaton that was studied in [6]. In a shrink-
ing restarting automaton, each rewrite operation is weight-reducing with respect
to some predefined weight function, and it has been shown that for shrink-
ing restarting automata, the RWW-variant is again equivalent to the RRWW-
variant, both in the deterministic as well as in the nondeterministic case.
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 268–279, 2016.
DOI: 10.1007/978-3-662-53132-7 22

On Ordered RRWW-Automata 269

An ordered restarting automaton (or ORWW-automaton) has a finite-state
control, a tape with end markers that initially contains the input, and a window
of size three. Based on its state and the content of its window, the automaton
can execute three types of operations: a move-right step, which shifts the window
one position to the right and changes the state, a combined rewrite/restart step,
which replaces the letter in the middle of the window by a letter that is strictly
smaller with respect to a predefined ordering on the tape alphabet, moves the
window back to the left end of the tape, and resets the automaton to its initial
state, or an accept step, which causes the automaton to halt and accept. While
the nondeterministic variant of this type of automaton accepts some languages
that are not even growing context-sensitive [9], the deterministic variant accepts
exactly the regular languages [10]. In addition, each det-ORWW-automaton can
be simulated by an automaton of the same type that has only a single state, which
means that for these automata, states are actually not needed. Accordingly,
such an automaton is called a stateless det-ORWW-automaton (stl-det-ORWW-
automaton). For such an automaton, the size of its tape alphabet can be taken
as a complexity measure, and it has been shown [13] that these automata are
polynomially related in size to the weight-reducing Hennie machines studied by
Pr̊uša in [14] and that there is an exponential trade-off for converting a stl-det-
ORWW-automaton into an NFA [8].

Here we introduce and study the ordered RRWW-automaton (ORRWW-
automaton). It is obtained from the ORWW-automaton by looking at rewrite
and restart operations as two separate operations, where, however, we still
require that exactly one rewrite step is executed before the first and between any
two successive restart operations. We will see that the det-ORRWW-automaton
accepts exactly the regular languages, and so it is equivalent to the det-ORWW-
automaton. We also consider the stateless variant of the ORRWW-automaton.
However, here a problem arises, as an ORRWW-automaton must execute exactly
one rewrite operation in each cycle of each computation. As in [7] we could either
declare all computations that contain a cycle with none or with several rewrite
steps as illegal, or we could clearly distinguish between the two phases of a cycle:
the phase up to the rewrite step, and the phase after the rewrite step. Here we
take the latter approach in studying stateless ORRWW-automata. Surprisingly,
these automata still characterize the regular languages, both in the deterministic
as well as in the nondeterministic case. Finally, we study the expressive power
of the nondeterministic ORRWW-automaton with states. The class of languages
that it accepts forms an abstract family of languages that properly contains the
context-free languages. As the ORWW-automaton does not even accept all linear
languages, this implies that the ORRWW-automaton is strictly more expressive
than the ORWW-automaton. In fact, while the emptiness problem is decid-
able for ORWW-automata [9], it turns out that for ORRWW-automata, it is
undecidable.

This paper is structured as follows. In the next section we present the defin-
ition of the ORRWW-automaton and study its deterministic variant. In Sect. 3
we consider the stateless variants of the ORRWW-automaton, and in Sect. 4 we

270 K. Kwee and F. Otto

study the class of languages that are accepted by nondeterministic ORRWW-
automata. The paper closes with a short summary and some open problems.

2 Ordered RRWW-Automata

An ordered RRWW-automaton (ORRWW-automaton) is a one-tape machine
that is described by an 8-tuple M = (Q,Σ, Γ,�,�, q0, δ, >), where Q is a finite
set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet such that
Σ ⊆ Γ , the letters �,� �∈ Γ serve as markers for the left and right border of the
work space, respectively, q0 ∈ Q is the initial state, > is a strict partial ordering
on Γ , and

δ : (Q × ((Γ ∪ {�})≤1 · Γ · (Γ ∪ {�}))) ∪ {(q0,��)}
→ 2(Q×({MVR}∪Γ))∪{Restart,Accept}

is the transition relation, which describes four different types of transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, a1a2a3), where q, q′ ∈
Q, a1 ∈ Γ ∪ {�} and a2, a3 ∈ Γ . It causes M to shift the window one
position to the right and to change to state q′. Observe that no move-right
step is possible, if the window contains the right delimiter �.

(2) A rewrite step has the form (q′, b) ∈ δ(q, a1a2a3), where q, q′ ∈ Q, a1 ∈
Γ ∪ {�}, a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M
to replace the letter a2 in the middle of its window by the letter b, to move
the window one position to the right, and to change to state q′.

(3) A restart step has the form Restart ∈ δ(q, a1a2a3), where q ∈ Q, a1, a2 ∈ Γ ,
and a3 ∈ Γ ∪ {�}, or a1 ∈ Γ, a2 = �, and a3 = λ (the empty word). It
causes M to restart, that is, the window is moved back to the left end of the
tape, and M is reset to the initial state q0.

(4) An accept step has the form Accept ∈ δ(q, a1a2a3), where a1 ∈ Γ ∪{�}, a2 ∈
Γ , and a3 ∈ Γ ∪ {�}, or a1 ∈ Γ , a2 = �, and a3 = λ. It causes M to halt
and accept. In addition, we allow an accept step of the form δ(q0,��) =
{Accept}.

If δ(q, u) = ∅ for some pair (q, u), then M halts, when it is in state q with
u in its window, and we say that M rejects in this situation. If |δ(q, u)| ≤ 1 for
all pairs (q, u), then M is a deterministic ORRWW-automaton (det-ORRWW-
automaton). Further, the letters in Γ � Σ are called auxiliary letters.

Observe that for general RRWW-automata, a rewrite operation (q′, v) ∈
δ(q, u) replaces the factor u by the word v, changes the state to q′, and moves
the window immediately to the right of v. In our case this would mean that a
rewrite operation (q′, b) ∈ δ(q, abc) should move the window three steps to the
right, as it rewrites the factor abc into the word ab′c. However, for the stateless
variant (that is, q0 is the only state) this would mean that after a rewrite no
information on the new letter would be available to the automaton, and therefore
we have chosen the above interpretation for the rewrite step.

On Ordered RRWW-Automata 271

A configuration of an ORRWW-automaton M is a word of the form αqβ,
where q ∈ Q is a state, and αβ ∈ {�}·Γ ∗·{�} such that |β| ≥ 2, and either α = λ
and β ∈ {�} ·Γ+ · {�} or α ∈ {�} ·Γ ∗ and β ∈ Γ+ · {�}; here αβ is the current
content of the tape, and it is understood that the window contains the first three
letters of β or all of β, if |β| ≤ 3 . In addition, we admit the configuration q0��.
A restarting configuration has the form q0�w�; if w ∈ Σ∗, then q0�w� is also
called an initial configuration. Further, we use Accept to denote the accepting
configurations, which are those configurations that M reaches by an accept step.
A configuration of the form αqβ such that δ(q, β1) = ∅, where β1 is the current
content of the window, is a rejecting configuration. A halting configuration is
either an accepting or a rejecting configuration. By
M we denote the single-
step computation relation that M induces on the set of configurations, and the
computation relation
∗

M of M is the reflexive and transitive closure of
M .
Any computation of an ORRWW-automaton M consists of certain phases.

A phase, called a cycle, starts in a restarting configuration, the head is moved
along the tape by MVR steps until a rewrite step is performed, which replaces a
letter by a smaller one. After that further MVR steps may follow until, finally,
a restart step is executed and thus, a new restarting configuration is reached. If
no further restart operation is performed, any computation necessarily finishes
in a halting configuration – such a phase is called a tail. It is required that each
cycle contains exactly one rewrite step, and a tail may contain at most a single
rewrite step. By
c

M we denote the execution of a complete cycle, and
c∗
M is the

reflexive transitive closure of this relation. It can be seen as the rewrite relation
that is realized by M on the set of restarting configurations.

An input w ∈ Σ∗ is accepted by M , if there is a computation of M which
starts with the initial configuration q0�w� and ends with an accept step. By
L(M) we denote the language L(M) = {w ∈ Σ∗ | q0�w�
∗

M Accept}.
As each cycle contains a rewrite operation, which replaces a letter a by a

letter b that is strictly smaller than a with respect to the given ordering >,
we see that each computation of M on an input of length n consists of at most
(|Γ |−1) ·n many cycles. Thus, M can be simulated by a nondeterministic single-
tape Turing machine in time O(n2). The following example illustrates the way
in which the ORRWW-automaton works.

Example 1. For m ≥ 1, let Lch,m be the following language:

Lch,m = {w1w2 . . . wn ∈ {a, b}n | n ≥ 2m and wm = wn+1−m = wn},

that is, a word w of length n ≥ 2m belongs to this language iff the m-th
letter and the m-th last letter both coincide with the last letter of w. We
define a det-ORRWW-automaton M = (Q,Σ, Γ,�,�, q0, δ, >) by taking Q =
{q0, q1, . . . , qm−1, qa, qb, qr}, Σ = {a, b} and Γ = Σ ∪ {a1, b1, x2, x3, . . . , xm−1},
by defining the partial ordering > through a > a1 > xi and b > b1 > xi for
all i = 2, 3, . . . ,m − 1, and by specifying the transition function through the
following table, where c, d, e, f ∈ Σ:

δ(q0,�dc) = (q1,MVR), δ(qi, dce) = (qi+1,MVR), 1 ≤ i ≤ m − 2,
δ(qm−1, dce) = (qc,MVR), δ(qc, def) = (qc,MVR),

272 K. Kwee and F. Otto

δ(qc, de�) = (qr, e1), δ(qc, def1) = (qr, x2)
δ(qr, x2c1�) = Restart, δ(qc, dexi) = (qr, xi+1), 2 ≤ i ≤ m − 2,
δ(qc, dcxm−1) = (qc,MVR), δ(qc, xi+2xi+1xi) = (qc,MVR), 2 ≤ i ≤ m − 3,
δ(qc, cxm−1xm−2) = (qc,MVR) δ(qc, x3x2c1) = (qc,MVR),
δ(qc, x2c1�) = Accept, δ(qr, xi+2xi+1xi) = (qr,MVR), 2 ≤ i ≤ m − 3,
δ(qr, x3x2c1) = (qr,MVR), δ(qr, c1�) = Restart.

Using its states M counts from left to right until it sees the m-th letter, say c,
which it then remembers in its state. Then it rewrites the last m − 1 letters
from right to left, rewriting the last letter, say wn = d, into d1, and the let-
ters wn−1, wn−2, . . . , wn+2−m into x2, x3, . . . , xm−1. Finally, it checks whether
wn+1−m, which is the letter immediately before xm−1, coincides with wm = c.
In the affirmative, M moves to the right, where it compare wm = wn+1−m = c
to the last letter d (or rather its encoding d1). If a positive result is returned,
then M accepts. It is easily seen that L(M) = Lch,m holds.

The ORWW-automaton studied in [8,9] differs from the ORRWW-
automaton in that the rewrite and restart operations are combined into a joint
operation. Obviously, (deterministic) ORWW-automata can be simulated by
(deterministic) ORRWW-automata. Thus, it follows that all regular languages
are accepted by det-ORRWW-automata. However, also the converse holds.

Theorem 2. L(det-ORRWW) = REG.

Proof. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be a det-ORRWW-automaton, and
let L = L(M). Without loss of generality we can assume that M performs
restart and accept operations only at the right delimiter �. We present a det-
ORWW-automaton M ′ = (Q′, Σ, Γ ′,�,�, q0, δ

′, >′) that simulates M . Then
L(M ′) = L(M) = L, which implies that L is a regular language. Each cycle of
a computation of M is of the following form, where u, v ∈ Γ ∗, a, b, b′, c, d, e ∈ Γ ,
and q1, q2, q3 ∈ Q:

q0�uabcvde�
1+|u|
MVR �uq1abcvde�
Rewrite �uaq2b

′cvde�

|v|+2
MVR �uab′cvq3de�
Restart q0 � uab′cvde�,

and in the next cycle M moves its window at least until it contains the newly
written letter b′ before the next rewrite step can be executed. In order for the
det-ORWW-automaton M ′ to be able to correctly simulate the above cycle,
M ′ must ensure (or verify) in some way that after the above rewrite operation
M will eventually perform a restart. For this we let M ′ perform some kind of
preprocessing during which it encodes certain additional information on its tape.

For each word w ∈ Γ+, |w| ≥ 2, and each letter a ∈ Γ , we define two sets
Q

(a)
rs (w) and Q

(a)
+ (w) as follows, where w = w1bc for b, c ∈ Γ :

Q(a)
rs (w) = {p ∈ Q | �paw�
|w|−1

MVR �aw1p
′bc�
Restart q0�aw�} and

Q
(a)
+ (w) = {p ∈ Q | �paw�
|w|−1

MVR �aw1p
′bc�
Accept Accept}.

On Ordered RRWW-Automata 273

Now if the det-ORWW-automaton M ′ is to simulate the above cycle of M ,
then from the fact that q2 ∈ Q

(b′)
rs (cvde) it sees that M will actually restart at the

right end of the tape, and hence, it can safely perform the same rewrite operation
and restart. Accordingly, we define a precomputation for M ′ that assigns, from
right to left, the collection of sets (Q(a)

rs (z), Q(a)
+ (z))a∈Γ with the first letter z1

of each suffix z of the given input w. Thus, we define

Γ ′ = Σ ∪ {(A, (Q(a)
1 , Q

(a)
2)a∈Γ) | A ∈ Γ,Q

(a)
1 , Q

(a)
2 ⊆ Q},

take Q′ = Q ∪ {qC}, define >′ by taking A >′ (A, (Q(a)
1 , Q

(a)
2)a∈Γ) for all A ∈ Γ

and all Q
(a)
1 , Q

(a)
2 ⊆ Q and (A, (Q(a)

1 , Q
(a)
2)a∈Γ) >′ (B, (P (a)

1 , P
(a)
2)a∈Γ) if A > B.

The transition function can now be defined in such a way that M ′ first
encodes the information on the sets (Qrs, Q+)a∈Γ proceeding from right to left
until it detects the position, say i, at which the next rewrite operation of M is to
be simulated. Based on the information from the encoded sets of states, it then
simulates this rewrite step, updating also the information on the stored sets of
states of M at the current position. For this, it can extract the information on
the corresponding sets from the symbol stored at position i+1. Observe that in
the next cycle, M cannot execute a rewrite step until it has the newly written
symbol in its window, that is, not to the left of position i − 1. It can be shown
that in this way M ′ can simulate M correctly, implying that L(M ′) = L(M).
Thus, L(det-ORRWW) = L(det-ORWW), which implies that L(det-ORRWW)
coincides with the class REG of regular languages. ��

3 On Stateless ORRWW-Automata

For restarting automata in general, each RR-variant is at least as powerful as
the corresponding R-variant, but for stateless automata the situation is not that
obvious. The feature of continuing to read the tape after a rewrite step has been
executed is problematic for these automata, as they cannot distinguish between
the phase of a cycle before the rewrite step and the phase after the rewrite step.
Clearly, this distinction is important, since no rewrite steps may appear in the
latter phase. For general restarting automata, this is avoided by using states,
but how to deal with this situation for stateless RR-automata?

In [7] this problem has been addressed, and two options for dealing with it
have been proposed. First, one can interpret any additional rewrite step within
a cycle as a reject. However, this approach amounts to an external supervisor
that aborts the computation in an unwanted situation. Here we rather follow
the second option presented in [7] in which two phases of each cycle are distin-
guished: the first phase, which ends with the execution of a rewrite operation,
and the second phase, which starts after the execution of a rewrite operation
and ends with either a restart or an accept step. These two phases are realized
by providing two separate transition functions. In [7] the corresponding state-
less restarting automata are called two-phase restarting automata, but as we will

274 K. Kwee and F. Otto

only deal with this type of stateless ORRWW-automata, we just call them state-
less ORRWW-automata (stl-ORRWW-automata). Formally these automata are
defined as follows.

Definition 3. A stl-ORRWW-automaton is described by a 7-tuple M =
(Σ,Γ,�,�, δ1, δ2, >), where Σ,Γ,�,�, and > are defined as for ORRWW-
automata, and

δ1 : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��} → 2Γ∪{MVR,Accept}

and
δ2 : (Γ≤2 · (Γ ∪ {�})) → 2{MVR,Restart,Accept}

are the transition relations. Here it is required that b > b′ holds for each rewrite
instruction b′ ∈ δ1(abc).

A configuration of M is written as a pair (α, β), where αβ is the current con-
tent of the tape and the window contains the prefix of β. Given a word w ∈ Σ+

as input, the computation starts with the initial configuration (λ,�w�). First,
the transition relation δ1 is used until either an accept instruction is reached, a
rewrite instruction b′ ∈ Γ is reached, or the window contains a word for which
δ1 is undefined. In the first case, M accepts, in the second case the letter in the
middle of the window is replaced by the letter b′, the window is moved one step
to the right, and the computation is continued by using the transition relation δ2.
Finally, in the third case M simply halts without accepting. The transition rela-
tion δ2, which is used in the second phase of a cycle after the execution of a
rewrite step, shifts the window to the right until either an accept instruction
is executed, and then M accepts, until a restart instruction is executed, which
resets the window to the left end of the tape and starts the next cycle, or until a
window content is reached for which δ2 is undefined. In the latter case M halts
without accepting. For w = λ, there either is no applicable operation for the
configuration (λ,��), or δ1(��) = {Accept}.

Theorem 4. L(stl-det-ORRWW) = L(stl-ORRWW) = REG.

Proof. If L is a regular language, then there exists a stl-det-ORWW-automaton
M = (Σ,Γ,�,�, δ, >) for L. From M we obtain an equivalent stl-det-ORRWW-
automaton M ′ = (Σ,Γ,�,�, δ1, δ2, >) by defining δ1 = δ and δ2(abc) = MVR
and δ2(de�) = Restart for all a, b, c ∈ Γ and de ∈ Γ≤2. Hence, REG ⊆
L(stl-det-ORRWW) ⊆ L(stl-ORRWW) follows.

Conversely, let M = (Σ,Γ,�,�, δ1, δ2, >) be a stl-ORRWW-automaton. We
will prove that L(M) is a regular language by showing that the Nerode relation
∼ of L(M) has finite index (see, e.g., [2]). For doing so, we proceed as follows.

Let w ∈ L(M), let m be an integer such that 1 ≤ m ≤ |w|, and let C be an
accepting computation of M on input w. During this computation M executes
certain operations at position m, that is, when position m is in the middle of the
window of M . These operations may include rewrite steps b′ ∈ δ1(abc), move-
right steps MVR ∈ δ1(abc) or MVR ∈ δ2(abc), restart steps Restart ∈ δ2(abc),

On Ordered RRWW-Automata 275

and accept steps Accept ∈ δ1(abc) or Accept ∈ δ2(abc). As by a rewrite step, the
letter in the middle of the window is replaced by a smaller letter with respect
to >, the rewrite steps that occur at position m are obviously ordered. Before
the first rewrite step, and between two successive rewrite steps, a sequence of
move-right steps may occur at position m. Here again an ordering is induced by
>, if one of the letters at position m−1 or m+1 is rewritten during this part of
the computation. It remains the case that a sequence of move-right steps occurs
at position m that are all applied to the same window content abc. Some of
them may be δ1-steps, while others may be δ2-steps. By associating the number
1 with a positive number of δ1-steps and the number 2 with a positive number
of δ2-steps, we can assign a type t ∈ (1 · (2 · 1)∗ · {2, λ}) ∪ (2 · (1 · 2)∗ · {1, λ}) to
this sequence. By rearranging the corresponding cycles of the computation C,
this computation can be transformed into a computation C ′ for which the type
of any sequence of move-right steps with the same window content at position
m is from the set T = {1, 2, 1 · 2, 2 · 1, 1 · 2 · 1, 2 · 1 · 2}. Additionally, we require
that all cycles associated to the same number 1 appear uninterrupted within the
computation. We call such a computation normalized.

Now let Ω be the following extended set of operations of M , where a ∈
Γ ∪ {�}, b, b′ ∈ Γ and c ∈ Γ ∪ {�}:

Ω = {(a, b, c, b′) | b′ ∈ δ1(abc)} ∪ {(a, b, c, t) | t ∈ T} ∪
{(a, b, c,−) | Restart ∈ δ2(abc)} ∪ {(a, b, c,+i) | i = 1, 2, Accept ∈ δi(abc)}.

Then the sequence of operations that are executed by M during the compu-
tation C ′ at position m can be described by a word AC′

m (w) ∈ Ω∗. In fact, as at
most |Γ |−1 rewrite steps can occur in this sequence, AC′

m (w) is of length O(|Γ |).
With each word w ∈ Σ+, we now associate two sets S1(w) and S2(w):

S1(w) = {AC
|w|(wz) | z ∈ Σ∗ and C is a normalized computation of M for wz

that accepts at a position ≤ |w|},
S2(w) = {AC

|w|(wz) | z ∈ Σ∗ and C is a normalized computation of M for wz

that accepts at a position > |w|}.

We will show that there are no distinguishing extensions for x, y ∈ Σ+ if
Si(x) = Si(y) for i = 1, 2. Accordingly, let z ∈ Σ∗ such that xz ∈ L(M). Then
there exists a number i ∈ {1, 2} and a normalized accepting computation Cxz of
M such that ACxz

|x| (xz) = A ∈ Si(x). As Si(y) = Si(x), there exists a word u ∈ Σ∗

and a normalized accepting computation Cyu of M such that A
Cyu

|y| (yu) = A.
We claim that there is also an accepting computation C ′ of M for the word yz.

We consider the sequences of cycles of Cyu and Cxz as working lists for con-
structing the cycles of C ′ that have their rewrite operations in the y-part and
the z-part, respectively. We construct the computation C ′ for the word yz as
follows. We divide the cycles into groups according to the different types of
MVR-patterns. All consecutive cycles that contribute to the same number 1 in
one pattern form a group of type 1. All consecutive cycles that contribute to
the same number 2 belong to a group of type 2. Note that such a group may

276 K. Kwee and F. Otto

include short cycles that do not include a move-right step of δ2 at the border.
Additionally, each cycle that executes a rewrite at the border forms a rewrite
group. We see that we have the same groups in Cyu and Cxz.

We now consider the group of cycles of Cyu one after the other. If we have
a short cycle, we just append it to C ′ as the u-part is not involved. If we have
a cycle of a rewrite group, we take the cycle up to position |y| and complement
it with the second part of the corresponding cycle of Cxz. If we have a group
of type 1, we take the part up to position |y| − 1 of the first cycle and call
it c0. Then, we take all last parts starting at position |x| of the cycles of the
corresponding group of Cxz and call them c1, . . . , ck. Finally, we append the
cycles c0c1, . . . , c0ck to C ′. The computation C ′ stays valid, as these new cycles
do not make any changes in the y-part. Therefore, it is possible to execute
c0c1, . . . , c0ck in this order. If we have a group of type 2, we take the last part of
the last cycle of the corresponding group of Cxz starting at position |x| and call
it ct. Then, we replace the last part of each cycle of the current group of Cyu

starting at position |y| by ct if the cycle has length > |y|. Finally, we append all
these cycles to C ′.

This construction ends as soon as an accepting tail is encountered, which
happens eventually as the computations Cxz and Cyu either both accept in the
z- and u-parts, respectively, or they both accept to the left of these parts.

As there are only finitely many words AC′
m (w) ∈ Ω∗ that can occur as descrip-

tions of sequences of operations of M , there are only finitely many different sets
S1(x) and S2(x). Hence, the Nerode relation ∼ of L(M) has finite index, which
means that L(M) is indeed a regular language. ��

4 On Nondeterministic ORRWW-Automata

The class L(ORWW) of languages accepted by ORWW-automata is an abstract
family of languages (see, e.g., [2]) that is closed under intersection, but that
is not closed under reversal and complementation [9]. In addition, it contains a
language that is not growing context-sensitive, while it does not even contain the
deterministic linear language {anbn | n ≥ 1}. Thus, this class is incomparable
to the (deterministic) linear, the (deterministic) context-free, and the growing
context-sensitive languages. However, the inclusion L(ORWW) ⊆ L(ORRWW)
obviously holds. Actually, this inclusion is proper, as all context-free languages
are accepted by ORRWW-automata.

Theorem 5. CFL ⊆ L(ORRWW).

Proof. Let L ⊆ Σ+ be a context-free language that does not contain the empty
word. Then there exists a grammar G = (N,Σ,P, S) in quadratic Greibach
normal form that generates L (see, e.g., [1]), that is, each production of P is of
the form A → a, A → aB, or A → aBC, where a ∈ Σ and A,B,C ∈ N .

The language L is accepted by the ORRWW-automaton M that works as
follows. Given an input w ∈ Σ+, M guesses a leftmost derivation of w in G.
In each step of this derivation the next symbol a of w must be produced by

On Ordered RRWW-Automata 277

applying a corresponding production. Thus, the symbol a must be marked as
having been read, and the nonterminals produced by that step are written in
reverse order on the tape, where the rightmost of these nonterminals is marked
as being ‘active.’ Now in each phase a production A → aT is chosen that has the
active nonterminal A as its left-hand side and that produces the next symbol
a of w on its right-hand side. Then the symbol a is replaced by an encoding
of TR, which is tagged. After that the marked nonterminal is deleted, the tag is
removed, and the rightmost of the remaining nonterminals is marked as ‘active.’

Formally the automaton M is defined as follows. We take the tape alphabet
Γ = Σ ∪ {[λ], [B], [BC], [B], [BC], ˜[λ], ˜[B], [̃BC] |B,C ∈ N} with the partial
ordering a > [̃CB] > ˜[C] > ˜[λ] > [CB] > [CB] > [C] > [C] > [λ]. The set of
states Q and the transition relation δ are defined in such a way that, in each
cycle, M scans its tape from left to right and executes one of the following steps
depending on the form of the word on the tape. In the following we have a ∈ Σ,
B,C,D,E ∈ N , and we use R to denote the set R = {[λ], [A], [AB] | A,B ∈ N}:

1. If the word α on the tape is of the form {a} · Σ∗, then M can replace a by
[λ], if there is a production S → a, by [B], if there is a production S → aB,
or by [CB], if there is a production S → aBC.

2. If the word α is of the form R∗ · {[B], [CB]} · {[λ]}∗ ·Σ∗, then M replaces [B]
(or [CB]) by [B] (or [CB]).

3. If the word α is of the form R∗ · {[B], [CB]} · {[λ]}∗ · {a} · Σ∗, then M can
replace a by ˜[λ], if there is a production B → a, by ˜D, if there is a production
B → aD, or by ˜ED, if there is a production B → aDE.

4. If the word α is of the form R∗ · {[B], [CB]} ·{[λ]}∗ · {˜[λ], ˜[D], [̃ED]} ·Σ∗, then
M replaces [B] (or [CB]) by [λ] (or [C]).

5. If the word α is of the form R∗ · {[λ]}∗ · {˜[λ], ˜[D], [̃ED]} ·Σ∗, then M removes
the tilde from ˜[λ], ˜[D], or [̃ED].

6. Finally, M halts and accepts, if the tape contains a word from {[λ]}∗.

It can easily be seen that L(M) = L, as the transitions of M are in close
correspondence to the productions of G.

If the language L contains the empty word, we apply the above construction
to the language L � {λ} and then add the transition δ(q0,��) = {Accept}. ��
Corollary 6. L(ORWW) ∪ CFL � L(ORRWW).

In [9] it is shown that L(ORWW) is an abstract family of languages that is
closed under intersection. The same proof can be used to show the following.

Theorem 7. L(ORRWW) is closed under union, intersection, product, Kleene
star, inverse morphisms, and non-erasing morphisms.

However, in contrast to the situation for ORWW-automata, the class
L(ORRWW) is closed under the operation of reversal, as the proof for general
RRWW-automata also applies here [5].

278 K. Kwee and F. Otto

Proposition 8. For each ORRWW-automaton M , there exists an ORRWW-
automaton M ′ such that L(M ′) = L(M)R.

Finally, the following result shows that ORRWW-automata can even accept
some unary languages that are not context-free.

Proposition 9. The unary language L = {an | ∃ p, q > 1 : n = p · q} is accepted
by an ORRWW-automaton.

Proof. The languages L1 = {anbn | n > 1}, L2 = {bnan | n > 1}, L3 = {an | n ≥
1}, and L4 = {bn | n ≥ 1} are all context-free and, therefore, they are accepted
by ORRWW-automata. Now let ϕ : {a, b}∗ → {a}∗ denote the morphism that
is defined by ϕ(a) = ϕ(b) = a. It is easily seen that

L = ϕ ((L∗
1 ∪ L∗

1 · L3) ∩ (L3 · L∗
2 ∪ L3 · L∗

2 · L4)) .

Hence, by Theorem 7, L is accepted by an ORRWW-automaton. ��
We complete this section by briefly looking at some decision problems for

ORRWW-automata. It has been shown in [9] that the emptiness problem
is decidable for ORWW-automata. However, as each context-free language is
accepted by an ORRWW-automaton, and as the language class L(ORRWW) is
closed under intersection, we obtain the following undecidabiliy result from the
undecidability of the intersection-emptiness problem for context-free languages.

Corollary 10. The emptiness problem for ORRWW-automata is undecidable.

From an ORRWW-automaton M , we can construct an ORRWW-automaton
M ′ for the language L(M)·Σ+, as the proof of Theorem 7 is actually constructive.
Now L(M ′) is finite, iff L(M) is empty. Thus, from the undecidability of the
emptiness problem, we immediately get the following.

Corollary 11. The finiteness problem for ORRWW-automata is undecidable.

Finally, from the corresponding results for context-free languages, it follows
that for ORRWW-automata, also universality, regularity, inclusion, and equiva-
lence are all undecidable.

5 Conclusion

We have introduced and studied the ORRWW-automaton, which is obtained
from the ORWW-automaton by splitting the rewrite/restart operation of the
latter into two separate operations, where, however, we still require that in any
cycle of any computation, exactly one rewrite step is to be executed. We have
seen that in the deterministic case, this change does not influence the expressive
power of the model, and the same is true for the stateless variants. However,
in the nondeterministic setting, the separation of the restart operation from the

On Ordered RRWW-Automata 279

rewrite operation has quite a large impact. We still get an abstract family of lan-
guages that is closed under intersection, but in addition, we have closure under
reversal. Furthermore, the class of languages that are accepted by ORRWW-
automata extends the class of languages that are accepted by ORWW-automata
substantially, as ORRWW-automata accept all context-free languages. Unfortu-
nately, this entails that in this setting already the emptiness problem becomes
undecidable. However, it remains open whether the language class L(ORRWW)
is closed under the operation of complementation.

References

1. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages,
vol. 1, pp. 111–174. Springer, Heidelberg (1997)

2. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

3. Jančar, P., Mráz, F., Plátek, M., Vogel, P.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. J. Auto. Lang. Comb. 4, 287–311 (1999)

5. Jurdziński, T., Loryś, K., Niemann, G., Otto, F.: Some results on RWW- and
RRWW-automata and their relation to the class of growing context-sensitive lan-
guages. J. Auto. Lang. Comb. 9, 407–437 (2004)

6. Jurdziński, T., Otto, F.: Shrinking restarting automata. Intern. J. Found. Comp.
Sci. 18, 361–385 (2007)

7. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless deterministic restarting
automata. Acta Inform. 47, 391–412 (2010)

8. Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered
restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol.
9118, pp. 165–176. Springer, Heidelberg (2015)

9. Kwee, K., Otto, F.: On the effects of nondeterminism on ordered restart-
ing automata. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 369–380. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 30

10. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Heidelberg (2014)

11. Niemann, G., Otto, F.: Further results on restarting automata. In: Ito, M., Imaoka,
T. (eds.) Proceedings of Words, Languages and Combinatorics III, pp. 352–369.
World Scientific, Singapore (2003)

12. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 269–303.
Springer, Heidelberg (2006)

13. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Heidelberg (2014)

14. Pr̊uša, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-49192-8_30
http://dx.doi.org/10.1007/978-3-662-49192-8_30

Bispecial Factors in the Brun S-Adic System

Sébastien Labbé and Julien Leroy(B)

Institut de Mathématique, Université de Liège,
Allée de la découverte 12 (B37), 4000 Liège, Belgium

{slabbe,j.leroy}@ulg.ac.be

Abstract. We study the bispecial factors in the S-adic system asso-
ciated with the Brun Multidimensional Continued Fraction algorithm.
More precisely, by describing how strong and weak bispecial words can
appear, we get a sub-language of the Brun language for which all bispe-
cial words are neutral.

Keywords: Substitutions · Brun · Factor complexity · Bispecial

1 Introduction

Sturmian sequences [14] are infinite sequences on a binary alphabet in which
appear exactly n + 1 distinct finite subsequences of consecutive n letters for
each n ∈ N. It is known that the symbolic dynamical system associated with a
sturmian sequence (with the shift transformation) is minimal and is measure-
theoretically isomorphic to an irrational rotation on the unit circle T1. The
result was extended to higher dimensions when Rauzy proved in [15] that the
symbolic dynamical system associated with the fixed point of the Tribonacci
substitution σ : 1 �→ 12, 2 �→ 13, 3 �→ 1, which has p(n) = 2n + 1 factors of
length n, is measure-theoretically isomorphic to an irrational translation on the
torus T2. Proving that Rauzy’s result holds in a more general setting is still
an open question known as the Pisot conjecture [1] in the case of all Pisot uni-
modular substitutions. However substitutive dynamical systems obtained from
the iteration of one substitution is quite limited (frequencies of letters must be
algebraic) and do not form a satisfactory generalization to larger alphabets of
sturmian systems (achieving all irrational frequencies of letters).

A generalization of the Pisot conjecture was proposed in [7] in the case of
S-adic symbolic dynamical systems. These shift spaces are obtained by iterating
substitutions from a set S, generalizing the substitutive case where Card S = 1.
Like it is the case for sturmian words, the sequence of substitutions is obtained
from the continued fractions algorithm or some multidimensional version of it
[8,17]. They proved using results from [3,4,10] that almost all S-adic shifts based
on Brun’s Multidimensional Continued Fraction Algorithm [9] are measurably

S. Labbé—Postdoctoral Marie Curie fellowship (BeIPD-COFUND).
J. Leroy—Postdoctoral FNRS fellowship.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 280–292, 2016.
DOI: 10.1007/978-3-662-53132-7 23

Bispecial Factors in the Brun S-Adic System 281

conjugate to a translation on the torus T2. They also proved that these shifts
provide a natural coding of almost all rotations on T2 providing a reverent
generalization of sturmian systems to a three-letter alphabet.

One statement about Brun S-adic systems has remained unproved: the factor
complexity. As mentioned in [7], it is believed that any Brun S-adic shift has
a linear factor complexity and this is the subject of this contribution. In this
work, we initiate a study of bispecial factors in the Brun S-adic systems pushing
further methods already used in [6,12] and also in [5] where it was proved that
p(n) ≤ 5

2n + 1 for Arnoux-Rauzy-Poincaré S-adic system. In the Brun system,
it appears that left extensions of length 1 are not enough to study the evolution
of bispecial factors. Also, some neutral bispecial factors can split into a pair of
strong and weak bispecial factors which can later on merge again into a neutral
bispecial factor. These phenomena are not possible in the case of the Arnoux-
Rauzy-Poincaré algorithm and these are reasons why the linearity of the factor
complexity for Brun S-adic systems has shown to be harder to prove.

2 Brun’s Algorithm

Brun’s algorithm [9] is a Multidimensional Continued Fraction Algorithm [8,17]
which subtracts the second largest entry to the largest entry of a nonnegative
vector in R

d
+. In the most often used version of Brun’s algorithm, the entries

are sorted after each iteration. Keeping the entries sorted has the advantage of
reducing the number of branches of the algorithm at each step but the disad-
vantage of losing the symmetry between them. In this work, we prefer to keep
the symmetry and present below the unsorted version of Brun’s algorithm which
has 6 branches when d = 3. On Λ = R

3
+, the unsorted Brun’s algorithm is the

map F (x1, x2, x3) = (x′
1, x

′
2, x

′
3) defined by

x′
π1 = xπ1, x′

π2 = xπ2, x′
π3 = xπ3 − xπ2

where π ∈ S3 is the permutation of {1, 2, 3} such that xπ1 < xπ2 < xπ3. Equiv-
alently, the map F on Λ can be defined as a linear application Fx = M(x)−1x
with M(x) = Mπ if and only if x ∈ Λπ where Λπ = {(x1, x2, x3) ∈ Λ | xπ1 <
xπ2 < xπ3} defines a partition of the positive cone Λ = ∪π∈S3Λπ up to a set of
Lebesgue measure zero and Mπ are the following elementary matrices:

M123 =

⎛

⎝

1 0 0
0 1 0
0 1 1

⎞

⎠, M132 =

⎛

⎝

1 0 0
0 1 1
0 0 1

⎞

⎠, M213 =

⎛

⎝

1 0 0
0 1 0
1 0 1

⎞

⎠,

M231 =

⎛

⎝

1 0 1
0 1 0
0 0 1

⎞

⎠, M312 =

⎛

⎝

1 0 0
1 1 0
0 0 1

⎞

⎠, M321 =

⎛

⎝

1 1 0
0 1 0
0 0 1

⎞

⎠.

The algorithm F defines a cocycle Mn : Λ → SL(d,Z)

M0(x) = I and Mn(x) = M(x)M(Fx) · · · M(Fn−1x)

282 S. Labbé and J. Leroy

with the cocycle property Mm+n(x) = Mm(x)Mn(Fmx). Since Brun’s algorithm
is strongly convergent almost everywhere when d = 3 [13] (also when d = 4 [16]),
the columns of Mn(x) are good rational approximations of x. Indeed, an MCF
algorithm is strongly convergent at x ∈ Λ with ‖x‖ = 1 if for all i with 1 ≤ i ≤ d,
we have

lim
n→∞ Mn(x)ei − ‖Mn(x)ei‖x = 0. (1)

3 Brun S-Adic System

3.1 S-Adic Words

Let S be a set of substitutions. A word w ∈ AN is said to be S-adic if there is
a sequence (σn : A∗

n+1 → A∗
n)n∈N ∈ SN and a sequence of letters (an ∈ An)n∈N

such that A0 = A and

w = lim
n→+∞ σ0σ1 · · · σn(an+1).

For all r ∈ N we define the S-adic word

w(r) = lim
n→+∞ σrσr+1 · · · σr+n(ar+n+1).

In our setting we will consider the alphabet A = {1, 2, 3} and we usually use the
set {i, j, k} to represent A.

A directive sequence of substitutions (σn : A∗
n+1 → A∗

n)n∈N is primitive if for
all r ∈ N, there exists s ≥ r such that for all a ∈ Ar and all b ∈ As+1, the letter
a occurs in σr · · · σs(b). Primitiveness of a directive sequence of substitutions
implies the uniform recurrence of the associated S-adic word [11].

3.2 Brun Substitutions and Brun Words

For every totally irrational x ∈ Λ, Brun’s algorithm F defines a sequence of
substitutions (σ(Fnx))n∈N, where σ(x) = βjk if and only if x ∈ Λijk and βjk :
i �→ i, j �→ jk, k �→ k is a substitution called Brun substitution. Note that the
incidence matrix of βjk is Mijk for all ijk ∈ S3.

One can see that the allowed product of two consecutive Brun substitutions
is restricted among the possibilities. One can show that after each βij only three
of the six substitutions are allowed:

{σ(x)σ(Fx) | x ∈ Λ} = {βijβij , βijβji, βijβki | ijk ∈ S3}.

Writing SB = {βij | ijk ∈ S3}, the Brun language is:

LB = {σ(x)σ(Fx) · · · σ(Fn−1x) | x ∈ Λ, n ∈ N}
= S∗

B \ S∗
B {βijβik, βijβjk, βijβkj | ijk ∈ S3}S∗

B.

It is a regular language accepted by the automaton represented in Fig. 1 where
the label of an edge is βij whenever the edge goes to the state ij.

Bispecial Factors in the Brun S-Adic System 283

12 31 23

21 13 32

Fig. 1. The Brun language LB is regular.

If x ∈ Λ is totally irrational, then there are infinitely many n ∈ N such
that σ(Fnx)σ(Fn+1x) ∈ {βijβkj | ijk ∈ S3}. This is equivalent to say that for
all ijk ∈ S3, Card({n ∈ N | σ(Fnx) ∈ {βij , βik}) = +∞. This implies that
limn→+∞ mini∈A |σ(x)σ(Fx) · · · σ(Fnx)(i)| = +∞. As all Brun substitutions
are prolongable on every letter, this allows us to define the S-adic infinite word

lim
n→+∞ σ(x)σ(Fx) · · · σ(Fn−1x)(1)

whose letter frequencies exist and are proportional to x by (1).

Definition 1 (Brun word). A word w ∈ AN is a Brun word if it is an SB-
adic word whose directive sequence (σn)n∈N ∈ SN

B is such that for all n ∈ N,
σ0σ1 · · · σn ∈ LB and for all ijk ∈ S3, Card({n ∈ N | σn ∈ {βij , βik}) = +∞.

Proposition 2. If s = (σn)n∈N ∈ SN

B is the directive sequence of a Brun word
w, then (σn)n∈N is primitive. In particular, w is uniformly recurrent.

3.3 Relations with Arnoux-Rauzy and Poincaré Substitutions

The Brun substitutions share some relations with other well-known substitu-
tions. For all {i, j, k} = A, we let αi denote the Arnoux-Rauzy substitution [2]
and πij denote the Poincaré substitution [5]:

αi : i �→ i, j �→ ji, k �→ ki, πij : i �→ ij, j �→ j, k �→ kij. (2)

These are products of Brun substitutions. More precisely, for all ijk ∈ S3, we
have πij = βijβki and αi = βjiβki = βkiβji.

Note that a Poincaré substitution can appear as a product of two consecutive
Brun substitutions in the Brun S-adic system, but not an Arnoux-Rauzy one.
We let SA and SP respectively denote the set of Arnoux-Rauzy substitutions and
the set of Poincaré substitutions: SA = {α1, α2, α3} and SP = {πij | ijk ∈ S3}.

Now we show that Poincaré substitutions appear infinitely often as products
of two consecutive Brun substitutions. This will be useful to study the extension
type (defined in Sect. 4.1) of the empty word in Brun words.

Lemma 3. Let w be a Brun word with directive sequence (σn)n∈N ∈ SN

B . There
exist infinitely many integers n ∈ N such that σnσn+1 ∈ SP . Moreover, if σr =
βij, then the smallest integer � ≥ r such that σ�σ�+1 ∈ SP satisfies σ�σ�+1 ∈
{πij , πji}. Finally, if σ�σ�+1 = πxy with xy ∈ {ij, ji}, then (σn)n≥� ∈ Lxy where

Lxy = πxyβykSN

B ∪ πxy{βxk, βkx}∗{πxk, πkx}SN

B . (3)

284 S. Labbé and J. Leroy

3.4 Other Substitutions Used for Brun’s Algorithm
in the Litterature

In Jolivet’s thesis or also in [4], they proposed the following substitutions for
Brun’s algorithm in its sorted version. Note that it was in the purpose of gen-
erating discrete planes. Therefore, their incidence matrix is dual to the matrix
associated with the execution of the sorted Brun algorithm:

1 �→ 1, 2 �→ 2, 3 �→ 32, 1 �→ 1, 2 �→ 3, 3 �→ 23, 1 �→ 2, 2 �→ 3, 3 �→ 13.

In [10], they use the reversal of the above three substitutions for the sorted
algorithm. For the unsorted one, they propose the six Brun substitutions:

γij : j �→ ij, i �→ i, k �→ k, for each ijk ∈ S3,

with a language of allowed words of length two: {γijγij , γijγji, γijγjk | ijk ∈ S3}.
More recently, in [7], they present the Brun’s algorithm in its sorted version using
the following substitutions:

1 �→ 1, 2 �→ 23, 3 �→ 3, 1 �→ 1, 2 �→ 3, 3 �→ 23, 1 �→ 3, 2 �→ 1, 3 �→ 23.

One observes that any S-adic word obtained by the above substitutions of sorted
Brun algorithm can be obtained as a Brun word with the unsorted algorithm.

4 Bispecial Factors Under Brun Substitutions

In this section we define the extension type of a word. We also describe the
extensions of a word under the application of a Brun substitution.

4.1 Special Factors and Extension Type

Let w be a (infinite) word over A. We let Fac(w) denote the set of factors of w:

Fac(w) = {u ∈ A∗ | ∃i ∈ N : wi · · ·wi+|u|−1 = u}.

Let u ∈ Fac(w) and � ∈ N. The �-extension set of u is the set E�(u,w) =
{(a, b) ∈ A� × A1 | aub ∈ Fac(w)}. We represent it by a tabular of the form

E�(u,w) =

u 1 · · · k
v1 × ×
. . .
vn ×

,

where a symbol × in position (vi, j) means that (vi, j) belongs to E�(u,w). When
the context is clear we omit the information on w and simply write E�(u). In
this paper we will only work with � ∈ {1, 2}.

Bispecial Factors in the Brun S-Adic System 285

Two extension sets E�(u) and E�(v) are said to be equivalent if one can be
obtained from the other by a permutation of the alphabet. The equivalent class
of an extension set is called an extension type.

Given an extension set E�(u,w), we consider the corresponding set of left
extensions E−

� (u,w) = π1(E�(u,w)) (resp. of right extensions E+
� (u,w) =

π2(E�(u,w))), where π1 (resp. π2) represents the projection on the first (resp.
second) component. We assume that the reader is familiar with the notion of
left, right and bispecial words. For definitions, see [6, Chap. 4].

4.2 Antecedents, Extended Images and Their Extension Types

The next lemma allows to define the antecedents of a word under βij . It directly
follows from the fact that the set {ij, j, k} forms a prefix code.

Lemma 4 (Synchronization lemma). Let i, j, k such that {i, j, k} = A. Con-
sider a word u ∈ A∗ and let w be a factor of βij(u).

(i) If w is empty or belongs to {i, k}A∗, there exists a unique word v ∈ A∗ and
a unique s ∈ {ε, i} such that w = βij(v) · s. We say that v is the antecedent
of w under βij.

(ii) If w ∈ jA∗, there is a unique word v ∈ A∗ and a unique s ∈ {ε, i} such that
w = j · βij(v) · s = βij(jv) · s. We say that v and jv are the two antecedents
of w under βij.

Definition 5. Suppose that v is an antecedent of w under σ as in Lemma 4. In
this case, we say that w is an extended image of v. In particular, if w is a left
special (resp. right special, bispecial) factor in σ(u), then we say that it is a left
special (resp. right special, bispecial) extended image of v under σ.

The next lemma provides the link between the extensions of a word and those
of its extended images.

Lemma 6 (Extensions). Let i, j, k such that {i, j, k} = A. Let u ∈ A∗ and
v be a factor of u. We assume that for all (a, b) ∈ E1(v), there exists a letter e
such that eavb is also a factor of u. The extensions of v in u are related to the
extensions of βij(v) and jβij(v) considered as factors of βij(u) as follows:

(i, b) ∈ E1(v) ⇐⇒ (j, b) ∈ E1(βij(v)) and (i, b) ∈ E1(jβij(v)),
(ij, b) or (jj, b) ∈ E2(v) ⇐⇒ (j, b) ∈ E1(βij(v)) and (j, b) ∈ E1(jβij(v)),
(kj, b) ∈ E2(v) ⇐⇒ (j, b) ∈ E1(βij(v)) and (k, b) ∈ E1(jβij(v)),
(k, b) ∈ E1(v) ⇐⇒ (k, b) ∈ E1(βij(v)),
v = jv′with (i, b) ∈ E1(v′) ⇐⇒ (i, b) ∈ E1(βij(v)).

Lemma 7 (Extended images). Consider the same hypothesis as in Lemma6.

1. If v is right special in u, then βij(v) is a right special factor of βij(u).
2. If v is left special in u, then v has at least one left special extended image in

βij(u).
3. If v is bispecial factor of u such that βij(v) is not a left special factor of βij(u),

then jβij(v) is a right special factor of βij(u).

286 S. Labbé and J. Leroy

Therefore, if v is a bispecial factor of u, then it has one or two bispecial extended
images under βij in βij(u); they are βij(v) or j · βij(v).

Lemma 8 (Antecedents). Let i, j, k such that {i, j, k} = A. Consider a word
u ∈ A∗ and w a bispecial factor of βij(u). Then at least one antecedent of w
under βij is a bispecial factor of u. We call it a bispecial antecedent of w.

5 Bispecial Words in the Brun System

In this section we study the set of bispecial words in a Brun word. We first show
that any bispecial factor can be canonically desubstituted until the empty word
is reached. We then define the descendants of a bispecial word and describe those
of the empty word. At the end of the section, we give an example that illustrates
some of the results that we obtained (see Fig. 2).

General Assumption. In all what follows, we assume that w is a Brun word
with directive sequence (σn)n∈N.

5.1 Desubstitution of Bispecial Words

Definition 9 (nth-antecedent). Let u be a bispecial factor of w. Let u(0) = u
and u(i+1) be the shortest bispecial antecedent of u(i) under σi for i ≥ 0. We say
that u(n) is the n-th antecedent of u. Observe that u(n) is a factor of w(n).

With Brun substitutions, as opposed to the Arnoux-Rauzy-Poincaré substi-
tutions (2), we are unable to prove |v| < |w| for any antecedent v of a bispecial
word w �= ε. This is not a problem since it holds for the n-th antecedent of w,
for some n ≥ 1, under the hypothesis that w is a factor of an S-adic Brun word.

Lemma 10. If u �= ε is a bispecial word of w, there is s ≥ 1 such that u(s) = ε.

Definition 11 (Descendants). Let u be a bispecial factor of w(s) for some
s ∈ N. A bispecial factor v of w(r), r < s, is called a descendant of u if there
exists a sequence (ur, ur+1, . . . , us) such that ur = v, us = u and each u�,
r ≤ � < s is a bispecial extended image of u�+1. We let desc(u) denote the set
of descendants of u and, for r < s, we let descr(u) denote the set of bispecial
factors of w(r) that are descendants of u.

5.2 Extension Type of the Empty Word

The aim of this paper is to study bispecial words in w. Since any such bispecial
is a descendant of the empty word in some w(s), the first step is to study the
possible extension types of the empty word. The next result in particular ensures
that the empty word is always a neutral bispecial factor. In the next section
we will show that the extension type of a bispecial word essentially governs
the extension type of any of its bispecial extended image. However, as seen in
Lemma 6, we sometimes need to consider left extensions of length 2 to be able to
describe those of a bispecial extended image. In the next result, we thus describe
the 2-extension types of the empty word.

Bispecial Factors in the Brun S-Adic System 287

Theorem 12 For all s ∈ N, the empty word is a neutral bispecial factor of
w(s). More precisely, if σs = βij and s = (σr)r≥s for some {i, j, k} = A, then
the 2-extension type of the empty word is

E1 if s ∈ Mij , E4 if s ∈ (βijβji{βijβji}∗Lji) ∪ βijLji,
E2 if s ∈ (βijβji{βij , βji}∗Lij) ∪ Nij , E5 if s ∈ βijβij{βij , βji}∗Lji,
E3 if s ∈ (βijβij{βij , βji}∗Lij) ∪ βijLij ,

where Lij as defined in Eq. (3) and Lij = Mij ∪ Nij with

Mij = πij{βik, βki}∗πkiSN

B ∪ πijβjkSN

B ,

Nij = πij{βik, βki}∗πikSN

B ,

and E1, E2, E3, E4 and E5 are as follows:

E1 i j k
ji ×
ki ×
ij × × ×
jj ×
jk ×

,

E2 i j k
ji ×
ki ×
ij × × ×
jj ×
jk ×

,

E3 i j k
ji ×
ki ×
ij ×
jj × × ×
jk ×

,

E4 i j k
ji ×
ij × × ×
jj ×
kj ×
jk ×

,

E5 i j k
ji ×
ij ×
jj × × ×
kj ×
jk ×

.

5.3 Left Extensions of Length 2 Are Sufficient

As already stated and as seen in Lemma 6, we sometimes need to consider left
extensions of length 2 to be able to determine the left extensions of the longer
extended images. In this section, we show that considering 2-extensions is suf-
ficient to recover 2-extensions of any descendant. For a word u and an integer
x ≥ 1, we let u[−x:] denote the suffix of length x of u.

Definition 13. Assume that i, j, k are such that A = {i, j, k}. We define the
function ϕij : A2 → A2 and the partial function ψij : A2 → A2 by

ϕij(x) = (βij(x))[−2:] and ψij(x) =

{

(jβij(x)j−1)[−2:] if βij(x) ∈ A∗j,
undefined otherwise.

Proposition 14. Let s ∈ N and assume that σs = βij and that u is a factor of
w(s+1).

1. E2(jβij(u),w(s)) = {(ψij(a), b) | (a, b) ∈ E2(u,w(s+1)), βij(a) ∈ A∗j}.
2. E2(βij(u),w(s)) = {(ϕij(a), b) | (a, b) ∈ E2(u,w(s+1))} if u ∈ {i, k}A∗ or

u = ju′ for some u′ ∈ A∗ which is not left special.

Note that if u = ju′ for some left special u′ ∈ A∗, then the equation in item 2.
above does not hold but the equation βij(u) = jβij(u′) allows to use item 1.

288 S. Labbé and J. Leroy

5.4 First Descendants of the Empty Word

In this section we show that the first descendants of the empty word are
always neutral bispecial words. We also show that if the empty word of w(s)

has no descendant which has 3 left extensions of length 1 and 3 left exten-
sions of length 2, then all its descendants are neutral bispecial. Below, we
denote the left valence of a factor v by d−

� (v) = Card(E−
� (v)) for � ∈ {1, 2}.

Given a bispecial word u of w(s), for all � < s we consider the multiset
D�(u) = {(d−

1 (v), d−
2 (v)) | v ∈ desc�(u)}.

Theorem 15. Let s ≥ 1 and consider ε as a bispecial factor of w(s). One of the
following occurs.

1. For all r < s, (3, 3) /∈ Dr(ε) and all bispecial words in desc(ε) are neutral.
2. There exists r < s such that (3, 3) ∈ Dr(ε) and one of the following occurs:

(a) Dr(ε) = {(3, 3)}. Furthermore, the bispecial word v such that descr(ε) =
{v} is neutral.

(b) Dr(ε) = {(2, 2), (3, 3)}. Furthermore, if v1 and v2 are the bispecial words
such that descr(ε) = {v1, v2}, with d−

1 (v1) = 3 and d−
1 (v2) = 3, then v1

is neutral, v2 is ordinary and the longest proper suffix of v2 is not left
special.

Finally, if r is the greatest such integer, then all bispecial words in the set
⋃

r<�<s desc�(ε) are neutral.

Proposition 16. Let s ≥ 1 and assume that u is a non-empty bispecial factor
of w(s) such that d−

2 (u) = 2 and whose longest proper suffix is not left special.
Then for all r < s, descr(u) contains a unique bispecial word and this word has
the same bispecial multiplicity as u.

5.5 Descendance of Bispecial Factors u with d−
2 (u) = d−

1 (u) = 3

By Theorem 15 and Proposition 16, strong and weak bispecial words can only
occur as descendant of a neutral bispecial words u with d−

2 (u) = d−
1 (u) = 3. In

this section we show that such a word u can have a descendant with the same
property and we describe the sub-language of LB that makes this happen.

Definition 17. For ijk ∈ S3, we define the regular language Γijk = βkjβ
+
jkβij.

By definition of LB, we have Γxyzβij ⊂ LB if and only if xyz ∈ {ijk, jik, jki}.
Furthermore, if σ0 · · · σs−1βij ∈ LB, then there exists r < s such that σ[r,s) =
σr · · · σs−1 is a suffix of a word in Γijk ∪ Γjik ∪ Γjki. The next result concerns
the descendance of a bispecial word with left valence 3 under the application of
a product of substitution in some Γxyz.

Theorem 18. We assume that σs = βij for some s ≥ 1 and that u is a neutral
bispecial factor of w(s) such that d−

1 (u) = d−
2 (u) = 3. We also suppose that there

exists r < s such that σ[r,s) ∈ Γijk ∪ Γjik ∪ Γjki. We have the following.

Bispecial Factors in the Brun S-Adic System 289

1. descr(u) = {v}, where v is a neutral bispecial factor of w(r) such that d−
1 (v) =

d−
2 (v) = 3. In particular, v is ordinary in w(r) if and only if u is ordinary in

w(s).
2. for all � such that r < � < s, Card(desc�(u)) ∈ {1, 2} and all bispecial words

in desc�(u) have left valence 2. Furthermore, if Card(desc�(u)) = 2, then one
is the longest proper suffix of the other.

The previous result describes what happens for the descendants of a bispecial
factor u of w(s) with d−

1 (u) = d−
2 (u) = 3 and σs = βij when some product of

substitution σ[r,s) belongs to Γijk ∪ Γjik ∪ Γjki. To describe what happens when
this is not the case, we need the following notation: given a language L, Suff(L)
is the set of suffixes of words in L. For a bispecial word v, we also let m(v) denote
its bispecial multiplicity.

Proposition 19. We assume that σs = βij for some s ∈ N and that u is a
neutral bispecial factor of w(s) such that d−

1 (u) = d−
2 (u) = 3. We also assume

that there exists r < s − 1 such that σ[r+1,s) ∈ Suff(Γijk ∪ Γjik ∪ Γjki) and
σ[r,s) /∈ Suff(Γijk ∪ Γjik ∪ Γjki). Then for all � < s, we have the equality of
multisets

{m(v) | v ∈ desc�(u)} = {m(v) | v ∈ descs−1(u)}.

5.6 Occurrences of Strong and Weak Bispecial Factors

Let u be a neutral bispecial factor of w(s) such that d−
1 (u) = d−

2 (u) = 3. By
Theorem 18 and Proposition 19, the bispecial multiplicity of the descendants
of u is completely determined by what happens between two occurrences of a
bispecial word v with d−

1 (v) = d−
2 (v) = 3 in the sequence (descr(u))0≤r≤s. The

first result of this section shows that strong and weak bispecial words can only
appear when u is not ordinary.

Proposition 20. Assume that u is an ordinary bispecial factor of w(s) such
that d−

1 (u) = d−
2 (u) = 3. All bispecial words in desc(u) are ordinary.

If u is a neutral bispecial, then strong and weak bispecial words can appear
in desc(u) depending on which letter a ∈ A is such that d+(au) = 3 and on
which Suff(Γxyz) the product σ[r+1,s) of Proposition 19 belongs to. This can be
explained using Proposition 14 as follows. When we apply a Brun morphism βxy

on w(s), the lines Lx = E+(xu) and Ly = E+(yu) are merged to one line in
the extension set of βxy(u). For the other bispecial extended image yβxy(u), its
extension set has two lines that are copies of Lx and Ly. Depending one whether
a = z or a ∈ {x, y}, we get a pair of strong and weak bispecial words or we get
ordinary bispecial words.

Proposition 21. Assume that σs = βij for some s ≥ 1 and that u is a neutral
non-ordinary bispecial factor of w(s) such that d−

1 (u) = d−
2 (u) = 3. Let also

a ∈ A such that d+(au) = 3. Let finally r < s such that σ[r,s) ∈ Suff(Γxyz) with
xyz ∈ {ijk, jik, jki}. One of the following occurs:

290 S. Labbé and J. Leroy

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
21 ×
31 ×
12 × × ×
22 ×
23 ×

m(w) = 0, neutral

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
12 × × ×
32 ×
23 ×
m(w) = 0, ord.

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
21 × × ×
32 ×
23 ×

m(w) = 0, neutral

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
31 × × ×
23 ×
33 ×
m(w) = 1, strong

E(w) 1 3
32 ×
23 ×

m(w) = −1, weak

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
31 × × ×
13 ×
23 ×
m(w) = 1, strong

E(w) 1 3
31 ×
12 ×

m(w) = −1, weak

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
31 × × ×
13 ×
23 ×
m(w) = 1, strong

E(w) 1 3
11 ×
12 ×

m(w) = −1, weak

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
31 × × ×
32 ×
13 ×

m(w) = 0, neutral

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
11 × × ×
21 ×
13 ×
m(w) = 0, ord.

E(w) 1 2 3
21 × × ×
32 ×
m(w) = 0, ord.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
21 ×
31 × × ×
13 ×
m(w) = 0, ord.

E(w) 1 2 3
32 ×
13 × × ×
m(w) = 0, ord.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
21 ×
31 × × ×
13 ×
m(w) = 0, ord.

E(w) 1 2 3
32 ×
33 × × ×
m(w) = 0, ord.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

E(w) 1 2 3
31 × × ×
12 ×
13 ×

m(w) = 0, neutral

⎞

⎟

⎟

⎟

⎟

⎠

β31

β13

β23β32

β23

β31 β31 β13β21

β13 β13 β31

Fig. 2. Neutral bispecial words with left valence 3 can split either into two neutral
bispecial words or, into a pair of a strong one and a weak one. Above β32β23 is applied
on ε. Then we can apply morphisms in Γ321 ∪Γ231 ∪Γ213. The figure illustrates Γ213 =
β31β

+
13β21 and Γ231 = β13β

+
31β23 where strong and weak bispecial factors are created.

1. a ∈ {x, y} and all bispecial words in descs−1(u) are ordinary;
2. a = z and descs−1(u) = {v1, v2}, where m(v1) = +1 and m(v2) = −1. In

particular, we have v1 = βxy(u) and v2 = yβxy(u).

We now give an example that illustrates all results that we obtained (see
Fig. 2). In that example, we describe the first elements of the sequence

(descs(ε),descs−1(ε),descs−2(ε), . . .),

where ε is considered as a bispecial of w(s) whose 2-extension set corresponds to E1

in Theorem 12. In this example, the extension set on the top left is the one of a bis-
pecial word u with d−

2 (u) = d−
1 (u) = 3. We illustrate the fact that the multiplicity

of its descendants depends on which Γxyz the product σ[r,s) belongs to.

6 Further Work

The results of the paper allow to understand how can appear strong and weak
bispecial factors in a Brun word. These are preliminary results to perfectly under-
stand the factor complexity of a Brun word. The missing information to com-
plete this knowledge concerns the length of bispecial words. To ensure a linear

Bispecial Factors in the Brun S-Adic System 291

complexity, we need to prove that strong and weak bispecial factors are “well
distributed” in the sequence of bispecial factors ordered by length. Experimen-
tally, strong and weak bispecial factors come by pairs and alternate. This is
supported by Proposition 21 where we show that when they appear, the strong
one is a suffix of the weak one. However this property is not preserved under the
application of Brun morphisms so more work needs to be done. If strong and
weak bispecial words indeed alternate, then the factor complexity of any Brun
word is always between 2n + 1 and 3n + 1. Like in the Arnoux-Rauzy-Poincaré
system, the upper bound should be improvable to 5

2n + 1.

References

1. Akiyama, S., Barge, M., Berthé, V., Lee, J.Y., Siegel, A.: On the Pisot substitution
conjecture. Preprint (2014)

2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n + 1.
Bull. Soc. Math. Fr. 119(2), 199–215 (1991)

3. Avila, A., Delecroix, V.: Some monoids of Pisot matrices. Preprint, June 2015.
http://arXiv.org/abs/1506.03692

4. Berthé, V., Bourdon, J., Jolivet, T., Siegel, A.: A combinatorial approach to prod-
ucts of Pisot substitutions. Ergod. Theory Dyn. Syst. First View, 1–38. http://
journals.cambridge.org/article S0143385714001412

5. Berthé, V., Labbé, S.: Factor complexity of S-adic words generated by the Arnoux-
Rauzy-Poincaré algorithm. Adv. Appl. Math. 63, 90–130 (2015)

6. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory, Ency-
clopedia of Mathematics and its Applications, vol. 135. Cambridge University
Press, Cambridge (2010)

7. Berthé, V., Steiner, W., Thuswaldner, J.M.: Geometry, dynamics, and arithmetic
of S-adic shifts. Preprint (2014). http://arXiv.org/abs/1410.0331

8. Brentjes, A.J.: Multidimensional Continued Fraction Algorithms. Mathematisch
Centrum, Amsterdam (1981)

9. Brun, V.: Algorithmes euclidiens pour trois et quatre nombres. In: Treizième
congrès des mathèmaticiens scandinaves, tenu à Helsinki 18–23 août 1957, pp.
45–64. Mercators Tryckeri, Helsinki (1958)

10. Delecroix, V., Hejda, T., Steiner, W.: Balancedness of Arnoux-Rauzy and Brun
words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS,
vol. 8079, pp. 119–131. Springer, Heidelberg (2013)

11. Durand, F.: Corrigendum and addendum to: “Linearly recurrent subshifts have
a finite number of non-periodic subshift factors”. Ergod. Theory Dyn. Syst. 23,
663–669 (2003)

12. Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret. Com-
put. Sci. 445, 63–74 (2012). http://dx.doi.org/10.1016/j.tcs.2012.05.007

13. Lagarias, J.C.: The quality of the Diophantine approximations found by the Jacobi-
Perron algorithm and related algorithms. Monatsh. Math. 115(4), 299–328 (1993).
http://dx.doi.org/10.1007/BF01667310

14. Morse, M., Hedlund, G.A.: Symbolic Dynamics II. Sturmian Trajectories. Am. J.
Math. 62(1), 1–42 (1940). http://www.jstor.org/stable/2371431

15. Rauzy, G.: Nombres algébriques et substitutions. Bulletin de la Société
Mathématique de France 110, 147–178 (1982)

http://arXiv.org/abs/1506.03692
http://journals.cambridge.org/article_S0143385714001412
http://journals.cambridge.org/article_S0143385714001412
http://arXiv.org/abs/1410.0331
http://dx.doi.org/10.1016/j.tcs.2012.05.007
http://dx.doi.org/10.1007/BF01667310
http://www.jstor.org/stable/2371431

292 S. Labbé and J. Leroy

16. Schratzberger, B.R.: The quality of approximation of Brun’s algo-
rithm in three dimensions. Monatsh. Math. 134(2), 143–157 (2001).
http://dx.doi.org/10.1007/s006050170004

17. Schweiger, F.: Multidimensional Continued Fraction. Oxford University Press,
New York (2000)

http://dx.doi.org/10.1007/s006050170004

Compositions of Tree-to-Tree Statistical
Machine Translation Models

Andreas Maletti(B)

Institute for Natural Language Processing, Universität Stuttgart,
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Abstract. Compositions of well-known tree-to-tree translation mod-
els used in statistical machine translation are investigated. Synchro-
nous context-free grammars are closed under composition in both the
unweighted as well as the weighted case. In addition, it is demonstrated
that there is a close connection between compositions of synchronous
tree-substitution grammars and compositions of certain tree transduc-
ers because the intermediate trees can encode finite-state information.
Utilizing these close ties, the composition closure of synchronous tree-
substitution grammars is identified in the unweighted and weighted case.
In particular, in the weighted case, these results build on a novel lifting
strategy that will prove useful also in other setups.

1 Introduction

Several different translation models are nowadays used in syntax-based sta-
tistical machine translation [17]. The translation model is the main compo-
nent responsible for the transformation of the input into the translated out-
put, and thus the expressive power of the translation model limits the possi-
ble translations. For example, the framework ‘Moses’ [18] provides implemen-
tations of synchronous context-free grammars (SCFGs) [1] and several vari-
ants of synchronous tree-substitution grammars (STSGs) [6]. The expressive
power of SCFGs and STSGs is reasonably well-understood, and in particular,
knowledge of the limitations of the models has helped many authors to pre-
process [5,20,26] or post-process [4,25] their data and to achieve better transla-
tion results. Together with pre- or post-processing steps, the translation model is
no longer solely responsible for the transformation process, but we rather obtain
a composition of several models or simply a composition chain [23]. Occasion-
ally, composition chains also appear because they ideally support a modular
development of components for specific translation tasks [3] (e.g., translating
numerals or geographic locations). However, it is often difficult to evaluate such
composition chains efficiently especially when the pre- or post-processing steps
are nondeterministic.

Supported by the German Research Foundation (DFG) grant MA/
4959/1-1.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 293–305, 2016.
DOI: 10.1007/978-3-662-53132-7 24

294 A. Maletti

In the string-to-string setting the phrase-based models are essentially finite-
state transducers and chains of them can be collapsed into a single transducer [24]
because they are closed under composition. However, this is not true for several
tree-to-tree models. Efficient on-the-fly evaluations for composition chains are
presented in [23] along with the observation that the straightforward sequential
evaluation of composition chains is terribly inefficient. Even in the on-the-fly
evaluation the chains should be as short as possible. In this contribution, we will
investigate the expressive power of composition chains of the established tree-to-
tree translation models. The symmetric tree-to-tree setting, although typically
worse in terms of translation quality than the string-to-tree or tree-to-string
setting, is particularly convenient since it allows a clean notion of composition.

We first demonstrate that (unweighted and weighted) composition chains of
SCFGs can always be reduced to just a single SCFG. In addition, we demon-
strate how to utilize results for unweighted extended tree transducers [22] to
obtain results for STSGs. The main insight in this part is that even local models
like STSGs obtain a finite-state behavior in composition chains. Thus, a com-
position of two STSGs is as powerful as a composition of two corresponding
tree transducers. This close connection allows us to show that two STSGs are
necessary and sufficient for arbitrary composition chains of certain simple, yet
commonly used STSGs. These results hold in the absence of weights. However,
all translation models used in statistical machine translation are weighted, so as
a second contribution we demonstrate how to lift the unweighted results into the
weighted setting. Our novel lifting procedure, which we believe will be useful also
in other setups, relies on a separation of the weights and several normalization
procedures. Overall, we achieve the same results also in the weighted setting,
which essentially shows that short chains of certain STSGs suffice.

2 Preliminaries

Let us start with some basic notions for trees, which we depict graphically when-
ever possible. Formally, our trees use a finite set N of internal labels and a
finite set L of leaf labels. The internal labels can label any non-leaf node of the
tree and such labeled nodes can have any positive number of children, whereas
leaf labels only label leaves; i.e., nodes without children. Thus, our trees are
inductively defined to be the smallest set TN (L) such that (i) every leaf node
labeled � ∈ L is a tree � ∈ TN (L) and (ii) n(t1, . . . , tk) ∈ TN (L) is a tree con-
sisting of a root node labeled n and k direct subtrees for any given positive
integer k, internal label n ∈ N , and trees t1, . . . , tk ∈ TN (L). A tree t that con-
sists only of a (non-leaf) root node and leaf nodes is shallow, so a shallow tree
is of the form n(�1, . . . , �k) for some n ∈ N , k ≥ 1, and �1, . . . , �k ∈ L. To easily
access information in a tree, we use the following notation. For each node ν in
a tree t ∈ TN (L) we write t(ν) for the label of the node ν. Occasionally, we
are interested in the leaf nodes that are labeled by certain leaf labels Q ⊆ L.
Consequently, the set of all nodes that are leaves and labeled by an element of Q
is denoted by leavesQ(t), and the elements of leavesQ(t) are called anchors for

Compositions of Tree-to-Tree Translation Models 295

S

S

NP

EX

There

VP

VBP

are

NP

DT

some

NNS

clouds

,

,

CC

but

S

NP

DT

the

NN

sun

VP

VBZ

is

VP

VBG

shining

S

He likes q

Fig. 1. The left tree t is not shallow, whereas the right tree u is. If Q = {q}, then
leavesQ(t) = ∅ and leavesQ(u) = {ν}, where ν is the q-labeled node in u. Obviously,
its label is u(ν) = q. Moreover, u[ν ← her] = S(He, likes, her). Note that the q-labeled
node vanishes in the substitution.

substitution. Moreover, given another tree u ∈ TN (L) and a leaf ν ∈ leavesQ(t),
we write t[ν ← u] for the tree obtained from t by replacing the leaf ν by the
tree u. These notations are illustrated in Fig. 1, and we refer to [12,13] for an
in-depth exposition.

Our weights will be taken from commutative semirings [14,16], which are
algebraic structures (A,+, ·, 0, 1) such that (A,+, 0) and (A, ·, 1) are commu-
tative monoids and (

∑k
i=1 ai) · a =

∑k
i=1(ai · a) for all non-negative integers

k and a, a1, . . . , ak ∈ A. Typical examples of such semirings include the Boolean
semiring ({0, 1},max,min, 0, 1), the Viterbi semiring ([0, 1],max, ·, 0, 1) on the
unit interval [0, 1], and the semiring (Q,+, ·, 0, 1) of rational numbers. In the
following, let (A,+, ·, 0, 1) be an arbitrary commutative semiring. Similarly, we
fix the finite sets N and L of default internal labels and leaf labels, respectively.

A weighted (linear, nondeleting extended top-down) tree transducer [9,15]
is a tuple T = (Q,Σ, (q1, q2), R,wt) consisting of (i) a finite set Q of states,
(ii) a finite set Σ of internal labels for the trees generated, (iii) designated initial
states q1, q2 ∈ Q, (iv) a finite set R of rules of the form (q, t)

ϕ
— (q′, t′) con-

sisting of states q, q′ ∈ Q, input and output tree fragments t, t′ ∈ TΣ(L ∪ Q),1

and a bijective alignment ϕ : leavesQ(t) → leavesQ(t′), and (v) a rule weight
assignment wt: R → A. The transducer T is a synchronous tree-substitution
grammar (STSG) [6] if Q = Σ and in each rule (q, t)

ϕ
— (q′, t′) ∈ R the root

labels of t and t′ are q and q′, respectively.2 Roughly speaking, an STSG replaces
the “hidden” finite-state behavior by locality tests because the root labels (i.e.,
the states of a rule) are visible in the input and output tree fragments. Finally,
T is a synchronous context-free grammar (SCFG) [1] if it is an STSG and in
each rule (q, t)

ϕ
— (q′, t′) ∈ R the trees t and t′ are shallow. In an SCFG, the

input and the output tree are assembled like derivation trees of a context-free
grammar (i.e., one level at a time). We recall two restrictions on tree transducer
rules. A rule (q, t)

ϕ
— (q′, t′) is an ε-rule if t ∈ Q. Similarly, it is a non-strict rule

1 For technical reasons we disallow that {t, t′} ⊆ Q.
2 Note that in an STSG the elements of Σ can label internal nodes and leaves.

296 A. Maletti

(

q,

S

NP

PRP

I

VP

q1 q2

)

—

(

q′,

SENT

NP

CI

J’

VN

q′
1

q′
2

)

(

S,

S

NP

PRP

I

VP

VBP NP

)

—

(

SENT,

SENT

NP

CI

J’

VN

V

NP
)

(

S,
S

I VBP NP

)

—

(

SENT,
SENT

J’ V NP

)

Fig. 2. Example rules of a tree transducer [top left], an STSG [top right], and an
SCFG [bottom]

if t′ ∈ Q. The tree transducer T is ε-free if it does not contain any ε-rules in R,
and it is strict provided that it has no non-strict rules in R. Finally, simple tree
transducers are both ε-free and strict. Note that an SCFG is always simple. We
show a few example rules of each type in Fig. 2.

Let us recall the derivation semantics [10] of a weighted tree transducer
T = (Q,Σ, (q1, q2), R,wt). The derivations are defined over rule-like triples of
the form (u, ψ, u′) consisting of a (partial) input tree u ∈ TΣ(L ∪ Q), a bijec-
tive alignment ψ : leavesQ(u) → leavesQ(u′) linking synchronous states, and a
(partial) output tree u′ ∈ TΣ(L ∪ Q). Note that the derivation forms are thus
essentially rules without the states. Given two such forms (u, ψ, u′) and (s, ψ′, s′)
and a rule ρ = (q, t)

ϕ
— (q′, t′) ∈ R, we say that (u, ψ, u′) derives (s, ψ′, s′)

via ρ, written (u, ψ, u′) ⇒ρ
T (s, ψ′, s′) if the least element ν ∈ leavesQ(u) with

respect to some arbitrary linear order on nodes is such that (i) the node ν is
labeled u(ν) = q, (ii) its synchronized node ψ(ν) in u′ has label u′(ψ(ν)) = q′,
(iii) s = u[ν ← t] is obtained from u by replacing ν by t, (iv) s′ = u′[ψ(ν) ← t′]
is obtained from u′ by replacing ψ(ν) by t′, and (v) the synchronization ψ′

is given for every ν′ ∈ leavesQ(s) by ψ′(ν′) = ϕ(ν′) if ν′ ∈ leavesQ(t) and
ψ′(ν′) = ψ(ν′) otherwise. In other words, we keep the old synchronized states
(except the replaced ones) and add the synchronized states of the rule ρ.3 We
illustrate a derivation step in Fig. 3. The derivation process starts with the initial
form ξ0 = (q1, ψ0, q2), in which the root nodes ν1 and ν2 of the trees q1 and q2,
respectively, are synchronized (i.e., ψ0(ν1) = ν2). Given trees t, t′ ∈ TΣ(L), the
transducer T assigns the weight

T (t, t′) =
∑

ξ0⇒ρ1
T ξ1⇒ρ2

T ···⇒ρn
T (t,∅,t′)

(

n
∏

i=1

wt(ρi)

)

to the pair (t, t′). We note that this sum always remains finite. Intuitively, we
sum up the weights of all derivations of the tree pair (t, t′), where the weight of
the derivation is obtained by multiplying the rule weights used in the derivation.
In this manner, the transducer T computes a mapping T : TΣ(L) × TΣ(L) → A.
3 For simplicity, we assume that nodes in different trees are disjoint.

Compositions of Tree-to-Tree Translation Models 297

S

NP

PRP

I

VP

q1 q2
—

SENT

NP

CI

J’

VN

q′
1

q′
2

⇒ρ
T

S

NP

PRP

I

VP

q1 NP

NNS

flowers

—

SENT

NP

CI

J’

VN

q′
1

NP

D

les

NC

fleurs

Fig. 3. The rule ρ: (q2, NP(NNS(flowers)))
∅
— (q′

2, NP(D(les), NC(fleurs))) used in a
derivation step, in which the states q2 and q′

2 completely disappear

Finally, let us formally introduce compositions of weighted tree-to-tree trans-
lations. For all alphabets Σ and Δ, a mapping τ : TΣ(L) × TΔ(L) → A is fini-
tary, if for every t ∈ TΣ(L) there exist only finitely many u ∈ TΔ(L) such that
τ(t, u) 	= 0. Similarly, it is co-finitary, if for every u ∈ TΔ(L) there exist only
finitely many t ∈ TΣ(L) such that τ(t, u) 	= 0. Now let τ : TΣ(L) × TΔ(L) → A
and τ ′ : TΔ(L) × TΓ(L) → A be such that τ is finitary or τ ′ is co-finitary. Then
the composition τ followed by τ ′, written τ ; τ ′, is defined for every t ∈ TΣ(L)
and s ∈ TΓ(L) by

(τ ; τ ′)(t, s) =
∑

u∈TΔ(L)

τ(t, u) · τ ′(u, s).

Note that this sum is well-defined because of the finitary or co-finitary restric-
tion, which yields that only finitely many choices of u yield non-zero products.
Roughly speaking, we sum over all potential intermediate trees u and take the
product of the weights for the translation from t to u and the translation from u
to s, which shows that composition corresponds to executing the second trans-
ducer on the output of the first transducer. Composition extends to classes C
of weighted translations in the usual manner, and we use Cn for the composi-
tion C ; · · · ; C containing the class C exactly n times.

3 Unweighted Compositions

Let us first collect what is known about the unweighted case, which is obtained
using the Boolean semiring ({0, 1},max,min, 0, 1) as weight structure. In this
setting, tree-to-tree translations are essentially relations on trees. It is evident
from the formal definitions that each SCFG is a special STSG, which in turn is a
special tree transducer, so the expressive power increases from SCFGs to STSGs
to tree transducers (TTs). Using the abbreviations as denotations for the classes
of tree relations that can be generated by the corresponding translation model,
we thus have SCFG ⊆ STSG ⊆ TT. Moreover, the key property that separates
SCFGs and STSGs was identified in [6]. The relations computed by SCFGs only
contain pairs of isomorphic trees (disregarding the labels and the order of the

298 A. Maletti

children). It is also easy to show that STSGs and TTs can be separated, so we
obtain the strict hierarchy

SCFG ⊂ STSG ⊂ TT. (1)

Composition essentially corresponds to running two translations consecutively,
where the first translation translates the input into intermediate results and the
second translation translates those intermediate results into the final results.
Compositions of tree translations have been extensively investigated (see [11] for
a survey). To avoid a careful distinction between transducers and their trans-
lations, we will conflate the class of models with the class of translations com-
putable by it. Since all classes discussed here contain the identity relation, com-
positions of our classes C form a natural hierarchy; i.e., C ⊆ C2 ⊆ C3 ⊆ · · · .
This hierarchy collapses at level n if Cn = Cn+1. We also say that the composi-
tion closure is obtained at level n provided that n is the least integer, for which
the hierarchy collapses. Intuitively, if the closure is obtained at level n, then
compositions of n translations of C are necessary and sufficient to generate any
translation computable by any composition of C. Provided that the composition
closure for C is n, we thus have C ⊂ · · · ⊂ Cn = Cn+1 = · · · . We use ∞ to indicate
that the hierarchy never collapses. We summarize the known results [2,7,8] on
the composition closure in Table 1.

Table 1. Known results on composition closures.

Model Composition closure Reference

Top-down tree transducer 1 [7]

Simple tree transducer 2 [2]

Other tree transducer ∞ [8]

We start our investigation with SCFGs. Given two SCFGs T1 and T2 we
can simply “join” rules of T1 and T2 that coincide on the intermediate tree. We
illustrate this approach in Fig. 4. Such rules can certainly be executed consecu-
tively in the on-the-fly approach [23]. A refined version of this approach taking
the finite-state information and the non-shallow output into account is used to
prove that (our linear and nondeleting) top-down tree transducers are closed
under composition [7].

Theorem 1. The composition closure of unweighted and weighted SCFGs is
achieved at the first level.

Proof. We prove the statement for arbitrary weighted SCFGs. Let

T = (Σ,Σ, (S1, S2), R,wt) and T ′ = (Σ′, Σ′, (S′
1, S

′
2), R

′,wt′)

be weighted SCFGs. If S2 	= S′
1, then the composition T ; T ′ is the constant 0

mapping, which can easily be computed by a single SCFG. Now suppose that

Compositions of Tree-to-Tree Translation Models 299

Matching original rules

NP

a ADJ NN
—

NP

une NC A
—

NP

ein ADJA NN

Newly constructed rule

NP

a ADJ NN
—

NP

ein ADJA NN

Fig. 4. Rule matching and joining in the composition of SCFGs. The left and middle
part form a rule of T1 and the middle and right part form a rule of T2. The newly
constructed rule will simply avoid the intermediate tree fragment.

S2 = S′
1. We construct the weighted SCFG T ′′ = (Σ′′, Σ′′, (S1, S

′
2), R

′′,wt′′),
where Σ′′ = Σ ∪ Σ′ and the rules R′′ and their weights wt′′ are obtained as

follows: For every rule ρ = (σ, s)
ϕ
— (δ, t) of R and rule ρ′ = (δ, t)

ψ
— (γ, u)

of R′ we construct the rule ρ′′ = (σ, s)
ϕ;ψ
— (γ, u) of R′′ and set wt′′(ρ′′) =

wt(ρ) · wt′(ρ′). No other rules are in R′′. The correctness of this construction is
straightforward. �

Next, we will show that the composition closure for simple STSGs
can be obtained from the known results via a small insight. Recall that
SCFGs and STSGs are both local, so they are missing the hidden finite-state
behavior of general tree transducers. However, we can simulate the hidden finite-
state behavior for both models in compositions with the help of the unknown
(hidden) intermediate trees. Namely, we can annotate the desired finite-state
information on the intermediate trees in the spirit of the representation of a reg-
ular tree language as the image of a local tree language under a relabeling [13].
We illustrate the approach in Fig. 5. Note that the first STSG encodes the states
in its output (i.e., the intermediate tree), whereas the second STSG encodes
them in its input (i.e., also the intermediate tree).

Lemma 2. For all n ≥ 2, compositions of n simple STSGs are as expressive as
compositions of n simple tree transducers.

Proof. We only provide the argument for compositions T ; T ′ of 2 simple STSGs
T and T ′. Assume that (q, t)

ϕ
— (q′, t′) is a rule of the first simple tree trans-

ducer T = (Q,Σ, (q1, q2), R,wt). Since T is strict, we have t′ = δ(t′1, . . . , t
′
k) for

some internal symbol δ ∈ Σ and subtrees t′1, . . . , t
′
k. We will adjust the internal

symbols to Σ′ = Σ∪(Σ×Q×Q), which allows us to use combinations of internal
symbols together with two states. For every state-labeled node ν ∈ leavesQ(t′)
in t′ we additionally guess two internal symbols σν , δν ∈ Σ. Then we construct
the rule

(

σ, u
) ϕ

—
(

(δ, q, q′), (δ, q, q′)(u′
1, . . . , u

′
k)

)

, where σ is the root label of t,
u = t[ϕ−1(ν) ← σν | ν ∈ leavesQ(t′)], and the subtrees u′

1, . . . , u
′
k are obtained

from the subtrees t′1, . . . , t
′
k by replacing each leaf node ν ∈ leavesQ(t′) by the

state-annotated variant (δν , t(ϕ−1(ν)), t′(ν)). In other words, we guess the inter-
nal symbols that will replace a state leaf in the input and output fragment t and t′

and replace the state leaf by the guessed internal symbol in the input fragment

300 A. Maletti

(

q,

S

NP

PRP

I

VP

q1 q2

)

—

(

q′,

SENT

NP

CI

J’

VN

q′
1

q′
2

)

S

NP

PRP

I

VP

VBP NP
—

(SENT, q, q′)

NP

CI

J’

VN

(V, q1, q
′
1)

(NP, q2, q′
2)

Fig. 5. Illustration of the state annotation on the intermediate tree. The left part shows
the original tree transducer rule and the right STSG rule shows how the state anno-
tation is performed on the output tree using the guessed nonterminal pairs (VBP, V)
and (NP, NP) for (q1, q

′
1) and (q2, q

′
2), respectively.

and the triple containing the guessed internal symbol and the two synchronized
states. We construct a new rule for each original rule and all possible guesses.
Similarly, we need to annotate the finite-state information of the second tree
transducer T ′ in its input fragments, which works in essentially the same man-
ner using the input fragments instead of the output fragments. This also shows
that we actually need to annotate up to 4 states to each symbol in the interme-
diate tree, and we additionally need to guess the finite-state information (that
can also occur in internal symbols) of the other tree transducer. We omit the
technical details. �

Theorem 3. The composition closure of simple STSGs is obtained at the second
level.

Proof. Simple tree transducers achieve the composition closure at level 2 [2].
Since the second levels of the composition hierarchy for simple tree transducers
and simple STSGs coincide by Lemma 2 and simple STSGs are less expressive
by (1), the composition closure of simple STSGs is achieved at level 2 as well. �

Finally, we examine the composition hierarchy of the remaining cases (non-
strict STSGs and STSGs with ε-rules). In both cases, the corresponding hierar-
chy for tree transducers is infinite. Moreover, re-examining the counterexample
translation τ provided in [8, Example 43], we can easily see that it does not uti-
lize its finitely many states and can be generated by a non-strict STSG as well.
Hence for every n ≥ 1 we also obtain a translation τn+1 that can be computed by
(n + 1) STSGs, but not by n tree transducers according to [8, Lemma 44]. Since
by (1) we have STSG ⊆ TT, it follows that STSGn ⊆ TTn and thus n STSGs
also cannot implement τn+1. The analogous arguments using the inverse trans-
lation τ−1 can be used to prove the infiniteness of the composition hierarchy for
STSGs with ε-rules. We summarize the results in Table 2.

Theorem 4. The composition hierarchy of strict STSGs, ε-free STSGs, and
general STSGs is infinite.

Compositions of Tree-to-Tree Translation Models 301

Table 2. Composition closure results for unweighted and weighted SCFGs and STSGs.
They mirror the corresponding results for tree transducers.

Model Unweighted/weighted composition closure Results

SCFGs 1 Theorem 1

Simple STSGs 2 Theorems 3 and 7

Other STSGs ∞ Theorems 4 and 8

4 Weighted Compositions

In the weighted setting, which is more relevant in statistical machine translation,
the models assign a weight to each rule. During derivations the weights of the
participating rules are multiplied, and if there are several ways to achieve the
same input- and output-tree pair, then the derivation weights are summed up.
To avoid infinite summations, we restrict ourselves to ε-free or strict models.

The goal of this section is to lift the unweighted results of the previous section
into the weighted setting. In Theorem 1 we already proved that SCFGs are closed
under composition also in the weighted case. Moreover, the result of Lemma2
also holds in the weighted case, so the composition closure of simple weighted
STSGs and that of simple weighted tree transducers again coincide. It only
remains to establish the composition closure for simple weighted tree transduc-
ers. Roughly speaking, we will reduce the weighted problem to the unweighted
setting by removing the weights from the tree transducer and moving them into
a particularly simple type of translation, called weighted relabeling. For the ease
of presentation we assume that no rule consists only of a leaf in the input or out-
put tree fragment (i.e., t /∈ L and t′ /∈ L for all considered rules (q, t)

ϕ
— (q′, t′)).

This is realistic in statistical machine translation since the parsers usually attach
at least a part-of-speech tag to each lexical item. Moreover, we can easily adjust
our approach and relabel leaf symbols as well.

For a given alphabet Σ, a weighted relabeling is a mapping κ : Σ × Σ → A.
In other words, it is a weighted association between symbols. It extends to pairs
of trees such that it assigns weight 0 to all pairs of trees of different shape. For
trees of the same shape, it simply takes the product of the symbol-to-symbol
weights given by κ for all corresponding nodes in the two trees. Formally, each
such relabeling κ extends to a weighted tree translation κ : TΣ(L) × TΣ(L) → A
inductively by (i) κ(�, �) = 1 for every � ∈ L; i.e., we do not relabel leaf symbols,
and (ii) for every k ≥ 1, symbols σ, δ ∈ Σ, subtrees t1, . . . , tk, u1, . . . , uk ∈ TΣ(L)

κ
(

σ(t1, . . . , tk), δ(u1, . . . , uk)
)

= κ(σ, δ) ·
k

∏

i=1

κ(ti, ui).

We relabel trees with an internal symbol as root by charging the weight for
relabeling the root symbol to another symbol and then multiply the product
of the weights of recursively relabeling the subtrees. In all remaining cases,

302 A. Maletti

κ(. . . , . . .) = 0. We use wREL for the class of all weighted translations com-
putable by weighted relabelings and s-wTT for the corresponding class com-
puted by simple weighted tree transducers. Since most devices in this section
are weighted, we will drop the explicit mention that they are weighted and sim-
ply say ‘relabeling’ or ‘simple tree transducer’.

Lemma 5. For every composition of a simple tree transducer and a relabeling
in either order, we can present an equivalent simple tree transducer.

s-wTT;wREL ⊆ s-wTT and wREL; s-wTT ⊆ s-wTT

Proof. The first statement is obtained by combining the decomposition of [9,
Lemma 4.1] and the composition results of [19, Theorem 2.4]. Moreover, since
all the involved models are symmetric, we also immediately obtain the second
statement. �

The next lemma shows that we can separate the weights from a simple tree
transducer leaving a composition of an essentially unweighted (i.e., unambigu-
ous and Boolean4) simple tree transducer T ′ and a relabeling. Moreover, the
tree relation computed by T ′ will be injective.5 Unambiguous means that for
each (successful) translation (t, u) containing an input and an output tree there
exists exactly one derivation yielding (t, u). We use su-TTinj for the injective
translations computed by simple unambiguous tree transducers. Note that these
weighted translations are essentially the characteristic functions of the trans-
lations of the corresponding unweighted tree transducers, which motivates the
chosen abbreviation.

Lemma 6. Every simple tree transducer T can be equivalently represented by a
composition of a simple unambiguous Boolean tree transducer T ′ computing an
injective translation followed by a relabeling κ.

s-wTT ⊆ su-TTinj; wREL

Proof. Let T = (Q,Σ, (q1, q2), R,wt). For every rule ρ = (q, t)
ϕ
— (q′, t′) of R, we

have t′ = σ(t′1, . . . , t
′
k) for some integer k, symbol σ ∈ Σ, and subtrees t′1, . . . , t

′
k ∈

TΣ(L ∪ Q) because T is strict. For this rule ρ, we construct the rule (q, t)
ϕ
—

(q′, 〈σ, ρ〉(t′1, . . . , t′k)) of T ′, which essentially records the rule application in the
root of the output tree fragment. The weight of this new rule is 1 in T ′. Finally,
the relabeling κ is such that κ(σ, σ) = 1 and κ(〈σ, ρ〉, σ) = wt(ρ) for all σ ∈ Σ and
ρ ∈ R, and 0 otherwise. In other words, the relabeling removes the annotation
and charges the weight of the annotated rule. Obviously, the constructed tree
transducer is Boolean. In addition, since the derivation is completely visible in
the output, the tree transducer T ′ is unambiguous. �

4 Using only the weights 0 and 1.
5 A tree translation τ : TΣ(L) × TΣ(L) → A is injective if for every output tree u ∈

TΣ(L) there exists at most one input tree t ∈ TΣ(L) such that τ(t, u) �= 0.

Compositions of Tree-to-Tree Translation Models 303

Using Lemmas 5 and 6 we can now separate the weights from a composition
chain because

s-wTT ; s-wTT2 ⊆ su-TTinj ; wREL ; s-wTT2 (Lemma 6)
⊆ su-TTinj ; s-wTT2 ⊆ su-TT2

inj ; wREL ; s-wTT (Lemmas 5 and 6)
⊆ su-TT2

inj ; s-wTT ⊆ su-TT3
inj ; wREL. (Lemmas 5 and 6)

Now we can apply the result of [2] on the unweighted composition closure of s-TT.
Note that the composition of injective translations is naturally again injective.

su-TT3
inj ; wREL ⊆ s-TT2

︸ ︷︷ ︸

injective

; wREL,

where s-TT is the class of translations computed by simple unweighted tree trans-
ducers. We cannot simply simulate those unweighted tree transducers directly by
weighted tree transducers. We first use standard techniques (regular restrictions;
see [22]) to make both unweighted translations injective. Moreover each injective
translation can be made unambiguous using essentially the same techniques, so
we obtain

s-TT2
︸ ︷︷ ︸

injective

; wREL ⊆ su-TT2
inj ; wREL ⊆ s-wTT2,

where the last step uses Lemma 5. Note that unambiguous unweighted tree trans-
ducers can easily be simulated by the corresponding weighted tree transducers.
Thus, we derived the difficult part of the composition closure.

Theorem 7. The composition closure of weighted simple STSGs is achieved at
the second level.

Proof. We showed that s-wTT3 ⊆ s-wTT2, so the composition hierarchy of the
class s-wTT collapses at level 2. Moreover using the linking arguments of [21]
we can also conclude that s-wTT ⊂ s-WTT2. �

Finally, for the remaining classes (i.e., strict STSGs and ε-free STSGs), we
can essentially import the infinite composition hierarchy from the unweighted
case using the linking technique of [21]. We omit the details.

Theorem 8. The composition hierarchy of strict weighted STSGs and ε-free
weighted STSGs is infinite.

5 Conclusion

We have investigated the expressive power of compositions of the well-established
tree-to-tree translation models: SCFGs, STSGs, and tree transducers. In the
unweighted case, the results for the local devices [i.e., SCFGs and STSGs] closely
mirror the known composition results for tree transducers due to the fact that

304 A. Maletti

we can encode the finite-state information in the intermediate trees of a com-
position. The same picture presents itself in the weighted setting, for which we
showed how to lift the corresponding results from the unweighted setting to the
weighted setting. This uses a novel decomposition separating the weights from
simple tree transducers and then constructions for the obtained unambiguous
and injective tree transducers. Overall, we demonstrated that in the relevant
cases, short (length 1 or 2) composition chains are necessary and sufficient to
simulate arbitrarily long composition chains.

References

1. Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assem-
bler. J. Comput. Syst. Sci. 3(1), 37–56 (1969)

2. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput.
Sci. 20(1), 33–93 (1982)

3. Chen, S., Matsumoto, T.: Translation of quantifiers in Japanese-Chinese machine
translation. In: Isahara, H., Kanzaki, K. (eds.) JapTAL 2012. LNCS, vol. 7614, pp.
11–22. Springer, Heidelberg (2012)

4. Clifton, A., Sarkar, A.: Combining morpheme-based machine translation with post-
processing morpheme prediction. In: Proceedings of ACL, pp. 32–42. ACL (2011)

5. Collins, M., Koehn, P., Kucerovǎ, I.: Clause re-structuring for statistical machine
translation. In: Proceedings of ACL, pp. 531–540. ACL (2005)

6. Eisner, J.: Learning non-isomorphic tree mappings for machine translation. In:
Proceedings of ACL, pp. 205–208. ACL (2003)

7. Engelfriet, J.: Bottom-up and top-down tree transformations: a comparison. Math.
Syst. Theor. 9(3), 198–231 (1975)

8. Engelfriet, J., Fülöp, Z., Maletti, A.: Composition closure of linear extended top-
down tree transducers. Theor. Comput. Syst. (2016, to appear). doi:10.1007/
s00224-015-9660-2

9. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam.
Informaticae 111(2), 163–202 (2011)

10. Fülöp, Z., Vogler, H.: Weighted tree transducers. J. Autom. Lang. Comb. 9(1),
31–54 (2004)

11. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, Chap. 9, pp.
313–403. Springer, Heidelberg (2009)

12. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
13. Gécseg, F., Steinby, M.: Tree Automata. arXiv:1509.06233 (2015)
14. Golan, J.S.: Semirings and Their Applications. Springer, Dordrecht (1999)
15. Graehl, J., Knight, K.: Training tree transducers. In: Proceedings of HLT-NAACL,

pp. 105–112. ACL (2004)
16. Hebisch, U., Weinert, H.J.: Semirings-Algebraic Theory and Applications in Com-

puter Science. World Scientific, Singapore (1998)
17. Koehn, P.: Statistical Machine Translation. Cambridge University Press,

Cambridge (2010)
18. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,

Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A.,
Herbst, E.: Moses: open source toolkit for statistical machine translation. In: Pro-
ceedings of ACL, pp. 177–180. ACL (2007)

http://dx.doi.org/10.1007/s00224-015-9660-2
http://dx.doi.org/10.1007/s00224-015-9660-2
http://arxiv.org/abs/1509.06233

Compositions of Tree-to-Tree Translation Models 305

19. Kuich, W.: Full abstract families of tree series I. In: Karhumäki, J., Maurer,
H., Păun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 145–156. Springer,
Heidelberg (1999)

20. Lerner, U., Petrov, S.: Source-side classifier preordering for machine translation.
In: Proceedings of EMNLP, pp. 513–523. ACL (2013)

21. Maletti, A.: The power of weighted regularity-preserving multi bottom-up tree
transducers. Int. J. Found. Comput. Sci. 26(7), 987–1005 (2015)

22. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down
tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)

23. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted
tree transducers. In: Proceedings of ACL, pp. 1058–1066. ACL (2010)

24. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

25. Stymne, S.: Text harmonization strategies for phrase-based statistical machine
translation. Ph.D. thesis, Linköping University (2012)

26. Xia, F., McCord, M.C.: Improving a statistical MT system with automatically
learned rewrite patterns. In: Proceedings of CoLing, pp. 508–514 (2004)

On the Solvability Problem for Restricted
Classes of Word Equations

Florin Manea1, Dirk Nowotka1, and Markus L. Schmid2(B)

1 Department of Computer Science, Kiel University, 24098 Kiel, Germany
flm@informatik.uni-kiel.de, nowotka@zs.uni-kiel.de
2 Fachbereich IV – Abteilung Informatikwissenschaften,

Trier University, 54286 Trier, Germany
MSchmid@uni-trier.de

Abstract. We investigate the complexity of the solvability problem for
restricted classes of word equations with and without regular constraints.
For general word equations, the solvability problem remains NP-hard,
even if the variables on both sides are ordered, and for word equations
with regular constraints, the solvability problems remains NP-hard for
variable disjoint (i. e., the two sides share no variables) equations with
two variables, only one of which is repeated. On the other hand, word
equations with only one repeated variable (but an arbitrary number of
variables) and at least one non-repeated variable on each side, can be
solved in polynomial-time.

Keywords: Word equations · Regular constraints · NP-hardness

1 Introduction

A word equation is an equation α = β, such that α and β are words over an alpha-
bet Σ ∪ X, where Σ is a finite alphabet of constants and X = {x1, x2, x3, . . .}
is an enumerable set of variables. A solution to a word equation α = β is a
morphism h : (Σ ∪ X)∗ → Σ∗ that satisfies h(α) = h(β) and h(b) = b for
every b ∈ Σ. For example, xaby = byxa is a word equation with variables
x, y, constants a, b and h with h(x) = bab, h(y) = aba is a solution, since
h(xaby) = babababa = h(byxa).

The solvability problem for word equations, i. e., to decide whether or not a
given word equation has a solution, has a long history with the most prominent
landmark being Makanin’s algorithm [11] from 1977, which showed the solvabil-
ity problem to be decidable (see Chapter 12 of [10] for a survey). While the
complexity of Makanin’s original algorithm was very high, it is nowadays known
that the solvability problem is in PSPACE (see [8,12]) and NP-hard (in fact, it
is even believed to be in NP). Word equations with only a single variable can be
solved in linear time [7] and equations with two variables can be solved in time
O(n5) [2]; it is not known whether there exist polynomial-time algorithms for
solving word equations with at most k variables, for some k ≥ 3.
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 306–318, 2016.
DOI: 10.1007/978-3-662-53132-7 25

Solvability Problem for Restricted Classes of Word Equations 307

If we require β ∈ Σ∗, i. e., only one side of the equation is allowed to contain
variables, then we obtain the pattern matching problem with variables (or simply
matching problem, for short), where the term pattern refers to the part α that can
contain variables. The matching problem is NP-complete and, compared to the
solvability problem for word equations, many more tractability and intractability
results are known (see [4,5,13]). More precisely, while restrictions of numerical
parameters (e. g., number of variables, number of occurrences per variable, length
of substitution words, alphabet size, etc.) make the problem either polynomial-
time solvable in a trivial way (e. g., if the number of variables is bounded by a
constant) or result in strongly restricted, but still NP-complete variants (see [4]),
structural restrictions of the pattern (e. g., of the order of the variables) are more
promising and can yield rich classes of patterns for which the matching problem
can be solved in polynomial-time (see [13]). For example, the matching problem
remains NP-complete if |Σ| = 2, every variable has at most two occurrences in α
and every variable can only be replaced by the empty word or a single symbol (or
instead by non-empty words of size at most 3). On the other hand, non-trivial
and efficient polynomial-time algorithms exist (see [3]), if the patterns are regular
(i. e., every variable has at most one occurrence), the patterns are non-cross (i. e.,
between any two occurrences of the same variable x no other variable different
from x occurs) or the patterns have a bounded scope coincidence degree (i. e.,
the maximum number of scopes of variables that overlap is bounded, where the
scope of a variable is the interval in the pattern where it occurs).

Technically, all these results can be seen as tractability and intractability
results for restricted variants of the solvability problem (in fact, as it seems, all
NP-hardness lower bounds for restricted variants of the solvability problem in
the literature are actually NP-hardness lower bounds for the matching problem).
However, these results are disappointing in terms of how much they provide us
with a better understanding of the complexity of word equations, since in the
matching problem the most crucial feature of word equations is missing, which
is the possibility of having variables on both sides.

The aim of this paper is to transfer the knowledge and respective techniques
of the matching problem to variants of the solvability problem for word equations
that are not just variants of the matching problem. In particular, we investigate
whether the structural restrictions mentioned above, which are beneficial for
the matching problem, can be extended, with a comparable positive impact,
to classes of word equations that have variables on both sides. We pay special
attention to regular constraints, i. e., each variable x is accompanied by a regular
language Lx from which h(x) must be selected in a solution h. While Makanin’s
algorithm still works in the presence of regular constraints, it turns out that
for more restricted classes of equations, the addition of regular constraints can
drastically increase the complexity of the solvability problem.

2 Definitions

Let Σ be a finite alphabet of constants and let X = {x1, x2, x3, . . .} be an
enumerable set of variables. For any word w ∈ (Σ ∪ X)∗ and z ∈ Σ ∪ X,

308 F. Manea et al.

we denote by |w|z the number of occurrences of z in w, by var(w) the set of
variables occurring in w and, for every i, 1 ≤ i ≤ |w|, w[i] denotes the symbol at
position i in w. A morphism h : (Σ ∪ X)∗ → Σ∗ with h(a) = a for every a ∈ Σ
is called a substitution. A word equation is a tuple (α, β) ∈ (Σ ∪X)+ × (Σ ∪X)+

(for the sake of convenience, we also write α = β) and a solution to a word
equation (α, β) is a substitution h with h(α) = h(β), where h(α) is the solution
word (of h). A word equation is solvable if there exists a solution for it and the
solvability problem is to decide for a given word equation whether or not it is
solvable.

Let α ∈ (Σ∪X)∗. We say that α is regular1, if, for every x ∈ var(α), |α|x = 1;
e. g., ax1bax2cx3bcax4ax5bb is regular. The word α is non-cross if between any
two occurrences of the same variable x no other variable different from x occurs,
e. g., ax1bax1x2ax2x2x3x3bx4 is non-cross, whereas x1bx1x2bax3x3x4x4bcx2 is
not. A word equation (α, β) is regular or non-cross, if both α and β are regular or
both α and β are non-cross, respectively. An equation (α, β) is variable disjoint
if var(α) ∩ var(β) = ∅.

For a word equation α = β and an x ∈ var(αβ), a regular constraint (for x) is
a regular language Lx and a solution h for α = β satisfies the regular constraint
Lx if h(x) ∈ Lx. The solvability problem for word equations with regular con-
straints is to decide on whether an equation α = β with regular constraints Lx,
x ∈ var(αβ), given as NFA, has a solution that satisfies all regular constraints.
The size of the regular constraints is the sum of the number of states of the
NFA. If the regular constraints are all of the form Γ ∗, for some Γ ⊆ Σ, then we
call them word equations with individual alphabets.

A word equation α = β along with an m ∈ N is a bounded word equation.
The problem of solving a bounded word equation is then to decide on whether
there exists a solution h for α = β with |h(x)| ≤ m for every x ∈ var(αβ).

For an α ∈ (Σ ∪ X)∗, L(α) = {h(α) | h is a substitution} is the pattern
language of α.

3 Regular and Non-cross Word Equations

For the matching problem, the restriction of regularity implies that every variable
has only one occurrence in the equation, which makes the solvability problem
trivial (in fact, it boils down to the membership problem for a very simple regular
language). However, word equations in which both sides are regular can still have
repeated variables, although the maximum number of occurrences per variable is
2 (i. e., regular equations are restricted variants of quadratic equations (see, e. g.,
[14])) and these two occurrences must occur on different sides. Unfortunately, we
are neither able to show NP-hardness nor to find a polynomial-time algorithm
for the solvability problem of regular word equations.
1 The use of the term regular in this context has historical reasons: the matching

problem has been first investigated in terms of so-called pattern languages, i. e., the
set of all words that match a given pattern α ∈ (Σ∪X)∗, which are regular languages
if α is regular.

Solvability Problem for Restricted Classes of Word Equations 309

Open Problem 1. Can regular word equations be solved in polynomial-time?

As we shall see later, solving a system of two regular equations is NP-hard
(Corollary 6), solving regular equations with regular constraints is even PSPACE-
complete (Theorem 7), and solving bounded regular equations or regular equa-
tions with individual alphabets is NP-hard (Corollaries 17 and 19, respectively),
as well.

On the positive side, it can be easily shown that regular word equations can
be solved in polynomial-time, if we additional require them to be variable disjoint
(which simply means that no variable is repeated in the whole equation). More
precisely, in this case, we only have to check emptiness for the intersection of the
pattern languages described by the two sides of the equations (which are regular
languages).

Next, we show the stronger result that polynomial-time solvability is still
possible if at most one variable is repeated, and each side contains at least one
of the non-repeating variables.

Theorem 2. Word equations with only one repeated variable, and each side
containing at least one non-repeating variable, can be solved in polynomial time.

If we allow an arbitrary number of occurrences of each variable, but require
them to be sorted on both sides on the equation, where the sorting order might
be different on the two sides, then we arrive at the class of non-cross word
equations. As for the class of regular patterns, also for non-cross patterns the
matching problem can be solved efficiently. However, as we shall see next, for
non-cross equations, the solvability problem becomes NP-hard.

Theorem 3. Solving non-cross word equations is NP-hard.

We prove this theorem by a reduction2 from a graph problem, for which we
first need the following definition.

Let G = (V,E) be a graph with V = {t1, t2, . . . , tn}. A vertex s is the
neighbour of a vertex t if {t, s} ∈ E and the set NG [t] = {s | {t, s} ∈ E} ∪ {t}
is called the (closed) neighbourhood of t. If, for some k ∈ N, every vertex of G
has exactly k neighbours, then G is k-regular. A perfect code for G is a subset
C ⊆ V with the property that, for every t ∈ V , |NG [t] ∩ C| = 1. Next, we define
the problem to decide whether or not a given 3-regular graph has a perfect code,
which is NP-complete (see [9]):

3-Regular Perfect Code (3RPerCode)
Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

We now define a reduction from 3RPerCode. To this end, let G = (V,E) be
a 3-regular graph with V = {t1, t2, . . . , tn} and, for every i, 1 ≤ i ≤ n, Ni

is the neighbourhood of ti. Since the neighbourhoods play a central role, we
shall define them in a more convenient way. For every r, 1 ≤ r ≤ 4, we use
2 We will also use minor modifications later on of this reduction in order to conclude

corollaries of Theorem 3.

310 F. Manea et al.

a mapping ℘r : {1, 2 . . . , n} → {1, 2 . . . , n} that maps an i ∈ {1, 2 . . . , n} to
the index of the rth vertex of neighbourhood Ni, i. e., for every i, 1 ≤ i ≤ n,
Ni = {t℘1(i), t℘2(i), t℘3(i), t℘4(i)}. Obviously, the mappings ℘r, 1 ≤ r ≤ 4, imply a
certain order on the vertices in the neighbourhoods, but, since our constructions
are independent of this actual order, any order is fine.

We transform G into a word equation with variables {xi,j | 1 ≤ i, j ≤ n} ∪
{yi, y

′
i | 1 ≤ i ≤ n} and constants from Σ = {�,
,
,�,#, a}. For every i, j,

1 ≤ i, j ≤ n, the variable xi,j represents ti ∈ Nj . For every i, 1 ≤ i ≤ n, we
define

αi = x℘1(i),i . . . x℘4(i),i, α′
i = # a8 # # ,

βi = a, β′
i = yi #(xi,℘1(i))

2 . . . (xi,℘4(i))
2 # y′

i

and

u = α1 � . . . � αn � �
 α′
1
 . . .
 α′

n ,

v = β1 � . . . � βn � �
 β′
1
 . . .
 β′

n .

Proposition 4. The words u and v are non-cross and can be constructed from
G in polynomial time.

Lemma 5. The graph G has a perfect code if and only if (u, v) has a solution.

Proof. For the sake of convenience, let u = u1 � u2 and v = v1 � v2. We start
with the only if direction. For a perfect code C of G, we construct a substitution
h with h(u) = h(v) in the following way. For every i, 1 ≤ i ≤ n, we define
h(xi,℘r(i)) = a, 1 ≤ r ≤ 4, if ti ∈ C, and h(xi,℘r(i)) = ε, otherwise. Thus,
for every i, 1 ≤ i ≤ n, h((xi,℘1(i))

2 . . . (xi,℘4(i))
2) ∈ {a8, ε}, which implies that

h(yi) and h(y′
i) can be defined such that h(β′

i) = h(α′
i). Consequently, h(v2) =

h(u2). Since C is a perfect code, for every i, 1 ≤ i ≤ n, there is an r, 1 ≤
r ≤ 4, such that t℘r(i) ∈ C and t℘r′ (i) /∈ C, 1 ≤ r′ ≤ 4, r �= r′. Therefore,
h(x℘1(i),ix℘2(i),ix℘3(i),ix℘4(i),i) = h(x℘r(i),i) = a, which means that h(αi) =
h(βi). Since this particularly implies h(u1) = h(v1), we can conclude h(u) = h(v).

In order to prove the if direction, we assume that there exists a solution h.

Claim: If h(u1) = h(v1) and h(u2) = h(v2), then G has a perfect code.

Proof of Claim: From h(u1) = h(v1), we can directly conclude that, for every
i, 1 ≤ i ≤ n, h(αi) = βi, which means that exactly one of the variables
x℘1(i),i, x℘2(i),i, x℘3(i),i, x℘4(i),i is mapped to a, while the others are mapped to
ε. From h(v2) = h(u2) it follows that, for every i, 1 ≤ i ≤ n, h(β′

i) = α′
i.

Next, we observe that, for every i, 1 ≤ i ≤ n, due to the symbols # in
β′

i and α′
i, h((xi,℘1(i))

2 . . . (xi,℘4(i))
2) ∈ {a8, ε}. Since each of the variables

xi,℘1(i), xi,℘2(i), xi,℘3(i), xi,℘4(i) are mapped to either a or ε, this implies that
either all of these variables are erased or all of them are mapped to a. Let C be the
set of exactly the vertices ti ∈ V for which h(xi,℘1(i)) = h(xi,℘2(i)) = h(xi,℘3(i)) =
h(xi,℘4(i)) = a. For every neighbourhood Vj = {t℘1(j), t℘2(j), t℘3(j), t℘4(j)},

Solvability Problem for Restricted Classes of Word Equations 311

1 ≤ j ≤ n, h(x℘1(j),j x℘2(j),j x℘3(j),j x℘4(j),j) is mapped to a, which implies
that for some r, 1 ≤ r ≤ 4, h(x℘r(j),j) = a; thus, t℘r(j) ∈ C. Furthermore,
h(x℘r′ (j),j) = ε, 1 ≤ r′ ≤ 4, r �= r′, which means that t℘r′ (j) /∈ C, 1 ≤ r′ ≤ 4,
r �= r′. Consequently, C is a perfect code. (Claim) �
It remains to show that a solution h necessarily satisfies h(u1) = h(v1) and
h(u2) = h(v2). Let w be the solution word of h. We first recall that, since
v1, u2 ∈ Σ∗, h(v1) = v1 and h(u2) = u2, which particularly means that v1 � is
a prefix and � u2 is a suffix of w. If |w|� = 1, then w = v1 � u2 and therefore
h(u1) = h(v1) and h(u2) = h(v2). If, on the other hand, |w|� ≥ 2, then w =
v1 � γ �u2. If γ = ε, then w = v1 �� u2, which is a contradiction, since w
must contain the factor � �
. From h(u2) = u2 and h(v1) = v1 it follows that
h(u1) = v1 � γ = and h(v2) = γ �u2. The factor v2 starts with an occurrence
of
 and since γ is a non-empty prefix of h(v2), this means that |γ|� = k ≥ 1.
Moreover, γ is also a suffix of h(u1) and since |u1|� = 0, this implies that there
are variables z1, z2, . . . , z� ∈ var(u1), 1 ≤
 ≤ k, with

∑�
i=1 |h(zi)|� ≥ k. Since

each of these variables zi, 1 ≤ i ≤
, is repeated twice in v2 and since |v2|� = 1,
we can conclude that |h(v2)|� ≥ 2k + 1. In the suffix �u2 of h(v2), there is only
one occurrence of
, which implies that |γ|� ≥ 2k. Since k ≥ 1, this is clearly a
contradiction to |γ|� = k. �

The equation obtained by the reduction from above has the form u1 �u2 =
v1 � v2, where in a solution h, h(u1) = h(v1) and h(u2) = h(v2). In order to
achieve this synchronisation between the two left parts and between the two
right parts, we need to repeat variables in v2. However, we can as well represent
u1 �u2 = v1 � v2 as a system of two equations u1 = v1 and u2 = v2 and, since
the synchronisation of the left parts and the right parts is now enforced by
the fact that we regard them as two separate equations, we can get rid of the
repeated variables in v2, which makes the two equations regular.

Corollary 6. The problem of checking solvability of a system of 2 regular word
equations α1 = β1, α2 = β2 with β1, β2 ∈ Σ∗ is NP-hard.

We conclude this section by stressing the fact that the non-cross equation
from the reduction above is “almost regular”, i. e., one side is regular, while
for the other the maximum number of occurrences per variable is 2. However,
we were not able to get rid of these repeated variables, which suggests that a
hardness reduction for the regular case needs to be substantially different or
regular word equations can be solved in polynomial-time.

4 Word Equations with Regular Constraints

In practical scenarios, it seems rather artificial that we only want to find just any
solution for a word equation and we are fine with whatever sequence of symbols
the variables will be substituted with. It is often more realistic that the variables
have a well-defined domain from which we want the solution to select the words.

312 F. Manea et al.

This motivates the addition of regular constraints to word equations, as defined
in Sect. 2, for which we investigate the solvability problem in this section.

As mentioned in Sect. 1, regular constraints can be easily incorporated into
algorithms for the general solvability problem. However, while it is open whether
solving general word equations is hard for PSPACE, for word equations with
regular constraints, this can be easily shown, even for regular equations.

Theorem 7. Solving word equations with regular constraints is PSPACE-
complete, even for regular equations.

Proof. We can reduce the PSPACE-hard intersection emptiness problem for NFA,
i. e., deciding for given NFA Mi, 1 ≤ i ≤ n, whether or not

⋂n
i=1 L(Mi) = ∅. To

this end, let M1, . . . ,Mn be NFA over some alphabet Σ with # /∈ Σ. We define
α = x1#x2# . . . #xn−1 and β = x2#x3# . . . #xn, and we define the regular
constraints Lxi

= L(Mi). We note that the equation α = β is regular.
If there exists a word w ∈ ⋂n

i=1 L(Mi), then h with h(xi) = w, 1 ≤ i ≤ n,
is a solution for α = β, since h(α) = (w#)n−2w = h(β), and, furthermore,
h satisfies the regular constraints. Let h be a solution for α = β that satis-
fies the regular constraints. This implies that h(x1)#h(x2)# . . . #h(xn−1) =
h(x2)#h(x3)# . . . #h(xn) and, since |h(xi)|# = 0, 1 ≤ i ≤ n, h(x1) = h(x2) =
. . . = h(xn) follows. Thus, h(x1) ∈ ⋂n

i=1 L(Mi). �
Recall that we mentioned in Sect. 3 that word equations without repeated

variables can be solved in polynomial time. This also holds for word equations
with regular constraints.

Theorem 8. Solving word equations with regular constraints and without
repeated variables can be done in polynomial time.

Word equations with only one variable can be solved in linear time (see
Jeż [7]). If we add regular constraints to equations with only one variable, then
the solvability problem is still in P.

Theorem 9. Solving word equations with regular constraints and with only one
variable can be done in polynomial time.

Word equations with two variables can be solved in polynomial-time (see [2]).
We shall see next that for word equations with regular constraints this is no
longer the case (assuming P �= NP). More precisely, solving equations with two
variables and regular constraints is NP-hard, even if only one variable is repeated
and the equations are variable disjoint. Moreover, we can show that the existence
of an algorithm solving word equations with two variables and with regular
constraints in time 2o(n+m) (where n is the length of the equation and m is
the size of the regular constraints) is very unlikely, since it would refute the
well-known exponential-time hypothesis (ETH, for short).

Solvability Problem for Restricted Classes of Word Equations 313

We conduct a linear reduction from 3-Sat to the problem of solving word
equations with regular constraints.3 Let C = {c1, c2, . . . , cm} be a Boolean for-
mula in conjunctive normal form (CNF) with 3 literals per clause over the vari-
ables {v1, v2, . . . , vn}. We first transform C into a CNF C ′ such that C is sat-
isfiable if and only if C ′ has an assignment that satisfies exactly one literal per
clause (in the following, we call such an assignment a 1-in-3 assignment). For
every i, 1 ≤ i ≤ m, we replace ci = {y1, y2, y3} by 5 new clauses

{y1, z1, z2}, {y2, z2, z3}, {z1, z3, z4}, {z2, z5, z6}, {y3, z5} ,

where zi, 1 ≤ i ≤ 6, are new variables.4 We note that C ′ has 5m clauses and
n + 6m variables. Next, we obtain C ′′ from C ′ by adding, for every i, 1 ≤ i ≤ n,
a new clause {vi, v̂i}, where v̂i is a new variable, and we replace all occurrences
of vi (i. e., the variable vi in negated form) by v̂i.

The following proposition can be easily verified.

Proposition 10. There is a satisfying assignment for C if and only if C ′′ has
a 1-in-3 assignment. Furthermore, C ′′ has no negated variables, C ′′ has 5m + n
clauses and 2n + 6m variables.

For the sake of convenience, we set n′ = 2n + 6m, m′ = 5m + n, C ′′ =
{c′

1, c
′
2, . . . , c

′
m′} and let {v′

1, v
′
2, . . . , v

′
n′} be the variables of C ′′. Furthermore,

for every i, 1 ≤ i ≤ n′, let ki be the number of occurrences of variable v′
i in C ′′.

Next, we transform C ′′ into a word equation with regular constraints as
follows. Let Σ = {v′

1, v
′
2, . . . , v

′
n′ ,#} and let the equation α = β be defined

by α = (x1 #)n′−1 x1 and β = x2. For the variables x1 and x2, we define the
following regular constraints over Σ:

Lx1 = {w | |w| = m′, w[i] ∈ c′
i, 1 ≤ i ≤ m′} ,

Lx2 = {u1#u2# . . . #un′ | ui ∈ (Σ\{#})∗, |ui|v′
i
∈ {ki, 0}, 1 ≤ i ≤ n′} .

Proposition 11. There are DFA Mx1 and Mx2 accepting the languages Lx1

and Lx2 , respectively, with 5m + n + 2 and 21m + 5n + 1 states, respectively.

By definition, only NFA are required to represent the regular constraints, but
our use of DFA here points out that the following hardness result (and the ETH
lower bound) also holds for the case that we require the regular constraints to
be represented by DFA. So the hardness of the problem does not result from the
fact that NFA can be exponentially smaller than DFA.

Lemma 12. The Boolean formula C ′′ has a 1-in-3 assignment if and only if
α = β has a solution that satisfies the regular constraints Lx1 and Lx2 .

3 In order to prove NP-hardness, a simpler production would suffice, but we need a
linear reduction in order to obtain the ETH lower bound.

4 Note that this is just the reduction used by Schaefer [15] in order to reduce 3-Sat
to 1-in-3 3-Sat. We recall it here to observe that this reduction is linear.

314 F. Manea et al.

Proof. We start with the only if direction. To this end, let π : {v′
1, v

′
2, . . . , v

′
n} →

{0, 1} be a 1-in-3 assignment for C ′′, where, for every i, 1 ≤ i ≤ m′, yi is the
unique variable with yi ∈ c′

i and π(yi) = 1. Let h be a substitution defined by
h(x1) = y1y2 . . . ym′ and h(x2) = (h(x1)#)n−1 h(x1). Obviously, h is a solution
for α = β, h(x1) ∈ Lx1 and, since every v′

i has either 0 occurrences in h(x1) (in
case that π(v′

i) = 0) or ki occurrences (in case that π(v′
i) = 1), also h(x2) ∈ Lx2 .

For the if direction, let h be a solution for α = β that satisfies the regular
constraints. Consequently, h(x1) = y1y2 . . . ym′ , where yi ∈ c′

i, 1 ≤ i ≤ m′, and,
furthermore, for every i, 1 ≤ i ≤ n, |h(x2)|v′

i
∈ {ki, 0}. This directly implies that

π : {v′
1, v

′
2, . . . , v

′
n} → {0, 1}, defined by h(v′

i) = 1 if |h(x2)|v′
i
= ki and h(v′

i) = 0
if |h(x2)|v′

i
= 0, is a 1-in-3 assignment for C ′′. �

The exponential-time hypothesis, mentioned above, roughly states that 3-
Sat cannot be solved in subexponential-time. For more informations on the
ETH, the reader is referred to Chapter 14 of the textbook [1]. For our application
of the ETH, it is sufficient to recall the following result.

Theorem 13 (Impagliazzo et al. [6]). Unless ETH fails, 3-Sat cannot be
solved in time 2o(n+m), where n is the number of variables and m is the number
of clauses.

The reduction from above implies that a subexponential algorithm for solv-
ing word equations with two variables and regular constraints can be easily
turned into a subexponential algorithm for 3-Sat; thus, the existence of such an
algorithm contradicts ETH.

Theorem 14. Solving word equations with two variables and with regular con-
straints is NP-hard, even if only one variable is repeated and the equations are
variable disjoint. Furthermore, unless ETH fails, such word equations cannot be
solved in time 2o(n+m) (where n is the length of the equation and m is the size
of the regular constraints).

4.1 Bounded Word Equations

We first note that bounded word equations can be considered as a special case of
word equations with regular constraints, since the bound m functions as regular
constraints of the form {w ∈ Σ∗ | |w| ≤ m} for every variable. However, there
is an important difference: the length of a binary encoding of m is logarithmic
in the size of an NFA for {w ∈ Σ∗ | |w| ≤ m}; thus, NP-hardness of a class
of bounded word equations does not necessarily carry over to word equations
with regular constraints. As usual, we call the solvability problem for a class of
bounded word equations NP-hard in the strong sense, if the NP-hardness remains
if the bound m is given in unary.

Theorem 15. Solving bounded word equations is NP-hard (in the strong sense),
even for equations α = β satisfying | var(α)| = 1, var(α) ∩ var(β) = ∅ and β is
regular.

Solvability Problem for Restricted Classes of Word Equations 315

Proof. We reduce from the shortest common superstring problem, i. e., deciding
for given k ∈ N and strings v1, v2, . . . , vn ∈ Σ∗ whether there is a string u with
|u| ≤ k that contains each vi as a factor. Let v1, v2, . . . , vn ∈ Σ∗, k ∈ N be an
instance of the shortest common superstring problem. Furthermore, let # be a
new symbol, i. e., # /∈ Σ. We construct a word equation α = β, where

α = x # x # . . . # x ,

β = y1v1y
′
1 # y2v2y

′
2 # . . . # ynvny′

n .

Furthermore, we let k be the upper bound on the substitution word lengths.
If there exists a word w ∈ Σ∗ with |w| ≤ k and, for every i, 1 ≤ i ≤ n,

w = uiviu
′
i, then we define a substitution h by h(x) = w, h(yi) = ui and

h(y′
i) = u′

i, 1 ≤ i ≤ n. Obviously, h satisfies the length bound and, for every i,
1 ≤ i ≤ n, h(x) = h(yiviy

′
i); thus, h(α) = h(β).

Let h be a solution for α = β that satisfies the length bound. We observe
that since h(β) contains every vi as a factor, also h(α) = h(x)#h(x)# . . . #h(x)
contains every vi as a factor and, furthermore, since |vi|# = 0, 1 ≤ i ≤ n, every
vi is also a factor of h(x). Consequently, |h(x)| ≤ k and h(x) contains every vi,
1 ≤ i ≤ n, as a factor.

For the shortest common superstring problem, we can assume that k ≤
∑n

i=1 |vi|, since otherwise v1v2 . . . vn would also be a solution. Consequently,
we can assume that k is given in unary, which means that solving bounded word
equations of the form mentioned in the statement of the theorem is NP-hard in
the strong sense.

Due to the strong NP-hardness in Theorem 15, we can conclude the following.

Corollary 16. Solving word equations with regular constraints is NP-hard, even
for equations α = β satisfying | var(α)| = 1, var(α)∩ var(β) = ∅ and β is regular.

By using 1 as the bound on the substitution words and by a minor modifi-
cation of the reduction for Theorem3, we can obtain a hardness reduction for
bounded regular word equations.

Corollary 17. Solving bounded regular word equations is NP-hard.

4.2 Individual Alphabets

The least restrictive regular constraints are probably constraint languages of the
form Γ ∗ for some Γ ⊆ Σ, i. e., word equations with individual alphabets, which
we shall investigate in this section.

We first note that if |Σ| = 1, then general word equations and word equations
with individual alphabets coincide and, furthermore, the solvability problem for
word equations can be solved in polynomial-time, if |Σ| = 1.

Theorem 18. Solving word equations can be done in polynomial time if |Σ| = 1.

316 F. Manea et al.

However, if Σ = {a, b} and {a} is used as individual alphabet for all vari-
ables, then solving word equations becomes NP-hard again, simply because the
matching problem is already NP-hard for this case (as can be easily concluded
from the reduction of Lemma 5 in [5]).

By using individual alphabets, the reduction for Theorem3 can be easily
transformed to a hardness reduction for the solvability problem of regular equa-
tions with individual alphabets.

Corollary 19. Solving regular word equations with individual alphabets is NP-
hard.

5 Conclusions

We conclude this work by summarising our main results and by suggesting some
further research directions.

First of all, the polynomial-time decidability of the matching problem for
non-cross patterns does not carry over to non-cross equations (which also means
that the concept of the scope coincidence degree, briefly mentioned in Sect. 1,
will not help, since it is a generalisation of the non-cross concept), while for
regular equations, this is still open (see Open Problem 1), which constitutes the
most important question left open in this work.

As soon as we allow regular constraints, it is possible to prove hardness
results for strongly restricted variants of the solvability problem, often including
the regular case. More precisely, for general regular constraints, the solvabil-
ity problem is PSPACE-complete, even for regular equations (Theorem 7), and
NP-hard for variable disjoint equations with only one repeated variable and
two variables in total (Theorem 14). Especially this latter result, for which we
can also obtain an ETH lower bound, points out a drastic difference in terms
of complexity between general word equations and equations with regular con-
straints: both the tractable cases of equations with only two variables or with
only one repeated variable and at least one non-repeated variable on both sides
(Theorem 2) become NP-hard if we allow regular constraints.5 Moreover, the
case with only one repeated variable remains intractable, even if the constraints
are only bounding the length of the substitution words (Theorem15). In par-
ticular, even if it turns out that, for some k, k ≥ 3, or even for all constant k,
general word equations with at most k variables can be solved in polynomial-
time, Theorem 14 severely limits their practical application, since it shows that
these polynomial-time algorithms cannot cope with regular constraints (unless
P = NP).

As for regular equations, allowing a system of only two equations (and no
further constraints), allowing bounds on the substitution words or allowing indi-
vidual alphabets is enough to make the solvability problem NP-hard.

Our choice of restrictions for word equations is motivated by polynomial-
time solvable cases of the matching problem. In order to obtain tractable classes

5 For the latter case, note that in the reduction of Theorem 14, we can add a non-
repeated variable with regular constraint ∅ to the left side.

Solvability Problem for Restricted Classes of Word Equations 317

of word equations, it might be worthwhile to strengthen the concept of non-
cross and regularity by requiring αβ to be regular or non-cross, instead of only
requiring this for α and β separately. Another possible further restriction would
be to require the order of the variables on the left and on the right side to be
the same (e. g., x1abx2cx3 = x1cx3 is ordered regular, while x1abx2cx3 = x3cx2

is not). In this regard, it is interesting to note that the patterns produced by
the reduction of Theorem 3 are not ordered non-cross (and not ordered regular
for the corresponding corollaries), while Theorem7, the PSPACE-completeness
of solving word equations with regular constraints, also holds for ordered regular
equations. Additionally requiring var(α) = var(β) for ordered regular equations
would be a further restriction that might be useful.

Acknowledgements. We are indebted to Artur Jeż for valuable discussions. Markus
L. Schmid gratefully acknowledges partial support for this research from DFG, that in
particular enabled his visit at the University of Kiel.

References

1. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer International Pub-
lishing AG, Cham (2015)

2. Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
408–419. Springer, Heidelberg (2004)

3. Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: Proceedings of 32nd Symposium
on Theoretical Aspects of Computer Science, STACS 2015, Leibniz International
Proceedings in Informatics (LIPIcs), vol. 30, pp. 302–315 (2015)

4. Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate com-
plexity analysis. Inf. Comput. 242, 287–305 (2015)

5. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string
morphism problems. Theory of Computing Systems (2015). http://dx.doi.org/10.
1007/s00224-015-9635-3

6. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)

7. Jeż, A.: One-variable word equations in linear time. Algorithmica 74, 1–48 (2016)
8. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.

ACM 63(1), 4:1–4:51 (2016)
9. Kratochv́ıl, J., Kr̆ivánek, M.: On the computational complexity of codes in graphs.

In: Chytil, M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp.
396–404. Springer, Heidelberg (1988)

10. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

11. Makanin, G.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 103, 147–236 (1977)

12. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, STOC 2006, pp.
467–476 (2006)

http://dx.doi.org/10.1007/s00224-015-9635-3
http://dx.doi.org/10.1007/s00224-015-9635-3

318 F. Manea et al.

13. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput.
239, 87–99 (2014)

14. Robson, J.M., Diekert, V.: On quadratic word equations. STACS 1999. LNCS, vol.
1563, pp. 217–226. Springer, Heidelberg (1999)

15. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of 10th
Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226.
ACM (1978)

Unambiguous Büchi Is Weak

Henryk Michalewski and Micha�l Skrzypczak(B)

University of Warsaw, Banacha 2, Warsaw, Poland
{h.michalewski,m.skrzypczak}@mimuw.edu.pl

Abstract. A non-deterministic automaton on infinite trees is unambigu-
ous if it has at most one accepting run on every tree. For a given unam-
biguous parity automaton A of index (i, 2j) we construct an alternating
automaton Transformation(A) which accepts the same language, but
is simpler in terms of alternating hierarchy of automata. If A is a Büchi
automaton (i = 0, j = 1), then Transformation(A) is a weak alter-
nating automaton. In general, Transformation(A) belongs to the class
Comp(i + 1, 2j), in particular it is simultaneously of alternating index
(i, 2j) and of the dual index (i+1, 2j+1). The main theorem of this paper
is a correctness proof of the algorithm Transformation. The trans-
formation algorithm is based on a separation algorithm of Arnold and
Santocanale (2005) and extends results of Finkel and Simonnet (2009).

Keywords: Infinite trees · Unambiguity · Rabin-Mostowski index

1 Introduction

Determinising a given computation typically leads to an additional cost. Pres-
ence of such cost inspires investigation of intermediate models of computations.
Here we focus on unambiguity, that is the requirement that there are no two dis-
tinct accepting computations on the same input. In the case of finite and infinite
words a given automaton can be determinised at an exponential cost, but in the
case of infinite trees there are automata which cannot be determinised at all.
Moreover, there are automata for which one cannot find an equivalent unam-
biguous automaton [13] (see also [4]). Also, there exist unambiguous automata
which cannot be simulated by deterministic ones [9] (see Fig. 1).

Most questions about automata on finite or infinite words are decidable.
However, in the case of automata on infinite trees many fundamental decid-
ability problems are open, unless we limit attention to deterministic automata.
Then it is decidable whether a given language is recognisable by a determinis-
tic automaton [16], the non-deterministic index problem is decidable [14,15], as
well as it is possible to locate the language in the Wadge hierarchy [12]. Moving
beyond deterministic automata is a topic of an on-going research [6,7] and the
study of unambiguous automata is a part of this effort. Admittedly, problems for

The authors were supported by the Polish National Science Centre grant no. 2014-
13/B/ST6/03595.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 319–331, 2016.
DOI: 10.1007/978-3-662-53132-7 26

320 H. Michalewski and M. Skrzypczak

this class seem to be much harder than for deterministic automata, in particular
one can decide if a given automaton is unambiguous, but it is an open problem,
whether a given regular language is unambiguous. Additionally, there are no
upper bounds on the descriptive complexity (e.g. the parity index) or topologi-
cal complexity of unambiguous languages among all regular tree languages.

In this work we focus on descriptive complexity and a fortiori also on topolog-
ical complexity of languages defined by unambigous automata. The most canon-
ical measure of descriptive complexity of regular tree languages is the parity
index. A parity automaton A has index (i, j) if the priorities of the states of the
automaton belong to the set {i, i+1, . . . , j}. In particular, the Büchi acceptance
condition corresponds to the index (1, 2). By Comp(i, j) we denote the class of
alternating automata where each strongly-connected component is of index (i, j)
or (i + 1, j + 1), see p. x. It was shown in [1,3] that some languages require big
indices: for every pair (i, j) there exists a regular language of infinite trees that is
of index (i, j) and cannot be recognised by any alternating nor non-deterministic
automaton of a lower index. It means that the non-deterministic and alternating
index hierarchies are strict.

We will show that the fact that a given automaton is unambiguous allows to
effectively find another equivalent automaton with a simpler acceptance condi-
tion. More precisely, in Sect. 4 we propose an algorithm Transformation with
the following properties:

Theorem 1. For an unambiguous Büchi automaton A, Transformation(A)
is a weak alternating automaton recognising the same language. More generally,
if A is an unambiguous automaton of index (i, 2j) then Transformation(A)
accepts the same language as A and belongs to the class Comp(i + 1, 2j), in
particular it is simultaneously of alternating index (i, 2j) and of the dual index
(i + 1, 2j + 1).

Additionally, the number of states of Transformation(A) is polynomial in
the number of states of A.

This theorem implies in particular that there is no unambiguous Büchi
automaton which is strictly of index (1, 2). Since a language accepted by an
unambiguous Büchi automaton is also accepted by a weak alternating automa-
ton, topologically such languages must be located at a finite level of the Borel
hierarchy. One should note that in the above theorem and in the algorithm
Transformation, the automaton must be simultaneously unambiguous and
of appropriate index. It is still possible for a regular tree language to be both:
recognised by some unambiguous automaton and by some other Büchi automa-
ton. An example of such a language is the H-language proposed in [9]: “there
exists a branch containing only a’s and turning infinitely many times right”, see
Fig. 1.

1.1 Related Work

There exist two estimates on descriptive complexity of unambiguous languages.
Firstly, a result of Hummel [9] shows that unambiguous languages are topologi-
cally harder than deterministic ones, see Fig. 1. Secondly, Finkel and Simonnet [8]

Unambiguous Büchi Is Weak 321

proved using the Lusin-Souslin Theorem [10, Theorem 15.1], that any language
recognised by an unambiguous Büchi automaton must be Borel.

Fig. 1. A tree from the language H—
the tree is labelled by letters a and b,
the dotted region contains vertices reach-
able from the root by a-vertices. The
blue thick branch is a branch consisting
of a-vertices that turns R infinitely many
times. (Color figure online)

Our theorem involves not only a
set-theoretical argument but also an
automata construction encapsulated by
the algorithm Transformation. Our
result also gives a stronger informa-
tion about the descriptive complexity,
since (1) it is an open problem whether
for a given regular Borel language of
infinite trees does exist a weak alter-
nating automaton accepting this lan-
guage, (2) our Transformation algo-
rithm works for arbitrary parities and it
is not clear how to generalize the set-
theoretical method of Finkel and Simon-
net [8] beyond Büchi automata.

The Lusin-Souslin Theorem that is
used in [8] says that if f : X → Y is
injective and Borel then the image f [X]
is Borel in Y . The proof of this theo-
rem is based on the Lusin Separation
Theorem [10, Theorem 14.7]. These the-
orems are set-theoretical in nature and

the result in this work can be considered as an automata-theoretic counterpart
of the former. As a sub-procedure in the algorithm Transformation we use
an algorithm Separation from [2], which itself is an automata-theoretic coun-
terpart of the Lusin Separation Theorem.

To the authors’ best knowledge this is the first work where it is shown how
to use the fact that a given automaton is unambiguous to derive upper bounds
on the parity index of the recognised language. Therefore, this work should be
treated as a first step towards descriptive complexity bounds for unambiguous
languages, and generally better understanding of this class of automata.

1.2 Outline of the Paper

Fig. 2. An illustration of Lusin-Souslin Theorem.
A relation R ⊆ X × Y is Borel and uniformised.
The theorem implies that πX(R) ⊆ X is Borel as
well.

We first prove Lemma 3 which
states that if an automaton is
unambiguous then the transi-
tions of the automaton corre-
spond to disjoint languages. In
the algorithm Partition we
use an algorithm of Arnold
and Santocanale and show that
these disjoint languages can be
separated by Comp(i + 1, 2j)
languages (Fig. 2).

322 H. Michalewski and M. Skrzypczak

In Sect. 4 we provide a construction of the automaton Transformation(A)
and in Sect. 5.1 we conclude the proof of Theorem1 by proving correctness of
this construction.

2 Basic Notions

In this section we introduce basic notions used in the rest of the paper.
A good survey of the relations between deterministic, unambiguous, and non-
deterministic automata is [5]. A general background on automata and logic over
infinite trees can be found in [18].

Our models are infinite, labelled, full binary trees. The labels come from a
non-empty finite set A called alphabet. A tree t is a function t : {L, R}∗ → A.
The set of all such trees is TrA. Vertices of a tree are denoted u, v, w ∈ {L, R}∗.
The prefix-order on vertices is �, the minimal element of this order is the root
ε ∈ {L, R}∗. The label of a tree t ∈ TrA in a vertex u ∈ {L, R}∗ is t(u) ∈ A. t�u.
stands for the subtree of a tree t rooted in a vertex u. Infinite branches of a tree
are denoted as α, β ∈ {L, R}ω. We extend the prefix order to them, thus u ≺ α if
u is a prefix of α. For an infinite branch α ∈ {L, R}ω and k ∈ ω by α�k we denote
the prefix of α of length k (e.g. α�0 = ε).

A non-deterministic tree automaton A is a tuple 〈Q,A, q0,Δ,Ω〉 where: Q is
a finite set of states; A is an alphabet; qI ∈ Q is an initial state; Δ ⊆ Q×A×Q×Q
is a transition relation; Ω : Q → N is a priority function.

If the automaton A is not known from the context we explicitly put it in the
superscript, i.e. QA is the set of states of A.

A run of an automaton A on a tree t is a tree ρ ∈ TrQ such that for every
vertex u we have

(

ρ(u), t(u), ρ(uL), ρ(uR)
) ∈ Δ. A run ρ is parity-accepting if on

every branch α of the tree we have

lim sup
n→∞

Ω
(

ρ(α�n)
) ≡ 0 mod 2. (
)

We say that a run ρ starts from the state ρ(ε). A run ρ is accepting if it is parity-
accepting and starts from qI. The language recognised by A (denoted L(A)) is
the set of all trees t such that there is an accepting run ρ of A on t.

A non-deterministic automaton A is unambiguous if for every tree t there is
at most one accepting run of A on t.

An alternating tree automaton C is a tuple 〈Q,A,Q∃, Q∀, q0,Δ,Ω〉 where: Q
is a finite set of states; A is an alphabet; Q∃ � Q∀ is a partition of Q into sets of
positions of the players ∃ and ∀; qI ∈ Q is an initial state; Δ ⊆ Q×A×{ε, L, R}×Q
is a transition relation; Ω : Q → N is a priority function. For technical reasons
we assume that for every q ∈ Q and a ∈ A there is at least one transition
(q, a, d, q′) ∈ Δ for some q′ ∈ Q and d ∈ {ε, L, R}.

An alternating tree automaton C induces, for every tree t ∈ TrA, a parity
game G(C, t). The positions of this game are of the form (u, q) ∈ {L, R}∗ × Q.
The initial position is (ε, qI). A position (u, q) belongs to the player ∃ if q ∈ Q∃,
otherwise (u, q) belongs to ∀. The priority of a position (u, q) is Ω(q). There is

Unambiguous Büchi Is Weak 323

an edge between (u, q) and (ud, q′) whenever (q, t(u), d, q′) ∈ δ. An infinite play
π in G(C, t) is winning for ∃ if the highest priority occurring infinitely often on
π is even, as in condition (
).

We say that an alternating tree automaton C accepts a tree t if the player ∃
has a winning strategy in G(C, t). The language of trees accepted by C is denoted
by L(C). A non-deterministic or alternating automaton A has index (i, j) if the
priorities of A are among {i, i + 1, . . . , j}. An automaton of index (1, 2) is called
a Büchi automaton. Every alternating tree automaton can be naturally seen as
a graph — the set of nodes is Q and there is an edge (q, q′) if (q, a, d, q′) ∈ Δ for
some a ∈ A and d ∈ {ε, L, R}. We say that an alternating tree automaton D is a
Comp(i, j) automaton if every strongly-connected component of the graph of D
is of index (i, j) or (i + 1, j + 1), see [2].

Note that an alternating automaton C is Comp(0, 0) if and only if C is a
weak alternating automaton in the meaning of [11]. The following fact gives
a connection between these automata and weak mso (the variant of monadic
second-order logic where set quantifiers are restricted to finite sets).

Theorem 2 (Rabin [17], also Kupferman Vardi [11]). If C is an alter-
nating Comp(0, 0) automaton then L(C) is definable in weak mso. Similarly, if
L ⊆ TrA is definable in weak mso then there exists a Comp(0, 0) automaton
recognising L.

The crucial technical tool in our proof is the Separation algorithm by Arnold
and Santocanale [2]. A particular case of this algorithm for i = j = 1 is the
classical Rabin separation construction (see [17]): if L1, L2 are two disjoint lan-
guages recognisable by Büchi alternating tree automata then one can effectively
construct a weak mso-definable language LS that separates them.

Algorithm 1. Separation
Input: Two non-deterministic automata A1, A2 of index (i, 2j) such that

L(A1) ∩ L(A2) = ∅.
Output: An alternating Comp(i+1, 2j) automaton S such that

L(A1) ⊆ L(S) and L(A2) ∩ L(S) = ∅.

3 Partition Property

In this section we will prove Lemma 3 stating that if an automaton A is unam-
biguous then the transitions of A need to induce disjoint languages. This will be
important in the algorithm Partition which for a given unambiguous automa-
ton of index (i, 2j), constructs a family of Comp(i + 1, 2j) automata that split

324 H. Michalewski and M. Skrzypczak

the set of all trees into disjoint sets corresponding to the respective transitions
of A. Partition will be used in Transformation.

Let us fix an unambiguous automaton A of index (i, 2j). Let Q be the set
of states of A and A be its working alphabet. We say that a transition δ =
(q, a, qL, qR) of A starts from (q, a); let Δq,a be the set of such transitions.

A pair (q, a) ∈ Q × A is productive if it appears in some accepting run: there
exists a tree t ∈ TrA and an accepting run ρ of A on t such that for some vertex
u we have ρ(u) = q and t(u) = a. This definition combines two requirements:
that there exists an accepting run that leads to the pair (q, a) and that some
tree can be parity-accepted starting from (q, a). Note that if (q, a) is productive
then there exists at least one transition starting from (q, a). Without changing
the language L(A) we can assume that if a pair is not productive then there is
no transition starting from this pair.

For every transition δ = (q, a, qL, qR) of A we define Lδ as the language of
trees such that there exists a run ρ of A on t that is parity-accepting and uses
δ in the root of t ρ(ε) = q, t(ε) = a, ρ(L) = qL, and ρ(R) = qR. Clearly the
language Lδ can be recognised by an unambiguous automaton of index (i, 2j).
If (q, a) is not productive then L(q,a,qL,qR)

= ∅. The following lemma is a simple
consequence of unambiguity of the given automaton A.

Lemma 3. If δ1 �= δ2 are two transitions starting from the same pair (q, a) then
the languages Lδ1 , Lδ2 are disjoint.

Proof. First, if (q, a) is not productive then by our assumption Lδ1 = Lδ2 = ∅.
Assume contrary that (q, a) is productive and there exists a tree r ∈ Lδ1 ∩ Lδ2

with two respective parity-accepting runs ρ1, ρ2. Since (q, a) is productive so
there exists a tree t and an accepting run ρ on t such that ρ(u) = q and t(u) = a
for some vertex u. Consider the tree t′ = t[u ← r] — the tree obtained from t
by substituting r as the subtree under u. Since ρ(u) = q and both ρ1, ρ2 start
from (q, a), we can construct two accepting runs ρ[u ← ρ1] and ρ[u ← ρ2] on t′.
Since these runs differ on the transition used in u, we obtain a contradiction to
the fact that A is unambiguous. ��
The above lemma will be important in the algorithm Partition, because it uses
the Seperation algorithm which in turn requires disjointness of the languages.

The following lemma summarizes properties of the algorithm Partition.

Lemma 4. Assume that A is an unambiguous automaton of index (i, 2j) and
let (q, a) ∈ Q × A. Take the automata

(Cδ

)

δ∈Δq,a
constructed by Parition(A).

Then the languages L(Cδ) for δ ∈ Δq,a are pairwise disjoint and Lδ ⊆ L(Cδ).

A proof of this lemma follows directly from the definition of the respective
automata, see Fig. 3 for an illustration of this construction.

4 Construction of the Automaton

In this and the following section we will describe the algorithm Transfor-
mation and prove Theorem1 which states correctness and properties of this

Unambiguous Büchi Is Weak 325

Algorithm 2. Partition
Input: An unambiguous automaton A of index (i, 2j)
Output: for every δ ∈ Δ an automaton Cδ

1 foreach (q, a) ∈ Q × A, productive do
2 foreach δ ∈ Δq,a do
3 Eδ ← non-det. (i, 2j) automaton recognising Lδ

4 Fδ ← non-det. (i, 2j) automaton recognising
⋃

η∈Δq,a,η �=δ Lη

5 foreach δ ∈ Δq,a do
6 Dδ ← Separation(Eδ, Fδ)

7 foreach δ ∈ Δq,a do
8 Cδ ← Comp(i+1, 2j) automaton recognising L(Dδ) \⋃η �=δ L(Dη).

9 Bq,a ← Comp(i+1, 2j) automaton recognising TrA \⋃δ∈Δq,a
L(Dδ).

10 foreach δ = (q, a, qL, qR) ∈ Δq,a with (q, a) non-productive do
11 Cδ ← Comp(0, 0) automaton recognising the empty language.

Fig. 3. An illustration of the output of the algorithm Partition. The three circles are
the languages Lδi for the transitions starting in a fixed pair (q, a). Each straight line
represents the language L(Dδi) that separates the respective language Lδi from the
others. Our construction provides the automata Cδi recognising the dotted regions.

algorithm. Given an automaton A of index (i, 2j), the algorithm Transforma-
tion constructs an alternating Comp(i + 1, 2j) automaton R recognising L(A).
It will consist of two sub-automata running in parallel:

1. In the first sub-automaton the role of ∃ will be to propose a partial run
ρ : {L, R}∗ ⇀ Q on a given tree t. She will be forced to propose certain unique
run ρt that depends only on the tree t, see Definition 6. At any moment ∀

326 H. Michalewski and M. Skrzypczak

can challenge the currently proposed transition and check if it agrees with
the definition of ρt (namely Condition (�)).

2. In the second sub-automaton the role of ∀ will be to prove that the partial
run ρt is not parity-accepting. That is, he will find a leaf in ρt or an infinite
branch of ρt that does not satisfy the parity condition. Since the run ρt is
unique, ∀ can declare in advance what will be the odd priority n that is the
limes superior (i.e. lim sup) of priorities of ρt on the selected branch.

The automaton R consists of an initial component I and of the union of the
automata Cδ constructed by the procedure Partition.

The idea of the automaton R is to simulate the following behaviour. Assume
that the label of the current vertex is a and the current state is (q, n) ∈ QI,∃:

– if n �= � and ΩA(q) > n then ∀ loses, see line 9;
– ∃ declares a transition δ = (q, a, qL, qR) of A, see line 11;
– ∀ can decide to challenge this transition, see line 13;
– if n �= � then ∀ chooses a direction and the game proceeds, see line 15;
– if n = � then ∀ chooses a direction and a new value n′ ∈ N , see line 17.

Figure 4 depicts the structure of the automaton R. The initial component I
is split into two parts: I0 where n = � and I1 where n �= �.

We will now proceed with proving properties of the procedure Transfor-
mation.

Fig. 4. The structure of the automaton R.

Lemma 5. If A is unambiguous and of index (i, 2j) then R is in Comp(i+1, 2j).

Proof. We first argue that if i + 1 < 2j then R is a Comp(i + 1, 2j) automaton.
Note every strongly-connected component in the graph of R is either a com-
ponent of I0, I1, or of Cδ for δ ∈ ΔA. Recall that all the components Aδ are
by the construction Comp(i + 1, 2j)-automata. By the definition, I0 and I1 are
Comp(1, 2)-automata, so the whole automaton R is also Comp(i + 1, 2n).

Consider the opposite case: i + 1 = 2j. By shifting all the priorities we can
assume that i = j = 1 (i.e. A is Büchi). Observe that the only possible odd value
n between i and 2j is n = 1. It means that if ∀ declares a value n �= � then always
Ω(q) ≥ n holds. It means that there are no states in I1 with priority 1. Therefore,
both I0 and I1 are Comp(0, 0) automata and R is a Comp(0, 0) automaton.

Unambiguous Büchi Is Weak 327

Algorithm 3. Transformation

Input: An unambiguous automaton A of index (i, 2j)
Output: An automaton R

1 N ← {�} ∪ {n ∈ {i, . . . , 2j} | n is odd
}

2 QI,∃ ← QA × N � {⊥,
}
3 QI,∀ ← ΔA × N

4 ΔI ← {(⊥, a, ε, ⊥), (
, a, ε,
) | a ∈ AA}

5 qR
I ← (qA

I , �)
6
(Dδ

)
δ∈Δ

← Partition(A)

7 foreach a ∈ A, q ∈ QA, n ∈ N do
8 if n �= � and ΩA(q) > n then
9 ΔI ← ΔI ∪ {((q, n), a, ε,
)}

10 else

11 ΔI ← ΔI ∪
{(

(q, n), a, ε, (δ, n)
) | δ ∈ ΔA

q,a

}

12 foreach a ∈ A, δ = (q, a, qL, qR) ∈ ΔA, n ∈ N do

13 ΔI ← ΔI ∪ {(δ, a, ε, q
Cδ
I)
}

/* such a transition is a challenge */

14 if n �= � then
15 ΔI ← ΔI ∪ {(δ, a, d, (qd, n)) | d ∈ {L, R}}

16 else
17 ΔI ← ΔI ∪ {(δ, a, d, (qd, n′)) | d ∈ {L, R}, n′ ∈ N

}

18 QR
∃ ← QI,∃ �⊔δ∈ΔA Q

Cδ
∃

19 QR
∀ ← QI,∀ �⊔δ∈ΔA QCδ

∀
20 ΔR ← ΔI �⊔δ∈ΔA ΔCδ

21 foreach q ∈ QA do
22 ΩR(q, �) = 0
23 foreach n ∈ N \ {�} do
24 if ΩA(q) ≥ n then
25 ΩR(q, n) = 1

26 else
27 ΩR(q, n) = 0

28 foreach δ = (q, a, qL, qR) ∈ QA do
29 ΩR(δ, �) = 0
30 foreach n ∈ N \ {�} do
31 if ΩA(q) ≥ n then
32 ΩR(δ, n) = 1

33 else
34 ΩR(δ, n) = 0

328 H. Michalewski and M. Skrzypczak

5 Correctness of the Construction

In this section we prove that the automaton R constructed by the algorithm
Transformation recognises the same language as the given unambiguous
automaton A. Let A be an unambiguous automaton of index (i, 2j).

Definition 6. Let t ∈ TrA be a tree. We define ρt as the unique maximal partial
run ρt of A on t, i.e. a partial function ρt : {L, R}∗ ⇀ QA such that:

– ρt(ε) = qA
I ;

– if u ∈ dom(ρt) and t�u ∈ L(Cδ) for some δ ∈ ΔA then1

δ =
(

ρt(u), t(u), ρt(uL), ρt(uR)
)

; (�)

– if u ∈ dom(ρt) and t�u /∈ L(Cδ) for any δ ∈ ΔA then uL, uR /∈ dom(ρt).

Lemma 7. t ∈ L(A) if and only if ρt is total and accepting.

Proof. If ρt is accepting then it is a witness that t ∈ L(A). Let ρ be an accepting
run of A on t. We inductively prove that ρ = ρt. Take a node u of t and define
q = ρ(u), a = t(u), qL = ρt(uL), and qR = ρt(uR). Observe that ρ is a witness
that (q, a) is productive and for δ = (q, a, qL, qR) we have

t ∈ Lδ ⊆ L(Cδ).

Therefore, ρt(uL) = ρ(uL) and ρt(uR) = ρ(uR). ��

5.1 L(A = L(R)

Lemma 8. If t ∈ L(A) then t ∈ L(R).

Proof. Assume that t ∈ L(A). By Lemma 7 we know that ρt is the unique
accepting run of A on t. Consider the following strategy σ∃ for ∃ in the initial
component I of the automaton R: always declare δ consistent with ρt. Extend
it to the winning strategies in Cδ whenever they exist. That is, if the current
vertex is u and the state of R is of the form (q, n) ∈ I then move to the state
(δ, n) for δ = (ρt(u), t(u), ρt(uL), ρt(uR)). Whenever the game moves from the
initial component I into one of the automata Cδ in a vertex u, fix some winning
strategy in G(Cδ, t�u) (if exists) and play according to this strategy; if there is no
such strategy, play using any strategy. Take a play consistent with σ∃ in G(R, t).
There are the following cases:

– ∀ loses in a finite time according to the transition from line 9 in the algorithm
Transformation.

– ∀ stays forever in the initial component I never changing the value of n = �
and loses by the parity criterion.

1 By Lemma 4 there is at most one such δ.

Unambiguous Büchi Is Weak 329

– In some vertex u of the tree ∀ challenges the transition δ given by ∃ and the
game proceeds to the state qCδ

I . In that case t�u ∈ Lδ by the definition of
Lδ (the run ρt�u is a witness) and therefore t�u ∈ L(Cδ). So ∃ has a winning
strategy in G(Cδ, t�u) and ∃ wins the rest of the game.

– ∀ declares a value n �= � at some point and then never challenges ∃. In that
case the game follows an infinite branch α of t. Since ρt is accepting so we
know that k

def= lim supi→∞ ΩA(ρt(α�i)) is even. If k > n then ∀ loses at some
point according to the transition from line 9. Otherwise k < n and from some
point on all the states of R visited during the game have priority 0, thus ∀
loses by the parity criterion in I1. ��

Lemma 9. If t /∈ L(A) then t /∈ L(R).

Proof. We assume that t /∈ L(A) and define a winning strategy for ∀ in the game
G(R, t). Let us fix the run ρt as in Definition 6.

Note that either ρt is a partial run: there is a vertex u such that ρt(u) = q
and (q, t(u)) is not productive; or ρt is a total run. Since t /∈ L(A), ρt cannot be
a total accepting run. Let α be a finite or infinite branch: either α ∈ {L, R}∗ and
α is a leaf of ρt or α is an infinite branch such that k

def= lim supi→∞ ΩA(ρt(α�i))
is odd. If α is finite let us put any odd value between i and 2j as k. Consider
the following strategy for ∀:

– ∀ keeps n = � until there are no more states of priority greater than k along
α in ρt. Then he declares n′ = k.

– ∀ challenges a transition δ given by ∃ in a vertex u if and only if t�u /∈ Cδ.
– ∀ always follows α: in a vertex u ∈ {L, R}∗ he chooses the direction d in such a

way that ud � α.

As in the proof of Lemma 8, we extend this strategy to strategies in the
components Cδ whenever such strategies exist: if the game moves from the com-
ponent I into one of the component Cδ in a vertex u then ∀ uses some winning
strategy in the game G(Cδ, t�u) (if it exists); if there is no such strategy, ∀ plays
using any strategy.

Consider any play π consistent with σ∀. Note that if α is a finite word and
the play π reaches the vertex α in a state (δ, n) in I then by the definition of
ρt we know that t�u /∈ Cδ and thus ∀ challenges this transition and wins in the
game G(Cδ, t�u). By the definition of the strategy σ∀, ∀ never loses according to
the transition from line 9 in the algorithm Transformation — if ∀ declared
n �= � then the play will never reach a state of priority greater than n.

Let us consider the remaining cases. First assume that at some vertex u
player ∀ challenged a transition δ declared by ∃. It means that t�u /∈ L(Cδ) and
∀ has a winning strategy in G(Cδ, t�u) and wins in that case.

The last case is that ∀ did not challenge any transition declared by ∃ and the
play followed the branch α. Then, for every i ∈ N the game reached the vertex
α�i in a state (q, n) satisfying q = ρt(α�i). In that case there is some vertex u
along α where ∀ declared n = k. Therefore, infinitely many times Ω(q) = n in π
so ∀ wins that play by the parity criterion. ��

330 H. Michalewski and M. Skrzypczak

6 Conclusion

We presented a new algorithm Transformation which for a given unambigu-
ous automaton A of index (i, 2j) outputs an automaton Transformation(A)
which accepts the same language and belongs to the class Comp(i+1, 2j). In par-
ticular, if A is an unambiguous Büchi automaton, then Transformation(A)
is a weak alternating automaton. This can be considered an automata-theoretic
counterpart of the Lusin-Souslin Theorem [10, Theorem 15.1].

Further Work. This paper is a part of a broader project intended to understand
better the descriptive complexity of unambiguous languages of infinite trees.
In our view the crucial question is whether unambiguous automata can reach
arbitrarily high levels in the alternating index hierarchy.

Conjecture. There exists a pair (i, j) such that if A is an unambiguous automaton
on infinite trees then the language recognised by A can be recognised by an
alternating automaton of index (i, j).

References

1. Arnold, A.: The μ-calculus alternation-depth hierarchy is strict on binary trees.
ITA 33(4/5), 329–340 (1999)

2. Arnold, A., Santocanale, L.: Ambiguous classes in μ-calculi hierarchies. TCS
333(1–2), 265–296 (2005)

3. Bradfield, J.: Simplifying the modal mu-calculus alternation hierarchy. In: Morvan,
M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 39–49. Springer,
Heidelberg (1998)

4. Carayol, A., Löding, C., Niwiński, D., Walukiewicz, I.: Choice functions and well-
orderings over the infinite binary tree. Cent. Eur. J. Math. 8, 662–682 (2010)

5. Colcombet, T.: Forms of determinism for automata (invited talk). In: STACS, pp.
1–23 (2012)

6. Colcombet, T., Kuperberg, D., Löding, C., Vanden Boom, M.: Deciding the weak
definability of Büchi definable tree languages. In: CSL, pp. 215–230 (2013)

7. Facchini, A., Murlak, F., Skrzypczak, M.: Rabin-Mostowski index problem: a step
beyond deterministic automata. In: LICS, pp. 499–508 (2013)

8. Finkel, O., Simonnet, P.: On recognizable tree languages beyond the Borel hierar-
chy. Fundam. Informaticae 95(2–3), 287–303 (2009)

9. Hummel, S.: Unambiguous tree languages are topologically harder than determin-
istic ones. In: GandALF, pp. 247–260 (2012)

10. Kechris, A.: Classical Descriptive Set Theory. Springer, New York (1995)
11. Kupferman, O., Vardi, M.Y.: The weakness of self-complementation. In: Meinel, C.,

Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 455–466. Springer, Heidelberg
(1999)

12. Murlak, F.: The Wadge hierarchy of deterministic tree languages. Log. Methods
Comput. Sci. 4(4), 1–44 (2008)

13. Niwiński, D., Walukiewicz, I.: Ambiguity problem for automata on infinite trees
(1996, unpublished)

14. Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata.
In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp.
320–331. Springer, Heidelberg (1998)

Unambiguous Büchi Is Weak 331

15. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages.
Theor. Comput. Sci. 1(303), 215–231 (2003)

16. Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic
tree automata. Electr. Notes Theor. Comput. Sci. 123, 195–208 (2005)

17. Rabin, M.O.: Weakly definable relations and special automata. In: Proceedings of
the Symposium on Mathematical Logic and Foundations of Set Theory, pp. 1–23.
North-Holland (1970)

18. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1996)

One-Unknown Word Equations
and Three-Unknown Constant-Free

Word Equations

Dirk Nowotka1 and Aleksi Saarela2(B)

1 Department of Computer Science, Kiel University, 24098 Kiel, Germany
dn@zs.uni-kiel.de

2 Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland

amsaar@utu.fi

Abstract. We prove connections between one-unknown word equations
and three-unknown constant-free word equations, and use them to prove
that the number of equations in an independent system of three-unknown
constant-free equations is at most logarithmic with respect to the length
of the shortest equation in the system. We also study two well-known
conjectures. The first conjecture claims that there is a constant c such
that every one-unknown equation has either infinitely many solutions or
at most c. The second conjecture claims that there is a constant c such
that every independent system of three-unknown constant-free equations
with a nonperiodic solution is of size at most c. We prove that the first
conjecture implies the second one, possibly for a different constant.

Keywords: Combinatorics on words · Word equations · Independent
systems

1 Introduction

One of the most important open problems in combinatorics on words is the
following question: For a given n, what is the maximal size of an independent
system of constant-free word equations on n unknowns? It is known that every
system of word equations is equivalent to a finite subsystem and, consequently,
every independent system is finite. This is known as Ehrenfeucht’s compactness
property. It was conjectured by Ehrenfeucht in a language theoretic setting,
formulated in terms of word equations by Culik and Karhumäki [3], and proved
by Albert and Lawrence [1] and independently by Guba [6]. If n > 2, no finite
upper bound for the size of independent systems is known. The largest known
independent systems have size Θ(n4) [10]. Some related results and variations
of the problem are discussed in [11].

This work has been supported by the DFG Heisenberg grant 590179 (Dirk Nowotka),
the DFG research grant 614256 and the Vilho, Yrjö and Kalle Väisälä Foundation
(Aleksi Saarela).

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 332–343, 2016.
DOI: 10.1007/978-3-662-53132-7 27

One-Unknown and Three-Unknown Word Equations 333

The difference between the best known lower and upper bounds is particularly
striking in the case of three unknowns: The largest known independent systems
consist of just three equations, but it is not even known whether there exists a
constant c such that every independent system has size c or less. When studying
independent systems, it is often additionally required that the system has a
nonperiodic solution; then the largest known example consists of two equations.

There have been some recent advances regarding this topic. The first nontriv-
ial upper bound was proved by Saarela [14]: The size of an independent system
on three unknowns is at most quadratic with respect to the length of the shortest
equation in the system. This bound was improved to a linear one by Holub and
Žemlička [8]; this is currently the best known result.

Another well-known but less central open problem on word equations is the
following question: If a one-unknown word equation with constants has only
finitely many solutions, then what is the maximal number of solutions it can
have? The answer is at least two, and it has been conjectured that it is exactly
two. The best known upper bound, proved by Laine and Plandowski [12], is
logarithmic with respect to the number of occurrences of the unknown in the
equation. Similar but slightly weaker results were proved in [4,5].

In this article we establish a connection between three-unknown constant-free
equations and one-unknown equations with constants. This is done by using an
old result by Budkina and Markov [2], or a similar result by Spehner [16]. We
use this connection to prove two main results.

The first main result is that the size of an independent system of three-
unknown equations is logarithmic with respect to the length of the shortest
equation in the system. This result is based on the logarithmic bound for the
number of solutions of one-unknown equations.

The second main result is an explicit link between two existing conjectures:
If there exists a constant c such that the number of solutions of a one-unknown
equation is either infinite or at most c, then there exists a constant c′ such that
the size of an independent system of three-unknown constant-free equations with
a nonperiodic solution is at most c′. Furthermore, if c = 2, then we can let
c′ = 17. The number 17 here is very unlikely to be optimal, and we expect that
the result could be improved by a more careful analysis.

2 Preliminaries

Let Ξ be an alphabet of unknowns and Σ an alphabet of constants. A constant-
free word equation is a pair (u, v) ∈ Ξ∗ × Ξ∗, and the solutions of this equation
are the morphisms h : Ξ∗ → Σ∗ such that h(u) = h(v). A word equation with
constants is a pair (u, v) ∈ (Ξ∪Σ)∗×(Ξ∪Σ)∗, and the solutions of this equation
are the constant-preserving morphisms h : (Ξ∪Σ)∗ → Σ∗ such that h(u) = h(v).
We will state many definitions that work for both types of equations.

A solution h is periodic if h(pq) = h(qp) for all words p, q in the domain of
h, and nonperiodic otherwise.

Usually we assume that the alphabet of constants is Σ = {a, b}. The case of a
unary alphabet is not interesting, and if there are more than two constant letters,

334 D. Nowotka and A. Saarela

they can be encoded using a binary alphabet. We are specifically interested in
equations with constants on one unknown x, and in constant-free equations
on three unknowns x, y, z. We use the notation [u, v, w] for the morphism h :
{x, y, z}∗ → Σ∗ defined by (h(x), h(y), h(z)) = (u, v, w), and the notation [u] for
the constant-preserving morphism h : ({x} ∪ Σ)∗ → Σ∗ defined by h(x) = u. If
U is a set of words, we use the notation [U] = {[u] | u ∈ U}.

Example 1. The equation (xab, bax) has infinitely many solutions [(ab)i], where
i ≥ 0. The equation (xaxbab, abaxbx) has exactly two solutions, [ε] and [ab].
The constant-free equation (xyz, zyx) has solutions [(pq)ip, (qp)jq, (pq)kp], where
p, q ∈ Σ∗ and i, j, k ≥ 0. It has no other nonperiodic solutions.

A set of equations is a system of equations. A system {E1, . . . , En} is often
written without the braces as E1, . . . , En. A morphism is a solution of this system
if it is a solution of every Ei.

The set of all solutions of an equation E is denoted by Sol(E). Two equations
E1 and E2 are equivalent if Sol(E1) = Sol(E2). These notions can naturally be
extended to systems of equations.

The set of all equations satisfied by a solution h is denoted by Eq(h). Two
solutions h1 and h2 are equivalent if Eq(h1) = Eq(h2).

A system of equations E1, . . . , En is independent if it is not equivalent to any
of its proper subsystems. Another equivalent definition would be that E1, . . . , En

is independent if there are solutions h1, . . . , hn such that hi ∈ Sol(Ej) if and only
if i �= j. The sequence (h1, . . . , hn) is then called an independence certificate. (A
system is a set, so the order of the equations is not formally specified, but
whenever talking about certificates, it is to be understood that the order of the
solutions corresponds to the order in which the equations have been written.)

If an independent system has a nonperiodic solution h, it is called strictly
independent. If (h1, . . . , hn) is its independence certificate, then (h1, . . . , hn, h)
is a strict independence certificate.

The above definitions can also be stated for infinite systems. However, by
Ehrenfeucht’s compactness property, every system of word equations is equiva-
lent to a finite subsystem. We will consider only finite systems in this article.

Example 2. The pair of constant-free equations (xyz, zyx), (xyyz, zyyx) is
strictly independent. It has a strict independence certificate ([a, b, abba],
[a, b, aba], [a, b, a]). The system of constant-free equations (x, ε), (y, ε), (z, ε) is
independent, but not strictly independent. It has an independence certificate
([a, ε, ε], [ε, a, ε], [ε, ε, a]).

The length of an equation E = (u, v) is |uv| and it is denoted by |E|. If h is a
morphism, we use the notation h(E) = (h(u), h(v)). The equation E is reduced if
u and v do not have a common nonempty prefix or suffix. We can always replace
an equation with an equivalent reduced equation.

3 Main Questions

The following question is one of the biggest open problems on word equations:

One-Unknown and Three-Unknown Word Equations 335

Question 3. Let S be a strictly independent system of constant-free equations
on three unknowns. How large can S be?

The largest known examples are of size two, and it has been conjectured that
these examples are optimal. Even the following weaker conjecture is open:

Conjecture 4. There exists a number c such that every strictly independent sys-
tem of constant-free equations on three unknowns is of size c or less.

We will refer to this conjecture as SIND-XYZ, or as SIND-XYZ(c) for a
specific value of c. Currently, the best known result is the following [8]:

Theorem 5. Every strictly independent system of constant-free equations on
three unknowns is of size O(n), where n is the length of the shortest equation.

Another well-known open problem is the following:

Question 6. Let E be a one-unknown equation with only finitely many solutions.
How many solutions can E have?

The best known examples have two solutions, and it has been conjectured
that these examples are optimal. Even the following weaker conjecture is open:

Conjecture 7. There exists a number c such that every one-unknown equation
has either infinitely many solutions or at most c.

We will refer to this conjecture as SOL-XAB, or as SOL-XAB(c) for a specific
value of c. Currently, the best known result is the following [12]:

Theorem 8. The solution set of a nontrivial one-unknown equation is either of
the form [(pq)∗p], where pq is primitive, or a finite set of size at most 8 log n +
O(1), where n is the number of occurrences of the unknown.

As a question between Questions 3 and 6, we can state the following problem
and conjecture (we are not aware of any previous research on this problem):

Question 9. Let S be a strictly independent system of one-unknown equations.
How large can S be?

Conjecture 10. There exists a number c such that every strictly independent
system of one-unknown equations is of size c or less.

We will refer to this conjecture as SIND-XAB, or as SIND-XAB(c) for a
specific value of c.

We will prove the following implications between the three conjectures:

SOL-XAB ⇒ SIND-XAB ⇔ SIND-XYZ,

or more specifically,

SOL-XAB(c) ⇒ SIND-XAB(c)

{

⇐ SIND-XYZ(c)
⇒ SIND-XYZ(5c + 7).

Using the same ideas, we will turn Theorem 8 into a result on constant-free
equations on three unknowns.

336 D. Nowotka and A. Saarela

4 One-Unknown Equations with Constants

In this section we prove that Conjectures SIND-XYZ and SOL-XAB imply Con-
jecture SIND-XAB. The next lemma is from [5].

Lemma 11. Let E be a one-unknown equation and let pq be primitive. The set
Sol(E) ∩ [(pq)+p] is either [(pq)+p] or has at most one element.

Lemma 12. Let N ≥ 3 and let E1, . . . , EN be a strictly independent system of
one-unknown equations. All of these equations have at least N solutions, and at
most one of them has infinitely many solutions. If N ≥ 4, then none of them
has infinitely many solutions.

Proof. If (h1, . . . , hN+1) is a strict independence certificate, then Ei has solutions
hj for all j �= i. Thus every equation has at least N solutions.

Let one of the equations, say E1, have infinitely many solutions. By
Theorem 8, Sol(E1) = [(pq)∗p] for a primitive word pq.

Let another of the equations, say E2, have infinitely many solutions, so
Sol(E2) = [(p′q′)∗p′] for a primitive word p′q′. The equations E1 and E2 have at
least two common solutions h3, h4, so (pq)ip = (p′q′)i

′
p′ and (pq)jp = (p′q′)j

′
p′

for some i < j and i′ < j′. Then (pq)j−i = (p′q′)j
′−i′ . By primitivity, pq = p′q′,

and then p = p′ and q = q′, so E1 and E2 are equivalent, which is a contradiction.
This proves that E2, . . . , EN have only finitely many solutions.

If N ≥ 4, then Sol(E1, E2) = Sol(E2) ∩ [(pq)∗p] is finite but contains at least
three solutions h3, h4, h5, which contradicts Lemma 11, so none of the equations
can have infinitely many solutions in this case. ��
Theorem 13. Every strictly independent system of one-unknown equations is
of size at most 8 log n + O(1), where n is the length of the shortest equation.
Furthermore, Conjecture SOL-XAB(c) implies Conjecture SIND-XAB(c).

Proof. Follows from Theorem 8 and Lemma 12. ��
Lemma 14. Let Σ = {a1, . . . , ak} be the alphabet of constants and

α : ({x} ∪ Σ)∗ → {x, y, z}∗, α(x) = x, α(ai) = yiz

be a morphism. Let E1, . . . , EN be a strictly independent system of equations on
{x}. The system α(E1), . . . , α(EN) of three-unknown constant-free equations is
strictly independent.

Proof. Let
β : Σ∗ → {a, b}∗, β(ai) = aib

be a morphism. A constant-preserving morphism h : ({x} ∪ Σ)∗ → Σ∗ is a
solution of Ei if and only if the nonperiodic morphism

gh : {x, y, z}∗ → {a, b}∗, gh(x) = β(h(x)), gh(y) = a, gh(z) = b

is a solution of α(Ei) (this follows from the fact that gh ◦ α = β ◦ h and
the injectivity of β). So if (h1, . . . , hN+1) is a strict independence certificate
for E1, . . . , EN , then (gh1 , . . . , ghN+1) is a strict independence certificate for
α(E1), . . . , α(EN). ��

One-Unknown and Three-Unknown Word Equations 337

Theorem 15. Conjecture SIND-XYZ(c) implies Conjecture SIND-XAB(c).

Proof. Follows from Lemma 14. ��

5 Classification of Solutions

We are interested in strictly independent systems and their certificates. Every
morphism in a certificate can be replaced by an equivalent morphism, so it would
be beneficial for us if there was a simple subclass of morphisms containing a
representative of every equivalence class. In the three-unknown case, this kind
of a result follows from a characterization of three-generator subsemigroups of
a free semigroup by Budkina and Markov [2], or alternatively from a similar
result by Spehner [15,16]. A comparison of these two results can be found in [7].
The result we present here in Theorem 16 is a simplified version that is perhaps
slightly weaker, but sufficiently strong for our purposes and easier to work with.

We define classes of morphisms {x, y, z}∗ → {a, b, c}∗:

A = {[a, b, c]},

B = {[ai, aj , ak] | i, j, k ≥ 0},

Cxyz(i, j) = {[a, aibaj , w] | w ∈ {a, b}∗ ∧ (i = 0 ∨ w ∈ b{a, b}∗)
∧ (j = 0 ∨ w ∈ {a, b}∗b)},

Cxyz =
⋃

i,j≥0

Cxyz(i, j),

Dxyz(i, j, k, l,m, p, q) = {[a, aib(amb)paj , akb(amb)qal]},

Dxyz =
⋃

Dxyz(i, j, k, l,m, p, q),

where the last union is taken over all i, j, k, l,m ≥ 0 and p, q ≥ 1 such that
ik = jl = 0 and gcd(p + 1, q + 1) = 1. If (X,Y,Z) is a permutation of (x, y, z),
then CXY Z(i, j), CXY Z , DXY Z(i, j, k, l,m, p, q) and DXY Z are defined similarly,
with the images of the unknowns permuted in a corresponding way. For example,
in the case of CXY Z(i, j), X maps to a, Y to aibaj , and Z to w. Then we also
define

C = Cxyz ∪ Cyzx ∪ Czxy ∪ Czyx ∪ Cxzy ∪ Cyxz,

D = Dxyz ∪ Dyzx ∪ Dzxy.

For A and B, we do not need to consider different permutations of the unknowns
because the images of the unknowns are symmetric. For D, we need only three
of the six permutations, because the images of the latter two unknowns are
symmetric.

Theorem 16. Every morphism {x, y, z}∗ → {a, b, c}∗ is equivalent to a mor-
phism in A ∪ B ∪ C ∪ D.

338 D. Nowotka and A. Saarela

Proof. Follows from the characterization of Budkina and Markov [2], or alterna-
tively from the characterization of Spehner [16]. ��

By the following lemma, we can concentrate on solutions in classes C and D.

Lemma 17. A strictly independent system of N ≥ 2 constant-free equations on
{x, y, z} has a strict independence certificate in (C ∪ D)N+1.

Proof. Every solution in a certificate can be replaced by an equivalent solution,
so the system has a certificate in (A ∪ B ∪ C ∪ D)N+1 by Theorem 16.

The morphism in A is a solution of only the trivial equations (u, u), and these
equations cannot be part of any independent system, so none of the solutions in
the certificate can be in A.

It was proved by Harju and Nowotka [7] that if an independent pair of equa-
tions has a nonperiodic solution, then both of the equations are balanced, that
is, every unknown appears on the left-hand side as often as on the right-hand
side. Every morphism in B is periodic and thus a solution of every balanced
equation, so none of the solutions in the certificate can be in B. ��
Example 18. The nonperiodic solutions of the equation (xyz, zyx) are of the
form [(pq)ip, q(pq)j , (pq)kp]. For example, we have the following solutions:

– [a, b, (ab)ka] ∈ Cxyz(0, 0) and [b, a, (ba)kb] ∈ Cyxz(0, 0) (these are equivalent),
– [a, b(ab)j , aba] ∈ Cxzy(1, 1),
– [a, b(ab)j , (ab)ka] ∈ Dxyz(0, 0, 1, 1, 1, j, k − 1) (j, k − 1 ≥ 1, gcd(j + 1, k) = 1),
– [(ba)ib, a, (ba)kb] ∈ Dyzx(1, 1, 1, 1, 1, k, i) (i, k ≥ 1, gcd(i + 1, k + 1) = 1).

6 Class C

In this section we study morphisms in class C. This leads to a natural connec-
tion between three-unknown constant-free equations and one-unknown equations
with constants.

Lemma 19. Let E be a nontrivial constant-free equation on {x, y, z}. There is
at most one pair (i, j) such that E has a solution in Cxyz(i, j). For this pair,
i + j ≤ |E| − 1.

Proof. Let E = (u, v) and h ∈ Sol(E) ∩ Cxyz(i, j). We can assume that one of
the following is true:

1. v = ε.
2. u = xk, k ≥ 1, and v begins with y.
3. u begins with xky, k ≥ 1, and v begins with y.
4. u begins with xkz, k ≥ 1, and v begins with y.
5. u begins with x and v begins with z.
6. u begins with y and v begins with z.

In all cases, we get either a contradiction or a single possible value for i as follows:

One-Unknown and Three-Unknown Word Equations 339

1. u �= ε, so at least one of h(x), h(y), h(z) is ε. The only possibility is h(z) = ε,
and then i = j = 0.

2. h(u) = ak and h(v) contains the letter b, which is a contradiction.
3. h(u) begins with ak+ib and h(v) begins with aib, which is a contradiction.
4. h(y) must begin with a and thus h(z) must begin with b, so h(u) begins with

akb and h(v) begins with aib. Thus i = k.
5. h(z) cannot begin with b and thus h(y) must begin with b, so i = 0.
6. It is not possible that h(y) would begin with a and h(z) with b, so h(y) must

begin with b and i = 0.

By looking at the suffixes of u and v, we will similarly see that j is uniquely
determined. Moreover, i + j ≤ |E| − 1. ��
Lemma 20. Let S = {E1, . . . , EN} be a system of constant-free equations on
{x, y, z}. Let S have a strict independence certificate (h1, . . . , hN+1) ∈ CN+1

xyz .
There is a strictly independent system E′

1, . . . , E
′
N of one-unknown equations

such that |E′
n| ≤ |En|2 for all n.

Proof. The case N < 2 is trivial, so let N ≥ 2. Let i, j be such that hN+1 ∈
Cxyz(i, j). By Lemma 19, (h1, . . . , hN) ∈ Cxyz(i, j)N . Let

α : {x, y, z}∗ → {a, b, z}∗, α(x) = a, α(y) = aibaj , α(z) = z

be a morphism and let

h′
n : {a, b, z}∗ → {a, b}∗, h′

n(z) = hn(z)

be a constant-preserving morphism. For every n, hn = h′
n◦α and α(En) is a one-

unknown equation with constants. Then (h′
1, . . . , h

′
N+1) is a strict independence

certificate of the system α(E1), . . . , α(EN). The length of α(En) is at most (i +
j + 1)|En|, which is at most |En|2 by Lemma 19. ��

7 Class D

In this section we study morphisms in class D. This class looks more complicated
than class C, but actually there is a lot of structure in the morphisms in D, which
allows us to prove stronger results than for C.

Lemma 21. Let E be a nontrivial constant-free equation on {x, y, z}. There are
i, j, k, l,m, p′, q′ such that Sol(E) ∩ Dxyz is either ∅, Dxyz(i, j, k, l,m, p′, q′), or
the union of Dxyz(i, j, k, l,m, p, q) over all p, q ≥ 1 such that gcd(p+1, q+1) = 1.

Proof. Let E = (u, v). If u = ε or v = ε, then Sol(E) ∩ Dxyz = ∅, so let
u �= ε �= v. We can assume that E is reduced and write it as

(xa0y1x
a1 · · · yrxar , xb0z1x

b1 · · · zsxbs),

340 D. Nowotka and A. Saarela

where y1, . . . , yr, z1, . . . , zs ∈ {y, z}. We can also assume that r, s ≥ 2. Let h ∈
Sol(E) ∩ Dxyz and

h(x) = a, h(yt) = aitb(amb)ptajt , h(zt) = aktb(amb)qtalt ,

(it, jt, pt) =

{

(i, j, p) if yt = y,

(k, l, q) if yt = z,
(kt, lt, qt) =

{

(i, j, p) if zt = y,

(k, l, q) if zt = z.

The left-hand side h(u) begins with aa0+i1b and the right-hand side h(v)
begins with ab0+k1b, so a0 + i1 = b0 + k1. If y1 = z1, then i1 = k1, a0 = b0,
and E is not reduced, a contradiction. Thus y1 �= z1 and i1k1 = ik = 0. From
a0 + i1 = b0 + k1, i1k1 = 0, a0b0 = 0 it then follows that k1 = a0 and i1 = b0.
Similarly, by looking at the suffixes of h(u) and h(v) we find out that yr �= zs,
ls = ar, and jr = bs. Thus i, j, k, l are uniquely determined by the equation E.

It must be {p1, q1} = {p, q}, and gcd(p + 1, q + 1) = 1, so p1 �= q1. If p1 < q1,
then h(u) and h(v) begin with

aa0+i1b(amb)p1aj1+a1+i2b and ab0+k1b(amb)p1+1,

respectively, so j1 + a1 + i2 = m. Similarly, if p1 > q1, then l1 + b1 + k2 = m.
Thus m ∈ {j1 + a1 + i2, l1 + b1 + k2}. If j1 + a1 + i2 = m �= l1 + b1 + k2, then
there are n �= m, A ≥ 1, B ≥ 0 such that h(u) and h(v) begin with

aa0+i1b(amb)A(p1+1)+B(q1+1)−1anb and ab0+k1b(amb)q1al1+b1+k2b,

respectively. It must be A(p1 + 1) + B(q1 + 1) = q1 + 1. But then B > 0 would
be a contradiction, and B = 0 would contradict gcd(p + 1, q + 1) = 1. Similarly,
j1 + a1 + i2 �= m = l1 + b1 + k2 would lead to a contradiction. Thus it must be
j1 + a1 + i2 = m = l1 + b1 + k2.

We can write

h(u) = ac0b(amb)A1(p+1)+C1(q+1)−1ac1b · · · b(amb)AR(p+1)+CR(q+1)−1acR ,

h(v) = ad0b(amb)B1(p+1)+D1(q+1)−1ad1b · · · b(amb)BS(p+1)+DS(q+1)−1adS ,

where c1, . . . , cR−1, d1, . . . , dS−1 �= m. It must be R = S, ct = dt, and

At(p + 1) + Ct(q + 1) = Bt(p + 1) + Dt(q + 1)

for all t. Moreover, all values p, q that satisfy these linear relations lead to a
solution of the equation. If there are two linearly independent relations, there
are no solutions. If there is one nontrivial relation A(p + 1) = C(q + 1), then
there is exactly one solution with gcd(p+1, q +1) = 1. If all relations are trivial,
all values of p, q satisfy them. This concludes the proof. ��

The next lemma is a special case of Theorem 5.3 in [14]. Here, the length type
of a solution h is the vector (|h(x)|, |h(y)|, |h(z)|).
Lemma 22. The length types of nonperiodic solutions of an independent pair
of constant-free equations on three unknowns are covered by a finite union of
two-dimensional subspaces of Q3.

One-Unknown and Three-Unknown Word Equations 341

Lemma 23. Let E1, E2, E3, E4 be a system of constant-free equations on
{x, y, z} with a strict independence certificate (h1, h2, h3, h4, h5). At most one
of the hi can be in Dxyz.

Proof. Let hr, hs ∈ Dxyz, r �= s. Without loss of generality, let r, s ≥ 3. Then
hr, hs ∈ Sol(E1, E2) ∩ Dxyz, so the third option of Lemma 21 must be true for
this set. We will show that the length types of solutions of E1, E2 cannot be
covered by finitely many two-dimensional spaces, which contradicts Lemma 22.

The length type of [a, aib(amb)paj , akb(amb)qal] ∈ Sol(E1, E2) ∩ Dxyz is

(1, i + 1 + (m + 1)p + j, k + 1 + (m + 1)q + l).

Here i, j, k, l,m are fixed, but p, q can be arbitrary positive integers such that
gcd(p + 1, q + 1) = 1. For every p, there are infinitely many possible values of q,
giving infinitely many length types on the line

Lp = {(1, i + 1 + (m + 1)p + j, Z) | Z ∈ Q}.

The only way to cover these with a finite number of two-dimensional spaces is
to have one of them be the unique two-dimensional space containing the whole
line. This is true for any p, and different values of p give different spaces, so all
length types cannot be covered by finitely many two-dimensional spaces. ��

8 Main Results

Putting our results together gives the following theorem, which improves the
linear bound of Theorem5 to a logarithmic one.

Theorem 24. A strictly independent system of constant-free equations on three
unknowns has at most O(log n) equations, where n is the length of the shortest
equation.

Proof. Let the system be E1, . . . , EN , where E1 is the shortest equation. By
Lemma 17, it has a strict independence certificate (h1, . . . , hN+1) ∈ (C ∪ D)N+1.
By Lemma 23, at most three of the hi can be in D. Let k of the solutions be
in Cxyz. If h1 is one of them, we get a system of size k − 1, for which we can
use Lemma 20, and then Theorem 13 to conclude that k = O(log n). Otherwise,
we can still use the arguments in the proof of Lemma20 to turn E1 into a one-
unknown equation E′

1 with k solutions. Then, by Theorem13, either k = O(log n)
or E′

1 has infinitely many solutions, but the latter leads to a contradiction like
in the proof of Lemma 12. Similarly, we can prove that the number of i such that
hi ∈ CXY Z is O(log n) for all permutations (X,Y,Z) of (x, y, z). ��

We say that two words begin in the same way if they begin with the same
letter or are both empty. We say that equations (u1, v1) and (u2, v2) begin in the
same way if either u1 and u2 begin in the same way and v1 and v2 begin in the
same way, or u1 and v2 begin in the same way and v1 and u2 begin in the same
way. Equations ending the same way is defined analogously.

342 D. Nowotka and A. Saarela

Lemma 25. Let N ≥ 3 and let E1, . . . , EN be a strictly independent system of
reduced constant-free equations on {x, y, z}. All of the equations begin and end
in the same way.

Proof. Assume that all of the equations do not begin and end in the same way.
Without loss of generality, we can assume that E1 and E2 do not begin in the
same way and that they are of the form (xu, yv) and (xu′, zv′), respectively. By
the well-known graph lemma about word equations, every common solution of
these two equations is periodic or maps one of the unknowns to the empty word.
The equations E1 and E2 have two nonequivalent nonperiodic solutions, and
these solutions must map x to the empty word. But all nonperiodic solutions
mapping x to the empty word are equivalent, which is a contradiction. ��

By Theorem 13, Conjecture SIND-XAB could be replaced by Conjecture
SOL-XAB in the next theorem. The constants are probably not optimal.

Theorem 26. Conjecture SIND-XAB(c) implies Conjecture SIND-XYZ(5c +
7). In particular, if SIND-XAB(2) is true, then a strictly independent system of
constant-free equations on {x, y, z} has at most 17 equations.

Proof. Let E1, . . . , EN be a system of reduced constant-free equations on
{x, y, z} with a strict independence certificate (h1, . . . , hN+1). For an equation
Em = (u, v), at least one of the unknowns appears both at the beginning of u or
v and at the end of u or v. By Lemma 25, this unknown does not depend on m.
Without loss of generality, we can assume it is z. By Lemma 17, we can assume
that hn ∈ C ∪ D for all n. Because Cxyz(0, 0) and Cyxz(0, 0) are the same up to
swapping a and b, we can assume that hn /∈ Cyxz(0, 0) for all n.

By Lemma 20 and the assumption about Conjecture SIND-XAB, at most
c + 1 of the solutions hn can be in Cxyz, and the same is true for the other five
permutations of the unknowns. By the assumption about z and the proof of
Lemma 19, Sol(Em) ∩ Cyxz ⊆ Cyxz(0, 0) for all m, so hn /∈ Cyxz for all n. Thus at
most 5c + 5 of the solutions hn can be in C.

By Lemma 23, at most one of the solutions hn can be in Dxyz, and the same
is true for Dyzx and Dzxy. Thus at most three of the solutions hn can be in D.

This proves that the total number of the solutions hn, which is N +1, cannot
be more than 5c + 8. ��

9 Conclusion

We can mention several further research goals. Two obvious ones are improving
the constants in Theorem 26, ideally so that Conjecture SIND-XAB(c) implies
Conjecture SIND-XYZ(c), and proving Conjecture SOL-XAB or Conjecture
SIND-XAB (ideally SOL-XAB(2)), and thus also Conjecture SIND-XYZ. Prov-
ing similar results for chains of equations instead of independent systems might
be possible (see [11] for definitions).

A different topic would be to study the complexity of determining whether a
three-unknown constant-free equation has a nonperiodic solution. This decision

One-Unknown and Three-Unknown Word Equations 343

problem is known to be in NP [13]. Based on the connection to one-unknown
equations, a better result could probably be obtained, because one-unknown
equations can be solved efficiently, even in linear time, as proved by Jez [9].

Finally, Question 3 could be studied for more than three unknowns. This is
of course a big question, and our techniques do not help here, because they are
specific to the three-unknown case.

References

1. Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s conjecture. Theoret. Comput.
Sci. 41(1), 121–123 (1985)

2. Budkina, L.G., Markov, A.A.: F -semigroups with three generators. Mat. Zametki
14, 267–277 (1973)

3. Culik, K., Karhumäki, J.: Systems of equations over a free monoid and
Ehrenfeucht’s conjecture. Discrete Math. 43(2–3), 139–153 (1983)

4. Da̧browski, R., Plandowski, W.: On word equations in one variable. Algorithmica
60(4), 819–828 (2011)

5. Eyono Obono, S., Goralcik, P., Maksimenko, M.: Efficient solving of the word
equations in one variable. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS
1994. LNCS, vol. 841, pp. 336–341. Springer, Heidelberg (1994)

6. Guba, V.S.: Equivalence of infinite systems of equations in free groups and semi-
groups to finite subsystems. Mat. Zametki 40(3), 321–324 (1986)

7. Harju, T., Nowotka, D.: On the independence of equations in three variables. The-
oret. Comput. Sci. 307(1), 139–172 (2003)

8. Holub, Š., Žemlička, J.: Algebraic properties of word equations. J. Algebra 434,
283–301 (2015)

9. Jez, A.: One-variable word equations in linear time. Algorithmica 74(1), 1–48
(2016)

10. Karhumäki, J., Plandowski, W.: On the defect effect of many identities in free
semigroups. In: Paun, G. (ed.) Mathematical Aspects of Natural and Formal Lan-
guages, pp. 225–232. World Scientific (1994)

11. Karhumäki, J., Saarela, A.: On maximal chains of systems of word equations. Proc.
Steklov Inst. Math. 274, 116–123 (2011)

12. Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found.
Comput. Sci. 22(2), 345–375 (2011)

13. Saarela, A.: On the complexity of Hmelevskii’s theorem and satisfiability of three
unknown equations. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol.
5583, pp. 443–453. Springer, Heidelberg (2009)

14. Saarela, A.: Systems of word equations, polynomials and linear algebra: a new
approach. Eur. J. Comb. 47, 1–14 (2015)

15. Spehner, J.C.: Quelques problémes d’extension, de conjugaison et de présentation
des sous-monöıdes d’un monöıde libre. Ph.D. thesis, Univ. Paris (1976)

16. Spehner, J.C.: Les systemes entiers d’équations sur un alphabet de 3 variables. In:
Semigroups, pp. 342–357 (1986)

Avoidability of Formulas with Two Variables

Pascal Ochem1 and Matthieu Rosenfeld2(B)

1 LIRMM, CNRS, University of Montpellier, Montpellier, France
ochem@lirmm.fr

2 LIP, ENS de Lyon, CNRS, UCBL, Université de Lyon, Lyon, France
matthieu.rosenfeld@ens-lyon.fr

Abstract. In combinatorics on words, a word w over an alphabet Σ is
said to avoid a pattern p over an alphabet Δ of variables if there is no
factor f of w such that f = h(p) where h : Δ∗ → Σ∗ is a non-erasing
morphism. A pattern p is said to be k-avoidable if there exists an infinite
word over a k-letter alphabet that avoids p. We consider the patterns
such that at most two variables appear at least twice, or equivalently, the
formulas with at most two variables. For each such formula, we determine
whether it is 2-avoidable.

Keywords: Word · Pattern avoidance

1 Introduction

A pattern p is a non-empty finite word over an alphabet Δ = {A,B,C, . . .}
of capital letters called variables. An occurrence of p in a word w is a non-
erasing morphism h : Δ∗ → Σ∗ such that h(p) is a factor of w. The avoidability
index λ(p) of a pattern p is the size of the smallest alphabet Σ such that there
exists an infinite word over Σ containing no occurrence of p. Bean, Ehrenfeucht,
and McNulty [3] and Zimin [11] characterized unavoidable patterns, i.e., such
that λ(p) = ∞. We say that a pattern p is t-avoidable if λ(p) � t. For more
informations on pattern avoidability, we refer to Chapter 3 of Lothaire’s book [6].

A variable that appears only once in a pattern is said to be isolated. Following
Cassaigne [4], we associate to a pattern p the formula f obtained by replacing
every isolated variable in p by a dot. The factors between the dots are called
fragments.

An occurrence of f in a word w is a non-erasing morphism h : Δ∗ → Σ∗ such
that the h-image of every fragment of f is a factor of w. As for patterns, the
avoidability index λ(f) of a formula f is the size of the smallest alphabet allowing
an infinite word containing no occurrence of p. Clearly, every word avoiding f
also avoids p, so λ(p) � λ(f). Recall that an infinite word is recurrent if every
finite factor appears infinitely many times. If there exists an infinite word over Σ
avoiding p, then there exists an infinite recurrent word over Σ avoiding p. This
recurrent word also avoids f , so that λ(p) = λ(f). Without loss of generality, a
formula is such that no variable is isolated and no fragment is a factor of another
fragment.
c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 344–354, 2016.
DOI: 10.1007/978-3-662-53132-7 28

Avoidability of Formulas with Two Variables 345

Cassaigne [4] began and Ochem [7] finished the determination of the avoid-
ability index of every pattern with at most 3 variables. A doubled pattern con-
tains every variable at least twice. Thus, a doubled pattern is a formula with
exactly one fragment. Every doubled pattern is 3-avoidable [9]. A formula is
said to be binary if it has at most 2 variables. In this paper, we determine the
avoidability index of every binary formula.

We say that a formula f is divisible by a formula f ′ if f does not avoid f ′,
that is, there is a non-erasing morphism such that the image of any fragment of
f ′ by h is a factor of a fragment of f . If f is divisible by f ′, then every word
avoiding f ′ also avoids f and thus λ(f) � λ(f ′). For example, the fact that
ABA.AABB is 2-avoidable implies that ABAABB and ABAB.BBAA are 2-
avoidable. Moreover, the reverse fR of a formula f satisfies λ(fR) = λ(f). See
Cassaigne [4] and Clark [5] for more information on formulas and divisibility.

First, we check that every avoidable binary formula is 3-avoidable. Since
λ(AA) = 3, every formula containing a square is 3-avoidable. Then, the only
square free avoidable binary formula is ABA.BAB with avoidability index 3 [4].
Thus, we have to distinguish between avoidable binary formulas with avoidability
index 2 and 3. A binary formula is minimally 2-avoidable if it is 2-avoidable and
is not divisible by any other 2-avoidable binary formula. A binary formula f is
maximally 2-unavoidable if it is 2-unavoidable and every other binary formula
that is divisible by f is 2-avoidable.

Theorem 1. Up to symmetry, the maximally 2-unavoidable binary formulas
are:

– AAB.ABA.ABB.BBA.BAB.BAA
– AAB.ABBA
– AAB.BBAB
– AAB.BBAA
– AAB.BABB
– AAB.BABAA
– ABA.ABBA
– AABA.BAAB

Up to symmetry, the minimally 2-avoidable binary formulas are:

– AA.ABA.ABBA
– ABA.AABB
– AABA.ABB.BBA
– AA.ABA.BABB
– AA.ABB.BBAB
– AA.ABAB.BB
– AA.ABBA.BAB
– AAB.ABB.BBAA
– AAB.ABBA.BAA
– AABB.ABBA
– ABAB.BABA
– AABA.BABA
– AAA

346 P. Ochem and M. Rosenfeld

– ABA.BAAB.BAB
– AABA.ABAA.BAB
– AABA.ABAA.BAAB

– ABAAB

To obtain the 2-unavoidability of the formulas in the first part of Theorem1,
we use a standard backtracking algorithm. In the rest of the paper, we consider
the 2-avoidable formulas in the second part of Theorem1. Figure 1 gives the max-
imal length and number of binary words avoiding each maximally 2-unavoidable
formula.

We show in Sect. 3 that the first three of these formulas are avoided by poly-
nomially many binary words only. The proof uses a technical lemma given in
Sect. 2. Then we show in Sect. 4 that the other formulas are avoided by expo-
nentially many binary words.

Maximal length of a Number of binary
Formula binary word avoiding words avoiding

this formula this formula

AAB.BBAA 22 1428

AAB.ABA.ABB.BBA.BAB.BAA 23 810

AAB.BBAB 23 1662

AABA.BAAB 26 2124

AAB.ABBA 30 1684

AAB.BABAA 42 71002

AAB.BABB 69 9252

ABA.ABBA 90 31572

Fig. 1. The number and maximal length of binary words avoiding the maximally 2-
unavoidable formulas.

2 The Useful Lemma

Let us define the following words:

– b2 is the fixed point of 0 �→ 01, 1 �→ 10.
– b3 is the fixed point of 0 �→ 012, 1 �→ 02, 2 �→ 1.
– b4 is the fixed point of 0 �→ 01, 1 �→ 03, 2 �→ 21, 3 �→ 23.
– b5 is the fixed point of 0 �→ 01, 1 �→ 23, 2 �→ 4, 3 �→ 21, 4 �→ 0.

Let w and w′ be infinite (right infinite or bi-infinite) words. We say that w
and w′ are equivalent if they have the same set of finite factors. We write w ∼ w′

if w and w′ are equivalent. A famous result of Thue [10] can be stated as follows:

Theorem 2 [10]. Every bi-infinite ternary word avoiding 010, 212, and squares
is equivalent to b3.

Avoidability of Formulas with Two Variables 347

Given an alphabet Σ and forbidden structures S, we say that a finite set W
of infinite words over Σ essentially avoids S if every word in W avoids S and
every bi-infinite words over Σ avoiding S is equivalent to one of the words in S.
If W contains only one word w, we denote the set W by w instead of {w}. Then
we can restate Theorem 2: b3 essentially avoids 010, 212, and squares

The results in the next section involve b3. We have tried without success to
prove them by using Theorem 2. We need the following stronger property of b3:

Lemma 3 b3 essentially avoids 010, 212, XX with 1 � |X| � 3, and 2Y Y with
|Y | � 4.

Proof We start by checking by computer that b3 has the same set of factors
of length 100 as every bi-infinite ternary word avoiding 010, 212, XX with
1 � |X| � 3, and 2Y Y with |Y | � 4. The set of the forbidden factors of b3 of
length at most 4 is F = {00, 11, 22, 010, 212, 0202, 2020, 1021, 1201}. To finish
the proof, we use Theorem 2 and we suppose for contradiction that w is a bi-
infinite ternary word that contains a large square MM and avoids bothF and
large factors of the form 2Y Y .

– Case M = 0N . Then w contains MM = 0N0N . Since 00 ∈ F and 2Y Y is
forbidden, w contains 10N0N . Since {11, 010} ⊂ F , w contains 210N0N . If
N = P1, then w contains 210P10P1, which contains 2Y Y with Y = 10P . So
N = P2 and w contains 210P20P2. If P = Q1, then w contains 210Q120Q12.
Since {11, 212} ⊂ F , the factor Q12 implies that Q = R0 and w contains
210R0120R012. Moreover, since {00, 1201} ⊂ F , the factor 120R implies that
R = 2S and w contains 2102S01202S012. Then there is no possible prefix
letter for S: 0 gives 2020, 1 gives 1021, and 2 gives 22. This rules out the case
P = Q1. So P = Q0 and w contains 210Q020Q02. The factor Q020Q implies
that Q = 1R1, so that w contains 2101R10201R102. Since {11, 010} ⊂ F ,
the factor 01R implies that R = 2S, so that w contains 21012S102012S102.
The only possible right extension with respect to F of 102 is 102012. So w
contains 21012S102012S102012, which contains 2Y Y with Y = S102012.

– Case M = 1N . Then w contains MM = 1N1N . In order to avoid 11 and
2Y Y , w must contain 01N1N . If N = P0, then w contains 01P01P0. So w
contains the large square 01P01P and this case is covered by the previous
item. So N = P2 and w contains 01P21P2. Then there is no possible prefix
letter for P : 0 gives 010, 1 gives 11, and 2 gives 212.

– Case M = 2N . Then w contains MM = 2N2N . If N = P1, then w contains
2P12P1. This factor cannot extend to 2P12P12, since this is 2Y Y with Y =
P12. So w contains 2P12P10. Then there is no possible suffix letter for P : 0
gives 010, 1 gives 11, and 2 gives 212. This rules out the case N = P1. So
N = P0 and w contains 2P02P0. This factor cannot extend to 02P02P0, since
this contains the large square 02P02P and this case is covered by the first item.
Thus w contains 12P02P0. If P = Q1, then w contains 12Q102Q10. Since
{22, 1021} ⊂ F , the factor 102Q implies that Q = 0R, so that w contains
120R1020R10. Then there is no possible prefix letter for R: 0 gives 00, 1
gives 1201, and 2 gives 0202. This rules out the case P = Q1. So P = Q2

348 P. Ochem and M. Rosenfeld

and w contains 12Q202Q20. The factor Q202 implies that Q = R1 and w
contains 12R1202R120. Since {00, 1201} ⊂ F , w contains 12R1202R1202,
which contains 2Y Y with Y = R1202.

3 Formulas Avoided by Few Binary Words

The first three 2-avoidable formulas in Theorem1 are not avoided by exponen-
tially many binary words:

– {gx(b3), gy(b3), gz(b3), gz(b3)} essentially avoids AA.ABA.ABBA.
– {gx(b3), gt(b3)} essentially avoids ABA.AABB.
– gx(b3) essentially avoids AABA.ABB.BBA.

The words avoiding these formulas are morphic images of b3 by the morphisms
given below. Let w denote the word obtained from the (finite or bi-infinite)
binary word w by exchanging 0 and 1. Obviously, if w avoids a given formula,
then so does w. A (bi-infinite) binary word w is self-complementary if w ∼ w.
The words gx(b3), gy(b3), and gt(b3) are self-complementary. Since the frequency
of 0 in gz(b3) is 5

9 , gz(b3) is not self-complementary. Then gz is obtained from
gz by exchanging 0 and 1, so that gz(b3) = gz(b3).

gx(0) = 01110,
gx(1) = 0110,
gx(2) = 0.

gy(0) = 0111,
gy(1) = 01,
gy(2) = 00.

gz(0) = 0001,
gz(1) = 001,
gz(2) = 11.

gt(0) = 01011011010,
gt(1) = 01011010,
gt(2) = 010.

To prove the avoidability, we have implemented Cassaigne’s algorithm that
decides, under mild assumptions, whether a morphic word avoids a formula [4].
For the first two formulas, we have to explain how the long enough binary words
split into 4 or 2 distinct incompatible types. A similar phenomenon has been
described for AABB.ABBA [8].

First, consider any infinite binary word w avoiding AA.ABA.ABBA. A com-
puter check shows by backtracking that w must contain the factor 01110001110.
In particular, w contains 00. Thus, w cannot contain both 010 and 0110, since it
would produce an occurrence of AA.ABA.ABBA. Moreover, a computer check
shows by backtracking that w cannot avoid both 010 and 0110. So, w must con-
tain either 010 or 0110 (this is an exclusive or). Similarly, w must contain either
101 or 1001. There are thus at most 4 possibilities for w, depending on which
subset of {010, 0110, 101, 1001} appears among the factors of w, see Fig. 2a.

Now, consider any infinite binary word w avoiding ABA.AABB. Notice that
w cannot contain both 010 and 0011. Also, a computer check shows by back-
tracking that w cannot avoid both 010 and 1100. By symmetry, there are thus at
most 2 possibilities for w, depending on which subset of {010, 0011, 101, 1100}
appears among the factors of w, see Fig. 2b.

Let us first prove that gy(b3) essentially avoids AA.ABA.ABBA, 0110, and
1001. We check that the set of prolongable binary words of length 100 avoiding
AA.ABA.ABBA, 0110, and 1001 is exactly the set of factors of length 100 of

Avoidability of Formulas with Two Variables 349

gy(b3) gx(b3)

010

101 1001

gz(b3)

gz(b3)

0110

(a) The four bi-infinite binary
words avoiding AA.ABA.ABBA.

gt(b3)

1100

gx(b3)

0011010

101

(b) The two bi-infinite binary words avoid-
ing ABA.AABB.

Fig. 2. The different possibilities for words avoiding AA.ABA.ABBA or ABA.AABB.

gy(b3). Using Cassaigne’s notion of circular morphism [4], this is sufficient to
prove that every bi-infinite binary word of this type is the gy-image of some bi-
infinite ternary word w3. It also ensures that w3 and b3 have the same set of small
factors. Suppose for contradiction that w3 �= b3. By Lemma 3, w3 contains 2Y Y .
Then w3 contains 2Y Y a with a ∈ Σ3. Notice that 0 is a prefix of the gy-image
of every letter. So gy(w3) contains gy(2Y Y a) = 000U0U0V with U, V ∈ Σ+

3 ,
which contains an occurrence of AA.ABA.ABBA with A = 0 and B = 0U . This
shows that w3 ∼ b3, and thus gy(w3) ∼ gy(b3). Thus gy(b3) essentially avoids
AA.ABA.ABBA, 0110, and 1001. The argument is similar for the other types
and we only detail the final contradiction:

– Since 1 is a suffix of the gz-image of every letter, gz(2Y Y) = 11U1U1 contains
an occurrence of AA.ABA.ABBA with A = 1 and B = 1U .

– Since 010 is a prefix and a suffix of the gt-image of every letter, gz(u2Y Y) =
010V 010010010U010010U010 contains an occurrence of ABA.AABB with
A = 010 and B = 010U010.

– Since 0 is a prefix and a suffix of the gx-image of every letter, gx(u2Y Y a) =
V 000U00U00W contains an occurrence of AABA.AABBA with A = 0 and
B = 0U0. Therefore, gx(u2Y Y a) contains an occurrence of AA.ABA.ABBA,
ABA.AABB, and AABA.ABB.BBA.

4 Formulas Avoided by Exponentially Many Binary
Words

The other 2-avoidable formulas in Theorem1 are avoided by exponentially many
binary words. For every such formula f , we give below a uniform morphism g that
maps every ternary square free word to a binary word avoiding f . If possible, we
simultaneously avoid the reverse formula fR of f . We also avoid large squares.

350 P. Ochem and M. Rosenfeld

Let SQt denote the pattern corresponding to squares of period at least t, that
is, SQ1 = AA, SQ2 = ABAB, SQ3 = ABCABC, and so on. The morphism g
produces words avoiding SQt with t as small as possible.

– AA.ABA.BABB is avoided with its reverse by the following 22-uniform mor-
phism which also avoids SQ6:

0 �→ 0001101101110011100011

1 �→ 0001101101110001100011

2 �→ 0001101101100011100111

Notice that {AA.ABA.BABB,AA.ABA.BBAB,SQ5} is 2-unavoidable.
However, {AA.ABA.BABB,SQ4} is 2-avoidable:

0 �→ 00010010011000111001001100010011100100100111

1 �→ 00010010011000100111001001100011100100100111

2 �→ 00010010011000100111001001001100011100100111

– AA.ABB.BBAB is avoided with its reverse, 60-uniform morphism, avoids
SQ11:

0 �→ 000110011100011001110011000111000110011100011100110001110011

1 �→ 000110011100011001110001110011000111000110011100110001110011

2 �→ 000110011100011001110001100111000111001100011100110001110011

Notice that {AA.ABB.BBAB,SQ10} is 2-unavoidable.
– AA.ABAB.BB is self-reverse, 11-uniform morphism, avoids SQ4:

0 �→ 00100110111

1 �→ 00100110001

2 �→ 00100011011

– AA.ABBA.BAB is self-reverse, 30-uniform morphism, avoids SQ6:

0 �→ 000110001110011000110011100111

1 �→ 000110001100111001100011100111

2 �→ 000110001100011001110011100111

– AAB.ABB.BBAA is self-reverse, 30-uniform morphism, avoids SQ5:

0 �→ 000100101110100010110111011101

1 �→ 000100101101110100010111011101

2 �→ 000100010001011101110111010001

– AAB.ABBA.BAA is self-reverse, 38-uniform morphism, avoids SQ5:

0 �→ 00010001000101110111010001011100011101

1 �→ 00010001000101110100011100010111011101

2 �→ 00010001000101110001110100010111011101

Avoidability of Formulas with Two Variables 351

– AABB.ABBA is unavoidable with its reverse, 193-uniform morphism, avoids
SQ16:

0 �→ 00010001011011101100010110111000101101110111000101100010001011

011101100010110111011100010110111011000101101110001011011101110001

01100010001011011100010110111011100010110111011000101101110001011

1 �→ 00010001011011101100010110111000101101110111000101100010001011

011100010110111011100010110111011000101101110001011011101110001011

00010001011011101100010110111011100010110111011000101101110001011

2 �→ 00010001011011100010110111011100010110001000101101110110001011

011101110001011011101100010110111000101101110111000101100010001011

01110110001011011100010110111011100010110111011000101101110001011

Previous papers [7,8] have considered a 102-uniform morphism to avoid
AABB.ABBA and SQ27. No infinite binary word avoids AABB.ABBA and
SQ15.

– ABAB.BABA is self-reverse, 50-uniform morphism, avoids SQ3, see [7]:

0 �→ 00011001011000111001011001110001011100101100010111

1 �→ 00011001011000101110010110011100010110001110010111

2 �→ 00011001011000101110010110001110010111000101100111

Notice that a binary word avoiding ABAB.BABA and SQ3 contains only the
squares 00, 11, and 0101 (or 00, 11, and 1010).

– AABA.BABA: A case analysis of the small factors shows that a recurrent
binary word avoids AABA.BABA, ABAA.ABAB, and SQ3 if and only if it
contains only the squares 00, 11, and 0101 (or 00, 11, and 1010). We thus
obtain the same morphism as for ABAB.BABA.

– AAA is self-reverse, 32-uniform morphism, avoids SQ4:

0 �→ 00101001101101001011001001101011

1 �→ 00101001101100101101001001101011

2 �→ 00100101101001001101101001011011

– ABA.BAAB.BAB is self-reverse, 10-uniform morphism, avoids SQ3:

0 �→ 0001110101

1 �→ 0001011101

2 �→ 0001010111

– AABA.ABAA.BAB is self-reverse, 57-uniform morphism, avoids SQ6:

0 �→ 000101011100010110010101100010111001011000101011100101011

1 �→ 000101011100010110010101100010101110010110001011100101011

2 �→ 000101011100010110010101100010101110010101100010111001011

– AABA.ABAA.BAAB is self-reverse, 30-uniform morphism, avoids SQ3:

0 �→ 000101110001110101000101011101

1 �→ 000101110001110100010101110101

2 �→ 000101110001010111010100011101

352 P. Ochem and M. Rosenfeld

– ABAAB is avoided with its reverse, 10-uniform morphism, avoids SQ3, see [7]:

0 �→ 0001110101

1 �→ 0000111101

2 �→ 0000101111

For every q-uniform morphism g above, we say that a binary word is an
sqf-g-image if it is the g-image of a ternary square free word. Let us show that
for every minimally 2-avoidable formula f and corresponding morphism g, every
sqf-g-image avoids f .

We start by checking that every morphism is synchronizing, that is, for every
letters a, b, c ∈ Σ3, the factor g(a) only appears as a prefix or a suffix in g(bc).

For every morphism g, the sqf-g-images are claimed to avoid SQt with 2t < q.
Let us prove that SQt is avoided. We first check exhaustively that the sqf-g-
images contain no square uu such that t � |u| < 2q − 1. Now suppose for
contradiction that an sqf-g-image contains a square uu with |u| � 2q − 1. The
condition |u| � 2q − 1 implies that u contains a factor g(a) with a ∈ Σ3. This
factor g(a) only appears as the g-image of the letter a because g is synchronizing.
Thus the distance between any two factors u in an sqf-g-image is a multiple
of q. Since uu is a factor of an sqf-g-image, we have q | |u|. Also, the center
of the square uu cannot lie between the g-images of two consecutive letters,
since otherwise there would be a square in the pre-image. The only remaining
possibility is that the ternary square free word contains a factor aXbXc with
a, b, c ∈ Σ3 and X ∈ Σ+

3 such that g(aXbXc) = bsY psY pe contains the square
uu = sY psY p, where g(X) = Y , g(a) = bs, g(b) = ps, g(c) = pe. Then, we also
have a �= b and b �= c since aXbXc is square free. Then abc is square free and
g(abc) = bspspe contains a square with period |s| + |p| = |g(a)| = q. This is a
contradiction since the sqf-g-images contain no square with period q.

Notice that f is not square free, since the only avoidable square free binary
formula is ABA.BAB, which is not 2-avoidable. Now, we distinguish two kinds
of formula. A formula is easy if every appearing variable is contained in at least
one square. Every potential occurrence of an easy formula then satisfies |A| < t
and |B| < t since SQt is avoided. The longest fragment of every easy formula
has length 4. So, to check that the sqf-g-images avoids an easy formula, it is
sufficient to consider the set of factors of the sqf-g-images with length at most
4(t − 1).

A tough formula is such that one of the variables is not contained in any
square. The tough formulas have been named so that this variable is B. The
tough formulas are ABA.BAAB.BAB, ABAAB, AABA.ABAA.BAAB, and
AABA.ABAA.BAB. As before, every potential occurrence of a tough formula
satisfies |A| < t since SQt is avoided. Suppose for contradiction that |B| � 2q−1.
By previous discussion, the distance between any two occurrences of B in an
sqf-g-image is a multiple of q. The case of ABA.BAAB.BAB can be settled as
follows. The factor BAAB implies that q | |BAA| and the factor BAB implies
that q | |BA|. This implies that q | |A|, which contradicts |A| < t. For the
other formulas, only one fragment contains B twice. This fragment is said to
be important. Since |A| < t, the important fragment is a repetition which is

Avoidability of Formulas with Two Variables 353

“almost” a square. The important fragment is BAB for AABA.ABAA.BAB,
BAAB for AABA.ABAA.BAAB, and ABAAB for ABAAB. Informally, this
almost square implies a factor aXbXc in the ternary pre-image, such that |a| =
|c| = 1 and 1 � |b| � 2. If |X| is small, then |B| is small and we check exhaustively
that there exists no small occurrence of f . If |X| is large, there would exist a
ternary square free factor aY bY c with |Y | small, such that g(aY bY c) contains
the important fragment of an occurrence of f if and only if g(aXbXc) contains
the important fragment of a smaller occurrence of f .

5 Concluding Remarks

From our results, every minimally 2-avoidable binary formula, and thus every
2-avoidable binary formula, is avoided by some morphic image of b3.

What can we forbid so that there exists only few infinite avoiding words?
The known examples from the literature [1,2,10] are:

– one pattern and two factors:
• b3 essentially avoids AA, 010, and 212.
• A morphic image of b5 essentially avoids AA, 010, and 020.
• A morphic image of b5 essentially avoids AA, 121, and 212.
• b2 essentially avoids ABABA, 000, and 111.

– two patterns: b2 essentially avoids ABABA and AAA.
– one formula over three variables: b4 and two words from b4 obtained by letter

permutation essentially avoid AB.AC.BA.BC.CA.

Now we can extend this list:

– one formula over two variables:
• gx(b3) essentially avoids AAB.BAA.BBAB.
• {gx(b3), gt(b3)} essentially avoids ABA.AABB.
• {gx(b3), gy(b3), gy(b3), gz(b3), gz(b3)} essentially avoids AA.ABA.ABBA.

– one pattern over three variables: ABACAABB (same as ABA.AABB).

References

1. Badkobeh, G., Ochem, P.: Characterization of some binary words with few squares.
Theoret. Comput. Sci. 588, 73–80 (2015)

2. Baker, K.A., McNulty, G.F., Taylor, W.: Growth problems for avoidable words.
Theoret. Comput. Sci. 69(3), 319–345 (1989)

3. Bean, D.R., Ehrenfeucht, A., McNulty, G.F.: Avoidable patterns in strings of sym-
bols. Pacific J. Math. 85, 261–294 (1979)

4. Cassaigne, J.: Motifs évitables et régularité dans les mots. Ph.D. Thesis, Université
Paris VI (1994)

5. Clark, R.J.: Avoidable formulas in combinatorics on words. Ph.D. Thesis, Univer-
sity of California, Los Angeles (2001)

6. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

354 P. Ochem and M. Rosenfeld

7. Ochem, P.: A generator of morphisms for infinite words. RAIRO - Theoret. Inform.
Appl. 40, 427–441 (2006)

8. Ochem, P.: Binary words avoiding the pattern AABBCABBA. RAIRO - Theoret.
Inform. Appl. 44(1), 151–158 (2010)

9. Ochem, P.: Doubled patterns are 3-avoidable. Electron. J. Combinatorics 23(1)
(2016)

10. Thue, A.: Über unendliche Zeichenreihen. ’Norske Vid. Selsk. Skr. I. Mat. Nat. Kl.
7, 1–22 (1906). Christiania

11. Zimin, A.I.: Blocking sets of terms. Math. USSR Sbornik 47(2), 353–364 (1984)

Deciding Equivalence of Linear Tree-to-Word
Transducers in Polynomial Time

Adrien Boiret1 and Raphaela Palenta2(B)

1 CRIStAL, University Lille 1, Avenue Carl Gauss,
59655 Villeneuve d’Ascq Cedex, France

adrien.boiret@inria.fr
2 Department of Informatics, Technical University of Munich,

Boltzmannstr. 3, 85748 Garching, Germany
palenta@in.tum.de

Abstract. We show that the equivalence of linear top-down tree-to-
word transducers is decidable in polynomial time. Linear tree-to-word
transducers are non-copying but not necessarily order-preserving and can
be used to express XML and other document transformations. The result
is based on a partial normal form that provides a basic characterization
of the languages produced by linear tree-to-word transducers.

Keywords: Tree transducer · Deciding equivalence · Partial normal
form

1 Introduction

Tree transformations are widely used in functional programming and document
processing. Tree transducers are a general model for transforming structured
data like a database in a structured or even unstructured way. Consider the
following internal representation of a client database that should be transformed
to a table in HTML.

A. Boiret—This work was partially supported by a grant from CPER Nord-Pas de
Calais/FEDER DATA Advanced data science and technologies 2015–2020.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 355–367, 2016.
DOI: 10.1007/978-3-662-53132-7 29

356 A. Boiret and R. Palenta

Deterministic top-down tree transducers can be seen as functional programs
that transform trees from the root to the leaves with finite memory. Transfor-
mations where the output is not produced in a structured way or where, for
example, the output is a string, can be modeled by tree-to-word transducers.

In this paper, we study deterministic linear tree-to-word transducers (ltws),
a subset of deterministic tree-to-word transducers that are non-copying, but not
necessarily order-preserving. Processing the subtrees in an arbitrary order is
important to avoid reordering of the internal data for different use cases. In the
example of the client database the names may be needed in different formats, e.g.

<s a l u ta t i on > <name> <surname>
<surname>, <name>
<t i t l e > <surname>
<t i t l e > <surname>, <name>

The equivalence of unrestricted tree-to-word transducers was a long standing
open problem that was recently shown to be decidable [12]. The algorithm by [12]
provides an co-randomized polynomial algorithm for linear transducers. We show
that the equivalence of ltws is decidable in polynomial time and provide a
partial normal form.

To decide equivalence of ltws, we start in Sect. 3 by extending the meth-
ods used for sequential (linear and order-preserving) tree-to-word transducers
(stws), discussed in [13]. The equivalence for these transducers is decidable in
polynomial time [13]. Moreover a normal form for sequential and linear tree-to-
word transducers, computable in exponential time, is known [1,7]. Two equiva-
lent ltws do not necessarily transform their trees in the same order. However,
the differences that can occur are quite specific and characterized in [1]. We
show how they can be identified. We use the notion of earliest states, inspired
by the existing notion of earliest sequential transducers [7]. In this earliest form,
two equivalent stws can transform subtrees in different orders only if they fulfill
specific properties pertaining to the periodicity of the words they create. Com-
puting this normal form is exponential in complexity as the number of states may
increase exponentially. To avoid this size increase we do not compute these earli-
est transducers fully, but rather locally. This means we transform two ltws with
different orders to a partial normal form in polynomial time (see Sect. 4) where
the order of their transformation of the different subtrees are the same. ltws
that transform the subtrees of the input in the same order can be reduced to
sequential tree-to-word transducers as the input trees can be reordered according
to the order in the transformation.

Due to space constraints some proofs are omitted. The full version of the
paper can be found at http://arxiv.org/abs/1606.03758.

Related Work. Different other classes of transducers, such as tree-to-tree
transducers [5], macro tree transducers [6] or nested-word-to-word transduc-
ers [13] have been studied. Many results for tree-to-tree transducers are known,
e.g. deciding equivalence [10], minimization algorithms [10] and Gold-style learn-
ing algorithms [8]. In contrast, transformations where the output is not gener-
ated in a structured way like a tree are not that well understood. In macro-tree

http://arxiv.org/abs/1606.03758

Deciding Equivalence of LTWs in Polynomial Time 357

transducers, the decidability of equivalence is a well-known and long-standing
question [2]. However, the equivalence of linear size increase macro-tree trans-
ducers that are equivalent to MSO definable transducers is decidable [3,4].

2 Preliminaries

Let Σ be a ranked alphabet with Σ(n) the symbols of rank n. Trees on Σ (TΣ)
are defined inductively: if f ∈ Σ(n), and t1, ..., tn ∈ TΣ , then f(t1, ..., tn) ∈ TΣ

is a tree. Let Δ be an alphabet. An element w ∈ Δ∗ is a word. For two words
u, v we denote the concatenation of these two words by uv. The length of a word
w is denoted by |w|. We call ε the empty word. We denote a−1 the inverse of
a symbol a where aa−1 = a−1a = ε. The inverse of a word w = u1 . . . un is
w−1 = u−1

n . . . u−1
1 .

A context-free grammar (CFG) is defined as a tuple (Δ,N, S, P), where Δ is
the alphabet of G, N is a finite set of non-terminal symbols, S ∈ N is the initial
non-terminal of G, P is a finite set of rules of form A → w, where A ∈ N and
w ∈ (Δ∪N)∗. A CFG is deterministic if each non-terminal has at most one rule.

We define the language LG(A) of a non-terminal A recursively: if A →
u0A1u1...Anun is a rule of P , with ui words of Δ∗ and Ai non-terminals of
N , and wi a word of LG(Ai), then u0w1u1...wnun is a word of LG(A). We define
the context-free language LG of a context-free grammar G as LG(S).

A straight-line program (SLP) is a deterministic CFG that produces exactly
one word. The word produced by an SLP (Δ,N, S, P) is called wS .

We denote the longest common prefix of all words of a language L by lcp(L).
Its longest common suffix is lcs(L).

A word u is said to be periodic of period w if w is the smallest word such
that u ∈ w∗. A language L is said to be periodic of period w if w is the smallest
word such that L ⊆ w∗.

A language L is quasi-periodic on the left (resp. on the right) of handle u
and period w if w is the smallest word such that L ⊆ uw∗ (resp. if L ⊆ w∗u).
A language is quasi-periodic if it is quasi-periodic on the right or left. If L is a
singleton or empty, it is periodic of period ε. Iff L is periodic, it is quasi-periodic
on the left and the right of handle ε. If L is quasi-periodic on the left (resp.
right) then lcp(L) (resp. lcs(L)) is the shortest word of L.

3 Linear Tree-to-Word Transducers

A linear tree-to-word transducer (ltw) is a tuple M = (Σ,Δ,Q, ax, δ) where

– Σ is a ranked alphabet,
– Δ is an alphabet of output symbols,
– Q is a finite set of states,
– the axiom ax is of the form u0q(x)u1, where q ∈ Q and u0, u1 ∈ Δ∗,
– δ is a set of rules of the form q, f → u0q1(xσ(1)) . . . qn(xσ(n))un where

q, q1, . . . , qn ∈ Q, f ∈ Σ of rank n, u0, . . . , un ∈ Δ∗ and σ is a permuta-
tion from {1, . . . , n} to {1, . . . , n}. There is at most one rule per pair q, f .

358 A. Boiret and R. Palenta

The partial function �M�q of a state q on an input tree f(t1, . . . , tn) is defined
inductively as

– u0�M�q1(tσ(1)) . . . �M�qn(tσ(n))un, if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ
– undefined, if q, f is not defined in δ.

The partial function �M� of an ltw M with axiom u0q(x)u1 on an input tree t
is defined as �M�(t) = u0�M�q(t)u1.

Two ltws M and M ′ are equivalent if �M� = �M ′�.
A sequential tree-to-word transducer (stw) is an ltw where for each rule of

the form q, f → u0q1(xσ(1))u1 . . . qn(xσ(n))un, σ is the identity on 1 . . . n.
We define accessibility of states as the transitive and reflexive closure of

appearance in a rule. This means state q is accessible from itself, and if q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un, and q is accessible from q′, then all states qi, 1 ≤ i ≤
n, are accessible from q′.

We denote by dom(M) (resp. dom(q)) the domain of an ltw M (resp. a
state q), i.e. all trees t ∈ TΣ such that �M�(t) is defined (resp. �M�q(t)). We
only consider ltws with non-empty domains and assume w.l.o.g. that no state
q in an ltw has an empty domain by eliminating transitions using states with
empty domain.

We denote by LM (resp. Lq) the range of �M� (resp. �M�q), i.e. the set of all
images �M�(t) (resp. �M�q(t)). The languages LM and Lq for each q ∈ Q are all
context-free languages. We call a state q (quasi-)periodic if Lq is (quasi-)periodic.

Note that a word u in a rule of an ltw can be represented by an SLP
without changing the semantics of the ltw. Therefore a set of SLPs is added
to the transducer and a word on the right-hand side of a rule is represented by
an SLPs. The decidability of equivalence of stws in polynomial time still holds
true with the use of SLPs.

The results of this paper require SLP compression to avoid exponential blow-
up. SLPs are used to prevent exponential blow-up in [11], where morphism equiv-
alence on context-free languages is decided in polynomial time.

The equivalence problem for sequential tree-to-word transducer can be
reduced to the morphism equivalence problem for context-free languages [13].
This reduction relies on the fact that STWs transform their subtrees in the
same order. As ltws do not necessarily transform their subtrees in the same
order the result cannot be applied on ltws in general. However, if two ltws
transform their subtrees in the same order, then the same reduction can be
applied. To formalize that two ltws transform their subtrees in the same order
we introduce the notion of state co-reachability. Two states q1 and q2 of ltws
M1, M2, respectively, are co-reachable if there is an input tree such that the two
states are assigned to the same node of the input tree in the translations of M1,
M2, respectively.

Two ltws are same-ordered if for each pair of co-reachable states q1, q2
and for each symbol f ∈ Σ, neither q1 nor q2 have a rule for f , or if q1, f →
u0q

′
1(xσ1(1)) . . . q′

n(xσ1(n))un and q2, f → v0q
′′
1 (xσ2(1)) . . . q′′

n(xσ2(n))vn are rules
of q1 and q2, then σ1 = σ2.

Deciding Equivalence of LTWs in Polynomial Time 359

If two ltws are same-ordered the input trees can be reordered according to
the order in the transformations. Therefore for each ltw a tree-to-tree transducer
is constructed that transforms the input tree according to the transformation in
the ltw. Then all permutations σ in the ltws are replaced by the identity. Thus
the ltws can be handled as stws and therefore the equivalence is decidable in
polynomial time [13].

Theorem 1. The equivalence of same-ordered ltws is decidable in polynomial
time.

3.1 Linear Earliest Normal Form

In this section we introduce the two key properties that are used to build a
normal form for linear tree-to-word transducers, namely the earliest and erase-
ordered properties. The earliest property means that the output is produced as
early as possible, i.e. the longest common prefix (resp. suffix) of Lq is produced
in the rule in which q occurs, and as left as possible. The erase-ordered property
means that all states that produce no output are ordered according to the input
tree and pushed to the right in the rules.

An ltw is in earliest form if

– each state q is earliest, i.e. lcp(Lq) = lcs(Lq) = ε,
– and for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, for each i, 1 ≤ i ≤ n,
lcp(Lqiui) = ε.

In [1, Lemma 9] it is shown that for each ltw M an equivalent earliest ltw
M ′ can be constructed in exponential time. Intuitively, if lcp(Lq) = v �= ε (resp.
lcs(Lq) = v �= ε) then q′ is constructed with Lq′ = v−1Lq (resp. Lq′ = Lqv

−1)
and q(x) is replaced by vq′(x) (resp. q′(x)v). If lcp(Lqu) = v �= ε and v is a prefix
of u = vv′ then we push v through Lq by constructing q′ with Lq′ = v−1Lqv and
replace q(x)u by vq′(x)v′.

Note that the construction to build the earliest form M ′ of an ltw M creates
a same-ordered M ′. Furthermore, if a state q of M and a state q′ of M ′ are co-
reachable, then q′ is an “earliest” version of q, where some word u was pushed
out of the production of q to make it earliest, and some word v was pushed
through the production of q to ensure that the rules have the right property:
there exists u, v ∈ Δ∗ such that for all t ∈ dom(q), �M ′�q′(t) = v−1u−1�M�q(t)v.

Theorem 2. For each ltw an equivalent same-ordered and earliest ltw can
be constructed in exponential time.

The exponential time complexity is caused by a potential exponential size
increase in the number of states as it is shown in [7, Example 5].

We call a state q that produces only the empty word, i.e. Lq = {ε}, an erasing
state. As erasing states do not change the transformation and can occur at any
position in a rule we need to fix their position for a normal form.

An ltw M is erase-ordered if for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

in M , if qi is erasing then for all j ≥ i, qj is erasing, σ(i) ≤ σ(j) and uj = ε.

360 A. Boiret and R. Palenta

We test whether Lq = {ε} in polynomial time and then reorder a rule accord-
ing to the erase-ordered property. If an ltw is earliest it is still earliest after the
reordering.

Lemma 3 (extended from [1, Lemma18]). For each (earliest) ltw an
equivalent (earliest) erase-ordered ltw can be constructed in polynomial time.

Example 4. Consider the rule q0, f → q1(x4)q2(x3)q1(x2)q4(x1) where q2 trans-
lates trees of the form fn(g), n ≥ 0 to (abc)n, q4 translates trees of the form
fn(g), n ≥ 0 to (abc)2n, q1 translates trees of the form fn(g), n ≥ 0 to ε. Thus
the rule is not erase-ordered. We reorder the rule to the equivalent and erase-
ordered rule q0, f → q2(x3)q4(x1)q1(x2)q1(x4).

If two equivalent ltws are earliest and erase-ordered, then they are not nec-
essarily same-ordered. For example, the rule q, f → q4(x1)q2(x3)q1(x2)q1(x4) is
equivalent to the rule in the above example but the two rules are not same-
ordered. However, in earliest and erase-ordered ltws, we can characterize the
differences in the orders of equivalent rules: Just as two words u, v satisfy the
equation uv = vu if and only if there is a word w such that u ∈ w∗ and v ∈ w∗,
the only way for equivalent earliest and erase-ordered ltws to not be same-
ordered is to switch periodic states.

Theorem 5 [1]. Let M and M ′ be two equivalent erase-ordered and earli-
est ltws and q, q′ be two co-reachable states in M , M ′, respectively. Let
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q′

n(xσ2(n))vn be
two rules for q, q′. Then

– for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l, are periodic of the same
period and all uj = ε, k ≤ j < l,

– for k, l such that σ1(k) = σ2(l), �M�qk = �M ′�q′
l
.

As the subtrees that are not same-ordered in two equivalent earliest and
erase-ordered states are periodic of the same period the order of these can be
changed without changing the semantics. Therefore the order of these subtrees
can be fixed such that equivalent earliest and erase-ordered ltws are same-
ordered. Then the equivalence is decidable in polynomial time, see Theorem 1.
However, building the earliest form of an ltw is in exponential time.

To circumvent this difficulty, we will show that the first part of Theorem5
still holds even on a partial normal form, where only quasi-periodic states are
earliest and the longest common prefix of parts of rules q(x)u with Lqu being
quasi-periodic is the empty word.

Theorem 6. Let M and M ′ be two equivalent erase-ordered ltws such that

– all quasi-periodic states q are earliest, i.e. lcp(q) = lcs(q) = ε
– for each part q(x)u of a rule where Lqu is quasi-periodic, lcp(Lqu) = ε

Let q, q′ be two co-reachable states in M , M ′, respectively and
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q′

n(xσ2(n))vn

be two rules for q, q′. Then for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l,
are periodic of the same period and all uj = ε, k ≤ j < l.

Deciding Equivalence of LTWs in Polynomial Time 361

4 Partial Normal Form

In this section we introduce a partial normal form for ltws that does not suffer
from the exponential blow-up of the earliest form. Inspired by Theorem6, we
wish to solve order differences by switching adjacent periodic states of the same
period. Remember that the earliest form of a state q is constructed by removing
the longest common prefix (suffix) of Lq to produce this prefix (suffix) earlier.
It follows that all non-earliest states from which q can be constructed following
the earliest form are quasi-periodic.

We show that building the earliest form of a quasi-periodic state or a part
of a rule q(x)u with Lqu being quasi-periodic is in polynomial time. Therefore
building the following partial normal form is in polynomial time.

Definition 7. A linear tree-to-word transducer is in partial normal form if

1. all quasi-periodic states are earliest,
2. it is erase-ordered and
3. for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un if LqiuiLqi+1 is quasi-periodic

then qi(xσ(i))uiqi+1(xσ(i+1)) is earliest and σ(i) < σ(i + 1).

4.1 Eliminating Non-Earliest Quasi-Periodic States

In this part, we show a polynomial time algorithm to build an earliest form
of a quasi-periodic state. From which an equivalent ltw can be constructed in
polynomial time such that any quasi-periodic state is earliest, i.e. lcp(Lq) =
lcs(Lq) = ε. Additionally, we show that the presented algorithm can be adjusted
to test if a state is quasi-periodic in polynomial time.

As quasi-periodicity on the left and on the right are symmetric properties we
only consider quasi-periodic states of the form uw∗ (quasi-periodic on the left).
The proofs in the case w∗u are symmetric and therefore omitted here. In the end
of this section we shortly discuss the introduced algorithms for the symmetric
case w∗u.

To build the earliest form of a quasi-periodic state we use the property that
each state accessible from a quasi-periodic state is as well quasi-periodic. How-
ever, the periods can be shifted as the following example shows.

Example 8. Consider states q, q1 and q2 with rules q, f → aq1(x1)c, q1, f →
aaq2(x1)ab, q2, f → q2(x1)abc, q2, g → abc. State q accepts trees of the form
fn(g), n ≥ 2, and produces the language aaa(abc)n, i.e. q is quasi-periodic of
period abc. State q1 accepts trees of the form fn(g), n ≥ 1, and produces the
language aa(abc)nab, i.e. q1 is quasi-periodic of period cab. State q2 accepts
trees of the form fn(g), n ≥ 0 and produces the language (abc)n+1, i.e. q2 is
(quasi-)periodic of period abc.

We introduce two definitions to measure the shift of periods. We denote by
ρn [u] the from right-to-left shifted word of u of shift n, n ≤ |u|, i.e. ρn [u] =

362 A. Boiret and R. Palenta

u′−1uu′ where u′ is the prefix of u of size n. If n ≥ |u| then ρn[u] = ρm[u] with
m = n mod |u|.

For two quasi-periodic states q1, q2 of period u = u1u2 and u′ = u2u1,
respectively, we denote the shift in their period by s(q1, q2) = |u1|.

The size of the periods of a quasi-periodic state and the states accessible from
this state can be computed from the size of the shortest words of the languages
produced by these states.

Lemma 9. If q is quasi-periodic on the left with period w, and q′ accessible
from q, then q′ is quasi-periodic with period ε or a shift of w. Moreover we can
calculate the shift s(q, q′) in polynomial time.

We now use these shifts to build, for a state q in M that is quasi-periodic on
the left, a transducer Mq equivalent to M where each occurrence of q is replaced
by its equivalent earliest form, i.e. a periodic state and the corresponding prefix.

Algorithm 1. Let q be a state in M that is quasi-periodic on the left. Mq starts
with the same states, axiom, and rules as M .

– For each state p accessible from q, we add a copy pe to Mq.
– For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible

from q, we add a rule pe, f → upq
e
1(xσ(1))qe

2(xσ(2)) . . . qe
n(xσ(n)) with up =

ρs(q,p)

[

lcp(p)−1u0lcp(q1) . . . lcp(qn)un

]

in Mq.
– We delete state q in Mq and replace any occurrence of q(x) in a rule or the

axiom of Mq by lcp(q)qe(x).

Note that lcp(p)−1u0lcp(q1) . . . lcp(qn)un is equivalent to deleting the prefix of
size |lcp(p)| from the word u0lcp(q1) . . . lcp(qn)un.

Intuitively, to build the earliest form of a state q that is quasi-periodic on
the left we need to push all words and all longest common prefixes of states
on the right-hand side of a rule of q to the left. Pushing a word to the left
through a state needs to shift the language produced by this state. We explain
the algorithm in detail on state q from Example 8.

Example 10. Remember that q produces the language aaa(abc)n, n ≥ 2 and q1,
q2 accessible from q produce languages aa(abc)nab, n ≥ 1 and (abc)n+1, n ≥ 0,
respectively. Therefore lcp(q) = aaaabcabc, lcp(q1) = aaabcab and lcp(q2) = abc.
We start with state q. As there is only one rule for q the longest common prefix
of q and the longest common prefix of this rule are the same and therefore
eliminated.

qe, f → ρs(q,q)[lcp(q)−1alcp(q1)c]qe
1(x1)

→ ρs(q,q)[(aaaabcabc)−1aaaabcabc]qe
1(x1)

→ qe
1(x1)

As there is only one rule for q1 the argumentation is the same and we get
qe
1, f → qe

2. For the rule q2, f we calculate the longest common prefix of the
right-hand side lcp(q2)abc = abcabc that is larger than the longest common prefix

Deciding Equivalence of LTWs in Polynomial Time 363

of q2. Therefore we need to calculate the shift s(q, q2) = s(q, q1) + s(q1, q2) =
|c| + |ab| = 3 as q1 is accessible from q in rule q, f and q2 is accessible from q1 in
rule q1, f . This leads to the following rule.

qe
2, f → ρs(q,q2)[lcp(q2)

−1lcp(q2)abc]qe
2(x1)

→ ρ3[(abc)−1abcabc]qe
2(x1)

→ abcqe
2(x1)

As the longest common prefix of q2 is the same as the longest common pre-
fix of the right-hand side of rule q2, g we get qe

2, g → ε. The axiom of Mq is
lcp(q)qe(x1) = aaaabcabcqe(x1).

Lemma 11. Let M be an ltw and q be a state in M that is quasi-periodic on
the left. Let Mq be constructed by Algorithm1 and pe be a state in Mq accessible
from qe. Then M and Mq are equivalent and pe is earliest.

To replace all quasi-periodic states by their equivalent earliest form we need
to know which states are quasi-periodic. Algorithm 1 can be modified to test
an arbitrary state for quasi-periodicity on the left in polynomial time. The only
difference to Algorithm 1 is that we do not know how to compute lcp(p) in
polynomial time and s(q, p) does not exist. We therefore substitute lcp(p) by
some smallest word of Lp and we define a mock-shift s′(q, p) as follows

– s′(q, q) = 0 for all q,
– if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, we say s′(q, qi) = |uiwqi+1 . . . wqnun|,

where wq is a shortest word of Lq,
– if s′(q1, q2) = n and s′(q2, q3) = m then s′(q1, q3) = n + m.

If several definitions of s′(q, p) exist, we use the smallest. If p is accessible from
a quasi-periodic q, then s′(q, p) = s(q, p).

Algorithm 2. Let M = (Σ,Δ,Q, ax, δ) be an ltw and q be a state in M . We
build an ltw T q as follows.

– For each state p accessible from q, we add a copy pe to T q.
– The axiom is wqq

e(x) where wq is a shortest word of Lq.
– For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible from

q, we add a rule

pe, f → upq
e
1(xσ(1))qe

2(xσ(2)) . . . qe
n(xσ(n))

in T q, where up is constructed as follows.
• We define u = u0w1 . . . wnun, where wi is a shortest word of Lqi .
• Then we remove from u its prefix of size |w′|, where w′ is a shortest word

of Lp. We obtain a word u′.
• Finally, we set up = ρs′(q,p)[u′].

As the construction of Algorithms 1 and 2 are the same if the state q is quasi-
periodic, �M�q and �T q� are equivalent if q is quasi-periodic. Moreover, q is
quasi-periodic if �M�q and �T q� are equivalent.

364 A. Boiret and R. Palenta

Lemma 12. Let q be a state of an ltw M and T q be constructed by Algorithm2.
Then M and T q are same-ordered and q is quasi-periodic on the left if and only
if �M�q = �T q� and qe is periodic.

As M and T q are same-ordered we can test the equivalence in polynomial
time, cf. Theorem 1. Moreover testing a CFG for periodicity is in polynomial
time and therefore testing a state for quasi-periodicity is in polynomial time.

Algorithm 2 can be applied to a part q(x)u of a rule to test Lqu for quasi-
periodicity on the left. In this case for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added to M and each occurrence
of the part q(x)u in a rule of M is replaced by q̂(x). We then apply the above
algorithm to q̂ and test �M�q̂ and �T q̂� for equivalence and q̂e for periodicity.

We introduced algorithms to test states for quasi-periodicity on the left and
to build the earliest form for such states. These two algorithms can be adapted
for states that are quasi-periodic on the right. There are two main differences.
First, as the handle is on the right the shortest word of a language L that is
quasi-periodic on the right is lcs(L). Second, instead of pushing words through a
periodic language to the left we need to push words through a periodic language
to the right.

Hence, we can test each state q of an ltw M for quasi-periodicity on the
left and right. If the state is quasi-periodic we replace q by its earliest form.
Algorithms 1 and 2 run in polynomial time if SLPs are used. This is crucial as
the shortest word of a CFG can be of exponential size. However, the operations
that are needed in the algorithms, namely constructing the shortest word of a
CFG and removing the prefix or suffix of a word, are in polynomial time using
SLPs, cf. [9].

Theorem 13. Let M be an ltw. Then an equivalent ltw M ′ where all quasi-
periodic states are earliest can be constructed in polynomial time.

4.2 Switching Periodic States

In this part we obtain the partial normal form by ordering periodic states of an
erase-ordered transducer where all quasi-periodic states are earliest. Ordering
means that if the order of the subtrees in the translation can differ, we choose
the one similar to the input, i.e. if q(x3)q′(x1) and q′(x1)q(x3) are equivalent,
we choose the second order. We already showed how we can build a transducer
where each quasi-periodic state is earliest and therefore periodic. However, we
need to make parts of rules earliest such that periodic states can be switched as
the following example shows.

Example 14. Consider the rule q, h → q1(x2)bq2(x1) where q1, q2 have the rules
q1, f → bcabcaq1(x), q1, g → ε, q2, f → cabq2(x), q2, g → ε. States q1 and q2
are earliest and periodic but not of the same period as a subword is produced
in between. We replace the non-earliest and quasi-periodic part q1(x2)b by their
earliest form. This leads to q, h → bqe

1(x2)q2(x1) with qe
1, f → cabcabqe

1(x),
qe
1, g → ε. Hence, qe

1 and q2 are earliest and periodic of the same period and can
be switched in the rule.

Deciding Equivalence of LTWs in Polynomial Time 365

To build the earliest form of a quasi-periodic part of a rule q(x)u each
occurrence of this part is replaced by a state q̂(x) and for each rule q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added.
Then we apply Algorithm 1 on q̂ to replace q̂ and therefore q(x)u by their earli-
est form. Iteratively this leads to the following theorem.

Theorem 15. For each ltw M where all quasi-periodic states are earliest we
can build in polynomial time an equivalent ltw M ′ such that each part q(x)u of
a rule in M where Lqu is quasi-periodic is earliest.

In Theorem 6 we showed that order differences in equivalent erase-ordered
ltws where all quasi-periodic states are earliest and all parts of rules q(x)u are
earliest are caused by adjacent periodic states. As these states are periodic of the
same period and no words are produced in between these states can be reordered
without changing the semantics of the ltws.

Lemma 16. Let M be an ltw such that

– M is erase-ordered,
– all quasi-periodic states in M are earliest and
– each qi(xσ(i))ui in a rule of M that is quasi-periodic is earliest.

Then we can reorder adjacent periodic states qi(xσ(i))qi+1(xσ(i+1)) of the same
period in the rules of M such that σ(i) < σ(j) in polynomial time. The reordering
does not change the transformation of M .

We showed before how to construct a transducer with the preconditions
needed in Lemma 16 in polynomial time. Note that replacing a quasi-periodic
state by its earliest form can break the erase-ordered property. Thus we need
to replace all quasi-periodic states by its earliest form before building the erase-
ordered form of a transducer. Then Lemma16 is the last step to obtain the
partial normal form for an ltw.

Theorem 17. For each ltw we can construct an equivalent ltw that is in
partial normal form in polynomial time.

4.3 Testing Equivalence in Polynomial Time

It remains to show that the equivalence problem of ltws in partial normal form
is decidable in polynomial time. The key idea is that two equivalent ltws in
partial normal form are same-ordered.

Consider two equivalent ltws M1, M2 where all quasi-periodic states and
all parts of rules q(x)u with Lqu is quasi-periodic are earliest. In Theorem 6 we
showed if the orders σ1, σ2 of two co-reachable states q1, q2 of M1, M2, respec-
tively, for the same input differ then the states causing this order differences
are periodic with the same period. The partial normal form solves this order
differences such that the transducers are same-ordered.

366 A. Boiret and R. Palenta

Lemma 18. If M and M ′ are equivalent and in partial normal form then they
are same-ordered.

As the equivalence of same-ordered ltws is decidable in polynomial time (cf.
Theorem 1) we conclude the following.

Corollary 19. The equivalence problem for ltws in partial normal form is
decidable in polynomial time.

To summarize, the following steps run in polynomial time and transform a
ltw M into its partial normal form.

1. Test each state for quasi-periodicity. If it is quasi-periodic replace the state
by its earliest form.

2. Build the equivalent erase-ordered transducer.
3. Test each part q(x)u in each rule from right to left for quasi-periodicity on

the left. If it is quasi-periodic replace the part by its earliest form.
4. Order adjacent periodic states of the same period according to the input

order.

This leads to our main theorem.

Theorem 20. The equivalence of ltws is decidable in polynomial time.

Acknowledgement. We would like to thank the reviewers for their very helpful
comments.

References

1. Boiret, A.: Normal form on linear tree-to-word transducers. In: Dediu, A.-H., et al.
(eds.) Language and Automata Theory and Applications. LNCS, vol. 9618, pp.
439–451. Springer, Heidelberg (2016)

2. Engelfriet, J.: Some open question and recent results on tree transducers and tree
languages. In: Book, R.V. (ed.) Formal Language Theory, Perspectives and Open
Problems, pp. 241–286. Academic Press, New York (1980)

3. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput. 32(4), 950–1006 (2003)

4. Engelfriet, J., Maneth, S.: The equivalence problem for deterministic MSO tree
transducers is decidable. Inf. Process. Lett. 100(5), 206–212 (2006)

5. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems and two-
way machines. In: Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing, pp. 66–74. ACM (1978)

6. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31(1),
71–146 (1985)

7. Laurence, G., Lemay, A., Niehren, J., Staworko, S., Tommasi, M.: Normaliza-
tion of sequential top-down tree-to-word transducers. In: Dediu, A.-H., Inenaga,
S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 354–365. Springer,
Heidelberg (2011)

Deciding Equivalence of LTWs in Polynomial Time 367

8. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down XML
transformations. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 285–296 (2010)

9. Lohrey, M.: The Compressed Word Problem for Groups. Springer, New York (2014)
10. Maneth, S., Seidl, H.: Deciding equivalence of top-down XML transformations in

polynomial time. In: Programming Language Technologies for XML, pp. 73–79
(2007)

11. Plandowski, W.: The complexity of the morphism equivalence problem for context-
free languages. Ph.D. thesis, Warsaw University (1995)

12. Seidl, H., Maneth, S., Kemper, G.: Equivalence of deterministic top-down tree-to-
string transducers is decidable. In: IEEE 56th Annual Symposium on Foundations
of Computer Science, pp. 943–962 (2015)

13. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of deterministic
nested word to word transducers. In: Charatonik, W., G ↪ebala, M., Kuty�lowski, M.
(eds.) FCT 2009. LNCS, vol. 5699, pp. 310–322. Springer, Heidelberg (2009)

On Finite and Polynomial Ambiguity
of Weighted Tree Automata

Erik Paul(B)

Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
epaul@informatik.uni-leipzig.de

Abstract. We consider finite and polynomial ambiguity of weighted tree
automata. Concerning finite ambiguity, we show that a finitely ambigu-
ous weighted tree automaton can be decomposed into a sum of unam-
biguous automata. For polynomial ambiguity, we show how to decompose
a polynomially ambiguous weighted tree automaton into simpler poly-
nomially ambiguous automata and then analyze the structure of these
simpler automata. We also outline how these results can be used to cap-
ture the ambiguity of weighted tree automata with weighted logics.

Keywords: Weighted tree automata · Quantitative tree automata ·
Finite ambiguity · Polynomial ambiguity · Weighted logics

1 Introduction

Weighted automata, a generalization of non-deterministic finite automata
(NFA), have first been investigated by Schützenberger [22]. Since then, a large
amount of further research has been conducted on them, cf. [3,9,18,21]. When
considering complexity and decidability problems for these automata, the con-
cept of ambiguity plays a large role. For instance, in [13] the equivalence problem
for finitely ambiguous automata over the max-plus semiring is shown to be decid-
able, whereas for general non-deterministic automata over the max-plus semiring
this problem is undecidable [17]. The ambiguity of an automaton is a measure
for the maximum number of accepting runs on a given input. For example, if
the number of accepting paths is bounded by a global constant for every word,
we say that the automaton is finitely ambiguous. In the case that the number
of accepting paths is bounded polynomially in the word length, we speak of
polynomial ambiguity.

In this paper, we investigate these two types of ambiguity for weighted tree
automata (WTA), a weighted automata model with trees as input. Our main
results are the following:

• A finitely ambiguous WTA can be decomposed into a sum of several unam-
biguous WTA.

E. Paul—Supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg
1763 (QuantLA).

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 368–379, 2016.
DOI: 10.1007/978-3-662-53132-7 30

On Finite and Polynomial Ambiguity of Weighted Tree Automata 369

• A polynomially ambiguous WTA can be decomposed into a sum of “simpler”
polynomially ambiguous WTA. Here, for each of these simpler automata we
can identify a set of transitions such that, intuitively speaking, in every run
on any tree each of these transitions occurs at exactly one position of the tree.
Furthermore, the possible number of runs on any tree is bounded if we specify
the position of each of these transitions. The bound does not depend on the
given tree.

• To each of the classes of unambiguous, finitely ambiguous and polynomially
ambiguous WTA, we relate a class of sentences from a weighted MSO logic
expressively equivalent to it.

Weighted tree automata have been considered by a number of researchers
[2,4,19], see [12] for a survey. Likewise, the ambiguity of finite automata has been
studied numerous times. For example, [1,23,24] present criteria for ambiguity
and algorithms to determine the ambiguity of automata. For weighted automata
on words (WA), it has also been shown that expressive power increases with
growing degree of ambiguity. It is shown in [15] that the inclusions deterministic
WA � unambiguous WA � finitely ambiguous WA are strict and in [14] it is
shown that the inclusion finitely ambiguous WA � polynomially ambiguous WA
is strict.

Our first two results give a deeper insight into the structure of WTA and
generalize results by Seidl and Weber [24] and Klimann et al. [15] from words
to trees. As trees do not have the linear structure of words, however, the cor-
responding proofs from the word case can not be adapted to the tree case in a
trivial way. Both results are new even for WTA over the boolean semiring, i.e.
for tree automata without weights.

The initial motivation for our investigations lies with logics and the third
result. Weighted logics can be used to describe weighted automata over words
and trees, as was shown by Droste, Gastin and Vogler [8,10]. Kreutzer and
Riveros [16] later showed that weighted logics can even be used to characterize
different degrees of ambiguity of weighted automata over words. With the help of
the first two results, we can generalize Kreutzer’s and Riveros’s result to WTA.
For polynomial ambiguity, we even obtain a stronger result, as we are able to
capture the polynomial degree of a WTA not only in the boolean semiring, but
in any commutative semiring.

2 Weighted Tree Automata

Let N = {0, 1, 2, . . .}. A ranked alphabet is a pair (Γ, rkΓ), often abbreviated
by Γ , where Γ is a finite set and rkΓ : Γ → N. For every m ≥ 0 we define
Γ (m) = rk−1

Γ (m) as the set of all symbols of rank m. The rank rk(Γ) of Γ
is defined as max{rkΓ (a) | a ∈ Γ}. The set of (finite, labeled and ordered) Γ -
trees, denoted by TΓ , is the smallest subset T of (Γ ∪ {(,)} ∪ {, })∗ such that
if a ∈ Γ (m) with m ≥ 0 and s1, . . . , sm ∈ T , then a(s1, . . . , sm) ∈ T . In case
m = 0, we identify a() with a.

370 E. Paul

We define the set of positions in a tree by means of the mapping pos : TΓ →
P(N∗) inductively as follows: (i) if t ∈ Γ (0), then pos(t) = {ε}, and (ii) if
t = a(s1, . . . , sm) where a ∈ Γ (m), m ≥ 1 and s1, . . . , sm ∈ TΓ , then pos(t) =
{ε} ∪ {iv | 1 ≤ i ≤ m, v ∈ pos(si)}. Note that pos(t) is partially ordered by the
prefix relation ≤p and totally ordered with respect to the lexicographic ordering
≤l. We also refer to the elements of pos(t) as nodes, to ε as the root of t and to
prefix-maximal nodes as leaves.

Now let t, s ∈ TΓ , w ∈ pos(t) and t = a(s1, . . . , sm) for some a ∈ Γ (m) with
m ≥ 0 and s1, . . . , sm ∈ TΓ . The label of t at w and the subtree of t at w, denoted
by t(w) and t|w, respectively, are defined inductively as follows: t(ε) = a and
t|ε = t, and if w = iv and 1 ≤ i ≤ m, then t(w) = si(v) and t|w = si|v.

A commutative semiring is a tuple (K,⊕,�,0,1), abbreviated by K, with
operations sum ⊕ and product � and constants 0 and 1 such that (K,⊕,0) and
(K,�,1) are commutative monoids, multiplication distributes over addition, and
k � 0 = 0� k = 0 for every k ∈ K. In this paper, we only consider commutative
semirings. Important examples of semirings are

– the boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and
conjunction ∧

– the semiring of natural numbers (N,+, ·, 0, 1), abbreviated by N, with the
usual addition and multiplication

– the tropical semiring Trop = (N ∪ {∞},min,+,∞, 0) where the sum and the
product operations are min and +, respectively, extended to N ∪ {∞} in the
usual way.

A (formal) tree series is a mapping S : TΓ → K. The set of all tree series
(over Γ and K) is denoted by K〈〈TΓ 〉〉. For two tree series S, T ∈ K〈〈TΓ 〉〉 and
k ∈ K, the sum S ⊕ T , the Hadamard product S � T , and the product k � S are
each defined pointwise.

Let (K,⊕,�,0,1) be a commutative semiring. A weighted bottom-up finite
state tree automaton (short: WTA) over K and Γ is a tuple A = (Q,Γ, μ, γ)
where Q is a finite set (of states), Γ is a ranked alphabet (of input symbols),
μ :

⋃rk(Γ)
m=0 Qm × Γ (m) × Q → K (the weight function) and γ : Q → K (the

function of final weights). We set ΔA =
⋃rk(Γ)

m=0 Qm×Γ (m)×Q. A tuple (�p, a, q) ∈
ΔA is called a transition and (�p, a, q) is called valid if μ(�p, a, q) �= 0. The state
q is referred to as the parent state of the transition and the states from �p are
referred to as the child states of the transition. A state q ∈ Q is called final if
γ(q) �= 0.

A mapping r : pos(t) → Q is called a quasi-run of A on t. For t ∈ TΓ , a
quasi-run r and w ∈ pos(t) with t(w) = a ∈ Γ (m), the tuple

t(r, w) = (r(w1), . . . , r(wm), a, r(w))

is called the transition with base point w or transition at w. The quasi-run r is
called a (valid) run if for every w ∈ pos(t) the transition t(r, w) is valid with

On Finite and Polynomial Ambiguity of Weighted Tree Automata 371

respect to A. We call a run r accepting if r(ε) is final. If r(ε) = q then a run r
is also called a q-run. By RunA(t), RunA,q(t), RunA,F(t) we denote the sets of
all runs, all q-runs and all accepting runs of A on t, respectively.

For r ∈ RunA(t) the weight of r is defined by

wtA(t, r) =
⊙

w∈pos(t)

μ(t(r, w)).

The tree series accepted by A, denoted by �A� ∈ K〈〈TΓ 〉〉, is the tree series
defined for every t ∈ TΓ by �A�(t) =

⊕

r∈RunA,F(t)
wtA(t, r) � γ(r(ε)) where the

sum over the empty set is 0 by convention.

An automaton A is called trim if (i) for every q ∈ Q there exist t ∈ TΓ ,
r ∈ RunA,F(t) and w ∈ pos(t) such that q = r(w) and (ii) for every valid d ∈ ΔA
there exist t ∈ TΓ , r ∈ RunA,F(t) and w ∈ pos(t) such that d = t(r, w). The
trim part of A is the automaton obtained by removing all states q ∈ Q which
do not satisfy (i) and setting μ(d) = 0 for all valid d ∈ ΔA which do not satisfy
(ii). This process obviously has no influence on �A�.

An automaton A is called deterministic if for every m ≥ 0, a ∈ Γ (m) and �p ∈
Qm there exists at most one q ∈ Q with μ(�p, a, q) �= 0. We call A (k-)polynomially
ambiguous if |RunA,F(t)| ≤ P (|pos(t)|) for some polynomial P (of degree k) and
every t ∈ TΓ . If P can be chosen constant, i.e. P ≡ m, we call A finitely
ambiguous or m-ambiguous. If we can put P ≡ 1, we call A unambiguous.

Example 1. We consider the alphabet Γ = {a, b} where rkΓ (a) = 2 and rkΓ (b) =
0. Over the tropical semiring (N ∪ {∞},min,+,∞, 0) we construct a WTA A =
(Q,Γ, μ, γ) with the following idea in mind. Given a tree t ∈ TΓ , there should
be exactly one run of A on t for every leaf b in t, given by mapping all nodes
between this leaf and the root to a state q and all other nodes to a filler state p.

We let Q = {p, q} and set γ(q) = 0, γ(p) = ∞,

1 = μ(p, q, a, q) = μ(q, p, a, q)
0 = μ(p, p, a, p) = μ(b, p) = μ(b, q)

and all other weights to ∞. It is easy to see that this automaton assigns to every
tree the minimum amount of a’s we have to visit to reach any leaf b starting
from the root. As there is a bijection between the runs of A on a tree t and the
leaves of t, A is polynomially ambiguous, but not finitely ambiguous.

3 Finite Ambiguity

We come to our first main result, namely that a finitely ambiguous WTA can
be written as a sum of unambiguous WTA.

Theorem 2. Let A = (Q,Γ, μ, γ) be a finitely ambiguous weighted bottom-up
finite state tree automaton. Then there exist finitely many unambiguous weighted
bottom-up finite state tree automata A1, . . . ,An satisfying

�A� = �A1� ⊕ . . . ⊕ �An�.

372 E. Paul

While the basic idea for the proof is taken from [15, Sect. 4], we have to
follow a different line of argumentation due to the non-linear structure of trees.
In the first step, we add a deterministic coordinate to our automaton. On the
transitions of this new automaton we then define an equivalence relation. Here,
two transitions will be equivalent in the following sense. If a run r on a tree t
has transition d at some position w, then for every transition d′ equivalent to
d we can modify r on the subtree at w such that we obtain a new run with
transition d′ at w. It follows from this that every transition whose equivalence
class contains at least two transitions can not occur more than m times in any
single run, if A is m-ambiguous. This contrasts to the word case, where such
transitions could occur at most once per run instead of at most m times. For
two different runs on the same tree, sorting all transitions occurring in each run
first by equivalence class and then lexicographically, shows a difference for at
least one equivalence class. This property is the key to the decomposition.

For Γ and m fixed, the number n is exponential in the number of states.

4 Polynomial Ambiguity

We now come to the tree series definable by polynomially ambiguous WTA.
Given a polynomially ambiguous WTA A we define the function rA : N → N

that counts the maximum number of possible runs for all trees with a limited
number of nodes, i.e. rA(n) = max{|RunA,F(t)| | t ∈ TΓ , |pos(t)| ≤ n}. We then
define the degree of polynomial ambiguity of A by

degree(A) = min{k ∈ N | A is k-polynomially ambiguous}
= min{k ∈ N | rA ∈ O(nk)}.

This is well defined if A is polynomially ambiguous.
We will show that the runs of a polynomially ambiguous WTA have a very

characteristic structure. Consequently, this structure naturally induces a sort of
standard form for polynomially ambiguous WTA. For automata in this standard
form it is then much easier to grasp the fundamental principle of polynomial
ambiguity for tree automata. A first basic tool we will need for all of this is
a form of reachability between states. The second is the degree of a state. For
notational purposes we also need a more elaborate concept for runs.

4.1 General Definitions and Observations

For now let A = (Q,Γ, μ, γ) be a polynomially ambiguous WTA. The sets
RunA(t; �w, �q) and RunA(t; �w, �d) shall denote the sets of all runs of A on a tree t
such that at the positions w1, . . . , wn we have the states q1, . . . , qn or transitions
d1, . . . , dn, respectively.

Definition 3. Let t ∈ TΓ , �w = (w1, . . . , wn) ∈ pos(t)n, �q = (q1, . . . , qn) ∈ Qn

and �d = (d1, . . . , dn) ∈ Δn
A. Then we let

RunA(t; �w, �q) = {r ∈ RunA(t) | r(wi) = qi for all i = 1, . . . , n}

On Finite and Polynomial Ambiguity of Weighted Tree Automata 373

RunA(t; �w, �d) = {r ∈ RunA(t) | t(r, wi) = di for all i = 1, . . . , n}.

The sets RunA,F(t; �w, �q), RunA,q(t; �w, �q), RunA,F(t; �w, �d) and RunA,q(t; �w, �d) for
q ∈ Q are defined in a similar manner to these and RunA,F(t) and RunA,q(t).

We define the concept of reachability through a relation �. Intuitively, q1 � q2
means that there is a “path” from q1 down to q2.

Definition 4. We define two relations � and ≈ on Q by letting

q1 � q2 ⇔ ∃t ∈ TΓ ∃w ∈ pos(t) : RunA,q1(t;w, q2) �= ∅
q1 ≈ q2 ⇔ q1 � q2 ∧ q2 � q1.

The relation � is reflexive and transitive. Hence, the relation ≈ is an equivalence
relation inducing equivalence classes [q]≈ ∈ Q/≈. One may think of the classes
as strongly connected components of states. We set C(q) = [q]≈ and Q = Q/≈
and refer to C(q) as the component of q and to Q as the components of Q. Then
again, � induces a partial order � on Q, defined by C(q1) � C(q2) ⇔ q1 � q2.

We also need the notion of a bridge, similar to the one used in [24]. A bridge
is basically a transition which, from a top-down perspective, leaves a component
of Q.

Definition 5. A valid transition b = (p1, . . . , pm, a, q) ∈ ΔA is called a bridge
out of C(q) if C(pi) �= C(q) for all i ∈ {1, . . . , m}. Notice that all valid transitions
of the form (a, q) with a ∈ Γ (0) and q ∈ Q are bridges.

We now define the degree of a state as the degree of the automaton resulting,
intuitively, from making this state the only new final state of A = (Q,Γ, μ, γ).

Definition 6. For every p ∈ Q we define the WTA Fp = (Q,Γ, μ, γp) with
γp(p) = 1 and γp(q) = 0 for q ∈ Q, q �= p.

The intuition is that for t ∈ TΓ the accepting runs of the automaton Fp on t are
exactly the p-runs of A on t, i.e. the ones that “begin” with p at the root.

Definition 7. For a state p ∈ Q we define degreeA(p) = degree(Fp) and
we define degreeA(C(p)) = degreeA(p). We will simply write degree(p) and
degree(C(p)) if the automaton A considered is clear from the context.

This is well defined, as for p ≈ q one can show that degreeA(p) = degreeA(q).

It is now easy to show that every valid transition with a parent state q of
degree greater than 0 is either (i) a bridge or (ii) exactly one child state belongs
to the component of q and all other child states have degree 0. Applying this to
a given run r on a tree t ∈ TΓ , we see that states of degree greater than 0 follow
branches in the tree. More formally, for w ∈ pos(t) with degree(t(w)) > 0 we
have {v ∈ pos(t) |w ≤p v ∧ r(v) ≈ r(w)} = {v ∈ pos(t) |w ≤p v ≤p w′} for some
w′ ∈ pos(t).

374 E. Paul

However, for a given component c ∈ Q it may still be possible to find a tree
t and a run r on t where for two prefix independent positions w and w′ we have
r(w) ∈ c and r(w′) ∈ c, or where r(w) ∈ c holds for no position w. For a WTA in
polynomial standard form, both of these possibilities will be ruled out: for every
component c it holds that {v ∈ pos(t) | r(v) ∈ c} = {v ∈ pos(t) |w1 ≤p v ≤p w2}
for some w1, w2 ∈ pos(t), and this set is non-empty.

4.2 Decomposition into a Sum of Standardized Automata

Definition 8. We call a (polynomially ambiguous) WTA A = (Q,Γ, μ, γ) stan-
dardized or say it is in polynomial standard form if

(i) A is polynomially ambiguous, trim and possesses only one final state qf ∈ Q
and

(ii) for every p ∈ Q with degreeA(p) > 0 there is exactly one bridge out of C(p)
and this bridge occurs exactly once in every accepting run r. Formally

{d ∈ ΔA | d is a bridge out of C(p)} = {b(p)}
for some b(p) ∈ ΔA and

∀t ∈ TΓ ∀r ∈ RunA,F(t) : |{w ∈ pos(t) | t(r, w) = b(p)}| = 1.

The fundamental concept of standardized WTA is close to the notion of chain
NFAs as introduced in [24].

Theorem 9. Let A = (Q,Γ, μ, γ) be a polynomially ambiguous WTA. Then
there exist n ∈ N and WTA A1, . . . ,An in polynomial standard form such that
degree(Ai) ≤ degree(A) for all i ∈ {1, . . . , n} and

�A� =
n

⊕

i=1

�Ai�.

For a fixed alphabet the number n of automata needed for this is double expo-
nential in the number of states.

Example 10. The WTA from Example 1 is in polynomial standard form. There
are two components, {p} and {q}, and the transitions (b, p) and (b, q) are the
only bridges. We have degree(p) = 0 and degree(q) = 1.

Proof. (sketch) The theorem is proved in two steps. In the first, we add an
entry containing words of bounded length over {1, . . . , rk(Γ)} to the states of
A. For any such word u and any bridge (p1, . . . , pm, a, p) in A, we will then have
a transition ((p1, u1), . . . , (pm, um), a, (p, u)) in the new automaton A′. For the
other transitions, we do the same with the difference that the child states will
contain the same word as the parent state.

In the second step, we make copies of A′ and “remove” bridges in the copies
appropriately, i.e. we leave at most one bridge out of each component and then
trim the automata. The modified copies then fulfill Theorem 9.

On Finite and Polynomial Ambiguity of Weighted Tree Automata 375

4.3 Analysis of the Polynomial Standard Form

Now assume a WTA A = (Q,Γ, μ, γ) in polynomial standard form. We can
show that there exist degree(A) many bridges in A such that, given any tree,
the number of runs on that tree is bounded by a constant if we fix the position
of these bridges. The constant does not depend on the given tree. This property
gives a rather intuitive understanding of what polynomial ambiguity means: if
our automaton has degree n, then fixing the positions of n predetermined tran-
sitions will determine every run up to a bounded number of possibilities.

We consider the set Λ of all bridges that leave components of non-trivial
degree, defined as follows.

Definition 11. Fix p ∈ Q with degreeA(p) > 0. As there is exactly one bridge
b ∈ ΔA out of C(p) we define b(C(p)) = b and b(p) = b as this bridge. We set
Λ = {b(q) | q ∈ Q, degreeA(q) > 0}.

The degree inherent to an automaton in standard form can now be captured
in the following way.

Theorem 12. Let p ∈ Q with l = degreeA(p) ≥ 0.

(I) There exists a set N(p) = {b1, . . . , bl} ⊆ Λ and a constant C > 0 such that
for all t ∈ TΓ and w1, . . . , wl ∈ pos(t) we have

|RunA,p(t;w1, . . . , wl, b1, . . . , bl)| ≤ C.

(II) Furthermore there exists a sequence of trees (tn)n∈N in TΓ and a constant
C ′ > 0 such that for all n ∈ N:
– |pos(tn)| ≤ C ′ · n and
– |RunA,p(tn)| ≥ nl.

That is, we can show that if the WTA Fp (cf. Definition 6) is of degree l,
then for all trees the runs of Fp on those trees are determined up to a constant
C by fixing the location of l bridges. Furthermore, the degree of Fp is not only
an upper bound on the amount of runs for a given tree, but also a lower bound.
By considering this theorem for the only final state of A, we easily see that it is
true for the whole automaton A as well.

Example 13. In the WTA from Example 1 we have N(p) = ∅ and N(q) = {(b, q)}.
By choosing which leaf to “mark” with q, we uniquely determine a run. Therefore,
(I) clearly holds for both p and q in this automaton.

For (II) in the case of q we consider the trees t0 = b() and tn+1 = a(tn, b)
for n ≥ 0. We have |pos(tn)| = 2n + 1 and one run for every leaf in a tree, i.e.
|RunA,q(tn)| = n + 1.

As a corollary of Theorem 12 we also get that the ambiguity of a WTA A is
either bounded below and above by a fixed polynomial or has a lower exponential
bound. While this is a well known result for word automata [24], we could not
find a similar result for tree automata in the literature.

376 E. Paul

Corollary 14. Let A = (Q,Γ, μ, γ) be a weighted bottom-up finite state tree
automaton. Either A is polynomially ambiguous and rA ∈ Θ(nk) for k =
degree(A) or there exists a sequence of trees (tn)n∈N in TΓ and a constant C > 0
such that for all n ∈ N (i) |pos(tn)| ≤ C · n and (ii) |RunA,F(tn)| ≥ 2n.

5 Application: Weighted Logics

As stated in the introduction, our investigations were part of the attempt to
characterize weighted tree automata with weighted logics. Therefore, we briefly
outline how our weighted logic works, which results we obtained with it and
what the significance of our investigations is to these results. For further details
see [8,10,20].

The standard MSO-logic for trees is given by the following grammar.

ϕ ::= labela(x) | edgei(x, y) | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Γ , x, y are first order variables, 1 ≤ i ≤ rk(Γ), and X is a second
order variable. The set of free variables of ϕ is denoted by Free(ϕ). Let t ∈ TΓ be
a tree and V be a set of first order and second order variables with Free(ϕ) ⊆ V.
A mapping which assigns to every first order variable x ∈ V a position w ∈ pos(t)
and to every second order variable X ∈ V a set of positions I ⊆ pos(t) is called a
(V, t)-assignment. For a first order variable x ∈ V and a position w ∈ pos(t) we
write ρ[x → w] to denote the (V ∪ {x}, t)-assignment given by ρ[x → w](x) = w
and ρ[x → w](y) = ρ(y) for all variables y �= x. The assignment ρ[X → I],
where X is a second-order variable and I ⊆ pos(t), is defined analogously. We
write (t, ρ) |= ϕ if (t, ρ) satisfies ϕ using standard MSO-semantics. We then
have the generalization of Büchi’s and Elgot’s fundamental theorems [5,11] to
trees, namely that MSO-definable tree languages are exactly the recognizable
tree languages [7,25].

On top of the MSO-logic we construct a weighted logic, called wMSO-logic,
with the following grammar.

θ : := ϕ | k | θ ⊕ θ | θ � θ | Σx.θ | ΣX.θ | Πx.θ

where ϕ ∈ MSO(Γ), k ∈ K, x is a first order variable and X is a second order
variable. The operators Σx and ΣX are referred to as first order sum quan-
tification and second order sum quantification, respectively, and Πx is referred
to as (first order) product quantification. Moreover, the operators Σx, ΣX and
Πx also bind the variables x and X, respectively. A wMSO-formula without free
variables is also called a sentence.

For a formula θ ∈ wMSO(Γ), a tree t ∈ TΓ , a set V of first and second order
variables with Free(θ) ⊆ V and a (V, t)-assignment ρ we define the value �θ�(t, ρ)
inductively in the following way.

�θ�(t, ρ) =

{

1 if (t, ρ) |= θ

0 otherwise
for θ ∈ MSO(Γ)

On Finite and Polynomial Ambiguity of Weighted Tree Automata 377

�k�(t, ρ) = k

�θ1 ⊕ θ2�(t, ρ) = �θ1�(t, ρ) ⊕ �θ2�(t, ρ)
�θ1 � θ2�(t, ρ) = �θ1�(t, ρ) � �θ2�(t, ρ)

�Σx.τ�(t, ρ) =
⊕

w∈pos(t)

�τ�(t, ρ[x → w])

�Πx.τ�(t, ρ) =
⊙

w∈pos(t)

�τ�(t, ρ[x → w])

�ΣX.τ�(t, ρ) =
⊕

I⊆pos(t)

�τ�(t, ρ[X → I])

where k ∈ K and θ1, θ2, τ ∈ wMSO(Γ).

Example 15. We consider the semiring (N,+, ·, 0, 1) and the alphabet Γ = {a, b}
where rkΓ (a) = 2 and rkΓ (b) = 0. The following formula outputs for every
t ∈ TΓ the amount of a’s taking two b’s as child nodes.

Σx.
(

labela(x) ∧ ∃y.
(

edge1(x, y) ∧ labelb(y)
) ∧ ∃y.

(

edge2(x, y) ∧ labelb(y)
)

)

In order to characterize different degrees of ambiguity, we use restrictions of
above logic. The formulas given by the grammar

θb : := ϕ | k | θb ⊕ θb | θb � θb

with ϕ ∈ MSO(Γ) and k ∈ K are called almost boolean and define so-called
recognizable step functions [8,10]. We call a formula unambiguous if it is almost
boolean, a product quantifier followed by an almost boolean formula or a finite
product of such formulas. A formula containing no sum quantifiers, and in which
for every subformula Π.θ the formula θ is almost boolean, is called finitely
ambiguous. This class of formulas is actually the closure of unambiguous for-
mulas under ⊕ and �. Finally, a formula is called polynomially ambiguous if it
does not contain second order sum quantification and for every subformula Π.θ
the formula θ is almost boolean. We have the following theorem.

Theorem 16. The following classes of automata and sets of sentences are
expressively equivalent:

(a) unambiguous WTA and unambiguous sentences
(b) finitely ambiguous WTA and finitely ambiguous sentences
(c) polynomially ambiguous WTA of polynomial degree k and polynomially

ambiguous formulas with first order sum quantifier depth k.

Example 17. The WTA from Example 1, calculating the minimum amount of
a’s between the root and any leaf, is described by the formula

Σx.Πy. (labelb(x) � ((1 � (labela(y) ∧ y ≤p x)) ⊕ ¬(labela(y) ∧ y ≤p x))) .

The prefix relation is MSO-definable [6, Sect. 3.3].

378 E. Paul

A result similar to Theorem 16 has been shown by Kreutzer and Riveros
[16] to hold true for weighted automata over words. Most of their proofs can
easily be adapted to work for tree automata, but not all. To be precise, we
need the results of Sects. 3 and 4 for the translation of automata to logics in (b)
and (c). For polynomial ambiguity, we even obtain a stronger result, as we are
able to capture polynomial degree not only in the boolean semiring, but in any
commutative semiring. For this, we show by induction on the polynomial degree
that for a WTA in polynomial standard form, first order sum quantifiers can be
used to sum over all possible positions for the bridges identified in Theorem 12
(I). Having specified the positions of all these bridges, we are then essentially in
the case of finite ambiguity, and can apply (b). The number of first order sum
quantifiers needed to describe the WTA with a wMSO-formula hence equals its
polynomial degree.

6 Conclusion

As shown, our results about the structure of weighted tree automata have proven
to be useful in the context of weighted logics for trees. Two questions now arise.
First, which other problems could be tackled with the newly gained knowledge?
Decidability problems for WTA are an obvious candidate here. Second, can we
get similar results for other automata models? For example, one might intuitively
assume picture automata and graph acceptors to behave in a similar manner,
but this is in no way obvious and calls for further investigation.

Acknowledgements. I would like to thank Professor Manfred Droste, Peter Leupold
and Vitaly Perevoshchikov for helpful discussions and suggestions.

References

1. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity
of finite automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
108–120. Springer, Heidelberg (2008)

2. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Com-
put. Sci. 18(2), 115–148 (1982)

3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Monographs in
Theoretical Computer Science. An EATCS Series, vol. 12. Springer, Heidelberg
(1988)

4. Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable
series on trees. Acta Informatica 28(4), 351–363 (1991)

5. Büchi, J.: Weak second-order arithmetic and finite automata. Z. Math. Logik und
Grundl. Math. 6, 66–92 (1960)

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
www.grappa.univ-lille3.fr/tata

7. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci.
4(5), 406–451 (1970)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

On Finite and Polynomial Ambiguity of Weighted Tree Automata 379

8. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1–2), 69–86 (2007)

9. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2009)

10. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Com-
put. Sci. 366(3), 228–247 (2006)

11. Elgot, C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98, 21–52 (1961)

12. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series, pp. 313–403. Springer,
Heidelberg (2009)

13. Hashiguchi, K., Ishiguro, K.: Decidability of the equivalence problem for finitely
ambiguous finance automata. Surikaisekikenkyusho Kokyuroku 960, 23–36 (1996)

14. Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for
polynomially ambiguous min-plus-automata. RAIRO-Inf. Theor. Appl. 42(3), 553–
581 (2008)

15. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004)

16. Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In: 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS, pp. 113–122. IEEE
Computer Society (2013)

17. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Int. J. Algebra Comput. 04(03), 405–425 (1994)

18. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)

19. Maletti, A.: Relating tree series transducers and weighted tree automata. Int. J.
Found. Comput. Sci. 16(4), 723–741 (2005)

20. Rahonis, G.: Weighted Muller tree automata and weighted logics. J. Autom. Lang.
Comb. 12(4), 455–483 (2007)

21. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, New York (1978)

22. Schützenberger, M.: On the definition of a family of automata. Inf. Control 4(2–3),
245–270 (1961)

23. Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Informat-
ica 26(6), 527–542 (1989)

24. Seidl, H., Weber, A.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991)

25. Thatcher, J., Wright, J.: Generalized finite automata theory with an application
to a decision problem of second-order logic. Math. Syst. Theor. 2(1), 57–81 (1968)

An Extremal Series of Eulerian
Synchronizing Automata

Marek Szyku�la1(B) and Vojtěch Vorel2(B)

1 Institute of Computer Science, University of Wroc�law,
Joliot-Curie 15, Wroc�law, Poland

msz@cs.uni.wroc.pl
2 Faculty of Mathematics and Physics, Charles University,

Malostranské nám. 25, Prague, Czech Republic
vorel@ktiml.mff.cuni.cz

Abstract. We present an infinite series of n-state Eulerian automata
whose reset words have length at least (n2 − 3)/2. This improves the
current lower bound on the length of shortest reset words in Eulerian
automata. We conjecture that (n2 − 3)/2 also forms an upper bound
for this class and we experimentally verify it for small automata by an
exhaustive computation.

Keywords: Eulerian automaton · Reset threshold · Reset word ·
Synchronizing automaton

1 Introduction

A complete deterministic finite automaton is synchronizing if there exists a word
whose action maps all states to a single one. Such words are called reset words.
Synchronizing automata find applications in various fields such as robotics, cod-
ing theory, bioinformatics, and model-based testing. Besides of these, synchro-
nizing automata are of great theoretical interest, mainly because of the famous
Černý conjecture [9], which is one of the most long-standing open problems in
automata theory. The conjecture states that each synchronizing n-state automa-
ton has a reset word of length at most (n − 1)2. The best known general upper
bound on this length is 1

6n3 − 1
6n − 1 for each n ≥ 4 [21]. Surveys on the field

can be found in [16,26].
Major research directions in this field include proving the Černý conjec-

ture for special classes of automata or showing specific upper bounds for them.
For example, the Černý conjecture has been positively solved for the classes
of monotonic automata [11], circular automata [10], Eulerian automata [15],
aperiodic automata [25], one-cluster automata with a prime-length cycle [24],

M. Szyku�la—Supported in part by the National Science Centre, Poland under project
number 2015/17/B/ST6/01893.
V. Vorel—Research supported by the Czech Science Foundation grant GA14-10799S
and the GAUK grant No. 52215.

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 380–392, 2016.
DOI: 10.1007/978-3-662-53132-7 31

An Extremal Series of Eulerian Synchronizing Automata 381

automata respecting intervals of a directed graph [12] (under an inductive
assumption), and automata with a letter of rank at most 3

√
6n − 6 [6]. Moreover,

there are many improvements of upper bounds for important special classes,
for example, generalized and weakly monotonic automata [2,27], one-cluster
automata [4], quasi-Eulerian and quasi-one-cluster automata [5], and decoders
of finite prefix codes [2,6,7]. On the other hand, several lower bounds have
been established by showing extremal series of automata for particular classes
[2,7,9,13]. Still, for many classes the best known upper bound does not match
the lower bound.

In this paper we deal with the class of Eulerian automata, which is one of the
most remarkable classes due to its properties with regard to synchronization. In
particular, the lengths of shortest words extending subsets are at most n − 1 for
each n-state Eulerian automaton [15], whereas they can be quadratic in general
[19]. An upper bound (n − 1)(n − 2) + 1 on the length of the shortest reset
words for Eulerian automata was obtained by Kari [15]. Several generalizations
of Eulerian automata were proposed: the class of pseudo-Eulerian automata
[23], for which the same bound (n − 1)(n − 2) + 1 was obtained, unambiguous
Eulerian automata [8] for which the Černý bound (n − 1)2 was obtained, and
quasi-Eulerian automata [5], for which a quadratic upper bound was obtained.
The best lower bound so far was 1

2n2 − 3
2n + 2, found by Gusev [13]. A series

whose shortest reset words seem to have length 1
2n2− 5

2 was found by Martyugin
(unpublished), but no proof has been established. Further discussion on the
bounds for Eulerian automata can be found in the survey [16].

Here we improve the lower bound by introducing an extremal series of
Eulerian automata over a quaternary alphabet with the shortest reset words
of length 1

2n2 − 3
2 . To prove that, we use a technique of backward tracing, which

turns out to be very useful in analysis of extremal series of automata in gen-
eral. We conjecture that the new lower bound is tight for the class of Eulerian
automata. Our exhaustive search over small automata did not find any coun-
terexample.

The new series exhibits the extremal property that some of its subsets require
extending words of length exactly n − 1. This matches the upper bound, which
was used in [15] to obtain the best known upper bound (n− 1)(n− 2)+1 on the
length of shortest reset words. Thus, possible improvements of the upper bound
require a more subtle method.

2 Preliminaries

A deterministic finite automaton (DFA) is a triple A = (Q,Σ, δ), where Q is a
finite non-empty set of states, Σ is a finite non-empty alphabet, and δ : Q×Σ �→ Q
is a complete transition function. We extend δ to Q × Σ∗ and 2Q × Σ∗ as
usual. When A is fixed, we write shortly q · w and S · w for δ(q, w) and δ(S,w)
respectively. The preimage of S ⊂ Q by w ∈ Σ∗ is defined as

δ−1(S,w) = {q ∈ Q | q · w ∈ S},

382 M. Szyku�la and V. Vorel

which is also denoted by S · w−1. If S = {q} is a singleton, we write q · w−1.
A word w ∈ Σ∗ is a reset word if |Q·w| = 1. Note that in this case Q·w = {q0}

and {q0} · w−1 = Q for some q0 ∈ Q. A DFA is called synchronizing if it admits
a reset word. The reset threshold of a synchronizing DFA A is the length of the
shortest reset words and is denoted by rt(A).

A word w extends a subset S ⊂ Q if |S · w−1| > |S|. In this case we say that
S is w-extensible.

A DFA A is Eulerian if the underlying digraph of A is strongly connected and
the in-degree equals the out-degree for each vertex of the underlying digraph.
Equivalently, at every vertex there must be exactly |Σ| incoming edges.

We say that a word w ∈ Σ∗ is:

– permutational if Q · w = Q,
– involutory if q · w2 = q for each q ∈ Q,
– unitary if p · w �= p holds for exactly one p ∈ Q.

Note that each involutory word is permutational. Also, w is unitary if and only
if its action maps exactly one state to another one and fixes all the other states.
For p, r ∈ Q, we write w = (p → r) if the action of w ∈ Σ∗ is defined as p ·w = r
and q · w = q for each q ∈ Q \ {p}.

The reversal of a word w is denoted by wR.

Lemma 1. Let A = (Q,Σ, δ) be a DFA. Let w ∈ Σ∗ contain only involutory
letters. Then S · w−1 = S · wR for each S ⊆ Q.

Proof. If |w| = 0, the claim is trivial. Inductively, let w = xv for x ∈ Σ. We have
S · (xv)−1 = (S · v−1) · x−1 = (S · vR) · x−1 by the inductive assumption, which
is equal to (S · vR) · x−1 · x2 = (S · vR) · x since x is involutory.
�

3 Backward Tracing

There exist several methods of proving reset thresholds of particular series of
automata. Here we discuss one of them as a general approach, which we call
backward tracing.

Definition 2. Let A be a synchronizing DFA and let u be a reset word for A
with Q · u = {q0}. We say that u is straight if

q0 · (umus)−1 �⊆ q0 · (us)−1

for each up, um, us ∈ Σ∗ with upumus = u.

The following is a simple observation (cf. [17, Theorem 1]):

Proposition 3. In a synchronizing DFA each shortest reset word is straight.

An Extremal Series of Eulerian Synchronizing Automata 383

The observation above leads to a method of proving reset thresholds of particular
DFA series by analyzing subsets that are preimages of a singleton under the
action of suffixes of length i = 1, 2, . . . , rt(A) of straight reset words. This works
well if the number of such subsets is small in every step, i.e., for each i. Note
that in general it can grow exponentially.

Interestingly, all known series of most extremal automata, such as the Černý
automata having reset threshold (n − 1)2 [9], the twelve known slowly synchro-
nizing series having only slightly smaller reset thresholds [1,3,19], and DFAs
with cycles of two different lengths [14], have the property that the number of
possible subsets in each step is bounded by a constant. We call such series back-
ward tractable. It is worth mentioning that for such automata we can compute
shortest reset words in polynomial time [17].

In this paper, we apply this method to a new series of Eulerian automata,
which is backward tractable as well, and whose construction is different from the
other known extremal series; in particular, the letters act in many short cycles
instead of few large ones.

The new DFAs use only permutational and unitary letters. This property
(which also implies an upper bound 2(n− 1)2 on the reset threshold [22]) allows
us to strengthen the restriction on suffixes to be considered within the backward
tracing:

Definition 4. With respect to a fixed DFA A, a reset word u ∈ Σ∗ with Q ·u =
{q0} is greedy, if for each suffix v of u it holds that: if some x ∈ Σ extends
q0 · v−1, then yv is a suffix of u for some y ∈ Σ that extends q0 · v−1.

Lemma 5. If a synchronizing DFA A has only permutational and unitary let-
ters, then there exists a shortest reset word that is greedy.

Proof. Let Σ = Σp ∪ Σu, where Σp contains permutational letters and Σu con-
tains unitary letters.

Suppose for a contradiction that there is no shortest reset word that is greedy.
Let u be a shortest reset word of A with the property that its shortest suffix
v violating the greediness is the longest possible. In other words, the shortest
suffix yv of u, y ∈ Σ, such that some x ∈ Σ extends q0 · v−1 but y doesn’t, is
the longest possible.

For each suffix zt of u with z = (p → q) ∈ Σu, the set S = q0·t−1 is necessarily
z-extensible. Indeed, if q ∈ S and p /∈ S, then S is clearly z-extensible. If q /∈ S
or p ∈ S, then S · z−1 ⊆ S, which contradicts Proposition 3. Since the inverse
actions of the letters from Σp preserve sizes of subsets, it follows that u contains
exactly |Q| − 1 occurrences of unitary letters.

Write u = v′v and let u′ = v′xv. Observe that u′ is also a reset word for
A: q0 · (xv)−1 is a (possibly proper) superset of q0 · v−1; hence, we still have
q0 · (v′xv)−1 = Q. Since u′ contains |Q| occurrences of letters from Σu, and
letters from Σp do not decrease the size of a subset, at least one occurrence of
y ∈ Σu is not applied to an y-extensible subset. Moreover, this occurrence lies
within v′, because v is the shortest suffix violating the greediness. Let v′′ be the
word obtained by removing that occurrence of y. We have u′′ = v′′xv, |u′′| = |u|,

384 M. Szyku�la and V. Vorel

and the shortest suffix violating the greediness is longer than v. This yields a
contradiction with the choice of u.
�

4 The Extremal Series of Eulerian Automata

Fix an arbitrary m ≥ 1. Let N = 4m + 1 and Am = 〈Q,Σ, δ〉, where Q =
{0, 1, . . . , N − 1}, Σ = {α, β, ω0, ω1}. The action of α and β is defined by

q · α = (−q − 1) mod N,

q · β = (−q + 1) mod N,

for q ∈ Q, while the action of ω0, ω1 is defined by

ω0 = (1 → 0),
ω1 = (0 → 1).

The automaton Am is illustrated in Fig. 1. We are going to prove that

rt(Am) =
N2 − 3

2
.

Throughout the proof we use usual operations and inequalities on integers.
Each use of modular arithmetic is described explicitly using the binary oper-
ator “mod”.

α

β

0

1

2 4

3 5

PN−2

P−1

P−2

P+1

P−3

N−1 N−5

N−6

β, ω1β, ω0

P−4

P−5

α

β α

βα

β

α

βα

β α

βα

β α

α

α

βα

β

α

βα

β α

α

α

βα

β

α

α

N−3

P+2N−4

P+3

Fig. 1. The DFA Am, loops are omitted, P = N+1
2

We use backward tracing to show that there is a unique optimal way to
extend a singleton to Q. Note that ω0 and ω1 are unitary, while α and β are

An Extremal Series of Eulerian Synchronizing Automata 385

involutory. The following notation will be very useful in the analysis of reset
words for Am:
For j = 0, . . . , N we set:

Qj = {q | 0 ≤ q ≤ j − 1} , Rj = Qj · β,
Q�

j = Qj \ {0} = {q | 1 ≤ q ≤ j} , R�
j = Rj \ {1} = Q�

j · β.

4.1 Construction of a Reset Word

For an odd i ≥ 1, we define
ti = α (βα)

i−1
2 .

Note that:

1. |ti| = i,
2. ti is a palindrome (i.e., ti = tRi).

By Lemma 1, S ·ti = S ·tRi = S ·t−1
i for each S ⊆ Q, and we will often interchange

t−1
i with ti. It follows that qt2i = qtit

−1
i = q for every q ∈ Q and ti is involutory.

Lemma 6. Let q ∈ Q. It holds that:

1. q · (βα)h = (q − 2h) mod N for each h ≥ 0,
2. q · ti = (−q − i) mod N for each i ≥ 1.

Proof. The first claim follows trivially from the case of h = 1. In this case we
have (q · β) ·α = (− (−q + 1)−1) mod N = (q−2) mod N . For the second claim
we observe k · ti = (k · α) · (βα)

i−1
2 , which equals (−q − 1 − (i − 1)) mod N =

(−q − i) mod N .
�
Lemma 7. Let 2 ≤ j ≤ N − 2. It holds that:

1. Qj · tN−j = Q�
j+1 if j is even,

2. Rj · tj−2 = R�
j+1 if j is odd,

3. Qj+1 · tN−j = Qj+1 if j is even,
4. Rj+1 · tj−2 = Rj+1 if j is odd.

Proof. For (1) and (2) we use Lemma 6(2) with i = N − j and i = j − 2
respectively and then substitute d = j − q:

Qj · tN−j = {j − q | q ∈ Qj} = {d | 1 ≤ d ≤ j} = Q�
j+1,

Rj · tj−2 = {q · βtj−2 | q ∈ Qj} = {(−(−q + 1) − (j − 2)) mod N | q ∈ Qj}
= {(q − j + 1) mod N | q ∈ Qj} = {(−d + 1) mod N | 1 ≤ d ≤ j}
= {d · β | 1 ≤ d ≤ j} = R�

j+1.

For (3) and (4) we use (1) and (2) respectively and the fact that tN−j and
tj−2 are involutory. We have:

Qj+1 · tN−j = Q�
j+1 · tN−j ∪ {0 · tN−j} = Qj ∪ {j} = Qj+1,

Rj+1 · tj−2 = R�
j+1 · tj−2 ∪ {1 · tj−2} = Rj ∪ {N − j + 1}

= Rj ∪ {j · β} = Rj+1.

�

386 M. Szyku�la and V. Vorel

Let
w = vN−1βvN−2βvN−3 . . . βv3βv2,

where

vj =

{

ω1tN−j if j is even,

ω0tj−2 if j is odd.

In Lemma 10 below, we show that w extends Q2 to QN according to the following
scheme:

Q2
v−1
2�→ Q3

β−1

�→ R3
v−1
3�→ R4

β−1

�→ Q4
v−1
4�→ Q5

β−1

�→ R5
v−1
5�→ R6

β−1

�→ Q6 �→ · · ·
· · · �→ QN−3

v−1
N−3�→ QN−2

β−1

�→ RN−2

v−1
N−2�→ RN−1

β−1

�→ QN−1

v−1
N−1�→ QN ,

and thus the word wω0 is a reset word for Am.

Remark 8. The word w ends with α. The other occurrences of α in w are directly
followed by β.

Remark 9. A set S ⊆ Q is:

– ω0-extensible if and only if S ∩ {0, 1} = {0},
– ω1-extensible if and only if S ∩ {0, 1} = {1}.

We say that a set S ⊆ Q is ω-extensible if it is ω0-extensible or ω1-extensible.

Lemma 10. Let 2 ≤ j ≤ N − 1. It holds that:

1. Q2 · (vjβvj−1 . . . βv2)
−1 = Qj+1 if j is even,

2. Q2 · (vjβvj−1 . . . βv2)
−1 = Rj+1 if j is odd,

3. wω0 is a reset word of Am.

Proof. We prove the first two claims by induction. For j = 2, using Lemma 7(1)
we have:

Q2 · v−1
2 = (Q2 · t−1

N−2) · ω−1
1 = Q�

3 · ω−1
1 = Q3.

Next, take j ≥ 2 and suppose that both the claims hold for j − 1. We use the
induction hypothesis and, depending on the parity of j, Lemma 7(1) or Lemma
7(2) respectively. For an even j we have:

Q2 · (vjβvj−1 . . . βv2)
−1 = Rj · (vjβ)−1 = Qj · v−1

j = Qj · (ω1tN−j)
−1

= Q�
j+1 · ω−1

1 = Qj+1,

and for an odd j we have:

Q2 · (vjβvj−1 . . . βv2)
−1 = Qj · (vjβ)−1 = Rj · v−1

j = Rj · (ω0tj−2)
−1

= R�
j+1 · ω−1

0 = Rj+1.

The Claim (3) follows from Q1 · (wω0)
−1 = Q2 · w−1 = QN , according to the

first claim with j = N − 1.
�

An Extremal Series of Eulerian Synchronizing Automata 387

It remains to calculate the length of w.

Lemma 11. The length of w is N2−5
2 .

Proof. The sum of |vi| with even i is

N−1
2

∑

i=1

(1 + N − 2i) =
(N − 1) (1 + N)

2
− (N − 1) (1 + N)

4
=

1
4

(

N2 − 1
)

,

and the sum of |vi| with odd i is

N−3
2

∑

i=1

2i =
(N − 3) (N − 1)

4
=

1
4

(

N2 − 4N + 3
)

.

Together with the N − 3 occurrences of β, we have |w| = N2−5
2 .
�

Thus, we have that wω0 is a reset word for Am with length |wω0| = N2−3
2 .

4.2 Lower Bound on the Reset Threshold

Finally, let us show that no reset word for Ak is shorter than wω0.

Lemma 12. If v ∈ Σ∗ is greedy and straight reset word with Q · v = {q0}, then
v does not contain ω0β nor ω1β as a factor.

Proof. Suppose for a contradiction that v = u′′xβu′ for x ∈ {ω0, ω1}. Since v is
greedy, {q0} · (u′)−1 is not ω-extensible, so it contains both 0 and 1 or neither of
them. Since β switches these states, {q0} · (βu′)−1 has the same property. Then
{q0} · (βu′)−1 = {q0} · (xβu′)−1 and so v is not straight.
�
Lemma 13. Let 2 ≤ j ≤ N − 1. It holds that:

1. {0, 1} ∩ (Qj · th) = ∅ for 1 ≤ h < N − j if j is even,
2. {0, 1} ⊆ (Rj · th) for 1 ≤ h < j − 2 if j is odd.

Proof. As th is involutory, it is enough to show for q ∈ {0, 1} that q · th /∈ Qj or
q · th ∈ Rj respectively.

As for (1), by Lemma 6(2) we have q·th = N−q−h > j−1, thus q·th �∈ Qj . As
for (2), denoting q′ = q·th, we have q′ = N−q−h. Then q′ ·β = (q+h+1) mod N ,
and since q ≤ 1 and h < j − 2, we get q′ · β < j, which implies q′ · β ∈ Qj and
q′ ∈ Rj .

Lemma 14. For each suffix xu of w with x ∈ {ω0, ω1} and u ∈ Σ∗ it holds that
x extends Q2 · u−1.

Proof. For every suffix ω1u we have Q2 · u−1ω−1
1 = Q�

j+1 · ω−1
1 = Qj+1 for some

even j, and for every suffix ω0u we have Q2 · u−1ω−1
0 = R�

j+1 · ω−1
0 = Rj+1 for

some odd j.
�

388 M. Szyku�la and V. Vorel

Lemma 15. The word wω0 is greedy.

Proof. Let u be the shortest suffix of wω0 that violates the greediness, i.e.,
suppose that Q1 · u−1 is z-extensible for z ∈ {ω0, ω1}, but zu is not a suffix of
wω0. This simplification works because Q1 · u−1 cannot be both ω0-extensible
and ω1-extensible. Fix x ∈ Σ such that xu is a suffix of w. Let u = yus with
y ∈ Σ.

If y ∈ {ω0, ω1} then Q1 · (yus)−1 is not ω-extensible. If x ∈ {ω0, ω1}, then
Q1 · (yus)−1 is x-extensible due to Lemma 14. Thus, necessarily x, y ∈ {α, β}.

Assume y = β. If Q1 · (yus)
−1 is ω-extensible, then Q1 · (us)−1 is ω-extensible

as well due to 0 ·β = 1 and 1 ·β = 0, implying that us is a shorter suffix violating
the greediness.

Assume y = α. Because w does not contain the factor αα, it follows that x =
β. According to (Sect. 4.1), i.e., the definition of w, and the fact that vN−1 = α,
the factor xy = βα occurs only within the factors v2 . . . , vN−2. Thus,

yus = α (βα)i
β (vj−1βvj−2 . . . βv3βv2) ω0,

where α (βα)i is a suffix of vj . We apply Lemma 10:

1. If j is odd, we get Q2 · (vj−1βvj−2 . . . βv2)
−1 = Qj , while vj = ω0tj−2 and

i ≤ j−3
2 . Then

Q1 · (yus)
−1 = Qj ·

(

α (βα)i
β
)−1

= Qj · (thβ)−1 = Rj · t−1
h = Rj · th,

where h = 2i + 1. We see that 1 ≤ h ≤ j − 2. If h = j − 2, then ω0th = vj ,
so x = ω0. Otherwise we apply Lemma 13(2) to get {0, 1} ⊆ Rj · th, which
contradicts that Q1 · (yus)

−1 is ω-extensible.
2. If j is even, we get Q2 · (vj−1βvj−2 . . . βv2)

−1 = Rj , while vj = ω1tN−j and
i ≤ N−j−1

2 . Then

Q1 · (yus)
−1 = Rj ·

(

α (βα)i
β
)−1

= Rj · (thβ)−1 = Qj · th,

where h = 2i + 1. We see that 1 ≤ h ≤ N − j. If h = N − j, then ω1th = vj ,
so x = ω1. Otherwise we apply Lemma 13(1) to get {0, 1}∩Qj · th = ∅, which
contradicts that Q1 · (yus)

−1 is ω-extensible.
�
Lemma 16. There exists a shortest reset word for Am that ends with ω0 and
is greedy.

Proof. Lemma 5 gives a shortest reset word that is greedy. Clearly, a shortest
reset word ends with a non-permutational letter, i.e., ω0 or ω1. In the latter
case, replacing the ending ω1 with ω0 yields a reset word of the same length and
preserves greediness.
�
Theorem 17. The word wω0 is a shortest reset word for Am.

An Extremal Series of Eulerian Synchronizing Automata 389

Proof. Using Lemma 5, let w′ω0 be a greedy shortest reset word of Am. If w′ = w,
we are done, so let w′ �= w and let ws be the longest common suffix of w′ and w.

If ws = w′, then w′ is a proper suffix of w and so it contains at most N − 3
letters from {ω0, ω1}, which contradicts that wsω0 is a reset word. So we can
write w = wpxws and w′ = w′

px′ws, where x, x′ ∈ Σ and x′ �= x. We will show
that each of the following cases according to x and x′ leads to a contradiction:

1. Suppose that x ∈ {ω0, ω1}. Then Lemma 14 implies that Q2 · ws is x-
extensible, which contradicts x′ �= x and the greediness of w′ω0.

2. Suppose that x′ ∈ {ω0, ω1}. According to Proposition 3, w′ω0 is straight,
which implies that Q2 · ws is x′-extensible, which contradicts x′ �= x and
Lemma 15, i.e., the greediness of wω0.

3. Suppose that x = α and x′ = β. According to Remark 8, ws = ε or ws starts
with β. The case of ws = ε contradicts the straightness of w′ω0 because each
x′ ∈ Σ \ {α} satisfies Q2 · (x′)−1 = Q2. The other case implies ββ occurring
in w′ and thus also contradicts the straightness of w′ω0.

4. Suppose that x = β and x′ = α. Then ws �= ε. If ws starts with α or β, then
either w′ or w contains the factor αα or ββ, which contradicts the straightness
of w′ω0 or the definition of w. Hence, ws starts with ω0 or ω1. Since this starts
a factor vj for some j ≥ 2, we can write

ws = vjβvj−1 . . . βv3βv2.

We consider the following two subcases:
(a) Suppose that ws starts with ω1. Note that j ≥ 2 is even and Q2 · w−1

s =
Qj+1 by Lemma 10. Let wm be the longest common suffix of w′

px′ = w′
pα

and tN−j . Clearly, |wm| ≥ 1. If wm = tN−j , then from Lemma 7(3) we
have Qj+1 · tN−j = Qj+1, which contradicts the straightness of w′ω0.
If wm = w′

px′, then w′ starts with α or β, which contradicts that w′ω0

is a shortest reset word. It follows that we can write w′ = w′
ppy′wmws

for y′ ∈ Σ. Moreover, as w′ does not contain the factors αα and ββ, we
have y′ �= α and y′ �= β, so y′ ∈ {ω0, ω1}. Due to Lemma 12, wm cannot
start with β, and from the construction of tN−j we have wm = th for
h ≤ N − j − 2. It holds that Qj+1 · w−1

m = Qj+1 · th = Qj · th ∪ {j · th}.
Lemma 13(1) provides that {0, 1}∩Qj ·th = ∅. Also, j ·th = N−j−h ≥ 2.
Together, Qj+1 · w−1

m ∩ {0, 1} = ∅, and thus this set is not ω-extensible,
which contradicts y′ ∈ {ω0, ω1} and the straightness of w′ω0.

(b) Suppose that ws starts with ω0. Note that j ≥ 3 is odd and Q2 · w−1
s =

Rj+1 by Lemma 10. Let wm be the longest common suffix of w′
px′ = w′

pα
and tj−2. Clearly, |wm| ≥ 1. If wm = tj−2, then from Lemma 7(4) we
have Rj+1 · tj−2 = Rj+1, which contradicts the straightness of w′ω0. If
wm = w′

px′, then w′ starts with α or β, which contradicts that w′ω0 is
a shortest reset word. It follows that we can write w′ = w′

ppy′wmws for
y′ ∈ Σ. Moreover, as w′ does not contain the factors αα and ββ, we have
y′ �= α and y′ �= β, so y′ ∈ {ω0, ω1}. Due to Lemma 12, wm cannot start
with β, and from construction of tj−2 we have wm = th for h ≤ j − 4.

390 M. Szyku�la and V. Vorel

We have Rj+1 · w−1
m = Rj+1 · th ⊇ Rj · th. Lemma 13(2) gives {0, 1} ⊆

Rj · th. Thus, {0, 1} ⊆ Rj+1 · w−1
m , and thus this set is not ω-extensible,

which contradicts y′ ∈ {ω0, ω1} and the straightness of w′ω0.
�

Theorem 17 implies that rt(Am) = |wω0| = N2−3
2 .

4.3 Extending Words

The general upper bound (n−2)(n−1)+1 for reset thresholds of synchronizing
Eulerian DFAs comes from the fact that any proper and non-empty subset of Q
is extended by a word of length at most n − 1 [15], while in the general case the
minimum length of extending words can be quadratic (this was shown recently
– see [19]). In view of this, our series shows that this bound is tight for infinitely
many n, and so the upper bound for reset thresholds for this class cannot be
improved only by reducing this particular bound. The following remark follows
from the analysis in the proof of Theorem 17:

Remark 18. The shortest extending word of {0, 1} in Am is v2 = ω1α(βα)(N−3)/2

of length N − 1.

5 Experiments

Using the algorithm from [18,20], we have performed an exhaustive search over
small synchronizing Eulerian DFAs. We verified the bound (n2 − 3)/2 for the
case of binary DFAs with n ≤ 11 states, automata with four letters and n ≤ 7
states, DFAs with eight letters and n ≤ 5 states, and all DFAs with n ≤ 4 states.

For n ∈ {3, 4, 5, 7} the bound (n2−3)/2 is reachable. For n = 7, up to isomor-
phism, we identified 2 ternary examples and 12 quaternary examples which also
meet the bound. It seems that our series Am is not unique meeting the bound, as
some of the quaternary examples could be generalizable to series with the same
reset thresholds. Also, for the binary case we found that for n ∈ {5, 7, 8, 9, 11}
the bound (n2 − 5)/2 is met uniquely by DFAs from the Martyugin’s series, but
it is not reachable for n ∈ {6, 10}.

Conjecture 19. For n ≥ 3, (n2 − 3)/2 is an upper bound for the reset threshold
of an n-state Eulerian synchronizing automaton. If |Σ| = 2, then the bound can
be improved to (n2 − 5)/2.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 55–65. Springer, Heidelberg (2010)

2. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata.
Theor. Comput. Sci. 330(1), 3–13 (2005)

An Extremal Series of Eulerian Synchronizing Automata 391

3. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

4. Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of
a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2),
277–288 (2011)

5. Berlinkov, M.V.: Synchronizing quasi-Eulerian and quasi-one-cluster Automata.
Int. J. Found. Comput. Sci. 24(6), 729–745 (2013)

6. Berlinkov, M., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 103–115. Springer, Heidelberg (2015)

7. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes.
Theor. Comput. Sci. 410(38–40), 3925–3941 (2009)

8. Carpi, A., D’Alessandro, F.: Strongly transitive automata and the Černý conjec-
ture. Acta Informatica 46(8), 591–607 (2009)

9. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)

10. Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique
Théorique et Appl. 32, 21–34 (1998)

11. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

12. Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals
of a directed graph. Discr. Math. Theor. Comput. Sci. 15(3), 61–72 (2013)

13. Gusev, V.: Lower bounds for the length of reset words in Eulerian automata. Int.
J. Found. Comput. Sci. 24(2), 251–262 (2013)

14. Gusev, V.V., Pribavkina, E.V.: Reset thresholds of automata with two cycle
lengths. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 200–
210. Springer, Heidelberg (2014)

15. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci.
295(1–3), 223–232 (2003)

16. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In:
Handbook of Automata, European Science Foundation (2013)

17. Kisielewicz, A., Kowalski, J., Szyku�la, M.: Computing the shortest reset words of
synchronizing automata. J. Combin. Optim. 29(1), 88–124 (2015)

18. Kisielewicz, A., Szyku�la, M.: Generating small automata and the Černý conjecture.
In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer,
Heidelberg (2013)

19. Kisielewicz, A., Szyku�la, M.: Synchronizing automata with extremal properties. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234,
pp. 331–343. Springer, Heidelberg (2015)

20. Kisielewicz, A., Kowalski, J., Szykula, M.: Experiments with synchronizing
automata. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705,
pp. 176–188. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40946-7 15

21. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics.
North-Holland Mathematics Studies, vol. 75, pp. 535–548 (1983)

22. Rystsov, I.K.: Estimation of the length of reset words for automata with simple
idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000)

23. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Com-
put. Sci. 22(7), 1697–1706 (2011)

24. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)

http://dx.doi.org/10.1007/978-3-319-40946-7_15

392 M. Szyku�la and V. Vorel

25. Trahtman, A.N.: The C̆erný conjecture for aperiodic automata. Discr. Math.
Theor. Comput. Sci. 9(2), 3–10 (2007)

26. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

27. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor.
Comput. Sci. 410(37), 3513–3519 (2009)

Monoid-Based Approach to the Inclusion
Problem on Superdeterministic Pushdown

Automata

Yuya Uezato1(B) and Yasuhiko Minamide2

1 Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
uezato@logic.cs.tsukuba.ac.jp

2 Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Tokyo, Japan

Abstract. We present a new and simple decidability proof for the lan-
guage inclusion problem between context-free languages and languages
accepted by superdeterministic pushdown automata (Sdpdas). The lan-
guage class of Sdpdas is one of the largest language classes C for which
the inclusion Lcfl ⊆ LC is decidable for an arbitrary context-free language
Lcfl and arbitrary language LC in C. We introduce generalized pushdown
automata and reformulate Sdpdas as a subclass of them. This reformu-
lation naturally leads to a monoid that captures Sdpdas. The monoid is
key to our simple decidability proof because we translate the inclusion
problem on Sdpdas to the corresponding monoid inclusion problem. In
addition to the decidability result, we present a new undecidability result
regarding the inclusion problem on indexed languages.

1 Introduction

A superdeterministic pushdown automaton (Sdpda) is a deterministic pushdown
automaton that is finite delay and satisfies a peculiar condition—for any state
p and word w, there is a state q and z ∈ Z such that for any configuration
〈p, α〉, if a computation starting from 〈p, α〉 ends in 〈p′, β〉 after consuming w,
then p′ = q and |α|− |β| = z. Greibach and Friedman showed the decidability of
Incl(Cfl,Sdpda), i.e., the inclusion Lcfl ⊆ L(M) is decidable for an arbitrary
context-free language Lcfl and arbitrary Sdpda M [6]. They also showed that
the language class Sdpda includes some important classes, i.e., the class of
regular languages (Reg), Dyck languages (Dyck), and generalized parenthesis
languages [13]. Moreover, a language class C for which Incl(Cfl, C) is decidable
and C strictly includes Sdpda is not yet known. Our aim is to obtain a simple
decidability proof for Incl(Cfl,Sdpda) and extend it to a larger class. The
original proof [6], however, is elaborated by pumping arguments and it remains
unclear why Incl(Cfl,Sdpda) is decidable.

We introduce generalized pushdown automata (gPDAs) and a subclass, real-
time gPDAs (rgPDAs). Each transition rule of gPDAs is of the form p α / β−−−→σ q,
which consumes an input σ, pops a sequence of symbols α, and then pushes β

c© Springer-Verlag Berlin Heidelberg 2016
S. Brlek and C. Reutenauer (Eds.): DLT 2016, LNCS 9840, pp. 393–405, 2016.
DOI: 10.1007/978-3-662-53132-7_32

394 Y. Uezato and Y. Minamide

to a stack. Although usual pushdown automata require |α| = 1, gPDAs allow
|α| > 1 and pop multiple symbols in one transition. On the basis of the multiple
pop feature, we translate Sdpdas to rgPDAs that satisfy the following prop-
erty: if we have p α / β−−−→σ q and p α′ / β′−−−−→σ q′, then q = q′, |α| = |α′|, and |β| = |β′|.
This translation simplifies our decidability proof; thus, rgPDAs with the above
condition are adequate normal forms of Sdpdas.

The formalization of rgPDAs instinctively leads to a monoid for rgPDAs
and this monoid is the basis of our decidability proof. Our approach general-
izes the monoid-based approach for Incl(Cfl,Reg) and Incl(Cfl,Dyck) [11]
where the author applied the classical notion of language recognition by monoids
to translate inclusion problems to corresponding monoid inclusion problems. For
a finite automaton A, there is a finite monoid M, a subset U ⊆ M, and a homo-
morphism H : Σ∗ → M that recognize L(A) as L(A) = H−1(U). This equation
translates the inclusion L(G) ⊆ L(A) to the monoid inclusion H(L(G)) ⊆ U
where G is a context-free grammar. Since M is a finite monoid, we can decide
whether H(L(G)) ⊆ U and this implies the decidability of Incl(Cfl,Reg). This
argument, however, cannot be directly applied to Incl(Cfl,Dyck) because
a monoid that recognizes a Dyck language is infinite. In [11], to manage this
unavoidable infiniteness, the author rephrased an argument given by Berstel and
Boasson [2] for the decidability of Incl(Cfl,Dyck) in terms of monoids. The
present paper generalizes their argument to accommodate Incl(Cfl,Sdpda)
on the basis of our monoid for rgPDAs. Tsukada and Kobayashi gave a pro-
cedure similar to ours in a type-theoretical framework [14]. We compare our
approach with their type-theoretical approach in Sect. 6.

Recently, higher-order PDAs [10] have received much attention for their use in
higher-order program verification [8]. Hence, it is a natural attempt to extend the
decidability of Incl(Cfl,Sdpda) to a class of languages accepted by higher-
order PDAs. However, unfortunately, we show that such an attempt is even
undecidable for Incl(IL,Dyck) where IL is the class of indexed languages [1,7]
accepted by second-order PDAs [10].

Context-Free Grammar and Normal Form. A context-free grammar
(CFG) is a 4-tuple G = (V,Σ, P, S) where V is a finite set of variables, Σ
is a finite set of terminal symbols, P ⊆ V × (V ∪ Σ)∗ is a finite set of pro-
duction rules, and S ∈ V is the start variable. We write X → α instead of
(X,α) ∈ P . To denote a one-step derivation, we write αXβ ⇒ α ξ β if there is
a rule X → ξ ∈ P where α, β, ξ ∈ (V ∪ Σ)∗. The words generated by a variable
X is L(X) := {w ∈ Σ∗ : X ⇒∗ w} and the language of G, L(G), is defined by
L(G) := L(S).

We primarily use the Chomsky normal form (CNF). A CFG is in CNF if
all of its production rules are of the form X → Y Z, X → σ, or S → ε where
X,Y,Z ∈ V and σ ∈ Σ. By the standard translation from CFG to CNF [7],
we assume that each variable X is reachable, i.e., there exists a pair of terminal
strings (w1, w2) such that S ⇒∗ w1Xw2.

Monoid-Based Approach to the Inclusion Problem on SDPDAs 395

2 Generalized PDA and Superdeterministic PDA

First, we introduce generalized pushdown automata (gPDAs). Next, we define
realtime gPDAs (rgPDAs) and a monoid for gPDAs. Third, we define push-
down automata (PDAs) as a subclass of gPDAs and superdeterministic PDAs
(Sdpdas) by following [6]. Finally, after pointing out a problem in the formal-
ization of Sdpdas, we translate Sdpdas into rgPDAs.

Generalized PDA. A gPDA is a 7-tuple M = (Q,Σ,Γ,Δ, qinit,F , Z) where
Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite stack alphabet,
Δ ⊆ (Q × (Σ ∪ {ε}) ∪ Γ+) × (Q × Γ∗) is a finite set of transition rules, qinit ∈ Q
is the initial state, F ⊆ Q × Γ∗ is a finite set of final configurations, and Z ∈ Γ
is the initial stack symbol. We use Γ+ to denote Γ∗ \ {ε}.

A configuration c is a pair 〈p, α〉 ∈ Q × Γ∗ of a state p and a stack α. We
define the set of transitions T := Q× Γ∗ ×Γ∗×Q and write p α / β−−−→ q to denote a
transition (p, α, β, q) ∈ T. A transition δ = p α / β−−−→ q rewrites a configuration c to
another one c′ as c δ↪−→ c′ if c = 〈p, αξ〉, c′ = 〈q, βξ〉, and ξ ∈ Γ∗. We use Δ as a
function from Σ∪{ε} to 2T defined by Δ(a) := {p α / β−−−→ q : ((p, a, α), (q, β)) ∈ Δ}.

We define a single move c a c′ if c δ↪−→ c′ for some δ ∈ Δ(a) where a ∈ Σ∪{ε}
and a multiple move c1 a1a2...an

∗ cn+1 if ci ai
ci+1 for all i ∈ [1..n]. The language

of M , L(M), is defined as follows:

L(M) := {w ∈ Σ∗ : 〈qinit, Z〉 w
∗ 〈qf , ξ〉, 〈qf , ξ〉 ∈ F}.

Realtime gPDA and Transition Monoid. We introduce a subclass of
gPDAs, realtime gPDAs, and define a monoid and homomorphism to recognize
the language accepted by a realtime gPDA.

A gPDA M = (Q,Σ,Γ,Δ, qinit,F , Z) is realtime (rgPDA) if there are no
ε-moves; namely, Δ ⊆ (Q × Σ × Γ+) × (Q × Γ∗).

We define a composition operator 	 on T⊥(= T ∪ {⊥}) as follows:

δ1 	 δ2 :=

⎧

⎪

⎨

⎪

⎩

p α / ζξ−−−→ r if δ1 = p α / βξ−−−−→ q and δ2 = q β / ζ−−−→ r,

p αξ / ζ−−−→ r if δ1 = p α / β−−−→ q and δ2 = q βξ / ζ−−−→ r,

⊥ otherwise,

⊥ 	 _ := ⊥,

_ 	 ⊥ := ⊥,

where the element ⊥ denotes a composition failure, e.g., p a / b−−→ q 	 q c / d−−→ r = ⊥
because it means to push b to a stack and then try to pop c but we cannot.

The operator 	 : T⊥ × T⊥ → T⊥ is associative; thus, the pair (T⊥,)
forms a semigroup. This semigroup leads to a monoid TM for the rgPDA M :
TM := (2T,⊗,1 = {q ε / ε−−→ q : q ∈ Q}) where the multiplication ⊗ is defined by
extending 	 to the sets of transitions:

T1 ⊗ T2 := {δ1 	 δ2 : δ1 ∈ T1, δ2 ∈ T2, δ1 	 δ2 �= ⊥}.
Since there are no ε-moves in rgPDAs, we can see Δ as a function Δ : Σ → 2T

and this derives a homomorphism
∼
Δ : Σ∗ → TM as follows:

396 Y. Uezato and Y. Minamide

∼
Δ(ε) := 1,

∼
Δ(σ) := Δ(σ),

∼
Δ(σ1 . . . σn) := Δ(σ1) ⊗ · · · ⊗ Δ(σn).

The homomorphism
∼
Δ naturally interprets moves of M as follows.

Proposition 1.

– If p α / β−−−→ q ∈ ∼
Δ(w), then 〈p, αξ〉 w

∗ 〈q, βξ〉 for any ξ ∈ Γ∗.
– If 〈p, α〉 w

∗ 〈q, β〉, then there exists ξ ∈ Γ∗ such that α = α′ξ, β = β′ξ, and
p α′ / β′−−−−→ q ∈ ∼

Δ(w).

Thus, the homomorphism
∼
Δ recognizes the language L(M).

Lemma 2. L(M) =
∼
Δ−1({T : qinit

Z / ξ−−−→ qf ∈ T, 〈qf , ξ〉 ∈ F}).

Note that
∼
Δ(w) is finite for any w ∈ Σ∗ because Δ(σ) is finite for any σ ∈ Σ.

This finiteness is important to obtain a decision procedure for inclusion problems.
Although we can show properties similar to Proposition 1 for gPDAs, we require
ε-closures to build a homomorphism H and then H(w) is infinite in general. The
existence of ε-moves is harmful to give a decision procedure.

PDA and Deterministic PDA. A gPDA M = (Q,Σ,Γ,Δ, qinit,F , Z) is a
pushdown automaton (PDA) if Δ ⊆ (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ∗). In contrast
to gPDAs, PDAs cannot pop multiple symbols in a single move.

A PDA M is deterministic (DPDA) if M satisfies the following conditions:

– For each a ∈ Σ ∪ {ε}, if c1 a c2 and c1 a c3, then c2 = c3.
– If we have c1 ε c2, then c1 � σ c3 for all σ ∈ Σ and c3 ∈ Q × Γ∗.

A configuration c is a reading configuration if c σ c′ for some σ ∈ Σ. To empha-
size a move between reading configurations, we write c w

∗ c′ instead of c w
∗ c′

where c and c′ are reading configurations.

Superdeterministic PDA. A DPDA M is superdeterministic (Sdpda) [6] if
M satisfies the following conditions:

1. M accepts words with the empty stack: if 〈qf , ξ〉 ∈ F , then ξ = ε.
2. M is finite delay, i.e., any sequence of ε-moves is d-bound for some d ∈ N:

there are no configurations c such that c = c0 ε c1 ε · · · ε cd−1 ε cd.
3. Let σ ∈ Σ and 〈p, α〉 and 〈p, α′〉 be reading configurations with the same state.

If 〈p, α〉 σ
∗ 〈q, β〉 and 〈p, α′〉 σ

∗ 〈r, β′〉, then q = r and |α| − |β| = |α′| − |β′|.
As mentioned above, the presence of ε-moves in the formalization of Sdpdas

prevents us from directly defining a homomorphism that recognizes L(M). Thus,
we remove ε-moves from Sdpdas by translating them to rgPDAs.

Theorem 3. Let M = (Q,Σ,Γ,Δ, qinit,F , Z) be an Sdpda. There exists
rgPDA N such that (1) $L(M) = L(N) where $ /∈ Σ and (2) if p α / β−−−→ q ∈
ΔN (σ) and p α′ / β′−−−−→ r ∈ ΔN (σ), then q = r, |α| = |α′|, and |β| = |β′|.

Monoid-Based Approach to the Inclusion Problem on SDPDAs 397

Proof. We can easily translate M to an Sdpda M ′ that satisfies the following:

M : 〈qinit, Z〉 w
∗ 〈qf , ε〉 ⇐⇒ M ′ : 〈q′

init, 	〉 ε 〈qinit, Z	〉 w
∗ 〈qf , 	〉 ε 〈q′

f , ε〉
where 〈qf , ε〉 ∈ F and the two states q′

init, q
′
f /∈ Q are the unique initial and final

states of M ′. Thus, L(M) = L(M ′). We assume that M ′ is d-bound and the
special symbol 	 /∈ Γ is the stack bottom symbol of M ′.

We take the ε-closure of the initial configuration of M ′. If 〈q′
init, 	〉 ε

∗ 〈q, ε〉,
then L(M ′) = ∅ or L(M ′) = {ε} and these cases are easy. We assume 〈q′

init, 	〉 ε
∗

〈q	, α		〉 where 〈q	, α		〉 is a reading configuration. If σ1 . . . σnσn+1 ∈ L(M ′),
then we have 〈q′

init, 	〉 ε
∗ 〈q	, α		〉 σ1

∗ 〈q1, α1	〉 σ2

∗ · · · σn

∗ 〈qn, αn	〉 σn+1

∗ 〈q′
f , ε〉.

We build an rgPDA N = (Q∪{q′′
init, q

′
f},Σ∪{$},Γ∪{	,
},ΔN , q′′

init,FN ,)
as follows. Let p ∈ Q and σ ∈ Σ. Since M ′ is finite delay, we can compute two sets
A = {(q, α, β) : 〈p, α〉 σ

∗ 〈q, β〉, β �= ε} and B = {(q′
f , ξ) : 〈p, ξ	〉 σ c ε

∗ 〈q′
f , ε〉}.

Since M ′ is an Sdpda, (when A �= ∅) there are r ∈ Q and k ∈ Z such that if
(q, α, β) ∈ A, then q = r and |α| − |β| = k. We add transitions to ΔN as follows:

– Let (r, α, β) ∈ A. Add p αζ / βζ−−−−→ r ∈ ΔN (σ) where αζ ∈ Γ∗	∗ and |αζ| = d.
– Let (q′

f , ξ) ∈ B.

Case A �= ∅: Add p ξ

i / �
j−−−−−→ r ∈ ΔN (σ) where i = d − |ξ	| and j = (d − k) − 1.
Case A = ∅: Add p ξ

i / �−−−−→ q′

f ∈ ΔN (σ) where i = d − |ξ	|.

This construction ensures that (i) if p α / β−−−→ q, p α′ / β′−−−−→ q′ ∈ ΔN (σ), then q = q′,
|α| = |α′|, and |β| = |β′|, (ii) 〈q	, α		〉 σ1...σn

∗ 〈qn, αn	〉 σn+1

∗ 〈q′
f , ε〉 in M ′ iff

q	
α�
d / �
c−−−−−−→ r ∈ ΔN (σ1 . . . σnσn+1) for some c ∈ [1..d] and r ∈ Q.
We define ΔN ($) := {q′′

init

 / α�
d−−−−−→ q	} so that 〈q′

init, 	〉 σ1...σn+1

∗ 〈q′
f , ε〉 in M ′

iff q′′
init

 / �
c−−−→ r ∈ ΔN (σ1 . . . σn+1) for some c ∈ [1..d] and r ∈ Q. By defining
FN := {〈p,
	c〉 : p ∈ Q ∪ {q′

f}, c ≤ d}, we have $L(M ′) = L(N). ��
We call the following condition of Theorem 3 a uniformity condition that is
stronger than the third condition of Sdpdas:

If p α / β−−−→ q, p α′ / β′−−−−→ r ∈ Δ(σ), then |α| = |α′|, |β| = |β′|, and q = r.

We denote rgPDAs that satisfy the uniformity condition as rgPDA+U.
The normalization through Theorem 3 and the uniformity condition are cru-

cial for the proof of our key lemma, Lemma9 of Sect. 4. A construction similar
to Theorem 3 appears in [14, Theorem10]. However, they normalized an Sdpda
to a corresponding Sdpda that satisfies a property like the uniformity condition;
thus, they did not remove ε-moves in their proof.

3 Decidability of Incl(CFL, DYCK) Revisited

Before giving a decision procedure for Incl(Cfl,rgPDA+U), we consider the
subcase Incl(Cfl,Dyck). We rephrase the decidability proof of Incl(Cfl,

398 Y. Uezato and Y. Minamide

Dyck) given by Berstel and Boasson [2] as a constraint solving problem on
a monoid for the Dyck languages. The argument of this section will be naturally
extended to Incl(Cfl,rgPDA+U) in the next section.

Dyck Language. Let Σ be a finite alphabet Σ = {σ1, . . . , σn}. We use σ́ and
σ̀ to denote an open and a close parenthesis labelled by σ, respectively, by fol-
lowing [13]. We define the open parentheses Σ́ and close parentheses Σ̀ obtained
from Σ by Σ́ := {σ́1, . . . , σ́n} and Σ̀ := {σ̀1, . . . , σ̀n}. A word w ∈ (Σ́ ∪ Σ̀)∗ is a
Dyck word if w is well-matched. For example, áà and áb́b̀à are Dyck words, but
àá and áb̀ are not. To formally define this, we build a monoid and homomorphism
that recognize the set of Dyck words.

We define a function μ : Σ́ ∪ Σ̀ → T∗ where T∗ = {∗} × Σ∗ × Σ∗ × {∗} by
interpreting a open parenthesis σ́ and close parenthesis σ̀ as transitions of push
σ and pop σ: μ(σ́) := ∗ ε / σ−−−→ ∗ and μ(σ̀) := ∗ σ / ε−−−→ ∗. For the sake of readability,
we write α/β to denote ∗ α / β−−−→ ∗. The triple D = (T∗ ∪ {⊥},	,1 = ε/ε) forms
a monoid because δ 	 ε/ε = ε/ε 	 δ = δ for any δ ∈ T∗ ∪ ⊥. We call the monoid
D Dyck monoid and deal the function μ as a homomorphism μ : (Σ́ ∪ Σ̀)∗ → D.
For example, μ(ε) = μ(áà) = μ(áb́b̀à) = ε/ε, μ(àá) = a/a, and μ(áb̀) = ⊥.

A word w ∈ (Σ́ ∪ Σ̀)∗ is a Dyck word if μ(w) = ε/ε; thus the Dyck language
over Σ is defined as Dyck(Σ) := μ−1({ε/ε}).

Inclusion Problem as Constraint Solving. We fix a CFG G = (V, Σ́ ∪ Σ̀,
P, S) and provide a procedure to decide whether L(G) ⊆ Dyck(Σ). For this
purpose, we consider the equivalent monoid inclusion μ(L(G)) ⊆ {ε/ε} that is
obtained from Dyck(Σ) = μ−1({ε/ε}). We introduce a notation to solve this.

A mapping ϕ : V → 2D is a solution if it satisfies the following constraint
over the Dyck monoid D:

∀X ∈ V.

{

ϕ(X) ⊇ {μ(w)} if X → w ∈ P,

ϕ(X) ⊇ ϕ(Y) 	 ϕ(Z) if X → Y Z ∈ P.

If ϕ is a solution, then ϕ(X) ⊇ μ(L(X)) holds for all variable X. Thus, it suffices
to search a solution ϕ such that ϕ(S) ⊆ {ε/ε} to solve μ(L(G)) ⊆ {ε/ε}.

Proposition 4. μ(L(G)) ⊆ {ε/ε} if and only if ∃(ϕ : solution). ϕ(S) ⊆ {ε/ε}.
By this proposition, if we find a solution ϕ satisfying ϕ(S) ⊆ {ε/ε}, we can
decide whether L(G) ⊆ Dyck(Σ). Unfortunately, however, we cannot find such
a solution ϕ directly in general because the Dyck monoid D is infinite and thus
the set of mappings is infinite.

A Procedure for Incl(Cfl,Dyck). In order to limit the space in which we
explore solutions, we rephrase a result of Berstel and Boasson [2], which shows
the decidability of Incl(Cfl,Dyck), in our framework.

For each variable X, there exists a pair of terminal strings w1, w2 ∈ (Σ́∪ Σ̀)∗

such that S ⇒∗ w1Xw2 because each variable of CFGs is reachable. We define
K(X) := (w1, w2) by taking such a pair of terminal strings for each variable.
Note that our argument does not depend on the choice of terminal strings. The
pair of terminal strings K(X) serves as an upper-bound for μ(L(X)) as follows.

Monoid-Based Approach to the Inclusion Problem on SDPDAs 399

Lemma 5 [2]. Let K(X) = (w1, w2) and w ∈ L(X). If the following holds, then
w1ww2 ∈ L(G) \ Dyck(Σ):

μ(w) = ⊥ or μ(w) = α/β such that |α| > |w1| or |β| > |w2|.

Proof. We use the property μ(w1w2w3) = μ(μ(w1)μ(w2)μ(w3)). By this prop-
erty, if μ(w1) = ⊥, μ(w) = ⊥, or μ(w2) = ⊥, then μ(w1ww2) �= ε/ε.

By the definition of the operator 	, if α1/β1 	 α2/β2 = α3/β3, then |α3| ≥
|α1| and |β3| ≥ |β2|. Thus, we can assume μ(w1) = ε/σ1 . . . σn and μ(w2) =
σ1 . . . σm/ε where n,m ≥ 0. If not, we have μ(w1ww2) �= ε/ε. Moreover, by the
definition of μ, we have |w1| ≥ n and |w2| ≥ m.

If |α| > |w1| ≥ n, then μ(w1w) = σ′
1 . . . σ′

|α|−n/β or μ(w1w) = ⊥; thus,
μ(w1ww2) �= ε/ε. Similarly, if |β| > |w2| ≥ m, then μ(ww2) = α/σ′

1 . . . σ′
|β|−m or

μ(ww2) = ⊥; thus, μ(w1ww2) �= ε/ε. These arguments complete the proof. ��
Lemma 5 states that the space in which we explore solutions is finitely

bounded and this leads to the decidability of Incl(Cfl,Dyck). To formally
state this argument, we introduce bounded mappings.

A mapping ϕ is bounded by K if it satisfies the following property:

∀X ∈ V. ∀α/β ∈ ϕ(X). |α| ≤ |w1| and |β| ≤ |w2| where K(X) = (w1, w2).

We can solve the inclusion problem by searching an adequate bounded solution.

Theorem 6.

μ(L(G)) ⊆ {ε/ε} ⇐⇒ ∃(ϕ : solution). ϕ(S) ⊆ {ε/ε}
⇐⇒ ∃(ϕ′ : bounded solution). ϕ′(S) ⊆ {ε/ε}.

Proof. It suffices to show that if a solution ϕ satisfies ϕ(S) ⊆ {ε/ε}, then ϕ must
be bounded. If not, then there exists w ∈ L(X) such that |w1| > |α| or |w2| > |β|
where μ(w) = α/β and K(X) = (w1, w2). By Lemma5, w1ww2 /∈ Dyck(Σ) and
L(G) �⊆ Dyck(Σ). However, the presence of ϕ implies L(G) ⊆ Dyck(Σ). ��
Proposition 7. The set of bounded mappings {ϕ : ϕ is bounded by K } is finite.

Since we can decide whether a given bounded mapping is a solution, Theorem 6
and Proposition 7 imply the following result.

Corollary 8 [2]. The inclusion problem Incl(Cfl,Dyck) is decidable.

4 Decidability of Incl(CFL, RGPDA+U)

On the basis of the argument of the previous section, this section provides a
procedure to decide whether L(G) ⊆ L(M) where G = (V,Σ, P, S) is a CFG
and M = (Q,Σ,Γ,Δ, qinit,F , Z) is an rgPDA+U.

400 Y. Uezato and Y. Minamide

A Property Corresponding to Lemma 5. We show a crucial property that
corresponds to Lemma 5 and limits a space of mappings in which we explore a
solution. To state it formally, we use three constants Push, Pop, and H where

∀σ ∈ Σ.∀p α / β−−−→ q ∈ Δ(σ).
(

Push ≥ |β| ∧ Pop ≥ |α|); ∀〈qf , ξ〉 ∈ F .H ≥ |ξ|.
Push and Pop are upper bounds of the numbers of symbols that are pushed
onto or popped from a stack in a single move. H is an upper bound of the heights
of final configurations.

Lemma 9. Assume that S ⇒∗ w1Xw2, qinit
α / β−−−→ p ∈ ∼

Δ(w1), and w ∈ L(X).
If the following holds, then w1ww2 ∈ L(G) \ L(M):

There is p α′ / β′−−−−→ q ∈ ∼
Δ(w) such that |α′| > Push · |w1| or |β′| > Pop · |w2|+H.

Proof. If M fails to consume w1, then it means w1ww2 /∈ L(G). Hence, we
assume M succeeds on consuming w1 and have 〈qinit, Z〉 w1

∗ 〈p, ξ〉 where |ξ| =
|β| ≤ Push · |w1| by the uniformity condition of M .

First, we consider the case |α′| > Push · |w1| ≥ |ξ|. By the uniformity condi-
tion, M have to pop just |α′|-symbols from the stack while reading w. However,
after consuming w1, i.e., 〈qinit, Z〉 w1

∗ 〈p, ξ〉, we have only |ξ|-symbols on its stack.
Thus, M cannot pop |α′|-symbols and w1ww2 /∈ L(M).

Next, we consider the case |β′| > Pop · |w2|+H. We assume that M succeeds
on consuming w1w and 〈qinit, Z〉 w1w

∗ 〈q, ζ〉 where |ζ| = |β|−|α′|+ |β′| and |β| ≥
|α′|. If M succeeds on consuming w2 from 〈q, ζ〉, then M pops at most (Pop ·
|w2|)-symbols: 〈qinit, Z〉 w1ww2

∗ 〈r, ζ ′〉 where |ζ ′| ≥ |ζ| −Pop · |w2|. Furthermore,
we have ζ ′ > H because |ζ| ≥ |β′| > Pop · |w2| + H, and so w1ww2 /∈ L(M). ��

This lemma provides upper-bounds for states p and variables X if there exists
a pair of terminal strings (w1, w2) such that S ⇒∗ w1Xw2 and qinit

α / β−−−→ p ∈∼
Δ(w1); in other words, we need a witness (w1, w2) to use this lemma. How-
ever, unfortunately, the following proposition says that we cannot compute
such pairs (w1, w2) in general; thus, we cannot use this lemma directly for
Incl(Cfl,rgPDA+U).

Proposition 10. Let p be a state and X be a variable. It is unsolvable to decide
if there is a pair (w1, w2) such that S ⇒∗ w1Xw2 and qinit

α / β−−−→ p ∈ ∼
Δ(w1).

To bypass this undecidability, we consider an underlying automaton of M
where properties similar to Lemma9 and Proposition 10 hold.

Underlying Automaton. We obtain the underlying automaton of M by forget-
ting the stack contents from the transition rules of M , i.e., a rule p α / β−−−→ q ∈ Δ(σ)
is translated to p σ−→ q in the underlying automaton. The underlying automaton
is a pair AM = (Q,E) where Q is the set of states of M and E ⊆ Q×Σ×Q has
an edge p σ−→ q if p α / β−−−→ q ∈ Δ(σ) for some α, β ∈ Γ∗. As the usual notation of
finite automata, we write p w−→ q if w = σ1σ2 . . . σn and p = p0

σ1−→ p1
σ2−→ p2

σ3−→
· · · σn−−→ pn = q. By the uniformity condition of M , AM is deterministic.

Monoid-Based Approach to the Inclusion Problem on SDPDAs 401

A state q is quasi-reachable to a variable X if there exists a pair (w1, w2) such
that S ⇒∗ w1Xw2 and qinit

w1−−→ q. The next proposition says that we can deter-
mine if a given state q is quasi-reachable to X, and it means that Proposition 10 is
solvable in the underlying automaton. A similar construction to consider under-
lying automata appears in [14, Theorem8]. It seems that in [14] they also adopted
such a construction to avoid the undecidable result of Proposition 10.

Proposition 11. There is a partial function K : Q × V ⇀ Σ∗ × Σ∗ such that:

– If K(p,X) = (w1, w2), then S ⇒∗ w1Xw2 and qinit
w1−−→ p in AM .

– If K(p,X) is undefined, then p is not quasi-reachable to X.

Proof. For a variable X, the language LX = {w1#w2 : S ⇒∗ w1Xw2, wi ∈ Σ∗}
is context-free. For a state p, the language Lp = {w#w′ : qinit

w−→ p, w′ ∈ Σ∗}
is regular. Hence, the intersection LX ∩ Lp is a context-free language. By the
decidability of the emptiness problem of context-free languages, we can decide
whether p is quasi-reachable to X and compute a witness (w1, w2). ��

Furthermore, the property corresponding to Lemma9 holds.

Lemma 12. Assume that K(p,X) = (w1, w2) and w ∈ L(X). If the following
holds, then w1ww2 ∈ L(G) \ L(M):

There is p α′ / β′−−−−→ q ∈ ∼
Δ(w) such that |α′| > Push · |w1| or |β′| > Pop · |w2|+H.

A Procedure for Incl(Cfl,rgPDA+U). Although Lemma 12 constrains the
pairs of a state p and variable X where p is quasi-reachable to X, this lemma
does not constrain non quasi-reachable states. To avoid this problem, we redefine
bounded mappings whose codomain is bounded by K.

For a mapping ψ : V → 2TM , we define the restriction ψ �K : V → 2TM :

(ψ � K)(X) := {T ∩ KX : T ∈ ψ(X)}, KX := { p α / β−−−→ q : K(p,X) is defined}.

A mapping ψ is bound by K if ψ = ψ � K and ψ satisfies the following:

∀X ∈ V.∀T ∈ ψ(X).∀p α / β−−−→ q ∈ T.

[|α| ≤ Push · |w1| ∧ |β| ≤ Pop · |w2| + H
where K(p,X) = (w1, w2).

]

Proposition 13. The set of bounded mappings {ψ : ψ is bound by K} is finite.

A mapping ψ is a solution if it satisfies the following constraint over the
transition monoid TM of M :

∀X ∈ V.

{

ψ(X) � {∼
Δ(w)} if X → w ∈ P ,

ψ(X) � ψ(Y) ⊗ ψ(Z) if X → Y Z ∈ P .

where F1 � F2 if ∀T2 ∈ F2. ∃T1 ∈ F1. T1 ⊆ T2. If ψ is a solution, then ψ(X) �∼
Δ(L(X)) for all variable X.

The reason why we redefine solutions is to establish the following property.
Indeed, even if ψ(X) ⊇ ∼

Δ(L(X)), then (ψ � K)(X) �⊇ ∼
Δ(L(X)) in general.

402 Y. Uezato and Y. Minamide

Proposition 14. If a mapping ψ is a solution then ψ � K is also a solution.

This proposition is crucial to obtain our main theorem.

Theorem 15. L(G) ⊆ L(M) ⇐⇒
∃(ψ : solution). ψ(S) ⊆ {T : qinit

Z / ξ−−−→ qf ∈ T, 〈qf , ξ〉 ∈ F} ⇐⇒
∃(ψ′ : bounded solution.). ψ′(S) ⊆ {T : qinit

Z / ξ−−−→ qf ∈ T, 〈qf , ξ〉 ∈ F}.
As with Incl(Cfl,Dyck), to decide if L(G) ⊆ L(M), it suffices to explore

a solution in the finite set of bounded mappings. This implies our main result.

Corollary 16. The inclusion problem Incl(Cfl,rgPDA+U) is decidable.

5 Attempt at Generalization or Undecidability

We have given a decidability proof of Incl(Cfl,Sdpda) where each problem
is of the form L(G) ⊆ L(M). One possible generalization is to consider the
inclusion of the form L(G) ⊆ L′(M) where L′(M) is the language defined by
L′(M) := {w : 〈qinit, Z〉 w

∗ 〈qf , α〉, 〈qf , ε〉 ∈ FM , α ∈ Γ∗}. However, as Friedman
and Greibach showed in [5], the above problem becomes undecidable. Indeed,
the empty-stack acceptance condition is crucial in the proof of Lemma 9.

The second attempt is to replace the third condition of Sdpdas by the con-
dition: if 〈p, α〉 σ

∗ 〈q, β〉 and 〈p, α′〉 σ
∗ 〈r, β′〉, then q = r but maybe |α| − |β|

�= |α′| − |β′|. The relaxed condition enables us to simulate simple machines. A
realtime DPDA M is a simple machine if M has only one state and accepts words
by the empty-stack. Since simple machines are realtime DPDAs that satisfy the
above relaxed condition, the undecidability of the inclusion problem on simple
machines [4] implies the undecidability of the inclusion problem between CFGs
and the relaxed Sdpdas. A similar argument shows that the inclusion problem
also becomes undecidable if we adopt the following condition: if 〈p, α〉 σ

∗ 〈q, β〉
and 〈p, α′〉 σ

∗ 〈r, β′〉, then |α| − |β| = |α′| − |β′| but maybe q �= r.
These results illustrate the difficulty of finding a class of languages B that

makes Incl(Cfl,B) decidable with Sdpda � B. Now we consider finding a
class A such that Cfl � A and Incl(A,Sdpda) is decidable. For this purpose,
we consider the class IL of indexed languages [1,7]. This class and higher-order
indexed languages [10] is known as a natural generalization of Cfl and have
received attention for higher-order program verification [8]. If we could solve
Incl(IL,Sdpda), then this becomes a base for program verification. However,
unfortunately, the inclusion problem on IL is unsolvable for Incl(IL,Dyck).

An indexed grammar is a 5-tuple G = (V,Σ, F, S, P) where V = {A,B, . . .}
is a finite set of variables, S ∈ V is the start variable, Σ = {σ1, σ2, . . .} is
a finite set of terminal symbols, and F = {f, g, . . .} is a finite set of indices,
and P is a finite set of production rules [1,7]. Each rule in P is one of
the following: A → BC, Af → B, A → Bf , A → σ where A,B,C ∈
V , f ∈ F , and σ ∈ Σ. A sentential form ψ is of the form ψ =
α1(A1, x1)α2(A2, x2) . . . αn(An, xn)αn+1 ∈ (Σ ∪ (V × F ∗))∗ where αi ∈ Σ∗ and

Monoid-Based Approach to the Inclusion Problem on SDPDAs 403

(Ai, xi) ∈ V × F ∗. Instead of (A, x) ∈ V × F ∗, we write Ax. Each produc-
tion rule rewrites a sentential form as follows: (1) a rule A → BC rewrites as
ψ1Axψ2 ⇒ ψ1BxCxψ2, (2) a rule Af → B rewrites as ψ1Afxψ2 ⇒ ψ1Bxψ2, (3) a
rule A → Bf rewrites as ψ1Axψ2 ⇒ ψ1Bfxψ2, and (4) a rule A → σ rewrites
as ψ1Axψ2 ⇒ ψ1σψ2. The language of an indexed grammar G is defined by
L(G) := {w ∈ Σ∗ : S ⇒∗ w}. The class of indexed languages IL is the languages
generated by indexed grammars.

To obtain the undecidability of Incl(IL,Dyck), we use an undecidability
result of DT0L-systems. A DT0L-system is a tuple G = (Σ, g1, . . . , gn, α) where
Σ is a finite alphabet, gi : Σ∗ → Σ∗ is a homomorphism for each i ∈ [1..n], and
the non-empty word α ∈ Σ+ is the axiom of G [12]. On a DT0L G, we define
the function FG : [1..n]∗ → Σ∗ recursively: FG(ε) := α and FG(i1 . . . in−1in) :=
gin

(FG(i1 . . . in−1)). The following theorem is the immediate consequence of The-
orem II.12.1 and III.7.1 of [12] and is key to showing our undecidability result.

Theorem 17 [12]. Let G = (Σ, g1, . . . , gn, α) and H = (Σ′, h1, . . . , hn, β)
be DT0L-systems with n-homomorphisms. It is unsolvable to decide whether
|FG(w)| ≥ |FH(w)| for all w ∈ [1..n]∗.

Theorem 18. Let L be an indexed language over {á, à}. It is unsolvable to
decide whether L ⊆ Dyck({a}).

Proof (Sketch). Let G and H be DT0L-systems with n-homomorphisms. On the
basis of the construction of [7, Theorem14.8], we can encode G and H into an
indexedgrammar I asL(I) = { áiàj áj ài : w ∈ [1..n]∗, i = |FG(w)|, j = |FH(w)| }.

Since i ≥ j ⇐⇒ ái àj áj ài ∈ Dyck({a}), we have the following:

L(I) ⊆ Dyck({a}) ⇐⇒ |FG(w)| ≥ |FH(w)| for all w ∈ [1..n]∗.

This property and Theorem 17 imply the undecidability of Incl(IL,Dyck). ��

6 Related Work

The idea of using monoids to solve inclusion problems follows previous work by
the second author [11], which restated the decidability of the inclusion prob-
lems Incl(Cfl,Reg) and Incl(Cfl,Dyck). We have extended the previous
approach for Incl(Cfl,Sdpda) by introducing rgPDAs and using a transi-
tion monoid of rgPDAs to accommodate the technique of Berstel and Boas-
son. In the paper [3], Bertoni et al. also used a monoid to solve the inclusion
problem Incl(Cfl,Dyck). Unfortunately, their proof is incorrect because they
depended heavily on the incorrect assumption that Dyck monoids are cancella-
tive. A monoid M is cancellative if xy = xz implies y = z and yx = zx implies
y = z for every x, y, z ∈ M . However, the Dyck monoid over {a} is not cancella-
tive, i.e., μ(à3á3)μ(à2á2) = a3/a3 = μ(à3á3)μ(à1á1) but μ(à2á2) �= μ(à1á1).

Tsukada and Kobayashi showed the decidability of Incl(Cfl,Sdpda) by
designing a type system for DPDAs [14]. They translated an inclusion problem

404 Y. Uezato and Y. Minamide

L(G) ⊆ L(M) for a CFG G and an Sdpda M into the type-theoretical problem
deciding if G is typable under a type system obtained from M . In their type
system, a typed term is of the form w : τ where a type τ is a set of pairs of
configurations τ = {c → c′ : c′

w
∗ c}. Since each type and each type environ-

ment are infinite in general, Tsukada and Kobayashi required extra notations
to represent infinite objects in a finite form; this makes their proof elaborated
overall. Conversely, as mentioned in Sect. 2, we consider the monoids obtained
from transition rules of rgPDAs and thus the set

∼
Δ(w) is finite for any word w.

It is worthy to note that the definition of reading configurations of their paper
differs from Greibach and Friedman [6] and us. A configuration c is a reading
configuration if c is not expandable by ε-moves in their definitions; thus, each
configuration with the empty stack 〈q, ε〉 becomes a reading configuration in [14].
This difference is significant and their main theorems [14, Theorems 8 and 10] do
not hold in their definition; however, it seems that their proofs and result hold
in the original definition of reading configurations considered by Greibach and
Friedman.

7 Conclusion and Future Work

We have extended the decidability proof of Incl(Cfl,Dyck) given by Bers-
tel and Boasson to Incl(Cfl,Sdpda) by introducing rgPDAs and considering
their monoid. Sdpda strictly includes the class of languages accepted by visibly
pushdown automata with empty stack. Recently, the class of languages accepted
by Floyd automata (operator precedence languages) [9] have received attention
because it includes the class of visibly pushdown languages and enjoys many clo-
sure properties. To the best of our knowledge, the relationship between Sdpdas
and Floyd automata with empty stack and the decidability of the inclusion prob-
lem between CFGs and them have not been studied to date. We would like to
tackle these problems by extending the arguments presented in this paper.

Acknowledgement. We are grateful to the anonymous reviewers for their careful
reading, pointing out some mistakes, and invaluable suggestions. This work was sup-
ported by JSPS KAKENHI Grant Number 15J01843 and 15K00087.

References

1. Aho, A.V.: Indexed grammars–an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

2. Berstel, J., Boasson, L.: Formal properties of XML grammars and languages. Acta
Informatica 38(9), 649–671 (2002)

3. Bertoni, A., Choffrut, C., Radicioni, R.: The inclusion problem of context-free
languages: some tractable cases. In: Diekert, V., Nowotka, D. (eds.) DLT 2009.
LNCS, vol. 5583, pp. 103–112. Springer, Heidelberg (2009)

4. Friedman, E.P.: The inclusion problem for simple languages. TCS 1, 297–316 (1976)
5. Friedman, E.P., Greibach, S.A.: Superdeterministic DPDAs: the method of accept-

ing does affect decision problems. JCSS 19(1), 79–117 (1979)

Monoid-Based Approach to the Inclusion Problem on SDPDAs 405

6. Greibach, S.A., Friedman, E.P.: Superdeterministic PDAs: a subcase with a decid-
able inclusion problem. J. ACM 27(4), 675–700 (1980)

7. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

8. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: POPL, pp. 416–428. ACM (2009)

9. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence lan-
guages: their automata-theoretic and logic characterization. SIAM J. Comput.
44(4), 1026–1088 (2015)

10. Maslov, A.N.: Multilevel stack automata. Prob. Inf. Trans. 12, 38–43 (1976)
11. Minamide, Y.: Verified decision procedures on context-free grammars. In:

Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 173–188.
Springer, Heidelberg (2007)

12. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, New York (1978)

13. Takahashi, M.: Generalizations of regular sets and their application to a study of
context-free languages. Inf. Control 27(1), 1–36 (1975)

14. Tsukada, T., Kobayashi, N.: An intersection type system for deterministic push-
down automata. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS,
vol. 7604, pp. 357–371. Springer, Heidelberg (2012)

Author Index

Basten, H.J.S. 1
Bedon, Nicolas 13
Berdinsky, Dmitry 26
Bhave, Devendra 38
Boiret, Adrien 355
Broda, Sabine 51

Cadilhac, Michaël 64
Cassaigne, Julien 77
Chen, Liang-Ting 89
Cho, Da-Jung 102
Choffrut, Christian 114

Dartois, Luc 125
Dave, Vrunda 38
Denkinger, Tobias 138
Dück, Stefan 151

Endrullis, Jörg 164

Gasnikov, Daniil 177
Geffert, Viliam 190
Guillon, Bruno 114

Han, Yo-Sub 102
Herrmann, Luisa 203

Ibarra, Oscar H. 216

Jecker, Ismaël 125
Jirásek Jr., Jozef 229, 243
Jirásková, Galina 243

Karhumäki, Juhani 77, 164
Klop, Jan Willem 164
Krebs, Andreas 64
Krishna, S.N. 38
Kuske, Dietrich 256
Kwee, Kent 268

Labbé, Sébastien 280
Lange, Klaus-Jörn 64
Leroy, Julien 280

Machiavelo, António 51
Maletti, Andreas 293
Manea, Florin 306
McQuillan, Ian 216
Michalewski, Henryk 319
Minamide, Yasuhiko 393
Moreira, Nelma 51

Ng, Timothy 102
Nowotka, Dirk 306, 332

Ochem, Pascal 344
Otto, Friedrich 268

Palenta, Raphaela 355
Paul, Erik 368
Phawade, Ramchandra 38
Prianychnykova, Olena 256
Puzynina, Svetlana 77

Reis, Rogério 51
Reynier, Pierre-Alain 125
Rosenfeld, Matthieu 344

Saarela, Aleksi 164, 332
Salomaa, Kai 102
Schmid, Markus L. 306
Šebej, Juraj 243
Shur, Arseny M. 177
Skrzypczak, Michał 319
Szykuła, Marek 380

Trivedi, Ashutosh 38

Uezato, Yuya 393
Urbat, Henning 89

Vogler, Heiko 203
Vorel, Vojtěch 380

Whiteland, Markus A. 77

	Preface
	Organization
	Abstracts of Invited Talks
	Tree Sets: From Bifix Codes to Algebraic Word Combinatorics
	Towards a Theory of Complexity for Regular Languages
	Permutations and Shifts
	Counting, Generating and Sampling Tree Alignments
	Contents
	Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata
	1 Introduction
	2 Preliminaries and Notational Conventions
	2.1 Context-Free Grammars
	2.2 Pushdown Automata

	3 Ambiguity Detection with MPDAs
	3.1 Checking Ambiguity
	3.2 Choice of Pushdown Automaton
	3.3 Choice of Multi-stack Pushdown Automaton

	4 Bounded-Balance Multi-Stack Pushdown Automata
	4.1 Definition
	4.2 Configuration Exploration
	4.3 Application to Ambiguity Detection

	5 Comparisons and Related Work
	5.1 Multi-Stack Pushdown Automata
	5.2 Ambiguity Detection Methods

	6 Conclusion
	References

	Complementation of Branching Automata for Scattered and Countable Series-Parallel Posets
	1 Introduction
	2 Notation and Basic Definitions
	3 Rational Languages and Branching Automata
	4 Algebras
	5 Sketch of the Proof of Theorem5
	References

	Cayley Automatic Groups and Numerical Characteristics of Turing Transducers
	1 Introduction
	2 Turing Transducers of the Class T and Automatic Presentations of Labeled Directed Graphs
	3 Numerical Characteristics of Turing Transducers
	4 Wreath Products of Groups: Basic Notation
	5 Asymptotic Behavior of the Numerical Characteristics
	5.1 Growth Functions and Følner Functions
	5.2 Random Walk and Average Length Growth Functions

	6 Discussion
	References

	A Perfect Class of Context-Sensitive Timed Languages
	1 Introduction
	2 Dense-Time Visibly Pushdown Multistack Automata
	2.1 Preliminaries
	2.2 Dense-Time Visibly Pushdown Multistack Automata (dtMVPA)

	3 Proof of Theorem6
	3.1 Determinizability of k-ECMVPA
	3.2 Determinizability of k-dtMVPA

	4 Logical Characterization of k-dtMVPA
	References

	Position Automaton Construction for Regular Expressions with Intersection
	1 Introduction
	2 Preliminaries
	3 Indexed Expressions
	4 A Position Automaton for RE Expressions
	5 A c-Continuation Automaton for RE Expressions
	6 The Apd as a Quotient of Apos
	7 Final Remarks
	References

	A Language-Theoretical Approach to Descriptive Complexity
	1 Introduction
	2 Preliminaries
	3 Composing Languages
	4 The Descriptive Complexity Framework
	5 Examples
	6 Logics and Their Language Classes
	7 Associativity of the Block Product
	8 Conclusion
	References

	k-Abelian Equivalence and Rationality
	1 Introduction
	2 Preliminaries and Notation
	3 Properties of k-Switchings
	4 On the Number of k-Abelian Equivalence Classes
	4.1 Complexities for Small Values of k and m

	5 Towards a Structure of Fixed Sized Equivalence Classes
	6 Open Problems and Future Research
	References

	Schützenberger Products in a Category
	1 Introduction
	2 Preliminaries
	3 Languages and Algebraic Recognition
	4 The Schützenberger Product
	5 Conclusions and Future Work
	References

	Outfix-Guided Insertion
	1 Introduction
	2 Definition of (Iterated) Outfix-Guided Insertion
	3 Outfix-Guided Insertion and Regular Languages
	4 Outfix-Guided Insertion and Context-Free Languages
	5 Deciding Closure Under Outfix-Guided Insertion
	6 Conclusion
	References

	Both Ways Rational Functions
	1 Introduction
	2 Preliminaries
	2.1 Rational and Recognizable Subsets
	2.2 Free Monoids and Direct Products Thereof
	2.3 Elementary Operators on Binary Relations

	3 Both Ways Rational Relations
	3.1 Formal Definitions
	3.2 Closure Properties
	3.3 Non-closure Properties

	4 The Case of Functions
	4.1 A Sufficient Condition Concerning the Image
	4.2 Regular Subsets of Words Invariant Under Reversal-Like Operations
	4.3 Back to Both Ways Rational Functions
	4.4 Complexity Considerations

	References

	Aperiodic String Transducers
	1 Introduction
	2 Definitions
	2.1 Words, Languages and Transducers
	2.2 Transition Monoid of Transducers

	3 Substitution Transition Monoid
	4 From 1-Bounded SST to 2DFT
	5 From 2DFT to Copyless SST
	6 From k-Bounded to 1-Bounded SST
	7 Perspectives
	References

	An Automata Characterisation for Multiple Context-Free Languages
	1 Introduction
	2 Preliminaries
	3 Tree Stack Automata
	4 The Equivalence of MCFG and Restricted TSA
	4.1 Every MCFG Has an Equivalent Restricted TSA
	4.2 Every Restricted TSA Has an Equivalent MCFG
	4.3 The Main Theorem

	5 Conclusion
	References

	Weighted Automata and Logics on Infinite Graphs
	1 Introduction
	2 Graphs and Graph Acceptors
	3 Infinite Graph Acceptors
	4 Weighted Graph Automata
	5 Weighted Logics for Graphs
	6 Weighted Automata and Logics for Infinite Graphs
	7 Conclusion
	References

	Degrees of Infinite Words, Polynomials and Atoms
	1 Introduction
	2 Preliminaries
	3 Transducer Degrees
	4 Spiralling Words
	5 The Degree of "426830A nk"526930B is Not an Atom for k 3
	6 Atoms of Every Polynomial Order
	7 Future Work
	References

	Ternary Square-Free Partial Words with Many Wildcards
	1 Introduction
	2 Preliminaries
	3 White and Black Positions
	3.1 Rigid Words

	4 Proofs of Main Results
	4.1 Upper Bound on Flexibility
	4.2 Word of Maximal Flexibility
	4.3 Morphic and Substitutional Flexible Words

	5 Conclusion and Open Problems
	References

	Alternating Demon Space Is Closed Under Complement and Other Simulations for Sublogarithmic Space
	1 Introduction
	2 Simulations
	3 Conclusion
	References

	Weighted Symbolic Automata with Data Storage
	1 Introduction
	2 Preliminaries
	3 Weighted Symbolic Automata with Data Storage
	4 Data Storage for Symbolic Visibly Pushdown Automata
	5 Data Storage for Weighted Timed Automata
	6 Weighted Symbolic MSO-Logic with Storage Behavior
	References

	On Families of Full Trios Containing Counter Machine Languages
	1 Introduction
	2 Preliminaries
	3 Instruction NCM Machines
	4 Generators for the Families
	5 Applications to Existing Families
	References

	Non-regular Maximal Prefix-Free Subsets of Regular Languages
	1 Introduction
	2 Preliminaries
	3 Characterization of Regular Languages with Non-regular Maximal Prefix-Free Subsets
	3.1 A Maximal Prefix-Free Subset CS for a Set of Integers S

	4 Maximal Prefix-Free Subsets and Chomsky Hierarchy
	4.1 MPFS in CSCF, RecCS, and Not in RE
	4.2 MPFS in RERec
	4.3 MPFS in CFReg

	5 Conclusions
	References

	Operations on Unambiguous Finite Automata
	1 Introduction
	2 Preliminaries
	3 Operations on Unambiguous Finite Automata
	4 Partial Results for Complementation and Union
	5 Conclusions
	References

	The Trace Monoids in the Queue Monoid and in the Direct Product of Two Free Monoids
	1 Introduction
	2 Preliminaries and Main Result
	2.1 The Trace Monoid
	2.2 The Queue Monoid
	2.3 The Main Result

	3 (3) Implies (2) in Theorem 8
	4 (1) Implies (3) in Theorem 8
	4.1 (+-,I) Is Complete Bipartite
	4.2 Nodes from +- Are Connected to Any Edge
	4.3 Nodes from Have Degree 1
	4.4 (,I) Is P4-free
	4.5 Proof of the Implication (1)(3) in Theorem 8

	References

	On Ordered RRWW-Automata
	1 Introduction
	2 Ordered RRWW-Automata
	3 On Stateless ORRWW-Automata
	4 On Nondeterministic ORRWW-Automata
	5 Conclusion
	References

	Bispecial Factors in the Brun S-Adic System
	1 Introduction
	2 Brun's Algorithm
	3 Brun S-Adic System
	3.1 S-Adic Words
	3.2 Brun Substitutions and Brun Words
	3.3 Relations with Arnoux-Rauzy and Poincaré Substitutions
	3.4 Other Substitutions Used for Brun's Algorithm in the Litterature

	4 Bispecial Factors Under Brun Substitutions
	4.1 Special Factors and Extension Type
	4.2 Antecedents, Extended Images and Their Extension Types

	5 Bispecial Words in the Brun System
	5.1 Desubstitution of Bispecial Words
	5.2 Extension Type of the Empty Word
	5.3 Left Extensions of Length 2 Are Sufficient
	5.4 First Descendants of the Empty Word
	5.5 Descendance of Bispecial Factors u with d2-(u) = d1-(u)=3
	5.6 Occurrences of Strong and Weak Bispecial Factors

	6 Further Work
	References

	Compositions of Tree-to-Tree Statistical Machine Translation Models
	1 Introduction
	2 Preliminaries
	3 Unweighted Compositions
	4 Weighted Compositions
	5 Conclusion
	References

	On the Solvability Problem for Restricted Classes of Word Equations
	1 Introduction
	2 Definitions
	3 Regular and Non-cross Word Equations
	4 Word Equations with Regular Constraints
	4.1 Bounded Word Equations
	4.2 Individual Alphabets

	5 Conclusions
	References

	Unambiguous Büchi Is Weak
	1 Introduction
	1.1 Related Work
	1.2 Outline of the Paper

	2 Basic Notions
	3 Partition Property
	4 Construction of the Automaton
	5 Correctness of the Construction
	5.1)=L(R)

	6 Conclusion
	References

	One-Unknown Word Equations and Three-Unknown Constant-Free Word Equations
	1 Introduction
	2 Preliminaries
	3 Main Questions
	4 One-Unknown Equations with Constants
	5 Classification of Solutions
	6 Class C
	7 Class D
	8 Main Results
	9 Conclusion
	References

	Avoidability of Formulas with Two Variables
	1 Introduction
	2 The Useful Lemma
	3 Formulas Avoided by Few Binary Words
	4 Formulas Avoided by Exponentially Many Binary Words
	5 Concluding Remarks
	References

	Deciding Equivalence of Linear Tree-to-Word Transducers in Polynomial Time
	1 Introduction
	2 Preliminaries
	3 Linear Tree-to-Word Transducers
	3.1 Linear Earliest Normal Form

	4 Partial Normal Form
	4.1 Eliminating Non-Earliest Quasi-Periodic States
	4.2 Switching Periodic States
	4.3 Testing Equivalence in Polynomial Time

	References

	On Finite and Polynomial Ambiguity of Weighted Tree Automata
	1 Introduction
	2 Weighted Tree Automata
	3 Finite Ambiguity
	4 Polynomial Ambiguity
	4.1 General Definitions and Observations
	4.2 Decomposition into a Sum of Standardized Automata
	4.3 Analysis of the Polynomial Standard Form

	5 Application: Weighted Logics
	6 Conclusion
	References

	An Extremal Series of Eulerian Synchronizing Automata
	1 Introduction
	2 Preliminaries
	3 Backward Tracing
	4 The Extremal Series of Eulerian Automata
	4.1 Construction of a Reset Word
	4.2 Lower Bound on the Reset Threshold
	4.3 Extending Words

	5 Experiments
	References

	Monoid-Based Approach to the Inclusion Problem on Superdeterministic Pushdown Automata
	1 Introduction
	2 Generalized PDA and Superdeterministic PDA
	3 Decidability of Incl(CFL, DYCK) Revisited
	4 Decidability of Incl(CFL, RGPDA+U)
	5 Attempt at Generalization or Undecidability
	6 Related Work
	7 Conclusion and Future Work
	References

	Author Index

