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Preface

This volume contains the papers presented at the second in the SETTA (the Symposium
on Dependable Software Engineering: Theories, Tools and Applications) series of
conferences – held during November 9–11, 2016, in Beijing, China. The symposium
series was inaugurated in 2015 to build a forum for computer scientists and software
engineers from Chinese and international communities to exchange and inform each
other of research ideas and activities, building new collaborations and strengthening
existing collaborations among formal methods researchers inside and outside China.
A key goal of SETTA is to especially encourage and nourish young researchers working
in the use of formal methods in building software and cyber-physical systems.

SETTA 2016 received over 58 submissions of abstracts, with 45 of them as
full-paper submissions by the submission deadline. These submissions were coau-
thored by researchers from 22 countries. Each submission was reviewed by at least
three Program Committee (PC) members with help from reviewers outside the PC.
After two weeks of online discussions, the committee decided to accept 20 papers for
presentation at the conference (with the acceptance rate of 44 %); this includes 17 full
papers and three short papers. It was decided to include short papers to provide a forum
for participants to present research in progress. To alleviate presentational issues on
some papers of good technical quality, shepherding by PC members was employed
while preparing revisions. Such submissions were accepted after an additional round of
reviewing leading to one submission being rejected.

We would like to express our gratitude to all the researchers who submitted their
work to the symposium. We are particularly thankful to all colleagues who served on
the PC, as well as the external reviewers, whose hard work in the review process helped
us prepare a high-quality conference program. The international diversity of the PC as
well as external reviewers is noteworthy as well: PC members and external reviewers
have affiliations with institutes in 17 countries. Special thanks go to the invited
speakers, Prof. Lee from the University of California, Berkeley, Prof. Sankara-
narayanan of the University of Colorado, and Prof. Ying of the University of Sydney
and Tsinghua University, for agreeing to present their research. The abstracts of the
invited talks are included in this volume.

Like SETTA 2015, SETTA 2016 also had a young SETTA Researchers Workshop,
which was held on November 12, 2016. Another inaugural event – the first National
Conference on Formal Methods and Applications in China – was held during
November 12–13, 2016.

A number of colleagues worked very hard to make this conference a success. We
wish to express our gratitude especially to Prof. Shuling Wang for taking care of
numerous activities related to the publicity, conference proceedings, and other aspects
of the conference. We thank the conference chair, Huimin Lin, publicity chairs, Nils
Muellner and Lijun Zhang, and the local Organizing Committee of Andrea Turini,
Shuling Wang, Peng Wu, and Zhilin Wu. Finally, we enjoyed great institutional and



financial support from the Institute of Software, the Chinese Academy of Sciences
(ISCAS), without which an international conference like SETTA and the colocated
events could not have been be successfully organized. We also thank the Chinese
Computer Federation (CCF) and the Natural Science Foundation of China (NSFC) for
financial support.

August 2016 Martin Fränzle
Deepak Kapur
Naijun Zhan
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Keynote Abstracts



Dependable Cyber-physical Systems

Edward A. Lee

Electrical Engineering and Computer Sciences Department,
University of California, Berkeley, USA

Abstract. Cyber-physical systems are integrations of computation, communi-
cation networks, and physical dynamics. Applications include manufacturing,
transportation, energy production and distribution, biomedical, smart buildings,
and military systems, to name a few. Increasingly, today, such systems leverage
Internet technology, despite a significant mismatch in technical objectives.
A major challenge today is to make this technology reliable, predictable, and
controllable enough for “important” things, such as safety-critical and mission-
critical systems. In this talk, I will analyze how emerging technologies can
translate into better models and better engineering methods for this evolving
Internet of Important things.



From Finitely Many Simulations to Flowpipes

Sriram Sankaranarayanan

Computer Science Department, University of Colorado Boulder, Boulder, USA

Abstract. Flowpipe construction techniques generalize symbolic execution for
continuous-time models by computing future trajectories for sets of inputs and
initial states. In doing so, they capture infinitely many behaviors of the under-
lying system, thus promising exhaustive verification. We examine the progress
in this area starting from techniques for linear systems to recent progress in
reasoning about nonlinear dynamical systems. We demonstrate how this area of
research transforms fundamental results from dynamical systems theory into
useful computational techniques for reasoning about cyber-physical systems.
This progress has led to increasingly popular tools for verifying cyber-physical
systems with applications to important verification problems for medical devices
and automotive software. We demonstrate how recent approaches have
exploited commonly encountered properties of the underlying continuous
models such as monotonicity, incremental stability and structural dependencies
to verify properties for larger and more complex systems. Despite this progress,
many challenges remain. We present some of the key theoretical and practical
challenges that need to be met before flowpipe construction can be a true
“technology” for verifying industrialscale systems.



Toward Automatic Verification
of Quantum Programs
(Extended Abstract)

Mingsheng Ying1,2

1 Centre for Quantum Computation and Intelligent Systems,
University of Technology Sydney, Ultimo, Australia

Mingsheng.Ying@uts.edu.au
2 Department of Computer Science and Technology,

Tsinghua University, Beijing, China
yingmsh@tsinghua.edu.cn

Keywords: Quantum programming � Hoare logic � Invariant generation �
Algorithmic analysis of termination � Synthesis of ranking functions

Programming is error-prone. Programming a quantum computer and designing quan-
tum communication protocols are even worse due to the weird nature of quantum
systems [11]. Therefore, verification techniques for quantum programs and quantum
protocols will be indispensable whence commercial quantum computers and quantum
communication systems are available. In the last 10 years, various verification tech-
niques for classical programs including program logics and model-checking have been
extended to deal with quantum programs. This talk summaries several results obtained
by the author and his collaborators in this line of research.

1 Quantum Hoare Logic

In quantum programming, the state space of a program variable is a Hilbert space.
A quantum predicate in a Hilbert space was defined by D’Hondt and Panangaden in [4]
as a Hermtian operator, i.e. an observable, between the zero and identity operators.
A proof system for partial and total correctness of the Floyd-Hoare style was developed
and its (relative) completeness was proved in [10] for the following quantum extension
of while-language:

P ::¼ skip j P1;P2 j q :¼ j0i j �q :¼ U½�q� j if Wm M½�q� ¼ m ! Pmð Þ fi
j while M½�q� ¼ 1 do P od

The command “q :¼ j0i” is an initialisation that sets quantum variable q to a basis state
j0i. The statement “�q :¼ U½�q�” means that unitary transformation U is performed on
quantum register �q, leaving the states of the variables not in �q unchanged. The construct
“if � � � fi” is a quantum generalisation of case or switch statement. In executing it,



measurement M = {Mm} is performed on �q, and then a subprogram Pm is selected to
be executed next according to the outcomes m of measurement. The statement “while
� � � od” is a quantum generalisation of while-loop. The measurement in it has only two
possible outcomes 0, 1. If the outcome 0 is observed, then the program terminates, and
if the outcome 1 occurs, the program executes the loop body P and continues the
loop. It is interesting to carefully compare the Hoare rule for loops:

fu ^ bgPfug
fug while b do P odfu ^ :bg

with the rule for quantum loops given in [10]:

fBgP My
0 AM0 þMy

1 BM1

n o

fMy
0 AM0 þMy

1 BM1g while M½�q� ¼ 1 do P od fAg

A theorem prover was built by Liu, Li, Wang et al. in [8] for quantum Hoare logic
based on Isabelle/HOL.

2 Invariants of Quantum Programs

A super-operator in a Hilbert space is a completely positive mapping from (linear)
operators to themselves. The control flow of a quantum program can be represented by
a super-operator-valued transition system (SVTS):

Definition 1. An SVTS is a 5-tuple S ¼ hH; L; l0; T ;Hi; where: (1) H is a Hilbert
space; (2) L is a finite set of locations; (3) l0 2 L is the initial location; (4) H is a
quantum predicate in H denoting the initial condition; and (5) T is a set of transitions.

Each transition s 2 T is written as s ¼ l!E l0 with l; l0 2 L and E being a super-

operator in H. For each l 2 L, it is required that El ¼
P

fjE : l!E l0 2 T jg is trace-
preserving, i.e. trðElðqÞÞ ¼ trðqÞ for all q.

The notion of invariant for quantum programs was recently introduced in [14]. A set P

of paths is said to be prime if for each p ¼ l1 !
E1

. . . !En�1 ln 2 P, its proper initial seg-

ments l1 !
E1

. . . !Ek�1 lk 62 P for all k\n. We write Ep for the composition of E1; . . .; En�1

and EP ¼
P

jEp : p 2 Pjf g.

Definition 2. Let S ¼ hH; L; l0; T ;Hi be an SVTS and l 2 L. An invariant at location
l 2 L is a quantum predicate O in H satisfying the condition: for any density operator
q and prime set P of paths from l0 to l, we have:

trðHqÞ� 1� trðEPðqÞÞþ trðOEPðqÞÞ:

XIV M. Ying



In [14], it was shown that invariants can be used to establish partial correctness of
quantum programs, and by generalising the constraint-based technique of Colón et al.
[3, 9], invariant generation for quantum programs is reduced to an SDP (Semidefinite
Programming) problem.

3 Terminations of Quantum Programs

Algorithmic analysis of termination for quantum programs was first considered in [13]
where the Jordan decomposition of complex matrices was employed as the main tool.
It was further studied by the author and his collaborators in a series of papers [7, 15–17]
by introducing quantum Markov chains as a semantic model of quantum programs and
using matrix representation of super-operators.

The notion of ranking function was defined in [10] for proving total correctness of
quantum programs. The synthesis problem of ranking functions for quantum programs
was recently investigated in [12] where the fundamental Gleason theorem [6] in
quantum foundations was used to determine the template of ranking functions. In the
last few years, (super)martingales have been employed as a powerful mathematical
tools for termination analysis of probabilistic programs [1, 2, 5]. It seems that the ideas
of this line of research can be generalised to deal with quantum programs, but we need
to systematically develop a mathematical theory of quantum (super)martingales first.

Acknowledgment. This work was partly supported by the Australian Research Council (Grant
No: DP160101652) and the Overseas Team Program of Academy of Mathematics and Systems
Science, Chinese Academy of Sciences.
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Place Bisimulation and Liveness for Open
Petri Nets

Xiaoju Dong1(B), Yuxi Fu1, and Daniele Varacca2

1 BASICS, Department of Computer Science, Shanghai Jiao Tong University,
Shanghai, China

{xjdong,yxfu}@sjtu.edu.cn
2 PPS - CNRS and Université Paris Diderot, Paris, France

varacca@pps.jussieu.fr

Abstract. Petri nets are a kind of concurrent models for distributed and
asynchronous systems. However they can only model closed systems, but
not open ones. We extend Petri nets to model open systems. In Open
Petri Nets, the way of interaction is achieved by composing nets. Some
places with labels, called open or external, are considered as an interface
with environment. Every external places are both input and output ones.
Two such open Petri nets can be composed by joining the external places
with the same label. In addition, we focus on the operational semantics
of open nets and study observational properties, especially bisimulation
properties. We define place bisimulations on nets with external places.
It turns out that the largest bisimulation, i.e. the bisimilarity, is a con-
gruence. A further result is that liveness is preserved by bisimilarity.

Keywords: Open Petri net · Interaction · Bisimulation · Liveness

1 Introduction

Petri nets [30] are a kind of concurrent models for distributed and asynchronous
systems. However they can only model closed systems, but not open ones. A
closed system is a system in the state of being isolated from its surrounding
environment. It is always a theoretical assumption. In practice no system can be
completely isolated. A system is bound to interact with the environment in one
way or another. Now open systems are everywhere and continuously interact with
their environment. In this paper we extend Petri nets to model open systems [19].

Interactions always occur at the interfaces. For instance, channels are the
interfaces in process calculi. There are two kinds of objects which are places and
transitions in a net. If a net could interact with its environment, one has three
choices for interfaces: places, transitions or both.

Interactions between systems usually are in different ways [1,8–10,12–18,28,
33]. Interactions in process calculi are communications. For nets interfaces help to
define composition. If places are interfaces, one could compose the shared places
of nets to get a “sharing” net. If transitions are interfaces, one could compose or
c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-47677-3 1
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synchronize the same transitions of nets to get a “synchronized” net. Another
method is if two nets share the same subnets, then one can compose the two
nets, or the two nets are glued together by the shared subnets.

Open Petri nets are a variant of Petri nets first introduced by Baldan et al.
[2–6] that are quite different from the variant proposed by [24]. In such nets,
some places with labels, called open or external, are considered as an interface
with environment. For these external places, some are input ones, others are
output ones. An external place can be both an input and an output one at the
same time. This could be told by the dangling arcs attached to the places. Besides
external places, there could be some synchronization transitions. When two nets
are composed, the connections of transitions to their pre-set and post-set should
be preserved. New connections cannot be added. In the larger net, a new arc
may be attached to a place only if the corresponding place of the subnet has a
dangling arc in the same direction. Dangling arcs may be removed, but cannot
be added in the larger net. Baldan et al. study the denotational semantics of
such open nets.

Our approach is to label some places as external ones which is the interface
of a net. However, we don’t distinguish input and output ones. In other words,
every external places are both input and output ones. Therefore, they do not have
dangling arcs. Two such open Petri nets can be composed by joining the external
places with the same label. In addition, we focus on the operational semantics of
open nets and study observational properties [7,21,22,26,29,31,32], especially
bisimulations [11,20,23,25,27].

Bisimulations on “labeled” nets have been studied widely. In such nets, tran-
sitions are labeled. This is quite different from the nets we discuss here. We
regard transitions as internal computation and external places as observable
objects. One can classify the definitions of bisimulations into two categories.
One is bisimulations between markings, the other is bisimulations between some
places.

We define place bisimulations on nets with external places. It turns out that
the largest bisimulation, i.e. the bisimilarity, is a congruence. A further result is
that liveness is preserved by bisimilarity.

Section 2 introduces the structure of open Petri nets and gives the way of
composition of two nets. Section 3 defines bisimulations and proves that the
largest bisimulation is a congruence. Since the concept of liveness changes for
an open net, Sect. 4 studies liveness in detail. We give some conclusion in Sect. 5
and a long proof in Appendix.

2 Open Petri Nets

2.1 Definitions

The definition we give here is essentially the one presented in [4,6]. The main
difference is that we label places, not transitions.
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Definition 1. An open P/T-net is a 6-tuple N = 〈P, T, F,W,L,M〉 where

– P and T are the finite set of places and transitions, respectively. P ∩ T = ∅;
– F ⊆ P×T ∪ T×P is the flow relation;
– W : F → N \ {0} is the weight function;
– L : P ⇀ N is the labeling function, a partial function injective on its domain

of definition;
– M : P → N is the initial marking.

Since every P/T-net can be transformed to a net with unlimited capacities
without affecting its behavior, we will assume open nets N with unlimited capac-
ities for all places s ∈ PN . A place of an open P/T-net is external if it is labeled
by a name; it is internal if it is unlabeled. We shall write P e and P i for the set
of external places respectively the set of internal places.

If N is an open P/T-net, we write PN , TN , FN , WN , LN , MN for the com-
ponents.

The following definitions are the same as for standard place/transition nets.

Definition 2. Let N be an open P/T-net.

(i) A function M : PN → N is a marking of N .
(ii) For x ∈ PN ∪ TN , •x = {y | yFx} is called the preset of x; x• = {y |xFy}

is called the postset of x.
(iii) A transition t ∈ TN is M -enabled, notation M [t〉, if ∀s∈ •t.M(s) ≥

WN (s, t).
(iv) An M -enabled transition t may produce a follower marking M ′ of M defined

by the following

M(s) def=

⎧
⎪⎪⎨

⎪⎪⎩

M(s) − WN (s, t), if s∈ •t \ t•

M(s) + WN (t, s), if s∈t• \ •t
M(s) − WN (s, t) + WN (t, s), if s∈ •t ∩ t•

M(s), otherwise

(1)

We write M [t〉M ′ to indicate that M evolves into M ′ by firing t.

Figure 1 is an example of open net.

2.2 Composition of Open P/T Nets

An open net could interact with its environment via its external places. Two
nets can interact by sharing some external places. Nets are thus composed by
merging all places having the same label.

We shall always assume that two open P/T-nets N1, N2 have disjoint sets of
places (PN1 ∩ PN2 = ∅) and disjoint sets of transitions (TN1 ∩ TN2 = ∅). The
following notations are used.

PN1\N2 = {s | s ∈ PN1 ∧ LN1(s) 
∈ LN2 [PN2 ]} (2)
PN1∩N2 = {〈s1, s2〉 | s1 ∈ (PN1)

e ∧ s2 ∈ (PN2)
e ∧ LN1(s1) = LN2(s2)} (3)
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Fig. 1. An ordinary net and an open one

In words, PN1\N2 is the set of all internal places of N1 plus all external places
whose label is not in N2, while PN1∩N2 is the set of pairs of external places
that share the same labels. The idea is that such pairs of places will represent
the “merged” places in the composition. The following definition formalises this
intuition.

Definition 3. The composition of two open P/T-nets N1, N2, denoted by
N1 |N2, is the open P/T-net N defined as follows:

– PN = P i
N ∪ P e

N where

P i
N = P i

N1
∪ P i

N2
(4)

P e
N = P e

N1\N2
∪ P e

N2\N1
∪ PN1∩N2 (5)

– TN = TN1 ∪ TN2 ;
– FN is the following relation

FN1 � PN1\N2 ∪ FN2 � PN2\N1

∪{〈〈s1, s2〉, t〉 | 〈s1, t〉 ∈ FN1 , 〈s1, s2〉 ∈ PN1∩N2}
∪{〈t, 〈s1, s2〉〉 | 〈t, s1〉 ∈ FN1 , 〈s1, s2〉 ∈ PN1∩N2}
∪{〈〈s1, s2〉, t〉 | 〈s2, t〉 ∈ FN2 , 〈s1, s2〉 ∈ PN1∩N2}
∪{〈t, 〈s1, s2〉〉 | 〈t, s2〉 ∈ FN2 , 〈s1, s2〉 ∈ PN1∩N2}

– WN is the function defined as follows:

WN (〈s, t〉) =

⎧
⎪⎪⎨

⎪⎪⎩

WN1(〈s, t〉), if s ∈ PN1\N2

WN2(〈s, t〉), if s ∈ PN2\N1

WN1(〈s1, t〉) if s = 〈s1, s2〉 & t ∈ TN1

WN2(〈s2, t〉) if s = 〈s1, s2〉 & t ∈ TN2

and dually for WN (〈t, s〉).
– LN is the function defined as follows:

LN (s) =

⎧
⎨

⎩

LN1(s), if s ∈ PN1\N2

LN2(s), if s ∈ PN2\N1

LN1(s1), if s = 〈s1, s2〉



Place Bisimulation and Liveness for Open Petri Nets 5

Fig. 2. Composition of two open nets

– MN is the function defined as follows:

MN (s) =

⎧
⎨

⎩

MN1(s), if s ∈ PN1\N2

MN2(s), if s ∈ PN2\N1

MN1(s1)+MN2(s2), if s = 〈s1, s2〉
Figure 2 is a simple example of the composition of two nets.
We also define a restriction operator, to close some open places. This amounts

to a restriction on the labelling function.

Definition 4. The restriction of an open P/T-net N at a name a, denoted by
(a)N , is the open P/T-net obtained from N by modifying the labeling function
as follows:

L(a)N (s) def=
{

LN (s), if LN (s) 
= a
↑, otherwise (6)

3 Bisimulation for Open P/T Nets

The notion of bisimulation we propose differs from the one by Baldan et al. in
that it does not observe the identity of the transitions - in our work, transitions
are not labelled. What can be observed is whether a transition changes the
external marking of the net or not.

As a consequence of our approach, we do not model the interaction with the
environment by means of special transition that change the external marking -
we simply state that external places can at any moment receive or lose tokens.
Formally this is done using the notion of substitution.

3.1 Observations on Open Nets

Traditionally, behavioural properties on nets are based on the principle that
every part of the net can be observed. Whether each transition has its own
identity or whether transitions are labelled, everything that happens can be
seen from the outside.

In open nets, there is a formal notion of “outside”. The open places are the
communication interface. It is thus reasonable, in this framework, to consider
open places as the only observable part of a net. The definitions that follow are
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a consequence of this approach. What we indeed observe are the changes that
transitions impose on external marking.

We first define the notion of observation of a marked net: it is the restriction
of the marking to the external places.

Definition 5. The observation of an open P/T-net N is the function Me :
P e

N → N, the restriction of M to P e
N .

We say that two observations Me
1 and Me

2 are equivalent, notation Me
1 � Me

2 ,
if there is a bijection ι : P e

N1
→ P e

N2
satisfying the following conditions:

– Me
1 = Me

2 ◦ ι;
– Le

1 = Le
2 ◦ ι.

The environment can add or remove tokens from external places. Formally
this is represented by the notion of assignment.

Definition 6. An assignment σ : N ⇀ N is a partial function such that dom(σ)
is finite.

Suppose σ is an assignment and M is a marking of N . The marking Mσ is
obtained from M as follows:

Mσ(s) def=
{

σ(a), if s ∈ P e
N and LN (s) = a

M(s), otherwise (7)

The open P/T-net Nσ is obtained from N by replacing MN by MNσ.
An assignment can arbitrarily change the observation of an open Petri nets.

We take this into account by defining an extended notion of reachability.

Definition 7. Let [M〉e be the set inductively defined as follows: (i) M ∈ [M〉e;
(ii) if M ′ ∈ [M〉e and M ′[t〉M ′′ for some t ∈ TN then M ′′ ∈ [M〉e; and (iii) if
M ′ ∈ [M〉e then M ′σ ∈ [M〉e for any assignment σ.

Then it is easy to get the following conclusion.

Theorem 1. The reachability of an P/T open net is decidable.

Proof. Suppose N = 〈PN , TN , FN ,WN , LN ,MN 〉 is an open P/T net. Accord-
ingly, we could construct a normal P/T net N ′ as follows:

– PN ′ = P ;
– TN ′ = T

⋃{ts, t
′
s | for all external places s ∈ PN};

– FN ′ = FN

⋃{(ts, s), (s, t′s) | for all external places s ∈ PN};
– WN ′ = WN ;
– MN ′ = MN .

That is, for all external place s ∈ PN , we add two transitions ts and t′s into
the set of transitions. Meanwhile, the flow relation F is extended by two pairs
(ts, s), (s, t′s). It is obvious that the reachability sets of N and N ′ are the same.
Since the reachability of N ′ is decidable, so does N .
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3.2 Bisimulation

The notion of equivalence we are going to define must be closed under interac-
tions with the environment.

Definition 8. A binary relation R on nets is equipotent if Me
N1

� Me
N2

when-
ever N1RN2. An equipotent relation R is fully equipotent if N1RN2 implies that
N1σRN2σ for all σ.

Bisimulation relations are usually defined on labelled transition systems. The
notion defined by Baldan et al. takes into account the labels of the transitions
of the nets. In our framework, transitions are unlabelled. The only observation
we make on transition is whether they are external or internal, that is whether
or not they change the external marking.

Definition 9. Let M1,M2 be two markings of the open P/T-net N and suppose
M1[t〉M2. If Me

1 = Me
2 we write N1 −→ N2 (the transition is internal. Other-

wise we write N1
τ−→ N2 (the transition is external) We will write =⇒ for the

reflexive and transitive closure of −→, τ=⇒ for the composition =⇒ τ−→=⇒, ∗−→
for either −→ or τ−→ and ∗=⇒ for either =⇒ or τ=⇒.

We have the ingredients to define bisimulation:

Definition 10. A fully equipotent symmetric binary relation R on nets is a
bisimulation if the following properties hold whenever N1RN2:
(i) if N1 −→ N ′

1 then N2 =⇒ N ′
2RN ′

1 for some N ′
2;

(ii) if N1
τ−→ N ′

1 then N2
τ=⇒ N ′

2RN ′
1 for some N ′

2.
The bisimilarity ≈ is the largest bisimulation.

The main result of this section is that bisimilarity is congruence with respect
to the composition of Open nets.

Theorem 2. The equivalence ≈ is a congruence.

The proof is in the appendix.

4 Liveness

We are interested in studying which properties are invariant under bisimulation.
Traditionally, one of the main property considered in the study of Petri nets is
liveness. We will provide in the following notion of liveness for open Petri net,
and show that this property is invariant under bisimulation.

As we know, the liveness of a net depends on the liveness of all the transitions.
Let N be an ordinary P/T net and t ∈ TN . Then,

1. a transition t is called live iff ∀M ∈ [MN 〉 existsM ′ ∈ [M〉 s.t. t is M ′-
enabled.

2. The net N is called live iff ∀t ∈ TN : t is live.

According to the definition of livenss, the following net in Fig. 3 is not live.
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Fig. 3. Liveness

However, when another net N ′ communicates with the above net N and puts
one token in the place a, t could be fired. Hence, the definition of liveness for
an open net should be different from it for an ordinary one since interactions
would have effect on the liveness. Moreover, liveness should be observed by the
environment. Accordingly, we refine liveness for open nets.

Firstly, in an open net, the transitions could be classified into two categories
by the effect on the markings. If the trigger of a transition modifies the num-
ber of tokens in the external places, we call them observable. Otherwise, it is
unobservable.

Definition 11. A transition t ∈ TN is observable in N , if there exist M,M ′ ∈
[MN 〉e such that M [t〉M ′ and Me 
= M ′e.

Therefore, from the observational view, we would focus on the liveness of observ-
able transitions. The following property of observable transitions are obvious.

Corollary 1. If a transition t ∈ TN is observable in N , then O = (•t∪t•)∩P e 
=
∅ and ∃s ∈ O,w(s, t) 
= w(t, s).

For convenience, we have (•t)e =• t ∩ P e and (t•)e = t• ∩ P e.
Since some observable transitions have the same effect on the marking, we

could construct an equivalent relation on observable transitions. The following
definition is based on the idea that if two transitions have the same influence on
the external places in the whole net at a moment, then they are equivalent.

Definition 12. Transitions t1, t2 ∈ TN are instanteous globally equivalent,
noted as t1 �OBSig t2, if ∀M1,M

′
1 ∈ [MN 〉e.M1[t1〉M ′

1, ∃M2,M
′
2 ∈

[MN 〉e.M2[t2〉M ′
2 such that Me

1 = Me
2 and M ′e

1 = M ′e
2 , and vice versa.

Lemma 1. Suppose M1[t1〉M ′
1 and M2[t2〉M ′

2, where Me
1 = Me

2 and M ′e
1 =

M ′e
2 , for some t1, t2 ∈ TN and M1,M

′
1,M2,M

′
2 ∈ [MN 〉e. Then t1 and t2 are

instanteous globally equivalent.

Proof. Since M1[t1〉M ′
1, M2[t2〉M ′

2, Me
1 = Me

2 and Me
1 = Me

2 , one has (•t1)e =
(•t2)e, (t•1)

e = (t•2)
e and ∀s ∈ (•t1)e.W (s, t1) = W (s, t2), ∀s ∈ (t•1)

e.W (t1, s) =
W (t2, s). Then ∀M,M ′ ∈ [MN 〉e which satisfy M [t1〉M ′, there exist assignments
σ, σ′ such that Me = Me

1σ and M ′e = M ′e
1 σ′, i.e.M1σ[t1〉M1σ

′ . Hence, we also
have M2σ[t2〉M2σ

′. Therefore, t1 �OBSig t2.

Then we have to define the liveness of a transition.
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Definition 13. A transition t ∈ TN is initially live in N , if there exists M ∈
[MN 〉e such that M [t〉.

Now the liveness of an open net could be defined as follows:

Definition 14. (N,MN ) is live if for all observable and initially live transition
t ∈ TN , ∀M ∈ [MN 〉e, ∃M ′ ∈ [M〉e and ∃t′ �OBSig t such that M ′[t′〉.

The rest of the section focuses on the properties of liveness.

Lemma 2. If N1 ≈ N2 and t1 ∈ TN1 is observable and initially live, i.e.
∃M1,M

′
1 ∈ [MN1〉e such that M1[t1〉M ′

1 and Me
1 
= M ′e

1 , then ∃M2,M
′
2 ∈ [MN2〉e

and t2 ∈ TN2 such that M2[t2〉M ′
2, Me

2 � Me
1 and M ′e

2 � M ′e
1 .

Proof. Since t1 ∈ TN1 is observable and initially live, there should be a sequence
of assignments σ0, σ1, ..., σn−1 such that N1σ

0 ∗−→ N1
1 , N1

1σ1 ∗−→ N2
1 , ...,

Nn−1
1 σn−1 τ−→ Nn

1 where M1 is the marking of Nn−1
1 σn−1 and M ′

1 is the mark-
ing of Nn

1 . For N1 ≈ N2, we have N2σ
0 ∗=⇒ N1

2 ≈ N1
1 , N1

2σ1 ∗=⇒ N2
2 ≈ N2

1 ,
..., Nn−1

2 σn−1 τ=⇒ Nn
2 ≈ Nn

1 for some t2 ∈ TN2 . Suppose M2 is the marking of
Nn−1

2 σn−1 and M ′
2 is the marking of Nn

2 , then one has M2[t2〉M ′
2, Me

2 � Me
1

and M ′e
2 � M ′e

1 .

Now we come to the most important result of the section.

Definition 15. E is the equivalence relation on [M〉e if ∀M1,M2 ∈
[M〉e.〈M1,M2〉 ∈ E iff Me

1 = Me
2 .

Definition 16. An equivalence class of M ∈ [MN 〉e under E, denoted [M ], is
the subset of [MN 〉e for which every element M ′, 〈M,M ′〉 ∈ E. The quotient
set on [MN 〉e by E is the set of all equivalence classes of [MN 〉e by E, denoted
[MN 〉e/E = {[M ] |M ∈ [MN 〉e}.
Lemma 3. If N1 ≈ N2, then [MN1〉e/E1 and [MN2〉e/E2 are isomorphic.

Proof. Suppose MN1 and MN2 are initial markings of N1 and N2, respectively.
Because N1 ≈ N2, Me

N1
� Me

N2
and Me

N1
σ � Me

N2
σ. For every element [M1] ∈

[Me
N1

〉/E1, we take M ′
1 as a representive element of [M1]. Then there should be a

sequence of assignments σ0, σ1, ..., σn−1 such that N1σ
0 ∗−→ N1

1 , N1
1σ1 ∗−→ N2

1 ,
..., Nn−1

1 σn−1 ∗−→ Nn
1 and M1 is the marking of Nn

1 . For N1 ≈ N2, we have
N2σ

0 ∗=⇒ N1
2 ≈ N1

1 , N1
2σ1 ∗=⇒ N2

2 ≈ N2
1 , ..., Nn−1

2 σn−1 ∗=⇒ Nn
2 ≈ Nn

1 .
Assume M2 ∈ [MN2〉e is the marking of Nn

2 . Hence, Me
1 � Me

2 . Therefore [M2]
is corresponding to [M1]. We can also prove that for every element [M2] ∈
[Me

N2
〉/E2, there is an element [M1] ∈ [Me

N1
〉/E1 is corresponding to it.

Proposition 1. If N1 ≈ N2 and N2 is live, then N1 is live.

Proof. Assume N1 was not live. Then for some observable and initially live tran-
sition t1 ∈ TN1 , ∃M1 ∈ [MN1〉e such that ∀M ′

1 ∈ [M1〉e.∀t �OBSig t1, M ′
1

could not fire t1. According to Lemma 2 there exists an observable and initially
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live transition t2 ∈ TN2 such that if Mf1 [t1〉M ′
f1

for some Mf1 ,M
′
f1

∈ [MN1〉e then
Mf2 [t2〉M ′

f2
for some Mf2 ,M

′
f2

∈ [MN2〉e, where Me
f2

� Me
f1

and M ′e
f2

� M ′e
f1

.
By the proof of Lemma 3, there is a marking M2 ∈ [MN2〉e satisfying Me

1 =
Me

2 . Since N2 is live, we have (∃M ′
2,M

′′
2 ∈ [M2〉e)(∃t′2 � t2).M ′

2[t
′
2〉M ′′

2 . From
Lemma 2, ∃t′1 ∈ TN1 , ∃M ′

p,M
′′
p ∈ [M1〉e such that M ′

p[t
′
1〉M ′′

p and M ′e
p � M ′e

2 ,
M ′′e

p � M ′′e
2 . By Lemma 1, t1 �OBSig t′1. It is inconsistent to the assumption. It

is done.

5 Conclusion

We devide the places in a Petri net into two categories: external and internal.
The external places are used to communicate with other nets. Accordingly, it
results in the composition between nets. We define a bisimulation on nets to
model communication between nets and indicate their behaviors. The laregest
bisimulation is proved to be a congruence. Petri nets have many properties. How-
ever the definitions and characteristics of these properties are quite different for
an open nets. It shows the reachability of an open P/T is decidable. The liveness
has been redefined. We have proved that liveness is preserved by composition.
The other properties will be revisited in our future research.
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dation of China(61472239, 61100053). The authors would like to thank the unknown
reviewers for the comments.

Appendix

Theorem 3. The equivalence ≈ is a congruence.

Proof. Suppose N1 ≈ N2. Then N1 |N0 ≈ N2 |N0 and (x)N1 ≈ (x)N2.

1. Suppose R = {(N1 |N0, N2 |N0) | N1 ≈ N2}. Then R is a bisimulation. Let
N10 and N20 denote N1 |N0 and N2 |N0 respectively.
N10 = 〈PN10 , TN10 , FN10 ,KN10 ,WN10 , LN10 ,MN10〉, where
– PN10 = P i

N10
∪ P e

N10
where

P i
N10

= P i
N1

∪ P i
N0

(8)
P e

N10
= P e

N1\N0
∪ P e

N0\N1
∪ PN1∩N0 (9)

– TN10 = TN1 ∪ TN0 ;
– FN10 is the following relation

FN1 � PN1\N0 ∪ FN0 � PN0\N1

∪{〈〈s1, s0〉, t〉 | 〈s1, t〉 ∈ FN1 , 〈s1, s0〉 ∈ PN1∩N0}
∪{〈t, 〈s1, s0〉〉 | 〈t, s1〉 ∈ FN1 , 〈s1, s0〉 ∈ PN1∩N0}
∪{〈〈s1, s0〉, t〉 | 〈s0, t〉 ∈ FN0 , 〈s1, s0〉 ∈ PN1∩N0}
∪{〈t, 〈s1, s0〉〉 | 〈t, s0〉 ∈ FN0 , 〈s1, s0〉 ∈ PN1∩N0}
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– WN10 is the function defined as follows:

WN10(〈s, t〉) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WN1(〈s, t〉), if s ∈ PN1\N0

WN0(〈s, t〉), if s ∈ PN0\N1

WN1(〈s1, t〉)
+ , if s = 〈s1, s0〉

WN0(〈s0, t〉)
and

WN10(〈t, s〉) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WN1(〈t, s〉), if s ∈ PN1\N0

WN0(〈t, s〉), if s ∈ PN0\N1

WN1(〈t, s1〉)
+ , if s = 〈s1, s0〉

WN0(〈t, s0〉)
– LN10 is the function defined as follows:

LN10(s) =

⎧
⎨

⎩

LN1(s), if s ∈ PN1\N0

LN0(s), if s ∈ PN0\N1

LN1(s1), if s = 〈s1, s0〉
– MN10 is the function defined as follows:

MN10(s) =

⎧
⎨

⎩

MN1(s), if s ∈ PN1\N0

MN0(s), if s ∈ PN0\N1

MN1(s1)+MN0(s0), if s = 〈s1, s0〉
N20 = 〈PN20 , TN20 , FN20 ,KN20 ,WN20 , LN20 ,MN20〉, where

– PN20 = P i
N20

∪ P e
N20

where

P i
N20

= P i
N2

∪ P i
N0

(10)
P e

N20
= P e

N2\N0
∪ P e

N0\N2
∪ PN2∩N0 (11)

– TN20 = TN2 ∪ TN0 ;
– FN20 is the following relation

FN2 � PN2\N0 ∪ FN0 � PN0\N2

∪{〈〈s2, s0〉, t〉 | 〈s2, t〉 ∈ FN2 , 〈s2, s0〉 ∈ PN2∩N0}
∪{〈t, 〈s2, s0〉〉 | 〈t, s2〉 ∈ FN2 , 〈s2, s0〉 ∈ PN2∩N0}
∪{〈〈s2, s0〉, t〉 | 〈s0, t〉 ∈ FN0 , 〈s2, s0〉 ∈ PN2∩N0}
∪{〈t, 〈s2, s0〉〉 | 〈t, s0〉 ∈ FN0 , 〈s2, s0〉 ∈ PN2∩N0}

– WN20 is the function defined as follows:

WN20(〈s, t〉) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WN2(〈s, t〉), if s ∈ PN2\N0

WN0(〈s, t〉), if s ∈ PN0\N2

WN2(〈s2, t〉)
+ , if s = 〈s2, s0〉

WN0(〈s0, t〉)
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and

WN20(〈t, s〉) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WN2(〈t, s〉), if s ∈ PN2\N0

WN0(〈t, s〉), if s ∈ PN0\N2

WN2(〈t, s2〉)
+ , if s = 〈s2, s0〉

WN0(〈t, s0〉)
– LN20 is the function defined as follows:

LN20(s) =

⎧
⎨

⎩

LN2(s), if s ∈ PN2\N0

LN0(s), if s ∈ PN0\N2

LN2(s2), if s = 〈s2, s0〉
– MN20 is the function defined as follows:

MN20(s) =

⎧
⎨

⎩

MN2(s), if s ∈ PN2\N0

MN0(s), if s ∈ PN0\N2

MN2(s2)+MN0(s0), if s = 〈s2, s0〉
Since N1 ≈ N2, N1σ ≈ N2σ and Me

N1
� Me

N2
. Assume the bijection ι :

P e
N1

→ P e
N2

satisfies the following conditions:

– Me
N1

= Me
N2

◦ ι;
– Le

N1
� P e

N1
= Le

N2
◦ ι;

– Ke
N1

� P e
N1

= Ke
N2

◦ ι.

(1) A bijection ι′ : P e
N10

→ P e
N20

can be defined as follows:

ι′(s) def=

⎧
⎨

⎩

ι(s), if s ∈ P e
N1\N0

s, if s ∈ P e
N0\N1

〈ι(s1), s0〉, if s = 〈s1, s0〉
(12)

Then Me
N10

� Me
N20

. Therefore, R is equipotent. If N10RN20, then
(N10σ)R(N20σ) for N10σ ≡ N1σ |N0σ

′ and N20σ ≡ N2σ |N0σ
′, where

σ′(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

σ(a), if a = L(s0),
where s0 ∈ P e

N0\N1

0, if a = L(s0),
where 〈s1, s0〉 ∈ PN1∩N0

(13)

Hence, R is fully equipotent.
(2) Suppose N10 −→ N ′

10. Then there exists a marking M ′
N10

of N10 such that
MN10 [t〉M ′

N10
and Me

N10
= M ′e

N10
.

– If t ∈ TN1 , then there are two cases.
• If there is a marking M ′

N1
such that MN1 [t〉M ′

N1
and Me

N1
= M ′e

N1
, i.e.

N1 −→ N ′
1, then N ′

10 ≡ N ′
1 |N0. Since N1 ≈ N2, N2 =⇒ N ′

2 such that
N ′

1 ≈ N ′
2. Then N20 =⇒ N ′

2 |N0 and (N ′
1 |N0)R(N ′

2 |N0). Otherwise,
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• O = (•t ∪ t•) ∩ PN1∩N0 
= ∅ and ∀s = 〈s1, s0〉 ∈ O, s ∈• t ∩ t• and
W (s, t) = W (t, s). We define

σ(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

M1(s1) + M0(s0),
ifa = L(s1),where s = 〈s1, s0〉 ∈ O

M1(s1),
if a = L(s1),where s1 ∈ P e

N1
\ O

(14)

σ0(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

0,
ifa = L(s0),where s = 〈s1, s0〉 ∈ O

M0(s0),
if a = L(s0),where s0 ∈ P e

N0
\ O

(15)

Then N10 ≡ N1σ |N0σ0. Obviously, N1σ −→ N ′
1 such that N ′

10 ≡
N ′

1 |N0σ0. Since N1σ ≈ N2σ,N2σ =⇒ N ′
2 and N ′

1 ≈ N ′
2. Then N20 ≡

N2σ |N0σ0 =⇒ N ′
2 |N0σ0 and (N ′

1 |N0σ0)R(N ′
2 |N0σ0).

– If t ∈ TN0 , then there are also two cases.
• If there is a marking M ′

N0
such that MN0 [t〉M ′

N0
and Me

N0
= M ′e

N0
, i.e.

N0 −→ N ′
0, then N ′

10 ≡ N1 |N ′
0 and N20 −→ N2 |N ′

0. Since N1 ≈ N2,
(N1 |N ′

0)R(N2 |N ′
0). Otherwise,

• O = (•t ∪ t•) ∩ PN1∩N0 
= ∅ and ∀s = 〈s1, s0〉 ∈ O, s ∈• t ∪ t• and
W (s, t) = W (t, s). It can be defined as

σ(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

M0(s0) + M1(s1),
ifa = L(s0),where s = 〈s1, s0〉 ∈ O

M0(s0),
if a = L(s0),where s0 ∈ P e

N0
\ O

(16)

σ1(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

0,
ifa = L(s1),where s = 〈s1, s0〉 ∈ O

M1(s1),
if a = L(s1),where s1 ∈ P e

N1
\ O

(17)

Then N10 ≡ N1σ1 |N0σ. Obviously, N0σ −→ N ′
0, N ′

10 ≡ N1σ1 |N ′
0 and

N20 ≡ N2σ1 |N0σ −→ N2σ1 |N ′
0. Since N1 ≈ N2, (N1σ1 |N ′

0)R(N2σ1 |N ′
0).

Suppose N10
τ−→ N ′

10. Then there exists a marking M ′
N10

of N10 such that
MN10 [t〉M ′

N10
and Me

N10

= M ′e

N10
.

– If t ∈ TN1 , then there are two cases.
• If there is a marking M ′

N1
such that MN1 [t〉M ′

N1
and Me

N1

= M ′e

N1
, i.e.

N1
τ−→ N ′

1, then N ′
10 ≡ N ′

1 |N0. Since N1 ≈ N2, N2
τ=⇒ N ′

2 such that
N ′

1 ≈ N ′
2. Then N20

τ=⇒ N ′
2 |N0 and (N ′

1 |N0)R(N ′
2 |N0). Otherwise,
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• O = (•t ∪ t•) ∩ PN1∩N0 
= ∅. We define

σ(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

M1(s1) + M0(s0),
ifa = L(s1),where s = 〈s1, s0〉 ∈ O

M1(s1),
if a = L(s1),where s1 ∈ P e

N1
\ O

(18)

σ0(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

0,
ifa = L(s0),where s = 〈s1, s0〉 ∈ O

M0(s0),
if a = L(s0),where s0 ∈ P e

N0
\ O

(19)

Then N10 ≡ N1σ |N0σ0. Obviously, N1σ
τ−→ N ′

1 such that N ′
10 ≡

N ′
1 |N0σ0. Since N1σ ≈ N2σ, N2σ

τ=⇒ N ′
2 and N ′

1 ≈ N ′
2. Then N20 ≡

N2σ |N0σ0
τ=⇒ N ′

2 |N0σ0 and (N ′
1 |N0σ0)R(N ′

2 |N0σ0).
– If t ∈ TN0 , then there are also two cases.

• If there is a marking M ′
N0

such that MN0 [t〉M ′
N0

and Me
N0


= M ′e
N0

, i.e.
N0

τ−→ N ′
0, then N ′

10 ≡ N1 |N ′
0 and N20

τ−→ N2 |N ′
0. Since N1 ≈ N2,

(N1 |N ′
0)R(N2 |N ′

0). Otherwise,
• We have O = (•t ∪ t•) ∩ PN1∩N0 
= ∅. We also define

σ(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

M0(s0) + M1(s1),
ifa = L(s0),where s = 〈s1, s0〉 ∈ O

M0(s0),
if a = L(s0),where s0 ∈ P e

N0
\ O

(20)

σ1(a) def=

⎧
⎪⎪⎨

⎪⎪⎩

0,
ifa = L(s1),where s = 〈s1, s0〉 ∈ O

M1(s1),
if a = L(s1),where s1 ∈ P e

N1
\ O

(21)

Then N10 ≡ N1σ1 |N0σ. We get N0σ
τ−→ N ′

0, N ′
10 ≡ N1σ1 |N ′

0 and N20 ≡
N2σ1 |N0σ

τ−→ N2σ1 |N ′
0. Since N1 ≈ N2, (N1σ1 |N ′

0)R(N2σ1 |N ′
0).

2. Suppose R = {((x)N1, (x)N2) | N1 ≈ N2}. Then R is a bisimulation.
– Suppose (x)N1 −→ N ′

1\x and M1\x is the initial marking of (x)N1. Then
there is a marking M ′

1\x of (x)N1 such that M1\x[t〉M ′
1\x for some t and

Me
1\x = M ′e

1\x.
• If ∀s ∈ P e

N1
.x 
= L(s), then (x)N1 ≡ N1 and (x)N2 ≡ N2. Then N1 −→

N ′
1 and N ′

1\x ≡ N ′
1 ≡ (x)N ′

1. Since N1 ≈ N2, N2 =⇒ N ′
2 such that

N ′
1 ≈ N ′

2. Hence (x)N2 ≡ N2 =⇒ N ′
2 ≡ (x)N ′

2 and (x)N ′
1R(x)N ′

2.
• If ∃s ∈ P e

N1
.x = L(s), then there are two cases:

∗ If ∀s ∈• t ∪ t•.x 
= L(s), then N1 −→ N ′
1 and N ′

1\x ≡ (x)N ′
1. Since

N1 ≈ N2, N2 =⇒ N ′
2 such that N ′

1 ≈ N ′
2. Hence (x)N2 =⇒ (x)N ′

2

and (x)N ′
1R(x)N ′

2.
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∗ If ∃s ∈• t ∪ t•.x = L(s), then O = (•t ∪ t•) ∩ P e
N1


= ∅. We can
conclude that ∀s ∈ O ∧ L(s) 
= x.W (s, t) = W (t, s). If (∃s ∈•

t∩t•.x = L(s)) and W (s, t) = W (t, s), then N1 −→ N ′
1 and N ′

1\x ≡
(x)N ′

1. Since N1 ≈ N2, N2 =⇒ N ′
2 such that N ′

1 ≈ N ′
2. Hence

(x)N2 =⇒ (x)N ′
2 and (x)N ′

1R(x)N ′
2. Otherwise, if (∃s ∈• t∩ t•.x =

L(s)) and W (s, t) 
= W (t, s) or (∀s ∈• t∩ t•.x 
= L(s)), then N1
τ−→

N ′
1 and N ′

1\x ≡ (x)N ′
1. It is obvious that the external place s1 of N1,

which satisfies x = L(s1), is the unique external one with M1(s1) 
=
M ′

1(s1). Since N1 ≈ N2, N2 =⇒ N21
τ−→ N22=⇒N ′

2 such that N ′
1 ≈

N ′
2. Then there must be an external place s2 of N2, which satisfies

x = L(s2), is the unique external one with M2(s2) 
= M ′
2(s2). The

change is induced by the transition N21
τ−→ N22. Hence (x)N2 =⇒

(x)N21 −→ (x)N22=⇒N ′
2 ≡ (x)N ′

2 and (x)N ′
1R(x)N ′

2.
– Suppose (x)N1

τ−→ N ′
1\x and M1\x is the initial marking of (x)N1. Then

there is a marking M ′
1\x of (x)N1 such that M1\x[t〉M ′

1\x for some t and
Me

1\x 
= M ′e
1\x.

• If ∀s ∈ P e
N1

.x 
= L(s), then (x)N1 ≡ N1 and (x)N2 ≡ N2. Then N1
τ−→

N ′
1 and N ′

1\x ≡ N ′
1 ≡ (x)N ′

1. Since N1 ≈ N2, N2
τ=⇒ N ′

2 such that

N ′
1 ≈ N ′

2. Hence (x)N2 ≡ N2
τ=⇒ N ′

2 ≡ (x)N ′
2 and (x)N ′

1R(x)N ′
2.

• If ∃s ∈ P e
N1

.x = L(s), then there are two cases:
∗ If ∀s ∈• t ∪ t•.x 
= L(s), then N1

τ−→ N ′
1 and N ′

1\x ≡ (x)N ′
1. Since

N1 ≈ N2, N2
τ=⇒ N ′

2 such that N ′
1 ≈ N ′

2. Hence (x)N2
τ=⇒ (x)N ′

2

and (x)N ′
1R(x)N ′

2.
∗ If ∃s ∈• t ∪ t•.x = L(s), then O = (•t ∪ t•) ∩ P e

N1

= ∅. We can

conclude that ∃s ∈ O ∧L(s) 
= x.M1\x(s) 
= M ′
1\x(s). Hence N1

τ−→
N ′

1 and N ′
1\x ≡ (x)N ′

1. Since N1 ≈ N2, N2 =⇒ N21
τ−→ N22=⇒N ′

2

and N ′
1 ≈ N ′

2. Hence (x)N2 =⇒ (x)N21 −→ (x)N22=⇒N ′
2 ≡ (x)N ′

2

and (x)N ′
1R(x)N ′

2.
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Abstract. The Clock Constraint Specification Language (CCSL), first intro-
duced as a companion language for Modeling and Analysis of Real-Time and
Embedded systems (MARTE), has now evolved beyond the time specification
of MARTE, and has become a full-fledged domain specific modeling language
widely used in many domains. A CCSL specification is a set of constraints,
which symbolically represents a set of valid clock schedules, where a schedule
represents the order of the actions in a system. This paper proposes an algorithm
to detect the divergence behavior in the schedules that satisfy a given CCSL
specification (i.e. it proposes to detect the presence of infinite but non periodic
schedules in a CCSL specification). We investigate the divergence by con-
structing causality chains among the clocks resulting from the constraints of the
specification. Depending on cycles in the causality chains, a bounded clock set
built by our proposed algorithm can be used to decide whether the given
specification is divergence-freedom or not. The approach is illustrated on one
example for architecture-driven analysis.

Keywords: CCSL � Divergence � Clock causality chain � Bounded Clock Set �
PVS

1 Introduction

The Unified Modeling Language (UML) Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) [1], adopted in November 2009, has
introduced a Time Model [2] that extends the informal Simple Time of UML2. This
time model is general enough to support different forms of time (discrete or dense,
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chronometric or logical). Its so-called clocks allow enforcing as well as observing the
occurrences of events and the behavior of annotated UML elements. The Time Model
comes with a companion language named the Clock Constraint Specification Language
(CCSL) [3] defined in the annex of the MARTE specification. Initially devised as a
language for expressing constraints between clocks of a MARTE model, CCSL has
evolved and has been developed independently of the UML. CCSL is now equipped
with a formal semantics [3] and is supported by a software environment (TimeSquare
[4]) that allows for the specification, solving, and visualization of clock constraints.

MARTE promises a general modeling framework to design and analyze systems.
Lots of works have been published on the modeling capabilities offered by MARTE,
much less on verification techniques supported. Inspired by the works about state-based
semantics interpretation for the kernel CCSL operators [5], this paper focuses on the
divergence (see Sect. 3.1) detection of some CCSL specifications. This issue was
addressed by [6, 7] but their propositions were applying parallel composition of
individual CCSL constraints, making the propositions unsuitable for industrial size
systems. In this work, we significantly reduce the complexity of the divergence
detection by constructing and analyzing clock causality chains. Additionally our
algorithm can point out what constraint can be added to make the specification
divergence-free. In order to acquire clock causality chains, we first highlighted some
interesting properties about causal relation between clocks. Furthermore, we propose an
algorithm to decide if a given CCSL is divergence-free or not, by constructing the
proposed a “Bounded Clock Set” (BCS) based on clock delay expression as well as the
causality relation between clocks.

Section 2 introduces a state-transition based semantics for CCSL. Section 3 shows
how to detect the divergence and make sure the specification is divergence-freedom
based on the notion of divergence of CCSL specifications. Also, an algorithm, which is
used to build the bounded clock set for determining the convergence, is depicted in this
section. Section 4 illustrates, by using an example from architecture-driven analysis,
the use of our algorithm on a CCSL specification. It shows how to improve a divergent
specification such that it becomes a convergent one by adding clock constraints hinted
by the algorithm. Finally, Sect. 5 makes a comparison with related works and Sect. 6
concludes the contribution and outlines some future works.

2 Preliminaries

This section briefly introduces the logical time model [2] of MARTE and the Clock
Constraint Specification Language (CCSL). A technical report [3] and it latest update
[8] describes the syntax and the semantics of a kernel set of CCSL constraints. We
describe in this paper only the constraints that are used for our discussion.

The notion of multiform logical time has first been used in the theory of syn-
chronous languages [9] and its polychronous extensions. CCSL is a formal declarative
language to specify polychronous clock specification. It provides a concrete syntax to
make the clocks and clocks constraints first-class citizens of UML-like models. Clocks
in CCSL are used to measure the number of occurrences of events in a system. Logical
clocks replace physical times by a logical sequencing. A CCSL specification do not
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need for clocks to be relative to a global physical time. They are by default independent
of each other and what matter is the partial ordering of their ticks induces by the
constraints between them.

A clock belongs to a clock set C. During the execution of a system, an execution
step is defined and at a given step, every clock in C can tick or not according to the
constraints defined in the specification. A schedule captures what happens during one
particular execution.

Definition 1 (Schedule): A schedule is defined as a function Sched: N[ 0 ! 2C. ■

Given an execution step i 2 ℕ>0, and a schedule σ 2 Sched, σ(i) denotes the set of
clocks that tick at step i.

For a given schedule, the configurations of the clocks tell us the advance of the
clocks, relative to the others.

Definition 2 (Clock Configuration): For a given schedule σ, clock c 2 C and a natural
number n 2 ℕ, the configuration χσ: C × ℕ → ℕ is defined recursively as:

vr c; nð Þ ¼
0; if n ¼ 0
vr c; n� 1ð Þ; if c 62 r nð Þ
vr c; n� 1ð Þþ 1; if c 2 rðnÞ

8<
: ðF:1Þ

■
For a clock c 2, and a step n 2 ℕ, χσ(c, n) counts the number of times the clock

c has ticked at step n for the given schedule σ.
CCSL is used to specify a set of valid schedules. There is usually more than one

valid schedule that satisfies a given specification. If there is no satisfying schedule, then
we say that the specification is ill-formed. The detail properties about the schedules
against the given specification is investigated in [10]. Clocks can be finite of infinite.
Since divergence problem only makes sense on infinite clocks, we do not care about
constraints that make clock terminating (see [8] for details). Consequently, every clock
in C are infinite (will never terminate), i.e., 8c 2 C, χσ(c, n) is boundless with
n increasing.

Definition 3 (CCSL Specification): A CCSL specification SPEC is a pair <C,
CConstr> , where C is a set of clocks, CConstr is a set of formulae (see Definition 5)
used to specify the relations among the clocks in the set C. ■

Definition 4 (Clock Set) An element in the clock set C can be given by the specifi-
cation writer explicitly (explicit clock), or by one of the following clock expressions
(implicit clock):

Clock := aþ b a � bj janb sup a; bð Þj jinf a; bð Þ a$n j SampledOn a; bð Þj jFilteredBy a; u; vð Þ
ðF:2Þ
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where a, b 2 C are clocks, u, v 2(0 + 1)* are finite binary words, and n 2 ℕ is a natural
number. ■

Once we write one clock expression in the form of (F.2), a new clock is created and
added into the clock set C. For example, if we give the explicit clock set {a, b, c}, and
clock expression set {d = a + b, e = c $1}, then the considered clock set is C = {a, b,
c, d, e}. Note that there may not be any given name for the implicit clock of the clock
expression (e.g. if it occurs in one clock relation) (see Definition 5). It should be noted
that the new clock will be scheduled depending on the clock(s) that occur in that
expression.

It is convenient to define a clock as an Abstract Data Type (ADT) [11] in Prototype
Verification System (PVS) [12, 13] if we treat the clock expression as an element in a
clock set instead of assigning them a new clock name.

The CCSL constraint defined over the clock set includes both the explicit clocks
and implicit ones.

Definition 5 (CCSL Relation): For a given clock set C, the corresponding clock
relation set Φ(C) over C is defined recursively as:

ψ ≔ a ≺ b | a ≼ b| a � b | a # b | ψ ∧ ψ
where a, b 2 C. ■

Every clock relation in the set Φ(C), is a primitive formula that relates a clock pair
or their conjunction.

Definition 6 (CCSL Specification Satisfaction). For a given CCSL specification
SPEC = <C, CConstr>, A schedule σ over C satisfies SPEC, denoted σ ⊨ SPEC, if and
only if for every formulae r in CConstr, σ evaluates to true according to the following
definition postulated by the CCSL semantics:

σ ⊨ r if and only if cases r’s form of

a � b : 8n 2 N; vr a; nð Þ ¼ vr b; nð Þ ) b 62 rðnþ 1Þ Precedenceð Þ
a4b : 8n 2 N; vr a; nð Þ� vr b; nð Þ Causalityð Þ
a � b : 8n 2 N[ 0; a 2 r nð Þ ) b 2 rðnÞ Subclockð Þ
a# b : 8n 2 N[ 0; a 62 r nð Þ _ b 62 rðnÞ Exclusionð Þ
w1 ^ w2 : r�w1 ^ r�w2 Conjunctionð Þ

ðF:3Þ

where a, b 2 C. ■
It’s straightforward to prove that both Causality and Subclock are pre-orders on C,

i.e., they are reflexive and transitive. For simplicity, we can write a ≼ b ≼ c for a ≼ b∧
b ≼ c, and so do other transitive clock relation. The transitivity property of the
Causality relation is of importance in determining the boundedness of a specification
(see Sect. 3.2). It is also straightforward to prove that Exclusion is neither reflexive nor
transitive. The transitive property of Precedence is very tedious to prove from this form
of definition, although it is obvious in other semantics model [8].

Divergence Detection for CCSL Specification 21



The implicit clocks defined using clock expressions (F.2), are constrained according
to the parameters of the clock expression. In other words, a clock expression is a clock
generator where the output clock ticks or not according to the input clock(s) state and
other arguments, if any.

Definition 7 (Clock Expression Satisfaction). Whether an implicit clock (denoted
c in the following) can tick or not in a schedule σ, is determined by the behaviors of the
input clock(s) in σ,

σ ⊨ c if and only if cases c is defined by

a þ b : 8n 2 N[ 0; c 2 r nð Þiffa 2 r nð Þ _ b 2 rðnÞ Unionð Þ
a � b : 8n 2 N[ 0; c 2 r nð Þiffa 2 r nð Þ ^ b 2 rðnÞ Intersectionð Þ
anb : 8n 2 N[ 0; c 2 r nð Þiffa 2 r nð Þ ^ b 62 rðnÞ Minusð Þ
sup a; bð Þ : 8n 2 N; vr c; nð Þ ¼ minðvr a; nð Þ; vr b; nð ÞÞ Supremumð Þ
inf a; bð Þ : 8n 2 N; vr c; nð Þ ¼ maxðvr a; nð Þ; vr b; nð ÞÞ ðInfimumÞ
a$d : 8n 2 N; vr c; nð Þ ¼ maxðvr a; nð Þ � d; 0Þ ðDelayÞ

ðF:4Þ

SampledOn(a, b): 8n 2 ℕ>0, c 2 r nð Þiff

ðb 2 r nð Þ ^ ð9j 2 ½1::n�; a 2 r jð Þ ^ 8m : ½j::n� 1�; b 62 r mð ÞÞÞ ðSampledOnÞ

FilteredBy (a, u, v): 8n 2 ℕ>0, c 2 r nð Þiff

ða 2 r nð Þ ^ ifk	 uj jthen u k½ � ¼ 1 else v k � uj jð Þmod vj j½ � ¼ 1ð Þ;where k ¼ Xrða; nÞÞ
FilteredByð Þ

where a, b 2 C, u, v 2 (0 + 1)*, and d 2 ℕ>0. |u| (resp. |v|) represents the length of
binary word u (resp. v), k = χσ(a, n) is the number of tick of clock a from step 1 to n. ∎

By composing the relations and the expressions provided in Definitions 4 and 5,
some user-defined clock relations can be further defined, as below:

a
 b :¼ a � b � a $ 1 Alternationð Þ ðF:5Þ

a �n b := a � b � a $ n Bounded precedenceð Þ ðF:6Þ

a � b := a4b ^ b4a Coincidenceð Þ ðF:7Þ

Obviously, Alternation (F.5) is a special case of bounded precedence (F.6).
Alternation (which is frequently used in the CCSL specifications), is a kind of bounded
relation that is discussed in detail in Sect. 3.

From the definitions above, some proved propositions can be listed below. The
reader who is interested the proof can get the details in the report [5].

Proposition 1 (Precedence Implies Causality). The Precedence is a stronger form of
causality:

σ ⊨ a ≺ b ⟹ σ ⊨ a ≼ b ■
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Proposition 2 (Subclock Implies Causality). When a is a Subclock of b, then b is
faster than a:

σ ⊨ a � b ⟹ σ ⊨ b ≼ a ■

Proposition 3 (Union and Causality). The union of two clocks is faster than both
clocks:

σ ⊨ u ≔ a + b ⟹ σ ⊨ u ≼ a ∧ σ ⊨ u ≼ b ■

Proposition 4 (Intersection and Causality). The intersection of two clocks is slower
than both clocks:

σ ⊨ i ≔ a * b ⟹ σ ⊨ a ≼ i ∧ σ ⊨ b ≼ i ■

Proposition 5 (Infimum and Causality). The infimum of two clocks is always faster
than both clocks:

σ ⊨ f ≔ inf(a, b) ⟹ σ ⊨ f ≼ a ∧ σ ⊨ f ≼ b ■

Proposition 6 (Supremum and Causality). The supremum of two clocks is always
slower than both clocks:

σ ⊨ s ≔ sup(a, b) ⟹ σ ⊨ a ≼ s ∧ σ ⊨ b ≼ s ■

Proposition 7 (Delay and Causality). The delayed clock is always slower than the
base clock:

σ ⊨ c ≔ a $ d ⟹ σ ⊨ a ≼ c ■

Propositions 1 to 7 defines new implicit Causality relations from all the other
relations (Precedence and Subclock) and expressions (Union, Intersection, Infimum,
Supremum and Delay). The Definitions 1 to 7 have been formalized in PVS, and the
Propositions 1 to 7 have been proved (in most cases by induction).

Based on the definitions of SampledOn and FilteredBy in (F.3), c ≔ SampledOn(a,
b) implies a ≼ c and c � a, c ≔ FilteredBy(a, u, v) implies c � a. Hence, some
Causality relations between the new implicit clock and their input clock can indirectly
be deduced from the clock expression SampledOn and FilteredBy. Therefore, we can
also get Causality relations using SampledOn and FilteredBy, besides using Proposi-
tions 1 to 7.

3 Divergence Detection

3.1 Divergence and Bounded Relation

Let’s consider a very simple CCSL specification SPEC1 = <{sending, ack}, {sending
≼ ack}>. It is divergent as we don’t know what will happen at a certain execution step
i in a schedule σ provided that σ satisfies SPEC1 from step 1 to step i – 1. That is to say,
there are many possibilities of clock ticking (tick sending, tick ack, or both) to ensure
the satisfaction of SPEC1 at step i. Furtherly, whether the clock ack ticks or not is
uncontrollable and unpredicatable since there is nothing to trigger its firing. Therefore,
some expected properties may eventually not be guaranteed, if it is implied by the
implementation of ack’s tick.
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Definition 8 (Divergent Specification). We say a CCSL specification SPEC = <C,
CConstr> is divergent, if an expected clock in C has the possibility never ticks,
formally,

9σ, (σ ⊨ SPEC ∧9g, r 2, 8i:{k: ℕ>0| r 2 σ(k)}, 9j> i, g 62 σ(j)). ■

Here g (means goal) is the expected action that may be an acknowledge
signal/operation of other clock r (means request). That is to say, after performing some
necessary operation(s) by ticking the some clocks in C\{g} containing clock r, there
must be an expected final result (ticking clock g) appears in the admissible future, but
unfortunately only God knows g will tick or not in the divergent specification SPEC.
Therefore, the divergence of SPEC1 is asserted by choosing g = ack, r = sending and
the given schedule σ such that 8i 2 ℕ>0, σ(i) = {sending}.

On the contrary, another example SPEC2 = <{a, b}, {a * b}> is not divergent
because the constraint a * b postulates that the schedule that satisfies SPEC2 must
execute by alternating a with b forever. In this case, we say the behavior and the
corresponding CCSL specification are convergent if it is also free of some unexpected
properties, such as deadlock and livelock and so on.

The divergent specification behavior is not predicable in the sufficient future. It is
possible for some expected action(s) to be delayed infinitely in the future. This bad
behavior is unexpected since some actions can never happen after a certain simulation
step. Therefore, a specification that contains divergence is unsafe. How to detect di-
vergence existence in a given CCSL specification is the main subject in this section.
Additionally, we provide some suggestions to modify the CCSL specification so that it
becomes divergence-free.

For a given CCSL specification <C, CConstr>, if the difference between the speeds
of two clocks a, b 2 C is limited in an allowed boundary, we say the clock pair (a, b)
has a bounded relation.

Definition 9 (Bounded Relation). For a given clock set C, two clocks a, b 2 C, and a
schedule σ over C, a and b has the bounded relation with a given boundary m 2 ℕ,
denotes |a, b| ≤ m:

σ ⊨ |a, b| ≤ m iff 8i 2 ℕ>0, 9j 2 ℕ>0, | Xrða; iÞ � Xrðb; jÞ | ≤ m
m (resp. – m) can be called upper (resp. lower) bound. ■

When such an unbounded clock pair is found, we say that there is divergence in the
specification. We say the specification free of divergence is a bounded specification.

Definition 10 (Bounded Specification). For a given CCSL specification SPEC = <C,
CConstr>, 8a, b 2 C, SPEC is bounded if and only if any clock pair has the bounded
relation:

8σ, σ ⊨ SPEC ⟹ 9m 2 ℕ, σ ⊨ |a, b| ≤ m ■

A bounded specification is divergence-free because there are no possible boundless
drifts between any clock pair (i.e. between the actions).

If we check every clock pairs among all clocks in C to decide whether a specifi-

cation is divergence-free or not, there are
jCj
2

� �
¼ Cj j � ð Cj j � 1Þ=2 pairs need to be
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checked. The number of checks then totals to (jCj2). But in practice many checks can be
safely neglected when the bounded relation is implied by the already checked one.

The Bounded Relation can directly be derived from the formula for most of the
constraints. Let us show how to get the Bounded Relation between two clocks implied
by the existing clock relations and expressions.

Bounded Relation is an equivalence relation over C, i.e., it is reflexive, symmetric
and transitive. Note that they do not necessarily have the same boundaries for different
bounded relations.

Proposition 8 (Bounded Extension). The Bounded Relation is transitive and the
transitive resulting boundary is the sum of the original ones.

|a, b| ≤ m1 ∧ |b, c| ≤ m2 ⟹ |b, c| ≤ m1 + m2 ■

Proposition 8 can be proved by using classical properties of inequalities addition.
The proof is obvious and omitted here.

Proposition 9 (Bounded Restriction). Bounded relation can be restricted w.r.t.
Causality, and the resulting boundary is not greater than the original one.

|a, b| ≤ m ∧ 8c 2 C, (a ≼ c ≼ b ∨ b ≼ c ≼ a) ⟹ |a, c| ≤ m ∧ |b, c| ≤ m ■

Proof of Proposition 9:
Let maxDrift_ab(n) = vr a; nð Þ � vr b; nð Þ,
maxDrift_ac(n) = vr a; nð Þ � vr c; nð Þ;
maxDrift_bc(n) = vr b; nð Þ � vr c; nð Þ, for all n 2 ℕ,
from the Definition 9, we have
|a, b| ≤ m⟹ |maxdrift_ab(n)| ≤ m⟹−m ≤ maxdrift_ab(n) ≤ m, for all n2ℕ,

Assume a ≼ c ≼ b, from the definition 6, we have8n 2 ℕ, vr a; nð Þ� vr c; nð Þ�
vr b; nð Þ, then maxDrift_ac(n) ≥ 0 ≥ – m.

frommaxdrift ab nð Þ	m ð1Þ

maxdrift bc nð Þ	 0 ð2Þ

(1) + (2) gets
maxDrift_ac(n) = maxdrift_ab(n) + maxdrift_bc(n) ≤ 0 + m = m
therefore, |maxDrift_ac(n)| ≤ m.
similarly, from (2) we have8n 2 ℕ, maxDrift_bc(n) ≤ 0 ≤ m,

– maxDrift_bc(n) ≤ maxdrift_ab(n) ≤ m ⟹ maxDrift_bc(n) ≥ – m

There exists the similar proof under the cases b ≼ c ≼ a. ■
From Definition 7, we can see Delay implies the Bounded Relation:

Proposition 10 (Delay Implies Bounded). The delayed clock a and the corresponding
base clock b has the Bounded Relation with a lower bound 0 and a upper bound d:

σ ⊨ a ≔ b $ d ⟹ σ ⊨ |a, b| ≤ d ■
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Proof of Proposition 10: This is direct conclusion from Definition 7.
The primitive clock relations and the other clock expressions except Delay and

FilteredBy don’t imply bounded relation. But their composition may deduce.

Proposition 11 (Alternate Implies Bounded). The clock pair involves in Alternation
relation has the bounded relation with the boundary 1:

σ ⊨ a * b ⟹ σ ⊨ |a, b| ≤ 1 ■

Proof of Proposition 11:
a
 b , by Alternation definition (F.5)
a ≼ b ≼ a $ 1 ⟹ by Proposition 1 (Precedence Implies Causality)
a ≼ b ≼ a $ 1 ⟹ by Proposition 10 (Delay Implies Bounded)
|a, a $ 1| ≤ 1 ⟹ by Proposition 9 (Bounded Restriction)
|a, b| ≤ 1 ∧ |a $ 1, b| ≤ 1 ⟹ by proposition calculus
|a, b| ≤ 1 ■

Similarly, one can prove Bounded Precedence (F.6) is also a Bounded Relation.
FilteredBy expression c ≔ a ▼(u.vω), which defines a clock new clock c as a Sub-
clock of a according to two binary words u and v, implies a Bounded Relation between
clock pair (c, a) if there exists at least one 1-bit in the periodical pattern v.

Proposition 12 (FilteredBy may Imply Bounded). The clock pair (a, c) involves in
the expression c ≔ a ▼(u.vω) has the Bounded Relation with the boundary |u| +
p × (|v| – 1) if and only if 9i 2 [1..|v|] such that v[i] = 1. Where p is the number of
periodical patterns that have passed from the initial configuration. ■

Proof of Proposition 12:
Suppose a schedule σ against by c ≔ a ▼(u.vω), For some schedule step m,

suppose clock a has ticked |u| + |v| times from start, then
χσ(a, m) = |u| + |v|

By FilteredBy definition (F.4), during the process, clock a ticks at step j if and only
if both a ticks and u.(v)ω[j] = 1. Because 9i 2 [1..|v|], v[i] = 1, we get:

1 ≤ χσ(c, m) ≤ |u| + |v|
With the passage of schedule σ, χσ(c, n) will increase at least one while χσ(a, n)

increase every |u| + |v| after passing a periodical pattern. Therefore, when the
schedule σ reaches step n by the time p periodical patterns has passed:

χσ(a, n) = |u| + p × |v| and p ≤ χσ(c, n) ≤ |u| + p × |v| ⟹ |χσ(a, n) – χσ(c, n)| ≤ |
u| + p × (|v| – 1) ■

3.2 Clock Causality Chain and Bounded Clock Set

In order to determine whether a CCSL specification is divergent or not, according to
Definition 9, one must show every clock pair has Bounded Relation. Due to most clock
constraints without the bound information, we try to capture the Bounded Relation
from the Causality relation.
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Definition 11 (Clock Causality Chain). For a given clock set C, some clocks in C may
form a Clock Causality Chain (CCC), which is a finite sequence c1, c2, …, cn such that
8i 2 [1..n – 1], ci ≼ ci+1 and n ≥ 2. It is called Bounded Clock Causality Chain (BCCC)
if 9m 2 ℕ, |c1, cn| ≤ m, and m is called the chain’s boundary. It is an Unbounded CCC
(UCCC) otherwise. ■

Proposition 13 (BCCC Boundedness). ABCCC ρ = c1, c2, …, cn with a boundary
m implies that any two clocks in ρ has the Bounded Relation: 8i, j 2 [1..n], |ci, cj| ≤ m.
■

Proposition 13 is easily proved by using Proposition 9 (Bounded Restriction) as
well as the Causality transition.

Due to Proposition 13, Checking
n
2

� �
clock pairs bounded relation is replaced by

checking only one clock pair and additionally sorting n clocks with respect to Causality
relation. Moreover, the Causality relation is much easier to get than Bounded Relation
as the former is implied by some clock constraints (see Propositions 1–7).

Obviously, a specification is divergent if we can get a UCCC.

Theorem 1 (UCCC Implies Divergence). A CCSL specification SPEC = <C,
CConstr> is divergent, if there exists a UCCC ρ = c1, c2, …, cn (8i 2 [1..n], ci 2 C)
induced by the CConstr. ■

Proof of Theorem 1:
ρ is unbounded ⟹8i 2 [1..n − 1], ci ≼ ci+1 ⟹ That cn doesn’t tick forever in

some schedule σ has nothing about asserting the true value of σ ⊨ SPEC.
We can find such a schedule σ against SPEC that c1 tick at least once. σ is indeed

the witness (g = cn and r = c1) for uncovering the divergence of SPEC according to
Definition 8. ■

Let us illustrate Theorem 1 on a toy example, SPECs ¼ \C, CConstr>, where
C = {a, b, sup(a, b), c} and CConstr = {a * c, sup(a, b) ≼ c}. Let sup = sup(a, b), we
get

|a, c| ≤ 1, by Proposition 11
a ≺ b and a ≼ b, by Alternation definition and Proposition 1.
a ≼ sup ≼ c and b ≼ sup, by Proposition 6.
The Causality Clock Graph (CCG) [5] in Fig. 1 shows the Causality relations

among clocks. The Causality line from clock a to c can be safely removed because of
causality transition.

a

b
sup c

Fig. 1. CCG for SPECs
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The CCC a, sup, c is a BCCC, while the CCC ρ = b, sup is a UCCC. The existence
of ρ draws the conclusion SPECs is a divergent specification.

Via the analysis of SPECs, Theorem 1 tell us that the existence of a UCCC in a
CCSL specification witnesses its divergence. Unfortunately, this is a sufficient, but not
necessary, condition for deciding specification’s divergence. We say nothing about the
convergence even if we get one or more BCCCs from a CCSL specification. The
Bounded Clock Set can be used to determine a specification’s convergence.

Definition 12 (Bounded Clock Set). For a given clock set C, a clock set B = {c⊥, c1,
…, cm, c

⊤, cm+1…, cm + n}, subset of C, which contains at least 2 elements, is called a
Bounded Clock Set (BCS), if all the following conditions hold:

(i) (Lower-upper Bound) 9d 2 ℕ, |c⊥, c
⊤| ≤ d,

(ii) (Causality Bound) 8i 2 [1..m], c⊥ ≼ ci ≼ c⊤,
(iii) (Absence Unbounded Clock) 8i 2 [m + 1..m + n], 9c 2 BR (see below), d 2

ℕ, |c, ci| ≤ d.

The clock c⊥ (resp. c⊤) is called the bottom (resp. top) clock. The subsetBR = {c⊥,
c1, …, cm, c

⊤} of B is called Causal Bounded Clock Set (CBCS). ■

A BCS B = {c⊥, c1, …, cm, c
⊤, cm+1…, cm + n}, as shown in Fig. 2, includes two

disjoint subsets:

• BR = {c⊥, c1, …, cm, c
⊤} contains the fastest clock c⊥ as the bottom, and the

slowest clock c⊤ as the top, while all other ones’ speed lies between c⊥ and c⊤.
Note that m = 0 in some cases.

• B\ BR = {cm+1…, cm + n} We don’t care about the speed of these clocks in relation
to the one in BR. But a common fact is that all of them must be bounded by speed
of one of the clocks in BR. Note that n = 0 in some cases, i.e., this set is an empty
set.

The bottom (resp. top) clock is probably not a “proper” bottom (resp. top) clock
because maybe there exists a clock in B\BR which is faster (resp. slower) than it.

Theorem 2 (BCS Implies Divergence-Freedom). A CCSL specification SPEC ¼
\C;CConstr[ is free of divergence, if there exists a BCS B 
 C implied by the
CConstr. ■

c1, …, cm

c

c

c
m

+1 , …
,c

m
+n

B
ounded 

R
elation

Fig. 2. The BCS structure
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Proof of Theorem 2:
Let B = {c⊥, c1, …, cm, c

⊤, cm+1…, cm + n}, and BR = {c⊥, c1, …, cm, c
⊤}

By applying Proposition 9 (Bounded restriction) to condition (i) and (ii) in
Definition 12, we have

8i 2 1; . . .;m½ �; clock pairs ðc?;ciÞ and ðci;c>Þ are bounded: ðB 1Þ

By Proposition 8 (Bounded extension), via the c⊥ or c⊤ as the middle clock b
occurs, we have

8i; j 2 1; . . .;m½ �; clock pair ci;cj
� �

is bounded: ðB 2Þ

Summarizing (B_1) and (B_2),

8ci;cj 2 BR; clock pair ci;cj
� �

is bounded: ðB 3Þ

From condition (iii) in Definition 12, 8i 2 [m + 1..m + n], 9c 2 BR, clock pair (c,
ci) is bounded,

By Proposition 8 again via the c occurs in the last line as the middle clock b, we
have

8ci 2 BR; cj 2 BnBRclock pair ci;cj
� �

is bounded: ðB 4Þ

8ci;cj 2 BnBR; clock pair ci;cj
� �

is bounded: ðB 5Þ

Summarizing (B_3), (B_4) and (B_5), we conclude
8ci, cj 2 B, clock pair (ci, cj) is bounded.
Because B 
 C, 8ci, cj 2 C, clock pair (ci, cj) is bounded.
By Definition 10 (Bounded Specification), SPEC is divergence-freedom specifi-

cation. ■

If we cannot derive a bounded relation from C obviously, introducing some external
clock(s) that can form BCCC is allowed. Therefore, we use B 
 C rather than B = C
in Theorem 2.

Let us illustrate Theorem 2 on a simple example, SPECi ¼ \C;CConstr[ , where
C = {a, b, inf(a, b), o1, o2} and CConstr = { a ≼ o1, inf(a, b) * o1, b * o2, b ≼ o1}.

a

b
inf

o2

o1

Fig. 3. Causality Clock Graph for SPECi
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Let inf = inf(a, b), via some given propositions above, we can get the explicit and
implicit Causality relation list from CConstr (Fig. 3):

inf ≼ a≼ o1, b ≼ o1, b ≼ o2
By Proposition 11, we know clock pairs (inf, o1) and (b, o2) are bounded. Then we

can construct a BCS Bspeci = {c⊥ = inf, c1 = a, c2 = b, c⊤ = o1, c3 = o2} shown in
Fig. 4a with m = 2 and n = 1 in Definition 12. Because Bspeci 
 (SPECi), we assert
SPECi is free of divergence by Theorem 2.

Note that maybe there several other possibilities to assign the bottom or top clock.
For example, Bspeci_alt = {c⊥ = inf, c⊤ = b, c1 = a, c2 = o1,c3 = o2} shown in Fig. 4b
is another same member set but assigned with different top clock. Herem = 0 and n = 3.

Bspeci is a “much better” BCS than Bspeci_alt in the sense of determining the
boundedness among clocks. We can easily assert Bspeci is a BCS satisfied by condi-
tions (i), (ii) and (iii) in Definition 12. On the contrary, As to Bspeci_alt, both conditions
(i) and (iii) are not straightforwardly asserted using the CConstr( SPECi) as well as the
associated propositions list above. In fact, Bspeci_alt is constructed dedicatedly to show
its inconvenience when I know the fact convergence. In purpose of the efficiency for
convergence assertion, Subsect. 3.3 will design an algorithm for constructing BCS.

All the proofs about these propositions and theorems in Sects. 3.1 and 3.2 are
completed with the help of PVS. Hence, we can try to solve some problem without any
doubt about its correctness. The following theorem, written in PVS specification, is a
special case1 of Theorem 2, can be used to assert divergence-free of CCSL
specifications.

Note:

a,b

o1

inf
o

2
B

o u nde d
R

e lati on

b

inf

a,o
1 ,o

2

B
ounded

R
e lat ion

a. speci    b. speci_alt

Fig. 4. Two represents for BCS of SPECi

1 condition (iii) in Definition 12 is not necessarily be considered.
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(1) Clock is type to represent explicit clock set.
(2) AClock is a defined ADT includes both Clock and implicit clocks defined in

Definition 4.
(3) “⊨” is interpreted via Definitions 6 and 7.
(4) maxDrift is Bounded relation in Definition 9.

3.3 Detection Algorithm

For a given specification SPEC = <C, CConstr>, there are three simply rules to prevent
SPEC from divergence:

One violation of Rules 1–3 causes the specification’s divergence. The following
parts will consider only the specification that follows Rules 1–3.

If we have no enough faith to assert the convergence CCSL specification, we can
try to witness its divergence via discovering a UCCC by Theorem 1 because it is much
easier to find an unbounded clock pair than to determine all the clock pairs are
bounded.

When there is no obvious UCCC be found from a CCSL specification, we need to
design an algorithm to try to construct a BCS, for the purpose of using Theorem 2 to
guarantee specification’s convergence.

For a given SPEC ¼ \C;CConstr[ , we first sort the clock based on the
Causality-related clock constraints (includes Causality relation and those imply it) in
CConstr with regard to Causality.
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Algorithm 1 includes three parts:

(I) Get (and update if required) the bottom and top clock.
(II) Get the clock set in which it is not faster than the bottom and not slower than the

top.
(III) Analyze the boundedness of left clocks.

We can assert that B constructed in Algorithm 1 must be a BCS by Propositions 8
and 9. So this algorithm’s correctness is ensured by Theorem 2 since C = ∅ ⟹
B 
 C.

Algorithm 1 must terminate because of the finiteness of clock set. The complexity
of Algorithm 1 is (jCj). If most clocks can be dealt with in part I and II, the efficiency of
algorithm is very high. Therefore, via Algorithm 1, determining boundedness among
all clock pairs is converted into checking boundedness on much fewer clock pairs and
additionally sorting clocks w.r.t. Causality relation.

4 Case Study

To illustrate the approach, we take an example inspired by [14], that was used for flow
latency analysis on Architecture Analysis and Design Language (AADL) specifica-
tions. However, with CCSL we are conducting different kinds of analyses.
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Figure 5 considers a simple application described as a UML activity. This appli-
cation captures two inputs in1 and in2, performs some calculations (Step1, Step2 and
Step3) and then produces a result out. This application has the possibility to compute
Step1 and Step2 concurrently depending on the chosen execution platform. This
application runs in a streaming-like fashion by continuously capturing new inputs and
producing outputs.

To abstract this application as a CCSL specification, we assign one clock to each
action. The clock has the exact same name as the associated action (e.g., step1). We
also associate one clock with each input, this represents the capturing time of the
inputs, and one clock with the production of the output (out). The successive instants of
the clocks represent successive executions of the actions or input sensing time or output
release time. The basic CCSL specification is SPECsimp ¼ \C;CConstr[ , where
C = {in1,in2,step1,step2,step3,out}, CConstr includes the following clock constraints:

in14step1
^

step1 � step3 ðF:8Þ

in24step2
^

step2 � step3 ðF:9Þ

step34out ðF:10Þ

(F.8) specifies that step1 may begin as soon as an input in1 is available. Executing
step3 also requires step1 to have produced its output. (F.9) is similar for in2 and step2.
(F.10) states that an output can be produced as soon as step3 has executed. Note that
CCSL precedence is well adapted to capture infinite FIFOs denoted on the figure as
object nodes. Such a specification is clearly not convergent because of its violation of
Rule 2 (Bounds Existence) in Rule list for avoiding divergence. After the sorting the
clocks w.r.t. Causality relation, we get two CCCs:

q1 : in4step14step34out

q2 : in4step14step34out

step1

step2

step3

in1

in2

out

ad application

Fig. 5. Simple application
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It is also stated again that SPECsimp is divergent by Theorem 1 as both ρ1 and ρ2 are
unbounded. If one CCSL constraint like (F.11) is added into CConstr(SPECsimp) as a
test like that in [5].

sup in1; in2ð Þ
 out ðF:11Þ

By Proposition 6, the following are two new UCCCs are acquired since the
addition of (F.11):

in1 ≼ sup(in1, in2)
in2 ≼ sup(in1, in2)
Now we try to use Algorithm 1 to check whether SPECsimp is free of divergence or

not. Let supin12/sup(in1, in2), by Expanding the Alternation definition, (F.11) becomes
supin12 ≺ out ∧ out ≺ (supin12 $ 1)
Now (SPECsimp) = {in1, in2, step1, step2, step3, out, supin12, supin12 $ 1} corre-

spondingly, by part I of Algorithm 1, we get B = {c⊥ = supin12, c
⊤ = sup $1}, then

using part II of Algorithm 1, the clock out is added into B. Furtherly, because of ρ1, ρ2
and the fact supin12 is the fastest clock that is slower than in1 and in2 by Definition 7,
we can deduce 8c 2 {step1,step2, step3}, c⊥≼ c ≼ c⊤ by Propositions 1 to 7.
Therefore, the clocks step1, step2 and step3 can also be added into B via part II of
Algorithm 1. Up to now, B = {c⊥ = supin12, step1,step2, step3,out, c

⊤ = supin12 1},
and none of other clock can be added into B further. Therefore, SPECsimp is divergent
because B ⊉ C witnessed by in1,in2 2 C but in1,in2 62B. This is caused by that bounds
on Supremum do not imply bounds on in1(or in2) and out, not to mention to the
bound on in1 and in2.

To become a bounded(or safe) system SPECsimp safe, we can for instance replace
(F.11) by (F.12).

inf in1; in2ð Þ
 out ðF:12Þ

Let in fin12/inf(in1, in2), in fact, (F.12) equals
in fin12 ≺ out ∧ out (infin12 $ 1)
Because of introducing new clock constraint (F.12), some new clocks (implicit

clocks) are introduced as well, now CðSPECsimp safeÞ = CðSPECsimpÞ [ {infin12, infin12
$ 1}.

Let’s check its divergence-freedom again by Algorithm 1. By part I of Algo-
rithm 1, we get B = { c⊥ = infin12, c

⊤ = infin12 $ 1}, then using part II of Algorithm 1,
all the clocks in C can be added into B because their speed are constrained between the
slowest clock infin12 and the fastest clock infin12 $ 1 as revealed by the following CCCs
deduced by the Propositions 1, 5 and 7 as well as ρ1 and ρ2 above.

infin12 ≼ in1 ≼ step1 ≼ step3 ≼ out ≼ (infin12 $ 1)
infin12 ≼ in2 ≼ step2 ≼ step3 ≼ out ≼ (infin12 $ 1)
The resulting B = {c⊥ = infin12, in1, step1, in2, step2, step3, out, c

⊤ = infin12 $ 1},
as shown in Fig. 6, is obviously a superset of C(SPECsimp safe). Hence, the CCSL
specification SPECsimp safe is free of divergence. Note that B is also a CBCS because
all of clock c 2 B, c⊥ ≼ c ≼ c⊤.
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With the help of bounded_set_boundSPEC in Sect. 3.2, we can complete the proof
of theorem simp_safe for asserting the boundedness of SPECsimp safe in PVS by the
lemma simp_bcs as follows. In fact, SPECsimp safe is a specification free of divergence.

5 Related Work

Some techniques were provided as an effort to analyze CCSL specifications. [15]
implemented the automatic analysis by translating CCSL into signal, for the purpose of
generating executable specifications through discrete controller synthesis. However,
this work did not consider the Infimum and Supremum operators that introduce
unbounded counters and did not address the problem of deciding whether the speci-
fication is divergence-freedom or not. Exhaustive analysis of CCSL through a trans-
formation into labeled transition systems has already been attempted in [16]. However,
in those attempts, the CCSL operators were bounded because the underlying
model-checkers cannot deal with infinite labeled transition systems.

In [6], the authors showed that even though the primitive constraints were
unbounded, the composition of these primitive constraints could lead to a system where
only a finite number of states were accessible. [7] defines a notion of safety for CCSL
and establish a condition to decide whether a specification is safe on the transformed
marked graph from CCSL.

All the above works share one common point: the specification analysis were done
by some transformation and performed on the transformed target. The results were
dependent on the correctness and efficiency of the mechanized transformation.

Our contribution is straightforward based on the clock Causality relation used to
sort and the clock expression used to determine the clock pair’s boundary. It is not
necessary for the reader to have the other mathematic theory preliminaries except the
basic set-theory.

in1, step1, in2,
step2, step3, out

infin12$1

infin12

Fig. 6. BCS of simple application

Divergence Detection for CCSL Specification 35



6 Conclusion and Future Works

Based on the state-based semantics of a kernel subset of CCSL, We have presented a
sufficient condition to discover the CCSL divergence existence, and an easily con-
structed Bounded Clock Set (BCS) for deciding the convergence of CCSL. An algo-
rithm is proposed to actually build BCS of a given specification with the help of sorted
the bounded clock chain with respect to causality relation and the clock delay
expression used to decide clock pair’s boundary. Therefore, determining boundedness
among all clock pairs is converted into checking boundedness on much fewer clock
pairs and additionally sorting clocks with respect to causality relation. Finally, a simple
application’s convergence is investigated. We first discover its divergence by the
existence of unbounded clock causality chain. Consequently, a BCS is built to ensure
the new specification is convergent by adding suitable constraint.

As a future work, we plan to extend and prove the extensive application of clock
causality chain further. For instance, the potential causality conflict between clocks
may be found if the specification is not deadlock-free or ill-formed, the periodicity in a
schedule may be revealed in the chain in some style, etc.
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Abstract. The speed-ups acquired by concurrent programming heav-
ily rely on exploiting highly concurrent data structures. This has led
to a variety of coarse-grained and fine-grained locking to lock-free data
structures. The performance of such data structures is typically analysed
by simulation or implementation. We advocate a model-based approach
using probabilistic model checking. The main benefit is that our mod-
els can also be used to check the correctness of the data structures.
The paper details the approach, and reports on experimental results on
several concurrent stacks, queues, and lists. Our analysis yields worst-
and best-case bounds on performance metrics such as expected time and
probabilities to finish a certain number of operations within a deadline.

1 Introduction

Background and Motivation. Multi-core computers are ubiquitous. However
shared concurrent data structures [11] are an important obstacle. The downside
of lock-based data structures is that they are a sequential bottleneck. Lock-free
data structures are resilient to failures, are more complex, and require special
synchronisation primitives. Modern multi-core architectures support compare-
and-swap operations to allow threads to read, modify and write atomically. Cor-
rectness of concurrent data structures is a key issue and typically addressed by
a semi-formal pencil proof; performance is typically assessed by simulation or
implementation [2,4]. We propose to carry out both correctness and performance
analysis using a single, model-based, approach. This has the advantage that both
analyses use the same model, and that results are coherent. In addition, it allows
for using a single technique—model checking—for both types of analysis.

Modelling approach. The starting point for our approach is to model the con-
current data structure at hand, together with the threads that perform oper-
ations on it. We use the LOTOS NT language (LNT1, for short) which is a

Supported by the CDZ project CAP (GZ 1023) and the A. von Humboldt-
Foundation.

1 The LNT language is a formal description technique standardized by ISO OSI (1989),
please refer to: http://www.iso.org/iso/catalogue detail.htm?csnumber=16258.
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compositional modelling language with process algebraic roots, that supports
abstract data specifications. The structure of the entire system has the form
(T1 ||| . . . |||Tn) ||G D where the n threads T1 through Tn which are independent
(hence indicated by |||, a shorthand for ||∅) and communicate with the concur-
rent data structure D via the communication gates G. To keep the state space
finite, we bound the number of operations by applying a monitor process M
that keeps track of the number of read and write operations. Using the CADP
toolbox [7], the underlying state space can be generated and be analysed for
checking functional correctness. We focus here on performance evaluation.

Fig. 1. Our approach

Performance modelling and evaluation. To
enable performance evaluation, we assume that
delays between reads and writes are random in
nature and are governed by negative exponen-
tial distributions. We insert these random delays
into the model by renaming such read and write
actions to Markovian delay with different rates
in CADP. As a result, CADP yields (after a
mild post-processing) a Markov automaton [3,6].
These automata have random delay transitions,
and allow for non-determinism, a feature that
we exploit to model the concurrency among the
threads. Prior to the performance evaluation,
the state space is minimised using branching
bisimulation minimisation in CADP, which pre-
serves the important properties in the perfor-
mance evaluation [15]. The analysis of Markov
automata is enabled using recently developed
algorithms by Guck et al. [8,9], which allow for determining the expected time
until a certain state is reached—like “what is the expected time until each thread
has completed 10 reads and writes?”—and the likelihood to reach a state within
a given deadline—like “what is the probability that all reads and writes finish
within 10 min?”. Due to the inherent non-determinism (due to concurrency),
the analysis does not obtain the expected time, or the probability, but rather
obtains bounds. These bounds represent the best- and worst-case scenarios. The
quantitative analysis of MA is supported by the MAMA tool-set2. The entire
approach is given in Fig. 1.

Experimentation. We have applied our approach to the modelling and perfor-
mance evaluation of several concurrent stacks, queues, and lists. We treat the
Treiber stack [13] and its variant with hazard pointers, see e.g., [16]. In addition,
we cover the Michael-Scott two-lock (MS 2L) queue [14], its lock-free variant (MS
LF) [14], and an improvement on this lock-free variant [5] (known as DGLM).
Finally, we consider the coarse-grained synchronisation list [11, Chap. 9.4], a fine-
grained synchronization list [11, Chap. 9.5], the lazy list [10] and an optimistic

2 http://www.home.cs.utwente.nl/∼timmer/mama/.
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list [11, Chap. 9.6]. Our performance evaluation treats models of up to 378 mil-
lion states. The experiments show that—as expected—lock-based data structures
have a rather deterministic performance, whereas lock-free and fine-grained lock-
based show more variance in their performance. In addition, fine-grained lists
may yield a lower throughput as under intense race conditions many unsuccess-
ful operations are carried out. To the best of our knowledge this is the first work
that formally models concurrent data structures and uses this for a performance
evaluation. Related works are the probabilistic model checking of low-level OS
kernels including spin-locks [1] and the modelling and performance evaluation of
mutual exclusion algorithms [12].

type Memory is
   array [0 .. 10] of Qnode
   with "get", "set"
end type

2type Qnode is
   Qnode (next: Nat)
   with "get", "set"
end type

1

4

process H_Lock[HL: Lock_Ops] is
 var locked : Bool, pid: Pid in
  locked := false;
  loop select
   HL(lock_head, ?pid)
   []
   HL(test_and_set, false, ?pid) 
       where (locked == false);
   locked := true
   []
   HL(test_and_set, true, ?pid) 
        where (locked == true)
   []
   HL(unlock_head, ?pid); 
   locked := false
  end select end loop
end var end process

3 process Queue[M: Queue_Ops] is
 var m: Memory, head, tail, size, hd, 
  pos, pos_next: Nat, pid: Pid in
  size := 10;  head := 0; tail := 0;
  m := Memory(Qnode (0 of Nat));
   loop select
    M(read_head, head, ?any Pid)
    []
    M(read_next, ?pos, ?pos_next, ?pid) 
        where (m[pos].next == pos_next)
    []
    M(set_tail_next, ?pid); 
     m[tail] := m[tail].{next => (tail + 1)}
    []
    M(set_tail, ?pid); tail := m[tail].next
    []
    M(set_head, ?hd, ?pid); 
    head := m[head].next
   end select end loop
 end var end process

5

process Thread[M: Queue_Ops, 
 HL, TL: Lock_Ops, complete, 
 T: Thread_Ops](pid: Pid) is
 loop
  select
   Enq[M, TL, T](pid); complete
   []
   Deq[M, HL, T](pid); complete
  end select
 end loop
end process

6

process Enq [M: Queue_Ops, TL: Lock_Ops, 
             T: Thread_Ops] (pid: Pid) is
 var locked : Bool in
  TL(lock_tail, pid);
  loop G in
   TL(test_and_set, ?locked, pid);
   if (locked == false) then break G
   else T(thr_delay, pid)
   end if
  end loop;
  M(set_tail_next, pid);
  M(set_tail, pid);
  TL(unlock_tail, pid) 
end var end process

7 process MAIN [M: Queue_Ops, HL, TL: Lock_Ops, 
 finish, complete, T: Thread_Ops] is
 par M, HL, TL, complete, T in
  par  M in
   par HL, TL in
    par
     Thread[M, HL, TL, complete, T] (1 of Pid)
     ||
     Thread[M, HL, TL, complete, T] (2 of Pid)
    end par
    ||
    par
     H_Lock[HL]
     ||
     T_Lock[TL]
    end par
   end par
   ||
   Queue [M]
  end par
  ||
  Monitor [M, HL, TL, finish, complete, T]
end par end process

Fig. 2. The (partial) LNT code of the MS 2L queue
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2 Modeling Concurrent Data Structures in LNT

For space sake we only show the LNT model3 of the MS 2L queue [14] here in
Fig. 2. Furthermore, the references of LNT language and various tools (e.g. state
space minimisation) provided by CDAP can be found under http://cadp.inria.fr.

Figure 2 - 1 2 define the data structure of the MS 2L queue. It consists
of a bounded array of Qnodes, since mutable dynamic data structure is not
supported by LNT. Moreover, since to model a pointer is also not possible here,
the next field of the Qnode stores the index (a natural number) of its next node
in the array. A thread (Fig. 2 - 3 ) identified by pid needs to synchronize with
the lock (process) for head (i.e., H Lock), the lock for tail (i.e., T Lock) and the
queue (process) to perform enqueue and dequeue operations, hence the gates (M,
HL, TL) required for synchronization with these processes are declared. Further,
the gates (complete, T) indicate the process’s own operations. The behavior
of a thread is to repeatedly perform (enclosed by loop) either an enqueue or
a dequeue operation and emits a complete signal (synchronized with monitor
process for counting) if the operation is finished. Figure 2 - 4 defines the enqueue
operation (for dequeue similarly) of a thread. First it tries to acquire the tail
lock (via gate TL) before performing operations on the queue. The two locks
are assumed to be simple test-and-set locks with fixed back-off delay. The delay
(T(thr delay, pid)) are inserted after each unsuccessful try of test-and-set,
then the test-and-set is restarted. If it is succeed, the loop is exited and the
operations to enqueue (e.g., set tail next (set tail’s next to new node) and
set tail) are performed via the synchronization with gate M. Finally, the lock
is released (unlock tail). Figure 2 - 5 defines the head lock, which consists of a
boolean variable locked and operations to lock with the test and set operation
(it returns previous value of locked and set it to true atomically) and unlock
via the gate HL. Note that complex locks can be modelled similarly. Figure 2 - 6

is the queue process which consists of the queue (array) and the head and tail
(as indexes in the array) with auxiliary variables for synchronization. Note that
enqueue a new node is simply represented by setting the tail’s next to current
tail’s index + 1 in our model. Figure 2 - 7 defines the whole MS 2L queue:
the threads, the two locks, the queue and the monitor process are composed in
parallel with corresponding gates. Note that the threads are independent hence
they do not synchronize.

3 Towards Performance Evaluation

In performance evaluation, we bound number of operations on the data struc-
tures to keep the state space finite. The monitor process synchronises with the

3 The complete LNT models and their corresponding scripts of all aforementioned con-
current data structures follow the same principle described here and can be found
under the link: https://moves.rwth-aachen.de/wp-content/uploads/LNT-models.
zip.

http://cadp.inria.fr
https://moves.rwth-aachen.de/wp-content/uploads/LNT-models.zip
https://moves.rwth-aachen.de/wp-content/uploads/LNT-models.zip
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complete actions from threads and counts the successfully completed opera-
tions. Goal states indicate when the number of operations has reached a cer-
tain bound. The performance of the concurrent data structure is then evaluated
based on reaching a goal state. Since we assume that performing the elementary
operations (e.g., read/write, test and set, compare and swap) cause a random
delays governed by negative exponential distribution. We use the renaming rules
to replace such operations with Markovian transitions with rates in the state
space.

Experimental setup. To conduct experiments, we used the workflow as depicted
in Fig. 1. The CADP tool [7] is used to generate the state space of the par-
allel composition of the LNT models of the data structures, the threads, the
monitor. CADP also supports branching bisimulation minimisation that we
exploit to reduce the models prior to performance analysis. We developed a
CADP2MA script that transforms the state space as generated by CADP
into a Markov automaton (MA) [3,6]. MA are state-transition systems that
cater for non-determinism and support random delays. The performance eval-
uation of MA is done using the recent MAMA tool-set [8]. This tool sup-
ports the numerical computation of several quantitative objectives on MA.
Our experiments focus on two measures: (1) the expected time until the sys-
tem completes a certain number of operations requested by the overall threads
and (2) the probability of finishing all these operations within a given dead-
line. As a thread repeatedly performs enqueue (push, add) and dequeue (pop,
remove) operations in a non-deterministic manner4, our analysis does not
yield a single number but yields two bounds. A lower bound on the expected
time gives the minimal time that is needed on average to complete all opera-
tions; an upper bound gives the maximal time. The former can be understood
as the best achievable scenario; the latter as the worst one.

Assumptions and parameter settings. As concurrent programs with shared data
structures (and possibly pointers) in principle have an unbounded state space,
we make the following assumptions and modelling choices so as to enable a
performance evaluation on a finite state space: (1) The number of threads is
fixed. These threads invoke pre-defined operations (like pop and push) of the
concurrent data structure. The invocation of such operations is modelled by
means of synchronisation. (2) We bound the number of performed operations.
(3) As LNT does not natively support pointers, fixed-size arrays with pre-defined
elements are used, an index (a natural number) is used to locate the node, and a
pointer is treated as an index record. The delays that are used in our experiments
are adopted from [12] where the performance of mutual exclusion algorithms
was analysed. The analysis is not based on a specific processor architecture, it is
assumed that local caches are absent, and all operations are carried out on global
memory. The rates of the exponential distributions are: a read operation from
global memory (rate 3000, i.e., on average 1/3000 time units), write to a global
memory (2000), and complex operations (1200) on variables in global memory

4 Thus, the thread behavior is not biased to certain scenarios.
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e.g., compare and swap or test and set actions. The experiments are conducted
on a computer with 4 × 12-core AMD CPU @ 2.1 GHz and 192 GB memory
under 64-bit Debian 7.6.

4 Experimental Results

This section reports on applying our approach to the modelling and performance
evaluation of several concurrent stacks, queues, and lists. For each data structure,
we modelled and compared several variants from the literature. We report on
the state spaces, the performance analysis results, and discuss them.

Concurrent queues. We cover the MS 2L queue [14], its lock-free variant (MS
LF) [14], and an improvement on this lock-free variant (known as DGLM) [5].

State space size and analysis times. Table 1 shows the state spaces of different
configurations of the three queues, the reduced state space by probabilistic
branching bisimulation minimisation [7], the reduction factor, and the times
(in seconds) for generating + reducing the state space and analysing expected
time objectives. For four threads, three operations are considered (due to state
space explosion). As expected, the state space grows exponentially in the num-
ber of threads and number of operations. State spaces up to about 378 million
states have been generated (MS LF, 3 threads and 15 operations). The bisim-
ulation reduction times for large state spaces are about 50 % of the generation
times. Since the actions in the resulting system cannot be delayed by any other
actions, all actions (except delay transitions) are turned into τ -transitions. This
gives rise to state space reductions of up to 99.9 %. The MS 2L queue has a
relatively small state space, due to its nature of low concurrency.

Expected time results. Figure 3 shows the analysis results of the expected time to
finish a number of operations on the queues. Observe that the MS 2L queue is
rather deterministic as the minimal and maximal values are quite close. This does
not hold for the lock-free queues. The performance of the lock-based queue thus

Table 1. State space and the analysis time of expected time for concurrent queues
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Fig. 3. Min./max. expected time versus # operations for concurrent queues (Color
figure online)

provides a more stable service than its lock-free variants. Comparing Fig. 3 (left)
and (right), we see that the expected time of finishing 3 operations with 2 threads
is improved by 11 %/7 % in best/worst case of MS 2L queue, 26 %/10 % of MS
LF queue, 27 %/9 % of DGLM queue with 3 threads (due to more concurrency),
receptively. In best case the expected time for lock-free queues is much better
than for the MS 2L queue comparing to the difference between lock-free queues
and the MS 2L queue in worst case. The lock-free queues have—as expected—a
much higher overhead than the lock-based queue. Thus, lock-free queues have
a lower throughput in worst case than the lock-based one. The DGLM queue
outperforms the MS LF queue in best case. Finally, we observe that expected
times grow linearly in the number of operations.

Fig. 4. How likely do concurrent queues complete three oper-
ations on time? (Color figure online)

Probability of timely
completion. To get
more insight into
the performance of
queues, we analyse
the probability of
finishing a certain
number of opera-
tions within a (vary-
ing) deadline, see
Fig. 4. Note that
the faster the curve
goes to one, the bet-
ter the queue’s per-
formance. Since the
number of opera-
tions only causes a linear increase in the expected delay, we consider three
operations. We vary the number of threads from two to four. The three left-
most groups of curves indicate the maximal probabilities of the three queues
with 4/3/2 threads, respectively. We can observe that the algorithms have a
very strong impact on these results: lock-free queues perform much better than
the lock-based one in best case. However in worst case, the performance of
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algorithms is not that distinguishable (the rightmost curves), since they are
close to each other. The number of threads in all queues influence these curves
quite consistently, the more threads the much quicker the queue will finish the
operations. As for the expected times, the lock-based algorithm behaves rather
deterministic and its performance is quite stable when varying the number of
threads.

Evaluation. In the best-case scenario, the two lock-free queues behave much
better than the lock-based queue, in worst case however the lock-based queue
outperforms the lock-free queues. Lock-based queues have a stable performance
and are less vulnerable to the number of threads. The DGLM queue has better
expected times than the MS LF in best case, but does not process operations
within a deadline more likely.

Concurrent stacks. We consider two variants of the (lock-free) Treiber stack:
one with hazard pointers (HPs) and one without. Hazard pointers [13] prevents
the well-known ABA problem. HPs is used to keep certain locations as hazard
and prohibit other threads to deallocate them. During garbage collection, only
locations not pointed to by HPs can be freed. Our model of the Treiber-HP stack
is based on [16] and includes a memory allocation thread. Our analyses focus on
evaluating the performance influence of hazard pointers.

Table 2. The state spaces and analysis times of
expected time of Treiber stacks

State space size and analy-
sis times. Table 2 shows the
state spaces for different para-
meter settings. The Treiber-
HP stack causes a state space
explosion due to the fre-
quent scanning of HPs to
find free locations after each
pop()-operation. The branch-
ing bisimulation reduces the
state space significantly (up to
0.999 in case of 4 threads). In
cases for which the state space
could be generated, the analysis time for Treiber-HP is prohibitive (taking
hours).

Expected time results. Figure 5 shows that the HPs cause significant overhead
both in best and worst case. This is due to the additional operations of the HPs
including setting/comparing with the HPs in pop(). It is interesting to observe
that minimal expected times vary less than maximal ones. This is possibly due
to the fact that HPs are not effective for push()-operations.

Probability of timely completion. As for the concurrent queues, we compute the
time-bounded reachability of finishing three operations with 2/3/4 threads. We
notice that increasing the number of threads in the system affect the minimal
probability more than the maximal probability for both stacks. Moreover, the
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Fig. 5. The expected execution time versus # operations for Treiber stacks (Color
figure online)

difference of the maximal time-bounded reachability between both stacks is quite
small compared with the minimal values (Fig. 6).

Evaluation. We obverse that increasing the number of threads in the system has
a significant impact on the minimal probability of finishing three operations for
both stacks. Adding the HPs to Treiber stack is expensive in the worst case
scenario, since the curves of minimal reachability probabilities of Treiber stacks
with HPs (blue lines) are quite away from the corresponding curves (yellow lines)
representing the minimal reachability probabilities of Treiber stacks without
HPs. However, increasing the number of threads may alleviate this problem.
Note that we did not have any result of the minimal probability of Treiber stack
+ HP with 4 threads due to memory out.

Fig. 6. The prob. of finishing 3 oper. within a given
time-bound of Treiber stacks (Color figure online)

Concurrent lists. We con-
sider four lock-based lists: a
coarse-grained synchroniza-
tion list (cgs) [11], a fine-
grained synchronization list
(fgs) [11], the Heller et al.
lazy list (lazy) [10] and the
optimistic list (opt.) [11].
All these concurrent lists
are list-based implementa-
tions of a concurrent set
object, where we can add
(or remove) a value5 to (or
from) the list (set). Adding
an element which is already
in the list is unsuccessful. The lists are data-dependent, and their performance
strongly depends on the data to be added or removed. Thus, we model an addi-
tional process to generate pseudo random numbers to be added or removed
to/from the list. To test extreme situations, we set the generated random num-
ber to be only 1 or 2 in our experiment. This will cause a large number of unsuc-
5 In our experiments, we consider lists of natural numbers.
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cessful operations. Since these data structures employ different granularities of
locks, we discuss the effect of such granularities of locks on the performance
under this setting. For space reasons, we focus only on the expected time of
finishing different number of operations with several threads.

Table 3. The state spaces and comp. time of max/min expected time of lists

State space size and analysis times. Table 3 shows the generated state spaces and
analysis times of the lists. State spaces in some scenarios can not be generated
due to either memory out at state space generation or time out of computing
the expected time. The generated state spaces correctly reflect the granularities
of locks6: cgs > (is coarser than) fgs > lazy > opt. The bisimulation reduction
times for the large state spaces are about 60 % of the generation times.

Fig. 7. The expected execution time versus # read/write oper. of concurrent lists
(Color figure online)

Expected time results. One would expect that the fine-grained concurrency
(=finer granularity of lock) allows more operations to be performed per unit
time than coarse-grained concurrency. Hence one expects for the throughput:
opt > (the expected time is smaller) > lazy > fgs > cgs. However, in our exper-
iment this is not the case. Reversely, we can easily observe that cgs finishes 3
operations sooner than the others in both best and worst scenarios (Fig. 7).

6 If for a given scenario, the number of states of a data structure is higher than for
another data structure, it allows for more concurrency and has finer lock granularity.
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Evaluation. The results of expected times above indicate that the finer-grained
concurrency will not always achieve a higher throughput when the data race is
(extremely) intensive. The more unsuccessful operations will lower the overall
throughput and in such scenario the fine-grained implementation could be worse
than the coarse-grained implementation.

5 Conclusion

This paper presented the modelling and performance analysis of various con-
current data structures using a combination of the CADP and MAMA tools.
We emphasise that probabilistic model checkers such as PRISM/MRMC are not
appropriate as they do not support non-deterministic continuous-time stochas-
tic models. Future work consists of validating our model-based results against
concurrent data structure implementations (e.g., in Java).

Acknowledgments. We thank Wendelin Serwe for his support in CADP.
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Abstract. Computation of steady-state probabilities is an important
aspect of analysing biological systems modelled as probabilistic Boolean
networks (PBNs). For small PBNs, efficient numerical methods can be
successfully applied to perform the computation with the use of Markov
chain state transition matrix underlying the studied networks. However,
for large PBNs, numerical methods suffer from the state-space explo-
sion problem since the state-space size is exponential in the number of
nodes in a PBN. In fact, the use of statistical methods and Monte Carlo
methods remain the only feasible approach to address the problem for
large PBNs. Such methods usually rely on long simulations of a PBN.
Since slow simulation can impede the analysis, the efficiency of the sim-
ulation procedure becomes critical. Intuitively, parallelising the simula-
tion process can be an ideal way to accelerate the computation. Recent
developments of general purpose graphics processing units (GPUs) pro-
vide possibilities to massively parallelise the simulation process. In this
work, we propose a trajectory-level parallelisation framework to accel-
erate the computation of steady-state probabilities in large PBNs with
the use of GPUs. To maximise the computation efficiency on a GPU, we
develop a dynamical data arrangement mechanism for handling different
size PBNs with a GPU, and a specific way of storing predictor functions
of a PBN and the state of the PBN in the GPU memory. Experimen-
tal results show that our GPU-based parallelisation gains a speedup of
approximately 400 times for a real-life PBN.

1 Introduction

Systems biology aims to model and analyse biological systems using mathemat-
ical and computational methods from a holistic perspective in order to provide
a comprehensive, system-level understanding of cellular behaviour. Recent devel-
opments in systems biology have greatly promoted the discovery of unknown
biological information, leading to the revealing of more and more large biolog-
ical systems. This brings a significant challenge to computational modelling in
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terms of the state-space size of the system under study. Developed in 2002 by
Shmulevich et al. [1,2], probabilistic Boolean networks (PBNs) is a well-suited
framework for modelling large-size biological systems. Originally, PBNs is intro-
duced as a probabilistic generalisation of the standard Boolean networks (BNs)
to model gene regulatory networks (GRNs). The framework of PBNs not only
takes the advantage of BNs to incorporate rule-based dependencies between
genes and allow the systematic study of global network dynamics, but also is
capable of dealing with uncertainty, which naturally occurs at different levels in
the study of biological systems.

One of the key aspects of analysing biological systems, especially for those
modelled as PBNs, is the comprehensive understanding of their long-run (steady-
state) behaviour. This is vital in many contexts, e.g., attractors of a GRN were
considered to characterise cellular phenotype [3]. There have been a lot of stud-
ies in analysing the steady-state behaviours of biological systems modelled as
PBNs. As the dynamics of a PBN can be viewed as a discrete-time Markov chain
(DTMC), it can be studied with the use of the rich theory of DTMCs. Relying
on this, many numerical methods exist to compute steady-state probabilities
for small-size PBNs [4,5]. In the case of large-size PBNs, however, numerical
methods face the state-space explosion problem. The use of statistical methods
and Monte Carlo methods are then proposed to estimate the steady-state prob-
abilities. These methods require simulating the PBN under study for a certain
length and the simulation speed is an important factor in the performance of
these approaches. For large PBNs and long trajectories, a slow simulation speed
could render these methods infeasible as well. A natural way to address this
problem is to parallelise the simulation process.

Recent improvements in the computing power and the general purpose graph-
ics processing units (GPUs) enable the possibilities to massively parallelise this
process. In this work, we propose a trajectory-level parallelisation framework to
accelerate the computation of steady-state probabilities in large PBNs with the
use of GPUs. The architecture of a GPU is very different from that of a central
processing unit (CPU), and the performance of a GPU-based program is highly
related to how the synchronisation between cores is processed and how memory
accessing is managed. Our framework reduces the time-consuming synchroni-
sation cost by allowing each core to simulate one trajectory. Regarding to the
memory management, we contributes in two aspects. We first develop a dynam-
ical data arrangement mechanism for handling different size PBNs with a GPU
to maximise the computation efficiency on a GPU for relatively small-size PBNs.
We then propose a specific way of storing predictor functions of a PBN and the
state of the PBN in the GPU memory to reduce the memory consumption and
to improve the accessing speed. We show with experiments that our GPU-based
parallelisation gains a speedup of more than two orders of magnitudes.

Structure of the Paper. We present preliminaries on PBNs and the architec-
ture of GPUs in Sect. 2. The difficulties of parallelising the simulation of a PBN
and how to overcome them are discussed in Sect. 3. We evaluate our GPU imple-
mentation in Sect. 4 and conclude our paper with some discussions in Sect. 5.
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2 Preliminaries

2.1 Probabilistic Boolean Networks (PBNs)

A PBN G(X,F ) consists of a set of binary-valued nodes (also known as
genes) X = {x1, x2, . . . , xn} and a list of sets F = (F1, F2, ..., Fn). For each
i ∈ {1, 2, ..., n}, the set Fi = {f

(i)
1 , f

(i)
2 , . . . , f

(i)
�(i)} is a collection of Boolean func-

tions, known as predictor functions, for node xi, where �(i) is the number of
predictor functions for node xi. Each f

(i)
j is a Boolean function defined using

a subset of the nodes, referred to as parent nodes of xi. At each time point
t, the value of each node xi is updated with one of its predictor functions.
The predictor function is selected in accordance with a probability distribu-
tion Ci = (c(i)1 , c

(i)
2 , . . . , c

(i)
�(i)), where the individual probabilities are the selection

probabilities for the respective elements of Fi and they sum to 1. Several variants
of PBNs exist due to the different way of selecting predictor functions and the
synchronisation of nodes update. In this paper, we focus on the independent syn-
chronous PBNs, i.e., the choice of predictor functions for each node is made inde-
pendently and the values of all the nodes are updated synchronously. We use xi(t)
to denote the value of node xi at time point t, and s(t) = (x1(t), x2(t), . . . , xn(t))
to denote the state of the PBN at time point t. The state space of the PBN is
S = {0, 1}n and it is of size 2n. The transition from state s(t) to state s(t+1) is
performed by randomly selecting a predictor function for each node xi from Fi

and by applying those selected predictor functions to update the values of all the
nodes synchronously. Let f(t) be the combination of all the selected predictor
functions at time point t. The transition of state s(t) to s(t + 1) can then be
denoted as

s(t + 1) = f(t)(s(t)). (1)

A PBN can therefore be viewed as a discrete-time Markov chain (DTMC) with
state space S = {0, 1}n and transition relation defined by Eq. 1.

In a PBN with perturbations, a perturbation rate p ∈ (0, 1) is introduced
and the dynamics of a PBN is guided with both perturbations and predictor
functions: at each time point t, the value of each node xi is flipped with prob-
ability p; and if no flip happens, the value of each node xi is updated with
selected predictor functions synchronously. Let γ(t) = (γ1(t), γ2(t), . . . , γn(t))
be a perturbation vector, where each element is a Bernoulli distributed random
variable with parameter p, i.e., γi(t) ∈ {0, 1} and P(γi(t) = 1) = p for all t and
i ∈ {1, 2, . . . , n}. Extending Eq. 1, the transition from s(t) to s(t + 1) in PBNs
with perturbations is given as

s(t + 1) =

{
s(t) ⊕ γ(t) if γ(t) �= 0
f(t)(s(t)) otherwise,

(2)

where ⊕ is the element-wise exclusive or operator for vectors. According to
Eq. (2), from any state, the system can move to any other state with one tran-
sition due to perturbations. Therefore, the underlying Markov chain is in fact
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irreducible and aperiodic. Thus, the dynamics of a PBN with perturbations can
be viewed as an ergodic DTMC [1]. Based on the ergodic theory, the long-run
dynamics of a PBN with perturbations is governed by a unique limiting distri-
bution, convergence to which is independent of the choice of the initial state.

The density of a PBN is measured with the number of predictor functions
and the number of parent nodes for each predictor function. For a PBN G, its
density is defined as D(G) = 1

n

∑M
i=1 φ(i), where n is the number of nodes in G,

M is the total number of predictor functions in G, and φ(i) is the number of
parent nodes for the ith predictor function.

2.2 GPU Architecture

We review the basics of GPU architecture and its programming approach, i.e.,
common unified device architecture (CUDA) released by NVIDIA.

At the physical hardware level, an NVIDIA GPU usually contains tens of
streaming multiprocessors (SMs, also abbreviated as MPs), each containing
a fixed number of streaming processors (SPs), fixed size of registers, fast shared
memory (as shown in Fig. 1, with N being the number of MPs).

Accessing registers and shared memory is fast, but the size of these two types
of memory is very limited. In addition, a large size global memory, a small size
texture memory and constant memory are available outside the MPs. Global
memory has a high bandwidth (128 bytes in our GPU), but also a high latency.
Accessing global memory is usually orders of magnitude slower than accessing

Fig. 1. Architecture of a GPU.



54 A. Mizera et al.

registers or shared memory. Constant memory and texture memory are memories
of special type which can only store read-only data. Accessing constant memory
is most efficient if all threads are accessing exactly the same data; and texture
memory is better for dealing with random access. We refer to registers and shared
memory as fast memory ; global memory as slow memory ; and constant memory
and texture memory as special memory.

At the programming level, the programming interface CUDA is in fact
an extension of C/C++. A segment of code to be run in a GPU is put into
a function called a kernel. The kernels are then executed as a grid of blocks of
threads. A thread is the finest granularity in a GPU and each thread can be
viewed as a copy of the kernel. A block is a group of threads executed together
in a batch. Each thread is executed in an SP and threads in a block can only
be executed in one MP. One MP, however, can launch several blocks in paral-
lel. Communications between threads in the same block are possible via shared
memory. NVIDIA GPUs use a processor architecture called single instruction
multiple thread (SIMT), i.e., a single instruction stream is executed via a group
of 32 threads, called a warp. Threads within a warp are bounded together, i.e.,
they always execute the same instruction. Therefore, branch divergence can occur
within a warp: if one thread within a warp moves to the ‘if’ branch of an ‘if-
then-else’ sentence and the others choose the ‘else’ branch, then actually all
the 32 threads will “execute” both branches, i.e., the thread moving to the ‘if’
branch will wait for other threads when they execute the ‘else’ branch and vice
versa. If both branches are long, then the performance penalty is huge. There-
fore, branches should be avoided as much as possible in terms of performance.
Moreover, the data accessing pattern of the threads in a warp should be taken
care of as well. We consider the access pattern of shared memory and global
memory in this work. Accessing shared memory is most efficient if all threads in
a warp are fetching data in the same position or each thread is fetching data in
a different position. Otherwise, the speed of accessing shared memory is reduced
by the so-called bank conflict. Accessing global memory is most efficient if all
threads in a warp are fetching data in a coalesced pattern, i.e., all threads in
a warp are reading data in adjacent locations in global memory. In principle,
the number of threads in a block should always be an integral multiple of the
warp size due to the SIMT architecture; and the number of blocks should be
an integral multiple of the number of MPs since each block can only be executed
in one MP.

An important task for GPU programmer is to hide latency. This can be done
via the following four ways:

1. increase the number of active warps;
2. reduce the access to global memory by caching the frequently accessed data in

fast memory, or in constant memory or texture memory, if the access pattern
is suitable;

3. reduce bank conflict of shared memory access;
4. coalesce accesses to the global memory to use the bandwidth more efficiently.
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However, the above four methods often compete with one another due to the
restrictions of the hardware resources. For example, using more shared memory
would restrict the number of active blocks and hence the number of active warps
is limited. Therefore, a trade-off between the use of fast memory and the number
of threads has to be considered carefully. We discuss this problem and provide
our solution to it in Sect. 3.2.

3 PBN Simulation in GPU

In this section, we present how simulation of a PBN is performed in a GPU,
while addressing the problems identified at the end of Sect. 2.

3.1 Trajectory-Level Parallelisation

In general, there are two ways for parallelising the PBN simulation process. One
way is to update all nodes synchronously, i.e., each GPU thread only updates
one node of a PBN; the other way is to simulate multiple trajectories simul-
taneously. The first way requires synchronisation among the threads, which is
time-consuming in the current GPU architecture. Therefore, in our implemen-
tation, we take the second way to simulate multiple trajectories concurrently.
Samples from multiple trajectories can be merged together to compute steady-
state probabilities of a PBN using a combination of the two-state Markov chain
approach [6] and the Gelman and Rubin method [7]. A detailed description for
this combination can be found in [8]. Note that merging is performed in a CPU
and no synchronization is required. We show in Fig. 2 the workflow for computing
steady-state probabilities based on trajectory-level parallelisation.

Each blue box represents a kernel to be parallelised in a GPU. The first and
second blue boxes perform the same task except that trajectories in the first

Fig. 2. Workflow of steady-state analysis using trajectory-level parallelisation. (Color
figure online)
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Algorithm 1. Simulate one step of a PBN in a GPU
1: procedure SimulateOneStep(n, F, extraF, p, S)
2: perturbed := false;
3: for (i := 0; i < n; i++) do
4: if rand() < p then perturbed := true; S[i/32] := S[i/32] ⊕ (1 � (i%32));
5: end if //the result of i/32 is 〈〈
6: end for
7: if perturbed then return S;
8: else
9: set array nextS to 0;

10: for (i := 0; i < n; i++) do
11: index := nextIndex(i);//sample the Boolean function index for node i
12: compute the entry of the Boolean function based on index and S;
13: v := F [index ];
14: if entry > 31 then //entry starts with 0
15: get index of the Boolean function in extraF ; //see Sect. 3.3
16: v := extraF [index ]; entry := entry%32;
17: end if
18: v := v � entry ; nextS[i/32] := nextS[i/32] | ((v&1) � (i%32));
19: end for
20: end if
21: S := nextS; return S.
22: end procedure

blue box are abandoned while those in the second blue box are stored in global
memory. This is due to the requirement of the Gelman and Rubin method [7] that
only the second half samples are used for computing steady-state probabilities.
Based on the last k samples simulated in the second blue box, the third blue box
computes the meta state information required by the two-state Markov chain
approach [6]. The two-state Markov chain approach determines whether the
samples are large enough based on the meta state information. If not enough,
the last (forth) kernel is called again to simulate more samples; otherwise, the
steady-state probability is computed.

The key part of the four kernels is the simulation process. We describe in
Algorithm 1 the process for simulating one step of a PBN in a GPU. The four
inputs of this algorithm are respectively the number of nodes n, the Boolean
functions F , the extra Boolean functions extraF and the current state S. The
extra Boolean functions are generated due to that we optimise the storage of
Boolean functions and split them into two parts in order to save memory (see
Sect. 3.3 for details). Due to this optimisation, an ‘if’ sentence (lines 14 to 17) has
to be added. This ‘if’ sentence fetches the Boolean function stored in the second
part (extraF ). The probability that this sentence is executed is very small due
to the way we split the Boolean functions and the time cost of executing this
sentence is also very small. Therefore, by paying a small penalty in terms of
computational time, we are able to store Boolean functions in fast memory and
gain much more speedups with the use of fast memory.
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3.2 Data Arrangement

As mentioned in Sect. 2.2, suitable strategy for hiding latency should be carefully
considered for a GPU program. Since the simulation process requires accessing
the PBN information (in a random way) in each simulation step and the latency
cost for frequently accessing data in slow memory is really huge, caching those
information in fast and special memory results in a more efficient computation
comparing to allowing more active warps. Therefore, we first try to arrange all
frequently accessed data in fast and special memory as much as possible; then
based on the remaining resources we calculate the optimal number of threads
and blocks to launch. Since the size of fast memory is limited and the memory
required to store a PBN varies from PBN to PBN, a suitable data arrangement
policy is necessary. In this section, we discuss how we dynamically arrange the
data in different GPU memories for different PBNs.

In principle, frequently accessed data should be put in fast memory as much
as possible. We list all the frequently used data and how we arrange them in
GPU memories in Table 1. As the size of the fast memory is limited and has
different advantages for different data accessing modes, we save different data
in different memories. Namely, those read-only data that are always or most
likely to be accessed simultaneously by all threads in a warp, are put in constant
memory; other read-only data are put in shared memory if possible; and the
rest of the data are put in registers if possible. Since the memory required to
store the frequently used data varies a lot from PBN to PBN, we propose to use
a dynamic decision process to determine how to arrange some of the frequently
accessed data, i.e., the data shown in the last four rows of Table 1. The dynamic
process calculates the memory required to store all the data for a given PBN,

Table 1. Frequently accessed data arrangement.

Data Data type Stored in

random number generator CUDA built in registers

node number integer constant memory

perturbation rate float constant memory

cumulative number of functions short array constant memory

selection probabilities of functions float array constant memory

indices of positive nodes integer array constant memory

indices of negative nodes integer array constant memory

cumulative number of parent nodes short array shared memory

Boolean functions integer array shared memory

indices for extra Boolean functions short array shared memory

parent nodes indices for each function short array shared/texture memory

current state integer array registers/global memory

next state integer array registers/global memory
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and determines where to put them based on their memory size. If the shared
memory and registers are large enough, all the data will be stored in these two
fast memories. Otherwise, they will be placed in the global memory. For the
data stored in the global memory, we use two ways to speed up their access.
One way is to use texture memory to speed up the access for read-only data,
e.g., the parent node indices for each function. The other way is to optimise the
data structure to allow a coalesced accessing pattern, e.g., the current state. We
explain this in details in Sect. 3.3. This dynamical arrangement of data allows
our program to explore the computation ability of a GPU as much as possible,
leading to faster speedups for relatively small sparse networks.

3.3 Data Optimisation

As mentioned in Sect. 2.2, a GPU usually has a very limited size of fast memory
and the latency can vary a lot when accessing the same memory in a different
way, e.g., accessing shared memory with or without bank conflict. Therefore, we
optimise the data structure of two important data, i.e., the Boolean functions
(stored as truth tables) and the states of a PBN, to save space and to maximise
the access speed.

Optimisation on Boolean Functions. A direct way to store a truth table is to
use a Boolean array, which consumes one byte to store each element. Accessing
an element of the truth table can be directly made by providing the index of the
Boolean array. Instead, we propose to use a primitive 32-bit integer (4 bytes) type
to store the truth table. Each bit of an integer stores one entry of the truth table
and hence the memory usage can be reduced by 8 in maximum: 4 bytes compared
to 32 bytes of a Boolean array. A 32-bit integer can store a truth table of at most
32 elements, corresponding to a Boolean function with max. 5 parent nodes.
Since for real biological systems the number of parent nodes is usually small [9],
in most cases one integer is enough for storing the truth table of one Boolean
function. In the case of a truth table with more than 32 elements, additional
integers are needed. In order to save memory and quickly locate a specific truth
table, we save the additional integers in a separate array. More precisely, we
use a 32-bit integer array F of length M to store the truth tables for all the
M Boolean functions and the ith (i ∈ [0,M − 1]) element of F stores only the
first 32 elements of the ith truth table. If the ith truth table contains more than
32 elements, the additional integers are stored in an extra integer array extraF .
In addition, two index arrays extraFIndex and cumExtraFIndex are needed to
store the index of the ith truth table in extraF . Each element of extraFIndex
stores one index value of the truth table which requires additional integers. The
length of extraFIndex is at most M . Each element of cumExtraFIndex stores the
cumulative number of additional required integers for all the truth tables whose
indices are stored in extraFIndex .

As an example, we show how to store a truth table with 128 elements in
Fig. 3. We assume that this 128-element truth table is the ith one among all
M truth tables and that it is the jth one among those m truth tables that
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Fig. 3. Demonstration of storing Boolean functions in integer arrays.

require additional integers to store. Therefore, its first 32 (0–31th) elements are
stored in the ith element of F and its index i is stored in the jth element of
extraFIndex , denoted as ej . The jth element of cumExtraFIndex , denoted as
cj , stores the total number of additional integers required to store the j − 1
truth tables whose indices are stored in the first j − 1 elements of extraFIndex .
Let cumExtraFIndex[j] = k. The kth, (k + 1)th, and (k + 2)th elements of
extraF store the 32–127th elements of the ith truth table. After storing the
truth tables in this way, accessing the tth element of the ith truth table can
be performed in the following way. When t ∈ [0, 31], F [i] directly provides the
information, and when t ∈ [32, 127], three steps are required: (1) search the array
extraFIndex to find the index j such that extraFIndex [j] equals to i, (2) fetch
the jth value of array cumFIndex and let k = cumFIndex [j], (3) the integer
extraF [k + (t − 32)%32] contains the required information. Since in most cases
the number of parent nodes is very limited, the array extraFIndex is very small.
Hence, the search of the index j in the first step can be finished very quickly.
In the rare case where the extraFIndex array would be large, e.g., M is large
and the length of extraFIndex would be close to M , it is preferable to store
extraFindex as an array of length M and let extraFindex [i] store the entry in
cumFIndex for the ith truth table so that the search phase of the first step is
eliminated. The required memory for storing this truth table is reduced from
128 bytes (stored as Boolean arrays) to 20 bytes (6 integers to store the truth
table and 2 shorts to store the index). In addition to saving memory, the above
optimisation can also reduce the chances of bank conflict in shared memory due
to the fact that accessing any entry of a truth table is performed by fetching
only one integer in array F in most cases. Accessing the elements in extraFIndex
requires additional memory fetching; however, as mentioned before, the chance
for such cases to happen is very small in a real-life PBN and the gained memory
space and improved data fetching pattern can compensate for this penalty.

Optimisation on PBN States. The optimisation of the data structure for
states is similar to that for Boolean functions, i.e., states are stored as integers
and each bit of an integer represent the value of a node. Therefore, a PBN with
n nodes requires �n/32� integers (4 ∗ �n/32� bytes) to be stored, compared to n
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Fig. 4. Storing states in one array and coalesced fetching for threads in one warp.

bytes when stored as a Boolean array. During the simulation process, the current
state and the next state of a PBN have to be stored. As shown in Table 1, the
states are put in registers whenever possible, i.e., when the number of nodes is
smaller than 129. In the case of a PBN with nodes number equal to or larger
than 129, the global memory has to be used due to the limited register size
(shared memory are used to store other data and would not be large enough to
store states in this case). To reduce the frequency of accessing global memory,
one register (32 bits) is used to cache the integer that stores the values of 32
nodes. Updating of the 32 node values is performed via the register and stored
in the global memory with a single access only once after all the 32 node values
are updated in the register. Moreover, states for all the threads are stored in one
large integer array S in the global memory and we arrange the content of this
array to allow for a coalesced accessing pattern. More specifically, starting from
the 0th integer, every consecutive T integers store the values of 32 nodes in the
T threads (assuming there are T threads in total). Figure 4 shows how to store
states of a PBN with n nodes for all the T threads in an integer array S and
how the 32 threads in the first warp fetch the first integer in a coalesced pattern.
We denote τ j

i as the ith integer to store values of 32 nodes for thread j and let
� = �n/32�. For threads in one warp, accessing the values of the same node can
be performed via fetching the adjacent integers in the array S. This results in
a coalesced accessing pattern of the global memory. Hence, all the 32 threads in
one warp can fetch the data in a single data transaction.

4 Evaluation

We evaluate our GPU-based parallelisation framework for computing steady-
state probabilities of PBNs in both randomly generated networks and a real-life
biological network. All the experiments are performed on a high performance
computing (HPC) machines, each of which contains a CPU of Intel Xeon E5-
2680 v3 @ 2.5 GHz and an NVIDIA Tesla K80 Graphic Card with 2496 cores
@824 MHz. The program is written in a combination of both Java and C, and
the initial and maximum Java virtual machine heap size is set to 4 GB and
11.82 GB, respectively. The C language is used to program operations on GPUs
due to the fact that no suitable Java library is currently provided for operations
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Fig. 5. Speedups of GPU-accelerated steady-state computation.

on NVIDIA GPUs. When launching the GPU kernels, the kernel configurations
(the number of threads and blocks) are dynamically determined as mentioned
in Sect. 3.2.

4.1 Randomly Generated Networks

The evaluation on randomly generated networks is performed on 380 PBNs,
which are generated using the tool ASSA-PBN [10]. The nodes number of
these networks ranges in the set {100, 150, 200, 250, 300, 350, 400, 450, 500, 550,
600, 650, 700, 750, 800, 850, 900, 950, 1000}. For each of the 380 networks, we com-
pute one steady-state probability using both the sequential two-state Markov
chain approach and our GPU-accelerated parallelisation framework. We set the
three precision requirements of the two-state Markov chain approach, i.e., the
confidence level s, the precision r, and the steady-state convergence parameter
ε to 0.95, 5 × 10−5, and 10−10 respectively. The computation time limit is set
to 10 hours. In the end, we obtain 366 pairs of valid results. The 14 invalid
pairs are due to that the sequential version two-state Markov chain approach is
timed out (the parallel version is not). Among the 366 results, 355 (96.99%) are
comparable, i.e., the differences of computed probabilities satisfy the specified
precision requirement. This result meets our confidence level requirement.

We compute the speedups of the GPU-accelerated parallelisation framework
with respect to the sequential two-state Markov chain approach for those 366
valid results with the formula speedup = spa/tpa

sse/tse
, where spa and tpa are respec-

tively the sample size and time cost of the parallelisation framework, and sse

and tse are respectively the sample size and time cost of the sequential approach.
The speedups are plotted in Fig. 5. As can be seen from this figure, we obtain
speedups approximately between 102 and 405. There are some small gaps with
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Table 2. Speedups of GPU-accelerated steady-state computation of 8 randomly gener-
ated networks. seq. is short for the sequential two-state Markov chain approach; while
par. is short for the GPU-accelerated parallel approach.

Node # Density Probability Sample size
(million)

Time (s) Speedup

seq. par. seq. par. seq. par.

100 2.53 0.24409 0.24401 350 367 2637.06 6.84 405

100 9.32 0.36221 0.36217 426 427 3429.06 13.04 264

400 2.75 0.12003 0.12002 316 318 7615.72 26.77 286

400 8.98 0.04657 0.04660 135 137 3908.25 20.79 190

700 2.64 0.05800 0.05794 259 261 8567.52 39.27 220

700 9.41 0.10632 0.10634 438 441 16541.79 121.60 137

1000 2.73 0.14675 0.14673 838 839 30626.44 184.44 166

1000 8.81 0.00298 0.00293 20 21 792.86 8.10 103

respect to the densities of those networks, e.g., no networks with density between
5 and 6. Those gaps are due to the way how those networks are randomly gener-
ated, i.e., one cannot force the ASSA-PBN tool to generate a PBN with a fixed
density, but can only provide the following information to affect the density: the
number of nodes, the maximum (minimum) number of functions for each node,
and the maximum (minimum) number of parent nodes for each function. How-
ever, even with the gaps, the tendency of the changes of speedups with respect to
densities can be well observed. In fact, this observation is similar to that of the
network size. With the network size decreasing and the density decreasing, our
GPU-accelerated parallelisation framework gains higher speedups. This is due
to our dynamic way of arranging data for different size PBNs: data for relatively
small1 and sparse networks can be arranged in the fastest memory.

To demonstrate the computation details, we select 8 pairs among the 366
results and show in Table 2 the computed probabilities, the sample size (in
millions) and the time cost (in seconds) for computing the steady-state prob-
abilities using both the sequential two-state Markov chain approach and the
GPU-accelerated parallelisation framework. The two approaches generated com-
parable results using similar length of samples while our GPU-accelerated par-
allelisation framework shows speedups of more than two orders of magnitude.
All detailed results for the 380 networks can be found at http://satoss.uni.lu/
software/ASSA-PBN/benchmark/.

1 In fact all the networks used in this subsection should be called large-size PBNs
since the network with the smallest size has already contained 2100 ≈ 1030 states.

http://satoss.uni.lu/software/ASSA-PBN/benchmark/
http://satoss.uni.lu/software/ASSA-PBN/benchmark/
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Table 3. Speedups of GPU-accelerated steady-state computation of a real-life apop-
tosis network.

Steady-state Probability Sample size
(million)

Time (s) Speedup

R C F seq. par. seq. par. seq. par.

0 1 1 0.003236 0.003237 589.05 590.77 3866.04 9.28 417.81

1 1 1 0.990053 0.990046 1809.27 1811.71 11476.00 28.08 409.20

1 0 1 0.005592 0.005590 1015.95 1021.07 6662.26 15.89 421.47

1 1 0 0.001082 0.001080 197.80 200.12 1281.45 3.27 396.60

∗ 1 1 0.993289 0.993288 1222.83 1241.06 7967.42 19.30 418.99

∗ 1 0 0.001082 0.001087 197.29 206.37 1096.90 3.36 341.62

∗ 0 1 0.005614 0.005624 1021.87 1039.35 6725.25 16.17 422.98

4.2 An Apoptosis Network

We have analysed a PBN model of an apoptosis network using the sequential
two-state Markov chain approach in [6]. The apoptosis network was originally
published in [11] as a BN model and cast into the PBN framework in [5]. The
PBN model (as shown in Fig. 6) contains 91 nodes and 107 Boolean functions.
The selection probabilities of the Boolean functions were fitted to experimental
data in [5]. We took the 20 best fitted parameter sets and performed the influence
analyses for them. Although we managed to finish this analysis in an affordable
amount of time due to an efficient implementation of a sequential PBN simulator,
the analysis was still very expensive in terms of computation time since the
required trajectories were very long and we needed to compute steady-state
probabilities for a number of different states.

In this work, we re-perform part of the influence analyses from [6] using
our GPU-accelerated parallel two-state Markov chain approach. In the influence
analysis, we consider the PBN with the best fitted values and we aim to compute
the long-term influences on complex2 from each of its parent nodes: RIP-deubi,
complex1, and FADD, in accordance with the definition in [12]. In order to
compute this long-term influence, seven different steady-state probabilities are
required. We show in the first column of Table 3 the values of the seven steady-
states. The three numbers or “*” with two numbers respectively represent the
steady-state values of the three genes RIP-deubi, complex1, and FADD: 0 rep-
resents active; 1 represents inactive; and “*” represents irrelevant. We compute
those seven different steady-state probabilities using both the sequential two-
state Markov chain approach and the GPU-accelerated parallelisation frame-
work. We show in Table 3 the computed steady-state probabilities, the sample
size (in millions), the time cost (in seconds), and the speedups we obtain for this
computation. The confidence level s, precision r, and the steady-state conver-
gence parameter ε of this computation are set to 0.95, 5×10−6, and 10−10 respec-
tively. The density of the network is approximately 1.78. The two approaches
compute comparable steady-state probabilities with similartrajectory lengths;
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while our GPU-accelerated parallelisation framework reduces the time cost by
approximately 400 times. The total time cost for computing the seven probabil-
ities is reduced from about 11 hours to approximately 1.5 min.

5 Conclusion and Future Works

In this paper, we have proposed a trajectory-level parallelisation framework to
accelerate the computation of steady-state probabilities for large PBNs with the
use of GPUs. Our work contributes in three aspects in maximising the perfor-
mance of a GPU when computing the steady-state probabilities. First, we reduce
the time consuming synchronisation cost between GPU cores by allowing each
core to simulate all nodes of one trajectory. Secondly, we propose a dynami-
cal data arrangement mechanism for handling different size PBNs with a GPU.
This leads to large speedups for handling relatively small-size PBNs. Lastly, we
develop a specific way of storing predictor functions of a PBN and the state
of the PBN in the GPU memory to save space and to accelerate the memory
accessing. We show with experiments that our GPU-based parallelisation gains
a speedup of more than two orders of magnitudes. Evaluation on a real-life
apoptosis network shows that our GPU-based parallelisation obtains a speedup
of approximately 400 times.

There are two directions for our future works. One is to apply our work to
analyse large realistic biological models. The other one is to optimise the current
structure to better handle very dense and huge networks.
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Abstract. For the model of probabilistic labelled transition systems
that allow for the co-existence of nondeterminism and probabilities, we
present two notions of bisimulation metrics: one is state-based and the
other is distribution-based. We provide a sound and complete modal
characterisation for each of them, using real-valued modal logics based
on Hennessy-Milner logic. The logic for characterising the state-based
metric is much simpler than an earlier logic by Desharnais et al. as it uses
only two non-expansive operators rather than the general class of non-
expansive operators. For the kernels of the two metrics, which correspond
to two notions of bisimilarity, we give a comprehensive comparison with
some typical distribution-based bisimilarities in the literature.

1 Introduction

Bisimulation is an important proof technique for establishing behavioural equiv-
alences of concurrent systems. In probabilistic concurrency theory, there are
roughly two kinds of bisimulations: one is state-based that is directly defined
over states and then lifted to distributions, and the other is distribution-based
as it is a relation between distributions. The former is originally defined in [34]
to represent a branching time semantics; the latter, as defined in [13,21,28],
represents a linear time semantics.

In correspondence with those bisimulations, there are two notions of behav-
ioural pseudometrics (simply called metrics in the current work). They are more
robust ways of formalising behavioural similarity between formal systems than
bisimulations because, particularly in the probabilistic setting, bisimulations are
too sensitive to probabilities (a very small perturbation of the probabilities would
render two systems non-bisimilar). A metric gives a quantitative measure of the
distance between two systems and distance 0 usually means that the two sys-
tems are bisimilar. A logical characterisation of the state-based bisimulation
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metric for labelled Markov processes is given in [16]. For a more general model
of labelled concurrent Markov chains (LCMCs) that allow for the co-existence
of nondeterminism and probabilities, a weak bisimulation metric is proposed in
[17]. Its logical characterisation uses formulae like h ◦ f , which is the composi-
tion of formula f with any non-expansive operator h on the interval [0, 1], i.e.
|h(x)−h(y)| ≤ |x−y| for any x, y ∈ [0, 1]. A natural question then arises: instead
of the general class of non-expansive operators, is it possible to use only a few
simple non-expansive operators without losing the capability of characterising
the bisimulation metric?

In the current work, we give a positive answer to the above question. For sim-
plicity of presentation, we focus on strong bisimulation metrics. But the proof
idea can be generalised to the weak case. We work in the framework of prob-
abilistic labelled transition systems (pLTSs) that are essentially the same as
LCMCs, so the interplay of nondeterminism and probabilities is allowed. We
provide a modal characterisation of the state-based bisimulation metric closely
in line with the classical Hennessy-Milner logic (HML) [27]. Our variant of HML
makes use of state formulae and distribution formulae, which are formulae eval-
uated at states and distributions, respectively, and yield success probabilities.
We use merely two non-expansive operators: negation (¬φ) and testing (φ � p).
Negation is self-explanatory and the testing operator checks if a state satisfies
a property with certain threshold probability. More precisely, if state s satisfies
formula φ with probability q, then it satisfies ¬φ with probability 1 − q, and
satisfies φ�p with probability q −p if q > p and 0 otherwise. In other words, we
do not need the general class of non-expansive operators because negation and
testing, together with other modalities inherited from the classical HML, are
expressive enough to characterise bisimulation metrics1. As regards to the char-
acterisation of distribution-based bisimulation metric, we drop state formulae
and use distribution formulae only. In addition, we show that the distribution-
based metric is a lower bound of the state-based metric when the latter is lifted
to distributions.

The kernels of the two metrics generate two notions of bisimilarities: one is
state-based and the other is distribution-based. The state-based bisimilarity is
widely accepted by the community of probabilistic concurrency theory, and it
admits elegant characterisations from metric, logical, and algorithmic perspec-
tives [10]. On the contrary, there is no general agreement on what is a good notion
of distribution-based bisimilarity. We compare the two bisimilarities induced by
our metrics with some typical notions of distribution-based bisimilarities pro-
posed in the literature. Our distribution-based bisimilarity turns out to coincide
with the one defined in [21] and they constitute the coarsest bisimilarity for
distributions.

1 Notice that we do not claim that negation and testing operators, plus some constant
functions, suffice to represent all the non-expansive operators on the unit interval.
That claim is too strong to be true. For example, the operator f(x) = 1

2
x cannot be

represented by those operators.
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The rest of this paper is organised as follows. Section 2 provides some basic
concepts on pLTSs. Section 3 defines a two-sorted modal logic that leads to
a sound and complete characterisation of the state-based bisimulation metric.
Section 4 gives a similar characterisation for the distribution-based bisimulation
metric. In Sect. 5 we compare the two metrics discussed in the previous two sec-
tions. In Sect. 6 we compare the two bisimilarities generated by the two metrics
with some distribution-based bisimilarities appeared in the literature. In Sect. 7
we review some related work. Finally, we conclude in Sect. 8.

2 Preliminaries

Let S be a countable set. A (discrete) probability subdistribution over S is defined
as a function Δ : S → [0, 1] with

∑
s∈S Δ(s) ≤ 1. It is a (full) distribution if∑

s∈S Δ(s) = 1. Its support, written �Δ�, is the set {s ∈ S | Δ(s) > 0}. Let
Dsub(S) (resp. D(S)) denote the set of all subdistributions (resp. distributions)
over S. We use ε to stand for the empty subdistribution, that is ε(s) = 0 for
any s ∈ S. We write s for the point distribution, satisfying s(t) = 1 if t = s,
and 0 otherwise. The total mass of subdistribution Δ, written |Δ|, is defined as∑

s∈S Δ(s). A weight function ω ∈ D(S × S) for (Δ,Θ) ∈ D(S) × D(S) is given
if

∑
t∈S ω(s, t) = Δ(s) and

∑
s∈S ω(s, t) = Θ(t) for all s, t ∈ S. We denote the

set of all weight functions for (Δ,Θ) by Ω(Δ,Θ).
A metric d over a space S is a distance function d : S × S → R≥0 sat-

isfying: (i) d(s, t) = 0 iff s = t (isolation), (ii) d(s, t) = d(t, s) (symmetry),
(iii) d(s, t) ≤ d(s, u) + d(u, t) (triangle inequality), for any s, t, u ∈ S. If we
replace (i) with d(s, s) = 0, we obtain a pseudometric. In this paper we are
interested in pseudometrics because two distinct states can still be at distance
zero if their behaviour is similar. But for simplicity, we often use the term metrics
though we really mean pseudometrics. Let c ∈ R≥0 be a positive real number.
A metric d over S is c-bounded if d(s, t) ≤ c for any s, t ∈ S.

Let d : S × S → [0, 1] be a metric over S. We can lift it to be a metric over
D(S) by using the Kantorowich metric [31] K (d) : D(S) × D(S) → [0, 1] defined
via a linear programming problem as follows:

K (d)(Δ,Θ) = min
ω∈Ω(Δ,Θ)

∑

s,t∈S

d(s, t) · ω(s, t) (1)

for Δ,Θ ∈ D(S). The dual of the above linear programming problem is the
following

max
∑

s∈S(Δ(s) − Θ(s))xs, subject to 0 ≤ xs ≤ 1
∀s, t ∈ S : xs − xt ≤ d(s, t) .

(2)

The duality theorem in linear programming guarantees that both problems have
the same optimal value.



70 W. Du et al.

Let d̂ : D(S) × D(S) → [0, 1] be a metric over D(S). We can lift it to be a
metric over the powerset of D(S), written P(D(S)), in the standard way by using
the Hausdorff metric H (d̂) : P(D(S)) × P(D(S)) → [0, 1] given as follows

H (d̂)(Π1,Π2) = max{ sup
Δ∈Π1

inf
Θ∈Π2

d̂(Δ,Θ), sup
Θ∈Π2

inf
Δ∈Π1

d̂(Θ,Δ)}

for all Π1,Π2 ⊆ D(S), whereby inf ∅ = 1 and sup ∅ = 0.
Probabilistic labelled transition systems (pLTSs) generalize labelled transi-

tion systems by allowing for probabilistic choices in the transitions. They are
essentially simple probabilistic automata [39] without initial states.

Definition 1. A probabilistic labelled transition system is a triple (S,A,−→),
where S is a countable set of states, A is a countable set of actions, and the
relation −→ ⊆ S × A × D(S) is a transition relation.

We write s
a−→ Δ for (s, a,Δ) ∈ −→ and s � a−→ if there is no Δ satisfying s

a−→ Δ.
We let der(s, a) = {Δ | s

a−→ Δ} be the set of all a-successor distributions of s.
A pLTS is image-finite (resp. deterministic or reactive) if for any state s and action
a the set der(s, a) is finite (resp. has at most one element). In the current work,
we focus on image-finite pLTSs with finitely many states.

3 State-Based Bisimulation Metrics

We consider the complete lattice ([0, 1]S×S ,
) defined by d 
 d′ iff d(s, t) ≤
d′(s, t), for all s, t ∈ S. For any D ⊆ [0, 1]S×S the least upper bound is
given by (

⊔
D)(s, t) = supd∈D d(s, t), and the greatest lower bound is given

by (
�

D)(s, t) = infd∈D d(s, t) for all s, t ∈ S. The bottom element 0 is the
constant zero function 0(s, t) = 0 and the top element 1 is the constant one
function 1(s, t) = 1 for all s, t ∈ S.

Definition 2. A 1-bounded metric d on S is a state-based bisimulation metric
if for all s, t ∈ S with d(s, t) < 1, whenever s

a−→ Δ then there exists some
t

a−→ Δ′ with K (d)(Δ,Δ′) ≤ d(s, t).

The smallest (wrt. 
) state-based bisimulation metric, denoted by ds , is called
state-based bisimilarity metric. Its kernel is the state-based bisimilarity as defined
in [34,39]. Note that 0 does not satisfy Definition 2 for general pLTSs, thus is
not a state-based bisimulation metric.

Example 3. Let us calculate the distance between states s and t in Fig. 1. Firstly,
observe that ds(s2, t3) = 0 because s2 is bisimilar to t3 while ds(s3, t3) = 1
because the two states s3 and t3 perform completely different actions. Secondly,
let Δ = 1

2s2 + 1
2s3 and Θ = t3. We see that

K (ds)(Δ,Θ) = minω∈Ω(Δ,Θ) ds(s2, t3) · ω(s2, t3) + ds(s3, t3) · ω(s3, t3)
= minω∈Ω(Δ,Θ) 0 · ω(s2, t3) + 1 · ω(s3, t3)
= 0 · 1

2 + 1 · 1
2

= 1
2
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Fig. 1. ds(s, t) = 1
2

Here the only legitimate weight function is ω with ω(s2, t3) = ω(s3, t3) = 1
2 .

It follows that ds(s1, t1) = 1
2 . Similarly, we get ds(s1, t2) = 1

2 . Then it is not
difficult to see that

K (ds)(s1,
1
2
t1 +

1
2
t2) = ds(s1, t1) · 1

2
+ ds(s1, t2) · 1

2
=

1
2

from which we finally obtain ds(s, t) = 1
2 .

The above coinductively defined bisimilarity metric can be reformulated as
a fixed point of a monotone functional operator. Let us define the functional
operator Fs : [0, 1]S×S → [0, 1]S×S for d : S × S → [0, 1] and s, t ∈ S by

Fs(d)(s, t) = sup
a∈A

{H (K (d))(der(s, a), der(t, a))} . (3)

It can be shown that Fs is monotone and its least fixed point is given by
⊔

di,
where d0 = 0 and di+1 = Fs(di) for all i ∈ N.

Proposition 4. ds is the least fixed point of Fs. ��
Essentially the same property as Proposition 4 has appeared in [17].

Now we proceed by defining a real-valued modal logic based on Hennessy-
Milner logic [27], called metric HML, to characterize the bisimilarity metric. It
is motivated by [4,16,17,30].

Definition 5. Our metric HML is two-sorted and has the following syntax:

ϕ ::= � | ¬ϕ | ϕ � p | ϕ1 ∧ ϕ2 | 〈a〉ψ
ψ ::= [ϕ] | ¬ψ | ψ � p | ψ1 ∧ ψ2

with a ∈ A and p ∈ [0, 1].
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Let L denote the set of all metric HML formulae, ϕ range over the set of all state
formulae LS , and ψ range over the set of all distribution formulae LD. The two
kinds of formulae are defined simultaneously. The operator ϕ � p tests if a state
passes ϕ with probability at least p. Each state formula ϕ immediately induces
a distribution formula [ϕ]. Sometimes we abbreviate 〈a〉[ϕ] as 〈a〉ϕ. All other
operators are standard.

Definition 6. A state formula ϕ ∈ LS evaluates in s ∈ S as follows:

���(s) = 1
�¬ϕ�(s) = 1 − �ϕ�(s)

�ϕ � p�(s) = max(�ϕ�(s) − p, 0)
�ϕ1 ∧ ϕ2�(s) = min(�ϕ1�(s), �ϕ2�(s))

�〈a〉ψ�(s) = max
s

a−→Δ
�ψ�(Δ)

and a distribution formula ψ ∈ LD evaluates in Δ ∈ D(S) as follows:

�[ϕ]�(Δ) =
∑

s∈S Δ(s) · �ϕ�(s)
�¬ψ�(Δ) = 1 − �ψ�(Δ)

�ψ � p�(Δ) = max(�ψ�(Δ) − p, 0)
�ψ1 ∧ ψ2�(Δ) = min(�ψ1�(Δ), �ψ2�(Δ)).

We often use constant formulae e.g. p for any p ∈ [0, 1] with the semantics
�p�(s) = p, which is derivable in the above logic by letting p = � � (1 − p).
Moreover, we write ϕ ⊕ p for ¬((¬ϕ) � p) with the semantics �ϕ ⊕ p�(s) =
min(�ϕ�(s) + p, 1) = 1 − max(1 − �ϕ�(s) − p, 0). In the presence of negation
and conjunction we can derive disjunction by letting ϕ1 ∨ ϕ2 be ¬(¬ϕ1 ∧ ¬ϕ2).
Intuitively, [[ϕ]](s) measures the degree that formula ϕ is satisfied by state s;
similarly for distribution formulae. Therefore, negation is naturally interpreted
as complement, conjunction as minimum and disjunction as maximum2. The
formula 〈a〉ψ specifies the property for a state to perform action a and result
in a possible distribution to satisfy ψ. Because of nondeterminism, from state
s there may be several outgoing transitions labelled by the same action a, e.g.
s

a−→ Δi with i ∈ I. We take the optimal case by taking [[〈a〉ψ]](s) to be the
maximal [[ψ]](Δi) when i ranges over I.

The above metric HML induces two natural logical metrics dls
s and dld

s on
states and distributions respectively, by letting

dls
s (s, t) = supϕ∈LS |�ϕ�(s) − �ϕ�(t)|

dld
s (Δ,Θ) = supψ∈LD |�ψ�(Δ) − �ψ�(Θ)|.

2 Since we will compare our logic with that in [17], it is better for our semantic inter-
pretation to be consistent with that in the aforementioned work. In the literature,
there are also other ways of interpreting conjunction and disjunction in probabilistic
settings, see e.g. [3,29].
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Fig. 2. dls
s (s, t) = 0.3

Example 7. Consider the two probabilistic systems depicted in Fig. 2. We have
the formula ϕ = 〈a〉ψ where ψ = [〈a〉�] ∧ [〈b〉�] and would like to know the
difference between s and t given by ϕ. Let

Δ1 = 0.2 · s1 + 0.8 · s2
Δ2 = 0.8 · s5 + 0.2 · s6
Δ3 = 0.5 · s3 + 0.5 · s4

Note that �〈a〉��(s1) = 1 and �〈a〉��(s2) = 0. Then

�[〈a〉�]�(Δ1) = 0.2 · �〈a〉��(s1) + 0.8 · �〈a〉��(s2) = 0.2.

Similarly, �[〈b〉�]�(Δ1) = 0.8. It follows that

�ψ�(Δ1) = min(�[〈a〉�]�(Δ1), �[〈b〉�]�(Δ1)) = 0.2.

With similar arguments, we see that �ψ�(Δ2) = 0.2 and �ψ�(Δ3) = 0.5. There-
fore, we can calculate that

�ϕ�(s) = max(�ψ�(Δ1), �ψ�(Δ2)) = 0.2
�ϕ�(t) = max(�ψ�(Δ1), �ψ�(Δ2), �ψ�(Δ3)) = 0.5.

So the difference between s and t with respect to ϕ is |�ϕ�(s) − �ϕ�(t)| = 0.3. In
fact we also have dls

s (s, t) = 0.3.

In the presence of testing operators in state formulae, one might wonder if
the testing operators in distribution formulae can be removed. Unfortunately,
this is not the case, as indicated by the following example.
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Example 8. At first sight the following two equations seem to be sound.

�[ϕ] � p�(Δ) = �[ϕ � p]�(Δ) and �ψ�(
∑

i

piΔi) =
∑

i

pi(�ψ�(Δi))

However, in general they do not hold, as witnessed by the counterexamples
below. Let ϕ = 〈b〉�, ψ = [ϕ] � 0.5 and the distribution Δ1 be the same as in
Example 7. Then we have

�[ϕ] � 0.5�(Δ1) = max(�[ϕ]�(Δ1) − 0.5, 0)

= max(0.2�[〈b〉�]�(s1) + 0.8�[〈b〉�]�(s2) − 0.5, 0)

= max(0.2 · 0 + 0.8 · 1 − 0.5, 0)

= 0.3

�[ϕ � 0.5]�(Δ1) = 0.2�ϕ � 0.5�(s1) + 0.8�ϕ � 0.5�(s2)

= 0.2 max(�ϕ�(s1) − 0.5, 0) + 0.8 max(�ϕ�(s2) − 0.5, 0)

= 0.2 max(0 − 0.5, 0) + 0.8 max(1 − 0.5, 0)

= 0.4

0.2�ψ�(s1) + 0.8�ψ�(s2) = 0.2�[ϕ] � 0.5�(s1) + 0.8�[ϕ] � 0.5�(s2)

= 0.2 max(�[ϕ]�(s1) − 0.5, 0) + 0.8 max(�[ϕ]�(s2) − 0.5, 0)

= 0.2 max(0 − 0.5, 0) + 0.8 max(1 − 0.5, 0)

= 0.4

So we see that �[ϕ] � 0.5�(Δ1) �= �[ϕ � 0.5]�(Δ1) and �ψ�(Δ1) �= 0.2�ψ�(s1) +
0.8�ψ�(s2).

It turns out that the logic L precisely captures the bisimilarity metric ds :
the metric dls

s defined by state formulae coincides with ds and the metric dld
s

defined by distribution formulae coincides with K (ds), the lifted form of ds .

Theorem 9. ds = dls
s and K (ds) = dld

s ��
The two properties in Theorem 9 are coupled and should be proved simultane-
ously because state formulae and distribution formulae are defined reciprocally.
The proof is carried out in three steps:

(i) We show dls
s 
 ds and dld

s 
 K (ds) simultaneously by structural induction
on formulae.

(ii) We establish K (dls
s ) 
 dld

s by exploiting the dual form of the Kantorovich
metric in (2). Here it is crucial to require the state space of the pLTS
under consideration to be finite in order to use binary conjunctions rather
than infinitary conjunctions. The negation and testing operators in state
formulae play an important role in the proof.

(iii) We verify that dls
s is a state-based bisimulation metric and so obtain ds 


dls
s . This part is based on (ii) and requires the pLTS to be image-finite.

Its proof makes use of the negation and testing operators in distribution
formulae.



Behavioural Pseudometrics for Nondeterministic Probabilistic Systems 75

Remark 10. For deterministic pLTSs, the proof of Theorem9 can be greatly
simplified. In that case, we can even fold distribution formulae into state formulae
and then the state-based bisimilarity metric can be characterised by the following
one-sorted metric logic

ϕ ::=� | ¬ϕ | ϕ � p | ϕ1 ∧ ϕ2 | 〈a〉ϕ . (4)

Therefore, for deterministic pLTSs, the two-sorted logic in Definition 5 degener-
ates into the logic considered in [16,23,45], as expected. In the one-sorted logic,
the formula 〈a〉(ϕ � p) will be interpreted the same as the formula 〈a〉[ϕ � p]
in LS , but no formula has the same interpretation as 〈a〉([ϕ] � p) in LS ; the
subtlety has already been discussed in Example 8.

In [2,7] a bisimulation metric for game structures is characterised by a quan-
titative μ-calculus where formulae are evaluated also on states and no distrib-
ution formula is needed. This is not surprising because the considered 2-player
games are deterministic: at any state s, if two players have chosen their moves,
say a1 and a2, then there is a unique distribution δ(s, a1, a2) to determine the
probabilities of arriving at a set of destination states.

4 Distribution-Based Bisimulation Metric

The bisimilarity metric given in Definition 2 measures the distance between two
states. Alternatively, it is possible to directly define a metric that measures
subdistributions. In order to do so, we first define a transition relation between
subdistributions.

Definition 11. With a slight abuse of notation, we also use the notation a−→ to
stand for the transition relation between subdistributions, which is the smallest
relation satisfying:

1. if s
a−→ Δ then s

a−→ Δ;
2. if s � a−→ then s

a−→ ε;
3. if Δi

a−→ Θi for all i ∈ I then (
∑

i∈I pi · Δi)
a−→ (

∑
i∈I pi · Θi), where I is a

finite index set and
∑

i∈I pi ≤ 1.

Note that if Δ
a−→ Δ′ then some (not necessarily all) states in the support of Δ

can perform action a. For example, consider the two states s2 and s3 in Fig. 1.
Since s2

c−→ s4 and s3 cannot perform action c, the distribution Δ = 1
2s2 + 1

2s3

can make the transition Δ
c−→ 1

2s4 to reach the subdistribution 1
2s4.

Definition 12. A 1-bounded pseudometric d on Dsub(S) is a distribution-based
bisimulation metric if | |Δ1| − |Δ2| | ≤ d(Δ1,Δ2) and for all Δ1,Δ2 ∈ Dsub(S)
with d(Δ1,Δ2) < 1, whenever Δ1

a−→ Δ′
1 then there exists some transition

Δ2
a−→ Δ′

2 such that d(Δ′
1,Δ

′
2) ≤ d(Δ1,Δ2).

The condition | |Δ1| − |Δ2| | ≤ d(Δ1,Δ2) is introduced to ensure that the dis-
tance between two subdistributions should be at least the difference between
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their total masses. The smallest (wrt. 
) distribution-based bisimulation metric,
notation dd , is called distribution-based bisimilarity metric. Distribution-based
bisimilarity [13] is the kernel of the distribution-based bisimilarity metric.

Let der(Δ, a) = {Δ′ | Δ
a−→ Δ′}. We define the functional operator

Fd : [0, 1]Dsub(S)×Dsub(S) → [0, 1]Dsub(S)×Dsub(S)

for d : Dsub(S) × Dsub(S) → [0, 1] and Δ,Θ ∈ Dsub(S) by

Fd(d)(Δ,Θ) = max(sup
a∈A

{H (d)(der(Δ, a), der(Θ, a))}, | |Δ| − |Θ| |) . (5)

It can be shown that Fd is monotone and its least fixed point is given by
⊔

di,
where we set d0(Δ,Θ) = | |Δ| − |Θ| | for any Δ,Θ ∈ Dsub(S) and di+1 = Fd(di)
for all i ∈ N. The property below is analogous to Proposition 4.

Proposition 13. dd is the least fixed point of Fd. ��
It is not difficult to see that ds is different from dd , as witnessed by the

following example. A more accurate comparison is given in Sect. 5.

Example 14. Consider the states in Fig. 1. We first observe that dd(s2, t3) =
0 because s2 and t3 can match each other’s action exactly. Similarly, we have
dd(s3, t4) = 0. Then it is easy to see that dd( 12s2 + 1

2s3,
1
2 t3 + 1

2 t4) = 0. Since

s1
b−→ 1

2s2 + 1
2s3 and 1

2 t1 + 1
2 t2

b−→ 1
2 t3 + 1

2 t4, we infer that dd(s1, 1
2 t1 + 1

2 t2) = 0.
This, in turn, implies dd(s, t) = 0. We have already seen in Example 3 that
ds(s, t) = 1

2 . Therefore, the two distance functions ds and dd are indeed different.

We now turn to the logical characterisation of dd . Consider the metric logic
LD∗ whose formulae are defined below:

ψ ::=� | ¬ψ | ψ � p | ψ1 ∧ ψ2 | 〈a〉ψ . (6)

This logic is the same as that defined in (4) except that now we only have
distribution formulae. The semantic interpretation of formulae comes with no
surprise.

Definition 15. A formula ψ ∈ LD∗ evaluates in Δ ∈ Dsub(S) as follows:

���(Δ) = |Δ|
�¬ψ�(Δ) = 1 − �ψ�(ψ)

�ψ � p�(Δ) = max(�ψ�(Δ) − p, 0)
�ψ1 ∧ ψ2�(Δ) = min(�ψ1�(Δ), �ψ2�(Δ))

�〈a〉ψ�(Δ) = max
Δ

a−→Δ′�ψ�(Δ′).

This induces a natural logical metric dld
d over subdistributions defined by

dld
d (Δ,Θ) = sup

ψ∈LD∗
|[[ψ]](Δ) − [[ψ]](Θ)|

It turns out that dld
d coincides with dd ; the proof is similar to but easier than

that of Theorem 9.

Theorem 16. dd = dld
d ��
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5 Comparison of the Bisimilarity Metrics

In this section, we compare the state-based bisimilarity metric ds with the
distribution-based bisimilarity metric dd . More precisely, we show that dd is
a lower bound of K (ds) when measuring full distributions3. The proof makes
use of fully enabled pLTSs as a stepping stone. Let us first fix an overall set of
actions Act and a special action ⊥ �∈ Act. Let EA(s) = {a | ∃Δ. s

a−→ Δ} be the
set of actions that are enabled at state s.

Definition 17. A pLTS is fully enabled if ∀s.EA(s) = Act. Given any pLTS
A = (S,A,−→) with A ⊆ Act, we can convert it into a fully enabled pLTS A⊥ =
(S⊥, Act ∪ {⊥},−→⊥) as follows:

– S⊥ = S ∪ {⊥}
– −→⊥ =−→ ∪{(s, a,⊥) | s � a−→ and a ∈ Act} ∪ {(⊥, a,⊥) | a ∈ Act ∪ {⊥}}.
Each state s in A corresponds to a state s⊥ in A⊥ such that s⊥ keeps all the
transitions of s and can evolve into the absorbing state ⊥ by performing any
action in Act not enabled by s. As a consequence, each subdistribution Δ on the
states of A has a corresponding full distribution Δ⊥ on the states of A⊥ such
that Δ⊥(s⊥) = Δ(s) and Δ⊥(⊥) = 1 − |Δ|.

For any pLTS, let s, t be two states and Δ,Θ two subdistributions. It can
be shown that ds(s, t) = ds(s⊥, t⊥) and dd(Δ,Θ) = dd(Δ⊥, Θ⊥). Moreover, for
fully enabled pLTSs, the metric dd turns out to be a lower bound of K (ds) as
far as distributions are concerned. Then we arrive at the following theorem.

Theorem 18. Let Δ,Θ be two distributions on a pLTS. Then dd(Δ,Θ) ≤
K (ds)(Δ,Θ). ��

6 Bisimulations

The kernel of ds (resp. dd) is the state-based (resp. distribution-based) bisimi-
larity, denoted by ∼s (resp. ∼d). They can be defined in a more direct way. The
definition of ∼s requires us to lift a relation on states to be a relation on dis-
tributions. There are several different but equivalent formulations of the lifting
operation, and they are closely related to the Kantorovich metric; see [10] for
more details. The following one is taken from [15].

Definition 19. Let S and T be two sets and R⊆ S × T be a binary relation.
The lifted relation R†⊆ Dsub(S) × Dsub(T ) is the smallest relation that satisfies:

1. s R t implies s R† t;
2. Δi R† Θi for all i ∈ I implies (

∑
i∈I pi · Δi) R† (

∑
i∈I pi · Θi), where I is a

finite index set and
∑

i∈I pi ≤ 1.

3 Although dd can measure the distance between two subdistributions, the
Kantorovich lifting of ds can only measure the distance between full distributions or
subdistributions of equal mass, which can easily be normalized to full distributions.
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The state-based bisimilarity ∼s is essentially Larsen and Skou’s probabilistic
bisimilarity [34], which is originally defined for deterministic systems.

Definition 20. Let ∼s⊆ S × S be the largest symmetric relation such that if
s ∼s t and s

a−→ Δ then there exists some t
a−→ Θ with Δ (∼s)

†
Θ.

The distribution-based bisimilarity ∼d is proposed in [13] as a sound and
complete coinductive proof technique for linear contextual equivalence, a natural
extensional behavioural equivalence for functional programs.

Definition 21. Let ∼d ⊆ Dsub(S) × Dsub(S) be the largest symmetric relation
such that if Δ ∼d Θ then |Δ| = |Θ| and Δ

a−→ Δ′ implies the existence of some
Θ′ such that Θ

a−→ Θ′ and Δ′ ∼d Θ′.

It is obvious that s ∼s t iff ds(s, t) = 0 iff [[ϕ]](s) = [[ϕ]](t) for any states s, t
and formula ϕ ∈ LS . Similarly, Δ ∼d Θ iff dd(Δ,Θ) = 0 iff [[ψ]](Δ) = [[ψ]](Θ)
for any subdistributions Δ,Θ and formula ψ ∈ LD∗. Although the state-based
bisimilarity is widely accepted, there is no general agreement on what is a good
notion of distribution-based bisimilarity. In the literature [14,18,20,21,26,28],
several variations of distribution-based bisimulations have been proposed. Some
of them are defined for pLTSs with states labelled by atomic propositions. We
adapt them to our setting so as to compare with ∼d.

In a pLTS (S,L,−→), a transition goes from a state to a distribution, e.g.
s

a−→ Δ. In order to lift −→ to be a relation between distributions, e.g. Δ
a−→ Θ,

usually we need to decide whether

(i) to require all the states in the support of Δ to perform action a;
(ii) to combine transitions with the same label, which we explain below.

In [18,20,21] both (i) and (ii) are imposed, while in [28] and also in our
definition of ∼d (i) is not used. The condition (ii) is built in Definition 11 but
partially used in [28], as we will see in the sequel. Let {s

a−→ Δi}i∈I be a collection
of transitions, and {pi}i∈I be a collection of probabilities with

∑
i∈I pi = 1. Then

s
a−→C (

∑
i∈I pi · Δi) is called a combined transition [40]. Let us write Δ

a−→C Θ

if s
a−→C Δs for each s ∈ �Δ� and Θ =

∑
s∈�Δ	 Δ(s) · Δs.

Remark 22. An equivalent way of defining combined transitions is to use Defin-
ition 11. We have that s

a−→C Δ iff s
a−→ Δ and |Δ| = 1; Δ

a−→C Θ iff Δ
a−→ Θ

and |Δ| = |Θ|.
Note that a simple way of comparing subdistributions is to lift the state-based

bisimilarity and use the relation (∼s)
†. That relation can be slightly weakened

by using the combined transition t
a−→C Θ in place of t

a−→ Θ in Definition 20
to get a coarser notion of state-based bisimilarity called strong probabilistic
bisimulation in [40], written ∼′

s, and then lifting it to subdistributions to finally
obtain (∼′

s)
†. This is essentially the relation investigated in [26]. However, most

distribution-based bisimilarities proposed in the literature directly compare the
transitions between (sub)distributions, so there is no need of defining certain



Behavioural Pseudometrics for Nondeterministic Probabilistic Systems 79

relations on states and then lift them to subdistributions. Below we recall four
typical proposals.

Firstly, we adapt the bisimulation of [21] to our setting. Let (S,A,−→) be a
pLTS, we extend it to be a fully enabled pLTS (S⊥, Act ∪ {⊥},−→⊥) according
to Definition 17.

Definition 23. Let ∼1⊆ D(S⊥)×D(S⊥) be the largest symmetric relation such
that Δ ∼1 Θ implies

1. Δ(S) = Θ(S),
2. for each a ∈ A, whenever Δ

a−→C Δ′, there exists Θ′ with Θ
a−→C Θ′ and

Δ′ ∼1 Θ′.

Secondly, we adapt the bisimulation in [14,26] for subdistributions.

Definition 24. Let ∼2⊆ Dsub(S) × Dsub(S) be the largest symmetric relation
such that Δ ∼2 Θ implies, for all finite sets of probabilities {pi | i ∈ I} satisfying∑

i∈I pi ≤ 1,

1. |Δ| = |Θ|,
2. whenever Δ

a−→C Δ′, there exists Θ′ with Θ
a−→C Θ′ and Δ′ ∼2 Θ′,

3. whenever Δ =
∑

i∈I pi · Δi, for any subdistributions Δi, there are some sub-
distributions Θi with Θ =

∑
i∈I pi · Θi, such that Δi ∼2 Θi for each i ∈ I.

Thirdly, we adapt the bisimulation in [18] to pLTSs. A subdistribution is
consistent, if EA(s) = EA(t) for any s, t ∈ �Δ�. That is, all the states in the
support of Δ have the same set of enabled actions.

Definition 25. Let ∼3⊆ Dsub(S) × Dsub(S) be the largest symmetric relation
such that Δ ∼3 Θ implies

1. |Δ| = |Θ|,
2. whenever Δ

a−→C Δ′, there exists Θ′ with Θ
a−→C Θ′ and Δ′ ∼3 Θ′,

3. if Δ is not consistent, there exist decompositions Δ =
∑

i∈I pi · Δi and Θ =∑
i∈I pi · Θi such that Δi ∼3 Θi for each i ∈ I.

Finally, we adapt the bisimulation of [28]. Let A be a set of labels. We write
s

A−→ Δ if s
a−→C Δ for some a ∈ A and denote by SA = {s | ∃Δ. s

A−→ Δ} the
set of states that can perform some action from A. Then we define a transition
relation for distributions by letting Δ

A−→ Θ if s
A−→ Δs for each s ∈ SA ∩ �Δ�

and Θ = 1
Δ(SA)

∑
s∈SA∩�Δ	 Δ(s) · Δs.

Definition 26. Let ∼4⊆ Dsub(S) × Dsub(S) be the largest symmetric relation
such that Δ ∼4 Θ implies

1. |Δ| = |Θ| and Δ(SA) = Θ(SA) for any A ⊆ L,
2. for each A ⊆ L, whenever Δ

A−→ Δ′, there exists Θ′ with Θ
A−→ Θ′ and

Δ′ ∼4 Θ′.
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(∼s)
†(∼′

s)
†=∼2∼3∼d

∼4

=∼1

Fig. 3. Relationship between the seven bisimilarities for distributions. An arrow point-
ing from one relation to another means that the former relation is strictly coarser than
the latter. Two relations are incomparable if there is no path from one to the other.

Theorem 27. Figure 3 depicts the relationship between the seven bisimilarities
for distributions mentioned above. ��

If we confine ourselves to deterministic pLTSs, then combined transitions add
nothing new to ordinary transitions and thus ∼′

s degenerates into ∼s, but the
rest of Fig. 3 remains unchanged.

7 Other Related Work

Metrics for probabilistic transition systems are first suggested by Giacalone
et al. [25] to formalize a notion of distance between processes. They are used also
in [33,36] to give denotational semantics for deterministic models. De Vink and
Rutten [8] show that discrete probabilistic transition systems can be viewed as
coalgebras. They consider the category of complete ultrametric spaces. Similar
ultrametric spaces are considered by den Hartog in [9]. In [46] Ying proposes a
notion of bisimulation index for the usual labelled transition systems, by using
ultrametrics on actions instead of using pseudometrics on states. A quantitative
linear-time-branching-time spectrum for non-probabilistic systems is given in [19].

Metrics for deterministic systems are extensively studied. Desharnais et al.
[16] propose a logical pseudometric for labelled Markov chains, which is a deter-
ministic model of probabilistic systems. A similar pseudometric is defined by
van Breugel and Worrell [44] via the terminal coalgebra of a functor based on
a metric on the space of Borel probability measures. Essentially the same met-
ric is investigated in the setting of continuous Markov decision processes [23].
The metric of [16,23,45] works for continuous probabilistic transition systems,
while in this work we concentrate on discrete systems with nondeterminism.
In the future it would be interesting to see how to generalise our results to
continuous systems. In [43] van Breugel and Worrell present a polynomial-time
algorithm to approximate their coalgebraic distances. Furthermore, van Breugel
et al. propose an algorithm to approximate a behavioural pseudometric without
discount [42]. In [22] a sampling algorithm for calculating bisimulation distances
in Markov decision processes is shown to have good performance. In [6,7] the
probabilistic bisimulation metric on game structures is characterised by a quanti-
tative μ-calculus. Algorithms for game metrics are proposed in [2,38]. A notion
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of bisimulation distance for distributions is proposed in [21]. It is defined for
full distributions only and the definition itself has to be given in terms of fully
enabled transition systems. Our distribution-based bisimulation metric gener-
alises it to subdistributions, and allowing transitions between subdistributions
has the advantage of allowing our definition to be more direct.

Metrics for nondeterministic probabilistic systems are considered in [17],
where Desharnais et al. deal with labelled concurrent Markov chains (similar
to pLTSs, this model can be captured by the simple probabilistic automata of
[39]). They show that the greatest fixed point of a monotonic function on pseudo-
metrics corresponds to the weak probabilistic bisimilarity of [37]. In [24] a notion
of uniform continuity is proposed to be an appropriate property of probabilis-
tic processes for compositional reasoning with respect to ds . In [41] a notion
of trace metric is proposed for pLTSs and a tool is developed to compute the
trace metric. In [1] the boolean-valued logic from [12] is used to characterise
state-based bisimulation metrics. It crucially relies on distribution formulae of
the form

⊕
i∈I piϕi, which is demanding in the sense that if Δ satisfies that

formula then there is some decomposition Δ =
∑

i∈I pi · Δi such that for each
i ∈ I all the states in the support of Δi must satisfy ϕi.

Metrics for other quantitative models are also investigated. In [11] a notion of
bisimulation metric is proposed that extends the approach of [16,17] to a more
general framework called action-labelled quantitative transition systems. In [5]
de Alfaro et al. consider metric transition systems in which the propositions at
each state are interpreted as elements of metric spaces. In that setting, trace
equivalence and bisimulation give rise to linear and branching distances that
can be characterised by quantitative versions of linear-time temporal logic [35]
and the μ-calculus [32].

8 Concluding Remarks

We have considered two behavioural pseudometrics for probabilistic labelled
transition systems where nondeterminism and probabilities co-exist. They cor-
respond to state-based and distribution-based bisimulations. Our modal charac-
terisation of the state-based bisimulation metric is much simpler than an earlier
proposal by Desharnais et al. since we only use two non-expansive operators,
negation and testing, rather than the general class of non-expansive operators.
A similar idea is used to characterise the distribution-based bisimulation metric.
The characterisations are shown to be sound and complete. We have also shown
that the distribution-based bisimulation metric is a lower bound of the state-
based bisimulation metric lifted to distributions. In addition, we have compared
the bisimilarities entailed by the two metrics with a few other distribution-based
bisimilarities.

In the current work we have not distinguished internal actions from external
ones. But it is not difficult to make the distinction and abstract away internal
actions so as to introduce weak versions of bisimulation metrics. In a finite-
state and finitely branching pLTS, the set of subdistributions reachable from a
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state by weak transitions may be infinite but can be represented by the convex
closure of a finite set [10]. This entails that the logical characterisation of weak
bisimulation metrics would be similar to those presented here.

Acknowledgement. We thank the anonymous referees for their helpful comments.

References

1. Castiglioni, V., Gebler, D., Tini, S.: Logical characterization of bisimulation met-
rics. In: Proceedings of QAPL 2016. EPTCS (2016)

2. Chatterjee, K., De Alfaro, L., Majumdar, R., Raman, V.: Algorithms for game
metrics. Log. Methods Comput. Sci. 6(3:13), 1–27 (2010)

3. Cleaveland, R., Iyer, S.P., Narasimha, M.: Probabilistic temporal logics via the
modal mu-calculus. Theor. Comput. Sci. 342(2–3), 316–350 (2005)

4. D’Argenio, P.R., Sánchez Terraf, P., Wolovick, N.: Bisimulations for non-
deterministic labelled Markov processes. Math. Struct. Comput. Sci. 22(1), 43–68
(2012)

5. De Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics.
IEEE Trans. Softw. Eng. 35(2), 258–273 (2009)

6. De Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and met-
rics. In: Proceedings of LICS 2007, pp. 99–108. IEEE (2007)

7. De Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations
and metrics. Log. Methods Comput. Sci. 4(3:7), 1–28 (2008)

8. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theor. Comput. Sci. 221(1/2), 271–293 (1999)

9. den Hartog, J.I.: Probabilistic Extensions of Semantical Models. Ph.D. thesis, Free
University Amsterdam (2002)

10. Deng, Y.: Semantics of Probabilistic Processes: An Operational Approach.
Springer, Heidelberg (2015)

11. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quan-
titative transition systems. ENTCS 153(2), 79–96 (2006)

12. Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilis-
tic bisimulation. Technical report CMU-CS-11-110, Carnegie Mellon University,
March 2011

13. Deng, Y., Feng, Y., Dal Lago, U.: On coinduction and quantum lambda calculi.
In: Proceedings of CONCUR 2015, pp. 427–440. LIPIcs (2015)

14. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,
139–168 (2013)

15. Deng, Y., Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilistic
processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 274–288. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04081-8 19

16. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

17. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue
of weak bisimulation for probabilistic processes. In: Proceedings of LICS 2002, pp.
413–422. IEEE (2002)

18. Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Probabilis-
tic bisimulation for realistic schedulers. In: Bjørner, N., de Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 248–264. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19249-9 16

http://dx.doi.org/10.1007/978-3-642-04081-8_19
http://dx.doi.org/10.1007/978-3-319-19249-9_16
http://dx.doi.org/10.1007/978-3-319-19249-9_16


Behavioural Pseudometrics for Nondeterministic Probabilistic Systems 83

19. Fahrenberg, U., Legay, A.: The quantitative linear-time branching-time spectrum.
Theor. Comput. Sci. 538, 54–69 (2014)

20. Feng, Y., Ying, M.: Toward automatic verification of quantum cryptographic pro-
tocols. In: Proceedings of CONCUR 2015. LIPIcs, vol. 42, pp. 441–455 (2015)

21. Feng, Y., Zhang, L.: When equivalence and bisimulation join forces in probabilistic
automata. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442,
pp. 247–262. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06410-9 18

22. Ferns, N., Panangaden, P., Precup, D.: Bisimulation metrics for continuous Markov
decision processes. SIAM J. Comput. 40(6), 1662–1714 (2011)

23. Ferns, N., Precup, D., Knight, S.: Bisimulation for Markov decision processes
through families of functional expressions. In: Breugel, F., Kashefi, E., Palamidessi,
C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden:
Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birth-
day. LNCS, vol. 8464, pp. 319–342. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06880-0 17

24. Gebler, D., Larsen, K.G., Tini, S.: Compositional metric reasoning with probabilis-
tic process calculi. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 230–245.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0 15

25. Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concur-
rent systems. In: Proceedings of IFIP TC2 Working Conference on Programming
Concepts and Methods, pp. 443–458 (1990)

26. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects Com-
put. 24(4–6), 749–768 (2012)

27. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 137–161 (1985)
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Abstract. In the design of probabilistic timed systems, requirements
concerning behaviour that occurs within a given time or energy bud-
get are of central importance. We observe that model-checking such
requirements for probabilistic timed automata can be reduced to check-
ing reward-bounded properties on Markov decision processes. This is tra-
ditionally implemented by unfolding the model according to the bound,
or by solving a sequence of linear programs. Neither scales well to large
models. Using value iteration in place of linear programming achieves
scalability but accumulates approximation error. In this paper, we cor-
rect the value iteration-based scheme, present two new approaches based
on scheduler enumeration and state elimination, and compare the prac-
tical performance and scalability of all techniques on a number of case
studies from the literature. We show that state elimination can signifi-
cantly reduce runtime for large models or high bounds.

1 Introduction

Probabilistic timed automata (PTA, [17]) are a popular formal model for prob-
abilistic real-time systems. They combine nondeterministic choices as in Kripke
structures, discrete probabilistic decisions as in Markov chains, and hard real-
time behaviour as in timed automata. We are interested in properties of the form
“what is the best/worst-case probability to eventually reach a certain system
state while accumulating at most b reward”, i.e. in calculating reward-bounded
reachability probabilities. Rewards can model a wide range of aspects, e.g. the
number of retransmissions in a network protocol (accumulating reward 1 for
each), energy consumption (accumulating reward at a state-dependent wattage
over time), or time itself (accumulating reward at rate 1 everywhere). Reach-
ability probabilities for PTA with rewards can be computed by first turning a
PTA into an equivalent Markov decision process (MDP) using the digital clocks
semantics [17] and then performing standard probabilistic model checking [3].

The näıve approach to compute specifically reward-bounded reachability
probabilities is to unfold [1] the state space of the model. For the example of
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time-bounded properties, this means adding a new clock variable that is never
reset [17]. In the general case on the level of MDP [19], in addition to the current
state of the model, one keeps track of the reward accumulated so far, up to b.
This turns the reward-bounded problem into standard unbounded reachability.
Unfolding blows up the model size (the number of states, or the number of vari-
ables and constraints in the corresponding linear program) and causes the model
checking process to run out of memory even if the original (unbounded) model
was of moderate size (cf. Table 1). For PTA, unfolding is the only approach that
has been considered so far. A more efficient technique has been developed for
MDP, and via the digital clocks semantics it is applicable to PTA just as well:

The probability for bound i depends only on the values for previous bounds
{ i−r, . . . , i−1} where r is the max. reward in the automaton. We can thus avoid
the monolithic unfolding by sequentially computing the values for its “layers”
where the accumulated reward is i = 0, 1, etc. up to b, storing the current layer
and the last r result vectors only. This process can be implemented by solving
a sequence of b linear programming (LP) problems no larger than the original
unbounded model [2]. While it solves the memory problem in principle, LP is
known not to scale to large MDP in practice. Consequently, LP has been replaced
by value iteration to achieve scalability in the most recent implementation [14].
Value iteration is an approximative numeric technique to compute reachability
probabilities up to a predefined error bound ε. When used in sequence, this
error accumulates, and the final result for bound b may differ from the actual
probability by more than ε. This has not been taken into account in [14].

In this paper, we first make a small change to the value iteration-based
scheme to counteract the error accumulation. We then present two new ways to
compute reward-bounded reachability probabilities for MDP (with a particular
interest in the application to PTA via digital clocks) without unfolding (Sect. 3).
Using either scheduler enumeration or MDP state elimination, they both reduce
the model such that a reward of 1 is accumulated on all remaining transitions.
A reward-bounded property in the original model corresponds to a step-bounded
property in the reduced model. We use standard step-bounded value iteration [3]
to check these properties efficiently and exactly. Observe that we improve the
practical efficiency of computing reward-bounded probabilities, but the problem
is Exp-complete in general [6]. It can be solved in time polynomial in the size of
the MDP and the value of b, i.e. it is only pseudo-polynomial in b. Like all related
work, we only present solutions for the case of nonnegative integer rewards.

The unfolding-free techniques also provide the probability for all lower
bounds i < b. This has been exploited to obtain quantiles [2], and we use it
more generally to compute the entire cumulative (sub)distribution function (cdf
for short) over the bound up to b at no extra cost. We have implemented all tech-
niques in the mcsta tool (Sect. 4) of the Modest Toolset [10]. It is currently
the only publicly available implementation of reward-bounded model checking
for PTA and MDP without unfolding. We use it to study the relative perfor-
mance and scalability of the previous and new techniques on six example models
from the literature (Sect. 5). State elimination in particular shows promising per-
formance.
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Other Related Work. Randour et al. [18] have studied the complexity of com-
puting reward-bounded probabilities (framed as percentile queries) for MDP
with multiple rewards and reward bounds. They propose an algorithm based on
unfolding. For the soft real-time model of Markov automata, which subsumes
MDP, reward bounds can be turned into time bounds [13]. Yet this only works
for rewards associated to Markovian states, whereas immediate states (i.e. the
MDP subset of Markov automata) always implicitly get zero reward.

2 Preliminaries

N is { 0, 1, . . . }, the set of natural numbers. 2S is the powerset of S. Dom(f) is
the domain of the function f .

Definition 1. A (discrete) probability distribution over a set Ω is a function
μ ∈ Ω → [0, 1] such that support(μ) def= {ω ∈ Ω | μ(ω) > 0} is countable and∑

ω∈support(μ) μ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.
D(s) is the Dirac distribution for s, defined by D(s)(s) = 1.

Markov Decision Processes. To move from one state to another in a Markov
decision process, first a transition is chosen nondeterministically; each transition
then leads into a probability distribution over rewards and successor states.

Definition 2. A Markov decision process (MDP) is a triple M = 〈S, T, sinit 〉
where S is a finite set of states, T ∈ S → 2Dist(N×S) is the transition function,
and sinit ∈ S is the initial state. For all s ∈ S, we require that T (s) is finite and
non-empty. M is a discrete-time Markov chain (DTMC) if ∀ s ∈ S : |T (s)| = 1.

We write s −→T μ for ∃μ ∈ T (s) and call it a transition. We write s r−→T s′

if additionally 〈r, s′〉 ∈ support(μ). 〈r, s′〉 is a branch with reward r. If T is
clear from the context, we write just −→. Graphically, transitions are lines to
an intermediate node from which branches labelled with reward (if not zero)
and probability lead to successor states. We may omit the intermediate node
and probability 1 for transitions into Dirac distributions, and we may label
transitions to refer to them in the text. Figure 1 shows an example MDP Me

with 5 states, 7 (labelled) transitions and 10 branches. Using branch rewards
instead of the more standard transition rewards leads to more compact models;
in the example, we assign reward 1 to the branches back to s and t to count the
number of “failures” before reaching v. In practice, high-level formalisms like
Prism’s [15] guarded command language are used to specify MDP. They extend
MDP with variables over finite domains that can be used in expressions to e.g.
enable/disable transitions. This allows to compactly describe very large MDP.

Definition 3. A finite path in M = 〈S, T, sinit 〉 is defined as a finite sequence
πfin = s0 μ0 r0 s1 μ1 r1 s2 . . . μn−1 rn−1 sn where si ∈ S for all i ∈ { 0, . . . , n} and
si −→ μi ∧ 〈ri, si+1〉 ∈ support(μi) for all i ∈ { 0, . . . , n − 1}. Let |πfin| def= n,

last(πfin)
def= sn, and reward(πfin) =

∑n−1
i=0 ri. Pathsfin(M) is the set of all finite
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Fig. 1. Example MDP Me Fig. 2. Transformed MDP Me↓Fe↓R

paths starting with sinit . A path is an infinite sequence π = s0 μ0 r0 s1 μ1 r1 . . .
where si ∈ S and si −→ μi ∧ 〈ri, si+1〉 ∈ support(μi) for all i ∈ N. Paths(M) is
the set of all paths starting with sinit . We define s ∈ π

def⇔ ∃ i : s = si.

Definition 4. Given M = 〈S, T, sinit 〉, S ∈ Pathsfin(M) → Dist(Dist(N × S))
is a scheduler for M if ∀πfin: μ ∈ support(S(πfin)) ⇒ last(πfin) −→ μ. The set of
all schedulers of M is Sched(M). S is reward-positional if last(π1) = last(π2)∧
reward(π1) = reward(π2) implies S(π1) = S(π2), positional if last(π1) =
last(π2) alone implies S(π1) = S(π2), and deterministic if |support(S(π))| = 1,
for all finite paths π, π1 and π2, respectively. A simple scheduler is positional
and deterministic. The set of all simple schedulers of M is SSched(M).

Let M↓Ss

def= 〈S, T ′, sinit〉 with T ′(s) def= {μ | Ss(s) = D(μ)} forSs ∈ SSched(M).
M↓Ss

is a DTMC. Using the standard cylinder set construction [3], a scheduler S
induces a probability measure PS

M on measurable sets of paths starting from sinit .
We define the extremal values Pmax

M (Π) = supS∈Sched(M) PS
M (Π) and Pmin

M (Π) =
infS∈Sched(M) PS

M (Π) for measurable Π ⊆ Paths(M).
For an MDP M and goal states F ⊆ S, we define the unbounded, step-bounded

and reward-bounded reachability probabilities for opt ∈ {max,min}:

– Popt(F ) def= Popt
M ({π ∈ Paths(M) | ∃ s ∈ F : s ∈ π}) is the extremal probability

of eventually reaching a state in F .
– PS≤b

opt (F ) is the extremal probability of reaching a state in F via at most b ∈ N

transitions, defined as Popt
M (ΠT

b ) where ΠT
b is the set of paths that have a

prefix of length at most b that contains a state in F .
– PR≤b

opt (F ) is the extremal probability of reaching a state in F with accumulated
reward at most b ∈ N, defined as Popt

M (ΠR
b ) where ΠR

b is the set of paths that
have a prefix πfin containing a state in F with reward(πfin) ≤ b.

Theorem 1. For an unbounded property, there exists an optimal simple sched-
uler, i.e. one that attains the extremal value [3]. For a reward-bounded property,
there exists an optimal deterministic reward-positional scheduler [12].

Continuing our example, let F e = { v}. We maximise the probability to even-
tually reach F e in Me by always scheduling transition a in s and d in t, so
Pmax(F e) = 1 with a simple scheduler. We get PR≤0

max (F e) = 0.25 by scheduling
b in s. For higher bound values, simple schedulers are no longer sufficient: we
get PR≤1

max (F e) = 0.4 by first trying a then d, but falling back to c then b if we
return to t. We maximise the probability for higher bound values n by trying d
until the accumulated reward is n − 1 and then falling back to b.
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Probabilistic Timed Automata. Probabilistic timed automata (PTA [17])
extend MDP with clocks and clock constraints as in timed automata to model
real-time behaviour and requirements. PTA have two kinds of rewards: branch
rewards as in MDP and rate rewards that accumulate at a certain rate over time.
Time itself is a rate reward that is always 1. The digital clocks approach [17] is
the only PTA model checking technique that works well with rewards. It works
by replacing the clock variables by bounded integers and adding self-loop edges
to increment them synchronously as long as time can pass. The reward of a self-
loop edge is the current rate reward. The result is (a high-level model of) a finite
digital clocks MDP. All the algorithms that we develop for MDP in this paper
can thus be applied to PTA. While time- and branch reward-bounded properties
on PTA are decidable [17], general rate reward-bounded properties are not [4].

Probabilistic Model Checking. Probabilistic model checking for MDP (and
thus for PTA via the digital clocks semantics) works in two phases: (1) state space
exploration turns a given high-level model into an in-memory representation of
the underlying MDP, then (2) a numerical analysis computes the value of the
property of interest. In phase 1, the goal states are made absorbing:

Definition 5. Given M = 〈S, T, sinit 〉 and F ⊆ S, we define the F -absorbing
MDP as M↓F = 〈S, T ′, sinit〉 with T ′(s) = {D(〈1, s〉)} for all s ∈ F and T ′(s) =
T (s) otherwise. For s ∈ S, we define M [s] = 〈S, T, s〉.
An efficient algorithm for phase 2 and unbounded properties is (unbounded)
value iteration [3]. We denote a call to a value iteration implementation
by VI(V,M↓F , opt , ε) with initial value vector V ∈ S → [0, 1] and opt ∈
{max,min}. Internally, it iteratively approximates over all states s a (least)
solution for

V (s) = optμ∈T (s)

∑
〈r,s′〉∈support(μ)μ(〈r, s′〉) · V (s′)

up to (relative) error ε. Let initially V = { s �→ 1 | s ∈ F} ∪ { s �→ 0 | s ∈ S \ F}.
Then on termination of VI(V,M↓F , opt , ε), we have V (s) ≈ε Popt(F ) in M [s] for
all s ∈ S. All current implementations in model checking tools like Prism [15]
use a simple convergence criterion based on ε that in theory only guarantees
V (s) ≤ Popt(F ), yet in practice delivers ε-close results on most, but not all, case
studies. Guaranteed ε-close results could be achieved at the cost of precomputing
and reducing a maximal end component decomposition of the MDP [7]. In this
paper, we thus write VI to refer to an ideal ε-correct algorithm, but for the sake
of comparison use the standard implementation in our experiments in Sect. 5.

For a step-bounded property, the call StepBoundedVI(V = V0,M↓F , opt , b)
with bound b can be implemented [3] by computing for all states

Vi(s) := optμ∈T (s)

∑
〈r,s′〉∈support(μ)μ(〈r, s′〉) · Vi−1(s′)

iteratively for i = 1, . . . , b. After iteration i, we have Vi(s) = PS≤i
opt (F ) in M [s] for

all s ∈ S when starting with V as in the unbounded case above. Note that this
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algorithm computes exact results (modulo floating-point precision and errors)
without any costly preprocessing and is very easy to implement and parallelise.

Reward-bounded properties can näıvely be checked by unfolding the model
according to the accumulated reward: we add a variable v to the model prior to
phase 1, with branch reward r corresponding to an assignment v := v + r. To
check PR≤b

opt (F ), phase 1 thus creates an MDP that is up to b times as large as
without unfolding. In phase 2, Popt(F ′) is checked using VI as described above
where F ′ corresponds to the states in F where additionally v ≤ b holds.

3 Reward-Bounded Analysis Techniques

We describe three techniques that allow the computation of reward-bounded
reachability probabilities on MDP (and thus PTA) without unfolding. The first
one is a reformulation of the value iteration-based variant [14] of the algorithm
introduced in [2]. We incorporate a simple fix for the problem that the error
accumulation over the sequence of value iterations had not been accounted for
and refer to the result as algorithm modvi. We then present two new techniques
senum and elim that avoid the issues of unbounded value iteration by transform-
ing the MDP such that step-bounded value iteration can be used instead.

From now on, we assume that all rewards are either zero or one. This sim-
plifies the presentation and is in line with our motivation of improving time-
bounded reachability for PTA: in the corresponding digital clocks MDP, all tran-
sitions representing the passage of time have reward 1 while the branches of all
other transitions have reward 0. Yet it is without loss of generality: for modvi, it
is merely a matter of a simplified presentation, and for the two new algorithms,
we can preprocess the MDP to replace each branch with reward r > 1 by a chain
of r Dirac transitions with reward 1. While this may blow up the state space, we
found that most models in practice only use rewards 0 and 1 in the first place:
among the 15 MDP and DTMC models currently distributed with Prism [15],
only 2 out of the 12 examples that include a reward structure do not satisfy this
assumption. It also holds for all case studies that we present in Sect. 5.

For all techniques, we need a transformation ↓R that redirects each reward-
one branch to a copy s′

new of the branch’s original target state s′. In effect, this
replaces branch rewards by branches to a distinguished category of “new” states:

Definition 6. Given M = 〈S, T, sinit 〉, we define M↓R as 〈S � Snew, T ↓, sinit〉
with Snew = { snew | s ∈ S},

T ↓(s) =

{
{Conv(s, μ) | μ ∈ T (s)} if s ∈ S

{D(〈0, s〉)} if s ∈ Snew

and Conv(s, μ) ∈ Dist(N × S � Snew) is defined by Conv(s, μ)(〈0, s′〉) =
μ(〈0, s′〉) and Conv(s, μ)(〈1, s′

new〉) = μ(〈1, s′〉) over all s′ ∈ S.

For our example MDP Me and F e = { v}, we show Me↓F e↓R in Fig. 2. Observe
that Me↓F e is the same as Me, except that the self-loop of goal state v
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1 function ModVI(V, M = 〈S, T, sinit〉, F, b, opt , ε)
2 for i = 1 to b do
3 foreach snew ∈ Snew do V (snew) := V (s)
4 VI(V, M↓F ↓R, opt , ε

b+1
)

Algorithm 1. Sequential value iterations for reward-bounded reachability

gets reward 1. Me↓F e↓R is then obtained by redirecting the three reward-one
branches (originally going to s, t and v) to new states snew, tnew and vnew.

All of the algorithm descriptions we present take a value vector V as input,
which they update. V must initially contain the probabilities to reach a goal
state in F with zero reward, which can be computed for example via a call to
VI(V = V 0

F ,M↓F ↓R, opt , ε) with sufficiently small ε and

V 0
F

def= { s �→ 1, snew �→ 0 | s ∈ F} ∪ { s �→ 0, snew �→ 0 | s ∈ S \ F}.

3.1 Sequential Value Iterations

We recall the technique for model-checking reward-bounded properties of [2] that
avoids unfolding. It was originally formulated as a sequence of linear program-
ming (LP) problems LPi, each corresponding to bound i ≤ b. Each LPi is of the
same size as the original (non-unfolded) MDP, representing its state space, but
uses the values computed for LPi−r, . . . ,LPi−1 with r being the maximal reward
that occurs in the MDP. Since LP does not scale to large MDP [7], the technique
has been reconsidered using value iteration instead [14]. Using the transforma-
tions and assumptions introduced above, we can formulate it as in Algorithm1.
Initially, V contains the probabilities to reach a goal state with zero reward. In
contrast to [14], when given an overall error bound ε, we use bound ε

b+1 for the
individual value iteration calls. At the cost of higher runtime, this counteracts
the accumulation of error over multiple calls to yield an ε-close final result:

Consider M↓F ↓R = 〈S, T, sinit 〉 and f ∈ (S → [0, 1]) → (S → [0, 1]) with
f = limi fi where for V ∈ S → [0, 1] it is f0(V )(s) = V (s) and fi+1(V )(s) =
optμ

∑
s′ μ(s′)·fi(V )(s′), i.e. f corresponds to performing an ideal value iteration

with error ε = 0. Thus, performing Algorithm1 using f would result in an error of
0. If we limit the error in each value iteration to ε

b+1 , then the function we use can
be stated as f ′ = fn for n large enough such that ||f ′(V ) − f(V )||max ≤ ε

b+1 for
all V used in the computations. Let V0, V ′

0 = V0 + δ0 be the initial value vectors,
δ0 < ε

b+1 . Further, let Vi, V
′
i ∈ S → [0, 1], i ∈ {1, . . . , b}, be the value vectors

after the i-th call to VI for the case without (Vi) and with error (V ′
i ). We can then

show by induction that ||Vi−V ′
i ||max ≤ (i+1) ε

b+1 . Initially, we have V ′
0 = V0+δ0.

Therefore, we have V ′
1 = f ′(V ′

0) = f(V ′
0) + δ1 = f(V0) +

∑0
j=0 δj + δ1 for some

δ1 ∈ S → [0, 1] with ||δ1||max ≤ ε
b+1 . Then, we have for some δj ∈ S → [0, 1],

j ∈ {0, . . . , i}, with ||δj ||max ≤ ε
b+1 :

V ′
i+1 = f ′(V ′

i ) = f(V ′
i ) + δi+1

∗= f(Vi) +
∑i

j=0
δj + δi+1 = f(Vi) +

∑i+1

j=0
δj
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1 function SEnum(V, M = 〈S, T, sinit〉, F, b, opt)
2 T ′′ := ∅, M ′ := M↓F ↓R = 〈S � Snew, T ′, sinit〉
3 foreach s ∈ { sinit} ∪ { s′′ | ∃ s′ : s′ 1−→T s′′} do
4 foreach S ∈ SSched(M ′[s]) do // enumeration of simple schedulers
5 T ′′(s) := T ′′(s) ∪ { ComputeProbs(M ′[s]↓S)}
6 T ′′ := T ′′ ∪ { ⊥ �→ { D(〈0, ⊥〉)}}, V (⊥) := 0
7 StepBoundedVI(V, M ′′ = 〈Dom(T ′′), T ′′, sinit〉, b, opt) // step-bounded iter.

8 function ComputeProbs(M = 〈S � Snew, . . .〉) // M is a DTMC
9 μ := { 〈0, s〉 �→ Pmax=min({ snew}) | snew ∈ Snew}

10 return μ ∪ { 〈0, ⊥〉 �→ 1 −∑snew∈Snew
μ(〈0, s〉)}

Algorithm 2. Reward-bounded reachability via scheduler enumeration

where ∗ holds by the induction assumption. Finally, ||∑i
j=0 δj ||max ≤ (i+1) ε

b+1 ,
so ||Vi − V ′

i ||max ≤ (i + 1) ε
b+1 , which is what had to be proved.

3.2 Scheduler Enumeration

Our first new technique, senum, is summarised as Algorithm 2. The idea is to
replace the entire sub-MDP between a “relevant” state and the new states (that
follow immediately after what was a reward-one branch before the ↓R transfor-
mation) by one direct transition to a distribution over the new states for each
simple scheduler. The actual reward-bounded probabilities can be computed on
the result MDP M ′′ using the standard step-bounded algorithm (line 7), since
one step now corresponds to a reward of 1.

The relevant states, which remain in the result MDP M ′′, are the initial state
plus those states that had an incoming reward-one branch. We iterate over them
in line 3. In an inner loop (line 4), we iterate over the simple schedulers for each
relevant state. For each scheduler, ComputeProbs determines the distribution μ
s.t. for each new state snew, μ(snew) is the probability of reaching it (accumulat-
ing 1 reward on the way) and μ(⊥) is the probability of getting stuck in an end
component without being able to accumulate any more reward ever. A transition
to preserve μ in M ′′ is created in line 5. The total number of simple schedulers
for n states with max. fan-out m is in O(mn), but we expect the number of
schedulers that lead to different distributions from one relevant state up to the
next reward-one steps to remain manageable (cf. column “avg” in Table 2).

ComputeProbs is implemented either using value iterations, one for each new
state, or—since M ′[s]↓S is a DTMC—using DTMC state elimination [8]. The
latter successively eliminates the non-new states as shown schematically in Fig. 3
while preserving the reachability probabilities, all in one go.

3.3 State Elimination

Instead of performing a probability-preserving DTMC state elimination for
each scheduler as in senum, technique elim applies a new scheduler- and
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Fig. 3. DTMC state elimination [8] Fig. 4. MDP state elimination

1 function Elim(V, M = 〈S, T, sinit〉, F, b, opt)
2 M ′ := M↓F ↓R = 〈S � Snew, . . .〉
3 〈S � Snew, T ′, sinit〉 := Eliminate(M ′, S) // MDP state elimination
4 T ′′ := { ⊥ �→ { D(〈0, ⊥〉)}}, V (⊥) := 0, μ′ := ∅

5 foreach snew ∈ Snew and μ ∈ T ′(s) do // state merging
6 μ′ := μ′ ∪ { ⊥ �→∑〈0,s′〉∈support(μ)∧s′∈S μ(〈0, s′〉)}
7 μ′ := μ′ ∪ { s′ �→ μ(〈0, s′

new〉) | 〈0, s′
new〉 ∈ support(μ) ∧ s′

new ∈ Snew}
8 T ′′(snew) := T ′′(snew) ∪ { μ′}, μ′ := ∅

9 StepBoundedVI(V, 〈Dom(T ′′), T ′′, sinit〉, b, opt) // step-bounded iteration

Algorithm 3. Reward-bounded reachability via MDP state elimination

probability-preserving state elimination algorithm to the entire MDP. The state
elimination algorithm is described by the schema shown in Fig. 4; states with
Dirac self-loops will remain. Observe how this elimination process preserves the
options that simple schedulers have, and in particular relies on their positional
character to be able to redistribute the loop probabilities pci onto the same
transition only.

elim is shown as Algorithm 3. In line 3, the MDP state elimination procedure
is called to eliminate all the regular states in S. We can ignore rewards here since
they were transformed by ↓R into branches to the distinguished new states. As
an extension to the schema of Fig. 4, we also preserve the original outgoing
transitions when we eliminate a relevant state (defined as in Sect. 3.2) because
we need them in the next step: In the loop starting in line 5, we redirect (1) all
branches that go to non-new states to the added bottom state ⊥ instead because
they indicate that we can get stuck in an end component without reward, and
(2) all branches that go to new states to the corresponding original states instead.
This way, we merge the (absorbing, but not eliminated) new states with the
corresponding regular (eliminated from incoming but not outgoing transitions)
states. Finally, in line 8, the standard step-bounded value iteration is performed
on the eliminated-merged MDP as in senum. Figure 5 shows our example MDP
after state elimination, and Fig. 6 shows the subsequent merged MDP. For clarity,
transitions to the same successor distributions are shown in a combined way.
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Fig. 5. Me
↓ after state elimination Fig. 6. Me

↓ eliminated and merged

3.4 Correctness and Complexity

Correctness. Let Sbe a deterministic reward-positional scheduler for M↓F . It
corresponds to a sequence of simple schedulers Si for M↓F where i ∈ { b, . . . , 0}
is the remaining reward that can be accumulated before the bound is reached. For
each state s of M↓F and i > 0, each such Si induces a (potentially substochastic)
measure μi

s such that μi
s(s

′) is the probability to reach s′ from s in M↓F ↓Si
over

paths whose last step has reward 1. Let μ0
s be the induced measure such that

μ0
s(s

′) is the probability under S0 to reach s′ without reward if it is a goal
state and 0 otherwise. Using the recursion μi

s(s
′) def=

∑
s′′∈S μi

s(s
′′) ·μi−1

s′′ (s′) with
μ0

s
def= μ0

s, the value μb
s(s

′) is the probability to reach goal state s′ from s in M↓F

under S. Thus we have maxS μb
s(s

′) = PR≤b
max (F ) and minS μb

s(s
′) = PR≤b

min (F ) by
Theorem 1. If we distribute the maximum operation into the recursion, we get

maxS μi
s(s

′) =
∑

s′′∈S
maxSi

μi
s(s

′′) · maxS μi−1
s′′ (s′) (1)

and an analogous formula for the minimum. By computing extremal values w.r.t.
simple schedulers for each reward step, we thus compute the value w.r.t. an opti-
mal deterministic reward-positional scheduler for the bounded property overall.
The correctness of senum and elim now follows from the fact that they imple-
ment precisely the right-hand side of (1): μ0

s is always given as the initial value
of V as described at the very beginning of this section. In senum, we enumerate
the relevant measures μ·

s induced by all the simple schedulers as one transition
each, then choose the optimal transition for each i in the i-th iteration inside
StepBoundedVI. The argument for elim is the same, the difference being that
state elimination is what transforms all the measures into single transitions.

Complexity. The problem that we solve is Exp-complete [6]. We make the fol-
lowing observations about senum and elim: Let nnew ≤ n be the number of new
states, ns ≤ n the max. size of any relevant reward-free sub-MDP (i.e. the max.
number of states reachable from the initial or a new state when dropping all
reward-one branches), and ss ≤ mn the max. number of simple schedulers in
these sub-MDP. The reduced MDP created by senum and elim have nnew states
and up to nnew · ss · ns branches. The bounded value iterations thus involve
O(b · nnew · ss · ns) arithmetic operations overall. Note that in the worst case,
ss = mn, i.e. it is exponential in the size of the original MDP. To obtain the
reduced MDP, senum enumerates O(nnew ·ss) schedulers; for each, value iteration
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or DTMC state elimination is done on a sub-MDP of O(ns) states. elim needs to
eliminate n − nnew states, with each elimination requiring O(ss · ns) operations.

4 Implementation

We have implemented the three unfolding-free techniques within mcsta, the
Modest Toolset’s model checker for PTA and MDP. When asked to compute
PR≤b
opt (·), it delivers all values PR≤i

opt (·) for i ∈ { 0, . . . , b} since the algorithms
allow doing so at no overhead. Instead of a single value, we thus get the entire
(sub-)cdf. Every single value is defined via an individual optimisation over sched-
ulers. However, we have seen in Sect. 3.4 that an optimal scheduler for bound
i can be extended to an optimal scheduler for i + 1, so there exists an optimal
scheduler for all bounds. The max./min. cdf represents the probability distrib-
ution induced by that scheduler. We show these functions for the randomised
consensus case study [16] in Fig. 7. The top (bottom) curve is the max. (min.)
probability for the protocol to terminate within the number of coin tosses given
on the x-axis. For comparison, the left and right dashed lines show the means of
these distributions. Note that the min. expected value corresponds to the max.
bounded probabilities and vice-versa. As mentioned, using the unfolding-free
techniques, we compute the curves in the same amount of memory otherwise
sufficient for the means only. We also implemented a convergence criterion to
detect when the result will no longer increase for higher bounds, i.e. when the
unbounded probability has been reached up to ε. For the functions in Fig. 7, this
happens at 4016 coin tosses for the max. and 5607 for the min. probability.

Fig. 7. Cdfs and means for the randomised consensus model (H = 6, K = 4)

5 Experiments

We use six case studies from the literature to evaluate the applicability and
performance of the three unfolding-free techniques and their implementation:

– BEB [5]: MDP of a bounded exponential backoff procedure with max. back-
off value K = 4 and H ∈ { 5, . . . , 10} parallel hosts. We compute the max.
probability of any host seizing the line while all hosts enter backoff ≤ b times.
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– BRP [9]: The PTA model of the bounded retransmission protocol with
N ∈ { 32, 64} frames to transmit, retransmission bound MAX ∈ { 6, 12} and
transmission delay TD ∈ { 2, 4} time units. We compute the max. and min.
probability that the sender reports success in ≤ b time units.

– RCONS [16]: The randomised consensus shared coin protocol MDP as
described in Sect. 4 for N ∈ { 4, 6} parallel processes and constant K ∈
{ 2, 4, 8}.

– CSMA [9]: PTA model of a communication protocol using CSMA/CD, with
max. backoff counter BCMAX ∈ { 1, . . . , 4}. We compute the min. and max.
probability that both stations deliver their packets by deadline b time units.

– FW [16]: PTA model (“Impl” variant) of the IEEE 1394 FireWire root con-
tention protocol with either a short or a long cable. We ask for the min.
probability that a leader (root) is selected before time bound b.

– IJSS [14]: MDP model of Israeli and Jalfon’s randomised self-stabilising algo-
rithm with N ∈ { 18, 19, 20} processes. We compute the min. probability to
reach a stable state in ≤ b steps of the algorithm (query Q2 in [14]). This is a
step-bounded property; we consider IJSS here only to compare with [14].

Experiments were performed on an Intel Core i5-6600T system (2.7 GHz, 4 cores)
with 16 GB of memory running 64-bit Windows 10 and a timeout of 30 min.

Looking back at Sect. 3, we see that the only extra states introduced by modvi
compared to checking an unbounded probabilistic reachability or expected-
reward property are the new states snew. However, this was for the presentation
only, and is avoided in the implementation by checking for reward-one branches
on-the-fly. The transformations performed in senum and elim, on the other hand,
will reduce the number of states, but may add transitions and branches. elim may
also create large intermediate models. In contrast to modvi, these two techniques
may thus run out of memory even if unbounded properties can be checked. In
Table 1, we show the state-space sizes (1) for the traditional unfolding app-
roach (“unfolded”) for the bound b where the values have converged, (2) when
unbounded properties are checked or modvi is used (“non-unfolded”), and (3)
after state elimination and merging in elim. We report thousands (k) or millions
(M) of states, transitions (“trans”) and branches (“branch”). Column “avg” lists
the average size of all relevant reward-free sub-MDP. The values for senum are
the same as for elim. Times are for the state-space exploration phase only, so
the time for “non-unfolded” will be incurred by all three unfolding-free algo-
rithms. We see that avoiding unfolding is a drastic reduction. In fact, 16 GB of
memory are not sufficient for the larger unfolded models, so we used mcsta’s
disk-based technique [11]. State elimination leads to an increase in transitions
and especially branches, drastically so for BRP, the exceptions being BEB and
IJSS. This appears related to the size of the reward-free subgraphs, so state
elimination may work best if there are few steps between reward increments.

In Table 2, we report the performance results for all three techniques when
run until the values have converged at bound value b (except for IJSS, where
we follow [14] and set b to the 99th percentile). For senum, we used the vari-
ant based on value iteration since it consistently performed better than the one
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Table 1. State spaces

using DTMC state elimination. “iter” denotes the time needed for (unbounded
or step-bounded) value iteration, while “enum” and “elim” are the times needed
for scheduler enumeration resp. state elimination and merging. “#” is the total
number of iterations performed over all states inside the calls to VI. “avg” is the
average number of schedulers enumerated per relevant state; to get the approx.
total number of schedulers enumerated for a model instance, multiply by the
number of states for elim in Table 1. “rate” is the number of bound values com-
puted per second, i.e. b divided by the time for value iteration. Memory usage in
columns “mem” is mcsta’s peak working set, including state space exploration,
reported in mega- (M) or gigabytes (G). mcsta is garbage-collected, so these
values are higher than necessary since full collections only occur when the sys-
tem runs low on memory. The values related to value iteration for senum are
the same as for elim. In general, we see that senum uses less memory than elim,
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Table 2. Runtime and memory usage

but is much slower in all cases except IJSS. If elim works and does not blow up
the model too much, it is significantly faster than modvi, making up for the time
spent on state elimination with much faster value iteration rates.

6 Conclusion

We presented three approaches to model-check reward-bounded properties on
MDP without unfolding: a small correction of recent work based on unbounded
value iteration [14], and two new techniques that reduce the model such that
step-bounded value iteration can be used, which is efficient and exact. We also
consider the application to time-bounded properties on PTA and provide the
first implementation that is publicly available, within the Modest Toolset at
modestchecker.net. By avoiding unfolding and returning the entire probability

http://www.modestchecker.net
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distribution up to the bound at no extra cost, this could finally make reward- and
time-bounded probabilistic timed model checking feasible in practical applica-
tions. As we presented the algorithms in this paper, they compute reachability
probabilities. However all of them can easily be adapted to compute reward-
bounded expected accumulated rewards and instantaneous rewards, too.

Outlook. The digital clocks approach for PTA was considered limited in scala-
bility. The presented techniques lift some of its most significant practical limita-
tions. Moreover, time-bounded analysis without unfolding and with computation
of the entire distribution in this manner is not feasible for the traditionally more
scalable zone-based approaches because zones abstract from concrete timing. We
see the possibility to improve the state elimination approach by removing tran-
sitions that are linear combinations of others and thus unnecessary. This may
reduce the transition and branch blowup on models like the BRP case. Going
beyond speeding up simple reward-bounded reachability queries, state elimina-
tion also opens up ways towards a more efficient analysis of long-run average
and long-run reward-average properties.
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Abstract. To enable scalability and address the needs of real-world soft-
ware, deductive verification relies on modularization of the target pro-
gram and decomposition of its requirement specification. In this paper,
we present an approach that, given a Java program and a partial require-
ment specification written using the Java Modeling Language, constructs
a semantic slice. In the slice, the parts of the program irrelevant w.r.t.
the partial requirements are replaced by an abstraction. The core idea
of our approach is to use bounded program verification techniques to
guide the construction of these slices. Our approach not only lessens the
burden of writing auxiliary specifications (such as loop invariants) but
also reduces the number of proof steps needed for verification.

1 Introduction

Motivation. The power of deductive program verification has increased con-
siderably over the last decades. To enable scalability and address the needs of
real-world software, deductive verification relies on modularization of the target
program. This requires annotating sub-procedures with formal auxiliary specifi-
cations (method contracts, loop invariants, etc.). To discover useful specifications
that are fulfilled by the annotated sub-procedure and also meet the requirements
of the calling procedures is, unfortunately, a difficult and error-prone effort (cf. [6,
Chap. 5]). To ease the burden, verification engineers routinely break a complex
requirement specification into conjunctions of partial specifications, i.e., they
decompose not only the implementation but also the specification. Then, usu-
ally, only parts of the implementation are relevant for proving a partial property,
and only partial and less complex auxiliary specifications are needed. To make
use of that advantage, the verification engineer needs to identify the slice of the
implementation relevant to the partial property. The main contribution of this
paper is an automated method for computing such program slices defined by
partial specifications.

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-47677-3 7



102 T. Liu et al.

Our Approach. Given a Java program and a partial requirement specification,
written using the Java Modeling Language (JML) [22], we construct a semantic
slice (an abstract program). In the slice, the program parts that are irrelevant
to the partial requirements are replaced by an abstraction (i.e., they are not
completely removed), whereas the rest of the program (i.e., the relevant parts)
remains unchanged. (In the rest of the paper we use the terms semantic slice
and abstract program interchangeably.) As said above, verifying slices requires
fewer auxiliary specifications (as the abstractions have less details), and their
correctness—by their construction—implies the correctness of the original pro-
gram w.r.t. the partial specification under consideration. As a result, our method
liberates the verification engineers from finding the relevant slice manually.

Figure 1 illustrates the structure of our novel approach. The core idea is
to use bounded program verification techniques to guide the construction of
slices. Bounded program verification systems (such as JForge [14], Jalloy [27],
and InspectJ [23]) do not require auxiliary specifications. They translate, based
on user-provided bounds (that, e.g., limit the number of objects or the number
of loop iterations), the analyzed program and its negated requirement specifi-
cation into a satisfiability problem—an SMT [3] formula consisting of a set of
constraints, and try to find a solution to that problem. If a solution to that
satisfiability problem is found, then that is a counterexample to the correctness
of the original program, and no further analysis is required. If no solution is
found, the partial property holds—but only w.r.t. the bounds, thus a deductive
verification—an unbounded program verification, is still needed.

Before continuing with the deductive verification we compute the slice of
the program relevant to the partial requirements. The computation is based on
the unsatisfiable core (unsat core)—a subset of constraints that is unsatisfiable,
obtained during the unsatisfiability proof for the bounded problem. Then we
minimize the unsat core to ensure that the proof requires all its elements. The
Java program statements that are related to the constraints in the unsat core
(by the construction of constraints from the Java code) are known to be relevant
for the bounded proof of the requirement specification. We generate a semantic
slice by over-approximating the behaviors of the other statements.

Finally, if the semantic slice can be verified using deductive program ver-
ification, which requires auxiliary specifications, the original program satis-
fies the specification as well (by the construction of the slice). Otherwise, we
use counterexample-guided refinement to refine the abstraction and repeat the
deductive verification.

The semantic slice is generated based on a particular bounded proof. There-
fore it (i) may be too abstract, and thus deductive verification is not possible,
and (ii) may exclude unnecessary, yet helpful, details, hence deductive verifica-
tion may require more effort. But, as our evaluation shows, in practice the slice
is sufficiently precise.

Our approach not only lessens the burden of writing auxiliary specifications
but also eases the deductive verification: less proof steps are needed. Besides, by
the small-scope hypothesis [20], if the program does not satisfy its specification,
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Fig. 1. Structure of our approach.

in many cases that will be detected during the bounded-verification phase of our
approach, avoiding unnecessary attempts at deductive verification.

We have built a prototype tool, AbstractJ, that implements the abstraction
as well as the refinement and validity check, and we have performed several
experiments to evaluate the benefits of our approach.

2 Motivating Examples

We use two examples (Figs. 2 and 3) to demonstrate our approach. To spec-
ify the Java modules we employ JML, a behavioral interface specification lan-
guage. We shortly explain the JML clauses used in the examples; for more
details see [22]. The specification is written between /*@ and */. The ensures

clause specifies properties that are guaranteed to hold at the end of the method
call, and \result refers to the value returned by the method. (Both clauses
refer to the case that the method terminated normally.) The diverges clause
is used to specify when a method may either loop forever or not return nor-
mally to its caller. Writing diverges true means that non-termination is allowed
for the method. The assignable clause provides the locations that can be
assigned to during the execution of the method (frame conditions). The clause
assignable \strictly nothing denotes that the relevant methods neither modify
heap locations nor allocate objects, whereas assignable \nothing allows object
allocations; assignable \everything enables the method both to modify any
heap location and to allocate objects.

The program in Fig. 2(a) computes the number of prime numbers between
two given integers x and y (exclusive). The first line denotes that if the number
of prime numbers is larger than 0, then x < y. Carefully inspecting the code, a
verification engineer will notice that the ensures clause becomes false only when
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x >= y. In that case, the outer loop (Fig. 2(a), statement 2) is never executed and
the variable size remains equal to 0. However, using traditional static slicing
techniques, all statements (Fig. 2(a), statements 1–9) will be relevant w.r.t. the
variables x, y, and size at the return statement. Thus loop invariants are
required for the two loops. Our tool generates an abstract program as shown in
Fig. 2(b) where the outer loop body (Fig. 2(a), statements 3–9) and the branch
(Fig. 2(a), statements 10–11) are abstracted. Thus, it becomes easier to write
loop invariants for outer loop and no loop invariant is needed for the inner loop.
The abstract program is proved with KeY [1] (a deductive verification system)
using 646 rules and 8 auxiliary specifications (counted as the number of JML
constructs and logical connectors), while the original program is proved using
5802 rules and 26 auxiliary specifications.

The abstract statements over-approximate the behaviors of the irrelevant
statements. The abstract statements invoke pure methods which have been gen-
erated automatically by our tool. The identifier of each pure method refers to
the type of original statement. Each native method returns an unspecified value
of the appropriate type.

/*@ ensures \result>0==>x<y;

@ diverges true;

@ assignable \everything;*/

int numberOfPrime(int x, int y){

1 int size = 0;

2 for(int i=x; i<y; i++){

3 boolean isPrime = true;

4 for(int j=2; j<i; j++)

5 if (i%j==0){

6 isPrime=false;

7 break;

}

8 if (isPrime)

9 size++;

}

10 if(size > 0){

11 int[] a = new int[y-x];

}

12 return size;

}

(a) Original program

/*@ ensures \result>0==>x<y;

@ diverges true;

@ assignable \everything;*/

int numberOfPrime(int x, int y){

1 int size = 0;

2 for(int i=x; i<y; i++){

3 size = pure_int();

}

4 pure_allocArrayInt();

5 return size;

}

//@ assignable \strictly_nothing;

native int pure_int();

//@ assignable \nothing;

native int[] pure_intArray();

(b) Abstract program

Fig. 2. A data-structure-poor program to compute the number of prime numbers
between two integers. The empty lines in the abstract program are left deliberately
for an intuitive comparison.
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Figure 3(a) shows the second example. It provides a map data type imple-
mented using associative arrays. Keys and values are recorded in separate arrays,
keys and values, respectively, and have the same index in the arrays. The method
put(k,v) invokes the method getIndexOf to check whether k already exists in the
map. If it exists, the old value is replaced by v; otherwise, the methods addKey

and addValue reallocate the arrays keys and values, respectively, and add k and v

to the new arrays. The ensures clause guarantees that the value v is in this map
(the \exists quantifier). By default, referenced variables are not null, thus the

class Key {} class Value {}

class Map {

/*@ nullable */ Key[] keys;

/*@ nullable */ Value[] values;

/*@ ensures (\exists int i;0<=i&&

@ i<values.length;values[i]==v);

@ diverges true;

@ assignable \everything; */

void put(Key k, Value v){

1 int pos = getIndexOf(k);

2 if (pos>=0)

3 values[pos] = v;

else {

4 addKey(k);

5 addValue(v);

}

}

int getIndexOf(Key k){

6 int r = -1;

7 for(int i=0;i<keys.length;i++)

8 if (keys[i] == k)

9 r = i;

10 return r;

}

void addKey(Key k){

11 Key[] oldKs = keys;

12 keys = new Key[keys.length+1];

13 keys[keys.length - 1] = k;

14 for (int i=0;i<oldKs.length;i++)

15 keys[i] = oldKs[i];

}

void addValue(Value v){

16 Value[] oldVs = values;

17 values=new Value[values.length+1];

18 values[values.length - 1] = v;

19 for (int i=0;i<oldVs.length;i++)

20 values[i] = oldVs[i];

}

}

(a) Original program

class Key {} class Value {}

class Map {

/*@ nullable */ Key[] keys;

/*@ nullable */ Value[] values;

/*@ ensures (\exists int i;0<=i&&

@ i<values.length;values[i]==v);

@ diverges true;

@ assignable \everything; */

void put(Key k, Value v){

1 int pos = pure_int(k);

2 if(pure_boolean())

3 values[pos] = v;

else {

4 impure_keys(k);

5 addValue(v);

}

}

void addValue(Value v){

6 Value[] oldVs = values;

7 values=new Value[values.length+1];

8 values[values.length - 1] = v;

9 for (int i=0;i<oldVs.length;i++)

10 values[i] = pure_Value();

}

//@ assignable \strictly_nothing;

native int pure_int();

//@ assignable \strictly_nothing;

native boolean pure_boolean();

//@ assignable this.keys;

native void impure_keys();

//@ assignable \strictly_nothing;

native /*@nullable*/ Value

pure_Value();

}

(b) Abstract program

Fig. 3. A data-structure-rich program to put a key and a value to a map.
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nullable clause enables also the null value. The abstract program is shown in
Fig. 3(b), where the methods getIndexOf and addKey are irrelevant to the prop-
erty of interest, thus their call sites (Fig. 3(a), statements 4, 5) are abstracted,
such that this fact is directly exposed to the verification engineers. The abstract
method put contains half of the statements of the original program, relieving
the user from the burden of writing some auxiliary specifications. The methods
getIndexOf and addKey are abstracted, thus loop invariants are not needed for
them. It is difficult to discover this fact without non-trivial efforts. Besides, the
abstraction indicates that the loop (Fig. 3(a), statements 19–20) only modifies
locations [0 ... (values.length − 2)] of the values array, whereas the concrete
behaviors to modify the other slots can be left out completely in the loop invari-
ants. The abstract program has been proved with KeY using 3879 rules and 4
auxiliary specifications, while the original program requires 14684 rules and 14
auxiliary specifications.

3 Techniques

We now explain the principle techniques of our approach. We describe: program
translation, program abstraction, validity check of counterexamples and refine-
ment of abstract programs, and runtime exception handling. See Fig. 1.

We focus on analyzing object-oriented programs, and currently support a
basic subset of Java that does not include floating point numbers, concurrency,
and user-defined exceptions. We support a class hierarchy definition without
interfaces and abstract classes. A detailed program syntax can be found in a
previous work (cf. [23, Sect. 2]). We currently support a basic subset of JML
that does not include model fields and exceptional behaviors.

3.1 Translation

We explain the translation techniques of bounded program verification (the
“Translation” box in Fig. 1). Based on user-provided bounds we translate a Java
program and its JML requirement specifications into an SMT formula. Some
code transformations are performed on the analyzed program before the trans-
lation: Loops are unrolled the number of times defined in bounds; methods are
inlined into their call sites; constructors are split into object allocation and ini-
tialization; and all variables and fields are renamed such that they are assigned
at most once. The preprocessed program (called bounded program in the paper)
is represented using a computation graph [27], a directed acyclic graph that has
a single entry node and a single exit node. The nodes of the graph represent
the control points in the bounded program, and the edges represent the state
transitions. Figure 4 provides a simple example. The computation graph of the
program in Fig. 4(a) is shown in Fig. 4(b), where variable names are indexes; the
initial index is 0, and the index is incremented every time the variable is updated.
Figure 4(c) gives the SMT constraints encoding the control flow. An SMT for-
mula consists of logical conjunction-connected SMT constraints (enclosed in the



Computing Specification-Sensitive Abstractions for Program Verification 107

Fig. 4. Encoding: (a) a sample Java code, (b) computation graph, (c) control con-
straints, (d) frame conditions, (e) data constraints.

assert command). Basic constraint are combined using the boolean operators
and, or, not, and => (implies). We introduce a boolean variable E i j to repre-
sent an edge from node i to node j; the data constraints in Fig. 4(e) provide the
correct semantics for state transitions; the frame condition in Fig. 4(d) explic-
itly prevents variables to be unspecified. Variables (fields) in JML expressions
are replaced by the appropriate variables (fields) in the pre-/post-state of the
bounded program. More details can be found in a previous work [23].

3.2 Abstraction

When an SMT formula is unsatisfiable, an SMT solver capable of generating
proofs is used to find a proof of invalidity, i.e., an unsat core. Minimization is
performed on the core returned by an SMT solver to ensure the core is locally
minimal: removing any single constraint from the core renders it satisfiable. (The
algorithm is presented later in this section.) Let the set C denote the inconsistent
constraints extracted from the SMT formula; i.e., C encodes the reason that no
post-state violates the requirement specification. To discover which statements
are responsible for a constraint in the unsat core, we maintain a constraint map
M := {C �→ S} to store the connection between the constraints C and state-
ments S. When generating data constraints (e.g., Fig. 4(e)), the mapping from a
data constraint c ∈ C to the statement s ∈ S (where the constraint is generated)
is added to the constraint map M . Figure 5 presents the rules used for updating
the constraint map M . Rules R1 and R2 shows data constraints are directly
mapped to the simple assignment statements. We translate the assignments e.f
= e to two constraints: e.f ′ = e and ∀T o, o �= e ⇒ o.f ′ = o.f (T represents
the type of e), where only the former is used to update the constraint map M
(R3). The translations of the create statement and the array update statement
are handled in the same way (R4 and R5 respectively). The rule R6 shows that
the constraints translated from branch conditions are mapped to the branch (or
loop) statement. The loop condition is negated after the last iteration, the rule
R7 maps the negation of the loop condition to the loop statement. The state-
ments mapped by the constraints of C are the relevant statements w.r.t. the
property under consideration for user-provided bounds.
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Fig. 5. The rules for updating the constraint map M to M ′. The new variables (or
fields) are marked with apostrophes. Td and Te represent the translation of program
statements and expressions respectively. S denotes a program statement and E rep-
resents the edge for the statement. Et and Ef denote the outgoing edges of branch
statements.

Fig. 6. The rules for transforming original statements to abstract statements. The
transformation is denoted by A. The concrete Java statements on the left are replaced
by the abstract statements on the right. The pure T methods return unspecified values.

These relevant statements are marked as mustHave statements and will not
be abstracted. The other statements in the bounded program, that are named
mayHave statements, are not necessary for bounded verification, but may be
helpful in the deductive program verification. We generate an abstract program
by over-approximating the behaviors of the statements in the original program
when their transformed statements are mayHave statements—each transformed
statement gets the location of its original statement. Thus all feasible executions
of the original program are feasible in the abstract program, but not vice versa.
Abstract programs are generated using the abstraction rules in Fig. 6. The orig-
inal statement (on the left of Fig. 6), from which the mayHave statement has
been transformed, is replaced with a statement (on the right of Fig. 6) that calls
a JML-annotated pure T method /*@ assignable \strictly nothing;*/ native

/*@ nullable */ T pure T();. The JML assignable clause ensures that no
memory location is changed by the pure method and that distinct unspecified
values will be returned by the pure method, T represents an appropriate type
required by the original statement, and the pure method returns an unspecified
value of T which includes null as well. The Java keyword native is used to avoid
implementations of the pure methods.

Using the rules in Fig. 6, the generated abstract programs provide to the
verification engineers the information which statements are necessary for the
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properties under consideration. Thus, writing auxiliary specifications could be
easier. However, it may increase the proof complexity compared to the concrete
programs. Typically, a deductive program verification system (e.g., KeY [1])
symbolic executes a program and applies various calculus rules to make a proof.
During symbolic execution, the symbolic states of the original program are very
likely more concrete than those of the abstract program. Therefore, the symbolic
execution paths which are invalid for the concrete programs are traversed when
proving the abstract programs. Furthermore, symbolic execution of an abstract
statement may require more rules than its original statement.

We optimize the abstract program. In order for the abstract programs to have
appropriate concrete states, statements that are unnecessary for bounded pro-
gram verification, yet helpful for the deductive program verification, are marked
as mustHave statements. For example, assignment statements where the expres-
sion on the right-hand side is an object allocation, constant, etc., and that their
defined variables are used in some mustHave statements. When possible, we
abstract a set S of mayHave statements into one single statement, thus reduc-
ing the number of abstract statements. This is available for any two nodes m
and n in the computation graph g (see, e.g., Fig. 4(b)), where m dominates n, n
post-dominates m, and all the statements in S whose edges are in the paths from
m to n are mayHave statements. The new abstract statement calls an impure
method /*@ assignable loc;*/ native T impure T();, where the JML specifica-
tion denotes the memory locations modified by the statements. We compute
the modifiable locations loc as a collection of the fields and variables that are
updated in the mayHave statements.

Minimization of an Unsat Core. A locally minimal unsat core is useful for
computing optimal abstractions. To the best of our knowledge, none of the SMT
solvers guarantees its unsat core is locally minimal. We present an algorithm
(Algorithm 1) that minimizes an unsat core by exhaustively checking whether a
constraint is necessary for the unsatisfiability of the SMT formula. If the formula
remains unsatisfiable when deactivating (negating) the constraints of a program
statement, the constraints are not needed and their statement is a mayHave
statement. The new unsat core returned by the SMT solver is the input for

Algorithm 1. Minimize an unsat core
Input: C: unsatisfiable SMT constraints; S ← ∅: unnecessary constraints;
muc ← ∅: locally minimal unsat core.
for c ∈ C do

if c /∈ S then
if (check-sat ((C − c) \ S)) is UNSAT then

muc ← getUnsatCoreFromSolver();
S ← S ∪ ((C − c) \ muc)

return muc
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the next check. Otherwise, we reactivate the constraints and check the other
constraints till all constraints are flipped.

3.3 Validity Check and Refinement

To check the validity of the counterexamples, new bounds are always required
since the abstract program fulfills the property w.r.t. the old bounds. For a coun-
terexample ce, the new bound of class C is CPrece+max(CPath1, . . . , CPathn),
where CPrece is the number of C instances in ce, CPathn is the number of allo-
cations of C instances on the n-th program path, and function max returns the
maximum. To compute new loop unrolls, we transform a while(cond){stmts;}
loop into if(cond){stmts; if(!cond) var=var;}, where var is a variable that is
modifiable in stmts. This transformation prevents unrolling the loops that are
irrelevant for the program correctness.

We compute a new SMT formula that is the conjunction of the translation
of the counterexample and the translation of the original program for the new
bounds. When the formula is satisfiable, then either the counterexample is valid,
or the loop requires further iterations if the loop condition is still true after
traversing the last iteration. In the latter case, we double the loop bounds and
repeat the validity check. If the formula is unsatisfiable, we find the statements
w.r.t. the counterexample using the techniques as shown in Sect. 3.2. In the
bounded program, we highlight a mayHave statement as a mustHave statement
when the statement is in the newly found statements. Finally, using the technique
shown in Sect. 3.2, we generate a new abstract program for deductive verification.

3.4 Runtime Exceptions

For each property to be proved, verification systems also prove that no run-
time exception is thrown. When more than one functional property has to
be verified, the same proof steps for checking runtime exceptions are redone.
Our approach separates the verification of functional properties from check-
ing runtime exceptions: usually the statement o = o.f, e.g., is translated into
(o �= null ⇒ o′ = o.f)∨ (o = null ⇒ exc), where exc denotes runtime exception,
whereas we translate it into o �= null ∧ o′ = o.f . To check that there are no
runtime exceptions, we also inject guards into the code, such that if a guard
passes an exception is thrown. We treat the possible exception types separately.

Figure 7 presents the code from Fig. 2(a) with one guard injected. We
insert a guard (statements 11–13) which sets to true the flag NASE in the
class RTE if a NegativeArraySizeException is about to be thrown (state-
ment 14). Thus, when the program in Fig. 7 preserves the value of the excep-
tion flag (it is false when calling the method and when returning from it1), no
NegativeArraySizeException is thrown in the original program, as the guard
is checking the statement at line 14. All program parts not relevant to whether

1 The requires clause specifies the method’s precondition.
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/*@ requires RTE.NASE = false;

@ ensures RTE.NASE = false;

@ diverges true;

@ assignable \everything;*/

int numberOfPrime(int x, int y) {

...// statements 1-9 are omitted to save space.
10 if (size>0){

11 if (y-x < 0) {

12 RTE.NASE = true;

13 return;

}

14 this.a = new int[y-x];

}

15 return size;}

Fig. 7. The example from Fig. 2(a) with an injected guard.

the exception is thrown are abstracted. In our approach, when there is no run-
time exception and the functional properties have been fulfilled by the analyzed
abstract programs, the original program is also verified.

4 Evaluation

The approach that we have presented (i) liberates verification engineers from
finding the relevant program slices manually, and (ii) reduces the proof com-
plexity especially for partial properties, for which most of the program slices are
irrelevant.

We have implemented the techniques introduced in the paper in a proto-
type tool, AbstractJ. We use InspectJ [23] as the bounded verification tool and
KeY [1] as the deductive verification tool. The KeY system performs symbolic
execution [21] of sequential Java programs, using various calculus rules. Program
verification with KeY is usually done in auto-active style: the user interacts with
the system only through provided auxiliary specifications, while the proof result
is obtained automatically. The number of rule applications is our primary mea-
sure of proof complexity. We have used 5 benchmark programs, all taken from
the related program verification literature and from the KeY repository. Each
program has 2 to 6 partial properties to be verified. We have considered also
two other approaches to evaluate the effectiveness of our approach (abstraction)
in program verification. One approach, baseline, proves the original programs
using KeY as usual. The other approach, highlight, is similar to the abstraction
approach, but it only highlights the relevant program statements and retains the
irrelevant statements rather than abstracting them. We have completed 21 veri-
fication tasks using each approach, and in total we have completed 63 (= 21 ∗ 3)
verification tasks in our experiments. We have written the auxiliary specifica-
tions as compact as possible and measured the auxiliary specifications as the
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Table 1. Evaluation results

origin baseline highlight abstraction
method properties

stmts specs rules specs rules stmts specs rules

List. nullPointer 27 22 3578 12 3046 4 0 196
merge(list) indexBounds 43 59 4641 46 4434 33 46 3717

negSize 31 13 4316 14 2723 16 6 1188
leElems 22 14 2962 14 2962 13 6 1715
subset 22 82 6299 56 5715 15 52 4404

Map. nullPointer 32 28 4485 14 3780 9 0 512
put(key,value) indexBounds 48 61 6154 54 5557 48 54 5488

negSize 32 17 4084 12 3753 16 0 654
oldKey 26 30 4295 30 4295 11 22 1725
sameValues 26 27 9823 34 8494 12 26 4647
kvMatched 26 50 7327 50 7327 26 50 8814

LRS. nullPointer 39 11 3022 8 2818 13 0 753
doLRS() indexBounds 43 44 5006 14 4545 30 14 4502

foundOrNot 26 32 4155 14 2908 17 10 1255

Set. nullPointer 48 23 10937 18 10226 25 6 5505
intersect(set) negSize 38 17 14555 14 9963 23 10 4586

indexBounds 58 57 19715 33 12287 51 33 6714
emptySet 33 94 64807 46 13557 16 38 3875
subset 33 142 RO 60 136225 16 52 11211

Graph. sameNodes 54 78 RO 60 14985 13 39 3923
remove(nodes) sameEdges 54 119 RO 83 RO 18 67 12334

number of the operands of JML expressions, JML constructs, and logical con-
nectors, e.g., loop invariant, assignable, forall, &&, etc.2 We used the SMT
solver Z3 [25] to compute the unsat cores. For the experiments described in this
paper, we have used the default minimal bounds of InspectJ—at most 3 objects
and at most 3 loop iterations. All experiments3 have been performed on an Intel
Core i5-2520M CPU with 2.50 GHz running on a 64-bit Linux.

To evaluate the effect of the abstraction approach on reducing the complex-
ity of programs, we have compared the number of Java statements of original and
abstract programs. The results are shown in Table 1. The column method shows
the Java class and its method to be verified; the verified properties are listed in the
column properties. The nullPointer, indexBounds, and negSize represent the run-
time exceptions NullPointerException, ArrayIndexOutOfBoundsException,
and NegativeArraySizeException, respectively. The orgStmts column displays

2 Different engineers may write different auxiliary specifications for the same pro-
grams. We have asked an experienced KeY engineer to prove the original programs
and a relatively inexperienced KeY user to prove the abstract programs. They care-
fully inspected and ensured that the annotations are compact enough w.r.t. the
requirement specifications.

3 The complete experiments can be found at http://asa.iti.kit.edu/458.php.

http://asa.iti.kit.edu/458.php
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the number of the original program statements.4 The column stmts shows the
number of the program statements that have been generated by the abstraction
approach. On average, 49.5% (median 50%, maximum 85.2%) of statements in
the original programs have been abstracted by the abstraction approach. There
are 2 properties (indexBounds, and kvMatched for the method put) for which
the approach abstraction seems has no effect. A careful inspection reveals that
one single concrete statement is abstracted. From the results, the abstract pro-
grams contain less, yet enough details for partial properties. The more partial the
verified property, the fewer details the abstract programs have. Conservatively
speaking, even in the case where the abstract programs are identical to the original
programs, the abstraction approach assists verification engineers at exploring the
relevant statements—all program statements that have not been abstracted are
necessary for the properties under consideration. The highlight approach shows
the relevant program statements to verification engineers, while the abstraction
approach provides additional benefits: (i) automatic generation of auxiliary speci-
fications for the irrelevant program statements, and (ii) possible reduction of proof
complexity for partial properties. Besides, the abstraction can increase users con-
fidence in the correctness of their programs, before starting deductive verification.

For a fair comparison of the amount of manually written auxiliary specifica-
tions, the highlight approach reused the auxiliary specifications that have been
written manually in the abstraction approach (shown in the column specs of the
column abstraction in Table 1). The abstraction approach generates annotations
for the unnecessary program slices, for which the verification engineers need
to write annotations using the highlight approach. On average, 37.2% (median
26.7%) of annotations for the highlighted programs have been automatically
generated by the abstraction approach.

All properties in Table 1 have been proved using the abstraction approach.
When using the approaches highlight and baseline, several properties are unprov-
able. The column rules provides the number of rule applications. Any rule appli-
cation beyond our threshold of 20000005 is denoted by RO. For 18 properties
that have been proved by all approaches, the abstraction approach needed only
50.1% (median 55.2%) of the rules required by the highlight approach. It is
not guaranteed that the abstraction approach requires less rule applications
than the other two approaches for arbitrary properties. Besides of the reasons
talked in Sect. 3.2, KeY creates branches for each abstract statement, to check its
pre-/post-conditions.6 When the rule cost introduced by the abstract statements
is lower than the cost of symbolic execution of the irrelevant original statements,
only then the abstraction approach requires fewer rules than other approaches,
by assuming they use same auxiliary specifications. In other words, the more

4 The injected guard statements are treated as original statements when handling run-
time exceptions.

5 The time cost and memory consumption grow exponentially w.r.t. the rule applica-
tions. It required ∼30 min and more than 4 GB memory for 2000000 rules.

6 The trivial pre-/post-conditions of each abstract statement requires ∼20–100 rules.
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partial the verified property, the less proof complexity of the abstract programs.
The property kvMatched is an example for less partial property.

Although we used small bounds for InspectJ in the experiments, there are
no refinement cases in Table 1. On the other hand, when the refinement of an
abstract program is needed, the abstract program will contain much less details,
thus it is easy to find the relevant program statements. The verification engi-
neers are free to provide even higher bounds for InspectJ. Given the same input
formula, Z3 may find an unsat core that is different from the core found by other
SMT solvers. AbstractJ may generate different abstract programs using other
SMT solver, but the abstract programs will still contain less details than the
concrete programs if the analyzed property is partial enough.

5 Related Work

Several methods have been proposed to split the program under analysis with
respect to particular concerns. Traditional program slicing techniques (e.g., sta-
tic/dynamic slicing) generate a group of accessible statement (a slice) w.r.t.
variables of interest at particular locations. Due to the complexity of the speci-
fication expressions and various data structures in the analyzed programs, it is
very difficult to find specification-sensitive slices correctly.

Conditioned slicing techniques [4,8,9,12,13,17] have been widely applied to
simplify programs with respect to the specifications. Comuzzi et al. [12] intro-
duced predicates as a slicing criterion; the slice contains the statements affect-
ing the predicates. That idea has been extended by introducing preconditions
[9], symbolic execution [4], and program verification [13] into conditioned slic-
ing techniques. Typically, conditioned slicing produces a group of all accessible
statements w.r.t. the specification by symbolic execution with the inputs gener-
ated by a solver. The pre/postcondition (generally formulas of first-order logic)
are expressed in terms of the (input) variables at program locations of interest.
However, intensive human interaction is required to guide the symbolic execu-
tion by choosing a suitable criterion. GamaSlicer [13] verifies the program w.r.t.
specifications before generating semantic-based slices. Nevertheless, it may not
terminate with a conclusive result, since it targets an undecidable logic. Our
approach ensures that the soundness of the proof depends only on the deductive
verification.

The following three approaches tried to improve the verification process using
bounded analysis. Bormer et al. [6] claim that verifying programs using the
bounded model checker LLBMC [24] facilitates proving with VCC [11]. Annota-
tions written in VCCs specification language are translated into assertions that
can be checked by LLBMC. El Ghazi et al. [16] try to verify Alloy problems using
deductive verification, after the Alloy analyzer [20]—based on bounded analysis,
fails in finding a counterexample in bounds dictated by the machine. Kroening et
al. [15] combine k -induction and inductive invariant method to facilitate program
verification using significantly weaker annotations. These approaches do not aim
to reduce the overhead of writing specifications. However, the k -induction fre-
quently allows using weaker loop invariants than are required by the inductive
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invariant approach. Our approach can reduce the burden of specifications not
only for loops.

Using unsat core is not new in bounded program verification. The authors
of [26] used the unsat core to refine the method summaries in program verifica-
tion. In [14], a code coverage metric is constructed by the program statements
that are mapped from the unsat core.

Counterexample-guided abstraction refinement (CEGAR) has been widely
used in program verification. To the best of our knowledge, the abstractions
have been constructed mostly at the predicate level [2,5,7,10,18] and rarely at
the function level [26]. Our approach constructs the abstractions at the levels
including the ones mentioned above and statement level.

6 Conclusion and Future Work

We presented a novel method to compute specification-sensitive abstractions
for program verification. The abstractions are constructed with the help of
bounded program verification. The counterexample-guided refinement frame-
work has been used to refine the abstractions. We exploited the characteristics of
the unsat core to discover irrelevant statements. The novelty of our approach is to
abstract the program statements that are irrelevant for the properties of interest,
to help verification engineers to write auxiliary specifications. We described how
to: encode programs, map program statements to constraints, generate abstrac-
tions based on abstraction rules, and refine the abstractions with new bounds
computation. We evaluated our experiments on 5 programs that were already
used in related papers and in the KeY repository. Initial results show that our
approach generates suitable abstract programs for verification, and all abstract
programs have been proved for all 21 properties, while the original programs
have been proved for 18 properties. Our tool took off 50 % of the user’s workload
in writing auxiliary specifications. Only about half of the proof rules used to
prove the original program are needed for proving the abstract program.

We plan to apply our approach to larger programs, and investigate incorpo-
rating loop invariant generators, e.g., Invgen [19], to improve the automation of
the approach.
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Abstract. Software model checking suffers from the so-called state
explosion problem, and relaxed memory consistency models even worsen
this situation. What is worse, parameterizing model checking by mem-
ory consistency models, that is, to make the model checker as flexible
as we can supply definitions of memory consistency models as an input,
intensifies state explosion. This paper explores specific reasons for state
explosion in model checking with multiple memory consistency mod-
els, provides some optimizations intended to mitigate the problem, and
applies them to McSPIN, a model checker for memory consistency models
that we are developing. The effects of the optimizations and the useful-
ness of McSPIN are demonstrated experimentally by verifying copying
protocols of concurrent copying garbage collection algorithms. To the
best of our knowledge, this is the first model checking of the concurrent
copying protocols under relaxed memory consistency models.

Keywords: Software model checking · Relaxed memory consistency
models · State explosion · Reordering of instructions · Integration of
states · Concurrent copying garbage collection

1 Introduction

Modern computing systems are based on concurrent/parallel processing designs
for their performance advantages, and programs therefore must also be written to
exploit these designs. However, writing such programs is quite difficult and error-
prone, because humans cannot exhaustively consider the behaviors of computers
very well. One approach to this problem is to use software model checking, in which
all possible states that can be reached during a program’s execution are explored.
Many such model checkers have been developed (e.g., [7,8,13,19,26,27]).

However, most existing model checkers adopt strict consistency as a Memory
Consistency Model (MCM) on shared memories, which only allows interleaving
of instruction execution, and ignore more relaxed MCMs than strict consistency,
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which allow reorderings of instructions. This is not realistic because many mod-
ern computer architectures such as IA64, SPARC, and POWER [21,23,38] have
adopted relaxed MCMs. Relaxed MCMs facilitate the performance of parallel-
processing implementations because instructions may be reordered and multiple
threads may observe distinct views on shared memory while strict consistency,
which requires synchronization at each memory operation, is prohibitively expen-
sive to be implemented on computer architectures.

As interest in MCMs has grown, some model checkers have introduced sup-
port for them [25,28–30]. However, these have been specific to certain MCMs,
such as Total Store Ordering (TSO) and Partial Store Ordering (PSO) [11]. We
are in the process of developing a model checker, McSPIN [9], that can handle
multiple MCMs [1–3,5]. McSPIN can take an MCM as an input with a pro-
gram to be verified. It has a specification language that covers various MCMs
including TSO, PSO, Relaxed Memory Ordering (RMO), acquire and release
consistency [24], Itanium MCM [22], and UPC MCM [40]. By using McSPIN,
we can easily model check a fixed program under various MCMs.

However, software model checking suffers from the state explosion problem,
and relaxed MCMs even worsen this, because the reordering of instructions
allowed under relaxed MCMs enormously increases the number of reachable
states. What is worse, parameterizing model checking by MCMs, that is, to
make the model checker as flexible as we can supply definitions of MCMs as an
input intensifies the state explosion.

This paper explains how model checking with multiple MCMs increases the
number of reachable states, and clarifies the reasons for state explosion specific
to model checking with multiple MCMs. In addition, some optimizations are pro-
vided that reduce state explosion, and their effects are demonstrated through
experiments. The ideas behind the optimizations are simple: Pruning traces,
partial order reduction, and predicate abstraction are well known to reduce
state explosion in conventional model checking [18]. In our former paper [3],
we arranged pruning traces and partial order reduction for model checking with
relaxed MCMs. In this paper, we arrange predicate abstraction, and propose
stages, which are integrations of states under relaxed MCMs.

Although the optimization in our earlier work have enabled verification of
non-toy programs such as Dekker’s mutual exclusion algorithm [3], it was difficult
to apply McSPIN to larger problems such as verifications of copying protocols
of Concurrent Copying Garbage Collection algorithms (CCGCs), due to the
state explosion. In this paper, we demonstrated the optimizations above enables
McSPIN to verify larger programs; we checked if a desirable property of CCGCs,
“in a single thread program, what the program reads is what it has most recently
written”, are held or not for several CCGCs on multiple MCMs. Though we used
verifications of GCs as examples in this paper, safety of GC is an important issue
in the field (e.g., [15,17]), and this achievement is a positive development. To
the best of our knowledge, this is the first model checking of copying protocols
of CCGCs with relaxed MCMs.
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The rest of this paper is organized as follows: Sect. 2 describes McSPIN with
exploring the reasons for state explosion specific to model checking with MCMs,
and Sect. 3 describes the relevant optimizations we have applied in McSPIN.
Section 4 presents experimental results using McSPIN on different CCGCs and
shows the effectiveness of the optimizations. Section 5 discusses related work,
and the conclusions and directions for future work are presented in Sect. 6.

2 McSPIN

We first briefly review our earlier work [1–3] on constructing a general model
checking framework with relaxed MCMs and developing and implementation. In
the following, we do not distinguish the framework from its implementation and
refer to both as McSPIN. In McSPIN, threads on computers with shared memory
are uniformly regarded as processes that have their own memories. Therefore, we
formally call threads (in the usual sense) processes (in McSPIN), while we refer
to them as “threads” when informally explaining behavior on shared-memory
systems.

2.1 Syntax

A program is an N-tuple of sequences of instructions defined as follows:

(Instruction) i ::= 〈L, A, ι〉 ,
(Raw Instruction) ι ::= Move r t | Load r x | Store x t | Jump L if t | Nop ,
(Term) t ::= v | r | t + t | t − t | · · · ,
(Attributes) A ::= {a, . . . , a} ,

where N is the number of processes. An instruction i is a triple of a label,
attributes, and a raw instruction. A label L designates an instruction in a pro-
gram. An attribute a ∈ A denotes an additional label for a raw instruction, has
no effect itself, and are used to describe constraints specified by an MCM.

Here r is variable local to a process and x, y, . . . , are shared variables. The
raw instruction Move r t denotes the assignment of an evaluated value of a term
t to a process-local variable r, which does not affect other processes. The term
v denotes an immediate value. The terms t0 + t1, t0 − t1, . . . , denote standard
arithmetic expressions. Load r x represents loading x from its own memory and
assigning its value to r. Store x t denotes storing an evaluated value of t to x
on its own memory. Jump L if t denotes a conditional jump to L depending on
the evaluated value of t. Note that t contains no shared values; to jump to L
depending on x, it is necessary to perform Load r x in advance. Nop denotes the
usual no-operation.

Careful readers may wonder why no synchronization instructions such as
memory fence and compare-and-swap instructions appear. In McSPIN, a mem-
ory fence is represented as a Nop with attribute fence, and its effect is defined
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at each input MCM, that is, multiple types of fences can be defined. This flexi-
bility enables verification of a fixed program with different MCMs as explained
in more detail in Sect. 2.3. Compare-and-swap (usually an instruction on a com-
puter architecture) is also represented by compound statements, which can be
seen in [10].

Programs (inputs to McSPIN) have to be written in the assembly-like mod-
eling language. Such low-level languages are suitable for handling MCMs that
require one to carefully take into account effects on specific computer archi-
tectures. However, these languages may not be practical for writing programs.
McSPIN has a C-like modeling language to facilitate programming, but this is
beyond the scope of the present paper.

2.2 Semantics

McSPIN adopts trace semantics with states. Execution traces are sequences of
operations, defined as follows:

(Operation) o ::= Fe j
q p i | Is j

q p i | Ex j
q p i � v | Re j

q [p⇒p] i � v .

One key point in handling different MCMs is to consider at most four kinds
of operations for an instruction. For any instruction, its fetch and issue oper-
ations are considered. Load and store instructions have execution operations.
Store instructions have reflect operations. An effect of each operation is formally
defined in our former paper [5]. In this paper, we roughly explain why such
operations are introduced.

Under very relaxed MCMs such as C++ [24] and UPC MCM [40], distinct
threads can exhibit different program behaviors; that is, each thread has its own
execution trace. To represent these in one trace, we add a process identifier q,
denoting an observer process as a subscript of an operation. In addition, McSPIN
can handle programs with loops. To distinguish multiple operations correspond-
ing to an instruction, an operation has a branch counter j that designates the
jth iteration within a loop.

We explain the four kinds of operations by example. Fe j
q p i denotes fetching

an instruction i from a process p, which enables the issuance of i. By default,
this also increments the program counter of p if i’s raw instruction is not Jump.
If so, the program counter is not changed and will be changed when the Jump is
issued. McSPIN is equipped with a branch prediction mode that can be switched
on or off. In branch prediction mode, the program counter is non-deterministicly
incremented or set to L when Jump L if t is fetched. Thus, in order to handle
branch prediction, fetch has to be distinguished from issue.

Although branch prediction is often ignored in specifications of MCMs, note
that no branch prediction implicitly prohibits some kinds of reorderings across
conditionals. For example, no branch prediction on the process-model that
McSPIN adopts cannot perform the so-called out-of-thin-air read [31] in the
program in Table 17.6 of Java language specification [33], although legal execu-
tions under Java MCM are specified by not using a total order of operations
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on such process-model but consistency between partial orders of operations on
threads.

Operation Is j
q pi denotes the issuing of an instruction i to a process p. Effects

that complete inside the register on p (not p’s own memory) are performed. For
example, while issuing Move r t indicates assignment of an evaluated value of t to
r, Store x t implies evaluation of t only. In branch prediction mode, a predicted
execution trace in fetching Jump is checked.

Operation Ex j
q p i � v denotes execution of an instruction i on a process p.

Effects that complete inside p are performed. For example, while the execution
of Load r x means that v is loaded from x (at location �) and assigned to r,
Store x t represents storing an evaluated value v of t to x (at location �) in p’s
own memory. While an instruction is issued, its (intra-process) effect may not
have occur yet. Itanium MCM allows such situation, by distinguishing issues
from executions of instructions.

Operation Re j
q [p0⇒p1] i � v denotes reflects of an instruction i from process

p0 to p1. The reflect of Store x t means storing an evaluated value v of t to x at
� in p1’s own memory. While a store instruction is executed, that is, its effect
is reflected to its store buffer, its (inter-process) effect may not be reflected to
other processes yet. One reflect may be immediately passed, and another reflect
may be delayed. Moreover, processes can observe distinct views a.k.a. the IRIW
test [12]. Our definition covers such situations.

While the distinction enables delicate handling effects of instructions, it inten-
sifies state explosion since the number of interleavings of operations increases.

To handle more relaxed MCMs, it is also necessary to distinguish multiple
operations that are generated from an instruction in a loop statement, whereas
this is unnecessary when queues can be used to handle specific MCMs such as
TSO and PSO. For example, in a code (Store x r0; Move r0 r0 + 1; Jump 0 if 1) ‖
Load r0 x, the second fetch of the Store on the former process may follow the
fetch of the Load on the latter process, while the first fetch of the Store on the
former process may precede it. To the best of our knowledge, no existing method
can handle such low-level jumps (across which instructions may be reordered)
in a detailed fashion, which is necessary for verification of CCGCs.

2.3 Formalized Memory Consistency Models

MCMs are sets of constraints that control program behaviors on the very relaxed
semantics that McSPIN adopts and are formally defined as a first-order formula
as follows:

ϕ ::= xτ = x′
τ | xτ < x′

τ | ¬ϕ | ϕ ⊃ ϕ′ | ∀ xτ. ϕ(xτ) ,

where τ denotes one of Variable, Location, Label, Value, Instruction, Raw
Instruction, Attribute, Branch Counter, and Operation. Here xτ represents
metavariables in the syntax of McSPIN. For example, xLocation < x′

Location can
be read as � < �′. In addition, < with respect to Operation identifies the order
of execution between operations. We use standard notation such as ∧, ∨, and ∃
and assign higher precedence to ¬, ∧, ∨, and ⊃.
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Example constraints can be seen in [1–3], and Itanium and UPC MCMs
are fully formalized in their journal version [5]. Here we focus on only two. In
Sect. 2.1, we stated that the effect of a memory fence can be flexibly defined
by an input MCM. A memory fence forces evaluation of all the reflects of store
instructions that are fetched before the memory fence. This is represented as
follows:

Fe j0
q p i0 < Fe j1

q p (L1, A1, Nop) ⊃ Re j0
q [p⇒p0] i0 �0 v0 < Is j1

q p (L1, A1, Nop) ,

where fence ∈ A1, i0’s raw instruction is Store, and all free variables are uni-
versally quantified. Meanwhile, we can consider another operation that forces
Load only:

Fe j0
q p i0 < Fe j1

q p (L1, A1, Nop) ⊃ Ex j0
q p i0 �0 v0 < Is j1

q p (L1, A1, Nop) ,

where fence ∈ A1 and i0’s raw instruction is Load.
One constraint that differentiates TSO from PSO with multiple-copy-

atomicity [37], which prohibits two threads from observing different behaviors of
write operations that the two threads do not perform, is whether reflects of store
instructions are atomically performed in program order. This can be represented
as follows:

Fe j0
q p i0 < Fe j1

q p i1 ⊃ Re j0
q [p⇒p0] i0 �0 v0 < Re j1

q [p⇒p1] i1 �1 v1 ,

where i0’s and i1’s raw instructions are Store instructions. This constraint causes
every reflect of i1 to await completion of all reflects of i0. Full constraints of TSO,
PSO, and other relaxed MCMs are formalized in McSPIN’s public repository [9].

2.4 Translation into PROMELA

McSPIN uses the model checker SPIN as an engine and translates programs writ-
ten in our modeling language into PROMELA, the modeling language of SPIN.
The underlying idea is quite simple. McSPIN translates sequential compositions
of statements i0; i1; . . . written in our modeling language into PROMELA loop
statements as follows:

do
:: (guard0,0) -> (operation of Fe of i0); (epilogue0,0);
:: (guard0,1) -> (operation of Is of i0); (epilogue0,1);
:: (guard0,2) -> (operation of Ex of i0); (epilogue0,2);
:: (guard0,3) -> (operation of Re of i0 to p0); (epilogue0,3);
:: ...
:: (guard0,(N−1)+3) -> (operation of Re of i0 to pN−1); (epilogue0,(N−1)+3);

:: (guard1,0) -> (operation of Fe of i1); (epilogue1,0);
:: ...
:: else -> break;
od;

A PROMELA loop statement has multiple clauses with guards. One of those
clauses whose guards are satisfied is non-deterministicly chosen and processed.
Let clock be a time counter. Each clause corresponds to performing an operation
as follows:



124 T. Abe et al.

end_o==0 -> o; end_o=clock; clock++;

where the positiveness of end o denotes that o has already performed.
Although such a PROMELA code may admit very relaxed behavior that

does not satisfy an input MCM, McSPIN appropriately removes such execution
traces. Assertions can be written not only at the end of a program, but also at
any place within. This is important for CCGC verification, because we would like
to confirm data consistency at a certain place and moment. McSPIN modifies
assertion statements to follow the input MCM. Let ϕ be an assertion that we wish
to verify. McSPIN adds (formalized) constraints that an input MCM obligates to
ϕ as a conjunct. For example, the constraint that differentiates TSO and PSO,
as explained in Sect. 2.3, is translated into

!(end_{Fe
j0
q p i0}<end_{Fe

j1
q p i1})||end_{Re

j0
q [p⇒p0] i0 �0 v0}<end_{Re

j1
q [p⇒p1] i1 �1 v1}

and added to the assertion ϕ as a conjunct, where ! and || represent negation
and disjunction in PROMELA, respectively. Thus, execution traces that violate
the MCM are removed when assertions are checked.

3 Optimizations

Here we provide MCM-sensitive optimization techniques to reduce the problem
specific to model checking with multiple MCMs. The optimizations described in
Sects. 3.1 and 3.2 were introduced in [3]; we briefly review them here in order to
make it easy to understand an optimization introduced in Sect. 3.3.

3.1 Enhanced Guards: Pruning Inadmissible Execution Traces

As explained in Sect. 2.4, McSPIN explores all execution traces and removes
traces that are inadmissible under an input MCM in checking assertions. This is
obviously redundant. A straightforward method to prune inadmissible execution
traces is to enhance guards for clauses corresponding to operations. A guard that
is uniformly generated as end o==0 from an operation o in Sect. 2.4 is enhanced
by an input MCM (details are provided in [3]). We explain this using the con-
straint that differentiates TSO and PSO, as set out in Sect. 2.3. The constraint
claims that all reflects of i1 must wait for all reflects of i0, where i0 precedes i1
in program order. McSPIN adds a condition

!(end_{Fe
j0
q p i0}<end_{Fe

j1
q p i1})||end_{Re

j0
q [p⇒p0] i0 �0 v0}>0

corresponding to this claim to the guard of the reflect of i1.

3.2 Defining Predicates: Promoting Partial Order Reduction

As explained in Sect. 2.4, it is necessary to judge whether an execution trace
is admissible to a given MCM. This means that it is also necessary to remem-
ber orders between operations in the execution trace. The most straightforward



Reducing State Explosion for Software Model Checking with Relaxed MCMs 125

method is to use a time counter; that is, to substitute a variable end o (defined
at each operation) with the time at which operation o was performed. However,
time counters are too concrete to reduce state explosion. For example, consider
four operations o0, o1, o2, o3 under the constraint o0 < o1 ⊃ o2 < o3. If times
are substituted for the variables end ok (0 ≤ k < 4, then the number of com-
binations 〈end o0, end o1, end o2, end o3〉 is 24 (=4!), which distinguishes states
more concretely than the constraint requires.

When considering the constraint rule, it suffices to remember the order of
o0 and o1 and of o2 and o3, because nothing else is used to define the con-
straint. We introduce new variables ord o0 o1 and ord o2 o3, and call them
defining predicates of the constraint or, formally, atomic formulas consisting
of the predicate symbol < (or ≤) between operations that occur in the con-
straint. Because the defining predicates preserve the order of times at which
the operations are performed, we change end ok to boolean variables that
denote whether the operation has been performed. After all the operations
have been performed (that is, end ok = 1 (0 ≤ k < 4)), the possible states
are 〈ord o0 o1, ord o2 o3〉 = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}, of cardinality 3.

3.3 Stage: Abstracting Programs by MCM-Deriving Predicates

Predicate abstraction [18] is one promising method to reduce state explosion
in model checking. In this subsection, we show that predicates exist that are
determined by an input MCM. Such predicates integrate states that do not
have to be separated with respect to an input MCM. Therefore, the predicate
abstractions have no omission of checking.

To handle the effects of instructions more delicately, McSPIN has at most
four kinds of operations, Fe, Is, Ex, and Re for one instruction. However, some
MCMs do not require complete distinction. Assume that an input MCM has the
constraint Is j

q p i < o ⊃ Ex j
q p i �1 v1 < o as called integration in [2,3], which

indicates that no operation can interleave two operations Is j
q p i and Ex j

q p i �1 v1.
In an earlier version, McSPIN generated clauses that had guards waiting for
Ex j

q p i �1 v1 when Is j
q p i was performed. Such guards control program behaviors

in accordance with an input MCM.
In this paper, we promote integration to state level rather than execution-

trace level. In earlier versions, McSPIN generated one clause at each operation;
that is, at most 3+N, the cardinality of {Fe, Is, Ex} ∪ { Re k | 0 ≤ k < N }, clauses
at each instruction, where N is again the number of processes, and Re k denotes
a reflect to k. In the current version, McSPIN can accept additional input stages
S = {s0, s1, . . . , sM−1} for an input MCM. Formally, stages are partitions of
{Fe, Is, Ex} ∪ { Re k | 0 ≤ k < N }. We write fS for the induced mapping from
the stages. McSPIN generates M clauses at each instruction i, where M is the
number of stages of i as follows:
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do
:: (guards0, fS (s0)) -> (operation of fS (s0) of i0); (epilogue0, fS (s0));

:: (guards0, fS (s1)) -> (operation of fS (s1) of i0); (epilogue0, fS (s1));

:: ...
:: (guards0, fS (sM−1)) -> (operation of fS (sM−1) of i0 to pN−1); (epilogue0, fS (sM−1));

:: ...
:: else -> break;
od;

This optimized translation reduces checking space and time. By loading such
a PROMELA code, SPIN remembers not unintegrated states themselves but
stages. This implies that state-vector on SPIN is kept small. Memory is not,
therefore, consumed so much. This optimization also saves time to check whether
clauses are executable since the number of clauses is smaller.

Let us see example stages for TSO and PSO with neither branch prediction
nor multiple-copy-atomicity [37], which prohibits two threads from observing
different behaviors of write operations that the two threads do not perform.
Since these MCMs allow Loads to overtake (inter-process) effects of Stores, each
member of {Re k | 0 ≤ k < N } has to be separated from Ex. However, Fe, Is,
and Ex do not have to be separated. Also, Re k does not have to be distinguished
from Re k′ (k′ �= k) by multiple-copy-atomicity. We can therefore introduce the
following stages:

S = {s0, s1} fS (s) =

{
{Fe, Is, Ex} if s = s0
{ Re k | 0 ≤ k < N } if s = s1.

Given a stage S (and its mapping fS ), McSPIN automatically returns
PROMELA code in which clauses are integrated; in particular, guards and epi-
logues are appropriately generated from an input MCM.

4 Experiments

In this section, we demonstrate the
effects of the optimizations introduced in
Sect. 3. The figure to the right shows our
experimental environment, with ample
memory.

CPU: Intel Xeon E5-2670 2.6GHz
Memory: DDR3-1066 1.5TB
SPIN: 6.4.5
GCC: 5.3.0

The optimizations described in Sects. 3.1 and 3.2 have enabled verification of
relatively large programs such as Dekker’s algorithm [3]. Here we demonstrate
that the optimization described in Sect. 3.3 enables verification of genuinely large
programs.

4.1 Experimental Setting

We chose CCGCs as examples of large programs. In this subsection, we briefly
explain the CCGCs we used.

Garbage collection (GC) is a basic service of modern programming languages.
Its role is to find garbage, that is, data objects that are no longer in use by the
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application, and to reclaim the memory that those objects occupy. Copying GC
accomplishes this by copying live objects, i.e., those that may be used in the
future, to a separate space and then releasing the old space that contains the
copied objects and garbage. Concurrent GC, as the name suggests, runs con-
currently with the application. What is difficult in designing CCGC algorithms
is that the garbage collector thread and an application thread may race; the
application thread may change the contents of an object that is being copied by
the garbage collector. This may be the case even with an single thread applica-
tion. Because an application thread changes, or mutates, the object, we call it a
mutator. If a mutator writes to the object that is being copied, the collector may
copy a stale value, which means that the latest value gets lost. Various copying
protocols have been proposed to provide application programmers with reason-
able MCMs, all of which require the mutators to do some work on every read
(read barrier) or write (write barrier) operation or both, in which the mutator
synchronizes with the collector.

Because such barriers incur overhead for every read or write operation, one
goal of CCGC algorithms is to design barriers that are as lightweight as possible.
Thus, synchronizations such as compare-and-swap should be minimized. With
relaxed MCMs, memory barriers should also be minimized. Unfortunately, the
synchronizations required for safety depend on the given MCM; it is often the
case that those synchronizations that are redundant for one MCM are mandatory
for another.

Model. We experimentally checked the safety of concurrent copying protocols,
in a single thread program, what the mutator reads is what it has most recently
written. This property is expected to be held in any reasonable MCMs such as
the happens-before consistency of Java [33]. The complete McSPIN models for
checking this property can be found in [10] or the McSPIN public repository [9].
Here, we briefly explain the model.

In our model checking, we made some assumptions. We assume that there is
a single mutator thread, i.e., the application is a single thread program. Remark
that even if there is a single mutator thread, there is another thread, the collector
thread, and they may race. We also assume that there is only a single object
with a single integer slot in the heap.

The mutator has a pointer to the object and repeatedly reads from and write
to the object through the pointer. On write operations, it remembers the value
it wrote.On read operations, it checks if the read value is equal to the value it
lastly wrote. Meanwhile, the collector copies the object following to the copying
protocol of each algorithm. Once it successfully copied, the collector rewrites the
mutator’s pointer to the object so that the pointer points at the copy.

To cooperate with the collector, the mutator uses the read and write barriers
required by the copying protocol on its read and write operations. For some
algorithms, the mutator also performs so called the checkpoint operation between
object accessing operations, where the mutator polls and answers collector’s
requests. Some collectors request the mutator to answer the handshake by setting
a per-mutator handshake request flag. The checkpoint operation clears the flag
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to let the collector know the mutator has observed the flag set. In TSO, if a
mutator observes the flag is set, all stores preceding the store setting the flag are
guaranteed to be visible to the mutator.

We created McSPIN models for each CCGC algorithms we describe below.
In the models, the mutator has an infinite loop, where it reads or writes once
per an iteration. It also performs a checkpoint operation before and after each
read or write. Thus, the supremum of loop iterations on the mutator limits the
number of mutator’s memory accesses.

GC Algorithm. In this paper, we checked three GC algorithms: Chicken [35],
Staccato [32] and Stopless [34]. The details of these algorithms can be found in
their papers. Here, we briefly explain their features.

Chicken and Staccato were basically the same algorithm though they are
developed independently. The only difference is their target MCMs; Chicken
is designed for the MCMs of Intel CPU such as IA64 [23], while Staccato’s
main target seems to be POWER MCM [21]. These algorithms use compare-
and-swap operations to resolve races between the collector and a mutator. In
the IA64 MCM, the compare-and-swap is usually realized by the instruction
sequence lock cmpxchg. This sequence implies memory fences. As for POWER
MCM, the manual [21] shows a sample implementation of the compare-and-swap
operation that does not imply memory fences.

Stopless is a different algorithm from those two. It uses compare-and-swap
operations that implies memory fence excessively, hence chances of reordering
are fewer.

4.2 Effect of Optimization

In this subsection, we reveal the effectness of the stage optimization described in
Sect. 3.3. We verified the models created in Sect. 4.1 by using McSPIN with and
without the optimization. We fixed the supremum of iteration on the collector
to 1 and varied that on the mutator from 1 to 2.

Table 1 shows the results of the verification. Note that any PROMELA code
produced by McSPIN consumed around 170 MB of memory as constant over-
head. As Table 1 shows, the amounts of memory consumed and elapsed times
are greatly reduced in all algorithms compared with those without the optimiza-
tion. In particular, when the supremum of loop iterations on the mutator was
set to 2, McSPIN without the optimization often required around 1 TB of mem-
ory, which is far from reasonable. However, a single iteration could not detect
any error even for the algorithms that actually work incorrectly with PSO, i.e.,
Chicken and Stopless.

Table 1 also suggests that the more instructions the model had, the more
effective the stage optimization was. For example, in Chicken and Staccato with a
single iteration, the net memory consumption was reduced to 3.9–8.8 %, while, in
Stopless, it was reduced to 3.3 and 4.4 %. This is because the stage optimization
reduced the number of units that are subject to reordering, or clauses of the
do-loop in the PROMELA code.
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Table 1. Effects of optimization: In TSO, a compare-and-swap instruction implies
memory fences. In PSO, it does not. Columns labeled with “col.” and “mut.” list the
num ber of instructions of the collector and the mutator, respectively. Column labeled
with “loop” lists the supremum of loop iterations on the mutator. For verification
either with or without stages, the first column shows the results; � means no error
was found and × means a violation was found. The following columns are the number
of state transitions, the amount of memory consumed, and elapsed times for verifica-
tion, respectively. Columns labeled with “mem. ratio” and “time ratio” list the ratios
of memory and time consumption for verification with/without stages. The column
labeled with “net mem. ratio” lists those that do not count constant overhead.

MCM Algorithm col. mut. loop Without stages With stages mem.
ratio
(%)

net
mem.
ratio
(%)

time
ratio
(%)

State
(K)

Memory
(MB)

Time
(sec.)

State
(K)

Memory
(MB)

Time
(sec.)

TSO chicken 24 42 1 � 108 8,595 132 � 23 908 8 10.6 8.8 6.2

2 � 2,506 546,038 8,637 � 534 24,960 433 4.6 4.5 5.0

staccato 32 46 1 � 141 14,918 236 � 26 1,032 11 6.9 5.8 4.7

2 � 3,888 1,097,491 16,022 � 733 43,432 735 4.0 3.9 4.6

stopless 33 87 1 � 90 28,183 378 � 14 1,404 19 5.0 4.4 5.0

2 � 564 564,635 7,705 � 87 18,885 585 3.3 3.3 7.6

PSO chicken 24 42 1 � 308 25,208 430 � 65 1,652 28 6.6 5.9 6.6

2 × 1,136 264,857 4,248 × 237 12,190 227 4.6 4.5 5.3

staccato 32 46 1 � 143 15,166 243 � 26 1,032 11 6.8 5.7 4.7

2 � 4,020 1,144,602 16,975 � 751 44,920 768 3.9 3.9 4.5

stopless 33 87 1 � 177 55,210 833 � 30 2,520 46 4.6 4.3 5.5

2 × 45 45,416 630 × 8 2,148 41 4.7 4.4 6.6

To the best of our knowledge, this is the first model checking of these algo-
rithms with PSO, due to the optimizations given in this paper.

4.3 Reducing Memory Fences of Staccato

Because Staccato is designed for the relaxed MCM of POWER, some memory
fences are redundant on a stricter MCM. Thus, we designed and verified a vari-
ant of Staccato for a PSO MCM with a compare-and-swap that does not imply
memory fences. In addition, we created an incorrect variant that lacks manda-
tory fences for the PSO MCM. These variants are labeled staccato pso and
staccato bug.

The result of verification is shown in Table 2. The verification is conducted
with the stage optimization. The result of staccato bug shows that McSPIN
detected an error if we reduced fences too much.

The variants of Staccato demonstrate the usefulness of McSPIN. When we
modify a GC algorithm for a machine with some MCM that is different from the
one that the GC is originally designed for, we add or remove some synchroniza-
tions. However, the modified model often lacks synchronizations. McSPIN can
detect such errors in the variant with a reasonable memory consumption. This
enables us to check the GC when we are performing modifications.
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Table 2. Variants of Staccato

Algorithm col. mut. loop TSO PSO

State
(K)

Memory
(MB)

Time
(sec.)

State
(K)

Memory
(MB)

Time
(sec.)

staccato 32 46 1 � 26 1,032 11 � 26 1,032 11

2 � 733 43,432 735 � 751 44,920 768

staccato pso 31 44 1 � 25 908 10 � 25 1,032 10

2 � 719 38,721 637 � 755 40,953 703

staccato bug 30 44 1 � 28 1,032 11 � 35 1,156 14

2 � 819 43,184 726 × 235 12,810 217

4.4 McSPIN vs. Hand-Coding

In this subsection, we compare PROMELA codes generated by McSPIN with
codes written by hand and confirm how close McSPIN is to an ideal implemen-
tation.

Whereas McSPIN generates uniform PROMELA codes that contain vari-
ables to remember orders between operations, etc., to support different MCMs,
some variables are essentially unnecessary for verifications specific to TSO and
PSO. Because TSO never reorders store instructions, queues (for all shared vari-
ables) at each thread to buffer effects of write instructions suffice for verifica-
tions under TSO as shown in Fig. 1. The two WRITEs put 〈x0, 0〉 and 〈x1, 1〉
into the queue in order. Reflects from the queue to shared memory are per-
formed by COMMIT WRITEs on a process mem. We omit the implementation details.
For PSO, one queue at each shared variable is enough to reorder the effects of
write instructions to distinct shared variables.

Table 3 compares PROMELA codes generated by McSPIN with those written
by hand where the constant overhead is removed. The programs are simple,
consisting of multiple store instructions (without loops). Verified properties are
fixed to be true. Each column is similar to Tab. 1. The digits in the names of
the codes denote the number of store instructions at each thread, respectively.
The number of states almost coincides. Slight differences appear to derive from

Fig. 1. Hand-written code
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Table 3. Comparison between McSPIN and hand-coding

TSO PSO

McSPIN Hand-written McSPIN Hand-written

State Memory
(MB)

Time
(sec.)

State Memory
(MB)

Time
(sec.)

State Memory
(MB)

Time
(sec.)

State Memory
(MB)

Time (sec.)

1 25 0.006 0.01 19 0.002 0.01 25 0.006 0.02 19 0.003 0.01

2 52 0.017 0.02 60 0.009 0.00 65 0.021 0.02 79 0.017 0.01

3 116 0.053 0.02 149 0.026 0.00 241 0.110 0.05 337 0.095 0.01

4 241 0.153 0.04 313 0.064 0.02 977 0.619 0.20 1,405 0.504 0.02

5 457 0.391 0.08 585 0.143 0.01 3,985 3.405 0.98 5,749 2.500 0.07

6 800 0.897 0.18 1,004 0.276 0.01 16,145 18.107 6.13 23,269 11.894 0.31

7 1,312 1.882 0.35 1,615 0.493 0.01 65,041 93.290 34.06 93,637 54.294 1.66

8 2,041 3.659 0.61 2,469 0.829 0.02 261,137 468.195 171.10 375,685 246.497 8.28

the current implementation of SPIN, because we observe that SPIN returns
fewer states for a PROMELA code with a loop statement and control variables
(such as code generated by McSPIN) than another PROMELA code with a
sequential composition of statements (like hand-written code). However, we have
not investigated this in detail.

McSPIN consumes more memory and time. This is a result of the sizes of the
state vectors and is inevitable, because McSPIN defines more variables to deter-
mine program structures than hand-written codes, as explained in the beginning
of this subsection.

5 Related Work

There exists no work, which is directly compared with our work, of model check-
ing to take multiple MCMs in a uniform way. Therefore, we can find no work
for its optimization has been studied.

Jonsson’s seminal work discovered the potential of SPIN for program trans-
lation toward model checking with relaxed MCMs [25]. However, he could not
conduct a large number of experiments, because his program translation was
not completely automatic and optimized. This paper has addressed the prob-
lems that he left open. McSPIN supports various MCMs and takes an MCM
as an input, and its program translation is automatic. McSPIN is greatly opti-
mized and enables verification of larger concurrent algorithms such as copying
protocols of CCGCs.

Linden et al. [28–30] tackled the state explosion problem by representing
store buffers as automata. However, they handled relatively strict relaxed MCMs
such as TSO and PSO, unlike McSPIN. It is an open issue to extend their
representation so as to handle more relaxed MCMs and apply it to McSPIN.

Modex [20], a model extractor of SPIN that is guided by a user-defined test-
harness, translates C codes into PROMELA codes. However, Modex ignores
relaxed MCMs. Although revising Modex so as to handle relaxed MCMs is surely
one approach, we have developed McSPIN in order to show the potential of pro-
gram translation toward model checking with relaxed MCMs with no restriction
derived from the existing tool.
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Travkin et al. [41] developed a similar tool that translates programs into
PROMELA codes and uses SPIN as the engine for model checking, demon-
strated verifications of linearizability of concurrent algorithms under TSO, and
planned to tackle PSO. However, their translator, which generates codes that
are similar to hand-written PROMELA code as introduced in Sect. 4.4, cannot
be immediately applied to relaxed MCMs beyond PSO. Unlike their approach,
ours supports relaxed MCMs by virtue of constructing a base that allows such
relaxed behaviors and then defines MCMs as constraints on the base. Although
an issue of our approach is addressing the state explosion problem, this paper
has presented optimizations for the problem.

Dan et al. [14] reported high utility of predicate abstractions in model check-
ing with relaxed MCMs by verifying some programs with predicate abstractions
under TSO and PSO. They proposed the notion of predicate extrapolation to
abstract a boolean program for an input program. Although the stages intro-
duced in this paper can be regarded as predicate abstractions, there is a differ-
ence in usage: McSPIN considers at most four kinds of multiple states at one
instruction to support various MCMs beyond TSO/PSO. Although it is neces-
sary to handle the worst case under the most relaxed MCM, this is not always
the case. Stages are states that are integrated by predicates that are uniformly
generated by an input MCM. Therefore, abstractions by the predicates never
leak out of checking. Dan et al.’s technique of extrapolating predicates seems to
be compatible with stages, and its combination with stages is an open issue.

Theorem proving in program logic is also one promising approach to program
verification with relaxed MCMs [4,6,16,36,42]. Formal verifications of GC algo-
rithms with relaxed MCMs using theorem provers have recently appeared [17].
However, fully automated verification by model checking is usually preferable to
manual (or semi-automatic) construction of proofs in theorem proving.

6 Conclusion and Future Work

We have explained the reasons for the state explosion problem specific to model
checking with multiple MCMs, presented optimizations modified from pruning
execution traces, partial order reduction, and predicate abstraction, and applied
them to McSPIN, our model checker with MCMs. We have also shown the effec-
tiveness of the optimizations through experiments of verifications of copying
protocols of CCGCs.

There are four future directions for this work. Although we verified copying
protocols of CCGCs as examples of large programs, a verification of GC algo-
rithm is itself subject of our interest. The first is verifications of wide range of
GC algorithms and other properties such as wait-freedom for Chicken, which
the authors designed as a wait-free CCGC [35]. These verifications may require
more complicated settings including pointers and/or multiple mutators, which
need still larger models. The second is to show a verification of concurrent copy-
ing protocols with MCMs that are more relaxed than PSO. An advantage of
McSPIN is its ability to support various MCMs. The third is to show more
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realistic benchmark programs, e.g., SV-COMP benchmarks [39]. The fourth is
further optimization of McSPIN to verify even larger programs.
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Abstract. Twig pattern minimization is an important aspect of XML
query optimization. During the minimizing process, it usually needs to
take advantage of the constraints of XML Schema. The traditional meth-
ods for identifying constraints is to develop corresponding algorithms
based on the type of constraints. It is inflexible because the constraints
may be changed as new Twig pattern optimizing rules are found. Since
the constraints of XML Schema mainly depict the sequence relation-
ship of nodes, it is natural to be described by temporal logic. Based
on the recognition, this paper proposes a method of identifying XML
Schema constraints using temporal logic. Concretely, an XML Schema
is modeled as a graph. In order to easily represent constraints related
to parent and ancestor nodes, we made some modifications to Com-
putational Tree Logic(CTL) with backward temporal operators, and
developed model checking algorithms for automatically identifying XML
Schema constraints. Compared with traditional methods, our method is
more flexibility.

Keywords: XML Schema constraint · Model checking · Temporal logic

1 Introduction

XML has been widely used in the Internet environment. With the emergence of
XML, XPath and XQuery as its query languages, have received a lot of attention.
The core query pattern in these standard XML query languages is a tree-like
structure, which is often referred to as a Twig pattern [1]. In particular, an
XPath query is normally modeled as a Twig pattern query. As an example, let
us consider the following XPath query:

doc(“bib.xml”)//book[publisher]/name

It returns all name nodes that are children nodes of those book nodes
with a publisher child in the bib document. Figure 1 shows its corresponding
Twig pattern. Note that single lines represent the Parent-Child relationship
between nodes, double lines represent the Ancestor-Descendant relationship.

c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 136–146, 2016.
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Fig. 1. A twig pattern example

The returned node is marked with symbol ∗. The node labeled as Dot is the
starting node of a Twig pattern.

In order to improve the efficiency of query, there are lots of work on the Twig
pattern minimization [1–4]. Those work are broadly divided into constraint-based
approaches [1,2,4] and unconstrained ones [2,3]. Generally, the constraints include
Required Parent-Child (RPC), Required Ancestor-Descendant (RAD), etc. These
constraints are usually defined in corresponding XML Schema and DTD.

One of the key problems for constraint-based Twig pattern minimization is
to identify whether those constraints hold in corresponding XML Schema. The
traditional methods [6] for identifying constraints is to develop corresponding
algorithms based on the type of constraints. Since the constraints may changed
as new Twig pattern optimizing rules are found, the search algorithms need to be
changed frequently in order to identify new constraints. Moreover, it is difficult
to guarantee the correctness of such modified algorithms. Thus, a formal and
precise method for XML Schema constraints identification would be very useful.

Considering the constraints of XML Schema mainly depict the sequence rela-
tionship of nodes, it is nature to describe the constraints by temporal logic. So
we propose a method of identifying XML Schema constraints using temporal
logic [7] and model checking. In our approach, XML Schema is modeled as state
transition graphs. CTL [7], a well-understood and widely used temporal logic,
is used to express XML Schema constraints. In order to easily represent par-
ent and ancestor nodes constraints such as: whether a node X has a required
parent Y or not, we made some modifications to CTL with backward temporal
operators, and developed model checking algorithm for automatically identify-
ing XML Schema constraints. Compared with traditional approach, it avoids
frequent modification of the search algorithm, and only requires representing
the new constraint as temporal logic formula for automatic checking. Thus, our
approach has more flexibility.

In the rest of the paper, Sect. 2 surveys some related work. Section 3 intro-
duces XML Schema constraints and models. Section 4 presents CTL representa-
tion of constraints and develops identifying algorithms. Section 5 concludes.
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2 Related Work

In order to improve the efficiency of Twig pattern matching in XML documents,
researchers have put a lot of efforts [3–5] into reducing the size of Twig patterns.
Typically, Twig pattern minimization needs to identify constraints from XML
Schema, DTD etc. The limitation of traditional approaches is that a specific
algorithm only works for one specific Schema constraint. Those methods are not
only time consuming, but also can not guarantee all the cases are covered by the
algorithms.

As XML documents are naturally represented as labeled transition systems,
connections between XML querying and temporal logics were discovered, thus
opening a possibility of using efficient model-checking algorithms in XML query-
ing. Libkin and other coauthors have done much work [11–13] in this area. [11]
studies static analysis of XML specifications and transformations. The authors
observe that many properties of interest in the XML context are related to nav-
igation, and can be formulated in temporal logics for trees, which can be trans-
lated into unranked tree automata and are convenient for reasoning about unary
node-selecting queries. [13] presents a technique for combining temporal logics
to capture unary XML queries expressible in two yardstick languages: FO and
MSO. Moreover, [9] uses temporal logic formulas to express XPath expressions,
and transforms XML documents into the input model of NuSMV for evaluating
XPath expressions. [10] describes how to interpret various integrity constraints
as sequenced constraints defined in XML Schema. There are few works on using
temporal logic in the process of Twig pattern minimization.

There are a lot of works on CTL and its extensions. Standard temporal log-
ics only refer to the future of the current time such as LTL,CTL and CTL∗.
In order to make specifications easier to write and more natural, standard tem-
poral logics are extended to logics combining past [21] and future modalities.
The most simple linear-past extension is PCTL∗ [16], obtained by adding the
past counterparts of standard linear-time modalities ‘next’ and ‘until’. The usage
of past-time modalities is very limited. A more interesting and meaningful lin-
ear past extension of CTL∗ is the logic CTL∗

lp[17]. CTL∗
lp is as expressive as

CTL∗, but the translation of CTL∗
lp into CTL∗ is of non-elementary complexity

[18]. Kupferman and Vardi [20] introduce a memoryful variant of CTL∗ called
mCTL∗, which unifies CTL∗ and the Pistore-Vardi logic [19]. The unique differ-
ence is the adding of a special proposition ‘present’ which is needed to emulate
the ability of CTL∗ to talk about the ‘present’.

3 XML Schema Constraints and Models

This section will firstly introduce XML Schema and its constraints. Then, the
model MCSG is defined.
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3.1 XML Schema

XML Schema defines a kind of valid format of XML document. It defines various
constraints such as what elements are (and are not) allowed and the times of an
element occurrence. Particularly, it limits the relations between element nodes.

〈?xml version=“1.0” encoding=“utf-8”〉
〈xs:schema id=“G” xmlns:xs=“http://www.w3.org/2001/XML Schema”〉
〈xs: element name=“D1”〉
〈xs:complexType〉
〈xs:choice〉
〈xs:element minOccurs=“0” name=“E1” type=“xs:string”〉
〈xs:element name=“F1”〉
〈xs:complexType〉
〈xs:sequence〉
〈xs:element name=“G1” type=“xs:string”〉
〈xs:element minOccurs=“0” maxOccurs=“unbounded” ref=“D1”〉

〈/xs:sequence〉
〈/xs:complexType〉

〈/xs:element〉
〈/xs:choice〉

〈/xs:complexType〉
〈/xs:element〉
〈xs:element name=“A1”〉
〈xs:complexType〉
〈xs:sequence〉
〈xs:element name=“B1” type=“xs:string”/〉
〈xs:element name=“C1” type=“xs:string”/〉
〈xs:element ref=“D1”/〉

〈/xs:sequence〉
〈/xs:complexType〉

〈/xs:element〉
〈/xs:schema〉

Fig. 2. An XML Schema example

Figure 2 is an example of XML Schema. It defines two element nodes D1
and A1. The element A1 contains three child elements B1, C1 and D1. Further-
more, elements sequence (indicated as SEQ), all (indicated as ALL) and choice
(indicated as CHOICE) represent order indicators. Node SEQ represents that
all of its child nodes must occur in order. ALL defines its child nodes occur
in any order. CHOICE means that only one child may occur. minOccurs and
maxOccurs represent minimum and maximum occurrences of a node.

3.2 XML Schema Constraints

XML Schema constraints refer to the required relationships among nodes in an
XML Schema. Currently, we only care about the constraints that are related
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to structural relationships and the number of times nodes may occur. These
constraints are related to the order and occurrence indicators in XML Schema,
and can be used to minimize Twig patterns. In the following, we will introduce
some main constraints of XML Schema.

– Required Parent-Child (RPC ): For a given XML Schema, if node A has a
required child node B (short as RPC(A, B)), A and B must satisfy constraints:
(1) node A is defined as a complex type and contains a child B; (2) The order
indicator between nodes A and B must be SEQ or ALL, and the value of
minOccurs of B is not less than one. For example, in Fig. 2, XML Schema has
constraints RPC(A1, C1), RPC(A1, B1), RPC(A1,D1) and RPC(F1, G1).

– Required Ancestor-Descendant (RAD): For a given XML Schema, if
RPC(B0, B1), RPC(B1, B2), · · · , RPC(Bn−1, Bn) hold, we can say Bi has a
descendant Bn (short as RAD(Bi, Bn)) where i ∈{0,1,· · · ,n−1}.

– Backward Required Parent-Child (BRPC ): For a given XML Schema, if node
A and B satisfy constraint: node A has certain parent node B, then we say that
XML Schema has backward required parent-child constraint BRPC(A,B).

– Backward Required Ancestor-Descendant (BRAD): For a given XML Schema,
if BRPC(B0, B1), BRPC(B1, B2), · · · , BRPC(Bn−1, Bn) hold, we can say that
XML Schema has backward required ancestor-descendant constraint
BRAD(Bi, Bn), where i ∈{0,1,· · · ,n−1}.

3.3 MCSG Model

Considering the use of model checking techniques for identifying constraints, we
define model MCSG (Model Checking Schema Graph) in Definition 2.

Definition 2. A MCSG model M is a four-tuple: M =(S, L, R, F ), where

– S is a set of integers, that are identities of nodes in the underlying XML
Schema graph G.

– L is a set of strings, which are names of all the nodes in XML Schema graph G.
There are three new node names STAR, OPT and PLUS added. They stand
for the times of occurrence ∗, ?,+ in graph G.

– R is a mapping from S to S, which stand for the edges of the corresponding
graph G.

– F is a mapping from S to L.

Figure 3 is the corresponding MCSG model of XML Schema in Fig. 2. Accord-
ing to the MCSG definition we have:

S ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
L ={SCHEMA, A1, D1, SEQ, CHOICE, B1, C1, OPT, F1, E1, SEQ, G1, STAR}
R ={0 → 1, 0 → 2, 1 → 3, 2 → 4, 3 → 5, 3 → 6, 4 → 7, 4 → 8, 7 → 9, 8 → 10, 10 → 11,

11 → 12}
F ={0 → SCHEMA, 1 → A1, 2 → D1, 3 → SEQ, 4 → CHOICE, 5 → B1, 6 → C1,

7 → OPT, 8 → F1, 9 → E1, 10 → SEQ, 11 → G1, 12 → STAR}
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Fig. 3. An MCSG model

4 Identifying Constraints

This section will presents CTL representation of constraints and develops iden-
tifying algorithms.

4.1 Constraints Representation

We give the standard CTL definition [7] as follows.

Φ: := � |⊥ | p | ¬Φ |Φ ∨ Φ |Φ ∧ Φ |Φ → Φ |AX(Φ) |EX(Φ) |AF (Φ)
|EF (Φ) |AG(Φ) |EG(Φ) |A [ΦUΦ ] |E [ΦUΦ ]

(1)

For constraint RPC(A,B), which means node A has a certain child node B,
it can be expressed as CTL formula (2).

A → EX(E [(SEQ ∨ PLUS ∨ ALL )UB ]) (2)

It shows that for node A, there must exist a path whose next nodes may be
SEQ, PLUS or ALL until node B is reached.

Similarly, constraint RAD(A,B) denotes node A has certain descendant node
B, can be expressed as CTL formula (3).

A → EX(E [(¬STAR ∧ ¬OPT ∧ ¬CHOICE )UB ]) (3)

It indicates that for node A, there must exist a path whose next nodes must
not be STAR, OPT ,CHOICE until node B is reached.

We made some modifications to CTL in order to make it easier to express
backward constraints in XML Schema, such as past temporal operators

←−
E ,

←−
A ,←−−

EX, and
←−−
EG. This allows one to intuitively specify backward constraints. Similar

extensions for backward operators have been used in program analyses [8,15].
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In order to simplify the expression of backward constraints, we give defini-
tions of sub-formulas shown as (4), (5) and (6).

orpc = SEQ ∨ ALL ∨ PLUS (4)
orad = (¬OPT) ∧ (¬CHOICE) ∧ (¬STAR) (5)

ornoelem = SEQ ∨ PLUS ∨ ALL ∨ CHOICE ∨ STAR ∨ OPT (6)

The formula (4) means that the node is either SEQ, ALL or PLUS. The
formula (5) indicates that the node is neither OPT, CHOICE nor STAR. While
the formula (6) means that the node must be indicator node, no element node
is permitted.

The constraint BRPC(A,B) is defined as:

A → ←−−
EX(

←−
E [ ornoelemUB ]) (7)

The constraint BRAD(A,B) is defined as:

A → ←−−
EX (

←−
E [ trueUB ] ) (8)

4.2 Main Algorithm and Auxiliary Procedure

Algorithm Identify(M,F ) takes an MCSG model M and a CTL formula F as
input, and output true or false. The main idea is to dispatch sub-formula check-
ing tasks to the corresponding procedures. The algorithm does not consider EG,
AG, AF and EF operators because current XML Schema constraint represen-
tations have not involved these temporal operators. It is easy to add the corre-
sponding procedure to process these operators.

The line 1 in Algorithm Identify(M,F ) declares a two-dimensional table
Result[subformula][node]. Its rows are the numbers of sub-formulas. The num-
bering rule of the sub-formula in the syntax tree is: (1) the number of next-sibling
is bigger than the preceding-sibling; (2) parent is greater than descendant. Its
columns are all the nodes in the state set S of MCSG model M . For any sub-
formula f , node n, Result[f ][n] is a boolean value to indicate whether node n
satisfies the sub-formula f .

The lines 2−6 are initialization of the table. The function getithformu(i) in
line 8 obtains the i-th sub-formula in CTL syntax tree. The lines 7 − 33 process
each sub-formula from bottom to up of the syntax tree. Based on the defer-
ent operator type of Currentformu, the algorithm will call the corresponding
procedure. For instance, in order to calculate satisfied node set of the i-th sub-
formula in model M , the algorithm call procedure processEX(M, i − 1). Here
i−1 means i−1-th sub-formula, which is the child of Currentformu. The lines
34 − 38 checks if the formula F (it is called root formula of the syntax tree) is
satisfied by the Model M .

We present two auxiliary procedures for processing EX and corresponding
backward temporal operator BEX. Other procedures are omitted here.
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Algorithm 1. Identify(M,F)
Input:

MCSG model M;
CTL formula F;

Output:
whether M satisfies F: true or false;

1: Result[F.size][M.size]
2: for i = 0 to F.size-1 do
3: for every node in M.S do
4: Result[i][node]=false
5: end for
6: end for
7: for i = 0 to F.size-1 do
8: Currentformu = getithformu(i)
9: switch (C)urrentformu.operator

10: case basic predicate:
11: for every node satisfied Currentformu do
12: Result[i][node]=true
13: end for
14: case EX:
15: processEX(M, i-1)
16: case AX:
17: processAX(M, i-1)
18: case EU :
19: processEU(M, leftchild(i), i-1)
20: case AU :
21: processAU(M, leftchild(i), i-1)
22: case BEX:
23: processBEX(M, i-1)
24: case BAX:
25: processBAX(M, i-1)
26: case BEU :
27: processBEU(M, leftchild(i), i-1)
28: case BAU :
29: processBAU(M, leftchild(i), i-1)
30: default:
31: Error
32: end switch
33: end for
34: for every node in M.S do
35: if Result[F.size-1][node]==false then
36: return false
37: end if
38: end for
39: return true
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1 Procedure processEX(M, i)
2 For every node in M.S
3 If(Result[i][node] == true)
4 For every prenode of node
5 Result[i + 1][prenode] = true;
6 End For

7 End If

8 End For

Fig. 4. Procedure processEX

1 Procedure processBEX(M, i)
2 For every node in M.S
3 If(Result[i][node] == true)
4 For every postnode of node
5 Result[i + 1][postnode] = true;
6 End For

7 End If

8 End For

Fig. 5. Procedure processBEX

The procedure for EX is defined in Fig. 4. It takes MCSG model M and the
i-th sub-formula as parameters. It firstly obtains the node set that satisfy the
i-th sub-formula by checking the table Result[i][node], then update Result[i +
1][prenode] as true. The node prenode in Result[i + 1][prenode] is the parent of
the node in Result[i][node].

Similarly for procedure processBEX defined in Fig. 5.
Considering time complexity, let us assume the total number of the logical

connectors and the temporal operators of CTL formula F be N , the vertex num-
ber of the MCSG model M be V , and the number of edges be E. Time complexity
of each procedure is calculated as follows: O(processEX)=E, O(processAX)=E,
O(processEU)=V*E, O(processAU)=V*E

The time complexity of the algorithm Identify is: O(Identify)=f*V*E and
the space complexity is: f*V

The complexity of our algorithm is polynomial. It is succinct compared with
the complexity of pure-future temporal logic model checking [22], which is expo-
nential.

5 Conclusion

The main goal of this work is to bring techniques developed in the temporal logic
community into the field of Twig pattern minimization. In order to efficiently
solve XML Schema constraint identification issues, we begin with an observation
that XML Schema constraints can be represented as temporal logic formulas,
and XML Schema documents can be naturally represented as labeled transition
systems. We develop algorithms for identifying constraints automatically.

The main contributions of this work lie in that: it tries to use model checking
approach for resolving Twig pattern minimization issue, particularly, for identi-
fying XML Schema constraints. Compared with traditional approach, it is more
flexible and easy to guaranty the correctness. If there is a new constraint need
to be identified, as long as the constraint can be expressed by temporal logic
formula, it can be automatically identified, without to develop a new algorithm.

For the future work, on the one hand, although we have modified CTL for
expressing backward constraints, there still exist some constraints that can not
be easily expressed, such as unique path between two elements [14]. So we will
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make modifications on CTL to support more constraints. On the other hand,
we will progressively use temporal logic techniques to automatically generate
optimization action of Twig patterns.
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Abstract. Schedulability analysis is one of the most important issues in
developing and analyzing real-time systems. Given a task system where
each task is characterized by a worst-case execution time (WCET) and
a relative deadline, the schedulability analysis is decidable. However in
reality, it is difficult to calculate the WCET of a complex task, even
after it is abstracted to a formal model, e.g., timed automata (TAs).
This paper proposes a schedulability analysis method without the infor-
mation of the WCET, by introducing a model named timed regular task
automata (TRTAs). Each task is described by a TA, a starting point with
a clock valuation, a status and a relative deadline. A test is performed
on each TA for an under-approximation of the WCET. The system may
still be unschedulable under the approximation. A further schedulability
checking is then performed by encoding to the reachability problem of
nested timed automata (NeTAs). The methodology is thus sound and
complete.

1 Introduction

Real-time systems are playing a crucial role in the society, and in the past
decades, there has been an explosive growth in the number of real-time systems
being used in our daily lives and in industry production. Schedulability analysis
is one of the most important issues in developing and analyzing real-time sys-
tems. Given a task system, each task is usually characterized by a worst-case
execution time (WCET) and a relative deadline. The schedulability analysis is
decidable under a singleton processor [1,2]. However in reality, it is difficult
to calculate the WCET of a complex task [3], even after it is abstracted and
modeled by some formal frameworks, such as, timed automata (TAs).

This paper proposes a schedulability analysis methodology without the infor-
mation of the WCET. We introduce a formal model named timed regular task
automata (TRTAs), extended from task automata [2,4]. A TRTA is a TA where
each control location is assigned to a task. Each task is characterized by a TA
to describe the behavior of the task, a starting control location of the task, an
initial clock valuation, a status and a relative deadline. Similar to that of task

c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 147–162, 2016.
DOI: 10.1007/978-3-319-47677-3 10
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c

x ∈ [0, 8]

d = 8
s = free

v = v0

q = q0

Q(A, q, ν, s, d)

p0

p1 d = 6
s = free

v = v0

q = p0

c

Fig. 1. Example of a TRTA

automata, a scheduling queue is prepared for the execution and release of tasks.
In the system, we assume the task system is preemptive and no feedback [2].

Instead of calculating the WCET directly, a test is performed to each TA
for an under-approximation of the WCET of the respective task, which is used
to bound the schedulable queue. The system may still be unschedulable, after
the queue is bounded by the approximation. A schedulability checking is further
performed to detect unschedulable cases, by encoding to the reachability problem
of nested timed automata (NeTAs) [5–7], which is known to be decidable. The
methodology is thus sound and complete, preserving the schedulability analysis.

We will illustrate the method by the following example. Figure 1 is a TRTA,
with three locations, l0, l1, l2 and two tasks P , Q. The behavior of task P and
Q is described as TAs shown in lower left and lower right of Fig. 1, respectively.
When the system switches to the location l1 and l2, task P and Q will be
triggered and a task instance will be inserted into the task queue waiting for
executing, respectively. In location l2, at most four copies of task Q can be
created and every instance will reach its final state within deadline due to the
constraints x ∈ [6,+∞), y ∈ [0, 24]. In l1, the system can create any numbers
of task P instance since there is no constraints labelled on the transition from
anywhere to it.

We can see the task P described in the lower left of Fig. 1, although it is
modeled by a quite simple timed automaton, it is still difficult to get the exact
WCET of the task. In this paper, a test will be performed to each TA to get
the under-approximation of the WCET of the respective task, which is used to
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check if the length of the queue meets the condition of a schedulable queue. If the
queue is not bounded by the approximation execution time, the system is non-
schedulable. However, if it is bounded, the system may still be non-schedulable.
For this kind of situation, we encoded scheduling strategy to a NeTA and perform
the scheduling checking problem by reachability checking problem of the NeTA,
which we will introduce in the following sections in detail.

Related Work. A variety of methods have been published in schedulability
analysis for real-time systems. Real time tasks may be periodic, sporadic, pre-
emptive or non-preemptive. For systems with only periodic tasks [8], the rate
monotonic scheduling algorithm and efficient methods for schedulability checking
are widely used [1]. For systems with non-periodic tasks, the controller synthe-
sis approach [9] has been adopted, which is to achieve schedulability by con-
structions. Timed automata are regarded as a formal model for analysis to solve
non-preemptive scheduling problems, mainly for job-shop scheduling [10,11]. For
preemptive scheduling problems, stopwatch automata are used with the restric-
tion on the assumption that task preemptions occur only at integer points. Task
automata [2,12] for real time systems with non-uniformly recurring computa-
tion tasks describe tasks that are generated non-deterministically according to
timing constraints and may have a BCET and a WCET. A decidable class is
identified to solve scheduling problems algorithmically without assuming that
preemptions occur only at integer points. These works are all associated with
the BCET and WCET of a task which is difficult to calculate. In this paper,
we propose a schedulability analysis methodology without the information of the
BCET and WCET by introducing TRTAs. Recently, a group of researches reveal
the decidability results of time sensitive pushdown systems under different types
of clocks, such as recursive timed automata (RTAs) [13], timed recursive state
machines (TRSMs) [14,15], and NeTAs [5,6], which provide us the backbone
analysis techniques.

Paper Organization. The rest of this paper is organized as follows: Sect. 2
briefly reviews the TAs, NeTAs and their parallel compositions. Section 3 intro-
duces timed regular tasks, and the syntax and semantics of timed regular task
automata. The schedulability problem for timed regular task automata is pro-
posed in Sect. 4. Section 5 gives the methodology of the under-approximation
for WCET and contributes to encode schedulability analysis to the reachabil-
ity problem of NeTAs. Section 6 concludes the paper and introduces the future
works.

2 Preliminaries

Let R
≥0 and N denote the sets of non-negative real numbers and natural num-

bers, respectively. We define Nω := N∪{ω}, where ω is the first limit ordinal. Let
I denotes the set of intervals. An interval is a set of numbers, written as (a, b),
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[a, b], [a, b) or (a, b], where a ∈ N and b ∈ N
ω. We say an interval is bounded if

a, b ∈ N. For a number r ∈ R
≥0 and an interval I ∈ I, we use r ∈ I to denote

that r belongs to I.
Let X = {x1, . . . , xn} be a finite set of clocks. The set of clock constraints,

Φ(X), over X is defined by

φ ::= � | x ∈ I | φ ∧ φ

where x ∈ X and I ∈ I. A clock valuation ν : X → R
≥0, assigns a value to each

clock x ∈ X. ν0 represents all clocks in X assigned to zero. For a clock valuation ν
and a clock constraint φ, we write ν |= φ to denote that ν satisfies the constraint
φ. Given a clock valuation ν and a time t ∈ R

≥0, (ν+t)(x) = ν(x)+t, for x ∈ X.
Given a set of clocks λ ⊆ X and a clock valuation ν, let a clock reset function
ν[λ] be a clock valuation, defined as follows:

(ν[λ])(x) =

{
0 if x ∈ λ

ν(x) otherwise

2.1 Timed Automata

A timed automaton is an automaton augmented with a finite set of clocks [16,17].
Time can elapse in a location, while switches are instantaneous.

Definition 1 (Timed Automata). A timed automaton is a tuple A = (Σ,Q,
q0, F,X, I,Δ) ∈ A , where

– Σ is a finite set of input symbols.
– Q is a finite set of control locations.
– q0 ∈ Q is the initial location.
– F ∈ Q is the finite set of final locations.
– X is a finite set of clocks.
– I : Q → Φ(X) is a function assigning each location with a clock constraint,

called an invariant.
– Δ ⊆ Q × Σ × Φ(X) × 2X × Q.

When 〈q1, a, φ, λ, q2〉 ∈ Δ, we write q1
a,φ,λ−−−→ q2.

Given a timed automaton A ∈ A , we use Σ(A), Q(A), q0(A), F (A) and
X(A) to represent its set of input symbols, control locations, initial location,
final locations and set of clocks, respectively. We will use similar notations for
other automata.

The semantics of timed automata includes progress transitions, for time
elapsing within one control location, and discrete transitions, for transference
between two control locations [16].

Definition 2 (Semantics of Timed Automata). A configuration of a TA
is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν on X. The
labelled transition system (LTS) of timed automata is represented as follows,
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– Progress transition: (q, ν) t−→A (q, ν + t), where t ∈ R
≥0 and (ν + t) |= I(q).

– Discrete transition: (q1, ν) a−→A (q2, ν[λ]), if q1
a,φ,λ−−−→ q2, and ν |= φ, and

ν[λ] |= I(q2).

The initial configuration is (q0, ν0). The transition relation is → and we define

→= t−→A ∪ φ−→A , and define →∗ to be the reflexive and transitive closure of →.

Remark 1. For conciseness of proof, the Definition 1 is slightly different from
that in [5], by allowing testing and resetting value of clocks in one transition
rule, following the definition style in [16]. This can be encoded with an extra
clock by resetting it to 0 and checking it still 0 after transitions, and introducing
fresh control locations in the original definition.

Although general verification problems, such as the language inclusion prob-
lem, are undecidable on timed automata, the reachability problem for real-time
systems [16,17] is decidable.

Fact 1. The reachability problem of timed automata is decidable [16,17].

Furthermore, we define BCET (A) and WCET (A) for the best-case execu-
tion time and worst-case execution time of A, respectively. Say, beginning with
the q0(A), the shortest time passage and longest time passage when a final con-
trol location is met.

2.2 Nested Timed Automata

Nested timed automata (NeTAs) [5,6] extend TAs with the recursive structure,
which allow clocks of TAs in the stack elapse simultaneously with the current
running clocks during time passage.

Definition 3. [Nested Timed automata] A nested timed automaton(NeTA) is a
tuple N = (T,A0,X,C,Δ), where

– T is a finite set of timed automata {A0,A1, . . . ,Ak}, with the initial timed
automaton A0 ∈ T .

– X is the finite set of k local clocks.
– C is the finite set of global clocks.
– Δ ⊆ Q×(Q∪{ε})×Actions+×Q×(Q∪{ε}) describes transition rules below,

where Q = ∪Ai∈T Q(Ai).

A transition rule is described by a sequence of Actions = {internal, push, pop,c ∈
I,c ←− I, c ←− x}, where c ∈ C, x ∈ X and I ∈ I.

– Internal (q, ε, internal, q′, ε), which describes an internal transition in the
working TA (placed at a control location) with q, q′ ∈ Q(Ai), the internal
transition with q, q′ is the same as the Definition 1.

– Push (q, ε, push, q0(A′
i), q), which interrupts the currently working TA Ai at

q ∈ Q(Ai), then a TA A′
i newly starts.
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– Pop (q, q′, pop, q′, ε) which restarts A′
i in the stack from q′ ∈ Q(A′

i) after Ai

has finished at q ∈ Q(Ai).
– Global-test (q, ε, c ∈ I?, q′, ε), which tests whether the value of a global clock

c is in I.
– Global-assign (q, ε, c ←− I, q′, ε), which assigns a value r ∈ I to a global

clock c.
– Global-store (q, ε, c ←− x, q′, ε), which assign the value of a local clock x ∈ X

of the working TA to a global clock c.

Definition 4 (Semantics of NeTAs). Given a NeTA (T,A0,X,C,Δ), the
current control state is referred by q. Let ValX = {ν : X → R

≥0} and ValC =
{μ : C → R

≥0}. A configuration of a NeTA is an element in (Q × ValX ×
ValC , (Q × ValX)∗). (Q × ValX)∗ is a stack content denoted by s. Let s =
〈q1, ν1〉〈q2, ν2〉...〈qn, νn〉, then s + t will be 〈q1, ν1 + t〉〈q2, ν2 + t〉...〈qn, νn + t〉.
The transition rules of NeTAs are presented as follows:

– Progress transitions: (〈q, ν, μ〉, s) t−→ (〈q, ν + t, μ + t〉, s + t).

– Discrete transitions: κ
φ−→ κ′ is defined as follows.

• Internal-action (〈q, ν, μ〉, s) φ−→ (〈q′, ν[λ], μ〉, s), if q
a,φ,λ−−−→ q′ ∈ Δ(A),

where A is the current running TA, a ⊆ Σ(A), λ ⊆ X(A), and ν |= φ,
and ν[λ] |= I(q′).

• Push (〈q, ν, μ〉, s) φ−→ (〈q0(A′), ν′
0, μ〉, 〈q, ν〉s).

• Pop (〈q, ν, μ〉, 〈q′, ν′〉s) pop−−→ (〈q′, ν′, μ〉, s).
• Global-test (〈q, ν, μ〉, s) c∈I?−−−→ (〈q′, ν, μ〉, s), if μ(c) ∈ I.
• Global-assign (〈q, ν, μ〉, s) c←−I−−−→ (〈q′, ν, μ[c ←− r]〉, s) for r ∈ I.
• Global-store (〈q, ν, μ〉, s) c←−x−−−→ (〈q′, ν, μ[c ←− ν[x]]〉, s).
According to [5], we know that the reachability problem for nested timed

automata is decidable by encodingNeTAs to dense timedpushdownautomata [18].
And the global clocks do not affect the safety property of an NeTA. We have the
following fact.

Fact 2. The state reachability problem of NeTAs is decidable [5].

2.3 Parallel Composition of TA and NeTA

Given a TA A and a NeTA N , we construct a parallel composition automaton
A||N . A formal definition of the parallel composition between A and N is defined
as follows.

Assuming a TA A = (Q, q0, F,X, I,Δ)and a NeTA N = (T,A0,X,C,Δ) are
running concurrently over a shared finite set of actions Σ. Στ = Σ∪{τ}, where τ
stands for a silent action. Transition of N is redefined by Δ(N ) ⊆ Q×O×Στ ×
Action × Q ∪ {ε}, where Action ∈ {push, pop}. A rule (p, φ, a, Φ, p′) ∈ Δ(N ) is

written as p
φ,a,Φ−−−→ p′. Transition of the TA is defined by Δ(A) ⊆ Q×Στ ×O×Q.

A rule (p, a, φ, p′) ∈ Δ(A) is written as p
a,φ−−→ p′. We usually omit a when a = τ .
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Definition 5 (Semantics of Parallel Composition of NeTA and TA).
Given a nested timed automaton N = (T,A0,X,C,Δ) and a timed automaton
A = (Q, q0, F,X, I,Δ), a finite set of actions Σ, a configuration of a parallel
composition N||A is a tuple (qA, νA, (〈q, ν, μ〉, s)), where qA ∈ Q(A), νA is a
clock valuation on X(A), s is the stack belongs to configuration of N , and (q, ν, μ)
is the configuration of a TA is executing now which is in the top of stack s. The
transition rules of N||A is defined as follows:

– Progress transitions: (qA, νA, (〈q, ν, μ〉, s)) t−→ (qA, νA+t, (〈q, ν+t, μ+t〉, s+t)).

– Discrete transitions: (qA, νA, (〈q, ν, μ〉, s)) a,φ,φN−−−−→ (q′
A, ν′

A, (〈q′, ν′, μ′〉, s′)) is
defined as a union of the following transition rules:
• TA-movement (qA, νA, (〈q, ν, μ〉, s)) τ,φ−−→ (q′

A, ν′
A, (〈q, ν, μ〉, s)), if

(qA, νA)
τ,φ−−→A (q′

A, ν′
A).

• NeTA-intra-movement (qA, νA, (〈q, ν, μ〉, s)) τ,φ−−→ (qA, νA, (〈q′, ν′, μ〉, s)), if

(q, ν, μ)
τ,φ−−→N (q′, ν′, μ).

• NeTA-pop-movement (qA, νA, (〈q, ν, μ〉, s)) φN ,pop−−−−−→ (qA, νA, (〈q′, ν′, μ′〉,
s′)), if (q, ν, μ)

φN ,pop−−−−−→N (q′, ν′, μ′).

• Push-synchronization (qA, νA, (〈q, ν, μ〉, s)) τ,φ,φN ,push,−−−−−−−−→ (q′
A, ν′

A, (〈q0(A′),

ν′
0, μ

′〉, s′)), if (qA, νA)
a,φ−−→A (q′, ν′) and (〈q, ν, μ〉, s) a,push,φN−−−−−−−→N

(〈q0(A′), ν′
0, μ

′〉, s′).

The initial configuration of N||A is (q0A, ν0A, (〈q0(A0), ν0, μ0〉, ε)), where
A0 ∈ T (N ), ν0A(x) = 0 for x ∈ X(A), ν0(x) = 0 for x ∈ X(A0) and μ0(c) = 0
for c ∈ C(N ).

Note that, the parallel composition of a TA and a NeTA is essentially a NeTA
with global clocks [6], which does not increase expressiveness of the model we
defined in Definition 3.

3 Task Automata with Timed Regular Behaviours

3.1 Timed Regular Tasks

Let P be a set of task types, or tasks ranged over by P,Q,R, . . .. A task type
is a tuple (P,A , qA , νA , S,D), written by P (A , qA , νA , S,D), where P is the
task name, A is the timed automaton, qA ∈ Q(A ) is the location of A to
describe the current running control location of the task, νA is a clock valuation
on X(A ), S is the status of the timed automaton and D is the relative deadline.
S = {free, released, preempted, running}, where free denotes that a task is
not triggered, released denotes that a task is triggered but not started yet,
preempted means that a task is started but not running now and running means
that a task is running on the processor. The status of task is initialized to free.
Whenever a task is triggered, its status is set to released. A task type may have
several task instances. A task instance is a tuple P (A, q, ν, s, d), where A ∈ A is
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a timed automaton describing the behaviour of the task, q ∈ Q(A) is a control
location of A to describe the current running control location of A, ν is a clock
valuation on X(A), s ∈ S is the current status of A and d ∈ R

≥0 is a relative
deadline. We shall use pi to denote a task instance, and pi’s task type will be
understood as Pi(A , qA , νA , S,D).

We define a task queue as a list of task instances, denoted as
[P1(A1, q1, ν1, s1, d1), P2(A2, q2, ν2, s2, d2), . . . , Pn(An, qn, νn, sn, dn)]. A set of
task queues containing instances of the task types from P is denoted QP . We
use P, Q to represent task queues, and [ ] is used to represent an empty queue.

We assumed that there is only one processor, the task executed on the proces-
sor is the first element of the task queue and the others are waiting for executing.
Whenever a task is released, it is inserted into the task queue according to a cer-
tain scheduling strategy, e.g., fixed priority strategy (FPS), rate monotone strat-
egy (RMS), or earliest deadline first (EDF). A scheduling strategy is a function
Sch : P × QP → QP , which given a task instance from P and a task queue then
returns a task queue with the task instance inserted into the proper position of
the queue according to some parameters, e.g., deadline or priority. For example,
EDF (P (A1, q1, ν1, released, 10), [Q(A2, q2, ν2, s2, 9), R(A3, q3, ν3, s3, 13)]) = [Q
(A2, q2, ν2, s2, 9), P (A1, q1, ν1, released, 10), R(A3, q3, ν3, s3, 13)].

Given a task queue Q = [P1(A1, q1, ν1, s1, d1), P2(A2, q2, ν2, s2, d2), . . . ,
Pn(An, qn, νn, sn, dn)], when t time units passage happens, the task instance
P1 in the first position of the task queue will be executed on the processor with
t time units. If s1 ∈ {released, preempted}, the status of P1 will be reset to
s1 := running; otherwise s1 remains to running. The current running control
location q ∈ Q(A1) may be changed to other control locations due to transitions
of A1. The clock valuations on clock X(A1) will be changed accordingly and
clock valuations on clock X(Ai), where i > 1 will be changed if the status of
a task is preempted. Each relative deadline of task instances in the queue will
decease with t.

To describe the above intuition, we introduce a function Exec : QP ×R
≥0 →

QP that given a task queue and a real number t then returns a task queue
executing t time units on a processor. Given a task queue Q = [P1(A1, q1, ν1,
s1, d1), P2(A2, q2, ν2, s2, d2), . . . , Pn(An, qn, νn, sn, dn)], the result of Exec(Q, t) =
can be defined inductively as follows:

– Exec(Q, 0) = Q
– Exec(Q, t) = [P1(A1, q

′
1, ν

′
1, running, d′

1), P2(A2, q2, ν
′
2, s2, d

′
2), . . . , Pn(An, qn,

ν′
n, sn, d′

n)], if q′
1 /∈ F (A), where

• ν′
i = νi + t if si = preempted and ν′

i = νi otherwise for i > 1,
• d′

i = di − t, and
• (q1, ν1) →∗ (q′

1, ν
′
1).

If d′
i < 0, then we say that the task queue is non-schedulable which will be

introduced later in detail.
– Exec(Q, t) = Exec([P2(A2, q2, ν

′
2, s2, d

′
2), . . . , Pn(An, qn, ν′

n, sn, d′
n)], t − t′), if

after t′ time units (q1, ν1) →∗ (q′
1, ν

′
1), and q′

1 ∈ F (A), where
• ν′

i = νi + t′ if si = preempted and ν′
i = νi otherwise for i > 1,

• d′
i = di − t′
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Example 1. Given a task queue Q = [P1(A1, q1, ν1, released, 6), P2(A2, q2, ν2,
preempted, 4), P3(A3, q3, ν3, released, 8)], we assumed that

– when 2 time units passaged, A1 reaches its final states, then Exec(Q, 3) =
Exec([P2(A2, q2, ν

′
2, running, 2), P3(A3, q3, ν3, released, 6)], 1).

– when 3 time units passaged, A1 have not reached its final states yet, then
Exec(Q, 3) = [P1(A1, q

′
1, ν

′
1, running, 3), P2(A2, q2, ν

′
2, preempted, 1), P3(A3,

q3, ν3, released, 5)].
– when 5 time units passaged, A1 have not reached its final states yet, then we

say that Q is non-schedulable, as the deadline of A2 is less than zero after 5
time units.

3.2 Timed Regular Task Automata

Definition 6 (Timed Regular Task Automata). A timed regular task
automaton (TRTA) over actions Act and task types P is a tuple R = (S, s0,
C, I,M,Δ) ∈ R, where

– S is a finite set of states.
– s0 ∈ S is the initial state.
– C is a finite set of clocks.
– I : S → Φ(C) is a function assigning each state with an invariant.
– M : S ↪→ P is a partial function assigning states with task types.
– Δ ⊆ S × Φ(C) × Act × 2C × S.

When (s1, φ, a, λ, s2) ∈ Δ, we write s1
φ,a,λ−−−→ s2.

3.3 Operational Semantics

Definition 7 (Semantics of TRTA). Given a TRTA R = (S, s0, C, I,M,Δ),
a configuration is a tuple (s, μ, q, ν, Q), where,

– s ∈ S is a state.
– μ is a clock valuation of C.
– Q is the current task queue.
– q is a control location of the TA in the head of Q. If Q is empty, q is denoted

by .
– ν is a clock valuation on the clocks of the TA in the head of Q. If Q is empty,

ν is also denoted by .

Given a scheduling strategy Sch, the semantics of R is defined by the LTS
with an initial state (s0, μ0, , , [ ]), and transitions as the following rules,

– Progress transitions:
• (s, μ, , , [ ]) t−→Sch (s, μ + t, , , [ ]), where t ∈ R

≥0 and (μ + t) |= I(s).
• (s, μ, q, ν, Q) t−→Sch (s, μ + t, q, ν + t, Exec(Q, t)), where t ∈ R

≥0, (μ + t) |=
I(s), and (ν + t) |= I(q).

– Discrete transitions:
• (s, μ, q, ν, Q) a−→Sch (s′, μ[λ], q, ν, Sch(M(s′), Q)), if s

φ,a,λ−−−→ s′, μ |= I(s),
and μ[λ] |= I(s′).
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4 Schedulability Analysis

In this section, we study the verification problems of TRTAs presented in the
previous section. One of the most interesting properties is schedulability.

Definition 8 (Schedulability). A timed regular task automaton R with
the initial state (s0, μ0, , , [ ]) is non-schedulable under a scheduling pol-
icy Sch, iff (s0, μ0, , , [ ]) −→∗

Sch (s, μ, q, ν, Error) for some s, μ, q,
and ν, where (s, μ, q, ν, Error) is a failure state (s, μ, q, ν, Q) with Q =
[P1(A1, q1, ν1, s1, d1), P2(A2, q2, ν2, s2, d2), . . . , Pn(An, qn, νn, sn, dn)] and there
exists i such that di < 0. Otherwise, we say that R is schedulable with Sch.

In general, The queue of the model is unbounded, which leads to Turing-
completeness [19]. However, there is an important observation that a schedulable
queue is bounded [2]. Firstly, a task instance that has been started cannot be
preempted by another instance of the same task type, which means that oth-
ers must wait for executing unless the first one reaches its final states and is
removed from the task queue. Thus the number of instances of each task type
Pi(Ai, q, ν, Si,Di) ∈ P in a schedulable queue is bounded by � Di

WECT (Ai)

, and

the size of a schedulable queue is bounded by
∑

Pi(Ai,q,ν,Si,Di)∈P� Di

WECT (Ai)

.

Hence, if we abstract each task instance as an atomic task and assume each
WCET is pre-known, a TRTA thus becomes a task automaton, and as the proof
given in [2], we immediately have the following results.

Theorem 1. The schedulability analysis of TRTAs is decidable.

In order for the later analysis, we further discuss the non-schedulable queue.

Definition 9. A queue Q = [P1(A1, q1, ν1, s1, d1), P2(A2, q2, ν2, s2, d2), . . . ,
Pn(An, qn, νn, sn, dn)] with Sch is non-schedulable if (

∑
i≤k WECT (Ai)) > dk

for some k ≤ n.

According to Definitions 8 and 9, we conclude that a task queue is non-
schedulable if it meets one of the following situations:

– Deadline-Missing: the task queue contains a task instance whose deadline
di < 0 for some i which means that some instances already miss deadline.

– Overflow: The task queue contains more than � Di

WECT (Ai)

 instances of Pi

for some i.
– Error-Queue: The task queue will inevitably be an error-queue as defined

in Definition 8.

If a task queue belongs to the first and second situation, we can conclude
that it is non-schedulable immediately. For the last situation, all reachable states
of the system R should be checked. Unlike that in task automata, all three
situations can be checked through one reachability checking of a TA, we have to
check them separately through our methods in the following section.
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5 Under-Approximation of WCET

It is well-known that it is difficult to get BCET and WCET of a complex task.
We firstly run each task of a TRTA, and calculate the time a task used to
reach one of its final state, denoted as eti, as an under-approximation of the
WCET. By the under-approximation, the system may still be unschedulable, we
further translate the TRTA into a NeTA, and the schedulability is checked by
the reachability of the NeTA.

In detail, given a TRTA R and a preemptive scheduling strategy Sch, the
goal is to check if the R is schedulable with the Sch. We construct a prod-
uct automaton E(R)||E(Sch), and check pre-defined error-states in the product
automaton. E(R) will be constructed the same as a TA described in [4], and
E(Sch) will be constructed as a NeTA. The product automaton is essentially an
NeTA [5].

5.1 A Testing as an Under-Approximation

We list three situations to conclude that a task queue is non-schedulable, in which
the second one “The task queue contains more than � Di

WECT (Ai)

 instances of Pi

for some i” depends on the WECT (Ai). According to the obvious observation
that eti ≤ WCET (Ai), we change the second situation to “The task queue con-
tains more than � Di

ati

 instances of Pi for some i, where ati =

∑
i≤num eti

num , where
num is the sum of instances of task type Pi”. Note that the under-approximation
of the WCET does not guarantee soundness with respect to schedulability of the
system, however, it allows us to erase most unschedulable cases and make the
restricted system decidable for further analysis.

5.2 Deadline-Missing as a Guarded Automaton

A non-schedulable queue caused by the deadline-missing may not be checking
by predefined error states in the model of a scheduling policy, thus we have to
translate the TA of each task to its respective guarded automaton, in which an
error state is predefined as to checking the deadline missing of the task.

Given a task type P (A, qA, νA, S,D) ∈ P, Guarded : P −→ A is defined by
Guarded(P (A, qA, νA, S,D)) = (QG, qG

0 , FG,XG, δG), where

– QG = Q(A) ∪ QΔ ∪ qerr, where QΔ = {qδ | for each δ ∈ Δ(A)}.
– qG

0 = q0(A), and FG = F (A).
– XG = X(A) ∪ {xsch}.
– ΔG = Δsch ∪ Δerr, where

• Δsch = {q
o−→ qδ, qδ

xsch∈[0,D]?−−−−−−−−→ q′ | δ = (q, 0, q′) ∈ Δ}
• Δerr = {qδ

xsch∈[D,∞]?−−−−−−−−→ qerr | q ∈ Q(A) ∪ QΔ}.
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A B C
x ← [0, 2] x ∈ (0, 7]?

x ← [0, 2]

x ∈ (7, +∞)?

Fig. 2. An example of TA

A

B

Cqerr

x ←
[0, 2]

x
sch ∈

[0, 11]?

x
∈ (0

, 7
]? x sc

h
∈ [0

, 1
1]
?

x
←

[0
, 2

]

xsch
∈ [0,

11]
?

x ∈ (7,+∞)?xsch
∈ [0, 1

1]?

φ

φ

φ

φ

φ

φ

φ

φ = xsch ∈ (11, +∞?)

Fig. 3. The TA with error location transformed from Fig. 2

Example 2. Figure 2 is a TA used to described the behavior of a task P , and
the relative deadline of P is 11. According to the function Guarded : P −→ A ,
we transform it to a TA with error locations shown in Fig. 3, once the clock
xsch ∈ (11,∞) which misses the relative deadline, the system reaches the error
location.

5.3 Encoding a Scheduler as a Nested Timed Automaton

For each task type Pi(A, qA, νA, S,D), we use Pij to denote the jth instance
of the task type Pi. For each Pij , we need one deadline clock x(i, j) used to
remember the deadline and reset to 0 when Pij is released.

Given a finite set of tasks P, and a priority policy is described by a relation
≺ on P. For Example, EDF(earliest deadline first), where ≺ can be coded as
constraints over the deadline clock. If we say Pij ≺ Pmn that Pmn has the shorter
deadline than Pij , then it can coded as a constraint that D(m) − x(m,n) ≤
D(i) − x(i, j). For EDF scheduling strategy on tasks P, Sch(P) is defined by a
nested timed automaton (T,A0,X,C,Δ) over a set of input symbols Σ where,
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– Σ = {releasedP | for each P ∈ P}.
– T = {Guarded(P ) | for each P ∈ P}∪{Aidle}, where Aidle is a singleton timed

automaton without any transitions.
– X = ∪Ai∈T X(Ai).
– C = {c}.
– A0 = Aidle.
– Δ is defined by Δidle ∪ Δpush ∪ Δpop:

• Δidle = {qidle
c←[0,0],releasedP ,push−−−−−−−−−−−−−−−→ q0(A) | ∀A ∈ T, qidle ∈ Q(Aidle)}.

• Δpush = {q
c∈[0,Dp−Dp′ )?,releasedP ′ ,push,c←[0,0]−−−−−−−−−−−−−−−−−−−−−−−−−−→ q0(A′) | ∀A,A′ ∈ T, q ∈

Q(A)}.
• Δpop = {q

c←xsch,pop−−−−−−−→ q′ | ∀A,A′ ∈ T, q ∈ Q(A), q′ ∈ Q(A′), the stack is
not empty, A′ is in the stack next to A, xsch ∈ X(A′) which is the deadline
clock}.

• Δpop = {q
c←[0,0],pop−−−−−−−→ ε | ∀A ∈ T, q ∈ Q(A), the stack is empty}.

Example 3. Figure 4 is a NeTA with three TAs, showing that the EDF scheduling
strategy on two tasks P and Q. Aidle is an empty TA for the idle state. Ap

and Aq model the behavior of task P and task Q, respectively. Note that the
Δpop transition rules are not explicitly represented in the figure, only when the
running TA reaches its final states, can Δpop be applied that the running TA
will be popped. The NeTA starts from the timed automaton Aidle may move to
Ap or Aq by action releasedP or releasedQ, then the corresponding task will be
pushed into the stack. A task instance may be preempted if at some point the
system meets the conditions labelled in the push transition.

Aidle

Idling

P (Ap, q, ν, Sp, Dp)

q0

q1 q2

qerr
φ

φ

φ

φ

φ φ

x ≥ 4

x ≤ 8

adp ≤ Dpdp ≤ Dp

dp ≤ Dp

dp ≤ Dp

φ = dp ∈ (Dp, ∞)?

Q(Aq, q, ν, Sq, Dq)

p0

p1

qerr

a

dq ≤ Dq

φ

φ

φ = dq ∈ (Dq, ∞)?

releasedP , push

c := 0

releasedQ, push
c := 0

c ∈ [0, Dp − Dq)?, releasedQ, push, c := 0

c ∈ [0, Dq − Dp)?, releasedP , push, c := 0

Fig. 4. Encoding the scheduling strategy into a NeTA
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5.4 Construct the Product Automaton

The last step is to construct the product automaton E(R)||E(Sch) in which the
E(R) is a timed automaton and the E(Sch) is a nested timed automaton. E(R)
and E(Sch) can only synchronize on identical action symbols.

An example is shown below.

Example 4. Figure 5 is a TA Aenvironment which removes tasks assigned in a
TRTA shown in Fig. 1, it is used as an environment. Figure 4 is a nested timed
automaton Nsch which encodes an EDF scheduler. Nsch and Aenvironment start
from Aidle and l0 respectively, and they are only synchronized on the same
actions releasedP and releasedQ.

Now, we show that the product automaton is bounded.

Lemma 1. Let R be a timed regular task automaton and Sch a schedul-
ing strategy, they are encoded into a TA A and a NeTA N . Assumed that
(s0, μ0, q0, ν0, Q0) and (s0, μ0, (〈q0, ν0, μ0N 〉, c0)) are the initial states of R and
the product automaton A||N respectively, where s0 is the initial state of R, μ0

and μ0N are clock assignments assigning all clocks with 0 for clocks X(R) and
C(N ) respectively, q0 and ν0 is the initial control location and clock assignment
of TA in the head of Q0. As Q0 is the empty task queue, q0 and ν0 are not exist,
c0 is the initial stack for NeTA which is empty. Then for all s, μ, q, ν, μN ,
c and the predefined error state qerr: (s0, μ0, q0, ν0, Q0) −→∗ (s, μ, q, ν, Error) iff
(s0, μ0, (〈q0, ν0, μ0N 〉, c0)) −→∗ (s, μ, (〈qerr, ν, μN 〉, c)).

l0

l1 l2
releasedP

releasedP

x := 0
y := 0

releasedQy ∈ [50, +∞)

x ∈ [6, +∞)
y ∈ [0, 24]
releasedQ

x := 0

Fig. 5. Encoding the TRTA into a TA as an environment
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Proof. It is by induction on the length of transition sequence.

The above lemma states that that the schedulability analysis problem can be
solved by reachability analysis for timed regular task automata. Due to Fact 2,
the reachability problem is decidable, our result stated in Theorem1 is proved.

6 Conclusion

This paper investigates the schedulability analysis on complex real-time task
systems, in which each task is described as a timed automaton. Without any
information of worst case execution time of each task, a test is then performed
to give an under-approximation. If the task queue is not bound with the approx-
imation, it is certainly unschedulable. If bounded, a schedulability checking is
further performed by encoding to the reachability of nested timed automata.
The whole method gains soundness and completeness.

We will consider schedulability analysis on soft real-time systems. That is,
the relative deadline may change due to environment and given conditions. Fol-
lowing our methodology, it is required that each TA in a NeTA contains an
updatable clock to record the relative deadline. The model is thus named nested
updatable timed automata with one updatable clock (NeUTA1). The proper-
ties, such as reachability, as well as boundedness and termination, are under our
consideration.

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China with grant No. 61472240, 61672340, 61472238, and the NSFC-JSPS
bilateral joint research project with grant No. 61511140100.

References

1. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Springer, New York (2004)

2. Fersman, E., Krcal, P., Pettersson, P., Wang, Y.: Task automata: schedulability,
decidability and undecidability. Inform. Comput. 205(8), 1149–1172 (2007)

3. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst.
7(3), 1–53 (2008)

4. Ericsson, C., Wall, A., Wang, Y.: Timed automata as task models for event-driven
systems. In: Proceedings of the 6th International Conference on Real-Time Com-
puting Systems and Applications (RTCSA 1999), pp. 182–189. IEEE Computer
Society (1999)

5. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman,
V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40229-6 12

http://dx.doi.org/10.1007/978-3-642-40229-6_12


162 B. Fang et al.

6. Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In:
Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp.
189–205. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22975-1 13

7. Wang, Y., Li, G., Yuen, S.: Nested timed automata with various clocks. Sci. Found.
China 24(2), 51–68 (2016)

8. Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. J.
Autom. Lang. Comb. 5(4), 371–404 (2000)
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Abstract. We present an importance sampling framework that com-
bines symbolic analysis and simulation to estimate the probability of
rare reachability properties in stochastic timed automata. By means of
symbolic exploration, our framework first identifies states that cannot
reach the goal. A state-wise change of measure is then applied on-the-
fly during simulations, ensuring that dead ends are never reached. The
change of measure is guaranteed by construction to reduce the variance
of the estimator with respect to crude Monte Carlo, while experimental
results demonstrate that we can achieve substantial computational gains.

1 Introduction

Stochastic Timed Automata [7] extend Timed Automata [1] to reason on the
stochastic performance of real time systems. Non-deterministic time delays are
refined by stochastic choices and discrete non-deterministic choices are refined
by probabilistic choices. The semantics of stochastic timed automata is given in
terms of nested integrals over products of uniform and exponential distributions.
Abstracting from the stochasticity of the model, it is possible to find the symbolic
paths reaching a set of goal states, but solving the integrals to calculate the
probability of a property becomes rapidly intractable. Using a similar abstraction
it is possible to bound the maximum and minimum probabilities of a property,
but this can lead to results such as the system could work or fail with high
probability. Our goal is to quantify the expectation of rare behaviour with specific
distributions.

A series of works [3–5,7] has developed methods for analysing Stochastic
Timed Automata using Statistical Model Checking (SMC) [18]. SMC includes a
collection of Monte Carlo techniques that use simulation to avoid “state space
explosion” and other intractabilities encountered by model checking. It is typ-
ically easy to generate sample executions of a system, while the confidence of
estimates increases with the number of independently generated samples. Prop-
erties with low probability (rare properties) nevertheless pose a challenge for
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SMC because the relative error of estimates scales inversely with rarity. A num-
ber of standard variance reduction techniques to address this have been known
since the early days of simulation [11]. The approach we present here makes use
of importance sampling [11,15], which works by performing Monte Carlo sim-
ulations under a probabilistic measure that makes the rare event more likely
to occur. An unbiased estimate is achieved by compensating for the change of
measure during simulation.

Fig. 1. A rare event of reaching
A due to timing constraints.

Our model may include rarity arising from
explicit Markovian transitions, but our main
contribution is addressing the more challenging
rarity that results from the intersection of tim-
ing constraints and continuous distributions of
time. To gain an intuition of the problem, con-
sider the example in Fig. 1. The automaton first
chooses a delay uniformly at random in [0, 106]
and then selects to either go to A or B. Since the
edge to A is only enabled in the interval [106 − 1, 106], reaching A constitutes a

rare event with probability
∫ 106

106−1
10−6 · 1

2 dt = 1
2 · 10−6.

The probability theory relating to our model has been considered in the
framework of generalised semi Markov processes, with related work done in the
context of queueing networks. Theory can only provide tractable analytical solu-
tions for special cases, however. Of particular relevance to our model, [17] pro-
poses the use of state classes to model stochastic distributions over dense time,
but calculations for the closely related Duration Probabilistic Automata [14] do
not scale well [12]. Monte Carlo approaches provide an approximative alternative
to analysis, but incur the problem of rare events. Researchers have thus turned
to importance sampling. In [19] the authors consider rare event verification of a
model of stochastic hybrid automata that shares a number of features in com-
mon with our own model. They suggest using the cross-entropy method [16] to
refine a parametrised change of measure for importance sampling, but do not
provide a means by which this can be applied to arbitrary hybrid systems.

Our contribution is an automated importance sampling framework that is
integrated into Uppaal SMC and applicable to arbitrary time-divergent priced
timed automata [7]. By means of symbolic analysis we first construct an exhaus-
tive zone-based reachability graph of the model and property, thus identifying
all “dead end” states that cannot reach a satisfying state. Using this graph we
generate simulation traces that always avoid dead ends and satisfy the property,
applying importance sampling to compensate estimates for the loss of the dead
ends. In each concrete state we integrate over the feasible times of enabled actions
to calculate their total probabilities, which we then use to choose an action at
random. We then choose a new concrete vector of clock values at random from
the feasible times of the chosen action, using the appropriately composed distri-
bution. All simulated traces reach satisfying states, while our change of measure
is guaranteed by construction to reduce the variance of estimates with respect to
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crude Monte Carlo. Our experimental results demonstrate substantial reductions
of variance and overall computational effort.

The remainder of the paper is as follows. Sections 2 and 3 provide background:
Sect. 2 recalls the basic notions of importance sampling and Sect. 3 describes
Stochastic Timed Automata in terms of Stochastic Timed Transition Systems.
We explain the basis of our importance sampling technique in Sect. 4 and describe
how we realise it for Stochastic Timed Automata in Sect. 5. In Sect. 6 we present
experimental results using our prototype implementation in Uppaal SMC and
then briefly summarise our achievements and future work in Sect. 7.

2 Variance Reduction

Let F be a probability measure over the measurable set of all possible executions
ω ∈ Ω. The expected probability pϕ of property ϕ is defined by

pϕ =
∫

Ω

1ϕ dF, (1)

where the indicator function 1ϕ : Ω → {0, 1} returns 1 iff ω satisfies ϕ. This
leads to the standard (“crude”) unbiased Monte Carlo estimator used by SMC:

pϕ ≈ 1
N

N∑

i=1

1ϕ(ωi), (2)

where each ωi ∈ Ω is selected at random and distributed according to F , denoted
ωi ∼ F . The variance of the random variable sampled in (2) is given by

σ2
crude =

∫

Ω

(1ϕ − pϕ)2 dF =
∫

Ω

1ϕ dF − (pϕ)2 (3)

The variance of an N -sample average of i.i.d. samples is the variance of a single
sample divided by N . Hence the variance of the crude Monte Carlo estimator
(2) is σ2

crude/N and it is possible to obtain more confident estimates of pϕ by
increasing N . However, when pϕ ≈ 0, i.e., ϕ is a rare property, standard con-
centration inequalities require infeasibly large numbers of samples to bound the
relative error.

In this work we use importance sampling to reduce the variance of the random
variable from which we sample, which then reduces the number of simulations
necessary to estimate the probability of rare properties. Referring to the same
probability space and property used in (1), importance sampling is based on the
integral

pϕ =
∫

Ω

1ϕ
dF

dG
dG, (4)

where G is another probability measure over Ω and dF/dG is called the likelihood
ratio, with 1ϕF absolutely continuous with respect to G. Informally, this means
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that ∀ω ∈ Ω,dG(ω) = 0 =⇒ 1ϕdF (ω) = 0. Hence 1ϕ(ω)dF (ω)/dG(ω) > 0 for
all realisable paths under F that satisfy ϕ and is equal to 0 otherwise.

The integral (4) leads to the unbiased importance sampling estimator

pϕ ≈ 1
N

N∑

i=1

1ϕ(ωi)
dF (ωi)
dG(ωi)

, ωi ∼ G. (5)

In practice, a simulation is performed under measure G and if the resulting
trace satisfies ϕ, its contribution is compensated by the likelihood ratio, which
is calculated on the fly. To reduce variance, the intuition is that G is constructed
to make traces that satisfy ϕ more likely to occur in simulations.

The variance σ2
is of the random variable sampled by the importance sampling

estimator (4) is given by

σ2
is =

∫

Ω

(

1ϕ
dF

dG
− pϕ

)2

dG =
∫

Ω

1ϕ

(
dF

dG

)2

dG − (pϕ)2 (6)

If F = G, the likelihood ratio of realisable paths is uniformly equal to 1, (4)
reduces to (1) and (6) reduces to (3). To ensure that the variance of (5) is less
than the variance of (2) it is necessary to make σ2

is < σ2
crude , for which it is

sufficient to make dF/dG < 1,∀ω ∈ Ω.

Lemma 1. Let F,G be probability measures over the measurable space Ω, let
1ϕ : Ω → {0, 1} be an indicator function and let 1ϕF be absolutely continuous
with respect to G. If for all ω ∈ Ω, 1ϕ(ω) · dF (ω)

dG(ω) ≤ 1 then σ2
is ≤ σ2

crude.

Proof. From the definitions of σ2
crude (3) and σ2

is (6), we have

σ2
is ≤ σ2

crude ⇐⇒
∫

Ω

1ϕ

(
dF

dG

)2

dG − (pϕ)2 ≤
∫

Ω

1ϕ dF − (pϕ)2,

where pϕ is the expectation of 1ϕF . Noting that (pϕ)2 is outside the integrals
and common to both sides of the inequality, we conclude

σ2
is ≤ σ2

crude ⇐⇒
∫

Ω

1ϕ
dF

dG
dF ≤

∫

Ω

1ϕ dF.

Hence, given 1ϕ ∈ {0, 1}, to ensure σ2
is ≤ σ2

crude it is sufficient that 1ϕ(ω) ·
dF (ω)
dG(ω) ≤ 1,∀ω ∈ Ω.

3 Timed Systems

The modelling formalism we consider in this paper is a stochastic extension of
Timed Automata [1] in which non-deterministic time delays are refined by sto-
chastic choices and non-deterministic discrete choices are refined by probabilistic
choices. Let Σ = Σ! ∪ Σ? be a set of actions split into output (Σ!) and input
(Σ?). As usual we assume there is a one-to-one-mapping between input actions
and output actions. We adopt the scheme that a! is an output action and a? is
the corresponding input action.
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Definition 1 (Timed Transition System). A timed transition system over
actions Σ split into input actions Σ? and output actions Σ! is a tuple L =
(S, s0,→,AP, P) where 1) S is a set of states, 2) s0 is the initial state,
3) →⊆ S×(Σ∪R≥0)×S is the transition relation, 4) AP is a set of propositions
and 5) P : S → 2AP maps states to propositions. �

For shorthand we write s

a−→ s′ whenever (s, a, s′) ∈→. Following the composi-
tional framework laid out by David et al. [6] we expect timed transition systems
to be action-deterministic i.e. if s

a−→ s′ and s
a−→ s′′ then s′ = s′′ and we expect

them to be input-enabled meaning for all input actions a? ∈ Σ? and all states

s there exists s′ such that s
a?−→ s′. Let s, s′ ∈ S be two states then we write

s →∗ s′ if there exists a sequence of transitions such that s′ is reachable and we
write s �→∗ s′ if s′ is not reachable from s. Generalising this to a set of states
G ⊆ S, we write s →∗ G if there exists s′ ∈ G such that s →∗ s′ and s �→∗ G if
for all s′ ∈ G, s �→∗ s′.

A run over a timed transition system L = (S, s0,→,AP, P) is an alternat-
ing sequence of states, reals and output actions, s0d0a0!s1d1a1! . . . such that
si

di−→ ai!−−→ si+1. We denote by Ω(L) the entire set of runs over L. The set of
propositional runs is the set ΩAP(L) = {P(s0)d0, . . . |s0d0a0! ∈ Ω(L)}.

Several Timed Transition Systems L1 . . . Ln, Li = (Si, s
0
i ,→i,APi, Pi), may

be composed in the usual manner. We denote this by L = L1|L2| . . . |Ln and for
a state s = (s1, s2, . . . , sn) of L we let s[i] = si.

Timed Automata. Let X be a finite set of variables called clocks. A valuation
over a set of clocks is a function v : X → R≥0 assigning a value to each clock. We
denote by V (X) all valuations over X. Let v ∈ V (X) and Y ⊆ X then we denote
by v[Y ] the valuation assigning 0 whenever x ∈ Y and v(x) whenever x /∈ Y . For
a value d ∈ R≥0 we let (v + d) be the valuation assigning v(x) + d for all x ∈ X.
An upper bound (lower bound) over a set of clocks is an element x � n (x � n)
where x ∈ X, n ∈ N and � ∈ {<,≤} (� ∈ {>,≥}). We denote the set of finite
conjunctions of upper bounds (lower bounds) over X by B�(X) (B�(X)) and the
set of finite conjunctions over upper and lower bounds by B(X). We write v |= g
whenever v ∈ V (X) satisfies an element g ∈ B(X). We let v0 ∈ V (X) be the
valuation that assigns zero to all clocks.

Definition 2. A Timed Automaton over output actions Σ! and input actions Σ?

is a tuple (L, 	0,X,E, Inv) where 1) L is a set of control locations, 2) 	0 is the
initial location, 3) X is a finite set of clocks, 4) E ⊆ L×B�(X)×(Σ!∪Σ?)×2X×L
is a finite set of edges 5) Inv : L → B�(X) assigns an invariant to locations. �

The semantics of a timed automaton A = (L, 	0,X,E, Inv) is a timed transition
system L = (S, s0,→, L, P) where 1) S = L×V (X), 2) s0 = (	0, v0), 3) (	, v) d−→
(	, (v +d)) if (v +d) |= Inv(	), 4) (	, v) a−→ (	′, v′) if there exists (	, g, a, r, 	′) ∈ E
such that v |= g, v′ = v[r] and v′ |= Inv(	′) and 5) P((	, v)) = {	}.
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3.1 Stochastic Timed Transition System

A stochastic timed transition system (STTS) is a pair (L, ν) where L is a timed
transition system defining allowed behaviour and ν gives for each state a density-
function, that assigns densities to possible successors. Hereby some behaviours
may, in theory, be possible for L but rendered improbable by ν.

Definition 3 (Stochastic Timed Transition System). Let L = (S, s0,→,
AP, P) be a timed transition system with output actions Σ! and input actions
Σ?. A stochastic timed transition system over L is a tuple (L, ν) where ν : S →
R≥0 × Σ! → R≥0 assigns a joint-delay-action density where for all states s ∈ S,

(1)
∑

a!∈Σ!
(
∫

R≥0
ν(s)(t, a!) dt) = 1 and (2) ν(s)(t, a!) �= 0 implies s

t−→ a!−→. �


(1) captures that ν is a probability density and (2) demands that if ν assigns
a non-zero density to a delay-action pair then the underlying timed transition
system should be able to perform that pair. Note that (2) is not a bi-implication,
reflecting that ν is allowed to exclude possible successors of L.

Forming the core of a stochastic semantics for a stochastic timed transition
system T = ((S, s0,→,AP, P), ν), let π = p0I0p1I1p2 . . . In−1pn be a cylinder
construction where for all i, Ii is an interval with rational end points and pi ⊆
AP. For a finite run ω = p′

1d1p
′
2 . . . dn−1pn we write ω |= π if for all i, di ∈ Ii

and p′
i = pi. The set of runs within π is then C(π) = {ωω′ ∈ ΩAP(T) | ω |= π}.

Using the joint density, we define the measure of runs in C(π) from s recursively:

Fs(π) = (p0 = P(s)) ·
∫

t∈I0

∑

a!∈Σ!

(
ν(s)(t, a!) · F[[s]d]a!(π1)

)
dt,

where π1 = p1I1 . . . pn−1pn, base case Fs(p) = (PT(s) = (p)) and [s]a is the
uniquely defined s′ such that s

a−→ s′. With the cylinder construction above and
the probability measure F , the set of runs reaching a certain proposition p within
a time limit t, denoted as ♦≤t p, is measurable.

(a) A

(b) B

Fig. 2. Two stochastic timed
automata.

Stochastic Timed Automata (STA). Follow-
ing [7], we associate to each state, s, of timed
automaton A = (L, 	0,X,E, Inv) a delay density
δ and a probability mass function γ that assigns
a probability to output actions. The delay den-
sity is either a uniform distribution between the
minimal delay (dmin) before a guard is satis-
fied and maximal delay (dmax) while the invari-
ant is still satisfied, or an exponential distrib-
ution shifts dmin time units in case no invari-
ant exists. The γ function is a simple discrete
uniform choice of all possible actions. Formally,
let dmin(s) = min{d|s d−→ a!−→ for some a!}
and dmax(s) = sup{d|s d−→} then δ(s)(t) =
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1
dmax(s)−dmin(s) if dmax(s) �= ∞ and δ(s)(t) = λ · e−λ(t−dmin(s), for a user spec-

ified λ, if dmax(s) = ∞. Regarding output actions, let Act(s) = {a!|s a!−→},
then γ(s)(a!) = 1

|Act| for a! ∈ Act. With δ and γ at hand we define the sto-
chastic timed transition system for A with underlying timed transition sys-
tem L as T A = (L, δ • γ), where δ • γ is a composed joint-delay-density
function and (δ • γ)(s)(t, a!) = δ(s)(t) · γ([s]t)(a!). Notice that for any t,∑

a!∈Σ!
ν(s)(t, a!) = δ(s)(t). In the remainder we will often write a stochastic

timed transition as (L, δ • γ). Also we will write γ(s)(t)(a!) in lieu of γ([s]t)(a!).

Example 1. Consider Fig. 2 and the definition of δA and γA in the initial state
(A.I, x=0). By definition we have γA((I, x=0)(t)(a!) = 1 for t ∈ [90, 100] and
δA(I, x=0)(t) = 1

100−90 for t ∈ [90, 100]. Similarly for the B component in the
state (B.I, x=0) we have γB((I, x=0)(t)(b!) = 1 if t ∈ [0, 100] and zero otherwise
and δB(I, x=0)(t) = 1

100−0 if t ∈ [0, 100] and zero otherwise.

3.2 Composition of Stochastic Timed Transitions Systems

Following [7], the semantics of STTS is race based, in the sense that each com-
ponent first chooses a delay, then the component with the smallest delay wins
the race and finally selects an output to perform. For the remainder we fix
Ti = (Li, νi) where Li = (Si, s

0
i ,→i,APi, Pi) is over the output actions Σi

! and
the common input actions Σ?.

Definition 4. Let T1, T2, . . . , Tn be stochastic timed transition systems with dis-
joint output actions. The composition of these is a stochastic timed transition
system J = (L1|L2| . . . |Ln, ν) where

ν(s)(t, a!) = νk(s[k])(t, a!) ·
∏

j �=k

⎛

⎝

∫

τ>t

∑

b!∈Σj
!

νj(s[j])(τ, b!) dτ

⎞

⎠ for a! ∈ Σk
! .

The race based semantics is apparent from ν in Definition 4, where the kth com-
ponent chooses a delay t and action a! and each of the other components inde-
pendently select a τ > t and an output action b!. For a composition of Stochas-
tic Timed Automata we abstract from the losing components’ output actions
and just integrate over δ, as the following shows. Let J = (L, ν) be a com-
position of stochastic timed transition systems, T1, T2, . . . , Tn, and let for all i,
Ti = (Li, δi •γi) originate from a timed automaton. Let a! ∈ Σk

! , then ν(s)(t, a!)
is given by

δk(s[k])(t) · γk(sk)(t)(a!) ·
∏

j �=k

⎛

⎝

∫

τ>t

∑

b!∈Σj
!

δj(s[j])(τ)γj(s[j])(τ)(b!) dτ

⎞

⎠

= δk(s[k])(t) ·
∏

j �=k

(∫

τ>t

δj(s[j])(τ) dτ

)

· γk(s[k])(t)(a!).
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The term δk(s[k])(t) · ∏j �=k

(∫

τ>t
δj(s[j])(τ) dτ

)
is essentially the density of the

kth component winning the race with a delay of t. In the sequel we let κδ
k(t) =

δk(s[k])(t) · ∏j �=k

(∫

τ>t
δj(s[j])(τ) dτ

)
.

Example 2. Returning to our running example of Fig. 2, we consider the joint-
delay density of the composition in the initial state s = (sA, sB), where sA =
(I, x = 0) and sB = (I, x = 0). Applying the definition of composition we see that

νA|B(s)(t, c!) =

⎧
⎨

⎩

1
100−90 · 100−t

100−0 · 1 if t ∈ [90, 100] and c! = a!
1

100−0 · 1 if t ∈ [0, 90[
1

100−0 · 100−t
100−90 · 1 if t ∈ [90, 100]

}

and c! = b!.

4 Variance Reduction for STTS

For a stochastic timed transition system T = ((S, s0,→,AP, PL), ν) and a set of
goal states G ⊆ S we split the state space into dead ends (�G) and good ends
(�G) i.e. states that can never reach G and those that can. Formally,

�G= {s ∈ S | s �→∗ G} and �G= {s ∈ S | s →∗ G}.

For a state s, let ActG,t(s) = {a! | [[s]t]a! ∈�G} and DelF (s) = {d | [s]d ∈�G

∧ActG,d(s) �= ∅}. Informally, ActG,t(s) extracts all the output actions that after
a delay of t will ensure having a chance to reach G. Similarly, DelG(s) finds all
the possible delays after which an action can be performed that ensures staying
in good ends.

Definition 5 (Dead End Avoidance). For a stochastic timed transition sys-
tem T = ((S, s0,→,AP, P), ν) and goal states G, we define an alternative dead
end-avoiding stochastic timed transition system as any stochastic timed transition
system T́ = ((S, s0,→,AP, P), ν́) where if ν́(s)(t, a!) �= 0 then a! ∈ ActG,t(s). �

Recall from Lemma 1 in Sect. 2 that in order to guarantee a variance reduction,
the likelihood ratio should be less than 1. Let T = ((S, s0,→,AP, PL), ν) be
a stochastic timed transition system, let G ⊆ S be a set of goal states and
let T́ = ((S, s0,→,AP, PL), ν́) be a dead end-avoiding alternative. Let ω =
s0, d0, a0!s1, . . . dn−1an−1!sn be a time bounded run, then the likelihood ratio of
ω sampled under T́ is

dT(ω)
dT́(ω)

=
ν(s0)(d0, a0!)
ν́(s0)(d0, a0!)

· ν(s1)(d1, a1!)
ν́(s1)(d1, a1!)

. . .
ν(sn−1)(dn−1, an−1!)
ν́(sn−1)(dn−1, an−1!)

Clearly, if for all i, ν(si)(di, ai!) ≤ ν́(si)(di, ai!) then dT(ω)

dT́(ω)
≤ 1. For a stochas-

tic timed transition system (L, ν = δ • γ) originating from a stochastic timed
automaton we achieve this by proportionalising δ and γ with respect to good
ends, i.e. we use υ̃ = δ̃ • γ̃ where

δ̃(s)(t) =
δ(s)(t)

∫

DelG(s)
δ(s)(τ) dτ

and γ̃(s)(t)(a!) =
γ(s)(t)(a!)

∑
b!∈ActG,t(s)

γ(s)(t)(b!)
.
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Lemma 2. Let T = (L, ν = δ • γ) be a stochastic timed transition system from a
stochastic timed automata, let G be a set of goal states and let T̃ = (L, υ̃) be a dead
end avoiding alternative where υ̃(s)(t, a!) = δ̃(s)(t) • γ̃(s)(t)(a!). Also, let 1G be
an indicator function for G. Then for any finite ω ∈ Ω(T), 1G(ω) · dT(ω)

dT̃(ω)
≤ 1 �


For a composition, J = (L, ν) of stochastic timed transition systems T1, T2, . . . ,
Tn where for all i, Ti = (Li, δi • γi), we define a dead end avoiding stochastic
timed transition system for G as T́ = (L, υ̃∗) where

υ̃∗(s)(t, a!) =

⎧
⎨

⎩

0 if t /∈ DelG,k(s)
κδ

k(s[k])(t)∑n
i=1(

∫
t′∈DelG,i(s)

κδ
i (s[i])(t

′) dt′)
· κγ

k(s[k])(t, a!) otherwise

where DelG,k(s) = {d | (ActG,d(s)) ∩ Σk
! �= ∅} and

κγ
k(s[k])(t, a!) =

⎧
⎨

⎩

γk(s[k])(t)(a!)∑
b!∈(ActG,t(s)∩Σk

! ) γk(s[k])(t)(b!)
if a! ∈ ActG,t(s) ∩ Σk

!

0 otherwise

First the density of the kth component winning (κδ
k) is proportionalised with

respect to all components winning delays. Afterwards, the probability mass of
the actions leading to good ends for the kth component is proportionalised as
well (κγ

k).

Lemma 3. Let J = (L, ν) be a stochastic timed transition system for a composi-
tion of stochastic timed transitions T1, T2, . . . , Tn, where for all i, Ti = (Li, δi•γi)
originates from a stochastic timed automaton. Let G be a set of goal states and let
J́ = (L, υ̃∗), where υ̃∗ is defined as above. Also, let 1G be an indicator function
for G. Then for any finite ω ∈ Ω(J ), 1G(ω) · dJ (ω)

dJ́ (ω)
≤ 1. �


Example 3. For our running example let us consider υ̃∗
A|B as defined above:

υ̃∗
A|B(s)(t, c!) =

⎧
⎪⎪⎨

⎪⎪⎩

1
10 · 100−t

100
∫ 100
90

1
10 · 100−τ

100 dτ+
∫ 10
0

1
100 dτ

· 1
1 if c! = a! and t ∈ [90, 100]

1
100

∫ 100
90

1
10 · 100−τ

100 dτ+
∫ 10
0

1
100 dτ

· 1
1 if c! = b! and t ∈ [0, 10]

=

{
20
30 · 100−t

100 · 1 if c! = a! and t ∈ [90, 100]
20
300 · 1 if c! = b! and t ∈ [0, 10]

5 Realising Proportional Dead End Avoidance for STA

In this section we focus on how to obtain the modified stochastic timed transition
T́ = (L, υ̃) for a stochastic timed transition system T = (L, ν) originating from a
stochastic timed automaton A and how to realise T́ = (L, υ̃∗) for a composition
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of stochastic timed automata. In both cases the practical realisation consists
of two steps: first the sets �G and �G are located by a modified algorithm of
uppaal Tiga [2]. The result of running this algorithm is a reachability graph
annotated with what actions to perform in certain states to ensure staying in
good ends. On top of this reachability graph the sets DelG,k(s) and ActG,k(s)
can be extracted.

5.1 Identifying Good Ends

Let X be a set of clocks, a zone is a convex subset of V (X) described by a
conjunction of integer bounds on individual clocks and clock differences. We let
ZM (X) denote all sets of zones, where the integers bounds do not exceed M .

For A = (L, 	0,X,E, Inv) we call elements (	, Z) of L × ZM (X), where M is
the maximal integer occuring in A, for symbolic states and write (	, v) ∈ (	, Z)
if v ∈ Z. An element of 2ZM (X) is called a federation of zones and we denote
all federations by FM (X). For a valuation v and federation F we write v ∈ F if
there exists a zone Z ∈ F such that v ∈ Z.

Zones may be effectively represented using Difference Bound Matrices (DBM)
[8]. Furthermore, DBMs allow for efficient symbolic exploration of the reachable
state space of timed automata as implemented in the tool Uppaal [13]. In par-
ticular, a forward symbolic search will result in a finite set R of symbolic states:

R = {(	0, Z0), . . . , (	n, Zn)} (7)

such that whenever vi ∈ Zi, then the state (	i, vi) is reachable from the initial
state (	i, v0) (where v0(x) = 0 for all clocks x). Dually, for any reachable state
(	, v) there is a zone Z such that v ∈ Z and (	, Z) ∈ R.

To capture the good ends, i.e. the subset of R which may actually reach a state
in the goal-set G, we have implemented a simplified version of the backwards prop-
agation algorithm of uppaal Tiga [2] resulting in a strategy S “refining” R:

S = {(	0, Z0, F0, a0!), . . . , (	k, Zk, Fk, ak!)} (8)

where Fi ⊆ Zi and whenever vi ∈ Fi then (	i, vi)
ai!−−→→∗ G. Also, (	i, Zi) ∈ R

whenever (	i, Zi, Fi, ai!) ∈ S. Thus, the union of the symbolic states (	i, Fi)
appearing in quadruples of S1 identifies exactly the reachable states from which
a discrete action ai! guarantees to enter a good end of the timed automaton (or
network). Figure 3 depicts the reachability set R (grey area) and strategy set S
(blue area) of our running example.

Given the strategy set S (8) and a state s = (	, v), the set of possible delays
after which an output action a! leads to a good end is given by

Dela!(s) = { d | ∃(	i, Zi, Fi, a!) ∈ S s.t. [s]d ∈ Fi)}.

1 One symbolic state may appear in several quadruples.
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Fig. 3. Running example reachability
set R (grey) and strategy set S (blue) for
goal G ∧ τ ≤ 100. (Color figure online)

For a single stochastic timed automa-
ton DelG(s) =

⋃
a!∈Σ!

Dela!(s) and for
a network DelG,i(s) =

⋃
a!∈Σi

!
Dela!(s).

Importantly, note that Dela!((	, v)) –
and thus also DelG((	, v)) – can be repre-
sented as a finite union of disjoint inter-
vals. Given a closed zone Z and a valu-
ation v, the Uppaal DBM library2 pro-
vides functions that return the minimal
delay (dmin) for entering a zone as well
as the maximal delay for leaving it again
(dmax). Due to convexity of zones then
{(v + d) | dmin ≤ d ≤ dmax} ⊆ Z and
thus the possible delays to stay in Z from
v is equal to the interval [dmin, dmax].
For the remainder of this paper we write
{I1, I2 . . . , In} = DelG(s) where I1, I2 . . . In are the intervals making up DelG(s).

Extracting the possible actions from a state s = (	i, vi) after a delay of d is
simply a matter of iterating over all elements (	i, Zi, Fi, ai!) in S and checking
whether [s]d ∈ Fi. Formally, given a state s = (	i, vi), ActG,d((s)) = {ai! ∈ Σ! |
∃(	i, Zi, Fi, ai!) ∈ S s.t. [s]d ∈ Fi}.

5.2 On-the-Fly State-Wise Change of Measure

Having found methods for extracting the sets ActG,d(s) and DelG,k(s), we focus
on how to perform the state-wise change of measure.

Single Stochastic Timed Automaton. In the following let A be a timed
automaton, TA = (L, δA •γA) be its stochastic timed transition system and let G
be the goal states. For a fixed t obtaining samples γ̃A(s)(t) is a straightforward
normalised weighted choice. Sampling delays from δ̃A(s) requires a bit more
work: let I = {I1, I2, . . . In} = DelG(s) and let t ∈ Ij , for some j then

δ̃A(s)(t) =
δA(s)(t)

∫

τ∈DelG(s)
δA(s)(t) dτ

=

∫

τ∈Ij
δA(s)(t) dτ

∑
I∈I

∫

τ∈I
δA(s)(τ) dτ

· δA(s)(t)
∫

τ∈Ij
δA(s)(t) dτ

.

Thus, to sample a delay we first choose an interval–weighted by its probability–
and then sample from the conditional probability distribution of being inside that
interval. Since δA(s) is either an exponential distribution or uniform, integrating
over it is easy and sampling from the conditional distribution is straightforward.

Network of Stochastic Timed Automata. In the following let A1,A2,
. . . ,An be timed automata, Ti = (Li, δi •γi) be their stochastic timed transition
2 http://people.cs.aau.dk/∼adavid/UDBM/index.html.

http://people.cs.aau.dk/~adavid/UDBM/index.html
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systems and let J = (J , ν) be their composition. Recall from previously we

wish to obtain υ̃∗(s)(t, a!) = κδ
k(s[k])(t)∑n

i=1(
∫

t′∈DelG,i(s)
κδ

i (s[i])(t
′) dt′)

· κγ
k(s[k])(t, a!) for

t ∈ DelG,k(s). Let Ii = {Ii
1, I

i
2, . . . , I

i
k} = DelG,i(s) for all 1 ≤ i ≤ n and let

t ∈ I for some I ∈ Iw then

υ̃∗(s)(t, a!) =

∫

I
κδ

w(s[w])(τ) dτ
∑n

i=1

∑
I′∈Ii

∫

I′ κδ
i (s[i])(τ) dτ

κδ
w(s[w])(t)

∫

I
κδ

w(s[w])(τ) dτ
· κγ

w(s[w])(t, a!),

when t ∈ I and thus sampling from υ̃∗ reduces to selecting an interval I and
winner w, sample a delay t from κδ

w(s[m])(t)
∫

I
κδ

w(s[w])(τ) dτ
and finally sample an action a!

from κγ
w(s[w])(t, a!).

Algorithm 1 is our importance sampling algorithm for a composition of STA.
In line 5 the delay densities of components according to standard semantics is
extracted, and the win-densities (κδ

i ) of each component winning is defined in
line 6. In line 7 the delay intervals we should alter the distributions of κδ

i into
is found. Lines 8 and 9 find a winning component ,w, and an interval in which
it won, and then lines 10 and 11 sample a delay from that interval according to
κδ

w. After sampling a delay, lines 13 and 14 sample an action. Afterwards the
current state and likelihood ratio (L) is updated. The sampling in line 14 is a
standard weighted choice, likewise is the sampling in line 9 - provided we have
first calculated the integrals over κδ

i for all i. In line 11 the sampling from the
conditional distribution is performed by Inverse Transform Sampling, requiring
integration of κδ

k(s[k]).
A recurring requirement for the algorithm is thus that κδ

k(s[k]) is integrable:
In the following we assume, without loss of generality, that s is a state where
there exists some k such that for all i ≤ k, δi(s[i]) is a uniform distribution
between ai and bi and for all i > k that δi(s[i])(t) = λie

−λi(t−di) for t > di i.e.
δi(s[i]) is a shifted exponential distribution. For any i ≤ k we can now derive
that κδ

i (s[i])(t) = δi(s[i])(t)
∏

j �=i

(∫

τ>t
δj(s[j])(τ dτ)

)
is

1
bi − ai

∏

j≤k,j �=i

⎛

⎜
⎜
⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bj−t
bj−aj

if aj ≤ t ≤ bj

1 if t < aj

0 if bj < t or t < ai

or t > ai

⎞

⎟
⎟
⎟
⎠

·
∏

j>k

({
e−λi(t−di) if t > di

1 else

)

and in general it can be seen that κδ
i (s[i])(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P0(t) · E0(t) if t ∈ I0

P1(t) · E1(t) if t ∈ I1
...

Pk(t) · Ek(t) if t ∈ Il

where I0, I1 . . . Il are disjoint intervals covering [ai, bi], and for all j, Pj(t) is a
polynomial constructed by the multiplication of uniform distribution and Ej(t)
is an exponential function of the form eα·t+β constructed by multiplying shifted
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Algorithm 1. Importance Sampling for Composition of STA
Data: Stochastic Timed Automata: A1|A2| . . . |An

Data: Goal States: G
1 Let (L, δAi • γA1) = T Ai for all i;
2 sc = initial state ;
3 L = 1 ;
4 while sc /∈ G do
5 Let δi = δAi(sc[i]) for all i;

6 Let κδ
i (t) = δi(t) ·∏j �=i

(∫
τ>t

δj(τ) dτ
)

for all i;

7 Let Ii = {I1, I2, . . . , In} = DelG,i(sc)for all i;

8 K(I, w) =
∫
I κδ

w(t) dt
∑n

i=1
∑

I′∈Ii
∫

I′ κ
δ
i (τ) dτ

for I ∈ Im ;

9 (I, w) ∼ K ;

10 d(T ) =
κδ

w(T )
∫

I κ
δ
w(τ) dτ

for T ∈ I;

11 t ∼ d;
12 γ = γAw (s)(t);

13 m(a!) = γ(a!)∑
b!∈ActG,t(s)∩Σi

!
γ(b!)

for a! ∈ ActG,t(s) ∩ Σi
! ;

14 a! ∼ m;

15 sc = [[sc]
t]a!;

16 L = L · δi(t)
K(I,w)·d(t) · γ(a!)

m(a!)
;

17 return L;

exponential distributions. Notice that although we assumed i ≤ k, the above gen-
eralisation also holds for i > k. As a result we need to show for any polynomial,
P(t), that P(t) · eα·t+β is integrable.

Lemma 4 (3). Let P(t) =
∑n

i=0 ait
i be a polynomial and let E0(t) = eα·t+β be

an exponential function with α, β ∈ R≥0. Then
∫ P(t) · E(t) dt = ˆP(t) · E(t), with

ˆP(t) =
∑n+1

i=0 bit
i, where bn+1 = 0 and bi = ai−bi+1(i+1)

α . �


6 Experiments

In this section we compare the variance of our importance sampling (IS) esti-
mator with that of standard SMC. We include a variety of scalable models,
with both rare and not-so-rare properties to compare performance. Running is
a parametrised version of our running example. Race is based on a simple race
between automata. Both Running and Race are parametrised by scale , which
affects the bounds in guards and invariants. Race considers the property of reach-
ing goal location Obs.G within a fixed time, denoted ♦≤1 Obs.G. Running con-
siders the property of reaching goal location A.G within a time related to scale ,

3 Details can be found at http://people.cs.aau.dk/∼marius/stratego/rare.html.

http://people.cs.aau.dk/~marius/stratego/rare.html
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denoted ♦≤scale·100 A.G. The DPA (Duration Probabilistic Automata) are job-
scheduling models [7] that have proven challenging to analyse in other contexts
[12]. We consider the probability of all processes completing their tasks within
parametrised time limit τ . The property has the form ♦≤τ DPA1.G∧ · · · ∧DPAn.G,
where DPA1.G, . . . ,DPAn.G are the goal states of the n components that comprise
the model.

The variance of our IS estimator is typically lower than that of SMC, but
SMC simulations are generally quicker. IS also incurs additional set-up and ini-
tial analysis with respect to SMC. To make a valid comparison we therefore
consider the amount of variance reduction after a fixed amount of CPU time.
For each approach and model instance we calculate results based on 30 CPU-
time-bounded experiments, where individual experiments estimate the proba-
bility of the property and the variance of the estimator after 1 s. This time is
sufficient to generate good estimates with IS, while SMC may produce no suc-
cessful traces. Using an estimate of the expected number of SMC traces after
1 s, we are nevertheless able to make a valid comparison, as described below.

Our results are given in Table 1. The Gain column gives an estimate of the
true performance improvement of IS by approximating the ratio (variance of

Table 1. Experimental results. P is exact probability, when available. SMC (IS) indi-

cates crude Monte Carlo (importance sampling). σ̂2
is is empirical variance of likelihood

ratio. Gain estimates true improvement of IS at 1 s CPU time. Mem. reports memory
use. Model DPAxSy contains x processes and y tasks.

Model Param. P Estimated Prob. IS Mem. (MB)

scale / τ SMC IS σ̂2
is Gain SMC IS

Running scale = 1 1.0e−1 1.0e−1 1.0e−1 2.5e−3 1.6 10.2 14.0

10 1.0e−2 1.0e−2 1.0e−2 2.5e−5 1.7e1 10.4 13.6

100 1.0e−3 1.0e−3 9.6e−4 2.5e−7 1.4e2 10.2 13.7

Race 1 1.0e−5 1.3e−5 1.6e−5 2.1e−11 8.3e3 10.0 13.5

2 3.0e−6 1.6e−6 3.2e−6 1.3e−12 2.0e4 10.0 13.3

3 1.0e−6 0 1.4e−6 2.5e−13 6.8e4 10.0 13.6

4 8.0e−7 0 8.0e−7 8.1e−14 1.5e4 11.5 14.4

DPA1S3 τ = 200 n/a 1.4e−1 1.4e−1 2.8e−2 1.1 10.2 11.9

40 n/a 3.6e−4 3.5e−4 1.7e−7 2.8e2 10.2 12.0

16 n/a 0 2.2e−8 6.9e−16 2.7e6 10.2 11.8

DPA2S6 423 n/a 1.0e−5 2.9e−5 3.7e−7 0.9 10.2 13.5

400 n/a 2.7e−5 7.6e−6 2.8e−8 3.0 10.3 13.5

350 n/a 0 5.5e−8 4.9e−13 1.1e3 10.3 13.3

DPA4S3 395 n/a 7.0e−5 1.9e−5 4.9e−8 4.4 10.3 53.1

350 n/a 1.4e−5 9.0e−6 1.3e−8 7.1 10.5 53.1

300 n/a 0 2.7e−7 2.3e−11 1.1e2 10.4 53.0
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SMC estimator)/(variance of IS estimator) after 1 s of CPU time. The variance
of the IS estimator is estimated directly from the empirical distribution of all
IS samples. The variance of the SMC estimator is estimated by p̂(1 − p̂)/NSMC,
where p̂ is our best estimate of the true probability (the true value itself or
the mean of the IS estimates) and NSMC is the mean number of standard SMC
simulations observed after 1 s.

For each model type we see that computational gain increases with rarity
and that real gains of several orders of magnitude are possible. We also include
model instances where the gain is approximately 1, to give an idea of the largest
probability where IS is worthwhile. Memory usage is approximately constant
over all models for SMC and approximately constant within a model type for
IS. The memory required for the reachability graph is a potential limiting factor
of our IS approach, although this is not evident in our chosen examples.

7 Conclusion

Our approach is guaranteed to reduce estimator variance, but it incurs addi-
tional storage and simulation costs. We have nevertheless demonstrated that
our framework can make substantial real reductions in computational effort when
estimating the probability of rare properties of stochastic timed automata. Com-
putational gain tends to increase with rarity, hence we observe marginal cases
where the performance of IS and SMC are similar. We hypothesise that it may be
possible to make further improvements in performance by applying cross-entropy
optimisation to the discrete transitions of the reachability graph, along the lines
of [9], making our techniques more efficient and useful for less-rare properties.

Importance splitting [11,15] is an alternative variance reduction technique
with potential advantages for SMC [10]. We therefore intend to compare our
current framework with an implementation of importance splitting for stochastic
timed automata, applying both to substantial case studies.
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Abstract. In a recent work by Demri and Deters (CSL-LICS 2014),
first-order separation logic restricted to two variables and separating
implication was shown undecidable, where it was shown that even with
only two variables, if the use of negations is unrestricted, then they can
be nested with separating implication in a complex way to get the unde-
cidability result. In this paper, we revisit the decidability and complex-
ity issues of first-order separation logic with two variables, and proposes
semi-positive separation logic with two-variables (SPSL2), where the use
of negations is restricted in the sense that negations can only occur in
front of atomic formulae. We prove that satisfiability of the fragment of
SPSL2 where neither separating conjunction nor septraction (the dual
operator of separating implication) occurs in the scope of universal quan-
tifiers, is nexptime-complete. As a byproduct of the proof, we show that
the finite satisfiability problem of first-order logic with two variables and
a bounded number of function symbols is nexptime-complete (the lower
bound holds even with only one function symbol and without unary
predicates), which may be of independent interest beyond separation
logic community.

1 Introduction

Decidability and Separation Logics. Separation logic is a prominent logical for-
malism to verify programs with pointers and it comes in different flavours and
many fragments and extensions exist. The decidability status of first-order sep-
aration logic with two record fields has been answered negatively quite early
in [5] thanks to Trakhtenbrot’s Theorem [23]: finitary satisfiability for predi-
cate logic restricted to a single binary predicate symbol is undecidable and not
recursively enumerable. The undecidability of first-order separation logic with a
single record field was then established in [4] and a bit later in [8] with the fur-
ther restriction that only two individual variables are permitted. Undecidability
can be established in various ways: in [9] by reduction from the halting prob-
lem for Minsky machines [15] or from the satisfiability problem for FO2 on data
words with a linear ordering on data [3]. Despite these negative results, many
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fragments of separation logic are known to be decidable and used in practice,
mainly thanks to the absence of the separation implication, see e.g. [1,7,17,20].
For instance, the symbolic-heap fragment is free of separating implication and
the propositional fragment of separation logic can be decided in polynomial
space [5]. Semi-decision procedures for fragments with separating implication
can be found in [22]. First-order separation logic with all separating connectives
but with a single variable is shown in pspace in [10].
Our Motivations. Undecidable fragments of separation logic allow still too much
freedom whereas the decidable fragments with relatively low complexity are still
poorly expressive. The real question is how to reduce this gap by introducing
restrictions based on negations (see also the related work [21] about restrictions
on negations). In this paper, we consider semi-positive separation logic with two
variables, denoted by SPSL2, where negation symbols only occur in front of the
atomic formulae. Our goal is to understand the influence of the restricted use of
negations on the decidability/complexity of the satisfiability problem.

We know that SPSL2
(

(
f

↪→)f∈F, ∗
)

(where F is a finite set of fields,
f

↪→ and ∗
represent the “points-to” and “separating conjunction” modality respectively),
the fragment of SPSL2 where separating implication does not occur, admits a
decidable satisfiability problem if F = {f} (that is, there is exactly one field),

since SL2
(

f
↪→, ∗

)

, the smallest extension of SPSL2
(

f
↪→, ∗

)

closed under nega-

tions, is decidable with a non-elementary computational complexity (cf. [4], the
lower bound with only two variables was shown in [9]). Nevertheless, to the best
of our knowledge, the decidability and complexity of various fragments of SPSL2
are still largely open.
Our contributions. As a starting point towards a complete decidability/complexity
charaterization of SPSL2, we show that the satisfiability of the following fragments
of SPSL2 is nexptime-complete (cf. Sect. 2 for the definition of these fragments).

1. SPSL2
(

(
f

↪→)f∈F

)

and SPSL2
(

(
f

↪→)f∈F,P
)

, where separating operators do

not occur, and P denotes a finite set of unary predicates. The nexptime
lower bound holds even if there is only one field, that is, F = {f}. The upper
bound proof is obtained by a reduction to the finite satisfiability of first-
order logic with two variables and counting quantifiers, which is nexptime-
complete [18,19]. The lower bound is shown by encoding the solutions of a

given exponential-size tiling problem into a formula in SPSL2
(

f
↪→

)

, where

only one function symbol f is used and no unary predicates are needed.

2. ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

, the extension of SPSL2
(

(
f

↪→)f∈F

)

with separating

conjunction ∗ and septraction ¬−∗ (the dual operator of magic wand −∗), where
neither ∗ nor ¬−∗ occurs in the scope of universal quantifiers. The result is

obtained by a reduction to the satisfiability of SPSL2
(

(
f

↪→)f∈F,P
)

formulae.
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Related work. Logics with two variables are a classical topic in mathematical logic
and theoretical computer science. Over arbitrary relational structures, first-order
logic with two variables and its extensions have been investigated intensively, see
[12–14,16,18,19] (to cite a few). In [18,19], it is well-known that the satisfiability
and finite satisfiability problem of C2, first-order logic with two variables and
counting quantifiers, are nexptime-complete. Since function symbols can be
encoded by relation symbols with the help of counting quantifiers, it follows that

the satisfiability problem of SPSL2
(

(
f

↪→)f∈F,P
)

is in nexptime. In addition,

it was shown that the (finite) satisfiability problem of first-order logic with two
variables and unary predicates is already nexptime-hard. The nexptime lower
bound we obtained is novel in the sense that in our reduction, only one function
symbol but no unary predicates is used. First-order logic with two variables on
special classes of structures, e.g. words and trees, has also been investigated
[2,11]. In [6], first-order logic with two variables and deterministic transitive
closure over one binary relation was considered and its the satisfiability problem
was shown to be expspace-complete.
Outline of the paper. Preliminaries are given in Sect. 2. In Sect. 3, the satisfia-

bility of SPSL2
(

(
f

↪→)f∈F

)

and SPSL2
(

(
f

↪→)f∈F,P
)

is shown to be nexptime-

complete. Section 4 is devoted to ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

.

2 Preliminaries

For n ∈ N, let [n] denote the set {0, . . . , n − 1}. For n,m ∈ N such that n ≤ m,
let [n,m] = {n, n + 1, . . . , m}. Let F denote a finite set of fields. A heap h over
F is a collection of partial functions (hf)f∈F : N ⇀ N such that each of them has
a finite domain. We write dom(hf) to denote the domain of hf and ran(hf) to
denote its range. In addition, we use loc(hf) to denote dom(hf) ∪ ran(hf). We
also use dom(h) to denote

⋃

f∈F

dom(hf), ran(h) to denote
⋃

f∈F

ran(hf), and loc(h)

to denote
⋃

f∈F

loc(hf). Two heaps h1 = (h1,f)f∈F and h2 = (h2,f)f∈F are said to

be disjoint , denoted h1 ⊥ h2, if dom(h1) ∩ dom(h2) = ∅; when this holds, we
write h1 
 h2 to denote the collection of partial functions (hf)f∈F such that hf is
obtained from h1,f and h2,f by taking their disjoint union.

We introduce some graph-theoretical notations for heaps. Let h = (hf)f∈F

and f ∈ F.

– Let l and l′ be two locations. If hf(l) = l′, then l′ is said to be the f-successor
of l (resp. l is said to be an f-predecessor of l′) in h.

– An f-path in h is a sequence of locations, say l0l1 . . . lk (where k ≥ 0), such
that for each j : 0 ≤ j < k, lj+1 is the f-successor of lj . The location l0 and
lk are called the start location and end location of the f-path respectively. In
addition, k is called the length of the f-path. An f-path l0l1 . . . lk is called an
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f-cycle if k ≥ 1 and l0 = lk. If l ∈ N is the end location of an f-path, then we
also call the f-path as a backward f-path of l.

– Let G[hf] be the directed graph corresponding to hf, that is, the graph where
the set of nodes is loc(hf), and for each pair of locations l, l′ ∈ loc(hf), there
is an arc from l to l′ iff hf(l) = l′. Note that G[hf] has a special structure in the
sense that each node has at most one successor (as a result of the fact that hf
is a partial function). Suppose that C is a connected component of G[hf], then
the partial function h′

f such that G[h′
f] = C (this means that loc(h′

f) is the set
of nodes in C, and h′

f(l) = l′ iff there is an arc from l to l′ in C iff hf(l) = l′), is
called a connected component of h.

Formulae in SPSL2
(

(
f

↪→)f∈F, ∗,−∗
)

, semi-positive separation logic with two

variables, are defined by the following rules:

v ::= x | y,
α ::= v = v | v f

↪→ v,
φ ::= α | ¬α | φ ∨ φ | φ ∧ φ | ∃v.φ | ∀v.φ | φ ∗ φ | φ−∗ φ,

where x and y are two distinguished first-order variables, and f ∈ F.

We write SPSL2
(

(
f

↪→)f∈F

)

to denote the fragment of SPSL2
(

(
f

↪→)f∈F, ∗,−∗
)

without separating connectives (remove the last two rules in the definition of φ).

Note that SPSL2
(

(
f

↪→)f∈F

)

can be seen as first-order logic with two variables and

|F| function symbols (where |F| denote the cardinality of F). Similarly, we write

SPSL2
(

(
f

↪→)f∈F, ∗
)

to denote the fragment of SPSL2
(

(
f

↪→)f∈F, ∗,−∗
)

without

separating implication (remove the last rule in the definition of φ). We use |φ| to
denote the size of φ. In addition, the set of subformulae of φ, denoted by Sub(φ),
can be defined in a standard way.

An assignment is a map m : {x, y} → N. For an assignment m and l ∈ N,
we use m[v �→ l] denote the assignment that is the same as m, except that
it maps v to l (where v = x, y). The satisfaction relation |= is parameterised
by assignments and defined as follows (clauses are omitted when these can be
obtained by permuting the two variables below):

– h |=m v1 = v2
def⇔ m(v1) = m(v2).

– h |=m ¬(v1 = v2)
def⇔ m(v1) �= m(v2).

– h |=m v1
f

↪→ v2
def⇔ m(v1) ∈ dom(hf) and hf(m(v1)) = m(v2).

– h |=m ¬(v1
f

↪→ v2)
def⇔ m(v1) �∈ dom(hf) or otherwise hf(m(v1)) �= m(v2).

– h |=m φ1 ∧ φ2
def⇔ h |=m φ1 and h |=m φ2.

– h |=m φ1 ∨ φ2
def⇔ h |=m φ1 or h |=m φ2.

– h |=m φ1 ∗ φ2
def⇔ there exist h1, h2 such that h1 ⊥ h2, h = h1 
 h2, h1 |=m φ1

and h2 |=m φ2.
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– h |=m φ1 −∗φ2
def⇔ for all h′, if h ⊥ h′ and h′ |=m φ1 then h 
 h′ |=m φ2.

– h |=m ∃v.φ def⇔ there is l ∈ N such that h |=m[v �→l] φ.
– h |=m ∀v.φ def⇔ for every l ∈ N, h |=m[v �→l] φ.

If φ is a sentence, we also omit m and we write h |= φ since m is irrelevant in
this case. A formula φ is satisfiable if there is a pair (h,m) such that h |=m φ.
The satisfiability problem asks whether φ is satisfiable, given a formula φ.

We are also interested another separating operator ¬−∗, called “septraction”,
which is the dual operator of −∗, that is, φ1

¬−∗ φ2 ≡ ¬(φ1 −∗ ¬φ2). More specifi-
cally, h |=m φ1

¬−∗ φ2
def⇔ there is h′ such that h ⊥ h′, h′ |=m φ1, and h
h′ |=m φ2.

Then we can define the logic SPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

by replacing the rule φ−∗ φ

in the definition of SPSL2
(

(
f

↪→)f∈F, ∗,−∗
)

with φ ¬−∗ φ. Note that if the rule

φ ¬−∗ φ was added to the definition of SPSL2
(

(
f

↪→)f∈F, ∗,−∗
)

, then the resulting

logic would become undecidable ([8]).
In this paper, we also consider an additional fragment whose definition is

presented below. Let ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

denote existential SPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

, which is the extension of SPSL2
(

(
f

↪→)f∈F

)

with ∗ and ¬−∗ such

that no occurrences of ∗ and ¬−∗ are in the scope of universal quantifiers. More

precisely, ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formulae ψ are defined by the following rules,

ψ ::= φ | ψ ∨ ψ | ψ ∧ ψ | ∃v. ψ | ψ ∗ ψ | ψ ¬−∗ ψ,

where φ is an SPSL2
(

(
f

↪→)f∈F

)

formula. Note that since SPSL2
(

(
f

↪→)f∈F

)

for-

mulae may contain universal quantifiers, we notice that universal quantifiers may

still occur in the ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formulae.

Example 1. Let ψ
def= (¬ x = y) ∧ (ψ′

1
¬−∗ ψ′

2)
¬−∗ (ψ′

3
¬−∗ ψ′

4), where

– ψ′
1

def= x
f

↪→ y expresses that y is the f-successor of x,

– ψ′
2

def= (∃y. x f
↪→ y) ∧ (∃y. y f

↪→ x) expresses that the f-successor of x exists and
there is an f-predecessor of x,

– ψ′
3

def= ¬ x
f

↪→ y ∧ ∃y. (x
f

↪→ y ∧ ∀x. ¬y f
↪→ x) expresses that y is not the

f-successor of x, but the f-successor of x exists, and the f-successor of x has no
f-successor, and

– ψ′
4

def= ((∃y. y f
↪→ x) ∗ (∃y. y f

↪→ x)) ∧ ∃y. (x
f

↪→ y ∧ ∃x. (y
f

↪→ x)) expresses that
there are two distinct f-predecessors of x and a path of length at least two
starting from x.
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Then ψ is an ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formula. It is not hard to see that h |=m

ψ′
1

¬−∗ ψ′
2 iff m(x) has an f-predecessor in h, and h |=m ψ′

3
¬−∗ ψ′

4 iff m(x) has two
f-predecessors in h and there is a location l �= m(y) such that the f-successor of l
exists in h. Therefore, h |=m ψ iff m(x) �= m(y), there is an f-predecessor of m(x)
in h, and there is a location l �= m(y) such that the f-successor of l exists in h.��

For the presentation of the decision procedure for ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

in

Sect. 4, the extension of SPSL2
(

(
f

↪→)f∈F

)

with unary predicates is also relevant.

Let P be a finite set of unary predicates. The extension of SPSL2
(

(
f

↪→)f∈F

)

with unary predicates from P, denoted by SPSL2
(

(
f

↪→)f∈F,P
)

, is defined by the

syntax rules of SPSL2
(

(
f

↪→)f∈F

)

, plus two new rules φ ::= P (v) | ¬P (v), where

P ∈ P.

The semantics of SPSL2
(

(
f

↪→)f∈F,P
)

formulae are defined as a relation

(h,I) |=m φ, where h,m are as before, and I : N → 2P is a function such
that dom(I) = {l ∈ N | I(l) �= ∅} is finite. The relation (h,I) |=m φ is a natural
extension of the relation h |=m φ defined above, where (h,I) |=m P (v) def⇔ P ∈
I(m(v)), and (h,I) |=m ¬P (v) def⇔ P /∈ I(m(v)). The function I can also be
seen in another way: It assigns each P ∈ P a finite subset of N, that is, the
set {l ∈ N | P ∈ I(l)}. The pairs (h,I) are called labeled heaps. Note that in
a labeled heap (h,I), there may exist l /∈ loc(h) such that I(l) �= ∅, in other
words, dom(I) may not necessarily be a subset of loc(h).

3 SPSL2

(

(
f

↪→)f∈F

)

and SPSL2

(

(
f

↪→)f∈F, P
)

This section is devoted to the proof of the following result.

Theorem 1. The satisfiability of SPSL2
(

(
f

↪→)f∈F

)

and SPSL2
(

(
f

↪→)f∈F,P
)

is

nexptime-complete.

The rest of this section is devoted to the proof of Theorem 1. We consider
the lower bound first, then the upper bound.

3.1 Lower Bound

We show the lower bound for the special case that F = {f} and SPSL2(
f

↪→), that
is, the satisfiability problem is nexptime-hard even if there is only one field
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and there are no unary predicates. Since F = {f}, in the following, for brevity,
we will omit f in the proof of the lower bound. The lower bound is obtained
by a reduction from the exponential-size tiling problem. The problem is defined
as follows: Given a tuple (D,H, V, u), where D = {d1, . . . , ds} is a finite set of
tiles, H,V ⊆ D × D, u = u0 . . . un−1 ∈ Dn, decide whether there is a tiling
t : [2n] × [2n] → D such that

– horizontal constraint: for all i, j ∈ [2n], if t(i, j) = d and t(i + 1, j) = d′, then
(d, d′) ∈ H,

– vertical constraint: for all i, j ∈ [2n], if t(i, j) = d and t(i, j + 1) = d′, then
(d, d′) ∈ V ,

– initial condition: for every i ∈ [n], t(i, 0) = ui.

A tiling t is equivalent to the set Xt = {(i, j, t(i, j)) : i, j ∈ [2n]} and therefore
we explain below how to encode such a set by a heap. Given a heap h, we say
that a location l has a backward path of length exactly i ≥ 1 iff there are
locations l0, . . . , li such that li = l, l0 has no predecessor and for every j ∈ [1, i],
h(lj−1) = lj . A triple (i, j, d) in Xt is encoded by a connected component C
satisfying the following constraints.

– There is a location l in C without successor and with at least one prede-
cessor, which is identified by the following formula tile(x) def= (∃y. (y ↪→
x)) ∧ ∀y. ¬(x ↪→ y).

– For every k ∈ [1, s], d = dk iff l has a backward path of length exactly 2n + k.
It is not hard to construct an SPSL2(↪→) formula dk to describe this property.

– For every k ∈ [1, n], the kth bit in the binary representation of i (here the
left-most bit is the first bit) is equal to 1 iff l has a backward path of length
exactly k. Similarly, this property can be described by an SPSL2(↪→) formula
hk.

– For every k ∈ [1, n], the kth bit in the binary representation of j is equal to 1
iff l has a backward path of length exactly n + k. Similarly, this property can
be described by an SPSL2(↪→) formula vk.

Then an SPSL2(↪→) formula φ can be constructed so that φ is satisfiable iff
the tiling problem instance has a solution.

In the following, we first define the formulae in SPSL2(↪→) with a unique
free variable, say h1(x), . . . , hn(x), v1(x), . . . , vn(x), d1(x), . . . , ds(x), then φ. By
swapping x and y, we also get the formulae h1(y), . . . , hn(y), v1(y), . . . , vn(y),
d1(y), . . . , ds(y).

Let us start by defining some auxiliary formulae.

1. ψ1(x)
def= ∃ y (y ↪→ x ∧ ∀ x (¬x ↪→ y)). The formula ψ1(x) simply states that

x has a predecessor with no predecessors (but x may have other arbitrary
predecessors).
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2. ψi(x)
def= ∃ y (y ↪→ x∧∧ψi−1(y)) for every i ≥ 2. Assuming that x is interpreted

by l, the formula ψi(x) simply states that l has a backward path of length
exactly i.

Now let us define the formulae hi(x), vi(x) and di(x).

– For every i ∈ [1, n], hi(x)
def= ψi(x).

– For every i ∈ [1, n], vi(x)
def= ψn+i(x).

– For every i ∈ [1, s], di(x)
def= ψ2n+i(x).

The three types of formulae are therefore only distinguished by path lengths.
Let φ be defined as the conjunction of the following formulae.

– Two locations encoding a position in the arena satisfy exactly the same for-
mulae among h1(x), . . . , hn(x), v1(x), . . . , vn(x) are necessarily identical:

φ1
def= ∀ x.∀y.

([
tile(x) ∧ tile(y) ∧∧

i∈[1,n]

((hi(x) ↔ hi(y)) ∧ (vi(x) ↔ vi(y)))

]

→ x = y

)

.

– There is a location that corresponds to the bottom left position:

φ2
def= ∃ x.

⎛

⎝tile(x) ∧
∧

i∈[1,n]

(¬hi(x) ∧ ¬vi(x))

⎞

⎠ .

– Each location encoding a position in the arena satisfies a unique tile:

φ3
def= ∀ x.

⎛

⎝tile(x) →
∨

i∈[1,s]

⎛

⎝di(x) ∧
∧

j∈[1,s]\{i}
¬dj(x)

⎞

⎠

⎞

⎠ .

– Horizontal constraint for two consecutive positions within the same row:

φ4
def= ∀ x.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

tile(x) ∧ ∧

i∈[1,n]

(

¬hi(x) ∧ ∧

i<j≤n

hj(x)

)]

→

∃ y.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

tile(y) ∧ ∨

(dl,dm)∈H

(dl(x) ∧ dm(y)) ∧
∧

j∈[1,n]

(vj(x) ↔ vj(y)) ∧ ∧

1≤j<i

(hj(x) ↔ hj(y)) ∧

hi(y) ∧ ∧

i<j≤n

¬hj(y)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

– The end of a row is immediately followed by the beginning of the next row, if
any:

φ5
def
= ∀ x.

∧

i∈[1,n]

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

tile(x) ∧
(
∧

j∈[1,n]

hj(x)

)

∧ ¬vi(x) ∧ ∧

i<j≤n

vj(x)

]

→

∃ y.

⎡

⎢
⎢
⎢
⎢
⎣

tile(y) ∧
(
∧

j∈[1,n]

¬hj(y)

)

∧
(
∧

1≤j<i

vj(x) ↔ vj(y)

)

∧ vi(y) ∧ ∧

i<j≤n

¬vj(y)

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Satisfaction of the formulae φ2, φ3, φ4 and φ5 guarantees that all the positions
in the arena are encoded. Unicity of such an encoding is a consequence of the
satisfaction of φ1.

– Vertical constraint between two consecutive vertical positions:

φ6
def
= ∀ x.

∧

i∈[1,n]

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

tile(x) ∧ (¬vi(x)) ∧ ∧

i<j≤n

vj(x)

]

→

∃ y.

⎡

⎢
⎢
⎢
⎢
⎣

tile(y) ∧ ∨

(dl,dm)∈V

(dl(x) ∧ dm(y)) ∧
∧

j∈[1,n]

(hj(x) ↔ hj(y)) ∧ ∧

1≤j<i

(vj(x) ↔ vj(y)) ∧
vi(y) ∧ ∧

i<j≤n

(¬vj(y))

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

– Suppose u0 . . . un−1 = dj0 . . . djn−1 , then the initial condition is specified as
follows:

φ7
def=

∧

i∈[0,n−1]

∃ x.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

tile(x) ∧ ∧

j′∈[1,n]

(¬vj′(x)) ∧ dji(x) ∧
∧

j′∈[1,n], j′-th bit of i is 1

hj′(x) ∧
∧

j′∈[1,n], j′-th bit of i is 0

¬hj′(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Note that for readability, we choose to write the formulae φ1, . . . , φ7 above not
in negation normal form as required in the definition of the logic SPSL2(↪→) (cf.
Sect. 2). Nevertheless, since the logic SPSL2(↪→) is closed under negations, those
formulae can be easily rewritten into the required form.

Lemma 1. The formula φ is satisfiable iff the tiling problem instance has a
solution.

Proof. First, suppose the tiling problem instance has a solution t. Then we con-
struct a heap h from t such that

– t comprises 2n × 2n connected components, one for each (i, j) ∈ [2n] × [2n]
(denoted by Ci,j),

– each Ci,j is a tree, which comprises the following backward paths from the
root l,

• for each k ∈ [1, n], l has a backward path of length exactly k (resp. n+k)
iff the kth bit of the binary representation of i (resp. j) is equal to 1,

• let t(i, j) = dk, then l has a backward path of length exactly 2n + k.

Since t satisfies the horizontal and vertical constraint, as well as the initial con-
dition, h |= φ4 ∧ φ5 ∧ φ6 ∧ φ7. Moreover, from the construction of h, we know
that h |= φ1 ∧ φ2 ∧ φ3. Therefore, we conclude that h |= φ.

Let us establish the other direction. Suppose that φ is satisfiable. Then there
is a heap h satisfying φ. From the fact that h |= φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5, we
know that for each (i, j) ∈ [2n]× [2n], there is exactly one connected component
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Ci,j such that for each k ∈ [1, n], the root of Ci,j has a backward path of length
exactly k (resp. n + k) iff the kth bit of the binary representation of i (resp.
j) is equal to 1. We construct a tiling t : [2n] × [2n] → D as follows: For each
(i, j) ∈ [2n]× [2n], suppose k ∈ [1, s] satisfies that the root of Ci,j has a backward
path of length exactly 2n + k (such a k exists since h |= φ3), let t(i, j) = dk.
Because h |= φ4 ∧ φ6 ∧ φ7, we know that t satisfies the horizontal and vertical
constraint as well as the initial condition. Therefore, t is a solution of the tiling
problem instance. ��

3.2 Upper Bound

The upper bound is obtained by a linear time reduction to the finite satisfi-
ability problem of first-order logic with two-variables and counting quantifiers
(denoted by C2), which can be decided in nexptime [18,19]. Before presenting
the reduction, we first recall the definition of C2. A purely relational vocabulary
V comprises relational symbols, but no function symbols, nor constants. The
logic C2 over a purely relational vocabulary V is defined by the following rules,

v ::= x | y,
ϕ ::= v = v | R(v̄) | ¬ϕ | ϕ ∨ ϕ | ∃�Cv. ϕ,

where R ∈ V is of arity k, v̄ ∈ {x, y}k, � ∈ {<,>,≤,≥,=}, and C ∈ N is a
constant. We assume that all the constants in C2 are encoded in binary. For
a formula ϕ ∈ C2, let |ϕ| denote the number of symbols occurring in ϕ. The
formulae in C2 are interpreted on a triple (A, I,m), where A is a domain, I
is called an interpretation function, which assigns each k-ary relation symbol
R ∈ V a subset of Ak, and m is an assignment that maps x and y to A. The
semantics of C2 formulae are defined by a relation (A, I) |=m ϕ. The semantics of
the atomic formulae, the Boolean combination, the quantifiers are standard. For
the C2 formulae ϕ = ∃=Cx. ϕ1, (A, I) |=m ϕ iff there are exactly C elements of
A, say a1, . . . , aC , such that for each i ∈ [C], (A, I) |=m[x �→ai] ϕ1. The semantics
of the formulae ∃=Cy. ϕ1, ∃>Cx. ϕ1, ∃<Cx. ϕ1, etc. can be defined similarly. Let
ϕ be a C2 formula. If (A, I) |=m ϕ, then (A, I,m) is called a model of ϕ. Then
ϕ is satisfiable if ϕ has a model, and ϕ is finitely satisfiable if ϕ has a model
(A, I,m) such that A is finite.

Lemma 2 ([18,19]). The satisfiability and finite satisfiability problem of C2

are nexptime-complete.

We are ready to present the reduction.
For each f ∈ F, introduce a fresh binary relation symbol Rf. Let V = P∪{Rf |

f ∈ F}. In the following, for each formula φ in SPSL2
(

(
f

↪→)f∈F,P
)

, we construct

a C2 formula trs(φ) = φfun ∧ ∃x.∃y. (¬x = y ∧ φrel(x) ∧ φrel(y)) ∧ φ′ over the
vocabulary V, where
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– φfun =
∧

f∈F

∀x.∃≤1y. Rf(x, y) expresses that each relation symbol Rf is the

image of a partial function,

– φrel(v) =
(

∧

P∈P
¬P (v)

)

∧ ∀v′.
∧

f∈F

(¬Rf(v, v′) ∧ ¬Rf(v′, v)), where v = x and

v′ = y, or vice versa, expresses that there is an element represented by v which
does not occur in any tuple from the union of the relations P ∈ P and Rf for
f ∈ F,

– φ′ is obtained from φ by replacing each atomic formula of the form v1
f

↪→ v2
with Rf(v1, v2).

The formula ∃x.∃y. (¬x = y ∧ φrel(x) ∧ φrel(y)) expresses that there are two
distinct elements satisfying the formula φrel.

The correctness of the reduction is guaranteed by the following result.

Proposition 1. For each SPSL2
(

(
f

↪→)f∈F,P
)

formula φ, φ is satisfiable iff

trs(φ) is finitely satisfiable.

Proof. Suppose that φ is an SPSL2
(

(
f

↪→)f∈F,P
)

formula.

“Only if” direction: Suppose that φ is satisfiable. Then there are a labeled heap
(h,I) and m such that (h,I) |=m φ.

We construct a finite set A = loc(h) ∪ (
⋃

P∈P I(P )) ∪ {l1, l2}, where

– if m(x),m(y) �∈ loc(h) ∪ (
⋃

P∈P I(P )) such that m(x) �= m(y), then let l1 =
m(x) and l2 = m(y),

– if m(x),m(y) �∈ loc(h) ∪ (
⋃

P∈P I(P )) such that m(x) = m(y), then let l1 =
m(x) and l2 be a location in N \ (

loc(h) ∪ (
⋃

P∈P I(P )) ∪ {m(x)}),
– if m(v) �∈ loc(h) ∪ (

⋃
P∈P I(P )) and m(v′) ∈ loc(h) ∪ (

⋃
P∈P I(P )), then let

l1 = m(v) and l2 be a location in N\(
loc(h) ∪ (

⋃
P∈P I(P )) ∪ {m(v)}), where

v = x and v′ = y, or vice versa,
– if m(x) ∈ loc(h) ∪ (

⋃
P∈P I(P )) and m(y) ∈ loc(h) ∪ (

⋃
P∈P I(P )), then let

l1 and l2 be two distinct locations in N \ (
loc(h) ∪ (

⋃
P∈P I(P ))

)
.

Consider the triple (A, I,m), where I(P ) = I(P ) for each P ∈ P, and
I(Rf) = {(l, l′) ∈ loc(h) × loc(h) | hf(l) = l′}. We claim that (A, I) |=m trs(φ).
Since evidently (A, I) |=m ψfun ∧∃x.∃y. (¬x = y∧φrel(x)∧φrel(y)), is sufficient
to show that (A, I) |=m φ′. In the following, we show (A, I) |=m φ′ by proving
that for each assignment m′ such that ran(m′) ⊆ A and each subformula φ1 of
φ, (h,I) |=m′ φ1 iff (A, I) |=m′ φ′

1, where φ′
1 is obtained from φ1 by replacing

each atomic formula of the form v1
f

↪→ v2 with Rf(v1, v2). We show this fact by
induction on the syntax of formulae.

– The cases φ1
def= v1 = v2 and φ1

def= ¬v1 = v2 are trivial.

– Case φ1
def= v1

f
↪→ v2: Since ran(m′) ⊆ A, (h,I) |=m′ v1

f
↪→ v2 iff hf(m′(v1)) =

m′(v2) iff (m′(v1),m′(v2)) ∈ I(Rf). Similarly for φ1
def= ¬v1 f

↪→ v2.
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– Case φ1
def= P (v): (h,I) |=m′ P (v) iff m′(v) ∈ I(P ) iff m′(v) ∈ I(P ) iff

(A, I) |=m′ P (v). Similarly for φ1
def= ¬P (v).

– Case φ1
def= φ2 ∧ φ3 or φ1

def= φ2 ∨ φ3: The arguments are standard.
– Case φ1

def= ∃x. φ2: Our goal is to show (h,I) |=m′ φ1 iff (A, I) |=m′ φ′
1. Since

the “if” direction is easy, we focus on the “only if” direction below. Suppose
(h,I) |=m′ ∃x. φ2. Then there is l′ ∈ N such that (h,I) |=m′[x �→l′] φ2.

• If l′ ∈ A, then according to the induction hypothesis, (h,I) |=m′[x �→l′] φ2

iff (A, I) |=m′[x �→l′] φ′
2.

• If l′ �∈ A, then l′ �= m′(y) since m′(y) ∈ A. Evidently, l1 �= m′(y)
or l2 �= m′(y). Without loss of generality, we assume that l1 �= m′(y).
Because neither l1 nor l′ belongs to loc(h) ∪ ⋃

P∈P
I(P ), we deduce that

(h,I) |=m′[x �→l′] φ2 iff (h,I) |=m′[x �→l1] φ2. From the induction hypothesis,
(h,I) |=m′[x �→l1] φ2 iff (A, I) |=m′[x �→l1] φ′

2. Therefore, (A, I) |=m′[x �→l1] φ′
2

and (A, I) |=m′ ∃x. φ′
2.

– Case φ1
def= ∃y. φ2: Similarly to the previous case.

– Case φ1
def= ∀x. φ2: Suppose that (h,I) |=m′ ∀x. φ2. Then for each l′ ∈ N,

(h,I) |=m′[x �→l′] φ2. For each l′ ∈ A, according to the induction hypothe-
sis, (h,I) |=m′[x �→l′] φ2 iff (A, I) |=m′[x �→l′] φ′

2. Therefore, for each l′ ∈ A,
we have (A, I) |=m′[x �→l′] φ′

2. We conclude that (A, I) |=m′ ∀x. φ′
2 = φ′

1.
On the other hand, suppose that (A, I) |=m′ φ′

1 = ∀x. φ′
2. Then for each

l′ ∈ A, (A, I) |=m′[x �→l′] φ′
2. By the induction hypothesis, for each l′ ∈ A,

(h,I) |=m′[x �→l′] φ2 iff (A, I) |=m′[x �→l′] φ′
2. Therefore, for each l′ ∈ A,

(h,I) |=m′[x �→l′] φ2. Now suppose l′ ∈ N \ A. Without loss of generality, sup-
pose that l1 �= m′(y). Because neither l1 nor l′ belongs to loc(h) ∪ ⋃

P∈P
I(P ),

(h,I) |=m′[x �→l′] φ2 iff (h,I) |=m′[x �→l1] φ2. From this, we deduce that for each
l′ ∈ N \ A, (h,I) |=m′[x �→l′] φ2. Thus for each l′ ∈ N, (h,I) |=m′[x �→l′] φ2, that
is, (h,I) |=m′[x �→l′] ∀x. φ2 = φ1.

– Case φ1
def= ∀y. φ2: Similarly to the previous case.

“If” direction: Suppose that trs(φ) is finitely satisfiable. Then there is a model
(A, I,m) of trs(φ) such that A is finite. Without loss of generality, we assume
that A is a subset of N.

We construct (h,I) such that hf(l) = l′ iff (l, l′) ∈ I(Rf) for each f ∈ F, and
l ∈ I(P ) iff l ∈ I(P ) for each P ∈ P. Since (A, I) |=m ψfun ∧ ∃x.∃y. (¬x =
y ∧ φrel(x) ∧ φrel(y)), we know that each hf for f ∈ F is a partial function, and

there are two distinct locations l1, l2 ∈ A\
(

loc(h) ∪ ⋃

P∈P
I(P )

)

. Similarly to the

arguments in the “Only if” direction, we can show that for each assignment m′

such that ran(m′) ⊆ A and each subformula φ1 of φ, (h,I) |=m′ φ1 iff (A, I) |=m′

φ′
1. From this, we deduce that (h,I) |=m φ iff (A, I) |=m φ′. We then conclude

that (h,I) |=m φ. ��
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4 ESPSL2

(

(
f

↪→)f∈F, ∗,
¬−∗

)

In this section, we present the main result of this paper.

Theorem 2. The satisfiability problem of ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

isnexptime-

complete.

The rest of this section is devoted to the proof of Theorem 2. The
basic idea of the proof is to reduce in polynomial time the satisfiability

of ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formulae to that of SPSL2
(

(
f

↪→)f∈F,P ′
)

formu-

lae (for some P ′), which is nexptime-complete (cf. Theorem 1). The main
idea of the reduction is as follows: For a heap h, an assignment m, and an

ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formula ψ such that h |=m ψ, in order to witness the

fact h |=m ψ, some other heaps should be added to h. Nevertheless, these addi-
tional heaps may conflict with each other. For instance, in Example 1, two heaps
corresponding to ψ′

1 and ψ′
3 should be added, but these two heaps conflict with

each other, since ψ′
1 says that y is the f-successor of x, while ψ′

3 says that the
f-successor of x exists but is different from y. In the reduction from the sat-

isfiability of ψ to that of a SPSL2
(

(
f

↪→)f∈F,P ′
)

formula below, the fields in

the subformulae of ψ conflicting with each other are renamed, so that after the
renaming, these subformulae refer to different fields. In addition, to guarantee
the correctness of the reduction, some necessary constraints should be added to
these fields as well as the unary predicates from P ′.

We introduce a concept of syntax trees which will be used in the reduction.

Let ψ be an ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formula. A syntax tree Tψ = (T,E,L)

can be constructed inductively as follows, where T is a set of nodes, E is the
child-parent relation, and L : T → Sub(ψ) is a labeling function.

– Case ψ
def= φ, where φ is a SPSL2

(

(
f

↪→)f∈F

)

formula: Then Tψ = ({t}, ∅, L)

such that L(t) = ψ,
– Case ψ

def= ψ1 � ψ2 (where � = ∨,∧, ∗, ¬−∗): Suppose two syntax trees
Tψ1 = (T1, E1, L1) and Tψ2 = (T2, E2, L2) have been constructed for ψ1 and
ψ2 respectively. Without loss of generality, suppose T1 ∩ T2 = ∅ and the roots
of Tψ1 and Tψ2 are t1 and t2 respectively. Then Tψ = (T1 ∪ T2 ∪ {t}, E1 ∪ E2 ∪
{(t1, l, t), (t2, r, t)}, L1 ∪ L2 ∪ {t �→ ψ}), where t is a new node not in T1 or T2,
and the label sl, r denote the left and right child respectively.

– Case ψ
def= ∃v. ψ1: Suppose a syntax tree Tψ1 = (T1, E1, L1) has been con-

structed for ψ1. Then Tψ = (T1 ∪ {t}, E1 ∪ {(t1, l, t)}, L1 ∪ {t �→ ψ}), where t
is a new node not in T1.
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Let ψ be an ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formula and Tψ = (T,E,L). For each

t ∈ T , we introduce a fresh unary predicate P ′
t . In addition, for each node

t ∈ T and f ∈ F, introduce a fresh field f′t. Let P ′ be the set of freshly
introduced unary predicates, and F

′ be the set of freshly introduced fields.

Our goal is to use Tψ to construct an SPSL2
(

(
f′t
↪→)f′t∈F′ ,P ′

)

formula trs(ψ) so

that ψ is satisfiable iff trs(ψ) is satisfiable. Toward this purpose, for each node

t ∈ T , we construct an SPSL2
(

(
f

↪→)f∈F,P ′
)

formula φt. Then let trs(ψ) def=

∧

t∈T

(

∀x. P ′
t (x) ↔ ∨

f∈F

∃y. x f′t
↪→ y

)

∧ φt0 , where t0 is the root of Tψ. The formulae

φt for t ∈ T are computed inductively as follows.

– If L(t) = φ for some SPSL2
(

(
f

↪→)f∈F

)

formula φ, then φt
def= φ′, where φ′ is

obtained from φ by replacing each occurrence of f ∈ F with f′t.
– If L(t) = ψ1 �ψ2 (where � ∈ {∨,∧}) and t1, t2 are two children of t such that

L(t1) = ψ1 and L(t2) = ψ2, suppose φt1 and φt2 have been computed from t1
and t2 respectively, then

φt
def= P ′

t = P ′
t1 = P ′

t2 ∧
∧

f∈F

f′t = f′t1 = f′t2 ∧ (φt1 � φt2),

where P ′
t = P ′

t1 = P ′
t2 is an abbreviation of ∀x. (P ′

t (x) ↔ P ′
t1(x)) ∧ (P ′

t (x) ↔

P ′
t2(x)) and f′t = f′t1 = f′t2 is an abbreviation of ∀x.∀y.

(

x
f′t
↪→ y ↔ x

f′t1
↪→ y

)

∧
(

x
f′t
↪→ y ↔ x

f′t2
↪→ y

)

.

– If L(t) = ∃v. ψ1 and t1 is the only child of t, suppose φt1 has been computed,
then φt

def= P ′
t = P ′

t1 ∧ ∧

f∈F

f′t = f′t1 ∧ ∃v. φt1 , where P ′
t = P ′

t1 and f′t = f′t1 are

abbreviations of formulae defined similarly to the previous case.
– If L(t) = ψ1 ∗ ψ2 and t1, t2 are two children of t such that L(t1) = ψ1 and

L(t2) = ψ2, suppose φt1 and φt2 have been computed, then

φt
def= P ′

t = P ′
t1 
 P ′

t2 ∧
∧

f∈F

f′t = f′t1 
 f′t2 ∧ φt1 ∧ φt2 ,

where P ′
t = P ′

t1 
 P ′
t2 is an abbreviation of ∀x. (P ′

t (x) ↔ (P ′
t1(x) ∨ P ′

t2(x))) ∧
∀x. (¬P ′

t1(x) ∨ ¬P ′
t2(x)) and f′t = f′t1 
 f′t2 is an abbreviation of ∀x. ∀y. x f′t

↪→

y ↔
(

x
f′t1
↪→ y ∨ x

f′t2
↪→ y

)

∧ ∀x. ∀y.
(

¬x
f′t1
↪→ y ∨ ¬x

f′t2
↪→ y

)

.
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– If L(t) = ψ1
¬−∗ ψ2 and t1, t2 are two children of t such that L(t1) = ψ1 and

L(t2) = ψ2, suppose φt1 and φt2 have been computed, then

φt
def= P ′

t2 = P ′
t 
 P ′

t1 ∧
∧

f∈F

f′t2 = f′t 
 f′t1 ∧ φt1 ∧ φt2 ,

where P ′
t = P ′

t1 
 P ′
t2 and f′t2 = f′t 
 f′t1 are abbreviations of the formulae that

can be defined similarly to the previous case.

Example 2. Let ψ
def= (¬ x = y) ∧ (ψ′

1
¬−∗ ψ′

2)
¬−∗ (ψ′

3
¬−∗ ψ′

4) be the formula in
Example 1. Then Tψ is illustrated in Fig. 1. By a bottom-up computation, we

get φt5
def= x

f′t5
↪→ y,

φt3
def= P ′

t6 = P ′
t5 
 P ′

t3 ∧ f′t6 = f′t5 
 f′t3 ∧ x
f′t5
↪→ y ∧ ∃y. x

f′t6
↪→ y ∧ ∃y. y

f′t6
↪→ x,

φt9
def= P ′

t9 = P ′
t11 
 P ′

t12 ∧ f′t9 = f′t11 
 f′t12 ∧ ∃y. y
f′t11
↪→ x ∧ ∃y. y

f′t12
↪→ x,

and φt8
def= P ′

t8 = P ′
t9 = P ′

t10 ∧ ∧

f∈F

f′t8 = f′t9 = f′t10 ∧ φt9 ∧ φt10 , where φt10 is the

formula corresponding to t10, and φt7
def= ¬x

f′t7
↪→ y∧∃y.

(

x
f′t7
↪→ y ∧ ∀x. ¬y

f′t7
↪→ x

)

,

in addition, φt4 can be constructed from φt7 and φt8 , similarly to the construction
of φt3 , and φt2

def= P ′
t4 = P ′

t3 
 P ′
t2 ∧ f′t4 = f′t3 
 f′t2 ∧ φt3 ∧ φt4 . The formula

φt3 contains a conjunct φt5 = x
f′t5
↪→ y, while φt4 contains a conjunct φt7 =

¬x
f′t7
↪→ y ∧ ∃y.

(

x
f′t7
↪→ y ∧ ∀x. ¬y

f′t7
↪→ x

)

. Thus the conflict between ψ′
1 and ψ′

3 is

resolved. ��

Proposition 2. For each ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formula ψ, ψ is satisfiable

iff trs(ψ) is satisfiable.

Proof. Suppose ψ is an ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

formula.

“Only if” direction: Suppose that ψ is satisfiable, that is, there is a pair (h,m)
such that h |=m ψ.

Let Leaves(Tψ) denote the set of leaves of Tψ. Then {L(t) | t ∈ Leaves(Tψ)}
is a subset of SPSL2

(

(
f

↪→)f∈F

)

formulae. Since h |=m ψ, we know that there is

a subset of Leaves(Tψ), say T ′, such that each t′ ∈ T ′ can be assigned a heap
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ψ

¬x = y

ψ′
3

¬−∗ ψ′
4ψ′

1
¬−∗ ψ′

2

ψ′
1 ψ′

2
ψ′
3 ψ′

4

(ψ′
1

¬−∗ ψ′
2)

¬−∗ (ψ′
3

¬−∗ ψ′
4)

∃y. y f
↪→ x ∃y. y f

↪→ x

∃y. (x
f

↪→ y ∧ ∃x. y f
↪→ x)(∃y. y f

↪→ x) ∗ (∃y. y f
↪→ x)

t

t1
t2

t3 t4

t5 t6 t7
t8

t9 t10

t11 t12

Fig. 1. The syntax tree Tψ: an example

ht′ with a nonempty-domain, in order to witness the fact h |=m ψ. Then we
construct a heap h′ to satisfy trs(ψ) as follows:

1. For each t′ ∈ T ′, let (h′
t′ ,I′

t′) be the labeled heap such that for each f ∈ F,
(h′

t′)f′
t′ (l) = l′ iff (ht′)f(l) = l′, in addition, I′

t′(P ′
t′) = dom(h′

t′) and I′
t′(P ′) = ∅

for each other unary predicate P ′ ∈ P ′. Moreover, for each leaf t′ �∈ T ′,
let (ht′ ,I′

t′) be the labeled heap such that ht′ has an empty domain and
I′

t′(P ′) = ∅ for each P ′ ∈ P ′.
2. By induction on the structure of Tψ, we can construct bottom-up a labeled

heap (h′
t,I

′
t) for each node t ∈ T . In the construction, we need trace the

relationship between unary predicates in P ′ and the relationship between the
fields in F

′ which are enforced by the nodes in Tψ. For instance, if t is a node
such that L(t) = ψ1 ∗ ψ2 and t has two children t1 and t2, suppose (h′

t1 ,I
′
t1)

and (h′
t2 ,I

′
t2) have been computed, then h′

t is computed as the domain-disjoint
union of h′

t1 and h′
t2 , in addition, for each f ∈ F and each pair of locations

(l, l′), (h′
t)f′t(l) = l′ iff (h′

t1)f′t1 (l) = l′ or (h′
t2)f′t2 (l) = l′ (here (h′

t)f′t is well-
defined since (h′

t1)f′t1 and (h′
t2)f′t2 are domain-disjoint). Moreover, I′

t(P
′
t ) =

I′
t1(P

′
t1) ∪ I′

t2(P
′
t2), and for each other unary predicate P ′ ∈ P ′, I′

t(P
′) =

I′
t1(P

′) ∪ I′
t2(P

′).

“If” direction: Suppose that trs(ψ) is satisfiable. Then there is a labeled heap
(h,I) and an assignment m such that (h,I) |=m trs(ψ). The by induction on the
structure of Tψ, we can compute bottom-up a heap h′ such that h′ |=m ψ. The
construction is essentially just a renaming of the fields. ��
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5 Conclusion

In this paper, we proposed SPSL2, semi-positive first-order logic with two
variables, and investigated the complexity of the satisfiability problem of
several fragments of SPSL2. Our main result is that the satisfiability of

ESPSL2
(

(
f

↪→)f∈F, ∗, ¬−∗
)

, the fragment of SPSL2 where separating conjunc-

tion ∗ and septraction ¬−∗ (the dual operator of magic wand −∗) may occur,
but none of them occurs in the scope of universal quantifiers, is nexptime-
complete. The proof of this result relies on the nexptime-completeness result

of SPSL2
(

(
f

↪→)f∈F,P
)

, the fragment of SPSL2 where separating operators do

not occur, but unary predicates are available. A byproduct of this work is that
the finite satisfiability of first order logic with two variables and one function
symbol (without unary predicates) is nexptime-complete. Although some inter-

esting questions, e.g. the decidability of SPSL2
(

(
f

↪→)f∈F, ∗,−∗
)

, are left open in

this paper, we believe that this work can be seen as a substantial step towards
solving them in the future.
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6. Charatonik, W., Kieroński, E., Mazowiecki, F.: Decidability of weak logics with
deterministic transitive closure. In: CSL-LICS (2014)

http://dx.doi.org/10.1007/978-3-642-54830-7_27
http://dx.doi.org/10.1007/978-3-642-39212-2_10
http://dx.doi.org/10.1007/978-3-642-39212-2_10
http://dx.doi.org/10.1007/3-540-45294-X_10


196 Z. Wu

7. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23217-6 16

8. Demri, S., Deters, M.: Expressive completeness of separation logic with two vari-
ables and no separating conjunction. In: CSL-LICS, pp. 1–37 (2014)

9. Demri, S., Deters, M.: Two-variable separation logic and its inner circle. ACM
Trans. Comput. Logic 16(2), 15 (2015)

10. Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D.: Separation logic with
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Abstract. Dependency graph is an abstract mathematical structure
for representing complex causal dependencies among its vertices. Sev-
eral equivalence and model checking questions, boolean equation sys-
tems and other problems can be reduced to fixed-point computations on
dependency graphs. We develop a novel distributed algorithm for com-
puting such fixed points, prove its correctness and provide an efficient,
open-source implementation of the algorithm. The algorithm works in an
on-the-fly manner, eliminating the need to generate a priori the entire
dependency graph. We evaluate the applicability of our approach by a
number of experiments that verify weak simulation/bisimulation equiva-
lences between CCS processes and we compare the performance with the
well-known CWB tool. Even though the fixed-point computation, being
a P-complete problem, is difficult to parallelize in theory, we achieve sig-
nificant speed-ups in the performance as demonstrated on a Linux cluster
with several hundreds of cores.

1 Introduction

Formal verification techniques are increasingly applied in industrial development
of software and hardware systems, both to ensure safe and reliable behaviour of
the final system, and to reduce cost and time by finding bugs at early develop-
ment stages. In particular industrial take-up has been boosted by the maturing
of computer aided verification, where development of a variety of techniques
helps in applying verification to critical parts of systems. Heuristics for SAT
solving, abstraction, decomposition, symbolic execution, partial order reduction,
and other techniques are used to speed up the verification of systems with vari-
ous characteristics. Still, the problem of automatic verification is hard, and some
difficult cases occur frequently in practical experience. For this reason, we aim
in this paper at exploiting the computational power of parallel and distributed
machine architectures to further enlarge the scope of automated verification.

Automated verification methods contain a large variety of model-checking
and equivalence/preorder-checking algorithms. In the former, a system model is
(dis-)proved correct with respect to a logical property expressed in a suitable
temporal logic. In the latter, the system model is compared with an abstract
c© Springer International Publishing AG 2016
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model of the system with respect to a suitable behavioural equivalence or pre-
order, e.g. trace-equivalence, weak or strong bisimulation equivalence. Aiming at
providing parallel and distributed support to (essentially) all of these problems,
we design a distributed algorithm based on the notion of dependency graphs [1,2].
In particular, dependency graphs have proven a useful and universal formalism
for representing several verification problems, offering efficient analysis through
linear-time (local and global) algorithms [2] for fixed-point computation of the
corresponding dependency graph. The challenge we undertake here is to provide
a distributed algorithm for this fixed-point computation. The fact that depen-
dency graphs allow for representation of bisimulation equivalences between sys-
tem models suggests that we should not expect our distributed algorithm to
exhibit linear speed-up in all cases as bisimulation equivalence is known to be
P-complete [3]. Our experiments though still document significant speed-ups
that together with the on-the-fly nature of our algorithm (where we possibly
avoid the construction of the entire dependency graph in situations where it is
not necessary) allow us to outperform the tool CWB [4] for equivalence/model
checking of processes described in the CCS process algebra [5].

Related Work. Most closely related to our work are those of [6–8] offering par-
allel algorithms for model-checking systems with respect to the alternation-free
modal μ-calculus. The approach in [6] is based on games and tree decomposition
but the tool prototype mentioned in the paper is not available anymore. The
work in [8] reduces μ-calculus formulae into alternation free Boolean equation
systems. Finally [7] uses a global symbolic BDD-based distributed algorithm for
modal μ-calculus but does not mention any implementation. We share the on-
the-fly technique with some of these works but our framework is more universal
in the sense that we deal with the general dependency graphs where the problems
above are reducible to. There also exist several mature tools with modern designs
like FDR3 [9], CADP [10], SPIN [11] and mCRL2 [12], some of them offering
also distributed and/or on-the-fly algorithms. The input language of the tools is
however often strictly defined and extensions to these languages as well as the
range of verification methods require nontrivial changes in the implementation.
The advantage of our approach is that we first reduce a wide range of problems
into dependency graphs and then use our optimized distributed implementation
on these generic graphs. Finally, we have recently introduced CAAL [13] as a
tool for teaching CCS and verification techniques. The tool CAAL, running in a
browser and implemented in TypeScript (a typed superset of JavaScript), is also
based on dependency graphs but offers only the sequential version of the local
algorithm by Liu and Smolka [2]. Here we provide an optimized C++ implemen-
tation of the distributed algorithm thus laying the foundation for offering CAAL
verification tasks as a cloud service.

2 Definitions

A labelled transition system (LTS) is a triple (S,A,→ ) where S is a set of states,
A is a set of actions that includes the silent action τ , and →⊆ S × A × S is the
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Fig. 1. Dependency graph for weak bisimulation

transition relation. Instead of (s, a, t) ∈→ we write s
a−→ t. We also write s

a=⇒ t if
either a = τ and s

τ−→∗
t, or if a �= τ and s

τ−→∗
s′ a−→ t′ τ−→∗

t for some s′, t′ ∈ S.
A binary relation R ⊆ S×S over the set of states of an LTS is weak simulation

if whenever (s, t) ∈ R and s
a−→ s′ for some a ∈ A then also t

a=⇒ t′ such that
(s′, t′) ∈ R. If both R and R−1 = {(t, s) | (s, t) ∈ R} are weak simulations then
R is a weak bisimulation.

We say that s is weakly simulated by t and write s � t (resp. s and t are
weakly bisimilar and write s ≈ t) if there is a weak simulation (resp. weak
bisimulation) relation R such that (s, t) ∈ R.

Consider the LTS in Fig. 1a (even though it consists of two disconnected
parts, it can still be considered as a single LTS). It is easy to see that s1
weakly simulates t1 and vice versa. For example the weak simulation relation
R = {(s1, t1), (s2, t2), (s3, t4), (s4, t5)} shows that s1 is weakly simulated by t1.
However, s1 and t1 are not weakly bisimilar. Indeed, if s1 and t1 were weakly
bisimilar, the transition t1

a−→ t3 can only be matched by s1
a−→ s2 but s2 has a

transition under the label b whereas t3 does not offer such a transition.

2.1 Dependency Graphs

A dependency graph [2] is a general structure that expresses dependencies among
the vertices of the graph and by this allows us to solve a large variety of complex
computational problems by means of fixed-point computations.

Definition 1 (Dependency Graph). A dependency graph is a pair (V,E)
where V is a set of vertices and E ⊆ V × 2V is a set of hyperedges. For a
hyperedge (v, T ) ∈ E, the vertex v ∈ V is called the source vertex and T ⊆ V is
the target set.

Let G = (V,E) be a fixed dependency graph. An assignment on G is a
function A : V → {0, 1}. Let A be the set of all assignments on G. A fixed-point
assignment is an assignment A that for all (v, T ) ∈ E satisfies the following
condition: if A(v′) = 1 for all v′ ∈ T then A(v) = 1.

Figure 2 shows an example of a dependency graph. The hyperedge (a, ∅) with
the empty target set is depicted by the arrow from a to the symbol ∅. The figure
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a b c∅

Fig. 2. Dependency graph G = ({a, b, c}, {(a, ∅), (b, {a, b}), (c, {b}), (c, {a})})

also denotes a particular assignment A such that vertices with a single circle have
the value 0 and vertices with a double circle have the value 1, in order words
A(a) = A(c) = 1 and A(b) = 0. It can be easily verified that the assignment A
is a fixed-point assignment.

We are interested in the minimum fixed-point assignment. Let A1, A2 ∈ A
be assignments. We write A1 
 A2 if A1(v) ≤ A2(v) for all v ∈ V , where we
assume that 0 ≤ 1. Clearly (A,
) is a complete lattice. Let us also define a
function F : A → A such that F (A)(v) = 1 if there is a hyperedge (v, T ) ∈ E
such that A(v′) = 1 for all v′ ∈ T , otherwise F (A)(v) = A(v). Observe that an
assignment A is a fixed-point assignment iff F (A) = A, and that the function
F is monotonic w.r.t. 
. By Knaster-Tarski theorem [14] there exists a unique
minimum fixed-point assignment, denoted by Amin. The assignment Amin on
a finite dependency graph can be computed by a repeated application of the
function F on the assignment A0 where A0(v) = 0 for all v ∈ V , and we are
guaranteed that there is a number m such that Fm(A0) = Fm+1(A0) = Amin.

Consider again our example from Fig. 2 and assume that each assignment A
is represented by the vector (A(a), A(b), A(c)). We can see that A0 = (0, 0, 0),
F (A0) = (1, 0, 0) and F 2(A0) = (1, 0, 1) = F 3(A0). Hence the depicted assign-
ment (1, 0, 1) is the minimum fixed-point assignment.

2.2 Applications of Dependency Graphs

Many verification problems can be encoded as fixed-point computations on
dependency graphs. We shall demonstrate this on the cases of weak sim-
ulation and bisimulation, however other equivalences and preorders from
the linear/branching-time spectrum [15] can also be encoded as dependency
graphs [16] as well as model checking problems e.g. for the CTL logic [17],
reachability problems for timed games [18] and the general framework of Boolean
equation systems [2], just to mention a few applications of dependency graphs.

Let T = (S,A,→ ) be an LTS. We define a dependency graph G≈(T ) =
(V,E) such that V = {(s, t) | s, t ∈ S} and the hyperedges are given by

E = {((s, t), {(s′, t′) | t
a=⇒ t′}) | s

a−→ s′} ∪ {((s, t), {(s′, t′) | s
a=⇒ s′}) | t

a−→ t′}.

The general construction is depicted in Fig. 3 and its application to the LTS
from Fig. 1a, listing only the pairs of states reachable from (s1, t1), is shown in
Fig. 1b. Observe that the size of the produced dependecy graph is polynomial
with respect to the size of the input LTS.
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Fig. 3. Bisimulation reduction to dependency graph

Proposition 1. Let T = (S,A,→) be an LTS and s, t ∈ S. We have s ≈ t if
and only if Amin((s, t)) = 0 in the dependency graph G≈(T ).

Proof (Sketch). “⇒”: Let R be a weak bisimulation such that (s, t) ∈ R. The
assignment A defined as A((s′, t′)) = 0 iff (s′, t′) ∈ R can be shown to be a
fixed-point assignment. Then clearly Amin 
 A and because A((s, t)) = 0 then
also Amin((s, t, )) = 0. “⇐”: Let Amin((s, t)) = 0. We construct a binary relation
R = {(s′, t′) | Amin((s′, t′)) = 0}. Surely (s, t) ∈ R and we invite the reader to
verify that R is a weak bisimulation. ��

In our example in Fig. 1b we can see that Amin((s1, t1)) = 1 and hence
s1 �≈ t1. The construction of the dependency graph for weak bisimulation can be
adapted to work also for the weak simulation preorder by removing the hyper-
edges that originate by transitions performed by the right hand-side process.

We know that computing Amin for a given dependency graph can be done
in linear time [19]. By the facts that deciding bisimulation on finite LTS is
P-hard [3] and the polynomial time reduction described above, we can conclude
that determining the value of a vertex in the minimum fixed-point assignment
of a given dependency graph is a P-complete problem.

Proposition 2. The problem whether Amin(v) = 1 for a given dependency
graph and a given vertex v is P-complete.

3 Distributed Fixed-Point Algorithm

We shall now describe our distributed algorithm for computing minimum fixed-
points on dependency graphs. Let G = (V,E) be a dependency graph. For the
purpose of the on-the-fly computation, we represent G by the function

Successors(v) = {(v, T ) | (v, T ) ∈ E}

that returns for each vertex v ∈ V the set of outgoing hyperedges from v.
We assume a fixed number of n workers. Let i, 1 ≤ i ≤ n, denote a worker

with id i. Each worker i uses the following local data structures.
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– A local assignment function Ai : V ⇀ {0, 1}, which is a partial function
mapping each vertex to the values undefined , 0 or 1.

– A local dependency function Di : V → 2E returning the current set of depen-
dent edges for each vertex.

– A local waiting set W i ⊆ E containing edges that are waiting for processing.
– A local request function Ri : V → 2{1,...,n} where the worker i remembers who

requested the value for a given vertex.
– A local input message set M i ⊆ { “value of v needed by worker j′′ | v ∈ V, 1 ≤

j ≤ n}∪{“v has value 1′′ | v ∈ V }. For syntactic convenience, we assume that
a worker i can add a message m to M j of another worker j simply by executing
the assignment M j ← M j ∪ {m}.

We moreover assume some standard function TerminationDetection,
computed distributively, that returns true if there are no messages in transit and
all waiting sets of all workers are empty, in other words if

⋃
1≤i≤n M i ∪ W i = ∅.

Finally, we assume a global partitioning function δ : V → {1, . . . , n} that parti-
tions vertices to workers.

The distributed algorithm for computing the minimal fixed-point assignment
for a given vertex vs is presented in Algorithm 1. First, all n workers are initial-
ized and the worker that owns the vertex vs updates its local assignment to
0 and adds the successor edges to its local waiting set. Then the workers start
processing the edges on the waiting sets and the messages in their input message
sets until they terminate either by one worker announcing that Amin(vs) = 1
at line 18 or all waiting edges and messages have been processed and then the
workers together claim that Amin(vs) = 0 at line 13.

Lemma 1 (Termination). Algorithm1 terminates.

Proof. First observe that for each vertex v and each local assignment Ai the
value of Ai(v) is first undefined. Then when v is discovered either as a target
vertex of some hyperedge on the waiting set (line 23) or when the value of v
gets requested by another worker (line 37), the value Ai(v) changes to 0. Finally
the value of Ai(v) can be upgraded to the value 1 either by the presence of
a hyperedge where all target vertices already have the value 1 (line 17) or by
receiving a message from another worker (line 33). The point is that for every v,
each of the assignments Ai(v) ← 0 and Ai(v) ← 1 is executed at most once during
any execution of the algorithm. This can be easily noticed by the inspection of
the conditions on the if-commands guarding these assignments.

Next we notice that new hyperedges are added to the waiting set W i only
when an assignment of some vertex v gets upgraded from undefined to 0, or from
0 to 1. As argued above, this can happen only finitely many times, hence only
finitely many hyperedges can be added to each W i. Similarly, new messages
to the message sets can be added only at lines 19, 28 and 40. At line 19 a
finite number of messages of the form “v has value 1” is added only when a
value of Ai(v) was upgraded to 1. This can happen only finitely many times.
At line 28 the message “value of v’ needed by worker i” is added only when
a value of a vertex was upgraded from undefined to 0, hence this can happen
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Algorithm 1. Distributed Algorithm for Worker i, 1 ≤ i ≤ n

Input: A dependency graph G = (V, E) represented by the function
Successors, a vertex vs ∈ V and a vertex partitioning function
δ : V → {1, . . . , n} where n is the number of workers.

Output: The minimum fixed-point assignment Amin(vs) for the vertex vs.

1 Ai(v) ← undefined for all v ∈ V � implemented via hashing

2 W i ← ∅; Di ← ∅; M i ← ∅; Ri ← ∅
3 if δ(vs) = i then � initialize the computation
4 Ai(vs) ← 0; W i ← Successors(vs)
5 repeat
6 while W i �= ∅ or M i �= ∅ do
7 Let x ∈ W i ∪ M i � process message or hyperedge

8 if x ∈ W i then
9 W i ← W i \ {x}; ProcessHyperedge(x)

10 else
11 M i ← M i \ {x}; ProcessMessage(x)

12 until TerminationDetection
13 output “Amin(vs) = 0”

14 Procedure ProcessHyperedge((v, T )) is
15 if Ai(v) �= 1 then
16 if ∀v′ ∈ T : Ai(v′) = 1 then
17 Ai(v) ← 1
18 if v = vs then output “Amin(vs) = 1” ; terminate all workers

19 for all j ∈ Ri(v) do M j ← M j ∪ {“v has value 1”}
20 Ri(v) ← ∅
21 W i ← W i ∪ Di(v)

22 else if ∃v′ ∈ T : Ai(v′) is undefined then
23 Ai(v′) ← 0

24 Di(v′) ← Di(v′) ∪ {(v, T )}
25 if δ(v′) = i then � is value of v′ my responsibility?
26 W i ← W i ∪ Successors(v′)
27 else � send request for value of v′

28 Mδ(v′) ← Mδ(v′) ∪ {“value of v′ needed by worker i”}
29 else if ∃v′ ∈ T : Ai(v′) = 0 then
30 Di(v′) ← Di(v′) ∪ {(v, T )}
31 Procedure ProcessMessage(m) is
32 if m = “v has value 1” and Ai(v) �= 1 then
33 Ai(v) ← 1

34 W i ← W i ∪ Di(v)

35 else if m = “value of v needed by worker j” then
36 if Ai(v) is undefined then
37 Ai(v) ← 0

38 W i ← W i ∪ Successors(v)

39 if Ai(v) = 1 then
40 M j ← M j ∪ {“v has value 1”} � we already know it is 1
41 else
42 Ri(v) ← Ri(v) ∪ {j} � remember that j needs value of v
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only finitely many times. Finally, at line 40 a message is added only when we
received the message “value of v needed by worker i” but this message was sent
only finitely many times. All together, only finitely many elements can be added
to the waiting and message sets and as the main while-loop repeatedly removes
elements from those sets, eventually they must become empty and the algorithm
terminates at line 13 (unless it terminated earlier at line 18). ��

We can now observe that if a vertex is assigned the value 1 for any worker,
then the value of the vertex in the minimal fixed-point assignment is also 1.

Lemma 2 (Soundness). At any moment of the execution of Algorithm1 and
for all i, 1 ≤ i ≤ n, and all v ∈ V it holds that

(a) if Ai(v) = 1 then Amin(v) = 1, and
(b) if “v has value 1” ∈ M i then Amin(v) = 1.

Proof. The invariant holds initially as Ai(v) is undefined for all i and all v and
all input message sets are empty.

Let us assume that both condition a) and b) hold and that we assign the
value 1 to Ai(v) for some worker i and a vertex v. This can only happen at
lines 17 and 33. In the first assignment at line 17 we know that there is a
hyperedge (v, T ) such that all vertices v′ ∈ T satisfy that Ai(v′) = 1. However,
this by our invariant part a) implies that Amin(v′) = 1 and then necessarily also
Amin(v) = 1 by the definition of fixed-point assignment. Hence the invariant for
the case a) is preserved. Similarly, if Ai(v) gets the value 1 at line 33, this can
only happen if “v has value 1” ∈ M i and by the invariant part b) this implies
that Amin(v) = 1 and hence the invariant for the condition a) is established.

Similarly, let us assume that conditions a) and b) hold and that a message
“v has value 1” gets inserted into M j by some worker i. This can only happen
at lines 19 and 40. In both situations it is guaranteed that Ai(v) = 1 and hence
by the invariant part a) we know that Amin(v) = 1, implying that adding these
messages to M j is safe. ��

The next lemma establishes an important invariant of the algorithm.

Lemma 3. For any vertex v ∈ V , whenever during the execution of Algorithm1
the worker δ(v) is at line 6 then the following invariant holds: either

(a) Aδ(v)(v) = 1, or
(b) Aδ(v)(v) is undefined, or
(c) Aδ(v)(v) = 0 and for all (v, T ) ∈ E either

(i) (v, T ) ∈ W δ(v), or
(ii) there is v′ ∈ T such that Aδ(v)(v′) = 0, and (v, T ) ∈ Dδ(v)(v′).

Proof. Initially, the invariant is satisfied as Aδ(v)(v) is undefined and the invari-
ant, more specifically the subcase (i), clearly holds also when v = vs and the
worker δ(vs) performed the assignments at line 4.

Assume now that the invariant holds. Clearly, if it is by case (a) where
Aδ(v)(v) = 1 then the value of v will remain 1 until the end of the execution.
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If the invariant holds by case (b) then it is possible that the value of Aδ(v)(v)
changes from undefined to 0. This can happen either at lines 23 or 37. If the
assignment took place at line 23 (note that here v = v′) then clearly line 26 will
be executed too and all successor edges of v will be inserted into the waiting set
and hence the invariant subcase (i) will hold once the execution of the procedure
is finished. Similarly, if the assignment took place at line 37 then all successors
of v are at the next line 38 immediately added to the waiting set, hence again
satisfying the invariant subcase (i).

Consider now the case (c). The invariant can be challenged by either remov-
ing the hyperedge (v, T ) from W δ(v) hence invalidating the subcase i) or by
upgrading the value of the vertex v′ in case (ii) such that Aδ(v)(v′) = 1. In the
first case where the subcase (i) gets invalidated we can notice that this can hap-
pen only at line 9 after which the removed hyperedge (v, T ) is processed. There
are two possible scenarios now. Either all vertices from T have the value 1 and
then the value of Aδ(v)(v) also gets upgraded to 1 at line 17 hence satisfying the
invariant (a), or there is a vertex v′ ∈ T such that Aδ(v)(v′) = 0 and then the
hyperedge (v, T ) is added at line 30 to the dependency set Dδ(v)(v′) satisfying
the subcase (ii) of the invariant. In the second subcase, we assume that the ver-
tex v′ satisfying the subcase (ii) gets upgraded to the value 1. This can happen
at line 17 or line 33. In both cases the dependency set Dδ(v)(v′) (that by our
invariant assumption contains the hyperedge (v, T )) is added to the waiting set
(lines 21 and 34) implying that the invariant subpart (i) holds. ��

The following lemmas shows that after the termination, the value 0 for a
vertex v in a local assignment of some worker implies the same value also in the
assignment of the worker that owns the vertex v. This is an important fact for
showing completeness of our algorithm.

Lemma 4. Once all workers in Algorithm1 terminate at line 13 then for all
vertices v ∈ V and all workers i holds that if Ai(v) = 0 then Aδ(v)(v) = 0.

Proof. Observe that the assignment of 0 to Ai(v) where i �= δ(v) can happen
only at line 23 (the assignment at line 37 is performed only if i = δ(v) as the
message “value of v is needed by worker i” is sent only to the owner of the vertex
v). After the assignment at line 23 done by worker i, the message requesting the
value of the vertex is sent to its owner at line 28. Clearly, before the workers
terminate, this message must be read by the owner and the value of the vertex is
either set to 0 at line 37, or if the value is already known to be 1 the worker i is
informed about this via the message “v has value 1” at line 40 and this message
will be necessarily read by the worker i before the termination and the value
Ai(v) will be updated to 1. Otherwise we remember the worker’s id requesting
the assignment value at line 42. Should the owner upgrade the value of v to 1 at
some moment, all workers that requested its value will be informed about this
by a message sent at line 19 and before the termination these workers must read
these messages and update the local values for v to 1. It is hence impossible for
the algorithm to terminate while the owner of v set its value to 1 and some other
worker still has only the value 0 for the vertex v. ��
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Lemma 5 (Completeness). If all workers in Algorithm1 terminate at line 13
then for all vertices v ∈ V the fact Aδ(v)(v) = 0 implies that Amin(v) = 0.

Proof. Note that after the termination we have W i = M i = ∅ for all i. Assume
now that Aδ(v)(v) = 0. Then by Lemma 3 and the fact that W δ(v) = ∅ we can
conclude that for all (v, T ) ∈ E there exists v′ ∈ T such that Aδ(v)(v′) = 0. By
Lemma 4 this means that also Aδ(v′)(v′) = 0. Let us now define an assignment
A such that A(v) = Aδ(v)(v). By the arguments above, A is a fixed-point assign-
ment. As Amin is the minimum fixed-point assignment, we have Amin 
 A and
because A(v) = 0 we can conclude that Amin(v) = 0. ��
Theorem 1 (Correctness). Algorithm1 terminates and outputs either

– “Amin(vs) = 1” implying that Amin(vs) = 1, or
– “Amin(vs) = 0” implying that Amin(vs) = 0.

Proof. Termination is proved in Lemma 1. The algorithm can terminate either
at line 18 provided that Ai(vs) = 1 but then by Lemma 2 clearly Amin(vs) = 1.
Otherwise the algorithm terminates when all workers reach line 13. This can
only happen when Aδ(vs)(vs) = 0 and by Lemma 5 we get Amin(vs) = 0. ��

Note that the algorithm is proved correct without imposing any specific order
by which messages and hyperedges are selected from the sets W i and M i or what
target vertices are selected in the expressions like ∃v′ ∈ T . In the next section
we discuss some of the choices we have made in our implementation.

4 Implementation and Evaluation

The distributed algorithm described in the previous section is implemented as
an MPI-program in C++, enabling the workers to cooperate not only on a single
machine but also across multiple machines. The MPI-program requires a suc-
cessor generator to explore the dependency graph, a partitioning function and a
(de)serialisation function for the vertices (we use LZ4 compression on the gener-
ated hyperedges before they leave the successor generator). For our experiments,
these functions were implemented for the case of weak bisimulation/simulation
on CCS processes but they can be easily replaced with other custom implemen-
tations to support other equivalence and model checking problems, without the
need of modifying the distributed engine itself.

In our implementation we use hash tables to store the assignments (Ai) and
the dependent edges (Di). The algorithm does not constrain specific structures
on W i or M i. For the waiting list (W i) two deques are used, one for the forward
propagation (outgoing hyperedges of newly discovered vertexes) and one for the
backwards propagation (hyperedges that were inserted due to dependencies).
Then the graph can be explored depth-first, or breadth-first, or a probabilistic
combination of those, independently for both the forward and backwards prop-
agation. Our experiments showed that it is preferable to prioritize processing
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of messages rather than hyperedges to free up buffers used by the senders. The
distributed termination detection is determined using [20].

The implementation is open-source and available at http://code.launchpad.
net/pardg/ in the branch dfpdg-paper that includes also all experimental data.
The distributed engine is currently being integrated within the CAAL [13] user
interface.

4.1 Evaluation

We evaluate the performance of our implementation on the traditional leader
election protocol [21] where we scale the number of processes and on the alternat-
ing bit protocol (ABP) [22] where we scale the size of communication buffers. We
ask the question whether the specification and implementation (both described
as CCS processes) are weakly bisimilar. For both cases we consider a variant
where the weak bisimulation holds and where it does not hold (by injecting
an error). Finally, we also ask about the schedulability of 180 different task
graphs from the well known benchmark database [23] on two processors within a
given deadline. Whenever applicable, the performance is compared with the tool
Concurrency WorkBench (CWB) [4] version 7.1 using 1 core (there is no paral-
lel/distributed version of CWB). CWB implements the best performing global
algorithms for bisimulation checking on CCS processes.

All experiments are performed on a Linux cluster, composed of compute
nodes with 1 TB of DDR3 1600 mhz memory, four AMD Opteron 6376 proces-
sors (in total 64 cores@2,3 Ghz with speedstep disabled) and interconnected
using Intel True Scale InfiniBand (40 Gb/s) for low latency communication. All
nodes run an identical image of Ubuntu 14.04 and MPICH 3.2 was used for
MPI communication. We use the depth first search order for the forward search
strategy and the breadth first search order for the backwards search strategy.

The results for the leader election and ABP are presented in Tables 1 and 2,
respectively. For each entry in the tables, four runs were performed and the
mean run time and the relative sample standard deviation are reported. We also
report on how many microseconds were used (in parallel) per explored vertex
of the dependency graph. This measure gives an idea of the speedup achieved
when more cores are available. We note that for small instances this time can
be very high due to the initialization of the distributed algorithm and memory
allocations for dynamic data structures.

We observe that in the positive cases where the entire dependency graph
must be explored, we achieve (with 256 cores) speedups 32 and 52 for leader
election with 9 and 10 processes, respectively. For ABP with buffer sizes 3 and
4 the speedups are 102 and 98, respectively. However we do see a relative high
standard deviation for 8–32 cores if the run time is short. This is because the
scheduler is not configured to ensure locality among NUMA nodes. Compared
to the performance of CWB, we observe that on the smallest instances we need
up to 64 cores in leader election and 16 cores in ABP to match the run time of
CWB. However, on the next instance the run time of CWB is matched already

http://code.launchpad.net/pardg/
http://code.launchpad.net/pardg/
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Table 1. Time is reported in seconds, RSD is the relative sample standard deviation
in percentage and µs/tv is the time spend per vertex in micro seconds. The star in
RSD column means that only one run finished within the given timeout.

Leader election where implementation and specification are weakly bisimilar

9 processes 10 processes 11 processes 12 processes

cores time RSD µs/tv time RSD µs/tv time RSD µs/tv time RSD µs/tv

CWB 8.21 0.2 N/A 328 0.5 N/A - - N/A - - N/A

1 187 0.6 6399 1957 1.0 17921 - - - - - -

2 102 0.7 482 1020 0.6 9338 - - - - - -

4 55.7 1.0 907 553 1.1 5065 - - - - - -

8 38.6 31.0 322 304 6.3 2783 2885.7 1.1 7013 - - -

16 28.5 17.6 975 208 5.9 1903 2098.6 1.1 5100 - - -

32 16.8 14.3 574 120 6.9 1099 1172.6 0.5 2850 - - -

64 9.7 3.0 332 81 3.5 738 723.9 1.7 1759 - - -

128 7.0 1.7 241 53 6.3 489 407.4 2.9 990 3464 1.3 2221

256 5.8 1.9 200 38 2.8 345 276.8 1.4 673 2115 1.0 1356

Leader election where implementation and specification are not weakly bisimilar

8 processes 9 processes 10 processes 11 processes

CWB 4.1 0.4 N/A 33.7 1.3 N/A 3765.0 0.9 N/A - - N/A

1 1.5 5.5 349.8 13.1 7.9 521.6 122.3 7.0 736.0 1110 0.1 920

2 1.1 12.7 258.2 5.0 10.0 908.6 7.8 39.8 178011 236 58.8 959

4 2.1 79.1 157.1 8.5 24.8 74.5 303.4 47.7 97.4 2148 * 82

8 4.5 46.0 25.9 37.6 151.9 37.0 516.6 164.1 52.7 2764 8.2 104

16 3.6 97.1 21.1 31.8 103.2 55.1 83.3 31.7 69.7 1078 7.5 342

32 1.7 30.9 4.7 10.7 67.7 19.0 49.4 12.7 28.5 1072 15.4 107

64 0.9 2.2 3.6 5.2 5.8 7.9 75.0 5.0 9.9 1231 26.1 19

128 0.8 13.0 3.5 6.4 10.3 2.7 28.5 13.0 8.3 812 32.7 7

256 1.2 13.4 9.4 5.6 6.7 1.5 22.6 6.9 1.5 243 23.8 6

by 8 and 2 cores, respectively. This demonstrates that the performance of our
distributed algorithm considerably improves with the increasing problem size.

In the negative cases, it is often enough to explore only a smaller portion
of the dependency graph in order to provide a conclusive answer and here the
on-the-fly nature of our distributed algorithm shows a real advantage compared
to the global algorithms implemented in CWB. For on-the-fly exploration the
search order is very important and we can note that increasing the number of
cores does not necessarily imply that we can compute the fixed-point value for
the root faster. Even though the algorithm scales still very well and with more
cores explores a substantially larger part of the dependency graph, it may (by
the combined search strategy of the workers) explore large parts of the graph
that are not needed for finding the answer. For example in leader election for 10
processes, two cores produced a very successful search strategy that needed only
7.8 s to find the answer, however, increasing the number of cores led the search
in a wrong direction.
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Table 2. Time is reported in seconds, RSD is the relative sample standard deviation
in percentage and µs/tv is the time spend per vertex in micro seconds.

ABP where implementation and specification are weakly bisimilar

buffer size 3 buffer size 4 buffer size 5

cores time RSD µs/tv time RSD µs/tv time RSD µs/tv

CWB 9.7 0.6 N/A 1610.3 1.3 N/A - - N/A

1 81.3 0.5 113.6 2409.5 0.3 161.4 - - -

2 42.0 0.7 58.7 1268.5 3.8 85.0 - - -

4 22.4 2.1 31.3 650.3 1.2 43.6 - - -

8 13.8 11.6 19.3 332.0 1.9 22.2 - - -

16 10.2 13.6 14.3 239.1 6.2 16.0 - - -

32 5.9 14.4 8.2 127.0 3.9 8.5 3314.7 1.0 10.8

64 3.4 1.2 4.7 78.8 2.5 5.3 1970.5 0.4 6.4

128 2.1 3.7 3.0 42.4 0.8 2.8 1020.3 1.2 3.3

256 1.8 23.1 2.5 24.7 2.7 1.7 551.2 0.6 1.8

ABP where implementation and specification are not weakly bisimilar

buffer size 4 buffer size 5 buffer size 6

CWB 8.3 0.9 N/A 170.2 0.5 N/A - - N/A

1 5.0 0.4 15365.9 3.4 0.3 109113 4.1 0.4 584643

2 15.0 1.2 56.9 1.3 14.8 179286 4.1 2.8 590714

4 7.8 4.4 37.8 168.3 0.5 95.9 3125.1 0.8 202.2

8 6.4 25.6 65.0 98.1 17.0 297.3 1602.2 1.0 669.4

16 4.4 20.0 45.5 66.1 13.2 108.7 1128.2 1.1 15391.5

32 2.2 3.5 694.9 35.8 1.6 1792.8 649.6 9.9 7481.1

64 1.3 7.3 367.4 21.8 1.5 1006.6 370.9 0.4 3869.9

128 0.8 3.7 289.2 14.4 1.4 755.7 197.5 1.2 2482.5

256 0.5 3.9 127.6 7.9 2.1 436.1 107.7 1.1 1305.1

Finally, results for checking the simulation preorder on the task graph bench-
mark can be seen in Table 3. As this is a large number of experiments requiring
nontrivial time to run, we tested the scaling only up to 64 cores. We queried
whether all the tasks in the task graph (or rather their initial prefixes) can be
completed within 25 time units. Out of the 180 task graphs, 61 of them are solv-
able in one hour (and 34 of them are schedulable while 27 are not schedulable).
As CWB does not support simulation preorder, the weaker trace inclusion prop-
erty is used but CWB cannot solve any of the task graphs within one hour. We
achieve an average 25 times speedup using 64 cores, both for the positive and
negative cases, showing a very satisfactory performance on this large collection
of experiments.
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Table 3. Number of solved task graphs within 1 h for all, positive and negative
instances. The accumulated average time (AAT) is projected on 9 task graphs that
1 core is able to solve between 20 min and 1 h.

Weak simulation preorder on task graphs

Total Positive Negative

cores solved AAT solved AAT solved AAT

1 35 19660 16 7818 19 11841

2 39 10278 18 4085 21 6192

4 43 5301 21 2095 22 3205

8 49 2996 26 1201 23 1794

16 51 2240 28 858 23 1381

32 57 1271 33 493 24 777

64 61 798 34 310 27 487

5 Conclusion

We presented a distributed algorithm for computing fixed points on depen-
dency graphs and showed on weak bisimulation/simulation checking between
CCS processes that, even though the problem is in general P-hard, we can in
many cases obtain reasonable speed-ups as we increase the number of cores. Our
algorithm works on-the-fly and hence for the cases where only a small portion
of the dependency graphs needs to be explored to provide the answer, we per-
form significantly better than the global algorithms implemented in the CWB
tool. Compared to CWB we also scale better with the increasing instance sizes,
even for the cases where the whole dependency graph must be explored. The
advantage of our approach based on dependency graphs is that we provide a gen-
eral distributed algorithm and its efficient implementation that can be directly
applied also to other problems like e.g. model checking—most importantly with-
out the need of designing and coding specific single-purpose distributed algo-
rithms for the different applications. In our future work we plan to look into
finding better parallel search strategies that will allow for early termination in
the cases where the fixed-point value of the root is 1 and also terminating the
parallel search of the graph once we know that the exploration is not needed any
more.
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Abstract. We propose a way of reasoning about minimal and maxi-
mal values of the weights of transitions in a weighted transition system
(WTS). This perspective induces a notion of bisimulation that is coarser
than the classic bisimulation: it relates states that exhibit transitions to
bisimulation classes with the weights within the same boundaries. We
propose a customized modal logic that expresses these numeric bound-
aries for transition weights by means of particular modalities. We prove
that our logic is invariant under the proposed notion of bisimulation.
We show that the logic enjoys the finite model property which allows us
to prove the decidability of satisfiability and provide an algorithm for
satisfiability checking. Last but not least, we identify a complete axiom-
atization for this logic, thus solving a long-standing open problem in
this field. All our results are proven for a class of WTSs without the
image-finiteness restriction, a fact that makes this development general
and robust.

1 Introduction

Weighted transition systems (WTSs) are used to model concurrent and distrib-
uted systems in the case where some resources are involved, such as time, band-
width, fuel, or energy consumption. Recently, the concept of a cyber-physical
system (CPS), which considers the integration of computation and the physi-
cal world has become relevant in modeling various real-life situations. In these
models, sensor feedback affects computation, and through machinery, computa-
tion can further affect physical processes. The quantitative nature of weighted
transition systems is well-suited for the quantifiable inputs and sensor measure-
ments of CPSs, but their rigidity makes them less well-suited for the uncertainty
inherent in CPSs. In practice, there is often some uncertainty attached to the
resource cost, whereas weights in a WTS are precise. Thus, the model may be
too restrictive and unable to capture the uncertainties inherent in the domain
that is being modeled.

In this paper, we attempt to remedy this shortcoming by introducing a modal
logic for WTSs that allows for approximate reasoning by speaking about upper
and lower bounds for the weights of the transitions. The logic has two types
c© Springer International Publishing AG 2016
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of modal operators that reason about the minimal and maximal weights on
transitions, respectively. This allows reasoning about models where the quanti-
tative information may be imprecise (e.g. due to imprecisions introduced when
gathering real data), but where we can establish a lower and upper bound for
transitions.

In order to provide the semantics for this logic, we use the set of possible
transition weights from one state to a set of states as an abstraction of the
actual transition weights. The logic is expressive enough to characterize WTSs
up to a relaxed notion of weighted bisimilarity, where the classical conditions
are replaced with conditions requiring that the minimal and maximal weights
on transitions are matched. This logical characterization works for a class of
WTSs that is strictly larger than the class of image-finite WTSs.

Our main contribution is a complete axiomatization of our logic, showing that
any validity in this logic can be proved as a theorem from the axiomatic system.
This solves a long-standing open problem in the field of weighted systems. Com-
pleteness allows us to transform any validity checking problem into a theorem
proving one that can be solved automatically by modern theorem provers, thus
bridging the gap to the theorem proving community. The completeness proof
adapts the classical filtration method, which allows one to construct a (canon-
ical) model using maximal consistent sets of formulae. The main difficulty of
adapting this method to our setting is that we must establish both lower and
upper bounds for the transitions in this model.

To achieve this result, we firstly demonstrate that our logic enjoys the finite
model property. This property allows us not only to achieve the completeness
proof, but also to address the problem of decidability of satisfiability. This is our
second significant contribution in this paper: we propose a decision procedure for
determining the satisfiability of formulae in our logic. This decision procedure
makes use of the finite model property to automatically generate a finite model
for any satisfiable formula.

Related Work. Several logics have been proposed in the past to express prop-
erties of quantified (weighted, probabilistic or stochastic) systems [5,6,12,15,17].
They typically use modalities indexed with real numbers to express properties
such as “ϕ holds with at least probability b”, “we can reach a state satisfying ϕ
with a cost at least r”, etc. While our logical syntax resemble these, our seman-
tics is different in the sense that we argue not about one value (a probability
or a cost), but about a compact interval of possible costs. For instance, in the
aforementioned logics we have a validity of type � ¬Lrφ → Mrφ saying that the
value of the transition from the current state to φ is either at least r or at most
r; on the other hand, in our logic the formula ¬Lrφ∧¬Mrφ might have a model
since Lrφ and Mrφ express the fact that the lower cost of a transition to φ is at
least r and the highest cost is at most r respectively.

However, our completeness proof uses a technique similar to the one used for
weighted modal logic [13] and Markovian logic [12,16]. It is however different
from these related constructions since our axiomatization is finitary, while the
aforementioned ones require infinitary proof rules. Our axiomatic systems are
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related to the ones mentioned above and the mathematical structures revealed
by this work are also similar to the related ones. This suggest a natural extension
towards a Stone duality type of result on the line of [11], which we will consider
in a future work.

Satisfiability results have been given for some related logics too, such as
weighted modal logics [14] and probabilistic versions of CTL and the μ-calculus
[4]. However, the satisfiability problem is known to be undecidable for other
related logics, in particular timed logics such as TCTL [1] and timed modal
logic [8]. This fact suggests our logic as an interesting one which, despite its
expressivity, remains decidable.

Our approach of considering upper and lower bounds is related to interval-
based formalisms such as interval Markov chains (IMCs) [9] and interval weighted
modal transition systems (WMTSs) [10]. Much like our approach, IMCs consider
upper and lower bounds on transitions in the probabilistic case. WMTSs add
intervals of weights to individual transitions of modal transition systems, in
which there can be both may- and must-transitions. A main focus of the work
both on IMCs and WMTSs have been a process of refinement, making the inter-
vals progressively smaller until an implementation is obtained. However, none of
these works have explored the logical perspective up to the level of axiomatiza-
tion or satisfiability results, which is the focus of our paper.

2 Model

The models addressed in this paper are weighted transition systems, in which
transitions are labeled with numbers to specify the cost of the corresponding
transition. In order to specify and reason about properties regarding imprecision,
such as “the maximum cost of going to a safe state is 10” and “the minimum cost
of going to a halting state is 5”, we will abstract away the individual transitions
and only consider the minimum and maximum costs from a state to another.
We will do this by constructing for any two states the set of weights that are
allowed from one to the other.

First we recap the definition of a weighted transition system. A WTS is
formally defined as follows:

Definition 1. A weighted transition system (WTS) is a tuple M = (S,→, �),
where

– S is a non-empty set of states,
– →⊆ S × IR≥0 × S is the transition relation, and
– � : S → 2AP is a labeling function mapping to each state a set of atomic

propositions.

Note that we impose no restrictions on the state space S; it can be uncountable.
Consider now a WTS as in Fig. 1a. If this is a CPS, then the weights may have

been obtained by measurements, simulations, or educated guesses, which may be
imprecise. However, it may be that we can establish 1 as a lower bound and 10
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lower bound, and 10 as an
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Fig. 1. Possible ways to address the problem of not knowing the precise weight for
each transition.

as an upper bound on the actual weight. We could then address this problem by
making more measurements and adding the results as weights on transitions, as
in Fig. 1b but as long as we only introduce finitely many new transitions, there
will still be some imprecision. Instead, we could add infinitely many transitions,
for example one for each real or rational weight that lies between 1 and 10, as in
Fig. 1c. However, then our WTS is no longer image-finite, so it no longer satisfies
the Hennessy-Milner theorem [7].

In this paper, we will address this problem by abstracting away the individual
transitions, and instead consider the set of weights between a state and a set of
states.

Definition 2. For arbitrary WTS M = (S,→, �) the function θM : S →(
2S → 2IR≥0

)
is defined for any state s ∈ S and set of states T ⊆ S as

θM (s) (T ) = {r ∈ IR≥0 | ∃t ∈ T such that s
r−→ t}.

Thus θM (s) (T ) is the set of all possible weights of going from s to a state in T .
We will sometimes refer to θ (s) (T ) as the image from s to T or simply as an
image set.

Next, we introduce the notion of an image-compact WTS, which imposes
a requirement on the image sets. This notion is very closely related to that of
compactly branching introduced by van Breugel [3].

Definition 3. Let M = (S,→, �) be a WTS. We say that M is image-compact
if for any s ∈ S and T ⊆ S, θM (s) (T ) is a compact set, i.e. a closed and
bounded set.

Intuitively, one can think of a WTS being image-compact if each state can not
take transitions with arbitrarily large weights and whenever a state can take
transitions with weights arbitrarily close to some real number x it can also take
a transition with exactly the weight x. We will drop the subscript M from θ
unless we wish to differentiate between the image sets of two different WTSs. For
the bisimulation invariance theorem that we will discuss later, it will be necessary
to restrict ourselves to only considering image-compact WTSs. However, this will
be the only place in the paper where this restriction is needed.
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Fig. 2. A simple model of a robot vac-
uum cleaner.

Consider a state s that can take a
transition with weight 1

2i for any i ∈ IN
to some state in a set T . We then have
θ (s) (T ) = { 1

2i | i ∈ IN} which is clearly

not a closed set, since 1
2i

i→∞−−−→ 0 and
0 �∈ θ (s) (T ), hence it is non-compact.
Consider now a state s′ that has the same
outgoing transitions as s except that also
s′ 0−→ t for some t ∈ T . We then have
θ (s′) (T ) = { 1

2i | i ∈ IN} ∪ {0} which
is a closed and bounded set, hence it is
compact.

Note that any image-finite WTS is
also image-compact, since any finite set
is compact. However, an image-compact WTS is not always image-finite. In
the rest of the paper, we will use the notation θ− (s) (T ) = inf θ (s) (T ) and
θ+ (s) (T ) = sup θ (s) (T ) with the convention that inf ∅ = −∞ and sup ∅ = ∞.
Note that this convention is the opposite of the one usually adopted.

Example 4. Figure 2 shows a simple model of a robot vacuum cleaner that can
be in a waiting state, a cleaning state, or a charging state. This is an example of
a cyber-physical system where the costs of transitions are necessarily imprecise.
The time it takes to recharge the batteries depends on the condition of the bat-
teries as well as that of the charger; the time it takes to clean the room depends
on how dirty the room is, and how free the floor is from obstacles; and the time
it takes to reach the charger depends on where in the room the robot is when
it needs to be recharged. By constructing the image sets, we can abstract away
from the individual transitions. For example, we have θ (s2) ({s1}) = {5, 10, 15},
so θ− (s2) ({s1}) = 5 and θ+ (s2) ({s1}) = 15.

We will now establish some useful properties of image sets. We first show that
the transition function is monotonic with respect to set inclusion, meaning that
if T1 is a subset of T2 then, the image from any state s to T1 is also a subset of
the image from s to T2.

Lemma 5 (Monotonicity of θ). Let M = (S,→, �) be a WTS and let T1 and
T2 be subsets of S. If T1 ⊆ T2, then θ (s) (T1) ⊆ θ (s) (T2).

Next, we show that union and intersection over image sets distribute as usual.

Lemma 6. Let M = (S,→, �) be a WTS. For any s ∈ S and T1, T2 ⊆ S, it
holds that

1. θ (s) (T1 ∪ T2) = θ (s) (T1) ∪ θ (s) (T2) and
2. θ (s) (T1 ∩ T2) = θ (s) (T1) ∩ θ (s) (T2).
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As usual we would like some way of relating model states with equivalent behav-
ior. To this end we define the notion of a bisimulation relation. The classical
notion of a bisimulation relation for weighted transition systems [2], which we
term weighted bisimulation, is defined as follows.

Definition 7. Given a WTS M = (S,→, �), an equivalence relation R ⊆ S ×S
on S is called a weighted bisimulation relation iff for all s, t ∈ S, sRt implies

– (Atomic harmony) �(s) = �(t),
– (Zig) if s

r−→ s′ then there exists t′ ∈ S such that t
r−→ t′ and s′Rt′, and

– (Zag) if t
r−→ t′ then there exists s′ ∈ S such that s

r−→ s′ and s′Rt′.

We say that s, t ∈ S are weighted bisimilar, written s ∼W t, iff there exists a
weighted bisimulation relation R such that sRt. Weighted bisimilarity, ∼W , is
the largest weighted bisimulation relation. Note that we could replace the zig-
zag conditions by the condition that θ (s) (T ) = θ (t) (T ) for all R-equivalence
classes T ⊆ S.

Since it is our goal to abstract away from the exact weights on the transitions,
the bisimulation that we will now introduce does not impose the classical zig-
zag conditions [2] of a bisimulation relation, but instead require that bounds be
matched for any bisimulation class.

Definition 8. Given a WTS M = (S,→, �), an equivalence relation R ⊆ S ×S
on S is called a generalized weighted bisimulation relation iff for all s, t ∈ S,
sRt implies

– (Atomic harmony) �(s) = �(t),
– (Lower bound) θ− (s) (T ) = θ− (t) (T ), and
– (Upper bound) θ+ (s) (T ) = θ+ (t) (T )

for any R-equivalence class T ⊆ S.

Given s, t ∈ S we say that s and t are generalized weighted bisimilar, written
s ∼ t, iff there exists a generalized weighted bisimulation relation R such that
sRt. Generalized weighted bisimilarity, ∼, is the largest generalized weighted
bisimulation relation.

s{a}

s′{b}

t {a}

t′ {b}

1 2 3 1 3

Fig. 3. s ∼ t but s �∼W t.

In what follows, we will use bisimula-
tion to mean generalized weighted bisim-
ulation and bisimilarity to mean general-
ized weighted bisimilarity. We now show
the relationship between ∼ and ∼W .

Example 9. Consider the WTS depicted
in Fig. 3. It is easy to see that {s′, t′} is
a ∼-equivalence class, and in fact it is
the only ∼-equivalence class with ingo-
ing transitions. Since θ− (s) ({s′, t′}) = θ− (t) ({s′, t′}) = 1 and θ+ (s) ({s′, t′}) =
θ+ (t) ({s′, t′}) = 3 we must have s ∼ t, but because s

2−→ s′ and t � 2−→ it cannot
be the case that s ∼W t.
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Theorem 10. Generalized weighted bisimilarity is coarser than weighted bisim-
ilarity, i.e.

∼W � ∼
This result is not surprising, as our bisimulation relation only looks at the
extremes of the transition weights, whereas weighted bisimulation looks at all of
the transition weights.

3 Logic

In this section we introduce a modal logic. Our aim is that our logic should
be able to capture the notion of bisimilar states as presented in the previous
section, and as such it must be able to reason about the lower and upper bounds
on transition weights.

Definition 11. The formulae of the logic L are induced by the abstract syntax

L : ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Lrϕ | Mrϕ

where r ∈ Q≥0 is a non-negative rational number and p ∈ AP is an atomic
proposition.

Lr and Mr are modal operators. An illustration of how L and M are interpreted
can be seen in Fig. 4. Intuitively, Lrϕ means that the cost of transitions to where
ϕ holds is at least r (see Fig. 4a), and Mrϕ means that the the cost of transitions
to where ϕ holds is at most r (see Fig. 4b).

We now give the precise semantics interpreted on WTSs.

Definition 12. Given a WTS M = (S,→, �), a state s ∈ S and a formula
ϕ ∈ L, the satisfiability relation |= is defined inductively as:

M, s |= p iff p ∈ �(s),
M, s |= ¬ϕ iff M, s � ϕ,
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ,
M, s |= Lrϕ iff θ− (s) (�ϕ�M) ≥ r,
M, s |= Mrϕ iff θ+ (s) (�ϕ�M) ≤ r,

where �ϕ�M = {s ∈ S | M, s |= ϕ}.

Fig. 4. Lr and Mr semantics.

We will omit the subscript M from �ϕ�M
whenever the model is clear from the con-
text. If M, s |= ϕ we say that M is a
model of ϕ. A formula is said to be sat-
isfiable if it has at least one model. We
say that ϕ is a validity and write |= ϕ
if ¬ϕ is not satisfiable. In addition to the
operators defined by the syntax of L, we
also have the derived operators such as
⊥, →, etc. defined in the usual way.
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The formula L0ϕ has special significance in our logic, as this formula means
that there exists some transition to where ϕ holds. In fact, it follows in a
straightforward manner from the semantics that M, s |= L0ϕ if and only if
θ (s) (�ϕ�) �= ∅.

Example 13. Consider again our model of a robot vacuum cleaner depicted in
Fig. 2. Perhaps we want a guarantee that it takes no more than one time unit
to go from a waiting state to a charging state. This can be expressed by the
formula waiting → M1charging, but since we know the only waiting state
in our model is s1 this can be simplified to simply checking whether M, s1 |=
M1charging. We thus have to check that θ+ (s1) (�charging�) ≤ 1. We do this
by constructing the image set θ (s1) (�charging�). Since �charging� = {s3}, we
have θ (s1) ({s3}) = {1, 2}. Hence θ+ (s1) (�charging�) = 2 �≤ 1, so M, s1 �

M1charging.

Next we show that our logic L is invariant under bisimulation, which is also
known as the Hennessy-Milner property.

Theorem 14 (Bisimulation invariance). For any image-compact WTS M =
(S,→, �) and states s, t ∈ S it holds that

s ∼ t iff [∀ϕ ∈ L. M, s |= ϕ iff M, t |= ϕ] .

The proof strategy follows a classical pattern: The left to right direction is shown
by induction on ϕ for ϕ ∈ L. The right to left direction is shown by constructing
a relation R relating those states that satisfy the same formulae and showing
that this relation is a bisimulation relation.

4 Metatheory

In this section we propose an axiomatization for our logic that we prove not only
sound, but also complete with respect to the proposed semantics.

4.1 Axiomatic System

Let r, s ∈ Q≥0. Then the deducibility relation �⊆ 2L×L is a classical conjunctive
deducibility relation, and is defined as the smallest relation which satisfies the
axioms of propositional logic in addition to the axioms given in Table 1. We will
write � ϕ to mean ∅ � ϕ, and we say that a formula or a set of formulae is
consistent if it can not derive ⊥.

Axiom A1 captures the notion that since ⊥ is never satisfied, we can never
take a transition to where ⊥ holds. Axiom A2 says that if we know some value
is the lower bound for going to where ϕ holds, then any lower value is also a
lower bound for going to where ϕ holds. Axiom A2′ is the analogue for upper
bounds. Axioms A3–A4 show how Lr and Mr distribute over conjunction and
disjunction. The version of axiom A4 where Lr is replaced with Mr is also sound,
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Table 1. The axioms for our axiomatic system, where ϕ, ψ ∈ L and q, r ∈ Q.

(A1): � ¬L0⊥
(A2): � Lr+qϕ → Lrϕ if q > 0
(A2′): � Mrϕ → Mr+qϕ if q > 0
(A3): � Lrϕ ∧ Lqψ → Lmin{r,q}(ϕ ∨ ψ)
(A3′): � Mrϕ ∧ Mqψ → Mmax{r,q}(ϕ ∨ ψ)
(A4): � Lr(ϕ ∨ ψ) → Lrϕ ∨ Lrψ
(A5): � ¬L0ψ → (Lrϕ → Lr(ϕ ∨ ψ))
(A5′): � ¬L0ψ → (Mrϕ → Mr(ϕ ∨ ψ))
(A6): � Lr+qϕ → ¬Mrϕ if q > 0
(A7): � Mrϕ → L0ϕ
(R1): � ϕ → ψ =⇒ � ((Lrψ) ∧ (L0ϕ)) → Lrϕ
(R1′): � ϕ → ψ =⇒ � ((Mrψ) ∧ (L0ϕ)) → Mrϕ
(R2): � ϕ → ψ =⇒ � L0ϕ → L0ψ

but it can be proven from the other axioms. Axioms A5 and A5′ say that if it
is not possible to take a transition to where ψ holds, then requiring that ψ also
holds does not change the bounds. Axioms A6 and A7 show the relationship
between Lr and Mr. In particular, A6 ensures that all bounds are well-formed.
Notice also that the contrapositive of axiom A2 and A7 together gives us that
¬L0ϕ implies ¬Lrϕ and ¬Mrϕ for any r ∈ Q≥0. The axioms R1 and R1′ give a
sort of monotonicity for Lr and Mr, and axiom R2 says that if ψ follows from
ϕ, then if it is possible to take a transition to where ϕ holds, it is also possible
to take a transition to where ψ holds.

Theorem 15 (Soundness)

� ϕ implies |= ϕ.

4.2 Finite Model Property and Completeness

With our axiomatization proven sound we are now ready to present our main
results, namely that our logic has the finite model property and that our axiom-
atization is complete.

To show the finite model property we will adapt the classical filtration method
to our setting. Starting from an arbitrary formula ρ, we define a finite fragment
of our logic, L[ρ], which we then use to construct a finite model for ρ. The main
difference from the classical filtration method is that we must find an upper and
a lower bound for the transitions in the model. For an arbitrary formula ρ ∈ L
we define the following based on ρ:
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– Let Qρ ⊆ Q≥0 be the set of all rational numbers r ∈ Q≥0 such that Lr or Mr

appears in the syntax of ρ.
– Let Σρ be the set of all atomic propositions p ∈ AP such that p appears in

the syntax of ρ.
– The granularity of ρ, denoted as gr(ρ), is the least common denominator of

all the elements in Qρ.
– The range of ρ, denoted as Rρ, is defined as

Rρ =

{
∅ if Qρ = ∅
Iρ ∪ {0} otherwise ,

where Iρ =
{

q ∈ Q≥0 | ∃j ∈ N. q = j
gr(ρ) and minQρ ≤ q ≤ max Qρ

}
. Note

that we need to add 0 to Rρ whether or not ρ actually contains 0 in any of its
modalities. This is because, as we have pointed out before, formulae involving
L0 have special significance in our logic.

– The modal depth of ρ, denoted as md(ρ), is defined inductively as:

md(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if ρ = p ∈ AP
md(ϕ) if ρ = ¬ϕ

max {md(ϕ1),md(ϕ2)} if ρ = ϕ1 ∧ ϕ2

1 + md(ϕ) if ρ = Lrϕ or ρ = Mrϕ.

Since all formulae are finite, the modal depth is always a non-negative integer.
The language of ρ, denoted by L[ρ], is defined as

L[ρ] = {ϕ ∈ L | Rϕ ⊆ Rρ,md(ϕ) ≤ md(ρ) and Σϕ ⊆ Σρ}.

Because all formulae are finite, L[ρ] must also be finite (modulo logical equiv-
alence), and as we shall see, it contains all the formulae that are necessary to
construct a model for ρ.

In order to define the model, we need the notion of filters and ultrafilters.

Definition 16. A non-empty subset F of L[ρ] is called a filter on L[ρ] iff

– ⊥ �∈ F ,
– ϕ ∈ F and � ϕ → ψ implies ψ ∈ F , and
– ϕ ∈ F and ψ ∈ F implies ϕ ∧ ψ ∈ F .

Intuitively, one can think of a filter as a consistent set of formulae closed under
conjunction and deduction.

Definition 17. A filter F ∈ F is called an ultrafilter iff for all formulae ϕ ∈ L
either ϕ ∈ F or ¬ϕ ∈ F .

The ultrafilters on L[ρ] correspond to the maximal consistent sets of L[ρ]. We
let U [ρ] denote the set of all ultrafilters on L[ρ]. Since L[ρ] is finite U [ρ] is also
finite and consequently, any ultrafilter u ∈ U [ρ] must be a finite set of formulae.
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Hence the formula obtained by taking the conjunction over all the formulae of
u tells us exactly what formulae u contains.

For any set of formulae Φ ⊆ L[ρ], the characteristic formula of Φ, denoted
�Φ�, is defined as �Φ� =

∧
ϕ∈Φ ϕ. Note that �Φ� ∈ L[ρ] is a finite formula, and

that if u ∈ U [ρ], then �u� ∈ u.
We will now construct a (finite) model, Mρ, for ρ. In order to define the

transition relation →ρ⊆ U [ρ] × R≥0 × U [ρ], we consider any two ultrafilters
u, v ∈ U [ρ] and define two functions L,M : U [ρ] × U [ρ] → 2Rρ as

L(u, v) = {r | Lr�v� ∈ u} and M(u, v) = {s | Ms�v� ∈ u}.

The following lemma establishes a relationship between L and M , that we
will need to define the transition relation. The lemma is a straightforward con-
sequence of axiom A7.

Lemma 18. Given any ultrafilters u, v ∈ U [ρ], it can not be the case that
L(u, v) = ∅ and M(u, v) �= ∅.

We can now define the transition relation in terms of L(u, v) and M(u, v). In
Fig. 5, we have illustrated the different cases that we must consider. For any of
the arches in the figure, we have the following correspondence with Lr and Mr.

– If a number r on the real line is contained within the arch, then we have
¬Lr�v� ∈ u and Mr�v� ∈ u.

– If a number r on the real line is to the left of the arch, then we have Lr�v� ∈ u
and ¬Mr�v� ∈ u.

– If a number r on the real line is to the right of the arch, then we have Mr�v� ∈ u
and ¬Lr�v� ∈ u.

In case (a), we therefore have L(u, v) �= ∅ and M(u, v) �= ∅, so we have all
the information we need to define the transition. In case (b) and (f), we have
L(u, v) �= ∅ and M(u, v) = ∅, so we have enough information to define the
minimum transition, but we do not know what the maximum transition is. Note
that we can not simply say that the maximum transition is maxQρ, because
that would imply MmaxQρ

�v� ∈ u, but we know that M(u, v) = ∅. Hence we
need to pick a number that is to the right of maxQρ as the maximum. In case
(d), we have both L(u, v) = ∅ and M(u, v) = ∅. This implies that ¬L0�v� ∈ u,
which means that there should be no transition from u to v. In case (c) and (e),
we have L(u, v) = ∅ and M(u, v) �= ∅, but according to Lemma18 these cases
can never occur.

We therefore distinguish the following three cases in order to define the tran-
sition relation:

1. If L(u, v) �= ∅ and M(u, v) �= ∅, then we add the two transitions u
r1−→ v and

u
r2−→ v where r1 = max L(u, v) and r2 = min M(u, v).

2. If L(u, v) �= ∅ and M(u, v) = ∅, then we add the two transitions u
r1−→ v and

u
r2−→ v where r1 = max L(u, v) and r2 = max Qρ + 1

gr(ρ) .
3. If L(u, v) = ∅ and M(u, v) = ∅, then there is no transition from u to v.



224 M. Hansen et al.

0

minRρ maxRρ

(a) (b)(c)

(d)

(e) (f)

Fig. 5.When constructing a transition from u to v, we will only have information about
what happens in the region Rρ (which always includes 0). The line represents the non-
negative real line and the arches represent the transitions that would be possible in a
full model (i.e. one not restricted to L[ρ]). The dashed part of the arches represent the
part of the transition that we do not have information about.

Finally we define the labeling function �ρ : U [ρ] → 2AP for any u ∈ U [ρ] as
�ρ(u) = {p ∈ AP | p ∈ u}. We then have a model Mρ = (U [ρ],→ρ, �ρ), and it is
not difficult to prove that Mρ is a WTS. The following lemma shows that any
formula ϕ in the language of ρ that is contained in some ultrafilter u must be
satisfied by the state u in the finite model Mρ.

Lemma 19 (Truth lemma). If ρ ∈ L is a consistent formula, then for all
ϕ ∈ L[ρ] and u ∈ U [ρ] we have Mρ, u |= ϕ iff ϕ ∈ u.

To prove the truth lemma, we first establish the following two theorems.

� ϕ ↔ ψ =⇒ � Lrϕ ↔ Lrψ � ϕ ↔ ψ =⇒ � Mrϕ ↔ Mrψ

The proof then proceeds by induction on the structure of ϕ. For the only-if-case
of ϕ = Lrψ, it is easy to see that �ψ� �= ∅. We then partition the ultrafilters
v ∈ �ψ� by �ψ� = E ∪ N where E = {v ∈ �ψ� | L(u, v) = ∅} and N = {v ∈ �ψ� |
L(u, v) �= ∅}. Because u is an ultrafilter, we have

∧
v∈E ¬L0�v�∧∧

v∈N Lr�v� ∈ u,
which we prove implies Lrψ ∈ u. For the if-case, it is straightforward to show
by contradiction that θ− (u) (�ψ�) ≥ r, if we know that θ (u) (�ψ�) �= ∅. To show
this, assume towards a contradiction that θ (u) (�ψ�) = ∅. Then ¬Lr�v� ∈ u for
all v ∈ �ψ�, which we can enumerate as ¬Lr�v1� ∧ · · · ∧ ¬Lr�vn� ∈ u. This can
then be shown to imply ¬Lrψ ∈ u, which is a contradiction.

Having established the truth lemma, we can now show that any consistent
formula is satisfied by some finite model.

Theorem 20 (Finite model property). For any consistent formula ϕ ∈ L,
there exists a finite WTS M = (S,→, �) and a state s ∈ S such that M, s |= ϕ.

We are now able to state our main result, namely that our axiomatization is
complete.

Theorem 21 (Completeness). For any formula ϕ ∈ L, it holds that

|= ϕ implies � ϕ.
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We have thus established completeness for our logic. There is also a stronger
notion of completeness, often called strong completeness, which asserts that
Φ |= ϕ implies Φ � ϕ for any set of formulae Φ ⊆ L. Completeness is a spe-
cial case of strong completeness where Φ = ∅. In the case of compact logics,
strong completeness follows directly from completeness. However, our logic is
non-compact.

Theorem 22. Our logic is non-compact, meaning that there exists an infinite
set Φ ⊆ L such that each finite subset of Φ admits a model, but Φ does not.

Proof. Consider the set Φ = {Lqϕ | q < r} ∪ {¬Lrϕ}. For any finite subset of
Φ, it is easy to construct a model. However, if M, s |= Lqϕ for all q < r where
q, r ∈ Q≥0, then by the Archimedean property of the rationals, we also have
M, s |= Lrϕ. Hence there can be no model for Φ. ��

5 Satisfiability

The finite model property gives us a way of deciding in general whether there
exists a WTS and a state in that WTS that satisfies a given formula. We do so by
constructing a model Mρ such that if ρ is satisfiable there exists a state Γ in Mρ

such that Mρ, Γ |= ρ. The model construction closely mimics the finite model
construction in Sect. 4.2. We will not go into the details of the construction here,
but instead point out where the construction differs from that in Sect. 4.2.

Given an arbitrary formula ρ ∈ L, we construct the language of ρ, L[ρ], in
the same way as we did in Sect. 4.2. In this section we will not use ultrafilters
as states in our model, but rather their semantic counterpart which we term
maximal sets of formulae.

Definition 23. We say that a set Γ ⊆ L[ρ] of formulae is propositionally max-
imal if it satisfies the following where ϕ,ψ ∈ L[ρ]:

(P1): ∀ϕ ∈ L[ρ]. ϕ ∈ Γ iff ¬ϕ �∈ Γ
(P2): ϕ ∧ ψ ∈ Γ implies ϕ ∈ Γ and ψ ∈ Γ
(P3): ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ .

In addition to the conditions for propositional maximality listed in Definition 23,
we also have another notion of maximality that we term quantitative maximality.

Definition 24. We say that a set Γ ⊆ L[ρ] of formulae is quantitatively max-
imal if it satisfies the following:

(Q1): ¬L0⊥ ∈ Γ
(Q2): Lr+qϕ ∈ Γ implies Lrϕ ∈ Γ
(Q2′): Mrϕ ∈ Γ implies Mr+qϕ ∈ Γ
(Q3): Lrϕ ∧ Lqψ ∈ Γ implies Lmin{r,q}(ϕ ∨ ψ) ∈ Γ
(Q3′): Mrϕ ∧ Mqψ ∈ Γ implies Mmax{r,q}(ϕ ∨ ψ) ∈ Γ
(Q4): Lr(ϕ ∨ ψ) ∈ Γ implies Lrϕ ∨ Lrψ ∈ Γ
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(Q4′): Mr(ϕ ∨ ψ) ∈ Γ implies Mrϕ ∨ Mrψ ∈ Γ
(Q5): ¬L0ψ ∈ Γ and Lrϕ ∈ Γ implies Lr(ϕ ∨ ψ) ∈ Γ
(Q5′): ¬L0ψ ∈ Γ and Mrϕ ∈ Γ implies Mr(ϕ ∨ ψ) ∈ Γ
(Q6): Lr+qϕ ∈ Γ implies ¬Mrϕ ∈ Γ
(Q7): Mrϕ ∈ Γ implies L0ϕ ∈ Γ
(Q8): ϕ → ψ ∈ Γ and ((Lrψ) ∧ (L0ϕ)) ∈ Γ implies Lrϕ ∈ Γ
(Q8′): ϕ → ψ ∈ Γ and ((Mrψ) ∧ (L0ϕ)) ∈ Γ implies Mrϕ ∈ Γ
(Q9): ϕ → ψ ∈ Γ and L0ϕ ∈ Γ implies L0ψ ∈ Γ

where ϕ,ψ ∈ L[ρ] and r, q ∈ Rρ.

The conditions for quantitative maximality are semantic analogues of the axioms
listed in Table 1. We will say that a set Γ ⊆ L[ρ] of formulae is maximal if it is
both propositionally maximal and quantitatively maximal.

The transitions between states and their associated weights are derived in
the same was as in Sect. 4.2. We can now formally define the WTS Mρ.

Definition 25. Given a formula ρ ∈ L, we define the WTS Mρ = (Sρ,→ρ, �ρ)
as follows.

– Sρ =
{
Γ ∈ 2L[ρ] | Γ is maximal

}
.

– →ρ⊆ Sρ × R≥0 × Sρ is defined as: for any Γ, Γ ′ ∈ Sρ, Γ
x−→ρ Γ ′ if L0�Γ

′� ∈ Γ
and either
1. M(Γ, Γ ′) = ∅ and x ∈

{
max L(Γ, Γ ′),max Qρ + 1

gr(ρ)

}
, or

2. M(Γ, Γ ′) �= ∅ and x ∈ {max L(Γ, Γ ′),min M(Γ, Γ ′)}.
– �ρ : Sρ → 2AP is defined for any Γ ∈ Sϕ as �ρ(Γ ) = {p ∈ AP | p ∈ Γ}.
The following lemma shows that any formula contained in a maximal set in the
language of ρ has at least one model, namely the model Mρ.

Lemma 26. For an arbitrary formula ϕ ∈ L[ρ] and maximal set of formulae
Γ ∈ 2L[ρ] it holds that ϕ ∈ Γ iff Mρ, Γ |= ϕ.

With the preceding result, we are now able to show that any formula in the
language of ρ which has a model, must also be contained in a maximal set and
vice versa.

Theorem 27. For any formula ρ ∈ L, the following two statements are equiv-
alent:

1. There exists a maximal set Γ ∈ 2L[ρ] such that ρ ∈ Γ .
2. There exists a model M = (S,→, �) and a state s ∈ S such that M, s |= ρ.

A consequence of Theorem 27 is that if we can find a maximal set Γ ∈ 2L[ρ] such
that ρ ∈ Γ , then ρ is satisfiable, and in particular it is satisfied by Γ in the WTS
Mρ. Also, if we can find no such maximal set, then ρ is not satisfiable. This
gives a way of deciding satisfiability of a given formula. For any formula ϕ ∈ L,
the following algorithm decides whether ϕ is satisfiable, and constructs a model
if it is satisfiable.
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Algorithm 28

1. Construct the finite language L[ϕ].
2. Construct the finite set 2L[ϕ] of all subsets of L[ϕ].
3. Go through all elements Γ ∈ 2L[ϕ] and check whether they satisfy the condi-

tions for maximality. If they do not, remove them.
4. Go through all the remaining maximal sets Γ and check whether ϕ ∈ Γ . If

there is no such Γ , then ϕ is not satisfiable. If there is one such Γ , then ϕ is
satisfiable, and the finite model Mϕ is a model for ϕ.

Example 29. Applying Algorithm28 on the formula M1charging yields a model
MM1charging with a state Γ such that MM1charging, Γ |= M1charging, thus
showing the satisfiability of the formula M1charging. We will not go through
the construction here, but consider the WTS depicted in Fig. 6. It is easy to
verify that M, s1 |= M1charging.

6 Concluding Remarks

s1

{}
s2

{charging}
1

Fig. 6. A model for M1charging.

Our contributions in this paper have been to
define a new bisimulation relation for weighted
transition systems (WTSs), which relates those
states that have similar behavior with respect
to their minimum and maximum weights on
transitions, as well as an accompanying modal
logic to reason about the upper and lower
bounds of weights on transitions. We have shown that this logic characterizes
exactly those states that are bisimilar. This characterization holds for WTSs that
we call image-compact, which is a weaker requirement than image-finiteness. Fur-
thermore, we have provided a complete axiomatization of our logic, and we have
shown that it enjoys the finite model property. Based on this finite model prop-
erty, we have developed an algorithm which decides the satisfiability of a formula
in our logic and constructs a finite model for the formula if it is satisfiable.

This work could be extended in different ways. Since our logic is non-
compact, strong completeness does not follow directly from weak completeness,
and hence it would be interesting to explore a strong-complete axiomatization
of the proposed logic. Such an axiomatization would need additional, infini-
tary axioms. An example of such axioms would be {Lqϕ | q < r} � Lrϕ
and {Mqϕ | q < r} � Mrϕ, which are easily proven sound and describe the
Archimedean property discussed in Theorem 22.

Although we have shown that our logic is expressive enough to capture bisim-
ulation, it would also be of interest to extend our logic with a kind of fixed-point
operator or standard temporal logic operators such as until in order to increase
its expressivity, and hence its practical use. We envisage two ways in which such
a logic could be given semantics: either by accumulating weights or by taking
the maximum or minimum of weights. In the accumulating case in particular,
one could also allow negative weights to model that the system gains resources.
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Abstract. Modern cloud applications consist of software components
deployed on multiple virtual machines. Deploying such applications is
error prone and requires detailed system expertise. The deployment opti-
mization problem is about how to configure and deploy applications cor-
rectly while at the same time minimizing resource cost on the cloud. This
problem is addressed by tools such as Zephyrus, which take a declar-
ative specification of the components and their configuration require-
ments as input and propose an optimal deployment. This paper presents
Zephyrus2, a new tool which addresses deployment optimization by
exploiting modern SMT and CP technologies to handle larger and more
complex deployment scenarios. Compared to Zephyrus, Zephyrus2 can
solve problems involving hundreds of components to be deployed on hun-
dreds of virtual machines in a matter of seconds instead of minutes. This
significant speed-up, combined with an improved specification format,
enables Zephyrus2 to interactively support on the fly decision making.

1 Introduction

Modern software systems are often developed to be highly configurable both in
the functionality they offer and in their deployment architecture. Applications
targeting the cloud need to adapt their deployment to the virtual machines
(VMs) that the cloud makes available. Cloud applications typically consist of
a large number of interconnected software components (such as packages or
services) that must be deployed on VMs that can be created on-the-fly by means
of cloud computing technologies. The correct deployment and configuration of
cloud applications is a challenging task and a major source of errors. In fact,
inappropriate deployment and configuration are the second cause of errors in
Google data centers, only after software bugs [6]. The deployment flexibility of
cloud applications is further restricted by the availability and price of resources
offered by the cloud. The deployment optimization problem is the problem of how
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to correctly deploy all the software components needed by a cloud application
on suitable VMs on the cloud at minimal cost.

The deployment and on-the-fly configuration of systems on the cloud are han-
dled by so-called DevOps teams, which address efficient system delivery and fre-
quent infrastructure changes by combining development and operations experts.
Different tools and technologies have been developed to support the work of
DevOps teams. The mainstream approach restricts solutions to a fixed set of
pre-configured VM images, which offers all the needed software packages and
services, and which can be launched directly on the VMs of the targeted cloud
system (e.g., Bento Boxes [24], Cloud Blueprints [12], or AWS CloudForma-
tion [4]). The main drawback of this approach is that, as the deployment may
use only the pre-configured VM images, it might use more resources than nec-
essary or force the software to only run on specific cloud providers (resulting in
vendor lock-in). More advanced techniques allow application architects to design
their own software architectures using high-level description languages such as
the graphical drag-and-drop approach of Juju [31] or the TOSCA (Topology
and Orchestration Specification for Cloud Applications) standard [41]. Unfor-
tunately, the use of these languages is knowledge-intensive since they require
the architect to design the entire architecture and have a deep understanding
of all the components to deploy. Furthermore, these languages do not address
deployment optimization.

To overcome these limitations and address the deployment optimization
problem, declarative approaches have recently been proposed which enable the
DevOps teams to automatically generate optimal VM configurations from high-
level specifications [23,30]. In particular, the automatic configuration generator
tool Zephyrus [17] has been applied in a number of industrial settings [15,19,26].
Starting from a description of the available VMs and the components that need
to be deployed, the architect can specify requirements in the form of constraints
and use the tool to generate optimal machine configurations and deployment
at minimal cost. The application architect can exploit the expressiveness of the
constraints to focus on the most important aspects of the application, leaving
to the tool the task of deducing other components that are needed to obtain a
correct configuration and where to deploy them.

The contribution of this paper is to present Zephyrus2 , a new tool to tackle
the deployment optimization problem, inspired by Zephyrus. Zephyrus2 over-
comes some limitations of Zephyrus by using different solving approaches, which
enables us to solve problems involving hundreds of components to be deployed
on hundreds of VMs in a matter of seconds instead of minutes. We report on the
obtained performance gains with different solving approaches. Based on indus-
trial experiences with declarative deployment optimization [15,19,26], Zephyrus2
allows a more direct and concise specification of deployment scenarios and user
requirements than Zephyrus. The simplified input format combined with a sig-
nificant speed-up (i.e., seconds instead of minutes) allows Zephyrus2 to be used
by DevOps teams in a more interactive way for on the fly decision making [20].
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Paper Structure. Section 2 gives a brief overview of the declarative deployment
optimization problem. Section 3 introduces Zephyrus2 and Sect. 4 evaluates its
performance on a set of industry inspired instances. Section 5 discusses the main
differences between Zephyrus2 and Zephyrus and Sect. 6 discusses other related
work. Section 7 concludes the paper, indicating directions for future research.

Fig. 1. The deployment problem.

2 Preliminaries

We give an overview of the declarative deployment optimization problem [11,17].
The basic deployment problem is illustrated by Fig. 1; we assume three different
inputs:

(i) a description of the components that can be deployed,
(ii) a description of the virtual machines where the components can run, and
(iii) the constraints that capture the specific requirements of the DevOps teams.

We specify components in the Aeolus [18] modeling language as black-boxes
that expose require- and provide-ports to capture required and provided func-
tionalities respectively. Connections (bindings) from require- to provide-ports
model the usage of services. Capacity constraints associated to the ports might
constrain those connections: (i) for provide-ports they can specify how many
require-ports might be connected (maximal number of served components), or
impose that no other component can provide the same functionality (used to
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model the notion of conflicts among components), (ii) for require-ports multi-
ple providers offering the given functionality can be required (used to model
replication requirements). Every component instance consumes resources such
as memory or processing power when deployed, which is also captured in the
model. Some examples for component descriptions are graphically illustrated
in Fig. 1 (top left). For instance, the open-source content management system
WordPress is represented by a component named WordPress which provides,
if installed, the functionality wp backend via a provide-port and which requires
the functionality mysql via a require-port. By associating the ∞ symbol to the
provide-port wp backend we model that the functionality can be provided to an
unbounded number of other components. The WordPress component requires
to be connected to at least two different components providing the mysql func-
tionality (e.g., to provide fault tolerance). This is expressed by associating the
capacity constraint “≥ 2” to the mysql require-port. In our example only the
resource RAM is modeled: a WordPress instance is associated with the consump-
tion of 2000 MB of RAM.

The virtual machines are modeled as locations. Each location has a name,
a list of resources that it can provide, and an associated cost. Figure 1 (top
right) shows four locations named c3 large 1, c3 large 2, c3 large 3, and
c3 xlarge 1. They represent four different machines inspired by Amazon EC2,
three of them are c3 large, providing 3.75 GB of RAM, and one of them is
c3 xlarge, providing 7 GB of RAM. The instances of type c3 large have an
associated cost of 105 to indicate that their cost is 0.105 dollars per hour.

The user can specify (deployment) constraints in an ad-hoc declarative lan-
guage powerful enough to express, e.g., the presence of a given number of com-
ponents and their co-installation requirements or conflicts. For the example in
Fig. 1, the user might require the presence of at least one HTTP Load Balancer

and impose that, for fault tolerance reasons, no two WordPress or MySQL

instances should be installed on the same virtual machine.
The goal of the declarative deployment optimization problem is to find a

configuration distributing components on a set of locations such that:

(i) the constraints reflecting the user requirements are satisfied,
(ii) every functionality required by a deployed component is provided,
(iii) in each location, the available resources are sufficient to cover the resource

needs of all components deployed on it, and
(iv) the values of some user-defined (prioritized) objective functions are mini-

mized.

3 Zephyrus2

Zephyrus2 is a tool to solve the declarative deployment optimization problem.
It offers a concise language to specify deployment optimization problems, and
it can use different technologies to solve them. Zephyrus2 is written in Python
(∼ 3k lines of code) and is open source and freely available [34]. In order to
increase portability, Zephyrus2 can be installed using Docker containers [22].
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3.1 Problem Specification Language

The use of Zephyrus in an industrial environment [15,19,26] has emphasized the
need to have (i) a simpler way to define components and locations, and (ii) a
more concise specification language to describe deployment constraints.

To tackle the first concern, Zephyrus2 supports for component and location
specifications the JavaScript Object Notation (JSON) format. Due to the lack
of space, here we only show some examples; the formal JSON Schema of the
input is available at [34]. The following JSON snippet defines the WordPress
component in Fig. 1:

"WordPress ": {
"resources": { "RAM": 2000 },
"requires": { "mysql": 2 },
"provides": [ { "ports": [ "wp_backend" ], "num": -1 } ]

}

In the second line, with the keyword resources, it is declared that WordPress
consumes 2000 MB of RAM. The keyword requires defines that the component
has a require-port requiring the service mysql with a capacity constraint “≥ 2”.
Similarly, the provides keyword declares that WordPress provides wp backend

to a possibly unbounded number of components (represented by −1).
The definition of locations is also done in JSON. For instance, the JSON

input to define 10 c3 large Amazon virtual machines is the following:

"c3_large": {
"num": 10,
"resources": { "RAM": 3750 },
"cost": 105

}

To tackle the second concern, Zephyrus2 introduces a new specification lan-
guage for deployment constraints. This language is a key factor for the usability
of the tool: while users who want to deploy their applications on a cloud usually
need rather simple deployment constraints (requiring, e.g., that one instance
of the main application component should be deployed), the language allows
DevOps teams to express also more complex cloud- and application-specific con-
straints. In the following we describe some main features of the language by
means of simple examples, referring the interested reader to [34] for the formal
grammar of the language and more examples.

A deployment constraint is a logical combination of comparisons between
arithmetic expressions. Besides integers, expressions may refer to component
names representing the total number of deployed instances of a component.
Location instances are identified by a location name followed by the instance
index (starting at zero) in square brackets. A component name prefixed by a
location instance stays for the number of component instances deployed on the
given location instance. For example, the following formula requires the presence
of at least one HTTP Load Balancer instance, and exactly one WordPress server
instance on the second c3 large location instance:
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HTTP_Load_Balancer > 0 and c3_large[1].WordPress = 1

For quantification and for building sum expressions, we use identifiers pre-
fixed with a question mark as variables. Quantification and sum building can
range over components, locations, or over components/locations whose names
match a given regular expression. Using such constraints, it is possible to express
more elaborate properties such as the co-location or distribution of components,
or limit the amount of components deployed on a given location. For example,
the constraint

forall ?x in locations: ( ?x.WordPress > 0 impl ?x.MySQL > 0)

states that the presence of an instance of WordPress deployed on any location
x implies the presence of an instance of MySQL deployed on the same location x.
As another example, requiring the HTTP Load Balancer to be installed alone on
a virtual machine can be done by requiring that if a Load Balancer is installed
on a given location then the sum of the components installed on that location
should be exactly 1.

forall ?x in locations: ( ?x.HTTP_Load_Balancer > 0 impl
(sum ?y in components: ?x.?y) = 1 )

For optimization, Zephyrus2 allows the user to express her preferences over valid
configurations in the form of a list of arithmetic expressions whose values should
be minimized in the given priority order. The keyword cost can be used to
require the minimization of the total cost of the application. The following list
specifies the metric to minimize first the total cost of the application and then
the total number of components:

cost; ( sum ?x in components: ?x )

This is also the default metric used if the user does not specify her own prefer-
ences.

3.2 Solving Technologies

Zephyrus2 solves deployment optimization problems, specified in the above-
described languages, by translating them into Constraint Optimization Problems
(COP) encoded in MiniZinc [39].1 By default, Zephyrus2 solves the resulting
multi-objective optimization problems by optimizing the first objective function
value and then optimizing the other objective function values sequentially fol-
lowing their order after substituting the previously determined optimal values.
We believe that this solution is particularly effective since usually minimizing the
first objective (e.g., the cost) has a significant impact on the performance when
reducing the second objective (e.g., the number of components). However, this
solution has the drawback that we need to restart the solver. In order to exploit
the capabilities of further multi-objective optimization techniques, Zephyrus2
also supports MiniSearch [46], a meta-search language for MiniZinc that allows

1 For the interested reader, an example of the encoding in MiniZinc is reported in [1].
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to solve MiniZinc models with (heuristic) meta-searches, such as large neighbor-
hood search (LNS), lexicographic branch-and-bound, and And/Or search. Cur-
rently, Zephyrus2 uses MiniSearch to execute a lexicographic branch-and-bound
search procedure. Unfortunately, for the time being, there is a limited amount
of solvers supporting the programmatic APIs of the version 2.0 of MiniZinc that
eliminates the need to communicate through text files and enables the addition
of constraints at runtime without restarting the solvers. However, from an engi-
neering point of view, we believe that the support of MiniSearch is important
since it allows to explore and try different search procedures and improve the
current performance as soon as more constraint programming solvers will adopt
the MiniZinc 2.0 APIs.

Zephyrus2 also supports the use of satisfiability-modulo-theories (SMT )
solvers. SMT solving extends and improves upon SAT solving by introducing
the possibility of stating constraints in some expressive theories, e.g., arithmetic
or bit-vector expressions. For our application, we need a solver that supports
integer arithmetic and also features optimization. One that is capable of doing
that is Z3 [7,21], one of the most prominent SMT solvers. The last version of Z3
(4.4.2) has introduced some optimization features as an extension of the SMT-
LIBv2 input language [5], i.e., the standard format to define SMT instances. This
is very suitable for our purpose since Z3 can solve the multi-objective optimiza-
tion problems directly, and we do not need to develop search strategies on top
of it. To use Z3, the optimization problems were translated into the SMT-LIB
format using fzn2smt [8] and further processed to simplify equations and reduce
the number of variables. For more details we refer the reader to [34]. Note that
optimization of SMT formulas is a very recent feature and still subject to a lot
of research. Though it makes use of optimization techniques known from lin-
ear programming, significant progress can be expected in the future from which
Zephyrus2 will directly benefit.

4 Experimental Results

In this section we describe the performance of Zephyrus2 while using different
settings and solving engines.

To the best of our knowledge, due to the novelty of these approaches, there
are no established benchmarks for application deployment. Moreover, the first
industrial problems solved by Zephyrus in [15,19,26] were not challenging, tak-
ing only a few seconds to be solved. For this reason, to compare Zephyrus2 with
Zephyrus, in this work we rely on the synthetic benchmark proposed in [17,50].
The instances of the benchmark are derived from a parametrized variant of
the WordPress deployment scenario presented in [15] and partially depicted in
Fig. 1. This scenario was parametrized in three dimensions to allow the analysis
of scalability issues: (1) the parameter mysql req encodes the number of MySQL
instances a WordPress requires, (2) the parameter wp req encodes the number
of WordPress instances the HTTP Load Balancer requires and (3) the para-
meter vm amount represents the amount of the four different types of Amazon
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EC2 virtual machines that can be used to deploy the application. The bench-
mark instances are obtained by varying the parameters mysql req and wp req

within {6, ..., 12}, and vm amount within {6, ..., 25} (this corresponds to consid-
ering up to one hundred virtual machines). The goal for all the instances is to
deploy an HTTP Load Balancer with the additional requirement that it is not
possible to install two MySQL instances or two WordPress instances on the same
machine.

We compare several different configurations of Zephyrus2 against the original
approach of Zephyrus denoted as zephyrus. As solver backends for Zephyrus2
we use the lexicographic minimization approach with restarts using the solvers
Chuffed [13] (lex-chuffed), Gecode [27] (lex-gecode), and Or-tools [28]
(lex-ortools), as well as the SMT solver Z3 [21] (smt). We run all approaches
using AMD Opteron 6172 processors and a timeout of 300 s (per problem
instance), which is usually the time it takes to require and obtain a virtual
machine from a cloud provider.

We remark that the times of zephyrus should just be used as an indicative
measure of the original performance of the Zephyrus approach. Indeed, these
times include also the time taken to generate the connections (bindings) between
the components that, as better explained in Sect. 5, in Zephyrus2 is a task that
by design is deferred to an external utility. However, the times of zephyrus
are still significant for a comparison since the generation of the bindings in
Zephyrus takes just few milliseconds and the runtimes of zephyrus, especially
for big problem instances, are greatly dominated by the time needed to prove
that a found configuration, if any, is optimal.

We also performed experiments using MiniSearch with the aforementioned
CP solvers as backends. However, due to a bug in MiniSearch,2 it often returns a
suboptimal solution. As Zephyrus2 and Zephyrus are supposed to provide opti-
mal solutions only, we have excluded the MiniSearch approach in the following
comparison.

Table 1. Experimental results for all the approaches.

Solver Solved Timeout Seconds

zephyrus 261 27 % 719 67.81

lex-chuffed 980 100 % 0 4.45

lex-gecode 980 100 % 0 2.25

lex-ortools 975 99 % 5 7.13

smt 960 98 % 20 50.23

A summary of the results is presented in Table 1. The columns Solved and
Timeout denote the number of instances that were solved correctly and the num-
ber of instances where the solver was terminated due to a timeout, respectively.
2 MiniSearch is a very recent framework, only available in a beta version.
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The last column gives the average time needed to solve the instances that could
be solved within the timeout.

As can be seen, all approaches based on Zephyrus2 can solve almost all the
benchmarks. While lex-chuffed and lex-gecode solve all, lex-ortools
and smt lack only five and twenty, respectively, of the 980 benchmarks. As for the
comparison with the original Zephyrus approach zephyrus, it is immediately
visible that Zephyrus2 is faster and able to solve more instances, whatever solver
is used as backend. While zephyrus is able to solve only 27 % of the benchmarks
in less than 5 min, lex-gecode which resulted as the best solver in average, is
able to solve all benchmarks in at most 25 s (with only 10 benchmarks taking
more than 10 s to be solved). Surprisingly, Gecode is more efficient than both
Chuffed and Or-tools which, based on the results of the last MiniZinc Challenge
[40] – an annual competition of constraint programming solvers – are among
the best CP solvers available today. We believe that this is probably due to the
nature of the deployment problem that favors the pure propagation and search
approach used by Gecode. As we will see later, although smt does not manage
to solve all the benchmarks and it is much slower than the other approaches of
Zephyrus2, it is not dominated by lex-chuffed or lex-gecode and for a
few hard instances it is faster than both of them.

Fig. 2. Percentage of the instances that could be solved within a given timeout.

Figure 2 shows for varying timeout values (x axis) the percentage of the
problem instances that could be solved within that timeout (y axis) by the
different approaches.

In Fig. 3 we compare the individual results of the best approach lex-gecode
with the other approaches. Each plot relates the benchmark results of two
approaches on a logarithmic scale where every cross represents a single prob-
lem instance. Firstly we can see that lex-chuffed is almost dominated by
lex-gecode as there are no examples that took more than 2 s in which
lex-chuffed performs significantly better. The same conclusion can be drawn
also for lex-ortools that is sometimes faster than lex-gecode, but only on
comparably easy instances that are quickly solved by both solvers. In contrast
to that, we believe that smt can be a valuable complement to lex-gecode,
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Fig. 3. Comparison of lex-gecode to the other approaches.

as it performs better on exactly those benchmarks that lex-gecode struggles
to solve. For every benchmark that takes lex-gecode more than 10 s to be
solved, smt is faster than lex-gecode. We conjecture that this is due to the
fact that the dynamic search heuristics of the smt approach are more robust
than the ones used by the lex-gecode for this problem type. A deeper com-
parison between these two approaches on harder instances is left as future work.
Surprisingly, some of the instances that took lex-gecode more than 10 s to be
solved are instead solved by Zephyrus in a shorter time. We conjecture that for
these instances the search heuristics used by Zephyrus lead to a good solution
faster, thus allowing to prove the optimality in shorter time.

5 Discussion

Zephyrus was the first tool to tackle the deployment optimization problem as
defined in Sect. 2. The development of Zephyrus2 was triggered by experiences
in applying Zephyrus in industrial case studies [15,19,26]. In this section, we
discuss in detail the technical differences between Zephyrus2 and Zephyrus [17].

Modeling. Whereas Zephyrus directly uses the Aeolus [18] component model for
the cloud, this component model has been extended for Zephyrus2 in order to
model locations and components more naturally. A concern that arose in indus-
trial case studies was that components may expose different interfaces at the
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same time. In Aeolus this is modeled by one provide-port for every interface.
However, this encoding leads to an exponential blow-up in the number of com-
ponents when capacity constraints are associated to the provide-port. To avoid
this exponential blow-up, Zephyrus2 allows provide-ports to have one or more
provided functionalities. For instance, assuming that a new version of a server
is able to provide its functionalities to at most two clients via a protocol a or b,
in Zephyrus2 we can specify this by adding only one provide-port offering con-
currently the possibility to use both protocols to at most 2 clients. Conversely,
Zephyrus requires the introduction of different components: a component offer-
ing to two clients the functionality using protocol a, a component offering to
two clients the functionality with protocol b, and a component offering to one
client the functionality with protocol a and to another client the functionality
with protocol b.

In the deployment constraint language, support for quantifiers and sum terms
(cf. Sect. 3) allows Zephyrus2 to express properties in a more concise way. In
addition, Zephyrus2 supports user-defined metric functions to better customize
the optimization, whereas users of Zephyrus are restricted to a predefined set of
metrics.

Constraint solving. Zephyrus solves deployment optimization problems by trans-
lating them into a COP encoded in MiniZinc [39] and then uses standard CP
solvers (such as the Gecode [27] and G12 solvers [48]) to iteratively minimize a
number of cost functions through sequential invocations of an optimizing solver.
Zephyrus2 offers more possibilities for the choice of solving technologies, as dis-
cussed in Sect. 4.

Another major difference between the tools is that Zephyrus2 relies on a
completely new MiniZinc model3, which enables Zephyrus2 to better exploit
the symmetries of the deployment problem. Zephyrus initially has to consider
a large number of locations to ensure that there are enough inexpensive virtual
machines available. Every additional location extends the search space consid-
erably. To cope with this problem, Zephyrus relies on ad-hoc location trimming
heuristics [50] which tries to reduce the number of locations. Instead of relying
on ad-hoc heuristics, it is also possible to use symmetry breaking constraints
[47] to reduce the search space by removing some symmetric solutions (unless
a user has machine-specific constraints on where to deploy components such as,
for example, that WordPress needs to be installed on c3 large 2 but not on the
similar VM c3 large 1). For this purpose, Zephyrus2 uses well-known symmetry
breaking constraints for the bin packing problem [45]. In particular, Zephyrus2
establishes an order between locations with the same resources and enforces the
deployment of the components in the cheapest location available, following the
pre-determined order on these locations. This removes some of the symmetries
between the locations.

Zephyrus2 supports similar constraints to break symmetries between the
components, which establish an order between components and then enforce
3 The MiniZinc model, available from [34], was submitted to the MiniZinc Challenge

2016.
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the deployment in the location following the lexicographic order. Compared to
Zephyrus2, Zephyrus only uses symmetry breaking constraints for locations, but
not for the components. The effectiveness of the symmetry breaking constraints
in Zephyrus2 allows the tool to reach better performance than Zephyrus, even
without the use of location trimming heuristics that are effective only in a limited
number of deploying scenarios.

Zephyrus2 simplifies the non-linear constraints used in Zephyrus into a con-
junction of linear implications, by means of encoding techniques [16]. These
techniques have proven effective to increase the performance of SMT solvers and
allows the use of Chuffed, which does not support the non-linear constraints of
the original formalization.

We would like to emphasize that the performance of the different solvers
heavily depends on the encoding of the constraints, and the addition of redun-
dant or symmetry breaking constraints. For instance, we noticed that with-
out the so-called Ralf’s redundant constraints [50], the performance of the CP
solvers degrades considerably while for SMT solving they do not have any strong
impact. Conversely, the simplification of the non-linear constraints allows the
use of Chuffed and improves the performance of the SMT approach, but it has
no impact on the performance of Gecode or Or-tools. Symmetry breaking con-
straints have a huge impact on the performances of both the CP and SMT
approaches. More details on these are presented in the technical report [1].

Based on the use of Zephyrus in [15,19,26], we noticed that users often have
preferences over the bindings between the components. For instance, it is often
better to have bindings between co-located components and avoid configura-
tions in which, e.g., a WordPress uses the functionalities of a MySQL deployed
on another location while it could have used the functionalities of a MySQL
deployed in its own location. In Zephyrus, the resolution of the deployment
problem is tied to the generation of the bindings performed by means of an ad-
hoc polynomial algorithm. Unfortunately, Zephyrus does not take into account
preferences between bindings. For this reason, as a design choice, Zephyrus2 sep-
arates the task of computing the distribution of the components in the various
locations from the task of connecting the components. Contrary to Zephyrus, the
generation of the connections between the components is therefore not part of
the core of Zephyrus2 and is instead deferred to an external utility. In particular,
Zephyrus2 comes with a default simple bindings generation utility that maxi-
mizes the number of local bindings in few seconds (for further details, see [34]).

6 Related Work

Whereas in Sect. 5 we discussed the differences between Zephyrus and Zephyrus2,
this section considers the deployment optimization problem addressed by these
tools in a broader context.

With the increasing popularity of cloud computing, the problem of automat-
ing application deployment has recently attracted a lot of attention. Many sys-
tem management tools have been developed for this purpose, including popu-
lar tools such as CFEngine [9], Puppet [32], MCollective [43], and Chef [42].
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Despite their differences, such tools allow to declare the components that should
be installed on each machine, together with their configuration parameters. In
order to use such tools, the DevOps architect needs to know how components
should be distributed and configured.

Some tools aim to compute an (optimal) configuration of a distributed system
without computing the deployment steps needed to reach it. CP appears to be
one of the best methods today for solving different configuration problems [47].
The structure of a configured system depends on the application domain and
this knowledge is exploited to speed up the search for valid configurations. CP
techniques have already been applied with success to the problem of deciding the
allocation of resources in data centers and clouds [10,29,33,36,37]. Zephyrus2
relies on solver techniques similar to those adopted by these tools. Indeed, the
COP problems solved by Zephyrus can be seen as an extension of the well-known
bin packing problem [14] where some items, corresponding to components, have
to be included into bins, corresponding to locations. However, in contrast to
these approaches, Zephyrus2 not only computes the optimal allocation but also
identifies the additional components that are needed to form a valid configu-
ration. Formally, even without considering the allocation of components, the
problem of deciding if there is a correct configuration is already NP-hard [16].
To the best of our knowledge, no trivial encoding exists that allows the reuse
of [10,29,33,36,37] to solve the deployment optimization problem tackled by
Zephyrus2.

Perhaps the most similar to our approach is ConfSolve [30], which uses a formu-
lation based on constraints to propose an optimal allocation of virtual machines
to servers and of applications to virtual machines. Similar to Aeolus [18], a declar-
ative language is used to describe the entities (e.g., machines and services), and
the deployment problem is then solved by translating the declarative specifica-
tion into MiniZinc. However, in contrast to Zephyrus2, ConfSolve does not han-
dle capacity and replication constraints, so there is no obvious representation of
our benchmarks for ConfSolve. Another interesting related work is Saloon [44],
where a deployment problem is described by means of a feature model extended
with feature cardinalities. Saloon applies CP technologies to determine a deploy-
ment. While Saloon is able to automatically detect inconsistencies between com-
ponents, it does not address the optimization problem; i.e., the solutions pro-
posed by Saloon do not minimize the number of resources and virtual machines to
be used.

Other approaches rely on a range of techniques to compute optimal compo-
nent allocation. For instance, SAT solvers are used to solve network configuration
problems [38], a prediction-based online approach [35] is proposed to find opti-
mal reconfiguration policies, a genetic-based algorithm [25] is used to support the
migration and deployment of enterprise software with their reconfiguration poli-
cies, and integer linear programming has been used to find energy-efficient VM
configurations [49]. However, none of the tools that we are aware of allows capac-
ity and replication constraints to be expressed, which are essential non-functional
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constraints for any non-trivial, scalable application. Furthermore, most of them
give no optimality guarantee on the solution.

7 Conclusions

In this paper we presented Zephyrus2, a tool that is advancing the state-of-the-
art by computing the cheapest way to deploy complex cloud applications based
on declarative specifications. Optimal deployments involving up to a hundred
components and virtual machines can be generated within seconds. This allows
Zephyrus2 to be used in a more interactive way by the DevOps architect, who
does not need to wait for minutes to inspect the proposed optimal solution and
restart the computation in case she has forgotten to elicit one constraint or
preference.

Zephyrus2 has already been tested in an industrial environment to check
the cost optimality of currently deployed solutions and to devise the optimal
allocation for deploying new components. The feedback obtained so far is positive
both for the tool’s usability and for its running time. As witnessed in [20], the
support of a more concise language to specify user constraints and the improved
performance makes Zephyrus2 a better alternative to the original version of
Zephyrus.

To further improve the performance of Zephyrus2 in future work, we plan to
study whether the SMT encoding can be improved and especially to consider
whether SMT solvers can be extended with modules that perform propagation
similar to those implemented by CP solvers. Moreover, exploiting the flexibil-
ity of MiniSearch, we plan to study local search procedures, which could be
extremely useful in scenarios where the user is not interested in the optimal
solution but just in finding a sufficiently good solution very quickly (e.g., in a
second or less).

Based on the good results obtained by the Sunny portfolio approach [2] on
the last MiniZinc Challenge, we also plan to study how the different search
procedures can be combined to obtain a globally better solver. In particular, we
are interested in combining the strengths of the different solvers by using, e.g.,
the bound sharing with restarts approach of the parallel version of the Sunny
solver [3].

Finally, we are also interested in enriching the formal model behind
Zephyrus2 to allow constraints on the bindings between components. This will
allow configurations with more complex properties to be generated, such as
the non-transferability of data between borders or the load balancing of traf-
fic between parts of the system deployed on different data centers.

Acknowledgements. We would like to thank Andreas Schutt from NICTA (National
ICT of Australia) for proposing a search annotation for the deployment problem when
submitting Zephyrus2 instances to the MiniZinc Challenge 2016.
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Abstract. In this paper we present an efficient verification algorithm
for infinite-state component-based systems modeled in the behavior-
interaction-priority (BIP) framework. Our algorithm extends the per-
sistent set partial order reduction by taking into account system sym-
metries, and further combines it with lazy predicate abstraction. We
have implemented the new verification algorithm in our model checker
for BIP. The experimental evaluation shows that for systems exhibiting
certain symmetries, our new algorithm outperforms the existing algo-
rithms significantly.

1 Introduction

Recently rigorous system design [33] has been proposed as a formal, accountable
and coherent process for building large complex systems in the correctness-by-
construction manner. In this design methodology, trustworthy system imple-
mentations are derived from the high-level system models by applying a series
of property preserving source-to-source model transformations, and refined with
details specific to the target platforms. Correctness of the system is guaran-
teed at the earliest possible design phase by applying algorithmic verification to
high-level system models. In practice, BIP framework [3] has been developed
to support the rigorous system design methodology and actively used in many
industrial applications [1,4].

BIP provides a general and expressive component-based framework for mod-
eling complex concurrent systems. One of the key underlying principles is the
separation of concerns (i.e. computation and coordination). System models are
constructed by superposing three layers of modeling: Behaviour, Interaction and
Priority. Behaviour models the computation and is characterized by a set of
components. A component in BIP is specified as an automaton extended with
linear arithmetic. Interaction models the communication and coordination of
components. Intuitively, an interaction represents a guarded multi-party syn-
chronisation of components, among which data transfer may take place. Priority
is used to schedule the set of interactions to be executed, or resolve conflicts
when several interactions are enabled simultaneously.

Various techniques have been developed to verify BIP designs automatically
in our recent work [7,29,38]. In this work, we go one step further and present
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an efficient verification technique for infinite-state system models, which have
certain symmetric structure features, e.g. component symmetries. Such symme-
tries are common in component-based designs. For instance, a system model
consisting of one server and several identical users is usually symmetric with
respect to the users. Moreover, permutating the users would not affect the sat-
isfaction of certain safety properties, e.g. deadlocks, mutual exclusion. Based on
this observation, we investigate in this paper how to exploit such symmetries to
verify infinite-state concurrent systems more efficiently. To this end, we made
the following contributions:

1. We extend the notion of interaction independence by taking into account the
system symmetries, i.e. two interactions are independent if they commute
under some symmetries. The original definition of independence is then a
special case of this one with identical symmetry. we also extend persistent set
based partial order reduction technique [22] by relying on this new indepen-
dence relation and show how to compute the persistent set by adapting the
Stubborn set approach [34].

2. We propose an integration of our new partial order reduction with lazy pred-
icate abstraction [26], and prove that though on abstraction structures, com-
mutativity of independent transition in general does not hold, our technique
still computes a sound over-approximation such that no real counterexam-
ples would be missed. We have also implemented the proposed verification
algorithm and performed a set of experiments. The results show that this
new algorithm outperforms the others significantly, for systems with certain
symmetries.

The rest of this paper is organized as follows. In Sect. 2, we provide the pre-
liminaries. In Sect. 3, we review the BIP models without priority and illustrate
our verification idea with an example. In Sect. 4, we present the new persistent
set based partial order reduction technique extended with system symmetries. In
Sect. 5, we present the integration of the new partial order reduction with lazy
abstraction and an algorithm to compute the persistent set for BIP models. In
Sect. 6, we present the experimental evaluation. In Sects. 7 and 8, we review the
most related work and draw the conclusions respectively.

2 Formal Preliminaries

We denote by V a set of variables of integer domain Z, and by V their valuations,
i.e., a mapping from V to Z. We also denote by EV the set of expressions, and
FV the set of formulae in the theory of linear arithmetic over V. We denote by
V |= g when a valuation V satisfies a formula g ∈ FV . A labeled transition
system T = 〈C, Σ,R, C0〉 consists of 1. a set of states C; 2. a set of labels Σ; 3. a
set of transitions R ⊆ C × Σ × C, and 4. a set of initial states C0 ⊆ C. A trace is
a sequence of connected transitions, denoted by σ∗ ∈ Σ∗. A state c is reachable
if there is a trace from an initial state c0 to c, denoted by c0

σ∗
−→ c in the sequel.
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2.1 Symmetry Reduction

In order to avoid exploring the entire state space of a transition system, sym-
metry reduction [12,17,28] exploits the symmetries of a transition system. Intu-
itively, a transition system has symmetry if the transition relations remain invari-
ant when states are rearranged by certain permutations.

Definition 1. A symmetry of a labeled transition system T = 〈C, Σ,R, C0〉 is
a permutation π over C ∪ Σ, such that 1. π(C) = C and π(Σ) = Σ, and 2.
〈c1, γ, c2〉 ∈ R iff 〈π(c1), π(γ), π(c2)〉 ∈ R, 3. π(C0) = C0.

The set of all symmetries of T forms a group under the function composition,
denoted by Aut(T). However, obtaining Aut(T) is computationally expensive,
since one has to explore the whole state space. In practice, subgroups of Aut(T),
which can be obtained from the high-level system structure, are used. Exam-
ple subgroups include rotation group, full component symmetry group and the
Cartesian product of such groups. A subgroup G ⊆ Aut(T) induces an equiva-
lence relation ≡G on T as follows: s ≡G t ⇔ ∃π ∈ G.s = π(t). The equivalence
relation ≡G is also called the orbit relation, and it induces a quotient model TG ,
which is bisimilar to T [12,17]. Model checking of a symmetric property, i.e. a
property remains invariant under permutations in G, can be performed on the
quotient model. We remark that deadlock states are trivially invariant under
symmetry permutations.

As noticed in [11], under arbitrary symmetries, detecting state equivalence is
as hard as the graph isomorphism problem. In order to bypass the orbit relation,
for some specific symmetry subgroups, e.g. full component symmetry, rotation
symmetry, one can select some representatives from the orbit relation and define
a mapping function that computes these representatives [12,18,19]. Then during
the state space exploration, states are dynamically mapped to their respective
representatives.

2.2 Partial Order Reduction

For efficient verification of concurrent systems, partial order reduction [13,22,32,
34] exploits commutativity of two independent transitions, i.e. two independent
transitions will lead to the same state when they are executed in different orders.
Sequences of transitions that can be obtained by successively permutating two
adjacent independent transitions, are equivalent in the sense that they all result
in the same final state. Thus, it is sufficient to explore only one sequence out of
all the equivalent ones, if the property of interest is irrelevant to the intermediate
states of interleavings.

Definition 2. Two transitions γ1 and γ2 are independent iff the following two
conditions hold on every state c: 1. if γ1 is enabled on c, then γ2 is enabled on c

iff γ2 is enabled on c′, where c
γ1−→ c′; 2. if γ2 is enabled on c, then γ1 is enabled

on c iff γ1 is enabled on c′, where c
γ2−→ c′; 3. if γ1 and γ2 are both enabled on c,

then c′
1 = c′

2, where c
γ1γ2−−−→ c′

1, and c
γ2γ1−−−→ c′

2.
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Relying on the transition independence, partial order reduction performs a
selective search to reduce the number of visited states in the state space explo-
ration, i.e., on every state reached during the exploration, only a subset of the
enabled transitions on the state is explored. A widely used technique to perform
selective search is the persistent set approach [20,22,37].

Definition 3. A set Σ′ of transitions on a state c is persistent iff, for all traces
c

γ1−→ c1
γ2−→ ... cn−1

γn−→ cn with γi /∈ Σ′, i ∈ [1, n], γn is independent of all
transitions in Σ′.

Intuitively, a subset of enabled transitions on a state is called persistent if
whatever one reaches through the transitions outside of this subset, remains inde-
pendent with transitions in the subset. Correctness of persistent set reduction
with respect to safety property verification has been proved in [2,22].

2.3 Symbolic Structures and Abstraction

For infinite-state systems verification, symbolic algorithms manipulate a sym-
bolic region structure [26], which is formally defined as follows.

Definition 4. A symbolic region structure for a labeled transition system T is a
tuple S = 〈Q,⊥,�,
, post, β〉, where 1. Q is a set of regions, and ⊥ ∈ Q; 2. �
and 
 are two total functions: Q × Q → Q, computing the greatest lower bound
and least upper bound respectively; 3. post : Q × Σ → Q is the strongest post
operator over regions; 4. β is a total function: Q → 2C, mapping a region to the
set of representing states.

A region can be understood as an abstract representation of a set of states
of T. A region structure carries a natural preorder �, which is defined by r � r′

iff β(r) ⊆ β(r′), for r, r′ ∈ Q. A region structure is computable if the functions
�, 
, post and � are computable.

Definition 5. A symbolic abstraction structure for a transition system T is a
tuple A = (S, p̂ost), where 1. S is a computable region structure for T; 2. p̂ost :
Q × Σ → Q is an approximation of post, such that for every region r ∈ Q and
every label γ ∈ Σ, post(r, γ) � p̂ost(r, γ) and p̂ost is monotonic with respect to
the preorder �.

Given a labeled transition system T, a predicate language L is a set of pred-
icates that are interpreted over the state space of T. Further, we assume the
following two properties: 1. the boolean closure of L is a decidable theory; 2. the
boolean closure of L is closed under the post function. Thus, for every formula
φ in the boolean closure of L, and for every label γ ∈ Σ, one can compute a
formula φ′, such that β(φ′) = post(β(φ), γ). A particular symbolic abstraction
structure is the predicate abstraction structure [14,21,23] defined as follows.
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Definition 6. Given a predicate language L for a labelled transition system T,
the predicate abstraction structure of T is a tuple AL = 〈SL, p̂ost〉, where 1.
SL = 〈Q,⊥,�,
, post, β〉 is a symbolic region structure, where (a) Q is the set
of formulae in boolean closure of L; (b) ⊥ = false; (c) φ1 � φ2 = φ1 ∨ φ2;
(d) φ1 
 φ2 = φ1 ∧ φ2; (e) post(φ, γ) = φ′, such that β(φ′) = post(β(φ), γ);
(f) β(φ) is the set of states satisfying φ. 2. for each region φ, and label γ ∈ Σ,
p̂ost(φ, γ) = φ̂, and φ̂ the strongest formula such that post(φ, γ) =⇒ φ̂.

Predicate abstraction structure over-approximates the state space of the tran-
sition system T. A widely used algorithm to construct a predicate abstraction
structure is the lazy abstraction with interpolant-based refinement [25,26,30].

3 BIP Model

A BIP model [7,38] is composed of a finite set of components, each of which is
formally defined as follows.

Definition 7. A BIP component is a tuple B = 〈V,L,P,E, �〉, where 1. V is a
finite set of variables; 2. L is a finite set of control locations; 3. P is a finite set
of communication ports; 4. E ⊆ L ×P × FV × EV ×L is a finite set of transition
edges extended with guards in FV and operations in EV ; 5. � ∈ L is an initial
control location.

Transition edges in a component are labelled by ports, which form the inter-
face of the component. We assume that, from each control location, every pair
of outgoing transitions have different ports, and the ports of different compo-
nents are disjoint. Given a component violating such assumptions, one can easily
transform it into the required form by renaming the ports, while retaining the
BIP expressiveness power.

We denote by B = {Bi | i ∈ [1, n]} a set of components. In BIP, coordinations
of components are specified by using interactions.

Definition 8. An interaction for B is a tuple γ = 〈g,P, f〉, where g ∈ FV ,
f ∈ EV and P ⊆ ⋃n

i=1 Pi, P �= ∅, and for all i ∈ [1, n], |P ∩ Pi| ≤ 1.

Intuitively, an interaction defines a guarded multi-party synchronization with
data transfer: when the guard g of an interaction P is enabled, then the data
transfer specified by f can be executed, and after that the transitions labelled
by the ports in γ can be taken simultaneously. We denote by Γ a finite set of
interactions. A BIP model is constructed by composing a number of components
with interactions.

Definition 9. A BIP model MBIP is a tuple 〈B, Γ 〉, where B is a finite set of
components, and Γ is a finite set of interactions for B.

A tuple c = 〈〈l1,V1〉, . . . , 〈ln,Vn〉〉 is a state of a BIP model MBIP, if for all
i ∈ [1, n], li ∈ Li and Vi is a valuation of Vi. A state c0 is an initial state if, for all
i ∈ [1, n], li = �i and Vi is the initial valuation of Vi. A state c is an error state
if, for some i ∈ [1, n], li is an error location. An interaction γ = 〈g,P, f〉 ∈ Γ is
enabled in a state c if, ∧n

i=1Vi |= g and for every component Bi ∈ B such that
P ∩ Pi �= ∅, there is an edge 〈li, γ ∩ Pi, gi, fi, l

′
i〉 ∈ Ei and Vi |= gi.
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Fig. 1. Ticket mutual exclusion protocol

Definition 10. Given a BIP model MBIP = 〈B, Γ 〉, its operational semantics is
defined by a transition system TBIP = 〈C, Σ,R, C0〉, where 1. C is the set of states,
2. Σ = Γ , 3. R is the set of transitions, and we say there is a transition from a
state c to another c′, if there is an interaction γ such that, (a) γ is enabled in c;
(b) for all Bi ∈ B such that γ ∩Pi �= ∅, there is an edge 〈li, γ ∩ Pi, gi, fi, l

′
i〉 ∈ Ei,

then V′
i = fi(f(∪n

i=1Vi)); (c) for all Bi ∈ B such that γ ∩ Pi = ∅, l′i = li and
V′

i = Vi. (4.) C0 is the set of initial states.

Instead of specifying safety properties by using logics, we recognize a set of
states in a BIP model as error states. A BIP model is safe if no error states
are reachable. Notice that any safety property can be encoded as an error state
reachability problem by necessarily adding additional components.

We illustrate the BIP model as well as the basic idea of our verification
approach by using the following mutual exclusion protocol.

Example 1. Figure 1 depicts a BIP model of the ticket mutual exclusion protocol
with two processes. Upon entering the critical section Ci, i = 1, 2, each process
requests a fresh ticket from the controller, then the process waits until its ticket
equals to the number to be served next. When leaving the critical section, the
process resets the ticket and the controller increases the number to be served
by one.

Six interactions are defined to coordinate the transitions of controller and
processes. Each interaction is depicted as a wire in Fig. 1. The ports connected
by a wire are synchronized, and an interaction may also have a guard, e.g.
[ticket1 = next], and an operation, e.g. ticket1 = number.

Assume we start the state space exploration from the initial state
〈〈I1, ticket1 = 0〉, 〈S, number = 1, next = 1〉, 〈I2, ticket2 = 0〉〉, then the follow-
ing two interactions γ1, γ2 are expanded, where γ1 = 〈true, {request, request1},
ticket1 = number〉, and γ2 = 〈true, {request, request2}, ticket2 = number〉.
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Apparently, γ1, γ2 are not independent, since the interleavings γ1; γ2 and
γ2; γ1 lead to two different states 〈〈W1, ticket1 = 1〉, 〈S, number = 3, next =
1〉, 〈W2, ticket2 = 2〉〉 and 〈〈W1, ticket1 = 2〉, 〈S, number = 3, next =
1〉, 〈W2, ticket2 = 1〉〉 respectively. However, we notice that under the follow-
ing permutation of processes π = {1 �→ 2, 2 �→ 1}, the above states become
the same, thus the two interactions γ1, γ2 commute and become independent.
In this case, we may consider exploring only one interleaving and achieve better
reductions.

4 Partial Order Reduction Under Symmetry

In this section, we extend the persistent set partial order reduction by taking
symmetry into account. First of all, we generalize the definition of interaction
independence.

Definition 11. Given a symmetry group G, two interactions γ1 and γ2 are inde-
pendent under symmetry, if and only if for every state c in the global system,
there is a symmetry π ∈ G such that the following two conditions hold: 1. if γ1
is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c′, where c

γ1−→ c′. 2. if
γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c′, where c

γ1−→ c′.
3. if γ1 and γ2 are both enabled in c, then c′

1 = π(c′
2), where c

γ1γ2−−−→ c′
1, and

c
γ2γ1−−−→ c′

2.

This new definition differs the one in Definition 2 in that two interactions
are viewed as independent if their executions commute under some symmetry
permutation. We denote by Dγ the set of interactions that are not independent
under symmetry with γ.

In previous work [7,38], we obtain an under-approximation of independence
relation statically from system specification: two interactions are independent if
they do not share a common component. Though being easy to obtain, this
approximation is too coarse, and many independent transitions are ignored.
For instance, the following two interactions in Example 1, γ1 = 〈[ticket1 =
next], {enter, enter1}, skip〉, and γ2 = 〈[ticket2 = next], {enter, enter2}, skip〉,
are independent, but cannot be obtained using the previous analysis.

In this work, we apply a finer static analysis to check if two interactions are
independent or not. Given two interactions γ1 = 〈g1,P1, f1〉, γ2 = 〈g2,P2, f2〉,
we check if they are independent by checking the validity of the following three
formulae:

1. ∀c.∃c′.c |= g1 ∧ c
γ1−→ c′ =⇒ (c |= g2 ≡ c′ |= g2)

2. ∀c.∃c′.c |= g2 ∧ c
γ2−→ c′ =⇒ (c |= g1 ≡ c′ |= g1)

3. there is a permutation π ∈ G, such that the formula ∀c.∃c1, c2.c |= g1 ∧ c |=
g2 ∧ c

γ1γ2−−−→ c1 ∧ c
γ2γ1−−−→ c2 =⇒ c1 = π(c2) is valid.

Considering the complexity, the number of interactions is linear to the size
of the system model. Thus, the number of validity checks is also linear to the
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size of system model. In order to detect the state equivalence under symmetry,
one intuitive approach is to traverse all permutations in the symmetry group G.
However, this would blow up the analysis, even for full component symmetry
group, whose complexity is factorial in the number of components. As in [19],
we use a sorting function that maps a state to a representative in the orbit
relation, then two states are equivalent if they can be mapped to the same
representative. The sorting function requires a total order on the symbolic states
of each component. We say a symbolic state c1 is greater than another c2 if
c1 > c2 is valid.

However, since we focus on infinite state systems, our partial order reduction
should apply to a symbolic abstraction structure instead of the labelled transition
system. We remark that on symbolic abstraction structures, the independent
transitions do not commute anymore. For instance, consider two interactions
γ1 = 〈true, {p1}, x1 + +〉 and γ2 = 〈true, {p2}, x2 + +〉, it is obvious they are
independent in the concrete state space. Suppose the predicate language of the
abstraction structure is given by predicates b1 = (x1 > x2) and b2 = (x1 = x2),
and then starting from the initial state ¬b1∧b2, transition sequence x1++;x2++
leads to the state b1 ∨ b2, while another transition sequence x2 ++;x1 ++ leads
to a different state ¬b1 ∨ b2. Then the question is whether it is still safe if we
only explore one transition sequence.

The following lemma shows that independent transitions still commute under
symmetry on the concrete states represented by abstraction structures. Thus,
exploiting independence on the symbolic abstraction structure is still sound.

Lemma 1. Let γ1 and γ2 be two independent transitions under symmetry π,
and let r be an abstract region, then for all c ∈ β(p̂ost(p̂ost(r, γ1)), γ2), we have
that if there is a state c1 ∈ β(r), such that c = post(post(c1, γ1), γ2), then π(c) ∈
β(p̂ost(p̂ost(r, γ2)), γ1).

Proof. Assume we have c = post(post(c1, γ1), γ2), since γ1 and γ2 are indepen-
dent under symmetry π, then we also have π(c) = post(post(c1, γ2), γ1). Accord-
ing to the semantics of p̂ost, it holds that π(c) ∈ β(p̂ost(p̂ost(r, γ2), γ1)).

We then extend the persistent set in Definition 3 by relying on the notion of
independence under symmetry and by generalising to the symbolic abstraction
structure.

Definition 12. A set of interactions Γ on an abstract region r is persistent iff,
for some state c, such that c |= r and for all traces c

γ1−→ c1
γ2−→ ...

γn−→ cn in the
original state space with γi /∈ Γ, i ∈ [1, n], γn is independent of all interactions
in Γ under symmetry.

The following theorem states the correctness of selective search over symbolic
abstraction structure by using persistent sets on abstract regions.

Theorem 1. Let T be a labeled transition system and A = 〈S, p̂ost〉 be a sym-
bolic abstraction struction for T, where S = 〈Q,⊥,�,
, post, β〉, selective search
over A with persistent set under symmetry preserves all deadlock states of T.
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Proof. We prove by induction on the length of the trace to deadlock state. The
basis case trivially holds. Suppose deadlock states are preserved by traces of
length n, then we prove that they are also preserved by traces of length n + 1.

Let γ1, ..., γn, γn+1 be a trace from some state c in the concrete state space
that leads to a deadlock, we first prove that there is another trace from c, which
leads to the same deadlock state and starts with an interaction from the per-
sistent set of c. Consider the set of traces of the form γ′

1, ..., γ
′
n, γ′

n+1, which are
obtained by permutating two adjacent transtions independent under symmetry,
then according to Definition 11, we know that any of the above traces also leads
to the same deadlock since permuting adjacent independent interaction under
symmetry would lead to states, which are equivalent under symmetry.

Then we need to prove that there is at least one trace from the above set,
whose first interaction γ′

1 is in the persistent set of c. Suppose that none of
interactions γi, i ∈ [1, n] is in the persistent set of c, then by Definition 12, the
interactions in persistent set of c is still enabled, which contradicts the deadlock
state assumption. Thus, there is at least one interaction γi, i ∈ [1, n] in the
persistent set of c, assume the first such interaction is γj , j ∈ [1, n], then for all
interactions γk, k < j, we have γj is independent with γk. Thus, γk can be moved
to the beginning of the trace, which proves the existence of γ′

1.
Then according to the hypothesis that deadlocks are preserved by traces of

length n and the fact that at least one γ′
1 is in the persistent set of c, we know

that deadlock states are also reachable in the reduced concrete state space by
traces of length n + 1.

Finally, according to the definition of symbolic abstraction struction, we know
that any trace on concrete state c is also possible on the abstract region r,
which over-approximates c, i.e. c |= r. Then by Lemma 1, we can conclude that
both traces γ1, ..., γn+1 and γ′

1, ..., γ
′
n+1 lead to the same deadlock state on the

symbolic abstraction structure.

5 Combining with Lazy Abstraction

In this section, we present how to combine the new partial order reduction with
lazy abstraction of BIP [38]. The integrated algorithm is shown in Algorithm1.
As in lazy abstraction [26], the algorithm computes an over-approximation of
the reachable states by constructing a reduced abstract reachability tree (ART),
whose nodes consist of both control locations and abstract data regions of all
components.

Definition 13. An ART node is a tuple η = 〈〈l1, φ1〉, ..., 〈ln, φn〉, φ〉, where each
〈li, φi〉 is an abstract component region consisting of the control location li and
the abstract data region φi of component Bi, and φ is the global data region.

An abstract component region 〈li, φi〉 over-approximates the set of concrete
states with control location li. A global data region φ keeps track of the vari-
ables in data transfer. An ART node is an error node if at least one of the
control location li is an error location and the data regions are consistent,
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i.e. φ ∧ ∧n
i=1 φi is satisfiable. A state c = 〈〈l1,V1〉, . . . , 〈ln,Vn〉〉 is covered by

a node η = 〈〈l′1, φ1〉, ..., 〈l′n, φn〉, φ〉, denoted by c |= η, if for all i ∈ [1, n], li = l′i
and Vi |= φi and ∧n

i=1Vi |= φ. A node can also be covered by another node. The
covering relation is defined as follows.

Definition 14. An ART node η = 〈〈l1, φ1〉, ..., 〈ln, φn〉, φ〉 is covered by another
node η′ = 〈〈l′1, φ′

1〉, ..., 〈l′n, φ′
n〉, φ′〉 if li = l′i and the implication φi ⇒ φ′

i is valid
for all i ∈ [1, n], and φ ⇒ φ′ is valid.

A covered node will not be explored in the future exploration. However, a
covered node may be uncovered, if the covering relation is no longer valid. An
ART is complete if all the nodes are either fully expanded or covered. An ART
is safe if it is complete, and contains no error nodes.

The algorithm constructs the ART by expanding the ART nodes progres-
sively, starting from the initial one. Upon expanding a node, it first checks if an
error node is encountered. If an error node is detected, it generates a counterex-
ample and checks if the counterexample is real. If the counterexample is real,
it reports the counterexample and stops the analysis. Otherwise, it refines the
abstraction and continues the exploration. Then it checks if a cycle occurs. We
say a cycle occurs, if the control locations of the node have been visited before
in the trace to this node. If a cycle is detected, the predecessor of this node will
be fully expanded in order to avoid the ‘ignoring problem’ [13]. Function Ful-
lyExpand expands the set of interactions, which have been removed by partial
order reduction. Then it checks if the node can be covered by another one. If
not, it will expand the node, where the partial order reduction is incorporated
to reduce the number of successors.

To expand a node, the set of enabled interactions is computed via func-
tion EnabledInteraction. We say that an interaction γ = 〈g,P, f〉 is enabled
on an ART node 〈〈l1, φ1〉, ..., 〈ln, φn〉, φ〉 if for each component Bi such that
P ∩ Pi = {pi}, there is an outgoing transition 〈li, gi, pi, fi, l

′
i〉 ∈ Ei. Notice that

we do not check the satisfiability of the guards on the ART node, since in lazy
abstraction if an interaction is disabled on the ART node, the successor node
will be inconsistent, i.e. the conjunction ∧n

i=1φ
′
i ∧ φ′ is unsatisfiable. Thus, the

successor node will be discarded. Then the persistent set is obtained via func-
tion PersistentSet, which will be elaborated in the next section. Finally, the node
is expanded according the persistent set and the successors are added into the
worklist. We refer to [38] for more details about node expansion and abstraction
refinement.

The following theorem states the correctness of Algorithm 1.

Theorem 2. Given a BIP model MBIP, for every terminating execution of
Algorithm 1, the following properties hold:

1. If a counterexample is returned, then there is concrete counterexample in
MBIP;

2. If an ART is returned, then it is safe with respect to safety properties, which
are invariant under symmetry.
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Algorithm 1. Lazy abstraction with partial order reudction for BIP

Input: a BIP model MBIP

create an ART art with initial node η0

create a worklist wl and push η0 into wl
while wl �= ∅ do

η ← pop(wl)
if IsError(η) then

cex ← BuildCEX(η)
if cex is real then

return cex
else

Refine(art, cex )
else if Cycle(η) then

η′ ← Predecessor(η)
ΓE ← EnabledInteractions(η′)
FullyExpand(η′, ΓE)
push all successors of η′ into wl
mark η as covered

else if Covering(η) then
mark η as covered

else
ΓE ← EnabledInteractions(η)
ΓP ← PersistentSet(ΓE , η)
Expand(η, ΓP )
push all successors of η into wl

return art

Proof. The correctness relies on the result reported in [38] that lazy abstrac-
tion of BIP without partial order reduction constructs a symbolic abstraction
structure that over-approximates all the reachable states. Then according to
Theorem 1, applying our partial order reduction technique to a symbolic abstrac-
tion structure preserves deadlock-freedom. The preservation of general safety
properties, which are invariant under symmetry, follows from the full expansion
strategy we use to avoid the ‘ignoring problem’ in [13] and in Chap. 8.2 in [2].

5.1 Computing Persistent Set

In this section, we present an algorithm to compute a persistent set on an ART
node, i.e. the implementation of function PersistentSet in Algorithm1. We adopt
the Stubborn set approach [22,34] and also make use of the independence relation
under symmetry.

First, we introduce the definition of an enabling set for a disabled interaction
on an ART node.

Definition 15. Let γ ∈ Γ be a disabled interaction on an ART node η, an
enabling set for γ on η is a set of interactions Nγ such that for all sequences of
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interactions of form η
γ1...γn−−−−→ η′ γ−→, there is at least one interaction γi ∈ Nγ ,

for some i ∈ [1, n].

This definition of enabling set is on an abstract region, which is different
from the necessary enabling set on a concrete state in [22,34]. An enabling set
of a disabled interaction on an abstract region characterizes the interactions
that may interfere with the disabled interaction in the symbolic exploration of
lazy abstraction. To obtain an enabling set for a disabled transition, fine-grained
static analysis is used.

Given a disabled interaction γ = 〈g,P, f〉 on an ART node η =
〈〈l1, φ1〉, ..., 〈ln, φn〉, φ〉, for any component Bi such that P ∩ Pi = {pi}, but there
is no such an outgoing transition 〈li, gi, p

′
i, fi, l

′
i〉 ∈ Ei that p′

i = pi, we say another
interaction γ′ = 〈g′,P ′, f ′〉 is in the enabling set Nγ , if P ′ ∩ Pi = {p′

i}, and there
is a path in Bi from li to a control location, where pi is an outgoing transition.

Definition 16. A set of interactions Γ is a Stubborn set in an ART node η if
the following conditions hold: 1. Γ contains at least one enabled interaction if
the set of enabled interactions on η is non-empty; 2. for each disabled interaction
γ ∈ Γ , there is an enabling set Nγ s.t. Nγ ⊆ Γ ; 3. for each enabled interaction
γ ∈ Γ , then Dγ ⊆ Γ .

This definition suggests a method (shown in Algorithm 2) to compute a
Stubborn set: it constructs the set incrementally by making sure that each new
interaction added to the set fulfills the Stubborn set conditions. We remark that
in Stubborn set computation, a weaker notion of independence and its comple-
ment can be used: two coenabled interactions are independent if they commute
under symmetry and do not disable each other. These notions correspond to the
accord and do-not-accord relation in [22,34].

The following theorem states that the set of enabled interactions in a Stub-
born set is indeed a persistent set. Thus, Algorithm2 can be easily incorporated
in Algorithm 1, replacing the function PersistentSet.

Algorithm 2. Stubborn set computation
procedure Stubborn(η, MBIP)

Γwork = {γ} such that γ is enabled on η
Γstubborn = ∅
while Γwork �= ∅ do

pick some γ ∈ Γwork

Γwork = Γwork − γ, Γstubborn = Γstubborn ∪ {γ}
if γ is enabled then

Γwork = Γwork ∪ Dγ\Γstubborn

else
Nγ = NES(γ, η, MBIP)
Γwork = Γwork ∪ Nγ\Γstubborn

return Γstubborn
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Theorem 3. Let Γ be a Stubborn set returned by Algorithm2, and let Γ ′ be the
set of enabled interactions in Γ , then Γ ′ is a persistent set under symmetry on
an ART node η.

Proof. Suppose Γ ′ is not a persistent set, then for all states c, such that c |= η,
there is a trace c

γ1−→ c1
γ2−→ c2...

γn−→ cn with γi /∈ Γ ′, i ∈ [1, n], γn depends on
some interaction γ′ in Γ ′.

Assume γn is enabled on c, then γn is also enabled on η and should be included
in Γ , and thus Γ ′ since it depends on γ′, which contradicts the assumption.
Assume the guard of γn is diabled on c, however, since we perform lazy abstrac-
tion, γn is still enabled on the ART node η, thus γn is in Γ ′, also contradicting
the assumption.

Assume γn is disabled on η, however, since it is enabled on cn, there must be
a nonempty enabling set for γn on node η, and there is at least one interaction
γj , 1 ≤ j ≤ n in this enabling set, and according to the assumption, γj is disabled
on c, otherwise γj is in Γ ′. Then by repeating the same reasoning, there is an
interaction γj′ , 1 ≤ j′ < j in the enabling set for γj and γj′ is diabled on η. In
the end, we can conclude that γ1 is in some enabling set and is disabled in η,
which contradicts the assumption. Thus, Γ ′ is indeed a persistent set.

6 Experimental Evaluation

We have implemented the proposed verification technique in our prototype model
checker for BIP. In the experimental evaluation, we took a set of benchmarks
from the literature and our previous work, including the ticket mutual exclusion
protocol in star topology, a leader election protocol in ring topology, and a
consensus protocol in star topology. All these benchmarks are scalable in terms
of the number of components, and all are infinite-state, and they all use data
transfer on interactions. We model them in BIP and for each benchmark, we
create a safe and an unsafe version, and for each version, we have 10 instances.
All the experiments are performed on a 64-bit Linux PC with a 2.8 GHz Intel
i7-2640M CPU, with a memory limit of 4 GB and a time limit of 300 seconds
per benchmark. We refer to our website1 for all the benchmarks and the tool.

We run the following configurations and compare the running time of solving
the benchmarks: plain lazy abstraction of BIP [38] (represented as ‘plain’ in the
figures), lazy abstraction with persistent set reduction [7] (represented as ‘pset’
in the figures), lazy abstraction with simultaneous set reduction [38] (represented
as ‘simset’ in the figures) and our new algorithm2 (represented as ‘sympor’ in
the figures). We also compare with the state-of-the-art invariant verification
algorithm IC3 [8,9]. We do not compare with DFinder [5], or VCS [24], since
they do not handle data transfer or infinite-state models respectively.

1 http://risd.epfl.ch/bipchecker.
2 We include the independence detection time in the running time of our new algo-

rithm.

http://risd.epfl.ch/bipchecker
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Fig. 2. Cumulative plot of time for solving all benchmarks

Fig. 3. Scatter plot of analysis time

In Fig. 2, we plot the cumulative time (x-axis) of solving a number of bench-
marks (y-axis). A point (x, y) in the plot tells us the number y of benchmarks,
which can be verified in the given time bound x. We remark that time x is not
the accumulation of the analysis time of all y benchmarks. We see that our new
algorithm can always solve more instances in a given time bound than IC3, while
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comparing to other algorithms, it is not always faster, but can still solve more
instances in a larger time bound. This tells that the analysis time of our new
algorithm grows slower than the other algorithms.

In Fig. 3, we show the scatter plots of time for solving each benchmark.3 In all
plots, symbol × represents a safe benchmark, and ◦ represents an unsafe bench-
mark. A point in the plots tells us the analysis time of the algorithms represented
by x-axis and y-axis. We find that for safe benchmarks, our new algorithm is
always more efficient that the others, while for unsafe models, though being more
efficient than IC3, it does not demonstrate clear strength over the other algo-
rithms. This phenomenon can be explained since with partial order reduction,
independent interactions are chosen non-deterministically, thus, the interactions
leading to an error may be delayed, which would increase the length of execution
steps to detect counterexamples. We remark that in our previous work [38], we
had the similar observation with simultaneous set reduction, where independent
interactions are taken simultaneously. Thus, counterexamples can be detected
much faster, since the lengths of counterexamples are shorter. We also remark
that this observation can also explain why the other algorithms are able to solve
more instances in smaller time bound in Fig. 2, i.e. they are efficient to detect
counterexamples.

7 Related Work

With respect to safety verification of BIP models, DFinder [5,6] performs com-
positional invariant generation and deadlock detection for BIP models with-
out priority. It first computes a component invariant for each component, over-
approximating its reachable states and then computes the interaction invariant,
characterising the reachable global states due to synchronization. The invariant
of the global system is then the conjunction of component invariants and the
interaction invariant. However, DFinder does not handle system models with
data transfer. This limitation hampers the practical application of DFinder and
of the BIP framework, since data transfer is necessary and common in the design
of real-life systems. Besides, it is not clear in DFinder how to refine the abstrac-
tion automatically when the inferred invariant fails to justify the property. The
VCS [24] tool translates a BIP model into a symbolic transition system and then
performs the bounded model checking. It handles data transfer among compo-
nents, but only deals with finite domain variables. In [7], the authors present
an instantiation of ESST (Explicit Scheduler Symbolic Thread) framework [10]
and several optimisations for BIP. In [38], the authors present a lazy abstrac-
tion algorithm for BIP and also propose a simultaneous set reduction technique,
which is further combined with lazy abstraction to boost the analysis. However,
neither takes into account symmetry features of the BIP model.

Both state space symmetries and partial order reductions have been exten-
sively investigated in model checking community over the decades, leading to a
3 Red diagonal guides provide a reference for comparison, each indicating shift of one

order of magnitude.
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variety of symmetry reduction techniques [12,17,19,28,31,36], and partial order
reduction techniques [13,20,32,34,37]. In [15], the authors propose a symmetry
aware counter-example guarded abstraction refinement technique for replicated
non-recursive C programs. Their abstraction technique is eager in the sense that
an abstraction model is constructed first, which differs from our lazy abstrac-
tion technique. The work in [35] combines lazy abstraction with interpolant
and partial order reduction under conditional independence [37] for the verifica-
tion of generic multi-threaded programs. We remark that though in [16,27], the
authors have studied how to combine symmetry reduction with ample set based
partial order reduction. However, both work focus on finite state models, and no
abstraction techniques are used.

8 Conclusion

In this paper we extend our previous work on safety property verification of BIP
models, and present a new lazy reachability analysis algorithm that combines
persistent set partial order reduction and symmetry reduction. The experimen-
tal evaluation demonstrates that for system models that have inherent symme-
tries, exploiting symmetries can boost the abstract reachability analysis signif-
icantly. As future work, we will investigate more efficient reduction techniques
for component-based systems, that can be combined with abstract reachability
analysis, such as directed model checking.
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Abstract. Fault Tree (FT) is a standard failure modeling technique that
has been extensively used to predict reliability, availability and safety
of many complex engineering systems. In order to facilitate the formal
analysis of FT based analyses, a higher-order-logic formalization of FTs
has been recently proposed. However, this formalization is quite limited
in terms of handling large systems and transformation of FT models into
their corresponding Reliability Block Diagram (RBD) structures, i.e., a
frequently used transformation in reliability and availability analyses. In
order to overcome these limitations, we present a deep embedding based
formalization of FTs. In particular, the paper presents a formalization of
AND, OR and NOT FT gates, which are in turn used to formalize other
commonly used FT gates, i.e., NAND, NOR, XOR, Inhibit, Comparator
and majority Voting, and the formal verification of their failure proba-
bility expressions. For illustration purposes, we present a formal failure
analysis of a communication gateway software for the next generation
air traffic management system.

Keywords: Higher-order logic · Fault Tree · Theorem proving

1 Introduction

Fault Tree (FT) is used as a standard failure modeling technique in various
safety-critical domains, including nuclear power industry, civil aerospace and
military systems. It mainly provides a graphical model for analyzing the condi-
tions and factors causing an undesired top event, i.e., a critical event, which can
cause the complete system failure upon its occurrence. The preceding nodes of
the FT are represented by gates, like OR, AND and XOR, which are used to
link two or more cause events of a fault in a prescribed manner. Using these FT
gates, a FT model of a given system is constructed either on paper or by uti-
lizing graphical editors provided by FT-based computer simulation tools, such
as Relia-Soft [1] and ASENT [2]. In the paper-and-pencil proof methods, this
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obtained FT model is then used for the identification of the Minimal Cut Set
(MCS) of failure events that are associated with the components of the given sys-
tem. This is followed by associating the failure random variables, i.e., exponential
or Weibull, to these MCS failure events. The Probabilistic Inclusion-Exclusion
(PIE) principle [3] is then used to evaluate the exact probability of failure of the
overall system. On the other hand, the FT-based computer tools can be utilized
to build a FT model by associating appropriate random variables with each com-
ponent of the system. The reliability and the failure probability analysis of the
complete system is then carried out by using computer arithmetic and numerical
techniques on the generated samples from these random variables. However, both
these methods cannot ascertain absolute correctness due to their inherent inac-
curacy limitations. For instance, paper-and-pencil methods are prone to human
errors, especially for large and complex systems, where a FT may consist of 50–
130 levels of logic gates [4]. Manually manipulating such a large data makes it
quite probable that some of MCS failure events may be overlooked, which would
in turn lead to an erroneous design [4]. On the other hand, software tools can
efficiently handle the analysis of large FTs but the computational requirements
drastically increase as the size of the FT increases.

To overcome the above-mentioned limitations, a higher-order-logic formaliza-
tion of some basic FT gates and their corresponding failure probability expres-
sions [5] has been recently proposed. However, a major drawback of this formal-
ization is the increase in complexity when analyzing FT of large and complex
system. This formalization was primarily based on a shallow embedding app-
roach, where the notion of each FT gate was explicitly defined on an event list
and then its corresponding failure probability relationship was verified on the
given failure event list. This approach makes the FT gate formalization non-
compositional in nature, i.e., the basic FT gates, such as AND, OR and NOT,
cannot be used to formalize other FT gates that are usually composed from these
basic FT gates. Also, this work [5] utilizes the PIE principle to formally compute
the exact failure probability of the given system, which limits its usability for
complex system due to the involvement of large number of PIE terms. In the
literature, several methods have been used to deal with this inherent complexity
issue of the PIE principle. A tractable solution is to transform the given system
FT to its equivalent Reliability Block Diagram (RBD) [6], which is also a well-
known reliability modeling technique. This transformation considerably reduces
the analysis complexity due to the fact that RBD offers closed form expressions
compared to a FT, which requires unfolding of all the PIE terms.

In order to overcome the above-mentioned scalability issues of the existing
formalization of FT gates [5] and thus broaden the scope of formal FT analysis,
we propose a deep embedding approach to formalize the commonly used FT
gates, such as AND, OR and NOT. This proposed formalization approach is
compositional in nature and can be easily extended to formalize other FT gates,
such as NAND, NOR, XOR, Inhibit, Comparator and majority Voting. It also
enables us to transform the given system FT model to its equivalent RBD model,
without any loss of valuable information. The RBD model can then be formally
analyzed using our recently proposed formal reasoning support for RBDs [7].
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To illustrate the practical effectiveness of our proposed approach, we present
a formal failure analysis of a Next Generation (NextGen) Air Traffic Manage-
ment (ATM) gateway system, which is primarily used to enhance the safety and
reliability of air transportation, to improve efficiency in the air transportation
and to reduce aviation impact on the environment. The FT of the NextGen ATM
gateway, which consists of more than 40 basic failure events including software,
hardware, database update and transmission system is divided into four levels.
The formally verified failure probability expressions of individual levels are then
used to reason about the failure probability of the overall NextGen system. In
addition, we also provide some automated reasoning support for the FT based
failure analysis. This automation allows us to automatically simplify the failure
expression of the NextGen system from the given values of the failure rates.

2 Related Work

The COMPASS tool-set [8] supports the dynamic FT analysis specifically for
aerospace systems using the NuSMV and MRMC model checkers. The Interval
Temporal Logic (ITS), i.e., a temporal logic that supports first-order logic, has
been used, along with the Karlsruhe Interactive Verifier (KIV), for formal FT
analysis of a rail-road crossing [9]. A deductive method for FT construction, in
contrast to the intuitive approach followed in [9], by using the Observational
Transition Systems (OTS), is presented in [10]. The formal analysis of this FT
is then carried out using CafeOBJ [11], which is a formal specification language
with interactive verification support. However, the scope of these tools is some-
what limited in terms of handling larger systems, due to the inherent state-space
explosion problem of model checking. Moreover, either some of these approaches
[9,10] do not cater for probabilities or if they do cater for them then the compu-
tation of probabilities in these methods [8] involves numerical techniques, which
compromises the accuracy of the results.

Leveraging upon the high expressiveness of higher-order logic and the inher-
ent soundness of theorem proving, Mhamdi’s formalized probability theory [12]
has been recently used for the formalization of RBDs [7], including series [13],
parallel [14], parallel-series [14] and series-parallel [15]. These formalizations have
been used for the reliability analysis of many applications including simple oil
and gas pipelines with serial components [13], wireless sensor network protocols
[14] and logistic supply chains [14]. Similarly, Mhamdi’s probability theory have
also been used for the formalization of commonly used FT gates, such as AND,
OR, NAND, NOR, XOR and NOT, and the PIE principle [5]. In addition, the
above-mentioned RBD and FT formalizations have been recently utilized for
availability analysis [16]. In this paper, we have formalized the FT gates using
a deep embedding approach to facilitate the analysis of larger FTs. Besides the
existing formalization of FT gates [5], this paper also provides the formalization
of inhibit, 2-bit comparator and Majority voting FT gates. Moreover, we have
combined our existing formalizations of RBDs [13–15] to make the formal FT
based analysis more scalable.
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3 Probability Theory and Fault Trees in HOL

Mathematically, a measure space is defined as a triple (Ω,Σ, μ), where Ω is a
set, called the sample space, Σ represents a σ-algebra of subsets of Ω, where
the subsets are usually referred to as measurable sets, and μ is a measure with
domain Σ. A probability space is a measure space (Ω,Σ,Pr), such that the
measure, referred to as the probability and denoted by Pr, of the sample space
is 1. In the HOL4 formalization of probability theory [12], given a probability
space p, the functions space, subsets and prob return the corresponding Ω, Σ
and Pr, respectively. This formalization also includes the formal verification of
some of the most widely used probability axioms, which play a pivotal role in
formal reasoning about reliability properties.

A random variable is a measurable function between a probability space
and a measurable space. The measurable functions belong to a special class of
functions, which preserves the property that the inverse image of each measurable
set is also measurable. A measurable space refers to a pair (S,A), where S
denotes a set and A represents a nonempty collection of sub-sets of S. Now, if S
is a set with finite elements, then the corresponding random variable is termed
as a discrete random variable otherwise it is called a continuous one.

The cumulative distribution function (CDF) is defined as the probability of
the event where a random variable X has a value less than or equal to some value
t, i.e., Pr(X ≤ t). This definition characterizes the distribution of both discrete
and continuous random variables and has been formalized [13] as follows:

� ∀ p X t. CDF p X t = distribution p X {y | y ≤ Normal t}

The function Normal takes a real number as its input and converts it to its
corresponding value in the extended-real data-type, i.e., it is the real data-type
with the inclusion of positive and negative infinity. The function distribution
takes three parameters: a probability space p : (α → bool)#((α → bool) →
bool)#((α → bool) → real), a random variable X : (α → extreal) and a set of
extended-real numbers and returns the probability of the given random variable
X acquiring all the values of the given set in probability space p.

The unreliability or the probability of failure F (t) is defined as the proba-
bility that a system or component will fail by the time t. It can be described in
terms of CDF, known as the failure distribution function, if the random variable
X represent a time-to-failure of the component. This time-to-failure random
variable X usually exhibits the exponential or Weibull distribution.

The notion of mutual independence of n random variables is a major require-
ment for reasoning about the failure analysis of most of the FT gates. According
to this notion, a list of n events are mutual independent if and only if for each
set of k events, such that (1 ≤ k ≤ n), we have:

Pr(
k⋂

i=1

Ai) =
k∏

i=1

Pr(Ai) (1)
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It is important to note that mutual independence is a much stronger property
compared to pairwise independence [3], which ensures independence between
two events only. On the other hand, mutual independence makes sure that any
subset of events are independent with each other. Also, we can verify many
interesting properties of independence using the mutual independence property.
For instance, given a list of mutually independent events, say L, we can verify
that an element h ∈ L is independent with the list L − [h] representing the list
L without element h.

The mutual independence concept is formalized in HOL4 as follows [13]:

� ∀ p (L:α → bool). mutual indep p L = ∀ L1 (n:num). PERM L L1 ∧
1 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter list p (TAKE n L1)) = list prod (list prob p (TAKE n L1))

The function mutual indep accepts a list of events L and probability space p
and returns True if the events in the given list are mutually independent in the
probability space p. The predicate PERM ensures that its two lists as its arguments
form a permutation of one another. The function LENGTH returns the length of
the given list. The function TAKE returns the first n elements of its argument
list as a list. The function inter list performs the intersection of all the sets
in its argument list of sets and returns the probability space if the given list of
sets is empty. The function list prob takes a list of events and returns a list of
probabilities associated with the events in the given list of events in the given
probability space. Finally, the function list prod recursively multiplies all the
elements in the given list of real numbers. Using these functions, the function
mutual indep models the mutual independence condition such that for n events
taken from any permutation of the given list L, Eq. (1) holds.

3.1 Formalization of Fault Tree Gates

The proposed formalization is primarily based on defining a new polymorphic
datatype gate that encodes the notion of AND, OR and NOT FT gates. Then
a semantic function is defined on that gate datatype yielding an event for the
corresponding FT gate. This semantic function allows us to verify the generic
failure probability expressions of the FT gates by utilizing the underlying prob-
ability theory within the sound core of the HOL4 theorem prover. Such a deep
embedding considerably simplifies the FT gate modeling approach, compared
to our previous work [5] (shallow embedding), and also enables us to develop a
framework that can deal with arbitrary levels of FTs, which can be used to cater
for a wide variety of real-world failure analysis problems.

We start the formalization process by type abbreviating the notion of event,
which is essentially a set of observations with type ’a->bool as follows:

type abbrev ("event", ‘‘:’a ->bool’’)

We then define a recursive datatype gate in the HOL4 system as follows:

Hol datatype ‘gate = AND of gate list | OR of gate list | NOT of gate |

atomic of ’a event‘
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The type constructors AND and OR recursively function on gate-typed lists and
the type constructor NOT operates on gate-type variable. The type constructor
atomic is basically a typecasting operator between event and gate-typed vari-
ables. These type constructors allow us to encode the notion of all the basic FT
gates.

We define a semantic function FTree : α event # α event event # (α event
→ real) → α gate → α event over the above-defined gate datatype that can
yield the corresponding event from the given FT gate as follows:

Definition 1. � (∀ p. FTree p (AND []) = p space p) ∧
(∀ xs x p. FTree p (AND (x::xs)) = FTree p x ∩ FTree p (AND xs)) ∧
(∀ p. FTree p (OR []) = {}) ∧
(∀ xs x p. FTree p (OR (x::xs)) = FTree p x ∪ FTree p (OR xs)) ∧
(∀ p a. FTree p (NOT a) = p space p DIFF FTree p a) ∧
(∀ p a. FTree p (atomic a) = a)

The above function decodes the semantic embedding of a FT by yielding a cor-
responding failure event, which can then be used to determine the failure prob-
ability of a given FT. The function FTree takes a list of type gate, identified by
a type constructor AND, and returns the whole probability space if the given list
is empty and otherwise returns the intersection of the events that are obtained
after applying the function FTree on each element of the given list in order to
model the AND FT gate behaviour. Similarly, to model the behaviour of the OR
FT gate, the function FTree operates on a list of datatype gate, encoded by a
type constructor OR. It then returns the union of the events after applying the
function FTree on each element of the given list or an empty set if the given
list is empty. The function FTree takes a type constructor NOT and returns the
complement of the failure event obtained from the function FTree. The function
FTree returns the failure event using the type constructor atomic.

If the occurrence of the failure event at the output is caused by the occurrence
of all the input failure events then this kind of behavior can be modeled by using
the AND FT gate. The failure probability expression of the AND FT gate can
be expressed mathematically as follows:

FAND gate(t) = Pr(
N⋂

i=2

Ai(t)) =
N∏

i=2

Fi(t) (2)

Using Definition 1, we can verify the above equation in HOL4 as follows:

Theorem 1. � ∀ p L. prob space p ∧
(∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧ 2 ≤ LENGTH L ∧
mutual indep p L ⇒
(prob p (FTree p (AND (gate list L))) = list prod (list prob p L))

The first two assumptions, in Theorem 1, ensures that p is a valid probability
space and each element of a given event list L must be in event space p based on
the probability theory in HOL4 [12]. The function MEM finds an element in a given
list and returns false, if a match does not occur. The next two assumptions guarantee
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that the list of events L, representing the failure probability of individual components,
must have at least two events and the failure events are mutually independent. The
conclusion of the theorem represents Eq. (2). The function gate list generates a list
of type gate by mapping the function atomic to each element of the given event list
L to make it consistent with the assumptions of Theorem 1. It can be formalized in
HOL4 as: ∀ L. gate list L = MAP (λa. atomic a) L

The proof of Theorem 1 is primarily based on a mutual independence property and
some fundamental axioms of probability theory.

In the OR FT gate, the occurrence of the output failure event depends upon the
occurrence of any one of its input failure event. Mathematically, the failure probability
of an OR FT gate can be expressed as:

FOR gate(t) = Pr(
N⋃

i=2

Ai(t)) = 1 −
N∏

i=2

(1 − Fi(t)) (3)

By following the approach, used in Theorem 1, we can formally verify the failure
probability expression OR FT gate, given in Eq. (3), in HOL4:

Theorem 2. � ∀ p L. prob space p ∧ 2 ≤ LENGTH L ∧
(∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧ mutual indep p L ⇒
(prob p (FTree p (OR (gate list L))) =

1 - list prod (one minus list (list prob p L)))

The above theorem is verified under the same assumptions as Theorem 1. The conclu-
sion of the theorem represents Eq. (3) where, the function one minus list accepts a
list of real numbers [x1, x2, x3, · · · , xn] and returns the list of real numbers such that
each element of this list is 1 minus the corresponding element of the given list, i.e.,
[1 − x1, 1 − x2, 1 − x3, · · · , 1 − xn].

The NOT FT gate can be used in conjunction with the AND and OR FT gates to
formalize other FT gates. The formalization of these gates is given in Table 1. The
NAND FT gate, represented by the function NAND FT gate in Table 1, models the
behavior of the occurrence of an output failure event when at least one of the fail-
ure events at its input does not occur. This type of gate is used in FTs when the
non-occurrence of the failure event in conjunction with the other failure events causes
the top failure event to occur. This behavior can be expressed as the intersection of
complementary and normal events, where the complementary events model the non-
occurring failure events and the normal events model the occurring failure events. The
output failure event occurs in the 2-input XOR FT gate if only one, and not both, of
its input failure events occur. The inhibit FT gate produces an output failure event
only if the conditional event occurs at the same time when the input failure event
occurs. The HOL4 function inhibit FT gate, given in Table 1, models the behavior of
a 2-input inhibit FT gate by composing the type constructors AND, OR and NOT.
In the comparator FT gate, the output failure event occurs if all the failure events
at its input occur or if all of the them do not occur. In the majority voting gate, the
output failure event occurs if at least m out of n input failure events occurs. This
behaviour can be modeled by utilizing the concept of binomial trials, which are used to
find the chances of at least m success in n trials. The function major voting FT gate

accepts a probability space p, a binomial random variable X and two variables, m and
n, which represent the number of successes and total number of trials, respectively. It
then returns the union of the corresponding events that are associated with the bino-
mial random variable X, which takes values from the set {x | k ≤ x ∧ x < SUC n}. The
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Table 1. HOL4 Formalization of fault tree gates

FT Gates Formalization

� ∀ p L1 L2. NAND FT gate p L1 L2 =

FTree p (AND (gate list (compl list p L1 ++ L2)))

� ∀ p L. NOR FT gate p L = FTree p (NOT (OR (gate list L)))

� ∀ p A B. XOR FT gate p A B =

FTree p (OR [AND [NOT A; B]; AND [A; NOT B]])

� ∀ p A B C. inhibit FT gate p A B C =

FTree p (AND [OR [A; B]; NOT C]])

� ∀ p A B. comp FT gate p A B =

FTree p (OR [AND [A; B]; NOR FT gate p [A; B]])

� ∀ p X m n. major voting FT gate p X m n =

BIGUNION (IMAGE (λx. PREIMAGE X {Normal (&x)} ∩ p space p)

{x | k ≤ x ∧ x < SUC n})

function IMAGE takes a function f and an arbitrary domain set and returns a range set
by applying the function f to all the elements of the given domain set. The function
BIGUNION returns the union of all the element of given set of sets.

The verification of the corresponding failure probability expressions, of the above-
mentioned FT gates, is presented in Table 2. These expressions are verified under the
same assumptions as the ones used for Theorems 1 and 2. However, some additional pro-
visos are required for the verification of majority voting gate as follows: (i) prob space

ensures that p is a valid probability space; (ii) m ≤ n makes sure that the number of
successes of trails m must be less than or equal the total number of trials n; (iii) (λx.
PREIMAGE X Normal(&x) ∩ p space p) ∈ ((count (SUC n)) → events p) ensures
that all the corresponding events that are associated with the binomial random vari-
able X are drawn from the events space p; and (iv) (∀x. distribution p X {Normal
(&x)} = (&binomial n x)*(F pow x)*(1 - F) pow (n-x)) guarantees that the ran-
dom variable X is exhibiting the binomial distribution.

3.2 Formalization of Probabilistic Inclusion-Exclusion Principle

In FT analysis, firstly all the basic failure events are identified that can cause the
occurrence of the system top failure event. These failure events are then combined to
model the overall fault behavior of the given system by using the fault gates. These
combinations of basic failure events, called cut sets, are then reduced to minimal cut
sets (MCS) by using some set-theory rules, such as idempotent, associative and commu-
tative. Then, the Probabilistic Inclusion Exclusion (PIE) principle is used to evaluate
the overall failure probability of the given system based on the MCS events. According
to the PIE principle, if Ai represents the ith basic failure event or a combination of
failure events then the overall failure probability of the given system can be expressed
as follows:

P(

n⋃

i=1

Ai) =
∑

t�={},t⊆{1,2,...,n}
(−1)|t|+1

P(
⋂

j∈t

Aj) (4)

The above equation has been formally verified in HOL as follows [5]:
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Table 2. Probability of failures of fault tree gates

Mathmatical Expressions Theorem’s Conclusion

FNAND(t) = Pr(
k⋂

i=2

Ai(t) ∩
N⋂

j=k

Ai(t))

=

k∏
i=2

(1 − Fi(t)) ∗
N∏

j=k

(Fj(t))

� ∀ p L1 L2. (prob p (NAND FT gate p L1 L2) =

list prod ((list prob p (compl list p L1))) *

list prod (list prob p L2))

FNOR(t) = 1 − FOR(t) =

N∏
i=2

(1 − Fi(t))
� ∀ p L. (prob p (NOR FT gate p L) =

list prod (one minus list (list prob p L)))

FXOR(t) = Pr(A(t)B(t) ∪ A(t)B(t))

= (1 − FA(t))FB(t)+

FA(t)(1 − FB(t))

� ∀p A B. prob space p ∧ A ∈ events p ∧ B ∈ events p

(prob p (XOR FT gate p (atomic A) (atomic B) =

(1- prob p A)*prob p B + prob p A*(1 - prob p B)

Finhibit(t) = Pr((A(t) ∪ B(t)) ∩ C(t))

= (1 − (1 − FA(t))∗
(1 − FB(t))) ∗ (1 − FC(t))

� ∀p A B C.

(prob p

(inhibit FT gate p (atomic A) (atomic B) (atomic C) =

(1 - (1 - prob p A) * (1 - prob p B))*(1 - prob p C)

Fcomp(t) = Pr((A(t) ∩ B(t)) ∪ (A(t) ∪ B(t)))

= (1 − (1 − FA(t)FB(t))∗
(1 − (1 − FA(t)) ∗ (1 − FB(t)))

� ∀p A B C.

(prob p (comp FT gate p (atomic A) (atomic B) =

(1 - (1 - prob p A * prob p B)*

(1 - (1 - prob p A)*(1- prob p B))

Fm|n(t) = Pr(
n⋃

i=k

{exactly i components are

functioning properly})

=

n∑
i=m

(

(
n

m

)
F i(1 − F )n−1)

� ∀p n k X F

(prob p (major voting FT gate p X m n) =

sum (m, SUC n - m)

(λx. (&binomial n x)*(F pow x)* (1- F) pow (n-x)))

Theorem 3. � ∀ p L. prob space p ∧ (∀ x. MEM x L ⇒ x ∈ events p) ⇒
(prob p (union list L) =

sum set {t | t ⊆ set L ∧ t 
= {} }
(λt. -1 pow (CARD t + 1) * prob p (BIGINTER t)))

The assumptions of the above theorem are the same as the ones used in Theorem 1.
The function sum set takes an arbitrary set s with element of type α and a real-valued
function f and recursively sums the return values of the function f , when applied on
each element of the given set s. In the above theorem, the set s is represented by the
term {x|C(x)} that contains all the values of x, which satisfy condition C. Whereas, the
λ abstraction function (λt. -1 pow (CARD t + 1) * prob p (BIGINTER t)) models
(−1)|t|+1

P(
⋂

j∈t Aj), such that the functions CARD and BIGINTER return the number of
elements and the intersection of all the elements of the given set, respectively.

3.3 Formalization of Reliability Block Diagrams

Transformation of a system FT to its equivalent reliability block diagram (RBD) has
been proposed as a viable solution to reduce the complexity associated with finding
the failure probability of large systems [17]. The proposed deep embedding based for-
malization of FT gates allows the establishment of this link and thus we have used the
existing formalization of RBDs [7] to make the formal analysis of FTs more scalable. In
this paper, we only describe the formalization of the parallel-series RBD configuration
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Fig. 1. Parallel-series reliability block diagrams

because it is required to conduct the formal failure analysis of ASN gateway system,
described in the next section.

In a parallel-series RBD configuration, as shown in Fig. 1, the reserved subsystems
are connected serially and it can be considered as the nested form of series RBD in
a parallel RBD configuration. If Aij(t) is the event corresponding to the reliability of
the jth component connected in a ith subsystem at time t, then parallel-series RBD
configuration can be expressed as:

Rparallel−series(t) = Pr(

M⋃

i=1

N⋂

j=1

Aij(t)) = 1 −
M∏

i=1

(1 −
N∏

j=1

(Rij(t))) (5)

The HOL4 formalization of the above equation is as follows [7]:

Theorem 4. � ∀ p L. prob space p ∧ (∀z. MEM z L ⇒ �NULL z) ∧
(∀x’. MEM x’ (FLAT L) ⇒ x’ ∈ events p) ∧
mutual indep p (FLAT L) ⇒
(prob p (rbd struct p ((parallel of (λa. series (rbd list a))) L)) =

(1 - list prod (one minus list) of (λa. list prod (list prob p a))) L)

where the function rbd struct is defined on a recursive datatype rbd and can take any
combination of type constructors series and parallel. It then yields the correspond-
ing event of the given RBD configuration constituted by these type-constructors. The
function rbd list serves similar functionality as that of the function gate list. The
assumptions are quite similar to the ones used for Theorems 1 and 2. The conclusion
models Eq. (5) and the infixr function of connects two rbd type-constructors by using
the HOL4 MAP function.

4 Formalization of the NextGen ASN Gateway System

NextGen is supported by the nation-wide Aviation Simulation Network (ASN), which
is an environment including simulated and human-in-the-loop (HIL) real-life compo-
nents, e.g., pilots and air traffic controllers. The Real Time Distributed Simulation
(RTDS) application suite [18] is used to facilitate the ASN by providing low and
medium fidelity en-route simulation capabilities. An ASN gateway software system
acts as an intermediary between RTDS and ASN by providing logic for data transla-
tion, two-way communication and transfer messages among them. The overall NextGen
ASN gateway FT can be viewed as a four level FT [19]. The first or top level of the
ASN gateway FT models an aviation accident caused by the lack of appropriate con-
trol, equipment, internal and external malfunctions. The internal failure event opens
up to a second level of the ASN gateway FT, which comprises of failures related to
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the flight function mishap and transmissions. The flight mishap failure is caused by
the failure of the Auto Pilot (AP) or Flight Director (FD) along with the failure not
mitigated in time (FF1). The Transmission failure event captures the failure events due
to data/message not correctly transmitted (A), failure to display (NotShown), and not
performing transmission in a timely manner (RT). The third level of the ASN gateway
FT is composed of several sub-FTs, given in Table 3, representing the RT and failure
event A. The RT failure event occurs if the delay is too long for the transmission to
meet its deadline (Time) and a latency problem occurs related to either the applica-
tion (AL), serialization (SL), propagation delay (PD) or any other relevant sources.
Similarly, the failure event A represents a failure to correctly transmit a message and
consists of two events. i.e., B1: failure to transfer a message from ASN to RTDS and
B2: failure to transfer a message from RTDS to ASN of the communication link. The
FT of the events B1 and B2 are given at the fourth level of the ASN gateway FT [19].
The overall ASN gateway FT consists of 47 basic failure events that are related to
messages transmission failures, propagation delays, software and hardware equipment
failures, database update failures and human mistakes.

4.1 Formal Fault Tree Models for ASN Gateway System

The formal definitions of FT gates [5] along with Definition 1 can be utilized to formally
represent the FT of the ASN gateway in terms of its failure events. We systematically
present the formalization of the ASN gateway FT by starting from the fourth level,
i.e., the formalization of B1 sub-FT:

Definition 2. ∀p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21.

B1 FT p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21 =

(OR [OR [atomic (fail event p D1 t);

AND [OR (gate list (fail event list p [E1; E2] t));

atomic (fail event p E21 t)];

OR (gate list (fail event list p [E3; E4; E5] t))];

OR [atomic (fail event p D4 t);

AND [OR (gate list (fail event list p [E6; E7] t));

atomic (fail event p E21 t)];

OR (gate list (fail event list p [E8; E9; E10] t))]])

Where the random variables D1, D4, E1 − E10 and E21 model the time-to-failure
of the communication process ASN to RTDS. The diagram of B1 FT is similar to B2
FT, which can be seen in Table 3. Additionally, the cut-set failure events in the above
definition is already minimal, i.e., there are no combination of redundant failure events
to be removed [19]. Therefore, the cut-sets and MCS for B1 sub-FT, in this case, are
equivalent.

Similarly, other sub-FTs, such as B2-FT, A-FT, RT-FT and Internal-FT, which
are at the fourth, third and second level of the ASN gateway FT can be formalized in
HOL4 as shown in Table 3. It is important to note that the formal definition of the top
level or first level FT, in Table 3, builds upon the formal definitions of all the other
sub-FTs and models the complete ASN gateway FT.

We consider that the random variables, associated with the failure events of the
ASN gateway FT, exhibit the exponential distribution:

Definition 3. � ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)
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Table 3. ASN Gateway FT levels with their HOL formalizations
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The function exp dist guarantees that the CDF of the random variable X is that of an
exponential random variable with a failure rate l in a probability space p. We classify
a list of exponentially distributed random variables as follows:

Definition 4. � ∀p L. list exp p [] L = T ∧
∀p h t L. list exp p (h::t) L = exp dist p (HD L) h ∧ list exp p t (TL L)

The function list exp accepts a list of failure rates, a list of random variables L and
a probability space p. It guarantees that all elements of the list L are exponentially
distributed with the corresponding failure rates, given in the other list, within the
probability space p. For this purpose, it utilizes the list functions HD and TL, which
return the head and tail of a list, respectively.

4.2 Failure Assessment of NextGen ASN Gateway System

We now present the formal verification of all the sub-FTs, such as B1-FT, B2-FT,
A-FT, RT-FT and Internal-FT. The formally verified results of these sub-FTs are then
used to reason about the failure probability of overall ASN gateway communication
system. Using the closed form expression of parallel-series RBD configuration, given
in Eq. (5), the failure probability of the B1-FT can be expressed mathematically as
follows:

FB1(t) = (1 − e−(c1+c2+c3+c4)t) ∗ (1 − (1 − e−CE1t)(1 − e−CE21t))(1 − (1 − e−CE2t)

(1 − e−CE21t))(1 − (1 − e−CE6t)(1 − e−CE21t))(1 − (1 − e−CE7t)(1 − e−CE21t))

(6)

To verify Eq. (6), we first verify a lemma that transforms the B1 sub-FT to its
equivalent parallel-series RBD model as follow:

Lemma 1. � ∀ p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21.

FTree p (B1 FT p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21) =

(rbd struct p ((parallel of

(λa. series (rbd list (fail event list a)))) [[D1];[D4];[E1;E21];

[E2;E21]; [E3];[E4];[E5];[E6;E21];[E7;E21];[E8];[E9];[E10]]))

Now, using the formal definition of B1-FT and Lemma 1, the failure probability of B1
sub-FT can be verified in HOL4 as follows:

Theorem 5. � ∀p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21 C E1 C E2

C E6 C E7 C D1 C D4 C E3 C E4 C E5 C E8 C E9 C E10 C 21.

time positive t ∧ prob space p ∧
in events p (fail event list p [D1;D4;E1;· · · ;E10;E21] t) ∧
mutual indep p (fail event list p [D1;D4;E1;· · · ;E10;E21] t) ∧
list exp p [C D1;C D4;C E1;· · · ;C E10;C E21] [D1;D4;E1;· · · ;E10;E21] ⇒
(prob p (B1 FT p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21) =

1 - exp(-(t * list sum [C D1;C D4;C E3;C E4;C E5;C E8;C E9;C E10])) *

list prod(one minus exp prod t

[[C E1;C E21];[C E2;C E21];[C E6;C E21];[C E7;C E21]]))
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The function exp represents the exponential function. The function list sum is used
to sum all the elements of the given list of failure rates, the function one minus exp

accepts a list of failure rates and returns a one minus list of exponentials and the func-
tion one minus exp prod accepts a two dimensional list of failure rates and returns a
list with one minus product of one minus exponentials of every sub-list. For exam-
ple, one minus exp prod[[c1; c2; c3]; [c4; c5]; [c6; c7; c8]] x = [1 − ((1 − e−(c1)x) ∗ (1 −
e−(c2)x) ∗ (1 − e−(c3)x)); (1 − (1 − e−(c4)x) ∗ (1 − e−(c5)x)); (1 − (1 − e−(c6)x) ∗ (1 −
e−(c7)x) ∗ (1 − e−(c8)x))]. The first assumption ensures that the variable t models time
t as it can acquire positive integer values only. The next assumption ensures that p

is a valid probability space based on the probability theory in HOL [12]. The next
two assumptions ensure that the events corresponding to the failures modeled by the
random variables D1, D2, E1 to E10 and E21 are valid events from the probability
space p and they are mutually independent. Finally, the last assumption characterizes
the random variables D1, D2, E1 to E10 and E21, as exponential random variables
with failure rates C D1, C D2, C E1 to C E10 and C E21, respectively. The conclusion
of Theorem 5 represents the failure probability of the communication process between
ASN to RTDS in terms of the failure rates of the components involved during the
communication process. The proof of Theorem 5 is primarily based on Theorem 3 and
some fundamental facts and axioms of probability.

Similarly, the failure probabilities of other sub-FTs, i.e., B1-FT, B2-FT, A-FT,
RT-FT and Internal-FT, are verified in HOL4 [20]. These theorems are verified under
the same assumptions as the one used in Theorem 5.

Now, using the formal definitions of ASN gateway sub-FTs, given in Table 3, and
their verified failure probability results [20], we formally verified the failure probability
of the complete ASN gateway system as follows:

Theorem 6. � (prob p (ASN gateway FT p t FD AP FF1 D1 D4 D7 D10 E1 · · · E21

C5 C6 C7 C8 notshw AL SL PD Others time ED EQ. 1 EN1 · · · EN4 human) =

1 - (list prod(one minus exp prod t [[C ED;C EQ1];

[C EN1;C EN2;C EN3;C EN4];[C E6;C E21]])) *

exp (-(t*C human)) * exp -(t*C notshw) *

1 - (list prod(one minus exp prod t [[C FD;C FF1];[C AP;C FF1]]) *

1 - (1 - exp(-(t*list sum [C D1;C D4;C E3;C E4;C E5;C E8;C E9;C E10])) *

list prod(one minus exp prod t [[C E1;C E21];[C E2;C E21];

[C E6;C E21];[C E7;C E21]])))*

1 - exp(-(t*list sum[C D7;C D10; C E13;C E14;C E15;C E18;C E19;C E20])) *

list prod(one minus exp prod t

[[C E11;C E21];[C E12;C E21];[C E16;C E21];[C E17;C E21]])) *

list prod(one minus exp prod t [[C C5;C C8];

[C C6;C C8];[C C7;C C8]]))))))*

list prod(one minus exp prod t [[C AL;C time];

[C SL;C time];[C PD;C time]; [C other;C time]]))))

The assumptions of the above theorem are similar to the ones used in Theorem 5 and its
proof is based on Theorem 3 and some basic arithmetic lemmas and probability theory
axioms. The proof of Theorems 5 and 6 and the formalization of sub-FTs, presented
in Table 3, with their corresponding probability of failure took more than 2500 lines of
HOL codes [20] and about 125 man-hours.

In order to facilitate the use of our formally verified results by industrial design
engineers for their failure analysis, we have also developed a set of SML scripts to
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automate the simplification step of these theorems for any given failure rate list cor-
responding to the NextGen ATM system components. For instance, the output of the
auto ASN gateway FT script [20] for the automatic simplification of Theorem 6 is as
follows:

� (prob p (ASN gateway FT p t FD AP FF1 D1 D4 D7 D10 E1 · · · E21 C5 C6 C7 C8

notshw AL SL PD Others time ED EQ1 EN1 · · · EN4 human) =

1 − (1 − (1 − e(−5/2)) ∗ (1 − e(−3/2))) ∗ ((1 − (1 − e(−1/2)) ∗ ((1 − e(−2))∗
((1 − e(−3/2)) ∗ (1 − e(−4))))) ∗ e(−9/2)) ∗ ((1 − (1 − e(−7/2)) ∗ (1 − e(−3)))∗
(1 − (1 − e(−4)) ∗ (1 − e(−3))) ∗ (e(−4) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−3))) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
(1 − (1 − e(−1/2)) ∗ (1 − e(−3)))))) ∗ (e(−321/20) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−3))) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
(1 − (1 − e(−1/2)) ∗ (1 − e(−3))))))) ∗ ((1 − (1 − e(−3/2)) ∗ (1 − e(−2)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−2))) ∗ (1 − (1 − e(−1/2)) ∗ (1 − e(−2)))))) ∗ e(−1)∗
((1 − (1 − e(−7/2)) ∗ (1 − e(−3))) ∗ ((1 − (1 − e(−3/2)) ∗ (1 − e(−3)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−3))) ∗ (1 − (1 − e(−5/2)) ∗ (1 − e(−3)))))))

With a very little modification, these kind of automation scripts can facilitate industrial
design engineers to accurately determine the failure probability of many other safety-
critical systems.

5 Conclusion

The accuracy of failure analysis is a dire need for safety and mission-critical appli-
cations, like the avionic ASN gateway communication system, where a slight error in
the failure analysis may lead to disastrous situations including the death of innocent
human lives or heavy financial setbacks. In this paper, we presented a deep embedding
based formalization of commonly used FT gates, which facilitates the transformation
of a FT model to its equivalent RBD model. The transformation considerably reduces
the complexity of the FT analysis compared to our earlier FT formalization [5]. For
illustration, the paper presents the formalization of each level of ASN gateway FT and
then building upon this formalization the failure probability of overall ASN gateways
communication system is verified.

References

1. ReliaSoft (2016). http://www.reliasoft.com/
2. ASENT (2016). https://www.raytheoneagle.com/asent/rbd.htm
3. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer

Science Applications. Wiley, New York (2002)
4. Epstein, S., Rauzy, A.: Can we trust PRA? Reliab. Eng. Syst. Saf. 88(3), 195–205

(2005)
5. Ahmed, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.

In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS (LNAI), vol. 9150, pp. 39–54. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-20615-8 3

6. Bilintion, R., Allan, R.: Reliability Evaluation of Engineering Systems. Springer,
New York (1992)

http://www.reliasoft.com/
https://www.raytheoneagle.com/asent/rbd.htm
http://dx.doi.org/10.1007/978-3-319-20615-8_3
http://dx.doi.org/10.1007/978-3-319-20615-8_3


Formalization of Fault Trees in Higher-Order Logic 279

7. Ahmed, W., Hasan, O., Tahar, S.: Formalization of reliability block diagrams in
higher-order logic. J. Appl. Logic 18, 19–41 (2016)

8. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04468-7 15

9. Ortmeier, F., Schellhorn, G.: Formal fault tree analysis-practical experiences. Elec-
tron. Notes Theoret. Comput. Sci. 185, 139–151 (2007). Elsevier

10. Xiang, J., Futatsugi, K., He, Y.: Fault tree and formal methods in system safety
analysis. In: IEEE Computer and Information Technology, pp. 1108–1115 (2004)

11. Futatsugi, K., Nakagawa, A.T., Tamai, T.: CAFE: An Industrial-Strength Alge-
braic Formal Method. Elsevier, Elsevier (2000)

12. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 387–402. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5 27

13. Ahmed, W., Hasan, O., Tahar, S., Hamdi, M.S.: Towards the formal reliabil-
ity analysis of oil and gas pipelines. In: Watt, S.M., Davenport, J.H., Sexton,
A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 30–44.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08434-3 4

14. Ahmed, W., Hasan, O., Tahar, S.: Formal reliability analysis of wireless sensor
network data transport protocols using HOL. In: IEEE Wireless and Mobile Com-
puting, Networking and Communications, pp. 217–224 (2015)

15. Ahmad, W., Hasan, O., Tahar, S., Hamdi, M.: Towards formal reliability analysis
of logistics service supply chains using theorem proving. In: Implementation of
Logics, pp. 111–121 (2015)

16. Ahmed, W., Hasan, O.: Formal availability analysis using theorem proving.
In: International Conference on Formal Engineering Methods. LNCS, pp. 1–16.
Springer, Switzerland (2016, to appear). arXiv:1608.01755

17. Kuykendall, T.A.: Section 3.9, fault tree to RBD transformation. In: Systems Engi-
neering “Toolbox” for Design-Oriented Engineers, pp. 52–52. NASA (1994)

18. Törngren, M.: Fundamentals of implementing real-time control applications in dis-
tributed computer systems. Real-Time Syst. 14(3), 219–250 (1998)

19. Kornecki, A.J., Liu, M.: Fault tree analysis for safety/security verification in avi-
ation software. Electronics 2(1), 41–56 (2013)

20. Ahmad, W.: Formalization of fault trees in higher-order logic: a deep embedding
approach (2016). http://save.seecs.nust.edu.pk/fault-tree/

http://dx.doi.org/10.1007/978-3-642-04468-7_15
http://dx.doi.org/10.1007/978-3-642-14052-5_27
http://dx.doi.org/10.1007/978-3-319-08434-3_4
http://arxiv.org/abs/1608.01755
http://save.seecs.nust.edu.pk/fault-tree/


An Efficient Synthesis Algorithm for Parametric
Markov Chains Against Linear Time Properties

Yong Li1,2, Wanwei Liu3, Andrea Turrini1(B), Ernst Moritz Hahn1,
and Lijun Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software,
CAS, Beijing, China
turrini@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 College of Computer Science, National University of Defense Technology,

Changsha, China

Abstract. In this paper, we propose an efficient algorithm for the para-
meter synthesis of PLTL formulas with respect to parametric Markov
chains. The PLTL formula is translated to an almost fully partitioned
Büchi automaton which is then composed with the parametric Markov
chain. We then reduce the problem to solving an optimisation problem,
allowing to decide the satisfaction of the formula using an SMT solver.
The algorithm works also for interval Markov chains. The complexity is
linear in the size of the Markov chain, and exponential in the size of the
formula. We provide a prototype and show the efficiency of our approach
on a number of benchmarks.

1 Introduction

Model checking, an automatic verification technique, has attracted much atten-
tion as it can be used to verify the correctness of software and hardware sys-
tems [1,10,12]. In classical model checking, temporal formulas are often used to
express properties that one wants to check.

Probabilistic verification problems have been studied extensively in recent
years. Markov chains (MCs) are a prominent probabilistic model used for mod-
elling probabilistic systems. Properties are specified using probabilistic exten-
sions of temporal logics such as probabilistic CTL (PCTL) [22] and probabilistic
LTL (PLTL) [4] and their combination PCTL*. In the probabilistic setting, most
of the observations about CTL carry over to their probabilistic counterpart. An
exception is the complexity for verifying PLTL: here one could have a double
exponential blowup. This is the case, because in general nondeterministic Büchi
automata cannot be used directly to verify LTL properties, as they will cause
imprecise probabilities in the product. In turn, it is often necessary to construct
their deterministic counterparts in terms of other types of automata, for instance
Rabin or Parity automata, which adds another exponential blowup. As a result,
most of the work in literature focuses on branching time verification problems.

c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 280–296, 2016.
DOI: 10.1007/978-3-319-47677-3 18
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Moreover, state-of-the-art tools such as PRISM [30] and MRMC [26] can han-
dle large systems with PCTL specifications, but rather small systems –if at all–
for PLTL specifications.

In the seminal paper by Courcoubetis and Yannakakis [13], it is shown that
for MCs the PLTL model checking problem is in PSPACE. They perform trans-
formations of the Markov chain model recursively according to the LTL formula.
At each step, the algorithm replaces a subformula rooted at a temporal operator
with a newly introduced proposition; meanwhile, it refines the Markov chain
with that proposition, and such refinement preserves the distribution. Then, it
is finally boiled down to the probabilistic model checking upon a propositional
formula. At the refinement step the state space is doubled, thus resulting in a
PSPACE algorithm. Even if it is theoretically a single exponential algorithm
for analysing MCs with respect to PLTL, it has not been exploited in the state-
of-the-art probabilistic model checkers.

In automata-based approaches, one first translates the LTL formula into
a Büchi automaton and then analyses the product of the MC and the Büchi
automaton. This is sufficient for non-probabilistic model checking. For the prob-
abilistic setting, the Büchi automaton is usually further transformed into a deter-
ministic variant. Such a determinisation step usually exploits Safra’s determini-
sation construction [35]. Several improvements have been made in recent years,
see for instance [32,33,36]. Model checkers such as PRISM [30] and LiQuor [9]
handle PLTL formulas by using off-the-shelf tools (e.g. (J)Ltl2Dstar [29]) to
perform this determinisation step. To avoid the full complexity of the determin-
istic construction, Chatterjee et al. [7] have proposed an improved algorithm for
translating the formulas of the FG-fragment of LTL to an extension of Rabin
automata. Recently [18], this algorithm has been extended to the complete LTL.

Despite the above improvements, the size of the resulting deterministic
automaton is still the bottleneck of the approach for linear temporal proper-
ties. In [14], it is first observed that the second blowup can be circumvented
by using unambiguous Büchi automata (UBAs) [6]. The resulting algorithm has
the same complexity as the one in [13]. Despite the importance of probabilistic
model checking, unfortunately, the algorithm in [14] is less recognised. To the
best of the authors knowledge, it is not applied in any of the existing model
checkers. Later in [5], the problem of verifying ω-regular properties over MCs by
using alternating Büchi infinite-word automata has been considered. Recently,
in [28], the authors construct the so called limit deterministic Büchi automata
that are exponential in the size of LTL\GU formula φ, which is another fragment
of LTL. The approach is only applied to the analysis of qualitative PLTL of the
form P>0[φ].

In this paper, we present a further improvement of the solution proposed in
[14], adapted directly to solving the parameter synthesis problem for paramet-
ric Markov chains. We exploit a simple construction translating the given LTL
formula to a reverse deterministic UBA, and then build the product of the para-
metric Markov chains. We then extract an equation system from the product,
then the synthesis problem reduces to the existence of a solution of the equation
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system. Further, we remark that the related interval Markov chains can be han-
dled by our approach as well. We integrate our approach in the model checker
IscasMC [21], and employ SMT solver to solving the obtained equation system.
We present detailed experimental results, and observe that our implementation
can deal with some real-world probabilistic systems modelled by parametric
Markov chains.

Related Work. In [20], they first use state elimination to compute the reachabil-
ity probability for parametric Markov models. This has be improved by Dehnert
et al. [17]. Another related model is interval Markov chains, which can be inter-
preted as a family of Markov chains [8,25,37] whose transition probabilities lie
within the interval ranges. The PSPACE complexity of model checking PCTL
has been established in [37] while the same complexity has been shown in [8]
for ω-regular properties such as ω-PCTL; in [25] interval Markov chains have
been used as abstraction models by using three-valued abstraction for Markov
chains. To our best knowledge, it is the first time that one can easily integrate
parameter synthesis algorithm that is exponential in the size of LTL formulas
over parametric Markov chains.

A long version of this paper containing further examples and proofs can be
found in [31]. We remark that a single exponential algorithm is presented for
verifying PLTL properties on Markov chains in [3], which, however, contains a
flaw. In [2], the authors have corrected the flaw of [3]. In this paper we have
developed a similar approach which fixes the flaw; we remark that our approach
has been developed in parallel.

2 Preliminaries

Given a function f : X1 ×· · ·×Xn → 2Y , we may alternatively consider it as the
set {(x1, . . . , xn, y) ∈ X1 × · · · × Xn × Y | y ∈ f(x1, . . . , xn)}.

Given a set W , we say that an infinite sequence � = w0w1 . . . is an ω-word
over W , if � ∈ Wω.

Given a finite word ν = v0 . . . vk and a finite or infinite word � = w0w1 . . . ,
we denote by ν · � the concatenation of ν and �, i.e., the finite or infinite word
ν · � = v0 . . . vkw0w1 . . . , respectively. We may just write ν� instead of ν · �.
We denote by [1..n] the set of natural numbers {1, · · · , n}.

Given a set X, we denote by Disc(X) the set of discrete probability measures
over X, and by SubDisc(X) the set of discrete sub-probability measures over X.
Given a discrete probability measure μ, we denote by Supp(μ) the support of μ,
i.e., Supp(μ) = {x ∈ X | μ(x) > 0}. Moreover, we denote by δx, for x ∈ X, the
Dirac measure such that for each y ∈ X, δx(y) = 1 if y = x and δx(y) = 0 if
y �= x.

A directed graph G is a pair G = (V,E) where V is a finite non-empty set of
vertices, also called nodes, and E ⊆ V × V is the set of edges or arcs. Given an
arc e = (u, v), we call the vertex u the head of e, denoted as u = head(e), and
the vertex v the tail of e, denoted as v = tail(e). In the remainder of the paper
we consider only directed graphs and we refer to them just as graphs.
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A path π is a sequence of edges π = e1e2 . . . en such that for each 1 ≤ i < n,
tail(ei) = head(ei+1). We say that v is reachable from u if there exists a path
π = e1 . . . en such that head(e1) = u and tail(en) = v.

A strongly connected component (SCC) is a set of vertices C ⊆ V such that
for each pair of vertices u, v ∈ C, u is reachable from v and v is reachable
from u. We say that a graph G = (V,E) is strongly connected if V is an SCC.
An SCC C is non-extensible if for each SCC C ′ of G we have C ⊆ C ′ implies
C ′ = C. Without loss of generality, in the remainder of this paper we consider
only non-extensible SCCs.

We define the partial order � over the SCCs of the graph G as follows: given
two SCCs C1 and C2, C1 � C2 if there exist v1 ∈ C1 and v2 ∈ C2 such that v2
is reachable from v1. We say that an SCC C is maximal with respect to � if
for each SCC C ′ of G, C � C ′ implies C ′ = C. We may call a maximal SCC as
bottom SCC (BSCC).

A graph can be enriched with labels as follows: a labelled graph G is a triple
G = (V,Σ,E) where V is a finite non-empty set of vertices, Σ is a finite set
of labels, and E ⊆ V × Σ × V is the set of labelled edges. The notations and
concepts on graphs trivially extend to labelled graphs.

A generalized Büchi automaton (GBA) A is a tuple (Σ,Q,T, Q0,ACC )
where Σ is a finite alphabet, Q is a finite set of states, T : Q×Σ → 2Q is the transi-
tion function, Q0 ⊆ Q is the set of initial states, and ACC = {Fi ⊆ T | i ∈ [1..k]}
is the set of accepting sets.

A run σ of A over an infinite word w = a0a1 . . . ∈ Σω is an infinite sequence
σ = q0a0q1a1q2 . . . ∈ (Q · Σ)ω such that q0 ∈ Q0 and for each i ∈ N it is
qi+1 ∈ T(qi, ai). Similarly, a run of A over a finite word w = a0a1 . . . ak ∈ Σ∗

is a finite sequence σ = q0a0q1a1q2 . . . akqk+1 ∈ Q · (Σ · Q)∗ such that q0 ∈ Q0

and for each i ∈ {0, . . . , k} it is qi+1 ∈ T(qi, ai). Let Inf(σ) = {(q, a, q′) ∈ T |
∀i ∈ N.∃j ≥ i.(qj , aj , qj+1) = (q, a, q′)} be the set of tuples (q, a, q′) occurring
infinitely often in σ. The run σ is accepting if Inf(σ) ∩ Fi �= ∅ for each i ∈ [1..k].
The word w is accepted by A if there is an accepting run of A over w; we denote
by L(A) the language of A, i.e., the set of infinite words accepted by A.

Given a GBA A = (Σ,Q,T, Q0,ACC ), for the sake of convenience, we denote
by Aq the GBA (Σ,Q,T, {q},ACC ) with initial state q and accordingly for
U ⊆ Q we let AU def= (Σ,Q,T, U,ACC ).

The graph G = (V,Σ,E) underlying a GBA A is the graph whose set of
vertices (nodes) V is the set of states S of A and there is an edge e ∈ E labelled
with a ∈ Σ from q to q′ if q′ ∈ T(q, a). In this case, we say that q is an a-
predecessor of q′ and q′ is an a-successor of q.

For the GBA A, we say that

– A is deterministic, if |Q0| = 1 and |T(q, a)| = 1 for each q ∈ Q and a ∈ Σ;
– A is reverse deterministic if each state has exactly one a-predecessor for each

a ∈ Σ;
– A is unambiguous if for each q ∈ Q, a ∈ Σ, and q′, q′′ ∈ T(q, a) such that

q′ �= q′′, we have L(Aq′
) ∩ L(Aq′′

) = ∅; and
– A is separated if L(Aq) ∩ L(Aq′

) = ∅ for each pair of states q, q′ ∈ Q, q �= q′.
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We say that a state q ∈ Q is reenterable if q has some predecessor in
A. Let Q′ be the set of all reenterable states of A and consider the GBA
A′ = (Σ,Q′,T′, Q′,ACC ′) where T′ = T|Q′×Σ and ACC ′ = {F ′

i = Fi ∩ T′ |
Fi ∈ ACC , i ∈ [1..k]}. Then, we say that A is almost unambiguous (respectively
almost separated, almost reverse deterministic) if A′ is unambiguous (respec-
tively separated, reverse deterministic).

A

q1 q2 q3
x,w

y,z

y

y

Fig. 1. An example of gen-
eralised Büchi automaton

For an (almost) separated GBA A, if for each
α ∈ Σω there exists some state q of A such that
α ∈ L(Aq), then we say that A is (almost) fully parti-
tioned. Clearly, if an automaton is (almost) fully par-
titioned, then it is also (almost) separated, (almost)
unambiguous and (almost) reverse deterministic.

As an example of GBA that is reverse-
deterministic and separated but not fully partitioned,
consider the generalised Büchi automaton A depicted
in Fig. 1, where ACC = {{(q1, x, q2), (q1, w, q2)}}, represented by double arrows.
The fact that A is not fully partitioned is clear since no word starting with xw is
accepted by any of the states q1, q2, or q3. One can easily check that A is indeed
reverse-deterministic but checking the separated property can be more involved.
The checks involving q1 are trivial, as it is the only state enabling a transition
with label x or w; for the states q2 and q3, the separated property implies that
given any w1 ∈ L(Aq2), it is not possible to find some w2 ∈ L(Aq3) such that
w1 = w2. For instance, suppose the number of the most front y’s in w1 is odd, it
must be the case that the most front y’s are directly followed by x or w. In order
to match w1, we must choose y instead of z on transition (q2, q1). It follows that
the number of the most front y’s in w2 is even. We can get similar result when
the number of the most front y’s in w1 is even. Thus w1 and w2 can never be
the same.

3 Parametric Markov Chains and Probabilistic LTL

In this section we recall the definitions of parametric Markov chains as proposed
in [20], interval Markov chain considered in [3,8,25,37] and of the logic PLTL.

In addition, we consider the translation of LTL formulas to GBAs which is
used later for analysing PLTL properties.

3.1 Parametric Markov Chains

Before introducing the parametric Markov chain model, we briefly present some
general notation. Given a finite set V = {x1, . . . , xn} with domain in R, an
evaluation is a partial function υ : V → R. Let Dom(υ) denote the domain of
υ; we say that υ is total if Dom(υ) = V . A polynomial p over V is a sum
of monomials p(x1, . . . , xn) =

∑
i1,...,in

ai1,...,in
· xi1

1 · · · xin
n where each ij ∈ N

and each ai1,...,in
∈ R. A rational function over V is a fraction f(x1, . . . , xn) =

p1(x1,...,xn)
p2(x1,...,xn) of two polynomials p1 and p2 over V ; we denote by FV the set of
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all rational functions over V . Given f ∈ FV , V ′ ⊆ V , and an evaluation υ,
we let f [V ′/υ] denote the rational function obtained from f by replacing each
occurrence of v ∈ V ′ ∩ Dom(υ) with υ(v).

Definition 1. A parametric Markov chain (PMC) is a tuple M = (S,L, s̄, V,P)
where: S is a finite set of states; L : S → Σ is a labelling function, in which Σ
is a set of labels; s̄ ∈ S is the initial state; V is a finite set of parameters; and
P : S × S → FV is a transition matrix.

We now define the PMC induced with respect to a given evaluation:

Definition 2. Given a PMC M = (S,L, s̄, V,P) and an evaluation υ, the
PMC Mυ induced by υ is the tuple (S,L, s̄, V \ Dom(υ),Pυ) where the transition
matrix Pυ : S × S → FV \Dom(υ) is given by Pυ(s, t) = P(s, t)[Dom(υ)/υ].

We say that a total evaluation is well-defined for a PMC M if Pυ(s, s′) ∈ [0, 1]
and

∑
t∈S Pυ(s, t) = 1 for each s, s′ ∈ S. In the remainder of the paper we

consider only well-defined evaluations, and we require that, for a given PMC M
and two states s, t ∈ S, if Pυ(s, t) > 0 for some evaluation υ, then Pυ′(s, t) > 0
for all evaluations υ′. We may omit the actual evaluation υ when we are not
interested in the actual value for Pυ(s, t), such as for the case Pυ(s, t) > 0.

The underlying graph of a PMC M for a given evaluation υ is the graph
G = (V,E) where V = S and E = {(s, s′) ∈ S × S | Pυ(s, s′) > 0}. Note that
the requirement that “if Pυ(s, t) > 0 for some evaluation υ, then Pυ′(s, t) > 0
for all evaluations υ′” ensures that the underlying graph is the same for all
evaluations υ′.

We use |S| to denote the number of states, and |M| for the number of non-
zero probabilistic transitions, i.e., |M| = |{(s, s′) ∈ S × S | P(s, s′) > 0}|.

A path is a sequence of states π = s0s1 . . . satisfying P(si, si+1) > 0 for all
i ≥ 0. We call a path π finite or infinite if the sequence π is finite or infinite,
respectively. We use π(i) to denote the suffix sisi+1 . . . and we denote by PathsM

and PathsM
fin the set of all infinite and finite paths of M, respectively. An infinite

path π = s0s1 . . . defines the ω-word w0w1 . . . ∈ Σω such that wi = L(si) for
i ∈ N.

For a finite path s0s1 . . . sk, we denote by Cyl(s0s1 . . . sk) the cylinder set of
s0s1 . . . sk, i.e., the set of infinite paths starting with prefix s0s1 . . . sk. Given an
evaluation υ, we define the measure of the cylinder set by

P
Mυ

(
Cyl(s0s1 . . . sk)

) def= δs̄(s0) ·
k−1∏

i=0

Pυ(si, si+1).

For a given PMC M and an evaluation υ, we can extend P
Mυ uniquely to a

probability measure over the σ-field generated by cylinder sets [27].
We call the BSCCs of the underlying graph G ergodic sets and for each

ergodic set C, we call each state s ∈ C ergodic. A nice property of a BSCC C
is the so-called ergodicity property : for each s ∈ C, s will be reached again in
the future with probability 1 from any state s′ ∈ C, including s itself. Moreover,



286 Y. Li et al.

for each finite path π within C, π will be performed again in the future with
probability 1.

In this paper we are particularly interested in ω-regular properties L ⊆ Σω

and the probability P
M(L) for some measurable set L. Such properties are known

to be measurable in the σ-field generated by cylinders [38]. We write P
M
s to

denote the probability function when assuming that s is the initial state of the
PMC M. To simplify the notation, we omit the superscript M whenever M is
clear from the context and we use Π as a synonym for Paths.

3.2 Interval Markov Chain

In this section we recall the definition of interval Markov chain [8,24,25] and
show how it can be converted to a parametric Markov chain.

Definition 3. An interval Markov chain (IMC) is a tuple M = (S,L, s̄,Pl,Pu)
where S, L and s̄ are as for PMCs while Pl,Pu : S×S → [0, 1] are the transition
matrices such that for each s, s′ ∈ S, Pl(s, s′) ≤ Pu(s, s′).

We show how to convert an IMC to a PMC in the following. Given an IMC
M = (S,L, s̄,Pl,Pu), we define the corresponding PMC M′ = (S,L, s̄,P) as
follows. For every pair of states, say (s, t), we add a new parameter pst to V such
that V = {pst | Pl(s, t) ≤ pst ≤ Pu(s, t)}; then, we define P as P(s, t) = pst.
For instance, suppose in an IMC, there is a state s with two successors, namely
t and w, with Pl(s, t) = 0.2, Pl(s, w) = 0.3, Pu(s, t) = 0.7 and Pu(s, w) = 0.5.
We add two parameters pst and psw for the pairs (s, t) and (s, w) whose ranges
are [0.2, 0.7] and [0.3, 0.5] respectively. Moreover, in order to get an instance of
Markov chain from the resulting PMC, we must make sure that pst + psw = 1.

3.3 Probabilistic Linear Time Temporal

Throughout the whole paper, we will assume that the state space S of any PMC
is always equipped with labels that identify distinguishing state properties. For
this, we let AP denote a set of atomic propositions. We assume Σ = 2AP as
state labels, so that L(s) specifies the subset of atomic propositions holding in
state s.

We first recall the linear time temporal logic (LTL). The syntax of LTL is
given by:

φ
def= p | ¬φ | φ ∧ φ | Xφ | φUφ

where p ∈ AP . We use standard derived operators, such as: φ1 ∨ φ2
def= ¬(¬φ1 ∧

¬φ2), true
def= a ∨ ¬a, φ1 → φ2

def= ¬φ1 ∨ φ2, Fφ
def= trueUφ, and Gφ

def= ¬(F¬φ).
Semantics is standard and is omitted here.

A PLTL formula has the form PJ(φ) where J ⊆ [0, 1] is a non-empty interval
with rational bounds and φ is an LTL formula. In a PMC M with evaluation v,
for a state s ∈ S and a formula PJ(φ), we have:

s |= PJ(φ) if and only if PMv
s ({π ∈ Π | π |= φ}) ∈ J (1)
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From the measurability of ω-regular properties, we can easily show that for any
LTL formula φ, the set {π ∈ Π | π |= φ} is measurable in the σ-field generated
by the cylinder sets.

3.4 From LTL to Büchi Automaton

The following section describes how we can transform a given LTL formula into
a GBA which has the required properties for the subsequent parameter synthesis
procedure.

The set of elementary formulas el(φ) for a given LTL formula φ is defined
recursively as follows: el(p) = ∅ if p ∈ AP ; el(¬ψ) = el(ψ); el(φ1∧φ2) = el(φ1)∪
el(φ2); el(Xψ) = {Xψ} ∪ el(ψ); and el(φ1Uφ2) = {X(φ1Uφ2)} ∪ el(φ1) ∪ el(φ2).

Given a set V ⊆ el(φ) and a ∈ Σ = 2AP , we inductively define the satisfaction
relation � for each subformula of φ as follows:

(V, a) � p if p ∈ a in the case of p ∈ AP ,

(V, a) � ¬ψ if it is not the case that (V, a) � ψ,

(V, a) � φ1 ∧ φ2 if (V, a) � φ1and (V, a) � φ2,

(V, a) � Xψ if Xψ ∈ V , and
(V, a) � φ1Uφ2 if (V, a) � φ2or, (V, a) � φ1and (V, a) � X(φ1Uφ2).

Finally, Aφ = (Σ = 2AP , Qφ,Tφ, {φ},ACC φ) is the Büchi automaton where:

– Qφ = {φ} ∪ 2el(φ);
– Tφ({φ}, a) = {V ⊆ el(φ) | (V, a) � φ} and for each V ⊆ el(φ), we have:

Tφ(V, a) = {U ⊆ el(φ) | ∀Xψ ∈ el(φ).Xψ ∈ V ⇐⇒ (U, a) � ψ}; and
– ACCφ = {Fψ} where for each subformula ψ = φ1Uφ2 of φ, we have Fψ =

{(U, a, V ) ∈ Tφ(V, a) � φ2 or(V, a) � ¬ψ}.

According to the definition, each formula in el(φ) is guaranteed to be of the
form Xφ′; the size of el(φ) is precisely the number of temporal operators (i.e., X
and U) occurring in φ.

Theorem 1 (cf. [11,14]). For the automaton Aφ, the following holds:

1. For each infinite word π ∈ Σω, we have π |= φ if and only if π ∈ L(Aφ).
2. More generally, for each U ⊆ el(φ) and Xψ ∈ el(φ) we have: π |= ψ if and

only if Xψ ∈ U , for every π ∈ L(AU
φ ).

It follows directly that

Corollary 1. For each U, V ⊆ el(φ), if U �= V then L(AU
φ ) ∩ L(AV

φ ) = ∅.
Moreover, Aφ is both almost unambiguous and almost separated.

We observe that for each subset U ⊆ el(φ) and each a ∈ Σ, there is exactly
one a-predecessor of U , namely the set {Xψ ∈ el(φ) | (U, a) � ψ}. Hence, we
also have the following conclusion.

Corollary 2. The automaton Aφ is almost reverse deterministic.
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4 Parameter Synthesis Algorithm

We consider a parametric Markov chain M and an (almost) unambiguous
automaton A = (Σ,Q,T, Q0,ACC ) obtained from the LTL specification, where
L(Aq1) ∩ L(Aq2) = ∅ if q1, q2 ∈ Q0 and q1 �= q2. To simplify the notation, in the
following we assume that for a given PMC M we have S = Σ and L(s) = s for
each s ∈ S; this modification does not change the complexity of probabilistic
verification [13].

In the following we shall introduce the product graph composed by the PMC
and Büchi automaton as well as the corresponding synthesis algorithm.

Given the automaton A = (Σ,Q,T, Q0,ACC ) the PMC M = (S,L, s̄, V,P),
the product graph of A and M, denoted G = A × M, is the graph (Γ,Δ) where
Γ = {(q, s) | q ∈ Q, s ∈ S} and ((q, s), (q′, s′)) ∈ Δ (also written (q, s)Δ(q′, s′))
if and only if P(s, s′) > 0 and q′ ∈ T(q, L(s)).

Suppose that ACC = {F1, . . . , Fk}. We say that an SCC C of G is accepting
if for each Fi ∈ ACC , there exist (q, s), (q′, s′) ∈ C such that (q, s)Δ(q′, s′) and
(q, a, q′) ∈ Fi for some a ∈ Σ.

Given an SCC C of G, we denote by H (C) the corresponding SCC of C,
where H (C) = {s ∈ S | (q, s) ∈ C}. We denote by Proj a function to get
the corresponding path of M from the path of G, i.e., Proj((q0, s0)(q1, s1) · · · ) =
s0s1 · · · and we usually call the path s0s1 · · · the projection of (q0, s0)(q1, s1) · · · .
For convenience, we also write α � β if the (finite) path α is a fragment of the
(finite) path β.

Below we give the definition of complete SCC [14]. For an SCC C of G and
K = H (C) the corresponding SCC of C, we say that C is complete if for each
finite path σK in K, we can find a finite path σC in C such that σK = Proj(σC).

Consider the product A × M shown in Fig. 2. It has two non-trivial SCCs,
namely C1 and C2. Clearly, K1 and K2 are the corresponding SCCs of C1 and
C2, respectively. We observe that C1 is a complete SCC while C2 is not complete
since the finite path zz of K2 is not a projection of any finite path in C2. The key
observation is that some transitions in the SCCs of M may be lost in building

A M A×M

q1

q2

q3

x,w y,z

y y

y

x z

w (q2, x)

(q1, y)

(q3, x)

(q3, y)

(q2, y)

(q1, x)

(q1, w)

(q2, z)

(q1, z)

C1 C2K1 K2

Fig. 2. The GBA A from Fig. 1, a PMC M, and their product A×M
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the product, so we only consider the complete SCCs in the product to make sure
that no transitions of the projection SCCs are missing.

The following lemma characterises the property of a complete SCC of G.

Lemma 1 ([5]). Consider a complete SCC C of G with H (C) = K and an
arbitrary finite path ρC in C. Then, there exists some finite path σK in K with
the following property: for each finite path σC in C with σK = Proj(σC), σC

contains ρC as a fragment, i.e., ρC � σC .

Based on Lemma 1, the following corollary relates the paths in the product
and the projected Markov chains:

Corollary 3 ([5]). Let C be a complete SCC of G and K = H (C); consider
two infinite paths σC in C and σK in K such that σK = Proj(σC); let PC and
PK be the following properties:

– PC : σC visits each finite path in C infinitely often;
– PK : σK visits each finite path of K infinitely often.

Then PC holds if and only if PK holds.

We say that an SCC C of G is locally positive if:

1. C is accepting and complete.
2. H (C) is a BSCC.

Consider again the example from Fig. 2. Assume the acceptance condition of A is
ACC = {{(q2, y, q1)}}; we observe that the SCC C1 is both accepting and com-
plete but not locally positive since H (C1) = {x, y} is not a bottom SCC in M.

According to Corollary 3, the ergodicity property of Markov chains, and the
definition of Büchi acceptance, we have the following result.

Theorem 2. P
M(L(A)) �= 0 if and only if there exists some locally positive

SCC that is reachable from some initial state in G.
For a given SCC, in order to decide whether it is locally positive, we have to

judge whether it is complete. In general, doing so is a nontrivial task; however,
thanks to [13, Lemma 5.10], completeness can be checked efficiently:

Lemma 2. If A is (almost) reverse deterministic, then the following two con-
ditions are equivalent:

(i) C is complete, i.e., each finite path of H (C) is a projection of some finite
path in C.

(ii) There is no other SCC C ′ of G with H (C ′) = H (C) such that C ′ � C.

We now turn to the problem of computing the exact probability.
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Theorem 3. Given a PMC M and an (almost) separated Büchi automaton A,
let G = A×M be their product. Let pos(G) be the set of all locally positive SCCs
of G and npos(G) be the set of all BSCCs of G which are not locally positive.
Further, for an SCC C let CM = {s ∈ S | ∃q ∈ Q. (q, s) ∈ C} denote the set of
states of M occurring in C. We define the following equation system:

μ(q, s) =
∑

s′∈S

⎛

⎝P(s, s′) ·
∑

(q,s)Δ(q′,s′)

μ(q′, s′)

⎞

⎠ ∀q ∈ Q, s ∈ S (2)

∑

q∈Q
(q,s)∈C

μ(q, s) = 1 ∀C ∈ pos(G), s ∈ CM (3)

μ(q, s) = 0 ∀C ∈ npos(G) and (q, s) ∈ C (4)

Then, it holds that PMυ (L(A)) =
∑

q0∈Q0
μ(q0, s̄) for any well-defined eval-

uation υ.

In general, all locally positive SCCs can be projected to the BSCCs in the
induced MC Mυ. In the original MC Mυ, the reachability probability of every
state in the accepting BSCC should be 1. Thus in a locally positive SCC of G,
the probability mass 1 distributes on the states in which they share the same
second component, i.e., s from state (q, s).

Consider the PMC M and the automaton A as depicted in Fig. 3, together
with their product graph. For clarity, we have omitted the isolated vertices
like (q1, w) and (q5, y), i.e., the vertices with no incoming or outgoing edges.
One may check that A is indeed separated, unambiguous, and reverse deter-
ministic. The product of M and A consists of a single locally positive SCC
C = {(q1, x), (q2, x), (q3, y), (q4, z), (q5, w)}. We state the relevant part of the
equation system resulting from Eqs. (2) and (3) of Theorem 3:

μ(q3, z) = 0

μ(q4, y) = 0

μ(q1, x) = (0.5 + ε) · μ(q3, y) + (0.5 − ε) · μ(q3, z)

μ(q2, x) = (0.5 − ε) · μ(q4, z) + (0.5 + ε) · μ(q4, y)

μ(q3, y) = 1 · μ(q5, w)

μ(q4, z) = 1 · μ(q5, w)

μ(q5, w) = 1 · (μ(q1, x) + μ(q2, x))

(2)

μ(q1, x) + μ(q2, x) = 1

μ(q3, y) = 1

μ(q4, z) = 1

μ(q5, w) = 1

(3)

We remark that the values for the nodes (q3, z) and (q4, y) as well as all
isolated nodes like (q1, w) or (q5, y) are 0, because for them the inner summation
in (2) is over the empty set. The family of solutions of this equation system has
as non-zero values μ(q1, x) = 0.5+ε, μ(q2, x) = 0.5−ε, μ(q3, y) = 1, μ(q4, z) = 1,
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A M A×M
q5

q4q3

q2q1

x

y

w

x

z

w

w

y z

x

0.5+ε 0.5−ε

1 1

1

(q5, w)

(q4, y)(q4, z)(q3, y)(q3, z)

(q1, x) (q2, x)

Fig. 3. An example of a GBA A, a PMC M, and their product A×M

and μ(q5, w) = 1. From this, we have P
M(L(A)) = μ(q1, x) + μ(q2, x) = 1 for

any well-defined evaluation υ, i.e., an evaluation such that υ(ε) ∈ (−0.5, 0.5).
Let us summarise this section with the following results: given a parametric

Markov chain M and an LTL formula φ, both the emptiness checking and the
qualitative-correctness computation could be done within time O(|M| · 2|el(φ)|).
When the specification is given as an almost separated automaton A, the time
complexity is O(|M| · |A|). For quantitative computation, after we get all reach-
able locally positive SCCs, we reduce the problem to solving the equation system
listed in Theorem 3.

5 Experiment Results

We have implemented our synthesis algorithm for LTL properties of parametric
Markov chains in our tool IscasMC using an explicit state-space representation.
The machine we used for the experiments is a 3.6 GHz Intel Core i7-4790 with
16 GB 1600 MHz DDR3 RAM of which 12 GB assigned to the tool; the time-
out has been set to 30 min. We considered three models, namely the Bounded
Retransmission Protocol (BRP) [23] in the version of [15], Randomized Protocol
for Signing Contracts (RPSC) [19] and the Crowds protocol for anonymity [34].
We have replaced the probabilistic choices by parametric choices to obtain the
admissible failure probabilities.

In our implementation, we use Z3 [16] to solve the equation system of
Theorem 3 because by using parametric transition probabilities the equation sys-
tem from Theorem 3 becomes nonlinear. Performance results of the experiments
are shown in Tables 1 to 3, where the columns have the following meaning: In col-
umn “Model”, the information about the model, the name of the constants influ-
encing the model size, and the analysed property is provided; “Constants” con-
tains the values for the constants defining the model; “|SM|” and“|VG |” denote
the number of states and vertices in M and G, respectively; “SCC G” reports
the number of non-trivial SCCs checked in G out of which “SCC pos” are the
positive ones; “TG” is the time spent by constructing and checking the product
graph; “|VarsZ3|”, “|ConsZ3|” and “TZ3” record the number of variables and
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Table 1. Experimental Results for Parametric Markov chain models

constraints of the equation system we input into Z3 and its solution time; and
“Tmc” gives the total time spent for constructing and analysing the product G
and solving the equation system. In the tables, entries marked by “NE” mean
that Z3 has not been executed as there were no locally positive SCCs, thus
the construction and evaluation of the equation system can be avoided; entries
marked by “–” mean that the operation has not been performed since the analy-
sis has been interrupted in a previous stage; the marks “TO” and “MO” stand
for a termination by timeout or memory out.

As we can see from Tables 1 and 2 relative to parametric Markov chains,
the implementation of the analysis method presented in this paper is able to
check models in the order of millions of states. The parameter synthesis time is
mainly depending on the behavior of Z3 and on the number and size of the SCCs
of the product, since each SCC has to be classified as positive or non-positive.
Regarding Z3, we can see that the time it requires for solving the provided
system is loosely related to the size of the system: the Crowds cases in Table 1
take hundreds of seconds for a system of size less than one thousand while the
RPSC cases in Table 2 are completed in less than one hundred seconds even if
the system size is more than one million. In Table 3, we list some experimental
results for the Crowds protocol modelled as an interval Markov chain. As for the
previous cases, it is the solution of the equation system to limit the size of the
models we can analyse, so a more performing solver would improve considerably
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Table 2. Experimental Results for Parametric Markov chain models

Table 3. Experimental results for crowds interval Markov chain model

the applicability of our approach, in particular when we can not exclude that
the formula is satisfiable, as happens when there are no positive SCCs.

6 Conclusion

In this paper we have surveyed the parameter synthesis of PLTL formulas with
respect to parametric Markov chains. The algorithm first transforms the LTL
specification to an almost separated automaton and then builds the product
graph of the model under consideration and this automaton. Afterwards, we
reduce the parameter synthesis problem to solving an (nonlinear) equation sys-
tem, which allows us employ an SMT solver to obtain feasible parameter values.
We have conducted experiments to demonstrate that our techniques indeed work
for models of realistic size. To the best of our knowledge, our method is the first
approach for the PLTL synthesis problem for parametric Markov chains which
is single exponential in the size of the property.
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Abstract. Business processes often incorporate stochastic decision
points, either due to uncontrollable actions or because the control flow
is not fully specified. Formal modeling of such business processes with
resource constraints and multiple instances is hard because of the inter-
play among stochastic behavior, concurrency, real-time and resource con-
tention. In this setting, statistical techniques are easier to use and more
scalable than numerical methods to verify temporal properties. However,
existing approaches towards simulation techniques of business processes
typically rest on shaky theoretical foundations. In this paper, we propose
a modular approach towards modeling stochastic resource-constrained
business processes. We analyze such processes in presence of commonly
used resource-allocation strategies. Our model, Distributed Probabilistic
Systems (DPS), incorporates a set of probabilistic agents communicating
among each other in fixed-duration real-time. Our methodology admits
statistical analysis of business processes with provable error bounds. We
also illustrate a number of real-life scenarios that can be modeled and
verified using this approach.

1 Introduction

In recent years, a plethora of models have been proposed in the area of Business
Process Management (BPM) [3,10]. These models have been used to analyze
large processes from diverse industry sectors such as Internet companies, health
care, and finance services. The tasks in these processes are typically mapped to
a finite set of shared resources whose allocation depends on a variety of practical
constraints. In addition, each process is often replicated as a large number of
instances. To optimize performance, one needs to be able to analyze resource-
constrained business processes with well-defined confidence in the result.

BPM systems often do not realize deterministic behavior and incorporate
stochastic decision points. This is due to both the increasing complexity of such
systems, which makes the exact control flow difficult to capture, as well as the
c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 297–314, 2016.
DOI: 10.1007/978-3-319-47677-3 19



298 R. Saha et al.

inclusion of uncontrollable components in business processes. Even when the
probability distributions can be measured or approximated from domain knowl-
edge or historical data [2], model-based analysis [3] of such systems is hard due
to the interplay between stochastic behavior, concurrency, time taken to perform
tasks, and resource contention.

We propose a novel modular approach towards modelling resource-
constrained BPM (rcBPM) systems. Such systems have a finite set of resources
allocated across replicated instances of a stochastic business process. A business
process is a set of tasks with logical and temporal dependencies. Each task is
mapped to one of the available resources that can perform the task. Resources
are assigned following a predetermined allocation strategy. Each task has an
execution time, ideally drawn from a probability distribution. For simplicity,
we assume the time taken by a task to be fixed—say the mean value of the
distribution.

A case is an instance of the process model. Multiple cases run in parallel,
sharing the same set of resources. Cases need not start simultaneously. We study
systems with a fixed number of cases arriving within a given period of time. The
cases may follow an arrival process such as a Poisson process.

An example of an rcBPM system is the loan/overdraft process in a finan-
cial institution, where cases correspond to applications from different customers.
Tasks in the process may include ‘submitting’, ‘reviewing’, ‘accepting’ or ‘declin-
ing’ the application.

We observe that tasks and resources can be considered as individual agents
that behave independently and communicate among each other. There are two
types of communications among them: (i) task-task interaction, where a com-
pleted task passes the thread of control to some other tasks, and (ii) task-resource
interaction, which describes the allocation of a task to a resource.

This observation leads us to introduce Distributed Probabilistic Systems
(DPS) to model rcBPM systems. A DPS consists of a set of communicating
probabilistic agents. Each agent has a finite local state space. Periodically, agents
synchronize with each other on common actions to perform joint probabilistic
events. Each event has a fixed duration and cost. A scheduler is used to resolve
non-determinism: if an agent can take part in more than one synchronization at
a global state, the scheduler determines which one of them is to be performed.

In general, after the scheduler resolves non-determinism, multiple indepen-
dent actions are enabled at a global state of a DPS, which can be executed
concurrently. Each synchronization action among a set of agents leads to an
event being chosen according to a probability distribution. Each event has a
fixed duration, after which the local states of the participating agents change.
We show that the dynamics of a DPS with a fixed scheduler can be captured
as a discrete-time Markov chain. The DPS model can be viewed as a Markov
Decision Process (MDP) variant of Distributed Markov Chains (DMC) [20].

We model an rcBPM system as a DPS. Each task is an individual agent
incorporating the states of a task, such as ‘ready to perform’, ‘waiting for a
resource’, ‘busy executing’, ‘finished’ etc. When a task finishes, it triggers other
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task agents in the control flow that are ready to perform. Each resource is also a
simple agent, looping between being ‘available’ and ‘busy’. The scheduler maps
each task waiting for a resource to an available resource. This results in a syn-
chronization that generates an event whose duration captures the time taken to
perform the task. We also model the start and end states of a process as agents,
to model the arrival and completion of a case.

To verify temporal properties of rcBPM systems, we use Statistical Model
Checking (SMC) [14,24]. A typical property is of the form “when C cases arrive
with constant arrival density λ, at least x% of the cases will complete within time
t, with probability at least p”. Since the DPS model of an rcBPM system can
be viewed as a discrete-time Markov chain, we can simulate an rcBPM system
and use hypothesis testing to verify properties with provable error bounds.

We illustrate our approach using a business process [7] depicting
loan/overdraft applications of a large financial institution. The process has been
mined from real-life event logs from BPM Challenge 2012 [22]. The process has
46 resources for performing 15 tasks in the process. We scaled up to 500 cases
arriving at the rate of 1 case every 10 s. We show (i) the relationship between the
number of cases arriving within a fixed time bound and the fraction of cases that
complete, and (ii) the relationship between the minimum time of completion and
the fraction of cases completed for a fixed number of total cases.

To summarize, our contribution is as follows: (i) we propose a model of dis-
tributed probabilistic systems where events are assigned time and cost values,
and demonstrate that the model acts as a Markov chain for a well-behaved
class of schedulers, (ii) we provide a strong theoretical foundation for resource-
constrained business processes modelled as distributed probabilistic systems,
(iii) we demonstrate a statistical model checking based technique for inferring
time-bounded properties of business processes with multiple cases and a finite
set of shared resources. To the best of our knowledge, this is the first attempt to
provide a simulation based technique for analyzing resource-constrained business
processes with provable error bounds and sound sample size analysis.

The paper is structured as follows. Section 2 introduces resource-constrained
BPM systems and different properties of interest. Section 3 defines the Distrib-
uted Probabilistic System (DPS) model and a statistical model checking tech-
nique for DPS. Sections 4 and 5 provide a proof-of-concept demonstration of
our approach. Section 4 describes how rcBPM systems are modelled using DPS.
Section 5 discusses experimental results for a simple example. Finally, Sect. 6
provides a summary and future directions.

Related Work. The need for an underlying formal model for business processes
has been long felt. Workflow nets (WF nets, a class of Petri nets), equipped with
clean graphical notation and abundance of analysis techniques, have served as a
solid framework for BPM systems [1,4,6].

For this discussion, we restrict to related work that involves modelling or
analyzing stochastic business processes. The most prominent modelling formal-
ism for stochastic analysis for business processes is (generalized) stochastic WF
nets [9,18]. Such a system is modelled using exponentially distributed firing
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delay with timed transitions. A few recent papers [8,15,21] also demonstrate a
generic Markovian analysis that is mostly applicable to rigidly structured WF
systems. The work of [12] focuses on modelling BPM systems as Markov decision
processes in the language of PRISM [13]. These works are either very simplistic
in nature, where block-like patterns are chained together, or hard-to-tackle mod-
els involving arbitrary nondeterminism that cannot be readily adopted for sound
simulation techniques. Most importantly, extending these approaches to model
business processes with shared resources across multiple cases is not obvious.

Analyzing resource-constrained BPM systems with simulation-based tech-
niques is not new [16,17], but rigorous statistical analysis has often been limited
to computing analysis of variance and confidence intervals. The deductions are
often difficult to justify and can be arbitrarily far from truth—van der Aalst
correctly points out that “simulation does not provide any proof” [5]. Our work
is the first to (i) provably bound the error of analysis of business processes with
finite resources shared across multiple cases arriving at different time points and
(ii) provide a sound analysis of the sample size of simulation.

2 Resource-Constrained BPM (rcBPM) Systems

A resource-constrained BPM (rcBPM) system consists of two main components:
(i) the process, instantiated as a fixed number of cases, and (ii) a finite set
of resources. An rcBPM system is then accompanied by a resource allocation
strategy. To explain these, we use a process model that has been mined [7] from
a real-life event log of loan/overdraft applications of a large financial institution.
Along with the process, the average time for each resource to perform a particular
task has been mined. The event log is obtained from BPI Challenge 2012 [22].

The Process. A process in an rcBPM system consists of a start state, a finite set
of tasks and an end state. The tasks in the process are combined in sequence or
parallel. We assume that the control flow is probabilistic: a discrete probability
distribution is attached to each set of outgoing choices and sequential tasks have
outgoing probability 1. Each case is an instantiated copy of the process.

The Example. Figure 1 demonstrates, in Petri net notation, a process for
loan/overdraft applications of a large financial institution. We consider two
sub-processes—namely the application and offer sub-processes—of the overall
loan/overdraft application process. The tasks of the application and offer sub-
processes are prefixed with “A ” and “O ” respectively. From historical data,
we estimate the probability values of outgoing edges from places in the Petri
net. Unmarked edges have probability 1. The process starts with the submis-
sion of an application (A Submitted/A PartlySubmitted). An application can
be declined (A Declined) if it does not pass any checks. The probability of an
application being declined outright is estimated to be 0.84. Applications that
pass the checks are pre-accepted (A PreAccepted) with probability 0.16. Often
additional information is obtained by contacting the customer by phone. Based
on this information, an application can be cancelled (A Cancelled) with proba-
bility 0.63 or accepted (A Accepted) with probability 0.37. Once an application
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Fig. 1. An example process of an rcBPM system (in Petri net notation).

is accepted, it is finalized (A Finalized) and, in parallel, an offer is selected for
the customer (O Selected). An offer is then created (O Created) and sent to
eligible applicants and their responses are assessed (O Sent). A customer then
may (i) accept the offer (O Accepted) with probability 0.01, (ii) cancel the offer
(O Cancelled) with probability 0.95, or (iii) send the offer back (O SentBack)
with probability 0.04. If an offer is sent back, a new offer is created for the cus-
tomer. If the offer is accepted, the application is finally approved (A Approved).
Declining, cancellation or approval signals the end of the application.

Resources. A finite set of resources is provided, each capable of performing a
subset of tasks in the process. Different resources can take different time for per-
forming the same task. We may further group resources with the same behaviour
and capability into roles.

In the running example, we profiled the top 46 of the busiest resources from
the event log. The resource-task matrix with cell values representing the average
time taken by the resource on the particular task is shown (truncated) in Table 1
in the appendix. The columns indicate the resources and the rows indicate the
tasks. If a cell is empty, it indicates that the task is not assigned to the particular
resource. If the value in a cell is 0, the resource performs the task instantly.

Resource Allocation Strategy. At any moment, multiple tasks can compete
for a number of available resources and, conversely, multiple resources may be
available for a single task. The resource allocation strategy is responsible for
assigning each task to a single resource. A strategy is said to be deterministic
if, given the same snapshot of the system, the strategy always picks the same
resource allocation for tasks. While our model can be extended to accommodate
randomized schedulers, to keep the formalism simple, we focus on deterministic
schedulers. For example, the flexible assignment policy [16] is deterministic: given
a specialist-generalist ratio, it assigns the most specialist (available) resource to
a given task.

In the running example, we assume that a priority based scheduler is avail-
able. This scheduler assumes that there is an ordering among cases—one can
think of it as different tiers (platinum/gold/silver) of customers. We also assume
that given a case, there is an ordering among its tasks. Hence, there is a total
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ordering among tasks across all cases. For simplicity, we also assume a total
order among the resources. Hence at any configuration of the system, the sched-
uler goes through the resources in ascending order. For each resource, if a set
of assigned tasks are available for that particular resource, it schedules the low-
est ranked task among them. We note that such a scheduling policy may not
be optimal, but real-life schedulers for business processes are often simple in
nature. Also, while our model permits more complex schedulers, we have cho-
sen a simpler one to explain the approach and demonstrate some experimental
results.

The Modeling Formalism and Properties of Interest. We do not restrict
ourselves to any particular modeling formalism and discuss the support of our
modeling technique in terms of workflow patterns [19]. We support the core
patterns—sequence (WCP-1), parallel split (WCP-2), synchronization (WCP-
3), (probabilistic) exclusive choice (WCP-4), structured synchronizing merge
(WCP-7). In short, we allow parallel and XOR-splits as well as parallel and
XOR-joins as long as each parallel split is matched with a parallel join. With
some engineering, our approach can be extended to more unstructured models
as long as arbitrarily new thread of controls cannot be spawned. However for
this work, we focus on structured business processes.

We are interested in time-bounded temporal properties of rcBPM systems. A
fixed number of cases arrive following an arrival process. Each task and resource
can have their own time limit. Given a time limit, we are interested to verify lin-
ear temporal properties of business processes bounding the probability of error.
In the running example, let us assume that we are interested in the following
property: when C cases arrive at a rate of λ cases per second, with probability
at least p, at least x% cases are completed within time t. While we can analyze
more complex temporal properties, in this work, we focus on reachability prop-
erties. Note that we can also find optimal parameter values using binary search.
For example, if we are interested in optimizing x, we fix the other values p, t, λ
and C and use simulations to do a binary search for the optimal value of x in
the range [0, 100].

The state-of-the-art approach for analyzing stochastic business process mod-
els is to simulate the system an arbitrary number of times. If p % of the sim-
ulations satisfy the desired property, one claims that the property is true with
probability at least p, perhaps with confidence interval estimates of certain para-
meters. However, such conclusions are dependent on the sample size of the sim-
ulation and correctness is not guaranteed. We apply the theory of hypothesis
testing and sequential probability ratio test, which formally connects the sam-
ple size to the desired margin for error. The conclusions that we draw from our
experiments come with guaranteed bounds on the probability of error due to
false positives and false negatives. Our strategy is explained in detail in Sect. 3.
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3 The Distributed Probabilistic System (DPS) Model

We formulate a model in which a distributed set of agents interact through
actions that synchronize subsets of agents. A synchronization results in a proba-
bilistic choice between a set of events, each with its own time duration and cost.
We can then use hypothesis testing for statistical model checking of quantitative
properties of such systems.

Definition 1 (Distributed State Space). A distributed state space over n
agents [n] = {1, 2, . . . , n} is a tuple S = (n, {Si}, {sin

i }), such that for each
agent i ∈ [n], Si denotes its finite set of local states and sin

i denotes its local
initial state. We abbreviate [n]-indexed sets {Xi}i∈[n] as {Xi} when the context
is clear.

– For non-empty u ⊆ [n], Su =
∏

i∈u Si denotes the set of joint u-states of
agents in u. We denote S = S[n] to be the set of global states.

– For a u-state s ∈ Su and v ⊆ u, sv denotes the projection of s onto v. We do
not distinguish between S{i} and Si, nor between s{i} and si.

Definition 2 (Events and Actions)

– An event over a distributed state space S is a tuple e = (srce, tgte), such that
∅ �= loc(e) ⊆ [n] specifies the agents that participate in e and srce, tgte ∈ Sloc(e)

denote the source and target loc(e)-states of e.
– Let Σ denote the set of all events over S. Each event e has a duration δ(e)

and a cost χ(e), given by functions δ : Σ → R≥0 and χ : Σ → R≥0.
– An action over (S, Σ) is a collection of co-located events with the same source

state, equipped with a probability distribution. Formally, an action is a pair
a = (Ea, πa), where Ea ⊆ Σ is such that for each e, e′ ∈ Ea, srce = srce′ ,
and πa : Ea → [0, 1] is a probability distribution. We write loc(a) for the set
of agents participating in action a and src(a) for the common source state of
the events in Ea. Let A denote the set of all actions over (S, Σ).

– We assume that each event belongs to exactly one action. In other words Σ =⋃
a∈A Ea and for each a, b ∈ A such that a �= b, Ea ∩ Eb = ∅.

– For a global state s ∈ S, en(s) is the set of actions enabled at s. Formally,
en(s) = {a | src(a) = sloc(a)}.

– At a global state s ∈ S, a set of enabled actions U is schedulable if each agent
participates in at most one action in U . Formally, U ⊆ en(s) is schedulable
if for all a, b ∈ U such that a �= b, loc(a) ∩ loc(b) = ∅. Note that a schedu-
lable set of actions can be executed concurrently since the agents involved do
not interfere with each other. Let sch(s) ⊆ 2en(s) \ ∅ denote the collection of
schedulable sets of actions at s.

Definition 3 (Distributed Probabilistic Systems). A Distributed Proba-
bilistic System (DPS) is a tuple D = (S, Σ, δ, χ,A) such that
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– S = (n, {Si}, {sin
i }) is a distributed state space,

– Σ is the set of events over S with duration and cost functions δ and χ, respec-
tively,

– A is the set of actions over (S, Σ).

A DPS D evolves as follows. All agents start at their initial state, so the initial
global state at time 0 is sin = (sin

1 , sin
2 , . . . , sin

n ).
Suppose D is at a global state s = (s1, s2, . . . , sn) at time t. A set of schedu-

lable actions U ∈ sch(s) is chosen from the set of enabled actions. We assume
the existence of a scheduler that guides this choice.

The actions in U start concurrently and independently. For each action a ∈ U ,
an event ea = (srce, tgte) ∈ Ea is chosen according to the probability distribution
πa, with an associated duration δ(ea) and cost χ(ea).

The durations {δ(ea)}a∈U fix a sequentialization of the events {ea}a∈U . In
general, there will also be a pending list of partially executed events currently
in progress, with their own completion times.

Among the list of pending events, old and new, the events with the earliest
time to completion finish first. For each completed event e, the local states of
agents in loc(e) are changed to tgte, while the states of the agents [n]\ loc(e) are
unchanged.

This gives rise to a new global state where potentially a new set of actions
are scheduled, and we repeat the process of choosing a set of actions to schedule.
We have to ensure that the scheduler respects the decisions made earlier, so that
all pending events remain compatible with the new choice.

We denote a global configuration of a DPS as a snapshot, consisting of a
global state and a list of partially executed events, with their time to completion
from the current time point.

Definition 4 (Snapshots). A snapshot of a DPS D is a tuple (s, U,X) where
U ⊆ en(s) and X = {(a, e, t) | a ∈ U, e ∈ Ea, t ∈ R≥0} such that:

– s is the current global state and U ∈ en(s) is the set of actions that are
currently being performed, which may not have started together.

– For each a ∈ U , there is exactly one entry (a, e, t) ∈ X denoting that event
e ∈ Ea is in progress with time t ≤ δ(e) till completion.

Let Y be the set of snapshots. Though Y is uncountable, a DPS will give rise
to a discrete set of reachable snapshots, determined by the duration function δ.

Nondeterministic choices between actions are resolved by a scheduler. At
each snapshot, the scheduler picks a schedulable set of actions that are pairwise
independent. For consistency, this choice should include all the actions already
in progress, but not necessarily new ones.

Definition 5 (Schedulers). A scheduler G is defined over snapshots as follows.
Let y = (s, U,X) ∈ Y be a snapshot. Then G(y) ∈ sch(s) is such that U ⊆ G(y) ⊆
en(s).
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We also note that, in general, it is hard to define independence-respecting
schedulers for distributed systems. This is closely related to defining local win-
ning strategies in distributed games [11]. The main complication is that a sequen-
tially defined scheduler must behave consistently across different linearizations
that correspond to the same concurrent execution. However, in a DPS, the dura-
tions associated with the events fix a canonical linearization, so there is no need
to reconcile decisions of the scheduler across different interleavings.

Once we fix a scheduler, we can associate a transition system associated with
a DPS whose states are snapshots.

Definition 6 (Transition System). Given a DPS D and a scheduler G, we
construct the transition system TS = (S, yin,→) where S ⊆ Y is a set of snap-
shots, with the initial snapshot given by yin = (sin, ∅, ∅) ∈ S.

Given a snapshot y = (s, U,X) ∈ S, where U = {a1, a2, . . . , am} and X =
{(a1, e1, t1), . . . , (am, em, tm)}, we define the next snapshots from y as follows.

– Let G(y) be the set of actions scheduled. Recall that U ⊆ G(y). Let V =
G(y) \ U = {b1, b2, . . . , bk}.

– For each action b = (Eb, πb) ∈ V , we pick an event eb ∈ Eb according to πb,
with duration δ(eb) and cost χ(eb). This generates a list Y = {(b, eb, δ(eb)) |
b ∈ V, eb ∈ Eb}. Note that all the events in X ∪ Y have pairwise disjoint
locations.

– From X ∪Y , we pick the subset Emin = {(a, e, tmin) | tmin is minimum across
all triples in X ∪ Y }. We then update the snapshot as follows:
(i) For each (a, e, tmin) in Emin, set sloc(e) to tgte, and remove a from U ∪V

and (a, e, tmin) from X ∪ Y .
(ii) For each (a, e, t) in (X ∪Y )\Emin, update t to t− tmin, thus reducing the

time to completion of e by tmin.
This results in a new snapshot (s′, U ′,X ′). Note that each probabilistic choice
of events for the actions in V deterministically determines the next snapshot.

We label each transition from snapshot y to y′ with a pair of sets (EV , Emin),
where V = {b1, b2, . . . , bk} is the new set of actions chosen by the scheduler at
snapshot y, EV = {eb1 , eb2 , . . . , ebk} is the set of events chosen corresponding to
V and Emin is the set of triples corresponding to the events that complete their

execution at y′. We write such a transition in the usual way as y
(EV ,Emin)−−−−−−−→ y′.

We associate a probability, time duration and cost with this transition as follows.
The probability associated with the transition is p =

∏
eb∈EV

πb(eb), where
for action b = (Eb, πb) in V , the event eb is probabilistically chosen from the set
Eb via πb. If V = ∅, p = 1. The time duration associated with the transition is
the time tmin attached to each (a, e, tmin) ∈ Emin. The cost associated with the
transition is the sum of χ(e), for all (a, e, tmin) ∈ Emin.

We claim that the probabilities we have attached to transitions transform the
system into a Markov chain. Suppose V = {b1, b2, . . . , bk} is the new set of actions
chosen by the scheduler at a snapshot y. As observed earlier, each combination of
events {e1, e2, . . . , ek} generated by applying πbi to Ebi , i ∈ {1, 2, . . . , k}, results
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in a unique next snapshot. Hence the sum of the probabilities across all the
successors of y adds up to 1. If V = ∅, there is only one outgoing transition with
probability 1.

Statistical Analysis of DPS

Properties. We are interested in checking linear time properties for distributed
probabilistic systems. For traditional transition systems, these are combinations
of safety and liveness properties. In a quantitative setting, we would typically
like to make assertions about the total duration or the total cost of a run. Since
our DPS model is not deterministic, we have to frame these questions in terms
probabilities. For instance, we might ask if the probability of reaching a target
state within time t is at least p.

A natural approach to checking such a property is to estimate the probability
by a large number of simulations. For this, we need the additional constraint
that the property can be checked within a bounded length run, so that we can
effectively terminate each simulation with a yes or no verdict. Bounded duration
properties can be formalized in notations such as bounded linear-time temporal
logic (BLTL) [24]. In this paper we will not get into the details of BLTL but
instead concentrate on reachability properties, defined informally.

The main shortcoming of naively estimating probabilities through random
simulations is that we have no guarantee about the accuracy of the estimate. To
perform this estimation in a principled manner, we need to frame the property
of interest as a hypothesis testing problem.

Hypothesis Testing. We briefly overview the preliminaries of hypothesis test-
ing before detailing the simulation procedure. For more details, see [14,24].

Suppose we are given a DPS (S, Σ, δ, χ,A), a bounded reachability property
described by a formula φ in a suitable notation, and a threshold γ. Our goal is to
verify if φ is achieved with probability at least γ, which we write as Φ = Pr≥γφ.

Let p be the probability of satisfying φ. To verify whether p ≥ γ, we test
the hypothesis H : p ≥ γ against its negation K : p < γ. Since a simulation-
based test does not guarantee a correct result, there are two types of errors we
encounter: (i) Type-I error: accepting K when H holds, and (ii) Type-II error:
accepting H when K holds. We would like to ensure that the probabilities of
Type-I and Type-II errors are bounded by pre-defined values (say) α and β,
respectively.

Enforcing exact bounds on Type-I and Type-II errors simultaneously is hard,
so we allow uncertainty using an indifference region [24]. We relax the test by
providing a range (γ−δ, γ+δ) for a given threshold δ. We now test the hypothesis
H0 : p ≥ γ + δ against H1 : p ≤ γ − δ. If the value of p is between γ − δ and
γ + δ, we say that the probability is sufficiently close to γ, so we are indifferent
with respect to which of the hypothesis K or H are accepted.

Sequential Probability Ratio Test. Traditional sampling theory fixes the
sample size in advance based on the Type-I and Type-II error thresholds α
and β. Computationally, it is often more efficient to estimate the sampling size
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adaptively, based on the observations made so far. Such an approach was pro-
posed by Wald, called a sequential probability ratio test (SPRT) [23].

Time-bounded SPRT for DPS proceeds as follows. The user provides Type-I
and Type-II error bounds α and β, as well the threshold of indifference δ. We
repeatedly simulate the system. We can determine in a bounded amount of time
whether a simulation run satisfies the property of interest or not.

After m simulation runs, let dm be the number of runs with a positive out-
come so far. We calculate a ratio quo = (γ−)dm (1−γ−)m−dm

(γ+)dm (1−γ+)m−dm
that takes into

account the number of successes and failures seen so far. We accept H0 if
quo ≤ β

1−α and H1 if quo ≥ 1−β
α . Otherwise, we continue the simulation. The

simulation is guaranteed to halt with probability 1 [24] and will typically con-
verge much before the number of samples required by a traditional static esti-
mate.

Please see Algorithm 1 in the Appendix for a concise algorithm.

4 Modeling rcBPM Systems as DPS

We recall that an rcBPM system consists of a business process instantiated
as a number of cases and a finite set of resources. Let us assume that in an
rcBPM system B, there are C cases numbered {1, 2, . . . , C} each with kT tasks
labelled as follows: Tij denotes the jth task of the ith case, for 1 ≤ i ≤ C and
1 ≤ j ≤ kT . We assume the rate of the arrival process is λ cases per second.
Let us assume there are r resources denoted {R1, R2, . . . , Rr}. In the running
example of loan/overdraft application, kT = 15 and r = 46 (see Fig. 1). For each
resource Ri, let tasks(Ri) ∈ {Tij | 1 ≤ i ≤ C, 1 ≤ j ≤ kT } denote the set of
tasks resource Ri is able to perform. Since resources can be shared among tasks,
for any 1 ≤ i, j ≤ r, tasks(Ri) ∩ tasks(Rj) can possibly be non-empty.

Given an rcBPM system, we transform it to a DPS as follows. We model
tasks and resources as agents. To facilitate the arrival process and clearly mark
the case completion, we also model the start and end states as agents. Hence,
the rcBPM system B can be modeled using r + C × (kT + 2) agents.

Each task agent consists of 4 states (i) ready to perform, (ii) waiting for a
resource, (iii) busy being executed, and (iv) finished. Each resource agent consists
of 2 states (i) available and (ii) busy. An agent modeling the start state is called
a starter agent, and has two states waiting and arrived. Similarly, the agent
modeling the end state is named finisher agent with states pending and done.

We illustrate a part of DPS modeling the running rcBPM example in Fig. 2.
We show the agents corresponding to the start state and 4 tasks: A Submitted,
A Partially Submitted, A Declined and A PreAccepted. We also demonstrate
a resource that can perform tasks A Submitted and A Partially Submitted.
The states are depicted in rounded cornered rectangles and the edges between

the states are defined as follows: s s′a e denotes the action at local state
s, e ∈ Ea and s′ be the next local state after event e.
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initial arrived

(i) the starter.

a1 e1
available busy

(ii) the resource

a2

a3

e4
e5

e2
e3
a4

a5

ready busy

waiting

finished

(iii) task A Submitted

a1

e1 a2

e2

a4

e4a6

e6

ready busy

waiting

finished

(iv) task A Partially Submitted

a6

e6 a3

e3

a5

e5a7

e7 e′
7

ready busy

waiting

finished

(iii) task A Declined

a7

e7

e′
7

a8

e8

a9

e9a10

e10

ready busy

waiting

finished

(iv) task A PreAccepted

a7

e′
7

e7

a11

e11

a12

e12a13

e′
13e13

Fig. 2. Modeling (part of) the running rcBPM system example as DPS agents.

The starter agent mimics the wait for a case. At state initial, it synchronizes
with the starting task agent at ready state followed by an event with proba-
bility 1. The duration of the event is equal to the total time before arrival for
the particular case. The starter then moves to arrived state and the starting
task moves to waiting state, where it waits for a resource to be scheduled. For
example, Fig. 2(i) shows the action a1 between the starter agent and the task
A Submitted followed by event e1 such that πa(ea) = 1 and δ(e1) = 1/λ.

Once a task is in waiting state and the scheduler assigns a resource that is
in available state, the task and the resource synchronize and they both move to
busy state with probability 1. In Fig. 2, examples of such actions are a2 and a3.
There they synchronizes again, performs an event with possibly non-zero time
duration, and the task moves to finished with probability 1. In Fig. 2, examples
of such actions are a4 and a5.

Once a task is finished, it signals the next task(s) in the control flow via
synchronization. For example, in Fig. 2, after task A Partially Submitted is
at finished, it sychronizes with tasks A Declined and A Preaccepted via action
a7 such that Ea7 = {e7, e

′
7} with πa7(e7) = 0.84 and πa7(e

′
7) = 0.16. Hence,

with probability 0.84, event e7 is chosen and only task A Declined moves to
waiting state. Otherwise, with probability 0.16, event e′

7 is chosen and only task
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A Preaccepted moves to waiting state. In both cases, A Partially Submitted
moves to ready state. A task is ready again after finishing since due to loops in
control flow, a task may be executed multiple times in the same case.

When a case finishes, the last task in finished state synchronizes with the
finisher agent in pending state. The task then moves to ready as usual and the
finisher agent moves to done, indicating the completion of the corresponding
task. The finisher agent then stays at the state done with probability 1.

Extensibility. For brevity, we did not illustrate the rest of the DPS corre-
sponding to the loan/draft application, but it can be easily extended. Also, we
would like to point out that the described methodology to model rcBPM systems
as DPS is only one example among many possibilities. One may easily extend
this approach and incorporate an even more complex state space for tasks or
resources modeling different scenarios. For example, we can easily model prob-
abilistic error in task execution. Let us assume that when the resource depicted
in Fig. 2 performs task A Submitted, there is a small probability of 0.1 that such
an execution fails. This phenomenon can be easily modeled by adding another
event e to Ea2 such that πa2(e2) = 0.9 and πa2(e) = 0.1 where after e, they move
back to available and waiting respectively. Also, for simplicity, we assumed that
the business processes under consideration are sound, but DPS can be easily
used to model unsound rcBPM systems as well.

5 Experimental Evaluation

We have tested our SMC procedure on the running example. The property we
are interested in is follows:

With probability at least 0.99, when cases arrive at a fixed rate of 1 case per
10 s, x fraction of cases are completed among C cases within t s.

We ensure that the probability of Type-I error and Type-II error of verifying
this property is less than 0.01 with indifference region (0.99 ± 0.005).

We first investigate the relationship between the number of total cases and
the number of cases completed within fixed maximum time t = 500, 000 s. The
shaded area in Fig. 3 (left) represents the values (C, x) that satisfies the property
when t = 500, 000 s. The dotted line represents an upper limit for the values
(C, x) satisfying the property.

Then, we illustrate the relationship between the minimum total time and the
fraction of cases completed within that total time when the total number of cases
C = 100 is fixed. The shaded area in Fig. 3 (right) represents the values (x, t)
that satisfies the property when C = 100. The dotted line represents a lower
limit for the values (x, t) satisfying the property. We note that the limits are not
the tightest, but can be made arbitrary closer with more SMC simulations.

Extensibility. Though our experiment is only a proof-of-concept, we would
like point out that we can scale the size of the model comfortably to accom-
modate 500 cases. Since there is no other known approach to verify business
processes with provable bounds, we were not able to compare our results with
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Fig. 3. (left) Fraction of cases completed vs total no. of cases when the time bound is
fixed, (right) Minimum total time vs fraction of cases completed when the total number
of cases is fixed.

existing literature. This methodology also supports verifying a variety of prop-
erties, depending on the focus of optimization for the business. For example, one
may investigate the performance of resources by verifying the following property:
given a resource, in what fraction of cases was it used?

6 Conclusion

We have presented a modular approach to modelling resource-constrained BPM
systems with multiple cases, using distributed probabilistic systems. We have
shown that a real-time distributed probabilistic system under a fixed sched-
uler behaves like a Markov chain. We have then presented a rigorous technique
for time-bounded approximate verification of business processes using statistical
model checking, illustrated through a proof-of-concept experiment.

In future, we plan to extend this model to shed light on different types of
scheduling policies and their impact on business processes. We would also like to
incorporate stochastic durations for events, which will take us to a Continuous
Time Markov Chain (CTMC) setting. Finally, we would like to see how approx-
imate verification techniques can also enrich process mining BPM systems [2].

Acknowledgements. The authors would like to thank S Akshay for his invaluable
comments on the draft and Ansuman Banerjee for the early discussions.
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A Appendix

Algorithm 1. Statistical Model Checking for DPS
INPUT:
1: D, G � a DPS and a scheduler
2: Φ = Pr≥γT≤tφ � a property
3: α, β, δ ∈ (0, 1) � error bounds and threshold of indifference
OUTPUT:
4: YES or NO
5: procedure Simulate-DPS
6: m ← 0 � the number of simulations so far
7: γ+ ← γ + δ and γ− ← γ − δ
8: while True do
9: tspent ← 0 � time spent so far

10: yin = (sin, ∅, ∅), y = (s, U, X) = yin � the initial and current snapshot
11: ρ ← y � the current execution
12: b ← 0 � the outcome of the Bernoulli random variable
13: dm ← 0 � accumulator of outcome of the Bernoulli variable
14: while (tspent ≤ t) do
15: G(y) = U ∪ V ← scheduled actions at y
16: Y ← set of fresh actions probabilistically chosen from V
17: Emin ⊆ X ∪ Y is the set of tuples with minimum time to completion
18: for all (a, e, tmin) ∈ Emin do
19: sloc(e) ← tgte, remove a from U ∪ V, remove (a, e, t) from X ∪ Y

20: for all (a, e, t) ∈ X ∪ Y \ Emin do
21: t ← t − tmin

22: y = (s′, U ′, X ′)is the new snapshot
23: tspent = tspent + tmin, ρ ← ρy
24: if ρ satisfies φ then
25: b = 1
26: break
27: m ← m + 1 and dm ← dm + b

28: quo = (γ−)dm (1−γ−)m−dm

(γ+)dm (1−γ+)m−dm

29: if (quo ≥ (1−β)
α

) then
30: return NO
31: else if (quo ≤ β

1−α
) then

32: return YES
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Abstract. Behavioral specifications are often employed for modeling
complex systems at high levels of abstraction. Failure conditions of such
systems can naturally be specified as assertions defined over system vari-
ables. In that way, such behavioral descriptions can be transformed to
imperative programs with annotated failure assertions. In this paper, we
present a scalable source code based framework for computing failure
probability of such programs under the fail-stop model by applying for-
mal methods. The imprecision in the estimation process resulting from
coverage loss due to time, memory bounds and loop invariant synthe-
sis, is also quantified using an upper bound computation. We further
discuss the design and implementation of ProPFA (Probabilistic Path-
based Failure Analyzer), an automated tool developed for this purpose.

1 Introduction

Reactive software systems generally work on data provided by an input environ-
ment where the environment may be some physical phenomenon, higher layer
softwares or a human in the loop. In order to prevent undesired system behav-
iors, it is common to embed such software with fail-stop assertions so that sys-
tem execution does not progress to unsafe states as defined by some requirement
specification and the associated input conditions are handled gracefully. Such
failure runs of systems, even if handled, lead to degradation in Quality of Ser-
vice (QoS) where the definition of such QoS measures is dependent on the area
of application [1]. For example, in case of Cyber Physical Systems with an under-
lying networked control infrastructure, environmental noise during transmission
or sensor reading leads to unsafe plant state information which needs to be
ignored so that an uncalled for control actuation is not passed on to the plant.
In that way, the safety of the system is gracefully maintained with an associated
degradation in Quality of Control (QoC) [8].

Computing the probability of system level failure provides a direct handle for
estimating relevant QoS metrics for the system. Analytical methods for comput-
ing such failure probabilities using high level models and parameters are widely
established. These approaches focus on reliability models or are based on high
level system architecture [7,10]. However, it has the following shortcomings.

c© Springer International Publishing AG 2016
M. Fränzle et al. (Eds.): SETTA 2016, LNCS 9984, pp. 315–322, 2016.
DOI: 10.1007/978-3-319-47677-3 20



316 D. Lohar et al.

1. High level models do not capture complex execution semantics of systems as
can be specified in the form of a program behavior.

2. In case the system under question is a software program itself, model driven
analytical techniques refrain from deriving probability bounds from the source
code directly. This implies an added dependence on correctness of model
construction given a source implementation.

In case of software systems, existing tools either use failure data during phases of
software life cycles to drive one or more of the software reliability growth models
[11] or use test coverage measurements [5,12] to estimate reliability. Established
techniques like probabilistic risk assessment lack the notion of provability as
given by formal techniques which provide sophisticated reasoning mechanisms
for working with high level system models as well as behavioral specifications
given as imperative programs. A recent approach [6] provides a formal technique
for reliability estimation of imperative programs built on the tool Symbolic Path
Finder (SPF). However, it does not handle loops in a scalable fashion.

The problem addressed in the present work is formally stated as follows.

Problem Statement: We are given an imperative program σ in C-type syntax
and a set of failure assertions A = {A1, · · · , An}. Any random execution run
of σ is considered a failure run iff any one of the failure assertions Ai ∈ A
actually fail in that run. Given such an instance of σ along with the probability
distributions of input variables, what is the failure probability of σ in any random
execution run?

We summarize the novelty of our framework below.

1. We provide a formal technique for failure probability estimation of behavioral
specifications given as imperative programs. The specification can model a
complex system as a program or it can be a software system by itself.

2. The technique handles loops in a scalable fashion.
3. The imprecision of the analysis is upper bounded and a relevant confidence

measure is computed as a part of the analysis.

While program analysis techniques useful for some of the above steps do exist,
there is no end-to-end solution that applies formal techniques and estimates
software failure while handling loops gracefully. Our tool suite ProPFA is a
scalable solution to this requirement. Further, its implementation using well
known, robust formal APIs makes the solution usable and extensible.

2 Overview of Failure Analysis Framework

Let an imperative program σ be a 2-tuple 〈S,A〉 where the set of program
statements is represented as S and the set of failure assertions is defined as
A. The program σ is characterized as a Control Flow Graph Gσ = <N,E>
having edges ∈ E labeled with program statements and vertices ∈ N denoting
program points at which the program state is captured. Gσ has one entry (ns)
and one exit (ne) node depicting the start and end points of σ. Generally, in any
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random run of σ, the set V = {v1, · · · vk} of variables assumes values from the
domains {D1, · · · ,Dk} following independent or joint probability distributions.
The branching edges of Gσ represent the conditionals in σ. Let I be the set of
conditionals. An assertion (Ai ∈ A) is the label of an edge (ni, ni+1 ∈ E) in
Gσ. The program point ni characterizes the program state before Ai is executed
and ni+1 characterizes the program state after executing Ai successfully. The
execution semantics of failure assertions is ‘fail stop’, i.e., the program fails if
any failure assertion in the path do not execute successfully. We first perform the
following transformation on Gσ. For each Ai, we introduce a new failure node
fi and an edge ei = (ni, fi) labeled with Ai. This process is continued for all
failure assertions Ai ∈ A. The derived CFG is defined as G′

σ = <N ′, E′> where
N ′ = N

⋃{fi | ∃Ai ∈ σ} and E′ = E
⋃{(ni, fi) | Ai ∈ σ and Ai is label of

(ni, ni+1)}. An edge (ni, fi) ∈ E′ is labeled with Ai. The conditional set for G′
σ

is defined as, I ′ = I ⋃ A ⋃ A where A = {Ai|Ai ∈ A}. An example program σ
with CFGs Gσ and G′

σ are shown in Fig. 1. A path π in the graph G′
σ is called a

success path if the (source, target) pair of π is (ns, ne). Any path π in the graph
G′

σ is called a failure path if the source, target pair of π is (ns, fi) for fi ∈ N ′.
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Fig. 1. Representations of Gσ and G′
σ

We propose a semi-formal path based approach for program level failure esti-
mation by employing static analysis techniques on G′

σ. Considering the input
profile, there is a specific probability that a program path is taken. We estimate
this specific probability associated with each success path. The success probabil-
ity of the whole program is then enumerated by adding the probabilities of the
success paths. Finally, the overall failure probability of the program is estimated.

We develop an associated toolflow ProPFA (Probabilistic Path-based Failure
Analyzer) for the proposed framework. The software architecture of ProPFA is
shown in Fig. 2. ProPFA computes the failure probability of the program in Fig. 1
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Fig. 2. Architecture of ProPFA

as 0.23034979 assuming that the variables x and y are uniformly distributed over
the integer ranges [0, 100] and [0, 50] respectively.

2.1 Failure Probability Estimation of Program Paths

For a program σ, let Vin = {V1, · · · , Vk} denote the set of input variables with
respective domains {D1, · · · ,Dk}. We consider that the variables in Vin are
distributed as per some probability distribution op designated as the operational
profile of σ. The quantity op is ideally a probability density function over the
input state space such that,

∫

V1∈D1
· · · ∫

Vk∈Dk
op(Vin) = 1. For the present work,

we restrict op in the sense that we consider the variables ∈ Vin to be distributed
independently. We assume piecewise uniform distributions for variables ∈ Vin.
However, complex probability distributions can be typically approximated by
dividing the range of possible values or the range of cumulative probabilities
into a set of collectively exhaustive and mutually exclusive intervals.

Let the set of success paths of σ be designated as Πs. The set of conditionals
in some path π ∈ Πs is denoted as I ′

π ⊆ I ′. Let the sequence of conditionals
∈ I ′

π be {Iπ
1 , · · · , Iπ

k } and we represent π as Iπ
1 · Sπ

1 · Iπ
2 · Sπ

2 · · · Sπ
k−1 · Iπ

k writing
the sequence of conditionals (Iπ

j ) and basic blocks (Sπ
j ). Note that for π to

execute, all conditionals ∈ I ′
π need to be evaluated to true in the order they

appear in π. For a given operational profile op, the probability Pr(π) that a
path π ∈ G′

σ is taken in any random run of σ is defined as, Pr(π) = Pr(ns
π−→
op

ne) = Pr(Iπ
1 ) × Pr(Iπ

2 /Iπ
1 ) × · · · Pr(Iπ

k /(Iπ
1 ∧ Iπ

2 ∧ · · · ∧ Iπ
k−1)) This expression

essentially captures the probability of the path condition of π being satisfied. The
path condition of π is computed using standard program analysis techniques like
Weakest Precondition (WP) analysis. Our tool-flow ProPFA generates the WP
(WP (Iπ

1 · Sπ
1 · Iπ

2 · Sπ
2 · · · Sπ

k−1, I
π
k )) that characterizes the input subspace of the

program driving the execution through path π. We restrict ourselves to static
affine programs so that the input subspace generated by WP computation is a
convex polytope.

The path π is a feasible path if there exists a non-null intersection between
the convex polytope WP (Iπ

1 ·Sπ
1 · Iπ

2 ·Sπ
2 · · · Sπ

k−1, I
π
k ) and the input state space.
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Let the overall input state space V be a mutually exclusive disjunction of convex
polytopes {V1,V2, · · · }. The volume of this convex polytope intersection is com-
puted by leveraging the concept of exact integration of polynomials over polyhe-
dra regions [3]. Let V ol(C, op) denote the volume of a convex polytope C given a
density distribution op. The probability of the success path π ∈ Πs is computed
as, Pr(π) =

∑
Vi∈V V ol(WP (Iπ

1 · Sπ
1 · Iπ

2 · Sπ
2 · · · Sπ

k−1, I
π
k ) ∧ Vi, op)/V ol(Vi, op).

Hence, the failure probability of σ can be estimated as Pr(σ) = 1−∑
π∈Πs

Pr(π).

2.2 Failure Estimation of Programs with Loops

Till now we have considered loop-free programs. A loop in a program σ cor-
responds to several program paths depending on the number of loop iteration.
Loop unrolling replaces the loop by as many instances of its body as the number
of iterations and different paths are generated. Hence, for success probability
estimation of σ, all generated paths leading to the success node are considered
and success paths and the probabilities of them are computed as discussed in
Sect. 2.1. Apart from the additional requirement of loop bound analysis, in gen-
eral, this method will not scale for large programs with significantly deep loops.

To accelerate the analysis and minimize the number of success paths to be
considered in presence of loops, a technique is proposed which sacrifices some
accuracy while improving scalability. This optimization works on simple compu-
tational loops which do not contain failure assertions. Consider the loop given
as, ‘L = while (C) do S′’; The physical significance of such a loop is the pro-
gram segment S inside L does not fail in any event. We abstract out such simple
computational loops using invariant relations while computing the WPs. Let
σ = σ1 · L · S′ · A′ · σ2 = σ1· [while(C) do S]·S′ · A′ · σ2. Current state-of-the-art
invariant synthesis tools require a post-condition for the loop L which is com-
puted as WP (S′, A′). A disjunction of invariants of the form

∨n
i=1 φi ⊆ φ where

φ is the ideal loop invariant of L, is synthesized. However, invariant synthesis
tools may fail to generate sufficient invariants capturing all possible paths (which
satisfy WP (S′, A′)). The exact set of paths for σ are captured by the Kleene
expression σ1 · [C + (C · S)+ · φ] · S′ · A′ · σ2 while the subset of paths covered by
the analysis are actually σ1 · [C +

∑
i(C ·S)+ ·φi] ·S′ ·A′ ·σ2. In such situations,

certain paths are ignored and their contribution in overall failure probability is
not accounted for due to the non-exact nature of the invariant. In that case, we
actually underestimate the probability of such success paths (cutting through
the loop) and end up overestimating the failure probability of the program thus
leading to a safe approximation.

2.3 Computing Confidence Measure

Due to loop approximations as discussed above and specified time and memory
bounds, all the execution paths of the system may not be explored. We propose
a confidence measure to indicate a formal bound of analysis coverage. Let us
consider that after approximating all simple loops, we were able to explore k
success paths with execution probabilities Pr(π1), · · · , P r(πk). Let the set of
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failure assertions covered by these k paths be Ak. For any A ∈ Ak, let A be the
label of an edge (n, f) where f is a failure node as per the construction of G′

σ. We
enumerate the set Fk of all such failure nodes and compute the total (success +
failure) coverage for k paths as

∑i=k
i=1 Pr(πi) +

∑
f∈Fk

Pr(π = (ns, f)), where π
is a failure path with source, target pair = (ns, f). We report this quantity as
the confidence measure.

Let the set of failure assertions present in any path π under consideration be
Aπ ∈ Iπ where Iπ is the set of conditionals. It may be noted that confidence can
be efficiently estimated by setting all the failure assertions Ai ∈ Aπ as ‘TRUE’
and computing coverage by considering only success paths. This can be done
since the measure thus computed takes into account the success paths labeled
with Ai and also all failure paths labeled with Ai such that Ai ∈ Aπ.

The assertions immediately succeeding simple loops are kept intact so that
the approximations due to loop invariants are taken care of on both success and
failure paths. This is done because we may miss some paths due to incomplete-
ness of invariant synthesis. Let Ai be the failure assertion just after loop Li in
a path πi. For this case, to take care of the under approximation involved, we
consider both the success path upto Ai and the failure path ending at the node fi

with the edge labeled as Ai individually while computing the confidence measure.
We synthesize invariants considering both Ai and Ai as postconditions. Because
of the incompleteness in invariant generation mechanism, both quantities may
turn out to be under-estimates. Hence both cases are considered separately.

2.4 Key Features of ProPFA

The ProPFA tool leverages state-of-the-art static analysis tools for failure esti-
mation. It is designed as an integrated framework that takes as input programs
annotated with failure assertions and an operational profile of the program.
Multiple execution paths are then explored depth-wise and for each path suc-
cess predicates are generated using third party static analyzer. The probabilities
of these predicates under the operating region are computed using lattice point
enumeration which in turn is used for program level failure probability estima-
tion.

We mainly use Frama-C WP plug-in [2], a source code analysis platform
that generates weakest preconditions of industrial-size C programs, as a third
party static analyzer. For loops in the source code, invariants are synthesized by
deploying state-of-the-art template based tool InvGen [9]. Finally failure prob-
ability computation involves volume computation of convex polytopes which is
offloaded to the lattice point counting tool LattE [4].

It may be noted that ProPFA handles static affine programs with both integer
and float data types. It transforms the computed WPs to the domain of integers
as LattE can only work with integers. The transformation is based on finding the
least common multiplier that ensures a lossless float to int transformation of
all WPs. ProPFA is also able to handle piecewise uniform distribution of input
variables. In that case it considers all input subregions while computing success
probabilities of program execution paths.
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Table 1. Evaluation of ProPFA (∗Restricted to affine input polynomials)

Program op LOC #Assertion Failure Prob.

Newton-Raphson∗ [–2147483648, 2147483647] ∼50 1 0.00000000107

Trapezoidal∗ [–32768, 32767] ∼50 1 0.00003051759

FBW Recommended op of
Airbus A320 [13] in
cruising altitude

∼1000 21 0.00000000000

FBW Recommended op [13], but
velocity range [520,
555] mph

∼1000 21 0.02200000000

FBW Recommended op [13], but
pitch angle between
[−90◦,−1◦] with Prob.
0.001, between [0◦, 15◦]
with Prob. 0.999

∼1000 21 0.00190000000

3 Results

We have evaluated ProPFA over a set of programs from numerical analysis
domain and non-redundant version of Fly-by-wire (FBW) from avionics domain.
The results along with the operational profiles (op) are presented in the Table 1.
A command line version of ProPFA can be found in the following link: https://
github.com/dlohar/ProPFA.git.

4 Discussions and Conclusion

In this paper, we discuss a framework for failure probability estimation of imper-
ative programs in C-like syntax. Our path based approach explores program
execution paths and computes success probabilities which in turn are used to
estimate failure probability of the overall program. As is evident, it may not be
feasible to consider all program paths. In that case, a quantitative measure for
confidence on the effectiveness of the estimate is provided. We also present a
brief description of ProPFA, a toolflow developed for this purpose. It may be
noted that, ProPFA is restricted to the limitations of the static analysis tools it
integrates with. It works only on linear affine programs. ProPFA avoids unrolling
of loops only if the generated templates are sufficient for InvGen to generate a
loop invariant. Otherwise, it unrolls the loops. Extending these ideas towards a
complete toolset handling concurrent specifications and complex data structures
is future work.

https://github.com/dlohar/ProPFA.git
https://github.com/dlohar/ProPFA.git
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