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Foreword

This special volume of the Journal of Elasticity represents the first in a new pro-
gram dedicated to the occasional publication of collections of invited, reviewed
papers of topical interest. The purpose of this program is to spotlight the devel-
opments and applications in the mechanics of materials within specific areas that
can enhance growth and provide insight for the advancement of the field as well as

promote fundamental understanding and basic discovery.
Soft Tissue Mechanics is an area of biomechanics that draws heavily upon fun-

damental ideas and material models from nonlinear elasticity and viscoelasticity.
A major goal of this research is to understand those mechanics properties of heart,
artery, collagen and skeletal muscle tissue that can be used for the diagnosis of
health problems and the improvement of human life. This volume illustrates how
experiment, modeling and computation is currently employed in this emerging
field.

May 2001
ROGER FOSDICK
Editor-in-Chief
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Preface

There are two primary areas for the application of elasticity in the biomechanics
of tissues: hard tissue mechanics (e.g., bone, teeth, horns, etc.) and soft tissue me-
chanics (e.g., skin, tendons, arteries, etc.). The distinguishing feature between these
tissue types is the amount of physiological “normal” deformation they experience.
While “hard” tissues only experience small deformations, soft tissues typically
experience large deformations. From a biomechanics viewpoint soft tissues fall
within the realm of finite elasticity.

The seven papers of this volume [1-7] present a glimpse into current research
on soft tissue mechanics as well as some future directions. The seven papers con-
cern tissues within the cardiovascular system: three focus on arteries, three on the
heart, and one on biaxial testing of planar tissues such as heart valves. Given that
cardiovascular disease continues to be the leading cause of death in the developed
world, the importance of such research is clear.

Table 1. Topics contained in the seven papers. A single X indications that a topic is discussed and a
double X indicates that a topic is emphasized

TOPIC /Paper Holzapfel, Humphrey Rachev Nash &  Usyk, Taber & Sacks
Gasser & & Canham Hunter Mazhari & Perucchio
Ogden McCulloch
[1] 2] [3] (4] [5]1 [6] (71
Arteries XX XX XX
Heart XX XX XX
Experimental methods X X X X X XX
Theoretical developments X X X X X X X
Hyperelastic X X X X X X X
constitutive models
Orthotropic symmetry X X X X XX TransIso X
Composite/micro- XX X XX X X X XX
structural models
Collagen X X X X X X
Structure/function X X X X X X
Morphogenesis XX
Growth XX X XX
Remodeling XX XX XX
Residual stress X X
Visco- & poro- X X
elasticity
Constitutive models X X X

for active stresses
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Table I reveals specific topics that are covered in each of the seven papers and
many of the common assumptions. Note, in particular, that most of the proposed
constitutive relations are motivated directly by data on the underlying microstruc-
ture, and especially the orientations of a structurally important protein (collagen)
that forms as undulated cross-linked fibers. For this reason, orthotropy and, to a
lesser extent, transverse isotropy are often assumed. Note, too, that each paper
either reports or relies on multiaxial mechanical data. Hence, consistent with the
known importance of structure-function relations in physiology, these papers re-
veal that it is essential to combine microstructural information with mechanical
data in soft tissue mechanics. Whereas it has been known since the early 1960s
that rigorous experimental determination of constitutive (response) functions and
values of the associated material parameters is extremely challenging in nonlinear
elasticity and viscoelasticity [8], the structurally-motivated approach has become
the method of choice — it was championed early on by Lanir [9] but now appears
in many forms.

Although many aspects of soft tissue mechanics can be regarded as simply
applied finite elasticity, there are numerous characteristics that require significant
extensions of the traditional theory. For example, given that both arteries and the
heart contain muscle, there is a need to quantify the so-called active (contractile)
response in addition to the passive (non-contractile) response. Such relations must
not only be structurally motivated, they must ultimately include the kinetics of
calcium transport in the muscle. Constitutive relations for active behavior are dis-
cussed in [3-6]. Despite good progress, this area remains a significant challenge.
Over the last twenty years, separate advances in biochemistry, cell biology, genetic
engineering, and biomechanics have focused attention on the ubiquitous role of
growth and remodeling of tissues. This general topic is discussed in [2-4, 6]; see,
too, the review by Taber [10]. Although Skalak [11] emphasized the importance of
growth mechanics nearly twenty years ago, and noted that incompatible growth
would result in residual stresses, only recently has this topic found heightened
interest. Not only does a living tissue continually “turnover” via a delicate balance
between the production of new material and removal of old (i.e., the process of
maintenance), it is often subject to changing loads — mechanical, chemical, thermal,
etc. In response to these changes, there may be changes in the rates of turnover
of the various constituents. This can lead to atrophy (loss of material), fibrosis
(gain of excessive fibrous material), or hypertrophy (overall increase in mass of the
material). This general area remains a significant challenge, and there is a pressing
need for more experimental data and new theoretical ideas.

In order for the microstructural constitutive theories to provide accurate predic-
tions of overall tissue response they should incorporate microstructural morpholog-
ical data at the fiber and bulk tissue level. There are demonstrations of the failure
to do this in the biomechanics literature in that one soft tissue constitutive model
that matches the data of one experimental investigation does not match the data
of a second experimental investigation. We suggest that the failure of the modeling
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match in the two situations is likely due to the non-incorporation of microstructural
morphological data at the fiber and bulk tissue level. Such data are likely to be
unique for each specimen because of the adaptive capacity of living tissues.

One of the most obvious consequences of growth and remodeling is that of
micro-evolutionary adaptations — that is, refinements in the structure and mechan-
ical properties of a particular tissue in response to a particular need. For example,
whereas a person may develop a callus on the hand after sustained manual labor
(a short term adaptation), the skin forming the soles of the feet is already thick-
ened in the human fetus “in preparation” for its intended function (a long term
adaptation). In both cases, of course, it is the genes that allow such adaptations
to occur in response to, in this case, mechanical loads. Understanding better how
such mechanical information is transduced by the cells — that is, processed and
programmed — is one of the most exciting and important challenges in soft tissue
mechanics.

There have been many advances in biomechanics over the last 35 years, and
much has been learned. Nonetheless, it appears that we are at a unique time in the
history of this field, one that promises major advances in our ability to understand
and thus control tissue mechanics. The implications of this are far-reaching — from
better prevention of injury, to better diagnosis of disease, to improved treatment
of disease via both traditional interventions as well as the engineering of a new
class of replacement tissues. Fundamental to the needed advances, however, are
extensions of the nonlinear theories of mechanics to include muscle activation,
growth and remodeling via mechanotransduction mechanisms, solid-fluid interac-
tions, etc. We hope that this volume serves, in part, to heighten interest of the
elasticity community in open problems in the elasticity of living tissues and their
role in advancing the quality of life.

STEVE COWIN JAY HUMPHREY
Department of Mechanical Engineering Biomedical Engineering
New York Center for Mechanical Engineering 233 Zachry Engineering Center
Convent Avenue at 140 Street Texas A&M University
New York, NY 10031 College Station, TX 77843-3120
U.S.A. U.S.A.
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Abstract. In this paper we develop a new constitutive law for the description of the (passive)
mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic
circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid
mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material
with the fibers corresponding to the collagenous component of the material and symmetrically dis-
posed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer.
Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer
are used. A specific form of the law, which requires only three material parameters for each layer,
is used to study the response of an artery under combined axial extension, inflation and torsion. The
characteristic and very important residual stress in an artery in vitro is accounted for by assuming that
the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of
atube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical
configuration prior to application of the extension, inflation and torsion. The effect of residual stress
on the stress distribution through the deformed arterial wall in the physiological state is examined.

The model is fitted to available data on arteries and its predictions are assessed for the considered
combined loadings. It is explained how the new model is designed to avoid certain mechanical, math-
ematical and computational deficiencies evident in currently available phenomenological models. A
critical review of these models is provided by way of background to the development of the new
model.

Mathematics Subject Classifications (2000): 74B20, 74E10, 74L.15, 92C10.

Key words: biomechanics, arteries, artery wall, material models, constitutive laws, finite deforma-
tions, nonlinear elasticity.

1. Introduction

In the last few years there has been a significant growth in interest in the me-
chanical properties of biological soft tissue treated from the continuum mechanical
perspective, and, in particular, in the mechanics of arterial tissue. An excellent
starting point for the study of the mechanics of arteries is the wide-ranging review
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by Humphrey [32], who, more recently [33], has conducted a comparative study of
a small number of constitutive models used in the literature to describe the mechan-
ical response of arteries. One important motivation for such studies is the belief that
mechanical factors may be important in triggering the onset of atherosclerosis, the
major cause of human mortality in the western world. In order to fully understand
these mechanical influences it is necessary to have reliable constitutive models for
the artery. Moreover, several clinical treatments, such as percutaneous transluminal
angioplasty [3] can only be studied in detail if a reliable constitutive model of the
arterial wall is available.

In vivo the artery is a pre-stretched material under an internal pressure load and
it is essential to use a theory which takes account of the resulting finite deformation.
The aim of this paper is therefore to provide a systematic study of the mechanical
properties of arteries based on the continuum theory of large deformation elasticity.
We begin, in Section 2, by giving a brief description of the histological structure of
arterial walls, a summary of the main deformation geometries used in the experi-
mental determination of the mechanical properties of arteries and an outline of the
general characteristics of the mechanical response of arteries. It is emphasized that
the vast majority of constitutive models used in the literature are phenomenological
in nature and do not take account directly of the histological structure.

In Section 3 we summarize the theoretical framework to be used as the back-
ground for the description of the arterial mechanics. This consists of the general
equations governing the elastic response of an anisotropic material based on the
use of an elastic free-energy function. The equations are then specialized in order
to consider the circular cylindrical geometry appropriate for the analysis of exten-
sion, inflation and torsion of an artery, which is treated as a thick-walled circular
cylinder. In the absence of the applied loading, it should be emphasized, an artery
is not stress free since if cut along a radius it will spring open to form an open
sector. In this paper, for simplicity and in order to produce a distribution of residual
stress in the unloaded configuration, we assume that the opened-up configuration
is unstressed, although it is known that in general such a configuration is not un-
stressed (see, for example, Vossoughi et al. [64]). In general, there may also be
residual stresses in the axial direction, but we do not allow for these in the present
work. The assumed stress-free configuration is taken to correspond to an open
sector of a circular cylindrical tube and is designated as the reference configuration
of the material. The stressed but unloaded circular cylindrical shape is recovered
by application of an initial bending deformation. Thus, the overall deformation
from the reference configuration consists of bending, axial extension, inflation and
torsion. This provides a composite deformation of sufficient generality to allow a
comparative judgement of the predictions of different material models to be made.

In Section 4 a range of both two- and three-dimensional phenomenological
models adopted in the literature for the study of elastic arteries is examined on
the basis of the theory in Section 3 from a comparative point of view. Their perfor-
mance is assessed critically against a number of criteria, and certain deficiencies
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of the models are highlighted. Some anisotropic models are able to provide a full
three-dimensional description of the state of stress in an artery, but at the expense
of incorporation of a large number of material constants, which may lead to para-
meter identification problems. On the other hand, oversimplification through use
of isotropy, as in Delfino et al. [10], is also evident. Several models, including
that in Fung et al. [18], are based on formulations which may be associated with
geometrical simplifications (for example, the membrane approximation) and are
not suitable for analysis of the through-thickness stress distribution in an artery or
for the treatment of shearing deformations. They can, however, be used to simulate
the deformation in special cases, such as that corresponding to axial extension and
inflation of an artery regarded as a thin-walled (or thick-walled) circular cylindrical
tube. An approach which uses the incremental elastic moduli is also found in the
literature (for some examples see the data book [1] edited by Abé et al.) but is
not discussed here since it is inappropriate for the finite deformation analysis with
which we are concerned.

One problem which arises in making comparisons is that each different model in
the literature is based on data from a different artery (and generally from different
animals). Nevertheless, we carry out a systematic and detailed evaluation of several
of the most commonly used models in respect of combined extension, inflation and
torsion of a thick-walled tube and with residual stresses incorporated. Moreover, a
certain convexity property is introduced and checked for each model to provide an
indication of its mechanical, mathematical and computational efficacy.

This provides the background for the introduction, in Section 5, of a new model
which aims to circumvent the difficulties encountered with some other models.
Specifically, the new model takes account of the architecture of the arterial wall.
The artery is treated as a two-layer thick-walled tube, the two layers representing
the media (the middle layer of the artery) and the adventitia (the outer layer). These
are the main (solid) mechanically relevant components in healthy arteries. Thus, a
third layer (the intima) is disregarded in this work, although it is not difficult to
account for this on a similar basis as for the other layers if the need arises, which
would be the case for arteries subject to pathological intimal change.

Each layer is composed of a non-collagenous matrix, which is treated as an
isotropic material, and two families of collagen fibers helically wound along the
arterial axis and symmetrically disposed with respect to the axis (but with dif-
ferent orientations in the two layers). These fibers induce the anisotropy in the
mechanical response such that the overall response of each layer is orthotropic
and is accounted for by the constitutive theory of fiber-reinforced solids. Their
contribution to the strain energy is modeled using a pair of preferred directions
identified in the reference configuration, and from which structure tensors char-
acterizing the anisotropy are formed. The model is structural in the sense that it
involves two layers and within each layer information about the orientations of the
collagen fibers, obtained from a statistical analysis of histological sections of each
arterial layer (see Holzapfel et al. [27]), is incorporated. The material parameters
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included in the model, although phenomenologically based, reflect the structural
characteristics within each arterial layer. The properties of the matrix material are
described in terms of a single material constant and those of the fiber bundles by
two additional constants in each layer.

With a specific form of the model used for illustrative purposes, the predic-
tions of the model are examined in detail and compared with those from some
phenomenological models. The predictions of the model agree well with the typ-
ical mechanical response of arteries observed in experiments. The Cauchy stress
distributions through the deformed arterial wall in the physiological state are also
determined in order to illustrate the significant difference made by incorporation
of the residual stresses. Moreover, the three-dimensional model introduced here is
consistent with the convexity requirements that ensure mechanically and mathe-
matically reliable behavior. It also admits an efficient numerical implementation
within the finite element method, an aspect which is discussed in detail in [26], in
which there is an extension to viscoelasticity (suitable for the modeling of muscular
arteries). Extension to elastoplasticity is discussed in [20] and [21]. Thus, more
complex boundary-value problems, possibly of clinical relevance, can be solved
on the basis of the proposed model.

Section 6 contains a summary of the results and concludes with an assessment
of the advantages of the new model.

2. Histology and Typical Mechanical Behavior of Arterial Walls

Efficient constitutive descriptions of arterial walls require a fundamental knowl-
edge and understanding of the entire arterial histology, i.e. the morphological struc-
ture, and an extensive investigation of the particular arterial wall of interest. Ad-
ditionally, this is of crucial importance for the understanding of the general me-
chanical characteristics of arterial walls and the components that provide the main
contributions to the deformation process.

This brief overview is included only for the purpose of clarifying the macro-
scopic and microscopic structure of arterial walls and to provide essential infor-
mation for scientists without a background in biology or physiology. For a more
detailed exposition of the different mechanical characteristics of the interrelated
arterial components and the overall functioning of the blood vessel (which consti-
tutive models aim to characterize) see, for example, the reviews by Rhodin [48]
and Silver et al. [54].

2.1. ARTERIAL HISTOLOGY

This paper is concerned with the in vitro passive behavior of arteries. Hence, in
vivo effects such as the vasa vasorum, nerve control, humoral control, perivascular
connective tissue, etc. and neighboring organs such as the pulsating heart are not
relevant and are not therefore discussed here.
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Composite reinforced by
collagen fibers arranged
in helical structures

Helically arranged fiber-
reinforced medial layers

Bundles of collagen fibrils —

External elastic lamina

Elastic lamina —

Elastic fibrils

Collagen fibrils

Smooth muscle cell

Internal elastic lamina _
Endothelial cell —

Figure 1. Diagrammatic model of the major components of a healthy elastic artery composed
of three layers: intima (I), media (M), adventitia (A). I is the innermost layer consisting of a
single layer of endothelial cells that rests on a thin basal membrane and a subendothelial layer
whose thickness varies with topography, age and disease. M is composed of smooth muscle
cells, a network of elastic and collagen fibrils and elastic laminae which separate M into a
number of fiber-reinforced layers. The primary constituents of A are thick bundles of collagen
fibrils arranged in helical structures; A is the outermost layer surrounded by loose connective
tissue.

In general, arteries are roughly subdivided into two types: elastic and muscular.
Elastic arteries have relatively large diameters and are located close to the heart (for
example, the aorta and the carotid and iliac arteries), while muscular arteries are
located at the periphery (for example, femoral, celiac, cerebral arteries). However,
some arteries exhibit morphological structures of both types. Here we focus atten-
tion on the microscopic structure of arterial walls composed of three distinct layers,
the intima (tunica intima), the media (tunica media) and the adventitia (tunica
externa). We discuss the constituents of arterial walls from the mechanical per-
spective and emphasize those aspects which are important to researchers interested
in constitutive issues. Figure 1 shows a model of a healthy elastic artery.
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2.1.1. Intima

The intima is the innermost layer of the artery. It consists of a single layer of
endothelial cells lining the arterial wall and resting on a thin basal membrane
(basal lamina). There is also a subendothelial layer whose thickness varies with
topography, age and disease. In healthy young muscular arteries, however, the
subendothelial layer is almost non-existent. In healthy young individuals the in-
tima is very thin and makes an insignificant contribution to the solid mechanical
properties of the arterial wall. However, it should be noted that the intima thickens
and stiffens with age (arteriosclerosis) so that the mechanical contribution may
become significant.

It is known that pathological changes of the intimal components may be asso-
ciated with atherosclerosis, the most common disease of arterial walls. It involves
deposition of fatty substances, calcium, collagen fibers, cellular waste products and
fibrin (a clotting material in the blood). The resulting build-up is called atheroscle-
rotic plaque. It may be very complex in geometry and biochemical composition. In
later stages the media is also affected. These pathological changes are associated
with significant alterations in the mechanical properties of the arterial wall. Hence,
the mechanical behavior of atherosclerotic arteries differs significantly from that
of healthy arteries.

2.1.2. Media

The media is the middle layer of the artery and consists of a complex three-dimen-
sional network of smooth muscle cells, and elastin and collagen fibrils. According
to [48] the fenestrated elastic laminae separate the media into a varying number of
well-defined concentrically fiber-reinforced medial layers. The number of elastic
laminae decreases toward the periphery (as the size of the vessels decreases) so
that elastic laminae are hardly present in muscular arteries.

The media is separated from the intima and adventitia by the so-called internal
elastic lamina and external elastic lamina (absent in cerebral blood vessels), respec-
tively. In muscular arteries these laminae appear as prominent structures, whereas
in elastic arteries they are hardly distinguishable from the regular elastic lami-
nae. The orientation of and close interconnection between the elastic and collagen
fibrils, elastic laminae, and smooth muscle cells together constitute a continuous
fibrous helix (Faserschraube) [52, 58]. The helix has a small pitch so that the fibrils
in the media are almost circumferentially oriented. This structured arrangement
gives the media high strength, resilience and the ability to resist loads in both the
longitudinal and circumferential directions. From the mechanical perspective, the
media is the most significant layer in a healthy artery.

2.1.3. Adventitia

The adventitia is the outermost layer of the artery and consists mainly of fibrob-
lasts and fibrocytes (cells that produce collagen and elastin), histological ground
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substance and thick bundles of collagen fibrils forming a fibrous tissue. The adven-
titia is surrounded continuously by loose connective tissue. The thickness of the
adventitia depends strongly on the type (elastic or muscular) and the physiological
function of the blood vessel and its topographical site. For example, in cerebral
blood vessels there is virtually no adventitia.

The wavy collagen fibrils are arranged in helical structures and serve to rein-
force the wall. They contribute significantly to the stability and strength of the
arterial wall. The adventitia is much less stiff in the load-free configuration and
at low pressures than the media. However, at higher levels of pressure the col-
lagen fibers reach their straightened lengths and the adventitia changes to a stiff
‘jacket-like’ tube which prevents the artery from overstretch and rupture.

2.2. TYPICAL MECHANICAL BEHAVIOR OF ARTERIAL WALLS

Each constitutive framework and its associated set of material parameters requires
detailed studies of the particular material of interest. Its reliability is strongly re-
lated to the quality and completeness of available experimental data, which may
come from appropriate in vivo tests or from in vitro tests that mimic real loading
conditions in a physiological environment.

In vivo tests seem to be preferable because the vessel is observed under real life
conditions. However, in vivo tests have major limitations because of, for example,
the influence of hormones and nerval control. Moreover, data sets from the com-
plex material response of arterial walls subject to simultaneous cyclic inflation,
axial extension and twist can only be measured in an in vitro experiment. Only
with such data sets can the anisotropic mechanical behavior of arterial walls be
described completely. In addition, in in vitro experiments the contraction state
(active or passive) of the muscular media has to be determined. This can be done
with appropriate chemical agents.

For pure inflation tests of straight artery tubes, which is the most common
two-dimensional test, see the early work [2] (in which shear deformations are not
considered). Since arteries do not change their volume within the physiological
range of deformation [4], they can be regarded as incompressible materials. Hence,
by means of the incompressibility constraint we may determine the mechanical
properties of three-dimensional specimens from two-dimensional tests [36], It is
important to note that uniaxial extension tests on arterial patches (strips) provide
basic information about the material [24] but they are certainly not sufficient to
quantify completely the anisotropic behavior of arterial walls. Other uniaxial ex-
tension tests on small arterial rings (so-called ring tests) are also insufficient [9].
In general, a segment of vessel shortens on removal from the body, as was first
reported in [15]. The in vivo pre-stretch in the longitudinal direction must therefore
be reproduced within in vitro tests [37].

Each non-axisymmetric arterial segment (such as a bifurcation or a segment
with sclerotic changes) under combined inflation and axial extension develops
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significant shear stresses in the wall. Hence, in order to characterize the shear
properties of arterial walls shear tests are required. In shear tests either the angle
of twist of an arterial tube subjected to transmural pressure, longitudinal force and
torque [12] or the shear deformation of a rectangular arterial wall specimen sub-
jected to shear forces [65] is measured. Additionally, one can classify mechanical
tests according to the strain rates used (quasi-static or dynamic) and to whether
the loading is performed cyclically or discontinuously (creep and relaxation tests).
It has been known for many years that the load-free configuration of an artery is
not a stress-free state [61]. In general, a load-free arterial ring contains residual
stresses. It is of crucial importance to identify these in order to predict reliably the
state of stress in an arterial wall, and this has been the aim of many experimental
investigations (see, for example, the bending tests on blood vessel walls in [68]).

The mechanical behavior of arteries depends on physical and chemical environ-
mental factors, such as temperature, osmotic pressure, pH, partial pressure of car-
bon dioxide and oxygen, ionic concentrations and monosaccharide concentration.
In ex vivo conditions the mechanical properties are altered due to biological degra-
dation. Therefore, arteries should be tested in appropriate oxygenated, temperature
controlled salt solutions as fresh as possible. For an overview of experimental test
methods used to verify material parameters, see [32] and the references contained
therein.

As indicated in Section 2.1 the composition of arterial walls varies along the
arterial tree. Hence, there seems to be a systematic dependence of the shape of
the stress-strain curve for a blood vessel on its anatomical site. This fact has been
demonstrated several times experimentally; see, for example, the early works [51,
37] and [8]. Although the mechanical properties of arterial walls vary along the
arterial tree, the general mechanical characteristics exhibited by arterial walls are
the same. In order to explain the typical stress-strain response of an arterial wall
of smooth muscles in the passive state (governed mainly by elastin and collagen
fibers), we refer to Figure 2. Note that the curves in Figure 2 are schematic, but
based on experimental tension tests performed in the authors’ laboratory (some of
which is described in a recent paper [28]).

As can be seen, a circumferential strip of the media subjected to uniaxial cyclic
loading and unloading typically displays pronounced stress softening, which oc-
curs during the first few load cycles. The stress softening effect diminishes with
the number of load cycles until the material exhibits a nearly repeatable cyclic
behavior, and hence the biological material is said to be ‘pre-conditioned’ (compare
with, for example, the characteristic passive behavior of a bovine coronary artery in
[32], p. 33). Thus, depending on the type of artery considered, the material behavior
may be regarded as (perfectly) elastic for proximal arteries of the elastic type, or
viscoelastic for distal arteries of the muscular type, often modeled as pseudoelastic
(see, for example, [18]). For a definition of the term pseudoelasticity in the context
of biomechanics the reader is referred to [18].



ARTERIAL WALL MECHANICS 9

—— Material stress-strain response

— Engineering response

STRESS

Elastic  Inelastic

Range of physio-
logical loading

STRAIN
Strain remaining after
plastic deformation

Figure 2. Schematic diagram of typical uniaxial stress—strain curves for circumferential ar-
terial strips (from the media) in passive condition (based on tension tests performed in the
authors’ laboratory): cyclic loading and unloading, associated with stress softening effects,
lead to a pre-conditioned material which behaves (perfectly) elastically or viscoelastically
(nearly repeatable cyclic behavior) — point I. Loading beyond the (visco)elastic domain up
to point II leads to inelastic deformations. Additional loading and unloading cycles display
stress softening again until point III is reached. Then the material exhibits (perfectly) elastic
or viscoelastic response. The thick solid line indicates the (approximate) engineering response
of the material.

Healthy arteries are highly deformable composite structures and show a non-
linear stress—strain response with a typical (exponential) stiffening effect at higher
pressures, as illustrated in Figure 2. This stiffening effect, common to all biological
tissues, is based on the recruitment of the embedded (load carrying) wavy collagen
fibrils, which leads to the characteristic anisotropic mechanical behavior of arter-
ies; see the classical works [49, 40]. Early works on arterial anisotropy (see, for
example, [45]) considered arterial walls to be cylindrically orthotropic, which is
generally accepted in the literature.

Loading beyond the (visco)elastic domain (indicated by point I in Figure 2),
far outside the physiological range of deformation, often occurs during mechanical
treatments such as percutaneous transluminal angioplasty. This procedure involves
dilation of an artery using a balloon catheter (see [3]). In the strain range up to
point II in Figure 2, the deformation process in an arterial layer is associated with
inelastic effects (elastoplastic and/or damage mechanisms) leading to significant
changes in the mechanical behavior (see [44, 28] and [21]). This overstretching
involves dissipation, which is represented by the area between the loading and
unloading curves. Hence, starting from point II, additional cyclic loading and un-
loading again displays stress softening, which diminishes with the number of load
cycles. At point III the material exhibits a (perfectly) elastic or viscoelastic behav-
ior. However, unloading initiated from point III returns the arterial (medial) strip to



10 GERHARD A. HOLZAPFEL ET AL.

an unstressed state with non-vanishing strains remaining, these being responsible
for the change of shape. With preconditioning effects neglected, the thick solid line
in Figure 2 indicates the (approximate) engineering response associated with the
actual physical behavior.

The model proposed in Section 5 is intended to capture only the elastic portion
of the curves in Figure 2, i.e. up to point I. For the remaining portions of the curves
a rate-independent elastoplastic model and the associated algorithmic formulation
and finite element implementation was recently proposed in [20].

3. Continuum-Mechanical Framework

In this section we summarize the equations that provide the general continuum
description of the deformation and the hyperelastic stress response of the mater-
ial. As a basis for reporting the performance of different constitutive models for
arteries we consider the mechanical response of a thick-walled circular cylindrical
tube under various boundary loads. We specify the strain measures to be used and
discuss the equilibrium equation which arises in the considered problem. We also
give expressions for the torsional couple and the reduced axial force acting on
the tube, these being crucial for the subsequent comparative study of constitutive
models.

3.1. FINITE HYPERELASTICITY
3.1.1. Description of the Deformation

Let €29 be a (fixed) reference configuration of the continuous body of interest (as-
sumed to be stress-free). We use the notation x : 29 — R3 for the deformation,
which transforms a typical material point X € £2p to a position X = x(X) € Q
in the deformed configuration, denoted €2. Further, let F(X) = 3 x (X)/9X be the
deformation gradient and J(X) = detF > 0 the local volume ratio.

Following [14] and [41], we consider the multiplicative decomposition

F = (J'*DF (D

of F into spherical (dilatational) and unimodular (distortional) parts. We use the
right and left Cauchy—Green tensors, denoted C and b respectively, and their mod-

ified counterparts, denoted C and b respectively, associated with F. From equa-
tion (1) we then have

C = F'F = J%’C, C=FF, )

b = FFT=J%%, b=FF. 3)
In addition, we introduce the Green—Lagrange s_train tensor E, and, through equa-
tion (1), its associated modified strain measure E. Thus,

1 = 1 = 1 =
E=5(C—I)=JZ/3E+§(12/3—1)I, E= E(C—I), 4)

where I denotes the second-order unit tensor.
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3.1.2. Hyperelastic Stress Response

In order to describe the hyperelastic stress response of arterial walls, we employ
aset{Ay | @ = 1,...,n} of (second-order) tensors which characterize the wall
structure, and we postulate the existence of a Helmholtz free-energy function W (E,
Ay, ..., A,). Subsequently, we assume the decoupled form

VE, AL, ...,A) =U)+TE, A, ..., A,), (5)

where the function U is a purely volumetric contribution and W is a purely iso-
choric contribution to the free energy W.

From the Clausius—Planck inequality, standard arguments lead to the well-known
equationS = 0W(E, A,, ..., A,)/9E for the second Piola—Kirchhoff stress. Equa-
tion (5) then gives

= . U 5 OV(EAL..., A
S=S,u+5 withS=—r—, 5= 81E w2, (6)
We shall also require the standard results
aJ 3E I =
—=JC" and —==JI1-=C
3E J an 5B 3 ®C @)

from tensor analysis (see, for example, [25]), where I denotes the fourth-order iden-
tity tensor which, in index notation, has the form (I);;x;, = (8;x6,. +81.8sx)/2,
8;; being the Kronecker delta. With these results, equations (6), and (6); be-
come, after some straightforward tensor manipulations and the introduction of the
hydrostatic pressure p = dU/dJ as in [25],

_ v
Sl = pJC!, S = J‘2/3Dev(—_—). 8
1=P 3B (8)
The operator Dev(e) in (8) is defined by
1 —_—
Dev(e) = () - 3[(): CIC". ©)

and furnishes the physically correct deviatoric operator in the Lagrangian descrip-
tion, so that Dev(e) : C = 0. Note that in the description of an incompressible
material (which an artery is assumed to be) the hydrostatic pressure p becomes an
indeterminate Lagrange multiplier.

A Piola transformation of equations (8) enables the Cauchy stress tensor 6 =
J~'FSFT to be put in the decoupled form

W _
0 =0y +0 witho,=pl o= J'ldev(FﬁFT), (10)
analogously to equation (8), where the operator dev(e) is defined by

1
dev(e) = (o) — 5[(0) L (11
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Reference
configuration
(stress-free)

Current
configuration
& M,

of ~f~RT %
T a N
L
4
Xres
p; = 0.0

Load-free ' N =0.0

configuration

Figure 3. Arterial ring in the the (stress-free) reference configuration €, the load-free
configuration Qres and the current configuration £2.

It furnishes the physically correct deviatoric operator in the Eulerian description,
so that dev(e) : I = 0.

3.2. COMBINED BENDING, INFLATION, EXTENSION AND TORSION OF A TUBE
3.2.1. Basic Kinematics

We consider the artery as an incompressible thick-walled cylindrical tube subjected
to various loads. It is known that the load-freeconfiguration, $2s say, in which the
artery is excised from the body and not subjected to any loads is not a stress-free (or
strain-free) reference configuration £2g. Thus, the arterial ring springs open when
cut in a radial direction. It appears that Vaishnav and Vossoughi [61] were the first
to publish this finding. Bearing in mind the statement in Section 1, we assume that
the open sector is the undeformed (stress-free and fixed) reference configuration
29, as depicted in Figure 3.
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Thus, in terms of cylindrical polar coordinates (R, ®, Z), the geometrical re-
gion £2 of the tube is defined by

Ri < R < R,, 0<O <2 —w), 0<Z<L, 12)

where R, Ro,, @ and L denote the inner and outer radii, the opening angle and
length of the undeformed (split) tube, respectively. Note that the opening angle «
identified in Figure 3 differs from the definition normally used (see, for example,
Fung and Liu [19]).

The deformation x takes €2 into the current configuration 2. For theconsidered
problem x = Xp © Xws 18 the composition of the deformations x.s and xp, as
indicated in Figure 3, where y.s generates the load-free configuration .5 associ-
ated with residual stresses, while x, is associated with inflation, axial elongation
and torsion of the tube, and leads to the final configuration €2. It is important to
note that the residually stressed configuration €2, of an artery arises from certain
growth mechanisms of the different layers, and hence, in general, the residually
stressed state is more complex than considered here. For discussion of stress-
dependent growth and remodeling we refer to, for example, Rodriguez et al. [50]
and Rachev [46]. It may also be noted that it has been found that residual stress ac-
cumulates due to cyclic loading in two-phase models of soft tissue without growth
(see, for example, Huyghe et al. [34]).

In terms of cylindrical polar coordinates (r, 8, z), the geometry of the deformed
configuration €2 is given by

r<r <, 0<6 < 2m, 0<z<, (13)

where ri, r, and / denote the inner and outer radii and the length of the deformed
tube, respectively.

The deformation x, which is taken to be isochoric, may then be written in the
form

X =re, +ze, (14)

with reference to the (unit) basis vectors {e,, €y, €.} associated with the cylindrical
polar coordinates (r, 8, z), where

R-R 2 g—ke+z2 2 (15)

r = ro, = = = )
kA, ! L ¢
A; is the (constant) axial stretch, the parameter &, definedby k = 27 /(2m — ), is
a convenient measure of the tube opening angle in the unstressed configuration, r;
is the inner radius in the deformed configuration and ¢ is the angle of twist of the
tube arising from the torsion.
In addition to A, it is convenient to introduce the notations defined by

LRy =2 o KR ro(R) = ~ 20 _Kr
TR T ok TR TR
36 @
Y(R)=r— =r—. (16)

0z /
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Here A, (R), A¢(R) and A, are the principal stretches of the deformation associated
with the radial, circumferential and axial directions when there is no twist, while
y (R), which is associated with the twist, represents locally the amount of shear in
a {6, z)-plane. Since each of these quantities depends only on the radius R, the one-
dimensional character of the problem is apparent. When y # 0, X, is the principal
stretch in the radial direction but Ag and A, are not then principal stretches. The
condition that the volume is preserved during the deformation is independent of ¥
and requires simply that

Arhghy = L. (17
Note that
R:
ri = Xeif, (18)

where Ag; denotes the value of Ay at the inner surface of the tube.

The first term k® in (15), represents the deformation from configuration €2 to
Qs While the second term Z®/ L describes the influence of the torsion. In terms of
the parameters k, Ag;, A, and &, equations (15), (18) define the combined bending,
inflation, axial extension and torsion of a thick-walled tube.

On use of (17), the deformation gradient F, referred to cylindrical polar coordi-
nates, may be expressed in the form

F=F=0yr)'e, ®Br+19¢ ®Eop +yr. ¢ QEz + 1. e, ® Ez, (19)

where {Eg, Eg, Ez} is the set of unit cylindrical polar basis vectors associated with
(R, ®, Z). Note that E; = e,.

Use of equations (2), (3) enables the Cauchy—Green tensors to be given in terms
of cylindrical polar coordinates. Thus,

C=C = (M) "Ex ®Eg + AjEo ®Eo + A2(1 + y)E; Q By

+vior(Eeo ® Ez + E; @ Ep), (20)
b=b = (k) ’e, ®e, + 5+ v A e ®e +22e. Qe
+yrliie, @e, +e, ®ep). Q1)

The deformation gradient (19) and the Cauchy—Green tensors (20) and (21) play
a crucial role in the derivation of the state of stress in an arterial wall. A more
general deformation including azimuthal and axial shear is discussed in the paper
by Guccione et al. [22].

3.2.2. Equilibrium Equations

In the absence of body forces the equilibrium equations are

dive =0, 22)
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where div(e) denotes the spatial divergence of the spatial tensor field (e). Note that
in cylindrical polar coordinates (r, 6, z), because of the geometrical and constitu-
tive symmetry, the only non-trivial component of (22) is

darr + (Urr - 096) —
dr r

(see, for example, [42]). From this equation and the boundary condition 6, |,—,
0 on the outer surface of the tube, the radial Cauchy stress o,, may be calculated as

0 (23)

To dr
00 (6) = f O — o, <E<rR 24)
&
The internal pressure p; = —0;,|,=,, is then obtained in the form
Ta dr
pi = / (00 — Urr)—r—. (25)
L8|

This equation plays an important role in the numerical solution of the problem
considered.

When the state of deformation is known, expressions for the axial force N and
the torsional couple M; can be calculated via the definitions

N =2n7 / oy rdr, M, =2n / o, dr. (26)

In view of the additive split of the Cauchy stress tensor ¢ into volumetric and
isochoric parts introduced in (10);, we may recast equations (25) and (26); by
using the decompositions ogg = p -+ 099 and o,, = p + 7, to obtain

o _dr o
pi= / @6 = Trr) M, = Zﬂf To.r? dr, @7
r n

where T gg, 0, denote the isochoric parts of the normal components of (Cauchy)
stress in the circumferential and radial directions, while Gy, = 0y, is the shear
component of (Cauchy) stress acting tangentially to the cross-section of the tube.

Use of the additive split (10) and equation (24) enables the axial force N in
equation (26); to be expressed as

to & . . dr _ _
N =21 f [ / @0 ~ T~ ~ T+ au]s dt. 28)

Reversal of the order of integration in (28) and use of the expression (27); leads to
the general formula

F=m / (25, — Goo — T )r dr (29)
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for the reduced axial force F = N —rizn pi- This expression for F is very important
since it gives precisely the force that is measured during inflation tests on arteries.
A specific form of equation (29) is given in equation (15) of [5]. In subsequent
sections of the present paper equations (27) and (29) will be specialized for several
constitutive models that have been used in the literature to represent the mechanical
response of arteries.

REMARK 3.1.  For a thin-walled cylindrical tube we make the simplification
o, = p+ 0, = 0 for the radial stress (the membrane approximation). On use
of oge = p + Gye and Gy, = 0y;, equations (27);, (27), and (29) then enable
the reduced equations for the internal pressure pj, the torsional couple M; and the
reduced axial force F to be given simply as

h
Pi = —0yg, Ml = 27Tr2h06z9 F = nrh(ZO‘ZZ - 099)’ (30)
r

where r and 4 denote the radius and wall thickness of the deformed tube, respec-
tively. It is important to note that with this membrane approximation the con-
tribution X..s to the deformation is inadmissible and residual stresses cannot be
included.

REMARK 3.2. Here we describe briefly the numerical technique used in the so-
Iution of the problem of bending, axial extension, inflation and torsion of a thick-
walled cylindrical tube.

By assuming a particular state of residual strain (characterized by the parameter
k), the fixed axial stretch A, and fixed angle of twist ® of the tube, the isochoric
part of the strain (and hence the stress) can always be expressed in terms of the
two variables Ag; and 7, i.e. the circumferential stretch at the inner surface of the
tube and the radius, respectively. Hence, the equation of equilibrium (27); may be
written in the general form

fo dr
Pi=/ ?“()»ai,r)—r—, 3D

where r; is given in terms of Ag;i by (18). Since closed-form evaluation of equa-
tion (31) is only possible for very simple constitutive equations, we employ a
Gaussian integration scheme [31], i.e.

n
pi Y F (i, r))

j=1

(32)

w
r

J
b
J

where wj and r; (j = 1, ..., n), denote the weights and the Gaussian points, and
n is the order of integration. Equation (32) is, in general, nonlinear in the single
unknown Agj, and, for given pj, can be solved for Agy; using, for example, a standard
Newton iteration with the initial value Ag; = 1.0.
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Since the deformation is now determined, the torsional couple M; and the re-
duced axial force F follow directly from equations (27), and (29), respectively.
This computation is carried out by employing another Gaussian integration. It
turns out that for the considered range of deformations a three-point integration
(n = 3) with the accuracy of order five gives sufficiently accurate solutions.

REMARK 3.3. The theory described above is designed to capture the deformation
behavior in the central part of a tube so as to exclude end effects. Therefore, axial
dependence of the deformation is not considered. This reflects the typical setting
used in experiments (see, for example, [18] or [53], amongst others).

4. Some Constitutive Models for Arterial Walls

The active mechanical behavior of arterial walls is governed mainly by the intrinsic
properties of elastin and collagen fibers and by the degree of activation of smooth
muscles. An adequate constitutive model for arteries which incorporates the ac-
tive state (contraction of smooth muscles) was proposed recently by Rachev and
Hayashi [47].

The passive mechanical behavior of arterial walls is quite different and is gov-
erned mainly by the elastin and collagen fibers (see, for example, [8]). The passive
state of the smooth muscles may also contribute to the passive arterial behavior but
the extent of this contribution is not yet known. Most constitutive models proposed
for arteries are valid for the passive state of smooth muscles and are based on a
phenomenological approach which describes the artery as a macroscopic system.
Furthermore, most of these models were designed to capture the response near the
physiological state and in this respect they have been successfully applied in fitting
experimental data. The most common potentials (strain-energy functions) are of
exponential type, although polynomial and logarithmic forms are also used. For a
review of a number of constitutive models describing the overall passive behavior,
see Humphrey [32].

Some of the constitutive models proposed use the biphasic theory to describe
arterial walls as hydrated soft tissues; see, for example, the works by Simon and
co-workers [56, 55]. Less frequently used are models which account for the spe-
cific morphological structure of arterial walls. One attempt to model the helically
wound fibrous structure is provided by Toézeren [60], which is based on the idea
that the only wall constituent is the fiber structure. However, this is a significant
simplification of the histological structure.

Another structural model due to Wuyts et al. [67] assumes that the wavy colla-
gen fibrils are embedded in concentrically arranged elastin/smooth-muscle mem-
branes, which is in agreement with the histological situation [49]. The model in [67]
assumes that the collagen fibrils have a statistically distributed initial length. Each
fibril may be stretched initially with a very low force but thereafter its behavior is
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linearly elastic. Only the media is considered as (solid) mechanically relevant. Al-
though the model proposed in [67] attempts to incorporate histological information,
which is a very promising approach, it is only possible to represent the deformation
behavior of axially-symmetric thick-walled vessels. Another drawback is the fact
that the artery is considered as a tube reinforced by circularly oriented collagen and
elastin fibers, which does not model the real histological situation.

Most of the constitutive models treat the arterial wall as a single layer, but
a number of two-layer models have been proposed in the literature. Two-layer
models which include anisotropy are those due to, for example, Von Maltzahn et
al. [38], Demiray [11] and Rachev [46]. However, the emphasis of the latter paper
is on stress-dependent remodeling.

In this section we evaluate and compare some prominent potentials of the ex-
ponential, polynomial and logarithmic type which are often used to characterize
the overall passive behavior of arterial walls. The study aims to illustrate the per-
formance of the potentials and their reliability for the prediction of the state of
deformation. In particular, we use a systematic analysis to examine the inflation
of a cylindrical tube at various axial stretches A, and to compute the evolution
of the inner radius r; with the internal pressure p; and the reduced axial force
F. In addition, at an internal pressure of p; = 13.33 [kPa] (100 [mm Hg]), the
approximate physiological pressure, we evaluate the effect of twist (torsion) on
the tube and determine the dependence of the shear y; at the inner surface on the
torsional couple M, and the reduced axial force F. However, as will be shown, the
mechanical behavior of an anisotropic cylindrical tube under torsion can in general
only be investigated if the constitutive model is based on a fully three-dimensional
formulation.

4.1. THREE-DIMENSIONAL FORMULATION

This section is concerned with three-dimensional strain-energy functions appropri-
ate for the analysis of thick-walled tubes, which is a necessary point of departure
for the study of the mechanical behavior of arterial walls.

4.1.1. Strain-Energy Function Proposed by Delfino et al. [10]

As already mentioned, the different layers of arterial walls are highly anisotropic
due to the organized arrangement of the load carrying (collagen) components.
However, there are many isotropic strain-energy functions proposed in the lit-
erature and used in practice to characterize the mechanical response of arterial
walls (see, for example, the oversimplified rubber-like potential used in [30] which
cannot represent the strong stiffening effect of arteries in the large strain domain).
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Figure 4. Contour plot of the convex potential (33) with material parameters a = 44.2 [kPa]
and b = 16.7 [] (see [10]).

Recently, Delfino et al. [10] proposed an (isotropic) rubber-like potential for
carotid arteries which is able to model the typical stiffening effects in the high
pressure domain. The strain-energy function ¥ has the form

— b -
¥ = %[exp[E(A ~ 3)] - 1} (33)

[10], where a > Qs a stress-like material parameter and b > 0 is a non-dimensional
parameter. The first invariant of the modified right Cauchy-Green tensor C is
defined as I} = C : L Since the exponential function increases monotonically
with I it is easy to show that strict local convexity of the potential (33) as a
function of C (or equivalently E) is guaranteed, bearing in mind that because of
the incompressibility condition the components of E are not independent.

In the present context, strict local convexity means that the second derivative of
W with respect to E is positive definite, with appropriate modifications to account
for incompressibility. This fundamental physical requirement in hyperelasticity en-
sures that undesirable material instabilities are precluded (for a general discussion
of convexity in hyperelasticity the reader is referred to, for example, [42], Section 6,
and [7]). It can be shown that strict local convexity of ¥ implies that the contours
of constant ¥ are convex, and, in particular, that the projections of these contours
in the (E@@, Ezz)—plane are convex. On the other hand, if the contours are not
convex then it can be deduced that the potential W is not strictly locally convex.
The consequences of this will be seen in the following sections, which show results
contrasting with those in Figure 4, in which the (convex) contours are illustrated.
For this figure we have used material parameters a = 44.2 [kPa] and b = 16.7 [-]
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Table {. Material and geometrical data of a human carotid
artery [10].

Material Geometry
a =44.2 [kPa) a =0.0° a = 100.0°
b=16.7[-]

Ri=3.1[mm]  R; =4.46 [mm]
Ro=4.0[mm] R, = 5.36 [mm]

as proposed in [10]. Since the potential is isotropic the contour plots are symmetric
in the line which bisects the axes.

For the function (33) the isochoric contribution o to the Cauchy stress tensor o
is obtained from (10); as

o = 2W,devb, (34)

where ¥, = 8@/ 81, and b is the modified left Cauchy—Green tensor. Note that
J=1.

Hence, with the definition (3) of the left Cauchy—Green tensor, the isochoric
Cauchy stress components, which are used in equations (27);, (27), and (29),
are given by (34). In order to investigate the specific arterial response we use
the material constants for a human carotid artery given in [10]. The values are
given in Table I. For the description of the stress-free configuration we have taken
o« = 100.0°, which is based on the value in [10] adjusted for the different defi-
nitions of opening angle. For consistency we take the geometry in the unloaded
configuration for the residually stressed case to be the same as that for the case
without residual stress. The geometry in the unstressed configuration is obtained
using the incornpressibility condition, which furnishes a connection between the
inner and outer radii in this configuration, together with the simplifying assumption
of unchanged wall thickness. The resulting values are given in Table I. In addition,
for purposes of comparison of the shear y; at the inner surface of the tube, the
undeformed length L of the arterial tube was taken to be equal to the value of the
inner radius R; corresponding to & = 0.0°. This was followed for all the cylinder
models studied subsequently.

This basis for the computation of the radii in the stress-free configuration is also
adopted in the following sections. The values of the material constants that we use
for our investigations are those given in the papers in which the energy functions
were introduced. We note that these values were determined under the assumption
that the unloaded configuration is stress free (it is not clear if the same assumption
was used in [10]).

The in vivo axial pre-stretch is based on in sifu measurements prior to removal
of the artery and is given as A, = 1.1 (see [10]). The mechanical response of the
human carotid artery during inflation and torsion is shown in Figure 5. The internal
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Figure 5. Deformation behavior of a human carotid artery during inflation and torsion using
the constitutive model proposed in [10]. Solid lines are numerical results with residual strains
included (o = 100.0°) while the dashed lines are results without residual strains (¢ = 0.0°).
Dependence of (a) the internal pressure p; and (b) the reduced axial force F on the inner radius
ri in the absence of shear deformation (y; = 0). Dependence of (c) the torsional couple M,
and (d) the reduced axial force F on the shear y; at fixed internal pressure p; = 13.33 [kPa].
The shaded circles indicate the approximate central region of the physiological state.

pressure p; and the angle of twist @ are varied within the ranges
0< pi <£26.67[kPa] and —0.15 < & < 0.15 [rad]. (35)

These loadings are applied at fixed axial stretches of the artery varying between
Az, =1.0and A, = 1.2.

The predicted response is in good qualitative agreement with the experimentally
observed mechanical behavior of arteries; see, for example, the survey article [32]
or compare with the (rare) data on shear tests of arteries provided in [12]. With
the potential (33) the typical stiffening effect at high pressures can be replicated,
as can be seen in Figure 5(a). Remarkably, the reduced axial force F is hardly
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influenced by the changes of internal pressures p; at A, = 1.05, which is close
to the physiological pre-stretch of A, = 1.1; see Figure 5(b). In Figure 5(c) and
(d) respectively the torsional couple M; and the reduced axial force F are plotted
against the amount of shear at the inner surface, i.e. y; = ®r;/l = Ory /A L.

The solid lines show numerical results based on a load-free, but not stress-
free, configuration (¢ = 100.0°), while the dashed lines are based on a load-free
and stress-free configuration (¢ = 0.0°). As illustrated in Figure 5(a), residual
stresses influence the internal pressure/inner radius behavior moderately, while
Figure 5(b)—(d) shows a very minor influence of the residual stresses on the global
mechanical response of the artery. Note that incorporation of the residual stresses
in the load-free configuration softens the material of the artery in the sense that a
given inner radius r; is achieved with a lower internal pressure p;, a finding which
is in agreement with the analytical studies of Humphrey [32], p. 101.

4.1.2. Strain-Energy Function of Fung’s Type

The strain-energy function used most extensively for arteries appears to be the two-
dimensional exponential form proposed by Fung et al. [18]. A generalization to the
three-dimensional regime, presented by Chuong and Fung [5], assumes that the
principal directions of the stress tensor coincide with the radial, circumferential
and axial directions of the artery. Shear deformations due to, for example, torsion
of the artery, were not considered. To incorporate shear deformations Eg in the
shear planes z = constant, Deng et al. [12] proposed an extension of the classical
two-dimensional function given in [18].

Many modifications of these strain-energy functions have been published sub-
sequently. For example, a combined polynomial-exponential form of the strain-
energy function incorporating shear deformations was given by Kas’yanov and
Rachev [35]. The most general strain-energy function of Fung’s type is formu-
lated by Humphrey [32]. It is suitable for arbitrary (three-dimensional) states of
deformations and has the form

— 1
V= sclexp(Q) — 11, (36)
where ¢ is a material parameter and Q is given by

— —2 —2 - - =
Q = hEgy+ 0By +3Ejp +2b4FEwoE 77 +2bsE 77 E kg
—_ — —2 —
+2b6ErrEco +b1Eg; + bsE g, + boE . 37

Here b;,i = 1,...,9, are non-dimensional material parameters, while E,,, for
I,J = R,0, Z, are the components of the modified Green—Lagrange strain tensor
referred to cylindrical polar coordinates (R, ®, Z).

In the work of Fung et al. [18] and Chuong and Fung [5] there is no a priori
restriction on the material parameters presented. However, it is important to note
that in order for the (anisotropic) function W to be convex in the sense discussed
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Figure 6. Contour plots of the potential (36) with (a) material parameters ¢, by,..., b7
in Table II, and (b) a set of parameters chosen to illustrate non-convexity.
Table 1I. Material and geometrical data for a rabbit carotid artery in respect of (37)
(see experiment 71 in [5]; b7 is based on the study in [12]).
Material Geometry
¢ = 26.95 [kPa] a =0.0° a = 160.0°
b; =0.9925 [-]
by = 0.4180 [-] R; = 0.71 [mm] R; = 1.43 [mm]
b3 = 0.0089 [-] Ro = 1.10 [mm] Ro = 1.82 [mm]
by = 0.0749 [-]
bs = 0.0295 [-]
bg = 0.0193 [-]
b7 = 5.0000 [-]
in Section 4.1.1 the material parameters by, ..., by must not be chosen arbitrarily.

Figure 6(a) shows a contour plot of the potential (36) with the material parameters
proposed in [5] (see the summary in Table II), while the contour plot in Figure 6(b)
uses an alternative set of parameters chosen to illustrate non-convexity of the strain-
energy function. This is one of many possible choices which lead to non-convexity.
The ‘physical’ meanings of the individual parameters are unclear (see the discus-
sion in the book by Fung [17], Section 8.6.2). Hence, if this strain-energy function
is used care must be taken to select appropriate restrictions on the values of ¢
and b;, since unconstrained parameter optimization does not, in general, guaran-
tee convexity. It is therefore important to be sure that the optimization process is
performed within a range of parameters for which convexity is assured.
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Furthermore, in the computational context, in order to obtain solutions of com-
plex nonlinear (initial boundary-value) problems, incremental/iterative solution
techniques of Newton’s type are frequently applied to solve a sequence of lin-
earized problems. These techniques, often employed in computational biomechan-
ics, use predicted states of deformation which might be far from the range of
deformation for which the experimental tests were conducted. This might lead to
numerical problems within the solution procedure when strain-energy functions
are used which are not convex a priori. To be specific, parameters used outside
the range for which the fitting process was performed might induce a non-convex
potential. A further comment on parameter identification for the strain-energy func-
tion (36) used in combination with relation (37) is appropriate. Because of the large
number of material parameters b; a least-square procedure can lead to problems of
non-uniqueness associated with their sensitivity to small changes in the data, as
pointed out, for example, by Fung [17], Section 8.6.1.

With equations (36) and (10); the components of the isochoric part of the
Cauchy stress tensor may be obtained in the cylindrical polar coordinate system
(r, 0, 7), so that it is a straightforward task to solve the equilibrium equation (27);
and to calculate the torsional couple M; and the reduced axial force F, as given
by equations (27), and (29), respectively. The material and geometrical data used
for this computation are from a carotid artery of a rabbit and are summarized in
Table II. The values of the parameters ¢ and b;, i = 1, ..., 6, are taken from [5],
while &7 is an estimated value (measuring the resistance to distortion) based on
the shear moduli of arteries as presented in [12]. Since the associated shear strains
E g and Ege vanish in the considered problem, the parameters bg and by need
not be considered. In order to investigate the influence of residual stresses on the
global response of the artery, two different stress-free states are considered, namely
a = 0.0° and o = 160.0°, The (mean) value 160.0° is based on the study [23].

The in vivo axial pre-stretch of the artery is given as A, = 1.695 (calculated
from the axial component of the Green—Lagrange strain given in [18], Table I,
experiment 71) and the internal pressure p; and the angle of twist ® are varied
within the ranges

0< pi <2133 [kPa] and —0.10 < @ <0.10 [rad] (38)

(compare with [12, 18]). These loads are applied at fixed axial stretches of the
artery varying between A, = 1.5 and A, = 1.9. Figure 7 shows the computed
deformation behavior of the artery under various loading conditions. The influence
of residual strain on the deformation field is much larger than was the case in the
study of Section 4.1.1 (see Figure 5). This is because the opening angle o and
the ratio of the wall thickness to the diameter were larger than the values used in
Section 4.1.1. Note that at A, = 1.9 the reduced axial force F first increases with
the inner radius r; and then, at high pressures, it tends to decrease; see Figure 7(b).
This characteristic is not observed experimentally.
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Figure 7. Deformation behavior of a rabbit carotid artery during inflation and torsion for
the constitutive model (36), (37) with bg = bg = 0. Solid lines are numerical data with
residual strains included (¢ = 160.0°) while the dashed lines are results without residual
strains (o = 0.0°). Dependence of (a) the internal pressure p; and (b) the reduced axial force F
on inner radius r; without shear deformation (y; = 0). Dependence of (c) the torsional couple
M; and (d) the reduced axial force F on the shear y; at fixed internal pressure p; = 13.33 [kPa].
The shaded circles indicate the approximate central region of the physiological state.

4.2. TWO-DIMENSIONAL FORMULATION

Since it is generally accepted that it is appropriate to treat arterial walls as in-
compressible materials, the restriction J = 1 can be used to find alternative ex-
pressions for the strain-energy function W, which, in general, is a function of
the strain components E &k, Eoo, E 77, E RO E rz, Eoz. The alternative potential

\IJ(E 00, Ezz, Eez), which we refer to as the two-dimensional counterpart of v,
is very popular and used frequently in the literature. Such a two-dimensional for-
mulation is not capable of describing the three-dimensional anisotropic behavior of
a thick-walled cylindrical tube under, for example, inflation and torsion. However,
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for the special case of combined bending, inflation and axial extension the potential

W is suitable for predicting the three-dimensional state of stress. A comparative
study of three important examples of such potentials concludes this section.

4.2.1. The Strain-Energy Function _\iT(E@)@, Ezz, Eoz)

We consider a thick-walled cylindrical tube of incompressible material deformed
in such a way that the modified Green—Lagrange strains E g and E gz are zero, as
is the case for the deformation considered in Section 3.2. Using these assumptions
and with elimination of Egg via the incompressibility constraint an alternative
two-dimensional approximation of ¥ may be given in the form

W(Egr, Eoo, Ezz, Ere, Erz, Eoz) = V(Eee, Ezz, Eoz), (39)

Ehere W is a strain energy with the three independent strain variables Eoo, Ezz,
Eoz. Using the chain rule, the derivatives
oW U 8V OF
- =+ — " 4 =00,27, 07, (40)
0E, 8E 0Egr OF,

are obtained. The constraint det C = det(2E +I) =1 and equation (20)2 enable
E rRr to be expressed in terms of the independent components E e, E 77, E 0z
according to

— 1 — — -2
Err = 5{[(2E@(~)+1)(2E22+1)—4E(~)Z] b1} 41)
Hence, with (41), we find from (40) that
ow D7 _ oV
—— = —— + QEzz + DQErg + )*——, 42)
dEee 0Eee Egrr
W _ W 0F e+ D@ERr + D2 3)
— = = 06 RR =,
0Ezz 77 0ERr
LI L QExg +1)° id (44)
9Eez;  0Eoz OESTRE OEgg

The aim now is to solve the equilibrium equation (27);, which requires the stress
difference g9 —0,,. From the stress equation (10); and the kinematic relation (19),
we find that Tpg = A30W/0Eee +2y A A0V /0Eez + y2A20W/JE, and 5, =
x&aﬁ/ OE gg. Using equations (42)—(44) we find that the stress difference cannot

be given in terms of the potential W alone since the expression W /d E gz cannot in
general be eliminated and remains undetermined. Moreover, 6y, similarly depends
on 0¥ /3 Egg. This means, in particular, that it is not in general possible to use
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the alternative potential W to derive the complete state of stress in an anisotropic
cylindrical tube under inflation and torsion in a three-dimensional context.
It is worth noting, however, that the particular stress combinations

2 W, , W

Ogg — Opr — 2Y0 = Aj— A — , 45
66 rr YOz BaE 14 g (45)
o Gy = A2 0 (46)

“ " ZaEzz

are given in terms of ¥, and we note that Ag =2Ego+1,(1+ )/2)/\3 =2Ez7+1.
Exceptionally, for an isotropic material, since the Cauchy stress tensor is coaxial
with the left Cauchy—Green tensor, the universal relation

YAZ@oo — Tp) = (Af + A2 — AD)Ty, (47)

is obtained. This can be shown as follows. Let cos ¢e, 4 sin ¢e, denote a principal
axis of the Cauchy—Green tensor b. Then, using (21), the angle¢p may be calculated
in the form

tan 2¢ 2rh; (48)
an2¢g = —————————,
A5+ yZ— A2
while, for the Cauchy stresses, we have
e
tan2¢ = — 0 (49)
Ogg — Oz

The combination of (45)—(47) enables the normal stress differences and the shear

stress to be expressed in terms of W. We omit the details since consideration of
isotropic models is not of interest here.

REMARK 4.1. For an anisotropic material, in the special case y = 0 (no shear
deformation), equations (27); and (28) can be solved on the basis of the two-

dimensional form of strain-energy function W(F@@, EZZ, E@Z), With y = 0, it
follows from (45) that

A

— ov
Ogg — Opp = (1 +2Eg0) ——. (50)
0Ege

Using (46) together with (50) the expression 26,, — Ggg — G,, in (29) is then
obtained in the form

A ~

lod o Tpp = =+ — -+ e P .
F44 66 rr YA E [S1¢] 3

Hence, the reduced axial force F may be expressed in terms of the strain energy W.
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Table III. Material and geometrical data for a rabbit carotid artery based on the
potential (52) (see experiment 71 in [18]).

Material Geometry
c1 = —24.385 [kPa] a =0.0° o = 160.0°
c3 = —3.589 [kPa]
c3 = —1.982 [kPa] R; = 0.71 [mm] R; = 1.43 [mm]
¢4 = 46.334 [kPa] Ro = 1.10 [mm] Ro = 1.82 [mm]

c5 = 32.321 [kPa]
ce = 3.743 [kPa]
c7 = 3.266 [kPa]

4.2.2. Strain-Energy Function Proposed by Vaishnav et al. [62]

Two-dimensional forms of strain-energy functions suitable for the description of
the deformation behavior of canine thoracic aorta using polynomial expressions
have been proposed by Vaishnav et al. [62]. This classic paper presents three poly-
nomial expressions with 3, 7 or 12 material parameters. As studied in [62] the
three-parameter model is too inaccurate for a serious investigation and the twelve-
parameter model does not have a significant advantage over the seven-parameter
model. Hence, in the present paper we focus attention on the seven-parameter
model, which is written in the form

- —2 - — —2 —3 — —
VU = cEgg +EeeEzz +3E;; +ciEgg +csEgeEzz

—= =2 —3
+c6EeoEzy + C1E 45, (52)

where ¢y, ..., ¢7 are stress-like material parameters and Ege and E ;, are the com-
ponents of the modified Green—Lagrange strain tensor in the circumferential and
axial directions, respectively. In Fung et al. [18] the form (52) was used to fit the
parameters ¢i, ..., ¢7 to experimental data from rabbit carotid arteries. The result
is summarized in Table III. Note that with these values of the material parameters
the strain-energy function (52) is not convex, as the contour plot in Figure 8 shows.
In fact, because of the cubic nature of the strain-energy function (52), it is not
convex for any set of values of the material constants.

While the performance of the constitutive law (52) is acceptable in the tensile
region (Ego > 0, Ezz > 0), it fails for compressive strains. Moreover, Fung [17]
showed that two completely different sets of material parameters cy,...,¢; are
able to represent the mechanical response of the same artery quite well. This lack
of uniqueness of the material parameters is problematic. Note that a polynomial
expression, different from that in [62], has been proposed in [63] in order to model
the three-dimensional anisotropic behavior of a canine carotid artery and of a rabbit
aorta.
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Figure 8. Contour plot of the potential (52) with material parameters given in Table III.
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Figure 9. Deformation behavior of a rabbit carotid artery during inflation based on the
constitutive model in [62]. Solid lines are numerical results with residual strains included
(e = 160.0°) while dashed lines are results without residual strains (o = 0.0°). Dependence
of (a) the internal pressure p;, and (b) the reduced axial force F on the inner radius rj, without
shear deformation (3 = 0). The shaded circles indicate the approximate central region of the
physiological state.

Using (52) we may solve the equilibrium equation (27); and calculate the re-
duced axial force F from equation (29). For this purpose, we use the formulas (50)
and (51) and apply the procedure described in Remark 3.2. The material and geo-
metrical data for a rabbit carotid artery are as summarized in Table III and we use
the same set of geometrical data and the same range of loading as in Section 4.1.2.

Figure 9 shows the predicted mechanical response of the considered artery (ex-
periment 71 in [18]). The dependence of the internal pressure p; on the inner radius
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Figure 10. Contour plots of the potential (53) with (a) material parameters given in Table IV,
adopted from [59], and (b) with a set of parameters chosen to illustrate non-convexity.

r; is plotted in Figure 9(a). Note that the solution of the equilibrium equation (27),
is not unique, since, for example, p; = 0 corresponds to two different values of r;.
This is a consequence of the non-convexity of the potential. The dependence of the
reduced axial force F on the inner radius r; is plotted in Figure 9(b). As can be seen,
for axial stretches higher than the typical physiological stretch, the characteristic
increase of F with the inner radius rj illustrated in Figures 5(b) and 7(b) is not
predicted by the potential (52) with the set of material parameters given in Table III.

The potential (52) represents the first attempt to describe the anisotropic me-
chanical response of arteries. However, as indicated above, its applicability is lim-
ited.

4.2.3. Strain-Energy Function Proposed by Fung et al. [18]

The well-known exponential strain-energy function due to Fung et al. [18] has beer
proposed in the two-dimensional form

-~ 1 R ~ 2 — .
v = EC[CXP(Q) —1], Q@ =bEgy+bh0E;; +2b4EgeE 7z, (53)

where c is a stress-like material parameter and b, b, by are non-dimensional para-
meters. However, as discussed in Section 4.1.2, the material parameters cannot be
chosen arbitrarily if convexity of the function (53) is desired. Contour plots of the
potential (53) are shown in Figure 10. The material parameters proposed in [59],
and given in Table IV, are used in Figure 10(a), in which case the contours are
convex. On the other hand, non-convexity is illustrated in Figure 10(b) in respect of
a specific choice of parameters. As in the case of Section 4.1.2, the non-convexity
can be demonstrated for a wide range of parameter values. This is easy to check
because of the quadratic nature of Q in equation (53),. In fact, it can be shown, for
example, that if ¢ > 0, then (53) is strictly locally convex ifand only if by > 0,
b2 > 0 and b]b2 > bi
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Table IV. Material and geometrical data for a dog carotid artery based on the
potential (53) (see experiment D850815C in [59]).

Material Geometry
¢ = 28.58 [kPa] a = 0.0° a = 160.0°
b; = 0.8329 [-]
by = 0.6004 [-] Ri = 1.21 [mm] Ri = 2.40 [mm)]
bqy = 0.0169 [-] Ro = 1.77 [mm)] Ry = 2.96 [mm]
(a) (b)
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Figure 11. Deformation behavior of a dog carotid artery (see experiment D850815C in [59])
during inflation using the constitutive model in [18]. Solid lines are numerical results with
residual strains included (o = 160.0°) while the dashed lines are results without residual
strains (o = 0.0°). Dependence of (a) the internal pressure p; and (b) the reduced axial force
F on the inner radius r;, without shear deformation (y; = 0). The shaded circles indicate the
approximate central region of the physiological state.

By means of equations (53) and (50) we may solve the equation of equilibrium
(27); and calculate the reduced axial force F, as outlined in Remark 3.2. The
resulting response is shown in Figure 11 for the material and geometrical data
given in Table IV. In order to investigate the influence of residual stresses on the
response of the artery, two different stress-free states are considered (¢ = 0.0° and
o = 160.0°). The in vivo axial pre-stretch of the artery is given as A, = 1.72 and
the internal pressure p; is varied within the range

0 < p; < 26.67 [kPa] (54)

(see experiment D850815C in [59]). The inflation is considered at fixed axial
stretches of the artery between A, = 1.5 and A, = 1.9.

The potential (53) is able to model the basic characteristics of the mechanical
behavior of arteries except in the low pressure domain. The problem in the low
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Figure 12. Contour plots of the potential (55) with (a) material parameters given in Table V,
adopted from [59], and (b) a set of parameters chosen to illustrate non-convexity.

pressure domain, as can be seen in Figure 11 (a), is that r; is independent of the
axial stretch when p; = 0. A strong influence of the residual stresses on the p; —
behavior is observed.

4.2.4. Strain-Energy Function Proposed by Takamizawa and Hayashi [59]

Another well-known two-dimensional form of strain-energy function for arteries
was proposed by Takamizawa and Hayashi [59]. It has the logarithmic form

U = —cLa(l — ), (55)

where c is a stress-like material parameter and the function ¥ is given in the form
1 — 1. — - =
W= §b1E®®—|— 'z—szZZ+b4E®®EZZ' (56)

Here by, by, by are non-dimensional material parameters and Eoe, Ezz are the
components of the modified Green—Lagrange strain tensor E in the circumferential
and axial directions, respectively.

Note that the proposed definition (56) doesA not, in general, preclude ¥ from

being 1, which leads to an infinite value of ¥ in certain states of deformation.
Furthermore, for ¢ > 1, the argument of the logarithmic function (55) is negative
and the function is not then defined. This type of strain-energy function is therefore
only applicable for a limited range of states of deformation. Moreover, it is convex
under the same conditions as discussed in respect to (53). The material parameters
proposed in [59], and given in Table V, are used to produce the convex contours
in Figure 12(a), while an alternative set of parameters is used in Figure 12(b) to
illustrate non-convexity of the strain-energy function.

Using equations (55), (56) and (50) we may solve equation (27); and calcu-
late the reduced axial force F, as outlined in Remark 3.2. The material data for
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Table V. Material and geometrical data for a dog carotid artery based on (55) (see
experiment D850815C in [59]).

Material Geometry

¢ = 57.94 [kPa] a = 0.0° a = 160.0°

by = 0.6311 [-]

by = 0.4728 [-] R; = 1.21 [mm] R = 2.40 [mm)]

bgq = 0.0301 [-] Ro = 1.77 [mm] Ro = 2.96 [mm]
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Figure 13. Deformation behavior of a dog carotid artery during inflation using the constitutive
model in [59] (experiment D850815C). Solid lines are numerical results with residual strains
included (o« = 160.0°) while the dashed lines are results without residual strains (@ = 0.0°).
Dependence of (a) the internal pressure p;j and (b) the reduced axial force F on the inner radius
ri, without shear deformation (y; = 0). The shaded circles indicate the approximate central
region of the physiological state.

a dog carotid artery (see [59]) and the geometrical data used are summarized in
Table V. We investigated the same range of loading as described in Section 4.2.3.
The resulting arterial response is shown in Figure 13.

The potential (55) is able to represent the typical response of arteries quite
well [59] except in the low pressure region, as also observed in Section 4.2.3
in respect of the potential (53). The residual stresses have a strong influence on
the p; — r; behavior. Finally, we remark that the potential (55), if used within a
(displacement-driven) finite element formulation, may, because of the problems
mentioned above, lead to numerical difficulties.
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5. A Multi-Layer Model for Arterial Walls

In this section we propose a potential that models each layer of the artery as a
fiber-reinforced composite. The basic idea is to formulate a constitutive model
which incorporates some histological information. Hence, the material parameters
involved may be associated with the histological structure of arterial walls (i.e.
fiber directions), a feature which is not possible with the phenomenological models
described so far in the paper. The underlying physical background of the proposed
constitutive model leads to a formulation that avoids the problems encountered
with some phenomenological models. The model is based on the theory of the
mechanics of fiber-reinforced composites [57] and embodies the symmetries of a
cylindrically orthotropic material.

5.1. CONSTITUTIVE MODEL FOR THE ARTERY LAYERS

Since arteries are composed of (thick-walled) layers we model each of these layers
with a separate strain-energy function. From the engineering point of view each
layer may be considered as a composite reinforced by two families of (collagen)
fibers which are arranged in symmetrical spirals.

We assume that each layer responds with similar mechanical characteristics and
we therefore use the same form of strain-energy function (but a different set of
material parameters) for each layer. We suggest an additive split of the isochoric
strain-energy function W into a part Wi, associated with isotropic deformations and
a part W oniso associated with anisotropic deformations [29]. Since the (wavy) col-
lagen fibers of arterial walls are not active at low pressures (they do not store strain
energy) we associate Wig, with the mechanical response of the non-collagenous
matrix material, which we assume to be isotropic. The resistance to stretch at high
pressures is almost entirely due to collagenous fibers [49] and this mechanical re-
sponse is therefore taken to be governed by the anisotropic function Emso. Hence,
the (two-term) potential is written as

W(C,a91,802) = Viso(C) + Waniso(C, 291, a92), (57)

where the families of collagenous fibers are characterized by the two (reference)
direction vectors ag;, i = 1,2, with |ag;| = L. Note that in (57) we use C rather
than E as the deformation measure.

We include structure tensors in accordance with the formulation in Section
3.1.2. Specifically, we incorporate two such tensors, A;, i = 1,2, defined as the
tensor products ag; ® ag;. The integrity basis for the three symmetric second-order
tensors C, A, A, then consists of the invariants

LC) =uC, ©LC) = %[(trE)Z —uC],  L(C)=detC =1, (58)

S — - —2
I,(C,ap)) =C: Ay, I5(C,ap9)) =C : Ay, (59)
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N — S —
Is(C,ap2) = C: Ay, [(C,a9y) =C : Ay, (60)
I3(C, 291, 02) = (A1 - a02) 201 - Capa, Io(ao1,202) = (Ap1 - @02)%; (61)

see [57, 25]. Since the invariants 1_3, 1_9 are constants we may express equation (57)
in the reduced form

W(C, A, Ay) = Uiso(I1, 1) + Waniso(1, Iy Iy, - . ., Iy). (62)

Note that the invariants 1_4 and 1_6 are the squares of the stretches in the directions of
ag; and ag7, respectively, so that they are stretch measures for the two families of
(collagen) fibers and therefore have a clear physical interpretation. For simplicity,
in order to minimize the number of material parameters, we consider the reduced
form of (62) given by

W(C, AL Ay) = Wigo(1) + Vanisalla, Is). (63)

The anisotropy then arises only through the invariants 4 and Ig, but this is suffi-
ciently general to capture the typical features of arterial response.

Finally, the two contributions W, and Eamso to the function ¥ must be particu-
larized so as to fit the material parameters to the experimentally observed response
of the arterial layers. We use the (classical) neo-Hookean model to determine the
isotropic response in each layer, and we write

Tieo(l)) = g(il ~3), (64)

where ¢ > 0 is a stress-like material parameter. The strong stiffening effect of each
layer observed at high pressures motivates the use of an exponential function for
the description of the strain energy stored in the collagen fibers, and for this we
propose

!

— - - k -
Vaisolls, I6) = 5~ > {explha(l; — 1?1 — 1}, (65)
i=4,6

where k; > O is a stress-like material parameter and k; > 0 is a dimensionless
parameter. An appropriate choice of k; and k, enables the histologically-based
assumption that the collagen fibers do not influence the mechanical response of
the artery in the low pressure domain [49] to be modeled.

All that remains is to determine an expression for the stress, which we pro-
vide here in the Eulerian description. Using (10); and the proposed particular-
izations (64) and (65), we obtain, after some straightforward manipulations, the
explicit isochoric contribution & to the Cauchy stress tensor, namely

o =cdevb + Z 20, dev(a; ® a,), (66)
i=4,6

where 1174_2 AW 4niso /0 Iy, ¥ = Bﬁanjso/ 81_6 denote (scalar) response functions
and a; = Fay;, i = 1, 2, the Eulerian counterparts of ag;. For a detailed derivation
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Figure 14. Material and geometrical data for a carotid artery from a rabbit in respect of (67)
and (68) (see experiment 71 in [5]).

of equation (66) the reader is referred to the more general constitutive framework
described in [20].

5.2. ARTERY MODELED AS A TWO-LAYER THICK-WALLED TUBE WITH
RESIDUAL STRAINS

In order to report the performance of the proposed constitutive model we study
the mechanical response of a healthy young arterial segment (with no pathological
intimal changes). For this case the innermost layer of the artery is not of (solid) me-
chanical interest, and we therefore focus attention on modeling the two remaining
layers, i.e. the media and the adventitia. It is then appropriate to model the artery
as a two-layer thick-walled tube (with residual strains), as illustrated in Figure 14.

This model uses 6 material parameters, i.e. cm, kM, kom for the media and
Ca, k1 a, koo for the adventitia. In respect of equations (63)~(65) the free-energy
functions for the considered two-layer problem may be written as

— - k -
Tu= S =3 + 525 3 {explham(ling — D21 - 1},

Zkam i=4,6
R; < R < R; + Hy, ©67)
—  CA,: kya - 5
Ypo=—{ -3 — koallin — D] — 14,
A= (L, -3+ TN i;é {explkaaUia — 1?1 — 1}
Ri+ Hu < R <R, (68)

for the media and adventitia, respectively. The constants ¢y and ¢4 are associated
with the non-collagenous matrix of the material, which describes the isotropic part
of the overall response of the tissue. Note, however, that the matrix material is
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significantly less stiff than its elastin fiber constituent. The constants ki, kom
and ki, kya are associated with the anisotropic contribution of collagen to the
overall response. The material parameters are constants and do not depend on the
geometry, opening angle or fiber angle. The internal pressure/radius response, of
course, does depend on geometry, opening angle and fiber angle, but we have not
included here an analysis of the effect of changes in these quantities. However,
our studies have found that in the high-pressure regime the stress-strain response
depends significantly on the fiber angles (as should be expected). The fiber angles
are associated with the stress-free configuration, as indicated in Figure 14, and we
have assumed that they are the same in the load-free configuration. The difference
in angle between the unstressed and unloaded configurations for the case we con-
sidered goes from (approximately) —3.0° on the inner boundary to +2.7° on the
outer boundary (mean value 0.2°). This approximation has a negligible influence
on the subsequent analysis.

The invariants, associated with the media M and the adventida A, are defined by
I_4j =Aj;: C and iﬁj =Ay;: E j = M, A, and Hy; is the reference thickness
of the media, as illustrated in Figure 14. The tensors A, Ay j» characterizing the
structure of the media and adventitia, are given by

Ajj=ap;®ao;;, Ayj=ap;®ap2j, Jj=MA, (69)

where, in a cylindrical polar coordinate system, the components of the direction
vectors ag ; and ag7 ; have, in matrix notation, the forms

0 0
[ag1j1=1{ cosB; |, [ag2;]1= | cosB; |, J=MA, (70)
sin B; — sin B;

and B;, j = M, A, are the angles between the collagen fibers (arranged in sym-
metrical spirals) and the circumferential direction in the media and adventitia, as
indicated in Figure 14. Note that Finlay et al. [13] reported that in, for example, hu-
man brain arteries the (collagenous) fiber orientations also have small components
in the radial direction. However, we neglect this feature in the present work.

Because of the wavy structure of collagen it is regarded as not being able to
support compressive stresses. We therefore assume that the fibers are active in ex-
tension and inactive in compression. Hence, in the proposed model the anisotropic
terms in the free-energy functions (67) and (68) should only contribute when the
fibers are extended, that is when 1_4 j>1lor 1_6 j > 1, j =M,A. If one or more of
these conditions is not satisfied then the relevant part of the anisotropic function is
omitted from the expressions (67) and (68). If, for example, I4A and 16 A are less
than or equal to 1, then the response of the adventitia is purely isotropic. When
these conditions are taken into account, convexity is guaranteed by the form of the
free-energy functions (67) and (68).

Contour plots for the two arterial layers (media and adventitia) based on the
material parameters given in Figure 14 are depicted in Figure 15. As can be seen,
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Figure 15. Contour plots of the potentials (67) for the media (a) and (68) for the adventitia
{b) using material parameters given in Figure 14. The arrows show the directions of greatest
ascent in the regions Egg =2 0, Ezz = 0.

the two potentials are convex and anisotropic. In addition, the directions of greatest
ascent (illustrated by arrows in Figure 15) in the region E@@ > 0, Ez 7z =2 0 are
clearly different for the two layers. These directions are determined mainly by the
orientations of the collagen fibers, which tend to be nearly circumferential in the
media and nearly axial in the adventitia. Note that where Egg < 0 and Ez 7z <0
the (symmetric) contours reflect the isotropy in this region.

Experimental tests performed by Von Maltzahn et al. [39], Yu et al. [69] and
Xie et al. [68] indicate that the elastic properties of the media and adventitia are
different. Their results show that the media is much stiffer than the adventitia. In
particular, it was found that in the neighborhood of the reference configuration
the mean value of Young's modulus for the media, for several pig thoracic aortas,
is about an order of magnitude higher than that of the adventitia [69]. For our
proposed constitutive model this observation implies that for these materials the
neo-Hookean parameters are such that the ratio ¢y /ca is typically in the range
of 6 to 14. This effectively reduces the number of material parameters, and for
definiteness we therefore set ¢yy = 10cs for purposes of numerical calculation. In
general, however, this ratio depends on the topographical site.

We use geometrical data from [5] for a carotid artery from a rabbit (experiment
71 in [18]) and make the assumptions that the media occupies 2/3 of the arterial
wall thickness and that the wall thickness of each layer in the unloaded configura-
tion (@ = 0.0°) is the same as for the case without residual stress (¢ = 160.0°).
In order to identify the material parameters of the two-layer model for healthy
arterial walls, we fitted the parameters to the experimental data from experiment
71 in [18] and used the standard nonlinear Levenberg-Marquardt algorithm. The
material parameters obtained are summarized in Figure 14. For more explanation
of the underlying fitting process the reader is referred to [21]. For purposes of
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Figure 16. Deformation behavior of a carotid artery during inflation and torsion using the
constitutive model (67)—(68). Solid lines are numerical results with residual strains included
(o = 160.0°) and the dashed lines are results without residual strains (¢ = 0.0°). Dependence
of (a) the internal pressure p; and (b) the reduced axial force F on inner radius r;, without shear
deformation (y; = 0). Dependence of (c) the torsional couple M; and (d) the reduced axial
force F on the shear y; at fixed internal pressure p; = 13.33 [kPa]. The shaded circles indicate
the approximate central region of the physiological state.

comparison, we make the assumption that the configuration shown in Figure 14
is stress-free. But, bearing in mind the discussion in Section 3.2.1 concerning a
single layer, this simplifying assumption must be regarded as an approximation.
In practice, the opening angles and the stress-free configurations for the separate
layers would be different.

The mechanical response of the carotid artery during bending, inflation, axial
extension and torsion is shown in Figure 16. The internal pressure p; and the angle
of twist @ are varied within the ranges

0< pi <2133 [kPa] and —0.10 < ¢ <0.10 [rad]. 71)
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The internal pressure versus radius behavior in the low pressure domain shown in
Figure 16(a) clearly differs from the pressure/radius curves discussed in previous
sections, as comparison with Figures 5(a), 7(a), 9(a), 11(a) and 13(a) shows. The
proposed model (67)—(68) is able to describe the salient features of arterial elastic-
ity, such as the experimentally observed ‘sigma-shaped’ form of the pressure/radius
relationship; see Figure 2(a) in [66]. Note that residual strains have a strong influ-
ence on the global pressure/radius response of the artery, which is similar to what
was observed for the other potentials treated in this paper except for that in [10], as
discussed in Section 4.1.1, for which ¢ = 100.0° and a smaller value of the wall
thickness to diameter ratio was used.

Figure 16(b) shows that the proposed potential (67)—(68) is also able to model
the typical evolution of the reduced axial force F with inflation (increase of the
inner radius) of the artery; see Figure 2(b) in [66]. This means that F'is a decreasing
function of r; at axial stretches X, less than some value above the physiological
stretch and an increasing function for A, greater than this value (this effect is also
evident in Figure 7(b)). This characteristic behavior can also be replicated with the
other potentials described in Section 4 except for the constitutive model in [62];
see Figure 9(b).

The response of the artery during torsion at the internal (physiological) pres-
sure p; = 13.33 [kPa] is plotted in Figure 16(c), (d). As can be seen from Fig-
ure 16(c), the torsional couple M, increases more slowly than the shear y; =
®ri/l = ®r;/),L on the inner boundary increases (i.e. the slope of the curve
decreases). One possible explanation of this interesting phenomenon is as follows:
since the artery is inflated with the internal physiological pressure, the (collagen)
fiber reinforcement is activated and the fibers are much stiffer than the matrix ma-
terial. During torsion from this state of deformation the nearly inextensible fibers
cause the arterial diameter to decrease, which leads to a reduction in the torsional
couple M, given by equation (26),. This realistic diameter-shrinking behavior of
the artery during torsion seems to be a consequence of the considered fiber rein-
forcement (orthotropy). However, this effect may also be predicted by a non-convex
isotropic strain-energy function. Of the potentials discussed in Section 4 only that
reviewed in Section 4.1.2 can predict this phenomenon (see Figure 7(c)).

In Figure 16(d) the reduced axial force F during torsion is plotted against the
shear y;. For an axial pre-stretch A, = 1.5 the reduction in the inner radius r;
due to torsion is about 5.8% (y; = 0.119) and 7.8% for A, = 1.9 (y; = 0.085).
This behavior is in qualitative agreement with experimental observations presented
in [12] and may also be reproduced with the potentials described in Sections 4.1.1
and 4.1.2; see Figures 5(d), 7(d). Note the relatively strong influence of residual
strains at high axial stretches compared with that shown in Figure 7(d).

REMARK 5.1.  The fully three-dimensional formulation of the convex poten-
tial (67)—(68) allows the characteristic anisotropic behavior of healthy arteries un-
der combined bending, inflation, axial extension and torsion to be predicted. It
is not, however, restricted to a particular geometry such as axisymmetry, and is
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Figure 17. Mechanical separation of the layers of a human external iliac artery into a stiff
media-intima tube (on the left-hand side) and a limp adventitia (from C. Schulze-Bauer, MD,
Computational Biomechanics, Graz University of Technology, Austria, with permission).

accessible to approximation techniques such as the finite element method. For an
extension of the anisotropic model to the finite viscoelastic domain see [26] and
for an extension of the constitutive framework to the elastoplastic domain see [20]
and [21]. All these recent works focus on implementation of the models in a finite
element program.

The proposed constitutive model has the merit that it is based partly on histolog-
ical information. It therefore allows the material parameters to be associated with
the constituents (matrix and collagen) of each solid mechanically-relevant layer.
Since the media and adventitia have different physiological functions, a two-layer
model using different strain-energy functions for the media and adventitia seems
to be essential. This idea goes back to von Maltzahn et al. [38], who proposed
a cylindrical two-layer model using an isotropic (polynomial) function (with one
coefficient) for the media and an anisotropic strain-energy function for the adven-
titia (with three coefficients). This approach is indispensable for the study of stress
distributions across the arterial wall and allows a histomechanical investigation
of the arterial layers and their underlying physiological functions. Extension to
a three-layer constitutive model incorporating pathological intimal changes is a
straightforward task.

Figure 17, in which mechanically separated media-intima and adventitia layers
are shown, provides a graphic illustration of the effect of the different proper-
ties and (possibly) different residual stresses in the two tubes. In the unloaded
configuration the relevant geometrical quantities are — media-intima: inner radius,
4.07 [mm]; thickness 0.98 [mm]; adventitia: thickness 0.4 [mm]. The given geom-
etry should be taken into account in interpreting the figure.
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Figure 18. Plots of the principal Cauchy stresses g9, 07z, 0y in the circumferential, axial
and radial directions through the deformed media and adventitia layers in the physiological
state with p; = 13.33 [kPa], A; = 1.7, y; = 0: (a) without residual stress (o« = 0.0°); (b) with
residual stress (¢ = 160.0°). The abscissa is r — r;. The numerical results are obtained for the
constitutive models (67) and (68) with geometrical data and material constants as in Figure 14.
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5.3. STRESS DISTRIBUTION THROUGH THE DEFORMED ARTERIAL WALL

One important aspect of the influence of residual stress is the effect that it has on
the stress distribution through the arterial wall in the physiological state. Whilst
we have seen from, for example, Figure 16 its effect on the overall pressure/radius
response its effect on the stress distribution through the arterial wall is more pro-
nounced. This is illustrated in Figure 18, in which the distributions of the principal
Cauchy stress components gy, 0,, and o,, through the deformed wall thickness
(media and adventitia layers) are plotted against r — r;, where r is the deformed ra-
dial coordinate and r; the deformed inner radius. The geometrical data and material
constants shown in Figure 14 are again used in conjunction with the material mod-
els (67) and (68). The physiological state is taken to correspond to p; = 13.33 [kPa]
and A, = 1.7, with no torsion (y; = 0). The calculation can be carried out by using
any numerical tool. However, in order to solve the three-dimensional boundary-
value problem for the stress components oy, 0., and o,, (rather than for oy,
0., and o, as used throughout the text) it seems to be convenient to employ the
(mixed) finite element method. Details of the computational aspects are described
in Holzapfel and Gasser [26].

Figure 18(a) shows the Cauchy stress distributions for the case in which there
are no residual stresses (o = 0.0°), while Figure 18(b) shows the corresponding
plot with residual stresses included (¢ = 160.0°). The tangential stresses oy and
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0, are discontinous at the media/adventitia interface, while the radial stress o,
is continuous. Note that the magnitude of o,, is much smaller than that of the
tangential stresses. The behavior shown in Figure 18(a) is similar to that found by
Von Maltzahn and Warriyar [39] for bovine carotid arteries. Figure 18 demonstrates
the relatively high values of the circumferential stress in the media compared with
that in the adventitia, which was also found, for example, in [39]. Within the
media there is a significant difference between the distributions of ggs and o,
in the two plots. Interestingly, although the maximum circumferential stress oyg
(which occurs at the inner wall) is reduced significantly, the mean circumferential
stress through the wall is increased by the presence of residual stress. Note that the
residual stress also influences the deformed wall thickness and the strains in the
physiological state. In particular, at the inner wall, for example, the circumferential
strain (measured relative to the stress-free configuration) is reduced by the residual
stress.

The most important influence of the residual stress is the reduction in the maxi-
mum stress values ogg and o,, (which occur at the inner side of the media) and the
gradients of ogg and o, in the media, an effect which has been reported previously
for a single layer (see, for example, Fung [16], Section 11.3). Stress gradients
would be reduced further by larger values of «, as has also been described in [16].
Indeed, it is often assumed that the arterial wall adapts itself so that the circumfer-
ential stresses are uniform within each layer. Moreover, the assumption of uniform
strain is sometimes adopted (see, for example, Takamizawa and Hayashi [59]).
Some consequences of these assumptions have been discussed in a recent paper by
Ogden and Schulze-Bauer [43].

6. Summary and Concluding Remarks

For a deeper understanding of the highly nonlinear deformation mechanisms and
stress distributions in arteries under different loading conditions and the improve-
ment of diagnostics and therapeutical procedures that are based on mechanical
treatments, a reliable constitutive model of arteries is an essential prerequisite.

For the description of the nonlinear elastic behavior of arterial walls, there are
essentially polynomial, exponential and logarithmic forms of strain-energy func-
tion available in the literature. A representative selection of models in common
use has been investigated in this paper and evaluated in detail. This comparative
study was conducted in respect of the mechanical response of a thick-walled tube
under combined bending, inflation, axial extension and torsion and with reference
to fundamental continuum mechanical principles. It is hoped that this simple study
will offer some guidance for the evaluation of alternative forms of strain-energy
function for arteries.

The constitutive model of Delfino et al. [10], which is based on an isotropic de-
scription, is not able to reproduce the pronounced anisotropic mechanical behavior
of arteries observed in several experimental investigations. Nevertheless, it is worth
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noting that its predictions for the restricted kinematics and loading conditions con-
sidered here are in some respects qualitatively similar to those for the anisotropic
energy functions discussed in Section 4.

The two-dimensional formulation discussed in Section 4.2.1 does not, in gen-
eral, permit the stress response under certain combined loadings (such as inflation
and torsion) to be modeled. Exceptionally, if the material is isotropic or if it de-
scribes a membrane model, such combined loadings can be analyzed, as shown
in Section 4.2.1. However, such a formulation, because it omits ER@, ERZ and
Egrg, is inherently limited to specific kinematics or to a membrane description. For
example, if E g is omitted then the inflation/torsion problem cannot be solved for
a thick-walled tube. The three well-established anisotropic models developed by
Vaishnav et al. [62], Fung et al. [18] and Takamizawa and Hayashi [59], which we
have discussed in Section 4.2, are special cases of this two-dimensional formula-
tion. A fortiori, their applicability is limited, but, as we have seen, they do predict
qualitatively reasonable response for restricted geometry and loadings. Moreover,
they have contributed to our current level of understanding of arterial wall me-
chanics. Thus, isotropic or two-dimensional anisotropic energy functions may be
valuable under some conditions, but, bearing in mind the limitations discussed
above, they should be used with caution.

In the theory of elasticity the notion of convexity of the strain-energy function
(which is dependent on the choice of deformation measure used) has an important
role in ensuring physically meaningful and unambiguous mechanical behavior. It
also induces desirable mathematical features in the governing equations, which are
important from the point of view of numerical computations. A problem detected in
the potentials considered in this comparative study is the general lack of convexity.
For example, the anisotropic potential of Vaishnav et al. [62] is not convex for any
set of material parameters. The strain-energy functions of Fung et al. [18], Chuong
and Fung [5] and Takamizawa and Hayashi [59] are not convex for all possible sets
of material parameters, and restrictions on these parameters are therefore needed
to ensure convexity and, therefore, to avoid material instabilities.

The three-dimensional anisotropic mechanical response of arteries points to the
need for three-dimensional constitutive models, and suitable generalizations of the
above-mentioned models must therefore be employed. All the models discussed
above are based on a phenomenological approach in which the macroscopic nature
of the biological material is modeled. This approach, which is concerned mainly
with fitting the constitutive equations to experimental data, is not capable of relat-
ing the deformation mechanism to the known architectural structure of the arterial
wall. The material parameters have no direct physical meaning and are therefore
treated as numbers without clear physical interpretation.

From this comparative study and the experience gained, it may be concluded
that there is a need for an alternative form of constitutive model which avoids the
limitations discussed. It is for this reason that we have proposed an approach in
which arterial walls are approximated as two-layer thick-walled tubes, with each
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layer modeled as a highly deformable fiber-reinforced composite. This leads to a
fully three-dimensional anisotropic material description of the artery incorporating
histological information. The proposed two-layer model uses a set of six material
parameters whose interpretations can be partly based on the underlying histological
structure.

The new model discussed in this paper is consistent with both mechanical and
mathematical requirements and is suitable for use within the context of finite el-
ement methods (see, for example, [26, 20] and [21]). It is also applicable for
arbitrary geometries so that more complex boundary-value problems can be solved.
As described in Section 5.3, this approach enables insight into the nature of the
stress distribution across the arterial wall to be gained, and therefore offers the
potential for a detailed study of the mechanical functionality of arteries.

The importance of including residual strains (and stresses), which was shown
previously by scientists such as Chuong and Fung [6], has been emphasized. As we
have seen, incorporation of residual strains in the load-free configuration changes
not only the overall pressure/radius response of the artery but also the stress distri-
bution through the deformed arterial wall (see also [5]). Thus, in order to predict
reliable stress distributions, the parameter identification process must incorporate
residual strains in the load-free configuration.
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Abstract. Intracranial saccular aneurysms remain an enigma; it is not known why they form, why
they enlarge, or why only some of them rupture. Nonetheless, there is general agreement that mechan-
ics plays an essential role in each aspect of the natural history of these potentially deadly lesions. In
this paper, we review recent findings that discount limit point instabilities under quasi-static increases
in pressure and resonance under dynamic loading as possible mechanisms of enlargement of saccular
aneurysms. Indeed, recent histopathological data suggest that aneurysms enlarge due to a stress-
mediated process of growth and remodeling of collagen, the primary load-bearing constituent within
the wall. We submit that advanced theoretical, experimental, and numerical studies of this process
are essential to further progress in treating this class of pathologies. The purpose of this review is to
provide background and direction that encourages elasticians to contribute to this important area of
research.

Key words: collagen structure, stability, rupture criterion, growth mechanics.

1. Introduction

Intracranial aneurysms are focal dilatations of the arterial wall that usually occur
in or near the circle of Willis, the primary network of vessels that supplies blood
to the brain. In general, these aneurysms occur in one of two forms: fusiform le-
sions, which are elongated dilatations of an artery, and saccular lesions, which are
local sac-like out-pouchings. This paper focuses on the more common saccular
form, which usually develops at the apex of a bifurcation (Figure 1). Rupture of
saccular aneurysms is the leading cause of spontaneous subarachnoid hemorrhage
(SAH), which despite advances in neurosurgery and neuroradiology continues to
result in a high mortality rate (35-50%) and severe morbidity among the survivors
[20, 26, 102]. Fortunately, with advances in medical imaging, greater numbers of
unruptured aneurysms are being detected. There are two primary methods of treat-
ing these lesions: intracranial surgery, wherein the lesion is isolated from the blood
flow by placing a small metal clip at its neck, and catheter-based interventions,
which include the deployment of metallic coils that promote the formation of clots
within the lesion that again isolate it from the blood flow [10, 71]. Conservative
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Figure 1. Schema of the cerebral vasculature illustrating the circle of Willis and surrounding
arteries; shown, too, is a typical aneurysm at a bifurcation (where the fundus = pole).

management is also a clinical option, however, for it is thought that many sac-
cular aneurysms will not rupture [10, 26, 80]. For example, a recent international
trial [103] reported a small risk of rupture (~0.1% per year) for aneurysms less than
10 mm in maximum dimension; these results have generated considerable contro-
versy, however (e.g., [4]). The primary clinical dilemma, therefore, is whether a
patient should be subjected to a prophylactic procedure that has associated risks
given that it is unlikely that the aneurysm will rupture, or if it is better to monitor
periodically the patient for changes in the lesion while accepting the devastating
consequences associated with SAH should a rupture occur.

The goals of this paper are threefold: to review our current knowledge of the
biology and structure of saccular aneurysms, to assess recent developments that
address the associated mechanics, and to identify questions about aneurysmal de-
velopment, enlargement, and rupture that require further biomechanical study. One
goal of histo-mechanical analysis, for example, is to predict better the likelihood
of enlargement of a given lesion and its rupture-potential, the former of which may
occur over periods from weeks to decades. It is hoped, therefore, that this paper
stimulates experimental, theoretical, and computational research that will comple-
ment that in the basic and clinical sciences and thereby contribute to improved
treatment strategies.
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2. Natural History and Significance

Two-to-five percent of the general population in the Western World likely harbors a
saccular aneurysm, ruptured or unruptured. Histopathological and clinical studies
reveal further that these lesions are more prevalent in women (55-65%), and that
they occur predominantly in the anterior and middle portions of the cerebral vascu-
lature (cf. Figure 1). For example, a review by Ferguson [26] reports distributions
of 37% in the internal carotid artery, 31% in the anterior cerebral and anterior
communicating arteries, 13% in the middle cerebral artery, 9% in the basilar artery,
5% in the vertebral artery, and 5% other; different reports indicate a slightly higher
percentage in the middle cerebral artery, but are otherwise similar [92, 98]. Multi-
ple lesions occur in ~15-30% of aneurysm patients. Although saccular aneurysms
may remain dormant for years to decades, the small percentage that rupture tend to
do so during the 5th—7th decades of life (mean age ~52 years old). For more detail,
see Sekhar and Heros [80], Hashimoto and Handa [38], Kassel and Torner [52], and
Wiebers et al. [102].

The natural history of saccular aneurysms consists of at least three phases:
pathogenesis, enlargement, and rupture. The initiation of saccular aneurysms is the
subject of considerable debate, but it is generally accepted that unique structural
features of the cerebral vasculature contribute to the pathogenesis (e.g., [7, 80]).
Cerebral arteries do not have an external elastic lamina, they have sparse medial
elastin, they lack supporting perivascular tissue, and they have structural irregular-
ities at the apex of their bifurcations [27, 40, 91]. It is thought that these factors
may render the cerebral artery susceptible to a local weakening of the wall under
the persistent action of hemodynamic loads, particularly in hypertension [92]. One
theme, in particular, is that the internal elastic lamina and muscular media must
become markedly fragmented or degraded in order for a saccular aneurysm to form
[11, 24, 80]. Other risk factors may include heavy alcohol consumption, cigarette
smoking, and the long term use of analgesics or oral contraceptives, although these
are thought to play a lesser role (see [20, 73, 103]). Increased familial incidence in
some populations suggests that genetics is important. It has been hypothesized,
for example, that a genetic defect may disrupt the normal synthesis of certain
types of collagen (e.g., types III and V) within the cerebral vasculature, which
in turn may weaken the arterial wall [41, 74]. Similarly, it has been hypothesized
that an asymmetrically formed circle of Willis may be of genetic origin, and may
increase the hemodynamic load on portions of the vasculature [20, 92]. There is a
pressing need for much more research on the roles of genetics, risk factors, cellular
responses to mechanical stresses, and hemodynamics in the pathogenesis.

Aneurysms typically enlarge from the initially small out-pouching or dilatation
of the arterial wall, which can result in lesions having diameters up to 30 mm as
well as complex shapes and composition. Unfortunately, little is known about the
mechanisms by which this enlargement occurs, or its time-course. Some recent
studies suggest that slower rates of enlargement are associated with a lower risk of



52 J.D. HUMPHREY AND P.B. CANHAM

rupture [51, 66]. Regardless, among other hypotheses, it has been suggested that
lesions may enlarge rapidly due to structural instabilities, that is via either a limit
point instability or resonance. These two hypotheses are discussed below based on
more recent nonlinear analyses and shown unlikely, at least for particular classes of
lesions. As it will be seen, there is a pressing need for an increased understanding
of this critical phase of the natural history.

Rupture of an aneurysm implies one of two outcomes: a catastrophic tearing of
aportion of the lesion, with significant bleeding that is often fatal, or a small “leak”,
with minimal bleeding but clinical symptoms. Small leaks may be sealed by a fibrin
patch and followed by the formation of an intraluminal or intramural thrombus;
such repair may render the lesion more susceptible to subsequent enlargement or
catastrophic rupture. Although histomechanical failure mechanisms are unknown,
rupture usually occurs at the fundus (Figure 1) despite the neck often being thinner
[18, 80]. Moreover, in the case of coexisting aneurysms, the larger one usually
ruptures first, or if of nearly the same size, the proximal one will usually rupture
first [18, 50].

Several studies have associated various physical factors with rupture-potential.
Asari and Ohmoto [3] suggested that it is the combination of lesion location (e.g.,
middle cerebral artery), shape (i.e., multilobular or not), and the presence of hyper-
tension that best indicates a high risk of rupture. Hademenos et al. [35] similarly
reported that multilobular lesions are more prone to rupture, but they suggested
further that the less prevalent posterior lesions have a higher chance to rupture.
The vast majority of other studies draw conclusions based primarily on the size
of the lesion, however, with estimates of the critical maximum dimension ranging
from 3 to 10 mm [18, 52, 98, 102, 103]. From a mechanical perspective, of course,
shape and wall thickness are more important contributors to rupture-potential than
overall size [84]. Ujiie et al. [99] reported that 59% of lesions are round, 24%
oval, and 22% barlike; Parlea et al. [75] reported that aneurysms of the anterior
communicating artery (recall Figure 1) tended to be pear-shaped, and, although
a clear pattern could not be established, most aneurysms tend toward a spherical
shape. That shape has not been considered more is particularly surprising since
Crompton [17] showed long ago that lesions in women tend to have a greater
neck : height ratio and they are more likely to rupture. Lesion thickness can range
from 30 to 500 wm in the unloaded configuration [96]. It is believed that increasing
thickness corresponds primarily, but not exclusively, with continued enlargement
[93], Based on a study of 23 unruptured lesions, Suzuki and Ohara [96] suggested
further that saccular aneurysms fall into one of four categories: uniformly thin
(22%), thick at the fundus but thin at the neck (17%), thin at the neck but vari-
able elsewhere (43%), or thick at the neck but variable elsewhere (18%). Asari
and Ohmoto [3] report similar findings, including that the uniformly thin lesions
tended to be the smallest (less than 4 mm in diameter). Whereas most previous
mathematical models have assumed idealized shapes and uniform wall thickness
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(in the undeformed configuration), there is a clear need for more complete data
upon which more realistic models can be based.

3. Histopathology

Early studies using light microscopy showed relatively little structural organization
within saccular aneurysms as compared to the nearby parent arteries [28, 39, 79,
89]. Like other muscular arteries, cerebral arteries consist of three main layers:
the tunica adventitia (outer layer) consists primarily of collagen, the tunica media
consists primarily of smooth muscle with interspersed collagen and some elastin,
and the tunica intima (inner layer) consists primarily of a basement membrane
bordered on the luminal side by a single layer of endothelial cells. The transition
from parent vessel to aneurysm is characterized by a sharp break in the media
[7, 39, 80], thus it is generally thought that the aneurysm stems from the adventitia
and intima [69, 79]. Stehbens [89] suggested, however, that the appearance of the
aneurysmal wall does not indicate that part of the arterial wall from which the
sac came for many of its features seem to be acquired during the later stages of
enlargement. Regardless, a general finding is that the aneurysmal wall consists
primarily of collagen, with small patches of smooth muscle of the stellate form,
as is usually found in the intima of vessels. The elastic lamina also tends to split
into several laminae at the neck of the aneurysm and to be fragmented or absent
in the aneurysm wall [39, 89]. Stehbens [90] reported that in those portions of an
aneurysm that resemble an intimal proliferation, the collagen fibers are sparse, of
variable length and caliber, and arranged haphazardly, whereas when the wall is
fibrotic, the collagen is arranged in distinct laminae. That the fundus is generally
thicker than the neck [80, 89], and yet the site at which rupture is most likely to
occur [18, 79, 92], is one of the unresolved paradoxes of aneurysm structure.

Electron microscopy has confirmed this general histology, with additional detail
regarding the presence of monocytes, fibroblasts, macrophages, and cellular debris
[60, 72, 92], Spatial variations in these cell types provide possible clues with re-
gard to lesion heterogeneity, including local weakening of the wall, and dynamic
changes therein [53, 54]. Recent immunocytochemical and immunofluorescence
studies reveal further detail on aneurysm composition. Austin et al. [7] found type
I collagen and fibronectin to be distributed uniformly throughout the aneurysmal
wall, and Mimata et al. [69] identified the fibrillar types I and III collagens, which
are mainly responsible for the tensile strength, throughout the wall. The microfib-
rillar type VI collagen is also distributed throughout the wall, albeit mostly in the
outer region, and the basement membrane type IV collagen is localized around
the sparsely distributed smooth muscle cells. Kosierkiewicz et al. [55] examined
lesions with atherosclerotic involvement. They identified an intimal type thickening
even in some small aneurysms and advanced plaques with smooth muscle cells and
lipid-laden macrophages in many large aneurysms. They also reported that it was
often difficult to separate the atherosclerotic region from the rest of the wall.
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Figure 2. Schema of a saccular lesion showing overlapping layers of collagen fibers of dif-
ferent strengths. The inset illustrates how the alignments in adjacent layers combine to give
tensile strength oy (modified from [66]).

The main characteristic of the aneurysm wall is its multidirectional collagen
fibers — at physiological pressures they become straight and thereby govern the
overall stiffness of the lesion (Figure 2). As the aneurysm enlarges, collagen is
repeatedly synthesized and degraded; that is, the architecture evolves ‘“continu-
ously". Three important parameters are changes in the orientation, cross-linking,
and volume fraction of the various types of collagen. For example, type I collagen
is substantially stiffer than type III, and the alignment of the collagen fibers is
fundamental to the strength of the tissue that must bear biaxial loading. Thus, there
is a need for combined histo-mechanical analyses.

Most general microscopic studies of the aneurysmal wall have been on lesions
that were not fixed at arterial pressure. In the unloaded state, the collagen fibers
are wavy, and their preferred orientations are not discerned easily when viewed
using normal stains for light microscopy. Since collagen is birefringent, however,
polarized light can be used to identify the collagen and to assess its orientation
[104, 106] Results by our group that exploit these observations are presented below
in the sub-section on collagen architecture.

4. Assessments of Mechanical Behavior

Scott et al. [83] performed in vitro pressure-volume tests on seven human saccu-
lar aneurysms obtained at autopsy. Data were reduced assuming that the lesions
were perfect spheres, having deformed volumes of 4wa3/3; this allowed them
to estimate the deformed radii @« and wall tension T = Pa/2 (using Laplace’s
relation for a thin-walled pressure vessel). Scott et al. reported that aneurysms
exhibit a nonlinear behavior over finite strains, and suggested that they are stiffer
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than normal vessels. They also reported that two aneurysms exhibited a critical
breaking (Cauchy) stress o, on the order of 2 to 3 MPa. Because they measured
global volumes, not local strains, the results are both averaged and effectively one-
dimensional and consequently not sufficient for quantifying the requisite multiaxial
constitutive relations.

Steiger et al. [93] reported results from uniaxial extension tests on thin strips of
tissue excised from six human saccular lesions. Important findings are that lesion
behavior differs at the fundus and neck: tearing occurred at a stretch A = 1.37
and a stress o, = 0.5 MPa in the fundus and A = 1.57 and ¢, = 1.2 MPa
in the neck. That strain, not stress, was a more consistent metric of failure is
consistent with results on the failure of arteries (see [45]). Nevertheless, Steiger’s
study is limited because the data were reduced using the linearized measure of
strain, and based on the overall length of the specimen rather than a central gage
length. Moreover, the 1-D data did not discriminate between the meridional and
circumferential behaviors. Toth et al. [97] recently reported similar uniaxial data
from 22 human aneurysms, including 17 harvested at surgery. The characteristics
of the latter group includes a mean diameter of 11.6 mm (ranging from 5 to 23 mm)
and a mean patient age of 47 years old (range from 32 to 63). Twelve of the
17 lesions were from females, and 11 of the 17 patients had a history of SAH.
Similar to Steiger et al., it was found that (circumferentially oriented) specimens
from the fundus tore at lower stretches (i.e., A = 1.23) than those from the neck
(A = 1.55). Moreover, the strength near the fundus was greater in the meridional
than the circumferential direction. Additional results were presented in terms of
moduli for a Kelvin—Voigt linear viscoelastic model; use of a linearized measure of
strain is clearly inappropriate given the reported stretches up to 55%. Remarkably,
these three studies represent the entirety of the data up to 1999 on the mechanical
behavior of human saccular aneurysms. The need for experimental data and the
associated constitutive formulations is clear therefore.

In summary, histopathology and mechanical tests reveal the following general
characteristics of “non-complicated” saccular aneurysms: they are thin-walled
shell-like structures that consist primarily of a 2-D plexus of collagen, they appear
to have negligible bending stiffness, they exhibit nonlinear anisotropic pseudoe-
lastic responses over finite strain, and their properties vary regionally. Clearly,
therefore, a nonlinear membrane theory is a reasonable starting point for analysis.
Although Scott’s data are not sufficient for detailed quantification of multiaxial
behavior, including anisotropy and heterogeneity, Kyriacou and Humphrey [57]
showed that they are well described by a Fung-type pseudostrain-energy func-
tion w, which is defined per undeformed surface area consistent with the direct
membrane approach [47]. That is, consider a w of the form

w=cle? 1], Q=c1E}+c2E5+2c3E En, (1)

where E4p are the principal (in-plane) Green strains and c¢ and ¢; are material
parameters. For the quasi-static inflation of a perfectly spherical membrane (as
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Figure 3. Best-fit of equation (1) to the tension-stretch data of Scott et al. (from Kyriacou and
Humphrey, with permission).

assumed by Scott et al.), the 2-D deformation gradient is F = diag[A, A] where
A = a/A (with A the undeformed radius) and the principal Green strains are
Eyw=FE»n= %()\2— 1). Recalling the general constitutive relation for a membrane,

LI R L B AE=1,2 @)
= T O —— o, P, & = 1,2,
detF ** P%3E g

Top
with ¢, = ¢, due to the implicit assumption of in-plane isotropy in Scott’s analysis,
we see that the uniform tension 7(= 7| = T») is

T = cI'(W2 — 1) exp[0.5T (A% — 1), (3)

where I' = (¢ + c¢3). Kyriacou and Humphrey determined the best-fit values
of the two independent material parameters ¢ andlvia a Marquardt—Levenberg
regression of the data presented by Scott et al., that is by minimizing the sum-of-
the-squares of the error between the calculated and measured tensions (i.e., stress
resultants). The best-fit values were ¢ = 0.88 N/m and I' = 12.99, which yielded
the fit to data shown in Figure 3. Despite this good fit, the inadequacy of the data
is evident: they do not allow separate determination of ¢, and ¢, which embody
the material symmetry, they do not separate the contributions due to ¢; and c3,
and they do not provide information on possible heterogeneities. Based on results
on arteries reported by Fung and colleagues, Kyriacou and Humphrey assumed
that ¢ ~ ¢;/10, and hence ¢ =088 N/m, ¢ = ¢, = 11.82 and ¢3 = 1.18.
Likewise, various anisotropies can be explored by varying the values of ¢; and c;
(see Section 7).



MECHANICS OF INTRACRANIAL SACCULAR ANEURYSMS 57

5. Hypothesized Mechanisms of Enlargement and Rupture
5.1. LIMIT POINT INSTABILITIES

A longstanding question with regard to saccular aneurysms has been, how can a
structure that consists of collagen, which exhibits high stiffness and low extensibil-
ity, continue to enlarge and eventually rupture? In an effort to address this question,
Austin et al. [6] and Akkas [1] suggested that saccular aneurysms suffer limit point
instabilities, that is (mathematical) bifurcations in their quasi-static response to
increases in distension pressure. Note, however, that Austin et al. based their con-
clusions on in vitro experiments on a “model lesion” that they constructed by gluing
a 0.8 mm thick collagen patch onto the center of a 0.175 mm thick elastomeric
membrane that was fixed around its periphery and inflated from underneath. Be-
cause of the use of the elastomeric membrane, it is to be expected that this model
exhibited a limit point instability [8]. Akkas, on the other hand, reported compu-
tational results for the inflation of a neo-Hookean model (i.e., W = ¢(tr C — 3),
where C = F'F) of a saccular aneurysm, which also exhibited a limit point as
expected. Because aneurysms, like most collagenous soft tissues, tend to exhibit
an exponential rather than rubber-like behavior, it is clear that these studies needed
to be revisited.

Consider an idealized spherical lesion” having an undeformed radius A, a uni-
form initial thickness H, and subjected to a uniform distension pressure P. With
F = diag[A, A], is it easy to show that the pressure-stretch relation for the Fung-
type form of w (equation (1)) is

PO = %(x — 1/A) exp[0.5T° (A% — 1)*], (4)

which is easily non-dimensionalized by multiplying P(X) by A/c. Regardless, a
limit point exists if dP/dA = O for any A > 1 (note: a membrane cannot support
compression, thus the restriction on A). It can be shown numerically that the Fung
material does not admit a limit point, with I' = 12.99 from Scott’s data. Inasmuch
as Kyriacou and Humphrey [57] found a similar result for a more general case of an
axisymmetric lesion (using finite elements), it appears that certain sub-classes of
saccular aneurysms probably do not enlarge or rupture via a limit point instability.
This finding re-emphasizes the importance of basing one’s analysis on appropriate
constitutive relations.

5.2. DYNAMIC INSTABILITIES

Richardson and Kofman [77] reported bruits in cerebral aneurysms — that is, au-
dible tones at frequencies ~400 Hz. Ferguson [23] suggested that these bruits

* Shah et al. [84] showed that the spherical assumption is reasonable for a small sub-class of
aneurysms.
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Figure 4. Schema of a spherical aneurysm surrounded by cerebral spinal fluid. The radial
coordinate defining the fluid domain is & € [a(z), co) (from Humphrey, with permission).

resulted from turbulence within the lesion while others suggested that they indi-
cated that aneurysms are excited at their natural frequency [50, 81, 86]. Resonance
implies large wall motions, indeed violent vibrations, and thus was hypothesized
by some as a potential mechanism of enlargement or rupture. There have been
but a few analyses of the associated elastodynamics, however, most of which are
based on classical shell theory and thus linearized strains and material behavior
(e.g., [49, 86]). Moreover, none of these studies account for the observation that
many saccular aneurysms are surrounded by cerebral spinal fluid (CSF). Below,
we summarize a recent study by Shah and Humphrey [85] that is based on finite
elasticity and accounts for the CSF. First, however, it is important to note the
following findings from hemodynamic studies. Experimental and computational
results both reveal that flow-induced wall shear stresses 7, are small in all classes
of saccular aneurysms studied to date: maximum values are ~5 to 13 Pa [65, 94],
which are less than the 40 Pa needed to induce endothelial cell damage [30] and
orders of magnitude less than the pressure-induced in-plane wall stresses which
can be 1 to 10 MPa [12, 57]. These findings, coupled with observations that the
maximum wall shear stress typically occurs at the neck, not the fundus where
rupture tends to occur, suggest that intra-aneurysmal pressures are the dominant
hemodynamic loads governing stress-induced rupture [29, 80, 94]. This is not to
say that wall shear stresses are not important; they likely signal the endothelium
to express various molecules, including growth factors that may regulate the intra-
mural collagen. This latter role has not been explored in detail, though it ought to
be. It also appears that intra-aneurysmal pressures are similar in magnitude to those
in the parent vessel [16, 25, 67, 81] and that they vary little with position within the
lesion [33, 37]. Consequently, it appears to be reasonable to assume (to first order)
that saccular aneurysms are loaded primarily by a uniform, time-varying distension
pressure.

For purposes of examining the elastodynamics, consider a thin-walled, spherical
aneurysm of initial radius A and wall thickness H, but now let it be subjected to a
time-varying distension pressure P;(¢) and surrounded by CSF (Figure 4). The 2-D
deformation gradient tensor F = diag[A(¢), A(¢)], where A(z) = a(¢)/A and a(?)
are the deformed radii. In addition, let the lesion exhibit an isotropic, Fung-type
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behavior (equation (1)). From Kraus [56], it can be shown that the three equations
of motion for a membrane reduce to a single ordinary differential equation for a
pulsating sphere:

d*u,

-52— = 2Tk — trr(ri) + trr(r())’ (5)

oh

where p is the mass density of the aneurysm, A(?) is the deformed thickness (which
equals H JA(@)?* if incompressible), u,(t) = a(t) — A is the radial displacement,
T = T(A) is the constitutively determined wall tension, x(t) = 1/a(¢) is the
curvature in the deformed configuration, and #,, are radial stresses on the inner and
outer surfaces of the lesion. Assuming a prescribed time-varying uniform lumi-
nal pressure, t..(r;) = —P;(t), Milnor [68] shows that arterial pressures are well
described by a Fourier series representation of the form,

N
Pi(t) = Py + Y _(Aycos(nwt) + B, sin(nwr)), (6)

n=1

where P, is the mean blood pressure, 4, and B, are Fourier coefficients for N
harmonics, and w is the circular frequency. Ferguson [25] reported micro-catheter
measured intra-aneurysmal blood pressures in humans. From these data, it can
be shown that specific values of A, and B,, for the first 5 harmonics, are A; =
-7.13, By = 4.64, A, = —3.08, B, = —1.18, A3 = —0.130, B3 = —0.564,
Ay = —0.205, By = —0.346, As = —0.0662, and Bs = —0.120, all in mmHg,
with P, = 65.7 mmHg. Note that these lower pressures were recorded in supine,
anesthetized patients.

The cerebral spinal fluid (CSF) could similarly be assumed to exert a uni-
form time-varying pressure P,(¢) on the outer surface of the membrane that is
a reaction to the pressure-induced distension of the lesion. This is tantamount
to treating the CSF as an ideal fluid (i.e., inviscid and incompressible). In this
case, t,,(r,) = —P,(t), where P, can be determined by solving the pressure field
in the fluid domain & € [a, 00). For an ideal fluid, the governing differential
equations are the balance of mass and linear momentum (i.e., Euler) equations.
In the absence of body forces, they can be written as V-.v = 0 and —~VP = pra,
respectively, where v and a are the fluid velocity and acceleration and py is the
mass density of the CSF. It is probably better to assume that the CSF is viscous
(e.g., Newtonian), however. In this case, the governing differential equations are
the balance of mass and the incompressible Navier-Stokes form of the linear mo-
mentum equations (—V P +uV?3v = p ra), and the outer stress boundary condition
is t,(ro) = — P, () + 214D (§,) where D is the stretching tensor (D = %(L +L7),
where L is the velocity gradient tensor). Because the solution for the ideal fluid can
be recovered from that for the Newtonian fluid, we consider the latter here.
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Assuming a flow in the radial direction & in a spherical domain (Figure 4), mass
balance requires that

1o 10)
£2 9§ g2’
where the function g(¢) is determined by requiring a material particle on the mem-

brane to have the same velocity as the adjacent fluid particle ve. Hence, at § =
a,

— (%) =0 > v (§,1) = (7)

d%(ur) = %A =80 g(t) = AW%
The requisite component of D is thus computed easily.

For this radial flow, the meridional and circumferential Navier—Stokes equations
require that the fluid pressure P = P(&,t) alone. Hence, the only “non-trivial”
equation of motion is the radial one, which can be integrated over £ € [a, 00)
to yield the pressure P,(¢) exerted on the outer surface of the membrane by the
surrounding CSF:

dx 3 /dra?
— 2 —— —_ ——
Po(t)—Poo(t)+pfA (A‘dlz +2(dl) >a (9)

8)

wherein we have used vg from mass balance and the matching condition at the
solid-fluid interface. It is interesting to note that this is the same pressure field as
that for an ideal fluid (i.e., as that obtained by integrating the unsteady Bernoulli
equation along a radial streamline).

Taken together, these equations yield the final governing differential equation

[85]:
pHA dx 3 dx 4 dr 2T (1)
A -~
( )dt2+ 27\ +,\dz+ A0

= P;(t) — Px(t) (10)

with 7°(A) given by equation (3) and P;(¢) by equation (6). This nonlinear second-
order ordinary differential equation can be solved using numerical techniques such
as Runge—Kutta, which is facilitated by transforming it into a system of two first-
order equations (this is simplified by first non-dimensionalizing the equation). Shah
and Humphrey [85] solved this system of equations for the following values of
parameters, which they suggested define a representative lesion: p = 1050 kg/m?,
A=3%x10"m, H=278x10"%m, p; = 1000 kg/m?, x = 1.26 x 107 Ns/m?,
Pso = 3 mmHg, and ¢ = 0.88 N/m, ¢; = ¢; = 11.82, and ¢; = 1.18. See the
original paper for complete results. Figure 5, panel B shows that equilibrium initial
conditions yield a periodic solution as expected (i.e., a closed path in the phase-
plane); panel C reveals further that, for the case of perturbed initial conditions,
this periodic solution serves as an attractor (i.e., the oscillations tend to dissipate




MECHANICS OF INTRACRANIAL SACCULAR ANEURYSMS 61

)
g

150

100

PRESSURE (mm Hg

STRETCH RATE (1/s)
o

STRETCH RATE (1/s)

=50 4
13

STRETCH RATE (1/s)
2

STRETCH RATIO : ’ TIME (s)

Figure 5. Results from Shah and Humphrey on the elastodynamics of a saccular aneurysm
subjected to a sinusoidal forcing (pressure) function. Panel B shows the periodic solution in
the unperturbed case, and panels C and D show that this solution is an attractor in the case
of perturbed initial conditions, thus suggesting dynamic stability (from Shah and Humphrey,
with permission).

and the perturbed solution returns to the periodic solution) and hence the solution
is dynamically stable. Additional results suggest that the time-dependent solution
can be treated quasi-statically as a series of equilibria. Whether this observation
holds for other situations (e.g., different material parameters, different geometries,
different forcing functions, etc.) must be examined individually, and remains an
open problem. Based on this simple analysis, however, it appears that at least one
sub-class of (nearly) spherical saccular aneurysms is dynamically stable both when
P;(t) is a periodic function having a fundamental frequency less than 5-10 Hz (the
non-autonomous system) and when it is a constant (the autonomous system; not
shown). It appears reasonable, therefore, to emphasize quasi-static stress analyses
for insight into the mechanics, a conclusion supported by Steiger [95]. Indeed,
because saccular aneurysms are known to be thin, membranous tissues subject to
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low frequency pulsatile pressures, intuition suggests that the inertial effects would
be small.

5.3. STRESS ANALYSES

There have been few rigorous studies of the quasi-static response of the aneurysmal
wall to applied loads. Overly simplified analyses have been based on electrical
analog models of latex balloons [5, 19] or constitutive relations that describe the
behavior of rubber-like [1] or linear materials [34, 86] — (note: [34] is based on an
incorrect equilibrium solution using a so-called modified Laplace’s equation).
Laplace’s equation 7 = Pa/2 is a universal solution for a thin-walled sphere
and thus is applicable to saccular aneurysms (as used in the above limit point
analysis). Canham and Ferguson [12] used Laplace’s equation to estimate a critical
diameter d, at which a lesion may rupture. They assumed that the aneurysmal tissue
volume vy (= 4mwa*h) remains constant at all transmural pressures P (i.e., that
these lesions suffer isochoric motions in a given state of enlargement), and showed

that
4o, 1/3
d, = ( 7 ”T) , (11

where o, is a critical wall strength. Rough estimates of vy = 1 mm?®, o, = 10 MPa
(recall that Scott et al. reported a 6, = 1-2 MPa and Steiger et al. reported a
o, = 0.5-1.2 MPa, both from uniaxial studies), and P = 150 mmHg suggested
ad. = 8.6 mm, a reasonable value. Limitations of this approach are the same as
those in the work of Humphrey and Kyriacou [46] and Shah and Humphrey [85]
— assumption of homogeneous and in-plane isotropic tissue behavior as well as
homogeneity of the calculated stress and strain fields. The latter suggests that each
material point is equally likely to fail, which does not account for the propensity of
rupture at the fundus [18, 80, 92].

Despite the usefulness of simple spherical models, more realistic analyses are
needed to account for the complex geometry, material properties, and applied loads
that characterize the mechanics of an intracranial saccular aneurysm. Towards this
end, Kyriacou and Humphrey [57] and Shah et al. [84] solved the equilibrium
problem in weak form using the finite element method. For example, one can
solve nonlinear axisymmetric and nonaxisymmetric inflation problems using the
principle of virtual work,

f 8wdA—an-8xda=0, (12)
o Q

where w is the 2-D strain-energy function, P the distension pressure, n an outward
unit normal to the membrane in the currentconfiguration £2, 8x the virtual changes
in position, and €2, the original domain. After introduction of suitable interpolation
functions and numerical integration via appropriate quadrature rules, equation (12)
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reduces to a system of nonlinear algebraic equations of the form g(q) = 0, where
q represents the vector of (unknown) nodal positions. This equation admits an
iterative Newton-Raphson solution, viz.

K(@)[q'" — q'] = —g(q'), (13)

where K = dg/dq is the tangent matrix and i an iteration counter. This finite
element solution thereby yields the current position of each node, from which one
can compute strains and then stresses; this allows one to quantify the heteroge-
neous and anisotropic response of aneurysms to distention pressures. Kyriacou and
Humphrey [57] and Shah et al. [84] considered a class of idealized axisymmet-
ric saccular aneurysms having an initially uniform wall thickness H, a truncated
spherical or elliptical geometry, a Fung-type constitutive behavior, and a clamped
boundary condition at the neck. Not having sufficient data to quantify possible
regional variations in material behavior, they considered a range of stress—strain be-
haviors from isotropic and homogeneous to anisotropic and heterogeneous. Using
the aforementioned results for equation (3) and Scott’s data, they defined isotropic
behavior by ¢ = 0.8769 N/m, c¢; = ¢; = 11.82, and c¢3 = 1.18. For anisotropic be-
havior, the values of ¢ and ¢3 were the same, but values of ¢; and ¢, were modified
to allow the ratio ¢{/c; to vary linearly with the undeformed arc length § € {0, L]
from c;/c, = 1 at the fundus (S = 0) to either 3 or 1/3 at the neck (§ = L).
Kyriacou and Humphrey prescribed the variation in ¢;/c; such that the value of
w (Ay = 1.18, A, = 1.18) was the same at the neck as it was in the isotropic case;
Shah et al. ensured that w (A; = 1.18, A, = 1.18) remained the same at each
point. Whereas the former allows regional variations in material heterogeneity (as
suggested by the data of Steiger et al. [93]) and material symmetry, the latter main-
tains a type of homogeneity and thereby isolates effects of regional variations in
symmetry. Of course, c¢|/c, mustequal 1 at the fundus due to axisymmetry, which
requires 77 = T, and A, = A, at that location. Finally, the prescribed boundary
conditions were zero displacement at the neck (i.e., #, = Oand 4, = O atz = 0,
which enforces A, = 1 at z = 0, where u is the displacement) and zero radial
displacement at r = 0, the symmetry axis.

Perhaps the first question that one should address with the finite element method
is the applicability of the Laplace equation 7, = T = Pa/2. Shah et al. [84]
attempted this by first finding the best-fit sphere for the deformed configuration
of model lesions as calculated by finite elements. They fit the deformed generator
curve via (r/)? + (z/ — 0)> = a%, where j = 1, ..., n is the number of nodes used
in the simulation, and o and a define the center and radius of the best-fit sphere.
Next, they calculated the principal uniform Cauchy stress ¢, which equals 7'/ & or
TA2/H where h = H/A?is the deformed thickness, A = a/A the uniform stretch
ratio, and A the best-fit undeformed radius. This requires a value for the uniform
A associated with 7, which was obtained by inverting the constitutive relation (cf.
equation (3)). Finite element and Laplace results were then compared as a function
of undeformed arc length S.
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Figure 6. Finite element results for a model isotropic and axisymmetric aneurysm — ¢ = .88
N/m, ¢; = ¢p = 11.82, ¢3 = 1.18, H = 27.8 pum, initial volume = 0.0398 ml, and
A : B =0.32, 1.0, and 3.12. Panels A—C show the undeformed (dashed) and deformed (solid
lines) configurations at 80 and 160 mmHg pressure. Panels D-F show the associated stresses
in the meridional and circumferential directions, with the dotted lines showing the Laplace
approximation. Panels G-I show the associated stretches (from Shah et al., with permission).

Figure 6 shows results for lesions having three different initial geometries (i.e.,
values of A/ B, the ratio of the initial R and Z major axes) but otherwise the same
initial lesion volume, thickness, isotropic material behavior, quasi-static distension
pressure, and boundary conditions; specific values are in the figure legend. The
undeformed generator curves (dashed lines in panels A to C) reveal that the pre-
scribed geometry was one half of a complete ellipse or sphere. Panels A to C show
how the initially elliptical or spherical geometry was distorted upon loading (see
solid lines) due, in part, to the fixed boundary condition at the neck. Despite equal
increments in pressure from O to 80 and then 80 to 160 mmHg, most deformation
occurred at lower pressures as expected of a material that exhibits an exponential
stress-strain behavior. Panels D to F reveal a number of important observations
with regard to the distributions of the principal Cauchy stresses t,: the meridional
stress (solid curve) was higher than the circumferential stress (dashed curve) in
lesions when A/B > 1, but the converse was true when A / B < 1; the highest
multiaxial stresses occurred at the fundus in the lesions with the highest ratio of
A/B; the highest multiaxial stresses occurred near S/L ~ 0.7 (with S/L = 0
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Figure 7. Similar to Figure 6 except for lesions having an increasingly greater stiffness in the
circumferential direction as you move from the fundus to the neck.

at the fundus and 1 at the neck) for lesions with A/B < 1; and, as expected,
stresses were uniform over the largest domain in lesions having A/B =1 (i.e.,
an initially spherical geometry). Panels G to I show the associated distributions
of the principal stretch ratios A,. Note that A, = 1 at /L = 1 asrequired by
boundary conditions. The horizontal dotted lines in panels D to I show the uniform
stress and stretch values predicted by the Laplace solution; recall that these were
calculated based on the best-fit sphere for the deformed configuration. As expected,
the Laplace approximation was best for the initially spherical geometry although
one may argue that a reasonable mean value for 7;,(S) was obtained in each case.
Details on the stress field provide much greater information, however.

Additional results were reported for the same three lesions and loading con-
ditions with the exception that the material properties varied linearly in S from
isotropic at the pole (i.e.,c; = ¢, = 11.8 at §/L — 0) to meridionally stiffer at the
neck (i.e.,, ¢; = 17.79 and ¢, = 5.93 at S/L = 1). The deformed configurations
were similar to those in Figure 6, and so too for the stress and stretch fields with
two exceptions: the maximum stresses increased at the fundus and the meridional
stretch decreased at the neck when A/B > 1, and the maximum values of circum-
ferential stress and stretch (i.e., near S/L = 0.7) increased slightly with respect
to those in Figure 6 when A/ B < 1. Figure 7 shows results for the same three
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Figure 8. Similar to Figure 6 except for lesions of three different initial sizes (from Shah et
al., with permission).

lesions with the exception that the material properties varied linearly in S from
isotropic at the fundus to circumferentially stiffer at the neck (i.e., ¢; = 5.93 and
¢y = 17.79 at §/L = 1). In contrast to changes associated with the meridionally
stiffer lesion, this circumferentially stiffer behavior resulted in marked differences
in the stress and stretch fields, particularly when A/B > 1. For example, panels
E and F in Figure 7 reveal that an increased circumferential stiffness resulted in
a decreased equibiaxial stress at the fundus, a maximum multiaxial stress away
from the fundus, and an increased meridional stretch near the neck. Increasing the
circumferential stiffness when A/ B > 1 thus tended to homogenize the stress field.

Figure 8 shows results for lesions having three different initial sizes (i.e., lu-
minal volume) but otherwise the same initial spherical shape (i.e., the same un-
deformed radius, but truncated at different locations), thickness, isotropic material
behavior, quasi-static distension pressures, and boundary conditions. As expected,
panels A to C show that the more completely spherical geometry (panel C) yielded
the most sphere-like behavior; that is, the stress and stretch fields are uniform and
equibiaxial over a large portion of the lesion, the only variations being due to the
boundary condition at the fixed neck (a boundary layer effect). Despite marked
differences in size (undeformed and deformed), the magnitude of the stresses and
stretches were nearly the same at the fundus and similar over the entire domain.
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This was anticipated for the general solution for the inflation of an axisymmetric
membrane is [47],

7, =L T—P(l K‘) (14)
1_2K2’ 2_K2 2K2 ’

which reveals that it is the principal curvatures (), not the size per se, that controls
the stress resultants — this has not yet been appreciated clinically as noted earlier
with regard to the ongoing search for the “critical size”. Finally, the dotted lines
reveal, as expected, that a Laplace approximation is reasonable for nearly complete
sphere-like lesions (panels B and C) but less good for cap-like lesions.

Despite longstanding reliance on the maximum dimension as a predictor of
rupture-potential, this metric has failed to answer the most important clinical ques-
tions: Why do some lesions expand whereas others remain dormant for long peri-
ods? Why do some lesions rupture whereas most do not? Why does rupture tend
to occur at the fundus even when the neck is thinner? Although based on incom-
plete data, the biomechanical analyses presented here reveal important insights that
address these questions in part. It appears that lesions do not enlarge because of
material or dynamic instabilities; it appears that the local curvature and anisotropic
material properties, not lesion size, govern the distribution of intramural stress;
and it appears that the stresses are greatest at the fundus if the material behavior is
either isotropic or meridionally stiffer (recall that Toth et al. [97] found the latter
experimentally).

6. Need for a Structurally-Based Constitutive Relation

The above results demonstrate that biomechanics can and must play a role in un-
derstanding better the natural history of saccular aneurysms and their treatment.
Yet, analyses are only as good as the data upon which they are founded. A pressing
need in aneurysm research is the identification of an improved stress-strain rela-
tion for the tissue. It is axiomatic that material behavior results from the internal
composition of the material, hence an appropriate starting point is quantitative
histology.

6.1. COLLAGEN ARCHITECTURE

Collagen is a highly structured cross-linked biopolymer, able to withstand high
tensile loads. Tendon, having type I fibers, is perhaps the simplest and most thor-
oughly studied collagenous tissue; it has a breaking strength of 60—100 MPa and
a stiffness of 1.0-2.5 GPa at its maximum extension [22, 101]. A collagenous
framework provides strength and stiffness to blood vessels as well. Many arteries
are able to withstand more than 10 x the normal blood pressure. Even veins, which
may be tested to pressures approaching 600 mmHg prior to use as bypass vessels
for the heart, are exceptionally strong [2]. That intracranial saccular aneurysms
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rupture suggests that they are, in contrast, much less able to withstand the persis-
tent loads due to normal physiological or pathological blood pressures (e.g., up
to ~200 mmHg). It appears that two aspects of collagen structure may be key to
the reduced strength of saccular aneurysms — the layered organization of the fibers
within the wall and the existence of a fiber complement that is substantially weaker
than normal type I collagen [7, 14, 15, 31, 69].

The general spherical shape of saccular aneurysms provides a basis for under-
standing the load carrying capability of the wall. Arterial blood pressure stresses
the wall of a spherical lesion equally in all tangential directions, with “modest”
differences in the stresses for elongated or flattened lesions [57]. Of course, more
varied forms of saccular aneurysms, with secondary lobes on the primary lesion
or biloculations, will have a correspondingly varied distribution of wall stresses.
There is a need to correlate structure and mechanics in saccular aneurysms as at-
tempted in other collagenous tissues (e.g., see [22, 63, 64]). Moreover, new results
are needed to understand better how the aneurysmal wall behaves in the short term
as a stiff elastic collagenous fabric, whereas over the longer term, it behaves in
vivo as a remodeling, irreversibly enlarging structure. Progress has been made by
applying multi-dimensional polarized light (MDPL) microscopy, which has the
potential to complement the tissue mechanics. The key to assessing directional
tissue properties is an evaluation of the directional distribution of the constituent
fibers, layer by layer, and quantification of the proportion of fibers in each direction
as well as their uniaxial strength within each layer.

Given that the aneurysmal wall consists primarily of collagen, it is useful to ex-
ploit the birefringent optical properties of individual collagen fibers — wherein the
morphological, mechanical, and optical axes coincide — to study both orientation
and distribution with the polarizing microscope [9]. The histological processing
for such studies is standard (i.e., fixation, dehydration, paraffin infiltration and
embedding, and subsequent sectioning via a microtome), except for the staining
of tissue after sectioning. Birefringent enhancement stains make the measurement
of the alignment of individual fibers more precise [87] and they make possible a
measure of the strength of birefringence from the same local region. Thus, there
are two polarized light techniques of importance in studying aneurysmal collagen:
the Universal Stage attachment enables measurement of orientation in three dimen-
sions and the Senarmont compensator, which is a 45 degree aligned quarter-wave
filter, allows measurement of the birefringence of individual fibers [9].

The Universal Stage is an effective instrument for measuring two fiber angles:
the azimuth, in the plane of the tissue section, and the elevation, measured out
of the plane of the section. Thus, the tissue section is viewed optically as a thick
transparent section and the birefringent collagen fibers within that section reveal
their 3-D alignment directly on the polarizing microscope. A key point is that the
inner stage of the instrument containing the tissue slide is mounted so that it can
be rotated freely in three dimensions up to a tilt angle of 50°. Measurements of
alignment are made at extinction, which has a precision of approximately +1°
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Figure 9. Schema to illustrate several tangential sectioning planes on the surface of an
aneurysm. The local stretches and stress resultants can be assessed separately in each region
prior to perfusion fixation.

[87]. Graphical presentation and analysis of data have been accomplished using
the Lambert equal area projection.

Plane polarized light traversing a birefringent material is resolved into two
rays, the ordinary ray and the extraordinary ray, which vibrate at right angles to
each other and travel at different velocities. The velocity difference introduces a
phase difference between the two rays that depends directly upon the strength of
birefringence and the thickness of birefringent fabric. By means of the Senarmont
compensator, one is able to measure, fiber by fiber, the phase difference (or phase
retardation) directly on the microscope. The rationale behind the phase retardation
method is that both the mechanical strength of the tissue and its birefringence
depend on the cross-linked molecular structure and size of the fibers [21, 100].

An important requirement for combining both phase retardation and 3-D orien-
tation is that the elevation angles of the measured fibers be relatively low, less than
15°, which ensures that the phase retardation is not biased toward lower values.
This requirement has been met in studies on saccular aneurysms by confining
analysis to tissue sections cut tangentially or near tangentially. By the method
of repeated embedding, after each short series of tangential sectioning from the
surface, it has been possible to retrieve collagen-related microscopic data from
several regions of interest on the aneurysm surface [15]. This approach has set the
stage for matching, in the future, wall structure and material behavior, region by
region on individual lesions (Figure 9).

Figure 10 shows a tangentially cut section close to the luminal edge of a 2.6 mm
diameter human aneurysm. Superimposed on the section are four radially aligned
corridors that provide a gray-scale comparison of the strength (i.e., level) of bire-
fringence as a function of position across the wall. The layering of the wall is
evident by the concentric rings, with a parallel alignment of fibers within indi-
vidual layers. The azimuthal direction of the fibers is generally coherent within
layers with the mean direction varying widely from layer to layer (cf. Figure 2).
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Birefringence

Figure 10. Polarized light micrograph of a tangential section from a 2.6 mm diameter
aneurysm revealing the layered structure of the aneurysm wall (wall thickness 70 wm). Four
measurement corridors are shown, with the birefringence levels of collagen within each of the
layers being gray-scaled (from MacDonald et al. [66), with permission).

Elevation

Figure 11. Lambert projections to show the orientation of collagen fibers for one of the mea-
surement corridors from the aneurysm shown in Figure 10: (i) primary data with each layer
identified by number, and (ii) data rotated to show the great circle distribution, indicating
that there is a full range of directional alignments of the collagen fibers at that region on the
aneurysm wall (with permission).

This distinctly layered organization has been characteristic of each of the several
saccular aneurysms studied, regardless of size, provided the wall is relatively free
of atherosclerosis [13, 14]. The defining feature of each layer has been primarily
the mean fiber orientation, although fiber size and birefringence also contribute to
the distinctiveness among layers.

Graphical presentation of directional data on Lambert projections provides a
quantitative and comprehensive overview of the directional organization of the
fibers in a tissue section. It is the preferred graphical method for three-dimensional
data because it is an equal area projection, preserving the total area of the data
regardless of its mean orientation and thus its projection position on the graph
[76, 88]. Figure 11(i) is an example of a Lambert projection showing a single
corridor of measurements with 10 layers across the wall of the aneurysm from
Figure 10. This projection shows the clustering of the primary data around the
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Figure 12. Plot of the calculated breaking tension in the three outer layers of an aneurysm
against the angular direction of the wall, where 0° on the abscissa is the meridional direction
(neck to fundus) and 90° is the equatorial direction. The inset is a schema of the three outer
layers with the mean collagen orientation shown, and the gray scale indicating the strength of
birefringence (from MacDonald et al., with permission).

perimeter (azimuthal directions ranging from 0 to 360°) with the elevation angle
varying nonlinearly toward the center of the plot. The layers are numbered from
the lumen, as layer 1, to the outer edge of the aneurysm. The computer rotated
projection (Figure 11 (ii)) shows the distribution of the same data relative to a
great circle girdle distribution, and reveals how well these data span all orientations
relative to the aneurysm surface.

Together, fiber direction and distribution provide a basis for estimating tissue
strength (which also depends on cross-linking, etc.), and they can be used to de-
velop microstructural methods such as those of Lanir [62]. The observed variation
of birefringence across the aneurysm wall has suggested that it is reasonable to
combine retardation and orientation data to assess directional strength of the tissue
[15]. Early findings suggest that enlargement of an aneurysm requires a reorgani-
zation of the higher strength outer fibers while new collagen is added to the inner
layers. Note, therefore, that several studies have linked collagen birefringence,
mechanics, and the healing process — for example, in skin wound healing and
maturation of a scar post myocardial infarction [21, 105, 106]. It was the study
of Doillon, however, that provided the first quantitative measure of tissue strength
directly from birefringence. Recently, MacDonald et al. [66] reanalyzed the data
of Doillon by plotting tensile strength o (kPa) versus fiber birefringence B (phase
retardation in units of nm), which revealed a nonlinear relation o, = 0.304B2%33, for
which the correlation coefficient » = 0.99. This strength was defined as the tensile
stress at which the dermal scar began to fail due to damage and/or micro-tearing.
Figure 12 shows the contribution to directional strength of three outer layers of
a 9 mm diameter aneurysm, and the marked differences in strength contribution
because of layer thickness and fiber birefringence; included in the calculations
were aneurysm radius, layer thickness, and number of layers, and the variables
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of fiber alignment, birefringence, and estimated local wall thickness [66]. The data
revealed a tissue anisotropy of approximately 2 x for the direction of least to great-
est strength, with a tensile strength (in the weakest direction) ranging from 0.73 to
1.8 MPa over 4 aneurysms. Recall that Steiger et al. and Toth et al. reported direct
measurements of tensile strength from aneurysmal tissue strips 0.5 MPa +0.26
(SE) and 0.5 to 1.45 MPa, respectively — this shows a good correspondence with
the few aneurysms that have been studied microscopically to date.

6.2. THEORETICALLY-MOTIVATED EXPERIMENTS

There are five general steps in the formulation of a constitutive relation (DE-
ICE): Delineating general characteristics, Establishing a theoretical framework,
Identifying a specific form of the relation, Calculating best-fit values of the ma-
terial parameters, and Evaluating the predictive capability of the final relation.
Hsu et al. [42, 43] presented both a new theoretical framework and a multiaxial
experimental system for accomplishing steps 2-5 for thin, axisymmetric, non-
complicated (i.e., no atherosclerosis and no prior bleeds or repairs) saccular aneu-
rysms. Briefly, the framework exploits two results noted above: equations (14),
which show that the in-plane stress-resultants can be determined directly from
experimental data, and equation (2), which is a general membrane constitutive re-
lation. Taken together, it is easy to see that, in principle, one can glean information
about the response functions dw /9 Ep for the material via,

ow _)\2 P ow __)\.1 P 1 K| (15)

aE“ N )\1 2/(2 ' aEzg h )»2 K2 2/(2 ’
where F = diag[A, A»] and A, (stretch ratios), x, (principal curvatures), and P
(distension pressure) are all experimentally measurable. Although one would prefer
to examine these response functions by maintaining one of the principal Green
strains constant while the other varies, and vice versa, this is not possible in the
axisymmetric inflation problem. Hsu et al. [42] showed via numerical simulations,
however, that this approach can provide information on the functional form of the
strain-energy function. Unfortunately, this has yet to be accomplished in large part

due to the scarcity of unruptured human lesions at autopsy and in particular those
having an axisymmetric shape.

6.3. INVERSE FINITE ELEMENT PARAMETER ESTIMATION

Whether the lesion is axisymmetric or non-axisymmetric, or whether the functional
form of the strain-energy is identified directly from data or simply postulated, one
must calculate best-fit values of the material parameters from data. Kyriacou et
al. [59] suggested that the inverse finite element method would be useful in this
regard. Briefly, they evaluated this approach by comparing nodal displacements
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that were calculated via a (forward) finite element solution (e.g., equations (12)—
(13) with an assumed set of material parameters) with those that were found ex-
perimentally for an inflated rubber membrane; estimates of the best-fit values of
the material parameters were determined by minimizing the difference between
computed and measured displacements in a nonlinear least squares sense. Results
showed that this approach is indeed feasible, at least for simple material descrip-
tors. Nonetheless, solving the nonlinear finite element equations (iteratively using
a Newton—Raphson method) within an iterative nonlinear regression algorithm
(Marquardt-Levenberg) can be computationally expensive. Seshaiyer et al. [82]
suggested, therefore, that one simply perform the parameter estimation over a sub-
domain €2 C £2,, rather than over the whole domain £2,. Advantages are two-fold:
one avoids the necessity of knowing all of the boundary conditions, which can be
challenging even in a laboratory setting, and one need not solve a large number of
simultaneous finite element equations.

In particular, Seshaiyer et al. reported best-fit values of the material parameters
(constitutive relation similar to equation (1)) based on pressure-strain data from
multiple regions from 2 non-axisymmetric human aneurysms. The estimation was
based on four linear triangular elements that defined the sub-domain, with the 1
central node “free” and the 4 outer nodes prescribed as displacement boundary
conditions. As expected, the results suggested anisotropy and regional differences,
the most marked of which was for a lesion that was primarily collagenous but had
a region that was visibly atherosclerotic (and thus stiffer). In comparison to the val-
ues of the parameters obtained from the data of Scott et al., the more recent findings
suggested an overall stiffer behavior. For example, for one (representative) region,
¢ = 10.18 N/m, ¢ = 20.03, ¢; = 8.71, and ¢z = 8.81. This was consistent with
the much less extensible behavior seen experimentally in these lesions — maximum
principal stretches were on the order of 8% rather than the 18% reported by Scott et
al. (who assumed that the lesions were perfect spheres). This difference may well
have been due to a difference in defining the stress-free states, the more recent data
likely being more reliable. Figure 13 shows an illustrative stress—stretch response to
equibiaxial stretches of 10% based on the new best-fit values. Note the anisotropy,
albeit not marked.

7. Growth and Remodeling
7.1. MOTIVATION

Diverse research over the last 25 years has revealed the ubiquitous role of growth
and remodeling within the vasculature, one that is essential to normal tissue main-
tenance, the process of healing, adaptation to altered conditions, and even the
progression or regression of disease. Examples include arterial adaptations to hy-
pertension, sustained alterations in flow, and balloon angioplasty to name but a
few [32, 61]. Based on the recent data by Canham and colleagues [66] as well
as work on protease activity in aneurysms [31, 69] it appears that stress-mediated
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Figure 13. Calculated equibiaxial stress-stretch responses based on the best-fit material
parameters determined using the sub-domain inverse finite element method for parameter
estimation — results from one region on one human lesion (from Seshaiyer et al., with
permission).

regulation of aneurysmal collagen may play a key role in the natural history of these
lesions as well. This is largely an open problem from the perspective of mechanics,
but let us briefly review recent work that illustrates its potential importance.

7.2. TOWARDS A GROWTH MODEL

There has been only one prior report of a computational model for studying the
growth of saccular aneurysms, and unfortunately it is not described in detail. Steiger
[95] considered a class of axisymmetric lesions (equations (14)) and stated that
“tissue growth rate was set proportional to wall stress”. Although there is no dis-
cussion of the constitutive or evolution equations, he reports that “sausage-shaped
and disc-shaped” lesions tended to develop toward a spherical shape whereas multi-
lobed lesions tended to remain complex. He suggested that localized blebs may be
an attempt to stabilize a localized weakness in the wall.

Let us consider the following questions: Can fibroblasts in an enlarging aneurysm
synthesize and organize collagen such that the resulting intramural stresses mimic
the values experienced in the normal parent vessel? Or, does a particular distribu-
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tion of material properties exist that would tend to minimize and homogenize the
stress distribution within an aneurysm? In an effort to begin to examine the latter
question, Ryan and Humphrey [78] studied 12 sub-classes of non-complicated le-
sions (maximum dimensions < 2 mm) defined by the triplets (A, B, Z,) where A
and B are the major/minor radii and Z, is a “truncation level” that yields a model
having a neck (cf. Figure 6). Using finite element simulations, preferred material
properties were sought in terms of two parameters, (¢2/¢{)max € [1/11, 11] and
p € [1, 6], where

¢ c i—17%
2= (@) a

and ¢, and ¢, are the material parameters in the Fung pseudostrain-energy function
(equation (1)), (c2/¢1)max 1S the ratio of these parameters at the neck of the lesion
(arc length S = L), i € [1, N] is the finite element number, and p is a descriptor
of how (e.g., linearly or nonlinearly) the material symmetry varies from the fundus
to the neck. For example, (c2/ci)max = 1 implies isotropy at all S, (¢2/¢{)max >
1 yields a progressively increased circumferential stiffness, and (cz/¢))max < 1
yields a progressively increased meridional stiffness. Likewise, p = 1 requires
the symmetry to vary linearly from the fundus to the base (as in Kyriacou and
Humphrey [57], Shah et al. [84]), whereas p > 1 allows nonlinear variations.
Preferred properties thus indicate that particular combination of (¢;/¢)max and p
that minimizes and homogenizes the stress field.

Based on literally thousands of simulations (though this would be better ac-
complished simply as an optimization problem), it was found that the multiaxial
stresses in lesions having an initially large neck: height ratio tend to be lower
and nearly homogeneous if p > 1 and (¢3/¢1)max > 9. Figure 14 compares,
for example, the different stress distributions for isotropic (i.e., (¢2/¢{)max = 1
and p = 1) and the preferred properties for one lesion. With the exception of the
boundary layer effect (due to the imposed zero displacement boundary condition
at the neck), the stresses are nearly homogeneous. Although results were different
for the different geometries (see [78]), the general finding was consistent with that
of Steiger [95]): small non-complicated lesions (i.e., thin and collagenous, free
of atherosclerosis, fibrin patches, etc.) tended to “prefer” material properties that
allowed them to become more spherical. For large neck: height ratios this requires
that the lesion expand more in the z direction, which requires less stiffness in
the meridional direction; for small neck: height ratios, this requires that the lesion
expand more in the r direction, which requires less stiffness in the circumferential
direction. These findings are ideologically reasonable as the sphere is the optimal
geometry to resist a distension pressure. An unexpected finding, however, was how
the lesions preferred to achieve this. For example, lesions with large neck: height
ratios tended to concentrate the anisotropy near the neck (i.e., larger values of p).

Although based on idealized models, the finding that intramural stresses in
aneurysms can be homogenized simply via a preferential deposition of collagen
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Figure 4. Stress distributions for the same model lesion except that the material behavior
is isotropic in one case and “preferred” in the other. Note the tendency towards homoge-
nization and minimization of the stresses in the latter case (from Ryan and Humphrey, with
permission).

(and selective removal of old collagen) is provocative. Indeed, given recent re-
ports that apoptosis (programmed cell death) and matrix metalloproteinase activity
(matrix degradation) are both increased in saccular aneurysms, and so too for
the transcription of type III collagen, it is reasonable to expect significant stress-
mediated remodeling in aneurysms [15, 36, 69]. It is tempting to hypothesize, for
example, that stable lesions are those which have remodeled in such a way that
the stresses experienced by the fibroblasts are restored close to those in the normal
parent vessel. There may be cases, of course, wherein the stresses may exceed
wall strength prior to the normalization of stress due to remodeling; likewise, the
insidious effects of atherosclerosis, the activation of platelets, etc. may also hinder
or prevent the remodeling process and thereby lead to rupture. In such cases, the
lesion could rupture prior to stabilization. There is clearly a need to explore remod-
eling theories (e.g., see [48]), which of course must be based on good estimates of
the wall shear stress and pressure fields (and thus solid-fluid interactions), which
likely serve as signals to the endothelial cells and fibroblasts to control matrix
turnover, and better data on the time-course of changes in lesion geometry and
microstructure. Only in this way will one be able to formulate and test various
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growth and remodeling theories. Much remains to be done, and finite elasticity has
a clear role to play.
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Abstract. Mechanisms of arterial adaptation to changes in blood flow rates were tested by comparing
the predictions of a proposed theoretical model with available experimental data. The artery was
modeled as an elastic membrane made of a nonlinear, incompressible, elastic material. Stimulation
of the vascular smooth muscle was modeled through the generation of an active component of
circumferential stress. The muscular tone was modulated by flow-induced shear stress sensed by
the arterial endothelium, and is responsible for the vasomotor adjustment of the deformed arterial
diameter in response to changes in blood flow. This study addresses the hypothesis that the synthetic
and proliferative activity of smooth muscle cells, leading to a change in arterial dimensions, is shear
stress dependent and is associated with changes in the contractile state of the smooth muscle cells and
changes in the circumferential wall stress. Remodeling to a step change in flow was formulated as an
initial-value problem for a system of first order autonomous differential equations for the evolution
of muscular tone and evolution of arterial geometry. The governing equations were solved numeri-
cally for model parameters identified from experimental data available in the literature. The model
predictions for the time variation of the geometrical dimensions and their asymptotic values were
found to be in qualitative agreement with available experimental data. Experiments for validating the
introduced hypotheses and further generalizations of the model were discussed.

Mathematics Subject Classification(s) (2000): 74L15.

Key words: finite elastic deformations, flow-induced shear stress, circumferential strain and stress,
arterial mechanics, vasomotor response, remodeling.

1. Introduction

Like all tissues whose physiological function is associated with exposure to me-
chanical forces, arteries are sensitive to changes in their mechanical environment,
i.e. to arterial pressure and blood flow alterations. The complex of processes that
causes a long-term transformation of an artery subjected to sustained changes in
pressure and/or flow is called remodeling. Remodeling includes processes in which
endothelial cells and smooth muscle cells are involved. Endothelial cells form a
one cell-thick layer, which together with the underlying membrane is called the
intima, and is in direct contact with flowing blood. Smooth muscle cells are one
of the basic structural components of the middle layer called the media, the major
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load-bearing part of the arterial wall. Apart from smooth muscle cells, the media
consists of collagen fibers, elastin, and a ground substance matrix.

At the micro-level, cellular and intracellular, remodeling manifests itself as
growth, division, cell loss, change in size, shape and orientation of cells, cell mi-
grations, as well as synthesis of collagen, and synthesis and degradation of extra-
cellular matrix. These processes involve interaction of multiple ionic and enzymic
pathways, whose precise nature remains unknown.

At the macro-level, remodeling appears as changes in the geometrical dimen-
sions and mechanical response of the artery, which do not result from the deforma-
tion caused by the altered loads. Sometimes geometrical and mechanical alterations
are accompanied by changes in wall structure and composition. Moreover, remod-
eling may lead to changes in the arterial response when arterial smooth muscle cells
are stimulated to relax or contract. Because arteries are permanently subjected to
loads, remodeling also affects the strain and stress fields in the arterial wall.

Compensatory enlargement of arteries in response to increased flow has been
demonstrated in animal models and human vessels. Kamiya and Togawa [30] show-
ed that an arterio-venous fistula between the canine common carotid artery and the
external jugular vein causes increased flow rate in the artery proximal to the shunt,
and thus creates a marked increase in the flow-induced shear stress at the intima.
Over time, the deformed arterial radius increased and tended to restore the normal
baseline levels of mean shear stress of about 1.5 Pa. Similar results have been
observed in [6, 28, 32, 33]. Compensatory enlargement in response to increased
flow was also recorded during normal development [18, 55] and hypertension [2].
More detailed analysis of the arterial response shows that it involves two successive
phases. Firstly, an acute increase in arterial lumen occurs, resulting from the tem-
porary dilatation of the artery. The process is mediated by the endothelium through
the release of substances such as endothelium-derived relaxing factor (EDRF), the
principal component of which, NO, causes relaxation of medial smooth muscle
cells [29, 32, 33]. Vasomotor response is followed by long-term reconstruction of
the media due to proliferation and migration of the smooth muscle cells in such a
way that the undeformed lumen of the vessel increases. Arterial enlargement causes
an increase in wall tension and thereby increases the average circumferential stress.
A compensatory thickening of the arterial wall was experimentally observed, which
seems to restore the normal values of the wall stress [25, 39, 43, 60].

Reduced flow elicits a different response. It again comprises two successive
processes, but in general, remodeling does not follow a time course that is simply
the reverse of that observed under increased flow conditions. At first, the decrease
in wall shear stress sensed by the endothelium evokes a smooth muscle contrac-
tion and shrinkage of the vessel. Reductions in the release of EDRF or changes
in concentration of specific vasoconstrictors are candidates as mediators of that
process [34, 35]. Sustained decrease in flow provokes further processes, which
occur mainly in the intima and result in wall thickening. Normally, remodeling is
a self-limiting process and leads to a restoration of the baseline value of the wall
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shear stress. Smooth muscle cells migrate into the intima and produce matrix pro-
teins, resulting in a structure that resembles the underlying media. This new tissue
is referred to as fibrocellular intimal hypertrophy [25]. Sometimes the remodeling
process may not lead to a configuration that maintains the normal level of wall
shear stress. The proliferation process may continue and lead to the formation of
a stenosis or obliteration of the lumen. The grown tissue is matrix-free, poorly
organized and forms so-called intimal hyperplasia [25]. The exact mechanisms
involved in the different modes of arterial wall remodeling in response to altered
blood flow remain unclear.

Changes in flow also cause remodeling of endothelial cells in the intima. This is
characterized by loss of cells due to decreased flow or proliferation due to increased
flow. The net effect is an adaptation that maintains endothelial cell density despite
the changes in arterial diameter resulting from remodeling of the media [33]. When
an artery is denuded of intima, i.e. the endothelial cells are removed, a change in
flow does not cause either acute vasomotor response or wall remodeling [32, 40].
Hence the shear deformation of the endothelial cells appears to be the first in the
chain of events that cause a change in smooth muscle tone, resulting in further
remodeling of the wall.

The mechanisms by which arteries adapt to chronic blood flow alterations differ
in young and mature animals. It was found that the carotid arteries of adult rabbits
subjected to reduced blood flow exhibited decreased internal diameter although
no significant changes in vessel mass and wall constituents were observed [32—
34]. Similarly, it has been shown that remodeling elicited by elevated blood flow
ultimately produces a vessel with major properties similar to a control artery [19].
As for young animals, remodeling results not only in a change in geometrical
dimensions but also affects wall structure and composition, disturbing the normal
process of development and maturation [8, 17, 33, 63].

It is worth noting that other factors such as nervous stimuli and the local hor-
monal and metabolic environment might affect smooth muscle cell activity and
wall remodeling. Recent investigations performed in cell and tissue culture systems
make it possible to eliminate non-mechanical factors and independently evaluate
the contribution of the mechanical environment. The results from these studies have
shown that pressure and flow conditions are major determinants of the mechanical
properties and geometrical dimensions of arteries [4, 41].

In summary, the vessel remodels to maintain baseline levels of certain mechan-
ical characteristics such as flow-induced wall shear stress at the intima and wall
tensile stress in the media. Therefore, remodeling represents a locally controlled
adaptive response tending to cope with changes in the mechanical environment.
Experimental evidence that the arterial response to changes in pressure and flow
is a local phenomenon, which is described in terms of mechanical quantities such
as strains and stresses, suggests the need to develop mathematical models based
on continuum mechanics. The results of these models aim to predict geometrical
and mechanical response in arteries following changes in their mechanical environ-
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ment. The information is important because a vessel’s dimensions and mechanical
properties determine the major functional role of arteries namely, to transport blood
to organs and tissues and to transform the highly pulsatile heart output into a flow
of moderate fluctuations.

Comparison between theoretical predictions and experimental findings justifies
the acceptance or rejection of introduced model hypotheses for mechanical quanti-
ties that drive and govern the adaptation process. If no appropriate experiments
exist, modeling can suggest the kinds of new experiments that are needed and
methodology for analyzing the data. It is expected that the results obtained from
continuum mechanics models may advance the level of understanding of the role
that mechanical factors play during normal arterial development and maturation,
and might help to reveal the mechanical aspects of the genesis and progression
of certain vascular pathologies. Additionally, results from model studies could
promote the development of therapeutic interventions with the aim of restoring
the mechanical loads on arteries to normal levels. Finally, knowledge of mecha-
nisms underlying arterial wall remodeling might be used to control the mechanical
environment in bioreactors for tissue engineered blood vessels.

Past theoretical studies have mainly focused on the arterial remodeling un-
der hypertensive conditions. Fung [21] has proposed a stress-growth law, which
relates growth rate of the mass of an artery to the actual stresses. A general three-
dimensional theory for a finite stress-induced volumetric growth has been devel-
oped in [55] considering a solid as a collection of growing differential elements.
Following this approach, theoretical studies on aortic growth during development
and under variable pressure have been performed [56-59]. The authors have postu-
lated that the transverse growth of smooth muscle fibers depends linearly on the
passive fiber stress, while the longitudinal growth depends on both fiber stress
and the shear stress on the endothelium. Another approach based on a global
consideration of the arterial wall was proposed in [45, 48, 49]. The authors studied
the dynamics of geometrical adaptation in response to sustained increase in blood
pressure. It was assumed that during remodeling the geometry of the arterial cross-
section and mechanical properties of arterial tissue change in a manner that restores
the baseline values of the flow-induced shear stress at the intima, the normal stress
distribution across the arterial wall, and the normal arterial compliance. In all
models of arterial remodeling the active response of smooth muscle cells has been
neglected.

As briefly explained above, arterial response to altered blood flow involves
processes in which the smooth muscle cells play a key role. Therefore, relevant
modeling should include both the short- and long-term contribution of the vascular
smooth muscle. The aim of this study is to propose a mathematical model for
both the acute vasomotor response and the long-term geometrical remodeling of
arteries induced by sustained changes in blood flow. The model aims to give a
probable interpretation of some experimental results available in the literature and
to suggest new type of experiments. The study addresses the hypothesis that the
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synthetic and proliferative activity of smooth muscle cells, leading to a change in
arterial dimensions, is shear stress dependent and is associated with changes in
the contractile state of the smooth muscle and changes in the circumferential wall
stress.

2. Methods

In the beginning a mathematical model of an artery subjected to physiological load
is proposed. Afterwards, with account for some ionic processes in the stimulated
smooth muscle cells, an evolution equation for a state parameter describing their
contractile state is deduced. Finally, remodeling rate equations for the dynamics
of the vessel’s geometrical parameters are proposed following the approach used
in [48, 49]. Remodeling in response to a step change in flow is formulated as an
initial-value problem for a system of first-order autonomous differential equations
coupled to the equations describing the deformation of the arterial wall.

2.1. MATHEMATICAL MODEL OF ARTERIAL WALL

An artery is considered to be a circular membrane made of nonlinear elastic and in-
compressible material. Based on experimental findings that in some cases an artery
remodels without altering significantly its structure and composition [19, 33, 34],
mechanical properties are considered to be constant during the remodeling process.
The vessel is inflated by physiologic arterial pressure and extended longitudinally
to its in situ length. When appropriately stimulated, vascular muscle cells are ca-
pable of contraction or relaxation, thereby changing the deformed arterial radius
while keeping the loads on the vessel unchanged.

As has been demonstrated in several studies, [9, 61], when an arterial ring seg-
ment is cut radially, it springs open and takes on a form close to a circular sector.
This fact indicates the existence of residual strains in the arterial wall, which arise
from bending the artery from the opened-up configuration into the unloaded one.
Analysis of stress distributions in the arterial wall on the basis of a thick-walled
cylindrical model taking into account residual strains showed that residual strains
significantly reduce the stress gradient across the arterial wall under physiological
loads [9].

Because the arterial wall is assumed to be an elastic membrane, the circumfer-
ential and axial stresses are considered to be uniformly distributed across the wall
thickness, while the radial stress is assumed zero everywhere. It follows from the
overall equilibrium of the vessel in the radial and axial directions that, when all
loads are removed and the smooth muscle cells are fully relaxed, the artery is in
the zero-stress state. Hence, the membrane assumption excludes the existence of
residual strains and stresses in the arterial wall of the unloaded arterial segment.
Therefore, the state of no load when the smooth muscle is fully relaxed is accepted
as a reference state to define the strain measures at any current deformed state.
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Under applied loads the artery undergoes an axisymmetric finite deformation.
The mean stretch ratios in the longitudinal and circumferential directions are
m=L a2l (1)
l s _’ 2 = —,
L R
where R and r are the mid-wall radii of the artery at the unloaded and deformed
state respectively, and L and [ are the corresponding axial lengths. Hereafter the
subscripts 1 and 2 will be used to refer to the longitudinal and circumferential
direction, respectively. The non-vanishing components of the Green strain tensor
are

Lo L
e = 50‘1 - 1), €y = E()hg - 1. (2)
Considering the vascular material as incompressible, the deformed thickness &

of the artery is related to the thickness H at the zero-stress sate by the relation

H
= —. 3
T 3)
The deformed inner radius of the artery is
MR — — @
¥i —
20T 20,

A description of the stress state in the arterial wall requires modeling of the
contribution of activated smooth muscle cells to load bearing. This study follows
the approach used in [47]. The stresses per unit deformed area (Cauchy stress)
are represented as a sum of two parts: (i) passive stresses, which are borne by
the wall material at the state when the vascular muscle is fully relaxed; and (ii)
active stresses developed by the smooth muscle when it is appropriately stimulated
[14, 20].

Following the general theory of nonlinear elastic membranes [27], the passive
longitudinal and passive circumferential stresses are given by

— )ﬁﬂ = )\2§_YV_ 5
Olp = 1861’ Op = 2362’ (5
where W (e, e;) is the strain energy function. It completely describes the passive
mechanical properties of the wall material and is determined experimentally. The
subscript “p” indicates the passive stress.

The magnitude of the active stress depends on several factors. First is the in-
trinsic capability of stimulated muscle cells to generate stress when the vessel is
kept at constant diameter, so called isometric contraction. It is established that the
contractile activity of smooth muscle cells occurs when the intercellular concentra-
tion of free calcium ions Ca** exceeds a threshold concentration of 10~7 M. The
concentration of Ca** is modulated by the applied stimulation through processes,
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which are discussed in the next section. At the homeostatic state the relationship
between the developed active stress under isometric conditions and free calcium
concentration is close to sigmoidal with a pronounced linear portion over the phys-
iological range of stresses [51]. On the other hand, the active stress developed at
constant stimulation depends on the current configuration of contractile proteins
within the muscle cells, which in turn depends on the deformed state of the arte-
rial wall. There exists an optimum deformed diameter at which the active tension
developed by the smooth muscle cells under isometric conditions has a maximum
value, whereas below and above certain values of the diameter the muscle is not
capable of developing active tension. The diameter-active tension relationship was
experimentally determined for some arteries [10, 15]. It was found that under
physiological conditions arteries normally operate on the ascending part of the
curve representing this relationship. Finally, because the active stress is averaged
across the wall, the magnitude of the active stress depends on the area ratio of
the smooth muscle cells and the other structural components of the arterial cross-
section. This ratio varies with species and location along the arterial tree, with a
tendency to increase with increasing distance from the heart. In most large arteries
smooth muscle cells mainly align in the circumferential direction and generate
predominantly circumferential active stress [10, 15, 20].
Thus, the active circumferential stress is proposed in the following form

02 = cY A F (L), (6)

where c¢ is the calcium ion concentration, which exceeds the threshold concentra-
tion capable of initiating the active response; ¥ is the ratio of the area occupied
by the smooth muscle cells to the total area, both having a normal in the circum-
ferential direction; F(A;) is a function that accounts for the length-active tension
relationship. For fixed values of ¢ and i the function F(A;) is proportional to the
circumferential Lagrangian stress (defined per unit undeformed area). The factor
A» in the equation (6) accounts for the fact that the actual active stress (Cauchy
stress), 62,, 1 defined per unit deformed area.
Equation (6) can be modified by normalization offunction F(A2) as follows

022 = Shaf(A2), (M

where
F(y)

S = MC‘,”, f()"2) = M

) ®)

and M = max F(i).

The parameter S is directly related to the ionic state of the muscle cells. It
depends on the applied stimulus according to the active tension-dose relationship,
specific for each type of stimulation. The value of S represents the maximum La-
grangian stress developed by the smooth muscle cells for given intensity of the
muscular stimulation and at the optimal stretch ratio for which f(A;) = 1. Thus
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the parameter S, being proportional to the concentration of calcium ions Ca** in
the muscular cells, reflects the inherent capability of the smooth muscle to generate
active tension. However, the magnitude of the active tension depends, according to
equation (6), on the actual stretch ratio A,, which in turn is affected by the initial
geometry of the artery and the applied load. The active circumferential stress os,
determines the apparent muscular tone developed by the muscle, while the value
of parameter S gives the current level of contractile activity of smooth muscle cells
developed in response to applied stimulation. It is evident from equation (7) that
the magnitude of the active stress itself does not uniquely characterize the response
of the smooth muscle to given excitation since identical values of g;, might be
generated by different combinations of the muscle parameter S and deformation
parameter A,.

The equation of overall equilibrium of the vessel in the radial direction relates
the total mean circumferential stress to applied pressure, axial stretch ratio and
initial dimensions as follows

H 2

where P is the applied arterial pressure.

At constant pressure and axial stretch ratio, equation (9) gives implicitly the
relationship between the deformation parameter A, and the muscle parameter S of
an artery with fixed initial dimensions R and H. It follows that

Ao hafOo)

9

MAZR 1
o2p(A2) + Sy f(A2) — P[ 172 } =0,

S (10)
where
dO’zp df()\.g) ZPR}»l)\z

=—4 8| f(r A — . 11

m dA2+ [f(2)+ TN H (11)
Similarly, at constant S and A; equation (9) yields

dvy 1[RMmA3 1
AR s (12)
dP m| H 2

The derivative dA;/dP must be positive. Otherwise the arterial diameter de-
creases when the transmural pressure increases and the vessel becomes unstable
[44]. Hence m > O for any value of A, and S. Then it follows from equation (10),
that at isobaric contraction (under constant internal pressure), a larger value of the
parameter S causes a smaller constricted arterial radius.

Finally, assuming the flow Q through the artery to be constant, the shear stress
at the inner arterial surface is given by Poiseuille’s formula

.= 4_’7% (13)

mr;

where 7 is the blood viscosity.
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2.2. EVOLUTION EQUATION FOR THE CONTRACTILE STATE OF VASCULAR
SMOOTH MUSCLE

The artery is first considered under conditions at which the pressure, flow and mus-
cular tone parameter have their baseline values Py, Qg, and Sy, respectively. The
mid-wall radius and wall thickness in the unloaded state are denoted by Ry and Hy,.
Hereafter, the subscript “zero” will be used to refer to the artery under normal flow
conditions. The mean flow rate is changed in a step-wise manner from Qg to Q*
and kept constant, while the pressure remains constant at its baseline value. At the
moment of the flow jump, the vessel maintains its inner radius at the control value
rip. According to equation (13) the change in the flow causes an instantaneous jump
in the shear stress at the arterial lumen from g to T/ = 15(Q*/ Q). Over time the
magnitude of the flow-induced shear stress varies as a result of changes in the inner
radius caused by the vasomotor response and resultant geometrical remodeling.

As mentioned in the Introduction, the arterial response to increased or reduced
flow begins with shear stress-dependent vasodilatation or vasoconstriction. To ac-
count for the effects of altered shear stress on the contractile state of smooth
muscle cells an evolution equation for the muscle parameter S is proposed. As
seen from equation (8), the time variation of S depends on variations of intercel-
lular calcium concentration ¢ and area ratio parameter . It is evident that during
the fast vasomotor response of a given artery to blood flow alterations, i does
not change. Exploiting the experimental observations that for mature vessels the
amount of major structural components of the wall material remains unchanged, it
is assumed in this study that the parameter i remains constant during the whole
process of remodeling as well. Thus, the equation that describes the dynamics of
the muscle parameter S can be deduced from the processes that control the calcium
concentration within the cells.

The basic mechanisms which lead to increase of C concentration are: (i)
incoming flux of calcium ions due to concentration drop between the cell and its
environment; and (ii) release of Ca** from intercellular stores such as the sar-
coplasmatic reticulum, where the ions are in the weakly bound form. The type and
intensity of the applied stimulation affect both processes. On the other hand, there
exist simultaneous processes, which cause a decrease in Ca*™ concentration: active
transport outside of cell by so-called calcium pumps, sodium-calcium exchange
mechanisms, and reasorbtion of Ca*™™ in the sarcoplasmic reticulum. Following
the phenomenological approach proposed in [46] and its modification given in [1],
the rate of change of calcium concentration in the smooth muscle cells is described
by the following balance equation

dc 1 14
- T¢ (14)

The non-negative function ¢ represents the processes that lead to an increase in
calcium concentration. The value of ¢ depends on the applied stimulus reflecting
the coupling between stimulus and transmembrane flux through receptor-operated

att
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channels or release of calcium from intracellular stores. The second term on the
right-hand side of equation (14) accounts for the decrease of calcium within cells,
which is assumed to be proportional to the actual Ca** concentration. Dependence
of the pump rate upon intercellular calcium concentration has been reported in [50],
T is a positive constant that gives the decay rate of calcium concentration.

Using ¢y and ¢( to represent the values that correspond to the steady state of
Ca™™ concentration under normal conditions, the following equation results

0:g00~%co. (15)
Subtraction of equation (15) from (14) yields

dc 1

5=¢—¢o—?(0—6‘o)- (16)

Because the intima adapts to maintain a constant endothelial cell density, a
change in arterial radius resulting from remodeling does not modulate the stimulus
sensed by the endothelial cells and caused by altered shear stress. It is assumed as
a first approximation that

» — o= —PB(r — 1), (17)

where 8 is a constant of proportionality and 7 is the current value of the flow-
induced shear stress, calculated from equation (13) for Q = Q*. Equation (17)
phenomenologically reflects the effects of altered shear stress at the endothelium
on membrane permeability and internal calcium sources. It follows from equations
(16) and (17) that an increase in shear stress over its baseline value causes a de-
crease in intercellular Ca™ concentration resulting in relaxation of the vascular
smooth muscle. A decrease in shear stress over its baseline value has an opposite
effect on Ca™ concentration and leads to contraction of the smooth muscle cells.
These conclusions are in agreement with mechanisms of flow dependent constrictor
and dilator vascular effects that relate changes in the shear stress at the inner surface
to changes in intracellular Ca**concentration in the vascular smooth muscle cells
as proposed in [3]. Observations that shear stress-induced EDRF reduces calcium
influx and thereby lowers intercellular calcium were given in [5].

Making use of equations (8), (16) and (17) and introducing dimensionless vari-
ables, the equation for the evolution of the muscle parameter S describing the ionic
state of smooth muscle cells takes the following form

s 1 [1 T(H, R, /\2)] I~

& T - =1, (18)

0 Ts)

where S = §/So, H = H/Hy, and R = R/Ry. Ts) = So/MBY10 and Tsy = 1/T
are time constants.

The muscle parameter S varies within the range [0, Syax] according to the stimu-
lation-active tension relationship. Hence the dimensionless parameter S has to
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satisfy the inequality 0 < S < §max, where S:max = Smax/So. The value S=0
corresponds to the state of maximal smooth muscle relaxation, and Sy,x to the
state of maximal contraction.

2.3.  REMODELING RATE EQUATIONS FOR THE CASE OF INCREASED FLOW

Following the approach given in [48, 49], changes in the arterial dimensions re-
sulting from flow-induced remodeling are monitored by time variations of arterial
mid-wall radius and wall thickness in the state of no load. It has been experimen-
tally established that geometrical remodeling in response to increased flow results
predominately in an increase in arterial radius. It is postulated in this study that
enlargement of the undeformed mid-wall radius is associated with an increase in
the passive circumferential stress from its baseline value. The simplest analyti-
cal function that describes this relationship is a linear one. Thus, the following
remodeling rate equation for mid-wall radius is proposed

dR 1 [op(2)
—_— =1 1
dr TRI: O2p0 ], ( 9)

where Ty i1s a time constant.

Generalizing experimental observations for growth and remodeling of tissues,
Rodbard [54] has proposed that tension applied to relaxed muscle causes its lon-
gitudinal growth. Equation (19) is consistent with this statement since the circum-
ferential stretch ratio and its corresponding passive stress increase during arterial
vasodilatation occurring as a prime response to increased blood flow.

The transversal remodeling, which provides sufficient wall thickness to restore
the normal value of the circumferential wall stress, is described by the following
equation

dH 1 [oyr(hy, S
_:_[ 21 (A2 )_1i|, 20)
dt  Tm 0210

where o7 = 09 + 09y, is the total circumferential stress, and Ty, iS a time

constant. Justifying this assumption are the experimental observations that despite
a marked increase in arterial radius, which leads to an increase of medial wall
tension, the arterial wall adapts to restore the baseline value of the circumferential
stress. The assumption of wall thickening driven by the total mean circumferen-
tial stress has been used in [45, 48, 49] for modeling arterial remodeling under
sustained hypertension and has yielded results which are in accordance with exper-
imental observations. It is consistent with the phenomenological stress-growth law
proposed by Fung [21] that increased stress can cause increase in tissue mass.
Equations (18)—(20) are coupled to the equation of equilibrium (9) and equa-
tions (4) and (13) for the flow-induced shear stress and have to be solved simulta-
neously. They represent a system of first-order non-linear autonomous equations



94 ALEXANDER RACHEV

subjected to side conditions. The initial conditions that correspond to the time
t =t of the onset of the step change in flow are

Ste) = 1, R =1, Htp) = 1. 3}

The formulated initial-value problem has a single solution. The new homeosta-
tic state is given by the stationary solution of the governing equations after setting
the time derivatives in equations (18)—(20) equal to zero. The values of the variables
at that state, denoted by asterisks, are as follows

R*:Roal—gg, 3& go l” —F103IQ

)"; = )"203 T - TOa - 02p07 S = SO

(22)

2.4. REMODELING RATE EQUATION FOR THE CASE OF REDUCED FLOW

Geometrical remodeling in response to reduced flow develops mainly as intimal
thickening. It is postulated in this study that cellular and intracellular processes,
which result in thickening of the arterial wall are associated with the increased
contractile activity of the smooth muscle cells. The following evolution equation
for the dimensionless wall thickness is proposed

dH

a1 5, (23)

dr Tyo
where Ty, is a time constant. Making use of equations (7), (10) and (11), it is easy
to prove that under isobaric contraction

T f(A2) [d02p 2057 + P}

5 = +Sf(h2) — 24

dis A
where T,, = Sf(X,) is Lagrangian active stress. For deformations in the physiolog-
ical range the right-hand side of equation (24) is always positive. Hence Lagrangian
active stress, and therefore the active tension developed by the smooth muscle cells,
increases when S increases. Allowing for this, equation (23) is consistent with the
hypothesis of Rodbard [54] suggesting that increased contracting tension causes
the muscle to thicken. The speculations in [54] refer to the case when the muscle
contracts isometrically while equation (23) assumes an isobaric contraction. How-
ever, as it was shown in [13] the isometrically and isobarically contracted vessels
tend to fall along a single pressure-strain curve, indicating equivalence of both the
modes of contraction.

The evolution equation for the change in mid-wall radius is based on the exper-
imental observations that mature vessels exhibit practically no change in vessel
mass as a result of structural remodeling in response to reduced flow [32-34].
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Moreover, adaptation is achieved without altering the vessel length [32]. Because
the wall material is considered incompressible, a constancy of mass implies a con-
stant arterial cross-sectional area at the state of no load. Considering this finding, it
is assumed in this study that the area of the undeformed cross-section remains un-
changed during the entire remodeling process. Taking into account the definitions
of the dimensionless mid-wall radius and thickness, this condition yields

AR —1=0. (25)

Equations (18), (23) and (25) are again coupled to equations (9) and (13) and
are subjected to the initial conditions (21). The system of governing equations has
a stationary solution

‘C* = Tg, S* = S(), r (26)

while the homeostatic geometrical parameters R* and H*, and the circumferential
stretch ratio A are calculated from the system arising from equations (4), (9) and
(25).

MRY— —— =
2 20 A%

@7

MR 17
H* 2]

02p(A3) + Soh3 F(A3) — p[___ _Z

It is worth noting that both remodeling rate equations (20) and (23) describe
an increase in wall thickness, but the mechanisms responsible for thickening are
different and mutually exclusive. Equation (20) accounts for the smooth muscle
proliferation caused by the increased total circumferential stress when the muscular
tone is less than normal. In contrary, equation (23) yields the output of processes
driven by the increased muscular contractility, accompanied by a reduced total
stress when compared to the control value.

3. Results

To illustrate the results that follow from the proposed mathematical model it is
necessary to specify all the model parameters for a real artery. Experimental data
given in Cox [10, 11] for the passive and active response of a canine carotid artery
kept at its in situ axial stretch were used. The initial dimensions of the artery were
taken to be Ry = 1.5 mm, Hy = 0.6 mm. The in situ axial stretch ratio was
accepted constant during remodeling A = 1.5. Experimental data of Cox represent
pressure — normalized diameter relationships recorded at in situ axial stretch ratio.
The shrinkage of the undeformed vessel diameter at zero pressure due to axial
extension was taken to be 0.85 (Weizcaecker, 2000 private communication).
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The experimental data were processed to determine the passive circumferential
mean stress — mean strain constitutive equation. The analytical form of this relation
was chosen in accordance to the general form of the strain energy function suitable
to describe the passive mechanical properties of arterial tissue, [ 12, 22]

W= alef + age§ + 2aszeje; + cexp (blef + bzeg + 2b3€]€2), (28)

where a;, ¢, b; (i = 1, 2, 3) are material constants.
It follows from equation (5) that

o = 2)\% Lases + asze; + c(byer + baey) exp (blef + bgeg + 2b3elez)J. (29)

The coupling between circumferential and axial strain depends on the constants
as, by, and b3, from which at least one must not to be zero. In this study the consti-
tutive equation and the experimental data used for its identification refer only to the
case when the axial strain has the fixed value corresponding to in sifu axial exten-
sion. Utilizing the least square procedure for parameter identification, and setting
by = by = 0, the material constants were determined as follows: a, = 64.864 kPa,
a3 = 14,937 kPa, b, = 21.468, c = 4.736 x 10* kPa.

The normalized function accounting for the active tension-stretch relationship
(equation (6)) was found as follows

f ) =ki(ha —kz),  0.680 < A5 < 1.505, (30)

where k; = 1.213, k, = 0.680. Function f (A,) represents the ascending part of the
normalized tension-stretch ratio curve along which the active response operates un-
der normal physiological pressures. The mean arterial pressure is P = 13.33 kPa,
and the mean flow under normal conditions was specified so that the corresponding
shear stress at the endothelium would be 75 = 1.5 Pa. The maximal Lagrangian
active stress S = 15 kPa was chosen to correspond to the basal muscular tone
existing under normal conditions. § varies from § = 0 to Syax = 60 kPa to span
the range of active muscle stress from zero (fully relaxed muscle) to a maximal
active Cauchy stress for canine carotid artery of the order 100 kPa [11]. Altered
blood flow is simulated by a step change from Qg to Q* = kQq, where k takes
values of £k = 0.2; 0.33; 0.5; 2; 3; and 5.

Unfortunately, quantitative experimental data for the time course of geometrical
remodeling are not available in the literature except as a general description of the
dynamics of the arterial response to altered blood flow [34]. Therefore, the model
results obtained in the present study are tested for their ability to predict the trends
of the arterial wall response to altered blood flow. Allowing for the fact that the
vasomotor response is a much faster process compared to geometrical remodeling,
the following values of the time constants in equations (18)—(20), (23) were chosen
to give a reasonable time course for the fast vasomotor response and time course
for the vessel’s dimensions: Tg; = 2 min; Ts; = 2.5 min; Ty; = 10000 min;
Tr = 15000 min; Ty, = 15000 min.
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Figure 1. Time course of the normalized initial mid-wall radius R=R /Ry after increasing
blood flow by factors of two (line 1), three (line 2) and five (line 3). Ry is the mid-wall radius
at no load conditions under normal flow. R is the current mid-wall radius at no load conditions
under increased flow. Line 4 refers to the case of a twofold increase in flow and a tenfold
increase in the time constant T;.

The governing equations of the process of arterial adaptation and the coupled
equations for arterial wall deformation were solved numerically using Gear’s meth-
ods, [24], subject to the equation of equilibrium (9) at each time step. Solutions are
obtained for the time interval of 50 000 min (approximately 35 days) to cover a
real time interval within which both the fast vasomotor response and geometrical
remodeling take place [33].

Figures 1-3 (line 1) illustrate the time course of the dimensionless initial mid-
wall radius ﬁ, thickness H , and the normalized deformed inner radius 7 = r;/rjo
caused by 100% increase in blood flow. The time course of wall thickness is prac-
tically identical with those of mid-wall radius except for a small lag during the
early phase of the geometrical remodeling. The deformed internal radius increases
rapidly in the first several minutes and then relatively slowly attains the asymptotic
value (r;* = 1.26r;0), which restores the normal shear stress level (Figure 3, line 1).
Variation of the muscle tone represented in terms of the smooth muscle parameter
S=8§ /8o and variation of stretch ratio A, are shown in Figure 4 and Figure 5 (line
1). The non-monotonic pattern of variation of S (Figure 4, line 1) and stretch ratio
Ay (Figure 5, line 1), as well as the constancy of the undeformed arterial thickness
and mid-wall radius during the early period of flow alteration (Figures 1 and 2,
line 1), show that the vessel’s response is initially due to arterial dilatation. As
geometrical remodeling proceeds, however, initial dimensions increase slowly and
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Figure 2. Time course of the normalized initial wall thickness H=H / Hp after increasing
blood flow by factors of two (line 1), three (line 2) and five (line 3). Hy is the thickness at
no load conditions under normal flow. H is the wall thickness at no load conditions under
increased flow. Line 4 refers to the case of a twofold increase in flow and a tenfold increase in
the time constant Tgy.

monotonically to their adapted values. Simultaneously, the muscle cells restore
their normal ionic state (§ = 1) as shown in Figure 4, and the circumferential
stretch ratio returns to its baseline level (A = 1.141) (Figure 5). Hence, the
vessel restores both the passive and active stresses as they exist under normal flow
conditions.

When blood flow was increased by factors of three and five, the time course
of the changes in the geometrical parameters exhibits patterns similar to those for
the case of 100% increase in flow (lines 2 and 3 in Figures 1-5). However, the
artery attains a new steady state more slowly. Moreover, there exists a time period
during which the smooth muscle cells become maximally relaxed and keep the
artery completely dilated until the vessel enlarges. Because the loads on the artery
remain unchanged, the time course of the circumferential stretch ratio depends on
variation of the vessel’s dimensions and contractile state of the vascular smooth
muscle according to the equation of equilibrium (9). An increase in the initial
mid-wall radius R causes increase of A,, while increase in initial thickness H and
muscle parameter S have an opposite effect. During the period of acute vasomotor
response the circumferential stretch increases solely due to relaxation of the smooth
muscle cells, and is limited by the capability of the muscle to achieve maximal
relaxation (lines 2 and 3 in Figure 5 in time interval 0—10 min). The limit value of
A2 is a solution of the equilibrium equation (9) when S equals zero.
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Figure 3. Time course of the normalized deformed inner radius 7j = ri/rjp after increasing
blood flow by factors of two (line 1), three (line 2) and five (line 3). rig is the deformed inner
radius under normal flow. rj is the current deformed inner radius under incresed flow. Line 4
refers to the case of a twofold increase in flow and a tenfold increase in the time constant Ty .

As seen in Figure 5, in the cases where the flow is increased by factors of three
and five, the circumferential stretch ratio A, increases until approximately 5000 min
and 12 000 min, respectively. This is because the mid-wall radius increases faster
than the wall thickness and the passive circumferential stress increases while the
smooth muscle is still maximally relaxed. As the muscle tone begins to restore its
baseline value, the vessel constricts and the circumferential stretch ratio gradually
decreases to its baseline value.

The time variations of the geometrical and mechanical parameters following a
reduction in flow to 50% of its control value are shown in Figures 6-10. The results
again show a monotonic change in the wall dimensions and deformed inner radius
(Figures 6-8, line 1). The primary response to reduced flow is vessel constriction
(Figure 10, line 1), due to increased vasomotor tone (Figure 9, line 1). Geometrical
remodeling again restores the control level (S = 1) of the smooth muscle cell ionic
state (Figure 9, line 1). In contrast to the case of arterial enlargement however, the
circumferential stretch ratio reaches an asymptotic value (A; = 1.069), which is
smaller than the control value (A9 = 1.141). Hence the passive and active stresses
in the adapted vessel become smaller than the corresponding control values. Re-
sults show that adaptation to decreased flow proceeds faster than response to 100%
increase in flow, what is in agreement with experimental observations in [32, 33].
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Figure 4. Time course of the normalized maximal active stress S = S/Sp after increasing
blood flow by factors of two (line 1), three (line 2) and five (line 3). Sy is the maximal active
stress under normal flow conditions. S is the current maximal active stress under increased
flow. Line 4 refers to the case of a twofold increase in flow and a tenfold increase in the time
constant 7gy.
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Figure 5. Time course of the circumferential stretch ratio A, after increasing blood flow by
factors of two (line 1), three (line 2) and five (line 3). Line 4 refers to the case of a twofold
increase in flow and a tenfold increase in the time constant Tgy.
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Figure 6. Time course of the normalized initial mid-wall radius R=R /Ro after reducing
blood flow by factors of two (line 1), three (line 2) and five (line 3). Ry is the mid-wall
radius under no load conditions at normal flow. R is the current mid-wall radius under no load
conditions at reduced flow. Line 4 refers to the case of a 50% reduction in flow and a tenfold
increase in the time constant Tg.
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Figure 7. Time course of the normalized wall thickness H = H|/Hy after reducing blood flow
by factors of two (line 1), three (line 2) and five (line 3). Hyp is the wall thickness under no load
conditions at normal flow. H is the current wall thickness under no load conditions at reduced
flow. Line 4 refers to the case of a 50% reduction in flow and a tenfold increase in the time
constant Tg1.
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Figure 8. Time course of the normalized deformed inner radius 7 = rj/rjg, after reducing
blood flow by factors of two (line 1), three (line 2) and five (line 3). ryg is the deformed inner

radius at normal flow. r; is the current deformed inner radius at reduced flow. Line 4 refers to
the case of a 50% reduction in flow and a tenfold increase in the time constant T;.
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Figure 9. Time course of the normalized maximal active stress 5= /Sp after reducing blood
flow by factors of two (line 1), three (line 2) and five (line 3). Sy is the maximal active stress
under normal flow conditions. § is the current value of the maximal active stress under reduced
flow conditions. Line 4 refers to the case of a 50% reduction in flow and a tenfold increase in
the time constant 7.
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Figure 10. Time course of the circumferential stretch ratio A, after reducing blood flow by
factors of two (line 1), three (line 2) and five (line 3). Line 4 refers to the case of a 50%
reduction in flow and a tenfold increase in the time constant Tg.

Time course of geometrical and mechanical parameters have similar pattern
when blood flow is threefold (curve 2) and fivefold (curve 3) as less than the control
value.

According to the proposed model the arterial response includes several dynam-
ical processes which develop simultaneously. Muscular tone, represented by the
parameter S, varies due to the deviation of the shear stress from its baseline value
and mechanisms that tend to diminish the intercellular concentration of calcium
ions. The dynamics are controlled by the time constants 7, and Ts,. The para-
metric study shows that an increase in the time constant Ts; reduces the ability
of the artery to produce vasomotor adjustment to the altered blood flow (lines 4
in Figures 1-10). Increasing the value of the time constant T, affects mainly the
early stage of vasomotor response (not shown).

Geometrical remodeling caused by increased flow manifests itself as a temporal
variation of the undeformed radius, controlled by the time constant Tk, and a tem-
poral variation of wall thickness controlled by time constant Ty;. The dynamics
of wall thickening in response to flow reduction are controlled by time constant
Ty». As a general tendency, a decreased rate of geometrical remodeling leads to
an increase in the duration of the adaptation process and prolongs the period of
disturbed muscular tone (results not shown).

4. Discussion

So far, a deviation of flow-induced shear stress from its baseline value has been
recognized to be the single mechanical parameter that serves as a mediator be-
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tween changes in blood flow and geometrical remodeling. An abrupt change in
shear stress, however, could rapidly diminish almost completely, as a result of a
vasomotor adjustment of the arterial lumen to altered flow conditions. It seems
reasonable to seek interrelations between rate of change of arterial dimensions and
other mechanical values that originate from flow changes and persistently remain
altered while the artery remodels. The proposed remodeling rate equations (19),
(20) and (23) are the results of such a strategy. An indirect argument in favor of
the notion that there may be mechanical values that correlate with the geometrical
outcomes of the remodeling process comes from observations that the magnitude
of vessel remodeling is directly dependent on the duration of flow elevation [60].
Hence, despite the fact that flow-induced shear stress might be normalized as a
result of acute vasomotor response, there exist other mechanical parameters that
do not attain a steady state while remodeling is in progress.

The basic hypothesis in this study is that geometrical remodeling in response
to altered blood flow is associated with sustained changes in the contractile state
of the smooth muscle cells, which is modulated by the flow-induced shear stress
sensed by the arterial endothelium. The contractile activity affects the stress and
strains experienced by the smooth muscle cells and thereby affects their secretory
function, as well as the pattern and the rate of cells growth and division. There
are several experimental studies that support this hypothesis. The expression by
vascular smooth muscle cells of a growth factor specific to the medial layer when
they were exposed to mechanical strain under cell culture conditions was reported
in [62]. Cell division and protein synthesis that has been elicited by chronic non-
oscillatory wall tension was observed in segments of rabbit ear artery in [23].

The model describes the acute vasomotion and chronic geometrical remodeling
that follow a change in blood flow. The theoretical results that the remodeling
process is stable and results in restoration of the baseline values of the wall shear
stress under normal conditions are in agreement with experimental observations
[6, 25, 28, 30, 32, 33]. The model also predicts that the ionic state of vascular
smooth muscle cells also reverts to the normal homeostatic state and the muscle
restores its contractile activity to the control level. Recent findings of Hayashi
(2000, private communication) support this model prediction. Hayashi showed that
after 8 weeks there are no significant differences in the active circumferential stress
calculated at the same circumferential strain among arteries exposed to low flow,
high flow, and normal flow conditions.

The results obtained are in agreement with experimental observations for arter-
ial enlargement and thickening in response to increased blood flow [25, 39, 43, 60].
Thus, this study supports the hypothesis that arterial enlargement due to circumfer-
ential proliferation of smooth muscle cells could be considered to be driven by the
increased passive circumferential stress during isobaric dilatation. A concomitant
increase in the total circumferential stress causes an increase in wall thickness,
tending to maintain the strain and stress state as it exists under normal conditions.
Because of the moderate basal tone, which large arteries exhibit, the fast vasodilator
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response to a more pronounced increase in flow cannot itself restore the flow shear
stress. The model predicts that this makes the artery remain longer in the state
of maximum dilatation and therefore increases the duration of the geometrical
adaptation (lines 2 and 3, Figures 1-5). To explain the slower adaptation to elevated
flow compared to that due to reduced flow, this scenario was assumed by Langille
in [33].

The model predictions for narrowing of arteries in response to reduced flow are
in agreement with experimental findings available in the literature [32-35], and
support the hypothesis adopted here of a link between an increase in wall thickness
and increased ionic state in the smooth muscle cells. In contrast to the case of
increased flow, the model predicts that, in the newly developed homeostatic state,
the circumferential strain and stress are smaller than control values. Thus, under
subnormal flow conditions, wall remodeling restores the ionic state of the smooth
muscle cells but tolerates reduced wall stress.

It is possible that the proposed relations expressed mathematically as remod-
eling rate equations (19), (20) and (23) do not reflect a causal link between geo-
metrical and mechanical parameters. The parameters involved in these equations
might only be independent and concomitant products of a remodeling process.
However, if the remodeling rate equations reflect a reliable correlation between
rates of change of the current arterial geometry and stress or strain measures, the
latter might be accepted as the “driving stimuli” of remodeling.

The pulsatile nature of the cardiac output imposes a cyclic pressure and strain
on the arterial wall. Arteries undergo small pulsatile circumferential deformations
relative to the deformed state caused by the mean pressure and in sifu axial exten-
sion. It is useful to analyze the short- and long-term effects of changes in blood
flow on the pulsatile strain. The cyclic strain in response to a pulse pressure AP is
determined by the arterial compliance defined as C = Ar;/r;AP, where r; is the
inner radius at mean pressure and in situ length, and Ar; is the change in radius
[38]. The compliance characterizes the overall mechanical response of an artery
to a physiological variation of pressure around its mean value. It follows from the
equilibrium equation, after neglecting terms of smaller order, that the compliance
is given by the formula C = r/Ejpch, where Ejpe = )»%dcz /de, is the incremental
elastic modulus of arterial material calculated at the deformed state caused by the
mean pressure; r and i are the corresponding deformed mid-wall radius and wall
thickness.

The fast vasomotor response that follows a change in blood flow alters both the
deformed vessel’s dimensions and Ejc, and thereby affects the arterial compliance.
As shown in [16], isobaric constriction increases arterial compliance at most pres-
sures, while isobaric dilatation has an opposite effect. Altered compliance affects
the magnitude of the pulsatile strain, which the arterial wall experiences due to pul-
satile pressure. Hence, as a result of the acute short-term response, smooth muscle
cells alter their contractile state and are exposed to abnormal pulsatile stretching.
It has been experimentally established that cyclic overstretching, as well as loss
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of stretch experienced by the smooth muscle cells, provokes their synthetic and
proliferative phenotype [37]. On the other hand, the endothelial cells, which after
fast vasomotor adjustment may not be exposed to abnormal mean shear stress,
become subjected to abnormal cyclic strains and abnormal cyclic shear stress due
to changes in arterial compliance. This could trigger a cascade of enzymic and ionic
processes that lead to upregulation of the growth and division of the underlying
smooth muscle cells and ultimately, a change in arterial geometry.

Allowing for the findings in [16], the acute vasomotor constriction in response
to reduced blood flow leads to an increase in the pulsatile stretching imposed on the
arterial wall by the pulsatile pressure. It was found that increased cyclic stretching
of arterial smooth muscle cells in vitro induces an increase in the synthesis of
collagen and extracellular matrix [36]. A change from a contractile into a synthetic
phenotype characterized by increased proliferation and protein secretion was also
observed in cultured vascular smooth muscle cells undergoing cyclic mechanical
strains [7, 42, 52]. On the other hand, vasomotor dilatation, which follows an in-
crease in flow, causes a decrease in the compliance of most conduit arteries [16].
This means that the smooth muscle cells are exposed to less cycling stretch, which
in turn elicits production of extracellular matrix, leading to wall thickening. A
similar proliferative response was discussed in [31] to explain the high rates of
intimal hyperplasia in low compliance PTFE grafts.

In the long-term the circumferential strain, as well as the ratio of mid-wall
radius to wall thickness reach their baseline values after an increase in blood flow
(equations (22)). Because the mechanical properties are considered unchanged, the
value of the incremental modulus Ej, is also reestablished. Hence, the normal
value of arterial compliance is restored and the magnitude of the pulsatile stretch
returns to normal. When blood flow is reduced the model predicts that the adapted
artery becomes thicker and smaller and the circumferential strain is smaller than
the control value. Due to the mechanical non-linearity of the vascular material the
incremental modulus decreases. The geometrical change (higher % / R ratio) and the
change in the incremental mechanical response (lower E;,.) have opposite effects
on the magnitude of the compliance. One might speculate that the net effect of
remodeling is that arterial compliance becomes close to its baseline value. There-
fore, it seems reasonable to hypothesize that under both increased and reduced flow
conditions remodeling adapts not only the mean shear stress at the intimal layer,
but also the cyclic strain to which smooth muscle and endothelial cells are exposed.
Flow-induced and endothelium-triggered changes in muscular tone might therefore
be responsible for geometrical remodeling through its effects on the magnitude of
cyclic arterial wall strain.

If the interdependence between the shear stress and muscular tone and/or the
interdependence between the muscular tone and processes responsible for geo-
metrical remodeling are impaired, the arterial response to altered blood flow does
not follow its normal pattern. Shear deformation of the endothelial cells appears
to be the first in the chain of events that result in smooth muscle relaxation or
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contraction. The ability to sense the deviation of shear stress from its normal level
might be impaired due to endothelial dysfunction or decreased deformability of
the endothelial cells. Theoretical predictions of the model for the case of large
values of the time constant Tg;, simulating very slow or even missing sensitivity
to flow-induced shear stress, show that the ionic state in the smooth muscle cells
remains practically unchanged (lines 4 in Figures 4 and 9). Therefore, neither fast
vasomotor adjustment of the arterial radius nor geometrical remodeling becomes
apparent (lines 4 in Figures 1-3 and 5-7). The conclusion that wall adaptation is
endothelium dependent is in agreement with experimental observations for missing
flow-induced response in arteries denuded of endothelium [32, 40].

The potential remodeling mechanisms identified in this study should be tested
experimentally. The results suggest two possible approaches. The first involves
monitoring the time course of mechanical parameters such as passive and active
stress, and circumferential strains calculated from data recorded under conditions
of flow-induced remodeling. Interpretation of this information within the frame-
work of the proposed model might answer the question whether the introduced
“driving parameters” in the evolution equations indeed accompany the geometrical
changes caused by the altered flow. On the other hand, it is possible to impose
cyclic pressure on arterial segments maintained under culture conditions while con-
trolling the contractile state of the vascular smooth muscle. Thus, it will be possible
to mimic the mechanical environment according to the mechanisms hypothesized
in present theoretical study. Comparison of recorded geometrical changes, if they
occur, to the pattern of the geometrical changes resulting from control experiments
of flow-induced remodeling can show whether the relations given by the proposed
evolution equations in fact reflect causal relationships.

The limitations in applicability of proposed model come from the assumptions
used in its construction. Because only lengths and loads can be directly measured,
calculation of stress, strains and parameters of the active response requires relevant
modeling of the deformation process and constitutive formulation of the mechan-
ical properties of arterial tissue with account for smooth muscle cell contraction
and relaxation. According to this model, the stimulation of smooth muscle cells
results in the addition of an active stress to the passive stress borne by the other
structural components. The model can predict some of the behaviors demonstrated
for large conduit arteries [47]. However, some experimental observations of smaller
arteries cannot be interpreted in the framework of this constitutive formulation.
As has been assumed in [64], stimulation might affect the interrelations between
smooth muscle cells and extracellular structural components and thus alters the
mechanical properties of arterial tissue termed in this study as passive ones. In this
case the effects of muscle contraction/relaxation on arterial compliance might also
be different.

The thin-wall membrane model used in this study disregards the deferential
growth across the wall and the contribution of residual strains. Further generaliza-
tions of the model should consider arteries as thick-walled tubes and the effects of
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residual stress should be taken into account. It is also necessary to verify experi-
mentally the assumption that the cross sectional area of the arterial wall remains
constant throughout the remodeling process induced by a chronic reduction in
blood flow, or whether it returns to its original value at the end of the process.
Modified equations for smooth muscle cells contraction and additional evolution
equations are needed for modeling flow-induced remodeling of arteries during de-
velopment and maturation, which account for changes in geometry, composition
and mechanical properties. In general, there is a need for additional data on the
time variation of geometrical and mechanical parameters during remodeling.

In conclusion, this study proposes a relatively simple mathematical model in
terms of continuum mechanics. The model does not account implicitly for the
series of interrelated electrical, chemical, mechanical and biological processes in-
volved in smooth muscle contraction and relaxation, regulation of vascular cell
mitosis and apoptosis rates, cell migration, control of matrix synthesis and degra-
dation, and regulation of matrix reorganization. This study focuses on three main
events that occur after a change in blood flow: (i) a change in the ionic state of
smooth muscle cells caused by the altered shear stress sensed by the endothelium;
(ii) a change in the stress state in the arterial wall due to altered muscular tone;
and (iii) a change in the geometrical dimensions of the arterial cross-section due to
remodeling. The model suggests plausible hypotheses for arterial wall remodeling
and predicts the main features of arterial response to changes in blood flow. It is
believed that the present study gives insight into the processes of wall remodeling
and might provoke future experimental and theoretical investigations.
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Abstract. Finite elasticity theory combined with finite element analysis provides the framework
for analysing ventricular mechanics during the filling phase of the cardiac cycle, when cardiac cells
are not actively contracting. The orthotropic properties of the passive tissue are described here by a
“pole-zero” constitutive law, whose parameters are derived in part from a model of the underlying
distributions of collagen fibres. These distributions are based on our observations of the fibrous-
sheet laminar architecture of myocardial tissue. We illustrate the use of high order (cubic Hermite)
basis functions in solving the Galerkin finite element stress equilibrium equations based on this
orthotropic constitutive law and for incorporating the observed regional distributions of fibre and
sheet orientations. Pressure-volume relations and 3D principal strains predicted by the model are
compared with experimental observations. A model of active tissue properties, based on isolated
muscle experiments, is also introduced in order to predict transmural distributions of 3D principal
strains at the end of the contraction phase of the cardiac cycle. We end by offering a critique of the
current model of ventricular mechanics and propose new challenges for future modellers.
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Key words: finite elastic deformation, cardiac mechanics, orthotropic constitutive relations, fibrous-
sheet tissue structure.

Abbreviations: FE — finite element; FEM — finite element method; LA — left atrium; LV — left
ventricle; LVEDP — left ventricular end—diastolic pressure; RA — right atrium; RV — right ventricle

1. Introduction

The heart is an electro-mechanical pump with remarkable properties, but one whose
failure is the leading non-accidental cause of death in developed countries. The
mechanical function of the heart depends crucially on its material properties. Un-
derstanding these properties in relation to the structure of the tissue, and how
changes in the tissue structure thereby affect the pumping function of the intact
heart, is a central goal of cardiac mechanics research. The purpose of this paper is
to review our current knowledge of myocardial structure and the models used to
describe it, and to show how the material constitutive laws are used to understand
the mechanics of the heart via finite element analysis of the right and left ventricles.
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Analyzing the behaviour of any soft biological tissue, at the isolated tissue
level and the intact organ level, presents many fascinating challenges to both the
experimental materials scientist and the computational modeller. Soft tissues are
invariably anisotropic and inhomogeneous, exhibit nonlinear and time-dependent
properties, and can seldom be treated within just a mechanics framework since
they are often electrically active, contain blood vessels and grow! The complex
anatomy of a soft tissue organ also presents a computational challenge, because
there are no axes of symmetry to exploit and boundary loads are invariably spatially
nonuniform and time-varying. Of course, this complexity is precisely what makes
the study of soft tissue so interesting. Fortunately, we have sufficient computa-
tional resource to solve the relevant boundary value problems and sufficient graph-
ics capability on a desktop computer to display the results of 3D computational
modelling.

One of the most comprehesive reviews of early cardiac mechanics modelling is
provided by [45], which summarises the evolution from the late nineteenth century
thin-walled analytical models of ventricular wall stress [43] to the biophysically
realistic computational models during the 1970’s. Key developments during this
period include:

(i) the necessity to incorporate finite deformation analysis as opposed to the
small-strain (a.k.a. classical or linear) elasticity theory (first illustrated by
[26]);

(i) the use of the finite element method (FEM) to efficiently and accurately
describe the complex geometry of the ventricles (one of the earliest finite
element (FE) models of left ventricle (LV) mechanics was formulated by [9]);

(ii1) the significance of material anisotropy and heterogeneity on predicted wall
stress [15]; and

(iv) the use of nonlinear stress-strain relations to predict more realistic wall defor-
mations [16].

Subsequent reviews of [12, 24] describe how recent models of cardiac mechanics

have integrated the developments of the earlier studies with detailed experimen-

tal measurements of anatomical geometry, tissue microstructure and myocardial
material properties for both resting and active tissue.

The plan for this review of cardiac mechanics modelling is as follows. We first
describe the biological structure — the anatomy of the heart and its microstructural
architecture. We then present a mathematical framework for describing the fi-
nite elastic deformation of inhomogeneous, incompressible, anisotropic soft tissue,
and how cubic Hermite finite element basis functions can be used to approximate
the geometric fields describing the deformations that occur as the heart beats.
A Galerkin finite element approximation of the stress equilibrium equations is
presented and appropriate constitutive laws are formulated together with their un-
derlying microstructural basis. Finally, a finite element model of the left and right
ventricular myocardium, with a fibrous-sheet structure fitted from canine heart
measurements, is loaded as it would be during the filling phase of the cardiac
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cycle and at the end of the contraction phase to demonstrate the importance of
the anisotropic and inhomogeneous material properties described earlier.

2. The Anatomy and Tissue Structure of the Heart

The primary function of the heart is to pump blood throughout the body, delivering
nutrients and removing wastes from each organ. The heart has four chambers: the
left and right ventricles and the left and right atria (refer to Figure 1). The thinner-
walled atria act as large low pressure blood reservoirs for the ventricles which are
the predominant pumping chambers. Atrial myocardium is separated from that of
the ventricles by the basal skeleton, which is a fibrous framework formed by the
rings of four valves and surrounding connective tissue. The two atrioventricular
valves connect the atria to their respective ventricles. The mitral valve consists
of two leaflets (bicuspid) and prevents back flow from the LV to the left atrium
(LA). Similarly the fricuspid valve controls the passage of blood from the right
atrium (RA) to the right ventricle (RV). The remaining two semilunar valves join
the outflow tracts of each ventricle with the great arteries into which the ventricle
ejects blood. The pulmonary valve ensures forward flow of blood from the RV into
the pulmonary artery and the aortic valve ensures blood flow from the LV into the
aorta.

The LV is a thick-walled muscular chamber that pumps blood at physiologically
high pressures (up to approximately 15 kPa or 110 mmHg during the normal heart
cycle) to distal locations throughout the body. The cavity of the LV resembles a
truncated ellipsoid in which both the inflow and outflow tracts are adjacent. In
contrast, the RV pumps blood at comparatively low pressures (about one seventh
the pressure of the LV) and wraps around the LV in a crescent-like fashion so that

Pulmonary artery Aorta

Left atrium

. Orifices of coronary arteries
Pulmonary veins

Aorta Right atrium
Superior vena cava Aortic valve cusps

Left atrium Right ventricle

Right atrium Interventricular septum
g Il

Tricuspid valve Left ventricle

Mitral valve

Right ventricle

Left ventricle

Figure 1. Longitudinal cross-section of the heart. From [18].
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its cavity forms a shallow U-shape. The ventricles are separated by the interven-
tricular septum, which normally functions as part of the LV and moves toward the
LV free wall during systole (the contraction phase of the cardiac cycle).

Cardiac muscle cells or myocytes are typically cylindrical with lengths that
range from 80 to 100 pm and diameters ranging from 10 to 20 pm. The fundamen-
tal contractile unit is the sarcomere, which is about 2 um in length. The sarcomere
spans between adjacent Z-lines along the longitudinal axis of the cell and con-
tains the contractile apparatus. Cells consist of about 40—50 sarcomeres in series
and branch and interconnect end-to-end through intercalated disk junctions. The
branching angle is usually acute so that adjacent cells run almost parallel to one
another. In this way, the contractile apparatus between cells is aligned for effi-
cient mechanical function. Intercalated disks contain nexi or gap junctions, which
provide electrical continuity between cells. Consequently, the electrical impulses
propagate more rapidly along rather than across the axes of the muscle fibres.

Muscle cells within the cardiac walls generate contractile forces upon electrical
depolarisation. Each cell is excited in turn as a wave of electrical activation prop-
agates throughout the myocardium. Activation normally begins spontaneously in
pacemaker cells of the sinoatrial node, which lies between the superior vena cava
and the right atrium (see Figure 1). The first structures to be depolarised during the
normal cardiac cycle are the atria. As the wave of electrical activation propagates
throughout the atria, they contract and pump blood into their respective ventricles,
which marks the final stage of ventricular filling. The ventricular myocardium is
normally electrically isolated from the atria except for a group of slow conducting
cells known as the atrioventricular (AV) node. This provides enough time for the
atrial blood to be pumped into the ventricles prior to ventricular contraction.

The activation wave reaches the ventricular myocardium via the AV bundle (also
known as the common bundle, or bundle of His), which bifurcates into right and left
bundle branches at the top of the interventricular septum. Each branch passes down
the septum and curls around into the apical portions of its respective ventricle.
At this point the bundles divide into networks of fast conducting Purkinje fibres,
which spread over and deliver the electrical impulse to the inner or endocardial
portions of the ventricular myocardium. The activation wave generally proceeds
from endocardial layers to the epicardial or outer portions of the ventricular my-
ocardium. As the wave of excitation propagates, individual myocardial cells are
sequentially stimulated to generate tensile forces and contract. At a macroscopic
level, this causes the ventricles to contract and pump blood to the body.

Electrical activation initiates cell contraction, but also mechanical contraction
affects the propagating electrical wave — especially during the reentrant arrhyth-
mias that precede ventricular fibrillation. Changes in cell length and the cross-
sectional area of cells have a direct effect on propagation pathways and also change
the conductance of ion channels, thereby altering membrane potential. Some ion
channels are in fact activated by supra-threshold levels of stretch (so-called stretch
activated channels or SACs) [18].
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Figure 2. Schematic of cardiac microstructure showing fibre orientation and branching sheet
structures. A transmural block of tissue (top left) from the wall of the LV (top right) con-
tains myocardial sheets (yellow) comprised of myocytes, whose axes (red) define the fibre
direction. These sheets interconnect (bottom) and are bound together by endomysial collagen
surrounding the sheets and perimysial collagen between the sheets. From [19] by permission
of the American Journal of Physiology.

Recent anatomical studies [19, 28] have shown that cardiac tissue is a com-
posite of discrete layers of myocardial muscle fibres tightly bound by endomysial
collagen, as illustrated in Figure 2. These myocardial laminae or sheets are loosely
coupled by perimysial collagen and have the ability to slide over each other with
relative ease [20]. Laminae are on average four to six cells thick and continu-
ously branch in each direction throughout the ventricular walls. Their orientation
is generally normal to the ventricular surfaces, except in the subendocardial and
subepicardial regions, where they appear to become more aligned with the wall
surfaces.

The pericardium is a fibrous sac that encompasses the entire heart to resist rapid
increases in cardiac size. The inner wall of this sac is called the parietal peri-
cardium and is continuous with the epicardium or visceral pericardium (the layer
of connective tissue on the outer ventricular surface) at the base of the heart, where
the great vessels enter and leave. A small amount of fluid within the pericardial sac
provides lubrication for the continuous movement of the heart. The pericardium
affects myocardial deformation and will need to be considered in future models of
ventricular mechanics (see later).

The heart is nourished by blood flow through a network of vessels known
as the coronary vascular system. These blood vessels enter the ventricular wall
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from the outside and bifurcate through about seven generations of arteries and
arterioles before merging into a capillary cascade, where gas exchange with the
tissue takes place. At this level, a cross-section of the muscle reveals a one-to-
one ratio of capillaries to myocytes. The capillaries collect into venules and then
veins, which eventually empty the de-oxygenated blood into the RA. Coronary
flow is strongly influenced by myocardial mechanics. During systolic contraction,
for example, arterial flow in the subendocardium is briefly reversed as the ventricles
are compressed by the surrounding active muscle. Similarly, the mechanical defor-
mation of the myocardial tissue is influenced by coronary perfusion in at least two
respects: the spatially and temporally changing coronary blood pressure influences
the tissue hydrostatic pressure; and the shift of fluid volume, especially during
systole, introduces an effective compressibility into the otherwise incompressible
tissue.

3. The Theory of Finite Elastic Deformations

Cardiac cells change length by over 20% during a normal heart beat, so mechanical
analysis must be based on finite deformation elasticity theory. We first describe the
kinematics of large deformation, then stress equilibrium and the finite element basis
functions that extend the analysis to complex 3D ventricular shapes.

3.1. KINEMATICS

X = (x1, X2, Xx3) gives the present position in rectangular cartesian coordinates
of a material particle that occupied the place X = (X, X», X3) in the reference
state. In standard finite deformation theory, (X, X,, X3) are considered as material
coordinates and a deformation gradient tensor F is defined, which carries the line
segment dX into dx = FdX, or in component form, dx! = F /'w dXM, where

8)(,' I
0X s (1)

Polar decomposition, F = RU, splits F into the product of an orthogonal rota-
tion tensor R and a symmetric positive definite stretch tensor U which contains a
complete description of the material strain, independent of any rigid body motion
(see [1]).

For inhomogeneous, anisotropic materials the orientation of the material axes
may vary with location and so it is no longer convenient to identify the material
axes in the undeformed body with the reference coordinates. Instead, a new ma-
terial coordinate system (vi, V2, v3) is introduced, which is aligned with certain
structural features of the material. For myocardium, a natural set of material axes
are formed by identifying v, with the muscle fibre direction, v, with the sheet
direction and v3 with the sheet-normal direction (refer to Figure 3). It is convenient
to choose the base vectors for the v,-coordinate system to be orthogonal in the ref-
erence state. However, the ensuing deformation means that they are not orthogonal,
in general, in the deformed configuration.

F;;,,:
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Figure 3. Microstructural material axes for myocardial tissue. The first of these directions is
referred to as the fibre axis and coincides with the muscle fibre direction at each point. The
sheet axis is defined to lie in the plane of the muscle layer and is perpendicular to the fibre
direction. The third axis is defined to be orthogonal to the first two and is referred to as the
sheet-normal axis as it is perpendicular to the muscle layer.

A(") A{,yand al”, af,, denote the covariant and contravariant base vectors in the
undeformed (upper -case) and deformed (lower- case) conflguratlons respectlvely

The corresponding metric tensors are denoted by AY af’ A?f) and aaﬂ , a(v) The un-
deformed covariant base vectors Afx”) can be defined to be unit vectors by choosing
the v,-coordinates to be a measure of physical arc-length in the undeformed state.
The covariant base vectors and metric tensors for the v,-coordinate system are:

W — 90Xk v — 09X Lx)
AO[ —_ ava gk £ a -—_ 8vag L) 2)
A(V) — AWM A(v) (v) (v) | oM™ (
aff T a B aﬂ aa aﬂ ’

where g(X) are the base vectors of the rectangular Cartesian reference axes.
The Green strain tensor with respect to fibre-sheet material coordinates is then

! :
Eup = 5 (0c5 — Acp)- 3)

3.2. STRESS EQUILIBRIUM AND THE PRINCIPLE OF VIRTUAL WORK

Stress equilibrium is expressed via the following equation derived from the princi-
ple of virtual work:

/ T F] 80,4 Vs
Vo

M
. . & ax;
:/ ,oo(b’—ff)(SvjdVo—I-/ Papphy —2 —L 80, dS, (4)
Vo Sz

\/— d&m
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where 7% and F ,; (= dx;/0dvg) are respectively the second Piola—Kirchhoff stresses
and deformation gradients expressed relative to the fibre-sheet material coordi-
nates, v = dv;i; are virtual displacements expressed relative to the reference
coordinate system (see [23]), pg is the tissue density, &/ and f~ are respectively the
components of the body force and acceleration vectors, p(appy is the pressure (i.e.,
physical stress) applied to the surface S, with normal direction &3, and gg)N are
contravariant metric tensors for the &, coordinate system (described below), with
covariant base vectors and metric tensors for the undeformed and deformed states
defined by:

® _ 90Xy 0 € _ 0xp j(x)
GM o a‘i:Mgk ’ gM - 8EMgk ! (5)
G® —g®.g¥® = 30X, 0 Xy & _ &) & Oxg Ox

MN = Om CUN T gE BEy Sun T Bu BN T 5, ey

Equation (4) is the starting point for the analysis of a body undergoing large
elastic deformations. For further details see [3, 4].

3.3. RESIDUAL STRAIN

Mathematical models of large deformation mechanics compute material strains
(and hence stresses) with respect to a well defined reference configuration, for
which the strain components are usually assumed to be zero. However, if no such
state exists for an intact specimen such as the heart, the closest approximation is the
no-load state, in which some structures may be pre-stretched or residually stressed.
The residual strains within the specimen may be approximated by introducing the
concept of a “growth tensor” [32].

4. The Finite Element Method for Finite Elasticity

The complex anatomy of the heart greatly influences its mechanical function and
little insight is gained by treating it as a simple geometric shape, such as a cylinder
or sphere. Consequently, numerical analysis is required to solve the above stress
equilibrium equations and the FEM provides the most convenient framework.

4.1. BASIS FUNCTIONS

For FE analysis of finite deformation elasticity problems, it is convenient to choose
geometric variables as the dependent variables and interpolate the geometric coor-
dinates (xj, xo, x3) defined at the finite element nodes. Element coordinates
(&1, &, &3) are then normalised material coordinates (see Figure 4), which move
with the deforming body and provide the parameterisation of the undeformed and
deformed geometric variables:

Xi =W, (&1, 86, 86)X], (6)
Xi = lIln (517 §2s 53))(:13 (7)
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Figure 4. The finite element material coordinate system (&}, &, £3) is used to identify a ma-
terial point P in the reference state, which moves through displacement u to a new spatial
location p in the deformed state.

where W, (&1, &, &3) are the chosen 3D basis functions (see below) and X7 and x}
are the element nodal values (and derivatives) of the ith geometric coordinate in
the undeformed and deformed states, respectively.

Since strain (and hence stress) depends on the gradients of these geometric
variables, it is convenient to choose cubic Hermite finite element basis functions
to ensure derivative continuity across element boundaries. For further information
see, for example, [48]. The 1D cubic Hermite interpolation for a field variable u,
with nodal parameters u; and u,, and derivatives (du/d&); and (du/d&),, is given

by:

d d
u(€) = W + ‘%’(S)(—u) + W) (E)uy + \le(f)(—u) ) (8)
¢/, dg /,
where the basis functions (shown in Figure 5) are:
WP(E) =1 - 367 + 287, WI(§) = §2(3 — 28), ©
i) =£E - D7 W, (8) = £ — 1).

Instead of using the nodal derivative (du/d€), that depends on the local element
&-coordinate in the two adjacent elements (which may have different physical
lengths), it is more useful to define a global node derivative (du/ds)y, where s
is the arc-length and N is the global node number. The &-coordinate derivative is
then:

du du ds
(€),-(@),(&), o
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Figure 5. Cubic Hermite basis functions.

where (ds/d§), is an element scale factor which scales the arc-length derivative of
global node N to the &-coordinate derivative of element node n. The result is that
(du/ds) is implicitly constrained to be continuous across element boundaries rather
than (du/d&). The construction of tricubic Hermite basis functions is a straightfor-
ward extension of the 1D basis functions and results in 8 parameters per node for
each field variable u.

4.2. GALERKIN EQUILIBRIUM EQUATIONS

Using the interpolation functions ¥, we can define virtual displacement fields §v;
as:

Svj = ‘Dn(sl,&;&)&)’;a (11)

where §v’} are arbitrary virtual nodal displacements. Substituting equation (11) into
the equilibrium equations (equation (4)) and setting the coefficient of each arbitrary
displacement component 8v’ to zero, gives:

f T FJ W, 4 dVo
Vo

M
8 9x;

=/ ,OO(bj _fj)\IIndV0+/ p(appl)—'——'—a——\pn ds. (12)
vo $ 83 Em

To evaluate the integrals in equation (12), they must first be transformed from
the reference coordinate space to the &)-coordinate space using the appropriate
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Jacobian:

f / / T FJ 0, (/GO dt, e, dg, = / / f po(bf—ff)wnvc@meadszds]
Vo Vo
+ f /S Prana g T, /e e b,

(13)

where v G¢) = /det{ G(E) and +/g® = ,/det{g,-(f)} are the Jacobians of the 3D
coordinate transformation w1th respect to the undeformed and deformed configu-

rations, respectively. Note that the surface integral is transformed by substituting
Jop d&, d&; for dS, where the 2D Jacobian with respect to deformed coordinates is

given by Jop = /g(E)g(é) [29].

The 3D integrals in equation (13) are evaluated over the undeformed volume
and the 2D integral is computed over the portion of the deformed surface (de-
noted 5>) for which external pressure loads are applied. These integrals are replaced
by a sum of integrals over the collection of element domains which constitute the
FE model. Element integrals are evaluated numerically using Gaussian quadrature.
Components of the second Piola—Kirchhoff stress tensor 7 are evaluated at each
Gauss point using the constitutive equations below.

4.3. GALERKIN INCOMPRESSIBILITY CONSTRAINT

For incompressible materials, an additional scalar hydrostatic pressure field is in-
troduced into the constitutive equations (see below). The extra constraint neces-
sary to determine the parameters of the hydrostatic pressure field arise from the
requirement that the third strain invariant /3 = 1 for incompressible materials.

For a Galerkin formulation, the form of the incompressibility constraints is
given by:

/f/ (VI — 1)WPV/G® dgs d, dg) = 0, (14)

where V, denotes the domain of the element and W are the basis functions used
to approximate the 3D hydrostatic pressure field. Note that the undeformed 3D
Jacobian +/G®) is introduced since the integrals are evaluated with respect to the
undeformed configuration.

5. Myocardial Material Properties

Heart muscle contains connective tissue and cells, surrounded by fluid-filled ex-
tracellular space. Both components consist primarily of water. The nonlinear vis-
coelastic and poroelastic nature of myocardial tissue has been modelled [14, 44],
but this aspect of the material properties is neglected here, where for simplicity we
treat the myocardium as an incompressible, elastic solid.
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5.1. CONSTITUTIVE RELATIONS

For an incompressible material components of the second Piola-Kirchhoff stress
tensor are given by the derivatives of the strain energy function W(E) with respect
to the components of E and a hydrostatic pressure (denoted by p), which does not
contribute to the deformation, and hence strain energy, of the material [23]:

L/ oW aw
T — _ 27 ) = pa®t. 15
2(aEaﬂ + aEﬂa) Pl 13

The parameters of such a constitutive law can be obtained directly from exper-
iment without reference to the underlying tissue structure. But an approach which
incorporates parameters that directly reflect mechanical or structural properties
of the material yields a more useful constitutive relation. For example, observed
spatial variation in collagen distributions can be related to material constitutive
parameters. Section 5.2 details the development of a microstructurally-based con-
stitutive law for passive heart tissue.

Biaxial tension tests on thin sections of ventricular myocardium [6, 10, 33, 46]
reveal highly nonlinear, anisotropic stress-strain behaviour (typical of most soft
biological tissues). The stress-strain properties along each of the microstructurally
relevant directions are quite different, reflecting in part the organisation of collagen
relative to these three axes. Figure 6 schematically summarises typical stress-strain
behaviour of myocardium when stretched along each of the three microstructural
axes [12]. The most striking difference between each of the three axes is the lim-
iting strain for an elastic response. When the tissue is stretched along the fibre
direction the limiting extension ratio* is about 1.3, whereas the limiting extension

axial tension fibre sheet sheet-normal
)1 axis axis axis

axial strain

ay Gz asz

Figure 6. Typical nonlinear stress-strain properties of ventricular myocardium. The parame-
ters ay, ap and a3 represent the limiting strains for elastic deformations along the fibre, sheet
and sheet-normal axes, respectively. Note the highly nonlinear behaviour as the elastic limits
are approached.

* Relative to a resting sarcomere length of approximately 1.95 pum for the unloaded muscle.
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ratio for the sheet axis is approximately 1.5. Below an extension ratio of 1.5 very
little tension is developed in the direction of the sheet-normal, but tension increases
rapidly above this and irreversible damage occurs when this extension ratio exceeds
about 1.7 [12].

Variations in the axial limiting strains can be explained by the organisation of
the extracellular connective tissue matrix. The high fibre stiffness is most prob-
ably due to intracellular titin protein together with the tightly bound endomysial
collagen coils that surround individual myocytes [31]. As the tissue is stretched
along the fibre axis, these coils straighten and it is the taut length of the collagen
that determines the limiting fibre strain [21, 22]. In contrast, the relatively low
sheet-normal stiffness is most likely to be due to the sparse array of perimysial
collagen links in the cleavage planes between myocardial sheets [19]. Based on this
information, a fully 3D orthotropic constitutive law, which incorporates material
properties that can be directly estimated from the tissue, is described next.

5.2. THE “POLE-ZERO” CONSTITUTIVE LAW FOR MYOCARDIUM

Stress-strain behaviour along one axis is very nearly independent of the degree
of lateral stretch [33], This means that the contribution to the total strain energy
of the stretch along one of the material axes is nearly independent of the contri-
bution from the other two axes — there is, of course, a small degree of cross-axis
coupling via the hydrostatic pressure, but this coupling does not occur in a biaxial
tension test experiment because the hydrostatic pressure is zero (since the out-of-
plane stress is zero). For this reason, the strain energy function is separated into
individual expressions in terms of the stretch along each of the material axes. It
is also evident from the biaxial tests that the axial stress is very low for small
axial strains, but increases rapidly as the strain approaches the limiting strain for
that axis. These characteristics, microstructural observations and biaxial test results
have been encapsulated in the pole-zero strain energy function for myocardium
given by:

E? E? E?
W =k 11 + ko2 = 3 i
lay — Eqy oo lay, — Exlb2 gy — Exs|P»
E2 EZ 2
+ki2 12 + ki3 1 +hkpn—2—0\  (16)
Pag - E )b lais — E3}bi lazs — Ep3|b»

where the constitutive parameters (a’s, b’s and k’s) have the following interpre-
tations: The limiting strains or poles, denoted a,g, are physical properties of the
tissue that may be measured directly from microstructural observations. In partic-
ular, [22] used elastica theory on the collagen helices surrounding myofibres to
determine the yield strain (pole) of a;; = 0.52 along the fibre axis. Alternatively,
these yield strains can be estimated by fitting the model directly to experimental
stress-strain data as is done, for example, by [33]. The second group of parameters,
denoted byg, are related to the curvature of the uniaxial stress-strain relationships
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for each mode of deformation and have been estimated using the biaxial tension
test results of [33]. Lastly, the k.4 parameters weight the contribution of the corre-
sponding mode of deformation to the total strain energy of the material. Estimation
of these coefficients is discussed below.

The constitutive parameters of equation (16) are naturally split into six groups,
one for each mode of deformation. These groups correspond to the six independent
components of Green’s strain tensor. The first three terms in equation (16) refer
to the three axial modes of deformation (fibre, sheet and sheet-normal, denoted
11, 22 and 33, respectively). The parameters associated with these terms have
been estimated using a combination of microstructural observations, biaxial ten-
sion test results and non-invasive magnetic resonance imaging data, and are listed
in Table I. The remaining terms relate to modes of shear deformation between
the microstructural axes (fibre/sheet, fibre/sheet-normal and sheet/sheet-normal,
denoted by subscripts 12, 13 and 23, respectively).

Equation (16) can be regarded as a first order approximation of a power series
in the pole—zero terms. A more comprehensive description would include cross-
product terms reflecting coupling between different modes of axial and shear de-
formation and may be warranted following further experimental testing (it cannot
be justified on the basis of the biaxial experiments).

It is reasonable to assume that the cellular structures responsible for resisting the
shearing deformations are exactly those structures responsible for limiting axial de-
formations. These load—bearing connections are simply the collagen struts that link
individual cardiac fibres and sheets. The important implication of this assumption
is that the parameters of the shear terms in equation (16) are strongly correlated to
the parameters of the axial terms. The fibre distribution model described below has
been used to help understand and quantify some of these parameter correlations.

Table I. Material properties of myocardium for the
pole—zero constitutive law.

Type Axial properties  Shear properties

Coefficients kj; 1937  k;p 1.0
kyp 0028 k33 10
ks 0310 k3 1.0

Poles ai 0.523 apn 0.731
an 0.681 as 0.731

asj 1.037 ass 0.886

Curvatures  bqg 1.351 bia 2.0
bao 5.991 b3 2.0
b33 0.398 ba3 2.0
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Figure 7. The fibre distribution model: orientation of each fibre family about its mean
orientation.

Experiments involving shear deformations of cardiac tissue are currently being
performed to further validate these correlations [7, 8] and further comments on
measuring these shearing characteristics are given in Section 8.

5.3. A FIBRE DISTRIBUTION MODEL FOR CARDIAC TISSUE

A biophysical model of cardiac muscle elasticity is presented here to help un-
derstand the correlation between the axial and shear parameters of the pole-zero
constitutive law for myocardium [12]. The main assumption of this fibre distribu-
tion model is that three families of fibrous connective tissue (mainly collagen) are
responsible for storage of the total strain energy of the myocardium. This implies
that some axial and shear deformations must be strongly correlated since they
involve the same underlying collagen microstructure. The fibre orientations within
each family are assumed to be normally distributed about a mean direction, which
is aligned with one of the microstructural material axes (see Figure 7). Note that
in the following description the term ‘fibre’ refers to a collagen connection within
a fibre family and not a cardiac muscle fibre. The latter will be referred to as a
‘myocyte’.

The first fibre family consists of the large coiled perimysial fibres that are
closely associated with the myocytes [21, 31]. The mean direction of this family is
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Y,

Figure 8. Kinematic analysis of a typical deforming fibre.

coincident with the longitudinal axis of the local myocytes and individual collagen
fibres are assumed to lie in the plane of the myocardial sheet. The second family has
a mean orientation centred about the sheet axis (which also lies in the sheet plane,
but is perpendicular to the myocyte axis) and consists of tightly bound endomysial
collagen [2]. The third family of fibres is assumed to have an axisymmetric dis-
tribution about a mean direction aligned with the local sheet-normal axis. This
family consists of the sparse array of perimysial collagen struts that connect the
myocardial sheets.

The variation of connective tissue fibre orientations about their mean directions
is assumed to be different for each family of fibres. These variations are defined
by standard deviations that describe the distribution of each family of fibres, as
illustrated in Figure 7. The first standard deviation defines the variation of the large
coiled perimysial collagen fibres about the mean myocyte axis and is therefore
relatively small. The second standard deviation defines the variation of the direction
of in-sheet endomysial collagen about the local sheet axis and is greater than the
first. Two further standard deviations define the axisymmetric variation of the inter-
sheet collagen strut direction.

To evaluate the contribution that one particular fibre of a family makes to the
total strain energy, consider a unit length fibre in the reference state at an angle of
® to the Y|-axis, as illustrated in Figure 8. The Y| and Y, axes are not material
axes (they do not change with material deformation), but rather are local orthog-
onal reference axes with the Y, coordinate defined to be aligned with one of the
microstructural material axes. In the deformed state, the fibre has length A and is
oriented at an angle of & to the Y;-axis. In the undeformed state X = cos ® and
Y = sin O, and in the deformed state x = A cosf and y = Asin8.

Consider now a particular state of strain in the tissue, characterised by exten-
sion ratios A; and A, along the local reference axes Y| and Y-, respectively. These
extension ratios can be expressed using:

cos 6 y sind

= A A= =A

X
A= — , - .
! X cos ® Y sin ®

(7
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An expression for the angle of the deformed fibre 6, is obtained by dividing the
extension ratios as follows:
A tan @

Ay
== 6 =tan™' [ =tan @ ). 1
e or an (M an ) (18)

Thus, given A1 and A, a fibre at initial position ® is rotated to an angle 6 and
stretched by an extension ratio A as follows:

cos ® b1
5 = )\.lm, when 6 < 7, (19)
Asin®, when@ = %

The fibre strain is calculated from the extension ratio using
1.2
E;r= E(k —1). (20)

The next step is to assume that the fibre orientations for each of the families
are normally distributed about their mean directions. In this way, for example, the
family of fibres associated with the myocyte axis may be approximated using the
Gaussian probability distribution:

10?2
exp[ ?J (21)

1

p1(®) =

\/_0'1

where o7 is the standard deviation. Note that the mean of this distribution is aligned
with the local myocyte axis in the reference state and that & quantifies the differ-
ence between the direction of a particular fibre and the mean fibre direction.

The total strain energy (due to the deformation) stored in the family of fibres
associated with the myocyte axis may be computed by summing up the individual
strain energies of all fibres in the family. Equation (22) expresses this sum as the
integral over all possible fibres since the probability distribution function varies
continuously with the undeformed position ®. In this expression, ki, a; and b| are
properties of the family of fibres associated with the myocyte axis. The dependence
of the fibre strain £¢ on ® is defined using equations (18)—20)

W, = /”/2 (®) k Efz de (22)
' P e = Egr

In a similar manner, the total strain energy stored in the family of fibres associ-
ated with the myocardial sheet axis may be calculated using

/2 k2E2
= 0)————d0, 23
W /_m pa( )(a2 ~En (23)

where p,(®) is the Gaussian probability distribution function for the family of
fibres associated with the sheet axis, ky, @ and b, are properties of this family,
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Figure 9. Kinematic analysis of a fibre during simple shear.

and Ej; is the material strain along the sheet axis. Note that Es and p,(®) may be
evaluated using expressions similar to equations (20) and (21), respectively.

The strain energy for the third family of sheet-normal fibres is calculated us-
ing equation (24), and the probability distribution function for this family is ex-
pressed in equation (25) in terms of the two standard deviations that describe an
axisymmetric variation of inter-sheet collagen fibre orientations.

2r /2 k3E2
W=/ f (03, 00— 40, d® 24)
with
1 1/02 @2
©1, Oy) = o34 4
mien o0 =zl =55+ 22 ) @)

where E, is the material strain along the family of collagen fibres associated with
the sheet-normal axis and k3, a3 and b3 are properties of this family. Finally, it is
assumed that the combined strain energies from each of the three families sum to
yield the total strain energy in the tissue.

For present purposes, the fibre distribution model is used to express the limiting
strains for shear (namely, aj,, a13, and ay3 in equation (16)) as a function of the
axial poles, since it was assumed that the same underlying distributions of collagen
connections determine both the tensile and shear characteristics of the tissue. This
relationship is derived by considering the kinematics of a typical fibre during a
simple shear deformation as shown in Figure 9.

The bold line segment in Figure 9 represents a particular connective tissue fibre
oriented at angle » to the mean direction for its family in the reference state.
This undeformed fibre has length /1 4 tan? = sec 5. During the deformation
the fibre moves through a shear angle of ¢ and due to the simple kinematics of
the deformation, the deformed fibre length is \/ 1 + (tan n + tan ¢)2. The extension
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ratio (deformed length divided by undeformed length) of the fibre is defined in
equation (26) as a function of the undeformed fibre angle n and the shear angle ¢

Ay = V1 + tan2¢ cos? n + tan ¢ sin 2. (26)

For a given shear angle ¢, the fibre angle 1* that produces maximum stretch is
found from equation (26) by solving dA,/dn = O for n*, resulting in

n* = %tan_l(2 cot ). 27)

As ¢ increases from 0° to 90°, n* decreases from 45° to 0°. The extension ratio
of the fibre with maximum stretch is determined by substituting equation (27) back
into equation (26). The maximum extension ratio for a given shear angle is

1
Amax = E(K + V4 +«2), (28)

where x = tan ¢. If this particular fibre yields when its Green’s strain reaches the
limit a = %(kfnax — 1), then using some considerable manipulation (see [27]) the
maximum possible elastic shear strain is
2a
K NiES7h (29)
The key point here is that the shear poles of equation (16) (namely, a;3, a;3 and
ay3) may be directly determined from the limiting strains of the fibre families. For
example, consider simple shearing deformations within the plane of the myocardial
sheet, referred to here as the (1, 2)-plane. The yield strain for a simple shear of
the (1, 2)—plane in the direction of the myocyte axis (a 2—1 shear) is limited by
the sheet axis pole position ay, since the collagen connections associated with the
sheet axis family are put into tension. On the other hand, a 1-2 shear is limited by
the fibre axis pole position ay; since the collagen fibres aligned with the myocyte
axis sustain the load. Thus for a general shear of the (1, 2)-plane, a reasonable
approximation to the limiting shear strain a;; may be determined by substituting
the minimum of a;, and g, into equation (29), which monotonically increases
with a. The pole position for the in-plane (1, 2) shear is defined using:

—2ap if ay < ayy,
v1+2ax (30)

2ay; .
1fa22 > ap.

v 1 +2£1]]

Pole positions for the other shear terms may be determined in an analogous manner.

It remains then to estimate the coefficients and curvature parameters for the
shear terms in equation (16). This can be achieved by applying the fibre distribution
model to a range of kinematically simple experiments, which involve various axial

ap =
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and shear deformations. The relative contributions to the strain energy of the tissue
can then be used to estimate these unknown parameters (see [27]). Table I lists the
material properties used for the modelling in the next section.

6. Passive Inflation during Ventricular Diastole

As an example of applying the constitutive laws discussed above in a finite element
model of the intact myocardium, the model is solved here for passive inflation by
pressure boundary conditions applied to the left and right ventricular endocardial
surfaces of the computational model, illustrated in Figure 10.

Passive ventricular function has been quantified using a variety of global me-
chanical indices, including the diastolic cavity pressures and volumes, longitudinal
elongation, and axial twist of the base relative to the apex. Regional function has
been quantified using diastolic strain distributions referred to cardiac wall and fibre
coordinate systems (see [38]).

6.1. DIASTOLIC CAVITY PRESSURE AND VOLUME VARIATIONS

The global properties of the diastolic LV have been commonly characterised by
the cavity pressure—volume relation. Many studies have quantified this relationship
using various techniques in isolated, supported and in-vivo hearts. Three canine
studies have been selected to assess the accuracy of the pressure—volume relation-
ship predicted by the ventricular mechanics model. For comparison purposes, the
ventricular volume has been transformed into a percentage volume change relative
to the volume of the unloaded cavity, for which the cavity pressure is zero.

(a) Anterior view. (b) Posterior view.

Figure 10. Computational model of the cardiac ventricles showing LV and RV endocardial
surfaces (shaded) and boundaries of the FE mesh, which consists of 120 tricubic Hermite
elements.
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Figure 11. Diastolic pressure—volume relations for the canine LV. The ventricular mechanics
model (¢) predicts realistic diastolic stiffening of the LV compared to three experimental
studies, all from potassium arrested dog hearts subject to static pressure loading. Error bars
show standard deviations.

The ventricular mechanics model was passively inflated to LV and RV pressures
of 3.0 kPa (22.5 mmHg) and 0.6 kPa (4.5 mmHg), respectively, using thirty equal
load steps. The LV volume was computed at each step, for which the model had
converged to an error tolerance of 1073, Volume changes were normalised by the
unloaded LV volume of 32 ml. The predicted normalised passive pressure—volume
relationship is represented by diamonds (Q) in Figure 11. It is clear from this
comparison that the ventricular mechanics model predicted sufficiently realistic
diastolic pressure—volume characteristics.

In seven isolated potassium-arrested canine LVs, [30] quantified 3D principal
strains in the equatorial region of the anterior midwall using biplane radiography
of three transmural columns of radiopaque beads. Mean strains were reported at
four normalised volume changes, which corresponded to approximately 5 ml in-
crements in LV volume. The corresponding LV pressures were estimated from
[30] and the authors commented that the angle between the radial axis and the
principal axis of greatest thinning (E3) was <1°. Observations from this study are
represented by box symbols ([J) in Figure 12.

In comparison, the ventricular mechanics model (¢ in Figure 12) predicts re-
alistic wall thinning (F3) and minimum in-plane (E,) strains at the midwall of
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Figure 12. 3D principal strains (£, E5 and E3) versus LV pressure (LVP) and volume at the
midwall of the anterior equatorial region during diastole. Ventricular mechanics model predic-
tions ({) are compared to the experimentally observed midwall principal strains (mean % SD,
n = 7) of [30]. See text for explanation.

the anterior LV. However, the predicted maximum principal strain (£;) illustrates
more compliance of the ventricular mechanics model as opposed to the isolated
potassium-arrested hearts. More realistic predictions would possibly be achieved if
the model had accounted for the heterogeneous material properties of ventricular
myocardium.

7. End-Systolic Principal Strains
7.1. ACTIVE CONTRACTION OF MYOCARDIUM

When stimulated, cardiac muscle fibres generate contractile forces. For present pur-
poses, it is assumed that cardiac muscle fibres only generate force in the direction
of their longitudinal axes (although models that include active force development
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tranverse to the mean fibre axis can lead to more accurate 3D systolic shear strain
predictions [38], but this remains to be verified experimentally). This assumption
means that just one term must be added to the passive 3D stress tensor of equa-
tion (15) to model the active behaviour of myocardium. The additional active stress
acts in the muscle fibre direction (aligned with the v,-coordinate), and so if the
stress tensor is expressed with respect to the microstructural material axes, it is in
fact only the T'!! component that is modified thus:

T‘,ﬁ_l(aw oW
2

«,

=2\GE, T 3Eﬂu) ~ pail + T3, Gh
where T’ = T(t, Ay, [Ca2+],-) is the active tension generated by a fibre at time .
For the current modelling, active tension is defined to depend on the time varying
muscle fibre extension ratio, A;; = +/2Ey; + 1, and the concentration of free in-
tracellular calcium, [Ca®*]; which is taken to characterise the level of activation of
a cardiac muscle cell. It is assumed here that the transverse and shear strains have
no effect on the active tension generated by the fibres. The steady state mechani-
cal properties of active myocardium are summarised below at a constant level of
activation. For more detailed descriptions refer to [11].

The majority of experimental studies that have quantified end-systolic distribu-
tions of strain have used the end-diastolic configuration as the reference state. Three
such studies have been selected to assess the accuracy of end-systolic principal
strain distributions predicted by the ventricular mechanics model. In these studies,
E represents maximum shortening and E3 represents maximum stretch, which
is generally associated with wall thickening. ¢, represents the angle to the axis
of principal shortening in the plane of the ventricular wall, where positive angles
signifies anticlockwise rotations from the circumferential direction.

[42] imaged columns of radiopaque markers implanted in the anterior equa-
torial LV free wall of seven open-chest dogs. End-systolic 3D principal strains
were computed with respect to the end-diastolic reference state. The peak sys-
tolic and end-diastolic LV pressures were 16.6 £2.5 kPa (125 = 19 mmHg) and
0.6 + 0.2 kPa (4.7 £ 1.5 mmHg), respectively. Observations from this study are
represented by crosses (x) in Figure 13.

Using similar methods, [39] measured transmural distributions of end-systolic
3D principal strains and directions referred to the end-diastolic state in the anterior
equatorial LV free wall of seven open-chest dogs. The peak systolic LV pressure
was 16.1 £ 2.9 kPa (121 + 22 mmHg) and left ventricular end-diastolic pressure
(LVEDP) was 0.3 + 0.2 kPa (2.3 £ 1.5 mmHg). Observations from this study are
represented by triangles (A) in Figure 13.

[25] analysed the experimental results from a set of bead studies by [41] us-
ing non-homogeneous strain analysis. End-systolic 3D principal strains referred to
the end-diastolic state were computed for the anterior LV free wall of six open-
chest dogs. The peak systolic LV pressure was 15.5 + 2.8 kPa (116 + 21 mmHg)
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Figure 13. Transmural distributions of 3D principal strain at end-systole (referred to the
end-diastolic state) for the equatorial region of the anterior wall. Ventricular mechanics model
predictions (Q) are compared to experimental observations from [39] (A, n = 7), [42] (x,
n = 7) and [41] (4, n = 5). The predicted in-plane angle to the second principal strain (¢)
is shown for comparison purposes (see text for details).

and LVEDP was 0.7 + 0.3 kPa (5 = 2 mmHg). Observations from this study are
represented by plus symbols (+) in Figure 13.

End-systolic strains for the anterior equatorial LV wall computed using the
ventricular mechanics model (represented by diamonds ({) in Figure 13) were
referred to the predicted end-diastolic state for comparison with the experimen-
tal studies. Reasonable predictions were produced for the maximum shortening
(E1) and thickening (£3) strains, although the large subendocardial thickening was
unrealistic. There are two aspects of myocardial mechanics that are not currently
included in the model, which would reduce the unreasonably large subendocardial
thickening:

(1) the higher density of collagen fibres in the subendocardium, which would
provide a greater constraint on wall thickening; and

(2) the compressibility of the subendocardium due to the movement of blood from
subendocardium to subepicardium during systole.

Discontinuities in the distributions of E; and E5 were due to the element in-
terface in the LV midwall and may have revealed a need to either refine the model
transmurally or increase the order of the interpolation scheme within the wall plane.

The predicted subepicardial in-plane angle to maximum shortening (¢;) was
realistic, but for deeper wall locations there are fundamental differences between
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the predicted and reported first principal angles. At approximately 25% of the wall
thickness below the epicardium, E| and E; reach similar magnitudes and there is
a marked change in the predicted principal angle ¢, (this is not surprising, since
the principal strains and axes are arbitrarily ranked in order of strain magnitude).
Interestingly, for the inner three-quarters of the wall the predicted in-plane angle to
the second principal strain (¢;) shows reasonable agreement with the reported ¢4
measurements. This is not the case at the midwall, however, where the magnitudes
of Ey and E; are again very similar and the principal axes seem to switch orienta-
tions. For further discussion of the role of the fibre-sheet architecture in myocardial
shear deformation and ventricular wall thickening, see [20].

8. Critique of the Ventricular Mechanics Model

In this section we critique the current model and indicate where we believe further
developments could improve the model and hence our understanding of ventricular
mechanics.

1. Anatomical model. The model does not account for myocardial fibres that lie
oblique to the ventricular wall surfaces, since the imbrication angle is assumed
to be zero at all locations. The computational framework has been developed to
incorporate an imbrication angle into the anatomical description, but the ven-
tricular mechanics model awaits further experimental work to characterise the
spatial distribution of imbrication angles. This places doubt on model predic-
tions at locations near the apex, where imbrication angles have been reported to
descend steeply into the ventricular wall [34]. However, it is unclear at present
whether a more realistic representation of the fibre angle distribution in the
apical region will greatly influence the global mechanical behaviour of the
ventricular myocardium.

2. Finite element model. The chosen combination of high order interpolation func-
tions and FE mesh resolution produced sufficiently accurate strain distributions
at all locations, except those near the apex. Apical elements of the present
ventricular mechanics model must be refined in the longitudinal direction if
these locations are of particular interest. Effects of apical mesh refinement have
yet to be quantified, but it is unlikely to significantly alter the global ventricular
mechanics.

3. Passive elastic material response. Several issues must be addressed regarding
the passive constitutive law for myocardium (see Section 5.2). The pole-zero
law is primarily based on in-vitro biaxial tension tests of thin sections of ventric-
ular myocardium. The pole—zero axial weighting coefficients &y, derived from
these experiments, may not be appropriate for in-vivo mechanics of the ventri-
cles. These constitutive properties may be estimated using in-vivo recordings
of ventricular deformation and cavity pressures.

Further research is required to characterise the shear material response of ven-
tricular myocardium. To reconcile the shear response in terms of tissue struc-
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ture, Section 5.3 introduced a fibre distribution model for cardiac tissue. Further
work is required to interpret shear deformations using this model and to use it to
estimate the shear weighting coefficients of the pole-zero law. The shearing be-
haviour of small cubes of myocardial tissue have recently been measured under
various degrees of tissue compression [7, 8] and work is currently underway
to fit these results with the pole-zero model and, in particular, to determine
whether the nonlinear coupling terms proposed as an extension to the power
series in equation (16) are needed.

Finally, the pole-zero law does not provide a suitable description of the com-
pressive response of cardiac tissue. Further experimental studies are required to
more accurately model compressive myocardial response.

4. Regional variation of material properties. For present purposes, the model in-
corporated homogeneous material properties throughout the myocardium. Re-
cent microstructural observations suggest that this is an oversimplification of
ventricular wall properties. For example, the extent of branching between my-
ocardial sheets changes across the ventricular wall [19]. This implies that the
mechanical stiffness along the sheet-normal axis also varies transmurally. In
addition, the transmural variation of collagen density has been measured for
rat hearts [47], but the appropriate relationship between collagen density and
mechanical stiffness remains to be established. Once quantified experimen-
tally, spatially varying material properties could be readily incorporated into
the ventricular mechanics model using standard FEM fitting and interpolation
techniques. A likely benefit of incorporating stiffer subendocardial tissue prop-
erties (resulting from the higher than average density of collagen fibres in this
region) may be to reduce the excessive subendocardial wall thickening currently
predicted by the model.

5. 3D distributions of residual strain. The present model accounts for the trans-
mural residual fibre strain distribution, but does not incorporate other com-
ponents of residual strain. [5] recently quantified 3D distributions of residual
strain with respect to the anatomical fibre coordinates. This information could
be readily incorporated into the ventricular mechanics model using the growth
tensor described by [32].

6. Myocardial fluid shifts and viscoelasticity. It is well established that the ven-
tricles stiffen with increased intracoronary blood volume [40]. [13] used an
axisymmetric poroelastic model of the LV to illustrate the increase in pre-
dicted intramyocardial pressure when redistribution of intracoronary blood was
suppressed. Furthermore, [44] used a model that included extracellular fluid
flow, which was concluded to account for the insensitivity of experimentally
observed passive stress-strain curves to loading rate and of stress-relaxation
curves to the amount of stretch. To account for regional myocardial compress-
ibility via changes in vascular volume, we have formulated a simple model of
myocardial fluid shift [27]. However, the present study made no provision for
the poroelastic or viscoelastic nature of ventricular myocardium, but such con-
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siderations would be essential to study the time-varying mechanical response
of the ventricles.

7. Boundary constraints. A model of the pericardial sac needs to be incorporated

into the ventricular mechanics model to restrict filling [36, 37]. Moreover, it is
clear that the atria, basal skeleton and chordae tendineae play important roles in
restricting the motion of the adjacent portions of ventricular myocardium [35].

8. Active material response. For present purposes, a simple steady-state model

of the active material response of ventricular myocardium was sufficient to
quasi-statically simulate the systolic phase of the heart cycle. To account for
the time-varying nature of ventricular activation on heart mechanics, a dynamic
model of the active myocardial material response must be incorporated. The
computational framework has been formulated to use the time dependent fading
memory model for force generation of cardiac muscle fibres [11].
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Abstract. Recent morphological studies have demonstrated a laminar (sheet) organization of ven-
tricular myofibers. Multiaxial measurements of orthotropic myocardial constitutive properties have
not been reported, but regional distributions of three-dimensional diastolic and systolic strains rela-
tive to fiber and sheet axes have recently been measured in the dog heart by Takayama et al. [30].
A three-dimensional finite-deformation, finite element model was used to investigate the effects of
material orthotropy on regional mechanics in the canine left ventricular wall at end-diastole and end-
systole. The prolate spheroidal model incorporated measured transmural distributions of fiber and
sheet angles at the base and apex. Compared with transverse isotropy, the orthotropic model of pas-
sive myocardial properties yielded improved agreement with measured end-diastolic strains when:
(1) normal stiffness transverse to the muscle fibers was increased tangent to the sheets and decreased
normal to them; (2) shear coefficients were increased within sheet planes and decreased transverse to
them. For end-systole, orthotropic passive properties had little effect, but three-dimensional systolic
shear strain distributions were more accurately predicted by a model in which significant active
systolic stresses were developed in directions transverse to the mean fiber axis as well as axial
to them. Thus the ventricular laminar architecture may give rise to anisotropic material properties
transverse to the fibers with greater resting stiffness within than between myocardial laminae. There
is also evidence that intact ventricular muscle develops significant transverse stress during systole,
though it remains to be seen if active stress is also orthotropic with respect to the laminar architecture.

Mathematics Subject Classifications (2000): 74B20, 74L15.

Key words: myocardium, myofibers, constitutive equation, and orthotropy.

1.Introduction

Stress and strain distributions in the left ventricular wall are needed for understand-
ing regional ventricular function, and they can have a significant effect on processes
such as hypertrophy, remodeling and regional coronary blood flow.

Ventricular geometry has been studied in most quantitative detail in the dog
heart [20]. Geometric models have been very useful in the analysis, especially the
use of confocal and nonconfocal ellipses of revolution to describe the epicardial

* UCSD, Department of Bioengineering 9500 Gilman Drive La Jolla, CA 92093-0412, U.S.A.
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and endocardial surfaces of the left ventricular walls. The canine left ventricle is
reasonably modeled by a thick ellipsoid of revolution truncated at the base. Using
a truncated ellipsoidal model, left ventricular geometry in the dog can be defined
by the major and minor radii of two surfaces, the left ventricular endocardium, and
a surface defining the free wall epicardium and the septal endocardium of the right
ventricle. The cardiac ventricles have a complex three-dimensional muscle fiber
architecture [28]. In the human or dog left ventricle, the muscle fiber angle typically
varies continuously from about —60° (i.e. 60° clockwise from the circumferential
axis) at the epicardium to about +70° at the endocardium. The fibrous architecture
of the myocardium has motivated models of myocardial material symmetry as
transversely isotropic. The transverse laminae are the first structural evidence for
material orthotropy and have motivated the development of a models describing
the variation of fiber, sheet and sheet-normal axes throughout the ventricular wall
[15].

Regional distributions of three-dimensional deformation in resting ventricular
myocardium have been measured from the displacements of markers that are either
implanted in the ventricular wall [18, 24] or generated using noninvasive magnetic
resonance tagging techniques [22, 23]. However, the direct measurement of local
forces or stresses in the intact heart wall has not been reliable [8].

Previous investigations have used various models to compute transmural distri-
butions of three-dimensional strain and stress. Guccione et al. [5, 6] and Humphrey
and Yin [9] used cylindrical models, Guccione et al. [7] and Kantor et al. [12, 13]
used axisymmetric models, and Costa et al. [3] used a fully nonsymmetric three-
dimensional model with a realistic left ventricular geometry and muscle fiber orien-
tations. All of these models used transversely isotropic constitutive laws consistent
with biaxial tests [21, 32], which show that resting myocardial stiffness in the
muscle fiber direction tends to be greater than in crossfiber directions.

However, recent studies [15, 16] have demonstrated that the well recognized
cleavage planes [27] observed in transverse histological sections reflect a laminar
organization of myofibers. Branching ‘“sheets” consist of tightly coupled layers of
myofibers about four cells thick that appear surrounded and loosely interconnected
by perimysial fibrillar collagen. These observations suggest that transverse myocar-
dial stiffness may be lower normal to the sheet plane than within it. It has also been
proposed that this organization may permit significant shearing between adjacent
laminae during systole [4, 15].

Although no multiaxial experimental testing of orthotropic material properties
have yet been reported for myocardium, a recent experimental study measured
regional distributions of three-dimensional diastolic and systolic strains relative
to local fiber and sheet in the canine left ventricle [30].

In three-dimensional models of systolic contraction, the usual assumption has
been that active systolic stress development is uniaxial and directed only along
the mean myofiber axis. However a recent biaxial test study by Lin and Yin [17]
showed that tetanized rabbit myocardium develops substantial transverse stiffness
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during tonic activation that can be 50% or more of fiber stiffness. Possible mecha-
nisms for this include transverse force development at the crossbridge [33] and the
dispersion of myofiber orientations about the mean [14].

Although muscle fiber and sheet architecture themselves generate significant
mechanical heterogeneity, another typical assumption is that intrinsic material prop-
erties can be approximated as homogeneous when expressed with respect to re-
gionally varying structural axes defined by the fiber and sheet structure. But there
is some reason to question this assumption, too. The degree of branching and
connective tissue interconnection is not transmurally uniform [15]. And coiled per-
imysial collagen fibers are thought run continuously from base to apex; if so, their
density should be significantly greater at the apex. Finally, at the single cell level,
evidence of electrophysiological and mechanical heterogeneity has been reported.
The transient outward current of mid-myocardial M-cells is significantly different
from that of epicardial cells in several species, and this is thought to underlying the
normal morphology of the T wave in the electrocardiogram. Finally, a recent study
of single cell mechanics in isolated rat and ferret cardiac myocytes demonstrated
transmural differences in resting and active axial stiffness [1].

In this article we present a new model in which regional muscle fiber and sheet
orientations have been included. We compared the results of the axisymmetric,
orthotropic model of left ventricular filling and ejection with three-dimensional
regional strains measured in the anesthetized dog [30] to test the following struc-
turally based hypotheses: (1) transverse resting stiffness is lower in the sheet-
normal direction than tangent to the sheet plane [15]; (2) interlaminar shear stiff-
nesses in planes normal to the sheets are lower than shear stiffnesses in the fiber-
sheet plane because interlaminar shearing can be large during systole [15, 16];
(3) significant transverse active stresses are developed during systole in the intact
myocardium [17].

2. Methods

The undeformed geometry of the body was described using a curvilinear system
of world coordinates 8, with covariant base vectors G(g), while 6, and gff) were
used for the deformed geometry [2]. The finite element implementation used nor-
malized element coordinates &, with base vectors G,(f) (Figure 1). The fibrous
structure of the anisotropic myocardium was defined using locally orthonormal
body coordinates X; in which X is aligned with the local muscle fiber axis and
lies in the epicardial tangent (&, &)-coordinate plane. X, lies in the sheet plane
and X, is orthogonal to the sheet plane. These two coordinate systems are related
through a transformation matrix (Appendix A). The Galerkin finite element equa-
tions for three-dimensional finite elasticity (virtual work formulation) were derived
in prolate spheroidal coordinates as described by Costa et al. [2, 3].
Three-dimensional elements in prolate spheroidal coordinates with bicubic Her-
mite interpolation in the transmural and longitudinal coordinates and linear La-



146 T.P. USYK ET AL.

Figure 1. Prolate spheroidal coordinates {84} = {A, M, ©} used to model a thick-walled
confocal ellipsoidal body. The geometry can be modeled by curvilinear finite elements
with normalized coordinates {&}, &, &3} oriented in the {—®, M, A} directions, respectively.
Fiber-sheet coordinates, defined by fiber angle (&) and sheet angle (8), comprised the fiber
axis (X y), sheet axis perpendicular to X ; within the sheet plane (Xs), and sheet-normal axis

(Xn).

grange interpolation in the circumferential coordinate direction were used to de-
scribe the ventricular geometry. The nonlinear finite element equations were inte-
grated using Gaussian quadrature and solved by a Newton-iterative method.

The geometry of the canine left ventricle was represented by a truncated el-
lipsoid of revolution. The focus, inner and outer surfaces dimensions of the pro-
late spheroid were calculated from experimental data collected from different dog
hearts [4, 18, 30]. Prolate spheroidal and global Cartesian coordinates (see Fig-
ure 1) are related by:

Y, =d-cosh AcosM; Y, = d - sinh A sin M cos ©;
Y3=d - -sinh Asin Msin®, (1)

where d is focal length of the prolate spheroidal coordinate system.

Using experimental data [4, 18, 30], the left ventricular model was built with
the following parameters: the preload pressure in the reference state for strain
measurement was 3 mmHg; end-diastolic pressures were 8§ mmHg, 13 mmHg and
17 mmHg; initial cavity volume Vy was 13 ml; wall thickness in the equatorial
region £; was 12 mm; wall thickness in the apical region 2, was 10 mm. Using
these parameters, we obtained: ¢ = 40.4 mm (apex to base distance), r; = 9.8 mm,
ry = 21.7 mm (inner and outer radii at the equator respectively). The focal length
of the prolate spheropidal coordinate system d was 25.2 mm. The model of the
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Figure 2. Dependence fiber and sheet angles with wall depth at apical and basal sites, and
transmural distributions of experimental mean fiber and sheet angles at apical and basal sites.

left ventricle during of systolic ejection had an end-diastolic pressure of 13 mmHg
(the reference configuration for the model of systolic ejection), and an end-systolic
pressure of 117 mmHg.

Morphological studies in the dog have shown that circumferential fibers are
located near the midwall at the base but are substantially closer to the epicardium
at the apex [4]. The fiber angle was —60° to —35° at the epicardium and increased
from base to apex. Fiber angle ¢ varied linearly in the model from the endocardium
(A = 0.38) to the epicardium (A = 0.78). Figure 2 shows the variation of ¢ in the
apical and basal sites as a function of wall depth. The fiber angle varied linearly
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from base to apex. The fiber angle in the endocardium varied from 60° at the base
to 83° at the apex. The root-mean-squared error for & about the experimental values
was 8.8+5.3°.

Sheet orientation, described by the angle 8, tended to be negative in the apical
region and positive in the basal region. The variation of 8 in the left ventricular wall
at the apical and basal sites is shown in Figure 2. In the model, the sheet angle var-
ied linearly from base to apex, consistent with experimental measurements [4, 30]
in the dog. The root-mean-squared error for 8 in these experimental measurements
was 11.3+7.4°.

The epicardial finite element nodes at the base had ® and A fixed to simulate
constraints of the relatively stiff mitral valve annulus [5] and the longitudinal co-
ordinate M was fixed at all basal (M = 120°) and apical (M = 5°) nodes. The
symmetric high-order finite element model required 3 elements and 8 nodes for
convergence of the strain energy to within 0.5%.

Previous model investigations of passive left ventricular mechanics [2, 3, 7, 9,
11] all assumed that myocardium is transversely isotropic. In the present analysis,
the stress-strain relationship of the passive left ventricle was defined by the follow-
ing exponential strain-energy function W, which treats myocardium as nonlinear,
orthotropic and nearly incompressible.

W = Ce2—1)/2+4 Coompe(J -InJ — J + 1); )
Q = brE} + by EL + buEL, + byo(ES, + E)
+bpa(ET, + EL) + bus(EL + E2):;

where E;; are components of Green’s strain tensor E in an orthogonal coordinate
system having fiber, sheet and sheet-normal (f, s, n) axes respectively; J is the de-
terminant of the stretch tensor U. The following material constants: C = (.88 kPa;
brr = 18.5; bys = 3.58; by, = 3.58; by, = 2.8; by, = 2.8; b,y = 2.8;
Ceompr = 100 kPa were chosen as a starting point, consistent with previous trans-
versely isotropic analyses [7] of canine myocardium. The last term of equation (2)
describes nearly incompressible behavior [25]. We found that this form gives more
accurate numerical results than previous incompressible formulation [31] without
significantly affecting myocardial volume.

Systolic contraction was modeled by defining the Cauchy stress tensor as the
sum of the passive three-dimensional stress tensor T® derived from the strain
energy function and an active stress tensor T®:

T = T(P) + T(a)_ (3)
The components Tii-a) of the active stress tensor in prolate spheroidal coordinates
were derived from the diagonal stress tensor T,y referred to local fiber-sheet
coordinates (X s, X, X,) using a rotation matrix g, which defines the relation be-

tween the prolate spheroidal coordinate system and the local fiber-sheet coordinate
system using deformed fiber and sheet angles:

T(a) = qTTactiveq- 4
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Figure 3. Total stress in fiber (squares) and cross-fiber (circles) directions for equibiaxial (a),
off-biaxial (b), and uniaxial (c) stretch protocols compared to model results (solid lines).

The components of the active tensor T,.ive Were a function of peak intracellular
calcium [Ca]; and sarcomere length. The parameters of the active model were
based on the experimental measurements of sarcomere length and tension [6, 10].
Two variants of the active model were built: one with a uniaxial active stress com-
ponent T}‘;‘ive, assuming no transverse stresses (721 = T = (); and one
biaxial model, where transverse active stresses 721 and T*%"¢ were added as a
function of axial stress T}‘}'i"e and local transverse (A, A,) and axial A strains
[19] to be consistent with biaxial experimental tests in barium-contracted rabbit
myocardium [17]. To reproduce these biaxial observations we made the following
assumptions: (1) part of the significant transverse active stress measured in isolated
tissue is associated with a 12° angular dispersion (') of local myofiber axes about
the regional mean [14]; (2) part of the transverse active stress is generated by an
unknown mechanism acting at the myofibril level probably associated with cross-
bridge geometry [26] and this transverse myofibril stress development is a constant
fraction (k) of the axial tension (Appendix B). The experimentally measured active
biaxial stresses were also affected by the measured 18° “spay” in mean myofiber
angles through the thickness of the left ventricular experimental tissue slices. Ap-
pendix B summarizes the equations that incorporate the first two features in an
active constitutive law for transversely isotropic active stress. Figure 3 illustrates
total stresses for simulated biaxial testing obtained with a three-dimensional finite



150 T.P. USYK ET AL.

element model that included the splay of mean fiber angles through the thickness
of the test specimen and passive material parameters consistent with resting biaxial
stress—strain tests in the rabbit [17]. The comparison in Figure 3 shows excellent
agreement with experimental fiber and transverse active stresses [17] for uniaxial,
equibiaxial and off-biaxial stretch protocols using constant values of k (0.3) and o
(12°).

Regional three-dimensional strains computed in the left ventricular model were
compared with experimental data, measured by Takayama et al. [30]. In these
experiments, transmural arrays of radiopaque markers were implanted in six anes-
thetized dogs at sites approximately one quarter (basal site) and three quarters
(apical) of the distance from base to apex along the left ventricular long axis,
midway between the left anterior papillary muscle and the anterior ventricular
sulcus. Myocardial cleavage plane and muscle fiber angles were measured at each
site, and three-dimensional diastolic strains were computed at subendocardium,
midwall and subepicardium with respect to fiber, sheet, normal (f, s, n) axes.

Examining these experimental data, we excluded two dogs, because measured
strain components for these two studies were significantly different from the other
four, which were more representative of their mutual mean.

3. Results

Starting with the transversely isotropic passive material parameters of Guccione
et al. [5], we decreased resting fiber stiffness until mean fiber strains agreed with
experimentally measured diastolic strains in the basal and apical regions. The three
shear coefficients were all increased together to match the measured shear strains
on average. The compressibility coefficient was chosen to match mean myocardial
volume changes measured in the experiment. The adjusted coefficients for the
transversely isotropic nearly incompressible model were: C = 0.88 kPa; byy =
6.0;b5s = 5.0; by = 5.0; b5y = 6.0; bsp, = 6.0; by = 6.0; Ceompr = 3.0.

As shown in Figures 4-9, end-diastolic strain distributions computed with the
passive transversely isotropic model showed quite good agreement for the E;,
E,n, E s components. However, strain in the sheet direction E,, and the interlam-
inar shears E,, and E s, were significently underestimated.

Decreasing passive sheet-normal stiffness relative to in-sheet transverse stiff-
ness (b, /bss) and keeping the sum by, + b, constant, decreased the sheet strain E,;
and improved the agreement between model and experiment. Similarly, decreasing
interlaminar shear coefficients bs, and b,, and increasing by, (keeping sum of
interlaminar shear coefficients equal) improved the agreement between computed
and measuremed interlaminar shear strains Ey, E ¢y, Eg,. The best constant com-
bination was: C = 0.88 kPa; byy = 6.0; by, = 7.0; by, = 3.0; by, = 12.0;
by =3.0; by = 3.0; Ceompr = 3.0

All six three-dimensional passive strain components (calculated with the or-
thotropic model) at the basal region were within one standard deviation of measure-
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Figure 4. Comparison of experimental mean end-diastolic strains at the basal site [30] with
those predicted by the model. Influence of different coefficient ratios bss/bps in the con-
stitutive equation on the calculated strains. Preload pressure (reference configuration) was

3 mmHg; end-diastolic pressure was 13 mmHg.

ments reported by Takayama et al. [30] for three different levels of end-diastolic
pressure. All constitutive parameters were the same for all three levels of end-
diastolic pressure. In the model, the longitudinal coordinate of the basal region
was M = 85° In fiber-sheet coordinates, the dependence of the strain compo-
nents on wall thickness are shown in Figures 4-6 for an end-diastolic pressure
of 13 mmHg for differen by, /by, and bss/bs, = bys/bs, ratios. The fiber and
normal-sheet strains were positive, and the sheet component was negative. The
fiber component did not change significantly from epicardium to endocardium.
The shear strains Ey, and E s, also did not change significantly, £y, decreased and
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Figure 5. Comparison of experimental mean end-diastolic strains at the basal site [30]
with those predicted by the model. The effects of varying the constitutive coefficient ratio
bfs/bgn = bys/bns on the calculated strains. Preload pressure (reference configuration) was
3 mmHg; end diastolic pressure was 13 mmHg.

E ¢, increased from epicardium to endocardium. The shear strain £, was negative
and depended significantly on the sheet angle 8: in general, E;, was negative when
B was positive; Eg, was positive when 8 was negative.

The strain components in fiber sheet coordinates at the apical region (M = 25°)
were calculated for three different levels of end-diastolic pressure. These strains are
shown in Figures 7-9 for an end-diastolic pressure 13 mmHg and different ratios
bys/bpn and byg/bs, = bys/bg,. All six strain components (orthotropic model)
were within or close to one standard deviation of experimental measurements [30]
for all three variations of end-diastolic pressure.
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Figure 6. Comparison of experimental mean end-diastolic strains at the basal site [30] with
those predicted by the transversely isotropic and final orthotropic models. Preload pressure
(reference configuration) was 3 mmHg; end diastole pressure was 13 mmHg.

It can be seen from Figures 4-9 that the ratio by /b,, significantly influenced
only the E strain component, and by, /by, = by,/b,, significantlyinfluenced
only the E,; component. Notice that the agreement with experiment was better in
the basal region than in the apical region. Strain components in the reference coor-
dinate system were also calculated. The absolute value all of six strain components
in fiber-sheet coordinates and reference coordinates were increased, when end-
diastolic pressure was increased (in agreement with experimental investigations).

The components of the stress tensor were also calculated in fiber-sheet and ref-
erence coordinate systems. Orthotropic passive properties influenced most strongly
the fiber stress component and fiber-normal shear stress component. All main stress
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Figure 7. Comparison of experimental mean end-diastolic strains at the apical site [30] with
those predicted by the model. Influence of different coefficient ratios bgg /by, in the constitu-
tive equation on calculated strains. Preload pressure (reference configuration) was 3 mmHg;
end-diastolic pressure was 13 mmHg.

components were decreased from endocardium to epicardium. The fiber-normal
shear stress component changed significantly from endocardium to epicardium.
End-systolic strains in fiber-sheet coordinates were calculated with both uniax-
ial active stress and biaxial active stress (see Appendix B). In Figure 10, strain com-
ponents are shown in fiber-sheet coordinates with uniaxial active stress and either
transversely isotropic or orthotropic passive properties. There was little difference
between systolic strains in the model with transversely isotropic vs. orthotropic
passive properties.
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Figure 8. Comparison of experimental mean end-diastolic strains at the apical site [30]
with those predicted by the model. Effect of varying the constitutive coefficient ratio
bys/bgn = byg/bns on the calculated strains. Preload pressure (reference configuration) was
3 mmHg; end diastole pressure was 13 mmHg,.

In Figure 11, the components of the strain tensor are represented in fiber-sheet
coordinates with orthotropic passive properties and either uniaxial or biaxial active
properties. Agreement with the experimental data of Takayama et al. [30] was sig-
nificantly better for the model with biaxial active stress than uniaxial active stress.
However, there was still a discrepancy in strains (especially E gy and E,;), which
may possibly be further reduced by use of an orthotropic active stress.
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Figure 9. Comparison of experimental mean end-diastolic strains [30] with those predicted
by the transversely isotropic and final orthotropic models at the apical site. Preload pressure

was 3 mmHg; end-diastolic pressure was 13 mmHg.

A three-dimensional finite element model of the canine left ventricle was used to
compute stress and strain distributions at end-diastole and end-systole. Compared
with transverse isotropy, an orthotropic model of resting myocardial properties
gave improved agreement with experimentally measured sheet strains and wall
thinning when myocardial stiffness transverse to the muscle fibers was increased
in the sheet direction relative to the sheet-normal axis. Compared with transverse
isotropy, an orthotropic model gave improved agreement with experimentally mea-
sured sheet-normal strains when interlaminar shear stiffness was increased in the
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Figure 10. Comparison of experimental mean end-systolic strains at the basal site [30] with
those predicted by uniaxial active model with transversely isotropic and final orthotropic pas-
sive properties. End-diastolic pressure (reference configuration) was 13 mmHg; end-systolic
pressure was 117 mmHg.

fiber-sheet plane relative to the stiffness in planes normal to the sheets. Thus, these
results support the hypothesis that normal stiffness transverse to the muscle fibers
is greater tangent to the sheets and lower normal to them; shear coefficients are
greater within sheet planes and lower transverse to them.

The coefficient bss, which corresponds to stiffness in the fiber direction, was
less than by, which corresponds to stiffness in the sheet direction. This may be in-
consistent with previous reports of biaxial tissue responses which generally report
highest stiffness in the myofiber direction. However, it is likely in those measure-
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Figure 11. Comparison of experimental mean end-systolic strains at the basal site [30] with
those predicted by the model having orthotropic passive properties and uniaxial or biaxial
active stress. End-diastolic pressure (reference configuration) was 13 mmHg; end-systolic
pressure was 117 mmHg.

ments, that the crossfiber direction was closer to the sheet-normal direction, than
the sheet direction. This is in keeping with the finding that average sheet angles in
the left ventricle myocardium tend to be less than 45° (Costa et al, 1999) [4].
Hence, in typical test slices of tissue cut parallel to the plane of the wall, the
crossfiber axis has a larger component normal than tangent to the sheets. Previous
material parameter estimates have been based on measurements in isolated arrested
myocardial tissue, where as the experimental strain data [30] were acquired at
successive end-diastolic phases of the cardiac cycle in the intact beating heart. This
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may explain why fiber strains E y; were higher in the study of Takayama et al. [30],
then those measured in the isolated perfused heart by May-Newman et al. [18].

As seen in Figures 4-9, the agreement with experimental measurements was
generally better at the basal region than the apical region (particularly in the shear
strain components). This may be because the ellipsoidal model better approximates
left ventricular geometry in the basal and equatorial sites, than at the apex, where
the wall thins more rapidly. For example, a change of focal length in the model
only significantly affects results in the apical region (particularly the E, strain
component).

In general, agreement with experimental measurements was better in the subepi-
cardium. LeGrice et al. [15, 16] measured the dependence of branch number per
square mm for left ventricular myocardium between adjacent layers at different
sites of the wall. In the epicardial region, the number of branches was 6 mm™2 and
increased to endocardium (12 mm™2), suggesting that sheet-normal stiffness may
be nonhomogeneous across the wall.

Recently, Cazorla et al. [1] showed, that the sarcomere length-resting tension
relationship and sarcomere length-active tension relationship are different for en-
docardial and epicardial myocytes (rat and ferret), and this difference for active
tension was statistically significant. We modeled this inhomogeneity in passive
and active material properties, increasing the coefficient of the passive constitutive
equation and increasing active tension smoothly from epicardium to endocardium.
The most significant effects of these changes were on the endocardial strains Ejg;
and E,,. Our results showed decreasing end-diastolic strains, Ej; and E,,, at the
endocardial surface and increasing end-systolic strains, Eg and E,,, at the en-
docardial surface. Using these nonhomogeneous interpretation we reached better
agreement with experimental strains, but the improvement was small compared
with variations in experimentally measured strains.

By varying coefficients of an orthotropic finite element model of left ventric-
ular mechanics, we were able to investigate the structural basis of regional three-
dimensional strains measured in the dog heart relative to local myofiber and sheet
axes. The results are consistent with the structurally motivated hypothesis that
myofibers are more tightly coupled within the sheets than between adjacent sheets,
and that these properties affect regional diastolic function in vivo.

Agreement with the experimental end-systolic strains of Takayama et al. [30]
was substantially better for the biaxial active model than the conventional uni-
axial model of muscle contraction. This observation suggests that the substantial
transverse active stresses developed in tonically activated isolated cardiac muscle
preparations may be reflective of a similar behavior of intact myocardium in vivo.
Our constitutive law for biaxial active stress (Appendix B), was derived in part
from consideration of the known dispersion of myofiber orientations about the
mean. However, the analysis also had to postulate a significant transverse force
development at the myofibril level that was a constant fraction (30%) of the active
fiber tension. Although some investigators have proposed models to explain this
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phenomenon based on the crossbridge and myofibril lattice geometry [26], the
precise mechanism of this significant transverse force development remains un-
known. The influence of orthotropic passive properties on end-systolic strains was
small both for the uniaxial active model and the biaxial active model. However,
it is possible that making the active muscle stress development orthotropic may
further improve the agreement with experimentally observed systolic strains. This
possibility remains to be tested in the future.

In summary, an orthotropic material model for resting myocardium improved
the agreement between experiment and a three-dimensional model of diastolic left
ventricle regional mechanics, when stiffnesses transverse to myocardial laminae
were reduced relative to the corresponding coefficients within the plane of the
sheet. However, in an active model, these passive material changes had little effect
on systolic left ventricular strains. Incorporating a significant component of ac-
tive stress transverse to the muscle fibers greatly improved the agreement between
measured and modeled transverse end-systolic shear strains.
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Appendix A

The body/fiber X;-coordinate system is defined in relation to the & -coordinate with
X lying in the (&), &)-coordinate plane. X, and X3 are normal to X, with X, lying
in the (&1, &2) plane. The relationship between these coordinate systems is:
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where 7 is defined as the “fiber angle”, which in general is a function of (&}, &;,

£3).

The fiber & coordinate system is defined in relation to the sheet Sfiber-sheer
coordinate as:

1 0 0
a Xk
WM—— 0 sinf —cosp |, (A.2)
fiber-sheet O COSﬂ Sil’lﬁ

where B is defined as the “sheet angle”.
Finally the relation between & coordinate system and fiber-sheet coordinates is:

a&k 0 aXn..
X éber-sheet X gber 0X f]iber-shect

ap algsinﬂ +a13cosﬁ —GIQCOS,B + a3 sinﬁ
= | ay apsinB+apcosBf —apcosP+axsinf
a3y apsinf +aszcos B —azpcos B+ aszsin B

Appendix B

Fiber, sheet and sheet-normal stresses acting along the mean myofiber, sheet and
sheet-normal axes in a ensemble of cells are obtained by integrating myofibril
tractions over the distribution of myofiber angles f(8):

'um=f/mﬂm@}Mywmww. (B.1)
0 n

This equation corresponds to our first assumption about the angular dispersion of
local fibers about the regional mean. The active stress tensor T'° in local fiber
coordinates for equation (Bl) consists only of a fiber component T}‘}Cal, which is
a function of peak intracellular calcium [Ca]; and sarcomere length. The angles
6 and p describe the relationship between the local myofiber axis and the mean
fiber axis; f(&) is the fiber orientation probability density distribution which can be
described using a von Mises distribution; ¢ (i} also is a density distribution which
can be described as ¢(u) = 1/(2w) (u € [1; 27 ]); Q defines the relation between
the mean fiber-sheet coordinate system and the local cell coordinate system:

xfiber-sheet. _ cyxlocal (B.2)

If f(B)is f 0() in the undeformed reference state, then:
1 0 0
f6) = f°@) - | 0 Ag/rp 0 | =f0)-A, (B.3)
0 0 Ao/
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where A; are fiber, sheet and normal-sheet extensions. In common cases the func-
tion f 0(6) will depend also on the angle p.

It will be assumed that the local myofiber orientation may be sufficiently de-
scribed using a von Mises distribution:

. explko cos(26)]
fo0) = —————, (B.4)
27 Io(ko)

where kg is a concentration parameter, and /y is the modified Bessel function of
order zero, given by:

1 2
Iyk) = ——f explko cos ] do. B.S)
27 Jo
The concentration parameter &y, can be related to the angular dispersion by:
1 1, (ko)
= ; Ay(ko) = ; (B.6)
kA (ko) T T (ko)

where o is the angular dispersion and /; is the modified Bessel function of order
one. Series expansions for the modified Bessel functions are given by:

Iotko) =y ()™ - (0.5ko)™,
r=0

ko) =Y [+ p)t-r]™ - OS5k p=1.2,....
r=0

The concentration parameter k3 may assume any value between 0 and oo with
smaller values associated with more dispersed distributions and larger values asso-
ciated with narrower distributions.

We may rewrite equation (BI) as follows:

/2 2
1
Tcive = 5~ / f [QT Q"] - f°0)dunds | - A. (B.7)
O=—m/2 un=0

Using our second assumption about transverse mechanisms at the myofibril level,
associated with cross-bridge geometry, we obtain 7'°® and T]"C‘ll as a constant
fraction (k) of the active fiber stress TlOLal In this case, the active stress tensor in
local fiber coordinates can be written as

T 0 0
Tlocal — 0 rylfcal 0 ; (B . 8)
0 0 T local

Tvlé)cal — kT local f Tlocal — kT}Ode] )):'Ji )
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The factors As/A s and A, /A ¢ are included to reflect the assumption that k is deter-
mined by the angle between the crossbridge and the thin filament, which changes
as a function of transverse lattice spacing [18, 24].

After integration of equation (B7) we can obtain the active stress tensor in mean
fiber-sheet coordinates:

T ;‘;tive 0 0
Tactive = 0 T;;Ctive 0
0 0 Tna;tive
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Abstract. Mechanics plays a major role in heart development. This paper reviews some of the
mechanical aspects involved in theoretical modeling of the embryonic heart as it transforms from a
single tube into a four-chambered pump. In particular, large deformations and significant alterations
in structure lead to highly nonlinear boundary value problems. First, the biological background
for the problem is discussed. Next, a modified elasticity theory is presented that includes active
contraction and growth, and the theory is incorporated into a finite element analysis. Finally, models
for the heart are presented to illustrate the developmental processes of growth, remodeling, and mor-
phogenesis. Combining such models with appropriate experiments should shed light on the complex
mechanisms involved in cardiac development.

Key words: development, morphogenesis, cardiac mechanics, finite elements, models.

1. Introduction

During development, the heart transforms from a single tube into a four-chambered
pump. This transformation involves a dynamic interaction between genetic and
environmental factors that regulate the primary developmental processes of growth
(volume change), remodeling (property change), and morphogenesis (shape chan-
ge) [1, 2]. One of the most important environmental factors is mechanics, which
plays both direct and indirect roles throughout development.

On the indirect side, mechanical stress and strain influence the actions of certain
genes [3]. This paper, however, focuses on direct effects, as manifested in each of
the primary processes:

Growth. During development, the human heart increases in size by two orders of
magnitude. In addition to this global growth, regional growth produces resid-
ual stress [4—7], which can affect cardiac function. Moreover, a substantial
body of evidence suggests that mechanical stress or strain plays a major role
in regulating growth of the heart throughout life [1].

Remodeling. Initially, the presumptive heart muscle (myocardium) is a thin layer
of epithelial cells that forms the outer layer of the cardiac tube. As these
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cells differentiate into muscle, the proteins actin and myosin accumulate in
the cytoplasm, forming sarcomeres and myofibrils that align gradually to cre-
ate the highly ordered architecture of the mature heart. In addition, collagen
fibers link together to build their own structure in the extracellular matrix [8].
This remodeling alters the stiffness and anisotropy of the myocardium during
development.

Morphogenesis. Creating a heart requires extremely complex deformations that
result from both passive and active forces. In models for morphogenesis, the
large tissue deformations and continuous changes in geometry lead to highly
nonlinear and computationally intensive boundary value problems.

The purpose of this paper is to delineate some of the theoretical and compu-
tational issues involved in biomechanical studies of heart development. First, we
give an overview of some of the critical stages of development. Then, a unified
mechanical theory is presented that includes most of the major mechanical features
of the three primary processes. (Although viscous forces may be significant dur-
ing development, we treat the embryonic tissues as pseudoelastic, i.e., the loading
and unloading responses are defined by separate elastic constitutive relations [9].)
Next, methods for implementing this theory in a finite element (FE) formula-
tion are discussed. Finally, illustrative examples are given for each developmental
process. Our intent is to stimulate interest among mechanicists in these and related
problems.

2. Overview of Heart Development

The heart is the first functioning organ in the embryo. Remarkably, although its
morphology changes dramatically during development, the heart functions without
interruption to serve the metabolic needs of the rapidly growing embryo. Thus, the
changes that occur during development must be closely coordinated. Any error in
position or timing may lead to serious congenital malformations. For background,
this section gives a relatively brief overview of some of the main features of cardiac
development; more detailed descriptions can be found in [10-12].

This paper focuses primarily on the embryonic chick heart, a popular model in
studies of development. Except for the time scale, development of the chick heart
parallels that of the human heart. Hamburger and Hamilton [13] divided the 21 -day
incubation period of the chick into 46 stages based on external characteristics of
the developing embryo.

2.1. FORMATION AND FUNCTION OF THE CARDIAC TUBE

During the firstday of incubation in the chick (day 19 post-fertilization in humans),
heart development begins with membranes forming a pair of tubes on opposite
sides of the embryo (Figure I(a)). These structures then merge and fuse to form
a single cardiac tube (about 200 pum in diameter) composed of three layers: a
relatively thin outer layer of myocardium, a middle layer of cardiac jelly, and an
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Figure 1. (a) Formation of the cardiac tube. Transverse sections of the chick embryo show
bilateral epithelial tubes forming and merging along the centerline of the embryo. Reprinted
from [2] with permission from Elsevier Science. (b) Schematic of the structure of the
early heart tube, which is composed of three layers: myocardium (MC), cardiac jelly (CJ),
and endocardium (EN). The dorsal mesocardium (DM) connects the tube to the embryo.

From [55].

inner layer of endocardium (Figure 1(b)). The myocardium is composed of cells
containing the only contractile elements in the primitive heart; the cardiac jelly
(CJ) is extracellular matrix (ECM); and the one-cell-thick endocardium lines the
lumen of the tube.

In the chick, contractions begin at stage 9 (1 day of incubation; 21 days post-
fertilization in humans), just after the cardiac tube forms. Effective blood flow,
however, does not begin until stage 12 (2 days). Initially, a peristaltic wave of
contraction drives the blood through the heart. By day three, however, the flow
becomes pulsatile, with regional wall thickenings of CJ called endocardial cushions
in the inflow and outflow regions functioning as primitive valves (Figure 2). As the
contractile wave passes, the cushions close the lumen locally to prevent backflow.

Despite of the lack of formed valves, the physiologic characteristics of the
tubular heart are remarkably similar to those of the mature heart [14-16]. For
instance, the ventricular pressure-time curves in the embryo have the distinctive
forms of those measured in the mature left ventricle. The peak systolic pressure in
the stage 16 (2.3 days) embryonic chick heart is only about 1 to 2 mmHg, however,
as compared to about 120 mmHg in the mature heart.

2.2. CARDIAC LOOPING

Soon after the onset of contraction, the morphogenetic process of looping begins,
as the heart bends and twists into a curved tube (Figure 3) [17]. Also during this
period, a series of bulges develops along the tube (Figure 2): the sinus venosus,
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Figure 2. Schematic of the internal structure of the (straightened) cardiac tube after looping.
A series of bulges form along the tube, with endocardial cushions acting as primitive valves.
Later, the bulges become the four heart chambers. SV: sinus venosus; A: primitive atrium;
V: ventricle; CT: conotruncus; Ao: aortic arches; EC: endocardial cushions. Reprinted from
[2] with permission from Elsevier Science.
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Figure 3. Schematic of cardiac looping in the chick embryo. From [66].

the primitive atrium, the ventricle, and the conotruncus. Looping effectively brings
these bulges into their correct relative anatomic positions, setting the basic pat-
tern for the final form of the heart (Figure 3). In the chick, this process is nearly
completed by stage 16 (2.3 days).

It is important to note that the tubular heart initially is attached to the embryo
along its entire length through a longitudinal structure called the dorsal meso-
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Figure 4. Trabeculation of the embryonic heart. (a) Circumferential endocardial ridges form
at stage 18 (3 days) in the chick. (b) By stage 21 (3.5 days), the wall of the heart resembles a
sponge with a thin outer layer of compact myocardium. Reprinted from (2] with permission
from Elsevier Science.

cardium (DM) (Figure 1). This structure is part of the epithelium that becomes the
outer myocardial layer, but it does not differentiate into muscle. During looping,
the DM ruptures, leaving the heart tube supported only at its ends.

2.3. MYOCARDIAL TRABECULATION AND COMPACTION

As the heart wall thickens, the metabolic needs of the myocardium no longer
can be met entirely by diffusion from the blood in the lumen. Thus, beginning
at stage 17 (3 days), the CJ is replaced rapidly by a network of muscular sheets and
struts (trabeculae), which begin as a series of circumferential endocardial ridges
(Figure 4(a)) [18, 19]. By stage 21 (3.5 days), the ventricular wall is composed
of sponge-like muscle surrounded by a thin outer layer of compact myocardium
(Figure 4(b)). During these stages, direct blood flow through the trabecular spaces
supplies nutrients to the myocardium. Trabeculation continues until stage 25 (4.5
days), when the myocardium begins to compact and the coronary arteries bud.

2.4. SEPTATION AND VALVE FORMATION

Between stages 21 (3.5 days) and 36 (10 days), septation completes the transfor-
mation of the cardiac tube into a four-chambered heart (Figure 5). Beginning as
coalescing trabeculae, the interventricular septum gradually grows inward near the
bottom (apex) of the heart, dividing the tube into the left and right ventricles. In
addition, another septum grows to divide the primitive atrium into the left and right
atria, and the endocardial cushions are molded into valves. At this time, the heart
resembles its mature form. Except for some fine tuning, growth dominates most of
the rest of heart development.

2.5. FIBER GEOMETRY

Relatively little is known about the fiber architecture in the developing heart. Scan-
ning electron micrographs suggest that randomly oriented sarcomeres align gradu-
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Figure 5. Septation of the cardiac tube. The interventricular septum (IVS), interatrial septum
(TAS), and the endocardial cushions (EC) grow inward, dividing the tube into four chambers.
Reprinted from [2] with permission from Elsevier Science.

ally during development, and several investigators have described circumferentially
arranged actin filaments in the inner layer of the two-cell-thick myocardium as
early as stage 10 [20-23]. It is not clear, however, how the fibers become aligned
to form the highly ordered pattern of the mature heart [24].

3. Theory

Growth and contractile forces play major roles in cardiac development. This sec-
tion presents a modified elasticity theory that includes both effects. In essence,
the theory combines and expands the theory for volumetric growth of Rodriguez
et al. [25] and the theories for tissue morphogenesis of Odell et al. [26] and Oster
et al. [27]. (Readers not familiar with elasticity may want to refer to the introduc-
tory chapter of [28].)

3.1. KINEMATICS

Active contraction and growth are modeled through changes in the zero-stress con-
figuration for a tissue element. For cellular tissues, it is convenient to consider an
“element” as a cell that is approximately stress free when unloaded in isolation. (In
acellular tissue, an element is a small material region.) Actually, the internal struc-
tures in an isolated cell may be still under self-equilibrating stresses, but we will
ignore these stresses here. Furthermore, we assume that contraction and growth
change the dimensions of an isolated cell without introducing stress.
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Active Contraction. 'Two types of contractile activity occur in the developing
heart. The first type is the rhythmic contraction of the heart that occurs during each
cardiac cycle, while the other is a prolonged contraction that drives morphogenesis.
The second type of contraction, which occurs in both muscle and nonmuscle cells,
is similar to the smooth muscle contraction that occurs in arteries.

Presumably, both types of contraction involve actin-myosin interactions, and we
treat them similarly. The physical apparatus for each is probably different, however.
For example, primitive myocardial cells (cardiocytes) contain some sarcomeric
filaments devoted to beating and other cytoskeletal filaments that may produce
shape change. It is notable that most of the major morphogenetic changes in the
heart occur before these cells become filled with sarcomeres. Moreover, modelers
can take advantage of the fact that sarcomeric contraction occurs on a much shorter
time scale (order of a second) than does cytoskeletal contraction and growth (or-
der of hours), i.e., the cyclic stress can be uncoupled computationally from the
developmental processes.

Suppose that a rectangular cell contains contractile filaments aligned along the
xi-direction. Then, an active deformation gradient tensor can be written in the
form

F. =Xl ®e +A;1/2(eg®e2+e3®e3), (n

where the ¢; are Cartesian unit vectors and A, is the activation stretch ratio, i.e., the
ratio of the active length to the passive length of the cell in the x;-direction. During
amuscle twitch, for example, A, decreases from unity (passive state) to a minimum
value (peak activation) and then returns to one. In addition, det ¥, = 1 satisfies the
condition of cellular incompressibility. Early in development, when the contractile
filaments may be oriented more or less randomly in the x;x,-plane, we can take

F, =€y @€ +e®e) + A, %e; ®es. 2)

Growth. Tissue growth is similar kinematically to a negative contraction with one
notable exception: growth is not an isochoric process. Volumetric growth can occur
by cell division (hyperplasia), increase in cell size (hypertrophy), or accumulation
of ECM. Negative growth (atrophy), which also plays an important role during
development, is produced by oppositely directed processes. (Negative cell division
is cell death.) In terms of mechanics, all of these mechanisms have similar effects,
and we make no distinction here between the types of growth. We note, however,
that the heart grows primarily by hyperplasia before birth and by hypertrophy after
birth [29, 30].

If angles are preserved, then the growth deformation gradient tensor for an
isolated stress-free element can be written

Fo=he1®e +21ne @+ Age3Qes, (3)
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Figure 6. Configurations of a body from the reference state B(0) to the loaded state b(r),
including growth and activation.

where the A,; represent the ratios of lengths after to the lengths before growth
(Agi > 1 for growth and Ay < 1 for atrophy), and detF, # 1 in general. As
discussed later, the Ag; are to be determined from a growth law.

Combined Activation, Growth, and Loading ofa Tissue. Thus far, we have con-
sidered active contraction and growth on a cellular level. The interaction between
these processes on a tissue level is perhaps best visualized through a series of
configurations [25]. Consider an elastic body in configuration B(0) that is unloaded
and stress-free at ¢ = 0 (Figure 6). Imagine now that B is cut into infinitesimal ele-
ments, which then grow by F, into the passive zero-stress state Bp(#) and activate
by F, to form the active zero-stress state B4(¢). Next, the elements are reassembled
into the configuration Bg(t). Unless the elements ofBg are geometrically compati-
ble, this assembly requires deformation that produces residual stress. Finally, loads
are applied to Bg(?), giving b(7).

At this point, we note the following. First, Fp and F, are stress-generating
elastic deformation gradient tensors relative to the passive and active zero-stress
states, respectively (Figure 6). Second, the intermediate configuration By is a spe-
cial case of b for no loads, with Fp and F, providing passive and active residual
stresses. Third, the total deformation of b relative to B is F = FpF, = F F,F,.
Finally, in the absence of activation and growth, F, = F, = I with I being the
identity tensor.
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3.2. MECHANICAL CONSTITUTIVE RELATIONS

In formulating boundary value problems, since the zero-stress state is time-depend-
ent, it is convenient to refer the field equations to the reference configuration B.
Written in terms of F, these equations assume their standard forms. In the presence
of activation or growth, however, it is convenient to express the mechanical consti-
tutive equations in terms of Fp and F4. Once F, and F, are known, these tensors
can be computed from Fp = FF;1 and F4 = FFEIFa_l.

General Form. Typically, the strain-energy density (SED) function is assumed to
be composed of separate passive and active parts: Wp(Fp) and W4(F4). Then, the
Cauchy stress tensor can be written

d Wp IW4
OE4
where p is a Lagrange multiplier and T denotes transpose, while Ep=
(FLFp —1)/2 and E4 = (FLF4 — I)/2 are Lagrangian strain tensors. For an in-
compressible material, the elastic deformations must satisfy the incompressibility
conditions

Jp =detFp =1, Ja =detF, =1, (5)

and p = 0 for a compressible material.

G:J;le F +J IFA FA—pI, (4)

Specific Form. Relatively little is known about the material properties of the em-
bryonic heart. Using available pressure—volume curves, epicardial strain measure-
ments, and other data, we have proposed possible forms for Wp and W, [31-34]
Models for the developing heart require properties for three basic types of mate-
rial: compact myocardium (active, incompressible, transversely isotropic), porous
myocardium (active, compressible, isotropic), and cardiac jelly (passive, incom-
pressible, isotropic). Consolidating these possibilities yields the proposed functions

a a
W, = _(epr _ 1) + _f_[ebf(xfp_l)z _ 1]!
b by
W, — ct) _am N cylt )(k dr(t) 4 —ds0 2) (6)
AT AT T 4 sa ’
where Ay, and Ay, are the passive and active stretch ratios, respectively, in the
fiber direction. In each of these expressions, the first term represents the isotropic
part of the strain energy, and the second term gives the contribution along the fiber

direction. Furthermore, a, b, ¢, d and ay, by, ¢y, dy are material coefficients, and

Q_h—3+ 21)[;”/““2”’—1] (7)

in which the [; are traditional strain invariants, v is a constant, and Qp = Q(Fp)
and Q4 = Q(F,). This expression for Q corresponds to the SED function for a
generalized Blatz—Ko material [35].
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Equations (6) can be specialized for each component tissue. For instance, /3 = 1
for an incompressible material, and the second term in Q drops out. In addition,
ay = cy = 0 for isotropic tissues, while ¢ = 0 for transversely isotropic muscle.
The expressions for Wp and W4 in (6) are reasonable first approximations for the
developing heart. As new data become available, however, they likely will require
modification.

Activation Parameters. From a phenomenological point of view, activation is
characterized primarily by two time-dependent phenomena. One is the local change
in zero-stress configuration (as discussed above), and the other is stiffening of the
tissue.* Here, the latter effect is included on the local level by letting ¢, d, ¢y, and d
be specified functions of time ¢ during activation. During sarcomeric contraction,
for example, we let ¢(#) and c¢,(¢) increase from ¢ = ¢y = 0 at end diastole to
maximum values at end systole and then return to their original values at the onset
of passive filling (d(f) and d;(t) are taken as constants). At the sametime, 1, (see
equation (1)) decreases from unity to a minimum value and then returns to one.
During cytoskeletal contraction, however, all of these functions increase/decrease
asymptotically to their peak activation values.

3.3, GROWTHLAW

In the present models, although F,(z) is specified, F,(r) is assumed to depend
on the local stress field. To determine a possible form for a growth law, we must
examine the available biological data.

Heart muscle exhibits two basic types of growth response. To accommodate
an increased end-diastolic volume (volume overload), the cavity of the mature left
ventricle grows larger while its wall thickness increases relatively little. In response
to an elevated end-systolic pressure (pressure overload), on the other hand, the
ventricular wall thickens while the cavity volume remains essentially unchanged.
The increased wall thickness returns peak stresses to near normal levels [30]. Ap-
parently, the embryonic heart responds similarly to load perturbations [36]. Since
myocardial fibers are oriented essentially parallel to the surface of the heart, these
observations suggest that heart muscle fibers grow longer in response to elevated
passive stress and thicker in response to elevated active stress.

Based on these observations, we postulate that the developing (and mature)
heart, adapts to altered loading conditions by growing in such a way as to return
wall stresses to optimal set points. Thus, the growth law may have the form

Agl = A(oip — opp),
) (8)

hg2 = kg3 = B(o14 — 00a).

where the Ag; are the growth stretch ratios defined in equation (3), and A and B are
constants. In addition, oyp and o4 are the respective passive and active Cauchy

* The effects of contraction velocity, calcium concentration, and other factors are neglected.
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stresses along the fiber direction x;, and subscript O indicates growth-equilibrium
stresses. (Actually, it may be more appropriate to replace the left hand sides of
equations (8) by the Eulerian growth rates igi /Agi [25])

Here, we note that if the growth-equilibrium stresses always are equal to their
mature values, then the heart would atrophy early in development, when the blood
pressure is extremely small. Since this is not realistic, and if the growth law (8) is
valid, then the growth-equilibrium stresses must increase from zero during devel-
opment and approach their homeostatic values at maturity [37].

4. Finite Element Methods

The primary issues in the FE formulation are finite strains, material nonlinearity,
anisotropy, and the modeling of the residual stresses due to activation and growth.
To establish the kinematic relations, we consider the motion of a body in a fixed
Cartesian coordinate system and let x? and x] denote the position of point P at
times O and #, respectively. The components of the displacement vector u’ are
given by u} = x; — x?, and the components of the deformation gradient tensor
6F are f)Fm,n = ox!,/ ax,? . Hereafter, following the notation used in [38], the left
superscript denotes the time at which a quantity is measured while the left sub-
script refers to the configuration with respect to which the measurement is made.
For example, §E;; denotes the components of the strains at time # measured with
respect to the configuration at time O.

We adopt a mixed displacement-pressure formulation to model the incompress-
ibility of the cardiac tissue [39]. An independent variable — the so-called hydro-
static pressure — is introduced in the form of a Lagrange multiplier enforcing the
incompressibility condition in the augmented SED function

W=W+,P(5-1), )

where W, is the SED function in terms of Green—Lagrangian (GL) strains de-
scribing the elastic constitutive relation of the tissue, § P is the current hydrostatic
pressure (i.e., occurring at time f) measured in the initial configuration (i.e., at
time 0); and 613 is the third strain invariant, which must be equal to 1 to enforce the
isovolumetric (incompressibility) condition. Then, with inertia neglected for the
relatively slow (quasi-static) developmental processes, the total potential energy is
given by

H({)Eij,{)P)z-A [W. + 5P, —1)]d% + V, (10)

where f)Ei ; are the GL strains, 9 is the volume of the configuration at time 0, and
V is the work performed by the external loads.

Following a variational approach, we derive the finite element matrices by im-
posing the stationary condition of the total potential energy

o1l o1l
8Tl = ——84E;; + ——=8 4P =0. 11
apE; O ahp° (b
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Since the GL strains and the hydrostatic pressure are independent variables, each
of the two variations must vanish separately, yielding

oIl
=, (12)
doEi

11

— = 0. 13
3P (13)

Equations (12) and (13) are the equation of motion (equilibrium) and incompress-
ibility, respectively.

4.1. EQUATION OF MOTION

In order to apply an incremental solution method, we express the equation of
motion at time ¢ + At in the virtual work form

</0\ t+A6Sij8t+A:)Eij dov — I+AIR (14)
v

as given by equations (10) and (12). Here, ¢ denotes the last computed equilibrium

configuration, ¢t + Af is the new unknown equilibrium configuration, ’ +A€)S,~ ; are

2nd Piola-Kirchhoff (PK) stresses, and ‘¥R is the current external virtual work.

The stress tensor ’+A(’)S,~ ;j 18 decomposed in the incremental form as
t+At
0Sij = 0Sij +0Sij> (15)

where §S;; is the (known) 2nd PK stress at the last equilibrium configuration and
0Si; is the (yet to be computed) stress increment. By definition,

, oW )

S = ——— =18 1 pten (16)
(Vlad) 0 0f 0 ’
T alE; Y g
where
ow, oLl
t e 4 t ¢h 0
v =_—’ [P — —_ . 17
0T B LE; 0% T Bt Ey (7

The stress increment is defined in terms of the unknown increments ¢FE,,; and
oP by linearizing the Taylor expansion of '*4/S;; to obtain

008y p ., 930Sy

Si; = " P
0nij a,OE”()r 861)0
*W, 32415 ) 351
= |5 TP ) 0Ers + 75— 0oP, (18)
(agE,-jagE,s 0 YLE;0LE,, dLE;°
where oE;j = "0 E;; — LE;; and oP = TP — ! P. Finally, we define the

elastic constitutive tensor oCf;,, = 3*W, /8 (E;;d {E,, and the hydrostatic pressure
h

Frs = 02013/3 4 E;;0 { E,, and rewrite equation (18) as

08ij = (0C¥;ys + 6P 0Clrs) 0Ers + ST 0 P (19)

ijrs

counterpart ¢C
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4.2. UPDATED LAGRANGIAN FORMULATION

We make at this point an important observation about the modeling of the em-
bryonic cardiac tissue. In theory, any previous equilibrium configuration can be
used as the reference configuration in equation (14). In practice, two reference
configurations are used: either the stress-free initial configuration (at time 0) or the
last computed equilibrium configuration (at time ¢). The first approach provides
the Total Lagrangian (TL) formulation, while the second results in the Updated
Lagrangian (UL) formulation. In general, the two approaches differ solely in terms
of computational costs, the UL being more efficient because it leads to a simpler
strain-displacement relationship. In the particular case of the embryonic heart,
there is another reason for adopting an UL approach. The initial passive config-
uration B(0) may not be stress-free and the active stress-free configuration By, is
purely a theoretical construction (Figure 6), and therefore neither can be used to
form the basis of a TL approach.
To formulate a UL approach, we refer stresses and strains at time ¢ + At to the
configuration at time ¢ through the following transformations [38]
t+AtS~ _ O_poF' OF‘ t+AtS”
ovij = 7o lim e Ui 9ifs
20
8t+Ai)Eij = :)Fi,m 6Fj,n ) H—A: Epn, @0

where ?F,-‘,,, denotes an element of the deformation gradient tensor ?F = 6F“l.
Substituting equations (20) into equation (14), we obtain the equation of motion in
terms of stresses, strains, and volume all referred to time ¢

f t+A;S,’j8t+A;El’jdtU:,+A1R. (21)
)

4.3. INCREMENTAL FORM

Stresses and strains in equation (21) are rewritten in incremental form as

t+Atg fS' S'
tHij i + 190 Uij + fUijs
t+AL ( )

where ﬁS,' i = oj; is the (known) Cauchy stress at the last equilibrium configu-
ration, ,0;; and ,E;; are the (yet to be determined) Cauchy stress increment and
strain increment, and ,e;; and ;7;; are the linear and nonlinear components of , E;;,
respectively [38]. Note that, by definition, } E;; = 0. The Cauchy stresses and stress
increments are related to the corresponding 2nd PK stresses by [38]
tp t t t tp ! !
Oij = 5~ oFi,m ()Fj,n oRmn» 10ij = 0_’0“0Fi,m on,n 0Smn- (23)

ko)
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The other relevant transformations are [38]

p h i

e __ ! € = !

Oij = p Fl m OFJ n OSmn’ Oij = Fl m 0 J n OSm"’

c. = 'O’F CFjnbFr b FuioCe

s = im oL jnolrk ol sl 0% mnkis

o f - (24)
tijrs T 0 lmOFj rk() 5.1 0% mnkl»

o ‘o
P = %6})9 P = S—OP! IEij = 9Fi.zn(t)Fj‘n oEmn.
Substituting equations (16), (19), and (24) into (23) gives the expressions for the
Cauchy stresses and stress increments
oij = of; —1—’Pau,
(25)
01 = (,C¢,y +1P,CL ) Ery +alt P

ijrs ijrs ij1
Next, after substituting equations (22) and (25) into equation (21) and linearizing,

we obtain the UL equation of motion

f(Cfer +!P Clj“),e,SS,e,-jd'v-{-/(aS+:Pa,-’1'-)8,n,-jd’v
v

Iy

+/ alt (P8 e;d'v =""MR — /(Ji‘j’-—i—ﬁPai’j’-)S,eUd'v. (26)
t 'U

4.4. FINITE ELEMENT EQUILIBRIUM EQUATION

Following a standard FE approach, the incremental displacement ,U/ and the in-
cremental hydrostatic pressure , P within each element can be approximated by
the product of a set of known base functions and a vector of unknown generalized
coordinates

,U=N,ll, ,P:H,p, (27)

where ;u are the incremental displacements at the element nodal points, N are
the corresponding isoparametric shape functions, H are the base functions for
the incremental hydrostatic pressure, and ,p the unknown pressure coefficients.
The strain increments ,e;; and ,7;; in equation (26) are expressed in terms of ,u
through the strain-displacement matrices |B, and /By, respectively [38]. For each
element, equation (26) is expressed in matrix form as

K, u+ er P = TAR — Q.. (28)
where
K, = / jB{[tCe+;P,C”]§BLd’V+/ By [0 +iPo"] By, d'V,
1% 1% (29)
'K, = / /Blo"HA'V, ’Qu=f Bi[o¢ +[Pa"]d"V
% 'y
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in which 'V denotes the element volume and '*4‘R the externally applied nodal
forces at time ¢ + At.

4.5. EQUATION OF INCOMPRESSIBILITY

At time ¢ + At, equations (10) and (13) yield the equation of incompressibility
0
A v(’“gg —1)8"*4Pd%v =0. (30)

As for the stresses and strains, we use a truncated Taylor expansion to express

I+A(I)I3 as

8003
H_Ai)ly, = 6]3 + —TO-—()E,'j = :)I3 + lehj ()Eij. 3D
9ok
Substituting equation (31) into (30), and applying the transformations defined in
equation (24), we obtain a new linearized equation of incompressibility at config-
uration ¢

f ol e;8,Pdlv = / (1-5i5)8,Pd'v. (32)
'y fy
At the element level, inserting equation (27) into (32) yields
’Ki,u:’Qp, (33)
where
‘K] = [V H's"'B,d'V, 'Q,= f H'(1-{5)d"v. (34

4.6. FINITE ELEMENT MATRICES

Combining the equilibrium and incompressibility equations, (28) and (33), gives
the complete element matrix for the mixed formulation

[rKu th ] { A } _ { t+AtR _ [Qu } (35)
'K, 0 P ‘Q, '

In actual computer implementation, the pressure generalized coordinates ,p are
local to each element and can be eliminated by static condensation before element
assembly. However, the null matrix on the diagonal prevents the direct elimination
of the pressure terms. Adopting a penalty approach, we solve this numerical prob-

lem by replacing the null matrix with €I, where I is the identity matrix, and € is an
ad hoc small number.
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4.7. MODELING ANISOTROPY

The above formulation is suitable for any hyperelastic material law. In the finite
element models of this paper, we use a transversely isotropic SED function of the
form

W, = %{exp[b(l, ~3)] — 1} +cE2 (36)

for both the myocardium and CJ, where a, b, and ¢ are material constants and Ef is
the GL strain in the fiber direction. The two terms in this expression represent Wp
and Wy, respectively. (For the CJ, ¢ = 0.) However, to simplify the FE implemen-
tation, /; and E s always are referred to the same reference configuration (the active
zero-stress state). Moreover, since the fiber direction changes from point to point
within the heart wall, W, is defined with respect to a local Cartesian coordinate
system, which is given in terms of tangent vectors at each Gauss point within
each element. The derivatives of W, are taken with respect to this local coordinate
system, and the results are transformed to the global Cartesian coordinates for the
computation of the element stiffness matrix.
The remainder of this paper deals with illustrative examples.

5. Growth

Since another paper in this volume deals with growth in detail, we present here
only a simple model for growth of the heart. In this model, the left ventricle is
taken as a thin-walled cylindrical membrane of unloaded radius ro(¢) and thickness
ho(¢) [40], and the growth law is given by equations (8). During development, the
time courses of the active (end systolic) pressure P, and passive (end diastolic)
radius r, were prescribed (indicated by * in Figure 7). During maturity, the re-
sponse of the model was computed for pressure overload (50% increase in P, with
constant r).

During embryonic development (¢ < 1), the computed end diastolic pressure P,
increases monotonically to a stable value around the time of birth (r = 1, Figure 7).
In addition, following rapid increases in 0, and oy, in the embryo, the wall thick-
ens (ro/ hgdecreases) and both stresses approach their growth-equilibrium values at
maturity (0, = 0p, = 1). Sudden pressure overloading produces a corresponding
jump in oy, (Figure 7), which then returns to its growth-equilibrium value as the
wall thickens (ry/ ko decreases).

Similar growth laws in models for arteries have yielded results that are con-
sistent with observed behavior [37, 41-43]. However, recent studies with a thick-
walled model for the heart have revealed that mechanically regulated growth of the
heart may be more complex than first thought. In particular, uniform homeostatic
wall stresses at both end diastole and end systole, as demanded by equations (8), are
likely not possible. Other approaches to this problem have been published [44, 45],
but clearly further investigation is warranted.
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Figure 7. Results from membrane model for the growing left ventricle subjected to a jump in
end-systolic pressure at maturity. Nondimensional variables are passive and active blood pres-
sures (Fp and Pg), passive and active wall stresses (Ggp and g, ), end-diastolic radius (7p),
and unloaded radius-to-thickness ratio (rg/ hg). During development and following the load
perturbation, the stresses approach their mature growth-equilibrium values (6g, = 094 = 1).
Reprinted from {40] with permission (* = prescribed quantities).

6. Remodeling
6.1. EFFECTS OF CARDIAC JELLY ON MECHANICS

Cardiac jelly plays a crucial role in assuring the effective functioning of the heart
during the early stages of development, when the cardiac tube is without formed
valves (Figures 1(b) and 2). During these stages, the heart pumps blood through
a peristaltic mechanism [10], with the CJ serving a valve-like function. The early
cardiac tube contains a thick, non-uniform layer of CJ in the outflow tract, while
a much thinner and more uniform layer lines the wall of the ventricle. Using a
simplified theoretical model of the heart cross section, Barry [46] has shown that
a thick jelly layer is necessary in order to produce lumen closure during contrac-
tion, as required for effective pumping action. At later stages, as the flow through
the tubular heart becomes pulsatile, apposing mounds of cardiac jelly form at the
atrio-ventricular (inflow) and cono-ventricular (outflow) tracts and act as primitive
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Figure 8. Schematic of cross-section of heart model used to derive the finite element meshes.
MC: myocardium, naMC: non-activating myocardium; DM: dorsal mesocardium; CJ: cardiac
jelly. The model is symmetric abour the y axis.

valves [47]. When the myocardium activates, the jelly mounds come in contact and
close the lumen, thereby preventing back flow.

We use our nonlinear FE formulation to investigate how CJ affects the ac-
tivation induced wall stresses and cross-sectional deformations in the stage 10
chick heart. For each cross-sectional geometry considered, we construct a cylin-
drical model with uniform cross section, in which the inner lumen and the my-
ocardial layer are elliptical in shape and the dimensions are derived from histo-
logical serial sections [48]. Each model consists of four distinct materials: my-
ocardium (MC), cardiac jelly (CJ), dorsal mesocardium (DM) and non-activating
myocardium (naMC) (Figure 8). Consistent with observations [23], the MC is
modeled as a two-layer sleeve, with the inner layer containing circumferential
fibers only and the outer layer containing fibers aligned in both the circumferential
and longitudinal directions. The CJ is modeled as an isotropic layer of varying
thickness, and the effects of the endocardium are neglected in this model. Each
material is pseudoelastic and the material behavior follows the exponential SED
function in equation (36).
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To examine the variations in transmural stresses due to changes in CJ shape and
thickness, we analyze three models all with the same circular outer wall contour
and MC thickness (Figure 8). The first model has an elliptical lumen and thus a
non-uniform CJ distribution around the wall. In the second model, the lumen is
circular and the CJ layer has identical thickness everywhere. The third model has
no CJ. Applying activation but no lumen pressure gives the circumferential Cauchy
stresses shown in Figure 9. Clearly, the presence of cardiac jelly and the shape of
the CJ layer substantially alter the transmural stress distribution. These differences
are due primarily to a combination of two effects: the constraining effect of the
passive CJ on MC contraction and bending of the wall in regions where the CJ is
relatively thin (see Figure 10).

We note at this point that the non-uniform CJ configuration just analyzed cor-
responds to the cross-sectional morphology found at the level of the outflow tract,
where the lumen must be closed or, at least, greatly reduced in size during activa-
tion in order to prevent backflow. We compared the above elliptical lumen model
with an equivalent circular lumen model containing the same CJ volume but with a
uniform CJ distribution. For the same activation, i.e., for the same amount of energy
introduced into the system, the area reduction produced by the elliptical lumen
is 30% higher than the one due the circular lumen. Clearly, an elliptical lumen
produces a more effective pump. Thus, the morphology of the CJ distribution in
the outflow tract can be explained in terms of improved mechanical efficiency.

6.2. EFFECTS OF FIBER ORIENTATION IN A CURVED TUBE

We model the embryonic heart as a cut toroidal tube. The cross section is circular
and consists of an outer layer of myocardium wrapped around an inner layer of
cardiac jelly. A helical fiber architecture is assumed in the myocardium, with y
being the fiber pitch angle relative to the longitudinal direction. With one end of
the tube clamped and the other end free, the MC is activated with no applied loads.

Due to muscle activation, the heart model bends and twists, thereby transform-
ing the toroidal tube into a helical tube. Only bending occurs for y = 0, but
significant twisting also occurs for y = 45° (Figure 11). A similar deformation
due to swelling of the CJ may play a role in the looping process [21].

6.3. MODEL FOR TRABECULAE

The geometrical irregularity of the trabeculated wall poses major challenges for
the construction of viable FE computational models. Following current approaches
in medical image processing, we reconstruct three-dimensional voxel models from
stacks of cross-sectional digital images of the stage 21 chick heart generated by
confocal microscopy [49]. Because of their inherent discrete nature, voxel mod-
els can be easily transformed into valid, albeit very large, finite element meshes.
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Figure 10. Deformations induced by myocardial activation with no jelly (left), uniformly
distributed jelly (center), and elliptically distributed jelly (right). Note the change in the
deformation pattern induced by the elliptical distribution.

(a) (b)

Figure 11. Deformations induced by myocardial activation in the toroidal model with helical
fiber architecture. (a) With helical angle y = 0°, the heart only bends. (b) For y = 45°, fibers
induce both bending and twisting resulting in out-of-plane deformed shape.
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Due to nonlinearity and incompressibility, however, analysis of very dense meshes
representing the entire trabeculated heart can only be performed via direct solution
techniques at prohibitive computational costs. To resolve the problem of accurately
modeling the mechanical effect of trabeculation while maintaining computational
efficiency, we adopt a multi-scale modeling and analysis approach [50, 51].

The trabeculated heart is modeled at two distinct levels: locally, at the level of a
small hexahedral volume of trabeculated myocardium — hereafter called Represen-
tative Volume Element (RVE) — and globally, with the entire organ geometrically
defined by smoothed boundary surfaces. Separate FE analyses are performed at
these two levels. First, a local analysis formulates equivalent (pseudo) constitu-
tive laws for trabeculated myocardium for each RVE, and then a global analysis
on the smoothed heart incorporates the equivalent material properties previously
computed at the local level.

In the FE model representing the RVE, the material properties of the myocardial
core in the trabeculae are defined by equation (36). In order to establish fiber
directions, we make the assumption that, in each trabecular structure, myofibrils
are approximately oriented parallel to the geometrical midline (the geometrical
“skeleton”) of each trabecula [52]. Finite element testing indicates that the trabec-
ulated myocardium behaves qualitatively like the homogeneous myocardium, but
its stiffness is about one order of magnitude smaller and the material is orthotropic
in both passive and active states. Based on this finding, we introduce a new SED
function for passive trabeculated myocardium in the form of equation (6); with
ay =0and

Qp =biE}, + bES, + b3EZ, + byEx Eyy + bsE\Eo. + boEo E.. (37)

Because of the complex, three-dimensional organization of the myofibrils in
the trabeculated myocardium, a simple uncoupled expression, as in equation (36)
for the active component, is no longer sufficient to represent the mechanical con-
tribution of muscle activation. Thus, we introduce a scaling factor to model the
stiffening of the fibers as they become more stretched and assume

Wi = (I} = 3) (C]Eix + C2E§y + C3E31 + C4ExxEAv,\' +¢s Eyy E,. +ckE; Ex.\')
(38)

in which all strains are referred to the active zero-stress configuration.

The numerical testing procedure is organized as follows. We first perform non-
linear FE analyses to simulate two triaxial stretch tests on a specific RVE, pro-
ducing two independent sets of data. In these tests, all six faces of the hexahedral
RVE are attached to straight rigid plates. According to the specific loading pro-
tocol, the plates are either fixed or move under a prescribed displacement. The
averaged strains are determined by the displacements of these rigid plates and
the original model dimensions, while the averaged 2nd PK stresses are approx-
imated by S = F/(AA), where F is the total reaction force on the plate, A is
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the initial cross-sectional area, and A is the stretch ratio in the direction orthog-
onal to the plate. The collected stress-strain data from the first test are used to
determine the best-fitted parameters in the SED functions via a modified multi-
dimensional Levenberg—Marquardt nonlinear regression procedure [52, 53]. Then,
results from the second set are used to evaluate the predictability of the SED
functions previously determined.

A typical RVE undergoing a numerical stretch test is shown in Figure 12, and
Figure 13 shows the stress-strain relations computed from the first set of stretch
tests superimposed on the theoretical stress-strain curves. Note that, although each
stress component is a function of three normal strain components, the figure shows
only the relation between a stress component and its corresponding strain due to
the difficulty of visualizing a function of three variables. Clearly, the stress-strain
relations predicted by the SED functions agree well with the original data used for
regression. Furthermore, the results of the second stretch indicate that there is a
reasonable agreement between predicted and numerically computed stress-strain
data [52]. This confirms that RVE-specific SED functions can be used to reliably
and accurately model the local behavior of the trabeculated myocardium in the
context of a global analysis scheme.

Figure 12. Deformed RVE mesh under a 60% stretch. The undeformed mesh is shown in out-
line. Reprinted from [52] with permission from Gordon and Breach Publishers, copyright Overseas
Publishers Association.



188 L.A. TABER AND R. PERUCCHIO

+  Stress XX (Passive)
Stress YY (Passive)
32 Stress ZZ (Passive)
Stress XX (Aclive) /o
Stress YY (aclive) .‘P 7
Stress ZZ (Active)

Stress XX (Predicted) s

B O ¢ » =

———=Stress YY (Predicted} o /o
& /
------- Stress ZZ (Predicted) ks V4

o
™

2nd PK Stress
o

0.2

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7
GL Strain
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numerical simulation following protocol 1. Reprinted from [52] with permission from Gordon and
Breach Publishers, copyright Overseas Publishers Association.

7. Morphogenesis
7.1. CARDIAC LOOPING

Looping is a vitally important process during heart development. Abnormal loop-
ing causes cardiac malformations in as many as 1% of liveborn and 10% of stillborn
human births [54]. Although looping has received a great deal of attention by
developmental biologists, it remains a poorly understood process.

Several hypotheses have been proposed for the mechanisms responsible for
looping, but none appear to be consistent with all available experimental data [55],
Any realistic model for looping must be consistent with the following observations.

Experimental Considerations. Studies have shown that looping is a process that is
intrinsic to the heart and is independent of function. The heart, for example, bends
when it is isolated from the embryo and grown in culture [56, 57] and when beating
is arrested [58]. However, looping is not always normal during these interventions.
For example, the boundary conditions at the ends of the tube affect the final form
of the looped heart [59, 60].

Embryological studies suggest that actin microfilaments and the DM play sig-
nificant roles during the looping process. For example, when actin is disrupted by a
global application of the chemical cytochalasin B, looping stops. Moreover, locally
applying this chemical to the left side of the ventricle results in (normal) looping
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(@)

DM

Figure 14. Models for cardiac looping due to (a) swelling of cardiac jelly and (b) contraction
of circumferential microfilaments. In both models, the constraint of the relatively stiff dorsal
mesocardium (DM) forces the ventricle to bend.

to the right, but application to the right side results in looping to the left [22]. The
significance of the DM is suggested by the observation that this structure normally
lies along the inner curvature of the looped tube [56].

Models for Looping. To a first approximation, the stage 10 heart is modeled as a
thick-walled cylindrical tube composed of an inner layer of CJ and an outer layer
of myocardium, with a longitudinal strut along the outside of the tube representing
the DM (Figure 14). The modulus of the DM is assumed to be greater than that of
the myocardium, which in turn is stiffer than the CJ. In addition, the myocardium
in the model contains circumferentially aligned actin microfilaments [23]. Using
material properties like those represented by equations (6), we use a finite element
analysis to demonstrate two possible mechanisms for looping.

The first mechanism is based on the work of Manasek and colleagues [21], who
speculated that the driving force for looping is CJ swelling pressure. In response
to this pressure, the expanding tube bends due to the constraint provided by the
relatively stiff DM and twists due to the anisotropy of the myocardium. Since the
twisting of an anisotropic curved tube already has been discussed, we focus here on
the bending component of looping. Swelling of the CJ is simulated by a specified
isotropic growth, which induces bending with the DM along the inner curvature
(Figure 14(a)). (The myocardium is passive in this model.)

The second mechanism is based on cytoskeletal contraction. Suppose the cir-
cumferentially oriented actin microfilaments in the myocardium undergo a pro-
longed contraction. Then, due to cellular incompressibility, circumferential short-
ening of the cells would induce longitudinal extension, which would lengthen, but



190 L.A. TABER AND R. PERUCCHIO

not bend, a uniform tube. The DM, however, restricts the deformation of adjacent
cells, and so the tube bends with the DM along the inner curvature (Figure 14(b)).

As discussed in [55], these models are consistent with most, but not all, ex-
perimental observations. Moreover, the models show that the amount of bending
possible by these mechanisms is limited; thus, other factors likely play a role in the
later stages of looping. Clearly, further studies are needed. In particular, measuring
regional material properties is crucial. Without a relatively stiff DM region, for
example, neither model can work.

7.2. MYOCARDIAL TRABECULATION

Trabeculation of the ventricular wall is an example of the creation of pattern dur-
ing development. Various chemical and mechanical models have been proposed
for biological pattern formation [61]. This section considers a model based on
material instability driven by cytoskeletal contraction. The model is related to the
morphogenetic models of Odell et al. [26] and Oster et al. [27].

Model for Trabeculation. During trabeculation, the trabeculae grow inward from
the myocardium of the heart tube as the CJ disappears. Since the early myocardium
is an epithelium (cell sheet), we treat it as a thin membrane composed of an in-
compressible, elastic material with in-plane contractile properties. Moreover, the
effects of curvature are ignored in this simple model, with the membrane assumed
to remain flat at all times.

The pattern-forming ability of this model depends on two main assumptions.
First, we assume that the actin cytoskeleton behaves like smooth muscle, with the
total (active + passive) stress-stretch relation containing a peak and a descending
limb (Figure 15(d)). Investigators have speculated that embryonic epithelial cells
behave in this manner [62], but to our knowledge, the existence of a descending
limb has not been verified experimentally. Second, we assume that embryonic my-
ocardial cells normally operate on the descending limb. There is evidence that this
is a valid assumption for vascular smooth muscle [63] and for the sarcomeres in the
stage 1624 embryonic chick heart [31]. However, relevant data for the cytoskeletal
contractile proteins is lacking.

The key to the generation of pattern in this and similar models is mechanical
instability [61], which is due here to the effectively negative stiffness provided by
the descending limb of the stress-stretch curve. Consider, for example, a string of
cells (Figure 15), with the lighter cells being slightly stiffer (in the passive state)
than the darker cells. When the passive string is stretched (Figure 15(b)), the dark
cells stretch a little more than the light cells. (The passive dots in Figure 15(d)
indicate the locations of these cells in stress-stretch space.) Note that (1) all cells
are stretched to the descending limb of the active stress-stretch curve and (2) the
passive engineering (first Piola—Kirchhoff) stress 7 is the same in all cells, as
required by equilibrium.
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Figure 15. Schematic of pattern formation in a row of cells. (a) Passive, undeformed row
with the light cells being stiffer than the dark cells. (b) The passive cells are stretched to the
descending limb of the stress-stretch curve. The dark cells stretch more than the light cells.
(c) When activated isometrically, the stronger light cells shorten, forcing the weaker dark
cells to lengthen. (d) Motions of cells in stress-stretch space. Reprinted from [64] with kind
permission of Kluwer Academic Publishers.

Next, with the string held at a fixed length, all cells are activated simultane-
ously. Since the shorter light cells generate more active stress than the dark cells
(Figure 15(d)), the light cells contract to even shorter lengths, while the weaker
dark cells are forced to lengthen (Figure 15(c)). Since all cells must have the same
T, the light cells jump to the ascending limb of the curve, while the dark cells move
to the overstretched portion of the curve (Figure 15(d)). In this way, pattern arises,
with short light cells alternating with much longer dark cells (Figure 15(c)).

Model Analysis.  The analysis of the model is based on nonlinear membrane the-
ory, modified to include contractile activity. For illustration, we consider a square
epithelium with edges along the x; and x; axes that undergoes isotropic or trans-
versely isotropic activation in the plane of the membrane.

For isotropic activation, the active first Piola—Kirchoff stress tensor is taken in
the form

T,=T1,1, 39)
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where

_JeaJa =1 (Jao — Ja) Tor1 < Jy < Jyo,
To= { 0 for other J4. (40)

Here, J = A A, is a two-dimensional stretch invariant, J4 = A{Ay/ )\(21 is computed
relative to the active zero-stress state, and J4o = Ajgiag /kg is the overstretch cut-
off point, with the A;y being specified parameters. In addition, the coefficient ¢,
increases asymptotically in time toward a peak value (while A, decreases). For
transversely isotropic activation relative to the fiber direction ey,

Ta = Taef &® €r, (41)
where
_Jeahpa = Dhao — Apa) for 1 < Apa < Ao,
Ta= { 0 for other A r4 (42)

with M40 = A o/A, being the overstretch cut-off. The T—A curves given by equa-
tions (40) and (42) resemble that shown in (Figure 15(d)).

The membrane equations were solved using a finite difference method with
explicit time integration [64]. Results are shown for a membrane with a random
distribution of passive modulus within 2% of the mean. First, the passive membrane
was stretched equibiaxially (A; = A;) to the descending limb of the stress-stretch
curve, and then, with the edges fixed, all cells were activated simultaneously.

In the isotropic membrane, the distribution of membrane thickness (A3) shows
a gradual evolution of randomly distributed trabecular-like ridges as activation
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Figure 16. Plots of transverse normal stretch (A3) in a membrane model for myocardial trabecula-
tion. (a) Isotropic activation: a random trabecular-like pattern forms. Reprinted from [64] with kind
permission from Kluwer Academic Publishers. (b) Anisotropic activation with long-range stresses
included in the fiber (x)-direction: ridges form along the fiber direction.
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proceeds (Figure 16(a)). Although resembling the morphology during the later
stages of myocardial trabeculation, such a random pattern is not consistent with
the circumferential ridges that first appear in the embryonic heart (Figure 4(a)).
When transverse isotropy is included, elongated ridges appear normal to the fiber
direction (results not shown), similar to a buckling type of pattern. These results,
however, still are not consistent with observations that these ridges form along the
fiber direction. The model gives more realistic results when so-called “long-range
effects” are included.

Long-range effects may arise if cells exert forces, possibly through the protein
matrix of the CJ, directly on non-neighboring cells. To a first approximation, long-
range stresses can be represented by a term involving the second spatial derivative
of strain [61]. In general, the long-range second Piola—Kirchhoff stress tensor can
be written in the form

S, =-V.C.VE, 43)

where V is the gradient operator, E is the Lagrangian strain tensor, and C is a
second-order coefficient tensor.

For illustration, both the local and long-range properties are taken as trans-
versely isotropic relative to the x;-direction. (Some fibers in the CJ are oriented
in the same direction as the cardiocytes [65].) Again, the distribution of passive
stiffness is random, the membrane is stretched to the descending limb of the stress-
stretch curve, and all cells are activated simultaneously. Here, however, the bound-
ary conditions are taken as periodic. As activation proceeds, two ridges form along
the fiber direction (Figure 16(b)), consistent with the first trabeculations that appear
in the embryonic heart [18].

Although this mechanism may initiate trabeculation, further development in-
cludes trabecular growth [18]. Such growth may be stimulated by stress concentra-
tions near the bases of the trabeculae (results not shown).

8. Conclusions and Future Work

Biomechanics plays an important role in many aspects of cardiac development.
This subject, however, remains largely untouched by engineers. One objective of
this article is to stimulate interest in this area of research.

Developing realistic models for the transforming embryonic heart is an ex-
tremely challenging but worthwhile endeavor. Models can be useful tools in study-
ing the mechanics of normal and abnormal heart development, especially as part of
an interdisciplinary research effort involving engineers, physiologists, and mole-
cular biologists. The real value of a theoretical model is in its predictive capac-
ity, but such predictions generally cannot be trusted until the model is validated
experimentally.

An important problem not addressed in this paper is remeshing of the finite
element grid. The large changes in geometry that occur during morphogenesis may
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lead to highly distorted elements, causing the mesh to become unviable [38]. Thus,
periodic remeshing may be necessary to model correctly cardiac morphogenesis.
Of course, an automatic remeshing scheme would be highly desireable.

Future work on the mechanics of heart development should include developing
more realistic models for cardiac looping and myocardial trabeculation. Theoret-
ical models also would be useful for studying the formation of the cardiac tube,
fluid-solid interactions, and valve formation. Ultimately, models linking mechani-
cal and molecular events will be needed.
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Abstract. A fundamental goal in constitutive modeling is to predict the mechanical behavior of a
material under a generalized loading state. To achieve this goal, rigorous experimentation involving
all relevant deformations is necessary to obtain both the form and material constants of a strain-
energy density function. For both natural biological tissues and tissue-derived soft biomaterials,
there exist many physiological, surgical, and medical device applications where rigorous constitu-
tive models are required. Since biological tissues are generally considered incompressible, planar
biaxial testing allows for a two-dimensional stress-state that can be used to characterize fully their
mechanical properties. Application of biaxial testing to biological tissues initially developed as an
extension of the techniques developed for the investigation of rubber elasticity [43, 57]. However,
whereas for rubber-like materials the continuum scale is that of large polymer molecules, it is at
the fiber-level(~1 pm)for soft biological tissues. This is underscored by the fact that the fibers
that comprise biological tissues exhibit finite nonlinear stress-strain responses and undergo large
strains and rotations, which together induce complex mechanical behaviors not easily accounted for
in classic constitutive models. Accounting for these behaviors by careful experimental evaluation and
formulation of a constitutive model continues to be a challenging area in biomechanics. The focus of
this paper is to describe a history of the application of biaxial testing techniques to soft planar tissues,
their relation to relevant modern biomechanical constitutive theories, and important future trends.

Key words: biaxial mechanical testing, constitutive modeling of planar biomaterials, homogeneity,
mechanical properties of collagenous tissues.

1. Introduction

A fundamental goal in constitutive modeling is to predict the mechanical behav-
ior of a material under a generalized loading state. To achieve this goal, rigorous
experimentation involving all relevant deformations is necessary to obtain material
constants and to evaluate the model's predictive capabilities. Depending on the
specific theoretical approach, specific experimental protocols are also used to guide
the specific formulation of the model.

For incompressible materials in thin planar (membrane) configurations, planar
biaxial testing allows for a two-dimensional stress-state that is sufficient to develop
a constitutive equation. For example, in the case of isotropic rubber materials that
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undergo finite deformations, Rivlin et al. [43] developed the following generalized
strain energy formulation:
oo
W= Y Cihi=3'(L-3, Cu=0, (1
i=0,j=0

where I, and I, are the first and second coordinate invariants measures of defor-
mation, defined as:

I, =trC =1urB,

1 1
L= 5[(tr 0 —uC? = 5[(trB)2 —rB?], )
C=F"F, B=FF",

where C and B are the right and left Cauchy—Green deformation tensors, respec-
tively, and F is the deformation gradient tensor. For pure homogenous strain, the
principal stresses t; are expressed as [42]:
,0W 1 W ,
= 2<Ai TANEE 812> +p, =123, 3)
where p is an arbitrary hydrostatic pressure stress.

For both natural biological tissues and tissue-derived soft biomaterials, there
exist many physiological, surgical, and medical device applications where rigorous
constitutive models are required. Examples include skin, myocardium, tendons,
natural and prosthetic heart valves, and blood vessels. For these biological ma-
terials particular challenges in constitutive modeling are encountered due to their
complex mechanical behavior. For example, because of their oriented fibrous struc-
tures they often exhibit pronounced mechanical anisotropy. In addition, they exhibit
highly nonlinear stress-strain relationships, large deformations, viscoelasticity, and
strong axial coupling. Taken as a whole, soft biomaterial defy simple material
models.

Mechanical investigations have usually been confined to uniaxial studies be-
cause of the difficulties in controlling two or even three-dimensional boundary
conditions. However, due to anisotropy uniaxial data cannot be used to extrapolate
to the fully generalized three-dimensional constitutive equations, even if multi-
dimensional strain data from the uniaxial experiment is available. There have also
been investigations using inflation of circular membranes, which under assumption
of isotropy can provide the necessary experimental data [61, 62]. Virtually all tis-
sues are anisotropic, however, hence this method cannot be applied. Further, when
attempting to determine material constants for complex material models, biaxial
testing methods are required that include complex testing protocols that allow large
variations in stress and strain states for full characterization [5, 31, 38].

Application of biaxial testing of biological tissues originally developed using
approaches developed from studies on rubber elasticity [43, 57]. In 1948, Tre-
loar [57] pioneered techniques to apply two independently variable strains in two
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perpendicular directions with simultaneous measurement of the stresses. However,
in Treloar’s device the axial stretch ratios A; and A, could not be separately con-
trolled. This experimental limitation did not facilitate precise determination of the
form of W and its derivatives, 8W /a1y 3W /0I5, which occur in (3). In 1951, Rivlin
developed a modified biaxial device that allowed for applied biaxial loads to rubber
sheets, which allowed more precise experimental control. Using this device, Rivlin
developed an integrated theoretical-experimental methodology in which the form
of Win (1) could be derived and evaluated directly from multi-axial experimental
data. This approach, and those that followed, greatly clarified the complex me-
chanical behavior of rubber, which can be confounded by such factors as material
instabilities, physical aging, and Mullin’s effect.

Similar to rubber materials, biaxial experiments on soft biological tissues are
generally difficult to perform, and also present additional challenges unique to
biological tissues. Just a few of the experimental problems include: small specimen
sizes, structural and compositional heterogeneity, difficulty in gripping (without
doing damage), dramatic effects of different gripping techniques (St. Venant-like
effects), difficulty in precisely identifying material axes, difficulty in assuring con-
stant forces along specimen edges, large specimen-to-specimen variability, and
time-dependent changes due to biological degradation. In addition, a question of
homogeneity of deformation within the specimen is paramount. These issues can
often frustrate the application of even the most straightforward attempts to develop
a constitutive model.

Biaxial testing devices have to be much more elaborate than uniaxial ones be-
cause of the need to control two boundary conditions. In particular, the edges must
be able to expand freely in the lateral direction, and in the central target region the
stress and strain states should be uniform so that data analysis can be performed
simply. The target region must be small and located away from the outer edges to
avoid the effects of specimen grips or tethers. Strain is always measured optically
to avoid any mechanical interference.

In addition to the above experimental issues, relating the observed mechan-
ical response to tissue structure is perhaps more paramount than in other more
traditional material applications, where the continuum scale is usually at the size
of large polymer molecules. In contrast, biological soft tissues are comprised of a
dense network of primarily collagen and elastin fibers, which indicates a continuum
scale at the fiber-scale (typically ~1 wm). In addition, the fibers can undergo large
rotations and exhibit a nonlinear stress-strain behavior that can induce complex
behaviors at the macro-specimen scale not easily accounted for in classic mate-
rial models. Accounting for these behaviors in both experimental evaluation and
formulation of appropriate constitutive models continues to be challenging.

The focus of this paper is to review the history of the application of biaxial
testing techniques to soft planar tissues and their relation to relevant biomechanical
constitutive theories, with a further aim to underscore important future trends.
The perspective of this review is that of an applied mechanician interested in
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quantifying and modeling the multi-axial mechanical response of soft biological
tissues and biologically-derived biomaterials (i.e., biological tissues chemically or
otherwise modified for use in medical devices). While not an exhaustive review, the
works of all investigators utilizing biaxial testing techniques for biological tissues
known to the author have been included. The review first covers the basic theory
and kinematic analysis of a biaxial test. Next, the initial groundbreaking and more
recent studies of biological tissues are presented. Finally, since biaxial testing and
constitutive modeling has been the focus of much of the author’s recent work, the
final section focused on the results of his studies.

2. Biaxial Testing: Kinematics, Stresses, and Energetics

2.1. BASIC TECHNIQUES FOR BIAXIAL TESTING OF SOFT BIOLOGICAL
MATERIALS

In general, biaxial testing of biological tissues are performed using thin specimens,
which are either a membrane in its native form or a thin section prepared from a
thick tissue slab. The specimen is mounted to the biaxial device in trampoline-like
fashion using thin threads, which allows the edges to expand freely in the lateral di-
rection (Figure 1(a)). Testing is generally performed with the specimen completely
immersed in phosphate buffered normal saline (pH 7.4) at room or body (37°C)
temperature. The central target region must be sufficiently small and located away
from the outer edges to avoid the tethering effects (Figure 1 (a)). Thus, in the central
target region the stress and strain field is generally considered homogeneous, so
that the components of F are independent of position.

2.2. KINEMATICS OF A BIAXIAL TEST

We consider the following homogeneous biaxial deformation
x1=MX1+ Xy, Xy = A2 Xo + K2Xy, x3 = A3X3, )

where X and x are the locations of material particles in the reference and de-
formed states, respectively, and A; and «; are the components of F (i.e., A; are the
stretch ratios and «; measures of in-plane shear). Since soft tissues are composed
primarily of water and have negligible permeability [16], they can be considered
incompressible so that A3 is calculated from detF = 1.

Experimentally, strain is measured optically to avoid any mechanical interfer-
ence with the specimen. This is typically done by tracking the position of markers
mounted on the upper specimen surface that delimit the central target region using
optical tracking software [14, 48] (Figure 1(a)). The optical tracking software will
produce the marker positions X, as a function of time, where n the marker number
(Figure 1(b)). In both our laboratory [48] and in others [18, 19], finite element
shape functions are used to approximate the position vector field within the central
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Figure 1. (a) Schematic of a biaxial testing device, and (b) a biaxial test specimen overlaid on
a gray scale representation of the degree of collagen fiber alignment using an orientation index
(OI), demonstrating high uniformity of both fiber preferred directions and OI, along with the

definition of the PD and XD axes.
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Figure 2. Mapping of the real-time positions of four tissue markers from the original device
coordinates (x], x7) to the isoparametric coordinates (r, s}, allowing for bi-linear interpolation
of the displacement field. (b) Schematic of a biaxial specimen.

target regions. Thus, the displacement field u(= x — X) at any time or location
within the central target region can be determined using

u(r,s) = Y fulr, )y, ©)

n=1

where f, is the shape function of node (or equivalently marker) n, m is the total
number of nodes (markers), and r, s are the isoparametric coordinates [2] where
the displacement is to be determined (Figure 2(a)). Since (5) represent a linear sum
of m equations where f, are functions of only r, s, the spatial derivatives of u; with
respect to r, s are given by

ou Z 3fn Z 3f " (6)
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The spatial derivatives with respect to x are determined for #; and u#; by substi-
tution into the following relations and inverting [24]:

0 ouy Oup kB
ar | _ ar or dx;
i T | Bu; duy i ' )
as ds s 0x

The components of F at each time point can be determined using

duy  duy

_ _ 8X] 8X2 I 0 _ Aok

F_G+I_ 8u2 % +|:0 1 - Ko )»2 ’ (8)
0X; 090X,

where G = du/dX. Thus, from (8) the components of F can be directly obtained
at each time point during the test. The components of the in-plane Green’s strain
tensor E are then computed using

1 1
Eyn=-(M+«;-1), Epp = = (hiky + Aaka),
% 2 9)

2.3. STRESS AND EQUILIBRIUM

As mentioned above, biaxial testing of biological tissues are performed using thin
specimens (no more than ~3 mm, usually <1 mm) and acted on by only in-
plane loads. A state of plane stress is thus assumed so that the components ¢;3
(i = 1,2, 3) of the Cauchy stress t are 0. For the deformation in (4), equilibrium
is satisfied in the absence of body forces (i.e., divt = 0), even thought it can vary
through the thickness. Experimentally, one measures the initial specimen dimen-
sions, so that the Lagrangian stresses T (force/unit original cross-sectional area)
are used for convenience. The components of T are computed from the measured
axial forces P using
Py P,

Ty = —, T =—,
1 2 nL,

hL, (10)

where h the specimen thickness and L; the specimen lengths (Figure 2(b)). Since
experimentally applied loads are normal to the edges, 712 = T>1 = 0. The second
Piola-Kirchhoff stress S is determined using S = T - F~!, and the Cauchy stress t
is determined using t = F - T/J, which in component form are given by (with
Ty =Ty =0

ti=MTn, tn=»nTn, tr=x1Tn, =K. (11)
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2.4. ENERGY BALANCE IN A BIAXIAL TEST FOR ANISOTROPIC MATERIALS

For completeness of presentation, we can write the total free energy of a material
governed by W(F) for a generally anisotropic, nonlinear elastic material as

E = f W[Vyx)]dx + L, (12)
Q

where L is the energy of the biaxial loading device, and y(x) is the deformation of
x € £2, 82 being the region defined by the specimen. L will generally have the form

sz y(x) - RndA4, (13)
o

where R is any constant matrix, which in the biaxial case has the form
R=o01e, Qe +026; ® e, (14)

where o; are the Piola—Kirchhoff stresses, e€;, €; orthonormal, and no kinematic
constraints. Then, with L having this form, one can use the divergence theorem to
write the total energy as

E= /Q {(W[Vy®)]-R- Vy®x)}dr. (15)

Although not used in biological tissue analyses, one can use this approach to find
W by finding F that minimizes this expression. The interested reader is referred
to [1, 10] for further details.

3. First Biaxial Mechanical Studies of Biological Tissues
3.1. FUNG AND CO-WORKERS

The first investigators to develop and utilize planar biaxial testing for soft biological
tissues were Lanir and Fung in 1974 [30,31] who investigated the mechanical prop-
erties of rabbit skin. Briefly, a 3 cm to 6 cm square skin specimen was mounted in
a trampoline-like fashion with up to 68 individual attachments distributed equally
over the four specimen sides (17/side). Similar to Rivlin [43], the tension on each
line could be individually adjusted insure a reasonably uniform stress was ap-
plied to each specimen side. Actuator motion was controlled utilizing a function
generator. To avoid the effects of local stress concentrations of the suture attach-
ments, bidirectional tissue strain was measured in a central region by monitoring
the distance between pairs of lines separated by ~5 mm along each axis video
dimensional analyzers (VDA) [64]. Briefly, a VDA 1is an electronic device the
works with a video camera signal to convert the distance between two dark-light
or light-dark transitions in the image to a linearly proportional voltage, which can
be recorded and converted to displacement. Typically, soft tissues are light in color
so that the distance between dark lines applied to the tissue surface are tracked in
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real time. The advantage of the VDA is that it allows for non-contacting, real-time
displacement measurements directly using conventional video. For biaxial studies,
Lanir and Fung utilized two orthogonally positioned VDA with a common optical
path to allow for simultaneous, synchronized displacement measurements along
each stretch axis.

Experimental results demonstrated that skin exhibited a nonlinear, orthotropic
stress-strain response, whose material axis depended on the specimen’s anatomic
orientation. While differences between the loading and unloading curves were ob-
served due to hysteresis, the loading and unloading stress-strain responses were
essentially independent of strain rate. It is important to note that these results
underscore the major phenomenon found in all subsequent biaxial mechanical
investigations of soft planar tissues.

Based on these experimental observations and data, Tong and Fung [56] used
the above biaxial data to develop a constitutive model. Because of the insensitivity
to strain rate, separate pseudo strain-energy functions could be developed for the
loading and unloading phases of the stress-strain curve [16]. Thus, for the loading
and unloading phases the in-plane second Piola—Kirchhoff stress components are
derived from a two-dimensional strain energy function W:

oW
S; T (16)
For the form of W, Tong and Fung observed from the experimental data that the
stress-strain curves had a very shallow slope followed by an abrupt transition to
a very high stiffness. Due to this biphasic-like behavior, they started with the
generalized form

1
poW = (1B} + 2By +a3(E}y + E3y) + 204 By Ena)

2
+| = exp (@ EL + @B + a3 (E + E2,) + 2a,E E
5 plarty 2E9; 3L 21 4L £22
3 3 2 213y~1
+VE} + 2E3, + sEY Ey + vsE1 ED) ], (17)

where py is the initial tissue density, o;, a;, and y; are material constants, and Ej;
is the Green strain tensor. This form was able to model both the low (first term on
the right hand side) and high stress (second term on the right hand side) regions of
the stress-strain curve.

In practice, (17) contains many more terms than is actually necessary to model
the stress-strain curve. For all practical purposes the «; and y; terms are not neces-
sary to obtain a satisfactory fit to the majority of the stress-strain curve, especially
the higher stress regions. Thus, (17) can be reduced to the “Fung” type (which
incidentally was found to fit the data almost as well)

poW = —;—(eQ ~1), (18)
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where Q = ¢;j E;j Ey. In practice in biaxial testing the shear strain E| is nearly
zero, so that (18) can be written as

c
poW = E[exp(alEfl + @ E3, + 2a4E1 En) — 1]. (19)

This is perhaps the most broadly used constitutive model to date for the biax-
ial response of soft biological tissues (as well as other loading states), including
skin [56], pericardium [8], epicardium [22], visceral pleura [23], and myocardium
(see below).

One of the difficulties in applying (18) to biological tissue is the high amount of
inter-specimen variability, which in-turn translated into wide variability in material
parameter values. The sources of variability have been attributed to experimental
noise, numerical instability of the fitting algorithms resulting from the nonlinearity
of (18), and strain history dependence of the tissue. These problems can confound
the ability to obtain a unique set of material constants either for a given specimen
or a class of biomaterials. Further, the residuals in nonlinear regression may not be
normally distributed, disallowing conventional statistical analysis.

In their study of canine pericardium, Yin et al. [65] developed a statistical-based
approach to assess the sources of and account for the variability in material con-
stants in describing biaxial stress-strain data. Using experimental data for canine
pericardium [8], they determined a strain energy function (including exploring the
use of non-integer powers of the Green strain). They performed a residual analysis
to determine if standard statistical methods could be used to assess the variability,
and if not, then they used nonparameteric methods (boot strapping). Using a five
parameter exponential strain energy function, pericardial tissue was found to be
strain-history dependent and anisotropic, which could not be attributed to either
experimental noise or instability in the numerical algorithms.

3.2. VITO AND CO-WORKERS

Another group active in developing multi-axial constitutive relationships was Vito
and co-workers. Among the technical improvements of their device were the use of
multi-particle tracking to allow computation of the complete in-plane strain tensor
and the use of real-time computer control [58]. Perhaps their main contribution
was the development of a technique to identify the specimen’s material axis [9].
Generally, identification a material axis is based on observations of the gross spec-
imen shape (e.g., long axis of a blood vessel) or gross fiber architecture (e.g.,
myocardium). However, in many tissues the fibers are too small to be visually
observed and up to the time of the study there were no rapid, non-destructive
techniques for quantification of fiber architecture.

In Choi and Vito’s technique, they identified the material axis by determin-
ing which directions, when loaded to the same stress, demonstrated the greatest
and least strain values. To demonstrate their approach, Choi and Vito [9] utilized
canine pericardium, a thin membrane that surrounds the heart. The pericardium
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functions to restrict excessive dilation of the heart during filling, is involved with
the hemodynamic interaction of the heart’s right and left ventricles, and in humans
provides mechanical support to the diaphragm. It is composed primarily of colla-
gen, a fibrous protein (the most common in the body) that possesses high tensile
strength, and is thus found in tissues that require significant mechanical strength
or provide structural support. To determine the orientation of the material axes,
round pericardial tissue specimens were prepared, with opposing pairs of small
clamps placed throughout the specimen's perimeter in 15° increments. For each
opposing pair, the specimen was preloaded, and two marks were made aligned to
the stretch axes. This procedure was repeated for each successive attachment pairs.
When fully unloaded, the markers produced an ellipsoidal pattern whose semi-axes
were aligned to the material axes.

To perform the biaxial tests, a square biaxial test specimen was cut from the
original circular specimen, with edges aligned parallel and perpendicular to the
material axis as determined above. Multiple test protocols were used to obtain
stress-strain data under multiple loading states. Practically, this was accomplished
using constant ratios of strain or stress during each protocol, with a sufficient num-
ber of protocols and ratios chosen to cover the complete E{—E», or S1;—S2; plane.
Choi and Vito [9] then used the following strain energy function for the canine
pericardium biaxial mechanical data:

poW = bolexp(b1ET,) + exp(b2E3,) + exp(2b3 Eyy Exp) — 3], (20)

where b; are material constants. They demonstrated that when data from a single
test protocol was used to determine the values for b;, different values were obtained
for each protocol. Only when the data from all protocols was used simultaneously
were the “true” material constants obtained for the specimen. This was shown to be
due to the presence of multiple collinearities due to the use of constant Eyy : Eyp
or Sy; : Sz ratios. This concept was extended to the multi-axial testing of blood
vessels [7].

Although the values for the b; were rigorously obtained and the model was
shown to work well under strain controlled tests, it did not work as well under load
control tests. The reason underlying this disagreement is at present unknown, and
suggests a need for experimental and theoretical investigations of constitutive theo-
ries that can better handle mixed boundary conditions. Another problematic finding
with canine pericardium is the substantial variability in both degree of anisotropy
(varying from quasi-isotropic to moderately anisotropic), which translated into
significant inter-specimen variability in material constants. Thus, while reliable
material parameters for (20) may be reliably obtained for an individual specimen,
generic material parameters for canine pericardium could not be obtained. This
problem was addressed by Sacks [48] and is described in detail in Section 3.
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3.3.  VENTRICULAR MYOCARDIUM

There is considerable clinical and basic interest in calculating regional stresses
in the heart, primarily from the prevalence of heart disease in the western world.
Regional stress computation requires accurate constitutive models of both the ac-
tive and passive tissue states. The left ventricular wall of the heart is a thick-walled
structure with a complex three-dimensional fibrous structure, with fibers consisting
of both myocytes (muscle fibers) and connective tissue fibers, which are primar-
ily collagen. Because of its structural and functional complexity, the application
of biaxial mechanical analysis to the muscle of the thick ventricular wall of the
heart (the myocardium) has been extremely challenging. However, biaxial tests on
thin sections removed from the mid-wall have been used as a first step towards
developing the full three-dimensional stress-strain constitutive relationship.

The first such studies were conducted by Demer and Yin [12] and Strumpf
et al. [54]. Excised sheets of canine myocardium from the mid-wall of the left
ventricle were subjected to cyclic loading and unloading in the predominant fiber
and cross-fiber directions to determine passive mechanical properties. During each
stretch the ratio of the orthogonal strains was kept constant and the corresponding
stresses remained proportional. Myocardium under biaxial loading exhibited both
nonlinear elasticity and viscoelasticity with some strain-rate dependence, but very
little rate dependence in the area enclosed by the loading and unloading portions
of the stress-strain curves (i.e. hysteresis). Fiber and cross-fiber directions demon-
strated anisotropic behavior, with both the degree and direction of the anisotropy
being dependent upon the region of the heart from which specimens are obtained.
Shaddock [53] has also performed biaxial testing with no mechanical precondi-
tioning, and found similar mechanical responses. Novak et al. [39] also explored re-
gional differences in the biaxial mechanical properties, and determined that the me-
chanical properties of the heart are qualitatively similar from region to region, but
quantitatively different. Sacks and Chuong [46] performed similar studies on right
ventricular myocardium, which also was qualitatively similar to left ventricular
myocardium but exhibited regional differences and more pronounced anisotropy.

Yin et al. [63] fitted the myocardial biaxial stress-strain data both with expo-
nential strain-energy functions with quadratic powers of strains as well as with an
alternative function with nonintegral powers of strains. They also used the non-
parametric methods developed for pericardium [65] to assess the reliability of
the coefficients for each of these functions. The quadratic strain-energy functions
resulted in wide intra- and interspecimen variability in the coefficients. More-
over, both their absolute and relative values demonstrated marked load history
dependence such that interpretation of the direction of anisotropy was difficult.
Fitting the data with the alternative non-integral strain-energy function seemed
to alleviate these problems. This alternative strain-energy function may provide
more self-consistent results than the more commonly used quadratic strain-energy
functions.
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3.4. ALTERNATIVE APPROACHES TO DETERMINING STRAIN ENERGY
FUNCTIONS

While based on rigorous experimental data and able to capture the 2D in-plane
biaxial response well, the constitutive models described above present certain dif-
ficulties both in terms of their form and in parameter determination. In particular,
while based on fundamental mechanics principals, there is no additional knowledge
to guide the particular choice of form of the model, and is somewhat arbitrary.
Models are generally evaluated for the degree of over parameterization using com-
prehensive statistical methods (e.g., [65]) and subsequently modified, generally in
the reduction of the number of parameters.

Following methods developed by Rivlin et al. for rubber elasticity [43], Humph-
rey et al. developed a new functional form for myocardium biaxial mechanical
properties. In this approach, Humphrey defined a subclass of transversely isotropic
materials whose strain energy function is a function of two strain invariants [20]:

W= Wi, L), @b

where I; and I, are the first and fourth strain invariants, with I3 = «?, where «
is the stretch ratio along the muscle fiber direction. Similar to the approach by
Rivlin, this form allows determination of the dependence of W, and W, on /; and
« directly from the experimentally obtained stress and deformation data [20]:

1 — &t Iy — &3t
oW, = Eat1) — Eaim W, — afl 2 — & 22)
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where W = aW/a1;, W, = 0W/0a, t;; denotes the physical components of the
Cauchy stress tensor, and

b=,
g7 = A2 cos?(8) + 21k cos() sin(8) + «? sin(8),
& = A+ kZ — A5,

£4 = K3 cos(8) + 2hak; cos(0) sin(@) + A3 sin*(9),

Es = k1A + K21,
Eo = Aikp c082(0) + (A1 Ag + k1k2) cos(B) sin(B) + KA, sin®(8),

(23)

where A; and «; are components of the deformation gradient tensor and 8 is the
fiber angle with respect to the x; axis. Next, based on experimental plots of W, and
W, vs. I and ¢, they assumed the following functional form for W (7}, o):

m

W)=Y Y cj(h -3 @~ 1, (24)

i=0 j=0

where ¢;; are material parameters. The interested reader is referred to [20] for
details of the derivation.
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To apply this approach, Humphrey et al. [20] modified their biaxial testing
device to perform constant strain invariant tests. From the experimental data gener-
ated, plots of W; and W, vs. either /| varied and « held constant or /; held constant
and o varied were generated using (22) and (23). Based on the resulting response
functions, as well theoretical restrictions on the values of ¢;; (e.g., at zero strain
W(@3, 1) = 0, requiring cgy = 0), the following form for passive myocardium was
derived:

Wi, o) = ci(e—1)+ e —1)* + 3]y —3) +ca(ly = 3)(a — 1)
+es(I) —3)?, (25)

where ¢; are the material constants. In obtaining the material constants, additional
empirical inequalities were applied to set bounds on the values for ¢;.

The constant invariant tests used to derive (25) require that the tissue specimen
be subjected to simultaneous loading and unloading, which strictly violates pseu-
doelasticity [16]. Thus, only data from the loading portion of the equi-biaxial strain
and constant o tests were used to determine values for ¢;. The data from constant
I tests were used only to find the functional form, and were hence excluded since
the tissue experiences simultaneous loading and unloading during these tests. The
resulting model was found to fit the biaxial data quite well, and was also found not
to be over-parameterized [21]. The results also emphasized the need for good data,
including accurate measurement of the applied forces, original dimensions and ex-
perimental deformations. Sacks and Chuong [47] later successfully applied (25) to
right ventricular myocardium, where the effects of a fiber splay within the specimen
were incorporated. May—Newman also applied a similar approach to the biaxial
mechanical properties of the mitral valve [37]. It is also interesting to note that
the overall approach of using theoretically guided experiments is not restricted to
the form of (24), but has also been successfully applied to the epicardium (a thin
connective tissue layer surrounding the heart) [22] using the Fung model (18) and
constant Eq; and E,; tests.

Clearly, the strength of the above approach is that it allows derivation of the
functional form of W to be rigorously based on direct evaluation of the experi-
mental data. This avoids the limitations of the trial-and-error approach of earlier
work, and is an elegant example on how theory and experiment can be integrated.
However, while shown to model passive tissue properties well, the approach has
several limitations. In principal, the approach can be applied to specimens where
there is a nonzero distribution of fiber orientations. However, the author has found
the model to be weakly dependent with respect to trans-mural layer orientations,
potentially due to the transverse isotropy assumption (Sacks, unpublished data).
More detailed, realistic inter-layer models may need to be developed. Further, in
order to determine the form of W pseudo-elasticity must be violated (i.e., the tissue
must be subjected to simultaneous loading and unloading protocols). While the
loading and unloading curves are qualitatively similar, differences do exist and
may influence the sensitivity and final choice of the form.
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3.5. ACTIVE TISSUE PROPERTIES

The above mechanical tests were performed on passive myocardial tissue proper-
ties only. Biaxial properties of actively contracting tissues have been investigated
in a very limited fashion, due to the significant experimental challenges of keeping
muscular tissue viable and stable while performing all testing protocols. The first
known study known to the author was by Strumpf et al. [55] for the diaphragm. The
architecture, vascular supply, and ease of tetanization (electronically-stimulated
contraction) make the diaphragm an ideal structure in which to assess multidimen-
sional mechanical properties of active and passive muscle. Test specimens were
approximately 3 x 3 cm in size with a single predominant fiber direction. Highly
nonlinear behavior was seen in the passive state with a limit of extensibility in
both directions. The specimens were also markedly anisotropic, with the cross-fiber
direction being stiffer than the fiber direction. During tetanization, the extent and
distribution of anisotropy were significantly altered, with most specimens either
isotropic or stiffer in the fiber direction.

The diaphragm is a tri-layered structure, consisting of an inner thick muscular
layer and two thin collagenous membranes. In order to determine the mechanical
contributions of the outer membrane layers, Strumpf et al. [55] disrupted the mem-
branes covering each surface. They found increased extensibility and decreased
the anisotropy, thereby suggesting that these membranes bear most of the passive
load and contribute greatly to the cross-fiber stiffness and anisotropy of the intact
diaphragm. Both before and after disruption of the surface membranes, there was
still a consistent increase in cross-fiber stress during tetanization, implying active
force generation perpendicular to the fiber direction.

In a later study, Lin and Yin [35] subjected thin midwall slices of rabbit my-
ocardium to biaxial stretching. Assuming transverse isotropy in both the passive
and active conditions, they used the method of Humphrey et al. [20, 21] to ob-
tain both passive and active constitutive laws. They concluded that the functional
forms of the constitutive law for the actively contracted states were the same, but
differ from those in the passive state. Hence, one cannot simply substitute differing
values for the coefficients of the passive law to describe the active tissue proper-
ties [3]. Similar to the diaphragm, there were significant stresses developed in the
cross-fiber direction (more than 40% of those in the fiber direction) that cannot be
attributed to either deformation effects or nonparallel muscle fibers. These studies
underscore the potentially complex micro-structural interactions which result in
substantially complex behavior of actively contracting tissue behavior.

4. More Recent Developments
4.1. CONTROL OF SPECIMEN STRUCTURE

A reoccurring difficulty in many of the above studies, particularly so for col-
lagenous tissues such as skin and pericardium, is the substantial degree of inter-
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specimen variability. This variability underscores the need to determine the source
of the underlying biological variability for accurate and meaningful determina-
tion of material constants. This is a particular problem when using biologically-
derived tissues in medical devices (e.g., bioprosthetic heart valves), where accurate
constitutive models are essential for device design, determining effects of novel
chemical treatments, and in the understanding simulation of fatigue damage. One
such tissue is chemically treated bovine pericardium, which although mechanically
anisotropic [33, 66], there is no evidence that bioprosthetic heart valves are con-
structed to accommodate or take advantage of this anisotropy in a systematic way.
Finite element stress analyses of bioprosthetic heart valves suggest that high flex-
ural stresses during valve opening and high tensile stresses during valve closure are
associated with failure locations [6, 17, 27]. Their accuracy, however, is limited by
the use of simplistic isotropic material approximations, since in reality chemically
treated bovine pericardium is an anisotropic, biocomposite material.

To quantify planar tissue fibrous structure, Sacks et al. [50] have developed a
small angle light scattering technique (SALS). SALS allows rapid quantification
of the angular distribution of fibers at each point in the tissue, from which the
preferred fiber direction and degree of orientation can be determined. A SALS-
based tissue sorting procedure was used to guide the selection of bovine pericardial
specimens to minimize structural variability. Note that in this study, we use desig-
nations preferred fiber (PD) and cross-preferred fiber (XD) for the x; and x, axes,
respectively (Figure 1(b)). An extensive biaxial test protocol was then used and
the resulting stress-strain data fitted to (20). Results indicated that (20) was able
to reproduce the mechanical response of chemically treated bovine pericardium
over a wide range of biaxial test protocols (Figures 3(a), (b)). When applied to
data from test protocols not used to derive the material constants, (20) fit the data
well (Figures 3(c), (d)). The high structural uniformity resulted in both a consistent
mechanical response and low variability in the material constants.

Because of this consistency, the data from all specimens were combined into
a single data set. From this dataset “group” material constants were determined,
which represent a more generalized estimate of tissue properties. The individual
specimen constants showed predictably better agreement with the data, but the
group constants were able to represent the data reasonably well (Figure 3(c),(d)).
This study demonstrated that much of the past difficulties with tissue variability
were a direct result of uncontrolled variabilities in tissue structure. Previous stud-
ies on myocardium [21, 47, 54] controlled specimen structure by visual selection
and alignment to the overall preferred fiber direction. This was an important step
in the analysis of orthotropic biological tissues. The use of SALS, however, not
only allowed similar specimen fiber alignment for collagenous tissues, but more
importantly the quantitative relation between the degree of fiber alignment and
degree of mechanical anisotropy. To the author’s knowledge, this is the first time
such a comparison was undertaken for fibrous collagenous tissues.
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Figure 3. (a), (b) Biaxial mechanical behavior of chemically treated bovine pericardium for the
five strain protocols (indicated beside each curve) for the (a) PD and (b) XD axes. Also shown is
the fit of equation (20). The predictive behavior of (20) is demonstrated using the data from the
Epp : Exp = 1:0 (c) and (d) 0 : | tests, that were not used to determine the material constants.
Although the individual specimen constants showed predictably better agreement with the data, both
the specimen and group constants showed a good fit to the data.
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In addition to minimizing tissue variability, tight control of tissue structure
allows elucidation of the more subtle aspects of tissue mechanical properties. In
our previous studies on pericardial mechanical properties, we observed that the
strain level along the x; axis (or preferred fiber direction, Figure 1(a)) axis has a
stronger effect on the x; axis stress level (or cross-preferred fiber, Figure 1(a)) than
the x; axis strain level has on the x; axis stress level [49]. While this phenomenon
has been termed “coupling,” it is distinct from the expression

9 (oW 9 (W
AE W \OE»n /)  QEn\JE, )

which holds at a particular strain state (£}, E2;). In contrast, the phenomena re-
ferred to here deals with how stress magnitudes along one axis are affected by the
strain level along the perpendicular axis. Similar mechanical coupling properties
have reported for mitral valve leaflets [36], and for passive myocardium (e.g., [63,
Figure 4]).

This coupling phenomenon was examined by normalizing the peak stresses
from the non equibiaxial strain tests to the equibiaxial peak stresses for each axis.
This approach allows for a simple means to quantify and graphically compare the
mechanical coupling properties. The x; axis demonstrated a general trend that as
the x, axis was subjected to lower maximum strain levels, there was only a small
reduction in the x; maximum stress (Figure 4(a), Eyy : Exp =1 :0,3 : 1, and
2 : 1). In contrast, when the x; axis was subjected to lower maximum strain
levels, the normalized x, maximum stresses decreased to 0.25-0.55 (Figure 3(b),
EyytEnp=1:2,1:3,and 0 : 1). At the time of the study, the exact cause for
these complex coupling properties was unknown. Later work by our group using a
structural constitutive approach has demonstrated that this effect is a direct result
of the particular architecture of the pericardium's collagen fibers. This architecture
can produce complex mechanical behaviors at the tissue level due to large fiber
strains and rotations, along with a nonlinear fiber stress-strain relationship [4, 45].

4.2. ERRORS WITH ISOTROPIC MATERIAL ASSUMPTIONS

Although demonstrated to have orthotropic mechanical properties, isotropic mod-
els are frequently used to simply subsequent analysis. To evaluate the errors in the
use of an isotropic material model in modeling pericardial mechanical properties,
the biaxial data was fit to the following isotropic strain energy function [13]:

W = ¢ (exp?"™Y —1), (26)

where ¢ and ¢, are material constants, and /; is the first strain invariant in terms of
stretch ratios. This model predicted a stress-strain response intermediate between
the x; and x, responses for the equibiaxial test [48]. Thus, an isotropic model
essentially predicts an average axial stress-strain response for an equibiaxial strain



BIAXTAL MECHANICAL EVALUATION OF BIOLOGICAL MATERIALS 217

1.0
’.',_"_“ 0.7
-
T 4 1 - T E T T PP PPy
w
2 O U PO |
B R e s B e R
0'2_ ..............................................................................................
0.1 T T T T
1:0 341 2-1 11
—
=
od
od
w
=
o
3
w

Ey1Eg
(b)

Figure 4. A graphical demonstration of asymmetric mechanical coupling using the peak
stresses from the non-equibiaxial tests normalized to the equibiaxial peak stresses for each
axis. (a) The x; material axis demonstrated a general trend that as the xy axis was subjected
to lower maximum strain levels, there was only a small reduction in the x| maximum stress.
(b) In contrast, when the x; axis was subjected to lower maximum strain levls, the normalized
X maximum stresses decreased to ~0.25.
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state. The agreement with the other test protocols was in general worse. Thus, al-
though providing an approximate estimation of stresses under an equibiaxial strain
state, isotropic material models clearly cannot reproduce the complex orthotropic
mechanical responses found for pericardium.

4.3. HOMOGENEITY OF THE STRESS AND STRAIN FIELD

A critical aspect of biaxial testing is the need for homogeneity of the stress and
strain field within the central region of the specimen, as originally stated in (4).
The homogeneity of the stress and strain can be affected by several parameters,
the most critical being the use of discrete point loading to allow unconstrained
transverse deformation on the specimen boundaries. In small samples, the effects
of stress concentrations generated at the suture attachment sites may propagate into
the measurement region, negating reliable estimates of the stress. For example, the
aortic heart valve cusp is smaller and more structurally heterogeneous than most
tissues examined with biaxial mechanical testing techniques [5]. Typical widths
for biological tissues previously tested with biaxial techniques are two to three
times the size of a cusp and many times larger than a single structural region in
a cusp (i.e. belly region) [8, 9, 25, 48]. Using finite element analysis and biaxial
tests on synthetic membranes, Nielsen and colleagues [38] attempted to determine
the validity of biaxial testing methods for small specimens (~10 mm square). The
authors found that, for homogeneous isotropic materials loaded at four discrete
locations per side, the strain and stress were relatively uniform in the central 25%
of the sample. However, the authors correctly note that the stress and strain dis-
tributions would be less uniform for anisotropic and/or heterogeneous materials.
For complex anisotropic tissues, direct experimental evidence is clearly needed to
demonstrate that a sufficiently homogeneous area for strain measurement exists
and that the stress distribution in the central region is sufficiently homogeneous
despite the point loading at the boundary.

In the case of the aortic valve cusp tissue, we tested the hypothesis that the
highly aligned cuspal fiber architecture rather than the boundary stress concentra-
tions induced by suture lines dominated the local strain field [5]. This hypothesis
is especially important when testing small heterogeneous tissue specimens such as
the aortic valve cusp, where boundary tethering effects may propagate toward the
interior of the specimen, affecting the homogeneity of the stress field within the
region delimited by the markers. In addition, there are also practical experimental
concerns including:

(1) determining the degree of heterogeneity of the strain field, hence the maximum
size, of the area delimited by the optical markers, and

(2) determining optimal location for strain measurements (i.e., the placement of
the optical markers).

To address these questions, we performed experiments where the biaxial spec-
imen fiber orientation was varied and examined its effects on the local strain field
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(details can be found in [5]). Specimens had their edges aligned “on-axis” with
the fiber direction in the center of the cusps, whereas three other specimens had
their edges cut at ~45° to the fiber direction ("off-axis"). To track the tissue dis-
placements, nine small graphite markers (75-150 pm diameter) were affixed to the
ventricular surface in a square array. Nine markers were used to achieve quadratic
interpolation of the displacement field u.

The strong effect of the underlying fiber architecture on the two-dimensional
strain distribution was clear in all samples. This relationship is clearly demon-
strated when the local fiber preferred directions and the corresponding principal
strains are superimposed (Figures 5(a), (b)). In both the on-axis (Figure 5(a)) and
off-axis cases (Figure 5(b)), the maximum principal strains were approximately
perpendicular to the preferred fiber directions, with the second (lesser) principal
strains aligned with the fiber directions. These results demonstrate quantitatively
that the local tissue is much more compliant perpendicular to the preferred fiber
direction than along the fiber direction, and appears to be relatively unaffected by
the stress concentrations due to suture tethering forces.

As a further example on how to address heterogeneity of tissue structure, we
computed the direction and magnitude of the principal Green's strains at the lo-
cations of the SALS structural measurements. Details of the procedure are given
in [5]. Briefly, the principal Green’s strains were superimposed on the map of local
preferred fiber directions to graphically compare the strain field and structural data.
Results demonstrated by the structure-strain studies is that the strain field was most
uniform in the center of the belly and most variable near the nodulus (Figure 5(c)).
Note too the profound difference in the stress-strain data between the nodulus and
central belly region (Figure 5(c)). Since the central belly region is structurally most
similar to the bulk of the tissue specimen, and the fibers are approximately aligned
with the test axes in this region, the lower belly region (B in Figure 5(c)) was
determined as the optimal strain measurement site. Further, analysis of the strain
field indicated that the values for E;; did not vary by more the 5% of the mean
value (typically 2%—-3%) within a 3 mm x 3 mm area in the lower belly region.

Although the above results clearly demonstrated the difficulties and presented
solutions for addressing questions of heterogeneity of the stress and strain fields
within a biaxial specimen, alternative methods of gripping are also possible. Re-
cently, Waldman and Lee [59] demonstrated that substantially different stress-
strain curves can be generated in the same tissue by changing from tethering to
a clamping method. Clamping was used as an attempt to improve stress-transfer
from fiber to matrix. In a tethered specimen, the point loadings have been shown
to induce dramatic local reorientation of the fiber structure at the point of at-
tachment [3], Using SALS, Waldman et al. [60] demonstrated that the change in
stress-strain curves was due to a dramatically different strain (and hence stress)
field in the vicinity of the clamps, as evidence by substantial fiber reorientation
and alignment. Interestingly, within the region of the specimen where the optical
makers were located, fiber realignment was only a function of the local tissue
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Figure 5. Peak principal Green’s strains under 60 N/m equibiaxial tension for the aortic valve
cusp superimposed over the collagen fiber directions for an (a) on-axis and (b) 45° specimen.
Lines represent local collagen fiber preferred directions and arrows the principal strains, with
lengths proportional to strain magnitude. The principal strains were closely oriented to the
local preferred fiber directions throughout most of the region for both orientations. (c) Plot of
collagen fiber orientation (lines) superposed over the local degree of orientation (OI). Here,
the white “holes” in the plot correspond to the displacement markers. (d) Corresponding
tension-strain plots for different portions with N = nodulus, M = midregion, B = belly,
highlighting the heterogeneity of the mechanical properties.
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strains, and was unaffected by the method of attachment. These results underscore
the importance of addressing tissue attachment and important role of boundary
conditions in determining biaxial stress-strain data.

4.4, INCORPORATION OF THE EFFECTS OF IN-PLANE SHEAR

A limitation in all of the above cited biaxial studies of soft tissues has been the
inability to include the effects of in-plane shear. This is due to the inability of
current mechanical testing devices to induce a state of in-plane shear, due to the
added cost and complexity. In the typical planar biaxial mechanical test, specimens
are mounted with their material axes aligned to the test axes (e.g., [9, 46, 48, 63])
and subjected to a wide range of strain states. While sufficient for characterizing
on-axis anisotropic mechanical properties, this method cannot predict the tissue’s
response in the presence of planar shear strains.

To induce shearing strains in planar biaxial experiments, the biaxial testing
system must be able to apply a non-uniform system of forces along each of the
test specimen’s boundaries. Recently, Khalsa et al. [26] developed a novel biaxial
testing system to induce in-plane shear. When applied to skin, the device was able
to accurately induce controlled states of normal and shear stresses [15]. However,
this device required a more complex biaxial testing system, including twelve load
transducers and actuators (other designs could potentially include more). Another
consideration in planar biaxial testing with shear is when the loads along one
axis are zero, there is the potential for out-of-plane deformations (i.e., wrinkling).
A simpler, more economical approach was clearly needed for the derivation of
planar biaxial mechanical properties that include shear.

The author recently developed a method to induce a combined state of in-plane
biaxial normal and shear strains [44]. The method takes advantage of rotation of
the test specimen’s material axis to the test axes (Figure 6(a)). The method required
only modest modifications to the biaxial testing device [48] to allow the specimen
to undergo unrestricted shear deformations. Specifically, the device was modified
to allow in-plane shearing through the use of rotating carriages (Figure 6(b)).
Two loops of 000 nylon suture of equal length were attached to each side of the
specimens with four stainless steel surgical staples. Symmetrically placed pulleys
insured equal tension on each pair of suture lines, with the pulleys mounted on a
stainless steel rod attached to a bearing to insure each pulley supported equal ten-
sion (Figure 6(b)). The complete assembly was able to rotate freely (both pulleys
and bearing) with negligible friction for applied loads up to 50 N. This straight-
forward design eliminated the use of individual actuators and force transducers for
each suture line, as well the need for adjustment of individual suture line tensions.
Small styrofoam floats were attached to each staple to make the mounted sample
neutrally buoyant (Figure 6(c)).

Biaxial data from five glutaraldehyde treated bovine pericardium are presented
to demonstrate the feasibility of the approach, including a fit to an orthotropic strain
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Figure 6. (a) A schematic of a biaxial test specimen where the lines represent the preferred
fiber direction, which are rotated 45° from the x|—x; biaxial testing device axes and are
represented by the x/l—x’z axes. The small circles indicate where the four markers are located
for strain measurements. (b) and (c) show the specialized carriages and suture attachment
placement that allow the specimen to shear freely. Note that the small white objects in (c) are
the styrofoam floats attached to the staples.
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Figure 7. Video marker trajectories for an equibiaxial experiment (Ej; = F37) demonstrating
E 17 # 0. Consistent with the direction of the specimen’s material axes, the smallest and largest
strains were along the PD and XD directions (see Figure 6), respectively.

energy function that included shear and shear-normal terms. To demonstrate the
method, five glutaraldehyde treated bovine pericardium specimens were prepared
with their preferred fiber directions (defining the material axes) oriented at 45°
to the device axes to induce a maximum shear state. The test protocol included
a wide range of biaxial strain states, and the resulting biaxial data re-expressed
in material axes X' coordinate system (Figure 6(a)). The relative magnitude of the
induced shearing strain is apparent when the specimen's markers trajectories are
plotted under equibiaxial normal strain (i.e., Ey; ~ Ez, E2 # 0, Figure 7). For
this specimen, the shear angle o at maximum strain was 10.9°. Consistent with
the direction of the material axes, the smallest and largest strains were along the
x{(PD) and x;(XD) directions, respectively (Figure 6).

The resulting biaxial data were then fit to the following generalized Fung model
(18) with the in-plane shear terms retained:

C / ’ 4 ! ‘
W = E[eXP(AlEﬁ + AEp + 2A3E] Eyy + A4E + 2A5 B B
+2A6EpEly) — 1], @7

where E}; is the Green’s strain tensor in the material axes coordinate system and
c and A; are material constants. While W was able to fit the data very well (Fig-
ure 8), the constants As and Ag were found not to contribute significantly to the
fit and were considered unnecessary to model the shear strain response. While not
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able to independently control the amount of shear strain or induce a state of pure
shear, the method presented readily produces a state of simultaneous in-plane shear
and normal strains. Further, the method is very general and can be applied to any
anisotropic planar tissue that has identifiable material axes.

4.5. STRUCTURAL CONSTITUTIVE MODELS

While the phenomenological constitutive models described previously are able to
fit the mechanical data well, they are limited in that they cannot elucidate the
underlying cause of mechanical behavior. Alternatively, structurally based con-
stitutive models not only avoid ambiguities in material characterization but also
offer insights into the function, structure, and mechanics of tissue components.
Perhaps the most complete approach has been by Lanir et al. [28, 29, 32]. In this
approach, the tissues net or total strain energy is assumed to be the sum of the
individual fiber strain energies, linked through appropriate tensor transformation
from the fiber coordinate to the global tissue coordinates.

As an example of how a structural model can be implemented for the aortic
valve (AV). On the most basic functional level, the aortic valve is essentially a
check-valve that serves to prevent retrograde blood flow from the aorta back into
the left ventricle. This seemingly simple function belies the structural complexity
and the elegant solid-fluid mechanical interaction necessary for normal aortic valve
function. The aortic valve is capable of withstanding 30—40 million cycles per year,
resulting in a total of ~3 billion cycles in single lifetime.

To achieve the combination of low flexural rigidity necessary to allow normal
valve opening and high tensile strength required to resist trans-valvular pressures
of 80 mmHg, nature has evolved a tri-layered cuspal structure. These layers are
the ventricularis, spongiosa, and fibrosa. As its name implies, the ventricularis
layer faces the left ventricular chamber and is composed of a dense network of
collagen and elastin fibers. The spongiosa layer contains a high concentration of
proteoglycans. The fibrosa layer is composed predominantly of a dense network
of collagen fibers, and is thought to be the major stress-bearing layer. Interest in
understanding the diseases of the aortic valve and the need for improvement in
replacement valves has prompted our lab to develop a constitutive model for the
native aortic valve.

The fiber architecture [51] and biaxial mechanical data [5] suggest that a struc-
tural approach is the most suitable method for the formulation of a constitutive
model for the AV cusp. For example, we have demonstrated that strong axial cou-
pling produced nonmonotonic relationships between stress and strain, including
negative strains [5]. Our related work on native and chemically treated bovine
pericardium suggests that a structural approach is both feasible and attractive for
bioprosthetic heart valve biomaterials [45].

Details of the model have been previously presented [4]. Briefly, we assume
that the planar biaxial mechanical properties of the cusp can be represented as a
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planar array of collagen fibers. Anatomically, these fibers most closely represent
the dense, highly aligned collagen fibers in the fibrosa layer. Next, the angular
fiber distribution and the density of the fibers are assumed constant throughout the
tissue. Based on our SALS results for the aortic valve cusp [51], we utilize the fact
that the angular distribution of the collagen fibers, R(8), can be represented by a
Gaussian distribution,

ey — L —(9-M)2] )%
6) = — = exp[—za2 : (28)

where 6 is the direction with respect to the x; axis (Figure 1(a)), o is the standard
deviation and M is the mean of the distribution. M was determined experimen-
tally for each specimen by using the preferred fiber directions as determined by
SALS [51]. The “effective” fiber stress-strain properties were represented using

S = A[exp(BE) — 1], (29)

where S¢ is the second Piola—Kirchhoff fiber stress, E; is the fiber Green’s strain.
This formulation for the fiber stress-strain law avoids detailed descriptions of com-
plex crimp distributions.

For valvular tissue, it is more convenient to work with membrane stresses due to
considerations such as variable total and layer thickness, and heterogeneous layer
structure [5]. Further, since the biaxial mechanical tests are run using membrane
stress control using the specimen’s unloaded dimensions, a Lagrangian membrane
stress measure is used in the constitutive formulation. We also assume that inter-
specimen variations in fiber volume fraction V; and thickness & are negligible, so
that the product 2V can be conveniently absorbed into the material constant A.
The resulting expressions for the Lagrangian membrane stresses 7;; are:

/2
T = f S;(EpR(6) (A cos® 6 + k; sin6 cos 6) db,
i (30)
Ty, = / SH(E)R(6)(x28in* 8 + K sin6 cos §) db,
-m/2
where A* = hV;A and S} = A*[exp(BE;) — 1]. The parameters A*, B, and o
were estimated by fitting (15) to the complete biaxial data set [5].

The fit of the model to the data was good despite the complexity of the me-
chanical response over the broad range of biaxial loading states (Figure 9(a)). The
model fit the data from all seven protocols well even though the data from the
outer protocols (1 and 7, see inset in Figure 9(a)) were not used in the parameter
estimation. Using only three material parameters, the quantitative “goodness of fit”
was comparable to phenomenological models of other tissues [9, 21, 37].

It is informative to demonstrate the utility of a structural approach in minimizing
the number of parameters necessary to model the in-plane behavior of the cusp. In
the case of the Fung type (18), a three parameter version would be

C
W= E[exp(AlEf‘l + AE) —1]. (31)
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Figure 9. (a) Stress-strain curves for six of the seven loading protocols for an aortic valve
specimen (open circles) and the fitted stress-strain curves (lines) using the structural constitu-
tive model. The model demonstrated an excellent fit to the data, including the presence of large
negative circumferential strains due to strong axial coupling. Inset: biaxial testing protocols
with showing the corresponding protocol numbers shown for reference. (b) Simulations using
the structural model of the effect of o on the equibiaxial stress-strain behavior. The insets
provide a graphical representation of the fiber probability density distribution for each o value:
(a) 0 = 90° approximately isotropic, (b) 0 = 35° response qualitatively similar to bovine
pericardium, (¢) o = 20° the circumferential strains are negative at low equibiaxial tensions,
and (d) o = 10° the material behavior is highly anisotropic. The dotted lines indicating zero
strain are included to highlight ability of the model to simulate the cross-over to negative strain
observed in the pressure fixed cusps subjected to equibiaxial tension.
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Figure 9. (Continued.)

Not surprisingly, the resulting equations could not fit the data well due, in part,
to the lack of shear and coupling terms. Especially evident was the inability to
simulate negative strains. Expanding the number of terms in Q would obviously
improve the fit, but would also increase the complexity of the nonlinear opti-
mization and may lead to over-parameterization. Alternatively, since the tests were
run under tension control, use of a complementary strain energy density function
would also appear to be attractive approach. However, regardless of the particular
approach used it is unlikely that a simple analytical function can be found that
reproduces the complex behavior with only three parameters. In addition to mini-
mizing the number of parameters, the strength of the current structural approach is
underscored by the insight given into the mechanics of the aortic valve cusp (e.g.,
fiber rotations allowing for the large radial strains).

Another important aspect of the structural approach is that the two distinguish-
ing aspects of the aortic valve cusp biaxial behavior, namely, the extreme me-
chanical anisotropy and the strong mechanical coupling between the axes, can be
explained by the angular distribution of fibers. To more clearly demonstrate this
effect, we generated simulations under equibiaxial loading for a given set of A*
and B values by letting o vary (Figure 9(b)). These simulations indicate that the
value of ¢ is the primary determinant of the biaxial stress-strain response, as shown
for (a) nearly random (o = 90°), (b) moderately anisotropic (o = 35°), (c) highly
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anisotropic, including contraction along one axis (¢ = 20°), and (d) extremely
anisotropic (o = 10°). Although we assumed a simplified tissue structure in the
formulation of the model, the structural approach highlighted the importance of
the angular orientation of the fibers in determining the complex anisotropic tissue
mechanical behavior.

4.6. MODIFICATION OF THE STRUCTURAL APPROACH FOR CHEMICALLY
TREATED TISSUES

The therapy for aortic valve disease is typically complete heart valve replacement.
For patients greater than 60 years in age, treatment with bioprosthetic heart valves
is preferred. In the fabrication of bioprosthetic heart valves, native porcine aortic
valves or bovine pericardium are chemically treated to reduce immunological re-
activity and improve tissue durability. The treated tissue is then mounted into a
flexible wire frame (stent) and covered with Dacron cloth to assist in surgical im-
plantation. Although current bioprosthetic heart valves can last up to 15 years, there
continues to be a need to improve their durability, which is limited by tissue min-
eralization and fatigue damage [52]. Clearly, the understanding of biomechanical
events that occur during the fatigue process is critical to the improving biopros-
thetic heart valve design. This will clearly require a constitutive model for normal
and fatigued tissue.

When soft tissues are chemically treated changes in the mechanical properties
in both the fibers and ground matrix will occur. Chemical treatments can form
exogenous cross-links between collagen fibers and with the protein core of the
proteoglycans. This will tend to stiffen the ground matrix, so that the ground ma-
trix can now contribute significant mechanical loads. There is no available data
on the mechanical properties of chemically treated matrix, or the effect of chem-
ical treatment on pure collagen. However, we have previously shown that while
chemical treatment substantially alters bovine pericardium mechanical properties,
the degree of mechanical anisotropy is unchanged [48]. This result suggests that
chemically treated ground substance acts as an isotropic, hyperelastic material.
Further, while chemical treatment quantitatively alters the stress-strain curve, it
remains qualitatively similar.

Based on these considerations, we developed a constitutive model for chem-
ically treated tissues [45] using data from our previous study [48]. Briefly, we
assume that the total strain energy of the chemically treated tissue is the sum of
the fiber and matrix components, i.e., W = c¢Wr 4 (1 — ¢r) W, where Wy and W,
are the fiber and matrix strain energies, and ¢ is the fiber volume fraction. Thus,
the total stresses along the PD and XD axes (Figure 2) are given by

Sep = ¢rSbhp + (1 — ¢)SE,,

(32)
Sxp = Cfsg(]) + 1 - Cf)sr)r(l])’
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where S' and S™ are stresses due to the fiber and matrix components, respectively.
The following isotropic strain energy function was found to fit the matrix stress-
strain data very well:

Wan = 5 expler (Efp + Exp + 2Een Exo) . (33)

where ¢y and ¢ are constants.

The formulation for the structural model follows that for the aortic valve [45]
(Section 4.5). However, unlike the aortic valve study we utilized SALS to directly
determine R(8). This advance is important in that unlike man-made composite
systems, the angular orientation of the collagen fibers in soft tissues is not known
a-priori. To determine this critical structural feature, we used SALS to directly
determine the distribution of fiber angles. This is possible due to the property
that in SALS the distribution of scattered light, 7(8), is directly proportional to
the angular distribution of fibers [50], where 6 is the fiber angle. In our previous
study [48], a 2.54-mm rectilinear scanning grid was used resulting in ~625 tests per
specimen, with /(8) measured using 1° increments. For each specimen, the mean
I(9) was computed for each specimen by averaging the values of /() from all test
locations. For the constitutive model, the normalized fiber orientation distribution
function, R(#) is required (see below). R(f) is defined such that R(#)d@ is the
fraction of fibers oriented between 6 and 6 + df, with the normalization constraint
f”/z R(#)dé = 1. In thisstudy, R(6) computed from the f(6)—6 curve using

—m/2
1(6)

o 1©)A0

R(O) = (34)

where, since /(6) is measured in discrete 1° increments [50], A6 = 1°.
Using (30)—(32), and assuming W = ¢¢W; + (1 — ¢r) W, the final equations for
the stresses for chemically treated tissues are given by:

90°
Sep = cr Y [R(6)S((Er) cos?(6) A6
+2190— er)coct (Epp + Exp) explei(Efp + Exp + 2Epp Exp) ]
90°
Sxp = ¢t ) _ [R(0)St(Ey) sin®(0) Af]
+(190i Cf)COCl(EXD + Epp) CXp[C1 (EIQJD + E)z(D + 2EPDEXD)]~

(35)

Since R(8) was determined by SALS, only the constants A, B, ¢y and ¢; need be
determined. Equation (35) modeled the biaxial response for the chemically treated
tissues quite well (see [45] for details). In additional to fitting the total tissue re-
sponse well, the structural model allowed examination of the isolated contributions
of the fibers and the matrix. For example, the fiber stress-strain responses indicated
that the chemically treated tissue had a more gradual increase in stiffness. Further,
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on average the matrix stresses were approximately one half of the fiber stresses at
any given strain level.

5. Future Areas

From this review, one can easily see that our understanding the biaxial mechanics
of soft tissues is incomplete, and remains a challenging scientific area. There ex-
ists many areas where advances in constitutive modeling are required, including
the development of experimental techniques and theoretical frameworks for the
fundamental characterization of tissue response. The underlying motivations for
these studies lie not only in the understanding of natural tissue function, but also
in new biomedical applications. One such application is tissue engineering, a new
therapeutic approach for the functional restoration of diseased or damaged organs
that utilizes cells and related biological factors to generate living tissue replace-
ments. In mechanically demanding applications such as heart valves, the design
and development of these tissues will invariably require a detailed understanding
of the biomechanical phenomena associated with the growth, development, and
engineering of soft tissue replacements. In the following, ongoing issues in several
key areas in the biaxial mechanical evaluation of tissues are identified, including
those that have had a long-standing need for theoretical contributions.

5.1. UNIQUENESS OF PHENOMENOLOGICAL FORMULATIONS

As demonstrated in Sections 4.5 and 4.6, structural approaches can provide in-
sights into the mechanisms underlying the tissue mechanical behavior. However,
there are still many problems to overcome with structural approaches (see below).
Phenomenological approaches continue to represent an important approach in the
characterization of tissue mechanical behavior. They are inherently simpler in that
they do not require an in-depth knowledge of the mechanical behavior of tissue
components and mechanical interactions, and are also more amenable to computa-
tional applications. For example, in order for novel biologically-derived soft tissues
to be utilized in artificial heart valve designs, robust constitutive models are re-
quired for computational simulations of valve function. The theoretical approaches
required to develop constitutive models for heart valve biomaterials must be able
to describe a wide range of combined states of normal and shear stresses.

Some of the issues associated with accomplishing this task are illustrated in
our research on heart valve biomaterials. In our original technique to apply in-
plane shear in a biaxial test [44], control of the normal Green’s strain components
alone was used, while the shear strain component £, was allowed to vary freely
(Figure 8). While this approach allowed for the application of in-plane shear, the
range of stresses and strains were limited. The limitation restricts the ability to
accurately simulate heart valve stresses, since they exhibit strains outside those
used in [44].
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Recently, we modified our biaxial testing device to allow for Lagrangian stress
control to allow for a wider range of stress and strain. Here, chemically treated
bovine pericardial specimens were prepared as before [44], with the preferred col-
lagen fiber direction oriented 45° to the specimen axes (Figure 6). Seven Lagrange
stress (T;) controlled biaxial test protocols were conducted using a maximum value
of 1.8 MPa, with axial stress ratios of 71y : Top = 1:0.1,1:0.5,1:0.75,1: 1,
0.75:1,05: 1,0.1 : 1 were used (Figure 10(a)), which produced wide range of
normal and shear stresses (Figure 10(b)). The resulting strains spanned the strain
field well, and indicated a complex tissue response (Figure 10(c)).

Although able to accurately simulate data from our initial study [44], (27) did
not adequately describe the data from the new stress-controlled protocol (Fig-
ures 11(a)—(c)). In particular, it was unable to simulate the complex shear stress
response (Figure 11(b)). To aid in developing an alternative model, we developed
a method to estimate the strain energy response functions with respect to each
strain component. First, the data was fit using an exponential function fit each stress
component as a function of the three strain components individually (r? > 0.99).
Next, the stress component as a function of two strain components while the other
was kept at zero. This allowed use to simulate the response of S; ; against various
combinations of E; ; and guide the choice of the functional form of Q. All together
nine response functions of §! ; V8. E; ; in 3D were generated, which provided use-
ful insights in forming a new strain-energy function. Based on these results, we
developed the following alternative Fung model Q:

QO = AER + AER +2A3E| Eyy + AEL +2AsE} E}, + 2A¢El, Eby
+AELED. (36)

Equation (36) was able describe the data of the 5 “inner” test protocols (77 : Ty
ratios 0.5 : 1 through 1 : 0.5, as shown in Figure 10(a)) with an r? of 0.982 (Fig-
ures 1 1 (d)—(f)). The predictive capability of (36) was evaluated by extrapolating to
the outermost protocols (77 : 72, ratios 1 : 0.1 and 0.1 : 1, Figure 10(a)), which fit
the data reasonably well, especially the shear term (Figures 1 1 (d)—(f)). Further, our
experimental approach show a wide range of shear stresses and strains, with peak
shear stresses of +600 kPa and peak shear strains of +0.2, which is comparable to
the magnitudes of the corresponding normal components.

Although (36) was clearly able to “fit” the experimental data well, and that
we utilized response functions to guide choosing the correct functional form (a la
Rivlin [42]), this approach still represents a somewhat ad-hoc methodology. Clearly,
the inability for a given constitutive relation to fit a broader range of experimental
data for the same biomaterial represents a major pitfall in current constitutive mod-
els. Part of this problem may be statistical in nature, particularly with the amount
of covariance that exists in current models. This is especially the case in the Fung
form (18) where the 2nd Piola—Kirchhoff stresses will always contain an e? term,
which contains all strain measures. Recently, Criscione et al. [11] proposed a new
invariant basis, using natural (logarithmic) strain which yields orthogonal stress
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Figure 10. (a) The Lagrangian stress-controlled biaxial test protocol, which when applied to
tissue specimens with their material axes oriented at 45° to the specimen axes produces a wide
range of (b) 2nd Piola—Kirchhoff stresses and (¢) Green’s strains in the material coordinate

system (Figure 6(a)), including a large range of shear stresses and strains.
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Figure 10. (Continued.)

response terms in isotropic hyperelasticity. In this approach, covariance between
terms vanishes since orthogonal bases are used. In addition, the use of natural strain
minimizes the dependence on accurate reference states, which are problematic in
soft tissues. Thorough testing of this approach is limited to date, but may prove to
significantly advance phenomological approaches.

5.2.  PRECONDITIONING AND RELATED TIME DEPENDENT PHENOMENA

All experimental and modeling presented herein dealt only with quasi-static be-
havior. Time-dependent behavior, such as visco-elasticity and poro-elasticity, has
not been examined in a biaxial stress-state, largely due to experimental technical
limitations. Only one previous time-dependent biaxial experimental study known
to the author is by Lee et al. [34]. Lee et al. conducted biaxial-stress relaxation ex-
periments, although the loading times were very slow (~1 sec) due to experimental
limitations. Of any of the time-dependent phenomena, preconditioning is perhaps
the least studied and understood, yet paradoxically the most widely observed. As
originally stated by Fung [16], preconditioning involves cyclically loading a tissue
to the same stress-strain state until its response becomes stabile. Although origi-
nally developed for uniaxial loading, preconditioning has been extended to biaxial
testing. An example of this is shown in Figure 12 for the urinary bladder wall.
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Figure 11. (a)—(c) Biaxial mechanical data from Figure 10 showing the fit of (27), indicating a
relatively poor fit. (d)—(f) show the fit using (36), using only the middle five test protocols (Figure 10),
and demonstrating much better fit, indicating that (36) is more a robust model. Ratios listed next to
each curve indicate the corresponding 7, : T»5 ratio as shown in Figure 10(a).
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Figure 12. Demonstration of the preconditioning phenomena for biaxial loading, a specimen ex-
tracted from the rat bladder wall. The first cycle indicated a pronounced toe region (i.e., low stress),
which disappeared in subsequent cycles. Further, note that cycles 2 and 12 are nearly identical,

indicating that the mechanical response stabilized after 12 cycles.
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Here, the first cycle is quite different from the second. Virtually no differences
occur between the 2nd and 12th cycles, indicating at least short-term stability.
However, the mechanisms of the preconditioning phenomena, methods to describe
it mathematically, and most importantly the relation between preconditioned tissue
response to actual in-vivo properties is unknown.

Our lab has recently completed a set of equibiaxial strain history and stress-
relaxation tests on glutaraldehyde-treated bovine pericardium. Testing began with
first preconditioning for 15 cycles of equibiaxial stretch (Epp @ Exp = 1 : 1)
to the maximum strain level at a strain rate of 1%-sec™!. Next, one of two tests
was performed. First, to examine the effects of increasing the maximum strain
level, an equibiaxial test was performed with the maximum strain level increased
by 5% strain. Following this test, the maximum strain level was reduced back to
the previous strain level and another equibiaxial test performed. The specimen was
then unloaded and allowed to mechanically recover in the stress-free state for 24
hours, and then a final equibiaxial test performed at the original maximum strain
level.

The second test type was a three-hour equibiaxial stress relaxation experiment
performed to the maximum strain level using a loading time of 100 msec (a loading
rate ~100 times faster than cyclic tests). During the first 10 seconds of the stress
relaxation test, video marker tracking was disabled (i.e. no strain data acquired)
to allow for high speed data acquisition (~3.3 msec/data point) of load and time.
Because specimen strain could not be measured during loading, the applied strain
level was prescribed by using the same number of stepper motor steps used in
the equibiaxial tests for each axis, but at a pulse rate sufficient for a 100 msec
loading time. Afterward, normal data acquisition of the time, video marker track-
ing, and load signals was re-enabled, allowing for strain level accuracy check and
monitoring of the strain throughout the test.

Results of these studies suggest a complex, highly visco-elastic response. When
the loading time was decreased to 100 msec, a noticeable increase in peak stress
and stiffness was observed in the stress-time response when compared to the nor-
mal loading rate data (Figure 13(a)). Another example of visco-elastic nature can
be seen in an example of the normalized equibiaxial stress relaxation behavior (Fig-
ure 13(b)). There were no differences between PD and XD responses, indicating
that the stress-relaxation behavior for glutaraldehyde treated bovine pericardium
isotropic. When compared to earlier pilot stress-relaxation data that used a 1.0 sec-
ond rise time (and run only for one hour), results from the current study (which used
a 100 msec rise time) demonstrated substantially greater relaxation (Figure 13(b)).
Overall, while biaxially-loaded tissues exhibit much of the same behavior uniax-
ial ones, the potential for complexity is much greater. For example, we utilized
only equibiaxial strain states; non-equibiaxial tests could produce rather complex
behavior if the stress-relaxation response is strain-level dependent.

Changes in maximum strain level indicated strain history effects (Figure 14).
When the maximum strain level was increased, stress-strain curve did not contin-
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Figure 3. Effects of strain rate on the equibiaxial (E1] = E7) mechanical properties of chemically
treated pericardium. In (a) a change in loading time from | sec to 100 msec resulted a near doubling
of stress levels. In (b), the same change in loading time resulted in a more pronounced degree of
stress-relaxation. Note too that there was no difference between stretch axes (PD, XD), suggesting
the viscoelastic response might be isotropic even though the tissue is orthotropic.



240 M. S. SACKS

400 +—
o
—e— 15% strain
—o— 20% strain
300 4 —r— 15% strain post 20% strain
—7— 15% strain 24 hours later i
—_—
(U
R ,_
= PNg
(]
a
(0]
100 ~
0<% T
0.00 0.08 0.10 0.15 0.20
EPD
250
200 4
@ 150 4
o
o
g
m)
oS 100
50
0 <
0.00 0.05 0.10 0.15 0.20
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peak strain test for the (a) PD and (b) XD axes. Although both axes demonstrated substantial effects,
after 24 hours the original 15% peak strain response was recovered.
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ued directly from the 15% strain level data. Instead, the 20% maximum strain level
curve formed a new path, with stress levels below that of the 15% maximum strain
level data. When the maximum strain level was reduced back to 15%, it generally
followed the 20% maximum strain level curve (Figure 14). However, after the 24
hour rest period, the original 15% maximum strain level curve was recovered. This
strain-level dependent preconditioned behavior was observed in both the control
and chemically treated specimens.

The above results suggested that the exact form of the stress-strain curve is de-
pendent on the preconditioning maximum strain level. To investigate this phenom-
enon further, we performed another set of biaxial tests where a single maximum
strain level was used, 5% larger than the original level (i.e. 20%). When compared
to the original test group, these tests demonstrated overlapping identical stress-
strain curves (Figure 14). Thus, only changes in maximum strain level from the
initial preconditioned value appear to alter the stress-strain curve.

5.3. THE FUTURE OF STRUCTURAL APPROACHES

In addition to the above issues, fundamental questions remain as to the optimal
approaches for constitutive modeling of tissues. The structural approach taken by
us represents a particularly attractive approach in that it can be used to help explain
material behavior and minimize the number of parameters. However, critical to
the formulation of any structurally guided model is knowledge of how the fibers
deform in response to global tissue strains. Prior models (including ours) assume
an affine deformation, where the fibers are assumed to rotate and stretch in the same
way as the bulk tissue. When a tissue is chemically treated, and especially when it
is bonded together to form biocomposites, fiber mobility behavior may change.

As example of the level of complexity that the fiber rotations can have within
even relatively simply planar tissues, we utilized our integrated SALS/biaxial de-
vice [3] to examine how the collagen fibers rotate under biaxial strains for small
intestinal submucosa (SIS), a thin (<100 pm) collagenous tissue. Three native SIS
samples were prepared as per our established methods [49]. Each specimen was
first SALS scanned before deformation and at three stretch levels of
A A =112:1.12,1.30 : 1, and 1 : 1.30. The fiber distribution after an equib-
iaxial stretch of 1.12 : 1.12 and 130 : 1 were both very similar to the corre-
sponding fiber distribution computed from affine deformation theory assumption
(Figure 15(a)). However, in the sample stretched to 1 : 1.30 the single fiber distri-
bution split into a dual fiber distribution with peaks at ~50° from the center of the
single distribution (Figure 15(b)).

The basis for this unusual behavior can be explained as follows. It has been
shown that SIS consists of two fiber populations oriented at +30 degrees from the
preferred fiber direction [40,41, 49]. We have also demonstrated that the two fiber
populations usually overlap sufficiently so that only a single fiber population is
detectable [49]. The current results indicate that under large circumferential strains,
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Figure 15. The angular distribution of collagen fibers of a SIS specimen determined before (circles)
and after (squares) 30% stretch in the (a) preferred and (b) cross-preferred fiber directions. The
separation of the single fiber population into dual populations after stretch was poorly predicted by

the affine deformation model (lines).

the two populations rotate with respect to each other and become distinguishable.
These results suggest non-affine fiber kinematics for native SIS. Clearly, a more
in-depth understanding of the tissue fiber kinematics is required before realistic
structural models can be developed for native tissues.
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5.4. CLOSURE

Besides the questions raised in this section, many other ones need consideration.
For example, theories that encompass growth of tissues under multi-axial stress
states will be paramount in tissue engineering applications. Another challenging
area is the constitutive modeling of actively contracting tissues. The little experi-
mental data available and reviewed herein on active biaxial mechanical properties
clearly indicate that one cannot simply model the active state as a change in ref-
erence configuration. Instead, complex changes in the constitutive behavior of the
material as well need to be accounted for. Finally, the basic tenets of biomechanics
as applied to biaxial testing, such as pseudo-elasticity, need to be put on firmer
ground by establishing both underlying causes and better approaches to modeling
and simulation.
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