

Practical CakePHP
Projects

Kai Chan and John Omokore
with Richard K. Miller

Practical CakePHP Projects

Copyright © 2009 by Kai Chan and John Omokore with Richard K. Miller

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1578-3

ISBN-13 (electronic): 978-1-4302-1579-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: David Golding
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Candace English
Compositor: Patrick Cunningham
Proofreader: Martha Whitt
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at .

For Rita
—Kai Chan

For Comfort
—John Omokore

For Marian
 —Richard K. Miller

v

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xiv

Acknowledgments . xv

Introduction . xvii

CHAPTER 1 Cake Fundamentals . 1

CHAPTER 2 Blogging . 29

CHAPTER 3 E-Commerce . 47

CHAPTER 4 A Message Forum Web Service . 85

CHAPTER 5 Google Maps and the Traveling Salesman . 131

CHAPTER 6 Mashing Twitter with the Google Translator . 173

CHAPTER 7 Unit Testing and Web Testing . 213

CHAPTER 8 A Cake Control Panel . 237

CHAPTER 9 Translating Stories . 271

CHAPTER 10 Adding Automagic Fields . 307

CHAPTER 11 Cake Tags . 317

CHAPTER 12 Dynamic Data Fields . 329

CHAPTER 13 Captcha . 359

INDEX . 371

vii

Contents

About the Authors . xiii

About the Technical Reviewer . xiv

Acknowledgments . xv

Introduction . xvii

CHAPTER 1 Cake Fundamentals . 1

Cake Features . 1

The Ingredients of Cake . 2

The Model-View- Controller Design Pattern . 2

Rapid Application Development . 2

PHP 4+ . 3

Object-Oriented Programming . 3

Dissecting Cake . 5

Cake’s Directory Structure . 5

The Cake Naming Conventions . 6

Models . 8

Model Creation . 8

Data Validation . 13

Views . 15

Controllers . 18

Cake Components . 19

Helpers . 21

Plugins . 22

Vendors . 25

Summary . 27

CHAPTER 2 Blogging . 29

Creating the Database . 29

Reviewing the Application Structure . 31

Creating the Post Model . 31

CONTENTSviii

Creating the Posts Controller . 32

Listing the Posts . 32

Adding a Post . 35

Updating a Post . 38

Unpublishing a Post . 40

Publishing a Post . 41

Deleting a Post . 42

Creating an RSS Feed . 43

Summary . 46

CHAPTER 3 E-Commerce . 47

The Online Shop Layout . 47

Two Site Layouts . 48

Layout of the Main Content . 48

The User Journey . 49

Setting Up the Shop Database . 50

Interacting with the Online Shop Database . 52

The Category Model . 53

The Categories Controller . 56

The Product Model . 59

The Products Controller . 59

The Cart Model . 63

Handling User Requests . 67

The AppController Class . 67

The Home Page . 69

The Carts Controller . 69

The Order Model. 75

The Google Checkout Button . 79

The PayPal Submit Button . 82

Summary . 83

CHAPTER 4 A Message Forum Web Service . 85

Our Take on Web Services . 85

Web Service Elements. 85

REST and HTTP . 87

Result Return Formats. 88

Application Requirements . 88

Threads and Posts . 89

Web Service Requests. 90

Layout . 91

CONTENTS ix

Application Structure . 91

JSON Web Services . 92

Our Application Controller . 94

Fetch a Message . 97

Fetch Several Messages . 100

Fetch the Threads . 105

Post Messages . 110

Process a Message . 116

Process a Search Request . 120

Writing the API Documentation . 125

Summary . 129

CHAPTER 5 Google Maps and the Traveling Salesman 131

Hello Map! . 131

Google Maps Explained . 133

Geocoding . 133

Google Map Events . 134

Map Interface Elements . 134

Overlays . 134

Driving Directions . 135

Application Requirements . 136

Application Structure . 138

Cake Models . 140

The Interface . 141

The Global Layout . 141

Home Page . 143

Travel Mappr Manager . 146

Finding Locations . 148

The Traveling Salesman Algorithm . 150

Plotting the Journey . 156

Journey Data . 160

Saving a Journey . 160

Saving Tags . 167

Retrieving and Editing a Journey . 168

Viewing a Journey . 169

Summary . 172

CONTENTSx

CHAPTER 6 Mashing Twitter with the Google Translator 173

The Twitter API . 173

The Google Ajax Language API . 175

Application Requirements . 176

Application Structure . 178

Cake Models . 181

Internationalization and Localization . 184

Web Services . 186

Caching . 188

Caching Views . 189

Caching Models . 189

Caching Twitter and Google Translations . 189

Caching and the Application Layout . 190

Changing Languages . 190

Changing Locales . 191

The Controllers . 192

The Twittertwister Controller . 192

The TwitterRequest Controller . 194

The TwitterStatus Controller . 196

The AppController . 209

Summary . 211

CHAPTER 7 Unit Testing and Web Testing . 213

Getting Programming Done . 213

Our Case Study: An App Like In/Out . 214

Creating the Application . 214

Adding Username Validation . 219

Using Cake’s Unit Testing Framework . 221

Installing SimpleTest . 222

Creating Your Own Unit Tests . 224

Using Assert Methods . 231

Testing the Entire MVC System . 232

Web Testing . 232

Creating Web Tests . 232

Web Testing Any Application . 234

Test-Driven Development . 235

Summary . 235

CONTENTS xi

CHAPTER 8 A Cake Control Panel . 237

Application Requirements . 237

The Authentication and ACL Components . 238

The Authentication Component . 238

The Access Control List Component . 238

Component Setup . 241

Control Panel Application Controllers . 242

The Control Panel Controller . 242

The Actions Controller . 244

The Groups Controller . 251

The Users Controller . 259

Testing the Control Panel . 266

Summary . 270

CHAPTER 9 Translating Stories . 271

Application Structure . 271

The Translate Behavior . 272

Stories . 273

Baking Cake . 273

Adding Stories . 277

Administering Stories . 279

Translating Stories . 279

Viewing Stories . 282

Deleting Stories . 284

Listing Stories . 284

Translation Pagination . 288

Locale and Language Selection . 292

Setting Locale by Browser . 292

Setting Locale by Language Code . 293

Setting Locale by Hand . 293

User Authentication . 293

Logging In . 294

Logging Out . 296

Baked Code . 297

Summary . 306

CONTENTSxii

CHAPTER 10 Adding Automagic Fields . 307

Cake’s Built- in Magic Fields . 307
Writing a Custom Behavior . 308
Building Custom Magic Fields . 309

Access Data Field . 310
Record Order Data Field . 311
Locking Data Field . 313

Summary . 315

CHAPTER 11 Cake Tags . 317

Content and Data Separation . 317
View Template . 319
Cake View Class Extension . 321
Cake Plugins . 323
Yahoo! Maps . 325
Summary . 328

CHAPTER 12 Dynamic Data Fields . 329

Traditional Product Searching . 329
The Dynamic Data Approach . 330

Considerations for Using the Dynamic Data Approach 331
The Product Database Design . 332
Baking for This Application . 337

Building the Product Search Feature . 338
Creating the Product Search Form . 338
Processing the Search . 347

Adding a Product . 353
Creating Table Entries . 353
Entering Product Data . 354

Summary . 358

CHAPTER 13 Captcha . 359

Captcha Implementations. 359
Captcha Types . 360
ASCII Art Captcha . 361

A Captcha Component . 362
The ASCII Art Component Class . 362
The Captcha Controller . 365

Summary . 369

INDEX . 371

xiii

About the Authors

KAI CHAN started his computing career in the late 1980s. His current
interests include programming methodology, the Semantic Web, data
visualization, and enterprise systems. Kai holds a Computer Science
bachelor’s degree and a master’s degree in Computer Graphics. He is
a cofounder of the Azzian MVC CMS framework. Together with John
Omokore and others, he runs a software and training company in London,
specializing in various large-scale projects, from SAP to e-commerce
web sites. When he has a spare moment, he likes tennis, squash, and
long-distance running.

JOHN OMOKORE is a developer, technical consultant, writer, and trainer.
John has programming experience in many technologies, including
Linux, PHP, MySQL, and Ajax. He has worked on market research data
analysis, database development, and related systems. He received his
bachelor’s degree in Mathematics and is pursuing a postgraduate degree
in software engineering at Oxford University in England. John provides
consulting and web development services to corporate organizations
around the world. He’s a cofounder of AlternativeBrains and the Azzian
MVC CMS framework and sits on the board of many companies. John
lives outside London with his wife, two children, and some animals. His

career interests include open source scripting languages, OOP programming, and the use of
SAP in large-scale industries (chiefly oil and gas). When not scripting, he enjoys playing chess
and squash, visiting the gym, and a bit of socializing.

RICHARD K. MILLER graduated from Brigham Young University with a
degree in Business Management but has been interested in technology
since he began computer programming at age 10. His experience includes
web programming, Internet marketing, and new media strategies. He is
the developer of several MediaWiki extensions and WordPress plugins,
including the widely used What Would Seth Godin Do plugin.

xiv

About the Technical Reviewer

DAVID GOLDING began developing web sites in 1999 and first started
using CakePHP on a bet he couldn’t complete a web application in
five minutes. He is the author of Beginning CakePHP: From Novice
to Professional (Apress, 2008) and has taught CakePHP even while it
was still in early stages of development. David has a degree in European
Studies from Brigham Young University and continues work in religious
studies and history as a graduate student at Claremont Graduate
University. He lives with his wife, Camille, and his son, Kenny, in
Southern California.

xv

Acknowledgments

When we first decided to write this book, we really didn’t think it would be that difficult
a task. After all, we’ve been coding and writing documentation for years and years. Now
having written the book, we can honestly say it has been one of the hardest projects we’ve
done since we wrote our first-ever Hello World program. As such, with tears streaming from
our eyes, we would wholeheartedly like to thank all the people involved. It all sounds like a
cliché, but it’s all true. Thank you to the team at Apress, the Cake Software Foundation, col-
leagues, friends, families, and neighbors. In no particular order, we would like to thank them
individually. They are Steve Anglin, Richard Dal Porto, Matt Wade, Marilyn Smith, Joohn
Choe, David Golding, Nancy Wright, Richard K. Miller, Rita Woo, Terry Wells, Dan Jackson,
Candace English, and God.

Kai Chan and John Omokore

Thank you to Kai Chan and John Omokore for allowing me to take part in this book. I’ve
enjoyed working with them and the entire Apress team. Thanks to David Golding for getting
me involved. I’m thankful for good parents, family, friends, and colleagues, and to God.

Richard K. Miller

xvii

Introduction

First off, thank you for picking up this book. Whether you are standing in a bookshop or
reading this at home, we assume you probably have a strong interest in developing web sites.
In the past few years, the number of web site frameworks has increased dramatically. This
is especially true for PHP-based frameworks. Many people have chosen to adopt CakePHP
(Cake, for short) for various reasons, such as these:

want team members who can quickly pick up a new piece of technology.

Cake forum. And there are always some good discussions happening on the Cake IRC.
(To see for yourself, simply download mIRC from , connect to
the server , and join the channel.)

When you are developing a site using Cake, you often find yourself trawling through
tutorials online to see how things are done. We’ve done that ourselves many times. However,
despite the power of the Internet, we still like to look through books. And we think you will find
this book a great help in your Cake development endeavors, in addition to all of the material
available online.

Most of the applications in this book have been written as a result of some real-world
development we have done in the past. We focus on projects that we think are relevant to the
future of web development.

Let’s take mashups, for example. We should all take an interest in this ever-expanding
area of web development. We can honestly say that any successful online web site in the future
will need to easily communicate with other applications. Application designers will need to
bear this in mind. Matters such as search engine optimization need to be built into the appli-
cation itself. Cake allows us to think in terms of the high-level architecture instead of the nuts
and bolts of a web application.

Who Should Read This Book
Practical CakePHP is a book mainly for developers. To get the most from it, you should be
comfortable with a number of web technologies and programming concepts. These include
PHP, SQL, HTML, JavaScript, object-oriented programming, and design patterns, as well as
the general principles of web development. If you are at the forefront of web development,
then this book is for you!

INTRODUCTIONxviii

If our book sounds a little too advanced for you, we recommend that you do some pre-
liminary reading. We suggest the following books:

Beginning PHP and MySQL: From Novice to Professional, Third Edition, by W. Jason
Gilmore (Apress, 2008)

Beginning CakePHP: From Novice to Professional by David Golding (Apress, 2008)

How This Book Is Organized
Each chapter in this book has been chosen so it will cover the core features in Cake, plus
some of the minor features as well. The following is a rough breakdown of what each chapter
includes.

the CakePHP framework, this is the place to start.

beginners who want to know what a Cake application looks like. If there are two chap-
ters in the book that need to be read in sequence, they are Chapters 1 and 2.

common application. We walk through implementing an online shop using the Cake
framework.

API. We guide you through creating a clean API, so any third party can access your
application using standard protocols.

Maps API is used with Cake. One of the main features of this chapter’s application
relates to the classic traveling salesman problem: a salesman needs to visit a number
of cities only once and return to where he started.

of web services in modern web application development. In true Web 2.0 and Cake
fashion, this chapter’s application mashes the Google Ajax Language API with the
Twitter API to provide automatic translation of Twitter messages.

professionals. Cake 1.2 devotes a large section to testing, and this chapter shows you
how to take advantage of Cake’s integrated unit testing features.

features. We develop a web-based front end that allows administrators to manage user
security.

INTRODUCTION xix

internationalization and localization features. We develop an application in which
news stories are available in other languages, with an administration area where
translators can translate stories from a base language to another language.

magic fields like , , and . We create three new automagic fields.

XML tags are used as a wrapper to coding logic. Using Cake, we develop our own
HTML-based tags to display two Yahoo maps.

product-filtering technique. We take a dynamic data approach to product searches.

chapter’s project, the Captcha test is housed in a Cake component so it can be used
by other applications.

How to Contact the Authors
The authors can be contacted as follows:

.

.

.

C H A P T E R 1

Cake Fundamentals

Using a framework of some sort has now become the order of the day for building large- scale
web applications. Organizations have found that using an in- house framework for web projects
enhances code reuse, scalability, quick project turnarounds, and security.

New and evolving frameworks provide rapid application development tools to promote
the adoption of particular programming languages. Many frameworks derived from PHP have
been popular with programmers in the open source community. CakePHP—Cake for short—is
currently one of the fastest-growing rapid application development frameworks. When you are
developing large web applications or creating components that you will reuse in many appli-
cations, you’ll find Cake to be a great help.

In this chapter, we’ll highlight some of the concepts, technologies, and tools that Cake
relies on, including the PHP scripting language, the Model-View- Controller design pattern,
and object- oriented programming techniques. We will also outline the default folder struc-
tures and naming conventions and introduce some Cake best practices. And, of course,
we’ll demonstrate how to write some Cake code.

This chapter will serve as a quick reference that will provide you with a solid foundation
on which to build your knowledge of the framework throughout the rest of the book.

Cake Features
Why should you use Cake when there are so many other frameworks in town? There is a num-
ber of good reasons for the popularity of Cake PHP. It has a short learning curve in comparison
to other frameworks, because Cake is easy to use and understand. Also, because there are so
many PHP programmers, Cake has a large community. New users can find many projects to
refer to and use.

Here are some features of Cake that make web application development with it easy
and fast:

other database platforms.

1

CHAPTER 1 CAKE FUNDAMENTALS2

security, sessions, and request handling.

and many others.

Note For a complete and up-to- date list of Cake features; see the official web site at
. You can also find many discussions regarding how Cake compares with other frameworks,

such as Ruby on Rails, symfony, Zend Framework, and CodeIgniter. For a comparison of Cake with the
aforementioned frameworks, check

.

The Ingredients of Cake
In this section, we’ll delve into the core concepts and technologies employed by Cake, starting
with the MVC design pattern.

The Model-View- Controller Design Pattern
Cake supports the MVC design pattern, which aims to modularize an application into three parts:

model represents the data for the application.

view represents the presentation.

controller ties the model and view together and deals with user input.

Familiarity with the MVC pattern is a plus, but this book does not assume you have any
prior knowledge of MVC. This chapter covers how Cake employs the MVC concept.

Rapid Application Development
Along with MVC, Cake took on the philosophy of

taken to design software systems by using many prebuilt skeleton structures. This provides
developers with many advantages, including easier maintenance, code reuse, more efficient

based on client feedback, decreasing the dangers of feature creep.
Additionally, you can find a lot of off-the- shelf open source code, which you can easily

plug into your Cake applications. A great place to start is .

CHAPTER 1 CAKE FUNDAMENTALS 3

PHP 4+
PHP 4+ refers to PHP version 4 and above. PHP has become one of the most important
 server- side scripting languages on the Web. It is currently a predominant language for the
development of web applications. It provides web developers the functionalities to quickly
create dynamic web applications. PHP has come a long way since PHP 3 was first introduced
more than a decade ago.

The adoption of the Cake framework assumes knowledge of PHP 4. The official PHP
manual, at , provides a complete reference on PHP.

Note A common problem faced in life with a new adventure is where to go for the right information in
order to avoid the mistakes of predecessors. If you are just starting out with PHP, you can refer to the many
online PHP forums and repositories, such as the popular PEAR library and the ever- growing

 web site.

Object-Oriented Programming
Object-oriented
which the parts of a program are organized as a collection of objects, each of which represents
an instance of a class, and whose classes are all members of a hierarchy of classes united via

 object , while a object
, and they both inherit from the class.

The Cake framework supports the three key principles of object- oriented development:
encapsulation, inheritance, and polymorphism.

For the simple magic called encapsulation, Cake’s implementation of one object is
protected, or hidden away, from another object to eliminate interference. However, there
must be some interaction with other objects in the application, or the object is useless. As
in most OOP applications, an object in the Cake framework provides an interface to another
object to enable this interaction.
called , which encapsulates and database connection arrays.

 Listing 1-1. The Cake Database Configuration Class

CHAPTER 1 CAKE FUNDAMENTALS4

By default, Cake internally interfaces with the connection database. It uses its

database connection by assigning the property in a model class. This
 database.

Cake’s support for inheritance cannot be overemphasized. It wraps a lot of database
manipulation and other utility functions in its default classes in a manner that enables an

don’t repeat the same code. We consider this act of charity as one of the greatest benefits to
developers, as it undoubtedly ensures fast application development. Therefore, you need
to spend some time sharpening your knives by reading a Cake cheat map or its online API

In a controller genealogy, user- defined controller objects inherit from the
object. The inherits from class.
A controller class can be derived from the class, as shown in

 Listing 1-2. The Application Controller Class

This default class contains the method, which can be overridden in
 class, such as a user- defined controller class. In

 class.
And lastly, Cake implements polymorphism and ensures that functions within an object

can behave differently depending on the input. It basically creates the ability to respond to the
same function call in many different ways.

knowing their internal workings. This is one of the key benefits of using Cake.

Note For more information about OOP in relation to PHP, refer to the PHP manual at
.

CHAPTER 1 CAKE FUNDAMENTALS 5

Dissecting Cake
Before you start baking a Cake application, you will need to download the Cake framework
from
scripting language, so you need to have PHP up and running first. If you will be using informa-

the

Cake’s Directory Structure
When you unpack Cake, you will find the following main folder structures:

: Contains files and folders for your application. The folder is your development
folder, where your application- specific folders and files reside.

: Contains core Cake libraries. The folder contains the core libraries for

doing.

: Contains Cake document files such as the read me, copyright, and change log

: Contains third- party code. The folder can contain third- party

-
sible for you to have many different applications sharing a single Cake installation. With this

 Table 1-1. The Cake Default Folder Structure

Directory Description

The parent folder for your application

Contains configuration files for global structures such
database connections, security, and access control

Contains your user- defined component files

Allows you to deploy Cake with as the

Contains locale files that deal with internationalization

Contains the model files

Contains the plugin files

Contains the test folders and files

Contains third- party libraries

Continued

CHAPTER 1 CAKE FUNDAMENTALS6

 Table 1-1. Continued

Directory Description

Contains view folders and files for presentation

Elements, which are bits of views, go here

Custom error pages

Helpers

Application layout files

The for the application

Contains the application style sheet files

Contains any files

Contains graphics

Contains Cake core libraries

Contains third- party libraries for all applications

The Cake Naming Conventions
frameworks, Cake employs naming conventions instead of configuration files

for many of its workings, such as for its MVC structure. It is good practice to understand and

a proficient Cake baker.
Cake has naming conventions for the four core objects: controllers, models, views, and

tables. It also provides global constants and functions.

Controller Naming
Controller class names must be plural and must have appended, as in

. If the object has more than one word, the second word must also
begin with an uppercase letter, as in
to separate words.

File names must be plural, with appended and the
. If the object has more than one word, the subsequent words must

be delimited with underscores, as in .

Model Naming
Model class names are singular, as in . If the object has more than one word, the

.
File names are singular, with the . If the object has more

than one word, the subsequent words are delimited with underscores, as in .

CHAPTER 1 CAKE FUNDAMENTALS 7

View Naming
View file
a method , the path is .

Table Naming
names should be plural, with words delimited with underscores, as in

 property to your

where is the name of a table in a database.

Global Constants
The global constants are categorized into three major parts:

Core defines: For defines the Cake application
session value.

Web root configurable paths: For defines the web root folder

Paths: For

 page as an
array from the folder:

Global Functions
The global
function code snippet performs a simple search and replace operation to add style to .

The controller should contain most of the business logic, like this:

Cake, the business logic is often separated into components or vendors, as discussed later in
this chapter.

CHAPTER 1 CAKE FUNDAMENTALS8

Note It is advisable to familiarize yourself with the global constants and functions to avoid reinventing the
wheel. To see a complete list of Cake’s various classes and functions, visit .

Models
The model is the first of the MVC concepts. Communicating with data stores such as tables,

web application, especially when it involves a large number of users. The actions of manipu-
lating data stored in a data store are best done within a model. The model should be involved

placed in the model.

Model Creation
Models are declared using the keyword , followed by the name you wish to give to the

-
ods specific to the implementation of that model as determined by the business requirement.

A user- defined model class should follow the Cake naming convention and predefined
 class. The class

model class in class properties and methods.

 Listing 1-3. A Sample Model Class

Though the
Cake’s properties and methods. We will bring some of these useful properties and methods
into the limelight throughout this book.

The class is originally defined in the directory. To create your own, place
it in . This allows methods to be shared among the models. The
class, which .
Model default methods such as the method are defined in the class stored in

 class until you become

CHAPTER 1 CAKE FUNDAMENTALS 9

Note Refer to the cheat sheet in at before writing a query
method in your class definition. Alternatively, check the Cake API at . This
effort will save you from rewriting existing functionalities and enhance rapid application development. For
example, Cake provides a query to retrieve some or all information from a database table.

records from one or more database tables.

tables.

records.

First, we will create a table named
shown in

 Listing 1-4. The Table Schema for departments

create some records, by using the default
this method comes at the price of ensuring that the format of the data to be passed to it as

sample data structure in

CHAPTER 1 CAKE FUNDAMENTALS10

 Listing 1-5. Cake’s Expected $this- >data Format

database table. This structure, stored in a PHP variable such as or ta, will save
its values to matching fields in the database table. To commit the data in this
structure into this table, the method is at your service, but the format of
argument is crucial to the success of the operation.

 model
class to use this preformatted data and commit the two additional records into the

 table. The model class is shown in

 Listing 1-6. The Department Model Class

CHAPTER 1 CAKE FUNDAMENTALS 11

properties, starting with the property assigned the value . This property is
 property specifies

the name of the table required for data access or manipulation in the model. Although it isn’t

model name is , Cake will use the table for the model by default. It is

naming convention is not followed.
The model function call should be done in a controller class. We’ll discuss

the controller in more detail later in this chapter. In our imaginary controller class, to invoke
the

This method accepts as a parameter the preformatted array information called , as
 statement, if the passed to Cake’s model func-

tion is committed to the database table, a Boolean value is returned; if not,

 model function.
form created using the object in a view, Cake automati-

cally structures the form fields data submitted to a controller in a format that is similar to that

-
ingful, most data- access operations are filtered using some criteria. We’re going to add
a method to the

 Listing 1-7. Retrieving Records Using $region=‘US’ Criteria with the find() Method

 method that accepts as its parameter.
This method employs the service of the Cake’s method to retrieve some department
information based on

CHAPTER 1 CAKE FUNDAMENTALS12

 Listing 1-8. Structure of the Return Department Data Where Region Equals US

Note The formatted array data in Listing 1-8 might appear completely different when there are associa-
tions between the model class and other model classes that are connected to database tables.
In case of associations, the array will include array data from tables of associated models. You will come
across preformatted associated data in Chapter 3.

CHAPTER 1 CAKE FUNDAMENTALS 13

The function is one of the most useful Cake functions for data access. It has the
following format:

 Table 1-2. The find() Function Parameters

Name Description Default Value

Can be set to , , , , or to
determine what type of data- access operation to carry out

An array of conditions specified as key and value

An array of fields of key and value to retrieve

clause will be used if no

To determine the page number

To limit the page result

Whether to include the associated model

 method or
the method, which returns a list of fields from the database and sets the current model

to manipulate data specific to the table a model object uses.

 table as the one shown

 method to access data.

 Listing 1-9. Retrieving Records with the query() Method

One advantage of using the
statement, from a legacy system, into this method without going through the trouble of divid-
ing the query parameters into parts, as you would need to do to use the method.

Data Validation
is an essential part of ensuring integrity and accuracy of data submitted by the

-
tion rules in a model, and Cake automatically applies the rules when a web form is connected

CHAPTER 1 CAKE FUNDAMENTALS14

First, let’s add a simple validation rule to our model using the array,

are the names of the form fields to validate, and the corresponding values represent the rules
attached to the form fields. We’ll make use of this rule later, in the “Views” section.

 Listing 1-10. The Validation Rule for the Department Model

A field can have multiple validation rules. The
a rule for the field in our model. If a user does not submit a valid
field, the model will return an error to the controller and quit committing the data to the

 database table. The key deals with the error messages during validation.
To display the error message on a form, use the form helper’s function:

This will display the error message “Enter a region” if a user enters a nonalphanumeric
value in the input field.

validation rules to check the validity of form inputs and ensure the integrity of information

 Table 1-3. Some of Cake’s Built- in Validation Rules

Rule Description Example

Checks for a valid credit card number

Checks for a valid date

Checks for a valid e-mail address

Checks for a valid IP address

Checks for a valid phone number

For a complete list of the validation constants in your Cake build, see the predefined rules
in the file.

we define a simple custom rule to check if a value is a string.

CHAPTER 1 CAKE FUNDAMENTALS 15

 Listing 1-11. A Custom Rule Called String

Before you apply a custom rule, such as the
 file, and then simply add the rule to your model array:

This will ensure that the field is a valid string. In upcoming chapters, you will come
across more validation rules.

The model object is robust and provides a lot of functionality for database manipulation.
However, part of the data retrieved by a model is required for web surfers’ consumption. When

look at in the following section.

Views
Now that form to ask users to enter depart-
ment information. The task of building a web form is done in a view.

the users. However, views can be anything, especially if Cake is used to output other formats
 component and

view for the method in the is stored as
.

 method in a controller.

Note Views should be involved only with displaying output. For example, this is where you will see HTML
tags and XML tags. Business logic, such as , should
not be in the view. However, the following is OK in a view:

 database table. We are going
to use another utility provided by Cake to build forms: the object.
add view.

CHAPTER 1 CAKE FUNDAMENTALS16

 Listing 1-12. The Add View for the departments Table

The view code created using the object is stored in .

To display the add view to a user, we need a controller object with a function called ,
 database table.

shows the action method of the .

 Listing 1-13. The add() Action in the Departments Controller

Now that we’ve built a web form using the
handle the action, let’s demonstrate how data is passed to a view. We’ll start by creating
a show action in our controller class. The action method is shown in

CHAPTER 1 CAKE FUNDAMENTALS 17

 Listing 1-14. The show() action in the Departments Controller

 method accepts the data as a parameter, and then
retrieves departmental data and uses the method to prepare the data for the view in

 action in the

.

 Listing 1-15. A View for the Action show($region) of DepartmentsController

the header section of the web page presented to the user.

Tip If you have a number of data items to display in a view, such as
, using

 will enable you to use only one function in your controller class to
pass all the information to your view. You can then access the individual variable in your view; for example,

.

An essential part of any framework is the part that handles requests. In the MVC structure,
this is handled by the controller.

CHAPTER 1 CAKE FUNDAMENTALS18

Controllers
As you’ve seen, a controller is a class with methods called actions. These actions or methods

a user wants to know the number of departments in a particular region, the user needs to
access the method of

 is the controller, is the action, and is
a parameter.

By convention, a Cake request should be structured in the following manner:

Note The method is the default access point to a controller when a method is not explicitly
specified in a user’s request. For example, you can load the method with codes that will invoke the
welcome page of your application. However, do not forget to create a view, or you will get a warning from
Cake stating that you should create a view for the action.

 class,
 class, which is a standard Cake library. The

 class is defined in , and it should contain methods
that are shared between two or more controllers.

These controllers can include any number of actions. The serves as
a global class that can contain properties and methods common to all the user- defined con-

address of a user, and then use the value of this address to determine the flow of the applica-
 in

our controller class to reference the method defined in the class stored in
default page title for an application,

, using the statement
 within our controller gives us access to the string

 assigned to the property in the class.

CHAPTER 1 CAKE FUNDAMENTALS 19

The property is an important property within the controller. It works similarly to the

and you want to use the model in a controller, you need to include it in the array. For
 and -

ment in your controller:

Cake Components
Components are classes defined to carry out specific application tasks to support the con-
troller. Cake comes with many built- in components, such as

, , and .
Components can also be user- defined. In fact, in large web applications, you will most
likely need to build some of your own components to be used by several controllers. All the
components that you develop should be stored in the folder .
Components follow the same Cake conventions as controllers.

of Cake. If you find that your component is quite useful and you possess the free open source
spirit, you can and should post it on the Cake web site, where there is a public repository of
components.

To demonstrate, we’ll dive straight in and create our own simple component—a utility to
convert an array to an object.

 Listing 1-16. A Component to Convert an Array to an Object

CHAPTER 1 CAKE FUNDAMENTALS20

The
stored in :

, is used to instantiate the controller object. This
enables all other functions within the component to access information contained
in the parent controller. It’s basically a callback method used to bring the controller
object into the component.

, is our user- defined function. It does the work of
-

ponent whenever you want to convert an array to an object.

such as a database table name, into components.
controllers or other components. To use a component—

whether it is a built- in one or one you have created—you need to first declare the component
within the array in a user- defined controller, another component, or in the

statement:

 component and our
component in the class.

 Listing 1-17. Using Components in DepartmentsController

 database
table from an array to an object. First, we use the array to reference the
model. We then use the array to reference the component, which is
a built- in Cake component, and the component, which is our user- defined

 function that contains a declaration of an array vari-
able called . We retrieve the department data using the default function, store
the result in the array, and then pass the array to the method of the
component. Finally, we use the Cake global function to print the resulting object.

CHAPTER 1 CAKE FUNDAMENTALS 21

Helpers
Cake helpers are classes that help to decrease development time by providing shortcuts to
generate presentational elements. Earlier, we used the Cake form helper, which helps with
form element creation and data handling. Helper files should be stored in the

documentation of
the Cake helpers, check the Cake API at .

 Table 1-4. Some of Cake’s Built- in Helpers

Helper Description

Helps

the
,

, , , , , , , , , ,
, and so on.

Form Helps object together with its func-

 function. To start the form tag, use the function.
Other form input element functions include , , , ,

, , and so on. There are many options that can be used in form element
functions, such as

Helps

.

Helps

element, use

Paginator Helps to format data into multiple pages or to sort data based on some parameters.

 function.

Provides
messages, use

Provides
 function.

Time Helps
today, use the function.

Helps

To reference the common helpers that you need in your application, you can specify the
following statement in your class:

CHAPTER 1 CAKE FUNDAMENTALS22

This will ensure that the function in a layout works properly.

a simple helper called / . This helper will print a variable and
insert a new break after printing.

 Listing 1-18. A Sample Custom Break Helper

We can use this helper in our controller object to insert a break whenever we
use the controller’s

 Listing 1-19. Using the Sample Break Helper

 function that accepts a parameter. This
function contains the statement that invokes the break helper’s method, and
consequently returns the result with a newline after it.

Plugins
With Cake, you can create a complete MVC package called a plugin, which you can integrate
into other Cake applications. A plugin is a mini- application with its own controllers, mod-

 third- party plugins, or better still, build your own.

CHAPTER 1 CAKE FUNDAMENTALS 23

Here, we will create a basic feedback plugin that will provide mailing facility. It will have
the following directory structure:

where

 contains plugin controllers.

 contains plugin models.

 contains plugin views.

 is the plugin’s , named after the plugin.

 is the plugin’s , named after the plugin.

Note You must create both an and an for a plugin to work properly.
If you forget to define the class and the , Cake will throw
a “Missing Controller” error.

The feedback plugin’s is stored in
, and its corresponding class is stored in

as shown in

 Listing 1-20. Feedback App Classes for the Feedback Plugin

CHAPTER 1 CAKE FUNDAMENTALS24

Now, let’s create the for our feedback plugin. The code in
.

 Listing 1-21. The FeedbackSendController to Invoke the send() Method

 class in the

 Listing 1-22. The FeedbackSendModel That Uses the PHP mail() Function to Send a Message

CHAPTER 1 CAKE FUNDAMENTALS 25

 Listing 1-23. The Feedback Email View

Now that we have installed the feedback plugin, we can use it. To access the plugin within
a Cake application, you can add name of the plugin, then the action, then the parameter to the

access it via with a controller named
 can be accessed at if there is no plugin

called in your folder.
Plugins will use the layouts from the

to override layouts in Chapter 3.

 function:

Vendors
Many modern frameworks adopt the

Cake has provided a folder. This is where we store third- party applications that don’t

Mailer mailing application. This comes in handy, considering the number of utility scripts and
programs available in various PHP repositories such as .

scripts is as simple as using the following function:

is the startup file of the third- party application.

The function can be used in controllers, models, and views of Cake appli-
cations. However, it is important that the call is made before any class definition. The
folder provides a standard way to include third- party applications.

CHAPTER 1 CAKE FUNDAMENTALS26

serve as our third- party script that we’ll use in our later. This script should
be stored in the folder.

 Listing 1-24. A Script to Display the Content of a File on the Screen

 file and send it to the screen
for a user’s consumption. We can import this script into our as shown in

 Listing 1-25. The ScreenController to Use a Script as a Vendor

 function to load the content of the
file, and then we create an instance of the class using the file as its
parameter and store it in . Finally, we send the content of the file to the screen using

CHAPTER 1 CAKE FUNDAMENTALS 27

Summary

the Cake MVC structure works, with business logic stored in controllers and components, data
access in models, and presentational markup in the view. Additionally, we showed how Cake
reduces development time with helpers, plugins, and vendors.

After reading this chapter, you should have an overview of how Cake structures a web
-

one interested in PHP programming and with a need to write rapid web applications. But do
note, sometimes it may be better to write basic methods like “Hello World” in a simple PHP
script, rather than using Cake, so that you don’t end up killing an ant with a sledge hammer.

In the following chapters, we’ll present full- fledged Cake applications, beginning with
a simple blogging application.

C H A P T E R 2

Blogging

The Web has revolutionized the way we communicate with friends and strangers. We now
freely exchange media content, such as textual information, graphics, audio, and video. One
of the ways to exchange such information is known as blogging. Blogging uses HTML forms for
tasks such as submitting posts, uploading content, and so on.

In the 1990s, blogging started like a kiddie joke, with individuals posting their personal
stuff online. Since then, there has been an explosion of blogging web sites. Nowadays, movie
stars, politicians, and corporate organizations such as Microsoft host their own blogging sites
to communicate their ideas.

This chapter describes how to build your own blogging application. But why would you
bother to develop such an application when you can use one of the many free or low- cost
solutions, such as Blogger, Movable Type, Textpattern, WordPress, TypePad, or LiveJournal
(to name a few)?

The ready- made blogger solutions have common interface design features. Developing
your own blogging application allows you to customize the site, giving it a unique look, exclud-
ing unnecessary features, and adding features that are not supplied with the prebuilt sites.

In this chapter, we’ll build our own blog application, which will enable us to list, add, edit,
delete, publish, and unpublish posts. We will use Cake’s form helper to automate some tasks,
such as to generate form elements, validate user- submitted data, and repopulate invalid form
elements with submitted data. We will insert the post data into an XML file to provide RSS
service to those with an RSS reader (or aggregator).

To create this blog application, you need a web server that supports PHP and a database
server to store some information. If you are new to the concepts and the workings of Cake,
read Chapter 1 before continuing with this chapter.

Creating the Database
Building web sites that allow user interactivity sometimes requires working with persistent
data, which can be stored in relational databases or local file systems. This requirement
applies to building our blog application, as we need to manage the post records. As mentioned
in the previous chapter, we’ll use the MySQL database server for the examples in this book.
We’ll use Cake’s objects and their methods that allow us to store and retrieve data from a data-
base. For information about how to configure Cake’s database connection parameters and
connect to a database, see Chapter 1.

29

CHAPTER 2 BLOGGING30

Our database will contain a single table named . This table will store records of
posts. The records include fields for an ID to provide a unique reference for each post, the title
of a post, the post’s content, the dates that a post was created and modified, and whether or
not a post should be published (displayed to the public). Listing 2-1 shows the SQL to create
the table.

 Listing 2-1. The SQL Statement to Create the posts Table

The SQL schema shown in Listing 2-1 will handle basic post information. If you like, you
can add more fields, such as a field to store summaries of posts.

Now, let’s insert some sample post information into our table, using the following
SQL statements:

If you added other fields, be sure to insert their corresponding values with SQL
statements.

Tip Cake will automatically populate the and fields in a table with the current date
information (in our example, the dates when saving and updating posts). In Cake, these fields are called
automagic model fields.

CHAPTER 2 BLOGGING 31

Reviewing the Application Structure
Before we start to build the blog application, let’s take a brief look at the folder structure and
files that will form part of the application. Table 2-1 assumes that other default Cake folders
and files also exist in the same environment.

 Table 2-1. The Blog Application Structure

Directory Description

The parent folder for the blog application

Amended file to include our blog database
parameters

 file, which contains all the actions,
such as add post

 file to deal with our blog application data

, , , and files

We’ll create these files and explain their contents in upcoming sections. For details on
Cake’s complete file system structure, refer to Chapter 1.

Creating the Post Model
The object manages the post data. By using Cake’s naming convention, we’ll be able to
take advantage of the functionality inherently provided by Cake. We’ll use that functionality to
interact with the database table, and access and manipulate the post records. The
model class, shown in Listing 2-2, is stored in .

 Listing 2-2. The Post Object That Handles the Post Data (app/models/post.php)

CHAPTER 2 BLOGGING32

The model class consists of the property, used to handle PHP 4 backward-
compatibility, and the array property, which contains the validation rules.

In the array, each element’s key corresponds to the name of the input element
to be validated (for example,), and its value defines the rules to apply against the input
before the post data is saved to the table—when the post form is submitted. Listing 2-2
shows the validation rules. We check that the and the fields of the form are not
empty when the form is submitted. We also check whether the values submitted are alpha-
numeric. If not, the corresponding error messages set in the validation array against the

 keys will be displayed.
The object, which we will create next, will use the model object to

access information from the table, ensure the integrity of the submitted post informa-
tion, and then commit the post into the database table.

Creating the Posts Controller
Now that the model class is created, we need a object to manage all the
post actions. These actions include listing all the posts and providing the user interfaces for
adding and editing post data. The controller calls the model object created in Listing 2-2
to handle the post data as required.

The class will contain the methods listed in Table 2-2.

 Table 2-2. The PostsController Class Actions

Method Description

 Lists all the posts from the table and handles the RSS feed for posts

 Invokes the add post page and saves validated posts to the table

 Invokes the edit post page

 Disables a published post

 Enables a disabled post so it’s published

 Removes a post record from the table

Listing the Posts
The class, shown in Listing 2-3, extends the class. This file is
stored in .

CHAPTER 2 BLOGGING 33

 Listing 2-3. The PostsController to Define Post Actions (app/controllers/posts_controller.php)

First, we add the method, which displays the list of posts. By default, this method
is called if no other action is called explicitly during a URL request. Along with showing all the
published posts, the index page contains links that will enable users to perform operations
such as edit, publish, unpublish, and delete a post record.

In Listing 2-3, the method contains two simple statements. The first uses the
model object with its default method to pull all the posts from the database table
and then store the results in an array called . The second prepares and sets the
records so that the file, shown in Listing 2-4, can display the list of all
the posts from the variable.

 Listing 2-4. The View for the Post List (views/posts/index.ctp)

CHAPTER 2 BLOGGING34

CHAPTER 2 BLOGGING 35

The file in Listing 2-4 starts with the headings of the web page that displays
the posts list. We then insert a section of PHP code immediately after these headings. If the

 variable set by the object contains some post records, we first display
the headings for the individual elements in the variable. Next, using a loop statement
to loop through the variable, we display a list item for each post. Finally, if the
variable is empty, we simply display the message . Figure 2-1 shows an example
of a post listing.

 Figure 2-1. Viewing the post listings page

This list provides an interface to directly manage individual posts. As shown on the right
side of Figure 2-1, the page has links to trigger the publish, edit, and delete actions.

Adding a Post
The next method we need to implement in the class is the method, as
shown in Listing 2-5. This method, as the name implies, handles adding post data.

CHAPTER 2 BLOGGING36

 Listing 2-5. The add Method for Adding Post Data

In the method, the first two statements set the heading and slogan for the add view
page. This is necessary because we are going to use a single element view to display the forms
to add and edit posts. Elements in Cake enable you to reuse views.

Next, we check if the add post form has been submitted. If the form has not been sub-
mitted, the add view is displayed. If the submitted data ta) is not empty, using
the method of the model object, the application will attempt to create a new post
record. The method automatically uses the validation rules defined in Listing 2-2 to
check the integrity of the submitted post. If the post does not pass the validation rules, the
error message is set, using the method of the object. Otherwise, the post is
saved to the database table, and the success message is set for display in the view.

Next, we’ll create the add view and store the codes in file. The con-
tent of the file is simply the following code snippet:

The method accepts the name of a file stored in the
folder (in this case), without the file extension (without). It simply transfers
the content of into the file. The resulting source code for the add
view is shown in Listing 2-6.

CHAPTER 2 BLOGGING 37

 Listing 2-6. The Add View That Provides an Interface to Add a Post (app/views/posts/add.ctp)

In Listing 2-6, we start by displaying the heading of the interface for adding a post. We
then insert a PHP opening code tag to house the creation of the form using Cake’s form helper
functionality. First, the method defines the start tag for our form. Its
string argument represents the action that will be invoked, such as the URL to which the form
data will be submitted. Note that if the method attribute is not specified, the method is
the default request method.

Next, we start to add the required form input elements using the method,
which deals with the error handling of the form. Its argument, , is a string that rep-
resents the name of the input element, where is the model name, followed by a dot (.),
and holds the value of the post’s title.

Next is the method to generate the text input element called , whose
first argument is in the same argument format as the error input element. The second argu-
ment of the text input element is an associative array of HTML text input element attributes.

Following that is the code that generates the input element called using
an argument format similar to the input element discussed previously.

Finally, after we’ve added the form elements, we can add the form closing tag using the
form helper method (). It also accepts an associative array of HTML submit input
element attributes.

 Figure 2-2 shows an example of an add post form when a user tries to submit a blank
form. The error messages are displayed.

CHAPTER 2 BLOGGING38

 Figure 2-2. Error messages appear when you try to submit a blank add post form.

Updating a Post
Sometimes, we are not completely satisfied with our posts and would like to make some
amendments. We will create the action of the to handle this task. It uses
a supplied post ID (in our case) to retrieve the details of a post from the database
table and repopulates the edit form with the information. This method code snippet is
shown in Listing 2-7.

CHAPTER 2 BLOGGING 39

 Listing 2-7. The edit Action That Handles a Post Edit Request

In Listing 2-7, we first set the heading and slogan for the edit view page. The next step we
take is to check whether and (form data) are empty. If so, an error message is
stored in our object, and the request is redirected to the blog home page. If the sub-
mitted form data is not empty, Cake will try to commit the edited post information to the
database table and then flash appropriate messages upon success or failure. Finally, if only the
submitted data is empty, a post’s information is pulled with the model method using
the supplied as the criterion.

Next, we’ll create the edit view and store the codes in the file. The
content of this file is exactly the same as that of the file:

Here, we’ve reused the element file again to produce the source code for
the edit post view, taking advantage of the elements resource of Cake. In principle, the views
for adding and editing posts are the same, except for their page headings.

 Figure 2-3 shows an example of the edit view for post ID 1.

CHAPTER 2 BLOGGING40

 Figure 2-3. The view to update post ID 1

We’ve built our post forms using one of the key features of Cake: form helpers. These
helpers have automated the tasks of generating our form elements, validating the form input,
and repopulating the submitted data.

Unpublishing a Post
When you don’t want a post record to be displayed on the home page, you can disable the
record. Given a post , the method disables the appropriate post, as shown in
 Listing 2-8.

 Listing 2-8. The disable Action to Disable a Published Post

CHAPTER 2 BLOGGING 41

In Listing 2-8, using the request , a post record is retrieved from the database
table and stored in the array variable. If the value is null or the variable is
empty, we use the object to set the appropriate message and redirect to the blog home
page. If there is a valid and the is not empty, we set the post published element to
and update the database table. Finally, the object sets the appropriate message,
and then we redirect to the blog home page.

Publishing a Post
The method does the opposite of the method. It uses the supplied post ID ()
to determine which post record to enable, as shown in Listing 2-9.

 Listing 2-9. The enable Action to Enable (Publish) a Disabled Post

In Listing 2-9, the method contains the same code sections as that of the
method in Listing 2-8. The difference is in the method, the statement

 is set to .

CHAPTER 2 BLOGGING42

Deleting a Post
We can do some housekeeping by removing posts that are no longer needed. We’ll use the

 method to remove posts from the database table. Listing 2-10 shows the code for
the method.

 Listing 2-10. The delete Action to Remove Posts

When the action is invoked by requesting to delete a post, the dialog box shown in
 Figure 2-4 appears. Clicking the OK button will permanently remove the selected post record
from the database table.

 Figure 2-4. The delete confirmation dialog box

CHAPTER 2 BLOGGING 43

Creating an RSS Feed
Since we’ve decided to share our posts with the rest of the world, we can reduce the stress on
our blog database by creating an RSS feed—a static XML file that will be updated whenever the
posts change.

RSS is an abbreviation for Really Simple Syndication. It is an XML web content syndica-
tion format that can be read by using news reader software (or through some online sites and
scripts). For the blog application, using an RSS feed means that people can get updated infor-
mation about your blog without needing to visit your blogging web site. Scripts such as robots
can fetch your RSS feed so that your users can be kept informed of changes to your posts.

Essentially, what we’ll create is an XML file of the information stored in the database
table. Remember that our code will be writing to a static file stored somewhere on your web
site, so it is important to ensure read- write privileges for the document.

You can generate an RSS feed in several ways, such as with the Document Object Model
(DOM), XMLWriter, SimpleXML, and so on. However, Cake provides a helper to handle
RSS feeds, so you don’t need to worry about how to micromanage them. The RSS helper
creates standards- compliant RSS feeds. You invoke its functionality with

.
For the RSS feed for our blog application, we first need to include the following in our

 file:

This informs the router to parse out file extensions from the URL. For example,
 would yield a file extension of . It is used by com-

ponents to automatically switch to alternative layouts and templates in order to load the
 with content.

Caution Don’t forget to add to your
file and also ensure that you add to your ’s variable. Things
will not go well if the two instructions are not added. However, if you already have ,
just add the string argument. accepts many arguments.

Now we need to perform the following tasks:

RSS feed.

The first task requires that we tweak the method in the class by
adding extra lines of code to it. In this case, we will add the channel array data and then fetch
the ten most recent post records for public consumption. The content of our new
method is shown in Listing 2-11.

CHAPTER 2 BLOGGING44

 Listing 2-11. The New index Method of the PostsController Modified for RSS

In Listing 2-11, the channel and posts information are set for the views and layouts, which
we’ll create next.

The layout file, , will contain the following code snippet:

Since Cake allows views to pass variables to the layout, we’ve set the variable in the
layout, instead of following the normal convention of setting variables in a controller.

Next, we will create the RSS view in . This file will contain
a function called , which accepts the (for example, post data) as an argu-
ment, and as its name implies, returns a transformed array version of the post data. Listing 2-12
shows the content of the RSS view file.

 Listing 2-12. The Content of the RSS View (app/views/posts/rss/index.ctp)

CHAPTER 2 BLOGGING 45

In Listing 2-12, the helper method converts our post data into an XML format
and uses the method to pass the converted XML to the RSS layout. Here, the layout is going
to do the work of rendering the output when you make the URL request . Your
request should display an XML version of the posts as fetched in the
action. When you choose to view the posts, you can select whether to save a copy of the RSS
feed file or display it on the screen. Figure 2-5 shows an example of how this looks in Firefox.

 Figure 2-5. Fetching posts from an RSS feed

CHAPTER 2 BLOGGING46

Summary
This chapter described how to build a blogging application using Cake. We first created
a database table and populated it with some sample posts. We took advantage of Cake’s
components by creating our posts controller and model classes to perform the necessary tasks:
list, add, edit, delete, save, enable, disable, and access data. The corresponding action views
were created using the object methods. Finally, we created an RSS feed, with the help of
the RSS helper, to present some of our posts to the public.

The modularity of the blogging application allows it to be extended by adding more
actions to the controller class. For example, you could add an action to upload images.

C H A P T E R 3

E-Commerce

The buzzword e- commerce, short for electronic commerce, simply refers to the processing
and recording of online transactions. To boast a competitive edge and increase profit, busi-
nesses and individuals that peddle services or products must not just have a web presence
but also endeavor to sell their merchandise online. There are numerous e- commerce applica-
tions based on the PHP scripting language, such as the free, open source osCommerce and
Magento. Here, we’re going to implement an online shop using the Cake framework.

First, we’ll design a skeletal look and feel for our shop, and then we’ll create our shop
database in MySQL. Next, we’ll populate the database with some category and product infor-
mation. We’ll then use Cake features to allow users to select categories and products, add
selected products to their shopping cart, click to check out, and, finally, make payments using
the popular Google Checkout or PayPal payment system.

This chapter assumes that you’re familiar with PHP, MySQL, and Cake. It also assumes
that you have set up a development environment that supports these technologies.

The Online Shop Layout
A typical online shop layout is divided into five sections (elements). We’ll follow that design
and use the Cake view elements listed in Table 3-1. We’ll use Cake’s features to help us develop
these elements of our shop application before stitching them together into the standard layout.

 Table 3-1. View Elements of Online Shop Layout

Division Name Description

[Header] Contains header information, such as the logo and banner

[Left Column] Displays an expandable category level, sublevel, and product lists

[Center Column] The main content area of the web site; what it contains depends on the visitor
action, so it might show a product description, best- selling products, and so on

[Right Column] Contains the mini- basket or other elements

[Footer] Displays summary information about a shop, such as the copyright, contact
information, shortcut links, and so on

47

CHAPTER 3 E-COMMERCE48

Tip To include the left navigation element stored in in a view, use the
code);.

Two Site Layouts
In this example, we’re going to use two different layouts:

 Figure 3-1. This first layout is stored in the file as the
application default layout.

columns into one column. This layout stored in .
We’ll use this layout to display the action of the orders controller.

 Figure 3-1. The default layout

Note One of the aims of this book is to show you how to properly organize elements (code snippets) of an
application within the Cake’s structure in order to enjoy the benefit of Cake’s code reuse and ease of mainte-
nance. However, in this chapter, we will not discuss how our online shop folders and files are organized, as
this organization is identical to the structure explained in Chapter 1.

Layout of the Main Content
When a user requests a web page, the file takes care of the overall look and feel
of the web site, which is shown in Figure 3-1. If you want to adapt the main layout of the shop
application, just edit the file or create another layout, such as a file, to suit your
needs. However, do not forget to include the ; statement in the method
of your controller object that requires this new look.

CHAPTER 3 E-COMMERCE 49

The following code displays only the main content area of the layout:

The method is used to include the navigation view stored in the
 file. This file contains the view logic that generates the category

tree menu that is displayed in the left column of the layout. This navigation section of the
page is expected to display the product categories at all times. The vari-
able includes the view rendered in response to a user action. The
method displays the mini- basket content in the right column of the layout.

The User Journey
Like any successful dynamic web site, an online shop requires planning and a data store of
some sort before jumping into the implementation of the application. These tasks include
database design, program flow design, resource planning, and so on. Since we are fortunate
to have an existing database schema to use for this example, we will skip the first step of
categorizing and normalizing our shop data and move on to explaining the program flow, or
user journey.

The online shopping process starts with a customer surfing the Internet and ends with the
customer parting with some cash, which ends up in some businessman’s online account.

This basic flow for our online shop example looks like this:

 1. A user visits our shop.

 2. The user browses the categories and products.

 3. The user views the product details.

 4. The user adds products to the shopping basket.

 5. The user clicks to check out and pay.

 6. The customer receives an e-mail confirmation notice.

In our example, users do not need to register. They browse categories and products, pay
for selected items, and leave the shop.

During the user journey, some vital transaction information is collected and stored in
database tables. Needless to say, the tracked data is used for transaction completion and for
making other business decisions.

CHAPTER 3 E-COMMERCE50

Setting Up the Shop Database
First, we need to connect our application to a MySQL database server. Our configuration,
stored in the file, includes the following array definition:

Do not forget to replace the current database access information with your local user-
name and password. If you need more information about how to configure a database
connection, see Chapter 1.

We'll create three database tables for our online shop application:

 table stores product categories.

 table stores the product descriptions.

 table stores selected product items.

Note We’ve said that we are not going to collect personal user information in our online shop applica-
tion. So how do we identify a user? We will create and use a session ID for every unique user request. For
information about implementing authentication, see Chapter 8. Also, some common online shop tables, such
as the and tables, are left out of this example. Any table schema not presented in this
section is skipped for the sample implementation of this application.

As indicated in Figure 3-1, the left column of our shop layout will present a navigation
menu tree that is generated from the product categories data. The table and data
are created by the SQL statements shown in Listing 3-1.

 Listing 3-1. The categories Table Schema

CHAPTER 3 E-COMMERCE 51

Next, our categories need to relate to some product information, which we’ll put in
a table. Listing 3-2 presents the SQL statements to create this table and populate it
with some sample data.

 Listing 3-2. The products Table Schema

When a user selects a category, the products linked to this category are displayed. For
example, when you select the category called Jazz, you’ll see the Dizzy 1990s item and the
Dizzy and Stan item listed as products under this category.

Next on the user journey, when a user has selected the type of music she wants to buy and
she is happy with the vibes, she adds her selections to a shopping basket. The user- selected
items are stored in the database table. This table and some sample data are created
using the SQL in Listing 3-3.

CHAPTER 3 E-COMMERCE52

 Listing 3-3. The carts Table Schema

Tip Some online shops store configuration information in a table. Alternatively, this information
can be stored using Cake’s configuration method—for example,

. To access the shop name, use Cake’s configuration method, as in
. As you can imagine, a shop administrator would find it more difficult to

update these configuration parameters than to work with information stored in a database table. Modifying
the parameters would require physical file system access and consequently some manipulation fuss.

Interacting with the Online Shop Database
Now that we’re connected to the database, created the required tables, and populated them
with some sample data, our application needs the information stored in the database in order
to provide the initial content of the web pages. For example, the site navigation requires the
category data stored in the table to do its bit. So who handles the tasks of accessing
and manipulating information stored in the database? You’ll be happy to learn that Cake pro-
vides default model functions that serve as shortcuts to database operations. These prebuilt
functions allow for easy and fast application development. Now let’s start digging out some
information.

First, we’ll create our custom objects to handle the display of an expandable category
level, sublevel, and product lists.

CHAPTER 3 E-COMMERCE 53

The Category Model
Let’s create the model class to interact with the table data created in
 Listing 3-1. The beginning of this model is shown in Listing 3-4.

 Listing 3-4. The Beginning of the Category Model (app/models/category.php)

In this model, we have two important properties:

 property will serve as a reference to this model object within the controllers
of this application when needed.

 simply defines the relationship between the
 table and the table. In this case, we define that a

record can relate to many records. In our application, the category is
associated with the products and (see Listings 3-1 and
3-2). This property is required to ensure an association between the and

 model objects.

Now that the model class is attached to our table data and it has
established a relationship with the table data, we can create some custom methods
in the model class to interact with the and tables. These custom methods
will internally use Cake’s default properties and methods, such as the method for data-
base create, read, update, and delete (CRUD) operations.

The model class will contain three methods to provide information in the final
format needed to generate the products category navigation: , ,
and .

The first method, , returns the entire category list. This method is shown in
 Listing 3-5.

 Listing 3-5. The Category Model’s getCategories() Method

The method in Listing 3-5 is employed whenever we require the list of all the product
categories from the table, in ascending order of the category IDs. We’ve provided
some parameters, and , so that it’s possible to use this function in more than
one way elsewhere in the application.

Next in this model class is the method, which returns the currently
selected category and its children categories. This method is shown in Listing 3-6.

CHAPTER 3 E-COMMERCE54

 Listing 3-6. The Category Model’s buildCategories() Method

This method takes two arguments: an array of the entire category records from the
 table () and a category’s parent ID (). The

method in Listing 3-5 supplies the array data used as the first argument in the
 method in Listing 3-6.These two model methods, together with the

 obtained from the user request, are used in the
class method called to generate the application category navigation presented in the left
column of the web pages. The is discussed in the next section.

In Listing 3-6, first we declare two array variables: and . Using a
loop over , if the current category’s parent ID equals that passed as an argument
(), we add the current category to the array variable. We also add

CHAPTER 3 E-COMMERCE 55

the current category to the array, making sure that the array key is the category ID of
the current category. This is followed by a loop to create a parent category and append
children categories appropriately. Finally, the function formats and returns the current cat-
egory list, which includes only the currently selected category and its children. This function is
made so it can also handle deep category levels (more than two levels).

Next, we create the method, as shown in Listing 3-7. This method
returns a list of the entire category IDs that belong to the children of a specified category.

 Listing 3-7. The Category Model’s getChildCategories() Method

The arguments supplied to the method contain the following infor-
mation, in the order presented here:

: All the category lists stored in the table.

: A category ID that requires its children category IDs.

: Whether it should include all levels deep of children categories in the oper-
ation. Its default value is the Boolean .

Next in this method we use an statement to check for a valid category list, if the
 method is not supplied with a valid category argument. This means that if

there is no category information from the table stored in the array, we
use the method to generate the entire category list and assign the result to the

 variable.
Next, we count the number of elements in the array and assign the result to

the variable. We then declare an array variable called , which will contain a list of the
children category IDs.

CHAPTER 3 E-COMMERCE56

We then loop over the array variable with a loop and assign a category ID
and its parent ID to and , respectively. Next, using an statement, we check
that the current parent ID () we’ve extracted is the one for which we want to obtain
children category IDs. If the is the same as the one passed to the
method as an argument (), we add the current category ID to the array variable. By
default, this method will use itself to perform the same tasks based on the current category
ID, unless the argument is set to Boolean . Lastly, this method will return the

 array variable containing all children category IDs of a specified category parent ID.
The method in Listing 3-7 is used within the class

method called to provide this function with a list of category IDs. This function uses the
list of category IDs, formatted as , to fetch a list of all products that belong to these cat-
egory IDs, presented in the middle column of the web page. The is
discussed a little later in this chapter.

The Categories Controller
Now that we’ve created the model, let’s delve into the class, as
shown in Listing 3-8.

 Listing 3-8. The CategoriesController Class (app/controllers/categories_controller.php)

In the , we make use of the services provided by the methods
defined in the model, discussed in the previous section. Additionally, one of the
properties inherited from the is the array. This array includes an element
that provides a reference to the model.

Next, we declare the method, which simply provides the list of all the categories
information from the table. This method returns the result of the

 statement when called by another object.
The last method provided by the is . As the name implies, it

helps with the creation of the categories navigation (menu) shown in the left column of the
web site. The first statement of this method stores the categories information in the
array using the method previously defined in this class. This array variable, as well
as the current category ID (supplied by ’]), is then passed to the

 method to create an array formatted for the menu view. The array returned
by the method on the home page of the web site is structured as follows:

CHAPTER 3 E-COMMERCE 57

This array structure contains two first- level category records; that is, categories with their
parent IDs equal to an integer value of (zero).

Next, we call the method of the within the
 file to supply this view script with the categories information required to display the

category navigation menu. The view takes the category list (stored in) and dis-
plays its content in Cascading Style Sheets (CSS) and tags in the left column of the
layout. Since the category navigation is central to this application—that is, it must always be
displayed—we’ve placed the following code snippet in the layout file to include
this element of the web site at all times:

The content of the view file is shown in Listing 3-9.

 Listing 3-9. The Category Navigation View for the Left Column (app/views/elements/menu.ctp)

CHAPTER 3 E-COMMERCE58

In Listing 3-9, the first line begins with the opening tag. Next, using the helper
object, we created a link to display the message .

The first line of the opening tag uses Cake’s function. It requests the
 method of the object to provide a list of categories information

(stored in the array variable) that match the category and the product IDs passed
to this method using the and parameters, respectively.

Finally, using a loop, the array content is extracted to generate the
category navigation that appears in the left column throughout the application. Figure 3-2
shows the application response when the Classical menu item is selected by a user, with the
submenu item Mozart displayed.

 Figure 3-2. The screen showing levels of categories

CHAPTER 3 E-COMMERCE 59

The Product Model
Our next task is to implement the model class, which as the name suggests, provides
product information from the table. We will begin with the class properties, as shown
in Listing 3-10.

 Listing 3-10. The Beginning of the Product Model (app/models/product.php)

In the property, the array variable tells the application that a product
record belongs to a category. (The property works as described in the earlier discussion
of the model.)

Next is the method, shown in Listing 3-11. This method provides all the product
records based on one or more category IDs in the ascending order of product category ID.

 Listing 3-11. The Product Model’s lists() Method

The Products Controller
Now that we’ve created the model class, we need an object to provide some data
and services to other objects in our shop application. The class, shown
in Listing 3-12, defines the and methods to provide these services when called by
other objects or scripts within the application.

 Listing 3-12. The ProductsController Class (app/controllers/products_controller.php)

CHAPTER 3 E-COMMERCE60

The method in Listing 3-12 returns a list of products based on one or more
category IDs. The first statement in this method retrieves all the categories information and
stores the result in the array. This array is then used as the first argument of the

 method of the model to provide a filtered set of category information,
stored in the array variable. The second argument,], of this
method determines the family of category information that is required.

Next is the method, which accepts the newly created
array as the first argument, the current category ID (stored in ’]), and
a Boolean . We talked about this method earlier in the discussion of the model
class (Listing 3-7). Here, this method returns the list of all children category IDs that belong to
the category ID supplied as second argument of the method. Next, using the PHP
function, the current category ID and that of the children are merged together and stored in
the array variable.

Finally, the variable is passed to the method of the model,
which returns a list of all products that belong to the category IDs available in the
variable. The method of the is called or triggered when a user clicks
a category. This method is called in the view file, which is
shown in Listing 3-13.

 Listing 3-13. The Product List View for the Center Column (app/views/elements/products.ctp)

CHAPTER 3 E-COMMERCE 61

In Listing 3-13, the first line uses Cake’s function to request the
method of the object to provide a list of product information that
matches the category ID passed to this method via the parameter. The resulting
list of products is stored in the array variable. Finally, using a loop, the
content of the array is displayed in the center of the web page. The resulting view
is shown in Figure 3-3.

 Figure 3-3. The view rendered when a category ID is selected

CHAPTER 3 E-COMMERCE62

The last method in Listing 3-12, , uses Cake’s method to automagically pass
a full product description to the file. Using the default
method against the object, our method retrieves a record of a product from the

 table based on a specified product ID (retrieved from ’]).
This product information is stored in the array variable. If is empty, then the
application redirects the user to the home page; otherwise, the current product information is
displayed on the page.

If the product ID is set, then the content of the product details view stored in the
 file will be displayed in the center column. This view file

is shown in Listing 3-14.

 Listing 3-14. The Product Details View for the Center Column (app/views/elements/product_
details.ctp)

In Listing 3-14, we use the array variable passed in using
 from the method of the . It displays the product details in

the center of the web page, as shown in the example in Figure 3-4.

CHAPTER 3 E-COMMERCE 63

The and other controllers employ the services of the and
 models. Reference to these models is available in the class, as dis-

cussed a little later in the chapter.

 Figure 3-4. The index view rendered when a product is selected

The Cart Model
Next, we’ll implement the model class. Along with supplying the content of the shopping
cart to the application, the model provides functionalities to manipulate the cart, as well
as the checkout section of the application. We will begin with the class properties, shown in
 Listing 3-15.

 Listing 3-15. The Beginning of the Cart Model (app/models/cart.php)

The class starts with the class definition, as usual, and then establishes its relation-
ship with the model object using . This simply
states that a cart can contain one or more products.

CHAPTER 3 E-COMMERCE64

We’ll create the following methods in the model:

The method supplies all the information stored in the table. This method is
shown in Listing 3-16.

 Listing 3-16. The Cart Model’s getCart() Method

The method takes two arguments: (product ID) and (session ID). These
are used in Cake’s method to filter the provided table records. The product ID is
extracted from a user’s URL request. The session ID is obtained from Cake’s object.
These variables are extracted in the method of the object, as you
will see later in this chapter.

Next is the method, which checks whether there is at least one record in the
 table. This method is shown in Listing 3-17.

 Listing 3-17. The Cart Model’s isCartEmpty() Method

The method accepts (session ID) as its argument and uses the
method to check whether the session ID exists in the table. If this session ID exists in
the table, is returned; otherwise, is returned, and the message “Shopping
Basket is empty” is displayed. The status of the basket section, on the right side of the web site,
depends on the value returned by this method.

CHAPTER 3 E-COMMERCE 65

Next, we need the function to add a product to the table, , as shown in
 Listing 3-18.

 Listing 3-18. The Cart Model’s addCart() Method

The method takes a product ID and the session ID as its arguments. Here, we use
Cake’s model method to add the product ID, quantity, and session ID. We do not need to
fill in the cart table’s field (see Listing 3-3), as this is one of Cake’s magic fields and will
be filled in automatically by the model when the method is called.

Now we need a function to update the quantity of a product in the table. This is the
, as shown in Listing 3-19.

 Listing 3-19. The Cart Model’s updateCart() Method

This is triggered when a user clicks the Add to Shopping Basket link on the product
description page. If the displayed product ID and session ID match that of the argument, the
record quantity is incremented by one.

Next, we include a function to remove old cart records, . Sometimes customers add
products to the shopping basket, but don’t bother to either complete the transaction or empty
the basket. The method shown in Listing 3-20 will handle cleaning up abandoned carts' records.

 Listing 3-20. The Cart Model’s cleanUp() Method

The method deletes records that were added to the basket three days ago from the
 table.

CHAPTER 3 E-COMMERCE66

Next is the method, shown in Listing 3-21. This method is used as the delete
function that is triggered when a user clicks the Delete button on the checkout page.

 Listing 3-21. The Cart Model’s emptyBasket() Method

The method deletes a record from the table based on the cart ID.
We also need to be able to update the quantity of products a customer wants to buy. This

functionality is provided by the method, as shown in Listing 3-22.

 Listing 3-22. The Cart Model’s doUpdate() Method

The method accepts two arguments: supplies the new quantity of prod-
ucts the customer wants to purchase, and specifies the ID of the table record to
be updated.

Finally, we add the method to find out what’s in the cart, as shown in
 Listing 3-23.

 Listing 3-23. The Cart Model’s getCartContent() Method

CHAPTER 3 E-COMMERCE 67

The method returns the contents of the table where the session ID
field value matches the argument . The result, stored in the array, contains
additional product and category information relating to the retrieved cart’s contents. If there is
no match, an empty array variable is returned.

Handling User Requests
Now that we have created all the functionality needed to interact with our database, we can
begin the process of building our application’s controllers to handle user requests. We will
need to decipher which action should be invoked and employ Cake’s MVC tricks to tie these
actions to views that render the appropriate application display. We will start by creating the
master controller, called the class. Our online shop controllers will borrow
some properties and methods from this master controller to save the time of creating them in
each individual controller.

The AppController Class
By default, a Cake controller class extends the class. You’ve already been intro-
duced to the class file in Chapter 1. Our shop class
will contain all the common functionality required to centralize request handling and extract
session IDs. The global properties and methods defined here are automatically available to the
objects of requests or other classes that extend .

 Listing 3-24 shows the class properties.

 Listing 3-24. The Beginning of the AppController Class (app/app_controller.php)

The property sets an initial page title for this application, which can change
according to a user’s page request. The property will contain a session ID to identify our
application user. As we mentioned earlier, to avoid repetition of code within this book, we’ve
decided not to address authentication in this application. Hence, we’ve used the variable
to represent and track a user from page to page.

The and properties will be assigned the user- requested category and product
values, respectively, when available. If these values are not available, we set the properties to
an integer value of . Next in Listing 3-24, we include some of Cake’s built- in properties, such
as the array to require the , , and model objects. Then we include
some helpers and components, which were introduced in Chapter 1.

CHAPTER 3 E-COMMERCE68

Next, we override the method, which is triggered first by default, before any
other action in our , as shown in Listing 3-25.

 Listing 3-25. The AppController’s beforeFilter() Method

In Listing 3-25, the overridden method checks the URL of a user request to extract and
then determine the category ID and product ID values. The method ensures that
during the course of the application, the and variables contain some integer val-
ues. For example, with this URL:

the values of these two properties will default to . If the URL is as follows the value of the cur-
rent category ID will be and the product ID will be .

In this case, the array stores the requested value of of
the URL.

The last statement of the method, (), ensures that as
a user moves from page to page, the current page title is reflected.

The method, which sets the current page title, is shown in Listing 3-26.

CHAPTER 3 E-COMMERCE 69

 Listing 3-26. The AppController’s setPageTitle() Method

If the current product ID value) is greater than zero, the value of
 is used to query the table in order to extract the corresponding product

name. The property is then assigned the appropriate product name. If the current
category ID value is greater than zero, then the category ID) is used to pull
the corresponding category name from the table, and finally, this category name
is used as the page title. If the function fails to set a page title, the remains

, as defined in the property section of the .
Now that we have defined the properties and functionalities that we require in our

 class, let’s tie things together to enable users to navigate our shop.

The Home Page
The starting point is the definition of our preferred home page. The file
contains information about handling user requests for our application. We use the following
line in our file:

This defines a controller () and an action () within the class
that serve as our shop’s home page. When a user types the URL

 in a web browser address bar or clicks the Home link on the web
site, the request is handled by the action of the object.

We’ll create the in the following section.

The Carts Controller
 Listing 3-27 shows the carts controller for our shop application.

 Listing 3-27. The CartsController Class (app/controllers/carts_controller.php)

CHAPTER 3 E-COMMERCE70

The class begins by extending the class. It then sets its
 property to to ensure backward compatibility with PHP 4.

By default, the action is mapped to the view file.
Remember that the layout of our shop contains a middle section, or center column. Our

 view handles what is rendered in this area of the web site layout. The content of
this view file is shown is shown in Listing 3-28.

 Listing 3-28. The View for the Center Column Content (app/views/carts/index.ctp)

In Listing 3-28, we first render our welcome message using the function, which is
a Cake convenience method for PHP’s statement. You can change this message to suit
your needs. Next, we use the current values of the product ID () and category ID (),
as defined in the method of the class (Listing 3-25), to logically
control the view that is finally displayed to web surfers.

When a user visits our shop for the first time, the values of the product ID and category
ID will be set to zero, as defined in the method of the , since the
user has not yet selected a category or a product from the home page. For this scenario, the
view logic will render the content stored at . We will also
have this scenario when a user clicks the Home link of the web site. The content of this view is
shown in Listing 3-29.

 Listing 3-29. The Category List View for the Center Column (app/views/elements/categories.ctp)

CHAPTER 3 E-COMMERCE 71

In Listing 3-29, we also use Cake’s method to trigger the method of
the . The result of this method is a list of all the category information,
which is stored in the array variable. This variable is then looped over to display
the list of categories, as shown in Figure 3-5.

 Figure 3-5. The view showing the list of categories

Now, we’re finished with the left column content—the category navigation—and the
center column content. Let’s move to the right column, which displays the current shopping
basket (cart) content (see Figure 3-5). If there is no information in the table, we’ll display
the message “Shopping Basket is empty” in this area of the page.

The view code to generate the basket content is stored at .
This code is shown in Listing 3-30.

CHAPTER 3 E-COMMERCE72

 Listing 3-30. The Basket View for the Right Column (app/views/elements/basket.ctp)

CHAPTER 3 E-COMMERCE 73

Before we delve into the code in Listing 3-30, let’s add the product titled Mozart for
Lovers to our basket by clicking the Add to Shopping Basket link on the product description
page. Adding a product to the basket triggers the ’s method, shown in
 Listing 3-31.

 Listing 3-31. The CartsController’s add() Method

In Listing 3-31, the first statement uses Cake’s model method, which accepts
a product ID Id) to retrieve a product’s information from the table. This
product information is stored in the array variable. If is empty, the application
redirects to the home page.

Next, the script checks if the product quantity is less than or equal to zero. If so, the appli-
cation uses the Cake object’s method to hold the message

 in the object, and then redirects to the home page.
Then the application calls the method of the model object in order to check

the existence of this product in the shopping basket. The result of this method is stored in the
 array variable. If the product does not exist in the shopping basket against the

current session ID, the method of the model object is called to insert a new
product into the table. If the product does exist in the shopping basket, the
method is called to increment the quantity of the product in the table by one.

Next, the script seizes the opportunity to do some housecleaning by calling the
method to remove records that are few days old from the table. Finally, the application
redirects the user to the current product’s description page.

CHAPTER 3 E-COMMERCE74

Now that we’ve added a product to the table, let’s jump back into the basket view
code in Listing 3-30. First, we use the method to get all the content of the cart
from the table. This Cake method accepts the string that triggers the ’s

 method, which accepts the session ID (via) as an argument and assigns
the result to the variable. Next, if the variable is an array and
is not empty, the variable is assigned a value of zero. Finally, using the loop
over , the current content of the basket now includes the newly added product
Mozart for Lovers, costing $15, as shown in Figure 3-6.

 Figure 3-6. The view showing Mozart for Lovers in the shopping basket in the right column

Checking our user journey, our next action is to proceed to the shopping basket, to check
that we are happy with our current product selections. If not, we will amend the selections or
completely remove unwanted products from our shopping basket. This interface allows for
 cart- manipulation processes, such as updating the product quantity, deleting the product,
and so on. Let’s suppose the user has clicked the Go to Shopping Cart link in Figure 3-6, and
modified the cart content by removing the Mozart for Lovers and Dizzy 1990s items from her
shopping basket. The new content of the shopping basket is shown in Figure 3-7.

CHAPTER 3 E-COMMERCE 75

 Figure 3-7. The view showing a sample cart content

The Order Model
Next, we’re going to deal with the orders. We’ll start by creating the model class, shown
in Listing 3-32. Note that this class does not interact with any database table.

 Listing 3-32. The Order Model Class (app/models/order.php)

CHAPTER 3 E-COMMERCE76

In Listing 3-32, we define the array to ensure input data integrity for the ,
, and form elements.

Next, we’re going to click the Proceed to Checkout button. Our action will trigger the
 method of the object, which is defined in Listing 3-33.

 Listing 3-33. The OrdersController Class (app/controllers/orders_contoller.php)

As usual, the class references the model object using the
 statement. Next, we define the method, which first extracts the cur-

rent cart’s content IDs from array, and then stores the result in the
 array. The array is passed to the view file, shown

in Listing 3-34, for display. The last statement of this method changes the default layout to
.

 Listing 3-34. The Checkout View (app/views/orders/checkout.ctp)

CHAPTER 3 E-COMMERCE 77

In Listing 3-34, the code is divided into two main parts. The first part uses Cake’s
object to render the checkout form. The second part renders the current content of the shop-
ping basket, similar to the basket view code (Listing 3-30). Listing 3-34 produces the checkout
form shown in Figure 3-8.

 Figure 3-8. The checkout page

CHAPTER 3 E-COMMERCE78

When the user clicks the Confirm Order button on the checkout page, the method
of the is triggered. If the submitted form data (stored in ta) is not
empty, then the form data is stored in the array. Next, we retrieve the current cart
content based on the cart ID (extracted from ’]), and the result is
stored in the array variable.

Note It is important to include the statement in the
model class, because we’ll need to submit some vital product information (such as product name, price, and
description) to our chosen payment gateway. This statement will ensure that the application includes related
product information whenever table records are retrieved.

Finally, using Cake’s and functions, the two array variables are passed on
to the file. The structure of the array variables is shown in
 Listing 3-35.

 Listing 3-35. The Structure of $order and $cart Array Variables

CHAPTER 3 E-COMMERCE 79

The array structures in Listing 3-35 are passed on to the view file, as shown in
 Listing 3-36.

 Listing 3-36. The OrdersController’s confirm() Method View

If the order payment method selected equals , then the Google Checkout payment form
is displayed. If not, the PayPal form is presented.

The Google Checkout Button
Google needs no introduction when it comes to the world of Internet. However, you should
be aware that to use Google services, you need to have a Google account, which you prob-
ably already do if you use Google Mail, Google Docs, Google Adwords, or any of the numerous
other Google offerings.

Shoppers are often frustrated by needing to fill out lengthy online forms before making
payments. It is easy to encourage users to check out via the Google Checkout button, which
is secure and convenient. When this button is selected, the and array variables
are passed to the file, shown in Listing 3-37.

CHAPTER 3 E-COMMERCE80

 Listing 3-37. Google Checkout View (app/views/elements/google_checkout.ctp)

The view file shown in Listing 3-37 generates a page similar to the one shown in
 Figure 3-9.

CHAPTER 3 E-COMMERCE 81

 Figure 3-9. The Google checkout page

Clicking the Google Checkout button will redirect the user to the Google sandbox environ-
ment, as shown in Figure 3-10.

 Figure 3-10. The Google test sandbox

CHAPTER 3 E-COMMERCE82

For more information about processing online sales using Google’s payment system,
Google Checkout buttons, and the Google sandbox, visit the following sites:

.

The PayPal Submit Button
PayPal can be regarded as the father of online payment gateways. It’s ubiquitous when it
comes to online payment choices. Here, we are going to create the payment form, in the

 file, as shown in Listing 3-38. You can use the
 Buy-it- Now button form generator on PayPal to create a similar payment form.

 Listing 3-38. The PayPal View (app/views/elements/paypal_checkout.ctp)

The PayPal view is passed the and the array variables.
For further information about the numerous services provided by PayPal, visit

.

CHAPTER 3 E-COMMERCE 83

Summary
In this chapter, we went through the process of building an online shop. For this demonstra-
tion, we’ve kept its features to a minimum. However, users can navigate the product category
menu, add products to a shopping basket, review the basket contents, and proceed to the
checkout form.

We started this chapter by looking at a typical shop layout, the shop user journey, and the
creation of the database and tables needed for the shop application. We then proceeded to
build all the model classes that interact with the database tables, such as those for categories,
products, carts, and so on.

To handle user requests, we built the class with properties and methods
that provide functionality common to other controller classes. This helps us to avoid “rein-
venting the wheel” and to extend other controller classes, such as the category controller of the
application. We then built the other controller classes to handle the application requests.

Finally, we created checkout forms to handle payment transactions. We used a Google
sandbox as our payment test environment and also created a PayPal form as an alternative
payment option.

Building a comprehensive e- commerce web site obviously involves more than what we
covered in this chapter. For example, you would want to add an administration area to the
web site to facilitate management.

C H A P T E R 4

A Message Forum
Web Service

In this chapter, we’ll build a Cake- based forum. While there are a lot of popular open source
forums such as phpBB, we like the idea of rolling our own. It’s a fantastic learning process, and
we get to deal with a lot of new subjects that don’t come up in our day jobs.

So that our forum will stand out from the crowd, we need a unique selling point. That will
be a web service API for our forum. Web services are quite a common feature in many modern
web applications, but not that common in many of the forums.

Our Take on Web Services
The term web services can have many meanings. For example, simply entering the URL

 into your browser can be called a web service request, since you’re
using HTTP . The World Wide Web Consortium (W3C) has an official definition for web
services ():

Web services provide a standard means of interoperating between different software

applications, running on a variety of platforms and/or frameworks.

This meaning is quite general, indicating that web services are a way for computers to talk
to each other, which may or may not include the Web.

Before we get to creating our forum, let’s clear up what we mean by web services.

Web Service Elements
There are many elements relating to web services. We start with a short explanation of each
element to provide a foundation for our particular angle on web services.

85

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 86

API: This acronym stands for application programming interface. In the world of
computers, much like the definition of web services, this is quite a general term. For
us, it means a set of published functions or methods that can be directly accessed via
URLs on the server, such as or

.

SOAP: This stands for Simple Object Access Protocol, and is one of the main protocols
of a web service. It piggybacks onto the HTTP protocol, considered too complex and
verbose by many developers. Taking the previous example, our SOAP request would
look something like this:

HTTP: In a sense, HTTP (Hypertext Transfer Protocol) and SMTP (Simple Mail Transfer
Protocol) are the two main protocols people use on the Internet. They surf the Web
using the HTTP protocol and read e-mail messages using the SMTP protocol. Many
developers have adopted HTTP as their protocol for developing their web services;
specifically, just the and methods within that protocol. This is how we will be
developing our API in this chapter’s application.

XML-RPC: The Extensible Markup Language Remote Procedure Call was created by
David Winer, one of the pioneers in modern web services and blogging. It’s similar to
SOAP, but simpler. This protocol is not frequently used by developers. The major web
applications that support XML- RPC include Flickr and Amazon S3.

REST: This stands for representational state transfer. The term was coined by Roy
Fielding, one of the main authors of HTTP. It is not a protocol, but a set of statements
about how distributed media should be organized, with the Web being a key example.

 Figure 4-1 illustrates how many web developers see web services. On the left side, we have
the clients. They can be applications on other servers; desktop applications, which include
browsers; and other devices, like mobile cell phones. These clients will most often use HTTP
(, , and so on) to send and request data to and from the server, shown on the right. The
way the clients talk to the server is the protocol: XML- RPC, SOAP, RSS, and so on. These proto-
cols are quite specific, since there are standards attached. For example, in RSS, you must end
all requests with the extension. The format you will receive will be in a specific format, as
defined by the official standards body.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 87

 Figure 4-1. Elements of web services

However, you can develop your own proprietary protocol using the features of HTTP.
Many web service providers have gone this route—Google Maps, Flickr, and Twitter, to name
a few.

Mashing different services together is never an easy task. For example, an image will have
a different context depending on the application. The use of REST complicates the picture. In
 Figure 4-1, it sits within generic HTTP, as we regard it as a specific way of using that protocol.

REST and HTTP
Many people have advocated the use of the REST principle with HTTP for web services.
In particular, the use of the HTTP methods should conform to the W3C standard. For
example, methods should not alter any data. Something like

 should not be allowed. In REST, this would look like
. The new name would be supplied as a key/value pair—

—in the request body, and instead of using , we would be using .
In a sense, we see HTTP as being a diluted form of REST. It can get quite confusing, as

some meanings can overlap. We see the confusion surrounding REST much as we see the
complexity of SOAP. Many developers find REST difficult to use.

To use REST in its full meaning, you must conform to the correct use of the HTTP meth-
ods such as , , , and . Most browsers support only and . You can
use the other methods via in Ajax scripting, but that just won’t be enough to
conform to the principles of REST. To end our discussion of REST, the web services that we’re
going to write in this chapter will not conform to the principles of REST.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 88

Note The four most important HTTP requests are , , , and . requests a resource,
such as an HTML file. (Requesting the resource must not cause a side effect, such as deleting a record).

 sends data to the resource to be processed. It creates a new resource, updates the resource, or both.
We’ll consider the operation to be the same as the . Elliotte Rusty Harold gives a good explanation
at

. Finally, just deletes a resource, such as a user account.

We’ve always liked the principle of KISS, which means we prefer to Keep It Short and
Simple. Logical standards like SOAP sometimes are just too logical. As such, like many web
APIs, we’re just opting for plain old HTTP and as the two modes that developers can
use to access the innards of our forum. Referring to our diagram in Figure 4-1, we’re using the
generic HTTP method.

Result Return Formats
When we make a web service request, the result can be returned in many formats depending
on the client request, including HTML, JSON, XML, and RSS.

You can even specify the result to be returned as a comma- separated list or as
a JavaScript- ready document output. For our application, we’ll use JSON. Developers can
easily use our web services via Ajax or on the server using or .

Application Requirements
One of the main focal points of our forum application is the API. Therefore, we’ll start by
thinking about the methods that we will be exposing to the public. The API requests will come
from other applications, not individuals using the application via an interface, so we must
consider that in our planning.

In our forum application, we want to include some common features that are found in all
forums:

Since our own interface is basically also a client, we need to look at our own front end as
if it were a third- party client application that is calling the processing scripts from a distant
server. We know there are several ways to make a URL request. The following are the ones we
are interested in:

 or ; they may also want it returned in a particular format

 or

 or ; that is, the
() within the browser makes the HTTP call

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 89

Some of our actions may support only and/or . This is similar to many of the other
web APIs.

We must have a standard way to respond to requests. For example, in HTTP, the response
code 200 is OK, and the response code 404 is resource or page not found. Furthermore, some
requests return data, while others carry out particular actions like saving data. We must be
able to return data in a consistent manner given different requests.

Threads and Posts
For our forum, we need to decide how discussions should be organized. We simply define
a discussion (commonly called a thread) as the messages and the subsequent messages
(replies) to those messages. Let’s look at some of the ways in which messages could be
organized.

Organized by Date
Using this method, each message is organized by date order, regardless of to which message it
is replying. Users can then see the most up-to- date messages as they come in.

Organizing by date is problematic because we won’t know which message a message is
replying to. We can overcome this by including the message, but do we include the whole mes-
sage or just part of it? Perhaps we could allow the users to select the parts they are replying to?

 Listing 4-1 shows a code snippet that allows a user to quote part of a message so other
users can refer to it.

 Listing 4-1. JavaScript Code to Get Selected Text

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 90

You might want to use the code in Listing 4-1 if you decide to extend the forum appli-
cation. It simply retrieves the text a user has selected with the mouse. On line 9, we check
whether the user has selected any text on Firefox/Gecko- based browsers. If so, we place the
text in to the variable. Line 12 checks for text selection in Internet Explorer/
Trident- based browsers.

Organized by First Post
Using the by-first- post organization, we show only new messages, essentially the first mes-
sages, as they come in. We won’t show the replies. If users want to read the replies, they need
to drill down; that is, make another request to a different Cake action.

If a user replies to an old message, it won’t be displayed. It will remain relative to that old
message. Users will know of that reply only when they drill down to it.

An obvious problem is that active discussions will be followed only by those who par-
ticipated in it at the early stages, when the discussions were at the top of the page. When new
messages arrive, the old messages get pushed down. This is not desirable, since we want many
people contributing to a discussion as long as possible. After all, if people are just asking ques-
tions on the forum, very few people would bother to read the forum.

Organized by Replies
You can also organize the threads by the number of replies, so the thread that has the greatest
number of replies is shown first. If no one has contributed to the thread for a while, it will still
stay at the top.

The problem with this organization is that current and active threads are not given prior-
ity. So we end up putting too much emphasis on a topic that may no longer be of interest to
most people.

Organized by Last Post
Another organization possibility is a slightly different take on the by-first- post organization.
Using this method, we order a discussion by its last post, but we show the first post.

This approach has a number of advantages. If a new message comes in, it floats to the top.
However, if a reply to an old message is posted, the first post of that discussion floats to the
top. In this way, we encourage people to participate in ongoing discussions. If the discussion
has been exhausted, it simply floats back down the page.

Organizing the posts by the last post seems to be the most sensible method. In fact, most
forums organize discussions this way, and so will our application.

Web Service Requests
Our application will support the following five API requests:

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 91

These requests will be the ones that we will be publishing in our API documentation. They
will all support Ajax from a browser, ordinary HTTP requests from a browser, and or
calls from a server.

Layout
The API is an important component to the application. However, we’re not just publishing
an API. The application will also be a working forum where users can post messages. In that
sense, we’re building a client as well as the API services within the same application.

Our application front end will have all the essential features that any forum user will
expect. A user can post messages, reply to messages, view topics, and search for messages.
The layout of the interface will be similar to that of the other projects in this book. We start
with a header, followed by a navigation bar, and then the main content area. When a user
goes straight to the site, they will be presented with a view of the current threads, as shown in
 Figure 4-2.

 Figure 4-2. A rough sketch of the forum application layout

Application Structure
In the previous section, we talked about how we’re going to organize our messages accord-
ing to threads. This relationship is a one-to- many association, where one thread ties together
many messages.

The two main database tables in our application are and . The fields in
these tables are shown in Tables 4- 1 and 4- 2.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 92

 Table 4-1. The Fields in the messages Table

Field Name Data Type Description

Primary key (note it’s a UUID and not an auto- increment field;
see the action class for an explanation)

Name of the user posting the message

E-mail address of the user

The message body itself

If the message is a reply to another message, this is the reply
message ID

The subject of the message (replies will have a prefix)

Automagic field (but we fill this in ourselves; see the action
class for an explanation)

The thread this message belongs to

 Table 4-2. The Fields in the threads Table

Field Name Data Type Description

Primary key (again, UUID and not an auto- increment
field)

Used so we can easily pick out the first message when it
needs to be displayed in the threads listing

Used so we can order the threads correctly according to
the last message date

The number of messages within this thread

Note As we haven’t used database transactions in our application, the number in the field
of the table may not always be completely accurate, but that’s not critical at this stage, as it’s used
only for display purposes.

You’ll notice that the table includes a few metadata fields to contain data that
describes the thread. This helps us to cut down on the number of SQL calls needed to list our
threads. Each time a new message is added to a thread, the code updates the

 field with the date of that message. This way, we don’t need to look in the table
for the last message that was posted within a thread.

JSON Web Services
We have specified that we’ll be using the JSON format for all our API returns. To get this part of
our application working, we need to do some setup.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 93

The class must be aware of the JSON extension. We take care of this by adding the
following line in the file:

Following this, we need to include the component by adding it into our
 variable in our file, so that it’s available to all control-

lers. We also need the component. Our variable will look like this:

Now the will automatically map JSON requests to the correct layout and
view. When a JSON request comes in, it will pick the layout file within the folder

 instead of . Our JSON layout file is shown in Listing 4-2.

 Listing 4-2. JSON Layout File (/app/views/layout/base.ctp)

Any script that requests a JSON return can use the HTTP headers and
to identify whether or not it is a JSON return. However, the isn’t guaran-
teed to be JSON. We must manually put that into a JSON format.

Once the layout has been picked out, the will look in a folder within
the folder that corresponds to the controller, similar to how the folder structure
works. In our application, all the API methods have the same view. For example, in the

 file for the controller, we
just make use of JavaScript helper to format our result in a JSON format, as shown here:

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 94

Our Application Controller
Throughout the development of the forum application, we’ve placed a lot of attention on our
web services API. We’re going to continue with that line of thought by using a version of the
Command design pattern, adapted for the Web, in our controller.

The Command pattern is an object- oriented class design, where we encapsulate each
action in a class of its own. Class names are usually nouns, because they represent objects.
However, in the Command pattern, the names are verbs, and each class must implement
an execution method, traditionally called ; in our case, it will be called .
(See for more information about the tradi-
tional implementation of the Command pattern.)

Why implement the actions as a class? The advantages are not so obvious in a web envi-
ronment or with small applications. The following are the advantages of this approach:

object.

For example, each class has its own validation method.

To use the Command pattern in our controller, we start with a base controller, which acts
as the parent class of all the action classes. Code that is common to all the action classes can
be placed here. This base class is shown Listing 4-3.

 Listing 4-3. Base Controller (mf_controller.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 95

The method on line 10 is used by the action classes to check whether the API
call is an Ajax request. If it is an Ajax request, we render the Ajax layout file in

.
Following this, each action class extends the class. An example is shown in

 Listing 4-4. There are quite often other supporting functions that help the main function.

 Listing 4-4. Example of an Action Class That Extends the Main MfController Class

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 96

When the controller is called, it first checks whether it’s an Ajax call in the
on line 15. Next, we go in to the main action on line 29. If the API call validates, we do
the business logic. When we’re ready to display the results, we package it in the
action on line 37.

Taking this hypothetical example, when we request a Cake URL, it will look like this:

Now that we’ve talked about how the controllers are set up, we can show you how we’ve
actually implemented it. Table 4-3 shows all the controller actions we have written.

 Table 4-3. Our Application Controllers

Controller File Description

Parent controller to all action classes

Fetch a message

Fetch several messages

Fetch the threads

Post messages

Process a message

Process a search request

Now, if we were to do this in the traditional Cake way, there would be only two files:
, to contain all actions relating to messages, and , to

contain all actions relating to threads. The would contain actions that fetch
one or more posts and handle message posting, and it would contain various supporting func-
tions. In this case, by separating out the actions as classes, we gain better management.

All the action classes have their own corresponding model, as shown in Table 4-4.

 Table 4-4. Action Controllers and the Corresponding Models

Controller Model File

No associated model

Next, we’ll dive right into the heart of each controller and its view, starting with the
 controller.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 97

Fetch a Message
The is used to find a particular message using its . The
method executes a simple SQL statement to the database and fetches the single mes-
sage record. The code is shown in Listing 4-5.

 Listing 4-5. Fetch One Message Controller (mf_fetch_message_controller.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 98

Each action class returns a set of key/value pairs to the caller. On lines 9 through 12, there
are four standard ones that will always be returned:

: Whether the request was successful or not: or

: The human- readable message that goes with the result

: A set of key/value pairs, where the key is the parameter and the value is the
error message

: If the request is for data, where to look for it

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 99

Most of the action classes have three methods: , , and .
The method checks whether it’s an Ajax call. The parent method
looks like this:

We have manually mapped Ajax calls to JSON returns. If it is an Ajax call, the layout
 is used. We would like to return data to callers in a standard

way, of course. However, this is not always possible, Ajax and server- side calls can handle for-
matted data like JSON, but then HTML messes up the format.

The main method is where all the action happens. We have created a
method. Any parameter coming into the action class must be validated, and we make use of
Cake’s validation as much as we can. To do this, we create a model specifically for our action
class called , as shown in Listing 4-6.

 Listing 4-6. MfFetchMessageController Model (app/models/mf_fetch_message.php)

Once the validation has passed, we go ahead and carry out the business logic within .
When that’s done, the method is called. This method sets the variable
for the views. Of course, we could have just as easily set the result in , but following the
idea of the Command pattern, we’re keeping code decoupled and standardized.

Our view for the is quite simple. It takes
and formats it in HTML, ready to be displayed. It’s worth highlighting that the JSON output

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 100

also makes use of the variable, but in that case, it formats the output in JSON notation
instead of HTML. Our HTML view is shown in Listing 4-7.

 Listing 4-7. Fetch One Message View (app/views/mf_fetch_message/index.ctp)

Fetch Several Messages
At present, our , shown in Listing 4-8, helps us to find queries
based on the thread ID.

Note We can quite easily see the fetch several messages action being deprecated, in favor of using the
 as a generic “find any messages” class. We’ll leave that as an exercise for

the reader.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 101

 Listing 4-8. Fetch Several Messages Controller (mf_fetch_messages_controller.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 102

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 103

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 104

As you can see, the structure of this class is similar to that of the .
In this case, we have an extra private method on line 94, which sorts our mes-
sage recursively according to replies. We have used a simple full stop to signify the depth of the
message within the thread. For peace of mind, we’ve placed a stopper on line 99 just in case
the method goes into an infinite recursive loop.

Again, our view for the controller simply takes the ,
loops through the data, and formats the output for HTML display. We’ve used the indent
indicator to indent our messages from the left side of the browser. As we are multiplying the
number of full stops by pixel value, the greater the depth, the further away it will be displayed
from the left margin (see lines 7 and 9 in Listing 4-9). You can just as easily use , as that prob-
ably makes it more accessible. But hey, we just wanted to make it obvious that you can use
pixels instead.

Our view is shown in Listing 4-9.

 Listing 4-9. Fetch Multiple Messages View (app/views/mf_fetch_messages/index.ctp)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 105

Fetch the Threads
We have used the pagination feature within Cake to separate the threads into pages.
 Listing 4-10 shows the .

 Listing 4-10. Fetch the Threads Controller (mf_fetch_threads_controller.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 106

Adding pagination is essentially a three- step process. Referring to our controller class,
first you set up the options in the controller via the variable on line 9. In our case,
we limit the number of records returned to 20. We also order the threads according to the

 field in descending order. Next, instead of using the Cake
 method, we use the method. This takes the model name as its main parameter

(see line 34).
The third and final step in using pagination is at the bottom of the view, shown in

 Listing 4-11. Cake provides a paginate helper (see line 43), which is included by default once
the method is used. We simply call the and methods, which will generate
the necessary HTML links.

 Listing 4-11. Fetch the Threads View (app/views/mf_fetch_threads.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 107

Line 4 in Listing 4-11 creates an HTML tag, which will call the JavaScript file
located at . This file is shown in Listing 4-12.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 108

 Listing 4-12. JavaScript File Used to Support the Fetching of Threads (app/webroot/js/mf_fetch_
threads/index.js)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 109

When a user clicks the Open link (see line 23 in Listing 4-11), the function on
line 1 in Listing 4-12 is called. This function makes an Ajax call to the method
(see line 10). That method will return the message in JSON format. We start the parsing on
line 13. We finish the process by displaying the message together with some links, on line 24.
A sample of the parsed output is shown in Figure 4-3.

 Figure 4-3. Displaying threads

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 110

Post Messages
Our message posting form, shown in Listing 4-13, posts messages using Ajax by default. How-
ever, if the user has JavaScript turned off, it will degrade to standard HTML posting. Because
it's not part of our API method calls, its structure doesn’t mirror the API action classes. How-
ever, in the future we may include this as an API method call where users can use our form
instead of writing their own. They can conveniently include the form in the sidebar of their
web site—in a blog, for example.

 Listing 4-13. Post a Message Controller (mf_message_form_controller.php)

The view for the form is pretty sparse, as shown here:

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 111

As you can see, the view for the message form is separated off into an element, as shown
in Listing 4-14.

 Listing 4-14. Message Posting Form as an Element (/app/views/elements/message_form.ctp)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 112

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 113

There are a number of interesting things happening in this element. Before we go any fur-
ther, we have to admit that this simple form turned out to be quite complex because of the use
of Ajax and how it can degrade in the absence of JavaScript.

First, we have included the TinyMCE what you see is what you get (WYSIWYG) web editor.
It was either that or the FCKeditor, which is just as good.

Note TinyMCE () and FCKeditor () are two
of the most popular web- based open source text editors. You will generally use them to replace the HTML

 tag. They provide editing capabilities much like any desktop word processing editor.

Installing TinyMCE is quite easy. First, download the package from the TinyMCE web
site (). Then unzip the code into the folder

.
Next, we need to initialize the editor. This is done from lines 10 to 27 in Listing 4-14. Later,

when the form is saved, we also need to trigger TinyMCE to save the content. This is done in
the JavaScript helper file (see Listing 4-15, line 47).

In Listing 4-14, we include our JavaScript helper file in the line
 on line 31. The helper file, shown in Listing 4-15, is stored in

. We have created an folder within
. This allows us to easily pick out which JavaScript file goes with which file, as

we have named the JavaScript file to be the same as the file that included it.

 Listing 4-15. JavaScript Helper Functions for the Message Posting Form (/app/webroot/js/ele-
ments/message_form.js)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 114

In the method in Listing 4-15, we basically parse the form process return
results, which is in the standard format we described earlier, where the results contain the
keys, message, errors, and data. We first remove any errors that were previously there. We do
this simply by using the method on line 18.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 115

We then display any errors by looping through the key value and displaying it
before the field. The Cake Ajax form can easily do this step for us, but it displays the error
messages after the field, and we want the user to read the error first and then see the field
to which it refers. We use the DOM method to insert a tag, which contains
the error message before the field. The web page

 has some good information about DOM methods.
If there are no errors, the form has been posted successfully, and we then clear the form

to avoid any trigger- happy user. Additionally, we can display some other useful information
there at a later date—maybe some advertisement relating to the posted message, for example.

Before posting the Ajax request, we call the method on line 45. In that
function, we need to manually get TinyMCE to save our message. This happens only because
we are using Ajax. If you’re using ordinary HTML to post, you won’t need to carry out this step
with TinyMCE.

After that, we simply add some user interface sugar, starting with a spinning Ajax loader
image. Then we disable the submit button.

Returning to our message posting form in Listing 4-14, our next step simply uses the
Ajax and form helpers to add some form elements (see line 38). An important point to note
is the handling of the error messages relating to the fields. This point applies only when the
user browser is not running JavaScript; that is, HTML is being used to post messages. We
have turned off the automatic display of the error messages relating to Cake’s rendering of
the input tags. This is because we want the error messages to be displayed before the input
fields. To add the error messages before the field, we manually display the error messages,
as in this example:

A sample form for adding a message is shown in Figure 4-4.

Note The Ajax helper is a wrapper for Prototype’s methods. In the Ajax helper, you can use the
option to specify which container to update the return result. If you don’t use the option, Cake
will use Prototype’s method. If you do specify an option, it will use the method.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 116

 Figure 4-4. Posting a message

Process a Message
In the processing or saving of a message, we use a model that directly maps to a table. This
is unlike some of the earlier controller actions, where the models were essentially wrapper
classes for validation, as is an API method that we’re exposing. As shown in
 Listing 4-16, it follows the same class structure as the other API methods.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 117

 Listing 4-16. Save a Message Controller (mf_message_process_controller.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 118

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 119

There isn’t much in the process view for HTML requests. It simply displays the message
form again, as follows:

In Listing 4-16, we start off with some Cake validation. Once validation is all good (on line
47), we do the business stuff of saving the message. If a user is posting a new message, we also
need to create a thread record for it. However, if the message wasn’t saved for some reason, we
need to remove it from the thread record that we have already saved.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 120

We have used UUIDs to help us with two coding tasks (see lines 50 and 51):

This isn’t strictly needed, as we can always get the ID quite easily once the thread
has been saved.

post), and a message needs the ID of the thread, it makes sense for us to generate the
IDs within the code, rather than rely on the database to give us IDs. We save on the
number of queries we make and have fewer lines of code.

Another feature within the code in Listing 4-16 is the redirect after the post, which is quite
a common practice nowadays in order to avoid repeated posts. However, this feature isn’t
needed in an Ajax call, so we filter this out on lines 32, 66, and 105.

Process a Search Request
Again, the follows the structure of the other API methods, as
shown in Listing 4-17.

 Listing 4-17. Search for Messages Controller (mf_search_process_controller.php)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 121

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 122

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 123

We first validate to see whether we have a search term on line 73. Once that passes, we use
Cake’s pagination feature to split the results into pages.

We have used a dummy model as a way to validate our search term using
Cake’s validation function. We need to store the search term in session so it can be used dur-
ing the pagination when a user selects a different page.

On line 83, we have used MySQL’s operator in our queries. This gives
a wider range of accurate matches. To use the MySQL operator in your code,
you will need to create a full- text index on the database fields using this command:

Note Avoid using the operator. The operator is quite expensive, as it must scan all the fields
where the operator is used. Also, it doesn’t match variations of the word. For example, if the search term
is running, it won’t search for run or runner. MySQL has many other search methods besides the standard

. See for details.

The view for our search function is shown in Listing 4-18.

 Listing 4-18. View Template for the Search Action Class (/app/views/mf_search_process/index.ctp)

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 124

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 125

The view loops through the message results and formats the output. In the pagination
helper methods at the bottom, we have used Ajax for the and links. In Cake, we sim-
ply add the following line to Ajaxify the links:

Tip We have used the text helper to highlight our search term. But don’t forget there are also some
other basic functions in the Cake API that may help you out in other situations. For example, in parts of this
application, we have used the helper function instead of using or even the Cake shorthand
function . See for details.

Writing the API Documentation
For many developers, writing documentation is never a pleasant experience. But for this chap-
ter, you could say it’s the end point. Without the documentation, there’s no reason for writing
the API. Why bother to structure our actions around the Command pattern? It would have
been easier to just write each action within one or two controllers.

The following shows the documentation for the Web Forum API as it would appear on our
forum web site.

Welcome to our message forum API. We provide five different methods for you to use.
All our method returns use the JSON format. Each request will return four or more keys. The
standard four keys returned on every request are as follows:

: If 1 is returned, this means the request was processed successfully. If 0 is
returned, then see and key.

: A human- friendly return message. This will complement the key.

: This will contain error messages relating to the result. It will be given in key/
value pairs, where the is the name of the parameter and contains the error
message.

: If the request returns data, it will be held in this key.

You must end all URL requests in . An example request would look like this:

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 126

And the return response may look like this:

The API documentation follows.

MfFetchMessage
Get one forum message.

Arguments
 (Required)—The message ID

HTTP Method

Syntax

Return
Standard return keys

MfFetchMessages
Note the extra letter . Get more than one message from the forum. At present, we filter only
by the thread ID.

Arguments
 (Required)—The thread ID

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 127

HTTP Method

Syntax

Return
Standard return keys

MfFetchThreads
Get the forum threads. This returns a set of paginated messages. The messages are sorted
according to the date of the last message that was posted within a thread. Each page has 20
messages. At present, this amount is fixed.

Arguments
 (Optional)—The page number starting from 1. Numeric.

HTTP Method

Syntax

Return
Standard return keys

MfMessageProcess
Post a message onto the forum.

Arguments

 (Optional)—Sender’s name. Maximum 255 characters.

 (Required)—Sender’s e-mail address. Maximum 255 characters.

 (Required) —Message subject. Maximum 255 characters.

 (Optional) —Message body. Maximum 16,777,215 characters.

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 128

HTTP Method

Syntax

Return
Standard return keys

MfSearchProcess
Search for messages. The results are paginated with 20 messages per page.

Arguments

 (Required)—Search term. Maximum 255 characters.

 (Optional)—Page number. Numeric.

HTTP Method

Syntax

Return
Standard return keys, plus extra key, which contains the search term

CHAPTER 4 A MESSAGE FORUM WEB SERVICE 129

Summary
In this application, we’ve covered several Cake topics, including the use of Ajax, JSON web
service returns, Cake pagination, the use of validation in a model with no associated table, and
how to include the TinyMCE browser editor. The highlight of the chapter, however, was the
building of a web service API.

The application still has a number of features we should add before it can be used in
a commercial environment. Here are some suggestions that you can use to further develop the
forum application:

or at least keep it down to a minimum. In the final chapter in this book, we implement
a Captcha authentication test. You can easily integrate this into the forum application.
However, this puts the responsibility on every user. If you don’t like interrupting the
usability of the site, you can employ a filter, like a Bayesian text filter, instead. There
are several PHP versions of this filter floating about. For other techniques, see

.

users who have posted questions.

-
ever, this might be a barrier to the use of the forum, since it’s one more hurdle for users
to jump over. Fewer users posting messages means fewer people will find anything
interesting on the forum.

action classes like and our API action classes like
 more or less live within the same domain. They share

the same folders and same parent controllers. It’s as if they were part of the API, but, of
course, they are not. You should separate them out, either into separate controllers or
separate folders.

C H A P T E R 5

Google Maps and the
Traveling Salesman

Some friends of ours are about to go on a big European vacation. They talked about how
they’ve used Google Maps to help them find the location of hotels, restaurants, and local
attractions. They wanted to keep friends and families updated of their progress, but didn’t
want to use e-mail. Furthermore, they weren’t sure in which order to visit the places. Being far
more enthusiastic than they were, we said we would write an application for them that they
can use to enter their destinations, make comments, and plan their journey.

In our application, we’re going to be covering many topics. Since we’re going to be using
Google Maps, client- side JavaScript will be employed. We also want to store the locations and
the comments they make. Naturally, we’ll be creating some Cake models to represent these
data entities. We will also be building a straightforward controller to hold the functions that
will manage the locations and comments.

One of the main features of the application relates to a classic computing puzzle called the
“traveling salesman problem” (or in our case, the traveling tourist problem). Namely, a salesman
needs to visit a number of cities only once, but return back to the same place as where he started.
Devise an algorithm to find the shortest route for the whole trip. This part of the application will be
done client side using a simple algorithm, but the calculated route will be stored on the database.

Now, to get started, we’ll first talk about Google Maps.

Hello Map!
Google Maps is pretty easy to use, so we can dive straight in with the Google Map equivalent of
the Hello World program, as shown in Listing 5-1.

 Listing 5-1. A Simple Google Maps Example

131

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 132

The code in Listing 5-1 displays a 600 400 pixel Google Map on the page. The location of
the map is set to the coordinates for London, specified by the function on line 11.
The output from the code in Listing 5-1 is shown in Figure 5-1.

 Figure 5-1. Google Maps showing London

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 133

To get started, we need to include the JavaScript Google Maps API file. This is done using
the tag on line 6. Within the tag, you must provide your own Google Maps API key.
You can get a key (which is free) at .

Tip If you are developing on a local machine, you can still get a key. For example, you can use
 or , depending on which local URL you are using.

Once the page has been loaded via the event on line 16, the function
is called.

The method, as defined on line 8, first checks whether we have a compatible
browser. If we do, we then go ahead and create an object that will represent a map on the web
page. This is done using the class. Additionally, we also need to provide an area where it
can display the map; in our case, it’s a tag with an ID called on line 17.

We’re not quite finished yet though. In order for a map to be displayed, we need to tell the
map object to display a location, and this is done using the function on line 11,
which sets the location and displays the map at the same time. And that’s it! Wasn’t that easy?

When the browser is closed or when a different page is brought up, the event
calls . This Google Map function closes down unwanted connections and is used to
avoid memory leaks.

Google Maps Explained
Google Maps is almost exclusively a client- side JavaScript API. Although you can make some
 server- side calls, that is not encouraged. After all, Google collects better statistics if the calls are
made from the browser rather than from the server.

Note To effectively use Google Maps, you need to have some basic knowledge of JavaScript, particularly
the object- oriented areas of the language. Two sites to get you started are

 and
.

Before we start, let’s go over the main features of the API that are relevant to our application.

Geocoding
Geocoding is the process of converting textual locations such as street addresses or place
names into geographic coordinates. This is important for a number of reasons. We can locate
exact positions on a map, enabling us to place markers accurately. It eliminates confusion
where two or more places have the same name.

The Google Maps API includes a class that provides us with a geocoding service. This is
the class.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 134

Google Map Events
Within browsers, JavaScript can be programmed to execute code depending on certain events.
In traditional terminology, this is called event- driven programming. These events come in
many forms: they can be mouse- based, keyboard- based, or even based on other events, such
as when a page is completely loaded.

Event-based programming is particularly important in an Ajax environment. Since calls
are mostly asynchronous, things don’t happen in a nice serial fashion.

Note Before the use of Ajax, just about every activity on a browser was synchronous. Users had to wait
for feedback whenever they generated an event, such as by clicking a link or submitting a form. Essentially,
you could make only one call to the server at any one time. With the use of in Ajax, we can
now make many calls to the server within a single web page, which makes them all asynchronous. Events
can happen independently of each other.

Google Maps defines its own specialized events, which are handled by the API itself. These
are separate from the DOM events within a browser, which are more generic. For example,
a event can be attached to any instance of a map, so when a user clicks a map, a call is
made to a function, which opens a window with information regarding the location that the
user has clicked and additionally stores the coordinates of the location with a call to the server
using Ajax. Map events are handled by the object. We will register events using the

 static method.

Map Interface Elements
In the Google Maps API, you can add interface control elements, which allow you to interact
with the map. Examples include buttons that you can use to move the map around, instead
of using the mouse, and a sliding control bar to zoom in and out of the map. In Google Maps
terminology, these are known as controls. All the control elements subclass the class.
You can define your own control by subclassing this class. For example, you can create a but-
ton that makes an Ajax call to your database server, fetching any journey near that location.

Overlays
Objects that move with the map are called overlays. These can be pushpins marking the loca-
tion of a point or graphical lines that show route directions. The API provides several built- in
overlay classes, which are listed in Table 5-1.

Markers are interactive in that they can be dragged across the map and placed in a new
location. Each marker has an icon attached to it. You can define your own icon or use the
default one.

A large number of markers can slow down the display of the map. As a result, the API has
a marker manager class called .

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 135

 Table 5-1. Map Overlay Objects

Overlay Description

This class is used to mark a point on the map.

This class is used to lay down lines on the map. There is also a class,
where the lines form a closed area.

With this class, as well as drawing lines on the map, you can add images on
top of them.

With this class, the map itself is an overlay. You can modify the map itself with
your own version of the map. However, you probably won’t be using this very
often. The pop- up bubble speech window is a special overlay; only one can
exist in any one map instance.

Driving Directions
One useful feature in the Google Maps API is the ability to map out a travel route via several
locations. These routes are then marked in blue on the map. This is done via the
class. A very useful feature is the ability of the class to take locations either as textual names or
latitude/longitude coordinate points. As an example, Listing 5-2 shows plotting a route from
New York to Anchorage. Figure 5-2 shows the route map itself.

 Listing 5-2. Using the Google Maps GDirections Class to Find a Route

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 136

 Figure 5-2. Route from New York to Anchorage

This class will be an important component of the project. When a query is
sent off to the Google servers, it returns a number of useful items of information. One of which
is the distance between the locations. This is very important to us, because it will provide the
distance via the roads on the map rather than the straight linear distance between locations.
However, if the user were planning to fly, the straight line distance would be more appropriate.
In that case, we could easily calculate the distance using the latitude/longitude information.

OK, now that we have explained how Google Maps work, we can start our application by
gathering the requirements.

Application Requirements
Our travel application will allow our friends and also the general public to plan their travel
journeys and make comments on the places they visit. It will be a web site where they can keep
friends and families up-to- date on their travels.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 137

So that our application can be as successful as possible, we will employ a bit of user-
centered design philosophy, a term originally coined by Donald Norman. We will think of the
application in terms of users or personas, rather than application functions. Sometimes these
needs also correlate directly with business objectives.

Using our friends as our average persona, we map out their needs and the conclusions
that we can draw from them. A user interface can then be created based on these conclusions.

We run through the ways in which our friends will use the site. We start the process by
asking them some broad questions. These are mapped out as follows:

Scenarios/Needs: We’re going to Europe soon, and we want to keep a blog or journal of
some kind to keep family and friends updated.

Conclusion: Users want to be able to enter destinations and make comments about
those destinations. We need to save the destinations so they can make comments while
they are on their journey. We can continue to draw conclusions from this simple need,
but that is probably enough for us.

Scenarios/Needs: We’re not sure which places to visit first.

Conclusion: There are numerous conclusions we can draw from this statement.
For example, we can map out a user journey based on different personas: art lovers,
party people, or a combination of personas. Or we could map a user journey based on
age groups, such as for students. But in this case, we will simply employ the traveling
salesman algorithm to find the shortest route between each destination.

We will base our interface on what we know from this brief user- centered design exercise.
So far, we have covered the broad issues of the application. Next, we will map out a func-

tional specification that we can use for our Cake application. The functions will include the
following:

application.

entering their destination.

In addition to these functions, we will add a further twist by allowing users to add tags to
their journeys. This will be a comma- separated list of strings or tags, which you can associate
with a journey.

From the specification, we have sketched out the simple layout of the application in
 Figure 5-3.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 138

 Figure 5-3. Sketch of our home page

Application Structure
We will set out to create our journeys controller, which will represent the journeys within
the application. It will be responsible for the server- side needs of the application, saving and
retrieving user journeys, for example.

Along with the journeys controller, there will be three related models. Remember that the
model class names follow the name of the controller. The model class names we will use are

, , and .
 Table 5-2 shows the relationships among the different tables. This will give us an overall

picture of how the different data elements are related to each other.

 Table 5-2. Main Database Table Relationships

Table Relationship

Each journey is composed of different locations. Also, each journey can have more
than one tag.

One location belongs to only one journey.

One tag belongs to only one journey.

The information in Table 5-2 can also be shown graphically in an entity- relationship
diagram, as in Figure 5-4.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 139

 Figure 5-4. Entity- relationship diagram of application tables

Tip Data schemas are quite valuable during development. They help you to visualize the relationships
among elements, identify problems, and maybe even improve on the relationships. In our example, we see
that a route has one tag line associated with it, but later on, we may also want tags associated with loca-
tions. But would this add too much complexity to the application? Always be aware of feature bloat—adding
unnecessary features that may be used only by a small percentage of users.

From the data schema, we can create our database tables. Listing 5-3 shows the structure
of the table.

 Listing 5-3. The journeys Table Schema

The field stores the journey name that the user enters. The field is for
comments about the journey itself. Editing a journey can be done only when a correct pass-
word is used, so we have created a field.

 Listing 5-4 shows the structure of the table.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 140

 Listing 5-4. The locations Table Schema

The name of the location that the user enters is held in . The field
stores the comments for a particular location. The field is longitude and latitude infor-
mation taken from geocoding the location name. Finally, is the foreign key to the

 table.
 Listing 5-5 shows the table structure.

 Listing 5-5. The tags Table Schema

The table is pretty simple. The field holds a particular tag name for a journey.
The field is the foreign key to the table.

Cake Models
From the schema in Listings 5- 3, 5- 4, and 5- 5, we created the Cake models, as shown in
Listings 5- 6, 5- 7, and 5- 8.

 Listing 5-6. The Journey Model (/app/models/journey.php)

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 141

 Listing 5-7. The Location Model (/app/models/location.php)

 Listing 5-8. The Tag Model (/app/models/tag.php)

All three models are quite straightforward, except , which contains a asso-
ciation that reflects the schema. A simple validation code has also been added, requiring each
journey entry into the database to have a within it.

The Interface
Like most modern web applications, a large part of our application is written in JavaScript
that sits within the browser. Most of the action will initially occur in the browser itself. The
 server- side code comes into play when the user decides to save or retrieve the journey
information.

The Global Layout
We start off by creating the global layout file in , as shown in
 Listing 5-9.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 142

 Listing 5-9. The Global Layout File (/app/views/layouts/default.ctp)

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 143

Note You can create many layouts in the folder and change between them in the same view.
Just set the variable in the controller action. For example, if you created a new layout file

, you can change the layout from within your action with this statement:
.

Let’s go through the important lines in Listing 5-9. We start by setting the title in line 10.
Next, we include our CSS file for our application in line 13.

On line 15, we bring in the Google Maps API. Remember to use your own key that corre-
lates to your domain name.

Following this, we use Cake’s JavaScript inclusion method on lines 18 and 19 to include
the Prototype and script.aculo.us JavaScript libraries. We also include our site- wide JavaScript
file , located in .

Within the main tag, the page starts off with a simple header followed by a navigation
bar using Cake’s HTML helper to create the HTML links, as follows:

: This simply takes a user back to the home page.

: Allows a user to retrieve a saved trip from the database.

: A user can display any journey.

To finish, we echo the variable on line 49. This takes the rendered
controller action view content and inserts it into that position.

Home Page
Now that the global layout has been set up, we can create our home page view. We’ll use
Cake’s designated default home page , in the folder , shown in
 Listing 5-10.

In our application, users must be able to plot out a journey quite easily. On the home
page, we will create a form where users can create their journeys the moment they enter
the site.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 144

 Listing 5-10. The Default View (/app/views/pages/home.ctp)

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 145

In Listing 5-10, we haven’t included any form- posting elements apart from the Save
Journey button on line 43. All of the other buttons relate entirely to client- side code and will
be used in conjunction with the Google Maps functionality. The first button, Enter a Loca-
tion, on line 12, will save and display the location in Google Maps locally. The Calculate
Journey button, on line 23, will use the Google Maps API and JavaScript to calculate the
shortest journey. The Start Again button, on line 29, will clear the slate for a new journey
to be entered.

When this home page code is processed with the default layout, we get the output shown
in Figure 5-5 (with Paris set as the starting location in this example). The code and functional-
ity behind all these buttons will be explained in the next section.

 Figure 5-5. The application home page

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 146

Travel Mappr Manager
Now we’re going to talk about the Travel Mappr manager class in . The
class will be called , and it will handle all the client- side functionality relating
to the application. is called from within the default layout , as shown on line
21 in Listing 5-9. We use Prototype’s API to help us with the creation of the class itself.

Note You may have noticed that Listing 5-10 doesn’t contain any events. If you are used to
writing or events within HTML code, consider using Prototype’s method
instead. It allows you to separate any JavaScript code from the content.

 Listing 5-11 shows the main skeleton structure of our class in the
 file. We have purposely left out many other functions, as commented on line 75. These

will be described individually.

 Listing 5-11. The Main JavaScript File Used in Our Application (/app/webroot/js/site.js)

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 147

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 148

At the beginning of Listing 5-11 are some variables to hold various journey- related values.
When is called, the method on line 15 is called. This loads and dis-
plays the map and also starts observing the map buttons we have created.

Once the DOM has been fully loaded using the event on line 23, the buttons
get the event attached to them.

The function will locate the place in Google Maps and display it in the
map canvas and also save the details locally in a JavaScript variable.

The function will carry out the algorithm for finding the shortest journey
using the shortest neighbor algorithm.

The function will clear reset variables and allow a user to enter a new journey.
Finally, once a journey has been plotted, the function will observe the sub-

mit event in the save journey form and post the journey details to the server for saving.
In the following sections, we’ll describe each of the missing functions in Listing 5-11,

starting with the function that helps us to find a Google map location.

Finding Locations
When a user enters a location name and clicks the Enter a Location button, the
function, shown in Listing 5-12, is fired.

 Listing 5-12. JavaScript to Find a Google Map Location

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 149

This function starts with a couple of error- handling lines. Then we make the geocoding
API call on line 22. If the Google API call finds the location, we store it
using our function on line 44. We simply hold the location name and coor-
dinate in an array and push it into a global array. Finally, we set the map to show the location
and add a pushpin marker, starting from line 35.

 Figure 5-6 shows an example of what a user should see after entering a location.
In the next section, we’ll look at the algorithm for our traveling salesman/tourist problem.

It’s the shortest distance between locations. Even so, it’s pretty long, so you may want to jump
to the next section and come back to the algorithm later.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 150

 Figure 5-6. User enters one location

The Traveling Salesman Algorithm
When a user has entered a set number of locations and clicked the Calculate Journey button,
we find the best journey with the “traveling salesman” algorithm. As the algorithm is quite
large, we have split the code into three parts. We start the algorithm in Listing 5-13.

 Listing 5-13. The Traveling Salesman Algorithm Part 1

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 151

The variable at the top of Listing 5-13 holds all the journey combinations that the user
has entered. The function starts on line 3 with a couple of lines of error
checking. Next, we work out all the combinations between the locations on line 17 to line 35.
After that, we call on line 37, which in turn makes the Google geocoding
requests to fetch the distance for each pair of locations in . Once that is
done, we can start calculating the shortest distances between locations.

We continue from the previous listing with Listing 5-14.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 152

 Listing 5-14. The Traveling Salesman Algorithm Part 2

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 153

Notice that the function in Listing 5-14 is recursive. The Ajax geo-
coding call to the Google servers is asynchronous. We create a object on line 21,
make the call to fetch the geocoding data, and then quickly carry on with the next location.
The statement will automatically get the distance for us when the reply
comes back.

OK, just to recap, we first work out all the combinations from one location to another and
store this in the array. Next, we make geocoding requests to fetch the
distance for all the location pairs in . Once all that is complete, we can
start working out the shortest round- trip.

Working out the shortest round- trip starts with the function in Listing 5-15.
Before we start, there are two important variables to mention: and . From
their names, you can probably guess what they hold: locations already visited and the final
path that we have worked out.

 Listing 5-15. The Traveling Salesman Algorithm Part 3

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 154

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 155

Our function starts with an outer loop on line 12. If there is a next location to
visit, we carry on with the algorithm. Within the loop, we first pick a starting location using

 on line 21. Next, we work out the nearest neighbor to that point using the
 function on line 25. This gets all the neighbors that haven’t already been

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 156

visited. From this, we use a simple bubble sort to work out the shortest distance to the next
location. When we come around the loop the next time, we pick the last city we came from as
the next starting point and start over again. Once we have visited all the locations, we plot the
journey path on the map via the function on line 45, which we will cover
in the next section.

There are many functions that support . These functions are described in
 Table 5-3.

 Table 5-3. Supporting Functions to calcTSP

Function Description

On line 48 in Listing 5-15. This function tells us whether there are any more
locations to visit. Once there are no more locations to visit, we have found
our shortest route.

On line 57 in Listing 5-15. This function provides us with the next location to
visit, which is always the destination location of the last journey.

On line 80 in Listing 5-15. Once a location has been visited, this function
marks that location, so that we do not visit the same location.

On line 85 in Listing 5-15. This tells us whether we have visited a location.

On line 100 in Listing 5-15. This gets all the neighbors that we have not
visited. Using the result returned, we can then find the neighbor with the
shortest route to the location.

Plotting the Journey
Using the Google Maps class, we can plot the path between the locations. Using
the method in the class, a blue path is marked on the map
itself. The code is shown in Listing 5-16.

 Listing 5-16. Plotting the Journey

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 157

Most of this code is devoted to organizing the locations in a format that will be suitable
for use for the function. We first get the shortest route from the

 variable by looping through it on line 5. Then, on line 12, we trace a route from the
end point back to the start so we have a loop. On line 14, we create a object for
the plotting of the route. Next, starting from line 19, we need to carry out some housekeeping
functions. Google automatically creates pushpin markers when we plot a location. We need to
clear these, because the object creates additional markers that show the numeric
order of the locations.

It is worth noting that for a lot of countries, the path and distance use the roads as the
mode of travel, which is the route that we would prefer. However, in countries where Google
doesn't have any road information, the straight path between the locations is used.

And that is just about it. We finish with the class- creation code
shown here:

We’re not quite finished yet on the client side, as there are two more buttons: Start Again
and Save Journey. Start Again is pretty straightforward, as it just clears the variables and
refreshes the map. Save Journey is a little more interesting. As shown in Listing 5-17, when

 is called, we first check whether there is a journey to save. If there is, we basically
create a JSON string format from the calculated route and insert it as a value in the hidden tag
element with , after which the form is submitted to the server. Using the journey
we plotted earlier, Listing 5-18 shows the data format of the locations as a JSON string.

Note What is a JSON string format? JSON stands for JavaScript Object Notation. It is a data format
much like XML or even CSV. The popularity of its use came as a result of Ajax, since the format is native to
JavaScript. It is also less verbose than XML.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 158

 Listing 5-17. The saveJourney Function

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 159

 Listing 5-18. Our Journey Locations in a JSON String

We can now plot a journey and see how it looks on screen. Let’s assume our friends
are going to visit three locations: Marseille in France, Madrid in Spain, and Paris in France
again. After entering the three locations, our map application will look like the one shown in
 Figure 5-7.

Now that we have completed the client side of the application, we’ll jump across to the
server side and look at how a journey is saved into the database.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 160

 Figure 5-7. A journey with three locations

Journey Data
For our application, we need to save the journey details and also the tags associated with
a journey. We also need to give users the ability to retrieve journeys for viewing and editing.
Without further ado, we’ll show you how these functions are done.

Saving a Journey
All our actions are contained in the one and only in the application.
Within that controller, we save a journey using the action, as shown in Listing 5-19.
This is the target action for the Save Journey button on the client side. It parses the journey
name, tags, and comments and also the journey details including the destination comments.
The detail of the destinations arrives in the JSON format. We could have chosen XML or even
some comma/semicolon type proprietary format. However, the JSON format seems to be the

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 161

de facto format nowadays for web client/server data exchange. We set two variables to be used
by the view: and .

 Listing 5-19. Saving Journeys

Now let’s look at the view that goes with the action. The is used to
decide whether we are saving a new journey or editing an existing one. The same form is used
to add or edit a journey. The view for action is shown in Listing 5-20. It is stored in

. The output of the view is shown in Figure 5-8.

Note We have noticed that as applications get more complex, they often branch out into separate add or
edit action/view pairs. Be careful, as the code in the controller and view can get out of hand. Use components
in the controller and view helpers or elements in the view where you can spot common code. In fact, we were
pretty close to having two views, as we weren’t sure whether to have the password field when editing a journey.

 Listing 5-20. The View for the add_form Action

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 162

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 163

 Figure 5-8. The add_form view

In the action, we decode the JSON locations details. These are then passed
onto the view for display. In the view, we manage the layout of the elements ourselves by set-
ting the and parameters to . Each journey needs to have a password so a user
can come back and edit a journey. In practice, you would probably create a user account
and attach journeys to a particular user. However, to keep the application simple, we have
attached a password to each journey instead.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 164

We have created a view helper named , which is stored in
. In the class, shown in Listing 5-21, we have a method

on line 5, which is used to help display the comment tags that go with each location.
Within the helper, we can use other helpers by including them in the array.

 Listing 5-21. The View Helper Class MapHelper (/app/views/helpers/map.php)

In Listing 5-20, the form is posted to the action on line 19. This is the action in the
 that saves the journey when a user has entered the journey details. The

 action is shown in Listing 5-22.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 165

 Listing 5-22. Saving the Journey Data

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 166

On line 5, if no data is supplied, we simply redirect the user back to the home page, as we
regard that as an error. If data is supplied, we save the three data sets into the tables ,

, and . Note that in a production environment, these three units of code should
be within a transaction block. If one fails, the previous save actions should be rolled back.

If everything has been saved OK, we display the view on line 68. If not, we
render the form again with error messages.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 167

We have used two protected actions/functions to save the locations and tags:
 and . The underscore prefix tells Cake that they are protected actions

and should not be executed via any URL request.

Saving Tags
The tag data that goes with a journey is a set of comma- separated strings. These strings are
split up and entered into the table separately. The tag- saving protected action is shown in
 Listing 5-23.

Note We could have placed the tags within a single database field in the table and called it .
However, this would not conform to the first normal form in database normalization, where each field must con-
tain single, not multiple, values. We would run into trouble when we wanted to query the tags within a route.

 Listing 5-23. Saving the Journey Tags

In Listing 5-23, we simply use the PHP function to split the tags on line 3 and
then loop through the strings and save the tags individually. When we are editing a journey, the
saving or updating of the tags is done slightly differently, in that we first delete all the tags relat-
ing to the journey and then we save the updated tags as if they were new. We find this technique
to be simpler to maintain and easier to read and reuse than the alternative method, where we
update any tags that have been changed and delete any tags that have been removed.

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 168

Retrieving and Editing a Journey
The code to retrieve a journey is pretty simple. The action is shown in Listing 5-24. Yes, it’s
empty, because it’s just a simple form with no other dependencies. The main view elements
are shown in Listing 5-25. We have cut some of the HTML markup to simplify the view.

 Listing 5-24. The Controller Action to Retrieve a Journey

 Listing 5-25. The View to Retrieve a Journey

The retrieve form simply renders a traditional HTML form with two input elements and
a submit button.

The target of the form is the action. The outline of the code is shown in
 Listing 5-26. It’s very similar to the action. If no data is supplied, we simply redirect the
user back to the retrieve form. If data is supplied, we use Cake’s model method to find
the journey based on the journey ID and encrypted MD5 password. If a journey is found,
we’ll use the action to display the results. If not, we will render the retrieve form
with an error.

 Listing 5-26. Retrieving a Journey

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 169

Viewing a Journey
Viewing a journey is similar to retrieving a journey, except we can only view the journey details
(and not edit them). The action is shown in Listing 5-27.

 Listing 5-27. The Action to Display a Journey

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 170

The action handles both and scenarios. In the action, journeys can be dis-
played where the journey ID is within the URL request, as in .
In a action, the journey ID is stored within the variable.

In this action, we have used Cake’s methods to
retrieve the journey. The view is pretty straightforward and is shown in Listing 5-28. In this
case, we have combined the display form with the view inserted below it. An example of the
output is shown in Figure 5-9.

 Listing 5-28. The Journey View (/app/views/journeys/display_journey.ctp)

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 171

CHAPTER 5 GOOGLE MAPS AND THE TRAVELING SALESMAN 172

 Figure 5-9. Viewing a journey

Summary
In this chapter, we have put together a simple travel log application. On the front end, we have
used Google Maps to plot and work out a journey plan using purely JavaScript. On the server,
we’ve created a journeys controller to handle saving and retrieving data. In the Cake models,
we’ve used and associations, as well as some simple validation. It’s worth
noting that some actions have more than one view.

Friends and family members can easily see what the travelers are up to by retrieving
a journey, either via a URL or by using the display journey form. As a result of the feedback we
got from our traveling friends, we have more tweaks and changes to implement, which we’ll
leave to you as an exercise. These are their comments:

a separate, new entry.

a public gallery.

C H A P T E R 6

Mashing Twitter with
the Google Translator

For our fast- paced modern lifestyle, Twitter has filled a gap that fits between text messaging
and blogging. You have a spare minute and want to let your pals know what you are doing or
thinking, Twitter fits that need nicely. Twitter is a social networking and micro- blogging web
application. You can post short messages to tell your friends and everyone else what you’re up
to right now. These short messages are referred to as statuses, updates, or tweets.

We can see Twitter being quite an addiction: Twitterdiction! In fact, we often view the
Twitter public timeline, which is a listing of what people around the world are doing at that
moment. However, quite a number of messages are in a foreign language. If a message has
a cute picture, we cut and paste it into the Google Translate web site (

) to see what it says. Wouldn’t it be nice if we could do this translation automati-
cally? Here’s a stroke of luck: Google now has a language translation web service within the
Google Ajax Language API. And in true Web 2.0 and Cake fashion, we can easily mash them
together and bake some Cake!

In this chapter, we’re going to cover quite a number of Cake topics. Twitter comes with
an API that we can call from the server. The Google Ajax Language API can be called from the
browser via Ajax or the server, but in this chapter, we’ll be using only the server- side method.

So, let’s get to creating our application, which we’ll call Twitter Twister.

The Twitter API
The Twitter API comes with many methods. These methods are submitted via the principles of
representational state transfer (REST). In most cases, this will be HTTP or —what most
people have been using since their early days of web development. Twitter will also return the
appropriate HTTP status code.

There are a few more items to be aware of when using the API:

requests to 70 requests per 60 minutes. Essentially, if you
make one request per minute, you’ll be OK.

 UTF- 8. As such, we must develop our application with this in mind.

173

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 174

Within the Twitter API, we’ll be using only one of the methods: the . This
returns the 20 most recent statuses from the server. This is the only method in the API that
doesn’t require authentication.

Calling the public timeline is easy. Using Cake’s , you can fetch the most recent
20 statuses as follows:

As you can see, requesting the public timeline is a simple case of supplying the
method with the URL. The variable will contain details of the 20 statuses in XML format,
which we can easily handle in Cake or PHP. Listing 6-1 shows an example.

 Listing 6-1. Twitter XML Status Example

On line 4, note the tag, which is the tag that contains the Twitter status. Additionally,
the tags , , and (on lines 4, 13, and 15, respectively) are the three
XML tags that may contain foreign/multibyte characters. However, in our application, to keep
things simple, we’re just dealing with the tag.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 175

Tip Some of the normal string manipulation functions do not always work on multibyte characters. For
example, may return different length sizes depending on whether the string is single or multibyte.
Cake has a useful class called , which contains some string- manipulation functions specifically
written for multibyte characters, similar to PHP’s module.

Now that we have covered the basics of the Twitter API, we can show you how the Google
Ajax Language API works.

The Google Ajax Language API
The Google Ajax Language API is part of the Google Ajax API set of products. We’ll call it the
Google Translator for short, as that’s its main feature.

The API allows you to translate or detect language text. The API commands can be called
via Ajax, through other non- JavaScript environments like Flash, or on the server. For further
details on using the Ajax calls, visit the Google Language API web site at (

).

Caution It must be said that the quality of the Google Ajax Language API translation can be quite poor.
However, the service will serve our purposes, since we just want to get an idea of what’s in the Twitter statuses.

To use the commands on the server side, again, we can employ Cake’s class.
For example, to translate “hello world,” we use the code in Listing 6-2.

 Listing 6-2. Translating “Hello World”

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 176

In Listing 6-2, we use the command and pass three parameters to it:

, for version of the API

, for the text we want to translate

, for the source language English () and target language Japanese (),
separated by an entity- encoded vertical bar symbol:

All the API commands respond in the JSON format, which we can easily decode using the
PHP command .

Google’s API documentation advises developers to make sure an HTTP referer header is
always in place when making requests. This is shown in line 8 of Listing 6-2. Additionally, an
API key should be sent. You can obtain a key from either of the following signup pages:

)

)

One useful feature is the language detection. If you do not know the original language that
you want to translate, you can omit the source language in the parameter. So, for
example, we could simply write . Now how cool is that!

Note At the time of writing, the Google Ajax Language API is still quite new, and there don’t appear to be
any request limits. However, we can all be quite certain this will change at some point in the future.

Application Requirements
Even though we are essentially developing this application for fun, we still need to establish
some requirements and consider usability.

The broad requirement is to give users the ability to view the current public timeline in
any language by using the Google Translator to translate the status text. This simple statement
gives us a starting point for scoping the application.

Scoping an application can be a lengthy task, involving many aspects, such as content, func-
tion, layout, wireframes, and site maps—just to mention a few. Since our application is quite
small and should be fun, we will concentrate on the following simple functional requirements:

-
nitely need to cache results. We will take advantage of Cake’s cache helper to assist us.

we still need to cache results and save on bandwidth and the time it takes for the trans-
lation round- trip.

for Cake to provide data in different formats, we will add an RSS web feed service as
well. We will use Cake’s RSS helper.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 177

site available in other languages as well. Using Cake’s internationalization and localiza-
tion classes, we can easily support this.

Here are the details of these requirements:

in their original language are displayed on the first page. Since this happens to every
user, we must always cache the results. We will be making requests to Twitter every 60
seconds. As such, we will cache the results every 60 seconds.

-
fore, we will have a background process that will make Twitter requests and cache the
results every 60 seconds, regardless of whether anyone is making a request to view
statuses. In this way, we have separated the viewing of the statuses and the process that
requests Twitter statuses.

-
tion will also determine the language in which the rest of the site will be displayed.

In order to emphasize the raw nuts and bolts of the application, the interface layout will
be kept as simple as possible. There will be two web pages:

out a rough paper-and- pencil prototype in Figure 6-1. The top part consists of a header
and tag line followed by a navigation area. We also allow the user to change the lan-
guage at any point via a drop- down list on the right side of the page.

 Figure 6-1. Sketch of the status listing page

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 178

As shown in Figure 6-2, it will just list the date and time of each Twitter request. Each
item in the list will be a link to the first view statuses page. This page will also have the
 drop- down list to allow the user to change the language.

 Figure 6-2. Sketch of the archive listing page

Application Structure
Each Twitter request we make will need to be stored in a database table. Remember that
a single Twitter request to the public timeline returns 20 statuses. This naturally maps into
a one-to- many relationship. Listing 6-3 shows the statements for both the

 and tables.

 Listing 6-3. The twitter_requests and twitter_statuses Table Schemas

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 179

In the table, the field simply holds the time of the request.
The table will mainly hold all the data that has been returned by the Twitter
request. Most fields are stored in the collation. However, the ,

, and fields are stored in , since they will con-
tain foreign characters. Notice that we’re not using , as we may want to add
search functionality to the fields later on; users expect searches to be case insensitive— .

The structure of how the translation will work is slightly trickier. When a Twitter request is
made, the statuses returned will contain different languages. Do we also want to automatically
translate them into all the other available languages? Pondering this point, we come up with
a half yes and half no answer. Yes, we do want to translate them into other languages, but no,
not immediately after fetching them from Twitter. This job should be spread over a period of
time instead.

When a user does want to view the statuses in another language, whether they are current
or past statuses, we will translate them on the fly and then cache the results. Thus, the first
user who chooses to view a Twitter request in a specific language will need to endure the time
delay that it takes to translate the 20 statuses. If we were running this application for real, we
wouldn’t want this to happen, as users would start to talk about how slow the site is to use.

When a status does get translated, the results are stored in the
table, shown in Listing 6-4. This gives us a one-to- many relationship between

 and , with one status having many different translations.

 Listing 6-4. The twitter_translations Table Schema

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 180

The and fields will contain the language code to translate from and to,
respectively. The field is, in a sense, redundant. When we are retrieving a translation
of a status, we don’t really need to know the language it was in, as we have a foreign key link to
the table, but we may need it in the future. The field will
contain the actual translation, so it needs to be in .

Since localization will be involved somewhere, we see it as an advantage to have a lan-
guage table that will help us bind different language areas together. Listing 6-5 shows the
schema for this table, named .

 Listing 6-5. The languages Table Schema

The table is essentially a lookup table for language codes. The field
is for the name of the language, such as Japanese. The field is the three- letter ISO
 639- 3 language code used by Cake. The field is for the two- letter language
code used by Google.

Note After much digging, we’re still not sure why Google’s language code has mostly two letters. We
think it’s a combination of codes, like the two- letter ISO 639- 1 language code combined with locale names.

 Figure 6-3 shows the relationships between the tables. The field in
the table is linked to the and fields in the
table. So we have a translation from one language to another language based on the

 entry. In the table, each request gives us many statuses, which
are recorded in the table, and each status has many different translations,
which are recorded in the table.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 181

 Figure 6-3. Database schema for all the Twitter Twister tables

Cake Models
We now have enough information to build our model classes. As shown in the database
schema (Figure 6-3), one Twitter request generates many Twitter statuses. This relationship is
shown in the model using the variable, as shown in Listing 6-6.

 Listing 6-6. The TwitterRequest Model (/app/models/twitter_request.php)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 182

The table sits between the table and the
 table. One record has many translations in the

 table. To complete the has- many relationship between the and
 models, we need to add the relationship to the Cake

model, shown in Listing 6-7.

 Listing 6-7. The TwitterStatus Model (/app/models/twitter_status.php)

The model, shown in Listing 6-8, is quite simple, in that one single
translation belongs to one Twitter status.

 Listing 6-8. The TwitterTranslation Model (/app/models/twitter_translation.php)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 183

Note that we’ll be adding some methods to the and models
later in the chapter (see Listings 6- 20 and 6- 22).

Oddly, the model is the most complex out of the lot, as shown in Listing 6-9.
Some of the code will make more sense when we explain caching later on.

 Listing 6-9. The Language Model (/app/models/language.php)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 184

The model includes two methods: and . simply fetches
all the Twitter requests using the method. There is nothing surprising about the method,
but bear in mind that the data it generates will be cached.

The method is a Cake model callback. The code within the method is executed
whenever some data is saved into the database. In our case, we want to delete the cache that
holds the data for the language drop- down list, so we can have an up-to- date list of languages.

Caution The method is called only if you execute the model method. If you use the
 method to execute raw SQL statements, won’t get executed.

Internationalization and Localization
Internationalization (abbreviated as i18n) is the process of developing software so it is
portable between different cultures without any change to its internal coding. Localization
(abbreviated as l10n) is the process of adapting that software to any specific culture by using
a predefined set of parameters called locales, normally stored in text files. In our case, a culture
is defined by a number of parameters: its language, number format, date/time format, and
currency.

Adding or changing the locale in Cake is quite easy. Note that in our application, i18n and
l10n will be handling only the static text of the site—such as tag lines, error messages, and so
on—so they are quite separate from the job of the Google Translator.

To get started, we first add the default language that we will use. In the
 file, we add the following line:

Tip In a real application, you would probably want to override depending on where the
user is connecting from. You can detect from a subdomain, the user agent header ,
or any of the IP geolocation web services. You can add this in the so each action uses the
correct language to display the view.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 185

Next, we need to set up the locale files. For our application, we will have only two lan-
guages available: English and Japanese. We will create the two files as shown here:

The cultural locale parameters are divided into categories. The category
basically handles text messages. Other categories exist, like to handle date and time
formats, but we won’t be using those in this chapter.

Cake’s i18n and l10n modules will use the content within the files to map between
languages.

The folder name of the language uses the three- letter ISO 639- 3 language code. The same
 three- letter code is also used in the setting. If you want to expand the number
of languages, either look in the Cake file or go to the official standards
body web site 3/.

The portable object files are human- readable and editable. There were originally
developed as part of the GNU utilities for language translation.

Listings 6- 10 and 6- 11 show our two files.

 Listing 6-10. The English .po File

 Listing 6-11. The Japanese. po File

It’s pretty obvious to see that will be used as the handle for the translations.
Now, to display the localized content, we use the global convenience function for

example, . This will echo the text, which corresponds to
the language that we have set in .

In the section “The Controllers” later in this chapter, we will go through how we have
actually implemented i18n and l10n in our application.

Tip In a production environment where there will be a lot of files, editing them should ideally be done
with a file editor, such as Poedit. Also, as files may contain multibyte characters, remember to save
them in UTF- 8 format.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 186

Web Services
In order to provide instant gratification for our application when people are away from their
PCs, we will give users the option to view our application as an RSS feed. They will be able to
easily see translated statuses when they are using a handheld device.

Adding different output formats for other devices to consume is a piece of cake! Or so we
thought. . . .

We wrote a few different methods to achieve what we wanted. Starting with our first
method, we saw that in the Cake documentation and some forums, the standard way to output
RSS or any other format is to attach the format name you want at the end of the action as a file
extension, like this:

In our case, we’ll add the RSS feed to the action. To get this to work, we need to tell
the class about our new extension. We do this by adding the following line in

:

Following this, we include the RSS helper in our file so we don’t need
to manually deal with any of the nitty- gritty RSS XML tags or headers.

Next, we need to have a specific layout for our RSS output. Under ,
we create a file called . This is the layout that will surround the actual RSS data. As
shown in Listing 6-12, we start off by adding the RSS header using the RSS helper. Next, we set
up some basic channel data. And finally we echo the RSS document by passing
the , which contains the list of statuses.

 Listing 6-12. The RSS Layout File (/app/views/layout/rss/default.ctp)

Before we proceed further, let’s recap. We want to view the same data in different for-
mats, while keeping the coding for the action unchanged. It will be the view that will change
depending on the type of request. Now, having completed the layout part, we need to write
the new RSS view. Under the controller view folder , we need

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 187

to create another folder called . In this folder, we create a file with the same name as the
action, . Listing 6-13 shows this file.

 Listing 6-13. The RSS View (/app/views/twitter_status/rss/index.ctp)

In Listing 6-13, the method takes the array and loops through each
status item through the function , which sets up the RSS XML data tags—like

, , and so on—in a form that the method can use.
Finally, we need to add the built- in component, so it can pick out the

correct view:

And that is pretty much the standard way of adding an RSS feed to your data. When you
specify the extension, the class router parses the extension. If you don’t tell Cake about
the extension and you make an request, you will probably get an error like this:

Once Cake knows about the extension through the class, the takes
over and renders the view that corresponds to the extension.

We haven’t quite finished with web services just yet. As we hinted early on, we ran into
some trouble with our RSS feed. The problem starts when we add parameters to our URL
action requests. For example, if want to view an archive Twitter request in another language,
this is the URL we could use:

It’s fine as it is, but if we want to view it in XML format, the URL would need to look like
this (note the extension):

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 188

or even like this:

Basically, the class just parses out the extension at the end of the URL. We feel
these are just too awkward looking. We want our URLs to look something like this instead:

Basically, we just add instead of .
To overcome this problem, we created two alternative methods. The first method is a bit

hackish, while the second one works better.
The first method is quite easy. Using the component, we just add the

following code snippet in the method in the :

returns the requested URL, such as
. then matches for the ending . If a match is found, we artificially set the

extension variable to . We feel quite uneasy with this method, as we shouldn’t really
be setting class variables manually like this. But, hey, it works, and one alternative solution is
better than none.

The second method we used to handle the extension is easier and more obvious than
the first. We just write a rule in our root file, as follows:

The new rule is shown in bold. It matches anything ending with and rewrites it in the
 version. So if a user types

it gets translated to

Using this rule and the standard method to add web services, we feel this
combination works well.

Caching
Our seemingly simple application has gotten a lot more complicated with the need to cache
results. To start caching, we need to turn on Cake caching. This is done in the controller

:

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 189

We want to use the Cache helper. We’ll just include it in , so all con-
trollers in the future can have access to it. In our file, we simply add the
following line:

Caching Views
Caching is a broad term. In our application, we’re doing different types of caching, one of
which is caching the views using Cake. This is where the output is saved, by default to

.
To cache a view, the setting is made in the action that corresponds to the view. In the con-

troller, there are two different ways you can do this. One way is to set the member
variable, as in this example:

This caches the action for 60 seconds.
We can also cache an action within the action function itself, like this:

This caches the current action for 60 seconds.

Caching Models
Cake goes through a lot of processing to build the object- relational mapping part of the
MVC structure. To save on the execution time, you can cache the model data by setting the

 controller variable to :

The cached model data is stored in the folder.

Caution If you change or add database fields, you must delete the cached data models. Be careful of
cached data during your development. Sometimes you forget about your caching and then wonder why your
changes are not showing up. Check your browser session cache and caching in Cake.

Caching Twitter and Google Translations
Once we get data back from Twitter and Google, that data is fairly permanent. The data we get
is saved to the database in the three tables we have created. This is unlike some web caching,
where data can be occasionally purged or destroyed.

In our application, the caching works in two levels. When a user requests the index page,
Cake first checks to see whether the view is held in cache. If its not, the action is called.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 190

This then fetches the most recent statuses from the database. This data is essentially saved or
cached in the database by the background cron process, which fetches the actual status mes-
sages from Twitter.

Caching and the Application Layout
Caching can bring up a lot of unforeseen problems within the application view. There are two
main points to be aware of:

 tag to wrap content that we don’t
want to cache.

When we specify in the controller that we want to cache an action view, Cake will also
cache the application layout. As such, we can’t cache any dynamic content that changes
within a session, whether in the action view or application layout.

As shown in the application layout in Listing 6-14, we don’t cache our tag line, so we wrap
it around the tag to say that it is not cached.

 Listing 6-14. Header HTML Code with the nocache Tag (in /app/views/layouts/base.ctp)

Changing Languages
Since the HTML language selection drop- down list is displayed on every page within the appli-
cation layout, we have pushed it out as a Cake element, as shown in Listing 6-15.

 Listing 6-15. Language Selection Form (/app/views/elements/lang_drop.ctp)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 191

The important part here is the tag. We don’t want to cache the HTML
 drop- down list, because if a user changes the language, the newly selected item in the lan-
guage should be selected and not a cached selection. However, we do want to cache the
language data that was generated by the SQL find operation from the table list.

Some readers may notice this odd line of code:

When a view is rendered from the cache, the current view object isn’t registered in Cake’s
global object register. As a result, some helpers that depend on the view object, such as the
form helper, fail. Because of this, we need to manually register the current view object.

This highlights the complexity of caching. And in Cake, when an item is cached, no
method in the controller is called. Therefore, we need to rely on session data as a conduit
for any dynamic data that we need to pass to the view. As highlighted in the code, when we
form the HTML tag, we populate it with data that we saved into the Cake session. The

 session variable holds the language data from the table, and
holds the current language that the user has selected.

Changing Locales
As no methods are called in the controller when data is cached, we need to set the new locale
in the top part of the base layout file , as shown in Listing 6-16.
When a user selects a new language, the cached page is presented while noncached content
within the cached content is still being executed.

Caution Adding caching to our application was complex and time- consuming, mainly because we were
also using other Cake features such as locales. If you are going to add caching, try to add it early on in your
development. This will make your life easier when your application grows.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 192

 Listing 6-16. Setting Locale in the Base View (/app/views/layouts/base.ctp)

The Controllers
For our application, three controllers are used: ,

, and . Let’s look at how each of
these controllers works.

The Twittertwister Controller
The class file is shown in Listing 6-17. This is a base controller
for the application. At present, it holds one action called , which changes the
viewing language of the application.

 Listing 6-17. The TwittertwisterController Class (app/controllers/twittertwister_controller.php)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 193

This action is used by the language- selection form. Starting from line 12,
this action takes the language code that the user has selected and changes the status viewing
language on line 14 and the locale on line 21. From line 24 onwards, we redirect the users back
to the page where they selected the language change, where they would view the same page
they have selected in the new language.

The private method on line 42 is used to change the web site
locale. The language code used by Google was incompatible with the ISO 639- 3 three- letter
language code used by Cake’s l10n. As a result, we needed to do some language code trans-
lation. We simply make a query to the table and get the three- letter code that
corresponds with Google’s two- letter code, and then save this into the session. We do this
using Cake’s model method . Attach the field name in
camel case as a suffix to the keyword. In our case, the field name is ,
so the method name will be . We then supply the method with the value
of the field as an argument.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 194

The TwitterRequest Controller
The class is responsible for fetching Twitter statuses from the
Twitter public timeline. The controller file
is shown in Listing 6-18.

 Listing 6-18. The TwitterRequestController Class (app/controllers/twitter_request_controller.php)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 195

On line 5, we set to cache the action to 60 seconds. We will
explain this at the end of this section.

The controller contains two main actions: and . The action
on line 10 lists all the Twitter requests in the database. As we are just listing the Twitter
requests, we don’t need the other tables that link to it, so we set to . Remember
that we have cached this action at the start of the controller to 60 seconds, so we are not regen-
erating the same query for different users. One obvious shortcoming with this action is the
number of calls that will be returned. As we are making Twitter requests every 60 seconds, it
would quickly generate a lot of requests. In fact, it probably won’t take long before it would
take more than 60 seconds to list all the status requests.

Line 25 starts with the action. This is essentially an action that we use
during development to fetch statuses; however, it can still be used as the URL for a cron job
entry. This action makes public timeline calls to Twitter requests every 60 seconds. The view in
 Listing 6-19 is even simpler. (If you use this in a cron entry, comment out the meta refresh, as
that should be the job for cron.)

 Listing 6-19. The getTwitterRequests View (app/views/twitter_rquest/get_twitter_requests.ctp)

The action shown on line 35 of Listing 6-18 carries out the task of
requesting the public timeline from Twitter. We start on line 38 by calling the
method in the model, which is shown in Listing 6-20. On line 14 of this listing,
the method simply saves a record into the table by using the
model’s method on line 20.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 196

 Listing 6-20. The TwitterRequest Model with the saveRequest Method (app/models/twitter_
request.ctp)

Let’s now go back to the action in
(Listing 6-18). Having now saved a request, we make a call to the Twitter public timeline using
Cake’s class. We fetch the statuses and save the results into the variable on
line 46. The data returned will be in XML format. You can request the return format to be ,

, or by appending those format strings as the extension instead of .
Finally, on line 49 of the controller, we save the status return message into the

 table using the model method . We will talk more about
this method in the next section.

The TwitterStatus Controller
The class is the largest of the three controllers. It’s responsible for
displaying either statuses specified by the user or the most recent statuses that were fetched
within the last minute. Listing 6-21 lists the controller with the actions omitted. As the control-
ler is quite large, we will show each action in turn.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 197

 Listing 6-21. The TwitterStatusController Class (app/controllers/twitter_status_controller.php)

On line 6, the variable holds the current Twitter request, if any. If
a user has requested the home page, this would be empty, and the most recent statuses will be
returned.

Before we talk about the controller’s actions, let us first talk about the model. As shown
in Listing 6-22, the model has only one method called . As we mentioned earlier,
this method is used by the action in the . It
saves the statuses returned from a Twitter request.

 Listing 6-22. The TwitterStatus Model with the saveStatuses Method (app/models/twitter_status.
ctp)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 198

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 199

The method starts on line 22. We take the statuses and parse the XML using
PHP’s class. You can, of course, accomplish the same thing using Cake.
Listings 6- 23 and 6- 24 show how to get the field using Cake’s XML classes.

 Listing 6-23. Using Cake’s XML Class, Longer Version

 Listing 6-24. Using Cake’s XML Class, Shorter Version

Now we’ll look at each of the actions in the :

The index() Action
The action is shown in Listing 6-25.

 Listing 6-25. TwitterStatusController index Action

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 200

On lines 4 and 8, we can override which Twitter request we want to view, via either the pretty
URL method or the named parameter method. Both of the following examples would work:

or

Following this on line 14, if the user has requested to view a particular Twitter request, we
will cache it for a whole year. We wanted to cache it indefinitely, but we couldn’t find an easy
way except by hacking the Cake library files, which we definitely didn’t want to do.

If a user hasn’t requested a particular ID, then by default, the most recent statuses would
be displayed. In this case, we cache it for 60 seconds, as new statuses are fetched from the
Twitter servers every 60 seconds as well.

Next, we do the same check for the language selection. Once those two checks are com-
plete, we display the Twitter statuses on line 31.

On line 27, even if a user has selected to view statuses in a language via the language
 drop- down list, he can still override the viewing language by passing a different language code
via the URL, which overrides the variable. For example, a Japanese user can still
view a post in English by using a URL with a parameter in it set to

The __displayTwitters() Action
The private action , shown in Listing 6-26, is the core of the application.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 201

 Listing 6-26. TwitterStatusController __displayTwitters Action

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 202

This method fetches Twitter statuses according to a number of query conditions, starting
on line 5. We need to know what time period of statuses we want. Do we want archived sta-
tuses or the most recent statuses? When we are retrieving the most recent 20 statuses, we set
it between 1 and 2 minutes behind the current time, so we will always get a full minute.

To make the query more efficient, if no language was selected, there is no need to try
to fetch any associated translations, which is by default what would happen—see line 26
onwards. Therefore, we unbind any associations using the method when no lan-
guage was chosen. Once we have the statuses, on line 52, we make a call to ,
which will translate any statuses if there are any. Finally, we set the view variable so
it’s available to be displayed in any view.

The __statusTranslate() Action
The private action, shown in Listing 6-27, is a supporting action to the

 action. It helps us to translate statuses transparently, independent of the
language in which the status is originally.

 Listing 6-27. TwitterStatusController __statusTranslate Action

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 203

Basically, if there is a translation found for the status, we replace the original status with
that translation. This happens on line 21. If a translation is not found, we will just display the
status in its original language.

Additionally, we have formed a new result array to return on line 36. In that array, we pre-
fix each key with to make it clear that the array is to be used in the view.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 204

Now that we have covered both and , the following
view (), which displays the statuses, should make sense.

Here, we basically loop through the statuses and display the fields. Figure 6-4 shows an
example of the translated statuses page.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 205

 Figure 6-4. A translated statuses page

The __getStatusTranslation() Action
The action, shown in Listing 6-28, complements the previous two
actions.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 206

 Listing 6-28. TwitterStatusController __getStatusTranslation Action

On line 8, if a translation already exists, we won’t translate it. If there isn’t a translation,
we make the request to Google to translate the status, from line 14 onwards. If a translation is
found, we always take the first translation, as we will explain shortly, in the description of the

 action.

The __translateText() Action
The private action in Listing 6-29 uses Cake’s class methods to make translation
requests to Google. Sometimes, the call may fail. In that situation, we still return the status
minus the translation. We throttle the translation requests with a sleep period, as that helps
the reliability of any immediate future requests.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 207

 Listing 6-29. TwitterStatusController__translateText Action

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 208

As this action is used by , which in turn saves it into the database,
we may occasionally see the value in the table. In this chapter,
we won’t be going into the reasons why some text doesn’t get translated. Our goal is to trans-
late some piece of text using Google. If the translation fails for some reason, we still return the
data in the same format, as if it were translated. This way, we have a log of the failure of the
translation, and the user still gets to see the original text, which we think is better than seeing
no status text or an empty translation display.

We start the action off on line 7. If no text is given, we just return an empty string. If
a string is given, we form the code to carry out the from line 9 to line 27. We then
decode the returned result on line 30 onwards. On line 13, remember to use your own Google
API key.

The __saveTrans() Action
There isn’t much to the action, shown in Listing 6-30.

 Listing 6-30. TwitterStatusController__saveTrans Action

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 209

On line 12, we check if there are two or more of the same translation. If not, we enter the
translation into the table on lines 24 and 25. Why would there be two or
more of the same translation? Well, since we are not translating the statuses in a background
process, any user who first brings up the statuses in a specific language would fire up the
translation parts of the controller. As we are not using SQL transaction locks, there could easily
be the situation where two or more users are requesting the same statuses at roughly the same
time. Using transaction locks would hold up the rendering of the page. We don’t feel they are
necessary, as we can always write some housekeeping function to clear any duplicate entries.
This is better than delaying the translation of the page.

The AppController
Along with our three controllers, the global also plays a part in our application.
 Listing 6-31 shows the contents of the file

 Listing 6-31. The Application Base Controller (app/app_controller.php)

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 210

Starting on line 9, we employ a number of view helpers. The cache helper helps us to
cache the output view. The form helper is needed for the language selection drop- down list.
The HTML helper is used for various HTML tags. And last, the RSS helper deals with the output
needed for RSS requests.

We have also used a number of components. The component is used to store the
language the user has selected and also the data generated from the language drop- down list.

 automatically handles user RSS web service requests by picking the correct
layout and view. The will use the RSS layout under the folder. In the
view, it will use the in the folder. Note, however,
that beginning on line 40, we have used the alternative hack to get our URL working. As
we explained earlier, we want to have an RSS URL feed that ends with . This method tricks
the into thinking that the request has an extension.

CHAPTER 6 MASHING TWITTER WITH THE GOOGLE TRANSLATOR 211

Continuing our cache theme, on line 21, we are also caching the model using the
 variable. This will help to speed up the application. The code within the
 just caches the data from the language drop- down list. We have commented

some code at the end of the method.
The finishes with a call to the private method. If a user has

previously selected a language via the top navigation drop- down list, this method makes sure
that all the other controllers are aware of the chosen language. We assign the session
value to the global value.

Summary
In this chapter, we have successfully mashed two popular online applications. We have also
covered a number of Cake topics, including caching. Its worth highlighting that caching is
quite a loose term, with different meanings in different contexts, but the end result is always to
save on some resource by not repeating the same action twice.

Additionally, we added i18n and l10n. Note that we will come back to this topic in Chapter 9,
where we will add different languages to data that is stored in a database.

Since we have consumed two different web services, it seems only right that we also offer
one as well. Adding the RSS web service feature was quite straightforward, except for our
requirement that the URLs should end with .

There are quite a number of features you could add to this application. The following are
some suggestions:

 action could be split into years/months as one page, then days, then hours.
Thus, you would only list up to 60 items in any one page. You could then have URLs
like .

-
guages gradually over a period of time. This would make the archive available via links
instead of a drop- down list, so it would be search engine optimization–friendly.

post it to Twitter in the recipient’s own language.

C H A P T E R 7

Unit Testing and Web Testing

As you may have inferred, unit testing is the practice of testing individual units of code,
to check that the application code works as expected. To help developers with their testing,
CakePHP 1.2 includes integrated unit testing features. In this chapter, we’ll show you how to
use these features. We’ll start by looking at a methodology that can provide some insight into
the goals of unit testing.

Getting Programming Done
David Allen’s productivity book, Getting Things Done: The Art of Stress- Free Productivity
(Penguin, 2002), has attracted a lot of interest in the past few years. The methodology, abbrevi-
ated GTD, has become especially popular among the tech crowd. It’s the primary subject of
Merlin Mann’s 43folders.com web site and many other blogs.

The GTD methodology might be summarized with these principles:

Define what done looks like: Visualize what your end goal is. Envision what it will take to
get there. Allow your mind to brainstorm how to get yourself there.

Define what doing looks like: Decide what the next physical action is that will move you
closer to your goal. What can you do to move closer to completion, based on your current
priorities, resources, and context?

Unit testing helps you define what done looks like for your code. Unit testing gives you
a specific goal to aim for as you code. It requires mental exertion up- front, as you decide spe-
cifically what your code should do, and then it “signals” to you in clear terms when you’ve
reached your goal.

Over the life of your project, unit testing also provides one other GTD- like benefit: it helps
you “get it all out of your head.” The GTD methodology encourages you to write down all of
your “open loops”—things, large and small, that you want to do or change—to free your mind.
As you free your mind of trying to remember everything that’s unfinished in your life, you’ll
have more mental energy for creativity.

Similarly, you may have noticed that when you refactor your code, especially in a
dynamic, loosely typed language like PHP, you need to keep a lot in your head. You may
wonder whether writing new code will break your existing code if you forget something. For
example, have you ever had to rename a variable that was strewn throughout your code? Have
you ever had to change all your elements to elements? If so, then you know the

213

CHAPTER 7 UNIT TESTING AND WEB TESTING214

feeling. It’s worrisome to refactor your code and wonder if it will still work afterwards. Unit
testing provides an alert system and a security net to inform you when you’ve broken some-
thing and to catch you if you make a mistake. By freeing your mind from worrying whether
you’ll break something as you move forward, unit testing allows you to focus on the more
creative aspects of your work.

Now that you have an idea about the benefits of unit testing, let’s see how it works with
a Cake application.

Our Case Study: An App Like In/Out
In April 2008, Jason Fried announced that his company, 37signals, uses a simple internal
application called In/Out for communicating among team members (see

). In/Out shows what each team member is doing and what
each has accomplished. Here, we’ll build a similar application as our case study. We’ll call it
Accomplishments, and it will allow team members to create a log of tasks and projects they
have accomplished. It won’t have a real authentication system or security. For this example,
we’ll assume that it’s being deployed on an intranet or otherwise secured.

Creating the Application
We’ll start with a fresh installation of CakePHP 1.2, which includes integrated unit testing
features, though we still need to install the unit testing framework. Figure 7-1 shows the green
messages that indicate Cake is ready to use. We’ve set up caching, a MySQL database, and
a custom security salt, so the development environment is ready to use.

For the application, we’ll create an table as shown in Listing 7-1.

 Listing 7-1. The accomplishments Table Schema

The table includes fields for a primary key, the team member’s name (this table
isn’t normalized), a description of up to 140 characters (Twitter style), and created and
modified dates.

CHAPTER 7 UNIT TESTING AND WEB TESTING 215

 Figure 7-1. A fresh installation of CakePHP 1.2

A simple model will connect the application to our database. The model is
shown in Listing 7-2.

 Listing 7-2. The Accomplishment Model (app/models/accomplishment.php)

Next, we define an accomplishments controller, as shown in Listing 7-3.

CHAPTER 7 UNIT TESTING AND WEB TESTING216

 Listing 7-3. The AccomplishmentsController (app/controllers/accomplishment_controller.php)

We load the Sanitize plugin in line 3 and the time helper in line 7, both of which will be
used later. For simplicity, we’ll store the user’s name in the URL as a variable. In lines 10
through 12, we check that the variable is not empty. If it is empty, the user is
redirected to a login page.

With in hand, the controller calls the model to get a list of accomplishments
by the user (lines 14 through 16). The model is also called for a list of the other team members’
accomplishments (lines 18 through 20).

Line 23 defines a action. Line 26 defines an action that will allow us to insert new
accomplishments into our database.

CHAPTER 7 UNIT TESTING AND WEB TESTING 217

The login view, shown in Listing 7-4, prompts for a username and submits it as a URL
parameter (a variable). Both of our views use Cake’s default layout and styling.

 Listing 7-4. The Login View (app/views/accomplishments/login.ctp)

In Listing 7-5, we define a view for our index page. This is what the user will see after
logging in.

 Listing 7-5. The Main View (app/views/accomplishments/index.ctp)

CHAPTER 7 UNIT TESTING AND WEB TESTING218

In lines 3 through 7, we provide a form for entering new accomplishments. We then
display a list of accomplishments by the user, in lines 9 through 14, and by the user’s team
members, in lines 16 through 21. You’ll notice we’re using the method (lines
11 and 18) to prevent cross- site scripting (XSS) attacks. This is a good practice whenever you’re
echoing previously entered text back to the user.

We now have a working, admittedly simplistic, application. We can log in (see Figure 7-2)
and begin using our application (see Figure 7-3).

 Figure 7-2. Logging in to our new Accomplishments application

 Figure 7-3. Posting a completed accomplishment to our application

CHAPTER 7 UNIT TESTING AND WEB TESTING 219

EDITING YOUR HOSTS FILE

When working on a development machine, we find it convenient to create a entry, or “mock domain,”
for each web site we’re developing. This allows us to access the web site at a convenient address like

. You’ll see this mock address used throughout this chapter.
You can create a similar mock domain by editing your file, as follows:

.

 on the left, and the host-
name (or whatever hostname you want) on the right, separated by space.

now be able to access your web site in your browser at the address .

The rest of this chapter will assume you’ve created a host entry like our entry.

Adding Username Validation
With our simple application now running, let’s suppose we want to add validation code to
ensure that only alphabetic letters are acceptable for the username. We don’t want to allow
any numbers, symbols, or spaces in usernames. Listing 7-6 shows the validation code added to
our model.

 Listing 7-6. Adding Username Validation to the Model (in app/models/accomplishment.php)

We could use Cake’s built- in validation rules, but for the sake of discussion, we define our
own custom method for validating the field, in lines 6 through 11. This custom
method, , is defined in lines 13 through 15. It uses a regular expression to ensure

CHAPTER 7 UNIT TESTING AND WEB TESTING220

that only uppercase and lowercase letters are allowed. In the real world, this method might con-
nect to a centralized company directory web service to look up and validate the username.

Next, we’ll modify our controller to do the validating, as shown in Listing 7-7 (additions
shown in bold).

 Listing 7-7. The AccomplishmentsController Updated to Validate the team_member Name
(app/controllers/accomplishment_controller.php)

CHAPTER 7 UNIT TESTING AND WEB TESTING 221

In line 14, we load the variable into the model. In line 16, we make sure the
model validates. If the model does not validate, we know it must be an invalid username
(because that’s the only thing we’ve changed), so we set an error message and redirect to the
login page (lines 17 and 18). We are performing the validation explicitly in the controller, as
opposed to implicitly when the model attempts to save to the database, because we need
a valid username before we can display accomplishments.

After adding username validation code, what if we discover that our code is too strict?
What if we want to allow usernames with numeric digits? And, as a further complication, what
if we don’t want numeric digits at the beginning of the username? Suppose we want to accept
a username like , but not . This could quickly become complicated as
we try to create an algorithm that will accept the usernames we want to accept and reject the
usernames we want to reject. This is where unit testing comes in.

Using Cake’s Unit Testing Framework
Begin by visiting , the location of Cake’s testing interface. You should
see the error message shown in Figure 7-4, indicating that SimpleTest is not yet installed.

 Figure 7-4. You’ll see this message if Cake’s test interface, SimpleTest, is not yet installed.

CHAPTER 7 UNIT TESTING AND WEB TESTING222

Installing SimpleTest
SimpleTest is the third- party unit testing library (created by Marcus Baker, a developer in
London) that powers Cake’s unit testing module. SimpleTest can be obtained from

. As shown in Figure 7-5, the SimpleTest web site also offers a manual,
a mailing list, and links to several articles and tutorials.

 Figure 7-5. The SimpleTest web site (http://www.simpletest.org)

After downloading and uncompressing SimpleTest, installation is simple. Just copy the
 folder to either your folder or your folder, depending on

whether you want the SimpleTest library to be available to all your applications or to only this
application. In our development environment, this decision will make little difference. We’ll
flip a coin and copy to the folder.

CHAPTER 7 UNIT TESTING AND WEB TESTING 223

You’ll also need to make sure the variable in is greater than 0.
Now when you revisit , you’ll see a list of test groups and test cases,
as shown in Figure 7-6. This means that SimpleTest has been successfully installed.

 Figure 7-6. SimpleTest is now successfully installed.

You’ll notice a list of several test groups and a longer list of test cases. These are the tests
that come with every installation of Cake. They are designed to ensure the correct operation
of the core Cake code. If you click the group, you may get a screen like the one shown in
 Figure 7-7, showing that 146 tests passed and 0 tests failed. In general terms, this means that
Cake’s ACL code is working correctly, according to the 146 criteria the Cake developers used
to judge its correctness. This may not mean a lot to you now, but let’s give the Cake developers
a virtual pat on the back for creating code that passes their own tests, and we’ll move along to
create tests for our own code.

CHAPTER 7 UNIT TESTING AND WEB TESTING224

 Figure 7-7. Cake’s built- in Acl and Auth tests successfully passed.

Creating Your Own Unit Tests
The problem at hand is that we want to ensure that certain usernames are allowed in our
application and certain usernames are not allowed. For example, , , , and are
allowed; and are not. We want to ensure, in a systematic way, that our code
accepts the good usernames and rejects the bad ones. To ensure this, we’ll create unit tests.

Creating the Test File
We’ll create a new test file at . Every test file
should end with the double extension , not just . The file name before the exten-
sion can be whatever you want. For convenience and as a matter of convention, we’ll use the
same name as our model. Listing 7-8 shows the file.

CHAPTER 7 UNIT TESTING AND WEB TESTING 225

 Listing 7-8. Our Test Module (app/tests/cases/models/accomplishment.test.php)

In , we define a new class called , which
extends the model class (lines 5 through 8). Similarly, your test classes should
follow the same naming convention of (although this is not required)
and should extend your model’s class.

Notice that we need to explicitly import our model (line 3). The Cake testing module
doesn’t make the automagic assumptions that Cake does elsewhere, to avoid muddying the
testing environment. The test class also defines a new database configuration (line 7).

Next, we define a class called , which extends
(line 10). Your test classes should follow the same naming pattern and extend .

In the class, we define a method called .
Each method in a test case class should begin with (as in line 13). The method

 begins by instantiating an object of the class
(line 14). Then six assertions are performed against the object (lines
16 through 21). These assertions ensure that our method is behaving as
expected. For example, if we pass in , , , or , we expect to

CHAPTER 7 UNIT TESTING AND WEB TESTING226

return , so we use the method to ensure it (lines 16 through 19). On the other
hand, if we pass in or , we expect to return , so we use
the method to ensure it (lines 20 and 21).

Creating a Test Fixture
To test a data model, as we are doing here, we need to create a test fixture. A fixture is a set of
data used for testing purposes. It’s called a fixture because it remains fixed across all tests, like
the control group in a scientific experiment. Your fixture should use test data that approxi-
mates the breadth and variedness of your real data.

Test fixtures are created using PHP code that looks like SQL code. You define a multidi-
mensional array to represent the database fields, and another array to represent the database
records. The advantage of defining test data in PHP code, as opposed to in your database,
is that it is less likely to be changed arbitrarily from the outside. It can also be versioned in
a code- versioning system such as Subversion. Listing 7-9 shows a hypothetical test fixture,
which would go in , but we’re not
going to use this one in our example.

 Listing 7-9. A Hypothetical Test Fixture

CHAPTER 7 UNIT TESTING AND WEB TESTING 227

Our particular unit tests don’t need any data. We’re simply testing the functionality of our
validation method. So let’s just punt and use a simpler test fixture, as shown in Listing 7-10.

 Listing 7-10. The Simpler Fixture Definition for This Example (app/tests/fixtures/accomplishment_
test_fixture.php)

Instead of defining data using PHP code, we’ll simply indicate that we want the test fixture
to import data from our production database table, (line 5), which we won’t
use anyway.

The test fixture uses the database connection defined in if
it is available. If not, it uses your production database connection, prepending the test tables
with to avoid overwriting your existing tables.

Running the Tests
Now that the tests are written and our fixture is set up, we can run our unit tests. Visit

 and then click Test Cases. You should see a test case entitled models /
Accomplishment, as shown in Figure 7-8.

 Figure 7-8. Our test case is now listed in the testing interface.

CHAPTER 7 UNIT TESTING AND WEB TESTING228

Now, the moment of truth! Click the models / Accomplishment link to see how our tests
do. Figure 7-9 shows the result.

 Figure 7-9. Running our first test case

You will see a lot of red! We failed our test, or more specifically, we failed one of the six
tests, and it says the failure was in line 19 of . Looking back at the
code (Listing 7-8), we’re not surprised that the test for the username failed, because we
haven’t yet coded to accept numeric digits.

Go to and change the regular expression in line 14
from to to allow digits in the username. Listing 7-11 shows
this change.

 Listing 7-11. Modified Regular Expression to Accept Numbers in the Username (in app/models/
accomplishment.php)

CHAPTER 7 UNIT TESTING AND WEB TESTING 229

With our new method, let’s rerun our tests and see what we get. Refresh
your browser.

As shown in Figure 7-10, once more, we see a lot of red, meaning our tests have failed
again. But notice the failure is on a different line—line 20 instead of line 19. Our test for
passed, but did not. You may have expected this, since our new regular expression
wasn’t sophisticated enough to reject usernames that begin with numeric digits, and our test
case slipped through.

 Figure 7-10. Rerunning our test case to see if we’ve made progress

CHAPTER 7 UNIT TESTING AND WEB TESTING230

Let’s tweak our method one more time and see if we can get it to
behave as expected. We’ll change the regular expression from to

+$/, as shown in Listing 7-12. This requires the first character of the username to
be a letter, while any subsequent character can be a letter or a number. This also implies that
our username must be at least two characters long, which is fine.

 Listing 7-12. Modified Regular Expression to Reject Usernames That Begin with a Number
(in apps/models/accomplishment.php)

Refresh your browser again. Good news! Now all of the tests pass. We’re rewarded with
a green bar stating “6 passes, 0 fails and 0 exceptions,” as shown in Figure 7-11.

 Figure 7-11. Our tests now pass.

CHAPTER 7 UNIT TESTING AND WEB TESTING 231

Unit testing gives us confidence that our method now functions exactly as
it should.

Using Assert Methods
Our unit tests used only two of about a dozen available methods. Table 7-1 lists the

 methods that you can use in your unit testing.

 Table 7-1. SimpleTest Assert Methods

Method Description

Asserts that and should be
clones of each other, meaning they
are identical but not the same object

Asserts that should be equal to

Asserts that should be false

Asserts that and should be
identical, meaning they have the
same value and are of the same type

Asserts that should be of
class

Asserts that no portion of
should match the regular expression

Asserts that should not be of
the class

Asserts that should not be equal
to

Asserts that should not be identi-
cal to , meaning it should either
have a different value and/or be of
a different type

Asserts that should not be null

Asserts that should be null

Asserts that and should differ
by more than

Asserts that should match
the regular expression

Asserts that and should both
refer to (be pointers to) the same
object

Asserts that should be true

Asserts that and should be
within of each other

CHAPTER 7 UNIT TESTING AND WEB TESTING232

Each method allows you to define an optional to be displayed when
the assertion fails. You can optionally use the placeholder in your message to display the
default error details.

Testing the Entire MVC System
The unit tests we wrote in the preceding example were for testing our model. But unit tests can
also be written for testing controllers, views, plugins, and components.

The process for testing controllers, plugins, and components is similar to the process of
testing models. Testing views, on the other hand, is a different beast, and we’ll cover that in the
next section.

Web Testing
The SimpleTest library that powers Cake’s testing framework has a very cool web testing
feature. It can simulate a user’s navigation through a web site, allowing you to test your views
and make sure your web site is working properly “from the outside.” You might also call this
a form of integration testing, since it can test the fitness and accuracy of the entire site, not just
the individual units.

Creating Web Tests
Let’s add a few web tests to our application, in

, as shown in Listing 7-13.

 Listing 7-13. The Class AccomplishmentWebTestCase (in app/tests/cases/models/accomplishment.
test.php)

CHAPTER 7 UNIT TESTING AND WEB TESTING 233

We define a class , which extends . The class
contains two methods: will ensure that when we enter a valid user-
name, we can log in, and will ensure that when we enter an invalid
username, we are denied access.

You can probably guess what the code in Listing 7-13 does. In ,
we simulate a user going to the web site , entering
into the field, and clicking the Login button. We then assert that the resulting
page contains three strings of text: , , and

. The test could be more complex, but the presence of these three strings is
likely to be a good indicator of whether the login was successful.

In , we repeat the same simulation, this time entering the username
, which we know to be unacceptable. We then test that the resulting page contains the

text , which we expect when the user is unable to log in.
Let’s run our tests again, by visiting the test page , to see the

results. As shown in Figure 7-12, we find that ten tests passed successfully, which include our
six unit tests plus the four additional web tests we’ve just created.

 Figure 7-12. Test results page after running our four web tests

CHAPTER 7 UNIT TESTING AND WEB TESTING234

Web tests can be a powerful tool for ensuring that your web application is working cor-
rectly, in a holistic sense. With web tests, you can imitate the following user actions:

For a full list of available web testing methods, visit
.

Web Testing Any Application
One very cool aspect of the web testing framework, which may already be apparent to you,
is that you can test any feature of any web site, not just Cake web sites or web sites you own.
For example, imagine setting up tests to ensure that your legacy corporate web site is up and
running, that the password protection is working, and that private areas of your site are not
publicly accessible. You could set up a cron job to run the tests regularly and e-mail you when
there are abnormalities.

 Listing 7-14 shows a hypothetical test for ensuring that the Wikipedia article on CakePHP
mentions unit testing. As of this writing, unit testing is mentioned as a feature of CakePHP in
the Wikipedia article. If this reference were ever removed, the following test would fail.

 Listing 7-14. A Hypothetical Test Case for Testing an External Web Site

Caution
sure you comply with their terms of usage.

CHAPTER 7 UNIT TESTING AND WEB TESTING 235

Test-Driven Development
Test-driven development is a form of agile development that requires unit tests to be written
before writing application code. Writing the unit tests before the actual code requires devel-
opers to think carefully about what the application should do. It also requires thinking about
development with an eye to modularity; each unit should do something distinct and uncou-
pled from other units. In fact, someone else on your team could be the one to write the unit
tests, while you write the code, or vice versa. The ensuing communication and coordination
would be healthy.

Your lines of test code could easily outnumber your application code lines if you were to
test every aspect of your application. This, of course, is not practical, nor is it smart business
practice. You might consider writing tests only for the most important units of your code.
What code might potentially cause the most damage if it were left to chance? Write unit tests
for that code first. Also, as bugs are reported and fixed, write unit tests that ensure those bugs
will not resurface in the future. This sort of testing is called regression testing, because it pre-
vents your code from regressing to a prior, bug- laden state.

Imagine if your home appliances were wired directly into the electrical system without
using plugs and sockets. Moving a lamp to a new room would be a huge pain. You would need
to cut the wire and resplice it. It’s much more convenient to use plugs and sockets. This also
allows a separation of concerns; that is, if a lamp stops working, you can plug it into a different
socket and see if it’s the lamp or the socket that failed. Likewise, when your code is modular
and decoupled, you can easily move it, use it elsewhere, and test it. Unit testing encourages
this sort of modularity.

Summary
In this chapter, we have accomplished the following:

Unit testing can be a powerful practice for ensuring that your application code works as
you expect. It can catch errors before you release new code, and save you time and energy by
freeing your mind of concern. Cheers to your newfound freedom!

C H A P T E R 8

A Cake Control Panel

Let us first say that there is no such feature as a Cake Control Panel in CakePHP, which is why
we are creating one in this chapter.

Once you have developed several web sites, you will start to spot common functions that
clients ask for time and again. Here are just some of the features clients typically request:

-
ticular features of the site; for example, allow only registered users to access special
promotions

If your clients haven’t asked for these functions yet, you can always turn them off tempo-
rarily, or maybe increase your income by selling them these extra cool features!

Developing a control panel for yourself makes a lot of sense. The same control panel can
be used for different sites. You could say it's another form of the DRY principle.

Security is a basic functionality to have in any web site and also one of the most complex.
If you’re going to add a back- end administration area, or a control panel as we are calling it,
this will be one of the functions that will be developed first.

In this chapter, we’re just going to start the development of the control panel by writ-
ing a web- based front end that will allow a user to manage user security. Feel free to use the
code in this chapter as a base for your own projects. We’ll use several different Cake features,
including the authentication () and access control list (
behavior, which also uses the Tree behavior.

Application Requirements
The security management function we are building in the control panel will have the following
functions:

ordinary users

237

CHAPTER 8 A CAKE CONTROL PANEL238

The Authentication and ACL Components
We’ll start by talking a little about both the and components, and then we’ll show you
how we have combined them. We will warn you that although Cake’s authentication compo-
nent is easy to use, the access control list component is not that straightforward. However,
using it is still much easier than writing the access- control code from scratch.

The Authentication Component
The reason for the component is simple. It controls the login process and further controls
access to controller actions. You can allow or deny access to certain actions using the compo-
nent’s and methods, but not on a per- user basis.

What the component doesn’t do is provide more granular access control between
any one user and controller actions. This is where Cake’s component comes in.

To get started with the component, you will first need a table. The one for this
chapter’s application is shown in Listing 8-1.

 Listing 8-1. The users Table Schema

The first three fields— , , and —are mandatory for the component.
The field is a hashed field. We have included the field because we’ll be add-
ing user groups as well, so we can categorize users into groups.

The Access Control List Component
Cake’s component is a generic way to control the access rights between one entity and

user groups, and controller actions. For example, you can allow every developer access to
a controller action, except for the new junior developer who just joined the team.

The security permissions between entities can be stored either in a text file in
 or in a database. Here, we’re just going to cover database storage, so we need to

create the tables to store the permissions.
One way to create the database tables required by the component is to use the

command to do this automatically. To take this approach, in your command- line environ-
ment, go to your folder and run the following command:

CHAPTER 8 A CAKE CONTROL PANEL 239

This will create three database tables:

 This table holds the access control objects, which are the entities to be
controlled, such as actions.

: This table stores the access request objects, which are the entities that request
access, such as users or groups.

: This is the link table between the and object (for
example, a controller action) can be accessed by many objects (such as users).
Conversely, an object (such as a user) can have access to many objects (such
as controller actions).

If you want to create the tables manually, you can do that using the SQL statements in
Listings 8- 2, 8- 3, and 8- 4.

 Listing 8-2. The acos Acl Table Schema

 Listing 8-3. The aros Table Schema

CHAPTER 8 A CAKE CONTROL PANEL240

 Listing 8-4. The aros_acos Table Schema

The and records are stored using Cake’s own Tree behavior, which uses a
binary tree data structure to store hierarchical data. One node (a record in our case) can have
two children (records) below it, sometimes called the left branch and right branch. In turn,
any one record can have a parent. Tables 8- 1, 8- 2, and 8- 3 describe the important fields in
each of these tables.

 Table 8-1. The acos Table Columns

Column Description

ID of the parent record

Model name of the entity

Foreign key to the model record ID

Unique name to identify the record

ID of the left branch of the record

ID of the right branch of the record

 Table 8-2. The aros Table Columns

Column Description

ID of the parent record

Model name of the entity, which is normally or

Foreign key to the model record ID, which is normally the ID of the user or group
record

Unique name to identify the record

ID of the left branch of the record

ID of the right branch of the record

CHAPTER 8 A CAKE CONTROL PANEL 241

 Table 8-3. The aros_acos Table Columns

Column Description

Foreign key to the record ID

Foreign key to the record ID

Controls access to the action—either 1 or 0

Controls access to the or action—either 1 or 0

Controls access to the action—either 1 or 0

Controls access to the action—either 1 or 0

Component Setup
To start using the and components, we need to declare their use. This is done in the
global file, , which is shown in Listing 8-5.

 Listing 8-5. Auth and Acl Components in the AppController Class (app/app_controller.php)

We include the two components on line 5. There is also a , which is called
before any other action. In it, we specify some settings. The parameter on line 9
is set to . This parameter controls how a user is authorized. Setting it to means
we want the component to authenticate the user for us automatically based on the entries
in the table. The parameter can also be set to , , , or

, as shown in Table 8-4.

CHAPTER 8 A CAKE CONTROL PANEL242

 Table 8-4. Settings for the authorize Parameter in the Auth Component

Values Description

Defines an action in your controller; the user is
authenticated depending on whether the function returns
or

Uses the ’s method to authenticate users

’s method to authenticate users

Defines an (note no at the end) action in another
model

Uses the method in your own object to authenticate
the user

The parameter on line 11 of Listing 8-5 is what gets displayed when a user does
not have permission to view a controller action. The parameter on line 14 speci-
fies the URL to redirect the user to once a user has logged in.

Control Panel Application Controllers
We will be using five different controllers in our application, as shown in Table 8-5.

 Table 8-5. The Controllers Used in Our Control Panel Application

Controller Description

Manages which of our controller actions will be security- managed

Manages user groups

Manages users

Base controller for our application

Sample controller to demonstrate the access control list security

The first three controllers are essential for the working of the application; the last two are
mainly used to demonstrate our application. Now we’ll look at each controller, starting with
the base control panel controller.

The Control Panel Controller
The , shown in Listing 8-6, is the base class for the application. It con-
tains the first public page of the application.

CHAPTER 8 A CAKE CONTROL PANEL 243

 Listing 8-6. Control Panel Controller (app/controllers/control_panel_controller.php)

On line 13, we explicitly allow access to the action. If you use an asterisk symbol,
all actions will be accessible. Within the action itself, we set up a temporary user,
since we’re starting off without any entries in the database tables. From line 20 onward, if we
can’t find a user called , we create a user called with the password . The welcome
screen of the control panel is shown in Figure 8-1.

CHAPTER 8 A CAKE CONTROL PANEL244

 Figure 8-1. The control panel welcome screen

The Actions Controller
The actions controller is used to manage the access control objects—essentially, the control-
ler actions that need security management. We can add or delete which functions within the
whole application a user can or cannot access. This controller is shown in Listing 8-7.

 Listing 8-7. Actions Controller (app/controllers/actions_controller.php)

CHAPTER 8 A CAKE CONTROL PANEL 245

CHAPTER 8 A CAKE CONTROL PANEL246

CHAPTER 8 A CAKE CONTROL PANEL 247

The only action in this controller is the action. Figure 8-2 shows the page produced
by this listing.

CHAPTER 8 A CAKE CONTROL PANEL248

 Figure 8-2. The index action in the actions controller

CHAPTER 8 A CAKE CONTROL PANEL 249

In the Cake component, if you set the parameter to , Cake assumes
you have all the CRUD (create, read, update, and delete) actions in your controller: ,

, , , and . Cake will security- manage these actions for you using the fields
, , , and in the table. However, when you set the

parameter to , as we have for this application, you can security- manage any actions
in your controller. Essentially, the value is more generic than the value in terms
of the security.

When the parameter is set to , the table needs to be in a specific
format, structured as follows:

There are only two levels. The top level is always occupied by the controllers, and the sec-
ond levels form the controller actions that belong to the controller.

generate the entries in the table shown in Figure 8-3.

 Figure 8-3. The acos table entries after choosing the someAction action

Now that you’ve seen how the actions controller works, the code in Listing 8-7 will be
easier to understand. On line 10, we temporarily allow access to the action; otherwise,
we wouldn’t be able to use it.

The action is fairly simple. It has two private methods: and
. The action lists the actions available. The code for that starts

on line 93. We use Cake’s and convenience classes to get all the PHP files in the
controller folder, and carry out a operation on the content of the files, matching
controller names and action names. The following is a sample of the HTML code for the check
boxes in Figure 8-2:

CHAPTER 8 A CAKE CONTROL PANEL250

The attribute in this HTML code gives you an idea of the format of the data that will
be returned to the action’s method via the action.

The method is responsible for adding and deleting entries in the

will contain the following entry:

Once the form has been submitted, the function on line 25 kicks in. We
start on line 31 by looping through the whole action list in the variable. Each entry is com-
posed of a name/value pair in the following format:

In our example, the value is as follows:

CHAPTER 8 A CAKE CONTROL PANEL 251

This tells us that the user wants to add the action in the widgets controller into
the table, so the user can allow or deny access to certain users or groups.

On line 38, if the user has selected to delete the entry, we simply find the entry
and delete it using the model’s method. If the user has decided to add the entry, we first
check whether the controller parent record exists. If it doesn’t, we create one. If it does exist,
we need the ID for the action entry. Both entries are shown in Figure 8-3.

From line 141 onward, we fetch all the

exists, we display a Delete check box, as shown in Figure 8-4.

 Figure 8-4. The Delete check box option when the acos entry already exists

To summarize, we now have one action called in the widgets controller, which
we can security- manage. If we didn’t add that entry in the table, Cake’s component
would always deny access to it, unless explicitly overridden by ’s method.

The Groups Controller
The groups controller is an important element in our application. In Cake’s component,
we can control groups of users simply by changing the security on the group itself, rather than
changing the security on every individual in that group. This is due to the fact that we can layer
groups in a hierarchical fashion. For example, we can have a root administrator, and below
that role, a department administrator, followed by department users.

In the groups controller, we have the ability to list groups, add groups, edit groups, delete
groups, and control the security access of groups.

We start the development of the controller by using the command to bake the code
for the controller, model, and views. The code listing for the class is shown
in Listing 8-8.

 Listing 8-8. Groups Controller (app/controllers/groups_controller.php)

CHAPTER 8 A CAKE CONTROL PANEL252

CHAPTER 8 A CAKE CONTROL PANEL 253

CHAPTER 8 A CAKE CONTROL PANEL254

When we first ran the application, we found ourselves in a catch- 22 scenario: we couldn’t
log in because there were no users, but we had to log in to create a user. Of course, you can

automate processes as much as possible. So initially, we allow access to actions without the
user needing to log in. This is done on line 10 in Listing 8-8.

The action beginning on line 32 is mostly based on baked code, with the exception
of lines 52 and 53, which generate the parent drop- down list for the current group. This
action follows the same pattern as the action beginning on line 13, except on line 48, where
we need to read the record into the controller variable to be used in the edit form.

CHAPTER 8 A CAKE CONTROL PANEL 255

Adding a Group
We need to add some more lines of code into the model in order to get Cake’s component
to work. Listing 8-9 shows the model.

 Listing 8-9. Group Model Class (app/models/group.php)

CHAPTER 8 A CAKE CONTROL PANEL256

 param-
eter value so it knows the model is an entity. This behavior automatically deals with
the and entries. However, it doesn’t quite do everything we need.

CHAPTER 8 A CAKE CONTROL PANEL 257

 table when we create a group
by using the model’s method. Unfortunately, we need to update the entry with some
additional details in order to get the component to work properly, as follows:

 record has been created via the method, we need to update the
 field because the component sometimes uses this field as a unique field

when fetching nodes. The format of the field will be , as shown
in line 35 in Listing 8-9.

 field in the table as well.

We also need to include the
to return the value of the parent record. Each group can have only another group
entity as a parent, so the parent value will always be in the format .

Line 25 in Listing 8-9 starts the operation. If it’s a new record, we update the
field with the unique string format . If it’s an edit, we face a special scenario
unique to the groups controller: if the parent was previously deleted, the children may have par-

automatically reassign orphaned children, so we must do that ourselves. The code between lines
40 and 71 in Listing 8-9 takes care of that scenario. Within that section of code, we also deal with
the case of simply changing the parent; see line 64. It’s worth noting that the Tree behavior will
automatically adjust the other groups accordingly only when we are moving parents.

Group Security
The other important action in the groups controller is the action. To explain this
action, it’s better to start from the group listing, as shown in the example in Figure 8-5.

 Figure 8-5. The index action in the GroupController

CHAPTER 8 A CAKE CONTROL PANEL258

In Figure 8-5, you can see a Security link next to a group record. We simply added the new
link into the baked view of the action. When users click the Security link, they will be
able to control the security settings relating to the group. Figure 8-6 shows the security page.

 Figure 8-6. The security action in the GroupController

When you first bring up the security page, it will list all the access control objects that you
can security- manage. In our case, it will list only the action. This is handled from
line 92 onward in Listing 8-8.

The class has a method called , which generates the hierarchy of the
tree. We also need the entire entry in order to know which actions have been granted and
which ones have been denied.

 Listing 8-8. It’s similar to adding actions in the actions controller. We loop through the selec-

If a user has selected Deny, we use this command:

In both the and methods, we are specifying a security relationship between
the record and the record. The is the standard value to use if the param-
eter is set to . If it were set to , then you could specify which CRUD action to
 security- manage. But with the setting (sometimes called actions mode), the CRUD
database columns must be all 1 values, all 0 values, or –1 values.

In Listing 8-8, the , , and actions are shown for the sake of completeness.
Note that when we use the
deletes the record and rearranges the tree accordingly.

CHAPTER 8 A CAKE CONTROL PANEL 259

The Users Controller
The users controller is essential for managing users. We will have the ability to list users, add
users, edit users, delete users, and control the security access of users.

 command to
bake the code for the controller, model, and views. The code listing for the is
shown in Listing 8-10.

 Listing 8-10. Users Controller (app/controllers/users_controller.php)

CHAPTER 8 A CAKE CONTROL PANEL260

CHAPTER 8 A CAKE CONTROL PANEL 261

CHAPTER 8 A CAKE CONTROL PANEL262

Much of the code in Listing 8-10 follows the same pattern as the groups controller. On line
10, we temporarily allow access to some actions during the initial setup of the users.

The and actions, on lines 14 and 18, respectively, are just stub functions that
are needed in order for the component to automatically log the user in and out.

The action on line 23 is mostly based on baked code. There are two sections worth
noting. When a user edits user details, the field is set to blank on line 50. If no pass-
word has been supplied in the form, we don’t change the password; we simply check whether
it is empty, on line 32. Passwords are hashed, so we never have the plain text of the original
password. Therefore, we need to manually empty the field; otherwise, Cake will fill it
with the hashed password string. When we update the user details, and the user has provided
a new password, the component will automatically hash the password provided.

CHAPTER 8 A CAKE CONTROL PANEL 263

User Security
The action is best explained by starting from the user listing (action), shown in
 Figure 8-7, and the security form, shown in Figure 8-8.

 Figure 8-7. The index action in the UserController

 Figure 8-8. The security action in the UserController

CHAPTER 8 A CAKE CONTROL PANEL264

The action in the users controller, on line 58 of Listing 8-10, is similar to the
 action in the groups controller. We display all the records, which we can

 security- manage. We allow the administrator to set whether the user should have access or

in Listing 8-10 takes over. We loop over the selection, and depending on whether the user
 component’s or method.

In Listing 8-10, the , , , and methods are shown for the sake of com-
 action, when we delete a user record, the

action also deletes the record and rearranges the tree accordingly.

Adding a User
The model code for adding a user is similar in structure to that in the model. This
code is shown in Listing 8-11.

 Listing 8-11. User Model (app/models/user.php)

CHAPTER 8 A CAKE CONTROL PANEL 265

 operation, whether it is creating a new record or editing an existing one,
we still need to update some of the record ourselves.

Line 19 starts the operation. If it’s a new record, we update the field with
the unique string format .

CHAPTER 8 A CAKE CONTROL PANEL266

Because of the hierarchical nature of records, we also need an action called .
 model, this must return the unique value of the group, in the format

.

Testing the Control Panel
Now that we have all the code and tables in place, we can run a little test to check whether our
access control list is working properly. Starting from a blank database, follow these steps:

 1. Make sure all the database tables are blank. See the Records column in Figure 8-9.

 Figure 8-9. Blank database tables

 2. Bring up the page (see Figure 8-1). This will automatically create
the user entry in the table and the table, as shown in Figures 8- 10 and
 8- 11.

 Figure 8-10. The temp user in the users table

 Figure 8-11. The temp user in the aros table

 3. Log in with the user name and password.

Next, we start adding groups. Remember that we have temporarily allowed access to the
 and actions set in the method of the groups controller (see Listing 8-8,

line 10). Remove this when you have all the groups and users in place.

CHAPTER 8 A CAKE CONTROL PANEL 267

 4. using the interface. Figure 8-12 shows the two entries in the
 table: one for and one for the group that you just added.

 Figure 8-12. The admin group entry in the aros table

 5. . Figure 8-13 shows the table entries.

 Figure 8-13. The user group entry in the aros table

Remember that we have temporarily allowed access to the and actions set in the
 method of the groups controller (see Listing 8-8, line 10). Remove this when you

have all the groups and users in place.

 6. user, using for the username, password, and group, as
shown in Figure 8-14. Figure 8-15 shows the table entry.

 Figure 8-14. Adding an admin user

CHAPTER 8 A CAKE CONTROL PANEL268

 Figure 8-15. The admin user entry in the aros table

 7. Log out, and then log back in using the username and password.

 8. Delete the user using the Delete link.

 9.
shown in Figure 8-16, and then submit it.

 Figure 8-16. Selecting the someAction action

 10. Click the Groups link, and select the Security link for the admin group.

 11.

 Figure 8-17. Select the Allow check box.

CHAPTER 8 A CAKE CONTROL PANEL 269

 12. Click the Widgets link on the top menu. You should now have access to that page, as
shown in Figure 8-18.

 Figure 8-18. Access allowed

 13. Return to the Security link for the group, and this time select Deny. Then submit
the form.

 14. Click the Widgets link again. Now you should be denied access, as shown in
 Figure 8-19.

 Figure 8-19. Access denied

By controlling the group, you indirectly control the users who belong to that group.
However, you can also control individual security if necessary.

CHAPTER 8 A CAKE CONTROL PANEL270

Summary
In this chapter, we used the idea of a control panel as a starting point for developing basic
functions common to web applications. We began that process by using Cake’s compo-
nent to develop a web front end to manage user and group security.

complexity is due to its implicit link to other elements in Cake. Using the access control list
functionality involves the and
in turn uses the Tree behavior. On top of that, you still need to carry out some operations
yourself. Furthermore, the component behaves differently depending on the value of the

 parameter. But despite this complexity, it’s one of the most flexible security systems
you can use. Once the basic system is up and running, it’s much easier to change and adapt
your access control list for other scenarios.

There are many other functions you can add to the access control list and to the control
panel as a whole. Here are some ideas:

 class to list useful statistics
about the application. For example, if the control panel is used for an e- commerce
application, the dashboard could list the number of products sold, number of new
users, and so on.

from the actions listings in the top menu and find out which entry has access or no
access to that particular action.

 list, security permissions on that
list will no longer exist. It would be useful to have a feature that told the user which

 entities currently have permissions set on the action before deleting it.

 method in the controllers, these groups and users should remain permanent; no
user should be able to delete them. You could modify the application so that the
method would not affect these special groups and users.

C H A P T E R 9

Translating Stories

In this chapter, we’ll be writing a news story application in which the news stories will be
available in other languages. There will also be an admin area, which will give translators the
ability to translate stories from a base language (in our case, English) to another language. To
protect the admin area, we will build a simple authentication system.

In Chapter 6, we covered Cake’s internationalization features and demonstrated using
files to display different languages. Using files is adequate for static text. However, if the
data is stored in the database, you need to employ Cake’s built- in Translate behavior. You’ll
see how that works in this chapter.

Application Structure
To start off, we need two database tables: and . Naturally, will be used
to store the stories, while will be the admin users who will enter stories in different lan-
guages. There will also be two controllers to go with the two tables: in

 and in
. The table schema is shown in Listing 9-1. We will discuss the

table later in the chapter, in the “Logging In” section.

 Listing 9-1. The stories Table Schema

The two fields we need to be concerned with are , which holds the story title, and
, which holds the actual story itself.
To use the Translate behavior, we need an extra table named , which will be used to

store the translation. The schema is shown in Listing 9-2.

271

CHAPTER 9 TRANSLATING STORIES272

 Listing 9-2. The i18n Table Schema

This table has the following fields:

: This is the language locale code. We need to decide which language the transla-
tion refers to. At present, unlike for language codes, there are no ISO locale standard
codes; different software uses slightly different codes. In Cake, you can see the locale
codes in the file . For further reading, is
a good place to start.

: Since there could be many different tables using the Translate behavior, we
need this field to identify the correct table via the model. In our case, our model will
be .

: We need the field to identify which record the translation relates to.

: This is the name of the field in the database table that needs translation. In our
case, it will be either or .

: This contains the translation text itself.

Using this table, we map one field in one record in our table to different
translations. It’s a one-to- many association.

The Translate Behavior
The Translate behavior provides the model class with a number of functions that assist with
language translations in our own tables. It sits between the database and the controllers,
transparently dealing with language translations between the two areas.

To use the Translate behavior, we start with a simple statement we insert into our
 model file:

Note You can add other behaviors to the model by appending the behavior name to the array
variable. In our example, if we were going to add the Containable behavior, the variable would look
like this: .

CHAPTER 9 TRANSLATING STORIES 273

In this line, we bring in the Translate behavior, and tell it that we want the and
 fields in our table to be managed by the Translate behavior. When we say “man-

aged,” we mean that any model database function relating to the fields we specified should
be transparently handled when there is a translation available. For example, when we use a

 command, it will pick out the correct translation content relating to the lan-
guage locale we specify.

Stories
Our application centers around the news stories to be translated. We need to add stories and
translate them. Users will be able to view the stories either in their original language or a trans-
lated version. We will also add functionality to allow administrators to manage the stories.

Note To simplify our application, we have used Cake’s command to generate most of the code
relating to the controller and views. Additionally, we have created an admin section during the baking, so
human translators can translate the stories from English into other languages.

Baking Cake
The command is a command- line tool that will generate the model, controller, and view
files based on the database you created. For this chapter’s application, we will use Cake’s
command to generate the Cake files relating to the administration of the stories. We’re going
to jump ahead a little by showing you the output of our session, in Listing 9-3.

 Listing 9-3. Output of the bake Session

CHAPTER 9 TRANSLATING STORIES274

CHAPTER 9 TRANSLATING STORIES 275

CHAPTER 9 TRANSLATING STORIES276

CHAPTER 9 TRANSLATING STORIES 277

As you can see, the command first asks what we would like to bake. We actually need
to bake the story model first, before the controller or view. Line 46 confirms that the model has
been created.

Next, we need to create the story controller, starting on line 69. The two most important
questions are on lines 77 and 79: whether we want some basic class methods and admin routing.
We say yes to both questions. The command will create the code for those actions for us.

We finish off by creating the views for the stories, beginning on line 109. On lines 121 and 124,
we are asked about creating scaffolding views and the views for admin routing, and we say yes.

The code we have baked is shown at the end of this chapter.

Adding Stories
Our application will start with an empty table and an empty table. So let’s
start at the beginning with adding a story. Listing 9-4 shows the action in

, which adds a story.

 Listing 9-4. Adding a Story (in /app/controllers/stories_controller.php)

CHAPTER 9 TRANSLATING STORIES278

In the action, the important method is the call on line 3.
It’s one of our own private methods, which is also housed within the .
 Listing 9-5 shows this method.

 Listing 9-5. The setI10nByLocale Method (in /app/controllers/stories_controller.php)

The method decides which locale, and thus which language, we’ll be
using in the Translate behavior. We start off with some default settings on line 4, and then we
ask whether the locale has already been decided beforehand by checking the session on line 7.
Line 16 sets the locale for the model.

In the action (Listing 9-4), we start off by setting the locale for the model so
that the Translate behavior knows which locale we’ll dealing with. The section of code after
that is simply baked using Cake’s command, which saves a record in the model.
(See the “Baked Code” section at the end of this chapter for the actual baked version of the

 action.)
Now we enter three sample stories into our application. When the command in the

 mode is called, we actually get a total of three different records for each story. We get the
entry in the table, which we expect, but we also get two entries in the table. The
records for the three stories are shown in Figures 9- 1 and 9- 2.

 Figure 9-1. The stories table records

CHAPTER 9 TRANSLATING STORIES 279

 Figure 9-2. The i18n table records for the title and body

As it stands, the records in the table just look like unnecessary duplication. However,
the Translate behavior will show its usefulness when we start inserting other languages, as
you’ll see a little later in the “Translating Stories” section.

Administering Stories
Most CakePHP sites have a back- end administrative area. It would be convenient to have all
actions come under one specific folder so administration can be more easily managed. There
is a helpful feature in Cake that helps us with this. In the file, we uncomment
the following line of code:

With this line uncommented, Cake will map all actions in the format
to the URL . For example, the action in
the would be accessed via . However, Cake doesn’t
automatically password- protect those admin actions, so we will need to do that ourselves, as
discussed in the “User Authentication” section.

Translating Stories
The first task for translating stories is to list them. We will list only the stories that need trans-
lating. This makes it slightly easier for the human translator to pick out which stories need
translating. This is handled by using the method, as shown in Listing 9-6.

 Listing 9-6. Listing Stories to Translate (in /app/controllers/stories_controller.php)

CHAPTER 9 TRANSLATING STORIES280

In Listing 9-6, we start by initializing the variables on lines 3 and 4. Then we decide how
the language code is picked out from the URL in the statement on line 8. Once we know
which language the user wants, we start retrieving the results using the controller
method on line 27.

Cake’s method turned out to be unsuitable for our needs. It lacks the functional-
ity that returns only the stories that have not been translated in the language we chose—which
is understandable, as that functionality is quite unique to our application. We had to override
Cake’s method and write our own. We will go into the pagination a bit later, in the
“Translation Pagination” section.

The story listing is shown in Figure 9-3. As you can see, each story has two links: View
and Translate. Assuming we have a Japanese translator, she can view the story in English by
clicking the View link. She can then click the Translate link to go to the story editing screen, as
shown in Figure 9-4. A sample Translate URL link looks like this:

CHAPTER 9 TRANSLATING STORIES 281

 Figure 9-3. Stories that need translating

 Figure 9-4. Story editing in the translation phase

CHAPTER 9 TRANSLATING STORIES282

For this form, we have simply used the baked view. However, we have
added a hidden tag named , which holds the language code in which we want the
story to be saved.

After the Japanese translator has translated the story and saved it, the Translate behavior
creates two extra records: one for the title in Japanese and another for the body in Japanese.
Figures 9- 5 and 9- 6 show how our table looks now. You can see how our translation func-
tions are taking place. We have a main story stored in and the language versions of
those stories held in . Notice that our story in the table is now in Japanese as well.
This is a side effect of the Translate behavior; however, it will display the correct version when
the specified locale is used.

 Figure 9-5. The stories table after our first translation

 Figure 9-6. The i18n table after our first translation

Viewing Stories
When a user visits the home page, we list the stories in the language that is automatically
selected by the Translate behavior. On the top navigation bar, we inserted three links that allow
us to view the stories if the translated stories are available. The code for these links is shown in
 Listing 9-7. They belong in the layout ().

 Listing 9-7. Links to Change the Locale (/app/views/layouts/default.ctp)

CHAPTER 9 TRANSLATING STORIES 283

As you can see in Listing 9-7, the Cake methods all point to the action
in the . The named variable is picked up via two methods in the con-
troller: and itself, both shown in Listing 9-8.

 Listing 9-8. StoriesController Methods to Change the Locale (in /app/controllers/stories_
controller.php)

In the method in Listing 9-8, we set the locale in the session so it can be used
by other methods. The method simply redirects users back to the page where
they clicked the link. We have used the method because we may want to change
the locale later on via other links.

Now when we click the ja link on the top navigation, we just get the Japanese translated
stories, as shown in Figure 9-7.

 Figure 9-7. Viewing Japanese stories

CHAPTER 9 TRANSLATING STORIES284

Deleting Stories
Deleting stories is quite a simple affair. When the user clicks the Delete link relating to a story,
the story record in the table and the associated records in the table are deleted.
This includes all the translations as well. The action code is shown in Listing 9-9.

 Listing 9-9. The delete Action (/app/controllers/stories_controllers.php)

Listing Stories
Listing of the stories is a basic function. Users need to view stories that interest them. The
people who manage and translate the stories also need to list the stories in the database.

We have written two story listing versions. One version will list the stories in the specified
locale for public viewing, and the other will list the stories in the admin section.

The controller action for the public story listing is shown in Listing 9-10.

 Listing 9-10. Listing Stories for Public Viewing (/app/controllers/stories_controller.php)

Line 3 sets the locale. Since we want only the stories, we turn off any fetching of associa-
tive model data in line 5. Line 6 is the workhorse of the action; it fetches the stories using the
standard method.

The corresponding view that goes with the action is shown in Listing 9-11.
We start off with line 4, which returns pagination information. Lines 8 to 12 simply loop

through the stories and display the title and the body in full. We complete the view by provid-
ing pagination previous and next links, starting on line 18.

CHAPTER 9 TRANSLATING STORIES 285

 Listing 9-11. Listing the Stories (in app/views/stories/view_all_stories.ctp)

A typical listing of the stories is shown in Figure 9-8. Just to illustrate Cake’s pagination
function, we have specified two stories per page.

 Figure 9-8. Listing stories in the default language

CHAPTER 9 TRANSLATING STORIES286

The listing of the stories in the admin section is very similar to the public listing. In the
admin section, we list all the stories in the base language (English, in our case). Additionally,
we adopt a traditional table format listing, with each record occupying a single record. There
will also be an Actions column, which will contain View, Edit, and Delete links. The code for
this controller action is shown in Listing 9-12.

 Listing 9-12. Admin Story Listing (in app/controllers/stories_controller.php)

The difference between this listing and the public listing (Listing 9-10) is in the setting of
the locale on line 3. In the admin version, we specifically set the locale to the US English.

The corresponding view is quite straightforward and is composed of two parts. The first
part is the view file itself (). This file just contains the
following lines:

The element that it points to is shown in Listing 9-13.

 Listing 9-13. The Admin Story Listing Element (/app/views/elements/admin_list_stories.ctp)

CHAPTER 9 TRANSLATING STORIES 287

CHAPTER 9 TRANSLATING STORIES288

We start with some pagination information on line 6. This is followed by the listing of the
stories in a tabular format on line 10. Cake’s paginator helper comes into play again, starting
from line 13, with links to sort the data columns. We start the looping of the stories on line 21.
The view finishes with previous and next links. An example of this view is shown in Figure 9-9.

 Figure 9-9. The admin story listing

Translation Pagination
Earlier, we mentioned that the pagination of the stories to be translated wasn’t that straight-
forward. We had to override Cake’s controller method and create our custom

 method. The entire model, which is mainly composed of code relating to
the pagination, is shown in Listing 9-14.

 Listing 9-14. The Story Model (/app/models/story.php)

CHAPTER 9 TRANSLATING STORIES 289

CHAPTER 9 TRANSLATING STORIES290

CHAPTER 9 TRANSLATING STORIES 291

 Table 9-1 lists the methods in the model.

 Table 9-1. Story Model Class Methods

Method Purpose

Cake’s pagination method, which we override

Another method we must override so Cake can get the correct
page count

Same as Cake’s method

Used by the standard pagination method

The pagination method used by the translation listing

Used by the translation listing to count the number of records

Although we override Cake’s method, we still make use of Cake’s pagination
helper. The variable on line 8 indicates which pagination method to use: the
standard one or the translation pagination. If it’s ordinary pagination of results, such as from
a command, we basically paginate the results in the same way as how Cake would do
it. This seems like duplication, but part of the problem is that once we override the
method, there’s no easy way of going back temporarily to use Cake’s built- in method.

CHAPTER 9 TRANSLATING STORIES292

When is set to , the method is
called. Here, we create a manual SQL command to fetch all the stories that we need to trans-
late. The method is used by Cake so it can provide us with the
correct number of total records.

One interesting method in the model is . This gets the locale information from
the object using the language. When developing any i18n/l10n application, you should
have a good grasp of the language codes and locales. We had a hard time picking whether to
use language codes or locales in the various actions. The following section will give you a bet-
ter understanding of the Translate behavior in relation to locales and language codes.

Locale and Language Selection
Setting the locale via the model is the main technique for telling the Translate behavior which
locale to use. However, there are other techniques, all of which will give you an understanding
of how the behavior works. If we do not set the locale anywhere, the Translate behavior uses

 as the default locale, which is set in the class itself.

Setting Locale by Browser
If you do not specify a locale, the behavior uses the browser’s header
to work out which language to use. Cake automatically maps this out in the key value of the

 variable (see). If is , for example,
the value in the variable is used. Listing 9-15 shows an example.

 Listing 9-15. A Sample Listing in the $__l10nCatalog Array

CHAPTER 9 TRANSLATING STORIES 293

In this method, we use the constant to override the
 header; however, this method works only in a specific situation. If

 is set and Cake has found a match, the value will have
no effect. You cannot override the browser value. However, if Cake
cannot find a match, the language will be used. This constant uses the
 three- letter ISO 639- 3 language code standard.

Note If you are interested in the format of , see section 14.4 Accept- Language
of the HTTP standard).

Setting Locale by Language Code
You can set the locale manually via the two- letter language code. This is done as follows in the

 class, which is used by the Translate behavior.

Here, we set the locale to Japanese. To set the locale, we first import the class file in
. Next, we get the instance of that class. Calling the method in

 sets the locale.

Setting Locale by Hand
To give you an idea of the additional ways for setting the locale, here’s an alternate, albeit not
recommended, method: if you manually set the header, the method
in will pick that as the language to use. Here is an example:

User Authentication
In the baking of our application, we were asked whether we also wanted admin features as
well. We answered yes, and the command created the actions and the corresponding
views for us. Four admin actions were created: , which lists stories with links to edit
and delete in each record; and , , and , which add, edit, and
delete stories, respectively. However, the baking doesn’t add user functionality or authentica-
tion. We’re happy to say that adding user authentication is a straightforward process.

CHAPTER 9 TRANSLATING STORIES294

In Cake, you can easily use the component to add user authentication, as we have
shown in the previous chapter. In this chapter, we’re going to show you how authentication
can be added manually.

For authentication, we create a user session variable, which tells us whether the user is
logged in. Using the command, we check whether the user is accessing any of
the admin features by checking the URL for the keyword. If that exists, we then check
whether the user session variable has been set. If it has, we do nothing and just let execution
continue on to the action. If the user session variable has not been set, we redirect the user
to the login screen. This checking is placed in the / file, as shown in
 Listing 9-16, so it is called automatically on every action.

 Listing 9-16. Admin Authentication (in /app/app_controller.php)

Logging In
Before we talk about the action, we need to look at the table. This table’s schema is
shown in Listing 9-17.

 Listing 9-17. The users Table Schema

CHAPTER 9 TRANSLATING STORIES 295

As we are just creating a simple authentication system, the model is almost empty.

Next, we create the login action in the , as shown in Listing 9-18.

 Listing 9-18. The login Action (/app/controllers/user_controller.php)

CHAPTER 9 TRANSLATING STORIES296

 When a user logs in, the action in the is called. This action is wholly
used for the process of attempting to login the user. The corresponding login view simply
holds the login form.

In the action, we first check whether any data is being submitted. Then we try to
locate the user’s name. If one is found, we check the password—using MD5 hashing, naturally.
If the password is found, we assign the result to the user session variable, set a flash welcome
message, and redirect the user back to the home page.

The layout in contains some user session- related code.
These are the links that are displayed when a user logs in:

Logging Out
Logging a user out of the system is probably the easiest action in the whole application. We
simply delete the user session variable, set a flash message, and then redirect the user back to
the home page. The logout action is created in the . No view is needed, as we
are redirecting the user. It looks like this:

CHAPTER 9 TRANSLATING STORIES 297

Baked Code
Listings 9- 19 through 9- 28 show the code that was automatically generated using Cake’s
command.

 Listing 9-19. The Story Model Class (/app/models/story.php)

 Listing 9-20. The StoriesController Class (/app/controllers/stories_controller.php)

CHAPTER 9 TRANSLATING STORIES298

CHAPTER 9 TRANSLATING STORIES 299

CHAPTER 9 TRANSLATING STORIES300

 Listing 9-21. The add Action View File (/app/views/stories/add.ctp)

 Listing 9-22. The admin_add Action View File (/app/views/stories/admin_add.ctp)

CHAPTER 9 TRANSLATING STORIES 301

 Listing 9-23. The admin_edit Action View File (/app/views/stories/admin_edit.ctp)

 Listing 9-24. The admin_index Action View File (/app/views/stories/admin_index.ctp)

CHAPTER 9 TRANSLATING STORIES302

CHAPTER 9 TRANSLATING STORIES 303

 Listing 9-25. The admin_view Action View File (/app/views/stories/admin_view.ctp)

 Listing 9-26. The edit Action View File (/app/views/stories/edit.ctp)

CHAPTER 9 TRANSLATING STORIES304

 Listing 9-27. The index Action View File (/app/views/stories/index.ctp)

CHAPTER 9 TRANSLATING STORIES 305

 Listing 9-28. The view Action View File (/app/views/stories/view.ctp)

CHAPTER 9 TRANSLATING STORIES306

Summary
In this chapter, we introduced Cake’s Translate behavior. Using Cake’s table, we were
able to store the translations of stories held in a database, rather than in a static HTML file.

Next, we created some admin actions using Cake’s command, which generated
actions with the prefix. Using those actions, a real human translator will have the abil-
ity to translate stories from one language to another.

Within the model, we wrote our own pagination code so the appropriate stories will
be paginated depending on the selected language.

Finally, to secure the admin actions, we rolled our own authentication code.

C H A P T E R 1 0

Adding Automagic Fields

In many other MVC frameworks, certain database fields have special significance when a user
accesses the model data. These fields are often called magic fields, because the underlying con-
troller automatically works out which value it should contain. Cake also has such magic fields.

In addition to using the built- in magic fields, you can create custom magic fields to suit
your needs. In this chapter, we’ll create three new magic fields. But before we begin, let’s look
at the built- in magic fields.

Cake’s Built- in Magic Fields
When you use Cake’s built- in magic fields, you don’t need to write any code in order for Cake to
automatically update them. Once the field is present in the database, Cake will detect its pres-
ence and update the value automatically. Table 10-1 lists the magic database fields in Cake.

 Table 10-1. Cake’s Magic Fields

Field Type Description

, ,
or

This is the default field name for the primary key of the
table. If it is defined as an field with ,
it will automatically generate a numeric primary key. How-
ever, if the field is something like a , Cake will
generate and manage a UUID for this field.

 or
other text type

Cake will use this field in various circumstances, mainly
for the Scaffolding, List, and Tree behaviors. For example,
when you create an HTML drop- down list using the
method in the form helper, it will automatically use the
field as the display string in the drop- down list.

This is an alias for the field.

When a new record is added, this field contains a timestamp
of when the record was created.

Similar to the field, when a record is changed, this
field contains a timestamp of when it was modified.

This is an alias for the field.

Matches type
in associated
table

This is the foreign key reference used in model associations.
If you do not manually specify the foreign key field name,
this is what it would use.

307

CHAPTER 10 ADDING AUTOMAGIC F IELDS308

There are other special fields that relate only to particular behaviors. For example, in the
Tree behavior, the following three fields are used:

 stores the ID of the parent field.

 stores the ID of the left- branch record of the tree structure.

 stores the ID of the right- branch record of the tree structure.

Writing a Custom Behavior
Magic fields are managed by the model layer through resources called behaviors. Behaviors
make it possible to perform automagic methods on database fields as the model runs its vari-
ous data- handling methods, such as or .

For instance, upon saving a new record to the table, the model passes all of its data
through to any attached behavior classes. This gives the attached behaviors the opportunity
to intercept the save process and perform any business logic based on or relating to the inter-
cepted data. This may involve cross- table or cross- database updates based on what is being
saved. In other words, an automagic update occurs in fields that are not necessarily part of the
record being saved.

So, before we get to creating custom magic fields, we need to talk about how to create
your own custom behavior.

First, you create a PHP file to be stored in the folder . This file con-
tains the code that will drive the behavior. The file name must be in lowercase, and multiple
words are separated with underscores. The behavior class name must also be in camel case,
with the word appended, and it must extend the class . Here’s how to
start a custom behavior class:

The next step is to include the behavior in the model itself. This is done by including the
 variable in the model, as follows:

A Cake behavior helps you by transparently performing some operation in the background.
When the model methods , , and are used, it will trigger other functions (com-
monly called callback functions) in your behavior class.

Here are the other functions of the model’s method in a behavior and the sequence
in which they are called:

 1. Model behaviors’ method

 2. Model’s method

 3. Model behaviors’ method

CHAPTER 10 ADDING AUTOMAGIC F IELDS 309

So, when a model’s method is called, starting from step 1, the method
in all the behaviors that are attached to the model is called before the record is deleted. In step
2, the record is deleted. And finally, in step 3, the method in all the behaviors that
are attached to the model is called.

Here are the other functions of the model’s method in a behavior and their order:

 1. Model behaviors’ method

 2. Model behaviors’ method

 3. Model’s method

 4. Model behaviors’ method

And the following are the other functions of the model’s method in a behavior and
their order:

 1. Model behaviors’ method

 2. Model’s method

 3. Model behaviors’ method

Within your behavior class, there is also a method called . This method is called
when the parent model is instantiated. Its syntax is as follows:

The model is passed by reference, which means you can directly manipulate the values in
the model. The variable contains the values you passed to the behavior in the model.

Tip Sometimes, you may need to carry out your own SQL queries within a model rather than using the
model’s standard CRUD methods. The callbacks would not work as intended, since they would not know the
kind of query you have made. However, you can still make use of the behavior by using the method
as an entry point into the behavior, since that is called whenever the model is invoked in any way. This is
not an ideal solution, since you would need to manually call the methods within the model behavior yourself;
however, it does work.

Building Custom Magic Fields
Now that you know how to create a custom behavior, we can start building some magic fields.
First, we need to create our behavior, starting with the behavior file itself, which we’ll call

. The behavior file is created as
. The skeleton of the file is shown in Listing 10-1. We’ll be adding callback methods to the

class. Note that in our case, the method is empty. You can easily add parameters that
you can use to alter the way the behavior works.

CHAPTER 10 ADDING AUTOMAGIC F IELDS310

 Listing 10-1. The MagicFieldsPlus Cake Behavior (app/models/behaviors/magic_fields_plus.php)

To avoid potential field name clashes, we’ll append the prefix to the names of all our
magic fields.

Access Data Field
We’re going to start with something simple. This magic field will increment by one whenever it
is accessed. We will consider only the use of the model’s method as an “access.” Using the

 method will not be counted. (Of course, you can easily change this behavior.)
To get this field working, we need to have a field called , which will be updated

during the callback. Since the command is a generic method, we’re not
going to put the code that will actually do the incrementing in that method. Instead, we’ll cre-
ate a separate method and call it from the method. This two- step process is shown
in Listing 10-2.

 Listing 10-2. Methods for the Access Data Field

Starting from the method, this simply calls the method on line
2. Within the method, we first check whether the field name exists.
If it does, we loop through the results, incrementing the field by one in each case.

CHAPTER 10 ADDING AUTOMAGIC F IELDS 311

Note This access data field can be quite useful for data- intelligence gathering. However, it’s obviously
not that efficient, as it needs to save each record in turn. As an exercise, you can change the code to save
the access data out to an external flat file and update the field at a later date.

Record Order Data Field
Sometimes, you may just want to order the fields numerically by default. For example, in
a shop’s products listing, the shop owner may want to place the best- selling items at the top.

Our next magic field applies to find operations. We want the results returned to be
ordered numerically. We will add a new field called . We will specify the order-
ing in the callback. Similar to how we constructed the access data field, the record
order data field will be composed of two parts within the behavior, as shown in Listing 10-3.

 Listing 10-3. Methods for the Record Order Data Field

The method is called from the callback. On line 6, we
check whether the field exists. If it does, we specify a particular ordering in the array on
line 7.

The format of the key is the same as the attribute in the model’s method,
so you can order it according to your own needs. For example, if you have another field called

, you can order it according to and then by
. So, you can use any of the following statements for the value:

If you do not want to hard- code the ordering direction, you can specify it in the
behavior variable. There are any number of array formats that you can use to pass the
parameter from the variable into the behavior. In the example in Listing 10-4, we’re
using the magic field name as the key, with the value containing an associative array of key/
value pairs that the magic field can use.

CHAPTER 10 ADDING AUTOMAGIC F IELDS312

 Listing 10-4. Passing Configuration Parameters to the Behavior

Once we have set up the configuration in the model file, we need to catch the configura-
tion values in the method in the behavior itself. This is shown in Listing 10-5.

 Listing 10-5. Setting the Default Values in the Behavior (/app/models/ behaviors/magic_fields_
plus.php)

The variable on line 3 will now contain the configuration values as passed to it in
the model’s variable. We’ve also added a variable, which we’ll use to
store the configuration values. The contents of the variable are as follows:

Using Cake’s convenience method for merging arrays, we merge the class member
variable with the variable.

Now using our configuration parameters for the sorting direction, we have a new
 method, which is shown in Listing 10-6. It is similar to the one in

 Listing 10-3, except that instead of hard- coding our sorting direction, we’re picking it up from
the value that was passed to us from the model’s variable.

 Listing 10-6. Magic Method Using Configuration Values

CHAPTER 10 ADDING AUTOMAGIC F IELDS 313

Locking Data Field
Our third magic field is related to optimistic locking. It is more complicated than the previous
two. First, let’s consider how optimistic locking works.

When two or more processes or users are accessing the same record, who should update
first? This question arises quite frequently. In a relational database, the problem falls under the
heading of concurrency control.

For example, in ticket- booking systems, you sometimes have a time limit for your book-
ing. If you fail to purchase the ticket within the time frame, you probably must start again,
and by then, another user may have gotten there first. The time limit demonstrates the use
of optimistic locking. When you read the record, you mark it with a value. You take this value
with you within the web session. Now when you come to updating the record again, you check
whether the value that you are still holding matches the marked record in the database. If it’s
different, another user may be trying to update the same record at the same time.

You can develop your own ways to mark a record. For example, you might have an appli-
cation where registered users can override nonregistered users when booking a ticket. Here
are some standard methods:

Use a modified date as the handle. You can still list and view the record, but during
updates, you will use the modified date as the comparison.

Use a unique ID field as the handle. You write a unique ID to a field when you access
the record. If, during an update, it is different from the one you already have in the
session, you don’t perform the update.

Use an access time field as the handle. Each process will check the access time. If it’s
more than a certain set limit, you can access the record and attempt to write new
changes.

You can also use another concurrency control called pessimistic locking. This is where
you completely lock the record for certain actions like or , until the process that
owns the lock releases it. But in a stateless web environment, this is obviously not practical.
Just imagine the scenario where a user is looking at the prices for football game tickets. Using
pessimistic locking, we will prevent all other users from looking at those prices, until the user
who has the lock releases the lock. But what indicates that the user is releasing the lock? When
he closes the browser window? When he navigates to another page? What happens if he just
minimizes that particular page and decides to get a drink before making a purchase? As you
can see, pessimistic locking is just not workable here.

Now let’s go over how we have implemented optimistic locking in our behavior. We sim-
ply use a unique ID to mark our records using a field called . Our magic field will be
used only when a user edits a single record and then attempts to update it. The process is split
into two stages:

database; if it’s different, we reject the change.

 Listing 10-7 shows how we have carried out the first stage in the process.

CHAPTER 10 ADDING AUTOMAGIC F IELDS314

 Listing 10-7. Optimistic Locking with a Model Behavior

On line 6, we call our method, which will do the work for the first stage.
First, we check whether the field exists, on line 7. Next, we proceed only if there’s just
one record. Basically, we assume it’s an edit for now. If it is, we create a unique ID using Cake’s

 method.
Next, we update the field by running a SQL statement. We are using a man-

ual update because using the command would cause a loop by calling our magic field
behavior. Alternatively, you can use the behavior’s and methods to tem-
porarily disconnect the behavior from the model, but we just wanted to point out that query
commands have no effect on behaviors.

The array now contains the unique ID, which it can use as a hidden field in
a form.

In the second stage of the optimistic locking, we carry out the validation. This is where
we compare the ID that’s being used on a form and the ID that’s in the database. This code is
shown in Listing 10-8.

 Listing 10-8. Validating an Optimistic Locking Data Field

CHAPTER 10 ADDING AUTOMAGIC F IELDS 315

On line 3, we first check whether we are editing an existing record. If so, we fetch the
record from the database using the model’s method. Once a record is found, we check
that record against the one in the model data array. If it is different, we manually set the

 error array with an error message and then return , which in turn
will prevent the command from going forward.

Summary
Magic fields are database fields that have special meanings within a Cake model. In this chap-
ter, we added new, custom magic data fields, which involved building custom Cake behaviors.

This chapter also highlights a particular point. There’s a school of thought in MVC that
recommends that developers write fat models and skinny controllers. Any data manipulation,
such as finding or saving records, should be done in the model. Controller actions should be
skinny managers with surrounding support from components, models, and behaviors. As
you’ve seen in this chapter, by using behaviors, you can really cut down on the amount of logic
that is performed by the controller.

Some of our magic fields are essentially metadata fields. You might want to move all of them
out to a separate metatable. Additionally, you could quickly make the following improvements:

 magic field. This can store a type field. If a user is not
within this group, access will be denied to that user.

 magic field. Use this field to turn the display of the record on or off in
the view. For example, you may have an article that you want to display only occasion-
ally, such as once every few weeks.

logical to separate them into separate behaviors.

 e- commerce application, you might have a field in a product table.
This would allow you to place orders based on the best- selling products.

C H A P T E R 1 1

Cake Tags

In this chapter, we’re going to develop our own HTML- based tags to display two Yahoo! maps.
The idea for our application stems from our strong opinion on an important aspect in web
development: avoiding mixing presentation markup and logic. We’ll start off this chapter by
addressing that point. Our discussion isn’t limited to Cake but covers many other languages
and frameworks, including Ruby on Rails, Extensible Stylesheet Language Transformations
(XSLT), and the Smarty template engine.

Content and Data Separation
The basic premise is that no programming logic should appear in any presentation files,
namely templates. To see what we mean, take a look at the semi- pseudo PHP code in
 Listing 11-1.

 Listing 11-1. Web Programming in the 1990s

317

CHAPTER 11 CAKE TAGS318

Here, we create a MySQL connection on line 4. Then we execute a query on line 10.
Next, we loop through the results, mixing HTML markup with the database data to create
a particular view.

This code suffers from a number of problems. Suppose that you wanted to change the
output format—for example, instead of displaying the data in a tag, you wanted it to
appear in an RSS format. In this case, you would need to add another layer of logic between
the data and the display. You could do that within the code itself with an statement, as in
this example:

Using an statement is OK, but you will run into other problems. For example, when
more logic is added, where do you put it? The code will start to get more and more proprietary.
No one will understand your structure unless you write good documentation to go with it, and
even when you do, other developers may not agree with you or your structure. You also may
find that you have not taken other scenarios into account.

You could also create another separate file, as in Listing 11-1, that specifically deals with
RSS output. So instead of outputting HTML, you output XML in the RSS format.

The code in Listing 11-1 can be improved by encapsulating some of the code in functions,
as shown in Listing 11-2.

 Listing 11-2. Using PHP Includes

CHAPTER 11 CAKE TAGS 319

This is better, and using an MVC pattern helps, but developers can still develop propri-
etary designs within the controller. And with such proprietary designs, documentation should
be written, but sadly, often it is not.

Note As a brief diversion, there’s an entertaining take on the separation of data and content on
.

We jump ahead now to the use of MVC in the web development process. In basic terms,
the controller delegates incoming requests and funnels them to the appropriate end point,
which is normally an action in a class. The model handles the data, and the view is responsible
for the return format to the recipient. However, the solution still has a problem: in too many
cases, we see developers putting more and more logic into the view. Plus, it’s often difficult
to distinguish whether a piece of code relates to the application or to the view—for example,
when there is some specific data or code that’s just used for a particular format. And with time
pressures, it’s often easier to place it in the view.

Our Cake tags approach is one small step toward addressing the problem. Following from
the previous examples, Listing 11-3 shows how Cake tags would do it.

 Listing 11-3. Using Cake Tags

Our idea in using tags isn’t new, of course. ColdFusion has used it since the 1990s, and
Java has JSP tags. For example, in ColdFusion, you can send an e-mail message using the fol-
lowing tag:

View Template
The best place to start explaining how we wrote our Cake tags is from the view. In this applica-
tion, our Cake tags will be available to use in any view. We’re going to create a sample page in

, Cake’s default home page.

CHAPTER 11 CAKE TAGS320

A Cake tag is essentially an XML wrapper for Cake plugins, where the output from the
plugin replaces the Cake tag. We could have used any number of ways of interfacing the tag
with Cake, but plugins seem generic enough. Additionally, we envisage some point in the
future where the Cake tags can be used as a clean interface between third- party code (Cake
plugins) and Cake itself. We can even go one step further and imagine a framework where we
can add Cake plugins in a visual development environment and specify the attribute values
using a form- based user interface.

Now back to our application. In it, we will have a Yahoo! Maps plugin. This plugin will
display a geographical map location, which we specify, much the same as with Google Maps.
How the Yahoo! Maps plugin is written will be explained a little later, in the “Cake Plugins”
section. From our view in Listing 11-4, using our tag method, we will make two requests to
display the Yahoo! maps via our Cake tags on lines 3 and 7.

 Listing 11-4. The Home Page (/app/views/pages/home.ctp)

From this listing, you can see that our Cake tags are named (for Cake tag, of course).
We’ll be using standard XML syntax format for the tags.

A Cake tag is formed with a single XML tag, with no tag end. The attributes are used to
pass key value parameters to the Cake plugin. Table 11-1 describes these attributes.

 Table 11-1. Cake Tag Attributes

Attribute Description

The name of the plugin that we are calling

The controller within the plugin that we are calling

The action within the controller that we are calling

Others Passed into the plugin as named parameters, which can be accessed via Cake’s
 controller variable

If you ran the code in Listing 11-4 as it is, without overriding Cake’s view, it will just dis-
play “My Vacation Destinations” in the tag format, which is not very useful.

Our goal is to display two Yahoo! maps, one after the other. In order for that to happen, we
must override Cake’s view class so we can parse our Cake tags, as described next.

CHAPTER 11 CAKE TAGS 321

Cake View Class Extension
Using your own view is quite simple, as shown in Listing 11-5.

 Listing 11-5. Overriding Cake’s View

First, in the global controller , we import the view using Cake’s
 command (line 3 in Listing 11-5). Next, we set the name of our view class in the

controller to our own on line 9.

Note If you set the Controller’s variable to , no view is rendered, regardless of
whether the view was overridden or not.

Next, we create our new view class, as shown in Listing 11-6.

 Listing 11-6. Our New View Class (/app/views/cake_tags.php)

CHAPTER 11 CAKE TAGS322

CHAPTER 11 CAKE TAGS 323

Our view class name must be in the format and it must extend Cake’s
 class. The next step is to override the method. In line 7, we first render the real

view using Cake’s command. On line 9, we intercept the output and parse the tags.
This is done using our method, starting from line 14. (If you were to comment out
line 9, it would be as if you had not changed any of Cake’s original view output.)

In the method, we take the output of the view after Cake has rendered it, parse
any tags we find, and call the relevant plugin as specified in the tag attributes. We con-
tinuously loop through the output and parse and replace the tags until there are no more

 tags to process. The tags are simply matched with the regular expression in the following
line of code:

Once a match is found, we attempt to fill the four main variables: , ,
, and . PHP’s class is used to extract all the attributes.

Once the and values are in place, we call the actions by using the
 call. In line 59, we simply replace the whole tag with the output of

the call.
In line 57 of Listing 11-6, we make a request to a particular action in a Cake plugin. If you

were to build your own Cake tag, it would need to be a Cake plugin, so line 57 could access that
action in the URL format .

Cake Plugins
Next, to create our Yahoo! Maps plugin, we first create a folder called in the

 folder. Within that folder, we create several files and folders, which will resemble
a Cake application folder structure, as follows:

CHAPTER 11 CAKE TAGS324

The two main files we are concerned with are and . The
 file is shown in Listing 11-7.

 Listing 11-7. Map Controller (maps_controller.php)

To be honest, this example isn’t terribly exciting. The method simply acts as
a proxy for passing values from the tag to the view. If no or values
are passed, we use some default values, which at present are set to London. However, don’t
underestimate what you can actually do. Since you can essentially invoke any plugin, control-
ler, or action, you can wrap any functionality behind a Cake tag.

CHAPTER 11 CAKE TAGS 325

The other two files, and , are
shown in Listings 11- 8 and 11- 9, respectively. These are the global controller and model
files, similar to the and files. In Listing 11-8, we need the
JavaScript helper to display the Yahoo! Maps API JavaScript files.

 Listing 11-8. Yahoo! Maps Controller (yahoomaps_app_controller.php)

 Listing 11-9. Yahoo! Maps Model (yahoomaps_app_model.php)

You can achieve more complex operations in other scenarios. Here are some examples:

shopping basket, with the total number of products and a total
cost, as follows:

products available as a tree menu:

Twitter public timeline messages in 3D using a Flash 3D display engine
called Papervision3D:

Yahoo! Maps
Adding Yahoo! Maps is similar to adding Google Maps. We start by including Yahoo!’s
JavaScript Map API. Listing 11-10 shows the view.

CHAPTER 11 CAKE TAGS326

 Listing 11-10. Yahoo! Maps View (/app/plugins/yahoomaps/views/maps/display.ctp)

CHAPTER 11 CAKE TAGS 327

When including the API, you need to provide your application ID, which you can get from
.

Next, we create the container, which will hold the map, on lines 10 through 13. Since
this plugin may be included in the same view more than once, we create a unique ID for the

 element using Cake’s string method.
Just to recap, the output from Listing 11-10 will replace the tag that called for it. A sam-

ple output of the two Yahoo! maps is shown in Figure 11-1.

 Figure 11-1. Using Cake tags to display Yahoo! maps

Our Yahoo! Maps example is quite simple. We can easily specify other parameters to pass
to Yahoo! Maps. For example, to add a zoom level, our Cake tag would look like this:

CHAPTER 11 CAKE TAGS328

On line 32 in Listing 11-10, the command would now look like this:

And in the action in Listing 11-10, we would need to capture the zoom value and
pass it to the view with the following lines of code:

Summary
In this chapter, we have shown how you can override Cake’s output. Additionally, we created
a Cake plugin that displays Yahoo! maps.

We mentioned early on that the whole Cake tags idea is a small step toward solving the
problem of content and data separation. In our view, this is a big problem, because so many
modern applications need to talk to other applications. Good separation of these two layers is
vital in web development. However, at some stage, you will inevitably need to mix them. The
questions will be how much and where. One thing is certain: you should never put any presen-
tational markup in the controller. With Cake, use Cake elements and helpers to reduce the size
of your views.

C H A P T E R 1 2

Dynamic Data Fields

In this chapter, we’ll present a snippet of an e- commerce feature. We will supply enough code
and explanation to allow you to use this feature in a real- life project. Our feature centers on
product searching. We take a nontraditional approach to this feature, basing it on dynamic
data fields. We’ll start off by reviewing how product searches are usually conducted.

Traditional Product Searching
While shopping online, many e- commerce sites allow you to narrow down the product range
by selecting specific attributes of interest. For example, you can narrow down the search to
just a particular brand or a particular price range. Figures 12- 1 and 12- 2 show typical product
filtering on Amazon and Kelkoo, respectively.

 Figure 12-1. Amazon product filtering
329

CHAPTER 12 DYNAMIC DATA F IELDS330

 Figure 12-2. Kelkoo product filtering

Traditionally, to provide such a feature, you would put the products and their attributes in
a single table, as shown in Listing 12-1.

 Listing 12-1. A Typical Products Table

You would then create a form that contained hard- coded fields that users could select.
These fields would be passed to a standard SQL statement via a action, and the
filtered results would be returned.

The traditional method works well if the products are mostly the same or you have only a few
hundred products. However, if you want to build a more flexible system and be able to handle
a much larger product base with attributes that vary widely, you need a different approach.

The Dynamic Data Approach
Our method turns the traditional products table on its side. For example, in the traditional
table, the price field occupies one column on its own, with the prices running down the table,
as shown in Figure 12-3.

 Figure 12-3. A table with a traditional price field

CHAPTER 12 DYNAMIC DATA F IELDS 331

In our approach, we have the price field as a data type in itself, and create a separate
record for each price based on that price field data type, as shown in Figure 12-4. Our price
field now is essentially dynamic data. We can add and delete it as if it were ordinary data.
Taking this concept further, we can dynamically create table data fields.

 Figure 12-4. The price field as a database record

From an e- commerce standpoint, we can now create thousands or millions of products
with varying properties. Each property or attribute would be a record in itself.

Considerations for Using the Dynamic Data Approach
Since we’re moving away from the standard way of creating relational tables, we need to con-
sider the implications of taking this approach. There are both advantages and disadvantages.

Our approach has the following disadvantages:

 clause conditions will not work in some cir-
cumstances. For example, the simple SQL statement

 will not return the desired results, because there are no
 and fields. We could still achieve the same results using other means, but it

would involve more code and more SQL statements.

example, a simple SQL statement like would not return the
results we want. To get this data, we would need to make further SQL queries.

way in which SQL statements interact with code.

The advantages of the dynamic data approach are as follows:

Indeed, you can also create dynamic forms (although that isn’t our goal in this chap-
ter’s example).

(We won’t cover that feature in this chapter, but you can easily add it.)

-
ble—namely, mixed data sets.

Our dynamic data field technique is recommended only if the ability to have dynamic
fields is a core feature of your application. If you have several hundred brands or products,
it’s still much better to create separate tables as and when needed, such as ,

, , and so on (although, honestly, that solution isn’t that
attractive either when the number of tables increases).

CHAPTER 12 DYNAMIC DATA F IELDS332

The Product Database Design
Most of our tables will be metatables—tables that hold data that describes other data. For
example, the integer value 42 may numerically represent anything, but if we attach an attri-
bute called to it, then 42 numerically represents price. The attribute is the metadata.
As we’ve said, creating dynamic data fields is a complicated business. To achieve our aim, we
have created nine tables, as shown in Figure 12-5.

 Figure 12-5. Dynamic data fields schema

CHAPTER 12 DYNAMIC DATA F IELDS 333

We will now describe the type of data each table will contain and show some examples.
This will give you enough information to allow you to adapt the code to suit your own needs.

The field_type_groups Table
The table is used to group the different data types, as shown in the example
in Figure 12-6. For example, a price field is a field; a free- form text field, such as the
description of a product, is a type; and a drop- down field of brand names is an enu-
merated type. Table 12-1 describes the two fields in this table.

 Figure 12-6. Sample data in the field_type_groups table

 Table 12-1. The field_type_groups Table Fields

Field Description

Unique primary key field

Name of the field type

The field_type_values Table
The table holds the actual data types, as shown in the example in
 Figure 12-7. It’s used with the table. It exists mainly for the benefit of
enumerated types. Each field in this table is described in Table 12-2.

 Figure 12-7. Sample data in the field_type_values table

 Table 12-2. The field_type_values Table Fields

Field Description

Unique primary key field

Name of the data type

Foreign key to

CHAPTER 12 DYNAMIC DATA F IELDS334

The products Table
Each product will have one entry in the table, as shown in the example in Figure 12-8.
All the other tables are ultimately used to support this single table. Table 12-3 shows the fields
in the table.

 Figure 12-8. Sample data in the products table

 Table 12-3. The products Table Fields

Field Description

Unique primary key field

Name of the product

Foreign key to

The products_product_groups Table
The table links the table and the table.
The and table have a many-to- many relationship: one product can

this association is called has and belongs to many (HABTM). For example,
can be used in many devices, such as cameras and computers, and devices like cameras and

 table is shown in Figure 12-9. Each field is described in Table 12-4.

 Figure 12-9. Sample data in the products_product_groups table

 Table 12-4. The products_product_groups Table Fields

Field Description

Unique primary key field

Foreign key to

Foreign key to

CHAPTER 12 DYNAMIC DATA F IELDS 335

The product_fields Table
The table holds the name of the data fields, as shown in the example in
 Figure 12-10. Table 12-5 describes the four fields in this table.

 Figure 12-10. Sample data in the product_fields table

 Table 12-5. The product_fields Table Fields

Field Description

Unique primary key field

Name of the data field

Foreign key to

Foreign key to

The product_field_groups Table
The table is essentially used to hold together the different data fields in
the table, as shown in the example in Figure 12-11. Table 12-6 describes the
fields in this table.

 Figure 12-11. Sample data in the product_field_groups table

 Table 12-6. The product_field_groups Table Fields

Field Description

Unique primary key field

Name of the grouping of the field (like a table name)

The product_field_values Table
After the table, is the second most important table, as it holds
the attribute data for each product. Figure 12-12 shows an example of the table. Each of its
fields is described in Table 12-7.

CHAPTER 12 DYNAMIC DATA F IELDS336

 Figure 12-12. Sample data in the product_field_values table

 Table 12-7. The product_field_values Table Fields

Field Description

Unique primary key field

Foreign key to

Value of the data itself—probably the most important field

Foreign key to

Foreign key to

The product_groups Table
The table is one found in many other applications. It simply groups the prod-
ucts and puts the groups in a hierarchical structure. The field points back
to itself and is used to record the hierarchy structure. Figure 12-13 shows an example of this
table. Each field in the table is described in Table 12-8.

 Figure 12-13. Sample data in the product_groups table

 Table 12-8. The product_groups Table Fields

Field Description

Unique primary key field

Name of the group of products

Foreign key to

Foreign key to

CHAPTER 12 DYNAMIC DATA F IELDS 337

The product_searches Table
The table holds the search criteria for each product group, as shown in the
example in Figure 12-14. Table 12-9 describes the fields in this table. The fields that begin with

 are used in price range search filtering. For example, if is and
is , then one of the search fields would allow you to search for products with the price
range between $100 and $500. You’ll see the code that uses these fields later in this chapter, in
 Listing 12-4 starting on line 39.

 Figure 12-14. Sample data in the product_searches table

 Table 12-9. The product_searches Table Fields

Field Description

Unique primary key field

Foreign key to

Foreign key to

Used for price range filtering; filter for values less than this limit

Used for price range filtering; filter for values from this limit

Used for price range filtering; filter for values to this limit

Used for price range filtering; filter for values more than this limit

Baking for This Application
 command, we generated all the models for this application automatically.

Even more important is that we also created the associations in the models automatically.
 To generate the associations, we named the foreign key using the naming convention

.
Regarding the controllers, we have baked only the products controller. In it, we will cre-

ate two actions: the action for searching and the action for adding a product.
Because of the architecture of our tables, we cannot simply use the automatically generated

 action to add products. However, that action will still help us to some extent, as you’ll
see when we discuss adding products later in this chapter.

We have also baked some views, but again, only for the products.

CHAPTER 12 DYNAMIC DATA F IELDS338

Building the Product Search Feature
One of the main objectives of our dynamic data field approach is to allow flexible product
searches. Users can refine their search to a narrow set of desired attributes. For our search fea-
ture, we need to create the search form and code the search process.

Creating the Product Search Form
 Listing 12-2 shows the products controller for our application.

 Listing 12-2. The Products Controller (/app/controllers/products_controller.php)

CHAPTER 12 DYNAMIC DATA F IELDS 339

CHAPTER 12 DYNAMIC DATA F IELDS340

CHAPTER 12 DYNAMIC DATA F IELDS 341

We have created a action in the products controller to handle searches, on line
11. Line 20 carries out the task of listing the product search fields in the
method. On line 23, we find all the data fields for a particular product group. On line 27, we

. If no value has been specified, then
the products with a of will be shown. In practice, this value would be passed
to the function via the URL, maybe as a named parameter. For example, you may have a page
with different product group types, and one URL might look like this:

This URL would then list all the products with a value of .
Once we retrieve the , on line 30, we simply get details about the group for

display in the view. Line 38 does the main work and fetches the product fields.
Finding the search fields is carried out by the model, shown in Listing 12-3.

Remember that the search fields are not hard- coded; they are generated dynamically.

 Listing 12-3. ProductField Model (/app/models/product_field.php)

CHAPTER 12 DYNAMIC DATA F IELDS342

CHAPTER 12 DYNAMIC DATA F IELDS 343

At the beginning of the file, we have created some associations that correspond to
the diagram shown earlier in Figure 12-5. The important code begins on line 48 with the

 method. First, we get the fields relating to the product group, starting on
line 53. Next, starting on line 69, we get the search criteria for each field. For example, if the
field is about brand names, we need a list of all the brands. If it is a price field, we need to
get the search range of the price field. Figure 12-15 shows an example of the form displaying
these criteria.

 Figure 12-15. The dynamic search form

CHAPTER 12 DYNAMIC DATA F IELDS344

Let’s now look at the view that corresponds to the search form, which is shown in
 Listing 12-4. The file is split into two sections: lines 1 through 105 list the search fields relating
to the product group, and lines 107 through 140 list the products found.

 Listing 12-4. Search Action View (/app/views/products/index.ctp)

CHAPTER 12 DYNAMIC DATA F IELDS 345

CHAPTER 12 DYNAMIC DATA F IELDS346

CHAPTER 12 DYNAMIC DATA F IELDS 347

-
form the search, we know on which product group we’re searching. The statement on line

 loop goes through each field and displays the relevant filter input box and the label
that goes with it.

Inside the big loop on line 42, we have an statement on line 48 that decides on
the data type of the data field. If it’s a decimal, we assume it’s a price range filter. We then go
through the variables to find what kind of range we should display. If it’s not a decimal,
we assume it’s an enumerated list, like brand names or shoe sizes. We then go into the
block on line 84, where we echo a check box and the title of the field type.

Processing the Search
In the previous section, we showed you how the search form was created. We’ll now explain
how the search actually works. Referring to the products controller in Listing 12-2, on line 15,
you can see that all the work to search for the products is done within the model. The
code for the model is shown in Listing 12-5.

 Listing 12-5. Product Model (/app/models/product.php)

CHAPTER 12 DYNAMIC DATA F IELDS348

CHAPTER 12 DYNAMIC DATA F IELDS 349

CHAPTER 12 DYNAMIC DATA F IELDS350

CHAPTER 12 DYNAMIC DATA F IELDS 351

CHAPTER 12 DYNAMIC DATA F IELDS352

CHAPTER 12 DYNAMIC DATA F IELDS 353

The search starts with on line 47. Starting on line 55, the
method gets the fields that were selected. As you may notice, we have used some raw SQL
queries, which is sometimes necessary with such a complex system.

The method also does the work of finding the products. On line 113,
we first get all the products within the product group. Next, on line 115, we get the search
criteria that the user selected. Then, beginning on line 120, we walk through each product
and check it against the search criteria.

On line 125, we get all the data fields for the product. Then, on line 138, we take each field
and try to match it against the search criteria values.

range of $500 to $1,000. However, if the user also selects Samsung, that means she wants to
-

not use an ordinary statement with and operators in the clause, we need
to write the code to perform the equivalent functionality of these two operators. This is done
from line 147 to line 212.

Adding a Product
The process of adding a product is carried out in two stages: we add entries in the
and tables and then add the product data. (This could be combined
into one step, but we’ll leave that as an exercise for those who are interested.)

Creating Table Entries
First, we need to create an entry in the table. This is quite simple, as we will use the
action that we baked, as mentioned earlier in the chapter. (We have not altered
any of the baked code.) Figure 12-16 shows an example of the form, where we are adding

The important point regarding the table is the relationship it has with the

-
tions for us, including the following:

 action, a multiselect field is automatically generated so users can
select more than one entry in the product group, as shown in Figure 12-16.

 Figure 12-16, we have selected two product groups. The model’s method will
actually create three records: one for the table and two for the

 link table.

CHAPTER 12 DYNAMIC DATA F IELDS354

 Figure 12-16. The add product form

Entering Product Data
Now we have created an entry in the table for the new product, and we have also
created two entries in the table. So, we know to which product group
the product belongs. However, we still need to enter the actual data for the product, such as its
price and specific attributes. For this task, we need to write specific code.

 Figure 12-17 shows the form that lists the products. Most of what you see in Figure 12-17

product, we need to add the data for the product attributes. For example, clicking the Add

CHAPTER 12 DYNAMIC DATA F IELDS 355

 Figure 12-17. Listing of the products

 Figure 12-18. Adding data for a product

CHAPTER 12 DYNAMIC DATA F IELDS356

As you can see from the link, there is an action in the products controller (shown
earlier in Listing 12-2). We pass into the action two named parameters: and

 The code for the action is shown on line 42 in Listing 12-2.
When the product data is returned, it goes into the statement on line 44 in Listing 12-2.

To give you a better understanding of the code, the following is an example of the
variable as used on line 44:

In this listing, the key has two elements: and . We need the
 so we know to which product the data is attached. The element con-

tains the product data itself. The numeric order in the element is not important;
the important part is the value. If the value is an array (see line 50 in Listing 12-2), then the key
is composed of two values in the format . Thus,
we have all the information we need about the data: the data itself, the data type, and the field
it is. If the value is not an array, then it’s coming from a select list (in our example, the brand
names). In this case, we will just have the pair. It
won’t have a value, since we already know the value, as it is in the enumerated list. Remember
that the data fields are not hard- coded, so they don’t actually exist in the database as real data
columns. As far as the database is concerned, these fields are just data.

The view that generated Figure 12-18 is shown in Listing 12-6. The form simply sends the
data back to itself in the action. In the products controller in Listing 12-2, the data
starts getting processed on line 44 onward.

CHAPTER 12 DYNAMIC DATA F IELDS 357

 Listing 12-6. AddData View (/app/views/products/add_data.ctp)

CHAPTER 12 DYNAMIC DATA F IELDS358

Summary
Now that we’re at the end of the chapter, we hope you are still with us. As we said at the begin-
ning of the chapter, our design is quite complex because we are essentially trying to do some
of the job that the SQL engine usually does for us. Essentially, we have carried out some

to- many association, as well as raw queries using the function. By stepping out of the

This chapter contains the skeleton of an application. You can take the code in numerous
directions. For example, in the table, instead of using a single

 field to represent a hierarchical tree structure, you could use the preorder tree traversal
algorithm (see se). This order-
ing method allows you to fetch all products with certain attributes under a complete branch.
For example, you can list all televisions between the price range of $500 and $1,000. You can
achieve the same result using a single field, but it would involve more code
and more SQL statements.

Additionally, you might add a back- end administration area, where administrators can
easily manage products, product groups, and search criteria.

C H A P T E R 1 3

Captcha

Nowadays, most developers would not leave any web forms open to unlimited submis-
sion. Some safety measure must be put in place to prevent web forms from being used for
spamming.

While some people focus on building creative web sites and extending the capability
of the Internet, others spend considerable amount of time trying to crack and compromise
the information on web sites. Spamming is a huge problem. A recent statistic from Sophos
research revealed that during the first quarter of 2008, 96.5 percent of all e-mail was spam
(!

Spambots are everywhere. They simply engage in the process of filling out web forms
as if they were customers. For example, a spambot could send thousands of spontaneous
 e-mail messages by filling out your contact form or your blog comment form, if that form is
not protected.

You’ve probably encountered web sites where you’re required to interpret some obfus-
cated characters and input them for validation when a web form is submitted. You will most
often see this type of protection on high- profile sites like Google’s Gmail and Yahoo! Mail. This
fuzzy character output is called a Captcha.

In this chapter, we will briefly look at the various types of Captchas used as a means of
protecting web forms. We’ll then focus on the ASCII Art Captcha technique and implement an
ASCII Art Captcha component.

Captcha Implementations
The term Captcha was coined in 2000 by Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and
John Langford. It is a shortened acronym for Completely Automated Public Turing Test to Tell
Computers and Humans Apart. The purpose of a Captcha is to prevent automatic form sub-
mission by spambots or similar intrusion programs.

In 1950, the brain behind the advent of Captcha, Professor Alan Turing, wrote an article
called “Imitation Game” to describe how machines can demonstrate intelligence similar to
humans. In 1997, Alta Vista created an early spam- blocking measure. Now Captchas are com-
mon. There is even a company (reCAPTCHA, at) that offers Captcha
security as a web service. Figure 13-1 shows an example of a reCAPTCHA Captcha box.

359

CHAPTER 13 CAPTCHA360

 Figure 13-1. A reCAPTCHA box

Captcha Types
There are different types of Captchas and consequently many ways of implementing them.
This presents us with many options when it comes to blocking spammers from using robots
for submitting web forms. The following list describes some of the common implementations
of Captcha designed to completely block automatic programs from web form submission.

Alphanumeric images: The most common Captcha implementation is the appearance
of a random selection of distorted images made up of alphanumeric values. As humans,
we can easily recognize distorted image characters, but spambots cannot. It’s more chal-
lenging for spambots to crack the Captcha when the image characters are overlapping or
distorted with lines across the characters.

Picture images: Another Captcha implementation uses a set of various images, such as
animal images (a bird, a fish, an elephant, and so on) or furniture (table and chairs, for
instance). You’re expected to recognize the objects by their names and enter their names
into an input box.

Audio: This technique involves embedding an audio (sound) to pronounce some words
or random letters and digits. You’re expected to type the words into an input box. Unfor-
tunately, this requires some audio player, which not everyone has. Also, it makes things
difficult for people with hearing problems.

Question/answer: A question-and- answer technique involves asking a user a question.
If it’s a difficult question, some potential users may be blocked from form submission.

Math problems: Using this technique, you are given a mathematical question (such as 56
minus 30), and you are expected to input the resulting value before you can submit the
web form.

ASCII Art: This technique displays a set of fonts that are created from a combination of
characters artistically designed to form gigantic versions of some keyboard characters
(A–Z, 0–9, @, and so on). This set of fonts is called the ASCII Art characters.

The Captcha implementation presented in this chapter uses ASCII Art, so we’ll take
a closer look at that approach.

CHAPTER 13 CAPTCHA 361

ASCII Art Captcha
Although most of the standard Captchas on the Internet display graphic characters, users
sometimes find it difficult to decipher all the characters correctly, perhaps due to their screen
resolution, sight, or both. Many people find it is easier to recognize ASCII Art characters com-
pared to their graphic counterparts.

Note ASCII Art is the creation of images by using the strokes of the characters defined by the ASCII Stan-
dard as lines and shading. It is a mini- industry in itself. For more information, just search for “ASCII Art” on the
Internet. You can start by going to for some enlightening information.

As new ways of protecting web information are evolving, so are techniques for cracking
that protection. Spammers are finding ways of decoding them, typically using optical char-
acter recognition (OCR) programs. Not many web forms use ASCII Art, so many deciphering
spambot programs find it difficult to decode.

Another advantage ASCII Art Captchas have over graphics- based Captchas has to do with
external libraries. Some of the graphics- based Captchas rely on PHP extensions (for example,
the PHP GD library). The ASCII Art Captchas do not rely on any external library for their opera-
tion. They simply rely on your design of the characters.

One of the major characteristics of a Captcha is its look and feel. It includes the overlap-
ping of characters and lines that touch the characters. To some extent, this characteristic is
dependent on the spacing between characters and the fonts of the individual characters. One
of the advantages of using ASCII characters is that you have total control over the look and feel
of the characters.

ASCII Art Captchas offer a very strong way of thwarting spambots. First, the spambot
would need to decipher which keyboard characters are used to compose a single individual
character. A single font character could combine some hash () characters, some pipe ()
characters, a few ampersands (), and so on. Additionally, spambots face the problems of
determining the start and end of characters, actual borders or coordinates of each character,
and the position of the random text, as well as distinguishing the background noise from the
character.

In our ASCII Art Captcha implementation outlined in this chapter, our array of fonts will
define all characters of the alphabet from A–Z and the numbers 0–9. With this array of fonts,
you can modify the characters to suit your own preferences. Here is an example of a con-
structed font character:

This is clearly a letter T. It’s constructed using a combination of the hash () and exclama-
tion point () characters.

CHAPTER 13 CAPTCHA362

A Captcha Component
Now we will take you through implementing an ASCII Art Captcha. This technique will involve
the creation of an array of fancy fonts (ASCII Art) using our own custom keyboard character
combinations. Our Captcha characters will be randomly drawn from the array of the ASCII Art
fonts, distorted, and finally displayed on a simple web form.

The Captcha program will be rolled into a component, so that it can be reused when
required in other Cake applications. Table 13-1 describes the properties of the ASCII Art
Captcha component.

 Table 13-1. The Properties of the Captcha Component

Property Description

Consists of ASCII Art characters. Each character is built by putting together some
keyboard characters to form a whole character. You can create your own pattern of
characters to replace these fonts. As the name implies, the individual characters of
the fonts are determined from the standard alphanumeric values A–Z and 0–9.

Defines a set of characters that includes a dash -) character stored as an array that
is used as the background of ASCII Art characters.

A numeric value that must be greater than zero. It’s used to determine the total
number of characters in the CAPTCHA string text.

Of course, you can add to the list of the properties—for example, include background
coloring—to intensify security.

The ASCII Art Component Class
Our component class is named . Listing 13-1 shows the properties in this
class.

 Listing 13-1. The Beginning of the AsciiArtsComponent Class (app/controllers/components/ascii_
captcha.php)

The class contains three properties:

 is assigned an array of four ASCII characters: . These
characters are randomly used to distort the Captcha characters.

 is initially assigned an empty array. This property will later contain a list of
all the defined ASCII Art characters for A–Z and 0–9.

 is assigned an integer , which specifies the total number of characters
that will constitute the Captcha.

CHAPTER 13 CAPTCHA 363

Now that we’ve dealt with the component properties, let’s look at the functionality that
we’ll implement to build the ASCII Art Captcha. This functionality includes generating random
text from the ASCII character fonts, distorting the randomly generated text, and writing the
text to the screen.

Next up in our component class is Cake’s function, as shown in Listing 13-2.

 Listing 13-2. AsciiArtsComponent’s Startup Method

You should be familiar with the method by now. In this case, it gives the
 access to the properties of its parent controller, which is the

 object. For example, it enables you to access a form object data
 ta) submitted to a controller within a component.

Next, the method performs a similar task to the method of the
controller. This method contains logic that must be run before any component functionality
is run. We initialize the property with a set of ASCII Art characters. This property
contains an array of the ASCII Art characters that we created from different sets of characters.
For example, Listing 13-3 shows the first two elements of the array.

 Listing 13-3. AsciiArtsComponent’s Initialize Method

CHAPTER 13 CAPTCHA364

 Listing 13-3 shows the created ASCII Art characters for the first two elements (A and B)
of the array variable .
In total, the array contains 36 elements. We are going to randomly draw a number of
characters from this array, based on the property of the component.

Next in this class is the method, which returns a Captcha string, as shown in
 Listing 13-4.

 Listing 13-4. AsciiArtsComponent’s getCaptcha() Method

The first statement in this method initializes the variable with an empty array.
This variable will eventually contain the final result of this function. Next, we use the PHP
function to randomly select a list of characters from this function’s first argument,

ts. The total number of characters selected is determined by the second argu-
ment, ar, which has a default value of . In this case, a set of six randomly
selected characters is stored in the array variable.

Next, we use a loop to store each character in variable. That variable is used
as a key to pull the corresponding ASCII Art characters from the array, and then
stored in the array variable. The loop’s maximum iteration is based on the number
of elements in the array variable.

Finally, we use the method to distort the ASCII Art characters and return the final
Captcha result to be used in the object.

The next method in our component class is , which takes an array of the ran-
domly selected ASCII Art characters and returns a distorted version of the character, as shown
in Listing 13-5.

 Listing 13-5. AsciiArtsComponent’s addNoise() Method

CHAPTER 13 CAPTCHA 365

In Listing 13-5, we first set the variable to an empty array. Next, we use the
 loop to iterate the list of the ASCII Art characters stored in , and then

use an inner loop to iterate each ASCII Art character and check whether a character is
empty or a whitespace character. If a character is a whitespace character, the program ran-
domly selects a replacement character from the array variable. The final
character is stored and returned as the array variable.

Now that we are finished with the properties and methods, let’s
move to the controller that employs the services of this component to provide security against
a spambot’s submission of our sample form.

The Captcha Controller
Next, we will create the class that displays a form to test our Captcha. It
starts as shown in Listing 13-6.

 Listing 13-6. The Beginning of the CaptchaController Class (app/controllers/captcha_
controller.php)

In Listing 13-6, we declare the helpers and components to aid some of the functions
implemented in the controller. Notice that we’ve included our component.

Next in the controller is the function, which is invoked before any of the
controller functionality is called to set the heading information for our screen, as shown in
 Listing 13-7.

CHAPTER 13 CAPTCHA366

 Listing 13-7. CaptchaController’s beforeFilter Method

Next, we will create the function, which renders a simple HTML form to do a
Captcha test, as shown in Listing 13-8.

 Listing 13-8. CaptchaController’s index Function

The method starts by setting the array variable with the list of ASCII Art
characters retrieved by using the method of the object. Next,
using the PHP function, we obtain all the keys of the elements of the array
variable with an empty string; this is the ASCII value of the Captcha characters. We then store
the keys in the variable written to a string variable. We will use the characters
stored in a object to validate the input a user has entered on a web form. We then
make the and variables available to the view
code, which is shown in Listing 13-9.

 Listing 13-9. The Captcha Test View (app/views/captcha/index.ctp)

CHAPTER 13 CAPTCHA 367

In Listing 13-9, the page heading and slogan were rendered using the variables set in the
 method of the controller. Next, we use the loop to display the ASCII Art

characters stored in the array variable. Finally, we create a Captcha form containing
an input text field to accept user input. The user is expected to correctly enter the ASCII Art
character displayed above the input element. The view is shown in Figure 13-2.

 Figure 13-2. The Captcha test form

When a user clicks the Submit button, the form submission is handled by the func-
tion declared in the component, as shown in Listing 13-10.

 Listing 13-10. The check() Function in the CaptchaController Class (app/controllers/captcha_
controller.php)

CHAPTER 13 CAPTCHA368

In the function, we first check if the submitted data
 is not empty. If it’s empty, the appropriate error message is stored in the

object, and the Captcha form is displayed with the preset error message. If it’s not empty, we
first check if the input value entered by the user is equal to the ASCII Art characters stored in
the object. If they are not equal, the error message is set, using the method
of the object. Otherwise, the success message is set for display in the Captcha view, as
shown in Figure 13-3.

 Figure 13-3. The screen showing the success message

CHAPTER 13 CAPTCHA 369

Summary
In this chapter, we addressed the need to thwart spammers when collecting information using
web forms. We concentrated on safeguarding form data against machine- code intruders such
as spambots, who can act like humans and fill in web forms. We took a brief look at the various
types of Captchas that can be implemented.

We chose to implement an ASCII Art Captcha. We created an ASCII Art component. This
component contains properties and functionality that enable our Captcha controller to create
a simple human test via a web form that randomly displays a set of ASCII Art characters on the
screen. Finally, appropriate messages are displayed after a user has entered text.

There are many possible ways you can improve on our Captcha component. Here are
some suggestions:

 characters that are used
as the character for the fonts with other ASCII characters. Replace only a few; replacing
too many characters will render the ASCII Art representation unrecognizable.

And do keep in mind that for every security measure, there will always be some counter-
measure. Never underestimate the resolve of the enemy!

371

Index

A
access control, ActionsController and,

244–251
access data field, 310
Accomplishments (sample application),

214–221
unit testing and, 221–232
web testing and, 232–234

accomplishments (sample database table),
214

Acl (access control list) component, 19, 238,
264

declaring, 241
GroupsController and, 251

Aco class, 258
acos database table, 239, 249
ActionsController class, 242, 244–251
addCart() method, 65, 73
addData() method, 337, 356
Add Data view, 356
add_form() method, 160, 168
addListener()method, 134
add() method, 15, 16, 337

Accomplishments sample application and,
216

edit() method and, 254
JourneysController and, 164
online shop sample application and, 73
PostsController and, 32, 36
product search sample application and,

353
retrieve() method and, 168
UsersController and, 264

addNoise() method, 364
admin_ prefix, 306
admin_add() method, 277, 293
admin_delete() method, 284, 293
admin_edit() method, 293
admin_index() method, 279
admin_toTrans() method, 279
admin_view() method, 293
afterDelete() method, 308
afterFind() method, 309

access data field and, 310
behaviors and, 308

afterSave() method, 184, 257, 265, 309

Ajax
_checkAjax() method and, 95, 99
event-driven programming and, 134
message forum sample web service and,

109, 113, 125
Ajax helper, 21
Allen, David, 213
allow() method, 258

Acl component, 264
Auth component, 238, 251

alphanumeric image Captchas, 360
am() method, 312
API (application programming interface), 86
app folder, 5
AppController class, 4, 18, 209

components and, 20 241
helpers and, 21
plugins and, 23

app_controller.php file, 294, 325
App:import() method, 25
application controllers. See controllers
application layout, caching, 190
application programming interface (API), 86
AppModel class, 8, 23
app_model.php file, 325
aros_acos database table, 239
aros database table, 239, 266
arrays, utility for converting to objects, 19
ASCII Art character Captchas, 361–368
AsciiArtsComponent class, 362–365
$asciiFonts property, 362
assertFalse() method, 226
assert methods, 231
audio Captchas, 360
Auth (authentication) component, 238, 262,

294
CRUD methods and, 249
declaring, 241

authentication, 50, 293–296
authorize parameter, 241, 249, 258
automagic fields. See magic fields

B
bake command, 273–277, 297–306

GroupsController and, 251
ProductsController, 337
UsersController and, 259

beforeDelete() method, 308

INDEX372

beforeFilter() method, 4, 283, 294
Auth/Acl components and, 241
CaptchaController and, 365
Google translation services and, 188, 211
message forum sample web service and,

96, 99
online shop sample application and, 64,

68–70
beforeFind() method, 309

access data field and, 310
record order data field and, 311

beforeMessage() method, 115
beforeRender() method, message forum

sample web service and, 96, 99
beforeSave() method, 308, 309
beforeValidation() method, 309
behaviors, custom magic fields and, 308
blogging (sample application), 29–46

application structure for, 31
RSS feed for, 43

Blum, Manuel, 359
break helper, 22
buildCategories() method, 53, 56, 60
business logic, 7

C
caching

Twitter Twister sample application and,
188–192

when to add, 191
cake command, 238
cake folder, 5
cake tags, 320
CakePHP

control panel and, 237
core concepts/technologies used by, 2
directory structure of, 5
features of for web development, 1
framework for, downloading/installing, 5
fundamentals of, 1–27
naming conventions for, 6–8
vs. other frameworks, 2

calcTSP() method, 153
callback methods, 308
Captcha (Completely Automated Public

Turing Test to Tell Computers and
Humans Apart), 359–369

CaptchaController class, 363, 365
Cart model, 63–67
CartsController class, 69–75
carts (sample database table), 50, 51, 64
case study, In/Out communications applica-

tion and, 214
categories, 185
CategoriesController class, 56

categories (sample database table), 50, 53
Category model, 53, 56
changeLanguage() method, 192
changeLocale() method, 283
_changeSessionLocale() method, 193
check() method, 367
_checkAjax() method, 95, 99
checkout() method, 76
class keyword, 8
cleanUp() method, 65, 73
code samples. See source code
Command design pattern, 94
Completely Automated Public Turing Test to

Tell Computers and Humans Apart
(Captcha), 359–369

components, 19, 232. See also Acl compo-
nent; Auth component

concurrency control, 313
config/core.php file, 279
content and data separation, 317
control panel (sample application), 237–270

additional features for, 270
application controllers and, 242–269
Auth/Acl components and, 238–242
testing, 266

Controller class, 18
controllers, 4, 18

blogging sample application and, 32–45
components and, 20
control panel sample application and,

242–269
message forum sample web service and,

94–125
naming conventions for, 6
online shop sample application and, 56,

59–63, 67–82
testing, 232
Twitter Twister sample application and,

192–211
Yahoo! Maps sample plugin and, 324

ControlPanelController class, 242
controls, Google Maps and, 134
convert() method, 20
core defines, 7
create() method, 11
creating

behaviors, 308
magic fields, 309–315
models, 8
RSS, 43
tables, 9, 30

CRUD (create, read, update, and delete),
9–13, 53

ActionsController and, 249,
GroupController and, 258

INDEX 373

D
DATABASE_CONFIG class, 3
database connection array, 3
databases, for blogging sample application,

29
data, separating from content, 317
data schemas, 139
data validation, 13
default page title, setting for an application,

18
delete() method, 42

Auth component and, 251
behaviors and, 308
GroupsController and, 258
UsersController and, 264

DELETE method, 87
deleting

posts, 42
tables, 9

deny() method, 238, 258, 264
departments (sample database table), 9
description tag, 174
directory structure, 5
disable() method, 40, 314
display() method, 20, 324, 328
_displayTwitters() method, 200
div tag, 327
docs folder, 5
documentation, for message forum sample

web service, 125–128
Don’t Repeat Yourself (DRY), 25
doSearch() method, 353
doUpdate() method, 66
downloads

Cake framework, 5
SimpleTest testing interface, 222
text editors, 113

driving directions, travel log application and,
135

DRY (Don’t Repeat Yourself), 25
dynamic data fields, 329–358

advantages/disadvantages of, 331
product database design and, 332–337

E
e() method, 125
e-commerce, 47–83
edit() method, 32, 38, 254, 262
Email component, 19
emptyBasket() method, 66
enable() method, 41, 314
encapsulation, 3
Event.observe method, 146
events, Google Maps and, 134
execute() method, 94
explode() method, 167

F
FCKeditor text editor, 113
feedback plugin (sample), 23
Fielding, Roy, 86
field_type_groups table, 333
field_type_values table, 333
File class, 249
files, reading content to screen and, 26
findBestJourney() method, 148, 151
findById() method, 73, 170
findBy() method, 97, 193
findLocation() method, 148
find() method, 8, 13, 20

access data field and, 310
behaviors and, 308
language model and, 184
locking data field and, 315
retrieving journeys and, 168

Folder class, 249
fonts property, 362, 363
foreach loop, 347
form helper, 21
$form object, 11, 15
forum application. See message forum web

service
Fried, Jason, 214

G
GClientGeocoder class, 133
GControl class, 134
GDirections class, 135

fetching data and, 153
plotting journeys via, 156–159

generateFields() method, 164
generateTreeList() method, 258
geocoding, 133
GET method, 86, 87, 173
getAll() method, 56, 71
getCaptcha() method, 364, 366
getCartContent() method, 66
getCart() method, 64, 73
getCategories() method, 53, 55
getChildCategories() method, 53, 55, 60
getDepartment() method, 11
getFieldSelection() method, 353
getJourneyDistance() method, 151, 153
getLang() method, 184
getLocale method, 292
getMessage() method, 109
getMiniCart() method, 74
_getNeighbours() method, 156
_getNextNeighbour() method, 155, 156
_getNextNeighbours() method, 155
getStatusTranslation() method, 205, 208
Getting Things Done (GTD) methodology,

213

INDEX374

getTwitterRequests() method, 195
GEvent class, 134
GGroundOverlay class, 135
global constants, 7
global functions, 7
GMarket class, 135
Google Ajax Language API (aka Google Trans-

lator), 175
Google Checkout button, online shop sample

application and, 79
Google Maps, 131–136
Google translation services, using with Twit-

ter, 173–211
caching and, 189
detecting languages and, 176

GPolygon class, 135
GPolyline class, 135
Group model class, 255
groups, 251–258, 266
GroupsController class, 242, 251–258
GTD (Getting Things Done) methodology,

213
GTileLayerOverlay class, 135
GUnload() method, 133

H
HABTM (has and belongs to many), 334
$hasMany property, 53
“Hello World,” translating, 175
helpers, 21
home page

for online shop sample application, 69
for travel log sample application, 143

Hopper, Nicholas J., 359
HTML forms, blogging and, 29
HTML helper, 16, 21
HTTP protocol, 87
HttpSocket class, 175

Google translation requests and, 206
Twitter’s public timeline, calling via, 174,

196

I
i18n (sample database table), 271, 277
if statement, 318
implode() method, 366
import() method, 26
index() method, 18, 94, 199

ActionsController and, 249
CaptchaController and, 366
GroupsController and, 258
group security and, 258
message forum sample web service and,

95, 99
PostsController and, 32, 43
UsersController and, 264

inheritance, 4

initialize() method, 133, 363
In/Out communications application (case

study), 214
insertBefore() method, 115
interfaces, 3
internationalization (i18n), 184
isCartEmpty() method, 64
ISO language codes, 180, 185, 193, 292

J
JavaScript, Google Maps and, 133
JavaScript helper, 21
JavaScript Object Notation (JSON), 157
journey model, 140
journeys, 160–172

plotting, 156–159
retrieving/editing, 168
saving, 160–167
viewing, 169–172

journeys table, 138
JourneysController class, 138, 160, 164
JSON (JavaScript Object Notation), 157
JSON web services, 88, 92

L
l10n (localization), 184, 293
_langChoice() method, 211
Langford, John, 359
Language model, 183
languages

changing, Twitter Twister sample applica-
tion and, 190, 192

detecting, Twitter Twister sample applica-
tion and, 176

selecting, news story sample application
and, 292

languages database table, 180
LC_MESSAGES category, 185
LC_TIME category, 185
left branch, 240
LIKE AGAINST operator, 123
link() method, 283
List behavior, magic fields and, 307
_listActions() method, 249
_listProductSearch() method, 341
lists() method, 59, 61
loadFromWaypoints() method, 156
locale codes, 272
locales, 184, 292

changing, 191
news story sample application and, 292

localization (l10n), 184, 293
location model, 140
locations

driving directions and, 135
finding, 148
plotting journeys and, 156–159

INDEX 375

locations table, 138
locking data field, 313
_locVisited() method, 156
logic, separating from presentation, 317
login() method, 216, 262, 294
logout() method, 262, 296

M
m_ prefix, for magic field names, 310
Magento e-commerce application, 47
magic fields, 307–315

custom, 308, 309–315
m_ prefix for, 310

MagicFieldsPlus behavior file, 309
makeTwitterRequest() method, 195
Mann, Merlin, 213
MapHelper class, 164
MarkerManager class, 134
_markVisited() method, 156
MATCH AGAINST operator, 123
mathematical question Captchas, 360
menu() method, 56
MessageController class, 96
message forum web service (sample applica-

tion), 85–129
additional features for, 129
controller for, 94–125
layout for, 91
requirements for, 88–91
structure of, 91
writing documentation for, 125–128

messages (sample database table), 91
metatables, 332
MfController class, 95
MfFetchMessageController class, 97, 99–104
MfFetchMessage() method, 109, 126
MfFetchMessages() method, 126
MfFetchThreadsController class, 105–109
MfFetchThreads() method, 127
MfMessageFormController class, 110–115
MfMessageProcessController class, 100,

116–120
MfMessageProcess() method, 127
MfSearchProcessController class, 120–125
MfSearchProcess() method, 128
Model class, 8
Model-View-Controller. See MVC design

pattern
ModelBehavior class, 308
models, 8–15

blogging sample application and, 31
caching, 189
creating, 8
message forum sample web service and, 96
naming conventions for, 6
news story sample application and, 272

Twitter Twister sample application and,
181–184

Yahoo! Maps sample plugin and, 325
Multibyte class, 175
MVC design pattern, 2, 8–19

content/data separation and, 319
controllers and, 315
plugins and, 22

MySQL, search methods and, 123
MySQL database, sample applications and, 5,

29, 50–67

N
$name property, 11, 53, 70
naming conventions, 6–8

for Cake tags, 320
for magic fields, 310
for test classes, 225
for test files, 224

newline() method, 22
news story sample application, 271–306

managing stories in, 273–288
structure of, 271

next() method, 106
nocache tag, 190, 191
noiseChars property, 362
Norman, Donald, 137
numberChar property, 362

O
object-oriented programming (OOP), 3
objects, utility for converting arrays to, 19
onchange events, 146
onclick events, 146
online shop (sample application), 47–83

flow of, 49
Google Checkout button and, 79
home page for, 69
layout for, 47
MySQL database for, 50–67
orders and, 75
PayPal Submit button and, 82
shopping cart and, 63–75
user requests and, 67–83

OOP (object-oriented programming), 3
optimistic locking, 313
Order model, 75
OrdersController class, 76–79
osCommerce e-commerce application, 47
overlays, 134

P
$pageTitle property, 67
page title, setting default for an application, 18
paginate() method, 106, 280, 284, 291
paginateCount() method, 291

INDEX376

paginateCountStandard() method, 291
paginateCountTranslation() method, 291
paginateStandard() method, 291
paginateTranslation() method, 291
pagination

for message forum sample web service,
105–109

for news story sample application,
288–292

paginator helper, 21
parentNode() method, 257
paths, 7
PayPal Submit button, online shop sample

application and, 82
$pdid property, 67
permissions, 238
pessimistic locking, 313
PHP 4+, 3
picture image Captchas, 360
_plotBestJourney() method, 156
plugins, 22

sample application, for Yahoo! Maps, 320,
323–328

testing, 232
Poedit file editor, 185
polymorphism, 4
portable object (.po) files, 185, 271
POST method, 86, 87, 173
posts, blogging and, 30–45

adding posts, 35
deleting posts, 42
listing posts, 32
message forum sample web service and, 89
publishing posts, 41
unpublishing posts, 40
updating posts, 38

PostsController class, 32, 36, 43
presentation, separating from logic, 317
prev() method, 106
print() method, 22
pr() method, 20
_processActions() method, 249
Product model, 59

Cart model and, 63
code for, 347–353

product search (sample application), 329–358
adding products to, 353–358
building, 338–353
processing searches and, 347

product_field_groups table, 335
ProductField model, 341
product_fields table, 335
product_field_values table, 335
product_groups table, 336, 353
products (sample database table), 50, 53, 59
products available, displaying, 325
products table, 329–337, 334, 353

ProductsController class, 56, 59–63, 338, 347
product_searches table, 337
products_product_groups table, 334, 353
protocols, 86
public timeline, 174, 194, 325
PUT method, 87

Q
query() method, 13, 184

R
RAD (rapid application development), 2
ReadFile class, 26
read() method, 13, 52
reCAPTCHA, 359
record order data field, 311
records

concurrency control and, 313
retrieving, 9, 11–13

regression testing, 235
removeChild() method, 114
_renderCt() method, 323
render() method, 323
representational state transfer (REST), 86, 87,

173
requestAction() method, 58, 61, 71, 74
RequestHandler component, 19

JSON requests and, 93
web service requests and, 187, 210

request() method, 174
Request() method, 115
requests, in Twitter, 173, 177

Cake models and, 181
TwitterRequestController and, 194

resources for further reading
ASCII Art, 361
CakePHP vs. other frameworks, 2
Google payment system, 82
helpers, 21
object inheritance, 4
object-oriented programming, 4
PayPal, 82
PHP, 3

REST protocol, 86, 87, 173
result return formats, 88
retrieve() method, 168
retrieving records, 9, 11–13
right branch, 240
Router class

JSON web services and, 93
web services and, 186, 187

RSS feeds
creating, 43
Twitter Twister sample application and,

186–188
RSS helper, 43
RSS view file, 44

INDEX 377

S
sample applications

Accomplishments task completion,
214–221

blogging, 29–46
control panel, 237–270
feedback plugin, 23
message forum web service, 85–129
news story, 271–306
online shop, 47–83
product search, 329–358
travel log, 131–172
Twitter Twister, 173, 180–211
Yahoo! Maps plugin, 320, 323–328

sample code. See source code
Sanitize plugin, 216
save command, 278
save() method, 9, 184, 195

behaviors and, 308
product search sample application and, 353

saveJourney() method, 148
_save_locations() method, 167
saveMessage() method, 11
saveRequest() method, 195
saveStatuses() method, 196, 197
_save_tags() method, 167
_saveTrans() method, 206, 208
Scaffolding behavior, magic fields and, 307
ScreenController class, spillout.php script

and, 26
screen_name tag, 174
scripts, 25
script tag, 107
SD memory cards, 334
Search Action view, 344–347
search feature, for products (sample applica-

tion), 329–358
adding products to, 353–358
building, 338–353
processing searches and, 347

search() method, 337, 341
searchFilters() method, 343
security, 237–270

Acl/Auth components and, 238
groups and, 251, 257
permissions and, 238

security() method, 257, 263
SELECT statement, 97
Session component, 19, 210
session helper, 21
setCenter() method, 133
setFlash() method, 73
setI10nByLocale() method, 278
set() method, 15, 17, 62
setPageTitle() method, 68
setup() method, 309
$shop database connection array, 3

shopping basket, displaying, 325
show() method, 17, 18
$sid property, 67
SimpleTest unit testing interface, 221–232

downloading/installing, 222
web testing and, 232

SimpleXMLElement class, 199
SMTP protocol, 86
SOAP protocol, 86
someAction() method, 251, 258
source code, 2

Accomplishments (task completion
sample application), 215–233

add_form() method, 161
add() method, 16
add view, 15
App classes, 23
AppController class, extending, 4
application controllers, 242–247, 251–254,

259–262
Auth/Acl components, 241
authentication, news story sample appli-

cation and, 294
behaviors, 311
blogging application, 30–45
Captcha protection, 362–368
components, 19
content and data separation, 317
controllers, 24, 94–125, 192–210
DATABASE_CONFIG class, 3
database tables, 238, 239
data structures, 9
Department class, 10
GDirections class, 135
global layout file, 141
Google Maps example, 131
Group model class, 255
“Hello World,” translating, 175
helpers, 22
home page, for travel log sample applica-

tion, 143
journeys (travel log sample application),

139, 156, 161, 164, 168–172
JSON layout file, 93
JSON strings, 157
Language model, 183
locales, 191
locations (travel log sample application),

139, 148
magic fields, 310–315
MagicFieldsPlus behavior file, 309
MapHelper class, 164
message forum sample web service,

89–125
Model class, 8
news story sample application, 271–306
nocache tag, 190

INDEX378

online shop sample application and, 50–82
optimistic locking, 313
plugin for Yahoo! Maps, 320–328
plugins, 23–25
product search feature, 338–358
records, retrieving, 11–13
RSS feeds, 186
RSS view file, displaying contents of, 44
saveJourney() method, 157
show() method, 16
spillout.php script, 26
tables, creating, 9, 30
tags, 140, 167, 319
traveling salesman algorithm, 150–156
TravelMapprManager class, 146
Twitter Twister sample application, 174,

178–180, 185, 190
TwitterRequest model, 181
TwitterStatus model, 182
TwitterTranslation model, 182
User model class, 264
validation rules, 14
web site test, 234

spam, 359
spambots, 359–361
spillout.php script, 26
startAgain() method, 148
startup() method, 20, 363
statuses, in Twitter, 173

20 most recent, 174, 178
Cake models and, 181
TwitterRequestController and, 194
TwitterStatusController and, 196–209

_statusTranslate() method, 202
storeLocation() method, 149
StoriesController class, 271, 277–297, 283
stories (sample database table), 271, 277, 284

T
tables

creating, 9, 30
deleting, 9
naming conventions for, 7
updating, 9

table tag, 318
tag model, 140
tags, 317–328

attributes and, 320
saving, 167

tags table, 138
test.php file extension, 224
test classes, naming conventions for, 225
test-driven development, 235
test files, naming conventions for, 224
testing, 213–235

components, 232
controllers, 232

plugins, 232
regression testing and, 235
unit testing and, 221–232
web testing and, 232–234

testLoginBadUsername() method, 233
testValidUsername() method, 225
text helper, 21
text tag, 174
textarea tag, 113
threads, message forum sample web service

and, 89
threads (sample database table), 91
time helper, 21, 216
TinyMCE text editor, 113
Translate behavior, 272, 278, 282, 292
translate command, 176
_translateText() method, 206
traveling salesman algorithm, 150–156
traveling salesman problem, 131
travel log (sample) application, 131–172

interface for, 141–145
journeys and, 160–172
requirements for, 136
structure of, 138

TravelMapprManager class, 146–159
Tree behavior, 240, 307, 308
Turing, Alan, 359
tweets. See statuses, in Twitter
Twitter, 173–211

caching and, 189
protocols and, 87
public timeline of, 174, 325
Twitter API and, 173–175

Twitter Twister (sample application), 173
additional features for, 211
database tables for, 178
requirements/structure of, 176–181

TwitterRequestController class, 194
TwitterRequest model, 181
twitter_requests database table, 178, 182
TwitterStatusController class, 196–209
twitter_statuses database table, 178, 179, 182
TwitterStatus model, 182
TwitterTranslation model, 182
twitter_translations database table, 179, 182
TwittertwisterController class, 180–211

U
unbindModel() method, 202
unit testing, 221–232

assert methods and, 231
benefits of, 213
Cake testing interface for, 221–232
reasons for using, 235
regression testing and, 235
running tests and, 227
test-driven development and, 235

INDEX 379

updateCart() method, 65, 73
updateForm() method, 114
Updater() method, 115
updating

posts, blogging and, 38
tables, 9
Twitter and. See statuses, in Twitter

UserController class, authentication and,
295, 296

user interfaces (UIs), for travel log sample
application, 141–145

user journey, for online shop sample applica-
tion, 49

User model class, 264
username validation, 219–233
user requests, online shop sample applica-

tion and, 67–83
users

authenticating, 293–296
managing, 259–266

users (sample database table)
control panel sample application and, 238,

266
news story sample application and, 271,

294
UsersController class, 242, 259–266, 271
$uses property, 19, 56, 67
$useTable property, 7, 11
utilities

FCKeditor text editor, 113
Poedit file editor, 185
TinyMCE text editor, 113

uuid() method, 314, 327

V
validate property, 76
_validation() method, 99
validation rules, 14
validationErrors error array, 315
validUsername() method, 219, 225, 229
vendors folder, 25
View class, 321–323
view() method, 195

GroupsController and, 258
ProductsController and, 59, 62
UsersController and, 264

viewAllStories() method, 284
viewArchive() method, 195
viewing journeys, 169–172
views, 15

naming conventions for, 7
overriding, 320

_visitNextCity() method, 156
von Ahn, Luis, 359

W
web development

features of CakePHP for, 1
test-driven, 235
RAD and, 2

web forms, 11
Captcha protection for, 359–369
views and, 15

web root configurable paths, 7
web service requests, 88, 90
web services, 85

JSON, 92
message forum sample application and,

85–129
Twitter Twister sample application and,

186–188
web sites, testing external, 234
web testing, 232–234
welcome() method, 243
WidgetsController class, 242
Winer, David, 86
write method, 52

X
XHR (XMLHttpRequest), 87, 134
XML class, 199
XML helper, 21
XMLHttpRequest (XHR), 87, 134

Y
Yahoo! Maps plugin (sample application),

320, 323–328

Z
zoom level, adding, 327

